
Leonardo Rodrigo Domingues

GPU Optimization of Bounding Volume

Hierarchies for Ray Tracing

Otimização em GPU de Bounding Volume

Hierarchies para Ray Tracing

CAMPINAS

2015

University of Campinas

Institute of Computing

Universidade Estadual de Campinas

Instituto de Computação

Leonardo Rodrigo Domingues

GPU Optimization of Bounding Volume Hierarchies for Ray

Tracing

Supervisor:

Orientador:
Prof. Dr. Helio Pedrini

Otimização em GPU de Bounding Volume

Hierarchies para Ray Tracing

MSc Dissertation presented to the Graduate

Program of the Institute of Computing of the

University of Campinas to obtain a Mestre de-

gree in Computer Science.

Dissertação de Mestrado apresentada ao Pro-

grama de Pós-Graduação em Ciência da Com-

putação do Instituto de Computação da Uni-

versidade Estadual de Campinas para ob-

tenção do t́ıtulo de Mestre em Ciência da

Computação.

This volume corresponds to the final

version of the Dissertation defended

by Leonardo Rodrigo Domingues, under the

supervision of Prof. Dr. Helio Pedrini.

Este exemplar corresponde à versão

final da Dissertação defendida por Le-

onardo Rodrigo Domingues, sob orientação de

Prof. Dr. Helio Pedrini.

Supervisor’s signature / Assinatura do Orientador

CAMPINAS

2015

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Maria Fabiana Bezerra Muller - CRB 8/6162

Domingues, Leonardo Rodrigo, 1985-
D713g DomGPU optimization of bounding volume hierarchies for ray tracing / Leonardo

Rodrigo Domingues. – Campinas, SP : [s.n.], 2015.

DomOrientador: Hélio Pedrini.
DomDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de
Computação.

Dom1. Computação gráfica. 2. Algoritmos Ray tracing. 3. Estruturas de dados
(Computação). I. Pedrini, Hélio,1963-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Otimização em GPU de bounding volume hierarchies para ray tracing
Palavras-chave em inglês:
Computer graphics
Ray tracing algorithms
Data structures (Computer science)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Hélio Pedrini [Orientador]
Esteban Walter Gonzalez Clua
Jorge Stolfi
Data de defesa: 03-07-2015
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

GPU Optimization of Bounding Volume

Hierarchies for Ray Tracing

Leonardo Rodrigo Domingues

July 03, 2015

Examiner Board/Banca Examinadora:

• Prof. Dr. Helio Pedrini (Supervisor/Orientador)

• Prof. Dr. Esteban Walter Gonzalez Clua

Instituto de Computação - UFF

• Prof. Dr. Jorge Stolfi

Instituto de Computação - UNICAMP

• Prof. Dr. David Menotti

Departamento de Computação - UFOP (Suplente)

• Prof. Dr. André Santanchè

Instituto de Computação - UNICAMP (Suplente)

Abstract

Ray tracing methods are well known for producing very realistic images at the ex-

pense of a high computational effort. Most of the cost associated with those methods

comes from finding the intersection between the massive number of rays that need to

be traced and the scene geometry. Special data structures were proposed to speed up

those calculations by indexing and organizing the geometry so that only a subset of

it has to be effectively checked for intersections. One such construct is the Bounding

Volume Hierarchy (BVH), which is a tree-like structure used to group 3D objects

hierarchically. Recently, a significant amount of effort has been put into accelerat-

ing the construction of those structures and increasing their quality. We present a

new method for building high-quality BVHs on manycore systems. Our method is an

extension of the current state-of-the-art on GPU BVH construction, Treelet Restruc-

turing Bounding Volume Hierarchy (TRBVH), and consists of optimizing an already

existing tree by rearranging subsets of its nodes using an agglomerative clustering

approach. We implemented our solution for the NVIDIA Kepler architecture using

CUDA and tested it on sixteen distinct scenes that are commonly used to evaluate the

performance of acceleration structures. We show that our implementation is capable

of producing trees whose quality is equivalent to the ones generated by TRBVH for

those scenes, while being about 30% faster to do so.

Resumo

Métodos de Ray Tracing são conhecidos por produzir imagens extremamente realistas

ao custo de um alto esforço computacional. Pouco após terem surgido, percebeu-se

que a maior parte do custo associado a estes métodos está relacionada a encontrar a

intersecção entre o grande número de raios que precisam ser traçados e a geometria da

cena. Estruturas de dados especiais que indexam e organizam a geometria foram pro-

postas para acelerar estes cálculos, de forma que apenas um subconjunto da geometria

precise ser verificado para encontrar as intersecções. Dentre elas, podemos destacar

as Bounding Volume Hierarchies (BVH), que são estruturas usadas para agrupar ob-

jetos 3D hierarquicamente. Recentemente, uma grande quantidade de esforços foi

aplicada para acelerar a construção destas estruturas e aumentar sua qualidade. Este

trabalho apresenta um novo método para a construção de BVHs de alta qualidade em

sistemas manycore. O método em questão é uma extensão do atual estado da arte

na construção de BVHs em GPU, Treelet Restructuring Bounding Volume Hierarchy

(TRBVH), e consiste em otimizar uma árvore já existente reorganizando subcon-

juntos de seus nós por meio de uma abordagem de agrupamento aglomerativo. A

implementação deste método foi feita para a arquitetura Kepler utilizando CUDA e

foi testada em dezesseis cenas que são comumente usadas para avaliar o desempenho

de estruturas aceleradoras. É demonstrado que esta implementação é capaz de pro-

duzir árvores com qualidade comparável às geradas utilizando TRBVH para aquelas

cenas, além de ser 30% mais rápida.

Acknowledgements

First of all, I would like to thank my parents, for always encouraging me to keep

going during difficult times. I also want to express my gratitude to my advisor, Helio

Pedrini, for giving me the opportunity to finish my research and leading me through

the right paths. My gratitude extends to my friends, for all the encouragement and

letting me know early on how difficult this road would be. I thank the Eldorado

Research Institute as well, for granting me time to dedicate to my studies.

Lastly, I would also like to thank Timo Aila, Samuli Laine, and Tero Karras for

making their GPU ray tracing framework available, as well as the Stanford Univer-

sity Computer Graphics Laboratory for the scenes Armadillo, Buddha, Bunny and

Dragon, the Stereolithography Archive at Clemson University for Skeleton Hand, the

Georgia Institute of Technology for Turbine Blade, Anat Grynberg and Greg Ward for

Conference, Ingo Wald for Fairy Forest, Samuli Laine for Hairball, Marko Dabrovic for

Sibenik, Frank Meinl for Sponza, Jonathan Good for Arabic, Babylonian and Italian,

Hameed Nawaz for Time Machine and Bangor University, UK for Welsh Dragon.

Contents

Abstract 6

Resumo 7

Acknowledgements 8

1 Introduction 1

1.1 Problem Description and Motivation 2

1.2 Objectives and Contributions . 3

1.3 Text Structure . 4

2 Related Work 5

2.1 Ray Tracing . 5

2.2 Acceleration Structures . 7

2.2.1 Kd-tree . 8

2.2.2 Bounding Volume Hierarchy . 8

2.3 BVH Optimization . 10

3 CUDA and the Kepler Architecture 13

3.1 The Kepler Architecture . 13

3.2 CUDA . 16

3.3 Parameters to Optimize . 17

3.3.1 Division of Work . 17

3.3.2 Memory Access . 18

3.3.3 Registers . 18

3.3.4 Divergence . 19

4 ATRBVH 20

4.1 Agglomerative Treelet Restructuring 20

4.1.1 Overview . 20

4.1.2 Treelet Formation . 21

4.1.3 Distance Metric . 22

4.1.4 Merge Clusters . 22

4.1.5 Treelet Reconstruction . 23

4.1.6 Post-processing . 23

4.1.7 Parameters . 24

4.2 Implementation and Optimizations . 24

4.2.1 Tree Traversal . 25

4.2.2 Treelet Restructuring . 25

4.2.3 Distance Matrix . 27

4.2.4 Global Memory Usage . 28

5 Results 30

5.1 Parameter Choice . 31

5.2 Ray Tracer Analysis . 34

6 Conclusions and Future Work 37

Bibliography 39

A Other Approaches 44

A.1 Tree Rotation . 44

A.1.1 Parameters . 45

A.2 Divisive Treelet Restructuring . 45

A.2.1 Parameters . 48

A.3 Results . 48

List of Tables

5.1 Test results for ATRBVH . 33

5.2 Results averaged over all test scenes . 34

A.1 Test results for other approaches . 47

List of Figures

2.1 Rendering a scene with Ray Casting 6

2.2 Rendering a scene with Recursive Ray Tracing 7

2.3 BVH for small data set of triangles . 9

3.1 Kepler architecture SMX . 14

3.2 Kepler architecture overview . 15

4.1 Agglomerative treelet restructuring process for a treelet formed from

six leaves . 21

4.2 Updating the distance matrix . 27

5.1 Percentage of time spent on each step of ATRBVH for six test scenes . 35

Acronyms

AoS Array of Structures. 18

ATRBVH Agglomerative Treelet Restructuring Bounding Volume Hierarchy. 34, 35, 37

BSP Binary Space Partitioning. 8

BVH Bounding Volume Hierarchy. vi, 1–3, 8–12, 20, 23–25, 30, 31, 34, 35, 37, 44, 49

CPU Central Processing Unit. 2, 10, 11

CUDA Compute Unified Device Architecture. 13, 14, 16, 24, 25, 37, 44

DRAM Dynamic Random-Access Memory. 14

DTRBVH Divisive Treelet Restructuring Bounding Volume Hierarchy. 48, 49

GPGPU General Purpose Computing on Graphics Processing Units. 13

GPU Graphics Processing Unit. 2, 3, 8, 10, 11, 13, 14, 16–19, 31, 34, 37, 44, 48, 49

HPC High Performance Computing. 13

ILP Instruction-Level Parallelism. 19

LBVH Linear Bounding Volume Hierarchy. 10, 30, 34, 44, 48

LRU Least Recently Used. 14

SAH Surface Area Heuristic. 2, 3, 9–12, 20–24, 26, 27, 29–31, 34, 38, 44, 45, 48

SIMT Single-Instruction, Multiple Thread. 2

SM Streaming Multiprocessors. 13, 16, 19

SoA Structure of Arrays. 18

TRBVH Treelet Restructuring Bounding Volume Hierarchy. vi, 30, 31, 34–37, 44, 48, 49

WLP Warp-Level Parallelism. 17

Chapter 1

Introduction

Ray tracing is a rendering technique that was originated in the sixties and is still used

today to produce realistic images from computer models [6, 12, 47]. It consists in

simulating the complex paths that rays of light take while traveling from an object to

its observers eyes. A large number of rendering methods have evolved from ray tracing

in order to improve the fidelity of images produced and enable the representation of

phenomena such as depth of field and motion blur. Nowadays, ray tracing variations

are widely used in fields such as architecture, cinema and engineering.

Rendering a high quality image through ray tracing is often a time demanding

process, which requires a high computational effort. Most of that effort is redirected

toward calculating the intersection between rays and the scene triangles. In order

to accelerate those calculations, special data structures are employed to organize the

geometry in such a way that, for each ray, only a subset of the triangles has to be

tested.

The acceleration of ray tracing is a topic that has recently received sizable atten-

tion, and many different data structures have been applied for that purpose. Among

those, BVHs are currently the most used, in great part due to being better at han-

dling animated scenes and having a low memory footprint [18, 43]. Vinkler et al. [40]

recently published a study comparing the ray tracing performance of BVHs and kd-

trees on manycore architectures, showing that the former outperformed the latter for

the majority of the tested scenes, with the exception of those with very high triangle

1

1.1. Problem Description and Motivation 2

counts and significant levels of occlusion.

1.1 Problem Description and Motivation

In order to optimize a ray tracing application, it is important to reduce the construc-

tion time of the acceleration structures, especially for interactive applications and

rendering animated scenes, since those structures must be rebuilt every frame due to

changes in the geometry. Graphics Processing Units (GPUs) can be extremely helpful

toward that end, since they are accessible and affordable high performance computing

devices. In this research, we focused on using BVHs as our acceleration structure.

Building a high quality BVH is a computationally expensive process, which until

recently has been performed exclusively on Central Processing Units (CPUs). Most

algorithms that produce those structures work by processing the data in either a top-

down [31] or a bottom-up order [45], and would take a considerable amount of time to

execute. When GPUs began being employed to build BVHs, alternative algorithms

were proposed so as to make better usage of the Single-Instruction, Multiple Thread

(SIMT) architecture. Some of these algorithms could generate trees much faster

than the traditional approaches, however, at the cost of producing structures with

an inferior quality [14, 24, 30, 35].

BVH quality also plays an important part in the rendering time of ray tracing

applications, since higher quality structures are more efficient in reducing the number

of ray-triangle intersections that are required to render an image, thus speeding the

process up. The quality of an acceleration structure is directly measured by the

amount of rays per second that can be traced using it. However definitive, that

value can only be obtained after the structure has already been built and is very

susceptible to changes in the hardware used. Goldsmith and Salmon [16] and later

MacDonald and Booth [31] introduced the idea that the quality of a structure can

be derived from the number of intersections that are required to trace an arbitrary

non-terminating ray through it. They also demonstrated how to calculate an estimate

to that value, which they called Surface Area Heuristic (SAH) cost. It is important to

notice that although that value has a high correlation with the performance of BVHs

1.2. Objectives and Contributions 3

when comparing trees built by using the same method with different parameter values,

the results are not always consistent when comparing structures constructed through

different methods [1].

The challenges involved in optimizing BVHs revolve around finding a balance

between construction speed and structure quality. If we were to calculate node com-

binations in order to form all possible hierarchies for a given set of triangles, we

could find the structure with the highest quality achievable. However, finding such a

tree would require an enormous amount of time. By approximating the optimization

stage, we can produce BVHs that still have a good quality but are faster to produce,

so that when we combine the time required to construct the tree and trace the rays,

the overall performance if maximized.

1.2 Objectives and Contributions

Karras and Aila [25] proposed a method for constructing high quality BVHs on GPU

that is fast enough to be used in real time applications while achieving ray tracing

performance competitive with the most time demanding algorithms. Their solution

consists in optimizing an existing tree by looking at treelets, small local subsets of

tree nodes, and rearranging their nodes in order to minimize the overall tree SAH

cost. Since execution time and memory requirements grow rapidly with treelet sizes,

only small treelets can be viably used.

Our objective in this research is to reduce build times for high quality BVHs even

further. To that purpose, we expand on Karras and Aila’s original work by proposing

a new method for rearranging treelet nodes in a greedy, bottom-up fashion, enabling

the usage of larger treelet sizes while keeping construction times competitive. In

fact, by using treelet sizes slightly larger than the original method, we were able to

produce BVHs with equivalent quality in about 30% less time. The quality of the

generated trees can be increased by using larger treelets, at the expense of higher

construction times. The obtained results also show that, even when using the same

treelet size, the dynamic programming solution employed originally to find the optimal

treelet structure can be replaced by an approximated agglomerative search without a

1.3. Text Structure 4

significant reduction in tree quality.

1.3 Text Structure

The remainder of this text is organized as follows: Chapter 2 provides more de-

tail about ray tracing and reviews previous approaches used to create and optimize

bounding volume hierarchies, Chapter 3 presents a brief overview of CUDA and the

Kepler architecture, Chapter 4 describes our tree construction algorithm and details

our implementation and optimizations that were performed, Chapter 5 displays and

discusses the results of our tests and Chapter 6 presents conclusions and lists some

possibilities for future work. Appendix A lists other approaches that were tried during

the course of this research.

Chapter 2

Related Work

This chapter provides a brief overview of the publications that led up to the devel-

opment of this research. Section 2.1 reviews commonly used rendering methods that

can be dramatically accelerated by optimizing the process of tracing rays through

a scene. Section 2.2 discusses data structures that can be employed to accelerate

ray tracing. Section 2.3 lists previous methods that were used to optimize Bounding

Volume Hierarchies.

2.1 Ray Tracing

In 1968, Appel [6] proposed a technique for drawing and shading vivid two-dimensional

images from computer models of 3D objects. His method, which would later be known

as Ray Casting, consists in calculating the trajectory of several light rays emitted

from the scene viewpoint in the direction of the 3D objects. After finding the range

of coordinates for the discrete projection plane that must be rendered, the algorithm

generates rays coming from the observer’s position and going through each of those

coordinates. When one of those rays intersects with one of the objects being rendered,

another check is necessary to determine if the collision point is visible from the light

source; if that is the case, the corresponding plane coordinate receives a light shade,

and if not, it will not be illuminated. By using this method, Appel was able to

generate shaded images that had clear shadow boundaries visible. The Ray Casting

process is illustrated in Figure 2.1.

5

2.2. Acceleration Structures 8

to be very high, rendering complex scenes in a reasonable time is often not possible

using this approach.

In order to reduce the number of ray-primitive intersections, special data structures

can be used to index the scene geometry and limit the set of primitives that have to

be checked for each given ray. These structures can be classified into two groups as

to whether they organize the scene geometry in a hierarchy or subdivide the scene

space [27, 41].

Some commonly used acceleration structures are Bounding Volume Hierar-

chies [36], Kd-trees [7], Octrees [15] and Grids [4].

2.2.1 Kd-tree

Kd-trees [7] are a generalization of Binary Space Partitioning (BSP) trees [20]. In

these structures, data is organized by subsequently dividing the search space into two

using axis-aligned hyperplanes. Because of that property, kd-trees can be used as

binary search trees to locate objects in the scene and efficient divide-and-conquer and

branch-and-bound traversal algorithms can be implemented for them [22].

In his thesis [20], Havran developed a methodology for comparing the use of differ-

ent acceleration structures in ray tracing. His results showed that, for his set of tests,

kd-trees were the most efficient data structures for organizing the scene geometry.

Even though kd-trees have been replaced by BVHs as the most used acceleration

structure on GPU ray tracers [38], they are still able to achieve good results and new

methods for creating and traversing them are still being researched [10, 11, 19, 37, 48].

For kd-tree traversal algorithms, we redirect readers to the recently published

review by Hapala and Havran [19].

2.2.2 Bounding Volume Hierarchy

A bounding volume hierarchy [36] is a data structure used to group 3D objects hier-

archically. It has the form of a tree structure, where each leaf represents one or more

of the objects being stored and internal nodes represent a grouping of those objects.

Each node holds a conservative bounding volume of all objects that descend from that

2.3. BVH Optimization 10

those for top-down methods, at the expense of longer processing times.

Until a few years ago, acceleration structures would almost exclusively be built on

CPUs and, as a result, the algorithms used were mostly serial. When GPUs began

being used to accelerate ray tracing, new algorithms were developed for taking advan-

tage of the massive level of parallelism available at manycore processors. Lauterbach

et al. [30] proposed a new method called Linear Bounding Volume Hierarchy (LBVH)

for constructing BVHs in parallel, by first sorting the scene triangles using a space-

filling curve and then recursively splitting that data to create the internal nodes of

tree. Although being able to run extremely fast, the quality of the trees produced

with that method was not on par with that of the structures produced with traditional

approaches.

Pantaleoni and Luebke [35] and Garanzha et al. [14] proposed a new method that

could still run efficiently on GPUs and produce trees of higher quality than LBVH

by using a hierarchical grouping of the input data and using the SAH to optimize

the top levels of the structure. Karras [24] improved on LBVH by showing that

the tree construction stage can be completely parallelized by processing all nodes

simultaneously. Apetrei [5] also improved on LBVH by performing both the tree

construction and the bounding box calculation in a single bottom-up traversal.

A BVH can be traversed by checking a ray against the bounding volume of the

BVH root node: if they intersect each other, then the left and right children of that

node are recursively processed. This step is repeated until a leaf node is reached, and

at that time the ray is checked for collisions against each object represented by that

leaf. Aila and Laine [2, 3] identified the gaps between previous acceleration structure

traversal algorithms and the theoretical optimum, and introduced the algorithm which

is the current state-of-the-art for BVH traversal on GPUs.

2.3 BVH Optimization

There are two common approaches for optimizing the SAH cost of a BVH during its

construction stage. The first and most used is to build the tree in a top-down, divisive

manner [31]: at each iteration of the algorithm, a split plane is chosen to create an

2.3. BVH Optimization 11

internal node that divides the triangles into two groups, which are then recursively

divided themselves. The split plane is chosen so as to minimize the SAH cost at

each step. Since finding the best split planes is a very computationally expensive

task, various optimizations have been proposed which provide a trade-off between

construction time and quality by approximating that search [21, 42, 44].

The second approach to constructing a BVH while optimizing its SAH cost is to

perform a bottom-up, agglomerative tree construction [45]. For this method, each

triangle is regarded as a cluster of size one. At each iteration, the pair or clusters

for which a dissimilarity function returns the lowest value is merged; this process is

repeated until all triangles are grouped under a single cluster. Agglomerative algo-

rithms often lead to the construction of trees that perform better than their divisive

counterparts, however, at the expense of longer construction times. Gu et al. [17]

later proposed a method for efficiently building BVHs on multicore CPUs using an

approximate agglomerative approach.

Kensler [28] optimized already existing BVH structures by making local modifi-

cations derived from tree rotation operations to them, which lead to the generation

of trees with very high quality. Bittner et al. [8] proposed another optimization tech-

nique which performed global modifications to an existing tree: by relocating certain

tree nodes, their method is able to produce the current gold standard in tree quality.

Karras and Aila [25] introduced the idea of optimizing existing trees on GPU by

rearranging subsets of their nodes in order to minimize the overall SAH cost. Their

algorithm performs a bottom-up traversal of the tree and, for each internal node that

is encountered, a treelet is formed by using that node as its root. Treelets can be

thought of as small binary trees themselves, containing nodes that are connected in

the original tree. The best topology is then found for each treelet by testing the cost

of all possible rearrangements of its leaves using a dynamic programming algorithm.

Among the methods used to produce BVHs on GPUs, this one generates the highest

quality structures. Karras and Aila [26] also published a patent describing an agglom-

erative approach to restructuring treelets. Our work was developed independently and

without prior knowledge of that patent.

Recently, Bittner et al. [9] proposed a new algorithm for constructing BVHs incre-

2.3. BVH Optimization 12

mentally by sequentially adding new triangles to the existing tree at specific positions

that minimize the global SAH cost. Their method is able to create BVHs with quality

comparable to the commonly used SAH top-down builders.

Stich et al. [38] introduced a new construction algorithm that improves the ray

tracing performance of BVHs, specially for scenes that are not regularly tessellated, by

performing spatial splits in the input geometry. Karras and Aila [25] also used spatial

splits in their method and proposed an approach to performing triangle splitting on

GPUs. In this paper, we do not employ triangle splitting, since our objective is to

focus on the treelet restructuring stage.

Chapter 3

CUDA and the Kepler

Architecture

In this chapter, we introduce readers to General Purpose Computing on Graphics

Processing Units (GPGPU) by presenting an overview of Compute Unified Device

Architecture (CUDA) and the Kepler architecture, which is the base for the NVIDIA

GTX 770 GPU used during our experiments. We focus on the aspects of parallel

programming that were necessary to reach the results presented in this dissertation.

For more information about the Kepler architecture and other possible optimizations,

readers can check the CUDA C Programming Guide [34] and CUDA C Best Practices

Guide [33].

3.1 The Kepler Architecture

GPUs are very complex in nature and have constantly evolved over time to become

faster and more power efficient. The architecture for the iteration of NVIDIA GPUs

used in this research is called Kepler, and it was designed to provide a high double

precision performance for High Performance Computing (HPC) [32].

Modern NVIDIA GPUs consist of a number of Streaming Multiprocessorss (SMs),

which are elaborated structures capable of executing a great volume of tasks in par-

allel. The current generation of SMs, employed in the Kepler architecture, is called

13

3.2. CUDA 16

3.2 CUDA

The CUDA programming model was created to harness the power of GPUs for general

purpose processing and enable the creation of applications that can transparently scale

with an increased number of cores, just as graphics applications do. Differently from

traditional CPU development, when creating applications using CUDA one should

focus on achieving high levels of parallelism instead of executing tasks sequentially as

fast as possible.

CUDA applications are separated into the host part, which runs on CPU, and the

device part being executed on the GPUs. Computer programs that are created using

CUDA and run on GPUs are called kernels. They are commonly written through

a high-level programming API using the C language, although wrappers for several

other languages exist.

Parallelism is achieved in CUDA by dividing the work into small chunks that

are executed by threads. Those threads are organized into blocks, and each block is

assigned to a different SM, where it will be executed. Threads in a block can share

data by using the shared memory that is available to each SM.

The grid configuration, that is, the number of blocks that will be used to run a ker-

nel and the dimension of those blocks, can be determined by the developer. Although

sometimes kernels are developed with a specific hardware in mind and implicitly con-

tain some of that hardware characteristics, most often the grid configuration can be

changed during runtime and set according to the exact board that is being used,

enabling the same program to be optimized for a wide variety of GPUs.

When programming using CUDA, one has access to several different memory types

that must be balanced to reach optimal performance: global memory is the most

abundant and is accessible to all threads, but is also the one with the highest latency;

texture memory is read-only and optimized for a 2D access pattern; constant memory

is read-only and used to store constants and kernel arguments; shared memory can be

used to share data between threads in a block and is almost as fast as using registers,

although very limited in size; local memory is a portion of the global memory to where

registers are spilled; registers are the fastest place to store data, but are limited to

3.3. Parameters to Optimize 17

65536 32-bit registers per SMX.

3.3 Parameters to Optimize

This section presents a number of parameters that have to be balanced to reach

optimal performance. The values listed here are specific for the Kepler architecture,

and may be different in other GPUs.

3.3.1 Division of Work

The amount of threads created for each kernel and how those threads are grouped

are parameters that can be determined during runtime by arguments specified using

a special kernel syntax. The application can configure the block size, that is, the

number of threads that compose each block, and the grid size, which is the total

number of blocks that will be launched.

Block size and grid size are three-dimensional values. Since the SMX handles

warps and not individual threads, the number of threads per block should ideally be

a multiple of 32. Because a block has to be run entirely by one SMX and needs to

share resources with the other blocks that are allocated to that SMX, its maximum

number of threads is limited to 1024.

Each SMX can be responsible for up to 64 warps at any given time. The occupancy

value indicates how many warps each SMX is handling in relation to that maximum

value. In general, the higher the occupancy, the more work a SMX scheduler has

available at each cycle to chose from. Having a high occupancy is important because

it helps hide the latency of instructions, but achieving 100% is not always possible,

seeing that the number of warps that can be allocated in a SMX depends on the

amount of shared memory used by each block and the number of registers used per

thread. The term Warp-Level Parallelism (WLP) refers to the use of multiple warps

in parallel to hide instruction latency.

The objective of tuning these values is guaranteeing that the GPU will have enough

work that can be executed in parallel to keep it as busy as possible.

3.3. Parameters to Optimize 18

3.3.2 Memory Access

Copying memory between the host and the device is one of the operations that incur

the greatest latency in GPU applications. Whenever possible, it is best to implement

all steps of an algorithm on the GPU, so data does not have to be copied back and

forth to the main system memory. Memory allocation also accounts for a significant

percentage of execution times, and should be avoided as often as possible with mea-

sures such as allocating memory at the application start instead of every frame and

reusing allocated memory for different structures.

Most GPU applications are bound by the speed at which data from the global

memory can be accessed, and so understanding how the L1 cache works plays a fun-

damental role in optimizing them. Data is not accessed per thread; instead, requests

for all threads of a warp are combined and the required memory is read using 128-byte

wide transactions into the L1 cache. That way, if threads in a warp access memory

positions that are stored sequentially, fewer read transactions have to be issued, and

the threads can just read their values from the L1 cache. When a set of threads

accesses memory positions that are adjacent to each other, we say those accesses are

coalesced. Making memory accesses coalesced reduce the number of read transaction

that have to be issued, thus increasing performance.

Preventing cache thrashing, that is, the removal from the cache of data that is

commonly used, is also important to optimizing performance. To that end, using the

correct memory layout for data structures is essential. When storing a collection of

some data structure in memory, it is common to create a Array of Structures (AoS)

type layout; however, it may be beneficial to consider using a Structure of Arrays

(SoA) layout to make memory accesses more coalesced and avoid cache thrashing.

Shared memory should be used whenever possible to prevent accessing the more

expensive global memory or to explicitly cache values that are used frequently.

3.3.3 Registers

The number of registers used by each thread directly affects the occupancy, so it is

important to keep that value as low as possible. If there is a high Register Pressure,

3.3. Parameters to Optimize 19

that is, a thread requires more registers than are available in the SMX, the exceeding

variables will be spilled to local memory. The launch bounds () qualifier can be

employed to force the compiler to use a specific amount of registers, causing the

remaining registers to spill to local memory. While this qualifier can be useful to

reach a certain occupancy goal, it has to be used with care, since oftentimes it leads

to decrease performance.

The Kepler architecture introduced the shuffle intrinsic operations, which allow a

thread to read registers from other threads that are in the same warp at a very low

cost. Using these instructions, it is possible to store strategic values that are accessed

by more than one thread in a warp in registers, in order to save shared memory.

Instruction-Level Parallelism (ILP) can also be employed to hide instruction la-

tency on Kepler GPUs. Although the order of instructions is mostly determined by

the compiler, there are cases where switching the order of statements in the C code

can lead the compiler to producing machine code with higher ILP.

3.3.4 Divergence

When there is a branch in the kernel, the SM needs to execute separately each diver-

gent path, while all other threads are stalled. This means that branching should be

kept to a minimum, especially if both paths are taken by different threads in a warp.

Chapter 4

ATRBVH

This chapter describes the methodology used in our experiments. In Section 4.1, we

provide a brief overview of the proposed algorithm and then give a detailed description

of each of its steps. Section 4.2 presents implementation details that we believe are

useful for understanding and replicating this work.

4.1 Agglomerative Treelet Restructuring

Our method [13] improves the one presented by Karras and Aila [25] by modifying its

treelet restructuring stage: instead of evaluating all possible node topologies to find

the one with the lowest SAH cost, we use a greedy algorithm based on agglomerative

clustering to rearrange our treelets (Figure 4.1). While this process results in the

generation of treelets that might not have the lowest cost possible, it runs faster than

the original, therefore enabling the usage of larger treelet sizes without drastically

changing execution times. We were motivated by the idea that, by increasing the

treelet size, changes to the BVH would be more global in scope, thus allowing it to

be modified to a greater extent.

4.1.1 Overview

The algorithm starts with a bottom-up traversal of the tree. Upon reaching each

node, a treelet is formed by using that node as its root and then restructured to have

20

4.1. Agglomerative Treelet Restructuring 22

Algorithm 1: RearrangeTreelets

1 for internal node i in BVH do
2 treelet← FormTreelet(i)
3 clusters← treeletLeaves

4 while length(clusters) > 1 do
5 distances← []
6 foreach pair of clusters (x, y) do
7 d← Dissimilarity(x, y)
8 distances← (d, x, y)

9 end
10 (m, n)← FindMinimumDistance(distances)
11 o←MergeClusters(m, n)
12 clusters.remove(m)
13 clusters.remove(n)
14 clusters.add(o)

15 end

16 end

4.1.3 Distance Metric

The agglomerative clustering process requires a dissimilarity or distance metric to be

specified. At each iteration, the pair of nodes that are closer to each other using the

given metric will be merged. Since the objective is to minimize the overall SAH cost

of the tree, we chose the distance between two clusters to be the surface area of the

bounding box containing them.

Calculating the distance between two clusters (line 7) is an expensive operation.

In order to prevent it from being repeated for each cluster pair at each step, we

borrow the idea of caching those values from Gu et al. [17]. At the beginning of

the optimization process, the distances between all cluster pairs are pre-calculated

and stored in a triangular matrix. We chose to use a lower triangular matrix, so the

distance between clusters i and j will be stored at position (i, j) if i > j or (j, i)

otherwise.

4.1.4 Merge Clusters

After the distances have been calculated, the next step is to find the pair of clusters

that are closest to each other (line 10) and merge them (line 11). When two clusters

4.1. Agglomerative Treelet Restructuring 23

are merged, the corresponding treelet nodes, which can be either internal nodes or

leaves, must be connected by a new internal node that references them as children.

In practice, one of the original internal nodes of the treelet is updated to represent

this new node, so no extra memory has to be allocated during the merge process.

At each step, the distance matrix will also have to be updated by removing the two

clusters that were merged and adding the newly formed one (lines 12–14). In order to

keep the matrix compact, we replace the first removed cluster with the new one, and

move the last valid cluster to the other vacant spot, as described by Gu et al. [17].

The distances between the new cluster and the others also need to be calculated so

the matrix is complete once again.

4.1.5 Treelet Reconstruction

Instead of performing changes to the treelet at each iteration, the proposed modifica-

tions are stored in a list. Each list entry contains the index of the internal node that

should be modified and the indices of its two children (the nodes corresponding to the

clusters that were merged to originate it). After the whole treelet has been processed,

the SAH cost of the newly generated topology is compared with the original treelet

cost: only if the cost has decreased will the changes stored in the list be applied to

the treelet, thus preventing the BVH from receiving changes that might increase its

overall SAH cost.

4.1.6 Post-processing

Throughout the optimization process, each of the tree leaf nodes reference only one

triangle. However, the SAH cost of a BVH can generally be reduced further by

collapsing some of its subtrees, that is, replacing all the internal nodes corresponding

to a particular subtree by a single leaf node that indexes all the triangles that could

be reached from the root of that subtree. This collapsing step is performed after all

treelets have been restructured.

In order to decide which subtrees should be collapsed, the SAH cost of that subtree

4.2. Implementation and Optimizations 24

should be compared with the cost of the collapsed subtree

c = CtA(n)N(n) (4.1)

where A(n) corresponds to the surface area of the subtree root, N(n) is the number

of triangles contained in the subtree and Ct corresponds to the relative cost for per-

forming a ray-triangle intersection, and should be the same constant that was used to

calculate the SAH cost (Equation 2.1). If the cost of the collapsed subtree is smaller,

then the entire subtree is replaced by a leaf which references all its triangles.

Differently from the collapsing method used by Karras and Aila [25], the cost of

the collapsed subtree does not have to be considered during the treelet restructuring

process, since the only criterion used to determine which nodes will be merged is the

surface area.

4.1.7 Parameters

There are three parameters that have to be set for our method: treelet size, number

of iterations and γ. Treelet size corresponds to the number of leaf nodes of a treelet,

and larger treelets generally produce better structures, at the expense of greater build

times. Number of iterations corresponds to the number of times that a full bottom-up

sweep of the tree is executed, with treelets being assembled and restructured at each

step. Parameter γ determines how many leaves a node must have as descendants

so that it can be used as a treelet root, and it is used to balance execution time

and treelet quality, with higher values favoring build speed and lower values favoring

quality.

4.2 Implementation and Optimizations

Our algorithm was implemented using CUDA and was designed to take advantage

of the NVIDIA Kepler architecture. Being inspired mostly on Karras and Aila’s [25]

original work on BVH optimization via treelet restructuring, we used an agglomerative

clustering method for recreating treelet topologies, with the objective of investigating

4.2. Implementation and Optimizations 25

how larger treelet sizes affect the resulting BVHs when an approximate method is

used to find the optimal solution. By using slightly larger treelets than the original

method, we were able to produce BVHs with comparable quality in considerable less

time, and also to drastically reduce the amount of temporary memory used.

The CUDA implementation makes heavy use of the shuffle intrinsic operations,

which enables registers from other threads in the same warp to be read at a very low

cost. Using those instructions, values that are accessed often within a warp can be

cached in registers, both providing a fast access to those values and saving shared

memory that could otherwise be used to store them. The shuffle intrinsics are also

used to efficiently implement reductions, for example when comparing clusters to find

which pair is closer to each other.

During the implementation stage, we tried to reach 100% occupancy while keeping

register spills to local memory to a minimum. However, our design decision to rely

heavily on shuffle operations requires some values to be stored throughout the whole

treelet restructuring phase, leading to a high register usage. Therefore, we ended

up opting for a 75% occupancy, which seems to be the optimal value for our imple-

mentation, leaving 40 registers available to each thread and 1024B of shared memory

available to each warp when using the Kepler architecture.

4.2.1 Tree Traversal

For the bottom-up traversal of the tree, we use the method described by Karras [24].

Each thread starts by processing a leaf node; after it is done, it goes on to process

the parent of that node. Since we are dealing with binary trees, at each iteration

two threads will reach each node. By making the first thread inactive and allowing

only the second one to continue, a node is guaranteed to be processed after both its

children, thus avoiding race conditions. The pseudocode is shown in Algorithm 2.

4.2.2 Treelet Restructuring

During the bottom-up traversal, the number of active threads per warp is quickly

reduced. In order to keep a high level of parallelism, each treelet restructuring task

4.2. Implementation and Optimizations 26

Algorithm 2: TreeTraversal

1 for leaf i in BVH do in parallel
2 current← i

3 while current != null do
4 counter ← atomicInc(counters[current])
5 if counter = 0 then
6 return

7 end
8 ProcessNode()
9 current← parents[current]

10 end

11 end

is distributed among all threads from the corresponding warp, even those that were

inactive during the traversal. When alternating between bottom-up traversal and

treelet restructuring, we use the ballot()1 voting intrinsic to find out which threads

are active and referencing a valid treelet root. The returned values are analyzed, and

each warp sequentially processes its treelets.

Three arrays are allocated in shared memory to store each treelet: one for leaf

indices, another for internal node indices and a third for leaf surface areas. Leaf

surface areas are only used when the treelet is being formed, which means that array

can safely be repurposed to store other values during the treelet reconstruction. The

array of treelet leaves can also be reused during that stage: when optimizing a treelet,

each thread in the warp is responsible for storing at registers the variables of a cluster,

such as node index and bounding box, so those values can be read efficiently by other

threads using the shuffle instructions; after reading those values, their sources are no

longer required. Lastly, after a pair of clusters is merged, the registers from the thread

corresponding to the last cluster themselves can be used to store other values as well.

Combining the free registers and shared memory, we can create an implicit list to hold

the modifications required to restructure the tree without the need of allocating extra

memory. When two clusters are merged, the last unused internal node is chosen to be

modified and unite the nodes corresponding to each cluster, and the parent, left and

right indices, together with the new bounding box and SAH cost are stored in that

1http://docs.nvidia.com/cuda/cuda-c-programming-guide

4.2. Implementation and Optimizations 27

implicit list.

If the SAH cost of the topology generated using the agglomerative clustering

method is less than that of the original treelet, we proceed to commit the modi-

fications found in the implicit list. This operation can be executed completely in

parallel, with each thread processing one treelet node.

4.2.3 Distance Matrix

Figure 4.2: Updating the distance matrix after merging clusters three and five. The
numbers inside elements below the main diagonal indicate the indices of those elements
in the linear representation of the distance matrix. Clusters are represented by the
main diagonal elements, and prior to the merge eight of them existed. The newly
formed cluster M replaces cluster C3, while the last cluster is moved in the position
of cluster C5. Elements highlighted in red represent the distance between M and
all the other clusters and need to be recalculated. Elements highlighted in blue are
copied from the last row.

To avoid redundant computations of distances between clusters, those distances are

pre-calculated and cached in a triangular matrix just before the treelet restructuring.

Instead of keeping the entire matrix in memory, we only store the elements that are

below the main diagonal. These elements can be represented sequentially in an array,

and the corresponding matrix row and column numbers can be calculated from that

4.2. Implementation and Optimizations 28

array index as follows

r = 1 +

⌊√
8i + 1− 1

2

⌋

(4.2)

c = i−
r(r − 1)

2
(4.3)

where r is the row number, c is the column number and i is the array index. We chose

to use a lower triangular matrix, since its coordinates are slightly cheaper to extract

from the array index than those of an upper triangular matrix.

In our implementation, the best performance is achieved by storing the distance

matrix for treelets of sizes up to 20 in shared memory, since that can be done while

maintaining an occupancy of 75%. For larger treelets, the distance matrix is stored

entirely in global memory. The construction of the initial distance matrix is performed

with the help of a precomputed schedule, specifying what pairs of clusters will be

analyzed by each thread. Distances are calculated in the order that they appear in

the distance array, so as to keep memory accesses coalesced for matrices that are

stored in global memory. The use of a schedule is not required, since the indices for

cluster pairs can be extracted by using Equations 4.2 and 4.3 for each array index,

but it results in a minor performance increase.

After merging clusters i and j, the newly formed cluster will take i’s place, and

the elements corresponding to the distance between it and all other clusters will have

to be recalculated. This operation can be completely parallelized, with each thread

calculating the distance between a cluster pair. The last cluster from the distance

matrix will have to be moved to the j-th position as well. This can also be executed

in parallel, with each thread moving an element. The process of updating the distance

matrix is illustrated in Figure 4.2.

4.2.4 Global Memory Usage

The BVH used in our implementation requires 52 bytes of global memory per node: 5

scalars totaling 20B (parent, left and right pointers, data index and surface area) and

one 32B bounding box (minimum and maximum values stored as float4). Aside from

4.2. Implementation and Optimizations 29

the tree structure, we also store in global memory the atomic counters used during

tree traversal (4B per node), the number of triangles descending from each node (4B

per node), the SAH cost of each node (4B per node), the agglomerative schedule

(256B for a treelet size of 32) and the distance matrix, if a treelet size of 21 or more

is used (number of cluster combinations × 4 bytes per warp launched).

Chapter 5

Results

Given that our objective was to modify and improve on Karras and Aila’s [25] original

work (TRBVH), we tried to replicate their experiments as closely as possible. In order

to measure the performance of BVHs, we used Aila’s et al. [2, 3] ray tracing framework.

Our tests were run on 16 different static scenes, most of which are commonly used in

the area; their names, number of triangles and screenshots can be found in Table 5.1.

The structures that served as base for the optimization step were built using the

LBVH algorithm [24, 30], as it is able to produce usable BVHs very quickly. All tested

trees were collapsed using a post-processing kernel so as to further reduce their SAH

cost.

Since a public implementation of TRBVH is not available, we implemented it

ourselves by following the description available in the original paper [25]. The BVH

build times achieved by our version are about 3 times higher than those reported by

the authors, and that discrepancy cannot be explained by differences in the hardware

used alone. However, we believe the comparisons made here are fair, seeing that both

tested implementations share a large similarity and were created by the same authors.

It is very likely that additional optimizations applied to one method will also benefit

the other. The results reported here do not take triangle splitting into account for

any method.

In our implementation of TRBVH, some values that were reported by Karras

and Aila [25] as being stored in registers, such as SAH costs, triangle counts and

30

5.1. Parameter Choice 31

bounding boxes, had to be stored in global memory due to a lack of registers available.

Because of that, it is safe to assume that our implementation of TRBVH is not

using an optimal amount of temporary memory. The listed temporary memory values

are implementation-dependent, and were only reported here to provide clarity and

reproducibility.

The temporary memory values reported for TRBVH, ATRBVH and ATRBVH*

(ATRBVH using the same parameter values as TRBVH) include the amount of mem-

ory required by LBVH. Since the tree construction and optimization are performed

separately, these values can be further optimized by allocating a single block of mem-

ory large enough for both steps and reusing it.

The results presented here were obtained on a PC with a Intel Core i5 4670 CPU,

12GB of RAM and a NVIDIA GTX 770 GPU. The implementation used in this

research has been made publicly available1.

5.1 Parameter Choice

In order to find the optimal treelet size and number of iterations, we tested all possible

combinations of values, with treelet sizes ranging from 3 to 32 and number of iterations

ranging from 1 to 5. We noticed that while increasing both parameters led to the

generation of better performing trees, the performance gains that could be obtained

in relation to TRBVH were very modest. Therefore, we opted to choose values which

would minimize the build time, while keeping the performance within 0.5% of TRBVH.

Using this heuristic, we determined a treelet size of 9 and a number of iterations of 2

to be the optimal values.

When evaluating the SAH cost of treelets or BVHs, we consider the relative costs

Ci and Ct to be 1.2 and 1.0, respectively. As for γ, we started its value as the treelet

size and doubled it at each iteration.

1https://github.com/leonardo-domingues/atrbvh

5.2. Ray Tracer Analysis 34

5.2 Ray Tracer Analysis

The test results are summarized in Table 5.1. For each scene, we obtained mea-

sures using LBVH, TRBVH and two versions of Agglomerative Treelet Restructuring

Bounding Volume Hierarchy (ATRBVH): ATRBVH* is the method described here,

but using the same parameter values as TRBVH (treelet size = 7, number of iterations

= 3); ATRBVH corresponds to the same method, but using the optimized parameter

values (treelet size = 9, number of iterations = 2). We recorded BVH build times,

number of rays traced per second, SAH cost and temporary memory required for each

method. Memory allocation times are not reported.

The reported results are the average values obtained from ray tracing each scene

through multiple viewpoints to better capture their details. We used five viewpoints

for each scene, except for Italian, Babylonian and Arabic, where 10 viewpoints were

employed to better represent the large areas of those scenes. Performance measure-

ments were obtained by tracing diffuse rays, since those are less dependent on camera

position than primary and ambient occlusion rays.

Considering the average results among all scenes, available in Table 5.2, ATRBVH

was able to produce BVHs 30.5% faster than TRBVH, while keeping the ray tracing

performance of those trees on par with the ones produced by the latter. This represents

a large speedup over a method that already pushes current GPUs to their limit. When

analyzing results for individual scenes, we can see that the variations in performance

are very subtle, with no method being considerably better than the other in any given

scene.

Method Performance (%) Time (%)

LBVH 80.8 20.3

TRBVH 100 100

ATRBVH 99.7 69.5

ATRBVH* 99.9 78.4

Table 5.2: Average among all scenes for the relative performance and build time of
each method compared to TRBVH.

It is important to notice that when averaging the results among all scenes, even

5.2. Ray Tracer Analysis 36

construction and treelet optimization is the same as the one used for TRBVH in our

tests.

Chapter 6

Conclusions and Future Work

During the course of this research, we investigated the effect that acceleration struc-

tures have in ray tracing performance. In particular, we focused on different techniques

for constructing and optimizing BVHs on GPU. We realized that the main challenge

in generating the optimal structure is to maintain a balance between quality and con-

struction speed, and that the scale moves one way or another, depending on the kind

of application that will use those structures.

Our contribution is ATRBVH, a method for optimizing existing BVHs which ex-

tends the current state-of-the-art in GPU BVH optimization, TRBVH. Instead of

considering all possible node combinations when restructuring a treelet, our method

makes greedy choices through agglomerative clustering. It can be efficiently imple-

mented for the NVIDIA Kepler architecture using CUDA and is able to construct a

high-quality tree from the ground up in a matter of milliseconds.

We have shown that our method produces structures that provide virtually the

same ray tracing performance as TRBVH, while spending about 30% less time and

requiring just a fraction of its temporary memory to do so. It is our understanding

that any application that currently uses TRBVH can benefit from our algorithm.

We have also made our implementation of both TRBVH and ATRBVH available as

open-source, so other authors can easily compare against them.

For future work, we intend to investigate how treelet sizes greater than 32 affect

the quality of produced BVHs. Another possibility would be to dynamically adjust

37

38

the treelet size used, provided that we can estimate how much the SAH cost can be

reduced by adding a node to a treelet prior to restructuring it. It also remains to

be seen how our method behaves when triangle splitting is used and how to adapt

it to handle animated scenes. If the process of committing a set of modifications to

a treelet could be performed atomically, the tree would be consistent at all points

during the optimization, and the effect of setting a time budget and only stopping the

optimization after that time has run out could be investigated. Lastly, a more thor-

ough analysis of the scenes used could be performed to identify which characteristics

affect the optimization, such as vertex degree and triangle sizes.

Bibliography

[1] T. Aila, T. Karras, and S. Laine. On quality metrics of bounding volume hi-

erarchies. In Proceedings of the High-Performance Graphics Conference, pages

101–107, Anaheim, California, USA, 2013. ACM.

[2] T. Aila and S. Laine. Understanding the efficiency of ray traversal on GPUs. In

Proceedings of the High-Performance Graphics Conference, pages 145–149, New

Orleans, Louisiana, USA, 2009. ACM.

[3] T. Aila, S. Laine, and T. Karras. Understanding the efficiency of ray traversal on

GPUs – Kepler and Fermi addendum. NVIDIA Technical Report NVR-2012-02,

NVIDIA Corporation, June 2012.

[4] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. In

Proceedings of Eurographics, pages 3–10, 1987.

[5] C. Apetrei. Fast and simple agglomerative LBVH construction. In Computer

Graphics and Visual Computing. The Eurographics Association, 2014.

[6] A. Appel. Some techniques for shading machine renderings of solids. In Proceed-

ings of the Spring Joint Computer Conference, pages 37–45, Atlantic City, New

Jersey, USA, 1968. ACM.

[7] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, Sept. 1975.

[8] J. Bittner, M. Hapala, and V. Havran. Fast insertion-based optimization of

bounding volume hierarchies. Computer Graphics Forum, 32(1):85–100, Feb.

2013.

[9] J. Bittner, M. Hapala, and V. Havran. Incremental BVH construction for ray

tracing. Computers & Graphics, 47:135 – 144, Apr. 2015.

[10] B. Chang, W. Seo, and I. Ihm. On the efficient implementation of a real-time

kd-tree construction algorithm. In GPU Computing and Applications, pages 207–

219. Springer Singapore, 2015.

39

BIBLIOGRAPHY 40

[11] B. Choi, B. Chang, and I. Ihm. Improving memory space efficiency of kd-tree for

real-time ray tracing. Computer Graphics Forum, 32(7):335–344, 2013.

[12] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. Proceedings of

the 11th Annual Conference on Computer Graphics and Interactive Techniques,

18(3):137–145, Jan. 1984.

[13] L. R. Domingues and H. Pedrini. Bounding volume hierarchy optimiza-

tion through agglomerative treelet restructuring. In Proceedings of the High-

Performance Graphics Conference, Los Angeles, California, USA, 2015. ACM.

[14] K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster HLBVH with

work queues. In Proceedings of the High-Performance Graphics Conference, pages

59–64, Vancouver, British Columbia, Canada, 2011. ACM.

[15] A. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics

and Applications, 4(10):15–24, Oct 1984.

[16] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray

tracing. IEEE Computer Graphics and Applications, 7(5):14–20, May 1987.

[17] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via

approximate agglomerative clustering. In Proceedings of the High-Performance

Graphics Conference, pages 81–88, Anaheim, California, USA, 2013. ACM.

[18] J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallek. Realtime ray tracing on

GPU with BVH-based packet traversal. In Proceedings of the IEEE Symposium

on Interactive Ray Tracing, pages 113–118. IEEE Computer Society, 2007.

[19] M. Hapala and V. Havran. Review: Kd-tree traversal algorithms for ray tracing.

Computer Graphics Forum, 30(1):199–213, 2011.

[20] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Department of Com-

puter Science and Engineering, Faculty of Electrical Engineering, Czech Technical

University in Prague, November 2000.

[21] V. Havran, R. Herzog, and H.-P. Seidel. On the fast construction of spatial

hierarchies for ray tracing. In Proceedings of the IEEE Symposium on Interactive

Ray Tracing, pages 71–80. IEEE Computer Society, Sept. 2006.

[22] T. Ize, I. Wald, and S. Parker. Ray tracing with the BSP tree. In Proceedings of

the IEEE Symposium on Interactive Ray Tracing, pages 159–166, Aug 2008.

[23] H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A. K. Peters,

Ltd., 2001.

BIBLIOGRAPHY 41

[24] T. Karras. Maximizing parallelism in the construction of BVHs, octrees, and

k-d trees. In Proceedings of the High-Performance Graphics Conference, pages

33–37, Paris, France, 2012. Eurographics Association.

[25] T. Karras and T. Aila. Fast parallel construction of high-quality bounding volume

hierarchies. In Proceedings of the High-Performance Graphics Conference, pages

89–99, Anaheim, California, USA, 2013. ACM.

[26] T. Karras and T. Aila. Agglomerative treelet restructuring for bounding volume

hierarchies. U.S. Patent Applications Publication No. US20140365529 A1, filed

10/28/2013, 2014.

[27] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. In Proceedings of

the 13th Annual Conference on Computer Graphics and Interactive Techniques,

pages 269–278. ACM, 1986.

[28] A. Kensler. Tree rotations for improving bounding volume hierarchies. In Pro-

ceedings of the IEEE Symposium on Interactive Ray Tracing, pages 73–76. IEEE

Computer Society, Aug. 2008.

[29] E. P. Lafortune and Y. D. Willems. Bi-directional path tracing. In H. P. Santo,

editor, Proceedings of Third International Conference on Computational Graphics

and Visualization Techniques, pages 145–153, 1993.

[30] C. Lauterbach, M. Garland, S. Sengupta, D. P. Luebke, and D. Manocha. Fast

BVH construction on GPUs. Computer Graphics Forum, 28(2):375–384, Apr.

2009.

[31] D. J. MacDonald and K. S. Booth. Heuristics for ray tracing using space sub-

division. The Visual Computer: International Journal of Computer Graphics,

6(3):153–166, May 1990.

[32] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler

GK110/210. Technical report, 2014.

[33] NVIDIA. CUDA C Best Practices Guide. http://docs.nvidia.com/cuda/

cuda-c-best-practices-guide/, 2015. [Online; accessed 20-April-2015].

[34] NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/, 2015. [Online; accessed 20-April-2015].

[35] J. Pantaleoni and D. Luebke. HLBVH: Hierarchical LBVH construction for real-

time ray tracing of dynamic geometry. In Proceedings of the High-Performance

Graphics Conference, pages 87–95, Saarbrucken, Germany, 2010. Eurographics

Association.

BIBLIOGRAPHY 42

[36] S. M. Rubin and T. Whitted. A 3-dimensional representation for fast rendering

of complex scenes. Proceedings of the Seventh Annual Conference on Computer

Graphics and Interactive Techniques, 14(3):110–116, July 1980.

[37] A. Santos, J. Teixeira, T. Farias, V. Teichrieb, and J. Kelner. Understanding

the efficiency of kd-tree ray-traversal techniques over a GPGPU architecture.

International Journal of Parallel Programming, 40(3):331–352, 2012.

[38] M. Stich, H. Friedrich, and A. Dietrich. Spatial splits in bounding volume hierar-

chies. In Proceedings of the High-Performance Graphics Conference, pages 7–13,

New Orleans, Louisiana, USA, 2009. ACM.

[39] E. Veach and L. J. Guibas. Metropolis light transport. In Proceedings of the 24th

Annual Conference on Computer Graphics and Interactive Techniques, pages 65–

76. ACM, 1997.

[40] M. Vinkler, V. Havran, and J. Bittner. Bounding volume hierarchies versus

kd-trees on contemporary many-core architectures. In Proceedings of the 30th

Spring Conference on Computer Graphics, pages 29–36, Smolenice, Slovakia,

2014. ACM.

[41] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,

Computer Graphics Group, Saarland University, 2004.

[42] I. Wald. On fast construction of SAH-based bounding volume hierarchies. In

Proceedings of the IEEE Symposium on Interactive Ray Tracing, pages 33–40.

IEEE Computer Society, 2007.

[43] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic

bounding volume hierarchies. ACM Transaction on Graphics, 26(1):1–18, Jan.

2007.

[44] I. Wald, T. Ize, and S. G. Parker. Fast, parallel, and asynchronous construction

of BVHs for ray tracing animated scenes. Computers & Graphics, 32(1):3 – 13,

Feb. 2008.

[45] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomerative clustering

for rendering. In Proceedings of the IEEE Symposium on Interactive Ray Tracing,

pages 81–86. IEEE Computer Society, Aug 2008.

[46] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved computational methods

for ray tracing. ACM Transactions on Graphics, 3(1):52–69, Jan. 1984.

[47] T. Whitted. An improved illumination model for shaded display. Communica-

tions of the ACM, 23(6):343–349, June 1980.

BIBLIOGRAPHY 43

[48] Z. Wu, F. Zhao, and X. Liu. SAH KD-tree construction on GPU. In Proceedings

of the High-Performance Graphics Conference, pages 71–78, Vancouver, British

Columbia, Canada, 2011. ACM.

Appendix A

Other Approaches

In this appendix, we describe two other approaches to optimizing BVHs on GPU that

were tested during this research. Although both methods managed to improve the

quality of trees created using LBVH, their results were not good enough to justify

their usage over TRBVH.

A.1 Tree Rotation

Our first attempt at optimizing BVHs was to extend Kenler’s work on tree rota-

tions [28] by implementing it on GPU using CUDA. In his paper, Kensler proposed

performing operations similar to the tree rotations used to balance red-black trees

in order to minimize the SAH cost of a tree. By recursively traversing the tree, his

method checks which is the best of four possible rotations that can be applied to that

node in order to minimize its local cost.

Instead of traversing the tree recursively, we opted to use the bottom-up traversal

algorithm proposed by Karras [24]. Each thread would be responsible for checking one

node to determine its best rotation, and then applying the necessary modifications.

Since by using this bottom-up traversal one node is only processed after both its

children, it is guaranteed that no race conditions will occur.

Simply iterating through the tree and performing rotation on its nodes is not

enough to produce trees that have quality competitive with TRBVH. Kensler achieved

his best results by using Simulated Annealing optimization to avoid local minima.

44

A.2. Divisive Treelet Restructuring 45

This technique, however, requires a large number of iterations to converge, and as

such is not ideal for the fast optimization of trees that was our goal.

In order to try to minimize the number of iterations required by Simulated An-

nealing, we experimented with a simpler algorithm to introduce perturbations during

the search for the optimal tree: when evaluating a node, instead of always greedily ex-

ecuting the rotation that minimizes the local SAH cost, we introduced a small chance

that a rotation would be chosen at random for that node. This modification was

sufficient to cause the SAH cost to decrease significantly when compared to greedly

choosing the best rotation, however it still required a large number of iterations to

converge, resulting in large optimization times.

A.1.1 Parameters

During the evaluation of each node, the probability of choosing a random rotation

instead of the one that minimized the local SAH cost was 0.5%. To produce the

results presented here, the algorithm was repeated for a total of 1000 iterations.

A.2 Divisive Treelet Restructuring

Karras and Aila [25] indicated in the future work section of their paper that it would

be possible to use approximate methods to restructure larger treelets than those used

in TRBVH, in order to perform more extensive modifications to treelets. Inspired

by this idea, we implemented a version of their method that uses a greedy top-down

optimization instead of extensive searching through all possible node combinations to

determine the best treelet structure.

A.3. Results 48

To optimize the treelets, we used the binned SAH strategy, which is commonly

used to construct BVHs on CPU [42]. It consists in discretizing the space into bins

and iteratively distributing the tree nodes among those bins. After all nodes have

been assigned, the bounds of the bins are used as split planes, and the split that

minimizes the tree SAH cost is chosen. The algorithm is recursively repeated for each

of the two subsets formed that have at least two nodes.

Another strategy that was tested to restructure treelets was to always split trian-

gles in the largest dimension of their bounding boxes. The triangles would be sorted

along that dimension using insertion sort, and the boundary between each triangle

would be used as a potential split plane.

Although this method was able to improve the quality of the processed tree, it

was not capable of reaching results comparable with TRBVH, and the required opti-

mization time was much higher. We attribute the high optimization time to the lack

of sufficient work to keep the GPU busy. This happens mostly because this heuristic

in inherently sequential in nature, with each step only having a small amount of work

that can be parallelized.

A.2.1 Parameters

We used the same parameters that were used on TRBVH, that is, a treelet size of 7

and a number of iterations of 3. The γ value was not updated, resulting in all tree

nodes being evaluated during each iteration.

A.3 Results

The test results are summarized in Table A.1. Although both methods managed

to improve the quality of trees constructed using LBVH, the performance increase

was consistently lower than that produced by TRBVH. Tree Rotation in particular

obtained results that were close to those of TRBVH in quality, but never superior.

Divisive Treelet Restructuring Bounding Volume Hierarchy (DTRBVH), on the other

hand, only increased the quality by a modest amount. The memory consumption of

A.3. Results 49

DTRBVH was also quite higher than that of TRBVH, making it unpractical for larger

scenes.

Optimizing BVHs using these algorithms took significantly longer than doing so

using TRBVH. Due to the many iterations that are necessary for it to converge,

Tree Rotation requires seconds of optimization, which is completely unacceptable

considering that it runs on a GPU. It is important to notice that neither method was

fully optimized for speed, since the quality of trees produced would not justify using

them anyway. Even though the speed of these methods can be improved by a more

careful optimization, we believe that those improvements would still not be enough

to make them competitive with the alternatives.

	Abstract
	Resumo
	Acknowledgements
	Introduction
	Problem Description and Motivation
	Objectives and Contributions
	Text Structure

	Related Work
	Ray Tracing
	Acceleration Structures
	Kd-tree
	Bounding Volume Hierarchy

	BVH Optimization

	CUDA and the Kepler Architecture
	The Kepler Architecture
	CUDA
	Parameters to Optimize
	Division of Work
	Memory Access
	Registers
	Divergence

	ATRBVH
	Agglomerative Treelet Restructuring
	Overview
	Treelet Formation
	Distance Metric
	Merge Clusters
	Treelet Reconstruction
	Post-processing
	Parameters

	Implementation and Optimizations
	Tree Traversal
	Treelet Restructuring
	Distance Matrix
	Global Memory Usage

	Results
	Parameter Choice
	Ray Tracer Analysis

	Conclusions and Future Work
	Bibliography
	Other Approaches
	Tree Rotation
	Parameters

	Divisive Treelet Restructuring
	Parameters

	Results

