an

Leonardo Rodrigo Domingues

GPU Optimization of Bounding Volume
Hierarchies for Ray Tracing

Otimizacdao em GPU de Bounding Volume
Hierarchies para Ray Tracing

CAMPINAS
2015

Az,
4

University of Campinas
Institute of Computing

N

A

Universidade Estadual de Campinas

Instituto de Computacdo

Leonardo Rodrigo Domingues

GPU Optimization of Bounding Volume Hierarchies for Ray

Tracing

Supervisor:

Orientador:

Prof. Dr. Helio Pedrini

Otimizacao em GPU de Bounding Volume

Hierarchies para Ray Tracing

MSc Dissertation presented to the Graduate
Program of the Institute of Computing of the
University of Campinas to obtain a Mestre de-

gree in Computer Science.

THIS VOLUME CORRESPONDS TO THE FINAL
VERSION OF THE DISSERTATION DEFENDED
BY Leonardo Rodrigo Domingues, under the

supervision of Prof. Dr. Helio Pedrini.

Dissertacdo de Mestrado apresentada ao Pro-
grama de Pds-Graduagao em Ciéncia da Com-
putacdo do Instituto de Computacao da Uni-
versidade Estadual de Campinas para ob-
tencao do titulo de Mestre em Ciéncia da

Computacdo.

ESTE EXEMPLAR CORRESPONDE A VERSAO
FINAL DA DISSERTACAO DEFENDIDA POR Le-
onardo Rodrigo Domingues, sob orientagao de
Prof. Dr. Helio Pedrini.

Supervisor’s signature / Assinatura do Orientador

CAMPINAS
2015

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Maria Fabiana Bezerra Muller - CRB 8/6162

Domingues, Leonardo Rodrigo, 1985-
D713g GPU optimization of bounding volume hierarchies for ray tracing / Leonardo
Rodrigo Domingues. — Campinas, SP : [s.n.], 2015.

Orientador: Hélio Pedrini.
Dissertacdo (mestrado) — Universidade Estadual de Campinas, Instituto de
Computagao.

1. Computacgao grafica. 2. Algoritmos Ray tracing. 3. Estruturas de dados
(Computacgao). I. Pedrini, Hélio,1963-. Il. Universidade Estadual de Campinas.
Instituto de Computagao. lll. Titulo.

Inf < Bibli Digital

Titulo em outro idioma: Otimizacdo em GPU de bounding volume hierarchies para ray tracing
Palavras-chave em inglés:

Computer graphics

Ray tracing algorithms

Data structures (Computer science)

Area de concentragao: Ciéncia da Computagao
Titulagao: Mestre em Ciéncia da Computagao

Banca examinadora:

Hélio Pedrini [Orientador]

Esteban Walter Gonzalez Clua

Jorge Stolfi

Data de defesa: 03-07-2015

Programa de Pés-Graduagao: Ciéncia da Computagao

TERMO DE APROVACAO

Defesa de Dissertagdo de Mestrado em Ciéncia da Computagdo, apresentada pelo(a)
Mestrando(a) Leonardo Rodrigo Domingues, aprovado(a) em 03 de julho de 2015,
pela Banca examinadora composta pelos Professores(as) Doutores(as):

Prof(a). Dr(a&Wr Gonzalez Clua
itular

/
/74 (F 2~
Prof((/// it

a). Dr(a). Jorge Stolfi
o Titular

\'Wwpz}mm
Prof(a). Dr(a). Hélio Pedrini
Presidente

Institute of Computing /Instituto de Computagao
University of Campinas / Universidade Estadual de Campinas

GPU Optimization of Bounding Volume
Hierarchies for Ray Tracing

Leonardo Rodrigo Domingues

July 03, 2015

Examiner Board/Banca Examinadora:

Prof. Dr. Helio Pedrini (Supervisor/ Orientador)

Prof. Dr. Esteban Walter Gonzalez Clua
Instituto de Computagao - UFF

Prof. Dr. Jorge Stolfi
Instituto de Computagao - UNICAMP

Prof. Dr. David Menotti
Departamento de Computacao - UFOP (Suplente)

Prof. Dr. André Santanche
Instituto de Computagao - UNICAMP (Suplente)

Abstract

Ray tracing methods are well known for producing very realistic images at the ex-
pense of a high computational effort. Most of the cost associated with those methods
comes from finding the intersection between the massive number of rays that need to
be traced and the scene geometry. Special data structures were proposed to speed up
those calculations by indexing and organizing the geometry so that only a subset of
it has to be effectively checked for intersections. One such construct is the Bounding
Volume Hierarchy (BVH), which is a tree-like structure used to group 3D objects
hierarchically. Recently, a significant amount of effort has been put into accelerat-
ing the construction of those structures and increasing their quality. We present a
new method for building high-quality BVHs on manycore systems. Our method is an
extension of the current state-of-the-art on GPU BVH construction, Treelet Restruc-
turing Bounding Volume Hierarchy (TRBVH), and consists of optimizing an already
existing tree by rearranging subsets of its nodes using an agglomerative clustering
approach. We implemented our solution for the NVIDIA Kepler architecture using
CUDA and tested it on sixteen distinct scenes that are commonly used to evaluate the
performance of acceleration structures. We show that our implementation is capable
of producing trees whose quality is equivalent to the ones generated by TRBVH for
those scenes, while being about 30% faster to do so.

Resumo

Métodos de Ray Tracing sao conhecidos por produzir imagens extremamente realistas
ao custo de um alto esforco computacional. Pouco apds terem surgido, percebeu-se
que a maior parte do custo associado a estes métodos esta relacionada a encontrar a
interseccao entre o grande ntimero de raios que precisam ser tragados e a geometria da
cena. Estruturas de dados especiais que indexam e organizam a geometria foram pro-
postas para acelerar estes calculos, de forma que apenas um subconjunto da geometria
precise ser verificado para encontrar as intersec¢oes. Dentre elas, podemos destacar
as Bounding Volume Hierarchies (BVH), que sdo estruturas usadas para agrupar ob-
jetos 3D hierarquicamente. Recentemente, uma grande quantidade de esforcos foi
aplicada para acelerar a construgao destas estruturas e aumentar sua qualidade. Este
trabalho apresenta um novo método para a construcao de BVHs de alta qualidade em
sistemas manycore. O método em questdao é uma extensao do atual estado da arte
na constru¢do de BVHs em GPU, Treelet Restructuring Bounding Volume Hierarchy
(TRBVH), e consiste em otimizar uma &arvore ji existente reorganizando subcon-
juntos de seus nés por meio de uma abordagem de agrupamento aglomerativo. A
implementacao deste método foi feita para a arquitetura Kepler utilizando CUDA e
foi testada em dezesseis cenas que sao comumente usadas para avaliar o desempenho
de estruturas aceleradoras. B demonstrado que esta implementacao ¢é capaz de pro-
duzir arvores com qualidade comparavel as geradas utilizando TRBVH para aquelas
cenas, além de ser 30% mais rapida.

Acknowledgements

First of all, I would like to thank my parents, for always encouraging me to keep
going during difficult times. I also want to express my gratitude to my advisor, Helio
Pedrini, for giving me the opportunity to finish my research and leading me through
the right paths. My gratitude extends to my friends, for all the encouragement and
letting me know early on how difficult this road would be. I thank the Eldorado
Research Institute as well, for granting me time to dedicate to my studies.

Lastly, I would also like to thank Timo Aila, Samuli Laine, and Tero Karras for
making their GPU ray tracing framework available, as well as the Stanford Univer-
sity Computer Graphics Laboratory for the scenes Armadillo, Buddha, Bunny and
Dragon, the Stereolithography Archive at Clemson University for Skeleton Hand, the
Georgia Institute of Technology for Turbine Blade, Anat Grynberg and Greg Ward for
Conference, Ingo Wald for Fairy Forest, Samuli Laine for Hairball, Marko Dabrovic for
Sibenik, Frank Meinl for Sponza, Jonathan Good for Arabic, Babylonian and Italian,
Hameed Nawaz for Time Machine and Bangor University, UK for Welsh Dragon.

Contents

Abstract

Resumo

Acknowledgements

1 Introduction
1.1 Problem Description and Motivation
1.2 Objectives and Contributions
1.3 Text Structure.

2 Related Work

2.1 Ray Tracing

2.2 Acceleration Structureso
221 Kd-tree
2.2.2 Bounding Volume Hierarchy

2.3 BVH Optimization

CUDA and the Kepler Architecture

3.1 The Kepler Architecture

3.2 CUDA . . .

3.3 Parameters to Optimize
3.3.1 Division of Work
3.3.2 Memory Access
3.3.3 Registers. oo
3.3.4 Divergence Lo

ATRBVH

4.1 Agglomerative Treelet Restructuring
4.1.1 Overview
4.1.2 Treelet Formation
4.1.3 Distance Metric Lo
4.1.4 Merge Clusters

4.1.5

Treelet Reconstruction

13
13
16
17
17
18
18
19

4.1.6 Post-processingo
4.1.7 Parameters
4.2 Implementation and Optimizations
4.2.1 Tree Traversal
4.2.2 Treelet Restructuring 0.
4.2.3 Distance Matrix o
4.2.4 Global Memory Usage
5 Results
5.1 Parameter Choice
5.2 Ray Tracer Analysis
6 Conclusions and Future Work
Bibliography
A Other Approaches
A1 Tree Rotation
A.1.1 Parameters
A.2 Divisive Treelet Restructuring
A.2.1 Parameters
A3 Results.

30
31
34

37

39

List of Tables

5.1 Test results for ATRBVH . . .

5.2 Results averaged over all test scenes

A.1 Test results for other approaches

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1

4.2

5.1

Rendering a scene with Ray Casting 6
Rendering a scene with Recursive Ray Tracing 7
BVH for small data set of triangles 9
Kepler architecture SMX 14
Kepler architecture overview 15

Agglomerative treelet restructuring process for a treelet formed from
six leaves 21
Updating the distance matrix 27

Percentage of time spent on each step of ATRBVH for six test scenes . 35

Acronyms

AoS Array of Structures. 18

ATRBVH Agglomerative Treelet Restructuring Bounding Volume Hierarchy. 34, 35, 37
BSP Binary Space Partitioning. 8

BVH Bounding Volume Hierarchy. vi, 1-3, 8-12, 20, 23-25, 30, 31, 34, 35, 37, 44, 49
CPU Central Processing Unit. 2, 10, 11

CUDA Compute Unified Device Architecture. 13, 14, 16, 24, 25, 37, 44

DRAM Dynamic Random-Access Memory. 14

DTRBVH Divisive Treelet Restructuring Bounding Volume Hierarchy. 48, 49
GPGPU General Purpose Computing on Graphics Processing Units. 13

GPU Graphics Processing Unit. 2, 3, 8, 10, 11, 13, 14, 16-19, 31, 34, 37, 44, 48, 49
HPC High Performance Computing. 13

ILP Instruction-Level Parallelism. 19

LBVH Linear Bounding Volume Hierarchy. 10, 30, 34, 44, 48

LRU Least Recently Used. 14

SAH Surface Area Heuristic. 2, 3, 9-12, 20-24, 26, 27, 29-31, 34, 38, 44, 45, 48

SIMT Single-Instruction, Multiple Thread. 2

SM Streaming Multiprocessors. 13, 16, 19

SoA Structure of Arrays. 18

TRBVH Treelet Restructuring Bounding Volume Hierarchy. vi, 30, 31, 34-37, 44, 48, 49

WLP Warp-Level Parallelism. 17

Chapter 1

Introduction

Ray tracing is a rendering technique that was originated in the sixties and is still used
today to produce realistic images from computer models [6, 12, 47]. It consists in
simulating the complex paths that rays of light take while traveling from an object to
its observers eyes. A large number of rendering methods have evolved from ray tracing
in order to improve the fidelity of images produced and enable the representation of
phenomena such as depth of field and motion blur. Nowadays, ray tracing variations
are widely used in fields such as architecture, cinema and engineering.

Rendering a high quality image through ray tracing is often a time demanding
process, which requires a high computational effort. Most of that effort is redirected
toward calculating the intersection between rays and the scene triangles. In order
to accelerate those calculations, special data structures are employed to organize the
geometry in such a way that, for each ray, only a subset of the triangles has to be
tested.

The acceleration of ray tracing is a topic that has recently received sizable atten-
tion, and many different data structures have been applied for that purpose. Among
those, BVHs are currently the most used, in great part due to being better at han-
dling animated scenes and having a low memory footprint [18, 43]. Vinkler et al. [40]
recently published a study comparing the ray tracing performance of BVHs and kd-
trees on manycore architectures, showing that the former outperformed the latter for

the majority of the tested scenes, with the exception of those with very high triangle

1.1. Problem Description and Motivation 2

counts and significant levels of occlusion.

1.1 Problem Description and Motivation

In order to optimize a ray tracing application, it is important to reduce the construc-
tion time of the acceleration structures, especially for interactive applications and
rendering animated scenes, since those structures must be rebuilt every frame due to
changes in the geometry. Graphics Processing Units (GPUs) can be extremely helpful
toward that end, since they are accessible and affordable high performance computing
devices. In this research, we focused on using BVHs as our acceleration structure.

Building a high quality BVH is a computationally expensive process, which until
recently has been performed exclusively on Central Processing Units (CPUs). Most
algorithms that produce those structures work by processing the data in either a top-
down [31] or a bottom-up order [45], and would take a considerable amount of time to
execute. When GPUs began being employed to build BVHs, alternative algorithms
were proposed so as to make better usage of the Single-Instruction, Multiple Thread
(SIMT) architecture. Some of these algorithms could generate trees much faster
than the traditional approaches, however, at the cost of producing structures with
an inferior quality [14, 24, 30, 35].

BVH quality also plays an important part in the rendering time of ray tracing
applications, since higher quality structures are more efficient in reducing the number
of ray-triangle intersections that are required to render an image, thus speeding the
process up. The quality of an acceleration structure is directly measured by the
amount of rays per second that can be traced using it. However definitive, that
value can only be obtained after the structure has already been built and is very
susceptible to changes in the hardware used. Goldsmith and Salmon [16] and later
MacDonald and Booth [31] introduced the idea that the quality of a structure can
be derived from the number of intersections that are required to trace an arbitrary
non-terminating ray through it. They also demonstrated how to calculate an estimate
to that value, which they called Surface Area Heuristic (SAH) cost. It is important to
notice that although that value has a high correlation with the performance of BVHs

1.2. Objectives and Contributions 3

when comparing trees built by using the same method with different parameter values,
the results are not always consistent when comparing structures constructed through
different methods [1].

The challenges involved in optimizing BVHs revolve around finding a balance
between construction speed and structure quality. If we were to calculate node com-
binations in order to form all possible hierarchies for a given set of triangles, we
could find the structure with the highest quality achievable. However, finding such a
tree would require an enormous amount of time. By approximating the optimization
stage, we can produce BVHs that still have a good quality but are faster to produce,
so that when we combine the time required to construct the tree and trace the rays,

the overall performance if maximized.

1.2 Objectives and Contributions

Karras and Aila [25] proposed a method for constructing high quality BVHs on GPU
that is fast enough to be used in real time applications while achieving ray tracing
performance competitive with the most time demanding algorithms. Their solution
consists in optimizing an existing tree by looking at treelets, small local subsets of
tree nodes, and rearranging their nodes in order to minimize the overall tree SAH
cost. Since execution time and memory requirements grow rapidly with treelet sizes,
only small treelets can be viably used.

Our objective in this research is to reduce build times for high quality BVHs even
further. To that purpose, we expand on Karras and Aila’s original work by proposing
a new method for rearranging treelet nodes in a greedy, bottom-up fashion, enabling
the usage of larger treelet sizes while keeping construction times competitive. In
fact, by using treelet sizes slightly larger than the original method, we were able to
produce BVHs with equivalent quality in about 30% less time. The quality of the
generated trees can be increased by using larger treelets, at the expense of higher
construction times. The obtained results also show that, even when using the same
treelet size, the dynamic programming solution employed originally to find the optimal

treelet structure can be replaced by an approximated agglomerative search without a

1.3. Text Structure 4

significant reduction in tree quality.

1.3 Text Structure

The remainder of this text is organized as follows: Chapter 2 provides more de-
tail about ray tracing and reviews previous approaches used to create and optimize
bounding volume hierarchies, Chapter 3 presents a brief overview of CUDA and the
Kepler architecture, Chapter 4 describes our tree construction algorithm and details
our implementation and optimizations that were performed, Chapter 5 displays and
discusses the results of our tests and Chapter 6 presents conclusions and lists some
possibilities for future work. Appendix A lists other approaches that were tried during

the course of this research.

Chapter 2

Related Work

This chapter provides a brief overview of the publications that led up to the devel-
opment of this research. Section 2.1 reviews commonly used rendering methods that
can be dramatically accelerated by optimizing the process of tracing rays through
a scene. Section 2.2 discusses data structures that can be employed to accelerate
ray tracing. Section 2.3 lists previous methods that were used to optimize Bounding

Volume Hierarchies.

2.1 Ray Tracing

In 1968, Appel [6] proposed a technique for drawing and shading vivid two-dimensional
images from computer models of 3D objects. His method, which would later be known
as Ray Casting, consists in calculating the trajectory of several light rays emitted
from the scene viewpoint in the direction of the 3D objects. After finding the range
of coordinates for the discrete projection plane that must be rendered, the algorithm
generates rays coming from the observer’s position and going through each of those
coordinates. When one of those rays intersects with one of the objects being rendered,
another check is necessary to determine if the collision point is visible from the light
source; if that is the case, the corresponding plane coordinate receives a light shade,
and if not, it will not be illuminated. By using this method, Appel was able to
generate shaded images that had clear shadow boundaries visible. The Ray Casting

process is illustrated in Figure 2.1.

2.1. Ray Tracing 6

o
<5 @

Figure 2.1: In Ray Casting, rays are generated from the observer (O) in the direc-
tion of coordinates of the projection plane. For each ray, the algorithm determines
the point of intersection between that ray and the object being rendered (P) and
attributes the color of that object to the corresponding coordinate in the projection
plane (P;). Shadow Rays (illustrated with a dotted line) are also traced from the
points of intersection to the light source, to determine if those positions are beyond
the shadow boundary.

Whitted [47] extended on the existing ray casting algorithm by taking global il-
lumination information into account during the rendering process and enabling the
generation of images depicting shadows, refraction and reflection for perfectly smooth
surfaces. Instead of terminating the visibility calculation when a ray hits a surface,
each intersection generates up to three additional rays that needed to be traced: one
for the surface reflection, one for refraction and another to determine if the intersec-
tion point lays in shadow. The direction of reflected and refracted rays is calculated
through classic ray optics. This method became known as Recursive Ray Tracing or
Whitted Ray Tracing.

In his work, Whitted also pointed that up to 95% of the time required to render a
scene would be spent on ray-surface intersection calculations, and if that part of the
algorithm could be optimized, great performance gains could be expected.

In Ray Casting and Recursive Ray Tracing, the direction of rays is determined
precisely through ray optics calculations. Cook [12] proposed a method called Dis-

tributed Ray Tracing, in which the direction of rays is calculated by sampling an

2.2, Acceleration Structures 7

\
(e

| R
0 & ;

Figure 2.2: Recursive Ray Tracing expands on Ray Casting (Figure 2.1) by bouncing
incident rays multiple times to account for reflection and refraction effects. The ray
R, hits the larger sphere and is reflected in the direction R;gs, while Ry is refracted
in the direction Rap.fr. Shadow rays are also traced from the points of intersection
P, and P, to the light source, to determine if those points are in shadow. Only one
bounce of light is depicted here.

RZ Refr

analytic function. By sampling different functions, such as time, the camera lens or
even the solid angle of the light sources, his rendering algorithm is able to include ef-
fects such as motion blur, depth of field, translucency, penumbra and fuzzy reflections
to rendered images, at no additional cost when compared to traditional ray tracing.

More recently, a series of stochastic rendering methods, such as Bi-Directional
Path Tracing [29], Metropolis Light Transport [39] and Photon Mapping [23], were
devised. Even though they are not direct variations of Ray Tracing, these methods

also rely heavily on ray-surface intersection calculations and can benefit from the

results of this research.

2.2 Acceleration Structures

During ray tracing, we need to find the intersection points between a number of rays
and the scene being rendered. The naive solution of testing each ray against all of
the scene geometry has a time complexity of O(M N), where M is the number of rays

traced and N is the number of objects in the scene. Since both these values tend

2.2. Acceleration Structures 8

to be very high, rendering complex scenes in a reasonable time is often not possible
using this approach.

In order to reduce the number of ray-primitive intersections, special data structures
can be used to index the scene geometry and limit the set of primitives that have to
be checked for each given ray. These structures can be classified into two groups as
to whether they organize the scene geometry in a hierarchy or subdivide the scene
space [27, 41].

Some commonly used acceleration structures are Bounding Volume Hierar-

chies [36], Kd-trees [7], Octrees [15] and Grids [4].

2.2.1 Kd-tree

Kd-trees [7] are a generalization of Binary Space Partitioning (BSP) trees [20]. In
these structures, data is organized by subsequently dividing the search space into two
using axis-aligned hyperplanes. Because of that property, kd-trees can be used as
binary search trees to locate objects in the scene and efficient divide-and-conquer and
branch-and-bound traversal algorithms can be implemented for them [22].

In his thesis [20], Havran developed a methodology for comparing the use of differ-
ent acceleration structures in ray tracing. His results showed that, for his set of tests,
kd-trees were the most efficient data structures for organizing the scene geometry.

Even though kd-trees have been replaced by BVHs as the most used acceleration
structure on GPU ray tracers [38], they are still able to achieve good results and new
methods for creating and traversing them are still being researched [10, 11, 19, 37, 48].

For kd-tree traversal algorithms, we redirect readers to the recently published

review by Hapala and Havran [19].

2.2.2 Bounding Volume Hierarchy

A bounding volume hierarchy [36] is a data structure used to group 3D objects hier-
archically. It has the form of a tree structure, where each leaf represents one or more
of the objects being stored and internal nodes represent a grouping of those objects.

Each node holds a conservative bounding volume of all objects that descend from that

2.2, Acceleration Structures 9

node, usually in the form of an axis-aligned bounding box. Weghorst et al. [46] inves-
tigated the criteria that are involved in the selection of the optimal bounding volume

used. Figure 2.3 illustrates a two-dimensional BVH for a small set of triangles.

Figure 2.3: BVH constructed from a small data set of four triangles. Each internal
node represents a subset of the input containing two or more triangles and stores the
bounding box of that subset.

A common approach to generating BVHs that optimize ray tracing performance
is to minimize their SAH cost [16, 31] during the tree construction. That value can

be defined as follows

SAH — Ait (oi S A 16 Y A(n)N(n)) (2.1)

nel nerL

where A; corresponds to the surface area of the root node, A(n) is the surface area of
node n, C; and C; are relative costs for traversing an internal node and for performing
a ray-triangle intersection, respectively, I is the set of internal nodes, L is the set of
leaves and N (n) is the number of triangles referenced by leaf n.

The first method for the automatic generation of BVHs was created by Goldsmith
and Salmon [16]; it consists in adding nodes to the tree one at a time, in a position
that minimizes the overall SAH cost of the tree. MacDonald and Booth [31] later
proposed an algorithm for constructing BVHs based on a top-down partitioning of
the triangles that also has the objective of minimizing the SAH cost of the generated
tree. Walter et al. [45] went in the opposite direction by creating BVHs in a bottom-

up, agglomerative approach and was able to produce trees with SAH costs lower than

2.3. BVH Optimization 10

those for top-down methods, at the expense of longer processing times.

Until a few years ago, acceleration structures would almost exclusively be built on
CPUs and, as a result, the algorithms used were mostly serial. When GPUs began
being used to accelerate ray tracing, new algorithms were developed for taking advan-
tage of the massive level of parallelism available at manycore processors. Lauterbach
et al. [30] proposed a new method called Linear Bounding Volume Hierarchy (LBVH)
for constructing BVHs in parallel, by first sorting the scene triangles using a space-
filling curve and then recursively splitting that data to create the internal nodes of
tree. Although being able to run extremely fast, the quality of the trees produced
with that method was not on par with that of the structures produced with traditional
approaches.

Pantaleoni and Luebke [35] and Garanzha et al. [14] proposed a new method that
could still run efficiently on GPUs and produce trees of higher quality than LBVH
by using a hierarchical grouping of the input data and using the SAH to optimize
the top levels of the structure. Karras [24] improved on LBVH by showing that
the tree construction stage can be completely parallelized by processing all nodes
simultaneously. Apetrei [5] also improved on LBVH by performing both the tree
construction and the bounding box calculation in a single bottom-up traversal.

A BVH can be traversed by checking a ray against the bounding volume of the
BVH root node: if they intersect each other, then the left and right children of that
node are recursively processed. This step is repeated until a leaf node is reached, and
at that time the ray is checked for collisions against each object represented by that
leaf. Aila and Laine [2, 3] identified the gaps between previous acceleration structure
traversal algorithms and the theoretical optimum, and introduced the algorithm which

is the current state-of-the-art for BVH traversal on GPUs.

2.3 BVH Optimization

There are two common approaches for optimizing the SAH cost of a BVH during its
construction stage. The first and most used is to build the tree in a top-down, divisive

manner [31]: at each iteration of the algorithm, a split plane is chosen to create an

2.3. BVH Optimization 11

internal node that divides the triangles into two groups, which are then recursively
divided themselves. The split plane is chosen so as to minimize the SAH cost at
each step. Since finding the best split planes is a very computationally expensive
task, various optimizations have been proposed which provide a trade-off between
construction time and quality by approximating that search [21, 42, 44].

The second approach to constructing a BVH while optimizing its SAH cost is to
perform a bottom-up, agglomerative tree construction [45]. For this method, each
triangle is regarded as a cluster of size one. At each iteration, the pair or clusters
for which a dissimilarity function returns the lowest value is merged; this process is
repeated until all triangles are grouped under a single cluster. Agglomerative algo-
rithms often lead to the construction of trees that perform better than their divisive
counterparts, however, at the expense of longer construction times. Gu et al. [17]
later proposed a method for efficiently building BVHs on multicore CPUs using an
approximate agglomerative approach.

Kensler [28] optimized already existing BVH structures by making local modifi-
cations derived from tree rotation operations to them, which lead to the generation
of trees with very high quality. Bittner et al. [8] proposed another optimization tech-
nique which performed global modifications to an existing tree: by relocating certain
tree nodes, their method is able to produce the current gold standard in tree quality.

Karras and Aila [25] introduced the idea of optimizing existing trees on GPU by
rearranging subsets of their nodes in order to minimize the overall SAH cost. Their
algorithm performs a bottom-up traversal of the tree and, for each internal node that
is encountered, a treelet is formed by using that node as its root. Treelets can be
thought of as small binary trees themselves, containing nodes that are connected in
the original tree. The best topology is then found for each treelet by testing the cost
of all possible rearrangements of its leaves using a dynamic programming algorithm.
Among the methods used to produce BVHs on GPUs, this one generates the highest
quality structures. Karras and Aila [26] also published a patent describing an agglom-
erative approach to restructuring treelets. Our work was developed independently and
without prior knowledge of that patent.

Recently, Bittner et al. [9] proposed a new algorithm for constructing BVHs incre-

2.3. BVH Optimization 12

mentally by sequentially adding new triangles to the existing tree at specific positions
that minimize the global SAH cost. Their method is able to create BVHs with quality
comparable to the commonly used SAH top-down builders.

Stich et al. [38] introduced a new construction algorithm that improves the ray
tracing performance of BVHs, specially for scenes that are not regularly tessellated, by
performing spatial splits in the input geometry. Karras and Aila [25] also used spatial
splits in their method and proposed an approach to performing triangle splitting on
GPUs. In this paper, we do not employ triangle splitting, since our objective is to

focus on the treelet restructuring stage.

Chapter 3

CUDA and the Kepler

Architecture

In this chapter, we introduce readers to General Purpose Computing on Graphics
Processing Units (GPGPU) by presenting an overview of Compute Unified Device
Architecture (CUDA) and the Kepler architecture, which is the base for the NVIDIA
GTX 770 GPU used during our experiments. We focus on the aspects of parallel
programming that were necessary to reach the results presented in this dissertation.
For more information about the Kepler architecture and other possible optimizations,
readers can check the CUDA C Programming Guide [34] and CUDA C Best Practices
Guide [33].

3.1 The Kepler Architecture

GPUs are very complex in nature and have constantly evolved over time to become
faster and more power efficient. The architecture for the iteration of NVIDIA GPUs
used in this research is called Kepler, and it was designed to provide a high double
precision performance for High Performance Computing (HPC) [32].

Modern NVIDIA GPUs consist of a number of Streaming Multiprocessorss (SMs),
which are elaborated structures capable of executing a great volume of tasks in par-

allel. The current generation of SMs, employed in the Kepler architecture, is called

13

3.1. The Kepler Architecture 14

SMX. Each SMX contains 192 single-precision cores, each having its own floating
point and integer arithmetic logic units. Cores in a SMX share a common instruc-
tion cache, register file, read-only cache and a shared memory / L1 cache. Different
Kepler GPUs have different numbers of SMXs, however, the structure of those SMXs
remains the same throughout all models. A simplified version of the SMX is depicted

in Figure 3.1.

Instruction Cache

Scheduler | | Scheduler | | Scheduler | | Scheduler

Register File

Cores

Shared Memory / L1 Cache

Figure 3.1: The Kepler architecture SMX combines the power of 192 CUDA cores into
a single structure. With four schedules, the SMX can dispatch up to eight instructions
per warp per cycle. A single on-chip memory block of 64KB is used for the shared
memory and L1 cache, and it can be divided evenly between the two or split as
48KB/16KB or 16KB/48KB. The register file and instruction cache are also common
for all cores in the SMX.

The amount of Dynamic Random-Access Memory (DRAM) found on Kepler GPUs
is different for each model. Alongside the DRAM, a Kepler GPU also has available a
1536KB L2 cache that works in a Least Recently Used (LRU) policy, and is the same
size for all GPU models. When a value is requested from memory, it is first searched
in the SMX L1 cache, and then in the GPU L2 cache. If it is not found, a load from
the DRAM is issued.

3.1. The Kepler Architecture 15

A SMX executes groups of 32 parallel threads that are called warps. Threads in a
warp are always in synchrony, that is, at any given time, the same instruction is being
executed for all threads in that warp. SMXs can have up to 64 resident warps, and
they alternate the execution of those warps to maximize the usage of their various
pipelines. Each SMX has four warp schedulers, and each of those can dispatch up to
two instructions per warp per cycle.

The Kepler architecture, which serves as base for the NVIDIA GTX 770 used in

our tests, is illustrated in Figure 3.2.

PCI Express
SMX SMX SMX SMX

5 :

© 3

2 2

o

o 0
o

e 3

2 g

= =

m —

s i

L2 Cache

- =2

Q

= SMX SMX SMX SMX]

? :

£ 2

o

o 0
o

2 =

o =

£ S

w —

s 8

Figure 3.2: The NVIDIA GTX 770 has eight SMXs, each capable of handling up to 64
warps. When a memory address is requested by one of the four memory controllers,
it first goes through a L2 cache that is shared among all SMXs.

3.2. CUDA 16

3.2 CUDA

The CUDA programming model was created to harness the power of GPUs for general
purpose processing and enable the creation of applications that can transparently scale
with an increased number of cores, just as graphics applications do. Differently from
traditional CPU development, when creating applications using CUDA one should
focus on achieving high levels of parallelism instead of executing tasks sequentially as
fast as possible.

CUDA applications are separated into the host part, which runs on CPU, and the
device part being executed on the GPUs. Computer programs that are created using
CUDA and run on GPUs are called kernels. They are commonly written through
a high-level programming API using the C language, although wrappers for several
other languages exist.

Parallelism is achieved in CUDA by dividing the work into small chunks that
are executed by threads. Those threads are organized into blocks, and each block is
assigned to a different SM, where it will be executed. Threads in a block can share
data by using the shared memory that is available to each SM.

The grid configuration, that is, the number of blocks that will be used to run a ker-
nel and the dimension of those blocks, can be determined by the developer. Although
sometimes kernels are developed with a specific hardware in mind and implicitly con-
tain some of that hardware characteristics, most often the grid configuration can be
changed during runtime and set according to the exact board that is being used,
enabling the same program to be optimized for a wide variety of GPUs.

When programming using CUDA, one has access to several different memory types
that must be balanced to reach optimal performance: global memory is the most
abundant and is accessible to all threads, but is also the one with the highest latency;
texture memory is read-only and optimized for a 2D access pattern; constant memory
is read-only and used to store constants and kernel arguments; shared memory can be
used to share data between threads in a block and is almost as fast as using registers,
although very limited in size; local memory is a portion of the global memory to where

registers are spilled; registers are the fastest place to store data, but are limited to

3.3. Parameters to Optimize 17

65536 32-bit registers per SMX.

3.3 Parameters to Optimize

This section presents a number of parameters that have to be balanced to reach
optimal performance. The values listed here are specific for the Kepler architecture,

and may be different in other GPUs.

3.3.1 Division of Work

The amount of threads created for each kernel and how those threads are grouped
are parameters that can be determined during runtime by arguments specified using
a special kernel syntax. The application can configure the block size, that is, the
number of threads that compose each block, and the grid size, which is the total
number of blocks that will be launched.

Block size and grid size are three-dimensional values. Since the SMX handles
warps and not individual threads, the number of threads per block should ideally be
a multiple of 32. Because a block has to be run entirely by one SMX and needs to
share resources with the other blocks that are allocated to that SMX, its maximum
number of threads is limited to 1024.

Each SMX can be responsible for up to 64 warps at any given time. The occupancy
value indicates how many warps each SMX is handling in relation to that maximum
value. In general, the higher the occupancy, the more work a SMX scheduler has
available at each cycle to chose from. Having a high occupancy is important because
it helps hide the latency of instructions, but achieving 100% is not always possible,
seeing that the number of warps that can be allocated in a SMX depends on the
amount of shared memory used by each block and the number of registers used per
thread. The term Warp-Level Parallelism (WLP) refers to the use of multiple warps
in parallel to hide instruction latency.

The objective of tuning these values is guaranteeing that the GPU will have enough

work that can be executed in parallel to keep it as busy as possible.

3.3. Parameters to Optimize 18

3.3.2 Memory Access

Copying memory between the host and the device is one of the operations that incur
the greatest latency in GPU applications. Whenever possible, it is best to implement
all steps of an algorithm on the GPU, so data does not have to be copied back and
forth to the main system memory. Memory allocation also accounts for a significant
percentage of execution times, and should be avoided as often as possible with mea-
sures such as allocating memory at the application start instead of every frame and
reusing allocated memory for different structures.

Most GPU applications are bound by the speed at which data from the global
memory can be accessed, and so understanding how the L1 cache works plays a fun-
damental role in optimizing them. Data is not accessed per thread; instead, requests
for all threads of a warp are combined and the required memory is read using 128-byte
wide transactions into the L1 cache. That way, if threads in a warp access memory
positions that are stored sequentially, fewer read transactions have to be issued, and
the threads can just read their values from the L1 cache. When a set of threads
accesses memory positions that are adjacent to each other, we say those accesses are
coalesced. Making memory accesses coalesced reduce the number of read transaction
that have to be issued, thus increasing performance.

Preventing cache thrashing, that is, the removal from the cache of data that is
commonly used, is also important to optimizing performance. To that end, using the
correct memory layout for data structures is essential. When storing a collection of
some data structure in memory, it is common to create a Array of Structures (AoS)
type layout; however, it may be beneficial to consider using a Structure of Arrays
(SoA) layout to make memory accesses more coalesced and avoid cache thrashing.

Shared memory should be used whenever possible to prevent accessing the more

expensive global memory or to explicitly cache values that are used frequently.

3.3.3 Registers

The number of registers used by each thread directly affects the occupancy, so it is

important to keep that value as low as possible. If there is a high Register Pressure,

3.3. Parameters to Optimize 19

that is, a thread requires more registers than are available in the SMX, the exceeding
variables will be spilled to local memory. The _launch_bounds__() qualifier can be
employed to force the compiler to use a specific amount of registers, causing the
remaining registers to spill to local memory. While this qualifier can be useful to
reach a certain occupancy goal, it has to be used with care, since oftentimes it leads
to decrease performance.

The Kepler architecture introduced the shuffle intrinsic operations, which allow a
thread to read registers from other threads that are in the same warp at a very low
cost. Using these instructions, it is possible to store strategic values that are accessed
by more than one thread in a warp in registers, in order to save shared memory.

Instruction-Level Parallelism (ILP) can also be employed to hide instruction la-
tency on Kepler GPUs. Although the order of instructions is mostly determined by
the compiler, there are cases where switching the order of statements in the C code

can lead the compiler to producing machine code with higher ILP.

3.3.4 Divergence

When there is a branch in the kernel, the SM needs to execute separately each diver-
gent path, while all other threads are stalled. This means that branching should be

kept to a minimum, especially if both paths are taken by different threads in a warp.

Chapter 4

ATRBVH

This chapter describes the methodology used in our experiments. In Section 4.1, we
provide a brief overview of the proposed algorithm and then give a detailed description
of each of its steps. Section 4.2 presents implementation details that we believe are

useful for understanding and replicating this work.

4.1 Agglomerative Treelet Restructuring

Our method [13] improves the one presented by Karras and Aila [25] by modifying its
treelet restructuring stage: instead of evaluating all possible node topologies to find
the one with the lowest SAH cost, we use a greedy algorithm based on agglomerative
clustering to rearrange our treelets (Figure 4.1). While this process results in the
generation of treelets that might not have the lowest cost possible, it runs faster than
the original, therefore enabling the usage of larger treelet sizes without drastically
changing execution times. We were motivated by the idea that, by increasing the
treelet size, changes to the BVH would be more global in scope, thus allowing it to

be modified to a greater extent.

4.1.1 Overview

The algorithm starts with a bottom-up traversal of the tree. Upon reaching each

node, a treelet is formed by using that node as its root and then restructured to have

20

4.1. Agglomerative Treelet Restructuring 21

Figure 4.1: Agglomerative treelet restructuring process for a treelet of size six.
Leaf nodes are represented through numbers, whereas internal nodes are represented
through letters. Left: original treelet, before optimization takes place. Center: treelet
leaves grouped by using agglomerative clustering. At each step, the two clusters closer
to each other, given a certain distance function, are merged. Right: the treelet is re-
constructed. At the end of each clustering step, each pair of elements that were
grouped are connected using an internal node. This process does not require the allo-
cation of new nodes, since the original ones can be re-utilized by just changing their
pointers.

its SAH cost minimized. For the treelet optimization process, each leaf is regarded
as a cluster of size one, and a dissimilarity value is calculated for each cluster pair.
The pair with the smallest dissimilarity value is chosen to be merged, and an internal
node is added to the treelet, with the nodes corresponding to the original clusters
as its children. Both clusters are removed from the group, and a new one is added
to represent the newly added internal node. These steps are repeated until only one
cluster remains. The pseudocode is shown in Algorithm 1 and its main stages are

detailed in the following sections.

4.1.2 Treelet Formation

At the treelet formation stage (line 2), we follow the same idea used by Karras and
Aila [25] and greedily choose the nodes with the largest surface area, expecting them
to be the ones with the greatest optimization potential. At the beginning of the
process, the root node is added to the internal node set and its children are added to
the set of leaves. At each iteration, the leaf with the largest surface area is moved to
the internal node set and its children are added as leaves. This process is repeated

until the treelet has grown to the desired size.

4.1. Agglomerative Treelet Restructuring 22

Algorithm 1: RearrangeTreelets
1 for internal node i in BVH do

2 treelet «<— FormTreelet(i)

3 clusters < treelet Leaves

4 while length(clusters) > 1 do
5 distances < [
6
7
8
9

foreach pair of clusters (z,y) do
d « Dissimilarity(x,y)
distances + (d,z,y)

end
10 (m,n) < FindMinimumDistance(distances)
11 0 < MergeClusters(m,n)
12 clusters.remove(m)
13 clusters.remove(n)
14 clusters.add(o)
15 end
16 end

4.1.3 Distance Metric

The agglomerative clustering process requires a dissimilarity or distance metric to be
specified. At each iteration, the pair of nodes that are closer to each other using the
given metric will be merged. Since the objective is to minimize the overall SAH cost
of the tree, we chose the distance between two clusters to be the surface area of the
bounding box containing them.

Calculating the distance between two clusters (line 7) is an expensive operation.
In order to prevent it from being repeated for each cluster pair at each step, we
borrow the idea of caching those values from Gu et al. [17]. At the beginning of
the optimization process, the distances between all cluster pairs are pre-calculated
and stored in a triangular matrix. We chose to use a lower triangular matrix, so the
distance between clusters ¢ and j will be stored at position (i,7) if ¢ > j or (j,1)

otherwise.

4.1.4 Merge Clusters

After the distances have been calculated, the next step is to find the pair of clusters

that are closest to each other (line 10) and merge them (line 11). When two clusters

4.1. Agglomerative Treelet Restructuring 23

are merged, the corresponding treelet nodes, which can be either internal nodes or
leaves, must be connected by a new internal node that references them as children.
In practice, one of the original internal nodes of the treelet is updated to represent
this new node, so no extra memory has to be allocated during the merge process.

At each step, the distance matrix will also have to be updated by removing the two
clusters that were merged and adding the newly formed one (lines 12-14). In order to
keep the matrix compact, we replace the first removed cluster with the new one, and
move the last valid cluster to the other vacant spot, as described by Gu et al. [17].
The distances between the new cluster and the others also need to be calculated so

the matrix is complete once again.

4.1.5 Treelet Reconstruction

Instead of performing changes to the treelet at each iteration, the proposed modifica-
tions are stored in a list. Each list entry contains the index of the internal node that
should be modified and the indices of its two children (the nodes corresponding to the
clusters that were merged to originate it). After the whole treelet has been processed,
the SAH cost of the newly generated topology is compared with the original treelet
cost: only if the cost has decreased will the changes stored in the list be applied to
the treelet, thus preventing the BVH from receiving changes that might increase its

overall SAH cost.

4.1.6 Post-processing

Throughout the optimization process, each of the tree leaf nodes reference only one
triangle. However, the SAH cost of a BVH can generally be reduced further by
collapsing some of its subtrees, that is, replacing all the internal nodes corresponding
to a particular subtree by a single leaf node that indexes all the triangles that could
be reached from the root of that subtree. This collapsing step is performed after all
treelets have been restructured.

In order to decide which subtrees should be collapsed, the SAH cost of that subtree

4.2. Implementation and Optimizations 24

should be compared with the cost of the collapsed subtree
¢ = CyA(n)N(n) (4.1)

where A(n) corresponds to the surface area of the subtree root, N(n) is the number
of triangles contained in the subtree and C} corresponds to the relative cost for per-
forming a ray-triangle intersection, and should be the same constant that was used to
calculate the SAH cost (Equation 2.1). If the cost of the collapsed subtree is smaller,
then the entire subtree is replaced by a leaf which references all its triangles.
Differently from the collapsing method used by Karras and Aila [25], the cost of
the collapsed subtree does not have to be considered during the treelet restructuring
process, since the only criterion used to determine which nodes will be merged is the

surface area.

4.1.7 Parameters

There are three parameters that have to be set for our method: treelet size, number
of iterations and ~y. Treelet size corresponds to the number of leaf nodes of a treelet,
and larger treelets generally produce better structures, at the expense of greater build
times. Number of iterations corresponds to the number of times that a full bottom-up
sweep of the tree is executed, with treelets being assembled and restructured at each
step. Parameter v determines how many leaves a node must have as descendants
so that it can be used as a treelet root, and it is used to balance execution time
and treelet quality, with higher values favoring build speed and lower values favoring

quality.

4.2 Implementation and Optimizations

Our algorithm was implemented using CUDA and was designed to take advantage
of the NVIDIA Kepler architecture. Being inspired mostly on Karras and Aila’s [25]
original work on BVH optimization via treelet restructuring, we used an agglomerative

clustering method for recreating treelet topologies, with the objective of investigating

4.2. Implementation and Optimizations 25

how larger treelet sizes affect the resulting BVHs when an approximate method is
used to find the optimal solution. By using slightly larger treelets than the original
method, we were able to produce BVHs with comparable quality in considerable less
time, and also to drastically reduce the amount of temporary memory used.

The CUDA implementation makes heavy use of the shuffle intrinsic operations,
which enables registers from other threads in the same warp to be read at a very low
cost. Using those instructions, values that are accessed often within a warp can be
cached in registers, both providing a fast access to those values and saving shared
memory that could otherwise be used to store them. The shuffle intrinsics are also
used to efficiently implement reductions, for example when comparing clusters to find
which pair is closer to each other.

During the implementation stage, we tried to reach 100% occupancy while keeping
register spills to local memory to a minimum. However, our design decision to rely
heavily on shuffle operations requires some values to be stored throughout the whole
treelet restructuring phase, leading to a high register usage. Therefore, we ended
up opting for a 75% occupancy, which seems to be the optimal value for our imple-
mentation, leaving 40 registers available to each thread and 1024B of shared memory

available to each warp when using the Kepler architecture.

4.2.1 Tree Traversal

For the bottom-up traversal of the tree, we use the method described by Karras [24].
Each thread starts by processing a leaf node; after it is done, it goes on to process
the parent of that node. Since we are dealing with binary trees, at each iteration
two threads will reach each node. By making the first thread inactive and allowing
only the second one to continue, a node is guaranteed to be processed after both its

children, thus avoiding race conditions. The pseudocode is shown in Algorithm 2.

4.2.2 Treelet Restructuring

During the bottom-up traversal, the number of active threads per warp is quickly

reduced. In order to keep a high level of parallelism, each treelet restructuring task

4.2. Implementation and Optimizations 26

Algorithm 2: TreeTraversal

1 for leaf i in BVH do in parallel

2 current <1

3 while current != null do

4 counter < atomicInc(counters[current])
5 if counter = 0 then
6
7
8
9

‘ return
end
ProcessNode()

current < parents|current]

10 end
11 end

is distributed among all threads from the corresponding warp, even those that were
inactive during the traversal. When alternating between bottom-up traversal and
treelet restructuring, we use the __ballot()! voting intrinsic to find out which threads
are active and referencing a valid treelet root. The returned values are analyzed, and
each warp sequentially processes its treelets.

Three arrays are allocated in shared memory to store each treelet: one for leaf
indices, another for internal node indices and a third for leaf surface areas. Leaf
surface areas are only used when the treelet is being formed, which means that array
can safely be repurposed to store other values during the treelet reconstruction. The
array of treelet leaves can also be reused during that stage: when optimizing a treelet,
each thread in the warp is responsible for storing at registers the variables of a cluster,
such as node index and bounding box, so those values can be read efficiently by other
threads using the shuffle instructions; after reading those values, their sources are no
longer required. Lastly, after a pair of clusters is merged, the registers from the thread
corresponding to the last cluster themselves can be used to store other values as well.
Combining the free registers and shared memory, we can create an implicit list to hold
the modifications required to restructure the tree without the need of allocating extra
memory. When two clusters are merged, the last unused internal node is chosen to be
modified and unite the nodes corresponding to each cluster, and the parent, left and

right indices, together with the new bounding box and SAH cost are stored in that

thttp://docs.nvidia.com/cuda/cuda-c-programming-guide

4.2. Implementation and Optimizations 27

implicit list.

If the SAH cost of the topology generated using the agglomerative clustering
method is less than that of the original treelet, we proceed to commit the modi-
fications found in the implicit list. This operation can be executed completely in

parallel, with each thread processing one treelet node.

4.2.3 Distance Matrix

Figure 4.2: Updating the distance matrix after merging clusters three and five. The
numbers inside elements below the main diagonal indicate the indices of those elements
in the linear representation of the distance matrix. Clusters are represented by the
main diagonal elements, and prior to the merge eight of them existed. The newly
formed cluster M replaces cluster C'3, while the last cluster is moved in the position
of cluster C'5. Elements highlighted in red represent the distance between M and
all the other clusters and need to be recalculated. Elements highlighted in blue are
copied from the last row.

To avoid redundant computations of distances between clusters, those distances are
pre-calculated and cached in a triangular matrix just before the treelet restructuring.
Instead of keeping the entire matrix in memory, we only store the elements that are
below the main diagonal. These elements can be represented sequentially in an array,

and the corresponding matrix row and column numbers can be calculated from that

4.2. Implementation and Optimizations 28

array index as follows

_HW“‘;”J (42)
o or(r=1)
c=i- " (4.3)

where r is the row number, ¢ is the column number and ¢ is the array index. We chose
to use a lower triangular matrix, since its coordinates are slightly cheaper to extract
from the array index than those of an upper triangular matrix.

In our implementation, the best performance is achieved by storing the distance
matrix for treelets of sizes up to 20 in shared memory, since that can be done while
maintaining an occupancy of 75%. For larger treelets, the distance matrix is stored
entirely in global memory. The construction of the initial distance matrix is performed
with the help of a precomputed schedule, specifying what pairs of clusters will be
analyzed by each thread. Distances are calculated in the order that they appear in
the distance array, so as to keep memory accesses coalesced for matrices that are
stored in global memory. The use of a schedule is not required, since the indices for
cluster pairs can be extracted by using Equations 4.2 and 4.3 for each array index,
but it results in a minor performance increase.

After merging clusters i and j, the newly formed cluster will take i’s place, and
the elements corresponding to the distance between it and all other clusters will have
to be recalculated. This operation can be completely parallelized, with each thread
calculating the distance between a cluster pair. The last cluster from the distance
matrix will have to be moved to the j-th position as well. This can also be executed
in parallel, with each thread moving an element. The process of updating the distance

matrix is illustrated in Figure 4.2.

4.2.4 Global Memory Usage

The BVH used in our implementation requires 52 bytes of global memory per node: 5
scalars totaling 20B (parent, left and right pointers, data index and surface area) and

one 32B bounding box (minimum and maximum values stored as float4). Aside from

4.2. Implementation and Optimizations 29

the tree structure, we also store in global memory the atomic counters used during
tree traversal (4B per node), the number of triangles descending from each node (4B
per node), the SAH cost of each node (4B per node), the agglomerative schedule
(256B for a treelet size of 32) and the distance matrix, if a treelet size of 21 or more

is used (number of cluster combinations x 4 bytes per warp launched).

Chapter 5

Results

Given that our objective was to modify and improve on Karras and Aila’s [25] original
work (TRBVH), we tried to replicate their experiments as closely as possible. In order
to measure the performance of BVHs, we used Aila’s et al. [2, 3] ray tracing framework.
Our tests were run on 16 different static scenes, most of which are commonly used in
the area; their names, number of triangles and screenshots can be found in Table 5.1.

The structures that served as base for the optimization step were built using the
LBVH algorithm [24, 30], as it is able to produce usable BVHs very quickly. All tested
trees were collapsed using a post-processing kernel so as to further reduce their SAH
cost.

Since a public implementation of TRBVH is not available, we implemented it
ourselves by following the description available in the original paper [25]. The BVH
build times achieved by our version are about 3 times higher than those reported by
the authors, and that discrepancy cannot be explained by differences in the hardware
used alone. However, we believe the comparisons made here are fair, seeing that both
tested implementations share a large similarity and were created by the same authors.
It is very likely that additional optimizations applied to one method will also benefit
the other. The results reported here do not take triangle splitting into account for
any method.

In our implementation of TRBVH, some values that were reported by Karras

and Aila [25] as being stored in registers, such as SAH costs, triangle counts and

30

5.1. Parameter Choice 31

bounding boxes, had to be stored in global memory due to a lack of registers available.
Because of that, it is safe to assume that our implementation of TRBVH is not
using an optimal amount of temporary memory. The listed temporary memory values
are implementation-dependent, and were only reported here to provide clarity and
reproducibility.

The temporary memory values reported for TRBVH, ATRBVH and ATRBVH*
(ATRBVH using the same parameter values as TRBVH) include the amount of mem-
ory required by LBVH. Since the tree construction and optimization are performed
separately, these values can be further optimized by allocating a single block of mem-
ory large enough for both steps and reusing it.

The results presented here were obtained on a PC with a Intel Core i5 4670 CPU,
12GB of RAM and a NVIDIA GTX 770 GPU. The implementation used in this

research has been made publicly available!.

5.1 Parameter Choice

In order to find the optimal treelet size and number of iterations, we tested all possible
combinations of values, with treelet sizes ranging from 3 to 32 and number of iterations
ranging from 1 to 5. We noticed that while increasing both parameters led to the
generation of better performing trees, the performance gains that could be obtained
in relation to TRBVH were very modest. Therefore, we opted to choose values which
would minimize the build time, while keeping the performance within 0.5% of TRBVH.
Using this heuristic, we determined a treelet size of 9 and a number of iterations of 2
to be the optimal values.

When evaluating the SAH cost of treelets or BVHs, we consider the relative costs
C; and Cy to be 1.2 and 1.0, respectively. As for ~, we started its value as the treelet

size and doubled it at each iteration.

thttps://github.com/leonardo-domingues/atrbvh

5.1. Parameter Choice

32

Fairy (174K)

Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 41.73 10.61 127.15 11 65.27
TRBVH 63.93 56.75 77.89 73 100.00
ATRBVH 61.50 38.44 77.45 17 96.20
*
Arabic (412K) ATRBVH 62.57 43.23 77.44 17 97.87
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 110.15 10.01 41.90 9 91.66
TRBVH 120.17 43.87 35.51 62 100.00
ATRBVH 118.64 31.82 35.93 15 98.73
*
Armadillo (346K) ATRBVH 120.02 35.34 36.19 15 99.88
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 55.83 12.19 104.23 13 60.20
TRBVH 92.74 69.21 55.13 90 100.00
ATRBVH 91.26 46.84 56.65 21 98.40
*
Babylonian (499K) ATRBVH 95.33 52.88 55.14 21 102.79
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 75.31 23.53 89.14 29 85.11
TRBVH 88.49 134.64 70.38 196 100.00
ATRBVH 87.67 90.33 70.73 46 99.07
*
Buddha (1.1M) ATRBVH 87.69 104.98 71.31 46 99.10
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 169.19 3.79 44.89 2 89.09
TRBVH 189.90 12.42 39.13 13 100.00
ATRBVH 188.98 8.86 39.56 3 99.52
*
Bunny (69K) ATRBVH 188.56 9.57 39.72 3 99.29
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 98.14 8.59 65.53 8 71.45
TRBVH 137.36 39.25 39.53 51 100.00
ATRBVH 139.67 27.76 38.93 12 101.68
ATRBVH* 142.63 30.16 38.56 12 103.84
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 84.13 19.64 75.50 23 89.19
TRBVH 94.33 105.61 62.04 157 100.00
ATRBVH 94.23 72.21 62.10 37 99.89
*
Dragon (870K) ATRBVH 93.72 88.63 62.82 37 99.35
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 106.57 6.40 38.72 5 77.23
TRBVH 137.99 27.11 33.21 31 100.00
ATRBVH 135.72 19.03 33.84 7 98.35
ATRBVH* 136.73 21.34 33.55 7 99.09

5.1. Parameter Choice

33

Welsh Dragon (2.2M)

Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 15.33 65.71 541.90 77 92.41
TRBVH 16.59 374.22 478.08 520 100.00
ATRBVH 16.44 255.24 475.72 121 99.10
ATRBVH* 16.44 289.69 477.46 121 99.10
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 53.31 10.58 121.79 10 61.23
TRBVH 87.06 55.47 61.19 67 100.00
ATRBVH 85.06 37.55 61.40 16 97.70
* 5
Ttalian (368K) ATRBVH 84.49 42.37 61.02 16 97.05
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 99.19 4.19 66.79 2 80.22
TRBVH 123.65 14.77 51.85 14 100.00
ATRBVH 122.67 10.31 52.19 99.21
*
Sibenik (80K) ATRBVH 123.52 11.62 52.49 99.89
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 113.43 14.70 37.00 17 91.59
TRBVH 123.84 79.89 30.72 118 100.00
ATRBVH 123.68 55.45 31.09 27 99.87
ATRBVH* 124.70 62.47 31.18 27 100.69
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 56.17 7.91 114.42 7 69.23
TRBVH 81.13 37.86 75.75 50 100.00
ATRBVH 85.99 26.43 75.42 12 105.99
ATRBVH* 77.80 30.36 75.88 12 95.90
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 9.43 95.29 308.61 125 86.91
TRBVH 10.85 583.55 248.99 844 100.00
ATRBVH 11.21 415.50 246.78 196 103.32
£ 3
Time Machine (4.7M) ATRBVH 11.53 448.57 248.08 196 106.27
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 123.45 36.56 91.41 47 93.03
TRBVH 132.70 213.27 78.99 319 100.00
ATRBVH 131.16 151.76 79.79 74 98.84
*
Turbine Blade (1.8M) ATRBVH 131.70 171.43 79.87 74 99.25
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)
LBVH 58.59 40.92 90.11 59 89.23
TRBVH 65.66 256.53 73.51 399 100.00
ATRBVH 65.18 176.62 74.38 93 99.27
ATRBVH* 64.96 200.09 74.52 93 98.93

Table 5.1: Test results for 16 scenes. The Relative column expresses the performance
of each method relative to TRBVH. The reported times for all methods include the
time required to create the original tree, optimize it when applicable and collapse the

structure.

5.2. Ray Tracer Analysis 34

5.2 Ray Tracer Analysis

The test results are summarized in Table 5.1. For each scene, we obtained mea-
sures using LBVH, TRBVH and two versions of Agglomerative Treelet Restructuring
Bounding Volume Hierarchy (ATRBVH): ATRBVH* is the method described here,
but using the same parameter values as TRBVH (treelet size = 7, number of iterations
= 3); ATRBVH corresponds to the same method, but using the optimized parameter
values (treelet size = 9, number of iterations = 2). We recorded BVH build times,
number of rays traced per second, SAH cost and temporary memory required for each
method. Memory allocation times are not reported.

The reported results are the average values obtained from ray tracing each scene
through multiple viewpoints to better capture their details. We used five viewpoints
for each scene, except for Italian, Babylonian and Arabic, where 10 viewpoints were
employed to better represent the large areas of those scenes. Performance measure-
ments were obtained by tracing diffuse rays, since those are less dependent on camera
position than primary and ambient occlusion rays.

Considering the average results among all scenes, available in Table 5.2, ATRBVH
was able to produce BVHs 30.5% faster than TRBVH, while keeping the ray tracing
performance of those trees on par with the ones produced by the latter. This represents
a large speedup over a method that already pushes current GPUs to their limit. When
analyzing results for individual scenes, we can see that the variations in performance

are very subtle, with no method being considerably better than the other in any given

scene.
Method Performance (%) Time (%)
LBVH 80.8 20.3
TRBVH 100 100
ATRBVH 99.7 69.5
ATRBVH* 99.9 78.4

Table 5.2: Average among all scenes for the relative performance and build time of
each method compared to TRBVH.

It is important to notice that when averaging the results among all scenes, even

5.2. Ray Tracer Analysis 35

though TRBVH considers all possible treelet topologies, by greedily choosing one
treelet structure, ATRBVH* manages to achieve virtually the same ray tracing per-
formance. This reinforces the capability of agglomerative bottom-up build methods

to produce high quality trees.

Welsh Dragon
(2.2M)

Dragon (870K) Buddha (1.1M)

Babylonian
(499K)

Conference
(282K)

<
o)
&)
>
c
c
S
o
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
[LBVH [Tree traversal [] Treelet formation

[Initial distance matrix [[] Treelet optimization [] Tree collapsing

Figure 5.1: Percentage of time spent on each step of ATRBVH for six test scenes.
These results were obtained by using a treelet size of 9 and a number of iterations of
2.

Figure 5.1 shows a breakdown of the total time required to construct BVHs using

ATRBVH for six test scenes. The code for all steps but the initial distance matrix

5.2. Ray Tracer Analysis 36

construction and treelet optimization is the same as the one used for TRBVH in our

tests.

Chapter 6

Conclusions and Future Work

During the course of this research, we investigated the effect that acceleration struc-
tures have in ray tracing performance. In particular, we focused on different techniques
for constructing and optimizing BVHs on GPU. We realized that the main challenge
in generating the optimal structure is to maintain a balance between quality and con-
struction speed, and that the scale moves one way or another, depending on the kind
of application that will use those structures.

Our contribution is ATRBVH, a method for optimizing existing BVHs which ex-
tends the current state-of-the-art in GPU BVH optimization, TRBVH. Instead of
considering all possible node combinations when restructuring a treelet, our method
makes greedy choices through agglomerative clustering. It can be efficiently imple-
mented for the NVIDIA Kepler architecture using CUDA and is able to construct a
high-quality tree from the ground up in a matter of milliseconds.

We have shown that our method produces structures that provide virtually the
same ray tracing performance as TRBVH, while spending about 30% less time and
requiring just a fraction of its temporary memory to do so. It is our understanding
that any application that currently uses TRBVH can benefit from our algorithm.
We have also made our implementation of both TRBVH and ATRBVH available as
open-source, so other authors can easily compare against them.

For future work, we intend to investigate how treelet sizes greater than 32 affect

the quality of produced BVHs. Another possibility would be to dynamically adjust

37

38

the treelet size used, provided that we can estimate how much the SAH cost can be
reduced by adding a node to a treelet prior to restructuring it. It also remains to
be seen how our method behaves when triangle splitting is used and how to adapt
it to handle animated scenes. If the process of committing a set of modifications to
a treelet could be performed atomically, the tree would be consistent at all points
during the optimization, and the effect of setting a time budget and only stopping the
optimization after that time has run out could be investigated. Lastly, a more thor-
ough analysis of the scenes used could be performed to identify which characteristics

affect the optimization, such as vertex degree and triangle sizes.

Bibliography

1]

[10]

T. Aila, T. Karras, and S. Laine. On quality metrics of bounding volume hi-
erarchies. In Proceedings of the High-Performance Graphics Conference, pages
101-107, Anaheim, California, USA, 2013. ACM.

T. Aila and S. Laine. Understanding the efficiency of ray traversal on GPUs. In
Proceedings of the High-Performance Graphics Conference, pages 145-149, New
Orleans, Louisiana, USA, 2009. ACM.

T. Aila, S. Laine, and T. Karras. Understanding the efficiency of ray traversal on
GPUs — Kepler and Fermi addendum. NVIDIA Technical Report NVR-2012-02,
NVIDIA Corporation, June 2012.

J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. In
Proceedings of Eurographics, pages 3-10, 1987.

C. Apetrei. Fast and simple agglomerative LBVH construction. In Computer
Graphics and Visual Computing. The Eurographics Association, 2014.

A. Appel. Some techniques for shading machine renderings of solids. In Proceed-
ings of the Spring Joint Computer Conference, pages 37-45, Atlantic City, New
Jersey, USA, 1968. ACM.

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509-517, Sept. 1975.

J. Bittner, M. Hapala, and V. Havran. Fast insertion-based optimization of
bounding volume hierarchies. Computer Graphics Forum, 32(1):85-100, Feb.
2013.

J. Bittner, M. Hapala, and V. Havran. Incremental BVH construction for ray
tracing. Computers & Graphics, 47:135 — 144, Apr. 2015.

B. Chang, W. Seo, and I. Thm. On the efficient implementation of a real-time
kd-tree construction algorithm. In GPU Computing and Applications, pages 207—
219. Springer Singapore, 2015.

39

BIBLIOGRAPHY 40

[11]

[12]

[13]

[21]

[22]

[23]

B. Choi, B. Chang, and I. Ihm. Improving memory space efficiency of kd-tree for
real-time ray tracing. Computer Graphics Forum, 32(7):335-344, 2013.

R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. Proceedings of
the 11th Annual Conference on Computer Graphics and Interactive Techniques,
18(3):137-145, Jan. 1984.

L. R. Domingues and H. Pedrini. Bounding volume hierarchy optimiza-
tion through agglomerative treelet restructuring. In Proceedings of the High-
Performance Graphics Conference, Los Angeles, California, USA, 2015. ACM.

K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster HLBVH with
work queues. In Proceedings of the High-Performance Graphics Conference, pages
59-64, Vancouver, British Columbia, Canada, 2011. ACM.

A. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics
and Applications, 4(10):15-24, Oct 1984.

J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray
tracing. IEEE Computer Graphics and Applications, 7(5):14-20, May 1987.

Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via
approximate agglomerative clustering. In Proceedings of the High-Performance
Graphics Conference, pages 81-88, Anaheim, California, USA, 2013. ACM.

J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallek. Realtime ray tracing on
GPU with BVH-based packet traversal. In Proceedings of the IEEE Symposium
on Interactive Ray Tracing, pages 113-118. IEEE Computer Society, 2007.

M. Hapala and V. Havran. Review: Kd-tree traversal algorithms for ray tracing.
Computer Graphics Forum, 30(1):199-213, 2011.

V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Department of Com-
puter Science and Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague, November 2000.

V. Havran, R. Herzog, and H.-P. Seidel. On the fast construction of spatial
hierarchies for ray tracing. In Proceedings of the IEEE Symposium on Interactive
Ray Tracing, pages 71-80. IEEE Computer Society, Sept. 2006.

T. Ize, I. Wald, and S. Parker. Ray tracing with the BSP tree. In Proceedings of
the IEEE Symposium on Interactive Ray Tracing, pages 159-166, Aug 2008.

H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A. K. Peters,
Ltd., 2001.

BIBLIOGRAPHY 41

[24]

[25]

[26]

28]

[29]

[30]

[31]

T. Karras. Maximizing parallelism in the construction of BVHs, octrees, and
k-d trees. In Proceedings of the High-Performance Graphics Conference, pages
33-37, Paris, France, 2012. Eurographics Association.

T. Karras and T. Aila. Fast parallel construction of high-quality bounding volume

hierarchies. In Proceedings of the High-Performance Graphics Conference, pages
89-99, Anaheim, California, USA, 2013. ACM.

T. Karras and T. Aila. Agglomerative treelet restructuring for bounding volume
hierarchies. U.S. Patent Applications Publication No. US20140365529 A1, filed
10/28/2013, 2014.

T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. In Proceedings of
the 13th Annual Conference on Computer Graphics and Interactive Techniques,
pages 269-278. ACM, 1986.

A. Kensler. Tree rotations for improving bounding volume hierarchies. In Pro-
ceedings of the IEEE Symposium on Interactive Ray Tracing, pages 73-76. IEEE
Computer Society, Aug. 2008.

E. P. Lafortune and Y. D. Willems. Bi-directional path tracing. In H. P. Santo,
editor, Proceedings of Third International Conference on Computational Graphics
and Visualization Techniques, pages 145-153, 1993.

C. Lauterbach, M. Garland, S. Sengupta, D. P. Luebke, and D. Manocha. Fast
BVH construction on GPUs. Computer Graphics Forum, 28(2):375-384, Apr.
2009.

D. J. MacDonald and K. S. Booth. Heuristics for ray tracing using space sub-
division. The Visual Computer: International Journal of Computer Graphics,
6(3):153-166, May 1990.

NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler
GK110/210. Technical report, 2014.

NVIDIA. CUDA C Best Practices Guide. http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/, 2015. [Online; accessed 20-April-2015].

NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/, 2015. [Online; accessed 20-April-2015].

J. Pantaleoni and D. Luebke. HLBVH: Hierarchical LBVH construction for real-
time ray tracing of dynamic geometry. In Proceedings of the High-Performance
Graphics Conference, pages 87-95, Saarbrucken, Germany, 2010. Eurographics
Association.

BIBLIOGRAPHY 42

[36]

[43]

[44]

[45]

[46]

[47]

S. M. Rubin and T. Whitted. A 3-dimensional representation for fast rendering
of complex scenes. Proceedings of the Seventh Annual Conference on Computer
Graphics and Interactive Techniques, 14(3):110-116, July 1980.

A. Santos, J. Teixeira, T. Farias, V. Teichrieb, and J. Kelner. Understanding
the efficiency of kd-tree ray-traversal techniques over a GPGPU architecture.
International Journal of Parallel Programming, 40(3):331-352, 2012.

M. Stich, H. Friedrich, and A. Dietrich. Spatial splits in bounding volume hierar-
chies. In Proceedings of the High-Performance Graphics Conference, pages 713,
New Orleans, Louisiana, USA, 2009. ACM.

E. Veach and L. J. Guibas. Metropolis light transport. In Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Techniques, pages 65—

76. ACM, 1997.

M. Vinkler, V. Havran, and J. Bittner. Bounding volume hierarchies versus
kd-trees on contemporary many-core architectures. In Proceedings of the 30th
Spring Conference on Computer Graphics, pages 29-36, Smolenice, Slovakia,
2014. ACM.

[. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Computer Graphics Group, Saarland University, 2004.

[. Wald. On fast construction of SAH-based bounding volume hierarchies. In
Proceedings of the IEEE Symposium on Interactive Ray Tracing, pages 33—40.
IEEE Computer Society, 2007.

I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic
bounding volume hierarchies. ACM Transaction on Graphics, 26(1):1-18, Jan.
2007.

I. Wald, T. Ize, and S. G. Parker. Fast, parallel, and asynchronous construction
of BVHs for ray tracing animated scenes. Computers € Graphics, 32(1):3 — 13,
Feb. 2008.

B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomerative clustering
for rendering. In Proceedings of the IEEE Symposium on Interactive Ray Tracing,
pages 81-86. IEEE Computer Society, Aug 2008.

H. Weghorst, G. Hooper, and D. P. Greenberg. Improved computational methods
for ray tracing. ACM Transactions on Graphics, 3(1):52-69, Jan. 1984.

T. Whitted. An improved illumination model for shaded display. Communica-
tions of the ACM, 23(6):343-349, June 1980.

BIBLIOGRAPHY 43

[48] Z. Wu, F. Zhao, and X. Liu. SAH KD-tree construction on GPU. In Proceedings
of the High-Performance Graphics Conference, pages 71-78, Vancouver, British
Columbia, Canada, 2011. ACM.

Appendix A

Other Approaches

In this appendix, we describe two other approaches to optimizing BVHs on GPU that
were tested during this research. Although both methods managed to improve the
quality of trees created using LBVH, their results were not good enough to justify

their usage over TRBVH.

A.1 Tree Rotation

Our first attempt at optimizing BVHs was to extend Kenler’'s work on tree rota-
tions [28] by implementing it on GPU using CUDA. In his paper, Kensler proposed
performing operations similar to the tree rotations used to balance red-black trees
in order to minimize the SAH cost of a tree. By recursively traversing the tree, his
method checks which is the best of four possible rotations that can be applied to that
node in order to minimize its local cost.

Instead of traversing the tree recursively, we opted to use the bottom-up traversal
algorithm proposed by Karras [24]. Each thread would be responsible for checking one
node to determine its best rotation, and then applying the necessary modifications.
Since by using this bottom-up traversal one node is only processed after both its
children, it is guaranteed that no race conditions will occur.

Simply iterating through the tree and performing rotation on its nodes is not
enough to produce trees that have quality competitive with TRBVH. Kensler achieved

his best results by using Simulated Annealing optimization to avoid local minima.

44

A.2. Divisive Treelet Restructuring 45

This technique, however, requires a large number of iterations to converge, and as
such is not ideal for the fast optimization of trees that was our goal.

In order to try to minimize the number of iterations required by Simulated An-
nealing, we experimented with a simpler algorithm to introduce perturbations during
the search for the optimal tree: when evaluating a node, instead of always greedily ex-
ecuting the rotation that minimizes the local SAH cost, we introduced a small chance
that a rotation would be chosen at random for that node. This modification was
sufficient to cause the SAH cost to decrease significantly when compared to greedly
choosing the best rotation, however it still required a large number of iterations to

converge, resulting in large optimization times.

A.1.1 Parameters

During the evaluation of each node, the probability of choosing a random rotation
instead of the one that minimized the local SAH cost was 0.5%. To produce the

results presented here, the algorithm was repeated for a total of 1000 iterations.

A.2 Divisive Treelet Restructuring

Karras and Aila [25] indicated in the future work section of their paper that it would
be possible to use approximate methods to restructure larger treelets than those used
in TRBVH, in order to perform more extensive modifications to treelets. Inspired
by this idea, we implemented a version of their method that uses a greedy top-down
optimization instead of extensive searching through all possible node combinations to

determine the best treelet structure.

A.2. Divisive Treelet Restructuring

Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 41.73 10.61 127.15 11 65.27

TRBVH 63.93 56.75 77.89 73 100.00

Rotation 60.33 2755.25 83.90 29 94.37

Arabic (412K) DTRBVH 48.07 191.09 100.88 115 75.19
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 110.15 10.01 41.90 9 91.66

TRBVH 120.17 43.87 35.51 62 100.00

Rotation 116.12 2122.67 37.55 25 96.63

Armadillo (346K) DTRBVH 116.56 144.20 38.41 98 97.00
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 55.83 12.19 104.23 13 60.20

TRBVH 92.74 69.21 55.13 90 100.00

Rotation 83.39 3379.41 62.07 36 89.92

Babylonian (499K) DTRBVH 63.33 242.66 83.07 141 68.29
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 75.31 23.53 89.14 29 85.11

TRBVH 88.49 134.64 70.38 196 100.00

Rotation 83.80 6996.25 74.88 79 94.70

Buddha (1.1M) DTRBVH 74.57 510.70 87.70 307 84.27
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 169.19 3.79 44.89 2 89.09

TRBVH 189.90 12.42 39.13 13 100.00

Rotation 183.03 476.03 40.94 5 96.38

Bunny (69K) DTRBVH 170.46 37.23 43.94 20 89.76
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 98.14 8.59 65.53 8 71.45

TRBVH 137.36 39.25 39.53 51 100.00

Rotation 128.97 1870.10 43.39 20 93.89

DTRBVH 123.18 118.02 47.47 80 89.68
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 84.13 19.64 75.50 23 89.19

TRBVH 94.33 105.61 62.04 157 100.00

Rotation 88.71 5553.61 65.38 63 94.04

Dragon (870K) DTRBVH 87.15 386.72 70.41 246 92.39
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 106.57 6.40 38.72 5 77.23

TRBVH 137.99 27.11 33.21 31 100.00

Rotation 129.95 1204.35 34.14 13 94.17

Fairy (174K) DTRBVH 121.49 83.87 34.85 49 88.04

A.2. Divisive Treelet Restructuring

47

Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 15.33 65.71 541.90 77 92.41

TRBVH 16.59 374.22 478.08 520 100.00

Rotation 15.93 17933.43 491.60 209 96.02

Hairball (2.9M) DTRBVH 15.47 1288.38 514.86 813 93.25
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 53.31 10.58 121.79 10 61.23

TRBVH 87.06 55.47 61.19 67 100.00

Rotation 81.13 2652.58 66.93 27 93.19

Ttalian (368K) DTRBVH 58.52 192.29 93.81 106 67.22
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 99.19 4.19 66.79 2 80.22

TRBVH 123.65 14.77 51.85 14 100.00

Rotation 115.09 620.31 55.10 6 93.08

Sibenik (80K) DTRBVH 107.35 44.10 60.49 23 86.82
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 113.43 14.70 37.00 17 91.59

TRBVH 123.84 79.89 30.72 118 100.00

Rotation 117.42 4000.86 32.69 47 94.82

DTRBVH 115.69 273.73 34.71 185 93.42
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 56.17 7.91 114.42 7 69.23

TRBVH 81.13 37.86 75.75 50 100.00

Rotation 70.11 1808.60 79.31 20 86.42

DTRBVH 61.45 122.70 88.56 79 75.74
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 9.43 95.29 308.61 125 86.91

TRBVH 10.85 583.55 248.99 844 100.00

Rotation 10.68 30494.63 258.62 339 98.43

DTRBVH 9.37 2617.31 298.66 1320 86.36
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

LBVH 123.45 36.56 91.41 47 93.03

TRBVH 132.70 213.27 78.99 319 100.00

Rotation 127.45 10473.06 82.81 128 96.04

Turbine Blade (1.8M) DTRBVH 126.48 671.29 84.63 498 95.31
Method Mrays/s Time (ms) SAH Memory (MB) Relative (%)

Yy

LBVH 58.59 40.92 90.11 59 89.23

TRBVH 65.66 256.53 73.51 399 100.00

Rotation 62.90 13263.17 77.16 160 95.80

Welsh Dragon (2.2M) DTRBVH 62.79 804.13 7.7 624 95.63

Table A.1: Test results for DTRBVH and Tree Rotation.

The Relative column ex-

presses the performance of each method relative to TRBVH. The reported times for
all methods include the time required to create the original tree, optimize it when

applicable and collapse the structure.

A.3. Results 48

To optimize the treelets, we used the binned SAH strategy, which is commonly
used to construct BVHs on CPU [42]. It consists in discretizing the space into bins
and iteratively distributing the tree nodes among those bins. After all nodes have
been assigned, the bounds of the bins are used as split planes, and the split that
minimizes the tree SAH cost is chosen. The algorithm is recursively repeated for each
of the two subsets formed that have at least two nodes.

Another strategy that was tested to restructure treelets was to always split trian-
gles in the largest dimension of their bounding boxes. The triangles would be sorted
along that dimension using insertion sort, and the boundary between each triangle
would be used as a potential split plane.

Although this method was able to improve the quality of the processed tree, it
was not capable of reaching results comparable with TRBVH, and the required opti-
mization time was much higher. We attribute the high optimization time to the lack
of sufficient work to keep the GPU busy. This happens mostly because this heuristic
in inherently sequential in nature, with each step only having a small amount of work

that can be parallelized.

A.2.1 Parameters

We used the same parameters that were used on TRBVH, that is, a treelet size of 7
and a number of iterations of 3. The v value was not updated, resulting in all tree

nodes being evaluated during each iteration.

A.3 Results

The test results are summarized in Table A.1. Although both methods managed
to improve the quality of trees constructed using LBVH, the performance increase
was consistently lower than that produced by TRBVH. Tree Rotation in particular
obtained results that were close to those of TRBVH in quality, but never superior.
Divisive Treelet Restructuring Bounding Volume Hierarchy (DTRBVH), on the other

hand, only increased the quality by a modest amount. The memory consumption of

A.3. Results 49

DTRBVH was also quite higher than that of TRBVH, making it unpractical for larger
scenes.

Optimizing BVHs using these algorithms took significantly longer than doing so
using TRBVH. Due to the many iterations that are necessary for it to converge,
Tree Rotation requires seconds of optimization, which is completely unacceptable
considering that it runs on a GPU. It is important to notice that neither method was
fully optimized for speed, since the quality of trees produced would not justify using
them anyway. Even though the speed of these methods can be improved by a more
careful optimization, we believe that those improvements would still not be enough

to make them competitive with the alternatives.

	Abstract
	Resumo
	Acknowledgements
	Introduction
	Problem Description and Motivation
	Objectives and Contributions
	Text Structure

	Related Work
	Ray Tracing
	Acceleration Structures
	Kd-tree
	Bounding Volume Hierarchy

	BVH Optimization

	CUDA and the Kepler Architecture
	The Kepler Architecture
	CUDA
	Parameters to Optimize
	Division of Work
	Memory Access
	Registers
	Divergence

	ATRBVH
	Agglomerative Treelet Restructuring
	Overview
	Treelet Formation
	Distance Metric
	Merge Clusters
	Treelet Reconstruction
	Post-processing
	Parameters

	Implementation and Optimizations
	Tree Traversal
	Treelet Restructuring
	Distance Matrix
	Global Memory Usage

	Results
	Parameter Choice
	Ray Tracer Analysis

	Conclusions and Future Work
	Bibliography
	Other Approaches
	Tree Rotation
	Parameters

	Divisive Treelet Restructuring
	Parameters

	Results

