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Resumo

Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip
(MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em
simuladores, antes de definir os últimos detalhes da arquitetura. No entanto, a simu-
lação só é eficiente quando utiliza ferramentas de modelagem que suportem a descrição
do comportamento do sistema em um elevado nível de abstração. A escassez de plata-
formas virtuais de MPSoCs que integrem hardware e software escaláveis nos motivou a
desenvolver o MPSoCBench, que consiste de um conjunto escalável de MPSoCs incluindo
quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em pla-
taformas com 1, 2, 4, 8, 16, 32 e 64 núcleos, cross-compiladores, IPs, interconexões, 17
aplicações paralelas e estimativa de consumo de energia para os principais componentes
(processadores, roteadores, memória principal e caches). Uma importante demanda em
projetos MPSoC é atender às restrições de consumo de energia o mais cedo possível. Con-
siderando que o desempenho do processador está diretamente relacionado ao consumo,
há um crescente interesse em explorar o trade-off entre consumo de energia e desempe-
nho, tendo em conta o domínio da aplicação alvo. Técnicas de escalabilidade dinâmica
de freqüência e voltagem fundamentam-se em gerenciar o nível de tensão e frequência da
CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a
carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a
eficiência energética e desempenho, foram adicionados recursos ao MPSoCBench, visando
explorar escalabilidade dinâmica de voltaegem e frequência (DVFS) e foram validados três
mecanismos com base na estimativa dinâmica de energia e taxa de uso de CPU.



Abstract

Recent design methodologies and tools aim at enhancing the design productivity by pro-
viding a software development platform before the definition of the final Multiprocessor
System on Chip (MPSoC) architecture details. However, simulation can only be efficiently
performed when using a modeling and simulation engine that supports system behavior
description at a high abstraction level. The lack of MPSoC virtual platform prototyp-
ing integrating both scalable hardware and software in order to create and evaluate new
methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MP-
SoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in
platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17
parallel version of software from well-known benchmarks, and power consumption esti-
mation for main components (processors, routers, memory, and caches). An important
demand in MPSoC designs is the addressing of energy consumption constraints as early
as possible. Whereas processor performance comes with a high power cost, there is an
increasing interest in exploring the trade-off between power and performance, taking into
account the target application domain. Dynamic Voltage and Frequency Scaling tech-
niques adaptively scale the voltage and frequency levels of the CPU allowing it to reach
just enough performance to process the system workload while meeting throughput con-
straints, and thereby, reducing the energy consumption. To explore this wide design
space for energy efficiency and performance, both for hardware and software components,
we provided MPSoCBench features to explore dynamic voltage and frequency scalability
(DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rate.
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Nowadays, there is a massive use of software-based models to verify the accuracy and
quantitatively evaluate the system performance. In this scenario, architecture simulators
play a significant role in computer architecture design. However, the obvious direction
is to explore CMP (chip multiprocessor) designs, which include several new challenges,
both in hardware management and development of software that take advantage of the
parallelism capabilities.

With the emergence of Multiprocessor Systems on Chip (MPSoCs), power and energy
consumption have become the most delicate and limiting issue for the proper functioning
of the system. Designers need a global vision of the system power consumption in the
earlier design stages to evaluate the effectiveness of the power management strategies
beforehand [29].

The first simulators for public use emerged nearly fifteen years ago and have become
increasingly robust since then [23]. Recently, some resources have been added to them
to achieve power management, mostly through mathematical models for accurate power
consumption estimates. The most widely used simulators that include support for power
consumption are based on mathematical analysis and estimates rather than based on run-
ning applications, as we will see in the literature review presented in Section 2. Therefore,
they need to be integrated with data obtained from performance simulators. Although
effective, this technique has the disadvantage of having a simulation infrastructure based
on two or more tools that do not always have a friendly interface for integration [66,90].

Summarizing, our hypothesis is that MPSoC virtual platforms integrating high-level
description of hardware components, scalable applications, and a target toolchain, focused
on architectural exploration, power consumption, and performance estimation have the
potential to be used on evaluation of new techniques and methodologies in the early stages
of MPSoC and embedded designs.

This thesis presents MPSoCBench, a simulation toolset consisting of a scalable set of
MPSoCs to enable the development and evaluation of new tools, methodologies, parallel
software, and hardware components. The toolset supports four distinct processors (ARM,
MIPS, SPARC, and PowerPC) in many configurable and scalable MPSoC platforms with
1, 2, 4, 8, 16, 32, or 64 cores, with different interconnections that define different simulation
abstraction levels.

This infrastructure includes 17 parallel benchmarks from SPLASH-2 [96], ParMiBench
[57], Mibench [52] benchmarks, and a POSIX PThread emulation library. The tool also
provides power consumption estimation for MIPS and SPARC processors, even in mul-
ticore environments. A total of 864 distinct configurations are available and automated
through an execution script that also allows easy integration with a cluster for parallel
execution. The number of possible configurations is even much higher if we consider
different cache or power consumption parameters.

1.1 Contributions

The main contribution of MPSoCBench is to provide a completely open source simu-
lation infrastructure including scalable hardware and software components, with easy



CHAPTER 1. INTRODUCTION 16

instrumentation and fast simulation at high abstraction levels to be used on evaluation of
new techniques and methodologies in the early stages of MPSoC and embedded designs.
We can cite the following specific contributions:

• A System level simulation infrastructure to address requirements in MPSoCs de-
signs;

• Simulation at different abstraction levels, allowing exploring the trade-off between
performance and accuracy at the early design stages;

• Easy configuration templates, enabling its use for both research and academic pur-
poses;

• Basic infrastructure for dynamic estimation of power/energy consumption and DVFS
techniques exploration;

• A significant set of parallel and scalable applications that use all available models,
which characterizes the tool as a benchmark for MPSoCs;

1.2 Organization

This Thesis is organized as follows:
Chapter 2 explores the prior tools or libraries related to this work and exposes how

they compare to the MPSoCBench main goals. It introduces basic modeling and simula-
tion concepts and tools, describes prior work related to Dynamic Voltage and Frequency
Scaling approaches, and also shows some tools for design space exploration. The main
goal of this Chapter is to contextualize the MPSoCBench and compare it with the main
tools and approaches that have usually been used.

Chapter 3 introduces the MPSoCBench toolset, which is a scalable, configurable, and
extensible set of MPSoCs, useful to improve development and evaluation of the MPSoC
ecosystem, using well-known methodologies and tools. We describe the hardware and
power models available in the toolset, and the applications adapted to execute in the
MPSoCBench virtual platforms.

Chapter 4 provides the MPSoCBench characterization, evaluating its main features,
applications and issues related to simulators accuracy and performance. The Chapter
includes discussions about simulation speed, simulation accuracy, network traffic, memory
analysis, power estimation, TLM coding styles, and timing abstraction levels.

Chapter 5 presents the infrastructure of the MPSoCBench DVFS support, describing
power models and evaluating three DVFS techniques based on energy estimation and
CPU-usage rate. The main goal of this Chapter is to show that MPSoCBench can be
used to perform full-system power efficiency studies in a fast simulation environment;

Chapter 6 concludes the text and presents our main contributions, published papers
and future work. Appendix A presents a tutorial on how to installing necessary tools to
use the MPSoCBench. Appendix B presents a tutorial on how to use the MPSoCBench.



Chapter 2

Literature Review

This Chapter describes basic concepts and previous work related to our research. To im-
prove clarity, we have divided the review in seven main areas: Section 2.1 introduces some
basic concepts, tools and languages related to modeling and simulation; Section 2.2 de-
scribes prior work on simulation tools; Section 2.3 reviews basic concepts about Dynamic
Voltage and Frequency Scaling (DVFS), Section 2.4 details relevant DVFS approaches,
and Section 2.5 presents tools that implement DVFS; Section 2.6 shows tools for design
exploration of MPSoCs. Finally, Section 2.7 exposes the benchmark suites that we use to
evaluate our tools and methodologies. At the end of each Section we briefly compare the
tools previously presented with the MPSoCBench features.

2.1 Modeling and Simulation Background

The best choice of the abstraction level in the modeling process is essential to find balance
between productivity and modeling level of details. In RTL (Register Transfer Level)
design, circuit behavior is described in terms of signals representing data transfer between
registers and logic operations conducted over these signals. RTL abstraction is used in
hardware description languages like Verilog and VHDL to represent low-level circuits,
which are derived from the hardware connections.

Considering the increasing complexity of system designs, the approach adopted by
SoC industry is to keep abstraction above RTL during the early stages of the project and
reach RTL level in the synthesis stage after successive stages of design refinement. This
approach is known as System Level and is characterized by the system specification as a
set of software components, hardware components and applications, with a primary focus
in the relationship among the subsystems.

SystemC [2] is a collection of C++ classes and templates that provides powerful
mechanisms to model system architecture with hardware timing, concurrency and reactive
behavior, allowing the creation of an executable specification of the system. SystemC is
one of the most suitable choices for system design.

In the context of this work, we describe a hardware system as a virtual platform,
which is typically implemented as several Transaction-Level (TLM) [1] models, which
are a higher level representation of hardware behavior, focusing on discrete events such

17
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as register reading and writing. Although TLM is language independent, SystemC fits
perfectly in its representation style, allowing adequate abstraction levels and providing
elements to isolate computation and communication.

ArchC [12] is an Architecture Description Language (ADL) following a SystemC syn-
tax style, which provides enough information in order to allow users to explore and verify
a (new or legacy) processor architecture. This ADL automatically generates not only
software tools for code generation and inspection (like assemblers, linkers, and debug-
gers), but also executable processor models for platform representation. PowerSC is a
SystemC extension designed to collect and process switching activity [59]. As ArchC gen-
erates a SystemC processor description, it is an eligible candidate to PowerSC workflow.
acPower is a library that connects ArchC to PowerSC, thus enabling the power analysis
of ArchC processor modules [50].

An important feature of TLM models is their ability to provide data related to the tim-
ing and synchronization of devices. Thus, it is possible to establish different abstractions
related to the accuracy of the simulator timing information:

• Untimed: At this level, the behavior of the components is described without time
information associated with the model. Any statistics related to performance can
be expressed in terms of the amount and the type of activities performed during the
simulation. The CPU models described in this level are called functional models;

• Approximately timed: Any time information is added into the model, even if not
very accurate, making it possible to couple timed peripherals to the model without
difficulty;

• Cycle-accurate: At this abstraction level, the microarchitecture is simulated on a
cycle-by-cycle basis. Although not always synthesizable, the model behaves exactly
like the real implementation of the circuit in regard to the timing. A precise amount
of time should be associated with each functionality of the component and the
simulated time should take place according to this value.

Figure 2.1 shows that the accuracy increases as the design description progresses from
a high level untimed models to cycle-accurate RTL abstraction level. In contrast, the
performance decreases when we move from high level to accurate levels.

MPSoCBench uses SystemC 2.3 [2] as simulation infrastructure, TLM2 for standard
interconnection, ArchC 2.3 [12] to generate processor models and cross-compilers, and the
PowerSC extension for power models. It is open source, and available under GPL license.

In the following sections we describe tools for modeling and simulation in accordance
with different abstraction levels.

2.2 Modeling and Simulation Tools

A large number of processor simulation tools have been developed in the last decade.
In the context of this research, we divide them into roughly two categories: functional
simulators and cycle accurate simulators. Functional simulators precisely emulate each
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models of real hardware devices. It uses x86-to-x86 binary translation to achieve good
performance. However, it does not include cycle-accurate simulation features below the
x86 instruction level (just like any other functional simulator). The purpose of simulation
in Simics is often to develop software for a particular embedded hardware, using Simics
as a virtual platform.

Leveraging the power of Simics as an underlying foundation, Martin et al. presented
GEMS [73], a full-system multiprocessor simulator that uses Simics as its base and incor-
porates extensive features to design, specify and validate new cache coherence protocols.
The GEMS toolset adds a fairly detailed out-of-order processor simulation model and de-
tailed memory model on top of the functional full-system simulation environment provided
by Simics.

Another well known and more robust emulator is QEMU [13], that is a fast machine
emulator using an original portable dynamic translator, which emulates several CPUs
(x86, PowerPC, ARM and SPARC) on several hosts (x86, PowerPC, ARM, SPARC,
Alpha and MIPS). It uses dynamic compilation to achieve significantly faster simulation
speeds compared to pure interpretation.

One of the first ARM-based platform was presented by Benini et al. [15] as the MP-

ARM, a complete platform for MPSoC research, including processor models (ARM)
modeled in SystemC, SoC bus models (AMBA), memory models, hardware support for
parallel programming, a fully operational operating system port (UCLinux) and code de-
velopment tools (GNU toolchain). The main disadvantages is that the processor cores
supported in the MP-ARM framework are relatively simple and the automatic construc-
tion of performance models for coprocessors from high-level functional specifications is
not supported. Using MP-ARM, Loghi, Poncino and Benini [68] run realistic applications
in order to obtain accurate functional behavior and power and performance analysis of
the system.

Few years later, Mahadevan et al. [72] proposed a traffic generator model (TG) that
is aimed at faithfully replicating traffic patterns generated by a processor running an
application. At the same time, this approach allows a straightforward path towards
deployment of the TG device on a silicon NoC test chip. To evaluate the concept, the
proposed model was integrated into MP-ARM [15].

The first important results about the use of a parallel simulation infrastructure to
evaluate techniques for application-to-platform mapping was presented by Paulin et al.
in 2004 and 2006 [79,80] and extended by Beltrame, Sciuto and Silvano in 2008 [14]. First
of all, Paulin presented the MultiFlex [79,80] environment as an application-to-platform

mapping tool that integrates heterogeneous parallel components (HW and SW) into a
platform programming environment; this tool is more focused in network and multimedia
applications. Next, in 2008, Beltrame, Sciuto and Silvano [14] showed how it is possible
to map applications to the MultiFlex platform. Once the application has been partitioned
and mapped to the target platform according to its performance and power constraints,
it is possible to further optimize its power consumption with the use of a proper Dynamic
Power Management System (DPMS).
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In 2007, a single-application simulator named Multi2Sim was proposed by Ubal et
al. [94], which intended to simulate final MIPS-32 executable machine. The tool includes
cross-compiler and three simulation techniques: functional, detailed and event-driven.

The Michigan M5 Simulator proposed by Binkert et al. in [17] provides a highly
configurable simulation framework, multiple ISAs, and diverse CPU models; It supports
the booting of entire operating systems, as well as the execution of unmodified application
binaries using system-call emulation. However, only a shared-bus model is supported to
model interconnection of multiple processor cores, and only four processor cores can be
simulated at a time. In 2011, Nathan et al. [16] presented the merge of the best aspects
of the M5 and GEMS [73] simulators, resulting in the gem5 Simulator. In 2012, the
accuracy of this new powerfull tool was evaluated by Butko et al. in [27].

Another extension of the gem5 infrastructure was presented by Power et al. [82] and
contains a simulator built on gem5 [16,27] and GPGPU-Sim, a detailed GPGPU simulator.
This extension routes most memory accesses through Ruby, which is a highly configurable
memory system in gem5. Applications can launch non-blocking kernels, allowing the CPU
and GPU to execute simultaneously.

The OVP [56] is a hardware simulator written in C language, instruction-accurate,
open-source and able to simulate an entire platform. OVP offers a large model database,
supporting several processor families (like MIPS, ARM and PowerPC) besides many pe-
ripherals.

In 2014, Endo, Courouss and Charles [42] described the implementation and accu-
racy evaluation of a micro-architectural simulator of Cortex-A cores, supporting in-order
and out-of-order pipelines and based on the open-source gem5 simulator. They showed
how to simulate Cortex-A8 and Cortex-A9 cores in gem5, and the execution time of ten
benchmarks were compared against real hardware.

In order to provide an open repository of SystemC models, Mello et al. [75] introduced
SoCLib, which is an open platform for virtual prototyping of MPSoCs. The core of the
platform is a library of SystemC models for virtual components (IP cores). Although
there are many components available in SoCLib design repositories, modeling platforms
containing multiple devices to evaluate MPSoCs demands a significant effort of joining
them together. None of them provides neither a comprehensive set of scalable software
to run on platforms nor a framework to simplify new hardware integration.

The SESC (SuperESCalar Simulator) [78] is an event driven simulator for the MIPS
processor architecture, in which the instructions are executed in an emulation module
that emulates the MIPS Instruction Set Architecture (ISA). In 2013, Ardestani et al. [10]
presents ESESC, an architectural simulator for multicore processors, based on Time-
Sampling with virtually no limitation in terms of application type (multiprogrammed or
multithreaded), number of cores, homogeneity or heterogeneity of the simulated config-
uration. They modify SESC and use QEMU as the functional emulator executing ARM
instructions.

In the previous paragraphs, we described some of the most popular functional sim-
ulators of processors or complete systems, of which some are very elaborate and other
pretty simple. Although MPSoCBench contain high level processor models and devices,
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its interconnection mechanism allows timed communication using TLM2, placing the MP-
SoCBench on the edge between functional and timed simulation.

2.2.2 Cycle Accurate Simulators

In the following paragraphs we describe some cycle-accurate simulators released in the
last decade. Since cycle-accurate models tend to have low performance, most simulators
have a hybrid approach, where only part of their components is accurate (for instance:
the interconnection, caches, or single processor). Simulation of complete cycle-accurate
platforms tend to be very inefficient.

In 1996, Todd Austin et al. [11,25,26] introduced SimpleScalar, a simulator for out-
of-order superscalar processor pipelines, with the ability to model multiple application
workloads or shared-memory parallel applications, as well as the simulation of multiple
processor cores. It can model a variety of platforms ranging from simple unpipelined pro-
cessors to detailed dynamically scheduled microarchitectures with multiple-level memory
hierarchies. The tool set’s instruction interpreters also support several popular instruction
sets, including Alpha, PPC, x86, and ARM. Although robust, SimpleScalar is becoming
obsolete due to a dependence to an outdated compiler version. PTLSim [98] was the
first open source cycle-accurate that that really simulates the x86 instruction set, instead
of just interpreting it. PTLsim has models for out of order x86-64 processor cores at a
configurable level of detail ranging from RTL-level models of all key pipeline structures,
caches and devices up to full-speed native execution on the host CPU. Released two years
later by Zeng et al. [99], the MPTLSim is a cycle-accurate, full-system simulator for
multicore designs based on the x86-64 ISA, a natural multicore extension of PTLSim.

One of the most complete work on MPSoC platforms was proposed by Boukhechem
and Bourennane (StarSoC, in [20]), which contains an OpenRISC processor as the cen-
tral part of the system and includes SystemC communication models (Whishbone bus).
It made use of an open source ISS of or1Ksim simulator platform, which is designed
for uni-processor simulation. In order to use it for the simulation of multiprocessor sys-
tems, several ISSs with SystemC communication platform models were connected by using
UNIX Inter Process Communication. As an extension of this previous work, Boukhechem,
Bourennane and Samahi have compared in [21] three abstraction levels using the StarSoC
platform: the traditional register-transfer level modeling (Verilog model) and transaction-
level modeling at instruction accurate level and cycle-accurate level. In 2008, Boukhechem
et al. [22] defined the methodology to construct the STARSoC TLM simulation environ-
ment, which provides a rapid and accurate design space exploration at higher abstraction
levels for multiprocessor system on chip architectures.

Ferri et al. [44] provide a cycle-accurate cache-coherent ARM-based cluster similar
to ARM’s MPCore. This infrastructure is useful for evaluating hardware transactions
memory solutions for embedded architectures. Their experiments show that transactional
memory can provide clear performance advantages, but it is essential to consider carefully
the hardware design in order to conform energy constraints of the system.

Agarwal et al. [4] developed a detailed cycle-accurate interconnection network model
(GARNET), inside the GEMS full-system simulation framework, which includes models
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with microarchitectural details, such as flit-level input buffers, routing logic, allocators
and the crossbar switch. GARNET, along with GEMS, provides a detailed and accurate
memory system timing model.

Recently, Alali, Assayad, and Sadik [6] introduced an MPSoC composed of MicroBlaze
microprocessors, memory, a timer, a VGA and an interrupt handler with two examples of
software. The main contribution of this work was to show that simulators using Timed
Programmer’s View (PV+T) can achieve timing fidelity with high performance.

In the previous paragraphs we briefly discussed about prior cycle-accurate simulation
tools and applications, along with their strengths and weaknesses.

2.3 Energy Consumption Concepts

The total power consumption Ptotal of the computer system may be separated into two
components, as we show in Equation 2.1:

Ptotal = Psystem + PCPU (2.1)

PCPU is consumed by the CPU itself and Psystem by the rest of system. The power
consumption PCPU of the CPU can also be split into two parts, as we show in Equation 2.2:

PCPU = Pdyn + Pleak (2.2)

Pdyn is the power consumed by the CPU during the computation, resulted from the
transistors switching activities, and Pleak is the power due to leakage effects inherent to
silicon-based transistors, originated from currents that flow between differently parts of
the transistor. Notwithstanding the existence of multiple sources of leakage in CMOS1

transistors and their particularities, leakage current models are accurate yet complex since
thay depend on the multiple parameters [3].

Given the different sources of power consumption, the total power can be rewritten as
we show in Equation 2.3:

Ptotal = Psystem + Pleak + Pdyn (2.3)

The dynamic power consumption in CMOS can be described by Equation 2.4, where
f is the switching activity, C is average capacitance loading of the circuit, and V is the
supply voltage. To minimize power consumption, we can reduce f , C or V [91].

Pdyn = f.C.V 2 (2.4)

Since it was first proposed in 1994 by Weiser et al. [95], Dynamic Voltage and Frequency

Scaling (DVFS) techniques have proven to be highly effective in achieving low power
consumption on a wide range of computing systems.

DVFS deals with the management of a system power consumption and its main idea
is to adaptively scale the supply voltage and frequency levels of the CPU so as to reach

1CMOS is short for complementary metal oxide semiconductor, a widely used type of semiconductor
for constructing integrated circuits.
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just enough performance to process the system workload while meeting throughput con-
straints, and thereby, reduce the energy dissipation [62]. The technique is able to reduce
the dynamic power consumption of a CMOS integrated circuit by reducing the voltage
and the clock frequency at which it operates.

The relationship between the power P (t) (Watts or Joules/s) and the energy E(∆t)

(Joules) consumed by an electrical system over a time period ∆t is given by equation 2.5.

E(∆t) =

∫
∆t

0

P (t) (2.5)

In a computing system, the time factor is the execution time, which is inversely pro-
portional to the frequency that the CPU operates. On the other hand, the power P in
a CMOS-based circuit is directly proportional to the frequency and the square of the
voltage that the system operates (2.6), and therefore, so as the energy(2.7) [89].

P ∝ f.V 2 (2.6)

E ∝ V 2 (2.7)

Voltage and Frequency are determined together based on system requirements. The
voltage can be reduced if the frequency is also reduced. This can yield a significant power
saving because of the aforementioned V 2 relationship [62]. Therefore, DVFS techniques
are able to save power and energy of a CMOS integrated circuit by reducing the frequency
and/or voltage at which it operates.

One of the main metrics to evaluate the trade-off between energy consumption and
the system performance obtained by power saving techniques is the energy delay product

(EDP), which was initially proposed by Horowitz [54] and has been largely applied since
then [24]. The Energy curve is produced similar to the runtime curve using measured
CPU energy instead of measured runtime. The EDP is described by the equation 2.8,
where E is the energy consumed, T is the execution time and w = 1, 2 or 3. The value
of w represents how the metric might differ depending on the weight given to time or
performance.

EDP = E.Tw (2.8)

In the next section we describe several DVFS approaches implemented and evaluated
in the last few years.

2.4 DVFS Approaches

Although relatively recent, DVFS literature is rich and diversified. This section describes
relevant applications of DVFS, algorithms and tools that implement them.

In general, most DVFS algorithms work predicting future processing demands, usually
from observed past behavior, and use that information to determine the appropriate
processor speed and the corresponding frequency and voltage.
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Kong et al. [60] propose an energy management technique to explore the trade-off
between energy/power consumption and performance. They use a DVFS algorithm which
manages energy and power consumption adaptively. Their scheme is based on a previous
profiling: they calculate the EDP metric for each application in the workload, in order to
characterize the best power-state for each application. The EDP metric is based on the
energy consumption (Joules), CPI (clock cycle per instruction) and cycle time.

All information is stored in two tables, such that one is stored in a volatile memory
and the other is saved in a non-volatile memory for future use. Next, they consult one of
these tables on-the-fly to choose the adequate power state for each application. The great
advantage of this technique is that considering both energy and delay of the applications,
it reduces EDP significantly and effectively.

Although DVFS techniques promise to reduce power consumption while leading to
significant reduction in the energy required for a computation, recent developments in
processor and memory technology have resulted in the saturation of processor clock fre-
quencies and larger static power consumption, which limit the potential energy savings
resulting from DVFS.

Le Sueur et al. [62] exam the potential of DVFS across three platforms with recent
generations of AMD processors and they find that while DVFS is effective on the older
platforms, it actually increases energy usage on the most recent platform, even for highly
memory-bound workloads. They justify this argument because when the first DVFS
proposal was published by Weiser [95] in 1994, transistor feature sizes were approximately
0.8 µm and typical core voltages were 5V . Furthermore, the ratio of dynamic power (which
DVFS can reduce) to static leakage power was high. Therefore, energy savings resulting
from DVFS could be significant.

However, modern CPUs have transistors with feature sizes smaller than 32ηm and
core voltages at the highest frequency are around 1V . According to Le Sueur, “The small

feature sizes result in leakage power reaching or exceeding dynamic power, and the low core

voltages reduce the voltage-scaling window (which is limited by the 0.7 V threshold voltage

of silicon transistors). Therefore, the potential to save energy via DVFS is dramatically

reduced”. This result is strong but limited, since their analysis is simplified by only
considering a single memory-bound benchmark, and server-class platforms, which are not
very representative for embedded, for example. In their point of view, the industry must
adopt ultra-low-power sleep modes to save energy.

Also in this context, Castagnetti et al. [29] discuss that the relation E ∝ P that relates
energy and power is simplistic and not applicable for complete system designs. So, they
propose a power and energy model for a DVFS enabled mobile computing platform, and
the results show that the CPU energy saving is far less than when using a model that
does not take into account the effect of the static power.

Notwithstanding to all those results about the effect of the static power in modern
CPUs, a lot of research has been published proposing DVFS techniques that obtained gains
when focused on different approaches. Genser et al. [48] have concentrated on voltage
regulators to propose a new DVFS hardware extension to a power emulation approach for
modeling the voltage regulator behavior, which allow for performance, power and energy
efficiency investigations for embedded.



CHAPTER 2. LITERATURE REVIEW 26

Lu, Lai and Huang [70] examine many previous parallel processing architetures and
DVFS mechanisms. They propose two different orientations of parallel DVFS-enabled
H.264/AVC decoders, and implement a multimedia heterogeneous multi-core platform.
Halimi et al. [53] propose FoREST, a new runtime DVFS controller able to estimate the
energy savings it can achieve from power gains. It determines the potential energy gains
from two phases: an offline phase exploiting energy probes embedded in processors, and
runtime speedup measurements for the most interesting frequencies.

There is a large amount of work for energy efficient communication via different DVFS
scheduling algorithms. Kappiah et al. [58] devised a system that exploits slack arising at
synchronization points of MPI programs by reducing inter-node energy gear via DVFS.
Li et al. [65] proposed to characterize energy saving opportunities in executions of hy-
brid MPI/OpenMP applications without performance loss. Predictive models and novel
algorithms were presented via statistical analysis of power and time requirements un-
der different configurations. Next, Li et al. [92] extend theses previous works proposing
an adaptively DVFS scheduling strategy to achieve energy efficiency for data intensive
applications, and further save energy via speculation to mitigate DVFS overhead for im-
balanced branches; their A2E scheduling method adaptively schedules an appropriate
CPU frequency for the hybrid energy saving block, which is defined as a statement block
of one specific type of workload such as computation, communication, memory access,
etc, where runtime energy savings may be achieved by different means.

Yadav et al. [97] come up with LAURA-NoC, a NoC with distributed approach to
dynamic DVFS, in which very simple local DVFS controllers automatically determine the
appropriate clock frequency and voltage, eliminating the need for a global controller. 2
voltages and 16 frequencies values are available in each switch.

In Chapter 5 we describe and evaluate three different DVFS techniques in the MP-
SoCBench (DVFS-SW, DVFS-ES, DVFS-CPU) confirming the argument that the tool
has sufficient infrastructure to explore the trade-off between performance and energy
constraints. The DVFS-SW perform frequency and voltage scaling managed by software;
DVFS-ES and DVFS-CPU are frequency and voltage auto-selection techniques performed
by each core of the platform: the first of them uses the energy consumption as the main
metric and the second one uses the CPU workload to choose the best values of frequency
and voltage dynamically.

2.5 DVFS Simulators

By improving simulators with some DVFS support, it is possible to carefully plan the
DVFS mechanisms at design time, optimizing system thermal profile, preventing run-
time emergencies, and controlling the trade-off between system performance and power
consumption. Although there are several performance simulators, few of them have power
modeling and power control features. We describe in this section some relevant tools with
DVFS support.
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One of the first tools including power features was presented by Brooks [23]. The
Wattch deal with power-related issues and it was successfully used as an extension for
several performance simulators, such as the SimpleScalar simulator.

McPAT (Multicore Power, Area, and Timing) [66] is a tool for modeling and estima-
tion of physical parameters (power, area, clock frequency) for multiprocessor systems. Its
main focus is to model accurately, based on performance parameters and manufacturing
technology information, a set of physical parameters, providing real statistics that can be
used to support design decisions of MPSoCs.

In combination with performance simulators, McPAT uses input parameters from an
XML-based interface that defines the target system design: cache levels, cores, pipelines
per core, cores homogeneity/heterogeneity and other parameters. The McPAT output
shows results, organized by components (CPU, cache, arithmetic units, buses, and so
forth), and for each one of them, it shows the area and power consumed according to
the manufacturing technology and clock frequency. McPAT is not a simulator itself and
produces estimation data that, although accurate, does not reflect the dynamic behavior
of the applications.

One of the aforementioned integration between performance and power tools was ob-
tained joining gem5 and McPAT to get system power estimation. Performance statistics
are collected from gem5 and fed through McPAT to provide the final estimation. Volt-
age and frequency are some of the design parameters expected by the McPAT. So, the
designer is not allowed to change these values unless he starts a new system design; this
is an important limitation of this infrastructure. Furthermore, the interface of McPAT is
hard to feed, due to the great amount of architecture and design parameters, which can
not always be achieved.

To improve the aforementioned limitations, Spiliopoulos et al. [90] propose to make
the Gem5 suitable for full-systems DVFS studies, including clock and voltage domain
declaration, online power-estimation, a DVFS controller, and libraries for DVFS sup-
port. As limitations, this infrastructure does not have yet idle-power management or
power/thermal monitoring sensors.

Created in the context of joining performance simulators and thermal analysis, the
SST framework [55] is useful for architecture-level power, area, and thermal simulation,
which focus on large-scale systems, but application traces are emulated, rather than col-
lected from cycle-accurate simulation, with higher simulation rate at the cost of lower
accuracy. In the same context, Zoni, Corbetta and Fornaciari [100] introduce HANDS,
a novel framework for joint thermal, performance and power analysis to be used both
at early design stages, while the extracted information can be used for further localized
platform optimizations and trade-off exploration.

The MPSoCBench already has both power and DVFS features based on high level
power estimation, which are described in Chapters 3 (power models) and 5 (DVFS fea-
tures).
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2.6 Design Space Exploration Tools (DSE Tools)

It is well known that MPSoCs design complexity induces the use of automatic design
space exploration (DSE) tools to explore design alternatives before real implementation.

There are several proposals to characterize a system with multiple processing cores on
a single chip. Proposals range from specification models [81], up to the development of
tools and frameworks to offer more support to the design space exploration at different
abstraction levels [5,33,45,86]; we will describe several of them in the following paragraphs.

Angioline et al. [9] propose a methodology to integrate pre-existing standalone CAD
tools in a complete virtual platform, therefore paving the way for faster and more thor-
ough analysis of the available architectural choices. They explored alternative ways to
implement such an integration, defining two wrapping policies to give different emphasis
to the cache design. Subsequently, they applied the methodology to state-of-the-art CAD
tools, such as the commercial LISA [30] suite and the academic MPARM [15] environment.

Maintaining the accuracy by low-level simulation-based tools together with the per-
formance in execution time of analytical-based tools was the goal achieved by Johann
Filho et al. in [45]. In this sense, they propose a platform, a design flow and a tool
for execution time and energy consumption estimation of homogeneous MPSoCs. The
platform is composed of four processors interconnected by a bus system and described in
VHDL used as a case study for estimation tool evaluation. After synthesizing the VHDL
high-level description of the platform into a gate-level (RTL), time execution and energy
consumption estimations are taken from RTL descriptions and organized in a high-level
tool, to speedup simulation times.

The focus of the work in [86] is on the Transaction Accurate (TA) level which uses
Transaction Level Modeling (TLM) for MPSoC architecture to speed up simulation at the
cost of less accurate performance. Instead of using traditional Instruction Set Simulators
(ISS), software tasks are annotated with timing information and executed locally with
much higher speed. The annotated execution time for each software task is based on
statistical processor properties.

The Sniper [28] simulator has been used to estimate application performance by
employing an analytical model to raise the abstraction level. A similar proposal adopts the
M5 simulator [33] to address the trade-off between power and performance by constructing
an analytical model based on an extension of Pollack’s Rule [19] and Amdahl’s Law [8].

In 2011, the Multicube was proposed by Silvano et al. [88]. It is an open-source
framework for multiprocessors design space exploration. The goal is to drive an architec-
ture designer towards near-optimal parameters, using a set of strategies (multi-objective
model formulation and heuristics) to model and solve the problem of architectural explo-
ration.

Petry et al. [81] approach the use of a set of models that describe a whole MPSoC at
several abstraction levels. Models of processors, memories, network interfaces, NoCs and
software applications can be combined using an integration framework, which is capable
of generating a complete executable MPSoC model. Design elaboration, simulation of real
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and synthetic applications and debugging can be accessed directly from the integrating
environment, in most cases.

We have an ongoing project which includes mechanisms to use a performance-based
simulator like MPSoCBench with a low-level power and an area estimation tool like Mc-
PAT for design space exploration. We’ve apply this mechanism in a tool named Multi-

explorer. Although this tool has been improved to cover other issues (dark silicon, for
instance), we published the first version of Multiexplorer in [32]. We describe briefly this
project in the conclusion (Chapter 6).

2.7 Benchmarks

On the software scenario, there are also benchmarks that we adapted to run on the MP-
SoCBench simulation infrastructure. The SPLASH-2 [96] and ParMiBench [57] bench-
marks have a set of parallel software using POSIX Threads, able to use up to 16 threads.
We also joined several Mibench [52] single-threaded benchmarks to create multi-threaded
benchmarks that do not share data resources, and we included them in the MPSoCBench
software repositories. All applications adapted for the MPSoCBench are detailed in Sec-
tion 3.2

The MPSoCBench tool fills the gap of a virtual prototyping tool integrating both
scalable and configurable hardware and software useful for design and evaluation in the
MPSoC modeling and simulation scenario.

2.8 Characterizing Simulation and DSE Tools

System simulators have fundamental differences, like the features they contain, detailing
level, accuracy, and especially the main purpose of their use. Although this large num-
ber of parameters makes difficult to compare them, we present in Table 2.1, in chrono-
logical order, several aforementioned simulators and show how they compare with the
MPSoCBench, according with requisites like simulation speed, abstraction level, power
evaluation and DVFS support. We could not find the simulation speed for all frameworks,
so we used a “-” in several of them. Similarly, Table 2.2 shows design space exploration
tools and compare them with the MultiExplorer tool.
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Table 2.1: Comparison among Simulators and the MPSoCBench. HL=High level, CA=Cycle accurate

Tool Year Abstr. Features Multicore Speed Power DVFS
Level Support Support Support

Bochs [61] 1996 HL Emulation No - No No
Simple- 2002 CA Emulation Yes ≈150 K No No

Scalar [11] instr./sec
Simics [71] 2002 HL Simulation No ≈7.5 K No No

(x86-to-x86) instr./sec No No
MP-ARM [15] 2004 HL Simulation Yes 60 K Yes Yes

(ARM) cycles/sec
SESC [78] 2004 HL Emulation No - No No
GEMS [73] 2005 HL Simulation Yes Simics No No
QEMU [13] 2005 HL Dyn. transl. No - No No

M5 [17] 2006 HL Emulation 4-core - No No
Multi2Sim [94] 2007 HL Simulation No - No No
PTLSim [98] 2007 CA Sim. and VM No - No No

OVP [56] 2008 HL Simulation Yes - Yes No
StarSoc [22] 2007 CA Simulation Yes - No No

MPTLSim [99] 2009 CA Simulation Yes 200-300 No No
16-core cycles/sec

gem5 [16] 2011 HL Emulation Yes - No No
ESESC [10] 2013 HL Emulation Yes - Yes No

MPSoCBench [38] 2014 HL Simulation Yes ≈1.5 M Yes Yes
instr./sec
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Table 2.2: Comparison among Design Space Exploration Tools and the MPSoCBench.

Tool Year Features Multicore Simulation/Estimation
Support

Wattch [23] 2000 Power Yes Accurate Estimation
(do not simulate)

McPAT [66] 2009 Power, area and timing Yes Accurate Estimation
(do not simulate)

SST [55] 2011 Power, area and thermal Yes Emulation with low accuracy
Sniper [28] 2011 Performance Simulator based No Simulation and Estimation

on analytical models
HANDS [100] 2012 Performance, power and thermal No Accurate Estimation

(do not simulate)
MPSoCBench 2014 Performance, power, area Yes Simulation

(MultiExplorer [32])



Chapter 3

MPSoCBench

In this chapter we will introduce the MPSoCBench, a simulation toolset composed of a
scalable set of MPSoCs to enable development and evaluation of new tools, methodologies,
parallel software, and hardware components.

In the context of this work, a virtual platform is a fully functional model of a
complete system, containing high level models for each component. Each platform is a
scalable set from 1 to 64 processors with data and instructions caches, integrated with
a shared memory and several IPs using interconnection mechanisms. We considered 64
as a good limit although this configuration could be easily increased. The MPSoCBench
is able to create hundreds of different MPSoC configurations automated through scripts,
and the total number of different virtual platforms can be even larger if we consider a
range of caches, and frequencies/voltage configurations.

Figure 3.1 illustrates a virtual platform that can be built with the MPSoCBench, using
a mesh based NoC as interconnection; this platform has a set of nodes, each one acting
as a router, to connect processors, memory, and IPS like DVFS, interrupt controller, and
a hardware lock to concurrency management. All available components will be described
in this chapter.

This chapter is organized as follows: Section 3.1 describes the main hardware models
and software components available in the toolset; Section 3.2 shows the applications
adapted to run on the MPSoCBench virtual platforms; Section 3.3 presents the timing
model adopted for the processor and the communication devices; Section 3.4 describes
the methodology used for power estimation and energy consumption; Section 3.5 briefly
describes the MPSoC building and simulation process, and finally, Section 3.6 concludes
the chapter.

3.1 Components

This section describes the hardware models and the software applications in the MP-
SoCBench.

32
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1 AC_ARCH(arm) {
2 ac_tlm2_port MEM:512M;
3 ac_icache IC ("2w" , 128 , 32 , "wb" , "fifo" ) ;
4 ac_dcache DC("2w" , 512 , 32 , "wt" , "fifo" ) ;
5 ac_tlm2_intr_port intr_port ;
6 ac_regbank RB: 1 6 ;
7 ac_reg R14_irq , R14_fiq , R14_svc , R14_abt , R14_und , R13_irq , R13_svc ;
8 ac_reg R13_abt , R13_und , R13_fiq ;
9 ac_reg SPSR_irq , SPSR_fiq , SPSR_svc , SPSR_abt , SPSR_und ;

10 // FIQ p r i v a t e regs
11 ac_reg R12_fiq , R11_fiq , R10_fiq , R9_fiq , R8_fiq ;
12 ac_wordsize 32 ;
13 ac_f e t ch s i z e 32 ;
14 ARCH_CTOR(arm) {
15 ac_isa ("arm_isa.ac" ) ;
16 set_endian ("little" ) ;
17 IC . bindTo (MEM) ;
18 DC. bindTo (MEM) ;
19 } ;
20 } ;

Figure 3.2: ARM architecture description using the ArchC syntax

1 AC_ISA(arm) {
2

3 /∗ Data proce s s ing i n s t r u c t i o n s − ALU ∗/
4 ac_format Type_DPI1 = "%cond:4 %op:3 %func1:4 %s:1 %rn:4 %rd:4 %

shiftamount:5 %shift:2 %subop1:1 %rm:4" ;
5 ac_format Type_DPI2 = "%cond:4 %op:3 %func1:4 %s:1 %rn:4 %rd:4 %rs:4 %

subop2:1 %shift:2 %subop1:1 %rm:4" ;
6 ac_format Type_DPI3 = "%cond:4 %op:3 %func1:4 %s:1 %rn:4 %rd:4 %rotate:4

%imm8:8" ;
7

8 /∗ Branch i n s t r u c t i o n s ∗/
9 ac_format Type_BBL = "%cond:4 %op:3 %h:1 %offset:24" ;

10 ac_format Type_BBLT = "%cond:4 %op:3 %h:1 %offset:24" ;
11 ac_format Type_MBXBLX = "%cond:4 %op:3 %func1:4 %s:1 %one1:4 %one2:4 %

one3:4 %subop2:1 %func2:2 %subop1:1 %rm:4" ;
12

13 /∗ Load/ Store ∗/
14 ac_format Type_LSI = "%cond:4 %op:3 %p:1 %u:1 %b:1 %w:1 %l:1 %rn:4 %rd:4

%imm12:12" ;
15 ac_format Type_LSR = "%cond:4 %op:3 %p:1 %u:1 %b:1 %w:1 %l:1 %rn:4 %rd:4

%shiftamount:5 %shift:2 %subop1:1 %rm:4" ;
16 ac_format Type_LSE = "%cond:4 %op:3 %p:1 %u:1 %i:1 %w:1 %l:1 %rn:4 %rd:4

%addr1:4 %subop2:1 %ss:1 %hh:1 %subop1:1 %addr2:4" ;
17 ac_format Type_LSM = "%cond:4 %op:3 %p:1 %u:1 %r:1 %w:1 %l:1 %rn:4 %rlist

:16" ;
18 . . .

Figure 3.3: ARM instruction set description using the ArchC sintax
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1 in l ine void MUL( arm_isa∗ r e f , int rd , int rm , int rs , bool s ,
2 ac_regbank <16, arm_parms : : ac_word , arm_parms : : ac_Dword>& RB,
3 ac_reg<unsigned>& ac_pc ) {
4

5 arm_isa : : reg_t RD2, RM2, RS2 ;
6 RM2. e n t i r e = RB_read(rm) ;
7 RS2 . e n t i r e = RB_read( r s ) ;
8

9 dp r i n t f ("Instruction: MUL\n" ) ;
10 dp r i n t f ("Operands:\n A = 0x%lX\n B = 0x%lX\n" , RM2. en t i r e , RS2 . e n t i r e ) ;
11

12 RD2. e n t i r e = RM2. e n t i r e ∗ RS2 . e n t i r e ;
13

14 i f ( s == 1) {
15 r e f−>f l a g s .N = getBi t (RD2. en t i r e , 31) ;
16 r e f−>f l a g s . Z = ( (RD2. e n t i r e == 0) ? true : fa l se ) ;
17 // noth ing happens wi th re f−>f l a g s .C and re f−>f l a g s .V
18 }
19 RB_write ( rd , RD2. e n t i r e ) ;
20 ac_pc = RB_read(PC) ;
21 }

Figure 3.4: Example of an MUL instruction behavior

The ArchC environment enable generation of assemblers, linkers, debbugers, among
other tools.

This thesis is also responsible for some contributions to the ArchC environment, most
of them related to the multicore support. We can list here most important of them:

• We added a mechanism for identifying a processor within a platform;

• We introduced support to TLM2 interfaces and the TLM2 base protocol;

• We introduced support to TLM2 loosely-timed and approximately-timed coding
style;

• We incorporate the power support to ArchC source code;

• We extended the models with timing based on real implementations of them.

Timing Model and Frequency Domain: While functional simulators emulate the
behavior of the target system without the need to provide accurate time, timing sim-
ulation is used to assess the system performance, and acts as an approximation to the
real behavior. Time modeling is needed to measure the fidelity of these simulators with
respect to existing systems [64].

In order to introduce a timing model in these processors, we researched the number
of cycles required to execute each instruction of the ISA in the following real processors:
ARM9E-S [67], MIPS32 M5150 Processor Core Family [69], PowerPC 405TM Core [31],
and UT699 LEON 3FT/SPARCTM V8 MicroProcessor [47].

The user can assign the processor frequency using the set_proc_freq method. Each
object that represents an ISA instruction has a method named setCycles that allows
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us to enter the number of cycles required to execute instructions in the ISA. These two
methods and other methods correlated to them were developed and validated during this
project in collaboration with the ArchC group.

The time information is calculated based on the number of cycles and frequency and
passed as an argument to the wait SystemC function, responsible for the synchronization
and advancing the simulation time.

3.1.2 Memory

Although memory is becoming more and more of a bottleneck, most CPU simulators have
an extremely simple main memory model. In most cases, the memory model is a simple
fixed latency, which is problematic because the dynamics of the CPU and memory are
highly intertwined. A fixed latency is not realistic, since the complexity of the memory
system causes highly variable latencies. On the other hand, including a DRAM accu-
rate simulator in a full system simulator can be costly, and depending of the simulation
abstraction level and target demand, it may not be worth it [84].

MPSoCBench uses two approaches. The simple one is an external shared memory
pre-configured to 512MB, which is enough to run the biggest configuration available,
considering the maximum number of cores and the inputs provided. MPSoCBench allows
designers to choose among blocking and non-blocking TLM2 channels to connect the
memory to the network.

The second approach aims to provide an accurate memory model, we integrate the MP-
SoCBench external memory with the DRAMSim2 simulator [84], which is a cycle accurate
model of DRAM memory, able to explore memory performance and energy consumption.
The use of DRAMSim2 is optional and can be switched easily.

DRAMSim2 can be used in both full systems and trace-based simulations. It provides
a repository with multiple configuration files based on reports from memory manufactur-
ers, and even allows new configuration files modifying the voltage, frequency and other
parameters related to memory architecture.

Figure 3.5 shows the high level structure of the memory simulator. Each DRAM
device is represented as a channel in this abstraction level. These channels are described
by instances of the MemorySystem class and contain how many ranks it supports, which
are also configurable by the user. Each rank contains several memory banks.

The simulator allows evaluation of memory statistics during the simulation and also
reports, at the end of execution, a summary containing the bandwidth, latency and power
information. Figure 3.6 shows an example of an DRAMSim2 report.

3.1.3 Caches

We used the ArchC cache model described in [7]. The cache model has the following
configurable parameters that need to be specified in the constructor:

Block Size: is the number of units of data in a single cache block. An unit of data is
defined previously in the wordsize processor parameter. The block size needs to be
a power of 2.
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Figure 3.5: View of the components of the DRAM2Sim

Figure 3.6: An example of the DRAMSim2 report already integrated with the MP-
SoCBench
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Number of blocks: integer that represents the number of cache blocks. The number
of blocks also needs to be a power of 2.

Associativity: The number of blocks in a set cannot be larger than the number of
blocks. If the associativity is equal to the number of blocks, the cache is said to be
fully associative. If associativity is equal to 1, the cache is said to be direct mapped
(default).

Write Policy: In the Write Through policy, when a cache-write is executed, the block
containing the data is immediately written to memory; in the Write Back policy,
when a cache-write is executed, the block containing the data will be written only
when there is a need to replace it in the cache.

Replacement Policy: Once it is necessary to replace a cache block, a replacement
policy is applied for selecting which block should be replaced. Three replacement
policies were implemented: Random, FIFO (First In, First Out), and LRU (Least
Recently Used).

The code in Figure 3.2 (line 2) contains an example of an external memory instantiation
with 512MB, data and instruction caches (lines 3,4) and the connection between them in a
32-bit ARM processor (lines 17,18). The instruction cache (IC) is a 2-way set associative
write-back cache, with 128 blocks, 32 words per block, using fifo replacement policy. The
data cache (DC) is a 2-way set associative write-through cache, 512 blocks with 32 words
each and fifo replacement policy.

Cache Coherence: The original ArchC cache implementation was done focusing on
standalone simulators; hence, it did not have any cache coherency mechanism. As we are
interested in evaluation of multicore simulators and parallel applications, we implemented
a simple mechanism for cache coherence.

We connect the last level cache of each core with shared directory, which is a device
that implements the MSI cache-coherence algorithm, enabling the parallel computing with
shared resources.

Currently, the cache coherence protocol is implemented only for write-through caches,
because it is necessary a robust mechanism for inter-cache communication to implement
the same protocol for write-back caches or more sophisticated protocols form both caches.

3.1.4 Interconnections

MPSoCBench contains three interconnection networks: a higher level crossbar to make
it easy to check software functionality, and two TLM implementations of a Network on
Chip (NoC) modeled after the Hermes RTL NoC [76]: one using loosely-time (NoC-LT)
and another using approximately-timed (NoC-AT) coding styles. The interconnection
networks are briefly described as follows:

Crossbar: Implements a set of blocking TLM2 channels connecting every IP in the plat-
form using loosely-timed coding style. We added timing annotation to each trans-
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action and updated the simulation time accordingly. This is the simplest intercon-
nection and is also called Router.

NoC-LT: Implements a mesh based NoC in a TLM2 loosely timed (LT) abstraction
level, using XY routing protocol, configurable in runtime to connect up to 64 cores,
memory, lock and wrappers. This NoC contains a set of nodes, each one connected
to the IP wrapper. Each NoC node has 4 ports to connect to adjacent nodes (North,
East, South and West) and a Local port to connect to the IP wrapper. All nodes
also contain packet buffers.

NoC-AT: Implements a mesh based NoC in a TLM2 approximately timed (AT) that uses
sockets, forward and backward transport interfaces. Each internal router has North,
East, South and West simple_initiator_socket and simple_target_socket ob-
jects to connect to other nodes. Each node has also local sockets to connect to the
local IP. Each one of the NoC-AT nodes has one sc_thread, and uses two-phases
non-blocking transport methods.

Both NoCs were totally developed during this project and they are configured at
runtime through user parameters. We extended an existing model or Router to our
purposes.

Figure 3.7 illustrates the main components used to implement the communication
through the NoC-AT. The forward path is illustrated in Figure 3.7(a) and the backward
path is detailed in Figure 3.7(b). The communication starts with a request from the ini-
tiator sc_thread, which creates the generic payload, sends the request using the forward
path and calls wait() for an answer event. The wrapper receives the request, creates a
payload extension with routing information and puts the packet into the buffer of the first
router. Then, the packet goes through several nodes (routers) until it reaches the target.

The backward path is similar. The target (in most of cases, the memory) updates the
generic payload with the appropriate response, and sends the request using the backward
path. The packet goes through several nodes until it reaches the initiator. The initiator
backward transport method (nb_transport_bw()) notifies the answer event and unlocks
the sc_thread that completes the transaction.

New TLM components can be easily integrated into MPSoCBench by adding all source
code into a specific directory.

3.1.5 Interrupt Controller

The interrupt controller is connected to the network and the processors interrupt pin. It is
in the global system address space, and allows interruption by software or inter-processors
interruptions.

At the beginning of the simulation of a multicore platform, only one core starts while
the others remain in OFF mode, waiting for an event. This core is called a master core.
As any core in the platform can actuate as a master core, the SystemC scheduler is the
responsible to choose which core will start first.

When the tasks are ready to execute, the master core triggers an event to turn on the
other cores. This mechanism is useful to increase the simulator performance, because the
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SystemC kernel can remove the thread that represents the core behavior from its queues,
reducing the concurrency.

The current ArchC interrupt handling mechanism provides a direct connection between
the interrupt controller and processor model interrupt pin. Although we have used this
mechanism in MPSoCBench platforms, we agree that this is not an appropriate approach
for MPSoCs. So, we added as future work the suitability of the interrupt mechanism to
restrictions imposed by multiprocessor systems on chip.

3.1.6 DVFS

The global DVFS IP (IP for Dynamic Voltage and Frequency Scaling) is able to manage
the voltage and frequency in which each core operates. It is in the system address space
and it interacts with the local DFS controllers (per-core) to manage the frequency and
power information for each core. The global DFS IP is initialized with the available
frequencies for all cores, and it can manage the frequency globally.

The hardware infrastructure to support DFS and the approach adopted in the MP-
SoCBench are described in the Chapter 5.

3.1.7 Lock

We also included a TLM2 IP that acts as a hardware lock, used to implement mutexes,
semaphores, conditional variables, and barriers. Before every access to a shared resource,
a processor must access the Lock to guarantee atomicity. We consider that the global lock
do not compromise the platform scalability because the number of accesses to the IP is
too small in contrast with the memory. The next section will describe several functions
that use the Lock to implement concurrency management.

3.2 Library for PThread Support and Applications

To avoid the burden of porting an operating system, we implemented acPThread, a POSIX
PThread emulation library that handles thread management, barriers, mutual exclusions,
semaphores, and conditional variables.

Figure 3.8 shows the set of POSIX PThread functions emulated by the acPThread
library:

Most parallel programs implemented with PThreads run on MPSoCBench without
significant changes. The only modification is the inclusion of a main function to be
executed by all platform processors. This function ensures that the application’s old
main function is executed by one of the processors (the Master), while the others are on
standby until the threads assigned to them are triggered.

To execute a new PThread-based application in MPSoCBench platforms, it is only
necessary to attach the main startup function code as illustrated in Figure 3.9 to the ap-
plication, adjusting the command line arguments expected by the application, to store all
application files and Makefiles in a specific directory inside the platform and compile them
with the acPThread.h header file instead of the original PThread library (pthread.h).
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1 int pthread_attr_setdetachstate ( pthread_attr_t ∗ att r , int

2 detachs ta t e ) ;
3 int pthread_attr_getdetachstate ( const pthread_attr_t ∗ att r ,
4 int ∗ detachs ta t e ) ;
5 int pthread_attr_init ( pthread_attr_t ∗ a t t r ) ;
6 void pthread_exit (void ∗) ;
7 void pthread_exit ( ) ;
8 void pthread_busywait ( int ) ;
9 int pthread_jo in_ini t ( pthread_join_t ∗) ;

10 void pthread_join ( pthread_t , const pthread_attr_t ∗) ;
11 void pthread_mutex_init ( pthread_mutex_t ∗ , const

12 pthread_mutexattr_t ∗) ;
13 int pthread_mutex_lock ( pthread_mutex_t ∗) ;
14 int pthread_mutex_unlock ( pthread_mutex_t ∗) ;
15 void pthread_mutex_destroy ( pthread_mutex_t ∗m_lock ) ;
16 int pthread_in i t ( ) ;
17 int pthread_create ( pthread_t ∗ , const pthread_attr_t ∗ ,
18 void (∗ s ta r t_rout ine ) (void ∗) , void ∗) ;
19 int pthread_cond_init ( pthread_cond_t ∗ , const

20 pthread_condattr_t ∗) ;
21 int pthread_cond_wait ( pthread_cond_t ∗ ,
22 pthread_mutex_t ∗) ;
23 int pthread_cond_broadcast ( pthread_cond_t ∗) ;
24 void pthread_barr i e r_in i t ( pthread_barr ier_t ∗ , int ) ;
25 int pthread_barrier_wait ( pthread_barrier_t ∗) ;

Figure 3.8: The set of PThread functions emulate by the acPThread library

All processors start executing the same code in the main function, where the execution
flow is split and the master processor executes the application regular main function
(app_main()), while the others are monitoring the thread queue waiting for a task to
execute.

The acPThread library can be extended to become a microkernel responsible for tasks
such as multithreaded processing and interrupt management, to mitigate the lack of a
more robust operating system.

We adapted a total of 17 different applications from well known benchmark suites to
be configurable at runtime and execute in a scalable parallel environment.

MPSoCBench has 7 applications from ParMiBench [57] benchmark:

Basicmath: For benchmarking mathematical calculation, like cubic function solving, an-
gle conversions from degrees to radians, and integer square root; the parallelization
is done by data partitioning.

Dijkstra: It calculates the all-pairs shortest paths in a graph represented by an adjacency
matrix, using a data decomposition strategy in such a way that one processor handles
one vertex to get its single-source shortest paths.

SHA: It implements the Secure Hash Algorithm, useful to generate digital signatures
used in the secure exchange of cryptographic keys; each processor calculates the
digest of a text from a different input file; all processors store the generated data in
a unique output file.
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FFT: Fast Fourier Transform (FFT); the data set consists of the complex data points
to be transformed, and another complex data points referred to as the roots of
unity; communication occurs in three matrix transpose steps, which require all-to-
all interprocessor communication.

LU: It factors a dense matrix into the product of a lower triangular and an upper trian-
gular matrix. The dense n × n matrix A is divided into arrays of blocks that are
allocated locally to processors.

Water: It evaluates forces and potentials that occur over time in a system of water
molecules. Its original version has the limitation to running on up to 16 cores;
however, to run this application in a 16-core platform, it is necessary to update the
input size in the source code directly.

Water-spatial: It solves the same problem as Water, but uses a more efficient algorithm.
Its original version has the limitation to running on up to 16 cores

Five multi-applications software adapted from MiBench [52]:

Multi-network-automotive: Four different single-core applications from the Network
and Automotive categories, compiled to run on a platform with four processors:
Dijkstra, Susan-corners, Basicmath, and Qsort.

Multi-office-telecomm: Four different single-core applications from the Office and Telecomm
categories compiled to run on a platform with four processors: Stringsearch-PBM,
Stringsearch-BMH, ADPCM, and FFT.

Multi-security: Four different single-core applications from the Security category com-
piled to run on a platform with four processors: SHA, Rijndael-encoder, Rijndael-
decoder, and Blowfish.

Multi-8: Eight applications compiled to run on 8-core platforms. The applications are
SHA, Rijndael-encoder, Rijndael-decoder, Blowfish, Stringsearch-PBM, Stringsearch-
BMH, ADPCM, and FFT.

Multi-16: Sixteen different single-core applications compiled on 16-core platforms: Adpcm-
decoder, Adpcm-encoder, Basicmath-angle, Basicmath-Cubic, Basicmath-Sqrt, Bit-
Count, Blowfish-decoder, Blowfish-encoder, Dijkstra, FFT, Rijndael-decoder, Rijndael-
encoder, SHA, Stringsearch-BMH, Stringsearch-PBM, and Susan-corners.

All MPSoCBench applications can be divided into two groups: the parallel applications
in the Cooperative group explore cooperative parallelism, solving tasks that can be
broken down into subtasks able to run in a multicore cooperative environment; therefore,
we may expect a strong concurrency in applications inside this group. The software based
on cooperative parallelism are: Basicmath, Dijkstra, SHA, Stringsearch, Susancorners,
Susanedges, Susansmoothing, FFT, LU, Water, Water-spatial, and Multi-parallel. Inside
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the Multi group, we have adapted several different benchmarks that run independently,
with no shared resources, which are: Multi-network-automotive, Multi-office-telecomm,
Multi-security, Multi-8, and Multi-16.

We released MPSoCBench as a full set of platforms and software and encourage users
to enhance and increase it as required. New software design methodologies could be
applied such as Transactional Memories, Scratchpad Memories placement, and Real Time
software.

3.3 Timing Model for Communication

The MPSoCBench system simulators follow two TLM2 timing models depending on the
choice of the interconnection mechanism. The Cross-bar and the NoC-LT are consistent
with the TLM2 Loosely-Timed coding style and the NoC-AT conform the Approximately-
Timed coding style.

Loosely-timed (LT): The loosely-timed coding style uses the TLM2 blocking transport
interface, which allows only two timing points to be associated with each transaction,
corresponding to the call to and to the return from the blocking transport function. The
first timing point marks the beginning of the request, and the second marks the beginning
of the response. These two timing points could occur at the same simulation time or at
different times [1].

The loosely-timed coding style is appropriate for software development using a virtual
platform model of an MPSoC, where the accuracy of communication timing is not a
crucial issue.

The loosely-timed coding style also supports temporal decoupling, where individual
SystemC processes are allowed to run ahead in a local simulation cycle without actually
advancing simulation time until they reach the point when they need to synchronize
with the rest of the system. Temporal decoupling can result in very fast simulation for
certain systems because it increases the data and code locality and reduces the scheduling
overhead of the simulator. Each process is allowed to run for a certain time slice or
quantum before switching to the next, or instead may yield control when it reaches an
explicit synchronization point.

The ArchC uses the TLM2 quantum-keeper [1] mechanism to construct simulators with
temporal decoupling. The user can set the amount of time that the the processor simulator
can execute without synchronize with the other components (quantum). Once it reached
the synchronization point, the wait() function is called, returning the simulation control to
the SystemC kernel that suspends the simulator, allowing to simulate the next component.
Figure 3.10 shows an example of a calling using the blocking transport interface. The
Initiator starts a new request at 100ns and passes through the transaction the timing
argument at 0ns. The Target responds the request updating the timing parameters,
according with its own timing information. The simulation time will be properly updated
only at the next synchronization point.
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frequency instrumentation for Xilinx (Spartan and Virtex), Altera (Cyclone and Stratix)
FPGAs, and OpenPDK 45nm ASIC.

• For MIPS:

– Xilinx SPARTAN-3 XC3S1200e 100Mhz

– Xilinx SPARTAN-6 XC6SLX75 100Mhz

– Xilinx Virtex-4 XC4VLX15 100Mhz

– Xilinx Virtex-5 XC5VLX50T 100Mhz

– Altera 25Mhz

– Altera CycloneV 50Mhz

– Altera CycloneV 100 Mhz

– Altera Stratix III EP3SL50 100Mhz

– FreePDK ASIC 45nm at 50Mhz, 125Mhz, 250Mhz, and 400Mhz

• For SPARC:

– Xilinx SPARTAN-3 XC3S1000 40Mhz

– Xilinx SPARTAN-3 XC3S1200e 40Mhz

– Xilinx SPARTAN-3 50Mhz

– Xilinx Virtex-5 XC5VLX50T 40mHZ

– Xilinx SPARTAN-6 XC6SLX75 40Mhz

– FreePDK ASIC 45nm at 50Mhz, 125Mhz, 250Mhz, and 400Mhz



C
H

A
P

T
E

R
3
.

M
P

S
O

C
B

E
N

C
H

50

Table 3.2: Energy characterization per MIPS instructions

Instr.Name
Energy (pJ)

Instr.Name
Energy (pJ)

Profile 0 Profile 1 Profile 2 Profile 3 Profile 0 Profile 1 Profile 2 Profile 3
lb 50.480 50.050 45.400 42.200 lbu 42.440 41.940 41.580 38.570
lh 48.900 48.510 45.760 43.200 lhu 44.850 44.270 43.550 41.590
lw 41.630 41.420 41.210 38.960 lwl 41.630 41.420 41.210 38.960
lwr 41.630 41.420 41.210 38.960 sb 47.830 45.110 41.190 40.730
sh 47.520 44.910 40.980 40.350 sw 35.530 35.090 34.770 34.690
swl 35.530 35.090 34.770 34.690 swr 35.530 35.090 34.770 34.690
addi 58.270 47.530 47.460 48.120 addiu 58.630 48.690 47.710 48.370
slti 41.000 40.540 40.060 39.720 sltiu 40.780 40.390 39.830 39.600
andi 37.630 37.320 36.680 36.610 ori 48.160 50.400 51.640 45.060
xori 53.010 48.170 47.180 44.360 lui 41.630 41.420 41.210 38.960
add 62.720 43.240 38.690 43.780 addu 61.980 43.270 38.660 43.580
sub 62.720 43.010 41.890 42.590 subu 61.840 43.100 41.900 42.690
slt 35.620 35.120 34.780 35.580 sltu 35.510 35.130 34.760 35.480
and 35.630 35.140 34.710 34.550 or 55.310 54.140 43.680 43.870
xor 60.880 42.200 38.930 40.640 nor 53.770 45.130 45.450 47.860
nop 32.970 32.580 32.380 32.280 sll 35.530 35.090 34.770 34.690
srl 35.530 35.030 34.840 34.710 sra 53.470 35.150 49.580 35.360
sllv 33.760 33.380 33.160 33.060 srlv 36.990 43.500 38.560 40.450
srav 60.110 40.480 36.780 41.310 mult 55.110 46.510 42.690 41.230

multu 53.540 46.120 41.980 40.220 div 51.800 50.640 47.640 44.970
divu 54.910 51.300 44.590 44.320 mfhi 33.760 33.380 33.160 33.060
mthi 33.770 33.390 33.160 33.060 mflo 42.420 39.190 37.080 35.710
mtlo 41.800 38.670 36.790 35.630 j 53.540 48.960 39.580 39.840
jal 58.980 53.760 43.170 43.210 jr 44.250 40.490 37.900 35.160
jalr 48.200 39.250 36.710 36.620 beq 52.210 48.470 44.880 45.750
bne 52.210 48.470 44.880 45.750 blez 52.210 48.470 44.880 45.750
bgtz 52.210 48.470 44.880 45.750 bltz 52.210 48.470 44.880 45.750
bgez 52.210 48.470 44.880 45.750 bltzal 52.210 48.470 44.880 45.750

bgezal 52.210 48.470 44.880 45.750
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3.4.1 Caches Power Estimation Model

The cache power model was defined according to the following methodology. We char-
acterized three possible states of energy consumption: idle, reading and writing states.
We use the CACTI tool for characterizing the power in inactive state (Pidle), the energy
consumed in the reading and writing states (Er, Ew) and the access time (Taccess), using
45nm technology. These four values are stored in a file that identifies each cache model.

To calculate the total energy consumed by each cache, we must consider the energy
in activity and inactivity states. For every cache operation (read/write), the energy
consumed and access time are stored in variables. Consider that the Eactive is the energy
consumed by cache operation (op), so the energy consumed when the cache is active is
shown in Equation 3.1:

Eactive =
∑

op=read

Er +
∑

op=write

Ew (3.1)

Tactive represent the time when the cache is active and is calculated summarizing Taccess

of all operations (read/write):

Tactive =
∑
op

Taccess (3.2)

To calculate the energy consumed in inactivity Eidle we multiply the idle power by the
time when the cache is in idle (Equation 3.4). The idle time is calculated subtracting the
total access time (Tactive) of the simulation time (T )(Equation 3.3).

Tidle = T − Tactive (3.3)

Eidle = Pidle ∗ Tidle (3.4)

The total energy Ecache consumed by the cache is obtained adding the energy consumed
when the cache is active and the energy consumed in the idle state (Equation 3.5).

Ecache = Eactive + Eidle (3.5)

When we divide this value by the simulation time, we have the average power of the
cache Pcache as shown in the Equation 3.6.

Pcache = Ecache/T (3.6)

Cache power consumption models take into account active and inactive states (idle
state) during the simulation, in which the power estimation is directly dependent on the
time estimation model. Current efforts are focused on estimating time as precisely as
possible to guarantee accurate cache power estimation.
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shows how to install the MPSoCBench and the tools that it uses, and the Appendix B
demonstrates how to build and run MPSoC simulator with MPSoCBench.

3.6 Conclusion

This chapter introduced the MPSoCBench toolset, which is a configurable and extensible
set of MPSoCs, useful to improve development and evaluation of MPSoC platforms, using
well known methodologies and tools.

MPSoCBench has a large set of platforms, with three different interconnection devices,
easily configurable from 1 to 64 cores of 4 different available processor models, capable
of running 17 different parallel applications. The total combined size reaches 864 distinct
configurations.

The toolset is released as an open-source license, and it is available in two forms: a
virtual machine with all infrastructure ready for use and as source code. Tutorials for
installation of all tools are provided in the MPSoCBench website (http://www.archc.
org/benchs/mpsocbench).



Chapter 4

MPSoCBench Characterization

The goal of this Chapter is to characterize the MPSoCBench and to provide enough
information so that the user can choose which features are most suitable for his/her
purposes. The Chapter is organized as follows:

Section 4.1 compares the four ISAs provided by our tool; Section 4.2 presents network
traffic information comparing distinct interconnections available; Section 4.3 evaluates
memory and caches; Section 4.4 discusses about the time accuracy in the MPSoCBench
simulators; Section 4.5 shows simulation time in hundreds of configurations and discuss
how to improve performance of SystemC simulators; Section 4.6 shows how we can use the
power estimation infrastructure to capture the processor energy and power behavior; and
finally, Section 4.7 describes some usage scenarios in which we expect that MPSoCBench
be used in the future.

4.1 Processor Model Evaluation

As described in Section 3.1.1, MPSoCBench contains four ArchC behavioral processor
models: ARM is the 32-bit ARMv5e instruction set; MIPS is a 32-bit RISC MIPS-I
instruction set; SPARC is a V8 version of the 32-bit SPARC architecture; PowerPC is
a 32-bit version of the Power instruction set. All models include operating system call
emulation. ArchC tools generate SystemC/TLM2-based simulators among other tools
(compilers, assemblers, debuggers,...).

We present in Table 4.1 general information about the architectures and ISAs avail-
able in MPSoCBench. We show the number of general purpose registers in the register
bank, the number of specific purpose registers, the amount of instruction formats, total
implemented instructions of each ISA, and endianness.

As a basic use case, we provide some comparison among the four available ISAs.
As expected, they have fundamental differences and specific optimizations that interfere
directly with the number of instructions executed by each of them. For instance, we
illustrate in this section the number of executed instructions on a platform based on all
four available processors, running all applications.

As there are considerable differences in the magnitude of the numbers shown, we
divide the values into four graphs. First, we show the parallel applications based on
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Router Node
Ports

North South East West Local
R0,0 MEM - 4900135 14532508 - 19431407
R0,1 Lock - 4846811 9690069 1236 5597
R0,2 Intr_Ctrl - 4847121 4842952 11 1
R0,3 DVFS-IP - 4842956 - 14 18
R1,0 P0 19431407 2418446 523 - 2481689
R1,1 P1 5597 2419543 7 7268870 2427268
R1,2 P2 1 2424381 8 2421209 2422740
R1,3 P3 18 2421745 - 2421209 2421211
R2,0 P4 9681371 - 713 - 2418446
R2,1 P5 2736 - 4 7263638 2419543
R2,2 P6 0 - 6 4846122 2424381
R2,3 P7 8 - - 2421743 2421745

Table 4.2: Number of packets transmitted through each Router in a 4x3 NoC-AT with
eight cores, memory, lock, interrupt controller and DVFS-IP

the number of packets transmitted by each network router. All these routing values are
stored at the rundir in a local_report.txt file. Table 4.2 shows in the first and second
columns, twelve routers and their connections with processors or devices. The following
columns show the number of packets transmitted from the router to each one of its ports.
For instance, R0,0 connects the external memory to the network. All 19431407 packets
that passed from the R0,0 to the memory device (through the local memory port) refer to
requests to read/write from/to the memory, and have come from the South port or the
East port for sure (as the memory is at the network top left corner, and we are using XY
routing protocol). If we summarize the total traffic through the R0,0, we obtain 19432643
packets (4900135 through the South port plus 14532508 packets through the East port).
So, part of these packets are requests to the memory (19431407) and the difference (1236
packets) refers to packets that have come from the R0,1 (through its west port), and are
sent to processors through the southern port (probably backward packets that have come
from the LOCK device to the processors).

Table 4.2 clearly shows that there is a considerable increase in traffic over the network
coming from memory, compromising scalability. This is an unavoidable problem in a sys-
tem with a single shared memory. An alternative under development is to use distributed
shared memory. The same situation occurs with other shared IPs such as LOCK, DVFS
and Intr_Ctrl, but the number of accesses to these IPS is significantly smaller than the
number of memory accesses. Therefore, we include in our future work list to distribute
the address space of the system in multiple memories to address scalability.

This section presented the network traffic data obtained from multicore platforms sim-
ulators running several scalable and parallel applications. We showed the requests to the
network and the number of hops to execute this software, and we also presented the num-
ber of packets per router to evaluate the network traffic in a per-router perspective. This
infrastructure makes possible the development and evaluation of new routing algorithms,
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network topologies, packet buffering optimizations, and further specializations to improve
the network performance.

4.3 Memory and Cache Evaluation

Most modern computer systems have at least four independent caches: an instruction
cache to speed up instruction fetch, a data cache to speed up data fetch and store, and
translation lookaside buffers (TLBs) for instructions and data used to speed up virtual-
to-physical address translation for executable instructions and data, respectively. Since
there is no virtual memory system implemented in the ArchC processors, there is no need
for TLB.

To show how the memory hierarchy works in our simulators, we performed several
simulations and used the reports to produce graphics containing cache and memory infor-
mation. We executed 7 applications from the Cooperative group on single-core simulators,
in which we fixed each core one-level data cache to 64 blocks, 8 words per block, and we
varied the associativity at 1-way (or direct mapped), 2-way, 4-way, and 8-way set as-
sociativity. Figure 4.5(a) shows the percentage of read hits in the Instruction Cache.
Figures 4.5(b) and 4.5(c) show the percentage of read hits and write hits in the Data
Cache. As we can see in the graphics, the 2-way set associative cache achieves the best
values for all applications.

To evaluate replacement policies, we simulated the 11 benchmarks on the same plat-
forms using three algorithms: First In First Out (FIFO), Least Recently Used (LRU),
and Random, and we show in Figure 4.5(e) and 4.5(f) the number of blocks replaced. We
divided the values into two figures to improve clarity.

To analyze the scalability, we used a data cache with 512 blocks, 32 words per block,
2-way associative, and performed the same simulations using the FIFO, LRU, and RAN-
DOM replacement policies in several multicore platforms running the Stringsearch bench-
mark. As we can see in the graphics in Figure 4.5(d), the number of block evictions
decreases significantly as we increase the number of cores, because the amount of data
per core also decreases (while the cache size increases since that each core has its own
cache), and the LRU replacement policy causes the fewest number of block evictions.

When we use a data cache in multicore simulators, we automatically enable the cache
coherence protocol. Last level caches are connected to a shared directory (DIR), which is
a device that implements the MSI cache coherence algorithm, enabling the parallel com-
puting with shared resources. To evaluate the impact of using caches in the system, we
simulated platforms with 1-,4-,16-,64-core MIPS, with 2-way set associative write through
instruction and data caches, with FIFO replacement policy, running eleven parallel scal-
able applications, and we plot the number of access to the DIR device is in Figure 4.6. In
these experiments we used only one-level caches.

We leave the implementation of other cache coherence protocols as future work.
These simulator infrastructure aspects are also relevant for educational use in computer

architecture disciplines. Besides being able to assess known techniques, this infrastructure
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Table 4.3: Memory average dynamic power (Watts)

Applications
Number of Cores

1 2 4 8 16 32 64
Basicmath 2.38 2.43 2.38 2.38 1.58 2.70 1.65
Dijkstra 2.16 2.56 2.44 1.76 2.20 1.60 1.66
FFT 2.58 2.58 2.59 2.58 2.58 - -
LU 2.60 2.60 2.59 2.57 2.59 - -
SHA 2.16 2.44 2.08 2.04 1.97 1.56 1.65
Stringsearch 2.56 2.57 2.56 2.57 2.20 1.60 2.56
Susan-corners 2.60 2.70 2.68 2.53 2.53 - -
Susan-edges 2.71 2.56 2.67 2.58 2.56 - -
Susan-smoothing 2.35 2.40 2.25 2.13 - - -
Water 2.55 2.57 2.54 2.48 2.47 - -
Water-spatial 2.60 2.76 2.56 2.51 - - -
Multi-parallel - - 2.51 2.5 2.52 2.51 1.59

ARM ARM9E-S [67]
MIPS MIPS32 M5150 Processor Core Family [69]
PowerPC PowerPC 405TM Core [31]
SPARC UT699 LEON 3FT/SPARCTM V8 MicroProcessor [47]

NoC-AT Routers
5 cycles for arbitration
2 cycles per flit

Lock 2 nanoseconds
DVFS 2 nanoseconds
Interruption Controller 5 nanoseconds

Caches
2-way, 64 blocks, 32 words per block
Access time: 0. 0.60096 ns
Random cycle time: 0.30567 ns

Table 4.4: Timing Information

MPSoCBench has platforms at different abstraction levels, which is useful to explore
the trade-off between performance and accuracy. When we connect processor models
using the NoC-AT routers, we can expose system timing values combining the advantages
of the TLM2 approximately timed coding style (high accuracy) in a system level simulator
(high performance).

4.5 Simulation Performance

The simulation time directly affects the life cycle of a project; thus, one of the main focus
in system design is the study on how to accelerate simulation. SystemC simulation kernel
is sequential and can not run tasks in parallel using multiple cores.

Based on this, as we increase the number of components in a virtual platform, we also
increase the simulation time. To show that this increase does not make unfeasible the use
of the MPSoCBench multicore simulators, we show the simulation time of hundreds of
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Table 4.5: Average simulation time, in seconds, for three distinct execution of each soft-
ware on each platform using the router interconnection device, PowerPC and MIPS pro-
cessors

Applications PowerPC MIPS

01 02 04 08 16 32 64 01 02 04 08 16 32 64

C
o
o
p
e
r
a
t
iv

e

basicmath 2 3 5 11 21 56 139 2 3 5 10 21 54 121

lu 13 18 29 57 116 - - 11 16 25 21 103 - -

sha 1 2 3 7 14 36 127 1 2 4 8 17 45 146

water 25 38 54 73 303 - - 32 33 49 67 275 - -

dijkstra 1 1 2 2 5 13 40 1 1 1 2 5 13 42

fft 24 32 51 93 173 - - 21 29 44 80 152 - -

stringsearch 19 19 20 21 23 28 45 29 29 30 30 31 35 44

susancorners 17 18 19 21 29 66 - 19 20 20 21 30 65 -

susanedges 33 42 48 53 59 114 - 35 44 50 55 58 109 -

susansmoothing 100 101 107 138 - - - 19 20 20 27 - - -

water-spatial 248 250 261 264 - - - 217 218 223 234 - - -

M
u
lt

i

multi_p - - 22 42 113 641 2170 - - 27 53 110 592 2046

multi_office_telecomm - - 68 - - - - - - 202 - - - -

multi_net_automotive - - 115 - - - - - - 69 - - - -

multi_security - - 381 - - - - - - 355 - - - -

multi_8 - - - 542 - - - - - - 512 - - -

multi_16 - - - - 940 - - - - - - 729 - -

4.5.1 Interconnection Evaluation

We have compared the simulation time on multicore platforms using the three different
interconnection mechanisms in multicore PowerPC platforms running 11 applications from
the cooperative group. Since the Router is the simpler and faster interconnection, we
compare the simulation time using the NoC-AT and the Router in Figure 4.11 and the
NoC-LT and Router in Figure 4.12. We use the Router simulation time as the baseline
in both cases.

As expected, the simulation time on platforms using the approximately timed coding
style increases faster than using loosely timed coding style because of a large number of
SystemC threads required to simulate the NoC nodes and wrappers, and consequently, the
high number of context exchange between them. The Stringsearch benchmark presents the
worst slowdown, due to a large number of memory accesses to read its input strings; the
simulation time of this benchmark on 64-core platforms with NoC-AT as interconnection
is 34× greater than on 64-core platforms with Router.

Considering that there are differences in accuracy and performance in MPSoCBench
platforms mostly based on the choice of the interconnection mechanism, we propose dif-
ferent use cases for each of them in Table 4.11:
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Table 4.6: Average simulation time, in seconds, for three distinct execution of each soft-
ware on each platform using the router interconnection device, SPARC and ARM proces-
sors

Applications SPARC ARM

01 02 04 08 16 32 64 01 02 04 08 16 32 64

C
o
o
p
e
r
a
t
iv

e

basicmath 2 6 10 17 36 78 192 2 3 9 10 21 48 133

lu 23 29 44 87 174 - - 26 33 49 94 188 - -

sha 1 2 3 7 16 42 143 1 2 4 9 20 52 174

water 40 38 52 72 297 - - 45 44 62 84 323 - -

dijkstra 1 1 1 2 6 15 46 1 1 1 2 5 12 45

fft 32 43 66 119 215 - - 39 54 86 143 261 - -

stringsearch 21 22 22 23 24 28 38 29 29 29 30 31 35 45

susancorners 28 28 29 30 39 72 - 26 26 27 30 39 72 -

susanedges 83 104 118 143 136 221 - 57 69 78 84 90 160 -

susansmoothing 33 33 38 52 - - - 20 20 22 30 - - -

water-spatial 351 353 369 380 - - - 209 198 211 233 - - -

M
u
lt

i

multi_p - - 25 54 125 520 1707 - - 30 57 115 227 491

multi_office_telecomm - - 199 - - - - - - 100 - - - -

multi_net_automotive - - 87 - - - - - - 89 - - - -

multi_security - - 348 - - - - - - 412 - - - -

multi_8 - - - 438 - - - - - - 555 - - -

multi_16 - - - - 560 - - - - - - 562 - -

Table 4.7: Average simulation time, in seconds, for three distinct execution of each soft-
ware on platforms using the NoC-LT, PowerPC and MIPS processors

Applications PowerPC MIPS

01 02 04 08 16 32 64 01 02 04 08 16 32 64

C
o
o
p
e
r
a
t
iv

e

basicmath 2 3 5 11 27 82 224 2 3 6 12 27 66 194

lu 22 31 54 121 272 - - 20 26 45 100 224 - -

sha 1 3 6 13 28 76 270 1 3 6 12 28 78 269

water 59 62 94 144 702 - - 51 52 79 118 623 - -

dijkstra 1 2 2 5 11 32 81 1 2 2 3 8 25 91

fft 31 48 84 167 1058 - - 16 39 67 134 270 - -

stringsearch 34 35 36 40 47 64 125 51 50 51 57 65 80 128

susancorners 27 28 31 36 56 143 - 29 30 36 37 54 129 -

susanedges 56 71 90 117 139 314 - 59 77 85 111 121 270 -

susansmoothing 168 168 186 277 - - - 33 35 36 53 - - -

water-spatial 398 406 451 480 - - - 348 347 361 400 - - -

M
u
lt

i

multi_p - - 34 79 193 900 4041 - - 31 86 234 380 3743

multi_office_telecomm - - 97 - - - - - - 274 - - - -

multi_net_automotive - - 174 - - - - - - 108 - - - -

multi_security - - 558 - - - - - - 507 - - - -

multi_8 - - - 828 - - - - - - 766 - - -

multi_16 - - - - 953 - - - - - - 1611 - -
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Table 4.8: Average simulation time, in seconds, for three distinct execution of each soft-
ware on each platform using the router interconnection device, SPARC and ARM proces-
sors

Applications SPARC ARM

01 02 04 08 16 32 64 01 02 04 08 16 32 64

C
o
o
p
e
r
a
t
iv

e

basicmath 2 5 9 20 45 101 264 2 3 6 13 30 69 210

lu 33 48 74 169 380 - - 44 56 91 189 402 - -

sha 1 2 5 11 26 73 264 1 3 7 15 33 96 336

water 83 78 119 175 874 - - 110 118 173 242 1040 - -

dijkstra 1 2 2 4 9 29 102 1 2 2 3 8 23 97

fft 38 57 94 185 375 - - 54 80 132 237 458 - -

stringsearch 37 37 39 43 49 67 120 49 48 50 56 61 80 -

susancorners 46 47 51 58 81 164 - 42 44 49 58 82 166 -

susanedges 125 160 203 361 376 522 - 91 119 149 185 204 443 -

susansmoothing 52 53 60 91 - - - 35 37 41 59 - - -

water-spatial 502 512 529 591 - - - 752 777 835 938 - - -

M
u
lt

i

multi_p - - 36 91 185 785 2279 - - 45 90 191 428 1014

multi_office_telecomm - - 250 - - - - - - 147 - - - -

multi_net_automotive - - 118 - - - - - - 140 - - - -

multi_security - - 471 - - - - - - 581 - - - -

multi_8 - - - 994 - - - - - - 837 - - -

multi_16 - - - - 866 - - - - - - 938 - -

Table 4.9: Average simulation time, in seconds, for three distinct execution of each soft-
ware on each platform using the NoC-AT, PowerPC and MIPS processors

Applications PowerPC MIPS

01 02 04 08 16 32 64 01 02 04 08 16 32 64

C
o
o
p
e
r
a
t
iv

e

basicmath 6 14 33 78 205 510 1472 5 11 21 54 138 394 1531

lu 69 105 165 404 884 - - 50 78 123 276 622 - -

sha 1 15 34 96 287 1063 1169 1 15 35 97 296 1090 4905

water 166 205 319 483 2851 - - 168 193 299 466 2059 - -

dijkstra 5 6 11 27 82 244 1022 5 6 12 25 64 247 1019

fft 96 165 265 569 1176 - - 73 130 206 415 871 - -

stringsearch 34 35 36 40 47 64 125 51 50 51 57 65 80 128

susancorners 27 28 31 36 56 143 - 29 30 36 37 54 129 -

susanedges 56 71 90 117 139 314 - 59 77 85 111 121 270 -

susansmoothing 168 168 186 277 - - - 33 35 36 53 - - -

water-spatial 398 406 451 480 - - - 348 347 361 400 - - -

M
u
lt

i

multi_p - - 34 79 193 900 4041 - - 31 86 234 380 3743

multi_office_telecomm - - 555 - - - - - - 1064 - - - -

multi_net_automotive - - 459 - - - - - - 436 - - - -

multi_security - - 2837 - - - - - - 2634 - - - -

multi_8 - - - 3990 - - - - - - 4107 - - -

multi_16 - - - - 10861 - - - - - - 7533 - -
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• Running several simulators concurrently in a cluster, which is the alternative that
matches perfectly with MPSoCBench.

• Simulating SystemC threads in parallel in a multicore environment, modifying the
SystemC kernel to create a parallel simulation based on discrete events. We explored
this approach in [34]. Although effective, this technique has a significant inconve-
nient: when we modify the kernel, there is no guarantee that models implemented
according to the regular kernel run over the new one properly. Because of that, the
community tends to be conservative and do not accept kernel modifications easily.

• Running simulations in clusters or multicore environment encapsulating components
in a Linux process that can be scheduled over distributed cores; this technique is
detailed in [43] and has the main advantage is that there is no need to modify the
SystemC Kernel or models.

We consider that MPSoCBench is a good simulation infrastructure to evaluate any of
these techniques since it has a large and scalable set of SystemC threads and processes,
and a significant set of applications to explore them.

4.6 Power Estimation Evaluation

ArchC has power models for SPARC and MIPS processors validated in [50], which were
implemented based on the open source LEON3 and Plasma RTL models using Pow-
erSC [59] and acPower [50]. We integrate these power models into the MPSoCBench
platforms to summarize the power consumption in a multicore environment.

Figure 4.13 shows power profiles generated by MPSoCBench running 15 applications in
dual-core and quad-core platforms. These power profiles allow designers to optimize both
software and hardware during early design stages. All graphics show only the processor
power consumption, so we can analyze the phases of the processor without considering
the network or caches. We set the processor frequency to 400Mhz without DVFS and the
parameter START_WINDOW_SIZE with 10000 in the power configuration file, which
means that the power is summarized each 10000 instructions. We do not show graphics
with more than four cores because there is an overlap of lines, which do not allow good
visualization and analysis of results.

It is possible to observe different phases performed by each core. For example, the
large number of memory accesses to allocate and initialize the input variables causes
the clear difference in power consumption of the two cores in the Figure 4.13(e). This
setup phase is performed by one of the cores while the other is waiting in a barrier. The
same behavior can be observed in several applications (Figures 4.13(b), 4.13(f), 4.13(g),
4.13(h), among others).

In contrast, the power consumption in Figure 4.13(a), which represents the behavior
of the Basicmath application, reflects a large number of mathematical operations carried
out over a small statically allocated amount of data.

Besides the average power, we can measure the platform energy consumption, which
consist of a important metric for system energy efficiency evaluation. We estimated the
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Introducing power estimation impacted the simulator performance. The average slow-
down simulating all applications in multicore platforms is up to 5% in single core platforms
to 25% in 64-core platforms.

4.7 Other Usage Scenarios

As the MPSoCBench full source code was released, we expect to grow a community of
researchers taking advantage of this infrastructure. We list in the next paragraphs possible
usage scenarios of MPSoCBench.

Accelerators Design: Scalability is always an issue, but new cores may not be enough
to provide the necessary speedup for a new system. In such scenario, accelerators could
become the solution. By having a configurable network-on-chip, processor models could
be exchanged for specific accelerators. Designing and evaluating such accelerators is easier
with the MPSoCBench infrastructure.

Memory Organization: Non-uniform memory architectures could be evaluated on
larger platforms like the 64-core configurations. Memory and last level cache placement
could also be evaluated.

New Interconnection Structures: Designing a new interconnection requires a big
infrastructure to evaluate parameters, dimensions, performance, power, and so on. MP-
SoCBench scalability to 64-cores makes it easy to evaluate such designs. By changing the
software or using one of the multi-software configurations, designers could easily evaluate
quality of service. MPSoCBench allows NoC evaluation with real traffic.

Heterogeneous platforms and DVFS Support: We designed MPSoCBench to have
both small and big instances so that new trends and technologies could be easily explored
in the small instances while being validated in the big ones. The execution script also
allows using a cluster of computers to spread the simulation so that the total execution
time is reduced. This resource opens up opportunities on big-LITTLE architectures, and
ESL tools exploration. MPSoCBench allows designers to build platforms with multiple
types of processing elements, each able to perform tasks that it is best suited for. It is
also possible to use different ISAs in the same MPSoC, with up to 64 cores, in which
each core performs an independent application or cluster cores to cooperate in the same
application.



Chapter 5

Dynamic Voltage and Frequency

Scaling

Energy consumption constraints have become a critical issue in MPSoC design. Whereas
processor performance comes with a high power cost, there is an increasing interest in
exploring the trade-off between power and performance, taking into account the target
application domain.

Dynamic Voltage and Frequency Scaling (DVFS) techniques adaptively scale the CPU
frequency level or voltage supply allowing it to reach just enough performance to pro-
cess the system workload while meeting throughput constraints and, thereby, reducing
the energy consumption. To explore this wide design space for energy efficiency and
performance, both for hardware and software components, a system-level simulation in-
frastructure must provide features to evaluate power savings mechanisms in early design
stages [51].

Unfortunately, summarizing the exact energy consumption of a system depends on the
final chip layout. Based on this premise, traditional methods require hardware simulation
at the gate level, which is only available at the end of the design flow. Although accurate,
this methodology needs long synthesis and simulation time, making it unfeasible for early-
stage evaluations. To overcome this limitation, a fast methodology is required to extract
the energy consumption of processors and other components on system level simulators
and enable designers to explore energy as early as possible.

This chapter presents the DVFS support in the MPSoCBench, including power model
for the principal components, and evaluates DVFS mechanisms based on energy estimation
and CPU-usage rate. The results show that using the DVFS mechanism based on the
energy consumption or the CPU workload metrics, can save energy with insignificant loss
of performance. More specifically, the main contributions of this part of the thesis are the
following:

• To validate dynamic voltage and frequency scaling techniques, we added the no-
tion of voltage and frequency domains to MPSoCBench, as well as the simulation
infrastructure that manage frequency scaling;

• We extended the MPSoCBench platforms with a DVFS IP for global power control
and a local DVFS controller per core, capable of switching the core frequency;
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• As a consequence of frequency switching, we ensured that the correct power data
are used to estimate the consumed energy per-instruction;

• We included power estimation for Data and Instruction Caches, as well as we applied
a power model for NoCs based on the RTL-NoC;

• We proposed and evaluated three DVFS techniques;

• We showed that these extensions can be used to run accurate full-system power
efficiency studies while not significantly compromising the simulator performance;

This chapter is organized as follows: Section 5.1 shows the overall infrastructure of
the MPSoCBench to support DVFS; Sections 5.2, 5.3 and 5.4 describe three DVFS tech-
niques implemented, Section 5.5 evaluates these techniques using the MPSoCBench, and
Section 5.6 concludes the chapter.

5.1 Overall Energy Infrastructure

DVFS is commonly implemented through power states (C-States and P-States). C-states
are idle states and P-states are operational states, both including the frequency and volt-
age that the CPU operates. Although the MPSoCBench DVFS infrastructure supports
both frequency and voltage scaling, available input power tables contain only frequency
variations using FPGAs and ASICs. Thus, all experiments we present in this text use
only frequency changes. It is part of our future work to include power tables considering
changes in both power domains and also encourage the community to do so as well.

By extending MPSoCBench with DVFS, we provide the flexibility to assign clock
frequency and voltage to the system. From the hardware perspective, we introduce a new
global DVFS IP to manage the P-State in which each core operates, and local DVFS
controllers (per-core) to manage the power state information for each core. A power state
encapsulates energy per instruction considering frequency and voltage domain. Figure 5.1
show the system architecture, including the per-core DVFS controller and the global DVFS
IP.

The global DVFS IP is initialized with the available C-States and P-States for all
cores, and it can manage them globally. It is in the system address space and allows
any core to change the state of another core in the system. To perform this mechanism,
the global IP sends messages to the local per-core controller that ultimately changes
the core’s power state. Applications can interact with the global DVFS IP through the
pthread_changePowerState() acPThread method.

Each per-core DVFS controller has information about all available power states, and
is the responsible for performing the frequency switching activities. Each power table
contains:

• Number and description of all available power states (Frequency, Voltage, Scales);

• Description of the platform used in the characterization process;
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Considering both energy and delay of the applications, we propose an energy manage-
ment technique, which leverages on the trade-off between energy/power consumption and
performance.

We introduce the idea of DVFS auto-selection mode in which the best frequency is
selected by the per-core DVFS controllers, without software management. The key idea is
to create the infrastructure to implement new DVFS mechanisms and techniques, without
the need of knowing the ArchC processor details. This mechanism is based on the energy
consumption profiling at the beginning of the simulation. We adopted the model described
bellow:

• The system has n cores;

• Each core has m power states (or m different power tables obtained in a previous
characterization process, one power table per available frequency/voltage in the
selected ASIC/FPGA technology);

• We established the SWITCHING_TIME=20 µs as the latency for a frequency tran-
sition (based on the previous work in [90]);

• Each power table has the EPI (Energy per Instruction (nJ)) value for each available
instruction of the core instruction set;

• For each processor we define F = {f0, f1, ..., fm} as the set of its available frequen-
cies;

• ∆T is a time step used in the evaluation phase to evaluate the energy consumption
behavior of cores;

• Instr∆T
is the amount of instructions executed in ∆T units of time

Initialization Phase: Before starting the simulator, the power information for each
profile of each core is stored in the DVFS data structures and the frequency of each
processor in the platform is initialized, by default, to the first available frequency.

Evaluation Phase: Each core simulator runs for ∆T units of time at each frequency
f , and calculates the Energy Stamp (ES) metric as follows:

ESf =
(
∑

∆T
EPI)

Instr∆T

(5.1)

The
∑

∆T
EPI is the sum of the energy (in Joules) in ∆T units of time. The ES

metric is based on the Energy Delay Product (EDP), which is an important metric for
evaluating energy saving widely used since defined in [54].

At the end of the evaluation phase, the DVFS controller of each core selects the
frequency f as the best choice based on the minimum ES as follows:

ESf = min{ESj}, 1 ≤ j ≤ m (5.2)

Execution Phase: Energy consumption for each core can change during simulation
time based on the executed instructions and memory/IO delays. Therefore, the choice of
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∆T is relevant to improve the mechanism efficiency. Most of the MPSoCBench applica-
tions have hundreds of millions of instructions, and we can explore a significant part of
the application to make the best choice of frequency per core.

Applying DVFS-ES, the average power improvement varies between 1,8% to 85,42%,
and 14,4% maximum energy saving in applications based on cooperative parallelism. The
experiments are described in detail in Section 5.5.

5.4 DVFS based on the CPU usage rate (DVFS-CPU)

To explore DVFS techniques in parallel applications consisting of different workloads, we
define an auto-selection and adaptive DVFS mechanism to achieve energy saving based
on the CPU workload.

This DVFS technique explores core energy efficiency based on the dynamic evaluation
of the CPU usage rate. This mechanism uses the following additional information:

• The system has n cores;

• Each core has m power states (or m different power tables obtained in a previous
characterization process, one power table per available frequency/voltage in the
selected ASIC/FPGA technology);

• We established the SWITCHING_TIME=20 µs as the latency for a frequency tran-
sition (based on the previous work in [90]);

• Each power table has the EPI (Energy per Instruction (nJ)) value for each available
instruction of the core instruction set;

• For each processor we define F = {f0, f1, ..., fm} as the set of its available frequen-
cies;

• For each available frequency fj (0 ≤ j < m), we define:

– Lj as a lower bound for the CPU usage related to the frequency j, and

– Hj as an upper bound for the CPU usage related to the frequency j;

• max_rate: maximum CPU usage rate in ∆T units of time

• min_rate: minimum CPU usage rate in ∆T units of time

• ∆T is a time step used in the evaluation phase to evaluate the energy consumption
behavior of cores;

In this mechanism, the initialization phase is identical to the energy stamp technique
discussed earlier, adding the initialization of the lower and upper limits for each frequency
available for each processor.

The metric that supports this mechanism is the CPU usage rate (cpu_rate) during
execution. For every ∆T units of time, the DVFS controller calculates the CPU usage
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rate based on the time waiting for memory operations (or another IP) (cpu_wait_time)
and the current simulation time.

The waiting time is easily obtained by computing the difference between the time
at the beginning of a request to the network (treq) and the time that the request was
answered (tresp). This metric strongly correlates with the processor CPI.

We calculates the CPU wait time for each processor as follows: for each request r done
by the processor to the network, at the first ∆T units of time, we define:

cpu_wait_time∆T
=

∑
w

(t_respw − t_reqw), (5.3)

Therefore, the core usage rate (cpu_rate∆T
) is obtained based on the ∆T and the

cpu_wait_time:

cpu_rate∆T
=

∆T − cpu_wait_time∆T

∆T

(5.4)

This mechanism avoids the Evaluation Phase. During the execution phase, every ∆T

units of time, the DVFS controller uses the cpu_rate to verify if it is necessary switch
each processor frequency, following the basic steps:

• Consider that the core runs at frequency j;

• If cpu_rate is in the interval Lj and Hj, do not change frequency;

• Otherwise, find the frequency f in which the interval Lf and Hf contains the actual
core usage rate (cpu_rate);

Applying DVFS-SPU, the average power improvement varies between 0,45% to 38,04%,
and 21,3% maximum energy saving in applications based on cooperative parallelism. The
next section presents the experiment details.

5.5 DVFS Evaluation

This section shows experiments and results of the DVFS techniques previously presented.
For these experiments, we choose power information obtained through the ASIC FreePDK
45nm technology at 50Mhz, 125Mhz, 250Mhz, and 400Mhz. We simulated the platform
using different combinations of frequency with and without DVFS mechanisms and com-
pared the average power and energy consumption. DVFS-SW represents the simulation
with DVFS managed by software; DVFS-ES represents the simulation with DVFS based
on Energy Stamp; the DVFS-CPU represents the simulation with the technique based on
the CPU usage-rate. These three DVFS mechanisms were evaluated independently using
the following parameters:

• DVFS-SW: this mechanism chooses between two different frequencies, which we
call LOW (50Mhz) and HIGH (400Mhz). The master starts at 400Mhz, and the
workers are maintained at 50Mhz while they do not have jobs to execute. Without







CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING 85

Table 5.2: Average power saving with DVFS

Applications
Average power saving

DVFS-SW DVFS-ES DVFS-CPU
Basicmath 14,8% 67,5% 31,7%
Dijkstra 33,3% 41,7% 20,4%
FFT 4,8% 85,4% 2,0%
LU 0,2% 43,5% 4,3%
SHA 65,2% 75,2% 35,8%
Stringsearch 45,6% 63,6% 17,3%
Susan-corners 37,8% 82,9% 12,9%
Susan-edges 52,8% 65,3% 3,6%
Susan-smoothing 39,7% 75,4% 1,5%
Water 0,1% 0,3% 0,4%
Water-spatial 1,6% 1,8% 2,5%
Multi-parallel 52,9% 50,6% 38,0%

The improvement achieved is significantly greater in applications that explore cooper-
ative parallelism, in which it is possible to take advantage of the several synchronization
points to save energy. The reason for such low gains when we use FFT, LU, Water, and
Water-spatial (all from SPLASH-2 [96] applications) is that more than 98% of the time is
spent running the thread code in a HIGH power state, which does not take advantage of
the power gating technique. We omitted results for Multisoftware applications, in which
the processors run threads independently and there are no synchronizing points among
them, the improvement is negligible (varying from 0,1% to 2%).

To clarify a possible confusion regarding the classification of applications, we observe
that although the Multi-parallel application has four software running independently at
the same time, each one of them performs tasks in a multithreaded and scalable en-
vironment from a cooperative perspective. Therefore, the Multi-Parallel application is
considered in the Cooperative Group.

The graph in Figure 5.6 illustrates different phases using a dual-core MIPS platforms
when using DVFS-SW. While the core 0 is preparing the inputs in a HIGH power state
(400Mhz) at the beginning of the simulation, core 1 is in a barrier in a LOW power
state (50Mhz). When the threads are ready to execute, both cores reach 400MHz while
executing the thread code; at the end of the thread code, the core 1 switches frequency
to 50Mhz and waits in a barrier for new jobs.

In the second evaluation approach, we choose the multi-parallel applications, which
groups four multithreaded applications to assess more carefully how DVFS mechanisms
behave when compared with several frequency combinations in 16-cores environments. In
the simulations without DVFS, we manually initialized the cores using a combination of
frequencies and disabled the DVFS mechanism. The notation MX/Y/Z/W means that
we initialize manually (M) the cores using the X,Y,Z, and W frequencies as balanced as
possible. For instance, in a 16-core platform, the notation M50/125/250/400 means that
4 cores were manually configured at 50Mhz, 4 cores at 125Mhz, 4 cores at 250Mhz and 4
cores at 400Mhz.
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10,7% for DVFS-ES, and 11,2% for DVFS-CPU when we compared to simulators with no
power estimation.

Applying DVFS, we could improve the average power for running all applications, with
significant gains in applications that better explore cooperative parallelism. Comparing
the proposed approaches with 15 simulations without DVFS configured manually with
several frequencies combinations, it was possible to save energy in all of them using DVFS-
CPU, and in 14 of them with DVFS-SW and DVFS-ES.



Chapter 6

Conclusion

This thesis introduced the MPSoCBench open-source toolset, which is a scalable, con-
figurable, and extensible set of MPSoCs, useful to improve development and evaluation
of the MPSoC ecosystem, using well-known methodologies and tools. MPSoCBench has
a large set of platforms, each with a different interconnection device, easily configurable
from 1 to 64 cores of 4 different available processor models, capable of running 17 dif-
ferent parallel applications. The total combined size reaches 864 distinct configurations,
and this number can be even larger if we consider parameters to configure caches, power
estimation, and DVFS algorithms.

We characterized the simulation time, timing, network traffic, caches and memory ac-
cess, and power consumption for different configurations. The results demonstrated that
the tool set is a viable alternative to evaluate MPSoC new tools and methodologies and
to explore the design space of MPSoCs in different levels, making possible to compare
the feasibility of an MPSoC design from the perspective of performance achieved and to
estimate the cost considering physical parameters, like area for each component, manu-
facturing process, and power dissipation. The experiments also showed that the toolset
presents architectural scalability while exploring a vast amount of parameters.

We also evaluated power models for hardware components of many-core systems and
the support for dynamic frequency scaling techniques in the MPSoCBench. We introduced
three different DFS mechanisms into its simulators, providing the simulation infrastruc-
ture to cover three important demands in energy efficiency studies: software managed
DVFS, DVFS based on the energy consumption estimation, and DVFS based on the
CPU workload.

We evaluated these mechanisms and showed that these extensions enable power effi-
ciency evaluation in high-level system simulators at the earlier design stages keeping a
small overhead on the simulator performance. Our software-based approach achieved up
to 15.9% energy saving in platforms with 16 cores and obtained improvement in 14 of
15 manual configurations. We compared the other two auto-selection techniques using
energy, time and EDP parameters. The auto-selection mechanism based on the Energy
Stamp metric could save energy up to 14,4% in 14 of 15 manual configurations, decreasing
performance by, at most, 3%; the DFS based on CPU usage rate reached the maximum
of to 21,3% of energy improvement, and saved energy in all manual configuration with
slowdown up to 4%.
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We describe various scenarios in which we expect the usage of the MPSoCBench
configurable and extensible simulation suite:

• Implementation and evaluation of new tools or methodologies in MPSoC designs,
or comparisons between different tools in a similar environment;

• Development and monitoring design refinements for lower abstraction levels, which
is an important need in the Electronic System Level designs;

• Evaluation and comparison of parallel applications using various techniques for par-
allelization and scalability characterization;

• Analysis and optimization of new hardware components, such as routers, buses,
NoCs, IPs, and wrappers, in a co-design environment;

• Comparisons among different techniques for power consumption estimation, and
dynamic characterization of program power consumption considering different power
models;

• Power consumption analysis and energy efficiency optimization at the early project
stages;

• Development and evaluation of multithreaded applications, regarding scalability and
performance in different platform configurations;

• Evaluation of architectural parameters on variables directly used in the physical
design of MPSoCs systems, like area, power dissipation, and clock frequency;

MPSoCBench is released under an open-source license, and they are available in two
ways: virtual machines with all infrastructure ready for use and as source code. The
tutorials for installation of all tools are provided in the MPSoCBench website (www.

archc.org/benchs/mpsocbench).

6.1 Publications

This thesis resulted in the following publications:

• Duenha, Liana; Madalozzo, Guilherme; Santiago, Thiago; Moraes, Fernando Gehm;
Azevedo, Rodolfo. Exploração de Desempenho, Consumo Dinâmico e Eficiência
Energética em MPSoCs. XVI WSCAD-Simpósio de Sistemas Computacionais de
Alto Desempenho. October, 2015 [41].

• Devigo, Rodrigo; Duenha, Liana; Azevedo, Rodolfo; Santos, Ricardo. MultiEx-
plorer: A Tool Set for MultiCore System-on-Chip Design Exploration. Proceedings
of 26th IEEE International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). September, 2015 [32].
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• Duenha, Liana; Guedes, Marcelo; Boy, Matheus; Azevedo, Rodolfo. MPSoCBench:
A Toolset for MPSoC System Level Evaluation. Proceedings of the Embedded Com-
puter Systems: Architectures, Modeling, and Simulation 2014 IEEE International
Conference. p.164-171. July, 2014 [38].

• Duenha, Liana; Guedes, Marcelo; Boy, Matheus; Azevedo, Rodolfo. MPSoCBench:
A Toolset for MPSoC System Level Evaluation. Design Automation Conference -
Work-in-Progress Session. DAC-WIP. San Francisco, June, 2014 [40].

• Duenha, Liana; Azevedo, Rodolfo. MPSoCBench: A Benchmark Suite for Eval-
uating Multiprocessor System-on-Chip Tools and Methodologies, Techical Report,
Institute of Campinas - Unicamp - IC-13-19. June, 2013 [36].

• Duenha, Liana; Guedes, Marcelo.; Boy, Matheus; Azevedo, Rodolfo. MPSoCBench:
A Benchmark Suite for Evaluating Multiprocessor System-on-Chip Tools and Method-
ologies. North American SystemC User’s Group- NASCUG. June, 2013 [39].

We have one paper published in Journal:

• Guedes, Marcelo; Auler, Rafael; Duenha, Liana; Borin, Edson; Azevedo, Rodolfo.
An automatic energy consumption characterization of processors using ArchC. Jour-
nal of Systems Architecture. June, 2013 [51].

And we have another paper submitted to the Journal of Parallel and Distributed Com-
puting, Special Issue on Energy Efficient Multi-Core and Many-Core Systems (E2MC2).

• Duenha, Liana; Madalozzo, Guilherme; Santiago, Thiago; Moraes, Fernando; Azevedo,
Rodolfo. MPSoCBench: a Benchmark for High-Level Evaluation of Multiprocessor
System-on-Chip Tools and Methodologies. September, 2015.

In addition, during the development of this thesis, following other side-related papers
were published:

• Falcão, Tiago; Duenha, Liana; Azevedo, Rodolfo. How run your Simulation in
many cores without change neither the SystemC nor yours modules. XVI WSCAD-
Simpósio de Sistemas Computacionais de Alto Desempenho, 2015 [43].

• Oliveira, Helder; Brito, Alisson V.; Melcher, Elmar U. K.; Bucher, Harald; Araujo,
Joseana M. F. R.; Duenha, Liana. Power-Aware Design of Electronic System Level
using Interoperation of Hybrid and Distributed Simulations. Proceedings of the
28th Symposium on Integrated Circuits and System Design (SBCCI). September,
2015 [77].

• Duenha, Liana; Azevedo, Rodolfo; Tendências para Aceleração de Simuladores Sys-
temC de Sistemas Multiprocessados em Alto Nível de Abstração. Publicado nos
Anais da II Escola Regional de Alto Desempenho de São Paulo (ERAD). Julho,
2012 [35].
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• Duenha, Liana; Azevedo, Rodolfo; Profiling High-Level Abstraction Simulators of
Multiprocessor Systems. Workshop of Circuits on System Design-WCAS. July,
2012 [37].

• Duenha, Liana; Azevedo, Rodolfo; Paralelização de Simuladores de Hardware De-
scritos em SystemC. Publicado nos Anais da II Escola Regional de Alto Desempenho
de São Paulo (ERAD). Julho, 2011 [34].

6.2 Future Work

We visualize some opportunities for further work:

• Performance Improvement with PDES: Experiments show that the 50% of the
simulation time is spent by the SystemC kernel, demonstrating that the schedul-
ing is a very expensive task. We aim to improve the SystemC simulators perfor-
mance through applying temporal decoupling and parallel discrete-event simulation
(PDES), reducing the context switches between SystemC processes and taking ad-
vantage of the parallel computing resources.

• Performance Improvement with Distributed Simulation: There is work in
progress to allow SystemC simulations in clusters encapsulating components in a
Linux process that can be scheduled over distributed cluster cores. The main ad-
vantage of this approach is that it parallelizes SystemC-TLM2 simulators using
the original SystemC Kernel and models. A large number of SystemC threads of
the MPSoCBench simulators make it an appropriate benchmark to validate both
techniques [43].

• MPSoCBench for Design Space Exploration: Although the design space ex-
ploration is not the main goal of the MPSoCBench, once integrated with McPAT
(Multicore Power, Area, and Timing) [66], they create a fast high-abstraction sim-
ulator and low-level physical estimator (power, area, and timing). This infrastruc-
ture enables MPSoCs modeling, experimentation and design exploration, by taking
a range of high and low-level parameters to improve accuracy on designing a mul-
tiprocessor system on a chip. By joining high-level modeling and fast simulators
to the power, area, and timing models, we are trying to meet two primary goals:
good design accuracy and simulation performance. The integration of MPSoCBench
and McPAT results in a tool for design exploration called MultiExplorer [32], which
are an ongoing project developed collaboratively with the research group of the
High-Performance Computing Systems Laboratory (LSCAD-UFMS) [32].

The main contribution of the MultiExplorer is to provide a new toolset for fast
simulation of multiprocessor systems modeled in a high-level abstraction, useful for
driving design space exploration in the earliest stages of the project, considering
architectural parameters, performance, area, timing, and power.
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• Dark Silicon exploration: The emergence of Dark Silicon introduces several
challenges on the architecture, electronic design automation (EDA), and Hardware-
Software co-design. Since dark silicon is dependent on the technological process,
modern processors designs should identify the dark silicon area to explore architec-
tural resources to mitigate it. There is work in progress using the MultiExplorer tool
to dark silicon identification and area estimates. We envisage the implementation
of new algorithms to design space exploration, enabling the use of architectural fea-
tures on the dark silicon area while maintaining the physical constraints and project
performance [87].

• MPSoCBench new features: We aim to improve MPSoCBench simulators with
several new features and resources. We can cite:

– Power estimation for ARM and PowerPC models;

– Development of a distributed memory system;

– MPSoC evaluation using real time constraints;

– Provision of parallel applications based on distributed memory;

– Development of mechanisms for inter-processors communication, which permits
the use of more efficient cache coherency protocols

– Development and evaluation of new DVFS techniques;

– Development of a simple Operating System that encapsulates the acPthread
and other system management features;

– Development of a friendly platform configuration file;
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Appendix A

How To Install the MPSoCBench

This Appendix shows how to install the MPSoCBench and its requirements. The bench-
mark is released as open-source, and it is available in two ways: a virtual machine with
all infrastructure ready for use, and as source code. The two following sections describe
these two processes.

A.1 Source Code - Installing all tools manually

This tutorial aims to facilitate the configuration of MPSoCBench and all tools involved.

A.1.1 Requirements

The following tools must be installed and properly configured. If the user does not have
any of the tools on its system, the next section can help on necessary settings:

• GCC 4.8

• Python 2.6.x

• SystemC 2.3.1 including TLM 2.0

• Archc and compilers for target applications

A.1.2 Installing SystemC

SystemC is a collection of C++ classes and templates that provides powerful mechanisms
to model system architecture with hardware timing, concurrency, and reactive behavior,
allowing the creation of an executable specification of the system. To install SystemC
2.3.1, perform the following steps:

We recommend installing SystemC and the other tools in the opt directory, but if the
user wants to install in another directory, replace the opt directory by the new path in
all the following commands.

• Download the systemc-2.3.0.tgz (that includes TLM) (http://www.accellera.org/
downloads/standards/systemc)
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• Unzip in the opt directory;

$ tar xvf systemc-2.3.1.tgz

• It is recommended that you rename the directory:

$ mv systemc-2.3.1 systemc

• Configure and install:

$ make uninstall #if yout want to remove old versions

$ ./configure --prefix=/opt/systemc

make

make install

Note that the user uses the SystemC paths to configure and compile the tool. Make
sure that use correct paths.

A.1.3 Installing ArchC and Cross-Compilers

ArchC is an Architecture Description Language (ADL) following a SystemC syntax style,
which provides enough information in order to allow users to explore and verify a (new
or legacy) processor’s architecture by automatically generating not only software tools
for code generation and inspection (like assemblers, linkers, and debuggers), but also
executable processor models for platform representation. To install ArchC with TLM 2.0,
perform the following steps:

We recommend installing ArchC and the other tools in the opt directory, but if the
user wants to install in another directory, must replace the opt directory by the new path
in all the following commands.

• Download the ArchC (http://www.archc.org/)

• Unzip in the /opt directory;

$ tar xvf archc.tar.gz

• Execute the autogen.sh script to prepare the environment;

$ sh autogen.sh

• Configure and install. Note that you use the SystemC and TLM paths to configure
ArchC. Make sure that you use correct paths:
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$ make uninstall #if yout want to remove old versions

$ ./configure --prefix=/opt/archc --with-systemc=/opt/systemc

$ make

$ make install

• Download the ArchC Cross-compilers (http://www.archc.org/-Downloads-Cross
Compilers and Tools). The user needs to download the cross-compiler (compilers
for target applications) for PowerPC, MIPS, SPARC, and ARM;

• Unzip each one of them in the /opt/compilers:

$ tar xvf <compiler_name>.tar.gz

• If the user has problems to execute some cross-compiler in a 64-bit Linux environ-
ment, it must try to use apt-get install libc6-i386.

• Please edit the /.profile file with the compiler paths. Example, if the compilers
are in /opt/compilers/ folder:

export PATH=/opt/compilers/mips-newlib-elf/bin:$PATH

export PATH=/opt/compilers/arm-newlib-eabi/bin:$PATH

export PATH=/opt/compilers/powerpc-newlib-elf/bin:$PATH

export PATH=/opt/compilers/sparc-newlib-elf/bin:$PATH

A.1.4 MPSoCBench

The MPSoCBench suite benchmark is a scalable set of MPSoC platforms composed of four
different processor models (ARM, PowerPC, MIPS, and SPARC), IPs, communication
devices and a representative set of application adapted from Splash-2 and ParMibench
benchmarks, which contains 300 different multi-core configurations with up to 64 cores.

We recommend installing MPSoCBench and the other tools in the opt directory, but
if the user wants to install in another directory, it must replace the opt directory by the
new path in all the following commands.

• Download the MPSoCBench (https://github.com/ArchC/MPSoCBench/releases)

• Unzip in the opt/ directory:

$ tar xvf MPSoCBench-2.0.tar.gz

• Use the setup.sh script to download automatically the newest version of the ArchC
processor models:

$ sh setup.sh

• Use the env.sh script to configure your system environment automatically:

$ source env.sh

$ bash -l
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A.2 Virtual Machine

If the user is looking for an easy way to prepare the environment to use MPSoCBench,
we suggest using a Virtual Machine. So, the user can test and use this benchmark easily
without mush effort to install and configure Linux packages and tools. However, if the
goal of using the MPSoCBench requires simulator performance, is better to install all
tools on its system. The source code will be available in this virtual machine as well.
Currently, only the MPSoCBench 1.2 is available as a Virtual Machine. We will prepare
a MPSoCBench 2.0 Virtual Machine as soon as possible.

A.2.1 Requirements

The following tools must be installed and properly configured:

• VirtualBox (https://www.virtualbox.org/wiki/Downloads)

• Vagrant (http://www.vagrantup.com/downloads.html)

• SystemC: The SystemC License does not allow distribution of the source code.
So, the user needs to download its last version on the official website and put the
file systemc-2.3.1.tgz in the same folder that the Vagrant files. After this, our
Vagrant script will build and install SystemC and other tools properly (http://
www.accellera.org/downloads/standards/systemc).

• Vagrant Script (http://www.archc.org/benchs/mpsocbench/script.tar.gz)

A.2.2 Preparing the Virtual Environment

• Installing Vagrant and other tools:

$ dpkg -i vagrant_1.5.4_x86_64.deb

Then go to the Vagrant directory and execute:

$ cd vagrant

$ vagrant up

All tools will be downloaded and installed correctly. The file systemc-2.3.1.tgz

needs to be in the same folder that Vagrant script. So, the user can start now the
virtual machine and go to the correct folder:

$ vagrant ssh

$ cd /opt/MPSoCBench

• Running your first simulation:

After installing all tools, start you virtual machine and go to the MPSoCBench
folder:
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$ vagrant ssh

$ cd /opt/MPSoCBench

Build the first multicore platform (example: quad-core MIPS with power estimation,
connected by a router, running the Dijkstra application)

$ cd /opt/MPSoCBench

$ ./MPSoCBench -p=mips -pw -s=dijkstra -i=router.lt -n=4 -b

After build, you can simulate your first multicore platform:

$ ./MPSoCBench -p=mips -pw -s=dijkstra -i=router.lt -n=4 -r

Go to How To Use to see other examples of this benchmark.

After using, you can stop the vagrant machine with:

$ vagrant halt



Appendix B

How To Use the MPSoCBench

This Appendix shows how to use the MPSoCBench. Section B.1 describes the MP-
SoCBench script parameters and options. Section B.2 shows output report examples.

B.1 The MPSoCBench script

MPSoCBench execution can be controlled by the MPSoCBench command line tool, which
controls the execution of a hierarchical structure of Makefiles. Several platform compo-
nents are configured using this script, providing the following parameters:

-b or --build: to build simulators

-r or --run: to run simulators

-nb or --nobuild: to run without recompiling the models

-l or --clean: delete object files and the simulators previously created

-d or --distclean: delete processor model files previously created \

by ArchC

-h or --help: help

-p or --processor: to choose processor models

-pw or --power: to enable power consumption for SPARC and MIPS platforms

-p or --processor: to choose processor models

-n or --numcores: to choose the number of cores (1,2,4,8,16,32,or 64)

-s or --software: to choose the application

-i or --interconnection: to choose the interconnection device

-pw or --power: to enable power consumption for SPARC and MIPS platforms

-c or --condor: to enable execution on HTCondor

-h or --help: help

Four of these parameters are mandatory and must be filled with the following available
options.

• -p or –processor: powerpc, mips, sparc, or arm

• -n or –numcores: 1,2,4,8,16,32, or 64
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• -i or –interconnection: router.lt, noc.lt, noc.at

• -s or –software: basicmath, dijkstra, fft, lu, sha, stringsearch, susancorners, su-
sanedges, susansmoothing, water, water_spatial, multi_8, multi_16, multi_office_telecomm,
multi_network_automotive, multi_security, multi_parallel.

One of the -b or -r parameters are also mandatory, but do not have arguments. If
the user chooses the -b option, the platform will be build and all executable files will be
stored in a proper run-directory. In case of using the -r option and the run directory
exists, the simulator starts immediately. However, if the simulator does not exist, all
components are build and the simulator starts after.

Not all software scales from 1 to 64 cores. TableB.1 shows the limitation in the number
of cores for each application.

Applications
Number of cores

1 2 4 8 16 32 64
basicmath ✔ ✔ ✔ ✔ ✔ ✔ ✔

dijkstra ✔ ✔ ✔ ✔ ✔ ✔ ✔

fft ✔ ✔ ✔ ✔ ✔

lu ✔ ✔ ✔ ✔ ✔

sha ✔ ✔ ✔ ✔ ✔ ✔ ✔

stringsearch ✔ ✔ ✔ ✔ ✔ ✔ ✔

Susancorners ✔ ✔ ✔ ✔ ✔ ✔

Susanedges ✔ ✔ ✔ ✔ ✔ ✔

Susansmoothing ✔ ✔ ✔ ✔

water ✔ ✔ ✔ ✔ ✔

water_spatial ✔ ✔ ✔ ✔

multi_parallel ✔ ✔ ✔ ✔ ✔

multi_8 ✔

multi_16 ✔

multi_network_automotive ✔

multi_office_telecomm ✔

multi_security ✔

Some of these configuration parameters allow all option to make it easy to execute the
benchmark fully.

Usage:

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -b

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -r

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -r \

-nb

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -pw -b

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -pw -r

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -pw -r \

-nb
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./MPSoCBench -p=processor -n=n_cores -s=software -i=device -c=queue -b

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -c=queue -r

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -c=queue \

-r -nb

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -pw -c=queue \

-b

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -pw -c=queue \

-b

./MPSoCBench -p=processor -n=n_cores -s=software -i=device -pw -c=queue \

-r -nb

./MPSoCBench -n=n_cores -i=device -ht -c=queue -pw -b

./MPSocBench -n=n_cores -i=device -ht -c=queue -pw -r

./MPSoCBench -n=n_cores -i=device -ht -c=queue -pw -r -nb

./MPSoCBench -l

./MPSoCBench -d

This script creates a run-directory for each different platform and configure all Make-
files required. We show some command line examples:

• To build and run (-r) all programs (-s=all) in the 64-MIPS platform (-n=64
-p=mips) including power consumption (-pw), using a NoC-LT as interconnection
device (-i=noc.lt):

$./MPSoCBench -s=all -p=mips -n=64 -pw -i=noc.lt -r

• To build without running (-b) the dijkstra benchmark (-s=dijkstra) in the 64-core
platforms (-n=64), for all processors (-p=all), using a simple router as intercon-
nection device (-i=router.lt):

$./MPSoCBench -s=all -p=all -n=64 -i=router.lt -b

• To compile all available configurations for future execution:

$./MPSoCBench -s=all -p=all -pw -n=all -i=all -b

The script edits the Makefile properly according with the arguments. For example,
the following command line configures a platform with 8-mips connected by the NoC-AT
interconnection, with power estimation to run the susan-edges application.

$./MPSoCBench -s=susanedges -p=mips -n=8 -i=noc.at -pw -b

After use the command above, all components will be compiled:
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[[’mips’], [’8’], [’susanedges’], [’noc.at’]]

Making Processor mips ...

--- No simulator found, using acsim to generate one.

ArchC: Parsing AC_ARCH declaration file: mips_nonblock.ac

ArchC: Parsing AC_ISA declaration file: mips_isa.ac

ArchC: mips model files generated.

Making IP tlm_memory_at ...

Making IP tlm_lock_at ...

Making IP tlm_dfs_at ...

Making IP tlm_intr_ctrl_at ...

Making IS tlm_noc_at ...

Making Software susanedges ...

Making Platform platform.noc.at

Creating rundir for mips.noc.at.pw.8.susanedges...

---copy platform.noc.at.x to the appropriate rundir

---copy susanedges.mips.x to the appropriate rundir

The Makefile created after using the script with these arguments is stored at the root
of the benchmark. If necessary, the user can edit this file directly.

export PROCESSOR := mips

export NUMPROCESSORS := 8

export SOFTWARE := susanedges

export PLATFORM := platform.noc.at

export CROSS := mips-newlib-elf-gcc

export POWER_SIM_FLAG := -DPOWER_SIM

export WAIT_TRANSPORT_FLAG := -DWAIT_TRANSPORT

export TRANSPORT := nonblock

export MEM_SIZE_DEFAULT := -DMEM_SIZE=536870912

export RUNDIRNAME := mips.noc.at.pw.8.susanedges

export ENDIANESS := -DAC_GUEST_BIG_ENDIAN

Other important parameters that a user can edit to configure details of its simulator
are in the file defines.h at the root of the benchmark. Next we list the main resources
that can be configure using this file:

• Enable/disable debug for each component

• Define the latency of each component

• Define the address of each component in the network

• Enable/disable DVFS-ES, DVFS-CPU (DVFS-SW is enabled by default)

• Define DVFS parameters and interruption codes

• Enable/disable DRAMSim estimations
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B.2 Outputs and Reports

For a purpose of illustrating the MPSoCBench output information, Figure B.2 shows an
example of a piece of an output report after running the susan-edges application in an
8-core MIPS platform. For the sake of clarity, we show only information about one of the
eight cores. Details of each core power consumption are stored in separated output files.

All files produced by the simulator are stored at the appropriate run-directory. The
MPSoCBench produces the following reports:

• Processors and cache statistics: only at the standard output;

• Power statistics: a summary at the standard output and power details per core
and per cache at the run-directory (CSV files)

• Cache power debug: at per cache files in the rundir, when the CACHE_-
POWER_DEBUG flag is defined at the ac_cache_power.H ArchC file.

• Platform statistics: at the standard output, at the local_report.txt and at the
global_report.txt files;

• Network Traffic: at the local_report.txt and at the global_report.txt files (only
for NoC-AT);

• DRAMSim2 statistics: at the standard output, at the local_report.txt, and at
the global_report.txt files;

At the end of the simulator, the application output is compared with a gold output
and the result is printed at the end of the main report. Only to illustrate, we show in
Figure B.2 the input file for the susan-edges application and in FigureB.3 the file after
performing the parallel algorithm for recognizing edges.
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SystemC 2.3.1-Accellera --- Jun 1 2015 09:15:26

Copyright (c) 1996-2014 by all Contributors,

--------------------------------------------------------------------

------------------------- MPSoCBench -----------------------------

--------------------- Running: susanedges --------------------------

--------------- The results will be available in -------------------

--------------------- the output.pgm file --------------------------

--------------------------------------------------------------------

Total Time Taken (seconds): 171.905920

Simulation advance (seconds): 0.100569

MPSoCBench: Ending the time simulation measurement.

ArchC: Simulation statistics

Times: 172.79 user, 0.26 system, 171.91 real

Number of instructions executed: 50284615

Simulation speed: 291.01 K instr/s

cache: IC

Cache statistics:

Read: miss: 1232316 (2.4507%) hit: 49052012 (97.5493%)

Write: miss: 0 (0%) hit: 0 (0%)

Number of block evictions: 1232188

cache: DC

Cache statistics:

Read: miss: 13774 (0.102513%) hit: 13422627 (99.8975%)

Write: miss: 18695 (0.447946%) hit: 4154799 (99.5521%)

Number of block evictions: 31860

...

------------------------ POWER REPORT ------------------------------

Switching power : 0.000000e+00W

Internal power : 0.000000e+00W

Leakage power : 0.000000e+00W

Aggregate power : 7.147999e-01W

----------------

TOTALS : 7.147999e-01W

--------------------------------------------------------------------

DVFS Access: 37

Lock Access: 22752

Router Access: 262467374

Memory Reads: 64951928

Memory Writes: 197492656

TESTING RESULTS: Test Passed.

Figure B.1: MPSoCBench report after running the susan-edges application in a 8-MIPS
platform



APPENDIX B. HOW TO USE THE MPSOCBENCH 115

Figure B.2: The susan-edges input file

Figure B.3: The susan-edges output file


