
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Patrícia Raia Nogueira Cavoto

ReGraph: Bridging Relational and Graph Databases

ReGraph: Interligando Bancos de Dados Relacionais e

de Grafos

CAMPINAS

2016

Patrícia Raia Nogueira Cavoto

ReGraph: Bridging Relational and Graph Databases

ReGraph: Interligando Bancos de Dados Relacionais e de Grafos

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestra em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. André Santanchè

Este exemplar corresponde à versão final da
Dissertação defendida por Patrícia Raia
Nogueira Cavoto e orientada pelo Prof. Dr.
André Santanchè.

CAMPINAS

2016

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Patrícia Raia Nogueira Cavoto

ReGraph: Bridging Relational and Graph Databases

ReGraph: Interligando Bancos de Dados Relacionais e de Grafos

Banca Examinadora:

• Prof. Dr. André Santanchè (Orientador)
Instituto de Computação - UNICAMP

• Dr. Rodrigo Dias Arruda Senra
EMC Brazil Research & Development Center

• Prof. Dr. Ricardo da Silva Torres
Instituto de Computação - UNICAMP

• Prof. Dr. Luciano Antonio Digiampietri (Suplente)
Escola de Artes, Ciências e Humanidades - USP

• Dr. Júlio César dos Reis (Suplente)
Instituto de Computação - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 04 de fevereiro de 2016

Acknowledgements

It was a hard task to finish this research and, indeed, it would not be possible without
the supportive, kindness and lovely presence (even in my heart) of each one of you. I am
really grateful for having you in my life.

André, the most supportive and competent advisor that I could have. Thank you for
all the teachings, ideas, reviews and patience during this work. More important than that,
thank you for being a friend, and for all the conversations and for the guidance. Règine
Vignes thanks for the support in the biology domain and for the brilliant examples of
analyses that could be performed over the data. Members of the dissertation committee,
thank you for the valuable feedbacks.

Professor Claudia Bauzer Medeiros, for all the insightful ideas about this work. Friends
from LIS, for the conversations, friendship and comments in the meetings that helped this
work, specially to Lucas, Jaqueline, Jaudete, Matheus and Victor. And, of course, thanks
to all the professors that contributed to my growth.

My mother, Sílvia, that, unfortunately, is not with me anymore. The woman who
taught me to be confident and to believe in my dreams. The most responsible for each of
the achievements in my life. Thank you eternally for everything that you did for me. I
miss you so much.

Paulo, my beloved husband, thank you for the patience, kindness and support. Of
course, I could not forget to thank you also for the insights and reviews of this work. You
are awesome!

My father, Antonio, my aunt, Márcia, and my cousin – almost sister, Juliana, for
always caring and supporting me in my life.

My friends João, Cris, Tati, Karina, Rodrigo, Letícia and Fujii for reminding me that,
sometimes, we need some fun too.

Professor Juan, from PUC-Campinas, for the support with the schedule of my classes
during my master’s studies.

Finally, this work would not be possible without the data provided by the FishBase
Consortium, the dedication of the Institute of Computing’s staff, the technologies provided
by the many competent open/free software projects used throughout this research and the
support from the funding agencies: FAPESP/Cepid in Computational Engineering and
Sciences (2013/08293-7), the Microsoft Research FAPESP Virtual Institute (NavScales
project), CNPq (Mu-ZOO Project), FAPESP-PRONEX (eScience project), INCT in Web
Science, and individual grants from CNPq. The opinions expressed in this work do not
necessarily reflect those of the funding agencies.

Resumo

Redes estão em todos os lugares. Desde interações sociais: família, amigos, hobbies ; pas-
sando pela computação: computadores conectados na Internet; e até mesmo na natureza:
cadeias alimentares. Pesquisas recentes mostram a importância das conexões entre os
dados e também da análise das redes para descobrir novos conhecimentos nos dados exis-
tentes. Além disso, os esforços para a disponibilização de dados padronizados na Internet
– Linked Open Data e Semantic Web – têm proporcionado o crescimento de repositórios
abertos de conhecimento na rede; a maioria utilizando o modelo de grafos RDF (Resource
Description Framework). Contudo, muitos dados são armazenados em bancos de dados
relacionais, cujo modelo não foi projetado para atender consultas com alto grau de tran-
sitividade nos relacionamentos. Por outro lado, o modelo flexível de grafos tem um ótimo
desempenho nas análises envolvendo relacionamentos transitivos entre os dados e na to-
pologia da rede, como por exemplo, em uma análise de componentes conexas. Portanto,
nossa pesquisa é inspirada pela abordagem OLAP (OnLine Analytical Processing) para
a criação de uma base especial orientada à análise dos dados com foco nas ligações e na
topologia da rede, utilizando grafos. Nesta dissertação, nós apresentamos o ReGraph,
um framework para mapear dados de uma base relacional para uma base de grafos, ge-
renciando a coexistência e evolução de ambas as bases, funcionalidade esta que não é
contemplada pelos trabalhos relacionados. O ReGraph tem baixo impacto na infraestru-
tura existente, permitindo a geração de um modelo de grafos flexível e adaptado a cada
esquema relacional mapeado. Utiliza um processo inicial de ETL (Extract, Transform
and Load) para replicar os dados existentes no modelo relacional para o modelo de grafos.
O serviço de sincronismo é responsável por refletir automaticamente as alterações reali-
zadas no modelo relacional para o modelo de grafos. O framework também provê uma
funcionalidade para anotação dos dados no grafo, que permite materializar inferências e
incluir novas informações, possibilitando a conexão dos dados existentes no grafo local
com outros grafos de conhecimento disponibilizados na Web. Neste trabalho, utilizamos
o ReGraph para gerar o FishGraph, uma base de dados de grafos criada a partir da base
relacional FishBase. Usando a base de dados FishGraph, realizamos experimentos envol-
vendo a análise das conexões entre milhares de chaves de identificação e espécies de peixes
e conectamos estes dados com a DBpedia, criando anotações na base de grafos local que
geraram novas informações a partir dos dados existentes.

Abstract

Networks are everywhere. From social interactions: family, friends, hobbies; passing
through computer science: computers on the Internet; to nature: as food chains. Recent
research shows the importance of links and network analysis to discover knowledge in
existing data. Moreover, the Linked Open Data and Semantic Web efforts empowered
the fast growth of open knowledge repositories on the web, mainly in the RDF (Resource
Description Framework) graph model. However, a lot of data are stored in relational
databases, whose model has not been designed to address queries with many transitive
relations. On the other hand, the flexible graph model is suitable for data analysis focusing
on links, their transitivity and the network topology, e.g., a connected component analy-
sis. Therefore, our research is inspired by the data OLAP (OnLine Analytical Processing)
approach of creating a special database designed for data analysis, a network-driven data
analysis, using graph databases. In this dissertation, we present ReGraph, a framework
to map data from a relational to a graph database, managing a dynamic coexistence and
evolution of both, not supported by related work. ReGraph has minimum impact on the
existing infrastructure, providing a flexible and tailored graph model for each relational
schema. It uses an initial ETL (Extract, Transform and Load) process to replicate the
existing data in the graph database. A scheduled service is responsible for automatically
reflecting changes in the relational data into the graph, keeping both synchronized. Re-
Graph also provides an annotation functionality to materialize inferences and to support
data enrichment, which enables linking the local database to global knowledge graphs on
the Web. We have used the ReGraph framework to generate FishGraph, a graph database
created from the FishBase relational database. Using FishGraph we developed experi-
ments to analyze the connections among thousands of identification keys and species,
and we have linked local data to DBpedia, creating annotations over the local graph and
providing new knowledge from existing data.

List of Figures

2.1 FishBase tables . 17
2.2 XML structure for the identification key problem 18
2.3 Graph model for the identification key problem 18
2.4 Proposed hybrid architecture . 22
2.5 FishGraph model for identification keys and species classification 25
2.6 Annotation edges “share” between two keys and their properties 25
2.7 Distribution of the keys by species shared with another key 25
2.8 Clique of identification keys of size 10 and their respective species 26
2.9 All of the 863 connected components . 27
2.10 Max Out-Degree key component with species colored by family 28
2.11 Hybrid architecture with FishBase, FishGraph and DBpedia 30
2.12 Species classification comparison between FishGraph and DBpedia 31

3.1 The ReGraph Framework . 33
3.2 ReGraph Interface: Manual Mapping and Graph Model Viewer 36

4.1 Graph Model for Taxonomic Classification and Countries 40

A.1 Part of identification key 799 of teleostean families from East Africa 49
A.2 Part of identification key 799 represented by a tree structure 50

B.1 Synchronization Process detailed flow . 52

C.1 ReGraph Screen of Automatic "Comparison" Annotation 54
C.2 Node “Species” after the Comparison Annotation Process with DBpedia . . 55
C.3 ReGraph Automatic "New" Annotation Screen 56
C.4 Node “Country” after the New Annotation Process with GeoNames 57

Contents

1 Introduction 11

2 FishGraph 14
2.1 Introduction and Motivation . 14
2.2 Research Scenario . 15

2.2.1 The FishBase Database . 15
2.2.2 Why Graphs? . 16

2.3 Theoretical Foundations and Related Work 18
2.3.1 Graph Databases . 18
2.3.2 Database Models Integration . 19

2.4 A Hybrid Architecture for the FishGraph 21
2.4.1 Hybrid Architecture: Relational and Graph 21
2.4.2 The FishBase Entities Analysis . 22
2.4.3 Mapping Rules . 23
2.4.4 From FishBase to FishGraph . 23

2.5 Experiments and Results . 24
2.5.1 Experiment 1: Identification Keys 24
2.5.2 Experiment 2: Species Classification 29

2.6 Conclusion . 30

3 ReGraph 32
3.1 Introduction . 32
3.2 The ReGraph Framework . 33

3.2.1 The Mapping Module . 34
3.2.2 The Graph Module . 35
3.2.3 The Sync Module . 35

3.3 Software Overview . 36
3.4 Conclusions . 37

4 Annotation-Based Method 38
4.1 Introduction . 38
4.2 Related Work . 39
4.3 ReGraph . 39

4.3.1 The ReGraph Framework . 39
4.3.2 From FishBase to FishGraph using the ReGraph framework 40

4.4 Automatic Annotation-Based Method . 41
4.4.1 The Comparison Annotation Type 41
4.4.2 The New Annotation Type . 42

4.5 Conclusions and Future Work . 42

5 Conclusion and Future Work 43

Bibliography 45

A Identification Key Visual Example 49

B Synchronization Process 51

C Annotation-Based Method: Experiments 53
C.1 "Comparison" Annotation: Taxonomic Classification Scenario 53
C.2 "New" Annotation: Country Scenario . 55

Chapter 1

Introduction

The analysis of data as a network, focusing on the relations, is becoming very important

to discover knowledge in existing content. In addition, the use of data available in global

graphs, as Linked Open Data and Ontologies, is growing fast and is bringing with it the

popularization of the graph structure to represent information networks. Nevertheless, in

different institutions and organizations we still have a big volume of data stored using the

relational database model. This model was not designed to address requests focusing on

the network of links and interactions. The flexible graph database model contrasts with

the rigid relational model since this model is suitable for data analysis focusing on links

and the network topology and it allows to store and maintain flexible data representations,

which replace a rigid schema for a soft pattern.

In this context, several approaches arose to transform data from relational databases

into structures connected as networks, mainly generating a database view modeled as a

graph ([7] and [11]). With data in a view modeled as a graph, it is not possible to change

nor add new data directly in the graph to perform specific analyses or to improve the

generated knowledge. Likewise, other works were interested in connecting a given graph

network with the Semantic Web, enriching the existent local knowledge ([1], [2], [30] and

[33]). Most of these approaches start from an existent graph structure created to connect

concepts with the Semantic Web, through the use of ontologies.

This work was developed over a practical scenario of FishBase1, a fish knowledge base

and a global information system encompassing several aspects of fishes, e.g., identification

keys, taxonomic classification, ecosystems, predators, geographic locations, etc. FishBase

currently has 33,200 species of fishes registered and these data are used by research sci-

entists, fishery managers, biologists and enthusiasts.

Motivated by a joint research involving network-driven data analysis over FishBase,

with biologists from the Muséum national d’Histoire naturelle in Paris, France, we defined

the following requirements for this research:

• Connect data in a network structure: allows to map and connect data from FishBase,

a relational database, with other relational database sources, through a network

structure stored in a property graph database, in our case, using Neo4j;

1http://www.fishbase.org/ [Accessed: 2016-Jan-05]

11

CHAPTER 1. INTRODUCTION 12

• Keep the graph database synchronized with the relational database: after the data

migration from a relational to a graph database, it is necessary to keep data in the

graph database synchronized, reflecting all the changes executed in the relational

database, managing a dynamic coexistence and evolution of both;

• Enrich the knowledge: allows to add new data into the local graph and to connect

it with the Semantic Web increasing the existing knowledge;

• Perform analysis exploring the network topology: in a graph structure it is easy

to perform network analysis, e.g., page rank, short path, components, cliques, etc.,

which is a hard task for relational databases.

Different from related work, in our approach, the local graph is a dynamic graph

database evolving over time, aligned with the relational database source. It allows creating

new manual and automatic annotations directly in the graph, even connected with global

graphs available in the Semantic Web. These annotations stay consistent during the

database evolution. In this work, we define as annotation any information in the graph

not originated from the relational database, e.g., nodes, properties and edges created

manually or automatically in the graph .

To validate the mentioned requirements, we proposed, implemented and tested a

framework, named ReGraph2, to map data from a relational to a graph database, provid-

ing a hybrid architecture that bridges both databases, keeping them connected, synchro-

nized and in their native representations. ReGraph has minimum impact on the existing

infrastructure, providing a flexible and tailored graph model for each relational schema.

Our research was inspired by the data OLAP (OnLine Analytical Processing) approach

of creating a special database designed for data analysis; a network-driven data analysis

using graph databases. It applies an initial ETL (Extract, Transform and Load) process to

replicate the existing data in the graph database. Later, a scheduled service is responsible

for reflecting changes in the relational data into the graph, keeping both synchronized.

ReGraph also provides an annotation functionality that allows users to add manually new

information in the mapped graph, providing support to materialize inferences and data

enrichment. Moreover, the framework can link local and global knowledge graphs through

an automatic annotation-based method, creating annotations obtained from the Semantic

Web using the specified Ontologies.

The first paper published of this work was “Arquitetura Híbrida de Integração entre

Banco de Dados Relacional e de Grafos: Uma Abordagem Aplicada à Biodiversidade”

("Hybrid Architecture for Integration of Relational and Graph Databases: An Approach

Applied to Biodiversity"), presented at the XIII Workshop de Teses e Dissertações em

Banco de Dados, WTDBD 2014 [15], in which we presented our proposal.

The remainder of this dissertation is organized as a collection of other three published

papers, included as chapters. Chapter 2 represents the paper “FishGraph: A Network-

Driven Data Analysis”, presented at the 11th IEEE International Conference on eScience,

eScience 2015 [12]. This paper establishes our application scenario and problem and

2http://patricia.cavoto.com.br/regraph/ [Accessed: 2016-Jan-05]

CHAPTER 1. INTRODUCTION 13

argues in favor of the advantages of using graph databases on the network data analysis.

The main contributions of the paper are:

• The proposal of an architecture to generate and maintain a graph database mapped

from a relational database and further enriched;

• An experiment in which we have generated FishGraph, a graph database, from

FishBase;

• Four application experiments involving network-driven data analysis over FishGraph

that are complex to be performed in the relational database; and

• A software prototype for ReGraph to link FishGraph with DBpedia3.

Chapter 3 corresponds to the paper “ReGraph: Bridging Relational and Graph Databa-

ses”, presented at the 30o Simpósio Brasileiro de Banco de Dados, SBBD 2015, in the demo

session [14]. The main contribution of the paper is:

• ReGraph, an implemented framework to map data from a relational to a graph

database, managing a dynamic coexistence and evolution of both.

Chapter 4 represents the paper “Annotation-Based Method for Linking Local and

Global Knowledge Graphs”, presented at the Seminário de Pesquisa em Ontologias do

Brasil, ONTOBRAS 2015 [13]. The paper presents an approach to integrate the local

graph database, generated by ReGraph, with global graphs on the Web. The main con-

tributions of the paper are:

• An extension of the ReGraph framework to generate automatic annotations through

the link of the local graph database with global graphs on the Web; and

• The proposition of an annotation method able to coexist with mapped data from

the relational database. It introduces two possible annotation types (i) new: adds

new information obtained from the Web in the local graph, as nodes, properties

and/or edges; and (ii) comparison: compares local data with the related data on

the Web, providing a status report of the comparison.

Finally, Chapter 5 concludes the dissertation, presenting our final remarks and future

work.

3http://www.dbpedia.org/ [Accessed: 2016-Jan-05]

Chapter 2

FishGraph: A Network-Driven Data

Analysis

2.1 Introduction and Motivation

Links among data elements are getting increasing attention. Besides the ever-growing

Linked Data, which fosters the creation of a Giant Global Graph [6], links by themselves

form networks and are a rich source of latent semantics, which can be discovered through

the analysis of the network topology. Currently, there are various initiatives – such as Ge-

neOntology, GeoNames, DBpedia and Bio2RDF – that share their information as graphs

on the web, mainly in the RDF (Resource Description Framework) format.

Even with the growth in the use of the graph model for databases, we have big

databases and systems that continue to use the relational model for data storage and

retrieval. This model is appropriate to execute data maintenance transactions (insert,

update and delete) and has been refined in the last decades to handle big volumes of

data. However, in the analysis of data focusing on the network produced by links – in

which relations are as important as the data – it is usually necessary to create complex

and/or inefficient SQL queries to answer the problem, given the rigid data structure and

restrictions that this model has in regard to analysis of transitive relationships [24], e.g.,

a query for identifying the environmental impact suffered from the extinction of a species.

Graph databases are very effective in this type of analysis.

This research is inserted in the context of biodiversity information systems, more

specifically in a collaborative research involving FishBase, a database and information

system for biological data storage of fish species [19].

In this chapter, we present how we explored links for two sets of data from FishBase:

identification keys, a biology mechanism to identify a specimen, and species classification,

validating local data with DBpedia. Beyond straight links among species and identifica-

tion keys – such as those provided by foreign keys in relational databases – the correlations

form an interdependent network, whose topology analysis allows identifying the most rel-

evant species in an area or finding inconsistencies in the keys. Due to the relational nature

of data in FishBase, these analyses can be complex and/or inefficient to perform since the

network is not explicit and because it requires a high-use of the JOIN statement. Fur-

14

CHAPTER 2. FISHGRAPH 15

thermore, sometimes it is necessary to dynamically produce data – adding new fields and

relations – to a specific analysis and, in this case, the relational model is not as flexible

as the graph model.

In this research, we propose the coexistence of both models, relational and graph

interacting with each other, dividing tasks of management and analysis according to their

specialties. However, in some scenarios, transferring the entire database to a new model

is a complex task, because it would require rewriting all of the systems accessing this

database.

Therefore, the main goal of our research involves proposing a hybrid architecture that

enables the integration of one or more relational databases with a graph database, min-

imizing the impact in the existing relational infrastructure, and enabling it to exploit

network-driven analyses in the graph database. The current version, called ReGraph,

works with an initial ETL data migration and operates over a dynamic synchronization,

in which all the updates done in the relational database are reflected in the graph database.

Moreover, we provide autonomy to data produced natively in the graph database, either

for data analysis or to be able to link this information with third party knowledge bases

on the web, enriching and validating the information in the graph database. This paper

focuses on showing how our approach addresses biology information system analyses in

the FishBase scenario. We produced an experiment migrating relevant data about identi-

fication keys and species from FishBase to a graph database. The analyses of the network

produced by these links in the graph database is helpful to analyze relations among thou-

sands of identification keys, to compare and check the inconsistencies between these keys

and to analyze links with other sources on the web, allowing the discovery of new infor-

mation and validating the existing data.

The remainder of the paper is organized as follows. Section 2.2 details the research

scenario. Section 2.3 presents the theoretical foundations and related work. Section 2.4

presents our hybrid architecture and describes the migration process to integrate the

FishBase data in FishGraph. Section 2.5 presents our experiments and their results.

Section 2.6 presents our conclusions.

2.2 Research Scenario

2.2.1 The FishBase Database

Data in the FishBase system are stored in a relational database model. It currently

has 33,000 registered species [18] whose data are distributed in 130 tables encompassing

several aspects related to the study of fishes – e.g., identification keys, taxonomic classifi-

cation, ecosystems, etc. – totaling over 2 million records [19]. All this information raises

challenges to scientists who have difficulties analyzing some kinds of scenarios involving

the examination of the network and links among elements. In this subsection, we will de-

tail two problems we are facing that illustrate the typical scenario in which our approach

will be beneficial. They also are the basis for practical experiments to test and validate

our proposal:

CHAPTER 2. FISHGRAPH 16

1. Identification Keys1: An identification key is a set of questions that guides scien-

tists in the identification of a specific specimen. Each identification key in FishBase

was produced independently. There are 1,668 identification keys for fishes and more

than 24,000 questions related to these keys in FishBase. Since they are produced

independently, there is a lot of overlapping information and distinct keys describing

common species. Some keys have geographic or hydrographic boundaries, some keys

have taxonomic limits, and other ones focus on a specific habitat or a development

stage. Moreover, one must first select a specific key to begin the identification pro-

cedure, i.e., from an observation of an unknown fish, it is hard to decide which key

to choose. In order to address these problems, we are exploiting the links among

keys/species/locations to answer the following questions:

• Looking at the network formed by interconnections among keys and species

– keys that share species and species that share keys – is it possible to find

similarities among them?

• Is it possible to create groups (clusters) of these identification keys using the

geographic location of the linked species? This will be helpful to identify in-

consistencies between the analyzed keys and to offer a better access to choose

a key among the 1,668 keys of FishBase.

2. Species Classification: FishBase has data on almost 33,000 species and their

respective taxonomic classification, including genus, family, order and class. Cross-

referencing these data with third party knowledge bases could be helpful in improv-

ing the accuracy of the data in FishBase.

The starting point to answer these questions is the FishBase relational model partially

shown in Figure 2.1.

The main table used to address all the proposed analyses is the SPECIES table,

in which we have all information about the fish species and their taxonomic classifica-

tion (Figure 1a). The next set of tables (Figure 1b) links the SPECIES with countries

(COUNTREF) and ecosystems (ECOSYSTEMREF). There are 311 countries2 and 1,019

ecosystems in the FishBase database. The last set of tables (Figure 1c) has the link from

SPECIES and location tables to identification keys (KEYS table). The KEYQUESTIONS

table contains the questions used in the identification process to determine species iden-

tity. The KEYS table has also links to the GENERA, FAMILIES and ORDERS tables,

used when it is not possible to determine a specific species inside a bigger taxonomic

group.

We have migrated all this information from FishBase to a graph database.

2.2.2 Why Graphs?

One main argument of this work is that the graph model for databases has advantages

when a network-driven analysis is involved. We will illustrate this argument here, ad-

dressing an identification key analysis scenario and confronting the following possibilities:

1See Appendix A for a visual example of the identification key.
2Islands are also counted as countries in FishBase.

CHAPTER 2. FISHGRAPH 17

Figure 2.1: FishBase tables: a) species and their taxonomic classification; b) species,
countries and ecosystems; and c) identification keys.

implementing a solution in the current database model (relational); modeling the data in

the XML format; and modeling the data as a graph. The analysis involves discovering

similarities and inconsistencies among groups of identification keys, based on the species

that they share.

Considering the first possibility, a relational database is not designed to query networks

of links – JOINs in relational terms – since it requires transforming the query in the pairing

of relations and multiplying the analysis of n-ary links in several combinations of binary

links. Network analysis usually also requires traverse paths, involving – in relational terms

– to transitively fetching nodes by successive JOINs. Furthermore, the table-like approach

of the SQL language is not intuitive for this kind of problem.

XML is usually referred as an option for some network representations since it can

connect pieces of data in a semi-structured way, forming a hierarchical network. However,

modeling the data in the XML format will require a hierarchical representation of non-

hierarchical data. It can be arranged when the network is simple, e.g., in our scenario,

defining the identification key as the parent node and the species as the child nodes (see

Figure 2.2).

XQuery (a query language for XML) can be applied to fetch the data hierarchically.

Besides addressing only simple networks, these cases require modeling the data to fit a spe-

cific query and – as in the previous case – the hierarchical-like approach of XML/XQuery

is not intuitive. Analyzing this scenario in reverse, in other words, finding a group of

species and the identification keys that they share, would be harder or require a specific

new inverted XML schema.

CHAPTER 2. FISHGRAPH 18

Figure 2.2: XML structure for the identification key problem.

Figure 2.3: Graph model for the identification key problem.

Both models, relational and XML, have rigid data structure and were not designed

to address network-driven analysis, in which the connections have the same (or more)

importance than the connected entities.

Figure 2.3 presents our graph model to address the identification key problem, in which

we have the nodes KEY and SPECIES and, below them, their respective properties.

This model allows a streamlined way to perform the analysis, given its flexibility.

Moreover, the proposed scenario, in which we need to find the neighbors of a node, is

a network-driven question typically analyzed in a graph. Even inverting the question,

it is still fitting to analyze the network. In addition, the graph-like approach is more

intuitive for network-like problems. Therefore, we chose the graph model to perform

network-driven analyses.

2.3 Theoretical Foundations and Related Work

2.3.1 Graph Databases

From the classic definition adopted by mathematics and computing, a graph is an ordered

triple consisting of a non-empty set of vertices (also called nodes), a set of edges (links)

and an incident function that associates each edge to an unordered pair of vertices [10].

Graphs are excellent to model complex connections, objects and their interactions – a

very common scenario in scientific research. In the biology field, there are many uses for

graphs, including metabolic networks, chemical structures and genetic maps [35].

CHAPTER 2. FISHGRAPH 19

Have and Jensen [22] present experiments in which the use of the Neo4J graph database

in bioinformatics brought better overall performance results than using the PostgreSQL

relational database. Their analyses were based on the execution of queries typically per-

formed in bioinformatics: finding the neighboring vertices of a protein and its interactions;

finding the best path score between two proteins; and finding the shortest path between

two proteins.

Given the emphasis on explicit representation of large volumes of relations as edges,

graph databases have an optimized infrastructure to manage transactions involving a large

number of associations, such as, traversing a path, performing a breadth-first or depth-

first search. The same transactions in relational databases would require, in some cases,

many consecutive JOINs, which makes the query very costly. On the other hand, data

consistency is one of the bases of relational databases and is still poor in graph databases

[3].

Our proposal is to produce a hybrid information system combining the advantages of

a relational database – to control data consistency and transaction operations – with a

graph database for network-driven data analyses. Our application scenario is the FishBase

information system.

Data stored in a graph database are typically represented by a directed graph model [4].

Several approaches have emerged to structure data inside this kind of database, according

to the application scenario, e.g., simple graphs, hypergraphs and property graphs. A

simple graph is based on nodes and edges; a hypergraph extends this concept, allowing

the same edge to link any number of nodes; and the property graph allows it to create

descriptive properties attached to nodes and edges [3], as presented in Figure 2.3.

Based on the comparison of different graph database models [3] and the performance

analyses of four graph databases [16], we have decided to use the Neo4J as our graph

database management system. Neo4J implements a property graph data structure. The

number of nodes and edges in this model tends to be lower when compared to the RDF

graph model, which represents all properties/values as extra nodes/edges in the graph.

Neo4J uses the Cypher declarative query language and provides graph algorithms pack-

ages, e.g., the Dijkstra’s algorithm to determine the shortest path between two nodes and

the traversal framework.

2.3.2 Database Models Integration

Raghavan and Garcia-Molina [31] classify architectures that integrate relational databases

with other models. Influenced by this work, in this subsection, we define a classification

of the related work focusing on the integration of relational data and graphs in three

categories:

2.3.2.1 Graphs in the Relational Database Model

This architecture departs from the relational database model and extends it to support

other data structures. There are two main groups in this architecture:

The first one creates new graph structures mapped on top of native relational imple-

mentations, extending the SQL language and strategies for optimizing the execution of

CHAPTER 2. FISHGRAPH 20

queries when graphs are involved. Goldberg and Jirak [20] propose an enhanced rela-

tional model which allows for the storage, retrieval, and manipulation of directed graphs,

by implementing new data types that can be included in the existing tables, avoiding

to redesign of their schema or the migration of data. The Database Graph Views [21]

proposes an abstraction layer as a mechanism for creating views to manipulate graphs,

independent of the physical arrangement where the original data are stored. The Virtuoso

RDF View [9] proposes mapping relational data to RDF. This group of approaches cannot

fully benefit from the advantages of graph databases has in regard to network operations

and design flexibility, since the queries still run over a relational database.

The second group implements a specialized data structure for graph models, besides

relational models, expanding the existing relational database systems. In this group, there

are leading manufacturers of commercial database management systems, such as Oracle

and IBM. The Oracle Spatial Graph includes a rich set of features to address spatial and

analytical data, which can be applied to social and semantic graphs. These features can

be connected to the relational model, allowing it to use combined schemas with functions

that support spatial data and graphs [26]. The IBM DB2 RDF stores and retrieves data in

an RDF graph format, expanding its relational database [23]. This group of approaches

has performance advantages compared to the previous one, however, it is still product

dependent, i.e., solutions are tailored for specific database brands, requiring the adoption

of the “whole package”. It can involve complex migrations of data to adapt all the systems

that use another database.

2.3.2.2 Integration Module Architecture

This architecture includes two or more types of databases kept in their native form. An

independent module, that integrates all the databases, provides a unified access interface,

using a third data structure as a support for queries and to combine the results. Each

database source has a wrapper, with rules mapping and translating the native language

to a unified structure. The Garlic approach [11] defines an object-oriented extension of

the SQL as a unified language. The D2R Map [7] proposes the integration of ontologies

in RDF with relational databases through a module that creates a virtual RDF graph.

This architecture brings many advantages to the user, who can interact with various

data sources through a single interface and language. Changes in the data structure and

schema of each database source are minimum or unnecessary. However, this architecture

is very expensive to implement, given the complexity of the involved tasks, which include:

development of a unified language among the models; use of wrappers responsible for

performing the necessary translations between the models; and the adaptation of the

systems to use the new language.

2.3.2.3 Layered Architecture

This architecture implements a database model (upper layer) that operates on top of

another model (lower layer). The model in the upper layer is dependent on the one in the

lower layer. The data access of both models is performed exclusively through the upper

layer. The layered architecture is applied in Information System Retrieval (IRS). The

CHAPTER 2. FISHGRAPH 21

Table 2.1: Related Work Comparison

Paper a b c d e f g
Relational: [20], [21] Manual SQL N L L N N

Relational: [9] Both SQL/SPARQL N L M Y Y
Relational: [26], [23] Auto SQL/SPARQL Y H M Y N

Integration Module: [11] Manual Own Y L H Y Y
Integration Module: [7] Both SQL/SPARQL N L M Y N

Layered: [36], [37] Manual Superior Layer Y H H Y Y

Vodar architecture [36] integrates an IRS with an object-oriented database; De Vries and

Wilschut [37] adopt the MonetDB column-oriented database. The challenge of a layered

architecture is to map operators from the upper model to the lower one. We have not

found works with the layered architecture integrating a relational model with a graph one.

2.3.2.4 Summary

Inspired by the framework created by the W3C Incubator Group, RDB2RDF [32], in

Table 2.1 we classify the architectures and papers presented in this section, considering

the following criteria:

a) Mapping type (Manual, Automatic, Both);

b) Language of data access;

c) Materialization of the integrated model in the database (Y-yes, N-no);

d) Required changes in the existing systems, schemas and data (L-low, M-medium,

H-high);

e) Implementation effort (L-low, M-medium, H-high);

f) Coexistence of native models (Y-yes, N-no); and

g) Ability to integrate more than one database (Y-yes, N-no).

2.4 A Hybrid Architecture for the FishGraph

This section describes ReGraph, our proposed hybrid architecture, and how it was applied

in the FishBase information system, generating the FishGraph model.

2.4.1 Hybrid Architecture: Relational and Graph

Figure 2.4 presents a diagram of our hybrid architecture. It maintains the relational and

graph databases in their native forms and connects them. The central part of the diagram

is the graph database, which can map and connect one or more relational databases.

The proposed architecture has the following features:

1. Mapping process: It is inspired by the OLAP approach of creating a special

database designed for data analysis which replicates part of other existing databases.

Data from the relational database are partially or completely mapped and replicated

CHAPTER 2. FISHGRAPH 22

Figure 2.4: Proposed hybrid architecture.

to the graph database. Data can be mapped automatically by the system or through

a manual configuration, specifying how tables and fields should be migrated to nodes,

properties or edges in the graph. The manual mapping also allows for the definition

of rules for linking data from different sources;

2. Synchronization: Beyond a static ETL (Extract, Transform and Load) approach,

the system manages a dynamic evolution of both databases. A service, scheduled

in regular intervals by the user, will refresh the data. Changes in the relational

database are captured by this service and updated in the graph database. Fur-

thermore, we have the integrated coexistence of both models, keeping their native

representation;

3. Mapped and Annotation subgraphs: To manage the consistency among databa-

ses, we devise two kinds of subgraphs in the graph database: Mapped and Annota-

tion. The Mapped subgraph contains synchronized read-only data coming from the

relational database, i.e., they cannot be modified in the graph database. The Anno-

tation subgraph is produced directly in the graph database – without corresponding

elements in the relational database. It enables it to produce new knowledge us-

ing the graph flexible structure. Besides enabling the enrichment of data with user

annotations, without the requirement of changes in the relational schema and a spe-

cialist support, the annotation subgraph can also materialize intermediary results

of a network-driven analysis process, as we will show in the practical experiments.

2.4.2 The FishBase Entities Analysis

FishBase does not have a complete documentation about the database model and schema.

Therefore, in order to migrate the relevant data about identification keys and species

taxonomic classification, we started analyzing the FishBase entities (tables). In this

analysis, we checked the entities, their fields and records to determine the entities, the

relationships and the database model to the relevant set of data.

This task resulted in the selection of the main entities, including the related data,

and their relationships (previously explained in Section II): SPECIES, GENERA, FAM-

CHAPTER 2. FISHGRAPH 23

ILIES, ORDERS and CLASSES, which help to determine the taxonomic classification of

a species; and KEYS and KEYQUESTIONS, that have the information about the fishes’

identification keys. With the objective of expanding our analysis, we also include entities

related to the geographic location: COUNTRYREF and ECOSYSTEMREF, that allow

connecting species and identification keys with countries and ecosystems. With the main

entities defined, the next step was to select the relevant fields from each entity. To ad-

dress the specific questions proposed, we decided to migrate only the main fields from

each entity, such as identification fields and descriptions.

2.4.3 Mapping Rules

There are two possible mappings: manual and automatic. In the manual mapping, it is

necessary specify each one of the tables and columns that will be migrated to the graph

database and how they will be created (nodes, properties or edges). In the automatic

mapping, all tables and columns will be migrated following the defined rules (detailed

in the next subsection). We have tested two mapping features: the manual mapping

process and the data synchronization process, using a Java program to perform both. The

manual mapping works selecting the relevant data, detailed previously, and, later, running

an ETL process that migrates all the selected data, which involves a big transformation

load. In the data synchronization process, we created database triggers that will be fired

after each insert, update or delete operation in a given table. When any of these events

occur, a record is inserted in a notification table, in which we have the columns: primary

key of the table that started the trigger; event (insert, update or delete); and a status

representing whether this change was already applied to the graph. A Java program reads

this notification table, filtering records with the status column defined as ‘pendent’, and

performs the change in the graph database, maintaining the synchronism and updating

the status column to ‘done’.

2.4.4 From FishBase to FishGraph

Our mapping model has been designed taking the “FishBase –> FishGraph” mapping

problem as a starting point. Tim Berners-Lee [5] discussed a set of mapping rules from

relational databases to RDF as follows: a record in the relational database becomes an

RDF node; a column name becomes an RDF predicate (a labeled edge); and a relational

database table cell becomes a value. The FishGraph will capture only the relevant data

in the FishBase for the analysis. As we are working in a property graph, and the Tim

Berners-Lee mapping considers an RDF graph, we have adapted the rules to our model

as follows:

• an entity in the relational model becomes a node type in the graph, also called

“class” in Neo4J;

• each record becomes a unique node in the graph;

• each table cell (except the foreign keys) of these records becomes a node property

in the graph;

CHAPTER 2. FISHGRAPH 24

• each foreign key becomes an edge in the graph.

2.5 Experiments and Results

We applied the mapping rules described in the previous section to migrate the relevant

data from FishBase to Neo4J, generating the FishGraph model presented in Figure 2.5.

The diagram represents a graph modeling of the selected tables from FishBase (presented

in Figure 2.1 and follows the same approach of Figure 2.3 to describe property graph

models. The KEYQUESTIONS table was used exclusively to link KEYS to the other

nodes.

To validate the synchronism feature in our architecture, we have created a trigger to

register changes in the SPECIES table. This trigger is fired after each insert, update or

delete operation in this table and is responsible for maintaining the data synchronism.

2.5.1 Experiment 1: Identification Keys

To study the network formed by data from FishBase, we connected FishGraph with

Gephi3, an interactive platform for analysis, visualization and exploration of networks.

Data for species, identification keys, ecosystems and countries generated 35,955 nodes

in FishGraph. To do this analysis, we selected the species, ecosystems and countries that

had links with identification keys. The resulting data had 10,403 nodes and 86,693 edges.

An identification key is a powerful mechanism to identify species. The right definition

of an identification key is fundamental in achieving its goal. As in FishBase, most of the

identification keys are produced independently, the analysis of the interconnection among

them through species, ecosystems and countries can be helpful in finding inconsistencies.

All the identification keys are available in the FishBase4 website.

2.5.1.1 Cliques Analysis

This analysis aggregates links among keys related to shared species. The resulting aggre-

gation was materialized in the annotation subgraph, by the production of “Share” edges

linking keys to keys, with the properties: “Species” indicating how many species each

pair of keys share, and “SpeciesProportion” representing the percentage of shared species,

when compared to the total of species in the respective key. Since the proportions change

according to the node they refer to, the edges are directed and for each pair of keys k1

and k2 (see Figure 2.6) there is an edge from k1 to k2 (with the proportion of k1) and

an edge from k2 to k1 (with the proportion of k2). The annotation subgraph enables the

creation of extra information without affecting the relational source, which would require

a new table only to store the relations between the keys.

The resulting network showed that we have a large number of keys that do not share

species with other keys, on the border of the diagram, and some keys that are highly

connected, on the center (see Figure 2.7).

3http://gephi.github.io/ [Accessed: 2016-Jan-05]
4http://fishbase.org/keys/allkeys.php/[Accessed: 2016-Jan-05]

CHAPTER 2. FISHGRAPH 25

Figure 2.5: FishGraph model for identification keys and species classification.

Figure 2.6: Annotation edges “share” between two keys and their properties.

Figure 2.7: Distribution of the keys by species shared with another key.

CHAPTER 2. FISHGRAPH 26

Figure 2.8: Clique of identification keys (red nodes) of size 10 and their respective species
(blue nodes).

Over this set of data, we applied the Clique Percolation Method (CPM) [29] for finding

overlapping dense groups of nodes in networks. This method allows identifying all existing

k-cliques in the network. A clique is a subset of vertices of a graph G, such that its induced

subgraph is complete, i.e., every two distinct vertices in the clique are adjacent. A k-size

clique indicates a clique that has k nodes and each node has k-1 edges connecting it to

the other nodes. The two largest cliques in this network have size 10, indicating that

there are 10 keys sharing at least one species (see Figure 2.8). The clique analysis was

the starting point for the next steps.

2.5.1.2 Connected Component Analysis

This analysis addresses the species and key nodes (1,365 keys and 8,112 species connected

by 9,864 edges). In this network, we applied the Depth-First Search and Linear Graph

Algorithms [34] to find connected components. A connected component in a graph G is

a subgraph H of G in which, for each pair of nodes u and v, there is a path connecting u

and v. Each connected component is independent [10].

In our analysis, a connected component represents keys and species that are connected.

With this analysis, it is possible to find inconsistencies or redundancies in the keys defini-

tion. We identified 863 connected components (see Figure 2.9), in which 31 have a unique

key and a unique species. This analysis can guide biologists in finding highly related

and complementary keys. To illustrate that, we identified a component having two keys

connected by only one species: Erpetoichthys calabaricus. The description of these two

keys are quite similar:

1533 - Key to the genera of Polypteridae of West Africa.

1584 - Key to the genera of Polypteridae of Lower Guinea, West-Central Africa.

A complementary analysis in the FishBase database showed that each of the two

keys have two questions each one describing different characters of the species. Unifying

CHAPTER 2. FISHGRAPH 27

Figure 2.9: All of the 863 connected components (distinct colored).

the two keys could give more information about the species and make the identification

process more efficient.

We found components in which the keys share 100% of the species. To demonstrate

that, we found a component with two keys and 18 shared species. A further analysis in

the description and the questions of the two keys showed that they are versions of the

same key:

475 - Key to species of Hemipsilichthys.

360 - Key to the species of Hemipsilichthys. In this case, we could suggest deleting

one key and keeping the more updated.

2.5.1.3 Max Out-Degree Analysis

In this analysis, we obtained the out-degree of each key, i.e., the number of links from keys

to species. Confronting these data with the clique and component analyses, we found that

the key with the max out-degree is part of a component with 149 edges and 140 nodes,

in which there are 2 keys and 138 species. The two keys share only 11 species (see Figure

2.10. The description of both keys is related to the same species:

205 - Key to the species of scorpionfishes (also, lionfishes, rockfishes, stingfishes, stone-

fishes, and waspfishes) (Scorpaenidae) occurring in the Western Central Pacific.

316 - Key to the species of Indo-Pacific Scorpionfish (Genus Scorpaenopsis).

The questions of both keys are similar. All species in this component are part of the

same taxonomic order and class, and there are 8 distinct families and 51 distinct genera.

This analysis also suggests that it could be interesting to unify the keys.

CHAPTER 2. FISHGRAPH 28

Figure 2.10: Max Out-Degree key component with species colored by family.

Table 2.2: Top Ten Ecosystems

Ecosystem Total Keys

1 South China Sea 507

2 East China Sea 459

3 North Australian Shelf 375

4 Agulhas Current 365

5 Peng-hu Island 345

6 Sulu-Celebes Sea 327

7 Caribbean Sea 304

8 Coral Sea and GBR 294

9 Red Sea 279

10 Insular Pacific-Hawaiian 268

2.5.1.4 Ecosystems and Countries Analysis

This analysis involves data from keys, ecosystems and countries. According to the Fish-

Base data, FishGraph has keys directly connected to ecosystems and countries and keys

indirectly connected to them through species referred by that key. Several keys do not

have direct links to ecosystems and countries; therefore, we obtained this information in-

directly through the respective connected species, producing new edges connecting them

to the key, which are materialized in the annotation subgraph. The result was a dense

and highly connected network.

Using the existing graph and the produced annotation subgraph, we applied a simple

degree analysis of ecosystems and countries and obtained the top ten nodes of each one

(see Table 2.2 and Table 2.3).

The ecosystems 7 and 10 represent ecosystems in the American continent, but the

analysis of countries does not show any country from this continent. We conclude here

that there is a lack of relations between keys and countries in the FishBase database.

CHAPTER 2. FISHGRAPH 29

Table 2.3: Top Ten Countries

Countries Total Keys

1 China 688

2 Australia 614

3 Japan 596

4 Indonesia 557

5 Taiwan 556

6 Philippines 566

7 South Africa 506

8 Vietnam 505

9 India 482

10 Papua New Guinea 469

2.5.2 Experiment 2: Species Classification

The Semantic Web initiative – in which humans and computers can interpret web re-

sources – has been increasingly supported by the scientific community. Linked Open

Data (LOD) represents an important part of these initiatives, which provide large and

growing collections of datasets, represented in open standard formats (including RDF

and URIs). They are partially linked to each other and can be connected to domain

knowledge, represented by the Semantic Web ontologies [8]. LOD provides an excellent

environment for knowledge discovery.

Using the annotation subgraph, we have created a new property, named URI, for the

species nodes. The URI (Uniform Resource Identifier) is a global unique identifier for

a resource on the web, used by the Semantic Web to produce a distributed knowledge

network, where any node can be linked to any other node on the Web, pointing to its

URI. This URI property has the goal of preparing the FishGraph for the LOD and to

linking its data to third party knowledge bases. We have adopted the DBpedia ontology

to define the URIs of the properties for species, genus, family, order and class.

In this experiment, we compared data about species and their taxonomic classification,

available in FishGraph, with the data of species available on DBpedia. The main goal is

to compare data available in both sources and to present the results.

Some species in DBpedia have their taxonomic classification defined by properties

connected to the DBpedia ontology (URI prefix http://dbpedia.org/ontology/) and

other as literal text fields (URI prefix http://dbpedia.org/property/). In our analysis,

we compared the FishGraph data with both values. The ontology/literal properties used

in this analysis were:

- Genus: http://dbpedia.org/ontology/genus and

http://dbpedia.org/property/genus;

- Family: http://dbpedia.org/ontology/family and

http://dbpedia.org/property/family;

CHAPTER 2. FISHGRAPH 30

Figure 2.11: Hybrid architecture with FishBase, FishGraph and DBpedia.

- Order: http://dbpedia.org/ontology/order and

http://dbpedia.org/property/order;

- Class: http://dbpedia.org/ontology/class and

http://dbpedia.org/property/class.

Species nodes in DBpedia are represented as Resources, fetched through the link http:

//dbpedia.org/resource/RESOURCE_NAME, in which RESOURCE_NAME is the name

of the resource. The RESOURCE_NAME in species corresponds to its scientific name,

composed of genus and species (GENUS_SPECIES). Therefore, the URI property of

each species node in FishGraph was defined as http://dbpedia.org/resource/GENUS_

SPECIES. Through the URI property, the related data can be obtained from DBpedia.

Departing from the 32,957 species nodes, we traversed the FishGraph to get genus,

family, order and class. Each species and their taxonomic classification in FishGraph were

compared to the related resource from DBpedia, using its API (see Figure 2.11).

There are reclassified species in DBpedia, which trigger a redirection that can cause

a wrong interpretation of the results. For example, the species Balistes vetula in the

DBpedia has the link http://www.dbpedia.org/resource/Balistes_vetula, which is

automatically redirected from http://www.dbpedia.org/page/Queen_Triggerfish. In

this case, it is not possible to fetch data from the initial resource. We verified that the

total number of redirects was 5,183, approximately 15% of the species. Therefore, our

system handles the redirection increasing the accuracy of the analysis.

The final results (see Figure 2.12) showed that: 5,136 species have the same taxonomic

classification in FishGraph and DBpedia (15.18%); 7,456 species have some inconsistency

in genus, family, order or class (22.62%); and 20,365 (61.79%) species exist only in Fish-

Graph. The resulting report of this analysis can support quality analysis and indicate

species that may require review.

2.6 Conclusion

Nowadays, there are several biodiversity information systems maintaining big relational

databases, with a lot of knowledge to discover. In this paper, we showed the impor-

tance of network-driven analysis for knowledge discovery, contrasted with the ineptitude

CHAPTER 2. FISHGRAPH 31

Figure 2.12: Species classification comparison between FishGraph and DBpedia.

of relational databases for such analysis. We proposed ReGraph, a hybrid architecture

bridging relational and graph databases, with both models integrated and synchronized

in their native representation. It has a low impact on the current infrastructure and on

the information systems that access data in the relational database.

Our application scenario involves mapping data from FishBase to FishGraph, using

ReGraph architecture, to perform a network-driven analysis of identification keys and

to compare the taxonomic classification of species of fishes. We showed that a network

analysis is a complex task to be performed in a relational database, given the required

emphasis on the relations and the transitive aspects of the queries. To address this issue

we mapped a large volume of data from FishBase to FishGraph, generating almost 36,000

nodes and 100,000 edges, in which we selected only the relevant data to analyze.

Our architecture contrasts with related work, since it generates a materialization of the

graph mapping in a native graph database structure, in which it is possible to create new

information and link the mapped data with new inserted data, in an annotation subgraph.

We provide an automatic synchronization mechanism for data in the relational and graph

databases. We have implemented also a mapping specification that supports automatic

and manual mapping. This specification is directly related to the synchronization process,

able to automatically infer the fields to be monitored in the relational database and the

respective graph elements to be updated.

An additional contribution is the analysis presented to the proposed problems: iden-

tification keys and their species and species taxonomic classification, in which we applied

graph algorithms, e.g., traversal path and clique percolation method. It resulted in rec-

ommendations for the review of identification keys and in a report comparing species

in FishGraph and DBpedia. To generate this report, we analyzed data of species from

DBpedia, to map all incomplete and divergent data in FishBase. Moreover, we intend to

create a user interface, which will facilitate the performance of queries involving graph

algorithms and data visualization.

Chapter 3

ReGraph: Bridging Relational and

Graph Databases

3.1 Introduction

In the data analysis context, links have been increasingly considered as important as the

data elements that they connect. It is possible to analyze these links, and the existing

latent semantics, through the analysis of the network topology formed by them. Graph

databases are very effective in this type of analysis due to their flexible structure, which

helps in defining the fitted model to each required analysis. Moreover, the OLAP (OnLine

Analytical Processing) concept of creating an exclusive database for data analysis is a

consolidated approach. This database is designed and tuned for the respective operations

– over graphs, in our case – allowing users to manage data without impact in the original

databases and to dynamically create information over the existing data.

Combining the graph database and the OLAP concept, we propose ReGraph, a frame-

work that generates a graph database from a relational database, providing extra func-

tionalities for analysis. Using a tailored mapping, an ETL process generates the graph

database linked to the relational one, preserving both databases in their native forms.

Beyond synchronizing the dynamic evolution of the relational database with the graph,

our framework supports adding new data in the graph, annotating the mapped one. An-

notations enrich the semantics in the existing data and can improve the network analysis

performed in the graph database. As part of the ReGraph work, we have implemented

FishGraph, a project in which we generate a graph database from FishBase, a relational

database and information system for biological data storage of fish species. Through Fish-

Graph, the relational and the graph databases interact with each other, maintaining their

native forms. In Cavoto et al. [12] we present two scenarios in which a graph database

can be a better choice for network analysis in the FishBase context and how annotations

are helpful in improving this analysis.

Concerning the related work, there are several approaches for representing data as

a graph structure starting from a relational database. The Database Graph Views [21]

proposes an abstraction layer as a mechanism for creating views to manipulate graphs,

independent of the physical arrangement where the original data is stored. The D2RQ

32

CHAPTER 3. REGRAPH 33

Figure 3.1: The ReGraph Framework.

Map [7] proposes the integration of ontologies in RDF with relational databases through

a module that creates a virtual RDF graph. As both approaches do not materialize the

graph database, they neither take fully benefit of the advantages in the network analysis

offered by a database tuned for graph operations, nor the possibility of adding new data

in the existing data. The Virtuoso RDF View [9] proposes mapping relational data to

RDF. It operates exclusively over the RDF model and the Virtuoso relational database,

restricting the use of other graph models and database management systems.

In this paper, we present the ReGraph framework, detailing the generation of the

graph database starting from a relational database, keeping both in their native forms

and interacting with each other, dividing tasks of management and analysis according to

their specialties. Moreover, ReGraph allows the creation of new information by annotating

the existing data and provides a dynamic evolution of the graph database, reflecting the

changes executed in the relational database.

3.2 The ReGraph Framework

ReGraph is a framework that departs from a relational database, allowing to create and

maintain within a graph database two connected subgraphs: mapped and annotation. It

mainly addresses a Property Graph model, even though it can also work with the RDF

model. Figure 3.1 illustrates an overview of the ReGraph framework that has three main

modules: Mapping, Graph and Sync.

ReGraph keeps both databases in their native forms and does not require changes in the

relational schema, which will generate a minimum impact on the existing infrastructure.

Therefore, it allows to users to keep using the existing systems that operate over the

CHAPTER 3. REGRAPH 34

relational database and using the dynamically synchronized graph database for analysis,

focusing on the relations among data elements.

To the best of our knowledge, ReGraph is the first framework that migrates data from

the relational database to a property graph database, Neo4J, keeping the databases in

their native forms and providing a dynamic evolution of both.

3.2.1 The Mapping Module

In the Mapping Module, through the Mapping Definition process, flow 1 in Figure 3.1,

it is possible to map data from a relational database schema to a graph database. There

are two mapping options:

1. Automatic: maps the relational database schema automatically to a graph database

model. Tim Berners-Lee [5] discussed a set of mapping principles when converting

relational databases to RDF (Resource Framework Description). The principles are

as follows: a record in the relational database becomes an RDF node; a column

name becomes an RDF predicate (a labeled edge); and a table cell becomes a value.

As the target of ReGraph is a property graph, and the Tim Berners-Lee mapping

considers an RDF graph, we have adapted the rules to our model as follows:

• a table in the relational model becomes a node type, also called label;

• each record becomes a unique node;

• each table cell (except the foreign keys) of the record becomes a node’s prop-

erty;

• each foreign key becomes an edge connecting the nodes generated by the in-

volved records.

2. Manual: allows defining tailored mappings, according to their analysis require-

ments. For each table and column of a given relational database, it is possible to

define a mapping to graph labels, nodes, properties and edges. Moreover, one can

also map a relational database to an RDF graph model by keeping properties un-

selected – in this case, we are only considering the RDF graph model, since fully

RDF mapping would require other RDF semantic representation concerns.

After the mapping definition, ReGraph saves this mapping in the graph database,

creating it as a representation of the graph model, as shown in Figure 3.1, flow 2. The

graph model viewer presents a representation of the mapping and provides a previous

data organization in the graph database, flow 3 in Figure 3.1.

The last feature of this module is the ETL process, responsible for retrieving data

from the relational database and inserting data into the graph database, generating the

mapped subgraph, as specified in the mapping definition, Figure 3.1, flows 4 and 5. Each

table and column mapped from the relational database receives a trigger that registers

any insert, update or delete in a notification table, in order to perform the synchronism

process in the future. All nodes and relationships generated from the relational database

have a special property called “DataSource” defined as “Mapped”, which forbids changes in

CHAPTER 3. REGRAPH 35

their data directly in the graph database. Any required change in the mapped subgraph

data must occur in the relational database and the synchronism process performs the

respective changes in the graph database.

3.2.2 The Graph Module

The Graph Module allows the interaction with the graph database as annotations over

the mapped subgraph, as shown in Figure 3.1, flow 6. While it is not allowed to change

the mapped data in the graph, in order to maintain the consistency, it is possible to create

new nodes and edges over this data as annotations, Figure 3.1, flow 7. The new anno-

tation nodes and edges have the “DataSource” property, mentioned previously, defined

as “Annotation”. The Annotation Graph aims to facilitate the network analysis, adding

details over the existing data and enabling to materialize intermediary nodes and relations

inferred from existing data.

In the end, there are two main distinct, but interconnected subgraphs: the mapped

and the annotation. One cannot create nodes and edges in the annotation subgraph using

the existing labels defined in the mapped subgraph. This rule aims to prevent the creation

of redundant and conflicting data between the mapped and the annotation subgraphs.

3.2.3 The Sync Module

The Sync Module is responsible for maintaining the graph database synchronized with the

relational database, providing a dynamic evolution of both, as shown in Figure 3.1, flow

8. It also keeps the graph database updated with the last changes to perform the network

analysis. A scheduled service periodically reads the data registered in the notification

tables, populated by the triggers created in the end of the ETL process, and runs the

synchronism process, updating the graph database with the new information1. There are

three main rules applied in synchronism process:

1. Delete: there are two distinct policies that can be configured for deleted records

in the relational database. The first one is the “Delete” policy, in which, when

a mapped record is deleted in the relational database, the synchronism process

reflects it in the graph by deleting the respective nodes, properties or edges. In this

case, all the related annotations exclusively linked with the deleted nodes are also

deleted. The second is the "Keep" policy, in which, when a mapped data is deleted

in the relational database, the synchronism process performs only an update in the

“DataSource” property, changing it from “Mapped” to “Deleted” and keeping the

respective nodes and edges in the graph database. Moreover, it is not possible to

perform changes in the “Deleted” nodes and edges. The “Keep” policy has direct

impact in the Insert rule;

2. Insert: when a new record is inserted into a mapped table in the relational database,

the synchronism process will check if these data already exists in the graph database

as “Deleted” data. If these data do not exist, the synchronism process maps it

1See Appendix B for a detailed flow of the synchronization process.

CHAPTER 3. REGRAPH 36

Figure 3.2: ReGraph Interface: Manual Mapping and Graph Model Viewer.

onto the graph database, according to the mapping configuration. Otherwise, the

synchronism process will return the “DataSource” property to “Mapped” again, and

update all the related data;

3. Update: when a mapped record in the relational database is updated, the synchro-

nism process will update the respective data in the graph, according to the mapping

definition.

3.3 Software Overview

The ReGraph framework has a web interface, providing easy access to the user through

any browser. Figure 3.2 presents an overview of the interface, with an emphasis in the

mapping and the graph model viewer screen.

In the first step, the user defines the general configuration, including information

about the relational and the graph databases (server, instance, user and password), the

mapping type from the relational to the graph database (automatic or manual) and the

time interval among synchronism cycles.

The automatic mapping option lists all tables and columns of the relational database,

and users can filter their interests removing tables or columns from the mapping, uncheck-

ing the respective tables/columns (except the primary and foreign keys). It helps in mi-

grating only the necessary data to the graph database, e.g., fields containing detailed

descriptions and big notes could be irrelevant in a network analysis. As in the auto-

matic mapping, the manual mapping also lists all tables and columns from the relational

CHAPTER 3. REGRAPH 37

database. The user checks each table and column to be mapped, having the duty of

defining the appropriate destination type, i.e., a label, node, property or edge.

After concluding the mapping, the “Save Mapping” button saves the mapping defined

by the user and creates a graph database model that can be visualized by the user. It

represents an abstract model of the graph database, presenting to the user a review of

the mapping, as shown in Figure 2. At this point, it is possible to change the mapping in

order to find the better model to fit an analysis. Whenever the user is satisfied with the

mapping and model, it is possible to perform the first data load, carried by an ETL static

process. After the mapping and the ETL processes, it is only possible to include tables

and/or columns – it is not possible to remove tables and/or columns from the mapping.

This rule aims to avoid inconsistencies in the graph database, considering the annotation

subgraph. The ETL process also creates the triggers associated with the mapped data to

perform the synchronism.

The synchronism process is transparent to the user. It is operated by a scheduled

service running automatically on the server. This process is responsible for maintaining

a dynamical evolution of the graph database, considering the changes executed in the

relational database and following the rules explained in the previous section.

The Graph Module encompasses routines to compute new graph elements inferred

from the existing ones or to enrich existing data with external resources, creating new

labels, nodes, edges and properties. One example using the Graph Module is an interface

with DBpedia, in which the user can compare a specific subgraph of the database with

the DBpedia RDF content. It produces three kinds of annotation: (a) equal – data that

are the same in the graph database and in DBpedia; (b) not found – data that exist in

the graph database but does not exists in DBpedia; and (c) inconsistent – data in the

graph database that has any difference compared to DBpedia. These annotations point

data to be reviewed, which are presented in a report to the user.

3.4 Conclusions

In this paper, we present ReGraph, a framework bridging relational and graph databases.

It offers to the user operations of automatic or manual mapping from a relational to

a graph database, dynamically updating data in the graph according to the changes

performed in the relational database. Moreover, the ReGraph infrastructure offers mech-

anisms to interconnect data available in the graph database with third party resources,

as data available in DBpedia, allowing the enrichment of existing data. We are working

to connect the graph database with other data sources on the Web. To the best of our

knowledge, ReGraph is the first framework that maps data from a relational database to

a property graph database, keeping the databases in their native forms and providing a

dynamic synchronized evolution of both.

Chapter 4

Annotation-Based Method for Linking

Local and Global Knowledge Graphs

4.1 Introduction

Real-world phenomena as biological processes, social networks and information systems

have been increasingly modeled as networks, where nodes can represent individuals, com-

puters, species, proteins, etc. and links the interactions among them. Recent research is

pointing graphs as the fitted structure to store this kind of data, in which the relations

among data elements are as important as the elements themselves. In the biology field,

there are many uses for graphs, including metabolic networks, chemical structures and

genetic maps [35]. The challenge is how to explore the network "behind" data available

in existing information systems for analysis when data are stored in formats that do not

valorize such network structure.

This challenge motivated our proposition of ReGraph, a framework inspired in the

OLAP approach, which creates a special local graph database designed for network-driven

analyses, aligned with an existing relational database. We applied ReGraph to taxonomic

data from FishBase to create FishGraph [12].

In this paper, we present an automatic annotation-based method to link our local

graph database to global graphs from the Semantic Web, applied to link FishGraph data

with DBpedia. Our method contributes in the data quality analysis, in the enrichment of

the local database and in building the Giant Global Graph.

This is a work in progress concerning how to relate data from a local graph, stored

in a graph database, with global graphs. Different from related work, our local data

repository is not a static set of documents or tags to be enriched, but a dynamic graph

database. The annotated content evolves along the time, bringing challenges, addressed

in this research, as how to manage this hybrid graph (local and global) maintaining its

consistency during the evolution.

The remainder of the paper is organized as follows. Section 4.2 presents related work.

Section 4.3 details our ReGraph framework. Section 4.4 presents our annotation-based

approach to enrich data using ontologies. Section 4.5 presents our conclusions and future

work.

38

CHAPTER 4. ANNOTATION-BASED METHOD 39

4.2 Related Work

There are several contexts in which annotations are related to the Semantic Web resources

(LOD and ontologies). The annotations are produced manually, semi-automatically or

automatically, helping the improvement of information retrieval, knowledge reuse and

information exchange [28]. There are works proposing annotations over wiki pages [27]

and publishing personal notes as linked data in semantic blogs [17].

Several initiatives focus on how to reach semantic concepts to relate them to resources.

In a survey of semantic search approaches, the authors present an overview and a clas-

sification of the existing methods for searching and browsing linked data and ontologies

[25]. In Alm et al. [1], the authors propose a model to extract characteristic features

from semantic annotations by importing the ontology concepts and their taxonomic rela-

tionships. Another work uses taxonomic distance measures to compute relatedness of the

ontological annotations [30].

The work presented in Santos et al. [33] proposes an architecture to discover infor-

mation sources through the use of semantic search techniques in a corporative metadata

repository. The process begins with an initial keyword list, followed by the query refor-

mulation process that expands this list, adding semantically related terms and creating a

new query to run on semantic annotations.

In Amanqui et al. [2], the authors developed a semantic search application that uses

semantic web key concepts for information retrieval. They have proposed an architecture

for semantic search that maps concepts of the OntoBio domain ontology to a database

from the National Institute for Amazonian Research (INPA), which has collections of

insects, fishes, and mammals, totalizing over 16,500 species.

As mentioned before, this work differs from the above initiatives since it introduces

a graph database perspective over the locally annotated data, which dynamically evolve

along the time and must stay consistent.

4.3 ReGraph

As mentioned before, this method is an extension feature in our ReGraph framework,

which provides a bridge integrating relational and graph databases, keeping both synchro-

nized in their native representations. In this section, we briefly explain how the ReGraph

framework works and the data conversion process from a relational to a property graph

database.

4.3.1 The ReGraph Framework

The FishBase data is stored in a relational database. Besides the existing relational

database, ReGraph produces a parallel property graph database (FishGraph), to perform

network analyses and to link data with Semantic Web.

Starting from a relational database, ReGraph allows mapping its data into a property

graph database, generating a mapped subgraph. It is also possible to further create

manual and automatic annotations over these data, generating an annotation subgraph.

CHAPTER 4. ANNOTATION-BASED METHOD 40

Figure 4.1: Graph Model for Taxonomic Classification and Countries.

Both subgraphs, mapped and annotation, are connected in the graph database. ReGraph

keeps relational and graph databases in their native forms and has a synchronism module

that reflects in the graph database changes executed in the relational database. The graph

database is focused on the analysis on the relations among data elements.

4.3.2 From FishBase to FishGraph using the ReGraph framework

As previously mentioned, FishGraph concerns an application of ReGraph in the FishBase

information system. We have mapped the taxonomic classification of fishes from FishBase

to FishGraph - see details in [12]. The taxonomic classification of a species includes:

Kingdom, Phylum, Class, Order, Family, Genus and Species. As FishBase has only

species of fishes, it does not register Kingdom and Phylum, once that all fishes belong to

the same Kingdom and Phylum. These data was compared to the taxonomic classification

defined in DBpedia, generating a comparison annotation type.

In order to generate a new annotation type, we have selected also the table Country,

representing countries where species are found. Figure 4.1 shows the graph model for the

taxonomic classification and country data generated in the graph database, in which we

have nodes and, associated with them, their respective properties and edges connecting

them to each other.

We used the country information in the graph database to link them to GeoNames,

a geographical knowledge base that covers all countries and contains over eight million

placenames. Data retrieved from GeoNames generated new nodes and edges in the graph

database, enriching it and bringing more details to the performed analyses. After the

migration of the related data, we generated in the graph database 226,284 edges and

44,701 nodes, in which we have: 311 countries1; 32,957 species; 10,790 genera; 572 families;

65 orders and 6 classes.

1Islands are also counted as countries in FishBase.

CHAPTER 4. ANNOTATION-BASED METHOD 41

4.4 Automatic Annotation-Based Method

Annotations can improve the understanding and the quality of the data adding extra

information. We propose a method that allows creating automatic annotations over the

existent data in a property graph database. These annotations will be created through a

direct connection with existing ontologies and LOD, available on the Web, e.g., GeneOn-

tology, GeoNames and DBpedia. In this section, we detail our automatic annotation-based

method and the two distinct annotation types implemented: Comparison and New. In-

dependently of the annotation type, local data is related to Web data through a match

function that compares strings to find the proper resource.

A distinctive feature of our approach is to differentiate the annotation subgraph (pro-

duced here) from the mapped subgraph (mapped from the relational database). The

mapped subgraph cannot be directly changed in the graph database, since it is the prod-

uct of a one-way synchronization originated in the relational database. Synchronization

rules avoid updates in the mapped subgraph that will create inconsistencies with the

annotation subgraph.

4.4.1 The Comparison Annotation Type

The main goal in the Comparison annotation type is to record comparisons of data stored

in the local graph database with third party sources available on the Web. To execute

this type of automatic annotation, it is necessary to define the "subject query" that will

return the data from the property graph database that will be subject to the comparison.

The order of the data returned by the subject query is determinant to the correct

execution of the process: (i) the first value will be the identifier of the node, helping

the annotation process; (ii) the second value will be the key matched with the ontology

identifiers; it will be used by the match function to retrieve data on the Web; (iii) for each

of the remaining values, it is necessary specify the direct path in the ontology to reach it,

linking the returned values with the specific value in the ontology; it is possible to define

two paths in the ontology for each value returned by the subject query.

The result of this comparison will produce an annotation over the first node returned

by the subject query. This annotation is added in the graph database as a property of

the node, in which there are three possible values, annotated automatically:

• Equal: indicate elements that have the same value in the graph database and in

the external ontology. This kind of annotation can improve the quality and the

confidence of the data, through a double check validation;

• Not Found: represent existing elements in the graph database that were not found

in the referred ontology. It can indicate: data in the graph database have spelling

mistakes; the specified data do not exist in the referred ontology; data were updated

in one of the sources, and were not in the other; etc;

• Divergent: represent data that have a divergence compared to the referred ontol-

ogy. In can indicate: incorrect data in the graph database or in the ontology. This

value is defined as a recommendation to review data. In addition, a new node is

CHAPTER 4. ANNOTATION-BASED METHOD 42

added, linked with the existing node, containing the exact data in the ontology for

traceability.

4.4.2 The New Annotation Type

In the New annotation type, we produce new nodes, edges and/or properties, to improve

the analysis and results. In this annotation type, it is necessary to specify in the "subject

query" only two values: (i) the first one will be the identifier of the node, helping in the

annotation process; (ii) the second one represents the key in the graph database matched

with the respective identifier of a resource in the ontology; it is used by the match function

to retrieve data on the Web. The second step is to define the ontology path to search.

Both data are the starting point to search in the ontology. For each information to

be retrieved from the ontology and inserted in the graph database it is necessary specify:

(i) ontology information: direct path in the ontology to retrieve the required information;

(ii) annotation creation: how the annotation will be created in the graph database: as a

node or property. The new node will be connected with the existing node by an edge that

has its label also defined. In the property option, a defined property will be created over

the existing node. In both cases, the value of the property will be the value found in the

specified ontology.

4.5 Conclusions and Future Work

In this paper, we presented an automatic annotation-based method using ontologies, as

an extension of our project ReGraph that connects a relational database with a property

graph database, keeping both integrated, synchronized and in their native forms. It stands

out for its flexibility in defining the ontologies and values that will be retrieved, compared

and created, offering several possibilities to validate and enrich the graph database. Our

method contrasts with the related work since it introduces a graph database perspective

over the annotation-based connection between the local and global graphs. Annotations

in the annotated subgraph stay consistent with the existing mapped subgraph, even after

its evolution along the time.

We developed two distinct experiments to validate each proposed annotation type:

Comparison and New2. In the Comparison experiment, we compared almost 33,000

species of fishes from FishBase to validate their taxonomic classification with DBpedia.

In the New experiment, we used the 249 countries3 in the graph database to retrieve their

continent and information of GeonNameID and population from GeoNames.

Future work includes extending the functionality of ReGraph to allow retrieving data

from other web formats and to save the link to the resource in the graph database as well

as the "subject query" that generated it, helping in future repeated analysis and to track

provenance.

2See Appendix C for details of these experiments.
3Islands are also counted as countries in FishBase.

Chapter 5

Conclusion

The relational database model is one of the most used to store, manage and retrieve data.

However, network analyses in this model can be a hard and complex task. In addition,

the rigid database schema does not allow to easily add new fields and/or relations in

the current schema. In recent years, the necessity of constantly changing the schema

and of performing network analysis are getting increasing attention and providing a new

view over the existing data. The challenge is to create a network-driven data representa-

tion which coexists with the relational database, with a minimum impact in the current

infrastructure.

The main contribution presented in this dissertation is ReGraph, a framework to map

data from a relational to a graph database, providing a hybrid architecture that bridges

both databases and managing the coexistence of them in their native representations.

The proposed framework maintains the graph database synchronized with the relational

database and allows the creation of annotations directly in the graph in manual or auto-

matic ways. Automatic annotations can be generated from the Semantic Web. Related

work, does not fulfill all these requirements.

In order to validate our proposal, we developed the ReGraph framework, generating

FishGraph, a graph database obtained from FishBase, and we performed different net-

work analyses in FishGraph. ReGraph was tested only using FishBase, but the framework

allows to convert any MySQL1 relational database to a graph database. To implement

the diverse aspects of the framework, we employed a stack of technologies. Data were

obtained from the MySQL relational database. To store the data as a graph, we adopted

Neo4J2. The processing module uses Java and Cypher languages. Finally, the Web user

interface was implemented using the bootstrap3 framework and the jQuery4 library.

1https://www.mysql.com/ [Accessed: 2016-Jan-05]
2http://neo4j.com [Accessed: 2016-Jan-05]
3getbootstrap.com/ [Accessed: 2016-Jan-05]
4https://jquery.com/ [Accessed: 2016-Jan-05]

43

CHAPTER 5. CONCLUSION AND FUTURE WORK 44

Future Work

There are several areas in which we want to improve the proposal. The main ones are:

• Annotation management: the proposed framework allows creating any type of

annotation without extra validation. It is necessary to avoid the creation of anno-

tations that duplicate existing data in the relational source since it can generate

inconsistencies in the data and in the synchronization process;

• Multiple mappings: one relational database could be mapped into many distinct

graph models. A challenge is to provide the ability to generate distinct graph models

departing from one relational database model;

• Multiple and diverse relational databases: the current framework can map

only MySQL databases and does not allow more than one database source. It

will be important to support multiple and diverse relational database sources in

an integrated graph database. In addition, it will be necessary to consider the

management of similar nodes, classified as “same as”, in the graph database;

• Mapping: even using ReGraph, manual mapping still requires technical knowledge

from the final users. Make this step easier will popularize the use of the framework;

• Graph algorithms: a challenge is how to provide a library of predefined standard

graph algorithms and how to map each of them to the users domain problems,

generating valuable network analyses;

• Visualization: visualization of graphs with millions of nodes and edges is, cur-

rently, a big challenge in this research scenario. The improvement of the data

visualization support will enrich the user experience allowing the dissemination of

the ReGraph framework;

• Impact and performance: it is necessary to measure the real impact that the

adoption of ReGraph will generate in the current infrastructure. Moreover, it is

important to execute performance tests, comparing queries executed in the graph

and in the relational database to identify the advantages of each model to specific

queries.

Bibliography

[1] Rebekka Alm, Dagmar Waltemath, Olaf Wolkenauer, and Ron Henkel. Annotation-

Based Feature Extraction from Sets of SBML Models. In 10th International Confer-

ence on Data Integration in the Life Sciences, DILS 2014, pages 81–95. 2014.

[2] Flor K. Amanqui, Kleberson J. Serique, Franco Lamping, Andréa C. F. Albuquerque,

José Laurindo Campos dos Santos, and Dilvan A. Moreira. Semantic Search Archi-

tecture for Retrieving Information in Biodiversity Repositories. In Proceedings of the

6th Seminar on Ontology Research in Brazil, Belo Horizonte, Brazil, September 23,

2013, pages 83–93, 2013.

[3] Renzo Angles. A Comparison of Current Graph Database Models. In Proceedings

of the 2012 IEEE 28th International Conference on Data Engineering Workshops,

ICDEW ’12, pages 171–177, 2012.

[4] Renzo Angles and Claudio Gutierrez. Survey of Graph Database Models. ACM

Computing Surveys, 40(1):1–39, 2008.

[5] Tim Berners-Lee. Relational Databases on the Semantic Web. http://www.w3.org/

DesignIssues/RDB-RDF.html, 1998 [Accessed: 2014-June-10].

[6] Tim Berners-Lee. Giant Global Graph. http://dig.csail.mit.edu/breadcrumbs/

node/215, 2007 [Accessed: 2015-July-10].

[7] Christian Bizer. D2R Map – A Database to RDF Mapping Language. 12th Interna-

tional World Wide Web Conference, pages 4–6, 2003.

[8] Christian Bizer, Tom Heath, and Berners-Lee. Linked Data – The Story So Far.

International Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

[9] C. Blakeley. Virtuoso RDF Views – Getting Started Guide. http:

//www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_

Mapping.pdf, 2007 [Accessed: 2014-June-10].

[10] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier, 1976.

[11] M.J. Carey, L.M. Haas, P.M. Schwarz, M. Arya, W.F. Cody, R. Fagin, M. Flick-

ner, A.W. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J.H. Williams, and E.L.

Wimmers. Towards Heterogeneous Multimedia Information Systems: The Garlic

Approach. In Proceedings of the Fifth International Workshop on Research Issues

45

BIBLIOGRAPHY 46

in Data Engineering, 1995: Distributed Object Management, RIDE-DOM ’95, pages

124–131, 1995.

[12] Patrícia Cavoto, Victor Cardoso, Régine Vignes-Lebbe, and André Santanchè. Fish-

Graph: A Network-Driven Data Analysis. In 11th IEEE International Conference

on e-Science, e-Science 2015, Munich, Germany, August 31 - September 4, pages

177–186, 2015.

[13] Patrícia Cavoto and André Santanchè. Annotation-Based Method for Linking Local

and Global Knowledge Graphs. In Proceedings of the Brazilian Seminar on Ontologies

(ONTOBRAS 2015), São Paulo, Brazil, September 8-11, 2015.

[14] Patrícia Cavoto and André Santanchè. ReGraph: Bridging Relational and Graph

Databases. In Proceedings of the 30th Brazilian Symposium on Databases 2015

(SBBD, 2015), Demos and Applications Session, 2015.

[15] Patrícia Raia Nogueira Cavoto and André Santanchè. Arquitetura Híbrida de In-

tegração entre Banco de Dados Relacional e de Grafos. In Proceedings of the 29th

Brazilian Symposium on Databases 2014 (SBBD, 2014), Workshop on Thesis and

Dissertations in Databases (WTDD, 2014), 2014.

[16] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-Villamor,

N. Martínez-Bazán, and J. L. Larriba-Pey. Survey of Graph Database Performance

on the HPC Scalable Graph Analysis Benchmark. In Proceedings of the 2010 Interna-

tional Conference on Web-Age Information Management, Lecture Notes in Computer

Science, pages 37–48, 2010.

[17] Laura Dragan, Alexandre Passant, Siegfried Handschuh, and Tudor Groza. Publish-

ing Semantic Personal Notes as Linked Data. CEUR Workshop Proceedings, pages

1–2, 2010.

[18] FishBase Consortium. FishBase. http://www.fishbase.org/, 2015 [Accessed:

2015-July-05].

[19] R. Froese and D. Pauly. FishBase 2000: Concepts, Design and Data Sources.

ICLARM, 2000.

[20] Robert N. Goldberg and Gregory A. Jirak. Relational Database Management Sys-

tem and Method for Storing, Retrieving and Modifying Directed Graph Data Struc-

tures, United States Patents: US 5201046 A. http://www.google.com/patents/

US5201046, 1993.

[21] Alejandro Gutiérrez, Philippe Pucheral, Hermann Steffen, and Jean-Marc Thévenin.

Database Graph Views: A Practical Model to Manage Persistent Graphs. In Proceed-

ings of the 20th International Conference on Very Large Data Bases, VLDB, pages

391–402, 1994.

[22] Christian Theil Have and Lars Juhl Jensen. Are graph databases ready for bioinfor-

matics? Bioinformatics (Oxford, England), pages 3107–3108, 2013.

BIBLIOGRAPHY 47

[23] IBM. DB2 NoSQL Support: DB2 RDF Store. http://www-01.ibm.com/

software/data/db2/linux-unix-windows/nosql-support.html, 2014 [Accessed:

2014-February-26].

[24] Martin Kleppmann. Should you go Beyond Relational Databases? http://

blog.teamtreehouse.com/should-you-go-beyond-relational-databases, 2009

[Accessed: 2015-March-23].

[25] Christoph Mangold. A Survey and Classification of Semantic Search Approaches.

International Journal of Metadata, Semantics and Ontologies, pages 23–34, 2007.

[26] Oracle Corportation. Oracle Spatial and Graph Developer’s Guide. http://docs.

oracle.com/cd/E16655{_}01/appdev.121/e17896.pdf, 2013 [Accessed: 2014-

February-26].

[27] Eyal Oren, Renaud Delbru, Knud Möller, Max Völkel, and Siegfried Handschuh.

Annotation and Navigation in Semantic Wikis? CEUR Workshop Proceedings, pages

58–73, 2006.

[28] Eyal Oren, Knud Hinnerk Möller, Simon Scerri, Siegfried Handschuh, and Michael

Sintek. What are Semantic Annotations? http://www.siegfried-handschuh.net/

pub/2006/whatissemannot2006.pdf, 2006 [Accessed: 2015-July-23].

[29] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the Over-

lapping Community Structure of Complex Networks in Nature and Society. Nature,

435(7043):814–818, 2005.

[30] Guillermo Palma, Maria-Esther Vidal, Louiqa Raschid, and Andreas Thor. Exploit-

ing Semantics from Ontologies and Shared Annotations to Partition Linked Data.

10th International Conference on Data Integration in the Life Sciences, DILS 2014,

pages 120–127, 2014.

[31] Sriram Raghavan and Hector Garcia-Molina. Integrating Diverse Information Man-

agement Systems: A Brief Survey. Technical report, Stanford InfoLab, 2001.

[32] Satya S Sahoo, Wolfgang Halb, Sebastian Hellmann, Kingsley Idehen, Ted Thibodeau

Jr, Sören Auer, Juan Sequeda, and Ahmed Ezzat. A survey of current approaches for

mapping of relational databases to RDF. W3C RDB2RDF Incubator Group January,

2009.

[33] Veronica Dos Santos, Fernanda Araujo Baiao, and Asterio Tanaka. An Architecture

to Support Information Sources Discovery Through Semantic Search. 2011 IEEE

International Conference on Information Reuse & Integration, pages 276–282, 2011.

[34] Robert Tarjan. Depth-First Search and Linear Graph Algorithms. 12th Annual

Symposium on Switching and Automata Theory (SWAT 1971), 1(2):146–160, 1971.

BIBLIOGRAPHY 48

[35] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and Dawn

Wilkins. A comparison of a graph database and a relational database: a data prove-

nance perspective. In Proceedings of the 48th Annual Southeast Regional Conference,

ACM SE ’10, pages 1–6, 2010.

[36] Marc Volz, Karl Aberer, K. Böhm, and D. GMD-IPSI. An OODBMS-IRS coupling

for structured documents. IEEE International Conference on Data Engineering,

0:34–42, 1996.

[37] A. D. Vries and A. Wilschut. On the integration of ir and databases. In Database

Issues in Multimedia; Short Paper Proceedings, International Conference on Database

Semantics (DS-8), pages 16–31, 1999.

APPENDIX A. IDENTIFICATION KEY VISUAL EXAMPLE 50

Figure A.2: Part of identification key 799 of teleostean families from East Africa (sub-

order Trachinoidei) represented by a tree structure.

Appendix B

Synchronization Process

As mentioned in Chapter 3, Section 3.2.1, at the end of the ETL process, ReGraph

generates triggers in the relational database over each of the mapped tables and fields.

These triggers are responsible for any insert, update and/or delete over the mapped data.

Once we have all the existent data in the graph database, the synchronization process is

ready to start.

Figure B.1 shows the detailed flow of the synchronization, an asynchronous process.

Step 1 happens when any user inserts, updates and/or deletes some mapped data in the

relational database (flow 1). Triggers over these data record the event and the information

in the Notification Table, a specific control table generated by the ReGraph framework

(flow 2). These inserted data have its column status defined as "pending".

The ReGraph scheduled Sync Service reads the information in the Notification Table

of those entries with the value in the column status different from "ok" and reads the

mapping stored in the graph database (flows 3 and 4). With all the required information,

the sync service performs the updates in the graph database (flow 5), following the rules

detailed in Chapter 3, Section 3.2.3.

The last step of this process (flow 6) involves updating the status column of each of

the entries in the Notification Table with two possible values:

• ok: if the update was successful, the status column receives the value "ok";

• error: if some problem occurs in the update step, the status column receives the

value "error" and another column, observation, receives the description of the gener-

ated system error. Records with the status column "error" are always re-processed

by the sync service.

The Sync Service runs according to the time interval defined by the user.

51

Appendix C

Annotation-Based Method:

Experiments and Results

In Chapter 2, we presented a preliminary test result of an ad hoc routine to link data

between FishGraph (available in a property graph model) and DBpedia, which was the

basis to further generalize the solution and create the method detailed in Chapter 4. The

previous preliminary routine, detailed in Chapter 2 was not generic and customizable and

only compares data and presents results in the console, without producing annotations.

Using our proposed annotation-based method, we extended the previous scenario produc-

ing a generic and customizable module, which allows defining the ontology, linking data

with the Web resource and using annotations to improve local data and queries. More

specifically, we added the following new features:

• Ontology definition: the definition of the ontology became flexible, allowing users

to determine the ontology that will be used in the analysis. To access the ontology,

it is necessary to inform the API that returns its content. In the current version, it

must be a JSON (JavaScript Object Notation) format, a light and common standard

highly used to exchange data on the Web;

• Automatic annotations: these annotations provide filters to the queries executed in

the database, making easier to a specialist to validate the data and/or enrich the

local graph;

• Process generalization: the process now can be fully customized through "subject

queries", that defines which data from the graph will be used, and the specification

of data to be added from the ontology into the graph.

C.1 "Comparison" Annotation: Taxonomic Classifica-

tion Scenario

In Chapter 2, we developed an initial experiment integrating data from FishGraph with

DBpedia to compare the taxonomic classification of the species. Starting from the Species

node, we traversed FishGraph to get Genus, Order, Family and Class. Later, using text

53

APPENDIX C. ANNOTATION-BASED METHOD: EXPERIMENTS 54

Figure C.1: ReGraph Screen of Automatic "Comparison" Annotation.

labels, we defined the resources on DBpedia and we have retrieved the related information,

using a DBpedia API. The final results obtained by our comparison showed that from the

32,957 species of fishes: 5,136 species have the same taxonomic classification in FishGraph

and DBpedia (15.18%); 7,456 species have some divergence in genus, family, order or class

(22.62%); and 20,365 species exist only in FishGraph (61.79%).

The first step of the process is to set that this analysis will be a "Comparison" anno-

tation type. Figure C.1 shows the ReGraph screen with the specification to perform the

taxonomic classification comparison using data from FishGraph and DBpedia.

We further need to define the subject query to retrieve the related data. As Neo4J

uses the Cypher language to manipulate data in the graph, we defined the subject query

to retrieve the required taxonomic classification using the direct hierarchy path as follows:

MATCH (s:Species)-[r1]->(g:Genus)-[r2]->(f:Family)-[r3]->

(o:Order)-[r4]->(c:Class)

RETURN s.SpecCode AS SpecCode, s.Species AS Key, s.Species AS

Species, g.Genus AS Genus, f.Family AS Family, o.Order AS

Order, c.Class AS Class

The first value returned by the subject query – SpecCode – is the unique identifier of

the node that will be annotated at the end of the process.

The second value – Species – will be the key to search this resource in the referred

Ontology. It is necessary to define the API from the ontology that will be used in the

comparison with this value. In this experiment, we used the API from DBpedia: http:

//dbpedia.org/data/KEY_VALUE.json?jsoncallback=?. We used the reserved word

KEY_VALUE in the specification. It is meant to be replaced with the Species value

returned by the subject query to conduct the search in DBPedia. The following step is

APPENDIX C. ANNOTATION-BASED METHOD: EXPERIMENTS 55

Figure C.2: Node “Species” after the Comparison Annotation Process with DBpedia.

to determine the name of the analysis, defined as DBpediaTaxonomy, in our case.

For each of the remaining values it is necessary to define the location of the resource

in the Ontology. In DBpedia we can find the same resource in different places and, to

improve our results, we allow the specification of two distinct locations for each of the

values returned by the subject query. The resources definitions were:

- Species: http://dbpedia.org/resource/KEY_NAME. Again, we need to use the

reserved value KEY_NAME, that will be replaced with the Species value returned by the

subject query;

- Genus: http://dbpedia.org/ontology/genus and

http://dbpedia.org/property/genus;

- Family: http://dbpedia.org/ontology/family and

http://dbpedia.org/property/family;

- Order: http://dbpedia.org/ontology/order and

http://dbpedia.org/property/order;

- Class: http://dbpedia.org/ontology/class and

http://dbpedia.org/property/class.

At the end of this process, we added the property DBpediaTaxonomyResult in each of

the Species nodes, with one of the three possible values: Equal, Not Found or Divergent.

"Equal" nodes have the same taxonomic classification in FishGraph and DBpedia. "Not

found" nodes represents species existent only in FishGraph. For nodes with the value

"Divergent", we have generated a new node with the label: DBpediaTaxonomy and prop-

erties Genus, Family, Class and Order with the values found in DBpedia. The new node is

connected with the original one by the edge HasDBpediaTaxonomy. Figure C.2 shows the

Species node after the "Comparison" annotation process. The DBpediaTaxonomy node

is applied only for nodes of Species with Divergent value in the DBpediaTaxonomyResult

property.

C.2 "New" Annotation: Country Scenario

GeoNames provides a set of free web services1 with several data from countries. It is

necessary to create an account to access these web services and retrieve the required in-

1http://www.geonames.org/export/ws-overview.html [Accessed: 2016-Jan-05]

APPENDIX C. ANNOTATION-BASED METHOD: EXPERIMENTS 56

Figure C.3: ReGraph Automatic "New" Annotation screen for the country node.

formation. Departing from the CountryCode property, our goal is to retrieve information

related to the country and improve our local database, e.g., GeoNameID, population and

the continent that it belongs. The first step to reach this goal is to define the anno-

tation type as "New". Figure C.3 shows the ReGraph screen with the specification to

perform the "New" annotation type for retrieving information about the countries from

GeoNames.

In the "New" annotation type only two values are required: the identifier and the

key that links the local data with the ontology. The subject query to retrieve country

information from Neo4J was defined as follows:

MATCH (c:Country)

WHERE c.CountryCode IS NOT NULL

RETURN ID(c) AS ID, c.CountryCode AS CountryCode

FishBase has some places registered as countries, but they do not have a country code.

In order to avoid mistakes, we excluded these countries in the subject query. We obtained

a total number of 249 countries2.

The next step is to define the API that will be used to retrieve the information. In this

experiment, we used the country info API with the reserved word KEY_VALUE (http://

api.geonames.org/countryInfoJSON?formatted=true&lang=it&style=full&country=

KEY_VALUE) to obtain the specified data. The reserved word KEY_VALUE will be re-

placed with the value CountryCode returned by the subject query.

We then define each data element that will be obtained from the API and how this

data will be created in the graph database:

- GeoNameID: will produce a property in the Country node called GeoNameID, with

2Islands are also counted as countries in FishBase.

APPENDIX C. ANNOTATION-BASED METHOD: EXPERIMENTS 57

Figure C.4: Node “Country” after the New Annotation Process with GeoNames.

the value retrieved from the geonameId data;

- Population: will produce a property in the Country node called Population, with the

value retrieved from the population data;

- Continent: will produce a new node labeled Continent, with a property with the

same name. The value for this property will be retrieved from continentName. The edge

connecting Country and Continent will be Is_In_The_Continent;

- ContinentCode: will produce a new property in the node Continent called Conti-

nentCode, with the value retrieved from the continent field.

Departing from the 249 existing countries3 in the graph database, only one was not

found in GeoNames: AN - Neth Antilles. At the end of this process, we generated the

defined properties, nodes and edges. Figure C.4 presents the Country node after the new

annotation process with GeoNames.

3Islands are also counted as countries in FishBase.

	Introduction
	FishGraph
	Introduction and Motivation
	Research Scenario
	The FishBase Database
	Why Graphs?

	Theoretical Foundations and Related Work
	Graph Databases
	Database Models Integration

	A Hybrid Architecture for the FishGraph
	Hybrid Architecture: Relational and Graph
	The FishBase Entities Analysis
	Mapping Rules
	From FishBase to FishGraph

	Experiments and Results
	Experiment 1: Identification Keys
	Experiment 2: Species Classification

	Conclusion

	ReGraph
	Introduction
	The ReGraph Framework
	The Mapping Module
	The Graph Module
	The Sync Module

	Software Overview
	Conclusions

	Annotation-Based Method
	Introduction
	Related Work
	ReGraph
	The ReGraph Framework
	From FishBase to FishGraph using the ReGraph framework

	Automatic Annotation-Based Method
	The Comparison Annotation Type
	The New Annotation Type

	Conclusions and Future Work

	Conclusion and Future Work
	Bibliography
	Identification Key Visual Example
	Synchronization Process
	Annotation-Based Method: Experiments
	"Comparison" Annotation: Taxonomic Classification Scenario
	"New" Annotation: Country Scenario

