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Resumo

Gestão do conhecimento é essencial para qualquer organização. As empresas precisam
ser capazes de produzir, organizar, salvar, recuperar e compartilhar conhecimento com
eficiência. As empresas de software não são diferentes de outras empresas, produzindo
conhecimento continuamente em larga escala. Essas empresas geralmente geram centenas
de milhares de tickets por dia por meio de ferramentas de gerenciamento de projetos, como
Jira, Bugzilla e Trello. Neste contexto, o compartilhamento apropriado de conhecimento
sem automação é extremamente difícil ou até impossível. A chance de perder informações
valiosas ao longo do tempo é alta. Para solucionar este problema, desenvolvemos um
sistema de recomendação em que, para cada novo ticket, o sistema analisa e classifica os
tickets relevantes no repositório para ajudar os usuários compartilhando conhecimentos e
lições aprendidas em casos semelhantes anteriores. O sistema de recomendação é baseado
no Vector Space Model (VSM) com TF-IDF e medida de similaridade cosseno. Os expe-
rimentos revelaram resultados positivos, mostrando que o VSM é uma técnica adequada
para classificar tickets relevantes. Em combinação com o sistema de recomendação, foi
desenvolvida uma técnica de seleção de características baseada no algoritmo genético e
uma nova abordagem que o aprimora heuristicamente. O sistema de recomendação com
seleção de características obteve resultados positivos (todos os resultados foram validados
estatisticamente) em comparação ao método que se baseia no modelo tradicional de espaço
vetorial, sem nenhum procedimento de seleção de características. A precisão aumentou
em quase 23%, o tempo médio de pesquisa por consulta reduziu em 44% e o tamanho do
vetor reduziu em 64%.



Abstract

Knowledge management is essential for any organization. Corporations need to be capable
of producing, organizing, saving, retrieving, and sharing knowledge efficiently. Software
corporations are not different from any other businesses, producing knowledge continu-
ously on a large scale. Such companies often generate hundreds of thousands of tickets per
day through project management tools, such as Jira, Bugzilla, and Trello. In this context,
appropriate knowledge sharing without automation is extremely difficult or even impos-
sible. The chance of losing valuable information through time is high. To address this
issue, we have developed a recommendation system where, for each new ticket, the system
analyses and ranks relevant tickets on the repository to help users to share knowledge and
lessons learned from previous similar cases. The recommendation system is based on the
Vector Space Model (VSM) with TF-IDF and cosine similarity. The experiments revealed
positive results showing that the VSM is a suitable technique to rank relevant tickets. In
combination with the VSM recommendation system, a feature selection technique based
on Genetic Algorithm, and a novel approach that heuristically improves the well-known
Genetic Algorithm were developed. The recommendation system with feature selection
had positive results, where all results were statistically validated, compared with the
method that relies on the traditional vector space model without any feature selection
procedure. The precision increased by almost 23%, the average search time by query
reduced by almost 44%, and the vector size reduced by 64%.



List of Figures

2.1 Knowledge Spiral Framework. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Example of a Jira ticket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Information Retrieval and Ranking process. . . . . . . . . . . . . . . . . . 19
2.4 Documents example for TF-IDF calculation. . . . . . . . . . . . . . . . . . 20
2.5 Document vector representation with TF-IDF weight example. . . . . . . . 22
2.6 Curse of Dimensionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 The Genetic Algorithm pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Chromosome example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Simple Crossover Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10 Multiple Crossover Example. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 Examples of local and global maxima. . . . . . . . . . . . . . . . . . . . . . 28
2.12 Text classification framework. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Feature selection by Genetic Algorithm. . . . . . . . . . . . . . . . . . . . 33
3.2 Example of a three-dimension search space. . . . . . . . . . . . . . . . . . . 34
3.3 Example of chromosomes as far as possible from each by Hamming Distance. 35
3.4 First Population Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Dataset organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Conventional ticket recommendation system. . . . . . . . . . . . . . . . . . 42
4.3 5-Fold Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Best-fitting individual performance by number of generation . . . . . . . . 48
5.2 Search Time vs P@10 vs Vector Size . . . . . . . . . . . . . . . . . . . . . 51
5.3 Search Time vs P@5 vs Vector Size . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Stability test for fold 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Stability test for fold 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6 Stability test for fold 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.7 Stability test for fold 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8 Stability test for fold 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1 HADOOP-12753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 HADOOP-12804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3 HADOOP-13130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4 HADOOP-13131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.5 HADOOP-13599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.6 HADOOP-12444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.7 HADOOP-13110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.8 HADOOP-13019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Tables

2.1 TF Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 IDF Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 TF-IDF Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Computation of the Cosine Similarity with TF-IDF weight. . . . . . . . . . 22

4.1 Datasets considered in our study. . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Distribution of search tickets per dataset. . . . . . . . . . . . . . . . . . . . 41
4.3 Distribution of relevant (sibling) tickets for different datasets, including the

average, the maximum, and the minimum number of relevant tickets per
search ticket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Genetic Algorithm parameters. . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Effectiveness performance considering different ticket attributes. . . . . . . 46
5.2 5-fold Experiment Result on traditional GA. . . . . . . . . . . . . . . . . . 48
5.3 P@5 effectiveness performance of the Conventional approach and the GA-

based recommendation systems (with and without the use of the proposed
heuristic in the definition of the initial GA population). . . . . . . . . . . . 49

5.4 P@10 effectiveness performance of the Conventional approach and the GA-
based recommendation systems (with and without the use of the proposed
heuristic in the definition of the initial GA population). . . . . . . . . . . . 49

5.5 Mean search time by query (ms) of the Conventional approach and the GA-
based recommendation systems (with and without the use of the proposed
heuristic in the definition of the initial GA population). . . . . . . . . . . . 50

5.6 Number of terms used on the vector (vector size) of the Conventional ap-
proach and the GA-based recommendation systems (with and without the
use of the proposed heuristic in the definition of the initial GA population). 50

5.7 Stability result for fold 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.8 Stability result for fold 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.9 Stability result for fold 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10 Stability result for fold 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.11 Stability result for fold 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.12 Precision results for different datasets. . . . . . . . . . . . . . . . . . . . . 56
5.13 Vector sizes for different datasets . . . . . . . . . . . . . . . . . . . . . . . 56
5.14 Top-5 ranked tickets considering HADOOP-12753: S3A JUnit tests fail-

ing if using HTTP proxy as search ticket. Tickets highlighted in bold are
relevant (siblings). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1 Search Ticket: HADOOP-12753. . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents

1 Introduction 12

2 Basic Concepts 15
2.1 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Recommendation System & Information Retrieval . . . . . . . . . . . . . . 17
2.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 GA-based Ticket Recommendation System 32
3.1 Feature Selection Based on Genetic Algorithm

(FSGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Heuristic Approach for Feature Selection Based on Genetic Algorithm (H-

FSGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Experimental Protocol 37
4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Conventional Ticket Recommendation System . . . . . . . . . . . . . . . . 41
4.5 Evaluation Metrics and Statistical Tests . . . . . . . . . . . . . . . . . . . 43
4.6 Genetic Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Experimental Results and Analysis 45
5.1 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 RQ1: Which attributes are most effective to recommend relevant
tickets? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 RQ2: Is Genetic Algorithm a suitable approach for selecting appro-
priate terms and then improving the effectiveness of ticket recom-
mendation systems? . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.3 RQ3: Does the GA approach based on the Hamming distance
heuristic algorithm for the first generation for selecting appropri-
ate terms improves the effectiveness and the efficiency of the ticket
recommendation system? . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.4 RQ4: How stable is the GA approach for selecting appropriate terms? 52
5.1.5 RQ5: Is the GA-based feature selection approach robust for differ-

ent datasets? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



5.2.1 RQ1: Which attributes are most effective to recommend relevant
tickets? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2 RQ2: Is Genetic Algorithm a suitable approach for selecting appro-
priate terms and then improving the effectiveness of ticket recom-
mendation systems? . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 RQ3: Does the GA approach based on the Hamming distance
heuristic algorithm for the first generation for selecting appropri-
ate terms improves the effectiveness and the efficiency of the ticket
recommendation system? . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.4 RQ4: How stable is the GA approach for selecting appropriate terms? 59
5.2.5 RQ5: Is the GA-based feature selection approach robust for differ-

ent datasets? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Typical Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusions 62

Bibliography 65

A Typical examples of HADOOP tickets 71



12

Chapter 1

Introduction

Knowledge management is essential for any organization. Nonaka and Takeuchi [44],
for example, analyzed how Japanese corporations became competitive globally by creat-
ing environments that promoted knowledge sharing. Peter Senge [60], in turn, pointed
out that organizations without proper knowledge management tend to focus on treating
symptoms instead of fixing problems. Menolli et al. [38] claimed that companies should
build conditions that motivate information sharing and knowledge dissemination; oth-
erwise, valuable information could be internalized only on the mind of the employees.
All these studies show that disseminating knowledge is a fundamental competence for an
organization in general, particularly software companies [21, 58].

Software companies are composed of multiple knowledge-intensive activities as defining
requirements, testing, analyzing, learning the applied technology, and others [4]. Software
development teams need valuable project knowledge to deliver the work with quality [20].
Furthermore, knowledge shared needs to be precise, easy, and fast to find, primarily due
to fierce competition and work quality.

Software corporations strive to stay competitive due to intense competition and pres-
sure on the market [42, 50], forcing them to have a more efficient development process
for all costs [18]. This is especially true in large organizations and open source projects
that have software development spread on teams all over the world. One of the most ef-
ficient and flexible processes applied nowadays is the Agile Software Development (ASD)
methods [16]. However, it comes with a high cost of prioritizing Knowledge Sharing (KS)
by face-to-face or chat communication than through written documentation, significantly
reducing the quality and the number of written documentation leading to losing essential
project knowledge over time [3, 15, 46]. Further, most of the large software organizations
have distributed teams all over the world, making KS even harder [11,20]. Consequently,
be capable of balancing KS between human interaction and written documentation with-
out impact the flexibility of ASD is a requirement.

ASD relies on team collaboration, communication, and creativity instead of extensive
documentation to guide the development [15], mostly because of the Agile Principals [22]
that focus on human interaction than written documentation [9]. This change of paradigm
from traditional software development brought new challenges for managing knowledge.
The most crucial obstacles are the lack of time to write down the knowledge acquired
through the interactions and time to find the relevant knowledge when it is needed, as
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most knowledge does not exist in writing [20,45,54].
These challenges became more relevant in large organizations and open source projects,

as knowledge is not centralized and spread in teams around the world [20]. Distributed
teams have difficulty in sharing knowledge due to communication barriers between team
members in different locations [20], and for successful software development, precise com-
munication is crucial [49]. Effective knowledge sharing on these projects is essential to
improve productivity and be competitive on the market [49].

It is known that conventional knowledge management techniques are challenging to
apply to ASD. Relevant information is always unshared and belongs to the team members,
even though that could be useful for other projects. Agile methods stimulate significant
knowledge sharing through face-to-face interactions [11]. Agile teams carry out the soft-
ware development activities through effective communication and customer collaboration.
Team members frequently share sophisticated and context-specific knowledge that is es-
sential to deliver business value to the client [6, 36]. From this perspective, KS in ASD
teams is imperative for the success of Agile Projects [37].

Large software organizations, such as Google, IBM, Facebook, and Amazon, are using
ticket repositories, such as Jira, Bugzilla, and Trello to manage all their projects with
written knowledge (e.g., requirements, defects, and user stories) [20]. These corporations
can generate hundreds of thousands of tickets per day; the risk of losing relevant knowl-
edge is highly likely. Be capable of creating, acquiring, integrating, implementing, and
disseminating knowledge in this environment without automation is extremely difficult.

Any automation solution could cover the full KM process or focus on just one or more
steps. By analyzing possible techniques for automation, we found that applying some
Information Retrieval (IR) methods could deliver a possible automated solution. IR deals
with the representation, storage, organization, and how to access information [5], this
is most of the full KM process. A technique that we identify that is highly applicable
in our context is a recommendation framework. A reliable recommendation system is
accountable to integrate, implementing, and disseminating knowledge automatically and
with high precision [5]. In our context, a recommendation system is a software component
that rate documents on a dataset and find a subset of documents that is interesting for
a specific user [47]. A recommendation system assists a user in finding a set of items in a
collection that is of interest [74].

This dissertation suggests a recommendation system to address the demand for au-
tomation to support the knowledge management of written project information described
above. The proposed recommendation system disseminates relevant ticket information
when it is needed, helping the users to discover helpful information on other tickets re-
lated to their assigned ticket. The ticket recommender is a text-based recommendation
system, in which to suggest tickets, the system analyzes and ranks relevant tickets on the
repository automatically, helping to share the knowledge among the users effortlessly.

A typical method for building a text recommendation system is implementing the
widely-used Vector Space Model (VSM) using TF-IDF weights with cosine similarity [55,
56], which is a well-known technique for text classification and retrieval. However, this
solution is inherently costly as it deals with high-dimensional feature vectors (proportional
to the number of terms). In this work, we also propose solutions that use a VSM rec-
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ommendation system in combination with a feature selection technique based on Genetic
Algorithm (GA), a potentially less costly alternative to the first solution.

GA is a well-known non-deterministic algorithm that has been used for feature se-
lection in different text classification tasks [19]. It has been proved that GA improves
the effectiveness of some text classifiers [1, 8, 19, 23], as well as other areas of studies, as
content-based image classifiers [64], neural network design [71], the discovery of relevant
genes on microarray datasets related to one cancer disease [59], and others. The use of
GA in our work is motivated by those outstanding results.

This work also investigates which set of attributes of a ticket are more effective to
recommend relevant tickets, validates if GA is an effective approach to select suitable
features to support the recommendation of change requests, and analyzes the impact
of reducing the feature vector size on the overall performance of the recommendation
system. Also, to increase the search area between the first individuals to reduce the
probability of the GA resulting on a local maximum (the highest fitness function value),
this dissertation presents a novel approach as an improvement built on GA by applying
a heuristic algorithm based on Hamming distance to generate the first generation of
the feature vector population. Furthermore, we investigate the proposed GA with the
heuristic approach for the first generation is stable and robust for different datasets.

Research questions (RQ) were established to guide the development of the proposed
solutions and investigations. The defined RQs are:

• RQ1: Which attributes are most effective to recommend relevant tickets?

• RQ2: Is Genetic Algorithm a suitable approach for selecting appropriate terms and
then improving the effectiveness of ticket recommendation system?

• RQ3: Does the GA approach based on the Hamming distance heuristic algorithm
for the first generation for selecting appropriate terms improves the effectiveness
and the efficiency of the ticket recommendation system?

• RQ4: How stable is the heuristic GA approach for selecting appropriate terms?

• RQ5: Is the heuristic GA-based feature selection approach robust for different
datasets?

Experiments were designed, executed, and analyzed to address each of these RQs. This
document is organized as follows. Chapter 2 presents background concepts of knowledge
management, information retrieval, Genetic Algorithm, and introduces relevant related
work. Chapter 3 describes each of the proposed solutions, the recommendation system
with and without feature selection, the Genetic Algorithm experiment design, and the
Hamming distance heuristic algorithm for the GA first generation. Chapter 4 describes
the adopted experimental protocol, the dataset, the conventional ticket recommendation
system, the GA parameters, evaluation metrics, and the applied statistical tests. Chap-
ter 5 presents the experimental results and analyzes obtained results. Chapter 6 presents
our conclusions and points out possible future work.
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Chapter 2

Basic Concepts

This chapter presents the background concepts related to techniques used to develop the
proposed recommendation system, as well as discusses related work.

2.1 Knowledge Management

Knowledge management is the process of capturing, developing, and sharing knowl-
edge [17]. Different frameworks categorize the types of knowledge in different ways. A
well-known framework is the Knowledge Spiral created by Nonaka & Takeuchi [44] that
classifies the types of knowledge in two categories, tacit and explicit knowledge. The
framework process is divided into four steps and is based on the interaction and relation-
ship between these two types of knowledge, as shown in Figure 2.1.

Figure 2.1: Knowledge Spiral Framework.

Tacit knowledge is an internalized knowledge that a person may not be consciously
aware of, such singular tasks that the individual does without notice [12]. A good example,
given by Peter Senge [60], is when a baker student is trying to learn how to prepare a
dough with the head baker. The head baker will show how to stretch and twist the dough,
but the precise knowledge about how much strength should be applied during the process
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for the dough be perfect is consciously unknown by the head. However, unconsciously the
head knows the necessary strength, and because of that, the head’s dough is better. As
explained in the example, tacit knowledge is typically acquired by the experience and not
through written information. That is why it is so hard to be shared among others. On
the other hand, explicit knowledge the individual holds consciously in a form that can be
easily communicated to others, and the knowledge can be transferred in many ways [12],
such as written documents, teaching, or speaking. That is why explicit knowledge is more
natural to acquire and share than tacit knowledge.

The focus of the Knowledge Spiral Framework is to make the company generate knowl-
edge unconsciously through the process of sharing and transforming knowledge. The first
step is called Socialization, where the organization incentives individuals to share tacit
knowledge through imitation and observation. When the experience is all shared, the
second step is to Externalize, to make the unconscious knowledge consciously, and the
most important to document knowledge. The next step is to perform the Combination

of the different explicit knowledge to identify and create new knowledge. The final step
is to Internalize the new knowledge created in the previous step. In this process, new
knowledge should be so ordinary on the company that the knowledge became tacit, where
individuals know unconsciously [44].

In software projects, the Knowledge Spiral framework is applied every day, especially
on Agile projects [46]. Dorairaj [20] and Santos [58], for example, investigated how teams
collect, store, and share knowledge. Both studies share the same view: software develop-
ment is a suitable environment for tacit knowledge sharing among teams, mainly because
of the focus on face-to-face team interaction and pair programming. These activities iden-
tified in the studies are examples of Socialization. Tools as ticket repositories, forums,
wiki pages, and chats are used to Externalize the knowledge. The Combination happens
when developers search for knowledge on the repositories or through training. By the end,
Internalization occurs when insights naturally happen when the developer is searching for
relevant knowledge to help. However, knowledge sharing in a software project is not well
understood, and uncertainty is a standard. Uncertainty is broadly defined as the ab-
sence of complete information [43] and linked to the inability of accurate predictions [40].
Uncertainties have a significant impact on project performance because of incomplete in-
formation that can lead to costly delays, redundant work, and other inefficiencies [21].
Uncertainty is one of the main problems in the software industry. Some uncertainty that
exists in a software development environment is the limited knowledge of the application
domain distributed across the actors involved in the project [63].

Usually, software organizations use ticket repositories tools like Jira, Bugzilla, Trello,
and others to save and share all their project written knowledge (e.g., requirements,
defects, and user stories) [20]. Figure 2.2 shows an example of a Jira ticket that, by
definition, is a collection of texts organized in attributes that should contain the necessary
information to execute, understand, and organize an activity in a project. The attributes
are text fields that could contain predefined values to be selected or are free text input.
All the attributes showing in Figure 2.2 are not required to exist in all projects and tools,
and even if it exists, it is not required to be fulfilled. All attributes are configurable,
depending on the requirements and the necessity of each project.
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Figure 2.2: Example of a Jira ticket.

In Figure 2.2, there are three attributes highlighted in black. They are all free text
fields that on Information Retrieval (IR) are called unstructured attributes. These fields
are standard in almost all tools and projects, and they represent the title (Summary)
of the ticket, a description of the activity (Description), and the comments field could
contain better explanations of the ticket as well as issues about the activity progress
(Comments). The red highlighted part shows a group of predefined texts that on IR are
called structured attributes.

Ticket management tools are essential nowadays to help Software organizations to
manage project knowledge. Add automation solutions, as the proposed ticket recom-
mendation system, helps improve the KM effectiveness. The next section explains the
concepts related to IR techniques that were applied to the project.

2.2 Recommendation System & Information Retrieval

The creation of Recommender Systems (RS) has attracted the interests of both industry
and academy since the 90’s [2]. Analyzing a large volume of information, like a ticket
repository on a big organization, is nearly impracticable without a RS [28]. A recom-
mendation system is a service responsible for finding relevant items on a collection for a
specific user [74]. For this to be possible, a RS employs techniques to find relevant items
and rank them according to user’s past behaviors [29].

Recommendation system techniques are classified into three filtering groups: collab-
orative [25, 72], content-based [10, 69], and hybrid [29]. Collaborative filtering is based
on the assumption that users with the same interest in the past perhaps will have the
same interest in the future [51]. So, for a specific user, an RS based on collaborative fil-
tering identifies other users with the same interest and recommends the items that these
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users preferred [47]. Content-based filtering determines similarities between items con-
tents [14]. The idea is that if the user had an interest on an item in the past, he or she
would presumably have an interest in similar items in the future [47].

Baeza-Yates and Ribeiro-Neto [5] defined Information Retrieval as a technique that
“deals with the representation, storage, organization, and access to information items
such as documents, structured and semi-structured records, multimedia objects. The
representation and organization of information items should provide users with easy access
to information of their interests”. The goal of an IR system is to retrieve all relevant
documents to a user while retrieving a few non-relevant documents. The difficulty is how
to decide the document relevance, essentially because relevance is a personal assessment
that depends on the context [5]. Figure 2.3 illustrated the process of retrieving (collection,
index, and query) and ranking.

The first process of retrieval and ranking method is to index documents. This proce-
dure starts before any user interaction. The first step is to define the dataset, choose the
documents that will be used to compose it, and the attributes that each document will
contain. With the dataset prepared, the next step is to apply some text operations, such
as removing stopwords, stemming, and selecting relevant terms. After the terms have
been selected, the final step is to use them to index documents, as showed in Figure 2.3.

With the documents indexed, users may define queries that trigger the search for
relevant documents. The retrieval process starts with a query provided by the user. The
query is the user input used to find the relevant items or documents. The query can be
a single word, phrase, or document and could be structured or unstructured. With the
user’s input query, the IR system should be capable of retrieving relevant documents.
Before going to the Retrieval step, the query goes through a text transformation similar
to the indexing process, removing stopwords, stemming, and selecting terms. On the
Retrieval step, the system uses the selected terms of the query to obtain the indexed
documents.

The Ranking Process ranks the retrieved documents according to the similarity be-
tween them and the query. The Ranking Process utilizes Text Classification Algorithms
to classify the documents according to their similarities. The algorithms are divided into
two groups unsupervised and supervised [5]. An unsupervised algorithm is suitable when
there is no information on training examples available, especially to large collections [5].
On the other hand, the supervised algorithm uses some training data to improve the
output [5].

A traditional Information Retrieval approach for an unsupervised algorithm is the
Vector Space Model (VSM) [56]. Where a vector representation is constructed for each
document based on the frequency of terms defined in terms of the traditional TF-IDF
weighting scheme [5], as explained in the next paragraphs.
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Figure 2.3: Information Retrieval and Ranking process.

The definition of feature vectors related to textual document works as follow:

1. The first step concerns the identification of all terms of the collection. A term is
a word or a string of characters. However, some terms, known as stopwords, are
not included in the vector. Stopwords are common words in a language that do not
convey meaning to the text, such as prepositions and conjunctions. A typical list
of English Stopwords are: “a”, “an”, “and”, “are”, “as”, “at”, “be”, “but”, “by”, “for”,
“if”, “in”, “into”, “is”, “it”, “=”, “no”,“not”, “of”, “on”, “or”, “such”, “that”, “the”, “their”,
“then”, “there”, “these”, “they”, “this”, “to”, “was”, “will”, and “with”. The vector size is
the number of terms previously defined, i.e., each position of the array is associated
with a distinct term.

2. The weight of each term in the document is computed based on the TF-IDF weight-
ing scheme. TF stands for Term Frequency, while IDF, Inverse Document Fre-
quency [5]. TF encodes the frequency of a term in a document. The more frequent
a term is in the document, the higher its TF is [34]. IDF, in turn, encodes how
rare a term is in the collection [30]. In this case, the less frequent a term is in the
collection, the higher its IDF is [52].

A popular definition uses the log normalization TF-IDF proposed by Salton and
Yang [56]. Let ni be the document frequency of the term ki, and wi,j be the term
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weight associated with the pair (ki, dj), where dj is the document j. Then, the
TF-IDF weight is defined as [5]:

TF = (1 + log2 fi,j), (2.1)

where fi,j is the frequency of term i in document j.

IDF = log2
N

ni

, (2.2)

where N is the number of documents and ni is the number of documents that contain
term i.

wi,j =

{

(1 + log2 fi,j)× log2
N
ni

iffi,j > 0

0 otherwise
(2.3)

where fi,j is the frequency of the term i in document j, and N is the number of
documents in the collection. Figure 2.4, Table 2.1, Table 2.2, and Table 2.3 show
an example of how the TF-IDF is calculated.

Figure 2.4: Documents example for TF-IDF calculation.

Table 2.1: TF Computation.
Term i Term fi,1 fi,2 fi,3 TFi,1 TFi,2 TFi,3

01 My 2 1 1 2 1 1
02 name 1 - 1 1 - 1
03 is 2 1 2 2 1 2
04 Jessica 1 1 1 1 1 1
05 This 1 1 1 1 1 1
06 document 1 1 1 1 1 1
07 I - 1 - - 1 -
08 am - 1 - - 1 -
09 called - 1 - - 1 -
10 not - 1 - - 1 -
11 her - - 1 - - 1
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Table 2.2: IDF Computation.
i Term ni IDFi

Term i 01 My 3 0
02 name 2 0.58
03 is 3 0
04 Jessica 3 0
05 This 3 0
06 document 3 0
07 I 1 1.58
08 am 1 1.58
09 called 1 1.58
10 not 1 1.58
11 her 1 1.58

Table 2.3: TF-IDF Computation.
Term i Term TF − IDFi,1 TF − IDFi,2 TF − IDFi,3

01 My 0 0 0
02 name 0.58 0 0.58
03 is 0 0 0
04 Jessica 0 0 0
05 This 0 0 0
06 document 0 0 0
07 I 0 1.58 0
08 am 0 1.58 0
09 called 0 1.58 0
10 not 0 1.58 0
11 her 0 0 1.58

The column Term that is present on all tables shows the terms extracted from
all documents. The columns fi,j in Table 2.1 show the frequency of the term i

on document j. The columns TFi,j on the same table is the result of the TF
computation for every term per document. Column ni in Table 2.2 shows the number
of documents that the term is present, and column IDFi is the IDF calculation
of each term. Table 2.3 shows the TF-IDF computation for every term on each
document.

Given two documents, their similarity is computed based on the cosine similarity.
Recall that weight wi,j of the term i of document j is defined by the TF-IDF scheme.
This weight is a non-negative and non-binary real number. The terms are assumed to be
all mutually independent and represent units of a t-dimension vector, in which t is the
total number of terms. The documents dj and query q are represented as t-dimensional
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vectors given by
−→
dj = (w1,j, w2,j, . . . , wt,j) and −→q = (w1,q, w2,q, . . . , wt,q). To evaluate the

degree of similarity of document dj and the query q, the cosine of the angle connecting
these two vectors is calculated as [5]:

sim(dj, q) =

−→
dj •
−→q

|
−→
dj | × |

−→q |
(2.4)

where • is the dot product of two vectors and × is the algebraic product of their scalar
norms.

Figure 2.5: Document vector representation with TF-IDF weight example.

Table 2.4: Computation of the Cosine Similarity with TF-IDF weight.
Similarity

−→
dj •
−→q |

−→
dj | |−→q | |

−→
dj | × |

−→q | Result Rank

sim(d1, d3) 0.34 0.34 2.84 0.97 0.35 1
sim(d2, d3) 0 9.99 2.84 28.37 0 2

Figure 2.5 and Table 2.4 show a practical example of cosine similarity with TF-IDF
weights. Figure 2.5 gives the vector representation of each Figure 2.4 document. Table 2.4
illustrates the computation of the cosine similarity using document d3 as the query −→q .

2.3 Feature Selection

Large term-dimension vectors might slow down the performance of document classifiers,
making the classification impractical. A classic solution is to reduce the number of terms,
known as features, by selecting a subset of all terms to represent the document [1,8,19,71].
This solution is known as feature selection. Feature selection techniques decrease the issue
mentioned previously as well as the curse of dimensionality.

Bellman [7] introduced the concept curse of dimensionality in 1961 and still a con-
temporary issue. For example, on VSM, each feature is a dimension on the document
vector representation. Therefore, intuitively we conclude that as many features we can
use more precisely will be the classification. However, Bellman [7] discovered that there
is an optimal amount of features to be used. Figure 2.6 shows that more dimensions
(features) data points have, the less effective classifiers that exploit such features are.
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Figure 2.6: Curse of Dimensionality.

Given the curse issue described above, choosing an appropriate feature selection method
to select a proper feature subset is mandatory. The selected feature selection approach
should be capable of handling some of the following challenges [64]:

1. The high number of combinations: Given a problem with N features, testing
all possible feature combinations to find the best subset is virtually impossible. The
number of possible feature sets is equal to 2N − 1 (exponential). It is impracticable
for a computer to measure all combinations in a satisfying time.

2. Remove irrelevant features: Several features are not relevant, as stopwords,
for example. However, stopwords are language-specific and not context-specific.
Therefore, some features are relevant only to some contexts. Identify and remove
these no-relevant context features is a challenge.

3. Remove redundancy: The stemming process removes redundant words by reduc-
ing inflected words to the root word. However, finding all redundant words on a
context-specific project is hard. Identifying synonyms, typos, and word stems is a
complicated process, and a challenge for all feature selection approaches.

4. Keep integration features: Even if a given feature is considered irrelevant, it
may be relevant when combined with others. Feature selection approaches should
not evaluate features individually and should keep associated features together.

Feature selection techniques handle the above challenges in different ways. The main
known groups of methods to handler theses difficulties are filter, wrapper, and hybrid
methods. These groups are defined according to how the methods evaluate the feature
subset [64]:

1. Filter: The filter methods evaluate individual features regardless of the model, by
essentially filtering the least relevant features. The relevance calculation is usually
based on the intrinsic properties of the feature, such as consistency, information
measurement, and correlation. These methods are usually of low computational
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cost, making scalable even in high dimensional datasets. However, these approaches
tend to select redundant features due not to consider the relationships between
them [64].

The most popular filter methods are the Correlation-based Feature Selection (CFS)
[24], the Fast Correlation Based-Filter (FCBF) [73], ReliefF [53], and the minimal
Relevance Maximal Redundance (mRMR) [48]. CFS [24] uses Pearson’s correlation
to evaluates the features. FCBF [73] measures the features based on the symmet-
rical uncertainty calculation, using the Markov blanket [73] concept. ReleifF [53]
evaluates features quality by verifying how well their instances discern from dis-
tinct classes. The mRMR [48] selects the features most correlated with the classes
and most different to the others, based on the criteria of maximum dependence,
maximum relevance, and minimum redundancy defined by their authors.

2. Wrapper: The wrapper methods evaluate a feature subset based on the perfor-
mance of a predetermined mining algorithm, which allows the possibility to detect
relationships between features [64]. This mining algorithm could be supervised as
k-Nearest Neighbors (k-NN) [31] and unsupervised as k-Means [27]. However, chal-
lenges as the risk of overfitting [32] and increase of computational time when the
number of features is large are constant present on this approach [64]. Some studies
applied a combination of Genetic Algorithm and these techniques to mitigate these
issues [31, 64].

3. Hybrid: The hybrid methods evaluate the features by applying the filter and wrap-
per methods together, exploring their symbiosis in the search for a better selection
of features [64]. Typically, filtering evaluation is used to improve the efficiency of a
wrapper method. The selection methods of hybrid characteristics are quite popular
today, due to the fact that they allow an increase in the efficiency of the wrapper
methods, preserving their effectiveness [64]. Most successful hybrid methods employ
a global search such as GA search, refined through local search operations [64,75,76].
The concepts of GA and global and local search are presented in the next section.

2.4 Genetic Algorithm

There are different proposed approaches in the literature for automatically selecting fea-
tures that handle all the challenges. A well-known non-deterministic algorithm that has
been used in different text-classification studies for feature selection is the Genetic Algo-
rithm (GA) [8, 19, 71]. John Holland [26] introduced GA in 1975, where he noticed that
natural evolution is like a learning method. The natural evolution concepts defined nature
as a process that selects the best individual, according to a given fitness function. Given
a particular group of people, the individuals more prepared to survive stay alive, and
through inheritance pass the best features to the next generation. GA is an evolutionary
algorithm, which mimics evolution principles found in nature to solve optimization and
search problems [64].
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GA is an iterative process that maintains a population of candidates that resolve the
problem. Through each iteration, called generation, the current population is evaluated
by a performance measure that indicates how close an individual is to solving the prob-
lem. Based on the previous evaluations, a new population is formed using three genetic
operators: selection, crossing, and mutation. This process is explained in Figure 2.7.

Figure 2.7: The Genetic Algorithm pipeline.

Before starting the GA process, the first step is to define the individual. A typical
representation of an individual is a chromosome. A chromosome is a sequence of genes,
where each gene represents a unique feature, and the value (0 or 1) of the gene denotes
the presence of that feature. Figure 2.8 shows an example of a chromosome. With the
chromosome defined, the creation of the Initial Population is straightforward. The idea of
this step is to establish an initial number of chromosomes and how they will be created.

Figure 2.8: Chromosome example.

The number of chromosomes is usually defined through empirical tests. Initially, it
is set a random amount of individuals. Then, through observation of the fitness results
of the population on each generation, it is verified the necessity to increase, keep, or
decrease the number of chromosomes. The creation of each chromosome can be randomly
or through a heuristic.

The Fitness Function is used for the performance evaluation of each individual. This
step measures how good the chromosomes are by giving a score to each of them. The score
and how to calculate are context-specific for the problem that the GA is being applied.
The next phase is the starting point of the GA iteration. Here, a stop condition should
be provided. Usually, the stop criterion adopted is a fixed number of generations. That is
the total number of iterations the loop will run. The number of generations, in a similar
way of the number of chromosomes, is often defined through empirical tests.
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Another traditional strategy for the stop condition is to verify the best individual
for each generation. If the best individual does not change for several generations, it is
an indication that will not find a better individual. The Natural Selection step removes
the most unfit chromosomes. The most common methods for the natural selection step
are [64]:

1. Stochastic with replacement: Develop by Holland [26]; it is the standard method.
The first step calculates the probability of a chromosome to be selected using the
fitness evaluation to normalize. This way, the sum of the chromosome probabilities
is equal to 100%. So, the probability Pi of a chromosome Ci with fitness evaluation
Fi is:

Pi =
Fi

∑C

i=1 Fi

(2.5)

With all probabilities calculated, the next step is to use them to create a roulette
with all chromosomes. Therefore, each time the roulette runs, a chromosome is
selected until a desired number of chromosomes are chosen.

2. Simple tournament: The idea is to divide the chromosomes into N groups ran-
domly. The method then chooses a group randomly and select the chromosome with
the higher fitness evaluation of the chosen group. The previous step is repeated until
the desired number of chromosomes is elected.

3. Stochastic tournament: Use the same principle as the Simple Tournament. How-
ever, instead of choosing the chromosome with the highest fitness evaluation, the
roulette principle of the Stochastic with Replacement is employed.

4. Truncation: This refers to the selection of a subset of the highest fitness evaluation
chromosomes.

5. Order: Sort the chromosomes by the fitness evaluation and calculate a probability
of each chromosome to be chosen. The most common calculation to define the
probability Pi of a chromosome Ci on the position P (Ci) are:

Linear : Pi = a× P (Ci) ; where a > 0 (2.6)

Exponential : Pi = ab×P (Ci) ; where a > 0 and b > 0 (2.7)

6. Elitism: As the name suggests, this method chooses the top-N chromosomes ac-
cording to the fitness evaluation.

In the Crossover step, two chromosomes exchange genes for creating a child chro-
mosome. The expectation is that for each generation, the most adapted chromosomes
generate best descendants. The well-known Crossover methods are [64]:
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1. Simple Crossover: Figure 2.9 shows the Simple Crossover process. The first step
is to decide a Crossover Point, where the parent chromosomes will be cut. Child A
will be composed of the genes from the first part of Parent A, and the second part
of Parent B. Child B will be composed of the genes from the first part of Parent B
and the second part of Parent A.

Figure 2.9: Example of a simple crossover.

2. Multiple Crossover: The process is similar to the Simple Crossover. However, it
should have two or more Crossover Points, as showing in Figure 2.10.

Figure 2.10: Example of a multiple crossover.

3. Uniform Crossover: The process is similar to the Simple and Multiple Crossover.
However, the Crossover Points should be decided in a way that the Children have
50% genes from the Parent A and 50% genes from Parent B.

The Mutation is an operation that randomly modifies the gene(s) of a chromosome.
If the gene value is 0, it becomes 1, and if it is 1, it becomes 0. This process is essential
because it introduces genetic diversity, fostering the possibility of individuals to be found
in different locations of the search space. To modify the genetic code of the chromosome,
the GA first decides the probability for that to happen. Furthermore, it decides if the
probability of the mutation will be applied by chromosome or gene. The most common
ways to apply the mutation are replacing one gene by another randomly or applying a
permutation of the genes present in the chromosome.
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The evolution process through generation produces the best individuals. In the end,
the GA framework output is the best individual found when the Stop Condition is reached.
An accurate GA approach should be capable of getting the best individual from the
maxima or minima global and not local. Maxima and minima of a function are known
to be the extremes points. Local maxima and minima are points that are extremes by
the neighbor points. However, they are not extremes by all points. Global maxima or
minima is the goal for all GA approaches.

Figure 2.11 shows a graphic representation of all possible fitness evaluation value of an
individual. In this figure, there are four local maxima one global maximum. It is normal
to a GA find out that the best individual is one of the local maxima because, during the
generations, the children are close to the parents. It is the developer’s responsibility to
add some heuristics, boost mutation probability, and increase the number of individuals
to overcome this issue.

Figure 2.11: Examples of local and global maxima in a typical GA search space.

2.5 Related Work

Some recent studies show that automatically sharing knowledge is essential in software
projects. Liu et al. [33] developed a recommendation system called EXPSOL to rec-
ommend Github and Stack Overflow threads to exception-related bug reports to help
developers find solutions for their problems fast. An exception is an unusual event that
occurs during the execution of a software system, and the presence of exception often in-
dicates a bug to be fixed [35]. Most high-level programming languages, like Java, Python,
and C++, have mechanisms that handle the exceptions [13].

During the software development process, exception-related bugs are reported through
ticket systems, like Jira, Trello, and others. When developers work on a ticket that
addresses an exception-related bug, and the developer is unfamiliar with the exception
bug reported, they often search online forums (e.g., StackOverflow) to understand it.
Although there are some search engines and research tools available, they are unable to
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properly recommend forum threads for exception-related bugs, especially for large-scale
online resources [33]. To address that, Liu et al. [33] proposed the EXPSOL, to recommend
the forum threads and possible solutions for newly exception-related bug tickets.

The recommended system build an Exception Tree using the exception-related online
resources and software language taxonomy. With this structure, they extract features
from exception-related bug tickets from GitHub and forum threads from StackOverflow
to build Space Vector Models representations. This way, when a new ticket is created, the
EXPSOL is capable of finding the similarity between the ticket and the forum threads to
recommend possible threads that contain the solution. They analyzed the efficiency of the
system and compared it with others. To evaluate the proposed recommendation system,
they used the Mean Average Precision, the Mean Reciprocal Rank, and the Recall of the
first 10, 20, and 30 items recommended. They compared their solution with the Google
and StackOverflow search engine, where EXPSOL showed significant improvement on the
recommendation of exception-related bug threads.

Santos [57] investigated an approach that links project tickets with StackOverflow
threads that have previously been curated and used task similarities to investigate the
possibility to recommend curated StackOverflow threads for similar tickets. For any soft-
ware development, the developers’ knowledge and expertise are essential for a successful
project [67]. To acquire knowledge, the developers usually use search engine websites [39].
In this process, they need to use precise terms on the searches and verify if the results are
reliable and relevant [39].

A popular website where developers find knowledge to support their development is
StackOverflow [33]. However, there is not an explicit link between the tickets and the
StackOverflow threads that were useful to solve them. This lack of integration between
ticket repositories and StackOverflow threads is an open issue identified by researchers [68].
To improve this issue, Santos [57] proposed a recommendation system using RapidMiner
to recommend StackOverflow threads for tickets that are similar to previous tickets linked
to StackOverflow threads. The proposed system obtained higher precision when compared
to other studies.

Sun et al. [65] conducted an empirical study with multiple recommendation techniques
in the literature to understand if historical commits are always useful to recommend
tickets to developers. Tickets, such as bugs fix and new feature requests, are regularly
proposed [66]. These tickets need to be allocated to the developer that is most capable
of working on them [66]. All information available in the source-code repositories, ticket
repositories, and historical commits are used to facilitate this task [70].

The research hypothesis to recommend tickets to developers is based on the devel-
oper’s experience on similar tickets. So the developer that has more experience than the
others should be the one recommended for the ticket [61]. Based on this hypothesis,
historical commits could be useful for the recommender. A common way to do that is
to use text classification techniques to find similarity between the source-code files in the
historical commits and the tickets [62], and other methods using historical commits are
also proposed.

The studies of Sun et al. [65] aimed to understand which of these methods is better
to recommend tickets. For that, an empirical study was applied, and critical research
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questions were proposed to guide the investigation. They discovered that the commit
description with more meaningful words increases the precision of the recommendation,
and the description is more useful than the files related to the commit [65].

At the same time, studies aiming at improving the techniques used in most of the
recommendation systems, as text classification, feature selection, machine learning, and
Genetic Algorithm, have been conducted recently. Mirończuk et al. [41] delivered a recent
overview of the state-of-the-art elements of text classification. The study mentions that
text classification is a sophisticated process that involves not only the training models
but also other procedures, like data processing and dimensionality reduction. Figure 2.12
displays the most utilized baseline process for text classification presented in the research,
showing six essential elements and their respective results.

Figure 2.12: Text classification framework.

The first step is data acquisition, where the required data is acquired from multiple
text sources to solve a research objective related to a classification task. The purpose
of this phase is to build the research dataset. Next, the dataset goes through the data
analysis and labeling phase, where two main strategies could be applied to generate the
Labelled dataset: labeling groups of text or indexing. On the next step, the Labelled
dataset is processed to generate the data representation required by the selected learning
method. In this phase, there are two well-known data representations: Vector Space
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Model and graph. Both representations are based on features and their weights.
With the data representation ready, the feature selection step is started aiming to

reduce the dimensionality. This process is mainly divided into two phases: the selection
of the most relevant features and feature transformation. Following the feature selection,
the training model phase begins to generate the classifier. The training model algorithm
could be divided into the following groups: supervised, semi-supervised, ensemble, active,
transfer, and multi-view learning. All the steps described before form the text classifier.
Finally, to complete the baseline process, an evaluation method should be employed.

The evaluation stage is divided into three steps. First, an established indicator, as
Precision, Recall, Accuracy, F-score, error rate should be selected. Second, an evaluation
protocol, like the k-fold cross-validation, should be defined. The last phase is to compare
the results with other approaches or different datasets. All of the above steps form the
framework for text classification.

Deng et al. [19] provided an overview of state-of-the-art of methods that have been
used for feature selection on text classification. Genetic Algorithm with term-weighting
schemes was one of the most popular methods. Bidi et al. [8] provide an empirical study
of a feature selection method based on genetic algorithms on different text classification
methods. The performance evaluation of the proposed feature selection was done on three
text classifiers: Naive Bayes, Nearest Neighbors, and Support Vector Machines.

As an extension of these studies, this dissertation presents a change request recom-
mendation system using a different Genetic Algorithm implementation with TF-IDF and
cosine-similarity. In particular, we introduce a new heuristic to guide the selection of the
GA initial population, which is demonstrated to yield effective results. More details are
provided next.
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Chapter 3

GA-based Ticket Recommendation

System

This chapter introduces the proposed approaches to recommend tickets, based on the doc-
ument representations defined through GA-based feature selection procedures. Section 3.1
presents the architecture and design of the feature selection based on GA. Section 3.2 ex-
plains the heuristic approach based on Hamming distance to improve the feature selection
based on GA.

3.1 Feature Selection Based on Genetic Algorithm

(FSGA)

As mentioned in Section 2.3, feature selection is the process of selecting a subset of
features. In our problem, those features are expected to improve the effectiveness and
efficiency performance of the ticket recommendation system.

Figure 3.1 illustrates the feature selection overall process for text classification using
GA. The first step is to define and collect all the features. In the step Extract Terms,
every single term (word) from each document is considered a feature. These terms are
collected, filtered by removing the stop words mentioned in Section 2.2, grouped on a
set, and then saved to be used on the following steps. With all features selected, the
process to find the best subset using the Genetic Algorithm method can start. Firstly,
the chromosome representation is built according to the Feature Set. The chromosome
array has the size of the number of features present on the set, and each position on
the array corresponds to a unique feature. An example of the chromosome is present in
Figure 3.1 on the Initial Population step.

Furthermore, the Initial Population is built. Forty distinct chromosomes are built with
a random distribution of the values 1 and 0 through the array. The value 1 represents
that the feature corresponded on that array position is present on the subset, and 0 the
feature is not present. The population size was defined by empirical tests, via analyses of
the performance of the population over the generations. Another determinant limitation
of the population size was the computational costs involved, as the computation of the
Fitness Function of each chromosome consumes significant processing time.
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Figure 3.1: Feature selection using Genetic Algorithm.

With the First Population built, the following steps are to perform the GA process of
Figure 2.7. Firstly, the Fitness Function used to assess how best an individual relies on
the quality of rankings produced. The evaluation used is the average Precision at 10 (see
Section 4.5) of all queries of the conventional ticket recommendation system presented in
Section 4.4. Where the document vector representation, similar to Figure 2.5 example,
will contain only the terms that have value 1 on the individual been evaluated. With all
individuals evaluated, the next step is the Natural Selection. The method applied is the
stochastic with replacement and always keeping the individual with the highest evaluation.
The stop condition used is the number of generations. The Best Individual found contains
the most suitable subset of terms that is expected to improve the effectiveness of the ticket
recommendation system.

3.2 Heuristic Approach for Feature Selection Based on

Genetic Algorithm (H-FSGA)

The number of possible different individuals on text classification is significantly high.
More precisely, there are 2NT possible different individuals, where NT is the number of
terms. For example, in this dissertation using the Hadoop collection, there are around
50,000 different terms, so 250,000 possible individuals. In such a high-dimensional search
space, the chance of GA finding only a local minimum is very high, especially for problems
when the size of the population is small due to the long processing time of the Fitness
Function.

To illustrate this issue, Figure 3.2 shows an example of a small three-dimension search
space, where there are eight possible individuals. Let’s suppose the GA for this example
uses two individuals for the first population. Unless the pair of the first individuals
has the highest Hamming distance, the individuals generated through crossover will not
explore all dimensions without a mutation. Even with a small dimensionality example,
the probability of that happens is high. Building the first population comprised of 25%
(2 out of 8 individuals) of the size of all possible individuals, there is an 85.7% (24 out of
28 pairs of individuals) chance of GA still relies on the mutation operator to be able to
explore all dimensions of the cube. The risk of getting confined within a sub-space grows
exponentially with the number of dimensions.
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Figure 3.2: Example of a three-dimension search space.

This dissertation addresses this issue by proposing a new heuristic to generate the
initial population. The goal is to spread the first individuals into the search space in a
smarter way so that the search for the best individual does not become trapped in local
minimum regions. The strategy relies on the First Population step creating individuals as
far as possible from each other in the search space. Using Figure 3.2 search space scenario
as an example and the first population with two individuals, the strategy is that pairs
of the first individuals should be from a diagonal of the cube. For the heuristic to do
that, it uses the Hamming distance to guide the definition of suitable chromosomes in the
initial population. Thus, two individuals are as far apart as possible from each one when
the genes of one individual are entirely different from the genes of the other individual.
Using the individuals from Figure 3.2 as an example, the possible pairs with the highest
Hamming distance are: (0,0,0 and 1,1,1), (0,0,1 and 1,1,0), (0,1,0 and 1,0,1), and (0,1,1
and 1,0,0).

Algorithm 1 outlines the main steps of the proposed heuristic to compute the initial
population. The strategy is to produce chromosomes with a sequence of genes 1 (segment)
on different positions, as illustrated in Figure 3.3. The segment size is the ratio of the
number of chromosomes on the first population with the number of genes. So, three
chromosomes with fifteen genes generate a segment that contains five genes 1, as shown
in Figure 3.3. Thereby, the Hamming Distance of the chromosomes will be as far as
possible from each. However, this strategy will always generate the same individuals, and
this is not desired for GA approaches. So, to incorporate a certain degree of randomness,
the genes inside the segment will be defined randomly. Consequently, the size of the
segment is not more fixed, the number of genes 1 is higher than the previous ratio, and
overlaps between the segment of other chromosomes are permitted, as shown in Figure 3.4.

To address this strategy, Algorithm 1 needs the following inputs: the number of chro-
mosomes in the first population NC , the number of genes for each chromosome NG, and
a constant k that is used to control the size of the segments in a way that does not let
the segment overlap being so significant. The constant k value was defined through ex-
perimentation and found that the value 2 led to better results. Furthermore, Lines 1 to 3
defined the population variable P that is initially empty and is the output of Algorithm 1,
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an auxiliary variable S to guide the starting position of the segments on each chromosome,
and a constant Nmax that is the desired number of genes (1) on each segment.

Figure 3.3: Example of chromosomes as far as possible from each by Hamming Distance.

Algorithm 1 Heuristic Approach for Selecting the GA Initial Population.
Input: Number of chromosomes nC , number of genes nG, and k that is a constant

that defines the number of genes 1s in the chromosome

Output: Population of chromosomes P

⊲ Let Nmax be the maximum number of genes 1s in the chromosome.
⊲ Let NC be the number of genes 1s in chromosome C.
⊲ Let S be the index that start the segment of genes 1s.

1: P ← ∅

2: S ← 0

3: Nmax ← k × (nG

nC

);
4: for each chromosome C ∈ P do

5: NC ← 0

6: for each gene G ∈ C do

7: G← getRandomGene();
8: if ((Gposition >= S) AND (NC < Nmax) AND (G = 1)) then

9: C[G]← 1;
10: NC++;
11: else

12: C[G]← 0;
13: end if

14: end for

15: S = S + (NG/NC);
16: P = P ∪ {C};
17: end for

18: return P
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Figure 3.4: Illustration of the creation of a population using the proposed heuristic.

Nmax is calculated using the input constant k, where the value is the ratio of the
number of chromosomes by the number of genes multiplied by k. Therefore, the number
of genes 1 on the segment will always be k times the ratio. Nmax controls the strategy
explained previously. Lines 7 to 13 are the core of Algorithm 1 , where each chromosome
C is created and added to the population P . Firstly, it is verified where the segment will
start using the variable S. The index S increases according to the ratio of the number of
chromosomes by the number of genes.

Knowing where the segment starts the Algorithm 1 can start to defined the genes G.
From the beginning of the segment, each gene has a 50% chance to be 1 or 0. This process
will continue until the number of genes 1 created hits the Nmax value, so the segment is
closed. Furthermore, all genes before the beginning and after the ending of the segment
will have the value 0. This method is repeated for each chromosome. In the end, the
output will be a group of chromosomes similar to Figure 3.4.

The next chapter explains the designed protocol for the experiments that address each
of the research questions and the proposed systems. Describe the dataset, the conventional
ticket recommendation system, the applied evaluation metrics, and the statistical tests.
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Chapter 4

Experimental Protocol

This chapter describes how the experiment was designed, conducted, and analyzed. Each
section provides details about how the used dataset was chosen and organized, the exper-
imental goals, and how the results were evaluated and validated.

Section 4.1 introduces the experiment’s goals by presenting the research questions and
showing how they will be addressed. Section 4.2 gives details of the chosen Apache Jira
datasets and how it was organized. Section 4.3 explain what a relevant ticket is and
how it was defined. Section 4.4 presents the conventional ticket recommendation system
considered in our experiments. Section 4.5 discusses the evaluation metrics and statistical
tests adopted.

4.1 Research Questions

A set of research questions were defined to guide the experiments. Achieved results, in
turn, provide us insights regarding the main research goal of our dissertation, related to
the investigation if the use of appropriate feature selection methods leads to more effec-
tive ticket recommendation systems. In the following, we present each research question
considered in our study, providing its respective context.

RQ1: Which attributes are most effective to recommend relevant tickets?

The datasets used in our study are composed of tickets. Each ticket contains at-
tributes that are text fields that could be structured or not. The attributes include
all sorts of information about the ticket, as a short description, comments, or labels
to group the tickets according to some relevance criterion.

Companies use different types of systems to create, track and organize tickets. Most
of them share the same ticket structure but with different attributes. A group of the
most common attributes should be selected; otherwise, the project will be relevant
only for a specific ticket system.

These selected attributes need to be tested to identify which of them contribute to
recommend relevant tickets. To address this question an experiment was performed
to determinate which attributes are most suitable to improve the effectiveness of
the ticket recommendation system.
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RQ2: Is Genetic Algorithm a suitable approach for selecting appropriate terms and then
improving the effectiveness of ticket recommendation systems?

A common approach for recommending tickets rely on performing searches based on
vector representations. The objective is to rank relevant tickets, i.e., those who are
the most similar to an input pattern (e.g., input ticket). The vector representation is
often composed of weights associated with words defined in terms of their frequency
in a specific ticket and the whole collection. Choosing a better (discriminative)
set of terms to generate suitable vector representations is expected to improve the
effectiveness of ticket recommendation systems.

In this work, we address the term selection problem (also known in the literature
as feature selection) by investigating the use of a Genetic Algorithm apparatus for
selecting suitable terms for the problem of ticket recommendation.

RQ3: Does the GA approach based on the Hamming distance heuristic algorithm for the
first generation for selecting appropriate terms improve the effectiveness and the
efficiency of the ticket recommendation system?

Genetic Algorithm is composed of essential steps to deliver the best result, like
mutation, natural selection, and others that are presented in Chapter 2; one of
these steps is the creation of the first generation. In this phase, the GA creates the
first individuals to be used through the following steps of each generation.

This question aims to understand and produce insights to ascertain if a different
approach to generate the first generation enhance the feature selection results by
improving the effectiveness and the efficiency of ticket recommendation syste.

RQ4: How stable is the GA approach for selecting appropriate terms?

As pointed out in Chapter 3, our feature selection problem is exponential O(2n)
in terms of time complexity, where n is the number of features. As mentioned in
Chapter 2, the Genetic Algorithm is a possible solution for this problem. In this
project, the GA approach seems a compatible solution in terms of processing time
to generate consistent results.

How this solution is non-deterministic; in other words, for the same data input, the
GA could generate different results. This question was required to conclude how
stable the results generated by the GA approach are.

RQ5: Is the GA-based feature selection approach robust for different datasets?

Different applications are used to create and manage tickets. Each project and
application have its business domain. The goal of this investigation is to confirm
if the proposed GA-based feature selection approach is not restricted to a single
business domain, being therefore suitable for different applications and datasets.
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4.2 Dataset

Software Project Tickets are the basis for the construction of the datasets considered in our
study. Those repositories comprise tickets organized as semi-structured text documents
that are expected to contain the necessary information to execute a particular action, as
the implementation of a new feature, a bug fix, or even a simple code investigation.

Figure 2.2 shows a generic ticket design that is a collection of texts that are organized in
attributes. There are three sections highlighted in black in the figure that are examples of
unstructured text attributes: Description, Summary, and Comments. The red highlighted
part contains a group of attributes that are predefined texts that represent the structured
fields.

The decision to use tickets as the base of the datasets was straightforward because
it is the most common software project activity representation in the market nowadays.
As mention on Chapter 2, tickets contain all the knowledge, historical and current, of all
software projects in a company.

In our project, it was decided to use tickets from Open Source projects, where we
have free access to a historical knowledge base. Furthermore, the project can contribute
to the community. We chose to use tickets from the most active projects of the Apache
Foundation:

1. Hadoop (issues.apache.org/jira/issues/?jql=project=HADOOP – As of March
2020).

2. Solr (issues.apache.org/jira/issues/?jql=project=SOLR – As of March 2020).

3. MapReduce (issues.apache.org/jira/issues/?jql=project=MAPREDUCE – As
of March 2020).

4. Hive (issues.apache.org/jira/issues/?jql=project=HIVE – As of March 2020).

Hadoop tickets were collected in November of 2017, while MapReduce, Solr, and Hive

tickets were collected in March of 2019. All of them were read from https://issues.

apache.org/jira (As of March 2020) website through a REST Entry-point provided by
Jira. Table 4.1 shows the number of tickets for each project dataset.

Table 4.1: Datasets considered in our study.
Project Name # of tickets in Dataset

Hadoop 1197
MapReduce 378
Solr 301
Hive 2762





41

Table 4.2: Distribution of search tickets per dataset.
Project Name # of tickets in Dataset # of tickets in Search Tickets

Hadoop 1197 829
MapReduce 378 158
Solr 301 86
Hive 2762 2040

Table 4.3: Distribution of relevant (sibling) tickets for different datasets, including the
average, the maximum, and the minimum number of relevant tickets per search ticket.

Project Name Average Maximum Minimum

Hadoop 51.80 103 13
MapReduce 28.00 38 15
Solr 22.53 29 12
Hive 131.08 341 13

4.4 Conventional Ticket Recommendation System

In our study, the conventional ticket baseline recommendation system is based on ranking
a ticket collection according to their similarity to an input ticket, taking advantage of
the vector space model (VSM), that is a traditional information retrieval approach. In
our conventional ticket recommendation system, a vector representation is constructed of
each ticket document based on the frequency of terms defined in terms of the traditional
TF-IDF weighting scheme. The similarity between two ticket documents is computed
based on the cosine similarity function applied to their vector representation.

Figure 4.2 provides a schematic view of the conventional ticket recommendation sys-
tem. The left side shows each step of the process. The right side demonstrates examples
of the results that each respective step produces. Each step is detailed below:

1. Dataset:

The first step is the ticket collection itself. As shown on the right side, the Dataset
is composed of sibling ticket documents as described in Section 4.2.

2. Define Terms:

Define Terms is responsible for obtaining the list of terms from all ticket documents,
removing Stopwords, and indexing the tickets using the traditional Inverted Index.

In the work, the following list of Stopwords were considered: “a”, “an”, “and”, “are”,
“as”, “at”, “be”, “but”, “by”, “for”, “if”, “in”, “into”, “is”, “it”, “=”, “no”,“not”, “of”, “on”,
“or”, “such”, “that”, “the”, “their”, “then”, “there”, “these”, “they”, “this”, “to”, “was”,
“will”, “with”.
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position on the vector. The weight is calculated using the TF-IDF weighting scheme,
where the weight is related to the term frequency on the document and the collection.

4. Search Ticket Document:

The Search Ticket Document (STD) is a single ticket document that belongs to
the Search Ticket subset mentioned in Section 4.2. How ST ⊂ Dataset a vector
representation of the STD was created in the previous steps, therefore this vector
will be select as the query for the Rank step.

5. Rank:

In this step, the vectors are compared and ranked with the query vector using
the cosine-similarity technique. This rank method consists in to calculate, for each
ticket document, the cosine of the angle between the query vector and the document
vector. The result for each comparison is a value that ranges from 0 to 1. This value
is a representation of how similar one ticket is when compared to others, where 0

means being completely non-similar and 1, highly similar. A detailed description of
the cosine-similarity technique can be found in Chapter 2.

6. Recommended Ticket Documents:

The last step is the conventional ticket recommendation system result, is a list of
ticket documents ranked according to relevance to the ticket query document.

4.5 Evaluation Metrics and Statistical Tests

All experiment results should be evaluated and validated, not only to confirm that a result
is better than another but also to provide insights on its statistical significance. In our
project, we applied standard evaluation metrics and statistical tests for text retrieval.
Recall that we have modeled the ticket recommendation problem as a search task.

To evaluate the results, we compute Precision (P ) metrics. Precision is the portion of
relevant documents retrieved in the top-N ranked objects. Therefore, when N = 10 the
P@10 is the percentage of relevant documents in the first ten positions of the recommended
list. The full definition of Precision can be found in Chapter 2.

In our project, the Precision is used to evaluate the percentage of relevant tickets that
are retrieved in the first five (P@5) and ten (P@10) positions. The Precision is calculated
from the List of Recommended Tickets (Figure 4.2) for all queries, referred to as Search
Tickets. The effectiveness metric used for comparison is the mean of P@5 and P@10

considering all searching tickets.
To validate the results statistical tests were applied. Statistical hypothesis test is a

method where a data set obtained is compared against a data set from an idealized model.
In this project we applied k-fold cross-validation and Wilcoxon signed-rank with p > 0.05

test to validate the results for some experiments. (As the data distribution does not
have a normal distribution, the Wilcoxon is the recommended statistical hypothesis test.)
The definition of k-fold cross-validation and Wilcoxon signed-rank test were presented in
Chapter 2.
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Figure 4.3: 5-Fold Cross-Validation

Figure 4.3 shows the 5-fold cross-validation protocol applied to the feature selection
experiment. The Dataset is organized into five random small groups (Folds) with the
same size. For each interaction, four Folds are selected to be used to train the Feature
Selection algorithm. The result of the training is the best-fitting individual that will be
used with the conventional ticket recommendation system. The validation is performed
using the non-used Fold as input.

The designed validation protocol has the objective to compare the effectiveness of the
conventional ticket recommendation system with and without the best-fitting individual.
The effectiveness comparison is made using the evaluations metrics aforementioned on the
Recommended Tickets.

4.6 Genetic Algorithm Parameters

The Genetic Algorithm is configurable through some parameters like the size of the pop-
ulation or the mutation rate. The parameters used in the experiment are displayed in
Table 4.4. The number of chromosomes and the number of generations were limited due
to hardware limitations. The calculation of the Fitness fuction of each individual was
time-consuming. The mutation rate and the crossover approach values are the default
value of the jgap library used on the implementation.

Table 4.4: Genetic Algorithm parameters.
Parameter Value

Number of Chromosomes 40
Number of Generations 60

Mutation rate 1/12
Crossover approach Uniform with 35% rate
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Chapter 5

Experimental Results and Analysis

This chapter presents the results related to the use of the conventional ticket recom-
mendation system, as well as the use of the proposed approaches that rely on Genetic
Algorithm for feature selection. This section also provides a discussion of achieved results,
considering each raised research question. The chapter is divided into two sections: Sec-
tion 5.1 introduces the experiments and presents the results, while Section 5.2 discusses
the obtained results.

5.1 Experiment Results

This section describes the executed experiments for each research question and shows the
obtained results.

5.1.1 RQ1: Which attributes are most effective to recommend

relevant tickets?

The first Research Question aims to identify which set of ticket fields is more effective
in recommending tickets. To answer this question, an experiment that evaluates the use
of different sets of ticket fields was created. In this experiment, we focus on using only
unstructured attributes that are common in different types of ticket systems, like Jira,
Trello, Bugzilla, and others.

Using fields that are commonly found in different ticket systems makes the project
more valuable for researchers, developers, and practitioners interested in developing ticket
recommendation systems. The experiment considered three unstructured attributes Sum-
mary, Description, Comments, and their combinations were also evaluated. The field
evaluation experiment was based on the use of the conventional ticket recommendation
system present in Section 4.4.

The conventional ticket recommendation system presented in Figure 4.2 was applied
to this experiment. The dataset was composed of 1197 Hadoop tickets collected from the
Apache Jira System, which 829 Hadoop tickets were used as search (Query Tickets), as
explained in Figure 4.1 and Table 4.1. The steps described in Section 4.4 were executed
seven times, each time using a different set of fields.



46

Each execution performed the rank step for the 829 Query Tickets, calculating the
P@5 and P@10 for each query, followed by the mean for each field set. As we opted to
assess the effectiveness of the recommendation systems based on the quality of the ranking
up to the tenth position P@10, only tickets with more than ten siblings were taken as
Search Ticket, as mention on Section 4.2.

Table 5.1 shows the evaluation results of each ticket field set. In this table, we report
mean values for P@5 and P@10 for different configurations of the ticket field set. This
table also presents the number of searches with non-relevant tickets found within the first
ten positions (column # of queries with P@10 = 0).

Table 5.1: Effectiveness performance considering different ticket attributes.
Attribute Set P@5 P@10 # of queries with P@10 = 0

Summary 30.90 26.43 153
Description 29.89 24.08 137
Comments 52.62 45.91 96
Summary + Description 36.60 30.77 89
Summary + Comments 54.33 47.68 76
Description + Comments 55.22 48.01 75
Summary + Description + Comments 55.95 48.77 66

5.1.2 RQ2: Is Genetic Algorithm a suitable approach for selecting

appropriate terms and then improving the effectiveness of

ticket recommendation systems?

The effectiveness of the proposed VSM technique based on TF-IDF with the cosine-
similarity for the ticket system recommendation is highly related to the selected terms.
The stopwords are an excellent example of how a set of terms could impact the results.
However, discover the best combination of terms is computationally hard, e.g., the Hadoop
dataset, used in our project, has around 250000 possibles combinations of terms. Test all
these combinations to find the best one could take thousands of years on a personal
computer.

Optimization problems are well-known in the literature because of the difficulty of
developing a deterministic algorithm to solve it. Different types of solutions have already
been studied and proposed, and one of these solutions is the Genetic Algorithm. GA
is a heuristic method that has been proved that generates high-quality results for the
optimization problem. The use of this technique to find the best set of terms could
improve the precision, the performance, or both of the ticket recommendation system.

By applying the GA in the project, an experiment is needed to verify if this approach
is suitable for selecting appropriate terms and then improve the effectiveness of the ticket
recommendation system. The experiment follows the 5-fold cross-validation model de-
scribed in Section 4.5.

The validation approach described in Figure 4.3 divides the dataset into five folds with
the same size, where four folds are used to training the GA and the remaining fold to
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validate it. The dataset used was the Hadoop described in Section 4.2, and the experiment
steps are:

1. Fold creation:

The creation of the folds consists of dividing all tickets of the dataset randomly into
five folds. However, the sibling’s tickets should be uniformly divided into the folds,
e.g., ten sibling’s tickets should be randomly divided into five groups of two. So,
each fold will contain two.

2. Feature Selection:

The Feature Selection is where the GA is applied to find the best set of terms.
The process consists of using four folds as the input data for the GA presented in
Chapter 3.

3. Best Fitting Individual:

The best-fitting individual is the best combination of terms found by the GA.

4. Conventional ticket recommendation system:

The goal is to execute the ticket recommendation system with and without the best
set of terms using the remaining fold as input data. Figure 4.3 shows the ticket
recommendation system two times, where one uses the best-fitting individual and
the other does not. The ticket recommendation system implementation is described
in Section 4.4.

5. Recommended Tickets:

The Recommended Tickets are the results of the ticket recommendation system.
The results are the mean P@5 and P@10 for each ticket query. The precision of
both executions, with and without the best-fitting individual, is compared.

The previous steps are executed five times, on each time the remaining fold is a dif-
ferent one until all folds are the remaining at least one time. The mean P@5 and P@10

of each of the five iterations are showed in Table 5.2. Each line represents an iteration of
the experiment, and the last line is the mean of the results. The Fold column shows the
fold that was the remaining one used for the validation. The P@5 and P@10 Conven-
tional Approach columns refer to the mean effectiveness results of the conventional ticket
recommendation system without using the best-fitting individual. The P@5 and P@10

GA are the results using the best-fitting individual, and the % value in the parentheses
is the difference between the Conventional Approach and the GA results.

Figure 5.1 shows the best-fitting individual performance by each generation on the
GA. The x-axis shows the number of generations, and the y-axis shows the fitness result
of the best individual. As explained in Chapter 3, the fitness algorithm is the mean P@10

of the ticket recommendation system using that particular set of terms, or knows as an
individual. Each line represents an iteration of the training set, e.g., if the validation used
the fold 1, the training set was composed of folds 2, 3, 4, and 5. The analysis and insights
about the results of the experiment are presented in Section 5.2.
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Table 5.2: 5-fold Experiment Result on traditional GA.
Fold P@5 Conventional P@5 GA P@10 Conventional P@10 GA

Approach Approach

1 53.43% 56.42%(+5.60%) 41.19% 44.78%(+8.72%)
2 50.15% 50.75%(+1.20%) 36.72% 41.64%(+13.40%)
3 45.63% 57.81%(+26.69%) 36.09% 49.53%(+37.24%)
4 52.50% 53.13%(+1.20%) 39.84% 45.16%(+13.35%)
5 58.13% 59.06%(+1.60%) 44.84% 51.88%(+15.70%)

Mean 51.97% 55.43%(+6.66%) 39.74% 46.60%(+17.26%)

Figure 5.1: Best-fitting individual performance by number of generation.

5.1.3 RQ3: Does the GA approach based on the Hamming dis-

tance heuristic algorithm for the first generation for select-

ing appropriate terms improves the effectiveness and the

efficiency of the ticket recommendation system?

Genetic Algorithm is a heuristic method that can be configured. The population size, the
number of generations, how to create the first generation, how to perform the crossover,
and the mutation rate are all configurable variables or methods in GA. There are analysis
techniques that provide insights about what could be changed to improve the GA results.
The performance of the best-fitting individual by generation is one of these analysis tech-
niques. This analysis was performed on RQ2, and the insight is discussed in Section 5.2.2.
Two main approaches were presented to improve the GA: use a different crossover method
or add a heuristic on the creation of the first generation.
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In order to address this research question, a heuristic was added to create the first
generation. The goal is to demonstrate that the proposed heuristic could improve the
best-fitting individual delivered by GA, therefore improving the effectiveness of the ticket
recommendation system. The experiment follows the same protocol and steps of Sec-
tion 5.1.2, the 5-fold cross-validation, but with a different GA implementation. The
difference of the previous GA is the implementation of a heuristic based on Hamming
Distance to create the first generation. The heuristic, mainly, spread the individuals of
the first population on the search space, making each individual as far as possible from
each one using Hamming Distance to measure the distance. The heuristic is detailed in
Section 3.2.

Table 5.3 presents the mean P@5 for each testing fold, considering the 5-fold cross-
validation protocol. We compare the conventional approach with the GA-based recom-
mendation systems that exploit the proposed feature selection approaches (Without and
With). Recall that Without refers to the method that does not use the proposed heuristic
to guide the process of defining the GA initial population. Table 5.4, in turn, compares
the results of the recommendation systems in terms of P@10.

Table 5.3: P@5 effectiveness performance of the Conventional approach and the GA-
based recommendation systems (with and without the use of the proposed heuristic in
the definition of the initial GA population).

Fold Conventional GA-based GA-based

Approach Without With

1 53.43% 56.42%(+5.60%) 58.21%(+8.95%)(+3.17%)
2 50.15% 50.75%(+1.20%) 50.75%(+1.20%)(+0.00%)
3 45.63% 57.81%(+26.69%) 50.31%(+10.26%)(-12.97%)
4 52.50% 53.13%(+1.20%) 59.38%(+13.10%)(+11.76%)
5 58.13% 59.06%(+1.60%) 63.75%(+9.67%)(+7.94%)

Mean 51.97% 55.43%(+6.66%) 56.48%(+8.68%)(+1.89%)

Table 5.4: P@10 effectiveness performance of the Conventional approach and the GA-
based recommendation systems (with and without the use of the proposed heuristic in
the definition of the initial GA population).

Fold Conventional GA-based GA-based

Approach Without With

1 41.19% 44.78%(+8.72%) 51.19%(+24.28%)(+14.31%)
2 36.72% 41.64%(+13.40%) 43.43%(+18.27%)(+4.30%)
3 36.09% 49.53%(+37.24%) 45.00%(+24.69%)(-9.15%)
4 39.84% 45.16%(+13.35%) 48.75%(+22.36%)(+7.95%)
5 44.84% 51.88%(+15.70%) 55.16%(+23.01%)(+6.32%)

Mean 39.74% 46.60%(+17.26%) 48.71%(+22.57%)(+4.53%)
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We also evaluated the recommendation systems in terms of efficiency aspects. Ta-
ble 5.5 presents the mean search time for all systems. Also this dissertation compare the
recommendation systems by taking into account the size of the feature vectors (number
of terms). Table 5.6 presents the results.

Table 5.5: Mean search time by query (ms) of the Conventional approach and the GA-
based recommendation systems (with and without the use of the proposed heuristic in
the definition of the initial GA population).

Run Conventional GA-based GA-based

Approach Without With

1 33.59 19.31(-42.51%) 18.84(-43.91%)(-2.43%)
2 33.76 19.37(-42.62%) 19.34(-42.71%)(-0.15%)
3 33.21 18.79(-43.42%) 18.41(-44.56%)(-2.02%)
4 33.40 21.22(-36.47%) 19.08(-42.87%)(-10.08%)
5 32.66 22.67(-30.59%) 17.82(-45.44%)(-21.39%)

Mean 33.32 20.27(-39.17%) 18.70(-43.88%)(-7.74%)

Table 5.6: Number of terms used on the vector (vector size) of the Conventional approach
and the GA-based recommendation systems (with and without the use of the proposed
heuristic in the definition of the initial GA population).

Run Conventional GA-based GA-based

Approach Without With

1,2,3 and 4 43,066 21,475(-50.13%) 15,979(-62.90%)(-25.59%)
1,2,3 and 5 40,919 20,388(-50.17%) 13,687(-66.55%)(-32.87%)
1,2,4 and 5 42,674 21,060(-50.65%) 16,490(-61.36%)(-21.70%)
1,3,4 and 5 43,564 21,555(-50.52%) 15,033(-65.49%)(-30.26%)
2,3,4 and 5 42,900 21,367(-50.19%) 13,915(-67.56%)(-39.54%)

Mean 42,624 21,169(-50.33%) 15,020(-64.74%)(-29.05%)

Figures 5.2 and 5.3 provide a summary of all results. They compare all recommenda-
tion systems, using P@10, and P@5 effectiveness measures, respectively. In both figures,
the x-axis represents the average search time, considering the queries in the testing folds.
The y-axis, in turn, refers to the observed effectiveness scores. The sizes of the circles
encode the average size of the feature vectors (number of terms) for the different solutions.
The smaller the circle, the smaller the feature vector is, i.e., the less costly a recommen-
dation system is in terms of storage requirements. Best solutions are located in the top
left quadrant, with higher precision and lower search time.
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Figure 5.2: Search Time vs P@10 vs Vector Size

Figure 5.3: Search Time vs P@5 vs Vector Size
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5.1.4 RQ4: How stable is the GA approach for selecting appro-

priate terms?

How GA is a non-deterministic algorithm, the necessity to validate if always generates
good results is a requirement. Verifying that the proposed GA is stable endorses that the
heuristic is admissible. In this research question, an experiment to assess if the GA with
the heuristic is stable was developed. The designed experiment validated if the results
generated by the GA are acceptable, regardless of the seed (the first generation created).
For that, the 5-fold cross-validation protocol, the same implemented on RQ2 and RQ3,
was applied to this research question. However, the protocol was performed three times,
each time with a different random seed.

The best-fitting individual of each generation and the iteration results of the 5-fold
cross-validation were collected. Figures 5.4, 5.5, 5.6, 5.7, and 5.8 show the performance
of the best-fitting individual through the generations. The x-axis shows the number of
generations, the y-axis displays the Fitness result (the mean P@10) of the best-fitting in-
dividual, and the lines illustrate an iteration of the training set. Tables 5.7, 5.8, 5.9, 5.10,
and 5.11 present the results of the iterations, comparing with the conventional ticket
recommendation system . The Iteration column shows the iteration number of the ex-
periment. The P@5 and P@10 Conventional Approach columns are the average P@5

and P@10 results of the conventional ticket recommendation system without using the
best-fitting individual. The P@5 and P@10 GA are the results of the recommender using
the best-fitting individual, and the % value in the parentheses is the difference between
the conventional ticket recommendation system and the GA results.

Figure 5.4: Stability test for fold 1.
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Figure 5.5: Stability test for fold 2.

Figure 5.6: Stability test for fold 3.
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Figure 5.7: Stability test for fold 4.

Figure 5.8: Stability test for fold 5.
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Table 5.7: Stability result for fold 1.
Iteration P@5 Conventional P@5 GA P@10 Conventional P@10 GA

Approach Approach

Iteration 1 53.43% 58.21%(+4.78%) 41.19% 51.19%(+10.00%)
Iteration 2 53.43% 62.39%(+8.96%) 41.19% 52.69%(+11.50%)
Iteration 3 53.43% 59.70%(+6.27%) 41.19% 47.01%(+5.82%)

Table 5.8: Stability result for fold 2.
Iteration P@5 Conventional P@5 GA P@10 Conventional P@10 GA

Approach Approach

Iteration 1 50.15% 50.75%(+0.60%) 36.72% 43.43%(+6.71%)
Iteration 2 50.15% 52.54%(+2.39%) 36.72% 45.67%(+8.95%)
Iteration 3 50.15% 49.85%(-0.30%) 36.72% 42.99%(+6.27%)

Table 5.9: Stability result for fold 3.
Iteration P@5 Conventional P@5 GA P@10 Conventional P@10 GA

Approach Approach

Iteration 1 45.63% 50.31%(+4.68%) 36.09% 45.00%(+8.91%)
Iteration 2 45.63% 51.25%(+5.62%) 36.09% 45.78%(+9.69%)
Iteration 3 45.63% 53.13%(+7.50%) 36.09% 47.34%(+11.25%)

Table 5.10: Stability result for fold 4.
Iteration P@5 Conventional P@5 GA P@10 Conventional P@10 GA

Approach Approach

Iteration 1 52.50% 59.38%(+6.88%) 39.84% 48.75%(+8.91%)
Iteration 2 52.50% 55.94%(+3.44%) 39.84% 46.56%(+6.72%)
Iteration 3 52.50% 52.81%(+0.31%) 39.84% 45.00%(+5.16%)

Table 5.11: Stability result for fold 5.
Iteration P@5 Conventional P@5 GA P@10 Conventional P@10 GA

Approach Approach

Iteration 1 58.13% 63.75%(+5.62%) 44.84% 55.16%(+10.32%)
Iteration 2 58.13% 62.50%(+4.37%) 44.84% 54.22%(+9.38%)
Iteration 3 58.13% 63.13%(+5.00%) 44.84% 55.78%(+10.94%)
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5.1.5 RQ5: Is the GA-based feature selection approach robust

for different datasets?

The goal of this research question is to verify if the results of the GA with the proposed
heuristic is not biased. The idea is to run the RQ 3 experiment with different datasets. The
datasets used were Solr, Hive, and MapReduce, presented in Section 2. Table 5.12 shows
the presents the mean P@5 and P@10 of each dataset. We compare the conventional ticket
recommendation system with the GA-based recommendation system with the heuristic.
Table 5.13 shows the size of the feature vectors (number of terms) used.

Table 5.12: Precision results for different datasets.
Dataset P@5 Conventional P@5 GA P@10 Conventional P@10 GA

Approach Approach

Hive 49.68% 64.16%(+29.15%) 43.76% 54.27%(+24.02%)
Solr 69.07% 79.53%(+15.14%) 53.37% 73.26%(+37.27%)

MapReduce 74.94% 86.58%(+15.53%) 67.72% 80.38%(+18.69%)

Table 5.13: Vector sizes for different datasets
Dataset Conventional Vector Size GA Vector Size

Hive 97,331 35,453(-63.57%)
Solr 16,915 3,911(-76.88%)

MapReduce 16,992 4,809(-71.70%)

5.2 Discussion

This section discusses achieved results from each experiment and provides an analysis of
these results with regard to the raised Research Questions. Each of the following sections
is related to a Research Question.

5.2.1 RQ1: Which attributes are most effective to recommend

relevant tickets?

Table 5.1 presents the results concerning the use of attributes. As we can observe, the
attribute Comments yielded the best results when compared to the use of the other ones in
isolation. Also, the more attributes are used, the better the effectiveness scores observed.
Other insights are:

1. The use of the Summary attribute led to better precision scores than the use of
attribute Description.

The Description is an attribute that contains all the work requirements related to
the ticket and should be the most informative attribute. The Summary attribute is a
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small title that gives the subject of the ticket. However, even with more information,
the Description precision score was slightly worse than the Summary.

The lack of information in software requirements is one of the main causes of rework
or delays on a software project. The constant missing information on Description
attributes could impact on finding relevant tickets, as the results show. In contrast,
even with not enough amount of information but with a precise definition of the
subject of the ticket, using the Summary instead of the Description is more effective
to recommend relevant tickets.

2. The use of the Comment attribute yielded better precision scores than the use of
Summary and Description.

Comment attribute was expected to provide complementary information to the De-
scription attribute, but what happened is that, frequently, comments had more
relevant information than the description. This behavior is not suprising when we
analyze software projects nowadays. Software companies and Open Source project
environments are trying to increase human interaction instead of using extensive
documentation; and to support learning by interaction instead of relying on long
planning sessions [15,20,46,58]. All these environments’ innovations reflect on how
the documents, like tickets, are created.

Comments contain daily descriptions of what was done, providing information about
the current status of the ticket. There are discussions regarding the ticket require-
ments, possible solutions, and implementation explanation. Because of this new
era of software development [20], the Comment attribute is becoming more relevant
than any other attribute on the ticket, and the results presented in Table 5.1 confirm
this behavior.

3. The use of all attributes led to the best effectiveness results.

The use of all attributes did not significantly improve the figures obtained when
using the Comment attribute combined with Summary or Description, around 0.7%
improvement for the P@5 and P@10. However, the number of no relevant tickets in
the first ten positions was reduced by 12 percentual points. As the execution time
is not impacted when using all attributes, and the use of all of them reduce the
number of no relevant tickets, we conclude that using all attributes is more effective
to recommend relevant tickets.

5.2.2 RQ2: Is Genetic Algorithm a suitable approach for selecting

appropriate terms and then improving the effectiveness of

ticket recommendation systems?

The P@5 and P@10 improvement in Table 5.2 helps to understand the effectiveness of
the GA on the ticket recommendation system. The increase of 6.66% and 17.26% on
P@5 and P@10 respectively, shows that the GA is a suitable feature selection approach
to select a better set of terms. However, GA is a configurable method and the use of a
different configuration could improve even more the selected terms.
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Figure 5.1 gives us more insights into what could be changed to improve the GA. We
can see that after the fiftieth generation, the best-fitting individual performance of each
iteration becomes stable. This behavior on the graph indicates that the GA was capable
of discovering an “optimal” solution. Therefore, even increasing the number of generations
or the number of individuals, the result will be the same or close. However, the “optimal”
solution could be a local minimum, as explained in Chapter 2.

As we can see, the Fold 4 iteration had a strange behavior around the thirty-second
generation. There is a big jump on the performance of the best individual. This perfor-
mance change may happen because of the mutation factor on the GA, which makes the
algorithm explore distant individuals. The GA goal is to avoid a minimum local result.
However, this jump on Fold 4 result could indicate that the GA was on local maxima and
not on the global maximum.

5.2.3 RQ3: Does the GA approach based on the Hamming dis-

tance heuristic algorithm for the first generation for select-

ing appropriate terms improves the effectiveness and the

efficiency of the ticket recommendation system?

As we can observe in Table 5.3, the use of feature selection led to very effective results for
all runs, with gains of 6.66% and 8.68%, for the mean P@5 of the GA-based without and
with heuristic, respectively. Also, we can observe that the use of the heuristic method led
to results that are 1.89% better in terms of mean P@5 when compared to the other GA
feature selection approach (Without). Similarly to what was observed for P@5, the use
of GA-based feature selection procedures led to better results when compared with the
conventional ticket recommendation system (17.26% and 22.57% better for the GA-based
without and with heuristics, respectively). Again, the use of heuristics led to the best
effectiveness results.

As we can observe in Table 5.5, the use of GA reduced the search time up to almost
45% in the case of the method, which exploits heuristics in the definition of the initial
population. Also, the recommendation with the proposed heuristic was 7.74% faster than
the one which does not rely on a conventional strategy for creating the initial population.
Table 5.6 shows that the GA-based methods were less costly than the conventional ticket
recommendation system, requiring 50.34% and 64.74% fewer terms for the the GA-based
without and with heuristics, respectively. We can also observe that the use of heuristics
was the less expensive method in terms of storage requirements.

Figures 5.3 and 5.2 show that the GA-based solution which considers the proposed
heuristic was capable of selecting suitable terms (using only 36% of all terms), which led
to improvements in terms of both effectiveness and efficiency: the precision was improved
by almost 23% and the search time reduced 44% when compared with the conventional
ticket recommendation system. Also, the feature vector size reduced considerably (about
65%).
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5.2.4 RQ4: How stable is the GA approach for selecting appro-

priate terms?

The analysis focus on verify the stability of the proposed G.A with the first generation
heuristics. Figures 5.4 to 5.8 and Tables 5.7 to 5.11 show positive results that assist in
confirming it. During the analysis, we come with the following key points:

1. The first generations’ performance improves faster than the following generations.

Figures 5.4 to 5.8 show that the P@10 of the best-fitting individual had an average
improvement of 33.11% during the first ten generations. However, in the next twenty
generations, the average improvement was 7.23%. Comparing the GA without the
heuristic in Figure 5.1, the first ten generations, the average P@10 was 5.09%, and
in the next twenty generations was 3.99%. These results endorse that the heuristic is
finding a global minimum more frequently. With the first population spread through
the search space, during the first generations, the local minimal are evaluated faster,
lending to the global minimum.

2. The last generations are stable.

Figures 5.4 to 5.8 show the performance stability of the best-fitting Individual in
the last twenty generations. In some iteration and fold, the best-fitting individual
did not improve during some generations.

5.2.5 RQ5: Is the GA-based feature selection approach robust

for different datasets?

Tables 5.12 and 5.13 show that even with different datasets, the GA with the heuristic
improved the effectiveness of the ticket recommendation system, and reduced the term
vector size in more than 60%. An interesting result in Table 5.13 is that the GA is capable
of selecting fewer terms when the list of terms is smaller. The Hive with 97k terms was
reduced around 64%, and the Solr and MapReduce with 16k terms were reduced around
70%.

The Curse of Dimensionality is evident in these results. The improvement on datasets
with a more significant number of terms, Hive and Hadoop, are higher than datasets with
a smaller number of terms, Solr and MapReduce. The datasets, with a large number of
dimensions, are in the most right position in Figure 2.6. Therefore, with each fewer dimen-
sions, the shift to the left of the curve leads to more significant improvement. However,
when the number dimensions is small, the position on the curve is close to the optimal,
making the growth smaller.

5.3 Typical Usage Scenario

This section provides an overview of a typical usage scenario concerning the use of rec-
ommendation systems implemented used some of the evaluated search systems. In the
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examples tickets used in this section are from the HADOOP dataset and prints are pre-
sented on Appendix A.

The ticket HADOOP-12753: S3A JUnit tests failing if using HTTP proxy is taken
as the search tickets. This ticket has 81 possible relevant (sibling) tickets and concerns
a task of fixing a failing test related to the use of a HTTP proxy to access external file
systems, such as Amazon S3A. The provided description has enough information about
the problem, even including some system logs. The comments focus on the approval
of changes rather than a discussion about the target problem itself. Furthermore, the
comments have some automatically generated messages as detailed in Appendix A.

By using this ticket as input query, we expect to receive from the recommendation
systems tickets that, for example, worked on the same test, implemented the test, or
performed changes on the access of the file systems S3A.

Table 5.14: Top-5 ranked tickets considering HADOOP-12753: S3A JUnit tests failing

if using HTTP proxy as search ticket. Tickets highlighted in bold are relevant (siblings).

Rank Conventional Approach Heuristic GA

1 HADOOP-12804: Read Proxy

Password from Credential

Providers in S3 FileSystem

HADOOP-12804: Read Proxy

Password from Credential

Providers in S3 FileSystem

2 HADOOP-13130: s3a failures

can surface as RTEs, not IOEs

HADOOP-13130: s3a failures

can surface as RTEs, not IOEs

3 HADOOP-13131: Add tests to

verify that S3A supports SSE-S3

encryption

HADOOP-13599: s3a close() to

be non-synchronized, so avoid

risk of deadlock on shutdown

4 HADOOP-13110: add a streaming

subcommand to mapred

HADOOP-12444: Support lazy

seek in S3AInputStream

5 HADOOP-13019: Implement Erasure-

Codec for HitchHiker XOR coding

HADOOP-13131: Add tests to

verify that S3A supports SSE-S3

encryption

Table 5.14 shows the top-five tickets returned as relevant tickets by the conventional
recommendation system and by the recommendation system which relies on the use of
the heuristic GA. Appendix A shows a screenshot of all listed tickets.

Looking at Table 5.14, when we use the conventional ticket recommendation system
without the GA, only the top-three tickets are relevant (siblings) to the input search
ticket. The first three tickets (HADOOP-12804: Read Proxy Password from Credential

Providers in S3 FileSystem; HADOOP-13130: s3a failures can surface as RTEs, not

IOEs; and HADOOP-13131: Add tests to verify that S3A supports SSE-S3 encryption)
concern the use of the S3A file system. However, the last two recommended tickets
(HADOOP-13110: add a streaming subcommand to mapred and HADOOP-13019:

Implement ErasureCodec for HitchHiker XOR coding), do not have any similarity to the
search ticket, handling non-related issues.

The ticket recommendation system that uses the heuristic GA, in turn, was capable
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of exploiting more meaningful terms (due the selection process), being therefore able to
rank more relevant tickets in the top positions, as shown in Table 5.14. All five tickets
placed in top-5 positions are relevant (siblings). All of them concern the use of the S3A
file system.
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Chapter 6

Conclusions

Most software development environments of large applications use ticket management
systems. Especially in Open Source projects, where numerous developers are engaged
in the development, the number of tickets is in the range of tens of thousand items.
Retrieving valuable information buried in such an immense database without the help of
automation is virtually impossible. The typical way to go about automating this task is
via recommendation systems based on the widely-used Vector Space Model (VSM) using
TF-IDF weights with cosine similarity. This solution is inherently costly as it deals with
high-dimensional feature vectors, that are proportional to the number of terms found in
the ticket repository. In this work, we address this problem by proposing and testing two
solutions based on the Genetic Algorithm.

The implemented solutions use the VSM in combination with a feature selection tech-
nique based on GA, which made possible working with a smaller dimension feature vector,
thus reducing complexity and processing time, without compromising the ranking preci-
sion. This work shows that GA is an effective approach to select suitable features to
support the recommendation of change requests. Furthermore, we also present a novel
approach as an improvement built on GA algorithm by applying a heuristic algorithm
based on Hamming distance to generate the first generation of the feature vector popu-
lation. As a result, the measured precision increased by almost 23%, the average search
time by query was reduced by almost 44%, and the vector size was reduced by 64%,
showing that this GA-based approach for building recommendation systems for change
request repositories is a promising approach.

Possible improvements were identified during the development of the research such as:

1. Use different information retrieval techniques (e.g., BM25, BM25F, and BM25+) in
the implementation of the fitness function. A different technique could improve the
effectiveness of the recommendation by ranking more relevant tickets or reducing
the processing time of the GA.

2. Improve the TF-IDF evaluation by removing terms with a lower value. Terms with
lower TF-IDF tend to be less relevant, removing them before the feature selection
phase could improve the GA effectiveness and generate smaller vectors.

3. Extend the heuristic algorithm to be used in the implementation of genetic opera-
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tors (e.g., crossover and mutation). It was showed in this dissertation that genetic
diversity improves the result of the GA. Validate if this diversity is beneficial in
other phases of the GA is a promising research venue.

4. Improve the processing time of the GA or use better hardware to be capable of
increasing the number of chromosomes on each generation and the number of gen-
erations. Test the proposed heuristic with a faster GA with more chromosomes and
generation may increase the likelihood that is not resulting only on local minimum.

5. Investigate the use of different GA parameter values. Other configurations could
increase the effectiveness and efficiency of ticket recommendation systems.

6. Use structured fields to increase the precision of the ticket recommendation system.
Tickets usually have fields that created relevance links between them. These links
are created by users that already notice relevance between these tickets.

7. Extend the recommendation system to recommend relevant code, users, teams, fo-
rum threads together with the recommended tickets. Sometimes, even when the
ticket is relevant, there is not enough information to help the user. Adding more
information as the developer or team that worked on the recommended ticket could
be helpful.

8. Add a heuristic on the crossover phase that reduces and increases the number of
selected features on the children. This heuristic may be defined in terms of the
proximity of the optional number of dimensions of the Curse of Dimensionality.

9. Add user feedback to identify false positives of relevant tickets. The goal would be
to include the users’ background knowledge in the identification of the most suitable
features, improving the effectiveness of recommendation systems.

10. Explore different steps, such as the “Training of a Classification Model” in Fig-
ure 2.12, to increase the effectiveness of the ticket recommendation system.

11. Investigate the ideal number of features for text classifiers regardless context. By
analyzing the results of the ticket recommendation system with and without the
GA, it was observed that the use of less terms results in better precision. Despite
the dataset, using or not GA, and the total number of features, the precision was
higher when the number of terms was lower.

12. Investigate if the proposed heuristic improves the results in those different applica-
tions, such as financial and medical studies, is another promising research venue.

13. Develop the theoretical foundations related to the use of the proposed heuristic.
Investigate theoretically if and how the proposed heuristic increases the probability
of any Genetic Algorithm approach to find the global minimum/maximum could be
investigated in future work.
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14. Investigate the use of the proposed recommendation system for assisting the devel-
opment of traceability matrices. A traceability matrix is often used by companies
to track tickets that could impact other tickets. For example, ticket A could impact
tickets B, C, and D. Find what ticket could be impacted is often a time-consuming
and subjective manual task.

The ticket recommendation system is an exciting tool to improve knowledge sharing.
The proposed approaches have been demonstrated to lead to effective and efficient rec-
ommenders. Therefore, developed methods are promising solutions to help developers in
their daily tasks related to the proper maintenance of software projects.
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Appendix A

Typical examples of HADOOP tickets

This Appendix presents examples of HADOOP Jira tickets. These prints are not the full
content of the tickets. To see all the ticket content, the reader may refer to the provided
link. The tickets presented in this Appendix are as follows:

Table A.1: Search Ticket: HADOOP-12753.
Returned Tickets by Conventional Approach by Heuristic GA

HADOOP-12804
HADOOP-13130
HADOOP-13131
HADOOP-13599
HADOOP-12244
HADOOP-13110
HADOOP-13019
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Figure A.1: HADOOP-12753 (https://issues.apache.org/jira/browse/
HADOOP-12753 – As of June 2020).
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Figure A.2: HADOOP-12804 (https://issues.apache.org/jira/browse/
HADOOP-12804 – As of June 2020).
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Figure A.3: HADOOP-13130 (https://issues.apache.org/jira/browse/
HADOOP-13130 – As of June 2020).
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Figure A.4: HADOOP-13131 (https://issues.apache.org/jira/browse/
HADOOP-13131 – As of June 2020).



76

Figure A.5: HADOOP-13599 (https://issues.apache.org/jira/browse/
HADOOP-13599 – As of June 2020).
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Figure A.6: HADOOP-12444 (https://issues.apache.org/jira/browse/
HADOOP-12444 – As of June 2020).
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Figure A.7: HADOOP-13110 (https://issues.apache.org/jira/browse/
HADOOP-13110 – As of June 2020).
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Figure A.8: HADOOP-13019 (https://issues.apache.org/jira/browse/
HADOOP-13019 – As of June 2020).
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