
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Hudson Martins Silva Bruno

LIFT-SLAM: a deep-learning feature-based visual

SLAM method

LIFT-SLAM: um método de SLAM visual baseado em

características com aprendizado profundo

CAMPINAS

2020

Hudson Martins Silva Bruno

LIFT-SLAM: a deep-learning feature-based visual SLAM method

LIFT-SLAM: um método de SLAM visual baseado em

características com aprendizado profundo

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientadora: Profa. Dra. Esther Luna Colombini

Este exemplar corresponde à versão final da
Dissertação defendida por Hudson Martins
Silva Bruno e orientada pela Profa. Dra.
Esther Luna Colombini.

CAMPINAS

2020

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Hudson Martins Silva Bruno

LIFT-SLAM: a deep-learning feature-based visual SLAM method

LIFT-SLAM: um método de SLAM visual baseado em

características com aprendizado profundo

Banca Examinadora:

• Profa. Dra. Esther Luna Colombini
Instituto de Computação - Universidade Estadual de Campinas

• Prof. Dr. Paulo Lilles Jorge Drews Junior
Centro de Ciências Computacionais - Universidade Federal do Rio Grande

• Profa. Dra. Paula Dornhofer Paro Costa
Faculdade de Engenharia Elétrica e de Computação - Universidade Estadual de
Campinas

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 04 de maio de 2020

Acknowledgments

We would like to thank CNPq and the company Quinto Andar for funding this project.
I would also like to thank my advisor Esther, who was not only instrumental in the

development of this work, but also welcomed me to the University and was available to
help me whenever necessary. I also thank all the professors and employees at Unicamp,
especially the Institute of Computing, who provided us with a great work and research
environment.

Many thanks to my girlfriend Jessica who gave me the strength to continue during
this arduous journey. To my parents Angelo Jr. and Wanderleia to my sister Giovanna,
who even being thousands of kilometers away, supported me in all my decisions. To all
my family members, especially my grandparents Angelo and Alaiz, who accompanied me
since graduation giving me love and affection.

I also thank my friends at the Laboratory of Robotics and Cognitive Systems (LaRoCS),
especially Pedro, Patrick and Gabriel, for the important exchange of knowledge during the
development of projects in robotics. Finally, I would also like to thank the friends I made
outside Unicamp Bruno, Lorena, Marcos, Maykon, Nigel, Pedro, Renata and Rodrigo, for
their invaluable friendship for many years.

Resumo

O problema de localização e mapeamento simultâneos (SLAM) aborda a possibilidade
de um robô se localizar em um ambiente desconhecido e, simultaneamente, criar um
mapa consistente desse ambiente. Um dos principais componentes do SLAM, chamado
Odometria, é responsável por estimar a localização do agente e as mudanças de posição
ao longo do tempo. Recentemente, as câmeras foram usadas com êxito para obter as
características do ambiente para executar SLAM e Odometria, que são chamados SLAM
visual (VSLAM) e Odometria visual (VO), respectivamente. No entanto, os algoritmos
clássicos de VO e VSLAM podem ser facilmente induzidos a falhar quando o movimento
do robô ou o ambiente são muito desafiadores. Portanto, novas abordagens baseadas
em redes neurais profundas (DNNs) alcançaram resultados promissores em VO/VSLAM.
Dessa forma, propomos combinar o potencial dos descritores de características baseados
em aprendizado profundo com o VSLAM tradicional baseado em geometria, criando um
novo sistema VSLAM para robôs móveis chamado LIFT-SLAM. As experiências realizadas
nos conjuntos de dados KITTI e EuRoC mostram que o aprendizado profundo pode ser
usado para melhorar a performance de sistemas de VSLAM tradicionais, uma vez que a
abordagem proposta foi capaz de alcançar resultados comparáveis ao estado da arte sendo
robusto à ruídos sensoriais.

Abstract

The Simultaneous Localization and Mapping (SLAM) problem addresses the possibility of
a robot to localize itself in an unknown environment and simultaneously build a consistent
map of this environment. One of the main components of SLAM is called Odometry,
which is responsible for estimating the agent’s location and changes in position over time.
Recently, cameras have been successfully used to get the environment features to perform
SLAM and Odometry, referred to as visual SLAM (VSLAM) and visual Odometry (VO),
respectively. However, classical VO and VSLAM algorithms can be easily induced to fail
when the robot’s motion or environment is too challenging. Therefore, new approaches
based on Deep Neural Networks (DNNs) have achieved promising results in VO/VSLAM.
In this way, we propose to combine the potential of deep learning-based feature descriptors
with the traditional geometry-based VSLAM, building a new VSLAM system for mobile
robots called LIFT-SLAM. Experiments conducted on KITTI and EuRoC datasets show
that deep learning can be used to improve traditional VSLAM systems’ performance, as
the proposed approach was able to achieve results comparable to the state-of-the-art while
being robust to sensorial noise.

List of Figures

2.1 Comparison between SLAM and odometry. 18
2.2 Comparison between feature-based and direct VSLAM. 20
2.3 Comparison between sparse, semi-dense and dense VSLAM. 20
2.4 Typical VSLAM pipeline. 21
2.5 The epipolar geometry. 22
2.6 Pose graph representation. 24
2.7 A typical CNN architecture. 26
2.8 LIFT pipeline. 28
2.9 Siamese LIFT training architecture. 28

3.1 Overview of ORB-SLAM’s pipeline. 32

4.1 Example of image from KITTI dataset . 36
4.2 Example of image from EuRoC dataset . 37

5.1 Comparison between features LIFT and ORB 42
5.2 LIFT-SLAM pipeline. 43
5.3 Keypoints and Outliers in feature tracking. 43
5.4 Keyframes and map points. 44
5.5 Example of trajectory when relocalization is performed. 45
5.6 Representation of the loop closure process. 46
5.7 Fine-tuning orientation estimator. 48
5.8 Matching thresholds problem. 50
5.9 Thresholds in Adaptive LIFT-SLAM. 51

6.1 2D trajectories comparison between LIFT-SLAM, ORB-SLAM and ground-
truth in KITTI Dataset. 54

6.2 2D trajectories comparison between LIFT-SLAM, ORB-SLAM and ground-
truth in EuRoC Dataset. 55

6.3 2D trajectories comparison between LIFT-SLAM fine-tuned with KITTI
sequences and ground-truth in KITTI Dataset. 56

6.4 2D trajectories comparison between LIFT-SLAM fine-tuned with KITTI
sequences and ground-truth in EuRoC Dataset. 57

6.5 2D trajectories comparison between LIFT-SLAM fine-tuned with EuRoC
sequences and ground-truth in KITTI Dataset. 59

6.6 2D trajectories comparison between LIFT-SLAM fine-tuned with EuRoC
sequences and ground-truth in EuRoC Dataset. 60

6.7 2D trajectories comparison between Adaptive LIFT-SLAM and ground-
truth in KITTI Dataset. 61

6.8 2D trajectories comparison between Adaptive LIFT-SLAM and ground-
truth in EuRoC Dataset. 62

6.9 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
KITTI sequences and ground-truth in KITTI Dataset. 63

6.10 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
KITTI sequences and ground-truth in EuRoC Dataset. 64

6.11 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
EuRoC sequences and ground-truth in KITTI Dataset. 66

6.12 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
EuRoC sequences and ground-truth in EuRoC Dataset. 67

6.13 Comparison of the 2D trajectories performed by the algorithms with and
without distortion. 69

List of Tables

2.1 Matching score comparison. 30

4.1 Details of some of the datasets available for VSLAM. 35
4.2 Sequences from EuRoC MAV dataset. 36

5.1 Absolute Trajectory Error for different matching thresholds in KITTI and
EuRoC datasets. 49

6.1 Comparison of results between ORB-SLAM and LIFT-SLAM in KITTI
Dataset. 53

6.2 Comparison of results between ORB-SLAM and LIFT-SLAM in EuRoC
Dataset. 55

6.3 Results of LIFT-SLAM fine-tuned with KITTI sequences in KITTI dataset. 56
6.4 Results of LIFT-SLAM fine-tuned with KITTI sequences in EuRoC dataset. 57
6.5 Results of LIFT-SLAM fine-tuned with EuRoC sequences in KITTI dataset. 58
6.6 Results of LIFT-SLAM fine-tuned with EuRoC dataset in EuRoC sequences. 58
6.7 Results of Adaptive LIFT-SLAM in KITTI dataset. 60
6.8 Results of Adaptive LIFT-SLAM in EuRoC dataset. 62
6.9 Results of Adaptive LIFT-SLAM fine-tuned with KITTI sequences in KITTI

dataset. 63
6.10 Results of Adaptive LIFT-SLAM fine-tuned with KITTI sequences in Eu-

RoC dataset. 64
6.11 Results of Adaptive LIFT-SLAM fine-tuned with EuRoC sequences in KITTI

dataset. 65
6.12 Results of Adaptive LIFT-SLAM fine-tuned with EuRoC sequences in Eu-

RoC dataset. 65
6.14 Comparison of LIFT-SLAM with results from literature in KITTI dataset. 70

List of Abbreviations and Acronyms

ATE Absolute Trajectory Error

BA Bundle Adjustment

BoW Bag-of-Words

CNN Convolutional Neural Network

DLT Direct Linear Transformation

DNN Deep Neural Network

DoF Degrees of Freedom

IMU Inertial Measurement Unit

LIFT Learned Invariant Feature Transform

LSTM Long-Short Term Memory

ORB Oriented FAST and Rotated BRIEF

PTAM Parallel Tracking and Mapping

RANSAC Random Sample Consensus

RMSE Root Mean Squared Error

RPE Relative Pose Error

SfM Structure from Motion

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

VIO Visual Inertial Odometry

VO Visual Odometry

VSLAM Visual Simultaneous Localization and Mapping

Contents

1 Introduction 14
1.1 Objectives . 15
1.2 Contributions . 15
1.3 Text Organization . 16

2 Theoretical Background 17
2.1 Simultaneous Localization and Mapping 17

2.1.1 Odometry . 17
2.1.2 Visual Odometry and Visual SLAM 19
2.1.3 Drawbacks on geometry-based Visual SLAM 25

2.2 Convolutional Neural Networks . 26
2.3 Deep-learning and Visual SLAM . 27
2.4 Learned Invariant Feature Transform . 27
2.5 Final Considerations . 30

3 Related Work 31
3.1 Geometry-based Approaches . 31

3.1.1 Direct methods . 31
3.1.2 Feature-based methods . 32

3.2 Deep learning-based approaches . 33
3.2.1 End-to-end methods . 33
3.2.2 Hybrid methods . 34

3.3 Final Considerations . 34

4 Materials and Methods 35
4.1 Materials . 35

4.1.1 Datasets . 35
4.1.2 Evaluation Metrics . 37
4.1.3 Programming Languages and Tools 38
4.1.4 Hardware Specification . 38

4.2 Methodology . 38

5 LIFT-SLAM 40
5.1 LIFT-SLAM Pipeline . 41

5.1.1 Map Initialization . 41
5.1.2 Tracking . 41
5.1.3 Mapping . 44
5.1.4 Loop closure and relocalization . 45
5.1.5 Algorithm Parameters . 46

5.2 Versions of LIFT-SLAM . 47
5.2.1 Fine-tuned LIFT-SLAM . 47
5.2.2 Adaptive LIFT-SLAM . 49

5.3 Final Considerations . 51

6 Results 52
6.1 LIFT-SLAM . 53
6.2 LIFT-SLAM fine-tuned with KITTI sequences 55
6.3 LIFT-SLAM fine-tuned with EuRoC sequences 58
6.4 Adaptive LIFT-SLAM . 60
6.5 Adaptive LIFT-SLAM fine-tuned with KITTI sequences 62
6.6 Adaptive LIFT-SLAM fine-tuned with EuRoC sequences 64
6.7 Robustness tests . 67
6.8 Discussion and comparison with literature 70

7 Conclusion and Future Work 71

14

Chapter 1

Introduction

The ability to know its localization in an environment is an essential task for mobile robots,

and it has been a subject of research in robotics for decades. To correctly localize itself,

the robot must know its pose (position and orientation) in the environment. The process

that estimates this information is called Odometry. When the robot simultaneously

localizes itself and constructs a map of the unknown environment, the algorithm is called

Simultaneous Localization and Mapping (SLAM).

In the last decade, the advances in hardware technologies, such as embedded GPUs,

allowed significant advances in mobile robots pose estimation. These advancements en-

couraged progress in camera-based methodologies of odometry and SLAM, called Visual

Odometry (VO) and Visual SLAM (VSLAM). Much work has been done to develop accu-

rate and robust VO and VSLAM systems, but traditional approaches depend on significant

engineering effort on a classic pipeline: Initialization, feature detection, feature matching,

outlier rejection, motion estimation, optimization, and relocalization. Furthermore, the

traditional approaches tend to fail in challenging environments (inadequate illumination,

featureless areas, etc.) or when the camera is at high speed. Moreover, if the camera is

monocular, these systems suffer from scale uncertainty.

VSLAM and VO have many real-world applications. The most important is in Vir-

tual and Augmented Reality (VR/AR) and robotics. In mobile robotics, VSLAM is used

to estimate the robot’s position, especially in GPS-denied environments. Examples in-

clude autonomous cars, Unmanned Aerial Vehicles (UAVs), underwater robots, and space

robots. It is applied in UAVs to perform autonomous environment exploration and naviga-

tion with low-cost, light-weight, and low-power consuming hardware [86]. In underwater

scenarios, VSLAM is a cost-effective solution for autonomous underwater vehicles and

coral-reef inspection systems [25]. In space, VO is used by the Mars Exploration Rovers

to aid the wheel odometry [9].

Advances in artificial intelligence, led by deep learning, are revolutionizing the com-

puting scenario leading to a significant change in how applications are being created in

several fields. The impact of deep learning in computer vision has been significant, and it

is making substantial improvements to traditional robotics algorithms, including VO and

VSLAM.

Recent applications of deep learning-based methods in VO/VSLAM have achieved

promising results, bringing robustness to the situations mentioned above. Many works

15

have proposed using Deep Neural Networks (DNNs) to estimate camera motion with an

end-to-end system. These systems can replace the entire traditional VSLAM pipeline that

depends on significant engineering effort to develop and tune [47, 67, 87]. However, these

methods are not able to outperform traditional methods yet. Thus, some works propose

to replace only some modules of the VSLAM traditional pipeline with DNNs, creating

hybrid methods [14, 39, 48]. This approach can leverage the robustness of deep learning

to enhance traditional VSLAM systems. In this way, we aim at exploring the potential of

deep neural networks to improve the performance of conventional VO/VSLAM systems.

1.1 Objectives

Our main objective in this work is to develop a visual SLAM system that takes advan-

tage of deep neural network robustness to extract features from images and use them

in a traditional VSLAM pipeline. We aim to develop this system for monocular camera

applications. Therefore, we explore a DNN called LIFT [92] as our feature extractor and

exploit the well-known ORB-SLAM [59] algorithm to compute the pose and the map of

the environment.

More formally, our objectives are:

• To study the main techniques for monocular feature-based VO/VSLAM;

• To study deep learning-based feature extraction and description techniques;

• To develop a hybrid system that uses deep learning to perform feature extraction

and description in a traditional VO/VSLAM pipeline;

• To evaluate our system and make comparisons with state-of-the-art results;

• To explore, apply, and evaluate other features that can improve the performance of

our system.

Based on these objectives, we formulated some hypotheses to confirm if our objectives

were achieved:

1. H1: Deep Learning-based feature detection and description can be used to enhance

VO/VSLAM systems;

2. H2: The resulting system can successfully perform VO/VSLAM in different types

of environments.

1.2 Contributions

The contributions of this work are the following:

• A review on feature-based VO/VSLAM algorithms and deep learning-based algo-

rithms;

16

• The implementation of a new hybrid VO/VSLAM algorithm based on the LIFT

network to perform feature detection and description in a traditional back-end based

on ORB-SLAM’s system;

• Two versions proposed to improve the system’s performance in different environ-

ments.

1.3 Text Organization

This dissertation is organized as follows:

• Chapter 2 presents the necessary background knowledge relevant to this dissertation,

such as algorithms that were used in the development of the project;

• Chapter 3 shows related works available in the literature about traditional VSLAM

and deep learning-based VO/VSLAM;

• Chapter 4 presents the materials used to develop this work as long as the method-

ology we have employed to test our hypotheses;

• Chapter 5 describe the proposed VSLAM system and other methods we propose to

improve the performance of the system;

• Chapter 6 presents the results of our experiments with comparisons between different

works and a discussion about these results;

• Chapter 7 presents the final considerations of this work and the possibilities of future

work.

17

Chapter 2

Theoretical Background

In this chapter, we will present fundamental concepts for the development of this work: the

main concepts of SLAM, odometry, and details about the visual SLAM pipeline, a brief

explanation of Convolutional Neural Networks, and how they are employed in VSLAM.

Lastly, we give information on the network called Learned Invariant Feature Transform,

used in this work as our feature extractor.

2.1 Simultaneous Localization and Mapping

The Simultaneous Localization and Mapping (SLAM) problem addresses the possibility

of an agent locating itself in an unknown environment and simultaneously building a

consistent map of this environment. SLAM is a crucial problem in real-world applications,

such as autonomous robots, virtual reality, and augmented reality. The solution to the

SLAM problem is one of the notable successes of the robotics community [17].

Several SLAM algorithms were proposed over history, with a typical structure that

relies on two main components: Odometry and Loop-closure detection. Odometry is one

of SLAM’s central parts, which is responsible for estimating the agent’s pose (position

and orientation) in the environment through the estimate of changes in position over time.

On the other hand, the loop closure detection is responsible for detecting when a position

is being revisited, which is crucial to correct drift on the map.

SLAM’s goal is to obtain a consistent global estimate of the robot path, which implies

keeping track of a map of the environment. This aspect of SLAM differs from odometry

that only cares about the local consistency of the trajectory. Figure 2.1 shows a compar-

ison between SLAM and odometry. The choice between odometry and SLAM depends

on the trade-off between performance and consistency and simplicity in implementation.

However, the global consistency of the trajectory is sometimes desirable, odometry trades

off consistency for real-time performance [17].

2.1.1 Odometry

Odometry is the most widely used method for determining the temporary position of a

mobile robot [27]. Early odometry methods were performed by monitoring the robot’s

wheels rotations to compute the offset from a known starting position. Therefore, wheel

18

Figure 2.1: Comparison between SLAM and odometry on a self-driving car trajectory.
The ground-truth positions are provided by a GPS are in the green line. The blue line
shows the path estimated by odometry. The red line shows the global path estimated by
SLAM, performing loop-closure to improve previous positions. Adapted from [45].

rotation measurements are incrementally used in conjunction with the robot’s kinematic

model to find its current location to a global reference coordinate system [71]. Nonetheless,

since the wheel odometry produces incremental measurements, the position errors are

accumulated over time and cause the estimated pose to drift from the ground-truth pose.

The position errors are caused mainly by wheel slippage in uneven terrain or slippery

floors [71]. Developing an error model to estimate the slippage is too difficult because the

inaccuracies are highly dependent on surfaces. For example, the robot’s wheel will slip

differently on carpet than on a polished floor [60]. Furthermore, this method is limited to

wheeled ground vehicles, which limits its applications.

An alternative to deal with wheel odometry problems is localization based on Inertial

Measurement Units (IMUs). On inertial localization, the measurements are provided by

motion sensors (accelerometers) and rotation sensors (gyroscopes) to track the position

and orientation of an object [90]. However, this method is highly prone to drift accu-

mulation because the calculation of the change in speed and position requires successive

mathematical integrations of acceleration concerning time. Thus, the errors are cumu-

lative and increase with time, making IMU-based localization unsuitable for positioning

applications over an extended period. This method is used to aid other navigation systems

to provide a higher accuracy rather than to replace them [2].

Many localization methods rely on a Global Positioning System (GPS) sensor, but it is

only useful outdoors and might not work indoors and in confined spaces [2]. Additionally,

it could have errors in order of meters, which is unacceptable for localizing human-scale

mobile robots as well as miniature mobile robots [74]. Differential GPS and real-time

kinematic GPS can provide the position with centimeter accuracy, but these techniques

are too expensive and have significant latency.

Light detection and ranging sensors (LiDARs) are also possible sensors used on meth-

ods related to localization. LiDARs work by sending laser pulses and measuring the time

until it returns. For odometry purposes, each point detected on consecutive scanning is

used for pose estimation. Moreover, LiDARs possess a high sampling rate, high angular

resolution, significant range detection, and high robustness against environmental vari-

ability. The main drawback of using these sensors is that they are costly. Furthermore, the

19

laser scanning can fail in a transparent material, such as glass, because of the reflections

on these surfaces lead that to suspicious data [2].

Some works have used a set of on-board ultrasonic sensors as a low-cost alternative

to LiDARs [18]; these sensors measure the time-of-flight of an ultrasonic pulse. However,

the reflection of signal waves is highly dependent on the material and the orientation of

the object surface, thus the ultrasonic sensor often produces inaccurate measurements of

range. Moreover, this sensor has a slow response, which tends to worsen when a robot

has a set of ultrasonic sensors. It needs to measure distance in sequence to minimize

interference between the sensors [74].

Cameras have also been used for odometry in mobile robots. Vision-based odometry

is an inexpensive alternative technique that is relatively more accurate than conventional

ones and has been the subject of recent research. The process of estimating the pose of

an agent by using only visual input (from single or multiple cameras) is called Visual

Odometry [71].

2.1.2 Visual Odometry and Visual SLAM

Recently, cameras have been successfully used to get the environment features to per-

form odometry. If odometry is based only on visual information, the technique is called

Visual Odometry (VO). When extended to SLAM, it is called Visual SLAM (VSLAM).

When also using IMU data to estimate motion, VO is referred to as visual-inertial odom-

etry (VIO). In general, the technical difficulty of VSLAM is higher than that of other

sensor-based SLAMs because cameras can acquire less visual input from a limited field of

view (compared to LiDARs, for example). Thus, camera poses need to be continuously

estimated, and the 3D structure of the environment simultaneously reconstructed [80].

There are several algorithms for VSLAM. Most of the state-of-the-art algorithms are

geometry-based methods [59, 19, 20], which means that they rely on geometric constraints

extracted from images to estimate motion. Geometry-based VSLAM algorithms are either

feature-based (indirect) or direct, dense, semi-dense, or sparse. These classifications are

applied in the context of different sensor combinations and modalities, including monocu-

lar (single camera sensor), stereo (two camera sensors), visual-inertial (camera and IMU),

and RGB-D (camera and depth estimation) [22].

Algorithms based on tracking and mapping feature points are called feature-based

approaches. These algorithms extract and match keypoints and use them to estimate

the camera motion. The keypoints can be geometric features (corners, edges, etc.), or

more sophisticated feature descriptors (SIFT, ORB, etc.). However, they can fail in

textureless and featureless environments. Therefore, direct approaches were proposed.

These direct algorithms do not detect feature points, but directly use the whole image

(its pixel intensities) for tracking and mapping [80]. Nevertheless, the latter are more

affected by changing lighting conditions due to the change in pixel intensities. Figure 2.2

shows a comparison between the feature-based and direct approaches.

Visual SLAM systems might also be classified in sparse, dense, or semi-dense. Sparse

methods use and reconstruct only a selected set of independent points, while dense meth-

ods attempt to use and rebuild all pixels in each received frame. There are also semi-dense

22

Figure 2.5: The epipolar geometry. C and C′ are the cameras centers, X is the 3D point
and x and x′ are the reprojection of this point in the 2D images, that lie in a common
plane π, named as epipolar plane. Extracted from [36].

viewpoint changes [26]. Matched keypoints usually are contaminated by the wrong data

association. Consequently, it is necessary to remove the outliers with some outlier rejection

algorithm, such as the Random Sample Consensus (RANSAC). To avoid such problem,

some methods employ keypoint selection techniques, which also reduce the error in motion

estimation [16, 11]. Then, the motion between the previous and the current frame is

computed. Depending on whether the feature correspondences are specified in two or

three dimensions, there are three different methods: 2D-to-2D, 3D-to-2D, and 3D-to-3D.

The last one is not our focus since it is necessary to triangulate 3D points at each frame,

which requires a stereo camera [71].

In 2D-to-2D methods, motion is estimated from the correspondences between two im-

ages. This approach is usually needed to compute the first two calibrated monocular

frames, where map points have not been triangulated yet. Therefore, the epipolar geom-

etry is used to calculate this transformation, as seen in figure 2.5. The epipolar geometry

between two images is the geometry of the intersection of the image planes with the plane

that connects both images with a point in space. Therefore, each camera reprojects in

a 2D image a 3D point in the world. The perspective projection equation [36] gives the

mapping from the 3D world to the 2D image. The epipolar geometry holds a constraint

(equation 2.1) that determines that there is a line (epipolar line) on which the corre-

sponding point x′ from x lies in the other image, this constraint is useful to estimate the

motion.

x′TEx = 0 (2.1)

where x and x′ are the corresponding points in image planes and E is the essential matrix,

given by equation 2.2.

E = [t]×R (2.2)

where R is the rotation matrix, t is the translation matrix t = [tx, ty, tz]
T , and [t]× is the

skew symmetric matrix given by equation 2.3.

23

[t]× =

0 −tz ty
tz 0 ty
−ty tx 0

 (2.3)

The solution of this motion estimation involves at least five correspondences of points;

it is proposed in [62] an algorithm called 5-point algorithm to estimate motion efficiently

in this case. Another alternative is to use the 8-point algorithm [49] or the normalized

8-point algorithm [35], for 8 or more correspondent points.

Moreover, the 3D-to-2D motion estimation for monocular VO needs to observe at least

three different frames, since it needs to triangulate the first two frames into 3D points and

its 2D correspondence in the third frame. The transformation Tk is obtained by reducing

the reprojection error between the previous and the current frame with the equation 2.4.

argmin
Tk

∑

i

∥

∥xi
k − x̂i

k−1

∥

∥

2
(2.4)

where, Tk is the transformation for frame k, i is the number of correspondent points,

xi
k is the observed point in the current frame, x̂i

k−1 is the reprojection of the 3D point

X i
k−1 into the current frame according to the transformation Tk. This problem is often

called as perspective from n points (PnP), the minimal case uses 3 point correspondences

[41], however there are some well-known approaches that solves the problem for 4 or more

points such as EPnP [46] and for 6 or more points that is the Direct Linear Transformation

(DLT) algorithm [36].

Mapping

Maps are a stored representation of the robot’s knowledge of the world, and they can be

represented as topological, metric, or topological-metric maps [93]. Topological maps hold

information about object adjacency avoiding metric information. Usually, topological

maps are represented by a graph in which the nodes represent possible places in the

world, and edges represent the possible paths between these places. In metric maps, the

environment is represented in terms of geometric relations between the objects and a

fixed reference frame (distances, directions, etc.). On the other hand, topological-metric

(topometric) maps enhance topological maps by including metric information on the map

edges. Furthermore, the metric information within the topological place node can be

stored as a sparse landmark map or a dense occupancy grid map [51].

Key concern on SLAM systems is scalability, which means that it will keep efficiency

in large maps. Many new monocular VSLAM methods are keyframe-based approaches,

which means that the map is estimated using only some selected frames (keyframes).

This approach avoids waste of computation to process consecutive frames with little new

information. Recent VSLAM systems also represent the computed camera poses in pose

graphs where the nodes are keyframe poses, and the edges are the rigid-body transfor-

mations between the camera poses, as shown in figure 2.6. This representation allows

the system to optimize the camera poses with pose graph optimization or even to jointly

optimize the camera pose and the 3D structure parameters with bundle adjustment (BA).

24

Figure 2.6: The pose graph representation of a VSLAM system. The camera poses C are
represented as the graph nodes and the transformation between the camera poses T are
the edges. Adapted from [33].

The pose graph optimization uses the constraints formed between non-adjacent poses

by observing the same features from different locations [93]. These constraints defines the

cost function presented in equation 2.5.

∑

i,j

‖Ci − Ti,jCj‖
2 (2.5)

where C is the camera center and Tij is the rigid-body transformation between poses i and

j. Pose graph optimization looks for the camera pose parameters that minimize this cost

function. Generally, this is a non-linear optimization problem and to solve it a non-linear

optimization algorithm is needed (e.g., Gauss-Newton, Levenberg-Marquardt) [26].

In BA, camera poses and 3D points are optimized simultaneously. It applies to the

cases where image features are tracked over more than two frames, either globally or

locally. If it is a global BA, all camera poses and 3D points are considered. On the other

hand, in local BA (or windowed BA), the optimization is applied over several fixed frames

(a window). The last approach is preferable because it limits the number of parameters

for the optimization, making real-time bundle adjustment possible [26]. The cost function

to be optimized in BA is presented in equation 2.6.

∑

Xi,Ck

∥

∥xi
k − g(X i, Ck)

∥

∥

2
(2.6)

where, xi
k is the ith image point of the 3D point X i measured in the kth image, and

g(X i, Ck) is the reprojection function according to the camera pose Ck. The reprojection

error is a non-linear function, and and a non-linear optimization algorithm is used to solve

it.

Loop-closure detection and relocalization

Loop-closure detection and relocalization are similar tasks since both algorithms depend

on place recognition to detect a revisited place in the environment. The difference is the

moment each one is used, relocalization is done for recovering a camera pose, and loop-

closure detection is used as a constraint in pose graph optimization. Thus it is useful for

25

obtaining a geometrically consistent map.

The loop can be detected based on three different approaches: map-to-map match-

ing, image-to-image matching, and image-to-map matching [88]. Map-to-map approaches

search for correspondent features between two sub-maps using similarity in visual ap-

pearance and the relative distance between features. Once it founds a consistent set of

common features, the relative scale, rotation, and translation are estimated. On the other

side, image-to-image approaches look for correspondences between the current image and

the previously seen images. These methods do not depend on a metric map since it only

compares the images. Lastly, in image-to-map algorithms, correspondences are searched

between the current frame and the features on the map.

The image-to-image method is widely used because it can achieve a real-time perfor-

mance using the bag of visual words model to represent the images. The bag of visual

words model creates a quantization of the local features descriptors into a visual vocab-

ulary. In the visual vocabulary, the original descriptor space is partitioned into non-

overlapping cells by k-means clustering [26]. For each image, every feature is assigned

to a particular visual word, ignoring any geometric structure. This approach allows im-

ages to be reduced to binary strings or histograms of length n, where n is the number of

words in the vocabulary [51]. Vocabulary trees make this process efficient in large scale

problems. They use a hierarchical model to define words, organizing them in an inverted

file structure according to the Term Frequency Inverse Document Frequency (TF-IDF)

scoring of the relevance of an image to the query [63]. The TF-IDF score is the product

of two values: the term frequency, which measures how often the word appears in the

image, and the inverse document frequency, which measures whether the word is common

across all images.

2.1.3 Drawbacks on geometry-based Visual SLAM

Although VSLAM (and VO) is solved for well-defined environments and slowly moving

robots, current SLAM algorithms can be easily induced to fail when either the motion of

the robot (UAVs or bipedal robots) or the environment are too challenging [7]. Geometry-

based approaches are sensitive to camera parameters and are not robust to challenging

situations such as featureless areas, motion blur, large viewpoint changes, dynamic ele-

ments in the environment, and illumination changes [53].

Another issue, exclusive to monocular VSLAM algorithms, is the scale ambiguity

problem since it is not possible to estimate depth from a single image. Therefore, these

algorithms initially set the scale to a predefined value, and all map points are relative to

this initial value. To obtain the real global scale, additional information about the world

has to be available, such as the initial transformation or data from other sources (IMUs,

LiDARs, etc.).

Moreover, these problems worsen when the robot uses a rolling shutter camera, the

most commonly used camera model. In rolling shutter cameras, each row of a captured

image is taken by different camera poses [80]. Therefore, the images that are acquired

by a camera attached to moving robots may be distorted. When using cameras and

inertial sensors, most approaches require exhausting manual synchronization of the IMU

27

solution that best satisfies the loss function for all data.

A good property about DNNs, in general, is that after training the model in a specific

dataset, it is still possible to adapt the weights of this model for a new data domain with

a technique called transfer learning. Transfer learning is defined as the fine-tuning of the

model for a new task. It occurs by the transfer of knowledge from a related task that was

learned by the model [66].

2.3 Deep-learning and Visual SLAM

Recently, DNNs have gained a lot of popularity in the computer vision community. Recent

developments on deep learning show that pose estimation can be treated as a learning

problem [69]. DNNs can learn more robust and powerful features according to specific

problems and have demonstrated its superiority in several computer vision tasks. There-

fore, it seems unavoidable that Deep Learning-based visual SLAM algorithms will replace

traditional VSLAM methods.

In this way, methods based on supervised learning, unsupervised learning, and re-

inforcement learning have been explored. Supervised learning methods usually train a

DNN to learn geometric features by minimizing the difference between the predicted and

the ground-truth poses. However, sometimes VO labeled data is costly to obtain, and it

can limits generalization to new environments. On the other hand, unsupervised learning

methods do not require ground-truth pose information to train the DNN but leverage

some additional visual information that can assist the learning process. These include

depth, stereo images, or optical flow [38]. Finally, reinforcement learning approaches do

not use training data and rely on a reward signal to improve and construct policies that

dynamically interact with the problem environment.

There are two main approaches proposed to use deep learning for VO/VSLAM systems:

the end-to-end and hybrid strategies. In end-to-end methods, the DNN replaces the

entire VO/VSLAM pipeline [87, 47, 67], these architectures generally use a Convolutional

Neural Network (CNN) to extract features from the images and then estimate the motion.

However, end-to-end approaches are still incapable of achieving the same performance

and accuracy as state-of-the-art geometry-based approaches. To solve this problem, some

authors propose to split the VSLAM pipeline and use DNNs to execute specific tasks,

which we call hybrid strategies [10, 48, 31].

2.4 Learned Invariant Feature Transform

The Learned Invariant Feature Transform (LIFT) [92] is a DNN proposed by Yi et al. that

implements local feature detection, orientation estimation, and description in a supervised

end-to-end approach. The network architecture is composed of three main modules based

on CNNs: Detector, Orientation Estimator, and Descriptor, as shown in figure 2.8.

The algorithm works with patches of images. After giving a patch of 128x128 pixels as

input, the detector network provides a score map of this patch. A soft argmax operation [8]

is performed over this score map to return the potential feature point location. After this,

28

Figure 2.8: The LIFT Pipeline composed of three main modules: Detector, Orientation
estimator and descriptor. Extracted from [92].

Figure 2.9: The Siamese LIFT training architecture, composed of four branches. Where
Pi is a patch of a image inputed on the ith branch, Si is a score map computed by
the detector, xi is a feature point location, and pi is a smaller patch used as input
to the orientation estimator. The orientation estimator computes a θi orientation that
produces the rotated patch pi

θ, this is processed by the descriptor network and produces
a description vector di. Extracted from [92].

a crop operation centered on the feature location is performed, returning a 64x64 patch.

This patch is used as input to the orientation estimator. The orientation estimator module

predicts an orientation to the patch. Thus, a rotation is applied in the patch according to

the estimated orientation, and lastly, the descriptor network computes a feature vector.

LIFT was trained with photo-tourism image sets, as these images capture views of

the same scene under different illumination conditions and seen from different perspec-

tives. They have used a Structure from Motion (SfM) algorithm called VisualSFM [91] to

reconstruct the scenes with SIFT features. They have adopted a problem-specific learn-

ing approach to train the network, which means that the descriptor network was trained

alone; then, this network was used to train the orientation estimator. Finally, the detector

is trained based on the already learned descriptor and orientation estimator. Moreover,

the training architecture is a four-branch Siamese, as shown in figure 2.9. In training

four patches of images are used as input, P1 and P2 correspond to different views of the

same 3D point, P3 is a view from a different 3D point, and the last one P4 is a patch

without any distinctive feature point. Each patch Pi corresponds to the ith branch of the

network. It will be used as input. The last branch trains only the detector network, since

it is used only to show the negative detector examples.

The descriptor network is trained with a loss to minimize the differences between

the corresponding patches and maximizing the difference between different patches. The

descriptor is formalized as hρ(pθ), where ρ are the descriptor parameters. The descriptor

is trained to minimize the loss defined in equation 2.8.

29

Ldesc(p
k
θ) =

{
∥

∥hρ(p
k
θ)− hρ(p

l
θ)
∥

∥

2
for positive pairs

max(0, C −
∥

∥hρ(p
k
θ)− hρ(p

l
θ)
∥

∥

2
) for negative pairs

(2.8)

where C = 4, and positive pairs are patches that correspond to the same 3D point, and

negative patches are the ones that do not correspond.

Moreover, the orientation estimator network is trained to provide the orientations

that minimize the distances between description vectors for different views of the same

3D points. In training the orientation estimator, the description vectors are provided

by the already trained descriptor, and the keypoints are taken from VisualSFM. The

orientation estimator loss is defined in equation 2.9.

Lori(P
1,x1,P2,x2) =

∥

∥hρ(G(P1,x1)− hρ(G(P2,x2))
∥

∥

2
(2.9)

where G(P,x) is rotation applied to the patch P centered in location x.

Finally, the detector learns to minimize the distance between the descriptors vectors

for correspondent patches (with the already learned descriptor and orientation estimator)

and maximize the classification score for patches, not corresponding to the same physical

points. Therefore, the loss in detector is the sum of two losses Lclass and Lpair, as shown

in equation 2.10. The detector output (score map) is defined as fµ(P), where µ are the

network parameters.

Ldet(P
1,P2,P3,P4) = γLclass(P

1,P2,P3,P4) + Lpair(P
1,P2) (2.10)

where γ is a hyper-parameter that defines a balancing between the two terms, with Lclass

increasing when detecting a keypoint in patch P4, as in equation 2.11. Lpair is defined in

equation 2.12, it defines the distance between two correspondent description vectors.

Lclass(P
1,P2,P3,P4) =

4
∑

i=1

αimax(0, (1− softmax(fµ(P
i))yi))

2 (2.11)

where yi = −1 and αi = 3/6 if i = 4 (for a non-keypoint patch), and yi = +1 and αi = 1/6

otherwise. The softmax is a non-linear function.

Lpair(P
1,P2) =

∥

∥hρ(G(P1, softargmax(fµ(P
1))))− hρ(G(P2, softargmax(fµ(P

2))))
∥

∥

2

(2.12)

where the softargmax is a function that computes the center of mass of the score map,

returning the feature location x.

Yi et al. evaluated the algorithm in three datasets: Strecha dataset [78], DTU dataset

[1] and Webcam dataset [85]. The algorithm was evaluated from three metrics: repeata-

bility to captures the performance of the feature point detector, Nearest Neighbor mean

Average Precision to capture how discriminating is the descriptor, and matching score

that measures the overall performance of the pipeline. We present in table 2.1 a compari-

son between matches scores from LIFT and other feature descriptors. LIFT has presented

good results on the matching score. Some LIFT’s drawbacks involve the patches’ extrac-

tion from the image (instead of using the whole image as input). The time taken to create

30

the feature descriptors is higher than the other approaches.

Dataset SIFT SURF ORB BRISK LIFT-pic LIFT-rf
Strecha 0.283 0.208 0.157 0.208 0.374 0.369
DTU 0.272 0.244 0.127 0.193 0.317 0.308

Webcam 0.128 0.117 0.120 0.118 0.196 0.202

Table 2.1: The average matching score for different algorithms. The best results are
highlighted. LIFT-pic is the LIFT algorithm trained with Piccadilly Circus set of images
and LIFT-rf is the algorithm trained with Roman Forum set of images [89]. Adapted
from [92].

2.5 Final Considerations

This Chapter presented the theoretical background necessary to develop this work. In-

spired by deep learning-based VSLAM systems shown in section 2.3, we created a hybrid

VSLAM algorithm. To this end, we used the LIFT network presented in section 2.4 com-

bined with a typical VSLAM pipeline described in section 2.1. Thus, with this approach,

we expect to overcome some of the drawbacks from geometry-based VSLAM presented in

section 2.1.3.

31

Chapter 3

Related Work

In this chapter, we show a literature review of the works regarding subjects explored in

this dissertation. We divide this chapter into two parts: section 3.1 explores the most

popular geometry-based VSLAM algorithms and their pipeline. Then, in section 3.2,

we show some of the recent work with deep learning to enhance or replace the VSLAM

traditional pipeline.

3.1 Geometry-based Approaches

The problem of estimating the pose of a vehicle from visual input alone started in the early

1980s [71], described in [55], where it was introduced the first motion-estimation pipeline.

However, the term Visual Odometry was first presented by Nistér et al. in [64]. Since

then, many methods have been proposed. We describe next some of the most relevant

state-of-the-art geometry-based VO and VSLAM systems, either direct or feature-based.

3.1.1 Direct methods

Newcombe et al. proposed one of the first dense and direct SLAM methods for a monocular

camera is Dense Tracking and Mapping (DTAM) [61]. They initialize the map using a

stereo measurement, then estimate depth for each pixel; therefore, DTAM generates a

dense 3D map for each frame. This algorithm performs tracking by comparing the input

image with synthetic-view images generated from the reconstructed map.

Another relevant direct VSLAM algorithm called Large-scale Direct SLAM (LSD-

SLAM) [19] was proposed by Engel et al.. This method is capable of running in large-scale

environments with CPU. Textureless areas are ignored because it is difficult to represent

their depth accurately. It represents maps with semi-dense inverse depth maps for selected

keyframes, containing depth values for all pixels with a sufficient intensity gradient. They

also provide a probabilistic solution to handle the noisy depth prediction during tracking.

Moreover, pose-graph optimization is employed to obtain a geometrically consistent map.

Later, the authors of LSD-SLAM proposed a method called Direct Sparse Odometry

(DSO) [20]. It combines photometric errors with geometric errors and performs a joint

optimization of all parameters. The algorithm divides the input image into a grid, and

32

Figure 3.1: An overview of ORB-SLAM’s pipeline with three threads: Tracking, Local
Mapping and loop closing. The authors also propose to add a covisibility graph in the
map and a place recognition module based on bag of visual words. Extracted from [59].

then, it selects high-intensity points as reconstruction candidates to its sparse map. By

using this strategy, they can get points that are distributed within the entire image.

3.1.2 Feature-based methods

The first monocular VSLAM system proposed was MonoSLAM [12]. In this method,

camera motion and 3D structure of an unknown environment are simultaneously estimated

using an extended Kalman filter (EKF). In this method, there is no loop closure detection,

and map initialization is done by using a known object. The main problem of this method

is the computational cost, as it increases in proportion to the size of an environment.

To solve the problems of MonoSLAM, Klein and Murray proposed in [40], an algo-

rithm called Parallel Tracking and Mapping (PTAM). To reduce computational costs, the

authors propose split tracking and mapping into two separate tasks, processed in parallel

threads. That way, the tracking estimates camera motion in real-time, and the mapping

estimates accurate 3D positions of feature points with a computational cost [80]. It is

the first real-time method that was able to incorporate BA. They have also created an

automatic initialization with a 5-point algorithm. The main ideas of PTAM were used in

ORB-SLAM.

ORB-SLAM [59] is a feature-based monocular VSLAM system proposed by Mur-Artal

et al.. It works with three threads: Tracking, Local Mapping, and Loop Closing, as shown

in figure 3.1. The system also adopts two graph representations: a covisibility graph and

an essential graph. In the covisibility graph, each node is a keyframe, and an edge

between two keyframes exists if they share observations of the same map points weighted

by the number of map points in common. The essential graph is a lighter version of the

covisibility graph. It contains the same nodes (keyframes) but fewer edges, which allows

faster pose graph optimization.

The automatic map initialization system in ORB-SLAM is independent of the scene

(planar or general) and do not require any human intervention. They compute two geo-

33

metrical models in parallel: a homography assuming a planar scene and a fundamental

matrix considering a non-planar scene. So, they choose the model using a heuristic and

try to recover the relative pose with a specific method for the selected model, avoiding

low-parallax cases and planar ambiguity. In this way, the algorithm avoids initializing a

corrupted map.

For tracking, they use a constant velocity model to predict the camera pose. This

means that they assume a smooth camera movement and use the pose changes across the

two previously tracked frames to estimate the initial pose for the current frame (assuming

it will be optimized later). Then, the camera pose is optimized, and it is decided if the

existing frame should be a keyframe. In local mapping, the keyframe is inserted in the

covisibility graph, and new map points are created by triangulating ORB features from

connected keyframes in the covisibility graph. A local bundle adjustment is then applied

to all keyframes connected to the current keyframe in the covisibility graph and all map

points seen by those keyframes.

ORB-SLAM’s system has embedded a bags of words place recognition module for loop

closure detection and relocalization. Visual vocabulary was created offline with ORB de-

scriptors extracted from a large set of images. By using this vocabulary, the system builds

incrementally a database, which stores, for each visual word in the vocabulary, in which

keyframes it has been seen. So, querying the database can be done very efficiently. When

relocalization is needed, the frame is converted into a BoW. Then, it queries the recog-

nition database to find keyframe candidates for global relocalization. For loop detection,

after converting the keyframes to BoW, a similarity between the current keyframe and

its neighbors in the covisibility graph is computed, the lowest score is retained. After

finding the loop candidates, it calculates the similarity transformation from the current

keyframe to the loop keyframe, performing a pose graph optimization over the essential

graph. Later, the authors of ORB-SLAM proposed an extension of ORB-SLAM applied

to stereo and RGB-D cameras [58].

3.2 Deep learning-based approaches

Konda and Memisevic [42] presented one of the first end-to-end VO systems based on

deep learning where a CNN was trained to relate local depth and motion representations

to local changes in velocity and direction, using features from unsupervised pre-training.

Since then, many approaches have been proposed to estimate VO from frames.

3.2.1 End-to-end methods

One of the most notable end-to-end methods is called DeepVO [87], proposed by Wang

et al.. In DeepVO, a Recurrent Neural Network (RNN) is used to estimate the camera

pose from features learned by a Convolutional Neural Network (CNN). The CNN archi-

tecture computes the optical flow from a sequence of images based on the Flownet [24].

Two stacked Long-Short Term Memory (LSTM) layers are applied to estimate temporal

changes from the features predicted by the CNN.

34

Another end-to-end approach, based on unsupervised learning called UnDeepVO, is

presented in [47]. The network is trained using stereo image pairs to recover the scale

but tested using consecutive monocular images. Moreover, the loss function defined for

teaching the networks is based on spatial and temporal dense information. The system

successfully estimates the pose of a monocular camera and the depth of its view.

Parisotto et al. [67] proposed an end-to-end system that uses a similar architecture

to DeepVO; however, instead of using LSTMs, they propose an attention phase, which is

called Neural Graph Optimization. It considers that poses that are temporally adjacent

should have similar outputs and should be visually similar. Still, temporally disparate

poses should also have similar outputs, enabling a loop closure-like correction of drift.

3.2.2 Hybrid methods

Hybrid approaches were proposed to replace some modules of the traditional VSLAM

pipeline. Li et al. proposed in [48], a monocular system called Neural Bundler, it is

proposed an unsupervised DNN that estimates for motion. A conventional pose graph is

constructed, enabling an efficient loop closing procedure based on the optimization of the

pose graph estimated.

Another hybrid approach called SuperGlue [70] proposed a graph neural network with

an attention mechanism to perform the matching between two sets of local features. They

use the DNN between feature extraction and pose estimation, which they call a learnable

"middle-end," as it lies between the front-end and back-end of a traditional VSLAM

system. Furthermore, Tang et al. proposed in [81] a deep learning-based network for the

generation of keypoints and descriptors called GCNv2. The network is designed with a

binary descriptor vector, working as a replacement to ORB in ORB-SLAM2.

Recently, some papers proposed to use local learned features to replace the traditional

local features (ORB, SIFT, etc.) of VSLAM systems. In DF-SLAM [39], the TFeat

network [3] is used to create descriptors for features extracted from stereo images with the

FAST corner detector. The feature descriptors are used in a traditional VSLAM pipeline,

based on ORB-SLAM2 [58]. Another work has proposed a self-supervised approach called

SuperPointVO [14], where they combine a DNN based in SuperPoint [15] feature extractor

as a VSLAM front-end with a traditional back-end, using the stability of keypoints in the

images to aid in learning.

3.3 Final Considerations

This chapter presented some of the methods proposed to perform VO and VSLAM in

the literature. The most notable direct methods are LSD-SLAM [19] and DSO [20] and

feature-based is ORB-SLAM [59]. The deep learning-based methods are very recent, and

DeepVO [87] is one of the main end-to-end algorithms. From the hybrid methods, there

are some approaches with similar algorithms pipeline as we proposed, such as GCNv2

[81], DF-SLAM [39], and SuperpointVO [14]. However, these works do not provide a set

of experiments to evaluate the robustness of these algorithms.

35

Chapter 4

Materials and Methods

In this work, we develop a monocular VSLAM algorithm with deep learning-based fea-

tures. To validate our algorithm, we use two datasets with different characteristics and

a set of metrics for the evaluation of results. This chapter describes all material used to

develop this project and the methodology we employed to obtain our results.

4.1 Materials

4.1.1 Datasets

There are a variety of datasets available that can be used for the development of VSLAM

applications. Table 4.1 lists some of the most used datasets for VO/VSLAM with ground-

truth information. In our work, we have used mainly the KITTI Vision Benchmark Suite

[30] and EuRoC MAV Dataset [6].

Dataset Focus Environment Cameras Other Sensors
KITTI [30] Self-driving cars Outdoors Global Shutter and Stereo IMU, Laser and GPS

EuRoC MAV [6] Micro Air Vehicles VIO Indoors Global Shutter and Stereo IMU and Laser
TUM-Mono [21] Tracking accuracy of monocular VO Indoors and Outdoors Global Shutter and Monocular -

Event-Camera [56] Micro Air Vehicles VIO Indoors and Outdoors Event camera, Global Shutter and Monocular IMU
New College [75] Long term SLAM Indoors and Outdoors Global Shutter, Stereo and Omnidirectional IMU, Laser and GPS

Zurich Urban MAV [52] Micro Air Vehicles VIO Outdoors Rolling Shutter and Monocular IMU and GPS
TUM VI [72] VIO Indoors and Outdoors Global Shutter and Stereo IMU

UZH-FPV Drone Racing [13] Autonomous Drone Racing Indoors and Outdoors Event Camera, Global Shutter and Stereo IMU

Table 4.1: Details of some of the datasets available for VSLAM.

KITTI Dataset

KITTI vision benchmark suite (Karlsruhe Institute of Technology and Toyota Techno-

logical Institute at Chicago) [30] is one of the most used benchmarks for evaluation

in VO/VSLAM algorithms. They have developed benchmarks for stereo, optical flow,

VO/VSLAM, and 3D object detection. The VO/VSLAM dataset consists of 22 stereo

images sequences with a total length of 39.2 km recorded from a moving car. They also

propose two metrics to evaluate VO/VSLAM systems: translation and rotation relative

pose error, which will be described in section 4.1.2.

As our goal is to work with monocular images, we get only the left images in all

sequences to run our algorithms. Moreover, we use only sequences from 00 to 10, as

36

Figure 4.1: Example of image extracted from KITTI dataset.

these are the only sequences with ground-truth information available. Figure 4.1 shows

an example of an image we use from the KITTI dataset. This dataset will provide us large

scale sequences in a real-life scenario. However, it contains limited motion patterns and

environments since there is only a forward-motion (e.g., the car does not move backward),

and all scenes are outdoors. Therefore, we also adopt the EuRoC MAV dataset in our

experiments.

EuRoC MAV Dataset

The EuRoC MAV Dataset (Swiss Federal Institute of Technology/Autonomous Systems

Lab) [6] is a dataset created to assess the visual-inertial SLAM and 3D reconstruction

capabilities of contestants from the European Robotics Challenge (EuRoC) on Micro

Aerial Vehicles (MAVs). Eleven sequences are provided in total, ranging from slow flights

under good visual conditions to dynamic flights with motion blur and poor illumination.

As opposed to KITTI, this dataset offers small scale indoor scenes with 6 degrees of

freedom (DoF), figure 4.2 shows an example of an image from EuRoC dataset.

There are two types of sequences. The first type is from images taken in a realistic

industrial scenario, recorded in a machine hall (sequences from MH_01 to MH_05). The

second type is from images taken inside a Vicon motion capture system, with obstacles

placed over the scene (sequences from V1_01 to V1_03 and V2_01 to V2_03). They

also provide a complexity level for each sequence: easy, medium, or difficult. Details from

all sequences are given in table 4.2.

Sequence Complexity Length [m] Average Vel. [m/s]/Ang. Vel. [rad/s] Characteristics
MH_01 easy 80.6 0.44/0.22 good texture, bright scene
MH_02 easy 73.5 0.49/0.21 good texture, bright scene
MH_03 medium 130.9 0.99/0.29 fast motion, bright scene
MH_04 difficult 91.7 0.93/0.24 fast motion, dark scene
MH_05 difficult 97.6 0.88/0.21 fast motion, dark scene
V1_01 easy 58.6 0.41/0.28 slow motion, bright scene
V1_02 medium 75.9 0.91/0.56 fast motion, bright scene
V1_03 difficult 79.0 0.75/0.62 fast motion, motion blur
V2_01 easy 36.5 0.33/0.28 slow motion, bright scene
V2_02 medium 83.2 0.72/0.59 fast motion, bright scene
V2_03 difficult 86.1 0.75/0.66 fast motion, motion blur

Table 4.2: Sequences complexity, details and characteristics in EuRoC MAV dataset.
Adapted from [6].

37

Figure 4.2: Example of image extracted from EuRoC dataset.

4.1.2 Evaluation Metrics

We have evaluated the performance of our approaches with a set of metrics. The accuracy

of the VO/VSLAM estimates was evaluated with the Absolute Trajectory Error (ATE).

In this metric, the corresponding poses from ground-truth trajectories and estimated

trajectories are compared. This is useful to test the global consistency of the algorithm.

However, both trajectories can be specified in different coordinates and scale. Therefore,

we need to align them by using the Umeyama alignment method [84]. This method

finds rigid-body transformations that map the estimated trajectory onto the ground-truth

trajectory. Then, the error is computed, as shown in equation 4.1.

ATE =
1

N

N
∑

i=1

‖p̂i − pi‖2 (4.1)

where, N is the number of frames, p̂i is the estimated pose for frame i and pi is the

ground-truth pose for the same frame.

For sequences from the KITTI dataset, we used the relative pose error for translation

and rotation, as described in [29]. Instead of a direct comparison of absolute poses, the

relative pose error compares motions. This is possible due to the large scale nature of the

dataset. Thus, these metrics capture different sources of error by evaluating error statistics

over all sub-sequences of a given trajectory length or driving speed. Therefore, they

evaluate errors as a function of the trajectory length and velocity. In KITTI benchmark

page 1, they suggest using the subsequences of length from 100 to 800 meters, increasing

by a factor of 100 (100, 200, ... 800). Moreover, these metrics use the inverse of the

standard motion compositional operator described in [44]. Equation 4.2 is the relative

pose error and equation 4.3 is the relative rotation error:

RPEtrans =
1

|F|

∑

(i,j)∈F

‖(p̂j ⊖ p̂i)⊖ (pj ⊖ pi)‖2 (4.2)

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php

38

RPErot =
1

|F|

∑

(i,j)∈F

6 [(p̂j ⊖ p̂i)⊖ (pj ⊖ pi)] (4.3)

where F is a set of frames (i, j), p̂ and p are estimated and true camera poses respectively,

⊖ denotes the inverse of the standard motion compositional operator and 6 [·] is the

rotation angle.

4.1.3 Programming Languages and Tools

The main programming language used to develop our approaches was C++. Furthermore,

we used the Robotics Operating System (ROS) [76]. This framework has some tools that

helped us in data synchronization and visualization, such as rosbag and rviz. Another

important library used to manipulate images, and features were OpenCV [5].

Another programming language used in this project was Python 3. The main reason

we used it was to evaluate our results and generate some visualizations, since there are

many helpful libraries available in this language, such as NumPy [65] and Matplotlib

[37]. To calculate all metrics, align trajectories, adjust the system scale, and plot the

trajectories, we have used a python package to evaluate odometry and SLAM called Evo

[34].

Moreover, we use Tensorflow [23], which is an open-source software library for high-

performance numerical computation. It is mainly used for machine learning, especially

deep neural networks, and it was fundamental to train our DNNs.

4.1.4 Hardware Specification

We execute our algorithms in a laptop with the following specifications:

• CPU: Intel R© CoreTM i7-850H CPU @ 2.20GHz;

• GPU: NVIDIA GeForceTM GTX 1050 Ti - 4 Gb

• RAM: 8 Gb

4.2 Methodology

To test our hypothesis, we use two datasets with completely distinct characteristics:

KITTI and EuRoC, described in 4.1.1. This allowed us to test the robustness of the

proposed algorithms for different camera motion (e.g., acceleration, velocities, DoF, etc.)

and environments (e.g., outdoors/indoors, size, illumination, etc.). Moreover, in LIFT-

SLAM fine-tuned approaches (section 5.2.1), using different datasets has allowed us to

validate the improvement of the network for VO problems in general, instead of biasing

the network for a single dataset.

To test our hypothesis our experiments are divided as following:

1. Evaluation of LIFT-SLAM:

• Execution and evaluation in KITTI dataset;

39

• Execution and evaluation in EuRoC dataset;

• Comparison with ORB-SLAM results.

2. Evaluation of Fine-tuned LIFT-SLAM:

• Execution and evaluation in KITTI dataset;

• Execution and evaluation in EuRoC dataset;

• Comparison with LIFT-SLAM results.

3. Evaluation of Adaptive LIFT-SLAM:

• Execution and evaluation in KITTI dataset;

• Execution and evaluation in EuRoC dataset;

• Comparison with LIFT-SLAM results.

4. Comparison with state-of-the-art results.

40

Chapter 5

LIFT-SLAM

Based on the recent advances in deep learning methods applied in VSLAM approaches,

we have explored the use of a Deep Neural Network to perform feature detection and

description in the front-end of a typical VSLAM pipeline. In this chapter, we present our

hybrid proposed approach addressing the VSLAM problem with features extracted based

on a deep learning approach.

The chosen DNN was LIFT [92], described in section 2.4, as they provide the full

feature point handling pipeline with state-of-the-art results. Moreover, we use a VSLAM

pipeline based on ORB-SLAM’s [59] pipeline, as they provide one of the complete feature-

based monocular VSLAM systems. Therefore, we have implemented a deep-learning

feature-based monocular VSLAM system called LIFT-SLAM. The method reconstructs

sparse maps that are graph-based and keyframe-based, which allow us to perform bundle

adjustment to optimize camera estimated poses.

As LIFT is based on SIFT, we expect it to be more accurate than ORB for scale,

rotation, and affine variations. As discussed in [82], SIFT is one of the most precise

feature descriptors in these situations. Therefore, before constructing the pipeline of

LIFT-SLAM, we tested the robustness of LIFT descriptors under different scenarios. To

this end, we performed a qualitative analysis of the LIFT feature matching over sequential

images from the KITTI dataset. We compared them with ORB feature matching in the

same conditions. First, we extract the features from a pair of images. Then we find the pair

of descriptors with a smaller distance between them (similarity) to create a match. LIFT

descriptors are vectors of float numbers. Therefore, we compute the distance between the

two descriptors employing the Euclidean distance. On the other hand, ORB descriptors

are binary vectors. Thus, we calculate the similarity between two ORB descriptors with

Hamming distance.

We have created three different scenarios:

• Frame skipping: To evaluate the performance of the feature matching, we emulate

different camera frequencies by skipping frames in sequences of the KITTI dataset.

Therefore, given an image in time t, we look for feature matches with an image in

time t+ 5.

• Gamma power transformation with γ > 1: We can emulate under and overexposed

images with gamma power transformation, as shown in [77]. This transformation

41

creates a new image I ′ from image I by applying: I ′ = Iγ. For γ > 1, we emulate

an underexposed image.

• Gamma power transformation with γ < 1: We apply the same operation as before,

but using γ < 1 to emulate an overexposed image.

From the qualitative results shown in figure 5.1, we concluded that LIFT is robust to all

of the proposed scenarios. In frame skipping (figure 5.1a), we can notice that LIFT is still

able to find correct correspondences between images, whereas ORB creates several wrong

correspondences (figure 5.1b). In gamma power transformations, the feature matching

with both descriptors can create correct correspondences, however, the ORB keypoints

are grouped in only a few regions of the images (figures 5.1d and 5.1f). On the other side,

the LIFT keypoints matched are spread within the whole image (figures 5.1c and 5.1e),

this aspect can improve accuracy of VO systems, as discussed in [26].

On the other hand, the main drawback of using LIFT is its computational cost, once

we did not optimize the network performance. Although the network does not have many

parameters (approximately 290,000), the code to generate the descriptors is not optimized.

Therefore, the time spent to generate the LIFT descriptors with the hardware described

in section 4.1.4 is, on average, 36 seconds for images from the KITTI dataset and 35

seconds for images from EuRoC dataset.

5.1 LIFT-SLAM Pipeline

As aforementioned, our pipeline is similar to the pipeline of ORB-SLAM [59]. However,

as we are not aiming, at this point, in an online version of the method, the mapping step

runs sequentially after tracking and not in parallel, as in ORB-SLAM. Thus the only task

we run in parallel is loop closure detection. Figure 5.2 shows an overview of our pipeline

that will be described in the next sections.

5.1.1 Map Initialization

We follow the automatic map initialization steps defined in ORB-SLAM, computing in

parallel two geometrical models: a homography, a relation between two images in the

same plane, and a fundamental matrix, which relates to corresponding 3D points between

the two images. Therefore, if the scene is planar (or there is low parallax), we should keep

the homography model, as the fundamental matrix would generate the wrong results. On

the other hand, if the scene is non-planar with enough parallax, the fundamental matrix

should be selected. The homography model should be refused to create the correct map

initialization. The model is selected based on a heuristic created in ORB-SLAM. After

selecting the correct model, the motion hypotheses are retrieved, and a BA is performed.

5.1.2 Tracking

In tracking, for each frame, we extract LIFT keypoints and descriptors. These features are

used in all feature matching operations that might be needed in initialization, tracking,

44

Figure 5.4: Representation of the keyframes and map points in our method, camera poses
are represented in blue, current local map points in red and other map points in black.

Furthermore, the tracking step decides if the current frame should be a keyframe

respecting some conditions: at least 20 frames have passed from the last relocalization,

there are at least 15 points tracked in the current frame, and the current frame tracks less

than 90% points than the last keyframe.

5.1.3 Mapping

For each new keyframe, we call the mapping step. First, we insert the keyframe into

the covisibility graph as a new node, and its edges are computed based on the shared

map points with other keyframes. Moreover, in this step, the BoW representation of this

keyframe is computed.

Furthermore, new map points are created by triangulating LIFT features from keyframes

connected in the covisibility graph. For each one of the unmatched features in the cur-

rent keyframe, a match is searched with the other unmatched keypoints in the connected

keyframes. Figure 5.4 shows a representation of our map. To speed up the triangulation

process, we search for features that belong to the same node in the vocabulary tree. To

be valid, the matches must fulfill the epipolar constraint (equation 2.1).

New map points are accepted after checking some constraints: positive depth in both

frames, parallax, reprojection error, and scale consistency. During three keyframes after

being created, map points must pass a restrictive test to be kept in the map, this is useful

to avoid noisy estimates. The recent map points must fulfill two conditions: They need

to be found in more than 25% of the frames in which it is predicted to be visible and,

if more than one frame has passed since its creation, it must be seen from at least three

keyframes.

In order to optimize the covisibility graph, a local bundle adjustment is applied to

all keyframes connected to the current keyframe in the covisibility graph (including the

current keyframe) and all map points seen by those keyframes. The keyframes that can

46

(a) Pose graph before closing the loop. (b) Pose graph after closing the loop.

Figure 5.6: Representation of the loop closure process: after detecting a revisited place
with place recognition the keyframes are adjusted based on the similarity transformation.

the local mapping and tries to detect if it closes a loop. After converting the keyframes to

BoW, a similarity score between the current keyframe and its neighbors in the covisibility

graph is computed, the lowest score smin is retained. The similarity between two BoW

is given by the L2-score, as defined in [63]. Then, all keyframes with a lower score than

smin in the recognition database are discarded. The loop candidates are accepted if there

are at least three candidates detected in the same covisibility graph.

After finding the loop candidates, a rigid-body transformation from the candidate

keyframe to the loop keyframe is computed, this transformation is called similarity trans-

formation. The similarity transformation informs about the drift accumulated in the

trajectory, and it also works as a geometrical validation of the loop. If a similarity trans-

formation is successfully found, we proceed to correct the loop.

Before correcting the loop, the duplicated map points are fused, and the new edges

are inserted in the covisibility graph. The loop adjusts the current keyframe with the

similarity transformation. This correction is propagated to all of its neighbors, as shown

in figure 5.6. Lastly, a pose graph optimization is performed over a reduced version of

the covisibility graph, called an essential graph. After optimization, the map points are

transformed according to the correction of one of the keyframes that observed it.

5.1.5 Algorithm Parameters

There are some fundamental parameters that need to be previously informed before exe-

cuting LIFT-SLAM:

• Intrinsic and extrinsic camera calibration parameters [36], these parameters are

different for each camera and, consequently, each dataset;

• Camera frame rate: the number of frames per second the camera can acquire;

• LIFT parameters:

– Scale factor between levels in the scale pyramid [79] used to extract the features,

in this project we set this value equals to 2, as it is the default in LIFT;

– Number of levels in the scale pyramid, we also use the default value from LIFT,

in this case it is 3;

47

– Matching thresholds: In this project we set these values to THLOW = 1 and

THHIGH = 2 for EuRoC sequences and THLOW = 2 and THHIGH = 3 for

KITTI sequences.

5.2 Versions of LIFT-SLAM

To explore the potential of our approach and to find changes that might lead to improved

general results, we developed some different versions of LIFT-SLAM. The next sections

describe the decision process to create these versions and how we developed them.

5.2.1 Fine-tuned LIFT-SLAM

LIFT network was trained with photo-tourism image sets; this kind of data contains

different geometrical aspects compared to a typical VO/VSLAM dataset. Usually, in

VO/VSLAM datasets, the images are sequential, captured with the same camera that

progressively changes its position and orientation. On the other hand, the photo-tourism

images capture views of the same scene from different perspectives. Therefore, to address

this aspect, we perform a transfer learning in LIFT network to generate a version of the

LIFT that is fine-tuned with the geometrical nature of VO/VSLAM datasets.

To fine-tune the network, we had to collect the ground-truth data. As proposed in

LIFT’s paper [92], we generate the ground-truth with SIFT keypoints obtained with a

structure from motion algorithm called VisualSFM [91]. This algorithm creates a 3D

reconstruction of an environment given a set of images. Then, we created two sets of

ground-truth data. We collected the first from sequences 00, 06, 09, and 10 (8434 images)

of the KITTI dataset. The second dataset comes from the sequences MH_04, V1_03,

and V2_03 (6104 images) of the EuRoC dataset.

After collecting the datasets, we trained the network in two versions, one for each

dataset. We performed it using the TensorFlow version of LIFT provided by the authors

in their github2. The three LIFT modules were fine-tuned separately, following the same

training procedure described in [92]: training first the descriptor, then, the orientation

estimator, and lastly, the detector.

For both datasets, the only module that was improved in the validation set after

training for a few iterations was the orientation estimator. We train the networks until

they overfit, as shown in figure 5.7, which means that the training loss keeps improving,

but the validation error is increasing. However, we only save the models that get the

smaller validation error. The validation error is defined as 1−AUC, where AUC is the

Area Under the Curve of the validation loss defined in equation 2.9. Therefore, in this

version of LIFT-SLAM, we use these fine-tuned models to perform feature detection and

description.

2https://github.com/cvlab-epfl/tf-lift

49

5.2.2 Adaptive LIFT-SLAM

A wrong data association in feature matching might affect the quality of the motion

estimation. Therefore, to select the best features, a threshold is applied right after feature

matching. In this way, the matches with greater distance than this threshold are discarded.

On the other hand, if the threshold value is too small, we might discard good matches and

loose track of the camera pose in challenging environments. To mitigate this problem, two

thresholds are defined: the higher threshold (THHIGH) and the lower threshold (THLOW).

We use THLOW when we need to be more restrictive about the quality of the matches, as

in relocalization or map point triangulation.

However, while performing our experiments, we found out that for different datasets,

the best values for these thresholds could change, as shown in table 5.1 and figure 5.8.

Therefore, we had to change the thresholds every time we needed to change the dataset.

This is not desirable since, in real-world applications, it is not possible to deduce the

values of these thresholds. Hence, we have developed an adaptive method that decides

the thresholds values online, based on the number of outliers of the current frame and the

number of map points on the last frame.

Threshold ATE (m)
THLOW THHIGH MH_01 KITTI 05

1.0 2.0 0.0522 -
1.0 1.5 0.0488 -
2.0 3.0 0.6288 12.6084

Table 5.1: Absolute Trajectory Error for different matching thresholds in KITTI and Eu-
RoC datasets. In EuRoC MH_01 sequence, the error is completely different for different
thresholds, where the best thresholds are THLOW = 1.0 and THHIGH = 1.5. Furthermore,
in KITTI 05 sequence, the algorithm could track the camera pose only with THLOW = 2.0
and THHIGH = 3.0. The 2D trajectories for these results are illustrated in figure 5.8.

After estimating the pose with the constant velocity model, we search map point

correspondences by projecting the map points from the last frame into the current frame.

If the number of outliers approaches the number of map points, the number of matches gets

too small and, consequently, the tracking is lost. We use this fact to create our adaptive

method. It changes the thresholds values based on the distance from the number of map

points and the number of outliers. The adaptive method is performed with algorithm 1.

Figure 5.9 depicts the variation of the threshold based on the number of map points used

to match and the number of outliers after performing the matching.

In algorithm 1, we define the following parameters empirically. reference is defined

as 70% of the number of map points. Ideally, if we keep the number of outliers equal to

this value, the thresholds are not updated. The α constant controls the thresholds curves’

smoothness, which means that the rate at which the threshold’s value changes depends

on this parameter. The minThreshold and maxThreshold parameters create a boundary

for the threshold values and are set to 1 and 10, respectively. Therefore, in this version,

we use this adaptive method to update the matching thresholds while performing VO, we

name this version as Adaptive LIFT-SLAM.

50

(a) Comparison of LIFT-SLAM performance with different matching threholds in KITTI 05

sequence.

(b) Comparison of LIFT-SLAM performance with different matching threholds in EuRoC
MH_01 sequence.

Figure 5.8: The problem in matching thresholds, for different thresholds the performance
of LIFT-SLAM is completely different on the same sequences. Moreover, the most suitable
thresholds for the KITTI sequence (figure 5.8a) are THLOW = 2.0 and THHIGH = 3.0.
However, for the EuRoC sequence 5.8b, the best thresholds are THLOW = 1.0 and
THHIGH = 1.5.

51

Algorithm 1: Update the thresholds

Input: Number of map points (nMapPoints) and number of outliers (nOutliers)
Output: Updated Thresholds
reference← 0.7 ∗ nMapPoints;
distance← nOutliers− reference;
α← 0.005;
if (distance > 0 and THHIGH < maxThreshold)
or (distance < 0 and THLOW > minThreshold) then

THHIGH ← THHIGH + α ∗ distance;
THLOW ← THLOW + α ∗ distance;

end

Figure 5.9: Thresholds variation based on the number of map points used to match and
the number of outliers after performing the matching. The thresholds values decrease as
the number of outliers reduce.

5.3 Final Considerations

This chapter presented a brief qualitative analysis we made to chose our feature descriptor.

This analysis showed that LIFT is more robust than ORB under different scenarios.

Later, we describe in section 5.1 the pipeline of LIFT-SLAM. Then, in section 5.2, we

proposed some versions of LIFT-SLAM to improve the algorithm’s performance. The

fine-tuned LIFT-SLAM (section 5.2.1) uses a version of the LIFT network fine-tuned with

VO/VSLAM datasets. The adaptive LIFT-SLAM (section 5.2.2), in its turn, changes the

matching thresholds during the algorithm’s execution based on the number of outliers

and the number of map points.

52

Chapter 6

Results

In this chapter, we show how we performed our experiments and collected the results of

the algorithms. We also present discussions about these results.

We evaluate the robustness of our algorithm in different environments and situations

using KITTI and EuRoC datasets, as described in chapter 4. For each sequence, we

generate a quantitative and qualitative comparison between the trajectories estimated

with VSLAM algorithms and the ground-truth data. The quantitative evaluation is based

on the metrics presented in chapter 4. Results in KITTI sequences are evaluated based

on Relative Pose Error (RPE) and Absolute Trajectory Error (ATE), while ATE only

assesses the estimates on EuRoC sequences. The ORB-SLAM’s results shown here were

computed by our executions since, in ORB-SLAM’s paper, an evaluation with RPE is not

presented. Moreover, they do not provide results in the EuRoC dataset. Furthermore,

we present qualitative comparisons showing a 2-D plot of the trajectories. None of the

algorithms presented here could estimate odometry in sequence KITTI 01. Therefore, we

do not show the results for this case.

Each of the following sections presents a version of LIFT-SLAM, with all possi-

ble combinations: LIFT-SLAM, LIFT-SLAM fine-tuned with KITTI sequences, LIFT-

SLAM fine-tuned with EuRoC sequences, Adaptive LIFT-SLAM, Adaptive LIFT-SLAM

fine-tuned with KITTI sequences, and Adaptive LIFT-SLAM fine-tuned with EuRoC se-

quences. Moreover, in sequences where the algorithm is not capable of tracking at least

50% of the camera poses we fill the table with a "-." Furthermore, we avoid comparing

results in which the sequence was used to fine-tune the network: KITTI sequences 00,

06, 09, and 10, or EuRoC sequences MH_04, V1_03, and V2_03. For the algorithms

that are not adaptive, we set the values of THLOW = 2 and THHIGH = 3 for KITTI

sequences, and THLOW = 1 and THHIGH = 2 for EuRoC sequences. We also generate a

visual vocabulary for each version of LIFT.

Due to the algorithms’ stochastic nature, all of the quantitative metrics are an aver-

age of 5 executions. Moreover, we run a statistical paired t-test to evaluate with 95%

confidence if the quantitative differences between the two algorithms are significant. We

fill the paired t-test tables as following:

• "+": if the proposed algorithm has improved the performance in the given metric

with statistical significance;

53

• "-": if the proposed algorithm has decreased the performance in the given metric

with statistical significance;

• "=": if the proposed algorithm has the same performance in the given metric.

6.1 LIFT-SLAM

First, we compare the results of LIFT-SLAM (without any fine-tuning in the dataset)

with ORB-SLAM. Table 6.1 shows the quantitative results of these approaches for the

KITTI dataset. Both algorithms could not complete the sequence 02. Our approach has

reduced the average error in at least one metric in all of the sequences. Paired t-test also

shows that we have improved ORB-SLAM’s results with statistical significance in most

of the sequences.

Qualitative results also shows that LIFT-SLAM performed better, specially in smaller

sequences, such as 03 (figure 6.1b), 04 (figure 6.1c) and 06 (figure 6.1e). On the other

side, in sequence 00, LIFT-SLAM lost track of the pose multiple times whereas ORB-

SLAM did not lose track of the pose (figure 6.1a), and although it was capable to perform

relocalization, the pose was not accurately estimated.

In some sequences, LIFT-SLAM was capable of closing loops where ORB-SLAM did

not, as shown in figures 6.1d (sequence 05), 6.1e (sequence 06), and 6.1f (sequence 07).

However, in sequence 08, both algorithms could not close the loop. This sequence is very

large, thus, as the drift accumulates over time, if the loop is not found the drift can not

be not corrected.

ORB-SLAM LIFT-SLAM paired t-test
Seq. RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)
00 4.4649 3.2783 11.5437 6.7059 2.1979 18.767 - + -
02 - - - - - - - - -
03 9.7559 2.7803 15.1319 0.8748 0.3419 1.1046 + + +
04 3.7082 2.1542 4.2917 2.1023 0.6475 0.3969 + + +
05 3.3486 3.569 7.7451 4.4642 2.5784 8.0865 = = =
06 8.1155 2.8829 20.2568 7.7577 2.4952 18.4675 = = =
07 7.4283 3.5759 13.4714 2.5092 3.5973 4.0343 + = +
08 12.1617 3.0528 39.5121 27.6288 2.1047 80.9727 - + -
09 26.5071 11.1348 49.6687 20.6534 2.1185 59.8848 = = =
10 8.6547 3.6241 19.9418 10.0807 2.2551 31.8443 = + -

Table 6.1: Comparison of results between ORB-SLAM (our execution) and LIFT-SLAM
in KITTI Dataset, the smaller average errors are highlighted. The paired t-test shows if
LIFT-SLAM has improved the performance of ORB-SLAM with statistical significance.

In EuRoC sequences, ORB-SLAM has a smaller ATE average in all sequences, as

shown in table 6.2. In a qualitative analysis, LIFT-SLAM has performed well in the

easiest sequences, as illustrated in figures 6.2a and 6.2b. However, it lost track easily and

could not estimate motion in sequence MH_03 (figure 6.2c). Moreover, it could not even

track the pose in MH_04, and in V 1 and V 2 sequences. Hence, we tried to improve the

performance of the algorithm by fine-tuning the LIFT network with specific VO datasets,

as explained in chapter 5.

54

(a) KITTI 00 (b) KITTI 03

(c) KITTI 04 (d) KITTI 05

(e) KITTI 06 (f) KITTI 07

(g) KITTI 08 (h) KITTI 09

(i) KITTI 10

Figure 6.1: 2D trajectories comparison between LIFT-SLAM, ORB-SLAM and ground-
truth in KITTI Dataset.

55

ORB-SLAM LIFT-SLAM paired t-test
Seq. ATE (m) ATE (m) ATE (m)

MH_01 0.0481 0.0620 =
MH_02 0.0369 0.2270 =
MH_03 0.0404 0.1445 =
MH_04 0.4318 - -
V1_01 0.0998 - -
V1_03 0.3703 - -
V2_03 0.2499 - -

Table 6.2: Comparison of results between ORB-SLAM and LIFT-SLAM in EuRoC
Dataset.

(a) EuRoC MH_01 (b) EuRoC MH_02

(c) EuRoC MH_03

Figure 6.2: 2D trajectories comparison between LIFT-SLAM, ORB-SLAM and ground-
truth in EuRoC Dataset.

6.2 LIFT-SLAM fine-tuned with KITTI sequences

The first fine-tuning we performed was using KITTI sequences. The quantitative results

of LIFT-SLAM fine-tuned with KITTI sequences are presented in tables 6.3 (KITTI

dataset) and 6.4 (EuRoC dataset). As we are looking for improvements in LIFT-SLAM,

we compare the results of the fine-tuned networks with it. To avoid showing biased results,

we do not evaluate the results of this algorithm in the sequences it was fine-tuned. The

algorithm was now capable of tracking pose in a considerable part of the sequence 02.

However, it still could not complete the entire sequence, as shown in figure 6.3a.

56

LIFT-SLAM Fine-tuned with KITTI paired t-test
Seq. RPEtrans (%) RPErot (%) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)
02 8.7997 2.1088 29.8347 - - -
03 1.3165 0.3420 1.9082 - = -
04 2.1633 0.5167 0.3622 = + =
05 5.0190 2.4299 12.4703 = = -
07 1.7974 2.6684 2.5431 = = =
08 48.8964 2.1098 188.5068 - = -

Table 6.3: Results of LIFT-SLAM fine-tuned with KITTI sequences in KITTI dataset.
We highlight results in which this algorithm has a smaller average error than LIFT-SLAM.
The paired t-test shows if LIFT-SLAM fine-tuned with KITTI sequences has improved
the performance of LIFT-SLAM with statistical significance.

(a) KITTI 02 (b) KITTI 03

(c) KITTI 04 (d) KITTI 05

(e) KITTI 07 (f) KITTI 08

Figure 6.3: 2D trajectories comparison between LIFT-SLAM fine-tuned with KITTI se-
quences and ground-truth in KITTI Dataset.

The performance of the algorithm remains the same in most cases in the KITTI

dataset. However, in the EuRoC dataset, the average ATE has decreased, as shown

in table 6.4. In a qualitative analysis, it is possible to notice in figure 6.4 that the

algorithm is now more robust to the challenging movements performed in EuRoC dataset.

Therefore, even that we use KITTI sequences to fine-tune the network, we could improve

57

the algorithm’s performance in a completely different dataset. This result shows that with

transfer learning, LIFT could learn features that are important in VO tasks. Despite this

improvement, the algorithm is still not able to perform VO in sequences V 1_03 and

V 2_03.

LIFT-SLAM Fine-tuned with KITTI paired t-test
Seq. ATE (m) ATE (m)

MH_01 0.1146 =
MH_02 0.0421 =
MH_03 0.0552 =
MH_04 0.1170 -
V1_01 0.1169 -
V1_03 - -
V2_03 - -

Table 6.4: Results of LIFT-SLAM fine-tuned with KITTI sequences in EuRoC dataset.

(a) EuRoC MH_01 (b) EuRoC MH_02

(c) EuRoC MH_03 (d) EuRoC MH_04

(e) EuRoC V1_01

Figure 6.4: 2D trajectories comparison between LIFT-SLAM fine-tuned with KITTI se-
quences and ground-truth in EuRoC Dataset.

58

6.3 LIFT-SLAM fine-tuned with EuRoC sequences

EuRoC sequences contain much more rotations and acceleration than the KITTI dataset.

We tried to take advantage of this fact to fine-tune the network with these sequences.

Table 6.5 shows the quantitative results of this algorithm in the KITTI dataset. We

compare the results of this approach with LIFT-SLAM. We can see that LIFT-SLAM

fine-tuned with EuRoC improved results of LIFT-SLAM in some sequences. Therefore,

as the algorithm’s performance has improved in both datasets, we can affirm that the

transfer learning allowed the network to learn important features for VO. Furthermore,

qualitative results in the sequence 00 (figure 6.5a) show that the algorithm is losing fewer

frames than it was before.

LIFT-SLAM Fine-tuned with EuRoC paired t-test

Seq. RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)

00 3.4918 2.6289 9.8368 + - +

02 9.8424 2.1050 34.2339 - - -

03 0.8579 0.4624 0.9746 = - =

04 2.2200 0.5014 0.4229 - + =

05 5.3541 1.9126 11.5047 = = =

06 7.0473 2.3560 16.5814 + + +

07 2.6048 3.6421 3.9835 = = =

08 28.9926 1.9548 82.6137 = = =

09 19.1622 2.0792 54.9154 = = =

10 9.809 2.2044 30.3435 = = =

Table 6.5: Results of LIFT-SLAM fine-tuned with EuRoC sequences in KITTI dataset.
We highlight results in which this algorithm has a smaller average error than LIFT-SLAM.
The paired t-test shows if LIFT-SLAM fine-tuned with EuRoC sequences has improved
the performance of LIFT-SLAM with statistical significance.

Table 6.6 shows the results of the algorithm in EuRoC sequences. As aforementioned,

we do not evaluate the results of this algorithm in the sequences it was fine-tuned. In

general, LIFT-SLAM fine-tuned with EuRoC sequences has presented a smaller average

error than LIFT-SLAM. Qualitative results in figure 6.6 shows that, in comparison with

LIFT-SLAM, the algorithm performed better for more challenging sequences, as it loses

track of the pose less often.

LIFT-SLAM Fine-tuned with EuRoC paired t-test
Seq. ATE (m) ATE (m)

MH_01 0.1170 =
MH_02 0.0621 =
MH_03 0.0528 =
V1_01 0.1499 =

Table 6.6: Results of LIFT-SLAM fine-tuned with EuRoC sequences in EuRoC Dataset.

59

(a) KITTI 00 (b) KITTI 02

(c) KITTI 03 (d) KITTI 04

(e) KITTI 05 (f) KITTI 06

(g) KITTI 07 (h) KITTI 08

(i) KITTI 09 (j) KITTI 10

Figure 6.5: 2D trajectories comparison between LIFT-SLAM fine-tuned with EuRoC
sequences and ground-truth in KITTI Dataset.

60

(a) EuRoC MH_01 (b) EuRoC MH_02

(c) EuRoC MH_03 (d) EuRoC V1_01

Figure 6.6: 2D trajectories comparison between LIFT-SLAM fine-tuned with EuRoC
sequences and ground-truth in EuRoC Dataset.

6.4 Adaptive LIFT-SLAM

Another version of LIFT-SLAM we created is Adaptive LIFT-SLAM, as described in chap-

ter 5. In this version, we change the matching thresholds while performing VO/VSLAM.

We compare the results of this version with LIFT-SLAM. Table 6.7 shows the quantitative

results of this algorithm. We can notice that this approach has improved the results in

most sequences. Furthermore, in qualitative results in KITTI dataset (Figure 6.7), we

can see that this algorithm is capable of tracking the pose in a considerable part of the

sequence 02.

Adaptive LIFT-SLAM paired t-test

Seq. RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)

00 2.6445 4.9554 13.6972 + = -

02 11.5396 2.2221 40.3285 - - -

03 0.7825 0.3788 0.8435 = = +

04 2.2185 0.5973 0.4760 - = =

05 5.4926 2.9657 10.8523 = = =

06 7.5031 2.4211 17.8257 = + =

07 2.6724 3.4200 4.0863 = = =

08 28.4933 2.0484 81.6931 = = =

09 19.2791 2.1731 57.7414 + - +

10 4.9604 1.5718 10.5114 + + +

Table 6.7: Results of Adaptive LIFT-SLAM in KITTI dataset. We highlight results in
which this algorithm has a smaller average error than LIFT-SLAM. The paired t-test shows
if Adaptive LIFT-SLAM has improved the performance of LIFT-SLAM with statistical
significance.

61

(a) KITTI 00 (b) KITTI 02

(c) KITTI 03 (d) KITTI 04

(e) KITTI 05 (f) KITTI 06

(g) KITTI 07 (h) KITTI 08

(i) KITTI 09 (j) KITTI 10

Figure 6.7: 2D trajectories comparison between Adaptive LIFT-SLAM and ground-truth
in KITTI Dataset.

62

In EuRoC sequences, this algorithm could reduce the average error for easy sequences

(MH_01, MH_02, and V1_01), as shown in table 6.8. However, the algorithm could

not track the pose for the other sequences. The qualitative results for this algorithm in

the EuRoC dataset are shown in table 6.8. Then, we decided to combine the adaptive

approach with the fine-tuned networks.

Adaptive LIFT-SLAM paired t-test
Seq. ATE (m) ATE (m)

MH_01 0.0465 =
MH_02 0.0343 =
MH_03 - -
MH_04 - -
V1_01 0.1006 =
V1_03 - -
V2_03 - -

Table 6.8: Results of Adaptive LIFT-SLAM in EuRoC dataset.

(a) EuRoC MH_01 (b) EuRoC MH_02

(c) EuRoC V1_01

Figure 6.8: 2D trajectories comparison between Adaptive LIFT-SLAM and ground-truth
in EuRoC Dataset.

6.5 Adaptive LIFT-SLAM fine-tuned with KITTI se-

quences

In this approach, we combine the adaptive method with LIFT-SLAM fine-tuned with

KITTI sequences. Therefore, we compare this algorithm with the LIFT-SLAM fine-tuned

with KITTI sequences to check the improvements caused by this algorithm’s adaptive

method. Table 6.9 shows the quantitative results of this approach in the KITTI dataset.

63

We can see that in general, the results of this approach and LIFT-SLAM fine-tuned with

KITTI dataset are statistically the same. The qualitative results for this approach are

shown in figure 6.9. In these results, we can see that this approach could track the entire

sequence of 02 (figure 6.9a), as opposed to previous approaches.

Adaptive LIFT-SLAM Fine-tuned with KITTI paired t-test
Seq. RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)
02 9.5702 2.4325 48.0893 = = =
03 1.2929 0.3375 1.9095 = = =
04 2.1190 0.5727 0.4237 = = =
05 4.6392 2.9258 10.3497 = = =
07 2.6377 3.5143 4.1007 = = =
08 47.1989 1.9999 185.147 = + =

Table 6.9: Results of Adaptive LIFT-SLAM fine-tuned with KITTI sequences in KITTI
dataset. We highlight results in which this algorithm has a smaller average error than
LIFT-SLAM fine-tuned with KITTI sequences. The paired t-test shows if Adaptive LIFT-
SLAM fine-tuned with KITTI sequences has improved the performance of LIFT-SLAM
fine-tuned with KITTI sequences.

(a) KITTI 02 (b) KITTI 03

(c) KITTI 04 (d) KITTI 05

(e) KITTI 07 (f) KITTI 08

Figure 6.9: 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
KITTI sequences and ground-truth in KITTI Dataset.

64

Moreover, table 6.10 shows the quantitative results for this approach in EuRoC dataset.

This approach did not lead to any improvements in this dataset. Furthermore, it could

not track the camera pose in four sequences. Qualitative results are shown in figure 6.10.

Adaptive LIFT-SLAM Fine-tuned with KITTI paired t-test
Seq. ATE (m) ATE (m)

MH_01 0.455 =
MH_02 - -
MH_03 0.1162 =
MH_04 - -
V1_01 0.1939 =
V1_03 - -
V2_03 - -

Table 6.10: Results of Adaptive LIFT-SLAM fine-tuned with KITTI sequences in EuRoC
dataset.

(a) EuRoC MH_01 (b) EuRoC MH_03

(c) EuRoC V1_01

Figure 6.10: 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
KITTI sequences and ground-truth in EuRoC Dataset.

6.6 Adaptive LIFT-SLAM fine-tuned with EuRoC se-

quences

Lastly, we apply the adaptive method in LIFT-SLAM fine-tuned with EuRoC sequences.

Table 6.11 shows the quantitative results of this algorithm in KITTI sequences. This

algorithm has a similar performance compared with LIFT-SLAM fine-tuned with EuRoC

sequences. This means that adding the adaptive method into our algorithm did not affect

its performance. This can be an advantage since the adaptive method solves the problem

mentioned in chapter 5, where the matching thresholds have to be set every time we need

to execute the algorithm in another dataset.

65

Qualitative results also show a great advantage in using this method, it can track

camera pose without getting lost in sequences where the other versions of LIFT-SLAM

where lost: sequences 00 (figure 6.11a) and 02 (figure 6.11b). However, as in the other

algorithms, Adaptive LIFT-SLAM fine-tuned with EuRoC has its worse performance in

the sequence 08.

Adaptive LIFT-SLAM Fine-tuned with EuRoC paired t-test
Seq. RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)
00 3.1826 2.9918 8.0572 = - =
02 8.7287 2.4858 40.0375 = = =
03 1.4576 0.3452 2.2348 - + -
04 2.2204 0.4834 0.5102 = = =
05 6.0932 3.1084 13.5476 = = =
06 12.2425 2.9118 30.3805 = = =
07 2.416 4.0226 3.6308 = = =
08 47.0996 2.0244 184.4345 - - -
09 19.9073 2.1406 59.6246 = - =
10 9.7188 2.2391 29.8671 = = =

Table 6.11: Results of Adaptive LIFT-SLAM fine-tuned with EuRoC sequences in KITTI
dataset. We highlight results in which this algorithm has a smaller average error than
LIFT-SLAM fine-tuned with EuRoC sequences.

Table 6.12 shows the quantitative results of this approach in EuRoC dataset. The

average error is smaller than LIFT-SLAM fine-tuned with EuRoC sequences in three

sequences, which shows that the adaptive method was capable of improving this approach.

The trajectories for EuRoC sequences are shown in figure 6.12.

Adaptive LIFT-SLAM Fine-tuned with EuRoC paired t-test
Seq. ATE (m) ATE (m)

MH_01 0.0443 =
MH_02 0.0529 =
MH_03 0.0487 =
V1_01 0.1567 =

Table 6.12: Results of Adaptive LIFT-SLAM fine-tuned with EuRoC sequences in EuRoC
dataset.

66

(a) KITTI 00 (b) KITTI 02

(c) KITTI 03 (d) KITTI 04

(e) KITTI 05 (f) KITTI 06

(g) KITTI 07 (h) KITTI 08

(i) KITTI 09 (j) KITTI 10

Figure 6.11: 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
EuRoC sequences and ground-truth in KITTI Dataset.

67

(a) EuRoC MH_01 (b) EuRoC MH_02

(c) EuRoC MH_03 (d) EuRoC V1_01

Figure 6.12: 2D trajectories comparison between Adaptive LIFT-SLAM fine-tuned with
EuRoC sequences and ground-truth in EuRoC Dataset.

6.7 Robustness tests

In order to test the robustness of our system to camera sensor noise, we create differ-

ent image distortion in KITTI sequence 03 simulating camera under and overexposure.

These scenarios were emulated with the application of gamma power transformation and

quantile-based truncation, as proposed in [77]. More details about these operations are

described next:

• Gamma power transformation: as explained in chapter 5, this transformation creates

a new image by applying a non-linear operation. We used four values of γ: 0.25,

0.5, 2 and 4. Values of γ < 1 results in data loss for bright regions emulating

camera overexposing and γ > 1 results data loss for dark regions emulating camera

underexposing [77];

• Quantile-based truncation: We have truncated the first (Q1) and third (Q3) quan-

tiles of the pixels’ intensities distribution to reproduce the effects of low dynamic

range imaging sensors. When truncating pixels in Q1, we emulate sensor underex-

posing, and in Q3, we emulate sensor overexposing.

As Adaptive LIFT-SLAM fine-tuned with EuRoC sequences obtained the best overall

results, we tested this algorithm under the described scenarios and compared its perfor-

mance with ORB-SLAM under the same scenarios. The results of these tests are shown

in table 6.13.

68

Sequence Distortion ORB-SLAM LIFT-SLAM
RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m)

no distortion 9.75 2.78 15.13 1.46 0.34 2.23
γ = 0.25 7.68 1.95 11.72 1.02 0.40 1.23
γ = 0.5 8.25 2.24 11.38 1.28 0.36 1.74

KITTI 03 γ = 2 X X X 1.07 0.51 1.47
γ = 4 X X X 2.82 0.70 5.23

Truncation in Q1 8.34 1.41 13.63 1.36 0.45 2.07
Truncation in Q3 9.78 2.23 15.66 1.10 0.46 1.27

no distortion 8.11 2.88 20.26 12.24 2.91 30.38
γ = 0.25 8.97 2.11 21.85 7.94 2.22 19.07
γ = 0.5 9.55 2.16 24.11 7.61 2.27 18.19

KITTI 06 γ = 2 11.69 4.50 27.24 6.91 2.30 16.22
γ = 4 11.12 5.71 28.10 8.29 2.68 18.60

Truncation in Q1 15.01 4.69 36.52 6.44 2.36 15.09
Truncation in Q3 X X X 8.09 2.29 19.33

no distortion 7.43 3.58 13.47 2.42 4.02 3.63
γ = 0.25 7.61 2.42 12.54 2.09 3.17 3.30
γ = 0.5 6.37 2.02 9.58 1.99 3.88 2.86

KITTI 07 γ = 2 5.89 2.11 9.36 3.43 4.32 5.91
γ = 4 6.61 7.06 7.84 8.03 7.40 16.13

Truncation in Q1 8.50 2.47 10.69 2.45 4.10 3.58
Truncation in Q3 7.01 2.40 7.08 2.69 3.77 4.49

no distortion 8.65 3.62 19.94 9.72 2.24 29.87
γ = 0.25 13.52 3.01 26.56 10.72 2.15 30.77
γ = 0.5 12.40 3.95 25.55 10.03 2.24 31.93

KITTI 10 γ = 2 16.88 4.59 28.07 X X X
γ = 4 X X X X X X

Truncation in Q1 20.79 2.95 34.79 X X X
Truncation in Q3 X X X X X X

no distortion - - 0.037 - - 0.053
γ = 0.25 - - 0.055 - - 0.035
γ = 0.5 - - 0.040 - - 0.039

Euroc MH_02 γ = 2 - - 0.061 - - 0.037
γ = 4 - - 0.010 - - 0.194

Truncation in Q1 - - 0.039 - - 0.043
Truncation in Q3 - - 0.043 - - X

Table 6.13: Results of the robustness tests. The LIFT-SLAM version used in these tests is
the adaptive fine-tuned with Euroc sequences. We fill with "X" the sequences unavailable
due to tracking failure and with "-" the sequences we do not execute the algorithms.

The results presented in table 6.13 show that ORB-SLAM could not track the pose of

the camera with some distortion in sequences KITTI 03, 06, and 10, while LIFT-SLAM

failed in some cases for sequences KITTI 10 and Euroc MH_02. However, we can notice

that in most of the sequences, LIFT-SLAM improved its performance when we applied

the distortions. This fact occurs because the distortions remove some outliers from the

images, which allows the algorithms to select better keypoints. Moreover, the learned

features are more robust to ill exposure as the datasets used to fine-tune the network

naturally contain varying illumination.

Figure 6.13 shows the comparison of the trajectories performed by the algorithms with

each distortion in KITTI and Euroc sequences. In sequences KITTI 03 and KITTI 06,

LIFT-SLAM’s trajectories were not much affected by distortions (figures 6.13b and 6.13d).

On the other hand, ORB-SLAM trajectories are worse, especially in sequence KITTI 06

(figure 6.13c). Furthermore, the trajectories of both algorithms were more affected in

KITTI 07 (figures 6.13e and 6.13f), were ORB-SLAM could not track a considerable part

of the trajectory. In MH_02, both algorithms’ trajectories were less affected, but they

lost track of the pose and relocalized in some parts of the sequence.

69

(a) ORB-SLAM in KITTI 03 (b) LIFT-SLAM in KITTI 03

(c) ORB-SLAM in KITTI 06 (d) LIFT-SLAM in KITTI 06

(e) ORB-SLAM in KITTI 07 (f) LIFT-SLAM in KITTI 07

(g) ORB-SLAM in KITTI 10 (h) LIFT-SLAM in KITTI 10

(i) ORB-SLAM in Euroc MH_02 (j) LIFT-SLAM in Euroc MH_02

Figure 6.13: Comparison of the 2D trajectories performed by the algorithms with and
without distortions.

70

6.8 Discussion and comparison with literature

The results obtained have shown that LIFT is capable of improving a typical VO/VSLAM

algorithm. Moreover, transfer learning proved to be a crucial process in our system

since it improved our algorithms in different VO/VSLAM problems. Furthermore, in

general, the adaptive versions of LIFT-SLAM loses track of the trajectories less often

than the other versions. The main drawback of our system is that good performance in

large environments depends on loop closure detection. If a loop is not recognized, the

error increases indefinitely since the drift accumulation is not corrected with pose graph

optimization, as in sequences 08 and 09.

Considering the quantitative and qualitative results of all LIFT-SLAM versions, Adap-

tive LIFT-SLAM fine-tuned with EuRoC sequences is the one with better overall results.

Therefore, we chose this version of LIFT-SLAM to make a comparison with some other

results available in the literature. We provide in table 6.14 the comparison with other al-

gorithms in KITTI dataset, we chose different types of monocular VO/VSLAM algorithms

to compare with LIFT-SLAM: traditional methods, hybrid deep learning-based methods

and end-to-end methods. Unfortunately, there are not many monocular algorithms that

evaluate EuRoC available in the literature.

Algorithm Type Metric 00 01 02 03 04 05 06 07 08 09 10
ATE (m) 8.06 X 40.04 2.23 0.51 13.55 30.38 3.63 184.43 59.62 29.87

LIFT-SLAM Hybrid RPEtrans (%) 3.18 X 8.73 1.46 2.22 6.09 12.24 2.42 47.10 19.91 9.72
RPErot (deg/m) 2.99 X 2.49 0.34 0.48 3.11 2.91 4.02 2.02 2.14 2.24

ATE (m) 11.54 X X 15.13 4.29 7.74 20.26 13.47 39.51 49.67 19.94
ORB-SLAM* Traditional RPEtrans (%) 4.46 X X 9.75 3.71 3.35 8.11 7.43 12.16 26.51 8.65

RPErot (deg/m) 3.28 X X 2.78 2.15 3.57 2.88 3.58 3.05 11.13 3.62
ATE (m) 5.33 X 21.28 1.51 1.62 4.85 12.34 2.26 46.68 6.62 8.80

ORB-SLAM [59] Traditional RPEtrans (%) - - - - - - - - - - -
RPErot (deg/m) - - - - - - - - - - -

ATE (m) - - - - - - - - - - -
DeepVO [87]** End-to-end RPEtrans (%) - - - 8.49 7.19 2.62 5.42 3.91 - - 8.11

RPErot (deg/m) - - - 6.89 6.97 3.61 5.82 4.60 - - 8.83
ATE (m) - - - - - - - - - - -

NeuralBundler [48] Hybrid RPEtrans (%) 3.24 - 4.85 - - 1.83 2.74 3.53 - 6.23 -
RPErot (deg/m) 1.35 - 1.60 - - 0.7 2.6 2.02 - 2.11 -

ATE (m) - - - - - - - - - - -
UnDeepVO [47]** End-to-end RPEtrans (%) 4.14 - 5.58 - - 3.40 - 3.15 4.08 - -

RPErot (deg/m) 1.92 - 2.44 - - 1.50 - 2.48 1.79 - -

* Our executions.
** Only VO.

Table 6.14: Comparison of LIFT-SLAM with results from monocular VO/VSLAM algo-
rithms available in the literature. We fill with "X" results that are unavailable due to
tracking failure and with "-" results that were not given by the authors.

Although the presented papers do not present results for all sequences with all met-

rics, table 6.14 shows that, in general, the hybrid methods (Ours and Neural Bundler

[48]) achieved better performance than traditional and end-to-end methods. This fact

shows that the use of DNNs combined with traditional back-end methods improves the

performance of VSLAM algorithms.

71

Chapter 7

Conclusion and Future Work

In this work, we successfully apply a deep neural network called LIFT in the front-

end of a traditional visual SLAM algorithm. This approach showed that it is possible

to combine deep neural networks with conventional VO/VSLAM pipelines. Moreover,

this combination can improve the performance of VSLAM algorithms, which proves our

hypothesis H1 (presented in Chapter 1).

We also showed that we could employ transfer learning to fine-tune feature descrip-

tion networks with VO/VSLAM datasets to improve the system’s performance on cross-

datasets. Moreover, we created a method to adapt the matching thresholds while execut-

ing the VO pipeline, depending on the number of outliers found. All of these methods

allowed us to evaluate five LIFT-SLAM variations: LIFT-SLAM fine-tuned with KITTI

sequences, LIFT-SLAM fine-tuned with EuRoC sequences, Adaptive LIFT-SLAM, Adap-

tive LIFT-SLAM fine-tuned with KITTI sequences and Adaptive LIFT-SLAM fine-tuned

with EuRoC sequences.

The proposed hybrid system can operate in different environments (indoors and out-

doors), which proves our hypothesis H2. Furthermore, the algorithm improves its results

with an artificial distortion applied to the images (gamma power transformation and

quantile-based truncation). This fact showed us that a selection of the learned features

could improve the performance of the algorithm. However, it still has some drawbacks. It

is based on a constant velocity model, and therefore it assumes that the motion between

two frames is smooth. This assumption can lead us to a significant drift accumulation

if the environment is large and without loops or if the camera’s acceleration is too big.

Moreover, this system is not real-time, as the LIFT network cannot execute a feed-forward

in the same frequency as a usual camera.

For future work, we intend to create an end-to-end method by training a neural network

that learns the VO motion estimation, which means that it reads the feature descriptors

and outputs a pose. We can also explore in future works a way of training jointly the

full pipeline; in this way, the feature extraction step can be optimized directly from VO

data. However, to do this, unsupervised or self-supervised approaches need to be explored

since VO/VSLAM datasets are still not large enough to outperform traditional systems.

The absence of data could be approached by following recent research that builds large

datasets on photo-realistic simulated scenarios, like Microsoft Airsim [73], fine-tuning the

resulted model in real-world scenes.

72

We also plan to create hybrid feature descriptors (e.g., LIFT+ORB) to leverage each

descriptor’s best characteristics in different scenarios. Moreover, an attention-based mech-

anism can be used to perform feature selection to avoid outliers and improve the algo-

rithm’s performance.

73

Bibliography

[1] H. Aanæs, A.L. Dahl, and K. Steenstrup Pedersen. Interesting interest points. In-

ternational Journal of Computer Vision, 97:18–35, 2012.

[2] Mohammad O. A. Aqel, Mohammad H. Marhaban, M. Iqbal Saripan, and Nap-

siah Bt. Ismail. Review of visual odometry: types, approaches, challenges,

and applications. Springer Plus, https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5084145/, 10 2016.

[3] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning

local feature descriptors with triplets and shallow convolutional neural networks.

In Proceedings of the British Machine Vision Conference (BMVC). BMVA Press,

September 2016.

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust

features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008. ISSN

1077-3142. doi: 10.1016/j.cviu.2007.09.014. URL https://doi.org/10.1016/j.

cviu.2007.09.014.

[5] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[6] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,

Sammy Omari, Markus W. Achtelik, and Roland Siegwart. The euroc mav datasets.

The International Journal of Robotics Research, 2016.

[7] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José

Neira, Ian D. Reid, and John J. Leonard. Past, present, and future of simultaneous

localization and mapping: Present, future, and the robust-perception age. IEEE

Transactions on Robotics, 32:1309–1332, 2016.

[8] Olivier Chapelle and Mingrui Wu. Gradient descent optimization of smoothed infor-

mation retrieval metrics. Information Retrieval, 13(3):216–235, June 2010. ISSN

1386-4564. doi: 10.1007/s10791-009-9110-3. URL https://doi.org/10.1007/

s10791-009-9110-3.

[9] Yang Cheng, Mark Maimone, and Larry Matthies. Visual odometry on the mars ex-

ploration rovers. IEEE International Conference on Systems, Man and Cybernetics,

2005.

74

[10] L. Contreras and W. Mayol-Cuevas. Towards cnn map representation and compres-

sion for camera relocalisation. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), pages 405–4057, 2018.

[11] I. Cvišić and I. Petrović. Stereo odometry based on careful feature selection and

tracking. In 2015 European Conference on Mobile Robots (ECMR), pages 1–6, 2015.

[12] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time single

camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29

(6):1052–1067, 2007.

[13] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza. Are we

ready for autonomous drone racing? the uzh-fpv drone racing dataset. In 2019

International Conference on Robotics and Automation (ICRA), pages 6713–6719,

2019.

[14] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Self-improving visual

odometry. CoRR, abs/1812.03245, 2018. URL http://arxiv.org/abs/1812.03245.

[15] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-

supervised interest point detection and description. In IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pages 337–349.

IEEE, 2018.

[16] Nigel Dias and Gustavo Laureano. Accurate stereo visual odometry based on keypoint

selection. In 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian

Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE),

pages 74–79, 10 2019. doi: 10.1109/LARS-SBR-WRE48964.2019.00021.

[17] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part

i. IEEE Robotics and Automation Magazine, 13:99–110, 2006.

[18] Luigi D’Alfonso, Antonio Grano, Pietro Muraca, and Paolo Pugliese. A polynomial

based slam algorithm for mobile robots using ultrasonic sensors - experimental results.

International Conference on Advanced Robotics (ICAR), 2013.

[19] Jakob Engel, Thomas Schops, and Daniel Cremers. Lsd-slam: Large-scale direct

monocular slam. European Conference on Computer Vision. Springer International

Publishing, pages 834–849, 2014.

[20] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. CoRR,

abs/1607.02565, 2016. URL http://arxiv.org/abs/1607.02565.

[21] Jakob Engel, Vladyslav Usenko, and Daniel Cremers. A photometrically calibrated

benchmark for monocular visual odometry. volume abs/1607.02555, 2016. URL

http://arxiv.org/abs/1607.02555.

[22] Jakob-Julian Engel. Large-Scale Direct SLAM and 3D Reconstruction in Real-Time.

PhD thesis, Fakultat fur Informatik, Der Technischen Universitat Munchen, 3 2017.

75

[23] Martín Abadi et. al. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. URL https://www.tensorflow.org/. Software available from ten-

sorflow.org.

[24] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazirbas,

Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.

Flownet: Learning optical flow with convolutional networks. IEEE International

Conference on Computer Vision (ICCV).

[25] Thomas Braunl Franco Hidalgo. Review of underwater slam techniques. International

Conference on Automation, Robotics and Applications (ICARA), 2015.

[26] Friedrich Fraundorfer and Davide Scaramuzza. Visual odometry part ii: Matching,

robustness, optimization, and applications. IEEE Robotics Automation Magazine,

2012.

[27] S. Selvakumar G. Nirmala, S. Geetha. Mobile robot localization and navigation in

artificial intelligence: Survey. Computational Methods in Social Sciences, 4:12–22,

2016.

[28] D. Galvez-López and J. D. Tardos. Bags of binary words for fast place recognition

in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, 2012.

[29] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

[30] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets

robotics: The kitti dataset. The international Journal of Robotics Research, 32(11):

1231–1237, 2013.

[31] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised monocu-

lar depth estimation with left-right consistency. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2017.

[32] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

[33] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Burgard. A tuto-

rial on graph-based slam. IEEE Intelligent Transportation Systems Magazine, pages

31–43, 2010.

[34] Michael Grupp. evo: Python package for the evaluation of odometry and slam.

https://github.com/MichaelGrupp/evo, 2017.

[35] Richard I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 19(6):580–593, 1997.

76

[36] Richard I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, 2004.

[37] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[38] Ganesh Iyer, J. Krishna Murthy, Gunshi Gupta, K. Madhava Krishna, and

Liam Paull. Geometric consistency for self-supervised end-to-end visual odome-

try. EEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2018.

[39] Rong Kang, Jieqi Shi, Xueming Li, Yang Liu, and Xiao Liu. DF-SLAM: A

deep-learning enhanced visual SLAM system based on deep local features. CoRR,

abs/1901.07223, 2019. URL http://arxiv.org/abs/1901.07223.

[40] Georg Klein and David Murray. Parallel tracking and mapping for small ar

workspaces. 6th IEEE and ACM International Symposium, pages 225–234, 2007.

[41] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the

perspective-three-point problem for a direct computation of absolute camera posi-

tion and orientation. In Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2969–2976, 2011.

[42] Kishore Konda and Roland Memisevic. Learning visual odometry with a convolu-

tional network. VISAPP, pages 486–490, 2015.

[43] Kudan. Different types of visual slam systems. https://www.kudan.eu/

kudan-news/different-types-visual-slam-systems, 2017.

[44] Rainer Kummerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Giorgio

Grisetti, Cyrill Stachniss, and Alexander Kleiner. On measuring the accuracy of

slam algorithms. Autonomous Robots, Springer, 27(387), 2009.

[45] Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys. Motion estimation for

self-driving cars with a generalized camera. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2013.

[46] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o(n)

solution to the pnp problem. International Journal of Computer Vision, 81, 02 2009.

doi: 10.1007/s11263-008-0152-6.

[47] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu. Undeepvo: Monocular

visual odometry through unsupervised deep learning. CoRR, abs/1709.06841, 2017.

URL http://arxiv.org/abs/1709.06841.

[48] Y. Li, Y. Ushiku, and T. Harada. Pose graph optimization for unsupervised monoc-

ular visual odometry. In 2019 International Conference on Robotics and Automation

(ICRA), pages 5439–5445, 2019.

77

[49] H. C. Longuet-Higgins. A Computer Algorithm for Reconstructing a Scene from Two

Projections, page 61–62. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1987. ISBN 0934613338.

[50] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision, 60(2):91–110, 2004. doi: 10.1023/B:

VISI.0000029664.99615.94.

[51] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J.

Milford. Visual place recognition: A survey. IEEE Transactions on Robotics, 32(1):

1–19, 2016.

[52] A.L. Majdik, C. Till, and D. Scaramuzza. The zurich urban micro aerial vehicle

dataset. The International Journal of Robotics Research, 2017.

[53] Harsh Menon, Aashik Ramachandrappa, and Jake Kesinger. 37-3: Invited paper:

Deep-learning based approaches to visual-inertial odometry for autonomous tracking

applications. SID Symposium Digest of Technical Papers, 10.1002/sdtp.12603:471–

474, 2018.

[54] missinglink.ai. Convolutional neural network tutorial: From basic to ad-

vanced. https://missinglink.ai/guides/convolutional-neural-networks/

convolutional-neural-network-tutorial-basic-advanced, 2020.

[55] Hans Moravec. Obstacle avoidance and navigation in the real world by a seeing robot

rover. PhD thesis, Carnegie-Mellon University, 9 1980.

[56] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. The event-

camera dataset and simulator: Event-based data for pose estimation, visual odome-

try, and slam. The International Journal of Robotics Research, 36:142–149, 2017.

[57] Raul Mur-Artal and Juan Tardos. Fast relocalisation and loop closing in keyframe-

based slam. IEEE International Conference on Robotics and Automation (ICRA),

pages 846–853, 06 2014. doi: 10.1109/ICRA.2014.6906953.

[58] Raul Mur-Artal and Juan Tardos. Orb-slam2: an open-source slam system for monoc-

ular, stereo and rgb-d cameras. IEEE Transactions on Robotics, PP, 10 2016. doi:

10.1109/TRO.2017.2705103.

[59] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-SLAM: a versatile and

accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163,

2015.

[60] Robin R. Murphy. Introduction to AI Robotics. The MIT Press, Cambridge, Mas-

sachusetts, 2000. ISBN 0262133830.

[61] Richard Newcombe, Steven J. Lovegrove, and Andrew J. Davison. Dtam: Dense

tracking and mapping in real-time. IEEE International Conference In Computer

Vision, pages 2320–2327, 2011.

78

[62] David Nistér. An efficient solution to the five-point relative pose problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(6):756–777, June

2004. ISSN 0162-8828. doi: 10.1109/TPAMI.2004.17. URL https://doi.org/

10.1109/TPAMI.2004.17.

[63] David Nistér and Henrik Stewenius. Scalable recognition with a vocabulary tree.

In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition - Volume 2, CVPR ’06, page 2161–2168, USA, 2006. IEEE

Computer Society. ISBN 0769525970. doi: 10.1109/CVPR.2006.264. URL https:

//doi.org/10.1109/CVPR.2006.264.

[64] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 1, 2004.

[65] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[66] Emilio Soria Olivas, Jose David Martin Guerrero, Marcelino Martinez Sober, Jose

Rafael Magdalena Benedito, and Antonio Jose Serrano Lopez. Handbook Of Research

On Machine Learning Applications and Trends: Algorithms, Methods and Techniques

- 2 Volumes. Information Science Reference - Imprint of: IGI Publishing, Hershey,

PA, 2009.

[67] Emilio Parisotto, Devendra Singh Chaplot, Jian Zhang, and Ruslan Salakhutdinov.

Global pose estimation with an attention-based recurrent network. IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages

350–359, 2018.

[68] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient

alternative to sift or surf. In Proceedings of the 2011 International Conference on

Computer Vision, ICCV ’11, page 2564–2571, USA, 2011. IEEE Computer Society.

ISBN 9781457711015. doi: 10.1109/ICCV.2011.6126544. URL https://doi.org/

10.1109/ICCV.2011.6126544.

[69] Muhamad Risqi U. Saputra, Andrew Markham, and Niki Trigoni. Visual slam and

structure from motion in dynamic environments: A survey. ACM Computing Surveys,

51:37–73, 2018.

[70] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.

Superglue: Learning feature matching with graph neural networks. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 4938–4947,

2020.

[71] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry part i: The first 30

years and fundamentals. IEEE Robotics and Automation Magazine, 2011.

[72] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stueckler, and D. Cremers. The

tum vi benchmark for evaluating visual-inertial odometry. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2018.

79

[73] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-

fidelity visual and physical simulation for autonomous vehicles. In Field and Service

Robotics, 2017. URL https://arxiv.org/abs/1705.05065.

[74] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile

Robots. The MIT Press, Cambridge, Massachusetts, 2004. ISBN 026219502X.

[75] Mike Smith, Ian Baldwin, Winston Churchill, Rohan Paul, and Paul Newman. The

new college vision and laser data set. The International Journal of Robotics Research,

28:595–599, 2009.

[76] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

https://www.ros.org, 2020.

[77] C. R. Steffens, L. R. V. Messias, P. L. J. Drews, and S. S. d. C. Botelho. Can exposure,

noise and compression affect image recognition? an assessment of the impacts on

state-of-the-art convnets. In 2019 Latin American Robotics Symposium (LARS),

2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in

Education (WRE), pages 61–66, 2019.

[78] Christoph Strecha, Wolfgang Hansen, Luc Van Gool, Pascal Fua, and Ulrich Thoen-

nessen. On benchmarking camera calibration and multi-view stereo for high resolu-

tion imagery. Conference on Computer Vision and Pattern Recognition (CVPR), 06

2008. doi: 10.1109/CVPR.2008.4587706.

[79] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[80] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam algorithms: a

survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications,

9:16, 2017.

[81] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt. Gcnv2: Efficient correspondence

prediction for real-time slam. IEEE Robotics and Automation Letters, 4(4):3505–

3512, 2019.

[82] Shaharyar Ahmed Khan Tareen and Zahra Saleem. A comparative analysis of sift,

surf, kaze, akaze, orb, and brisk. In International Conference on Computing, Math-

ematics and Engineering Technologies (iCoMET), pages 1–10, 2018.

[83] Bill Triggs. Detecting keypoints with stable position, orientation and scale under

illumination changes. In European Conference on Computer Vision (ECCV), volume

3024, pages 100–113, 05 2004.

[84] S. Umeyama. Least-squares estimation of transformation parameters between two

point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(4):376–380, 1991.

80

[85] Yannick Verdie, Kwang Moo Yi, Pascal Fua, and Vincent Lepetit. Tilde: A tem-

porally invariant learned detector. Proceedings of the Computer Vision and Pattern

Recognition, 2015.

[86] Lukas von Stumberg, Vladyslav C. Usenko, Jakob Engel, Jörg Stückler, and Daniel

Cremers. From monocular slam to autonomous drone exploration. European Con-

ference on Mobile Robots (ECMR), IEEE, 2017.

[87] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo: Towards end-to-end visual

odometry with deep recurrent convolutional neural networks. In IEEE International

Conference on Robotics and Automation (ICRA), pages 2043–2050, 2017.

[88] Brian Williams, Mark Cummins, José Neira, Paul Newman, Ian Reid, and Juan

Tardos. A comparison of loop closing techniques in monocular slam. Robotics and

Autonomous Systems, 57:1188–1197, 12 2009. doi: 10.1016/j.robot.2009.06.010.

[89] Kyle Wilson and Noah Snavely. Robust global translations with 1dsfm. In European

Conference on Computer Vision (ECCV), volume 8691, pages 61–75. Springer, 2014.

[90] Oliver J. Woodman. An introduction to inertial navigation. Technical Report 696,

University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge

CB3 0FD, United Kingdom, 8 2007.

[91] C. Wu. Towards linear-time incremental structure from motion. In International

Conference on 3D Vision - 3DV, pages 127–134, 2013.

[92] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. Lift: Learned

invariant feature transform. In European Conference on Computer Vision (ECCV),

volume 9910, pages 467–483. Springer, 2016. ISBN 978-3-319-46465-7. doi: https:

//doi.org/10.1007/978-3-319-46466-4_28.

[93] Khalid Yousif, Alireza Bab-Hadiashar, and Reza Hoseinnezhad. An overview to visual

odometry and visual slam: Applications to mobile robotics. Springer: Intelligent

Industrial Systems, 1:289–310, 11 2015. doi: 10.1007/s40903-015-0032-7.

	Introduction
	Objectives
	Contributions
	Text Organization

	Theoretical Background
	Simultaneous Localization and Mapping
	Odometry
	Visual Odometry and Visual SLAM
	Drawbacks on geometry-based Visual SLAM

	Convolutional Neural Networks
	Deep-learning and Visual SLAM
	Learned Invariant Feature Transform
	Final Considerations

	Related Work
	Geometry-based Approaches
	Direct methods
	Feature-based methods

	Deep learning-based approaches
	End-to-end methods
	Hybrid methods

	Final Considerations

	Materials and Methods
	Materials
	Datasets
	Evaluation Metrics
	Programming Languages and Tools
	Hardware Specification

	Methodology

	LIFT-SLAM
	LIFT-SLAM Pipeline
	Map Initialization
	Tracking
	Mapping
	Loop closure and relocalization
	Algorithm Parameters

	Versions of LIFT-SLAM
	Fine-tuned LIFT-SLAM
	Adaptive LIFT-SLAM

	Final Considerations

	Results
	LIFT-SLAM
	LIFT-SLAM fine-tuned with KITTI sequences
	LIFT-SLAM fine-tuned with EuRoC sequences
	Adaptive LIFT-SLAM
	Adaptive LIFT-SLAM fine-tuned with KITTI sequences
	Adaptive LIFT-SLAM fine-tuned with EuRoC sequences
	Robustness tests
	Discussion and comparison with literature

	Conclusion and Future Work

