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Abstract

In this work we study a problem of finding minimum coloured paths in graphs that has

applications in WDM optical networks when high bandwidths are required to send data

between a pair of nodes in the graph. Let G = (V, E) be a (directed) graph with a set

of nodes V and a set of edges E in which each edge has an associated positive weight

w(i, j), and C = {1, 2, . . . , x} be a set of x colours, x ∈ N. The function c : E 7→ 2C

maps each edge of the graph G to a subset of colours, where 2C is the power set of C.

Given a positive integer k > 1, a k-multicolour path is a path in G such that there exists

a set of k colours K = {c1, . . . , ck} ⊆ C, with K ⊆ c(i, j) for each edge (i, j) in the path.

The problem of finding one or more k-multicolour paths in a graph has applications in

optical network and social network analysis. In the former case, the available wavelengths

in the optical fibres are represented by colours in the edges and the objective is to connect

two nodes through a path offering a minimum required bandwidth. For the latter case, the

colours represent relations between elements and paths help identify structural properties

in such networks.

In this work we investigate the complexity of the multicolour path establishment

problem. We show it is NP-hard and hard to approximate. Additionally, we develop

Branch and Bound algorithms, ILPs, and heuristics for the problem. We then perform

an experimental analysis of the developed algorithms to compare their performances.
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Resumo

Neste trabalho estudamos um problema de encontrar caminhos coloridos mı́nimos em

grafos. Tal problema tem aplicações práticas em redes ópticas WDM quando elevada

largura de banda é necessária para enviar dados entre um par de nós do grafo. Seja

G = (V, E) um grafo (orientado) com conjunto de vértices V e conjunto de arestas E no

qual a cada aresta está associado um peso positivo w(i, j) e seja C = {1, 2, . . . , x} um

conjunto de x cores, x ∈ N. A função c : E 7→ 2C mapeia cada aresta do grafo G para

um subconjunto de cores, onde 2C é o conjunto potência de C. Dado um inteiro positivo

k > 1, um caminho k-colorido é um caminho em G para o qual existe um conjunto de k

cores K = {c1, . . . , ck} ⊆ C tal que K ⊆ c(i, j) para toda aresta (i, j) no caminho.

O problema de encontrar um ou mais caminhos k-coloridos em um grafo tem aplicações

em redes ópticas e análise de redes sociais. No primeiro caso, os comprimentos de onda

dispońıveis nas fibras ópticas são representados por cores nas arestas e o objetivo é

conectar dois nós da rede através de um caminho com um mı́nimo de banda requerida.

No caso de redes sociais, as cores representam relacionamentos entre os elementos e

caminhos ajudam a identificar propriedades estruturais nessas redes.

Neste trabalho investigamos a complexidade do problema de estabelecer caminhos

com múltiplas cores. Mostramos que é NP-dif́ıcil e dif́ıcil de aproximar. Também desen-

volvemos algoritmos Branch and Bound, Programas Lineares Inteiros e heuŕısticas para

o problema. Por fim realizamos uma análise experimental dos algoritmos desenvolvidos

e comparamos seus desempenhos.
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“You see? Size defeats us. [. . . ] one

might take the tip of the pencil and

magnify it. One reaches the point

where a stunning realization strikes

home: The pencil tip is not solid; it

is composed of atoms which whirl and

revolve like a trillion demon planets.

What seems solid to us is actually

only a loose net held together by grav-

ity. Viewed at their actual size, the

distances between these atoms might

become league, gulfs, aeons. The atoms

themselves are composed of nuclei and

revolving protons and electrons. One

may step down further to subatomic

particles. And then what? Tachyons?

Nothing? Of course not. Everything in

the universe denies nothing; to suggest

an ending is the one absurdity.”

Stephen King – The Dark Tower
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Chapter 1

Introduction

Finding paths in a computer network is a basic problem in combinatorial optimization:

given a network and two of its nodes, a source and a target, we want to find one or

multiple paths between these nodes with specific properties. There are classic examples

of such problems in the literature, such as finding shortest paths [13, 17], node-disjoint

or edge-disjoint paths [24, 31], routing, line planning [5], etc.

The shortest path problem is of fundamental importance in network optimization and

arises as a subproblem in many different scenarios: from purely graph theory problems,

to VSLI and network design, and even social network analysis.

Consider the example of social network analysis. Social networks can be represented

and studied as graphs; the vertices represent the elements being analysed and the edges

are binary relations between them. Different kinds of relations might be represented by

distinct colours on the edges. Connectivity properties or the availability of paths between

vertices help to identify structural properties like group cohesiveness and centrality in

such networks [3].

Finding paths on edge-coloured graphs can also be used for solving routing problems

in WDM optical networks. In a WDM network, at any given moment, each optical

link (edge) has a set of available wavelengths through which data can be transmitted in

parallel. Data from a source to a target node is sent by the establishment of a lightpath

between this pair of nodes. A lightpath is a special path for it uses the same wavelength

throughout all its links. In order to send data between any pair of nodes, one has to

find a lightpath between them. When a high bandwidth is required, it is necessary to

find multiple lightpaths going through the same set of edges so that no two lightpaths

that share an edge use the same wavelength. This routing problem in WDM networks

is equivalent to finding paths in edge-coloured graphs: the wavelengths can be directly

mapped to colours on the edges, and the objective is to find a path between a source and

a sink node with certain number of colours. Chen et al. presented in [8] the problem of

1
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finding shortest paths between a pair of nodes such that the total number of wavelengths

is k with the restriction that all edges in those paths must have the same k available

wavelengths.

To illustrate this problem, refer to Figure 1.1. The numeric labels on the edges are

the colours available in them. We assume arcs with unitary weights, thus omitting the

weights. Suppose we want to find a path between s and t. A solution for k = 1 is (s, v2, t)

or (s, v3, t). The path (s, v1, v4, t), although having 2 colours in common, is not a shortest

path from s to t. For k = 2, the solution is the path (s, v2, t). For k ≥ 3, there are no

possible solutions, since the highest number of common colours on any given path is 2.

s v1

v2

v3

v4 t

1,
2,

3,
4 2, 3, 5

2, 3, 4 3, 4, 5

1, 3
2,

3,
5

2, 3, 4

2

1

Figure 1.1: Edge-coloured graph example

In this work, we propose to study the problem presented in [8] as an edge-coloured

graph problem. We analyse its complexity and prove it is NP-hard. Unless P = NP, there

are no efficient polynomial-time algorithms to solve NP-hard problems optimally. There-

fore we develop heuristics and study their performance through a set of computational

experiments.

1.1 Objectives

We address the problem of multipath routing in optical networks with extremely high

bandwidth requests [8]. First, we formulate the problem as an edge-coloured graph

problem. We study its complexity and prove it is NP-hard and hard to approximate.

Computational results obtained from a simulation show the performance of the developed

algorithms against exact Branch and Bound and Integer Linear Programming algorithms.
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1.2 Text organization

This text is organized as follows. In Section 1.3, we discuss works related to problems in

graphs involving colours and optical networks design. In Chapter 2, we present terms,

notations and assumptions that will be used throughout the text (Section 2.1). We

also discuss approximation algorithms (Section 2.2), the Branch and Bound paradigm

(Section 2.3), and problems related to finding paths in graphs (Section 2.4).

Chapter 3 introduces a formal description of the problems being tackled and a proof of

their NP-hardness is given on Chapter 4. Chapter 5 and Chapter 6 present the developed

algorithms including exact branch and bound (Section 5.1) and Integer Linear Programs

(Section 5.2), as well as Dijkstra-based (Section 6.1) and intersection-based (Section 6.3)

heuristics.

In Chapter 7 we discuss the computational results obtained through simulations,

separating them into two criteria: execution time and solution cost (Section 7.1), and

blocking ratio (Section 7.2).

Finally, we draw our conclusions on Chapter 8.

1.3 Related works

In this section we discuss works related to coloured graphs and WDM optical networks

design.

A colouring of a graph is an assignment of colour labels to elements of a graph.

These elements can be either vertices (vertex colouring), edges (edge colouring), or both

(total colouring). Colouring problems consist in colouring elements in a way to satisfy

a certain property. Another variant, given an already coloured graph, is to find paths

satisfying some requirement. Practical problems can be modelled as problems involving

colours in graphs, for example timetabling, frequency assignment in telecommunication

networks, social network analysis, reliability in networks, and so on.

The most common form of graph colouring is the vertex colouring. In this type of

problem, the goal is to colour the vertices of a graph such that no two adjacent vertices

share the same colour. The minimum number of colours with which a graph can be vertex-

coloured is called chromatic number, and it is represented by χ(G). A graph G whose

vertices are coloured with exactly χ(G) colours is called a properly coloured graph. For

paths and bipartite graphs, the chromatic number is trivially 2. From Brook’s theorem

[4] we know that χ(G) ≥ ∆(G) for connected graphs that are not complete graphs or odd

cycles, where ∆(G) represents the maximum degree of G. The vertex colouring problem

was proven to be NP-complete by Karp in 1972 [22]. A survey on the algorithmic and

computational results obtained for the vertex colouring problem can be found in [27].
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A related problem studied by Granata et al. [19] is that of finding a path from a

vertex s that meets all the χ(G) colours, that is, a path that contains all χ(G) colours.

They prove that, in properly coloured directed graphs, finding a path that starts at a

specific vertex and meets all χ(G) colours is NP-complete. The same complexity still

holds to finding a shortest and longest of all paths between two given vertices meeting

all the colours in a properly coloured directed graph.

When given a vertex-coloured graph G, in which adjacent vertices not necessarily

have to be coloured with distinct colours, a path in G whose internal vertices have the

same colours is called a vertex-monochromatic path [6]. We define a monochromatic

vertex-connectivity (MVC)- colouring to be a vertex colouring so that there is a vertex-

monochromatic path between any two vertices in the graph. For a connected graph G, we

define as mvc(G) the maximum number of colours used in a MVC-colouring of G. In [6],

Erdős-Gallai-type problems are investigated for the monochromatic vertex-connectivity

number mvc(G) as well as the Nordhaus-Gaddum-type inequality for mvc(G) is given.

The exact opposite counterpart of determining the mvc number is the well-studied

problem of the vertex-rainbow connectivity number. A vertex-coloured graph is rainbow

vertex-connected if any two of its vertices are connected by a path whose internal vertices

have distinct colours. A descriptive survey is presented in [25] covering problems related

to rainbow connectivity in graphs.

Now we turn our attention to edge-colouring. A problem that has been gaining

popularity because of its use in social network analysis is that of finding paths in edge-

coloured graphs. When social networks are represented as graphs, the vertices represent

the elements analysed while the edges represent a binary relation between these elements.

That way, the vertex connectivity is a measure of the information flowing from one

vertex to another. This information can be used for determining group cohesiveness and

centrality [3].

Let G = (V, E) be an edge-coloured graph on which there is a colouring c : E 7→

{1, 2, . . . , n}, n ∈ N. In this case each edge has just one colour. A path in G is a rainbow

path if no two edges are coloured the same. A rainbow (s, t)-path in G is a rainbow

path between s and t of length d(s, t), where d(s, t) is the length of the shortest path

between s and t. Note that this problem is the edge-coloured equivalent of the vertex-

rainbow connectivity problem. The survey in [25] also discusses rainbow connectivity in

edge-coloured graphs. Li and Sun [26], discuss the strong rainbow connectivity number

of a graph. A graph is said to be strongly rainbow connected if there exists a rainbow

(s, t)-path with length d(s, t) for any two vertices s and t in the graph. Denoted by

src(G), the strong rainbow connectivity number of a graph is the minimum number of

colours needed to make a graph G strongly rainbow connected. In [26], sharp upper

bound for src(G) is given in terms of the number of edge-disjoint triangles in G. They
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also investigate the graphs with large strong rainbow connectivity numbers.

Now let G = (V, E) be an edge-coloured graph, where V is the set of nodes and E =

{E1, E2, . . . , Ec} is a collection of c not necessarily disjoint edge sets. Each Ei ⊆ V × V ,

1 ≤ i ≤ c, is the edge set of colour i. Let Gi = (V, Ei) be the graph with only the edges

of colour i.

Wu [34] studied the problem of finding, given two vertices s, t ∈ V , the maximum

number of mutually vertex-disjoint uni-colour paths between s and t. We call this problem

the Max CDP. He proved it is NP-hard and cannot be approximated with ratio less than

2 in polynomial time, unless P = NP for c ≥ 2. Bonizzoni [3] later showed that the

Max CDP is not approximable within factor c1−ǫ for any ǫ > 0. For c = 1, it can be

reduced to a maximum flow problem, and is therefore polynomial time solvable. A c-

approximation algorithm is given to Max CDP by the use of a greedy strategy. The idea

of the algorithm is the following. Let κi(s, t) denote the maximum number of vertex-

disjoint paths between s and t in Gi. Find κi(s, t) for each i. Then repeat until no paths

remain: select i with maximum κi(s, t) and put all the paths into the solution; remove

all internal nodes of these paths. This procedure runs in O(mn)-time.

For the length-bounded case, ℓ-LCDP, where the solution paths’ lengths are required

to be upper bounded by a fixed integer ℓ, Wu proved it can be solved polynomially for

ℓ = 3 through graph matching and it is NP-hard for ℓ ≥ 4 and can be approximated with

ratio (ℓ− 1)/2 + ǫ for any ǫ > 0. Bonizzoni et al. also gave a fixed-parameter algorithm

to the ℓ-LCDP problem.

Although not stated as purely a graph problem, the problems of finding paths on

optical networks can be easily mapped to a graph problem by mapping the availability

of a wavelength in a given link to a colour on that link (edge). With that in mind, we

now turn our attention to the problem of paths establishment in optical networks.

To handle the ever-increasing bandwidth demands of network users, a Wavelength-

Division Multiplexing (WDM) approach has been proposed for optical fibre networks.

WDM can divide the high bandwidth of a fibre into many non overlapping wavelengths

(WDM channels) thus allowing multiple channels coexistence on a single fibre. In such

networks, an optical signal passing through an optical switch may be routed from an

input fibre to an output fibre without undergoing optoelectronic conversion [2].

Chlamtac et al. [10] proposed the lightpath architecture as a means of end users to

communicate with one another via all-optical WDM channels. A lightpath is a path

spanning multiple fibre links. Assuming the absence of wavelength converters, a light-

path must occupy the same wavelength on all the fibre links through which it traverses

(wavelength-continuity constraint). The problem of setting up lightpaths by routing and

assigning a wavelength to each connection in a set of connections is called the Routing

and Wavelength-Assignment (RWA) problem. The objective is to route lightpaths and
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assign wavelengths in a manner that minimizes the amount of network resources con-

sumed, while also ensuring that no two lightpaths share the same wavelength on the

same fibre link. In [10] is shown that even when all the connections to be established

are known in advance (Static RWA), the problem is equivalent to a vertex-colouring in

a graph and, therefore, is NP-complete. To solve the RWA problem, one can decouple it

into two separate sub problems: routing and wavelength assignment. Many approaches

relying in ILP formulations and heuristics have been presented to solve the problem and

its components [36, 21].

Applications in the scientific and engineering communities and emerging media ap-

plications require extremely high bandwidth connections, typically larger than one wave-

length [8]. To accommodate such requests, Chen et al. propose a modification to the

RWA problem to allow for more than one wavelength to be assigned to a lightpath. The

only restriction is that the set of wavelengths assigned to a lightpath must be available

on all of its links. A connection request is blocked when it is either not possible to route a

path between its end points or to assign the required wavelengths to the lightpath found.

When single path routing is deployed, due to a small chance of more than one wavelength

per fibre being free for a given path, a higher blocking is observed. For that reason, a

multipath approach is also proposed. Besides improving blocking ratio when compared

to single routing, multipath routing also reduces network resource consumption, like

minimizing bandwidth required for backup paths in case of link failures.

Recent works have been proposing approaches to path provisioning and traffic groom-

ing in more wavelength-flexible networks (flexgrid optical network) [7, 28, 12].

1.4 Contributions

We address the problem of multipath routing in WDM optical networks with extremely

high bandwidth requests [8]. We formulate the problem as an edge-coloured graph prob-

lem. We study its complexity and prove it is NP-hard and hard to approximate. Unless

P = NP, there are no efficient polynomial-time algorithms to solve NP-hard problems

optimally. Therefore we develop heuristics and study their performance against exact

Branch and Bound and Integer Linear Program algorithms through a set of computa-

tional experiments. A network simulation evaluates our algorithms according to solution

cost, execution time and blocking ratio.



Chapter 2

Preliminaries

This chapter contains a summary of definitions, notations and basic notions which will

be needed in the following work. We present basic definitions about approximation

algorithms, giving related definitions about the subject. We briefly discuss techniques

used when developing approximation algorithms. We also talk about paths in graphs,

showing terms and definitions used.

2.1 Terms, notations and assumptions

When describing problems and algorithms for paths in graphs, we make use of the fol-

lowing terms:

1. The terms arc and edge will be used interchangeably.

2. The terms node and vertex will be used interchangeably.

3. An arc from a node i to a node j is represented as (i, j), its given direction pointing

from i to j. Arc (i, j) is called an input for j, and an output for i.

4. Node j is an i-neighbour if (i, j) is in G.

5. δ+(i) denotes the set of out-neighbours of the node i, that is, the set of nodes j for

which there exists the edge (i, j) in E. Likewise, δ−(i) denotes the in-neighbours,

the set of nodes j such that (j, i) ∈ E.

6. A directed path is determined by a sequence of nodes n1, n2, . . . , nk; it consists

of these nodes and the arcs connecting them in sequence, (n1, n2), (n2, n3), . . . ,

(nk−1, nk). We say such a path connects nodes n1 and nk and represent it as

(n1, nk)-path.

7
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7. A path is node-disjoint (arc-disjoint) if its node sequence (arc sequence) has no

repetitions.

8. Two paths are mutually node-disjoint (arc-disjoint) if they do not share any vertex

(arc) except at the extremes. Likewise, a set of paths is mutually node-disjoint

(arc-disjoint) if they are pairwise mutually node-disjoint (arc-disjoint).

9. Given a path from an origin to a node j, node i is a predecessor of j, and denoted

by pj, in either one of these cases: a) arc (i, j) is in the path and b) j is preceded

in the path by a continuous, non-empty sequence of reverse arcs beginning at i.

10. w(i, j) = weight of arc (i, j).

Assumptions:

• Unless otherwise stated, the given graph is directed. That is because undirected

graphs can be made directed by replacing any undirected arc by two oppositely

directed arcs [31].

• Because of the previous assumption, arc means directed arc.

• The graph has no multiple arcs, i.e. there is at most one arc (i, j) from node i to

node j.

• There are no node weights associated with the nodes of the graph. In the case there

are, it is convenient to interpret them as arc weights by a node splitting technique

[31]: for each node i with weight wi 6= 0, introduce an auxiliary node i′, and reassign

all outputs on i as outputs on i′. Leave all arc weights unchanged. Connect i and

i′ by an auxiliary arc (i, i′) with weight wi.

• Weights on arcs are non-negative.

• In an (s, t)-path, s 6= t.

2.2 Approximation algorithms

In this section we give a brief overview of approximation algorithms, introducing basic

concepts about the subject.

Approximation algorithms are those with polynomial time complexity to find approx-

imate solutions to optimization problems. Given an algorithm A for an minimization

problem P , let I be an input instance of this problem. We denote by A(I ) the value of
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the solution returned by algorithm A when applied to the instance I and by OPT (I ) the

corresponding value of an optimal solution for the same instance. We say an algorithm

has approximation factor α, or it is an α-approximation algorithm, if A(I)/OPT (I) ≤ α,

for any instance I.

When developing an approximation algorithm, the first step is to search for a proof

of its approximation factor. Another aspect is to check if the approximation factor α is

the best possible. For that, we have to find an instance whose ratio between the obtained

solution and the optimal one is equal to α or as close as possible to α. In that case,

we say the approximation factor is tight, that is, it is impossible to improve it. From a

theoretical point of view, the most desired algorithms are those whose solutions values

are as close as possible to the optimal value. It is possible to show for some problems the

there are algorithms with approximation factor (1 + ǫ) or (1 − ǫ) for minimization and

maximization problems, respectively, where ǫ is a small enough constant value, ǫ > 0.

A common strategy for treating combinatorial optimization problems is to formulate

them through an integer linear programming system and solve its linear relaxation, which

can be done in polynomial time. Linear programming has been used to obtain approx-

imation algorithms in many different ways. A common one is rounding the fractional

solutions of a linear program. Another technique is to solve the dual system of the linear

program, instead of the primal, obtaining in that way a solution based on dual variables.

A more recent technique is the primal-dual approximation method, used for developing

combinatorial algorithms based on the duality theory in linear programming. In that

case, the method is combinatorial em general, not requiring the linear programs to be

solved and consists of a generalization of the traditional primal-dual method.

There are also problems to which it is impossible to find an algorithm with a certain

approximation factor. Given a problem P , we say it is α-inapproximable if there is no

α-approximation algorithm for it. A way to prove this is to show that whenever there is

an α-approximation algorithm for the problem P , then it is possible to solve optimally

and in polynomial time an NP-hard problem [33].

2.3 Branch and Bound algorithms

In this section we summarize the Branch and Bound paradigm using the terminology

by Clausen [11]. We will restrict ourselves to minimization problems without loss of

generality; maximization problems can be dealt with in a similar manner.

Many optimizations problems are easy to state, have a finite but large number of

feasible solutions and no polynomial method to find the best solution is known. The

Branch and Bound paradigm is a useful and efficient tool in solving NP-hard discrete op-

timization problems to optimality. A Branch and Bound algorithm searches the complete
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space of solutions for the best solution by using bounds for the function to be optimized

combined with the value of the current best solution rather than explicitly enumerating

the exponentially increasing number of potential solutions.

A Branch and Bound algorithm consists of three main components:

1. a bounding function providing a lower bound for the best value obtainable in a

given subspace of the solution space,

2. a selection strategy for selecting the solution subspace to be investigated in the

current iteration, and

3. a branching rule to be applied in case the subspace cannot be discarded, thereby

subdividing the subspace into more subspaces to be investigated in subsequent

iterations.

Let P be a problem in which the objective function is

min
x∈S

f(x)

on the variables (x1 . . . xn), where S is a region of feasible solutions. Now consider P , a

set of potential solutions for which f is still well defined, containing S, and a bounding

function g(x) defined on S (or P ) with the property that g(x) ≤ f(x), for all x in S

(resp. P ).

The solution of a problem with a Branch and Bound algorithm is described as a

search through a search tree. The root node corresponds to the original problem to

be solved and the children nodes correspond to subproblems of the original one. The

leaves correspond to solutions. For all NP-hard problems there are instances for which

an exponential number of leaves exist in the search tree. To each node in the tree, the

bounding function g associates a real number, called bound. On internal nodes such

numbers are lower bounds for the value of any solution in the subspace corresponding to

that node; for leaves, the bound corresponds to the value of the solution.

The bounding function is such that for any leaf it agrees with the objective function

and provides a not worse bound for subspaces added to the tree. With that said, g is

required to satisfy the following three conditions:

1. g(Pi) ≤ f(Pi) for all node Pi in the tree,

2. g(Pi) = f(Pi) for leaves, and

3. g(Pi) ≥ g(Pj) if Pj is ancestor of Pi.
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The search tree is developed dynamically during the search and initially consists of

only the root node. A heuristic can be used to produce a feasible solution and its value

is used as the current best solution. If no such heuristic exists, the initial value is set

to infinity. In each iteration of a Branch and Bound algorithm, a node is selected for

exploration using a lazy or eager selection strategy.

If the eager strategy is used, a branching is performed. That means the subspace is

subdivided into smaller subspaces. For each of these the bound for the node is calculated.

The subspace is discarded for further evaluation in one of two cases: (1) if the bound

is no better than the best, since no feasible solutions can be better than that of the

best solution found so far, and (2) in case no feasible solution to the subproblem exist.

Otherwise the node (with the bound as part of the information stored) is then joined

to the pool of live subspaces. The algorithm with the eager strategy is outlined in

Algorithm 1.

Algorithm 1 Branch and Bound with eager selection strategy

Best ←∞

LB(P0)← g(P0)

Live ← {(P0, LB(P0)}

while Live is not empty do

Select P from Live.

Live ← Live \ {P}

Branch on P generating P1, . . . , Pk.

for i from 1 to k do

LB(Pi)← g(Pi) ⊲ Bound Pi

if LB(Pi) = f(X) for some feasible solution X And f(X) < Best then

Best ← f(X)

Solution ← X.

Go to EndBound

if LB(Pi) ≥ Best then

Discard Pi

else

Live ← Live ∪ {(Pi, LB(Pi))}.

EndBound

return Solution with value Best.

If the lazy strategy is used, the order of bound calculation and branching is reversed,

and the live nodes are stored with the bound of their fathers as part of the information

on the node. Algorithm 2 on the following page outlines the procedure.
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Algorithm 2 Branch and Bound with lazy selection strategy

Best ← −∞

Live ← {(P0,−∞)}

while Live is not empty do

Select P from Live.

Live ← Live \ {P}

LB(P )← g(P ) ⊲ Bound P

if LB(P ) = f(X) for feasible solution X And f(X) < Best then

Best ← f(X).

Solution ← X.

Go to EndBound

if LB(P ) ≥ Best then

Discard P .

else

Branch on P generating P1, . . . , Pk.

for i from 1 to k do

Live ← Live ∪ {(Pi, LB(P ))}.

EndBound

return Solution with value Best

The search terminates when there are no more unexplored parts of the solution space

left. The optimal solution is then the one recorded as the “current best”. For a review

of the main principles of Branch and Bound algorithms as well as an illustration of the

method and different design issues, see [11].

2.4 Paths in graphs

Finding paths in graphs is a basic problem in combinatorial optimization. Given a graph

and a pair of nodes, we want to find one or more paths connecting these nodes ensuring

certain properties on each path.

The theoretically most efficient known algorithm for the classic single-source shortest

path problem with non-negative weights in the edges is the Dijkstra’s algorithm [13]. Let

G be a graph, s a source node, ℓ(u, v) the length of the edge between nodes u and v, and

d(s, v) denote the shortest distance from s to v in G. Dijkstra’s algorithm is a labelling

process, maintaining three properties:

1. tentative distance d(v), d(v) ≥ d(s, v), for each node v.
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2. a partition of the nodes into two sets: labelled and unlabelled. If v is a labelled

node, d(v) = d(s, v).

3. tentative predecessor p(v) such that there is a path from s to v of length d(v) whose

last edge is (p(v), v) for every v 6= s with d(v) finite.

Initially, d(s) = 0, d(v) = ∞ if v 6= s, p(v) = undefined for all v and all nodes are

unlabelled. Then the algorithm keeps repeating the following labelling procedure until

there is no unlabelled node v with d(v) finite:

Labeling procedure: choose an unlabelled node v such that d(v) is minimum. Put

v on the labelled set. For each edge (v, w), if d(w) > d(v) + ℓ(v, w), update

d(w) = d(v) + ℓ(v, w) and set p(w) = v.

That way, the algorithm labels nodes in non-decreasing order by distance from s.

When it terminates, d(v) = d(s, v) for every v reachable from s, and the set of edges

{(p(v), v) | v 6= s and d(v) is finite} defines a shortest-path tree rooted at s. The running

time of the algorithm is bounded by how the unlabelled nodes are maintained. It can

be O(|V |2) for the naive case or O(|E|+ |V | log |V |) if a heap is used. The procedure is

outlined in Algorithm 3.

Algorithm 3 Dijkstra’s algorithm outline

Input: Graph G and source node s

Output: shortest distance tree of G

Q← ∅ ⊲ node queue

for all node n in V (G) \ {s} do

dist[n] ←∞

previous[n] ← undefined

Q← Q ∪ {n}

dist[s] ← 0

previous[s] ← undefined

Q← Q ∪ {s}

while Q is not empty do

u← node in Q with min dist[u]

Q← Q \ {u}

for all v ∈ δ+(u) do

alt ← dist[u] + ℓ(u, v)

if alt < dist[v] then

dist[v] ← alt

previous[v] = u

return dist, previous
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When negative costs are involved, other algorithms should be used instead of Dijk-

stra’s, e.g. the Bellman-Ford-Moore algorithm. A description of these classic algorithms

and their implementations appear in [17] whereas experimental evaluation of different

implementations is carried out in [9].

Another interesting problem is that of finding multiple edge or node disjoint shortest

paths between pairs of source and target nodes. In the edge-disjoint path problem (EDP),

an input instance consists of a (directed or undirected) graph G = (V, E) and a multi-set

T = {(si, ti) : si, ti ∈ V, i = 1, . . . , k} of k source-sink pairs of nodes. The objective is

to connect the highest number of those pairs by paths which do not share edges, that is,

to find a set of k edge-disjoint paths P1, . . . , Pk, where Pi is an (si, ti)-path, i = 1, . . . , k.

EDP is a classic NP-hard problem [18] which, besides being applied to VLSI circuits, is

also of great importance in combinatorial optimization and graph theory.

There are four basic versions of the problem, depending on the graph type (directed

or undirected) and edge- or node-disjointness condition. In [24], it is shown that there

exist polynomial time reductions among them, except for the directed to undirected case.

An undirected graph can be reduced to its directed counterpart by replacing each edge

with an appropriate gadget. Edge-disjoint problems can be reduced to its vertex-disjoint

counterpart by replacing the graph with its line graph. Finally, directed vertex-disjoint

paths reduce to directed edge-disjoint paths by replacing each vertex with a pair of new

vertices connected by an edge. When k is part of the input, all four versions of the problem

are NP-complete. For undirected graphs, the disjoint paths problems can be solved in

polynomial time when the number k of source-sinks is fixed or when s1 = s2 = . . . = sk,

as a special case of the maximum flow problem [24].

More recently, Kawarabayashi and Kobayashi [23] presented an O(log n)-approximation

algorithm for the maximum edge-disjoint paths problem, in which the objective is to

find the maximum number of edge-disjoint paths between k pairs of given nodes. A

c-approximation in this case is a polynomial time algorithm that finds at least 1/c of

the maximum number of possible edge-disjoint paths. The used approach works in the

special class of 4-edge-connected planar or Eulerian planar graphs.

A similar problem consists in finding vertex-disjoint paths (VDP). The input instance

is the same as in the EDP problem but now the objective is to find paths connecting

those pairs that are vertex-disjoint, that is, not two paths share a common vertex. It

is a fundamental problem in routing, being also applied in the VLSI circuits context

and network reliability [1, 29]. Fortune, Hopcroft, and Wyllie [16] proved that even

the decision version of the VDP problem in which we want to test the existence of two

vertex-disjoint paths is NP-complete in directed graphs. For undirected graphs, the

decision version of the problem can be solved in O(n3) time for any fixed k number of

paths, as shown by Robertson and Seymor [30], where n is the number of vertices in the
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graph.

All problems above presuppose k ≥ 2 pairs of source-sink nodes. A similar problem

involves finding edge or vertex disjoint paths between the same two nodes s and t so that

the sum of weights in the edges of the paths is minimum. Such paths are required for

reliability in communication networks [31].

Back in 1974, Suurballe [31] presented an algorithm for the k node-disjoint paths

problem between a pair of source-target nodes with minimum total length. With a minor

modification, the same routine can be applied for arc-disjoint paths. The algorithm

performs k iterations of a single shortest path routine (Dijkstra’s). The outline of the

algorithm is:

1. Run Dijkstra’s to get a shortest path tree.

2. Use the cost of each edge in the tree to modify the weights of every edge in the

graph to get a transformed network. The modified weight is w′
ij = Li + wij − Lj,

where Lk is the shortest distance from the origin to the node k if k is in the shortest

path tree or the shortest path length from origin to destination, otherwise.

3. Rerun Dijkstra’s to get a shortest path to destination.

4. Repeat steps 2 and 3 for the desired number of paths.

5. Remove overlapping edges in paths to destination from the different iterations of

Dijkstra’s.

For all n targets, the algorithm’s runtime is bounded by O(nm log(1+m/n) n) time.

Later, Suurballe discovered a way to combine the Dijkstra calculations for the various

targets, improving the running time for the n-targets version to O(n2 log n) time.

Extending the work in [31], Suurballe and Tarjan [32] developed an efficient modifica-

tion of the k node-disjoint paths algorithm to find a set of n pairs of edge-disjoint shortest

paths between a source s and every node v in the graph. For that end, they employ a

modified version of Dijkstra’s to allow for negative edge weights. The algorithm runs

in O(m log(1+m/n) n) time and O(m) space, the same bounds as in Dijkstra’s algorithm

when using a d-heap implementation.

1. Run Dijkstra’s to get a shortest path tree.

2. Replace each edge in the path tree with a negative edge in the opposite direction

3. Rerun modified version of Dijkstra’s

4. Repeat 2 and 3 once per each extra path desired
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5. Remove overlapping edges from the paths generated.

In the survey [24], results for several versions of problems requiring disjoint paths on

the vertices or edges are presented.



Chapter 3

Problem description

In this chapter we formally describe the k-multicolour path problem in multi-edge-

coloured graphs. For the following definitions, we refer to a multi-edge-coloured graph

as only a graph unless otherwise stated. When exemplifying any of the definitions, we

use the graph depicted in Figure 1.1 on page 2 assuming unit edge weights, therefore

omitting them. The labels in the edges represent the colours available.

An instance of the problem consists of a graph G = (V, E), where V is the set of

nodes, E is the set of arcs, and a set of x colours C = {1, . . . , x}, x ∈ N. Let c : E 7→ 2C

be a function mapping colours to the arcs of the graph, where 2C is the power set of C.

So, c(i, j) is the set of colours associated with arc (i, j). Each arc (i, j) has a non-negative

weight w(i, j).

Let P be a path between two nodes of G and E(P ) the edge set of P . The colour

set of the path P , denoted by C(P ), is defined as C(P ) =
⋂

e∈E(P ) c(e). We say P

is a k-multicolour path, or a k-path for short, if |C(P )| ≥ k; equivalently, we say P

contains/uses k colours.

For the following definitions, consider two positive integers, ki and kj.

Definition 3.0.1 (Feasible path). A path Pi in G is feasible with respect to ki if and

only if it contains at least ki colours, i.e., |C(Pi)| ≥ ki.

In Figure 3.1, the path highlighted P = (s, v2, t) is feasible when k ≤ 2 but it is not

feasible for k > 2 since C(P ) = {2, 3}.

17
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Figure 3.1: Feasible path in a graph

Definition 3.0.2 (Compatible paths). Two feasible paths Pi and Pj in G, with respect

to ki and kj respectively, are compatible in one of two cases:

(1) they are mutually edge-disjoint, or (2) they contain different colours, i.e., C(Pi)∩

C(Pj) = ∅.

In Figure 3.2, the path with thicker edges P1 = (s, v1, v3, t) has C(P1) = {2} and the

path with dotted edges P2 = (s, v1, v4, t) has C(P2) = {3, 4}. Even though they share

the edge (s, v1), they use different colours, therefore they are compatible.

s v1

v2

v3

v4 t

1,
2,

3,
4 2, 3, 5

11, 3

2, 3, 4

3, 4, 5 2, 3, 4

2

2,
3,

5

Figure 3.2: Compatible paths in a graph

Definition 3.0.3 (Absolutely compatible paths). Two feasible paths Pi and Pj in

G, with respect to ki and kj respectively, are absolutely compatible if and only if they

are mutually arc-disjoint.

The highlighted paths in Figure 3.3, P1 = (s, v2, t) and P2 = (s, v3, t) are absolutely

compatible even though both use colour 3, since they do not share any edges.
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Figure 3.3: Absolutely compatible paths in a graph

We are now ready to formally state our problems.

The input consists of a graph G = (V, E), a set of colours C and a tuple (s, t, k, p),

where s is the source node, t is the target or destination node, k is the number of required

colours, and p is the number of required paths. For the following definitions, a shortest

path is shortest with respect to the arc weights. We assume that the colour requirement

is k ≥ 2, since the case k = 1 can be solved in polynomial time by the application of

a shortest path procedure |C| times, one for each colour, and then picking the shortest

of the (s, t)-paths found. Because it makes no sense for paths not to have any colours

assigned, we also assume k ≥ p.

Definition 3.0.4 (Single k-Multicolour Path Problem (SMP)). The input to this

problem is G, C and a tuple (s, t, k, 1). The objective is to find a single feasible shortest

(s, t)-path containing at least k colours.

Considering the graph from Figure 1.1 on page 2, the solution to the input (s, t, 2, 1)

would be the path P = (s, v2, t) (highlighted in Figure 3.1). Although the path P ′ =

(s, v1, v4, t) is feasible with respect k = 2, P is the only shortest feasible path. For k > 2,

there is no solution possible for that graph.

Definition 3.0.5 (Multiple k-Multicolour Paths Problem (MMP)). The objective

is to find p compatible shortest (s, t)-paths, P1, . . . , Pp, so that the sum of colours used

by all paths is at least k, i.e.,
p

∑

i=1
|C(Pi)| ≥ k.

In Figure 1.1, the paths P1 = (s, v2, t) and P2 = (s, v1, v4, t) would be the solution for

the input (s, t, 4, 2). P1 and P2 are clearly compatible because they are arc-disjoint.
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Definition 3.0.6 (Absolute Multiple k-Multicolour Paths Problem (AMMP)).

The objective is to find p absolutely compatible shortest (s, t)-paths containing at least

k colours.

Referring to Figure 1.1 again, it is easy to see that there is no solution for an input

instance (s, t, 6, 4), since the fourth path would invariably share an edge with another

one.

In the decision version of those problems we ignore the arc weights and the objec-

tive is to find only a single/multiple feasible/compatible (s, t)- path/paths containing

the required k colours. The decision version is represented by a subscripted ‘d’ on the

problem’s name (SMPd, MMPd, and AMMPd).



Chapter 4

NP-hardness proof

In this chapter we prove that the SMPd, MMPd, and AMMPd problems are NP-complete.

As a consequence, the optimization versions are NP-hard.

4.1 Single path decision problem

Theorem 1. The SMPd problem is NP-complete.

Proof. The problem is clearly in NP since we can check in linear time that a given path

is a (s, t)-path and uses k colours.

We present now a reduction from the 3CNF-SAT [22] to the SMPd problem. Let I

be an instance of the 3CNF-SAT problem consisting of a logical formula over a set of

n variables X = {x1, . . . , xn} and containing m clauses K = {K1, . . . , Km}, where each

clause Kj contains exactly three literals Kj = (yj1∨yj2∨yj3). In the 3CNF-SAT problem,

we need to decide if there is an assignment of truth values to the variables in X such that

∧m
j=1Kj is true.

From I, we build an instance (G, C, s, t, n, 1) to the SMP problem such that there

is a feasible (s, t)-path P in G with n colours if and only if there is a truth assignment

satisfying I.

The graph G consists of n+m structures, one for each variable xi, 1 ≤ i ≤ n and one

for each clause Kj, 1 ≤ j ≤ m. A structure representing a variable xi ∈ X is depicted

in Figure 4.1 on the following page and a structure representing a clause Kj is depicted

in Figure 4.2 on the next page.

We create colours czi
for each literal zi ∈ Z = {x1, x̄1, . . . , xn, x̄n}. So C = {cx1

, cx̄1
,

. . . , cxn
, cx̄n
} and |C| = 2n. There are two types of edges in the graph: (1) edges of

the structure that have labels in the figure, such as ezi
, containing all colours {czj

|

zj 6= z̄i and zj ∈ Z}, that is, it contains all colours except that which represents the

negation of zi, and (2) unlabelled edges containing all 2n colours.

21
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vxi
vxi+1

exi

ex̄i

Figure 4.1: Structure for variable xi

vKj
vKj+1

eyj1

eyj2

eyj3

Figure 4.2: Structure for clause Kj

The meaning of a structure for a variable xi is this: a path may use exactly one of

the two edges ezi
or ez̄i

. The edge used determines which of the literals zi or z̄i is going

to be true. The structure for a clause Kj = (yj1 ∨ yj2 ∨ yj3) has the following meaning: a

path is going to use exactly one of the three edges eyj1
, eyj2

or eyj3
representing a literal

that is true and satisfying the clause.

The complete graph is created connecting the structures of the variables, one to

another in sequence, where we set s = v1, and then connecting the structures of the

clauses, where the last vertex is t. It is clear that the whole transformation takes O(n+m)

time. The complete graph is depicted in Figure 4.3.

s vx2

ex1

ex̄1

vxn

exn

ex̄n

vxn+1 vK1
vK2

ey11

ey12

ey13

vKm t

eym1

eym2

eym3

Figure 4.3: Graph built from a 3CNF-SAT instance

We show that there exists a valid assignment satisfying the formula of I if and only

if there is a feasible (s, t)-path in G with n colours.

Let A : X 7→ {T, F} be a truth assignment satisfying the formula of I. In G, the path

P will use the colours whose respective literals have a truth assignment. We construct P

as follows: starting from s, for each structure associated with a variable xi, if A(xi) = T ,

then P uses the subpath that goes through edge exi
(colour cxi

is used); otherwise, P

will use the subpath going over ex̄i
(colour cx̄i

is used). Since A is a valid assignment, it

is not possible for both exi
and ex̄i

to be used at the same time in P neither the colours

cxi
and cx̄i

. At the end of the variable graph structures, the path will be using exactly

n colours, one for each truth literal. Since A is a truth assignment, at least one of the

literals of Kj has a truth assignment, therefore, we can complete path P by picking the

subpath in the Kj’s structure whose edge has the least index and corresponds to a literal

with truth assignment.



4.2. Multiple paths decision problems 23

Now let P be a feasible (s, t)-path using n colours in G. First notice that any (s, t)-

path cannot contain both edges exi
and ex̄i

because of the bifurcation in the structure

corresponding to the variable xi. So it is not possible to use both colours cxi
and cx̄i

at the same time. At the end of the variable structures (at node vxn+1
), P must have

chosen exactly n colours: if P uses edge exi
it must use colour cxi

, since colour cx̄i
is not

available in exi
; similarly, if P uses edge ex̄i

it must use colour cx̄i
. The assignment A is

obtained in the following manner: for each variable xi, we make xi = T if exi
is used in

P and xi = F if ex̄i
is used in P .

To prove that A satisfies the formula of I, we show that every clause Kj = (yj1∨yj2∨

yj3) is satisfied. Some edge eyji
is used in P for some i ∈ {1, 2, 3}, since P is feasible.

This means that P must use the colour corresponding to the literal yji. By the definition

of A, yji = T then Kj is satisfied.

4.2 Multiple paths decision problems

Even if the colours requirement can be split into multiple paths, i.e., p > 1 and
p

∑

i=1
|C(Pi)| ≥

k, we prove that the problem still remains NP-complete.

Theorem 2. The MMPd problem is also NP-complete.

Proof. We reduce the Set Cover problem [22] to the MMPd problem. Let I be an instance

of the Set Cover consisting of a set of n elements U = {u1, . . . , un}, a collection S =

{S1, . . . , Sm} of subsets of U , and a positive integer K ≤ |S|. The problem is to decide

if there are at most K subsets from S whose union equals U . We construct an instance

(G, C, s, t, n, K) to the MMPd problem, such that there exists a solution to I if and only

if there are K compatible (s, t)-paths in G using n colours.

Firstly, we create nodes s and t. There will exist n colours C = {cu1
, . . . , cun

} each

one representing one element from U . There will also exist edges eSi
representing each

subset Si ∈ S. These edges contain the colours {cui
| ui ∈ Si}. The remaining unlabelled

edges contain all the n colours. The number of required compatible paths is p = K and

the number of required colours is n. We remark that this procedure can be done in O(m)

time. The complete graph is depicted in Figure 4.4 on the next page.

We show that there is a set cover S ′ ⊆ S for U such that |S ′| ≤ K if and only if there

are K compatible (s, t)-paths in G containing n colours.

Let P1, . . . , PK be K compatible (s, t)-paths on G using n colours. If the path Pi

contains the edge eSi
, then the set Si is used as part of the solution of the Set Cover, i.e.,

S ′ = S ′ ∪ Si, 1 ≤ i ≤ K. Since there are exactly K paths, |S ′| = K. Furthermore, we

know that the K paths are compatible and use n colours. Therefore, S ′ contains all the

elements in U , and it is a valid solution to the Set Cover problem.
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Figure 4.4: Graph built from an instance of the Set Cover problem

Now assume S ′ = {S1, . . . , SK} is a solution for an instance I of the Set Cover (we

can always assume that exactly K subsets are used since we can add subsets to a valid

solution, and it remains valid). We construct K (s, t)-paths, P1, . . . , PK in G that use

n colours as follows. All K (s, t)-paths will use the unlabelled edges. Each (s, t)-path

Pi corresponds to some Si ∈ S
′. Path Pi uses the edges eSi

corresponding to a Si and,

consequently, uses colours cuj
such that uj ∈ Si as long as cuj

is not already being used

by another path. We need to prove that these (s, t)-paths are compatible. It is easy

to see that each path Pi is feasible, for it uses colours cx1
, . . . , cxj

on the edges eSi
and

those colours are also present in the edges without labels. Moreover, any two paths are

compatible because, by definition, each path uses only those colours not already being

used by any other path. We know P1, . . . , PK use n colours because S ′ is a solution for

the Set Cover thus it “covers” all the elements in U , implying that we have K (s, t)-paths

using n colours.

We also show that the AMMPd problem, which requires absolutely compatible paths,

is NP-complete.

Theorem 3. The AMMPd problem is NP-complete.

Proof. We can reduce the 3CNF-SAT to this problem: let Gi be the graph obtained from

an instance of the 3CNF-SAT like in the reduction for the SMPd problem. Consider

p > 1 copies of this graph, each one with new colours (although still representing the

same literals). In this way, there are 2np colours. Create nodes s′ and t′, edges ei and e′
i,

for i = 1, . . . , p, containing all the colours and make s′ adjacent to s of Gi through the

edge ei and t′ adjacent to t of Gi through e′
i, as illustrated in Figure 4.5 on the following

page.

Finally, let the required number of colours to the AMMPd problem be np. It is not

hard to see that a formula to the 3CNF-SAT can be satisfied if and only if there are p
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Figure 4.5: Reduction for absolutely compatible paths

absolutely compatible paths in G using exactly np colours.

4.3 Single and Multipath optimization problems

The original optimization versions of the problems SMP, MMP, and AMMP assume

weighted edges and the goal is to find multicolour paths of a minimum total weight.

As a corollary of the previous theorems, the optimization versions of the SMP, MMP,

and AMMP problems do not admit approximation algorithms, since we could use such

algorithms to decide, in polynomial time, the decision version of theses problems.

Corollary 4. There is no α-approximation algorithm for the SMP, MMP, or AMMP

problems unless P = NP .



Chapter 5

Exact algorithms

We now introduce two types of exact algorithms: Branch and Bound and Integer Linear

Program (ILP). We present Branch and Bound algorithms for the SMP and AMMP

problems in Section 5.1. ILP formulations for SMP, MMP, and AMMP are presented in

Section 5.2.

5.1 Branch and Bound

As discussed on Section 2.3, Branch and Bound algorithms consist in a systematic enu-

meration of all candidate solutions, where by the employment of lower and upper bounds

on the quantities being optimised one can discard big sets of unfruitful candidates and

explore promising potential solutions. In this section we present Branch and Bound

solutions for the SMP (Section 5.1.1) and AMMP (Section 5.1.2) problems.

5.1.1 Branch and Bound for SMP

For the description of our branch and bound solution, we need the concept of a partial

path and a potential solution (PS).

Partial path (P l
s): is a path starting at node s in which l is the last node in the path.

We call it partial because it has not yet reached the destination t. The common

colours in a partial path will be denoted by c(P l
s). If |c(P l

s)| = k, P l
s is called a

partial k-path.

Potential solution (PS): is a partial k-path starting at node s. The weight of a po-

tential solution, w(PS), is the sum of weights of the edges in the partial path,

w(PS) =
∑

e∈P l
s

w(e). The common colours of a PS are the common colours in its

partial path, c(PS) = c(P l
s).

26
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In our algorithm, at any given point in time, the search tree is composed of a set of

potential solutions. At each iteration, we choose and expand the most promising potential

solution. Let P l
s be a partial path in this promising potential solution set. We expand

it by considering the node l and checking, for each out-neighbour u: (1) whether the

number of common colours including the neighbour to the partial path is still at least k,

i.e., |c(P l
s) ∩ c(l, u)| ≥ k, and (2) whether the destination node t is reachable from u.

If any of these conditions is not met, then the node u is discarded; otherwise, a new

potential solution with the neighbour node u as last node in the partial path P u
s is added

to the search tree.

The starting potential solution, is comprised of a partial “path” P s
s with only the

node s, containing all colours c(P s
s ) = C, with weight w(P s

s ) = 0 and estimated weight

d(s, t) (to be defined below).

When choosing a promising PS to evaluate, we use a best bound strategy: we select

the PS with least estimated weight to the destination. The estimated weight is the sum

of weights of the edges in the PS plus a lower bound in the weight of the path to the

destination: the weight of the shortest path from the last node of the partial path to the

destination, without considering the colour requirement.

Estimated weight of a PS: w(P l
s) + d(l, t), where d(l, t) is the shortest distance be-

tween l and t disregarding the colours.

Let Grev be the graph obtained from G = (V, E) by reversing the direction of all

arcs. In our algorithm, we get the shortest distance d(i, t) between nodes i and t,∀i ∈ V ,

from a shortest path tree rooted in t obtained from running the Dijkstra’s shortest path

algorithm on Grev.

Notice that when evaluating a partial path, if it contains the destination as last node,

then this path corresponds to the optimal solution, since we are using a best-bound

strategy. The entire procedure is outlined in Algorithm 4 on the next page.
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Algorithm 4 Branch and Bound algorithm for SMP

Input: instance I of the SMP problem

Output: k-path P or ∅ if none is found

PQ = priority queue of PSs with estimated weight as sorting key

Run Dijkstra’s on Grev with root node t

PQ ← PQ ∪ {P s
s } ⊲ Insert starting PS into PQ

while PQ is not empty do

PSi = PS from PQ with least estimated weight

PQ ← PQ \ {PSi}

Let P l
s be partial path associated with PSi.

if node l is t then ⊲ Solution found

return P l
s

for all u ∈ δ+(l) do

c′(P l
s)← c(P l

s) ∩ c(l, u) ⊲ Tentative common colours

if |c′(P l
s)| ≥ k And t is reachable from u then

P u
s ← P l

s ∪ (l, u)

w(P u
s ) = w(P l

s) + w(l, u)

c(P u
s )← c′(P l

s)

Let PSnew have P u
s with estimated weight w(P u

s ) + d(u, t).

PQ ← PQ ∪ {PSnew} ⊲ Add PSnew to PQ

return ∅ ⊲ No solution found

5.1.2 Branch and Bound for AMMP

Define a pair of potential solutions PSi and PSj to be arc-disjoint if and only if their

partial paths are mutually arc-disjoint. A set of potential solutions is arc-disjoint if and

only if their partial paths are pairwise mutually arc-disjoint. Then the same algorithmic

idea in the SMP problem can be expanded to the AMMP problem. Now a multi-potential

solution (MPS) consists of a set of arc-disjoint PSs. The weight of a MPS is the sum of

weights of the PSs, the estimated weight is the sum of estimated weights and the colour

set is the union of the colours in the PSs.

The starting potential solution, MPS0, is comprised of p copies of P s
s . At each iteration

of the algorithm, we expand one partial path of the most promising MPS, repeating this

procedure until all partial paths in a MPS reach the destination node or no MPS is left

to evaluate. The entire algorithm is outlined in Algorithm 5 on the following page.
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Algorithm 5 Branch and Bound algorithm for AMMP

Input: instance I of the AMMP problem

Output: p absolutely compatible paths or ∅ if no solution found

PQ = priority queue of MPSs with estimated weight as sorting key

Run Dijkstra’s on Grev with root node t

PQ ← PQ ∪ {MPS0} ⊲ Insert starting MPS to PQ

while PQ is not empty do

MPSi = MPS from PQ with least estimated weight

PQ ← PQ \ {MPSi}

if node l is t for every partial path P l
s in MPSi then

return paths in MPSi

for all PSj in MPSi do

Let P l
s be the partial path in PSj

if l is t then ⊲ This partial path reached the target

Ignore PSj

else

for all u ∈ δ+(l) do

if t is reachable from u And arc (l, u) is not in MPSi then

c′(P l
s)← c(P l

s) ∩ c(l, u) ⊲ Tentative common colours

total ← |c′(P l
s)|+

∑

P Sk∈MP Si\{P Sj}
|c(PSk)|

if total ≥ k then

Create a copy MPS’i of MPSi

Update PSj in MPS’i
Add updated MPS’i to PQ

return ∅ ⊲ No solution found

5.1.3 Branch and Bound for MMP

For this problem, there was no Branch and Bound implementation because of the expo-

nential growth of the search tree coupled with the difficulty of keeping track of colours

in each path so that the final solution is feasible.

5.2 Integer Linear Programs

In this section we present two Integer Linear Programming (ILP) models for the SMP

problem and one for the MMP and AMMP problems.
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With respect to the formulations, consider the following variables:

fij: binary variable indicating the usage of edge (i, j).

fijx: binary variable indicating the usage of colour x on the edge (i, j).

fpij: binary variable indicating the presence of the edge (i, j) in the path p.

fpijx: binary variable indicating the usage of colour x on the edge (i, j) of path p.

cx: binary variable indicating the usage of colour x ∈ C.

cpx: binary variable indicating if colour x is used by path p in the solution.

k: constant that represents the number of required colours.

wij: constant that represents the weight of the edge (i, j).

All the variables above are subject to:

fij, fijx, fpij, fpijx ∈ {0, 1}, cx ∈ {0, 1}, cpx ∈ {0, 1}, x ∈ {1, 2, . . . , C}, ij ∈ E

In Equations ILP.1, ILP.2, ILP.3, ILP.4 the objectives are to find path(s) between

source and target nodes with minimum total weight. Equations (5.1), (5.4), (5.7), and

(5.12) are flow conservation constraints. Equations (5.2), (5.6), (5.8), and (5.13) ensure

the colours requirement is satisfied. Equations (5.3), (5.5), (5.9), and (5.14) ensure the

paths are suitable.

5.2.1 ILP models for SMP

We present next two formulations for the SMP problem: one that can be easily extended

for more than one path and a more compact (and faster) one.

Original ILP Model

This single path formulation was presented in [8] and we replicate it here for easy of

comparison with our own formulation (ILP.2) to be introduced in the following.
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(ILP.1)

min
∑

ijx

fijx · wij

subject to
∑

j∈δ+(i)

fijx −
∑

j∈δ−(i)

fjix =



















−cx, if i = source

cx, if i = target,

0, otherwise

∀i, x (5.1)

C
∑

x=1

cx = k (5.2)

C
∑

x=1

fijx = {0, k} ∀(i, j) (5.3)

Faster ILP model

Whereas the formulation ILP.1 was constructed so that it was extendible to the multipath

case, we introduce here some modifications resulting in a faster model with a decreased

number of total variables. We achieve that by decoupling the choice for arcs in the paths

from the choice of colours.

(ILP.2)

min
∑

ij

fij · wij

subject to
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji =



















−1, if i = source

1, if i = target,

0, otherwise

∀i (5.4)

∑

x∈c(i,j)

cx ≥ fij · k ∀(i, j) (5.5)

C
∑

x=1

cx = k (5.6)

5.2.2 ILP models for MMP and AMMP

Now we present formulation for the multipath versions, both for the compatible paths

case and the absolutely compatible paths. The objective now is to find P paths with

minimum total weight satisfying the k colours requirement.
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ILP model for MMP

This ILP formulation for the MMP problem was presented in [8] and is reproduced here

adapted to our own notation. Equation (5.10) ensures at least one colour is used in each

path, and Equation (5.11) ensures the paths are compatible.

(ILP.3)

min
∑

pijx

fpijx · wij

subject to
∑

j∈δ+(i)

fpijx −
∑

j∈δ−(i)

fpjix =



















−cpx, if i = source

cpx, if i = target

0, otherwise

∀i, p, x

(5.7)
∑

px

cpx = k (5.8)

∑

x∈c(i,j)

fpijx =

{

0,
∑

x

cpx

}

∀(i, j), p

(5.9)

C
∑

x=1

cpx ≥ 1 ∀p (5.10)

P
∑

p=1

fpijx ≤ 1 ∀(i, j), x

(5.11)

ILP model for AMMP

By modifying ILP.3, we can extend it for the absolutely compatible paths case. In the

formulation ILP.4, Equation (5.15) ensures at least one colour is used in each path, and

Equation (5.16) ensures the paths are disjoint.
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(ILP.4)

min
∑

pijx

fpijx · wij

subject to
∑

j∈δ+(i)

fpijx −
∑

j∈δ−(i)

fpjix =



















−cx, if i = source

cx, if i = target

0, otherwise

∀i, p, x

(5.12)
∑

px

cpx = k (5.13)

∑

x∈c(i,j)

fpijx =

{

0,
∑

x

cpx

}

∀(i, j), p

(5.14)

C
∑

x=1

cpx ≥ 1 ∀p (5.15)

P
∑

p=1

fpij ≤ 1 ∀(i, j)

(5.16)
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Heuristics

The heuristics developed are divided into two algorithmic ideas: Dijkstra-based and graph

intersection-based. In the following sections, we outline each one of them and analyse

their running time.

6.1 Dijkstra-based for SMP

We propose three heuristics for the SMP problem that are based on the Dijkstra’s algo-

rithm which was discussed in Section 2.4. The heuristics inherit Dijkstra’s main charac-

teristic: at each step, a node with minimum value according to some criterion is chosen,

from which the search is expanded further towards the destination node. Nodes already

chosen by the Dijkstra’s algorithm have their minimum path discovered and are not vis-

ited any more. Each node not yet visited has an estimated value for the minimum path

between the source and itself. The main difference introduced by our heuristics is with

respect to how a node is chosen. Besides the estimated cost between source and each

node, we take into account the number of available colours when including a node as part

of some path. The heuristics keep track of the number of available colours through the

path found so far. For a new node to be part of the path, the number of colours in the

resulting path needs to be at least k.

The heuristics use the same structure depicted in the pseudocode Algorithm 3 on

page 13. From the distinct ways on how to select a node, three heuristics arise: DijkstraQ,

DijkstraT and DijkstraX. In what follows, we describe each one of these in details.

6.1.1 DijkstraQ heuristic

The DijkstraQ heuristic separates the unvisited nodes into “quadrants” between two axes.

One of these axes considers the estimated distance between the source and the unvisited

34
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nodes. The other corresponds to the number of common colours between a path and

the edge linking that path to a node. We compute the average estimated distance (davg)

and the average number of common colours (cavg) considering all unvisited nodes for

which a distance label was set. We are interested in the nodes with estimated distance

shorter than the average and with number of common colours higher than the average.

The algorithm chooses randomly one of the nodes satisfying this criterion. The heuristic

choice in this case aims to find a shortest path while keeping a high number of common

colours, in the hope that, upon finishing, there will be at least k common colours in the

path. Because the step for finding the next node to be visited involves a linear search,

the time complexity is O(|V |2). See Algorithm 6 on page 39 for details.

6.1.2 DijkstraT heuristic

The DijkstraT heuristic, in turn, makes use of a positive real parameter T . At each

iteration, we choose the node with minimum estimated distance among those that have

at least ⌊T · k⌋ common colours in the path from the source node. We then update T

by decreasing its value by some constant amount. Roughly speaking, we choose nodes

according to the shortest distance and a linear decreasing function in the number of

common colours. The heuristic choice in this case is that we need more colours in common

in the beginning, because of the higher number of possible nodes to choose from, but this

requirement loosens as we approach the destination node. The algorithm is outlined in

Algorithm 7 on page 40. As we can see from the outlined algorithm, the time complexity

is the same as Dijkstra’s, O(|E| + |V | log |V |). In our experiments, T = 1.5 and it is

decremented by T/n, where n is the number of nodes in the graph, for each iteration of

the algorithm.

6.1.3 DijkstraX heuristic

The problem with the previous DijkstraQ heuristic is that selecting a node to visit is not

as efficient as using a heap. However, we can assign a score to the nodes. This score

would take into account the distance from the source and the number of common colours.

This way, the selection of the minimum node to visit can be made more efficiently than

before. Besides, the score function can be adapted to give more weight to shortest paths

or paths with more colours in common. The score function used in our algorithm is

simply score(i) = dist(i)−D · c(i), where dist(i) is the shortest distance from the source

to node i, c(i) is the set of common colours in the shortest path from the source to i found

so far, and D is the longest shortest distance from the source to any other node. The

role of the parameter D is to balance the score so that distance and number of colours

are evenly accounted for. The time complexity of the DijkstraX algorithm is the same
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as Dijkstra’s: O(|E| + |V | log |V |). The entire procedure is outlined in Algorithm 8 on

page 41.

6.2 MMPMin: Dijkstra-based heuristic for MMP

and AMMP

Denote by p the number of paths to be found by the algorithm and by k the colour

requirement. Denote by np the number of paths found so far, np ≤ p. The algorithmic

idea for MMPMin, a Dijkstra-based algorithm for the MMP and AMMP problems, is to

repeat the following procedure for the number of paths desired:

1. compute a shortest (s, t)-path P ;

2. select up to nk = k − p + np + 1 colours in C(P );

3. add P to the solution;

4. increment np by 1;

5. k ← k − nk;

6. modify the graph G.

Step 2 above is necessary since each of the p paths must use at least one colour. The

type of graph modification on step 6 depends on the problem we are solving. Let P

be the shortest path found in the current iteration of the algorithm. For the MMP, we

modify the graph by removing all the colours selected for P on its arcs in G. For the

AMMP, because we want arc-disjoint paths, we remove all arcs in P from G. The time

complexity for both algorithms is O(p{|E|+ |V | log |V |}). Both procedures are outlined

in Algorithm 9 on the next page.
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Algorithm 9 MMPMin heuristic for MMP and AMMP problems

Input: Instance I of MMP or AMMP

Output: p compatible paths using k colours or ∅ otherwise

k′ = k

for i from 1 to p do

Pi ← Dijkstra(G, s, t)

if Pi does not exist then

return ∅

Select C ′(P ) ⊆ C(P ) such that |C ′(P )| ≤ k′ − p + i + 1

if MMP problem then

Remove C ′(P ) from the arcs in E(P ) from G

else

Remove E(P ) from G

k′ ← k′ − |C ′(P )|

if
p

∑

i=1
|c(Pi)| ≥ k then

return P1, . . . , Pp

else

return ∅

6.3 Intersection-based heuristic for SMP

Let Ei denote the set of edges in G that contains the colour i. Denote the set of all Ei’s,

1 ≤ i ≤ x, by E = {E1, E2, . . . , Ex}. The graph Gi = (V, Ei) is the subgraph of G in

which all edges contain the colour i. We say Gi is the subgraph of G induced by colour

i. Let
(

E
k

)

denote the set of all k-combinations of E . Then if Ek = {Ej1, Ej2, . . . , Ejk}, is

a random selection of a set in
(

E
k

)

, we denote by G∗
k = (V, E∗

k), E∗
k =

⋂

Ejl∈Ek

Ejl, the graph

resulting from the intersection of the subgraphs Gjl = (V, Ejl), ∀Ejl ∈ Ek. If there is a

(s, t)-path in G∗
k, it is easy to see that it is also a k-path because every edge in G∗

k has

exactly the same k colours. So all we need is to increase the odds that there will be a

(s, t)-path in G∗
k. For that end, we could pick Ek so that the intersection of its elements

results on the highest number of edges in G∗
k. In other words, we want to find an Ek

such that |
⋂

Ej∈Ek

Ej| ≥ |
⋂

El∈Ek′

El|, ∀Ek′ ∈
(

E
k

)

. However, because finding such Ek is, by

itself, a hard problem [35], we have to employ a heuristic strategy instead. In this case,

we sort Ei’s by decreasing cardinality and pick the first k with highest number of edges.

We call this algorithm IntersectionFast. We could further restrict the heuristic choice by
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picking only those Ei’s with highest cardinality as long as they contain a (s, t)-path (the

Intersection algorithm). In Algorithm 10 we exemplify both procedures.

Algorithm 10 Heuristic based on graph intersection

Input: Instance I of the SMP problem

Output: feasible path P or ∅ if none is found

for all i from 1 to x do ⊲ Drop this step for IntersectionFast algorithm

Let Gi = (V, Ei) be the subgraph induced by colour i

Discard Ei if Gi does not contain a (s, t)-path

Let Ek = {Ej1, . . . , Ejk} be the set of k Ei’s with highest number of edges

Let E∗
k =

⋂

Ejl∈Ek

Ejl be the intersection of the edge sets in Ek.

G∗
k = (V, E∗

k) is the graph induced by the intersection

Find a shortest (s, t)-path P in G∗
k

if P can be found then

return P

else

return ∅

For simplicity, denote c = |C|, n = |V |, and m = |E|. Performance-wise, the Intersec-

tionFast algorithm has time complexity O(cm + c log c + m + m + n log n). If we assume

c < m, that can be simplified to O(cm + n log n). For the Intersection algorithm, the

time complexity is O(cm + c{n + m}+ c log c + m + m + n log n), which can be simplified

to O(c{n + m}+ n log n) if c < m.
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Algorithm 6 DijkstraQ heuristic

Input: Instance I of SMP
Output: k-path P or ∅ if none is found

for all node u in V (G) \ {s} do ⊲ Initialization
dist[u] ←∞
previous[u] ← undefined
discovered[u] ← False
visited[u] ← False

dist[s] ← 0
common[s] ← C
discovered[s] ← True
while there are nodes for which visited is False do

Calculate davg for the discovered nodes ⊲ Average distance
Calculate cavg for the discovered nodes ⊲ Average colours
u← GetMinNode(davg, cavg, discovered \ visited)
visited[u] ← True
if u is t then ⊲ Solution found

return path rebuilt from previous

for all v ∈ δ+(u) do
c′ ← c(u, v) ∩ common[u]
if |c′| < k then ⊲ Not enough common colours

Ignore node v
else

alt ← dist[u] + w(u, v)
if alt < dist[v] then

dist[v] ← alt
common[v] ← c′

discovered[v] ← True
previous[v] ← u

return ∅

function GetMinNode(davg, cavg, node set[])
for all node u in node set do

if dist[u] < davg And common[u] > cavg then
return u

⊲ If no node could satisfy the criterion
return node with minimum distance in node set
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Algorithm 7 DijktraT algorithm outline

Input: Instance I of SMP
Output: k-path P or ∅ if none is found

Let PQ be a priority queue with shortest distance as key
for all node u ∈ V (G) \ {s} do ⊲ Initialization

dist[u] ←∞
previous[u] ← undefined
common[u] ← ∅

common[s] ← C
dist[s] ← 0
PQ ← PQ ∪ {s} ⊲ Insert s into the queue
Let T be a positive real number
Let Dec be a positive real number, Dec < T
while PQ is not empty do

u← GetMinNode(T, k, PQ)
PQ ← PQ \ {u}
if u is t then ⊲ Solution found

return path rebuilt from previous

for all v ∈ δ+(u) do
c′ ← common[u] ∩ c(u, v)
if |c′| < k then ⊲ Not enough common colours

Ignore node v
else

alt ← dist[u] + w(u, v)
if alt < dist[v] then

dist[v] ← alt
common[v] ← c′

previous[v] ← u
PQ ← PQ ∪ {v}

T ← T− Dec

return ∅ ⊲ No solution found

function GetMinNode(T , k, node set[])
Let S = {v | v ∈ node set and common[v] ≥ ⌊T ∗ k⌋}
if S is empty then

return node in node set with minimum distance
else

return node in S with minimum distance
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Algorithm 8 DijkstraX heuristic

Input: Instance I of SMP
Output: k-path P or ∅ if none is found

for all node u in V (G) \ {s} do ⊲ Initialization
dist[u] ←∞
previous[u] ← undefined
common[u] ← ∅
score[u] ←∞

common[s] ← C
dist[s] ← 0
score[s] ← 0
Let D be the longest shortest distance from s
Let PQ be priority queue with score as key
PQ ← PQ ∪ {s} ⊲ Insert s into the queue
while PQ is not empty do

Let u be node in PQ with minimum score
PQ ← PQ \ {u}
if u is t then ⊲ Solution found

return path rebuilt from previous

for all v ∈ δ+(u) do
c′ ← c(u, v) ∩ common[u]
if |c′| < k then ⊲ Not enough common colours in this path

Ignore node v
else

alt ← dist[u] + w(u, v)
if alt < dist[v] then

dist[v] ← alt
previous[v] ← u
common[v] ← c′

score[v] ← dist[v] - D · |c′|
PQ ← PQ ∪ {v}

return ∅ ⊲ No solution found
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Computational results

Network simulations for our problems serve two purposes. In one hand they assess

the performance of the algorithms in practical terms, since heuristic solutions give no

guarantee on the quality of the result obtained. By comparing the results obtained

for the heuristics and for the exact solutions, we have a basis in which to compare all

algorithms. On the other hand, a metric like blocking ratio, defined in the next section,

can only be assessed through a computational experiment.

In this chapter we present the results obtained through the simulations. We consider

three types of metrics: execution time, solution cost and blocking ratio. Each algorithm

is fed with an input instance (s, t, k, p), and with the current state of a network given

by a multi-edge-coloured graph G. Each instance is solved by the algorithm which then

returns the k-paths found. If no path was found, we say the algorithm blocked for that

instance. For the SMP problem, p = 1. For MMP and AMMP, p = 2 due to the fact

that few applications require multiple paths in practice [8].

For the ILP models we used the CPLEX tool [20]. Simulation rounds were executed in

a 2.4GHz quad-core machine with 8GB of RAM memory. All the graphs in this chapter

displaying averages show a 95% confidence interval.

7.1 Execution time and solution cost

For each execution round we keep track of the execution time of each algorithm. If valid

k-paths are returned, the cost of the solution is defined as the cost of the paths returned,

i.e., the cost of the solution is
∑

P

∑

(i,j)∈P
w(i, j). We use a simple simulator written in

C++. The simulator generates a random connection request and run each algorithm on

this instance.

The graphs representing the networks used in the simulations were generated in the

following manner. We start with a random G(n, da) graph. That means the graph has

42
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n vertices and each edge is included in the graph with probability 0 < da < 1. We also

call da the arc density of the graph. Each added edge starts off with 8 colours available.

Then, given a colour density 0 < dc < 1, we removed random colours from randomly

selected edges until we reached about |E||C|·dc colours in total in the graph. The purpose

of variating the edge and colour densities is to simulate scenarios with different network

loads. In Table 7.1 we list the pairs da, dc used to generate our instances with an “X”

telling which particular pair combinations were used to generate the graphs.

Colour density (%)

10 40 60 70 80

10 X X X

30 X X X

40 X X X

60 X X X

70 X X X

A
rc

d
en

si
ty

(%
)

90 X X X

Table 7.1: Density pairs used for random graphs generation

For each da, dc pair, 30 random instances were generated for each graph size. The

graph sizes (number of nodes) used were 100, 250, 500, 750, 1000 and 2500. Figure 7.1 on

the following page depicts the effect of the densities on the Branch and Bound algorithm

for the SMP problem. To generated this graph, we calculated the mean cost for each size

considering only those instances which were solved by the algorithm for all graph sizes.

As expected, denser graphs yield “cheaper” solutions. For the case da = 10%, dc = 10%,

only 5 instances did not block for all sizes, therefore the high variance for this case.

Likewise, Figure 7.2 on the next page depicts the effects on execution time of the

densities on the Branch and Bound algorithm. Unlike with the cost, execution time

increases as the graphs become denser, due to the increase in processing needed for these

kind of instances.
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Effect of arc (da) and colour (dc) densities

on the Branch and Bound algorithm for the SMP problem

10
0

10
1

10
2

10
3

10
4

 100  250  500  750  1000  2500

M
e

a
n

 C
o

s
t

Graph Size

da=10%, dc=10%
da=10%, dc=70%
da=30%, dc=40%
da=70%, dc=40%
da=90%, dc=80%

Figure 7.1: Mean cost

10
-1

10
0

10
1

10
2

10
3

 100  250  500  750  1000  2500

M
e

a
n

 T
im

e
 (

m
s
)

Graph Size

da=10%, dc=10%
da=10%, dc=70%
da=30%, dc=40%
da=70%, dc=40%
da=90%, dc=80%

Figure 7.2: Mean execution time

Following the methodology in [8], each simulation round consisted in generating a

connection request from a source node s to a destination node t, both s and t chosen

uniformly among all nodes in the graph, s 6= t. The number k of colours in the request

was chosen uniformly between 2 and 5. We set a time limit of 2 minutes for each algorithm

so that the whole simulation would not take no more than 30 days. If upon reaching the

2-minutes mark no solution was returned, the algorithm is terminated and it is considered

to have blocked for that instance.

Figure 7.3 on the following page shows the effect of the number of colours in the

request on the solution cost for the Branch and Bound algorithm. A high colour number

request results in higher solution costs. The opposite behaviour is observed with respect

execution time (Figure 7.4 on the next page).
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Effect of number of colours in the request

for the Branch and Bound algorithm for the SMP problem
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Figure 7.3: Mean solution cost
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Figure 7.4: Mean execution time

Let C+(v) =
⋃

j∈δ+(v)
c(v, j) be the set of colours on the output arcs of a node v.

Likewise, C−(v) =
⋃

j∈δ−(v)
c(j, v) is the set of colours in the input arcs of v. We claim that

for any k-path between s and t in the SMP problem, the colours used will be a subset of

C ′ = C+(s)∩C−(t). Therefore, we can execute a preprocessing step in which we remove

every edge e ∈ E with |c(e) ∩ C ′| < k. For the MMP and AMMP problems, we remove

the edges with c(e) ∩ C ′ = ∅. This preprocessing step was not included on the running

time of the algorithms.

To compare the algorithms graphically, we present their performance profiles, a com-

parison method proposed by Dolan and More [14]. This method of comparing optimiza-

tion software and algorithms consists in comparing the algorithms among themselves,

computing for each instance the ratio between the value of some metric for that instance

and the best result achieved for that instance considering all the algorithms. So, if some

algorithm has ratio equal to 1 for a particular instance, that means it obtained the best

result for that instance among all the other algorithms. In Figure 7.5 on the following

page, the Intersection algorithm has point (1, 0.35) meaning it solved 35% of the instances

with best cost, whereas the point (5, 0.85) indicates it solved 85% of the instances with

cost at most 5 times the best cost. We compute all such ratios for all instances regarding

solution cost and execution time.

In Figure 7.5 on the next page and Figure 7.6 on the following page we present

the performance profiles for solution cost and execution time, respectively, for the SMP

problem. Particularly for the time performance case, we replaced the ratio by the actual

running time in milliseconds, so as to give a better perspective for the comparisons.

For example, in Figure 7.6 on the next page, the point (100, 0.901) for the Intersection

algorithm indicates that it solved 90.1% of the instances in no more than 100 milliseconds.
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Figure 7.5: Solution cost performance profile for the SMP
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Figure 7.6: Execution time performance profile for the SMP problem

Some relevant remarks regarding the simulations for the SMP problem. As it is can

be seen from the graphs in Figure 7.5 and Figure 7.6, the ILPs are easily outperformed in

execution time. The original ILP formulation blocked on more than 70% of the instances
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by not being able to solve them in 2 minutes. The faster ILP formulation, in turn,

blocked on 55% of the instances. With a performance better than the ILPs but still

slower than the Branch and Bound algorithm, the Intersection algorithm solved 82% of

the instances with cost 4 times the optimum and solved 90% of the instances in less

than 100ms, whereas the IntersectionFast version was able to solve 94.5% in the same

time frame. The Branch and Bound algorithm performed surprisingly well, blocking less

than 2% and solving the majority of the instances in less than 500ms. With respect to

the heuristics, DijkstraT was best in terms of solution cost (93% solved with best cost)

followed by DijkstraX (92%), whereas in terms of execution time, DijkstraX was able to

solve 52% of the instances in up to 1ms.

To check at which point the Branch and Bound algorithm would start blocking the

instances whereas the heuristics would solve them, we kept increasing the graph size. The

issues encountered while executing this kind of test were the amount of memory needed

(more than we had, causing the use of swap space) because of the size of the graphs; also,

loading and preprocessing the graph took a long time, around 30 minutes each of these

steps for a graph with 10000 nodes. For that case, the Branch and Bound blocked while

the heuristics solved the instance within 20 seconds.

A similar simulation setup to the SMP was used for the MMP and AMMP problems.

All requests required 2 paths and between 2 and 5 colours chosen uniformly.

Figure 7.7 on the following page and Figure 7.8 on the next page depict the perfor-

mance profiles for the AMMP problem. Again the ILP algorithm is easily surpassed with

respect execution time. It blocked on 85% of the instances because of the time limit. The

heuristic MMPMin had the best runtime, solving all non-blocked instances in 500ms. It

blocked on 30% of the instances. The Branch and Bound algorithm solved less than 2%

of the instances with the best runtime and solved 91% of them with less than 50000ms.

It blocked only on 1% of the instances.
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Figure 7.7: Solution cost performance profile for the AMMP problem
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Figure 7.8: Execution time performance profile for the AMMP problem

Figure 7.9 on the following page and Figure 7.10 on the next page show the per-

formance profiles for the MMP problem. The ILP algorithm blocked on 91% of the
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instances. The heuristic blocked on 32% of the instances and solved the other 68% in

less than 500ms.
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Figure 7.9: Solution cost performance profile for the MMP problem
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Figure 7.10: Execution time performance profile for the MMP problem
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7.2 Blocking ratio

We now discuss the blocking ratio results. The blocking ratio defined in [8] is the band-

width blocking ratio (BBR). It is the percentage of blocked bandwidth traffic relative to

the total requested bandwidth during one simulation round for a WDM network. Since

a bandwidth value can be directly converted to a number of colours given the bandwidth

capacity of a wavelength, we use the term BBR hereafter. To calculate the blocking ratio

we used a discrete event simulator developed in Java [8, 15] to generate dynamic connec-

tion requests and account for the graph states. Each simulation round is comprised of

10000 connection requests arriving with negative exponentially distributed inter-arrival

time. For each connection request, if the algorithm fails to provide a suitable solution,

the request is blocked and rejected. Otherwise, the paths to be established provided as

output are used to update the graph state accordingly.

Instead of randomly generated graphs, we used the same real network topologies for

measuring the blocking ratio as in [8]. The topologies used are:

Grid 5x5 network: with 25 nodes and 80 arcs (Figure 7.11),

USA long-distance Mesh network: with 25 nodes and 86 arcs (Figure 7.13 on the

next page),

NSFNet network: with 16 nodes and 50 arcs (Figure 7.14 on page 52), and

Pan-European network: with 28 nodes and 82 arcs (Figure 7.12 on the next page)

In each of this topologies, the number in the nodes are identification labels. Each arc

is labelled with a weight value representing the length in kilometres of that arc. In the

case of the grid, every arc has a unitary weight. We assume each arc contains 8 colours

in all topologies.
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Figure 7.11: Grid 5x5 network

Figure 7.12: Pan-European Network
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Figure 7.13: USA Long-distance Mesh Network

Figure 7.14: NSFNet network

For each simulation round, the networks start with all colours available in all arcs.

For each one of the 10000 connection requests, source and destination nodes are chosen

uniformly among all nodes. Colour requests range from 1 to 5 colours and they are

generated with probability proportionally inverse to the number of colours, i.e., requests

of 1 colour have five times more chance of being generated than those with 5 colours.

The established paths are release after a defined holding time has passed. Connection

holding times are sampled in a negative exponential distribution with mean value of a
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single unit. For the MMP and AMMP problems, p = 2 for each connection request. All

results in this section show confidence intervals of 95%.

In Figure 7.15 on the following page, Figure 7.16 on page 54, Figure 7.17, and Fig-

ure 7.18 on page 55 we present the BBR values for the SMP problem for the networks

Grid 5x5, NSFNet, PanEU and USA, respectively.

Apart from the intersection-based algorithms, all algorithms had similar blocking

ratios in all network types.
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Figure 7.15: Grid 5x5 network blocking ratio for the SMP problem

In Figure 7.19 on page 55, Figure 7.20 on page 56, Figure 7.21 on page 56 and

Figure 7.22 on page 57 we present BBR values for the AMMP problem for the Grid 5x5,

NSFNet, PanEu and USA networks, respectively. Now, the Branch and Bound algorithm

achieved the lowest ratio in all networks for loads up to 50 Erlang. The biggest difference

in blocking behaviour is shown in the Grid 5x5 for 10 and 20 Erlang; MMPMin blocked

10 times more than the Branch Bound and the ILP algorithm blocked 10 times more than

the heuristic. However, as the load increases, the blocking behaviour of the algorithms

become similar, even slightly higher for the Branch and Bound.

The MMPMin heuristic had the best performance for the MMP problem, with block-

ing ratio equal ou lower to that of the ILP formulation, as show in Figure 7.23 on page 57,
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Figure 7.16: NSFNet network blocking ratio for the SMP problem

Figure 7.24 on page 58, Figure 7.25 on page 58, and Figure 7.26 on page 59. As with the

AMMP problem, the biggest difference between the algorithms is seen for the Grid 5x5

network.
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Figure 7.17: PanEU network blocking ratio for the SMP problem
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Figure 7.18: USA network blocking ratio for the SMP problem
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Figure 7.19: Grid 5x5 network blocking ratio for the AMMP problem
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Figure 7.20: NSFNet network blocking ratio for the AMMP problem
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Figure 7.21: PanEU network blocking ratio for the AMMP problem
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Figure 7.22: USA network blocking ratio for the AMMP problem
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Figure 7.23: Grid 5x5 network blocking ratio for the MMP problem
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Figure 7.24: NSFNet network blocking ratio for the MMP problem
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Figure 7.25: PanEU network blocking ratio for the MMP problem
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Figure 7.26: USA network blocking ratio for the MMP problem



Chapter 8

Conclusions

This work discussed the problem of finding multicolour paths in multi-edge-coloured

graphs. The network counterpart problem of finding multiple lightpaths in WDM op-

tical networks so as to satisfy a high bandwidth requirement was first formalised as a

pure graph problem. Having a formal description of the problem and its variants, it

proceeded then to prove NP-hardness results for the problem. Particularly, it was proven

that finding a single k-multicolour path in a multi-edge-coloured graph is NP-hard; the

same result holds for finding p multicolour paths so that the sum of colours used is k

independently if the paths are required to be edge-disjoint or not. Assuming P 6= NP,

there are no efficient polynomial time algorithms to solve NP-hard problems optimally.

Therefore, heuristics were proposed to the problems. These heuristics were based on

two algorithmic ideas: the Dijkstra’s shortest path algorithm and graph intersection. To

assess the efficiency as well as the quality of the solutions returned by the heuristics, com-

putational experiments were devised. These experiments measured the execution time,

the cost of the solution returned and the blocking ratio of the algorithms. As comparison

parameters, exact Branch and Bound and ILP formulations were developed.

The simulations results show that the Branch and Bound algorithm is a suitable

alternative for the SMP problem, being able to solve instances with up to 10000 nodes

in less than 2 minutes. It also displayed a low blocking behaviour for lower network

loads. Regarding the heuristics, DijkstraX showed the best trade-off with respect to

solution cost, execution time and blocking ratio. The use of a score function makes

the implementation faster than the other Dijkstra-based heuristics; besides, the score

function can be easily changed to accommodate different priorities, like prioritizing paths

with more colours first, rather than shortest paths. For finding more than one path, the

Branch and Bound solution starts suffering the effects of the exponential growth of the

search tree regarding execution time. In the AMMP problem, the Branch and Bound

implementation is more suitable for low network loads, up to 50 Erlang, whereas the
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MMPMin heuristic is a better general choice for both problems with worst blocking ratio

in the order of magnitude 10 when compared to the Branch and Bound solution. For

high network loads, there is no much difference on all algorithms’ blocking behaviour.

Further work based on these problems can explore classes of graphs in which exact

solutions can be easily obtained or, on the other hand, classes for which the problem

shows its NP-hard behaviour. Another possibility is to investigate approximation algo-

rithms whose objective function is to satisfy the colours requirement instead of finding

the shortest path.
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