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Abstract

Medical image segmentation is crucial to extract measures from 3D objects (body anatom-

ical structures) that are useful for diagnosis and treatment of diseases. In such applica-

tions, interactive segmentation is necessary whenever automated methods fail or are not

feasible. Graph-cut methods are considered the state of the art in interactive segmenta-

tion, but most approaches rely on the min-cut/max-flow algorithm, which is limited to

binary segmentation while multi-object segmentation can considerably save user time and

effort. This work revisits the differential image foresting transform (DIFT) – a graph-cut

approach suitable for multi-object segmentation in linear time – and solves several prob-

lems related to it. Indeed, the DIFT algorithm can take time proportional to the number

of voxels in the regions modified at each segmentation execution (sublinear time). Such

a characteristic is highly desirable in 3D interactive segmentation to respond the user’s

actions as close as possible to real time. Segmentation using the DIFT works as follows:

the user draws labeled markers (strokes of connected seed voxels) inside each object and

background, while the computer interprets the image as a graph, whose nodes are the

voxels and arcs are defined by neighboring voxels, and outputs an optimum-path forest

(image partition) rooted at the seed nodes in the graph. In the forest, each object is rep-

resented by the optimum-path trees rooted at its internal seeds. Such trees are painted

with same color associated to the label of the corresponding marker. By adding/removing

markers, the user can correct segmentation until the forest (its object label map) repre-

sents the desired result. For the sake of consistency in segmentation, similar seed-based

methods should always maintain the connectivity between voxels and seeds that have la-

beled them. However, this does not hold in some approaches, such as random walkers, or

when the segmentation is filtered to smooth object boundaries. That connectivity is also

paramount to make corrections without starting over the process at each user interven-

tion. However, we observed that the DIFT algorithm fails in maintaining segmentation

consistency in some cases. We have fixed this problem in the DIFT algorithm and when

the obtained object boundaries are smoothed. These results are presented and evaluated

on several 3D body anatomical structures from MR and CT images.
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Resumo

Segmentação de imagens médicas é crucial para extrair medidas de objetos 3D (estruturas

anatômicas) que são úteis no diagnóstico e tratamento de doenças. Nestas aplicações, seg-

mentação interativa é necessária quando métodos automáticos falham ou não são fact́ıveis.

Métodos por corte em grafo são considerados o estado da arte em segmentação interativa,

mas diversas abordagens utilizam o algoritmo min-cut/max-flow, que é limitado à seg-

mentação binária, sendo que segmentação de múltiplos objetos pode economizar tempo

e esforço do usuário. Este trabalho revisita a transformada imagem floresta diferencial

(DIFT, em inglês) – uma abordagem por corte em grafo adequada para segmentação de

múltiplos objetos – resolvendo problemas relacionados a ela. O algoritmo da DIFT executa

em tempo proporcional ao número de voxels nas regiões modificadas em cada execução

da segmentação (sublinear). Tal caracteŕıstica é altamente desejável em segmentação in-

terativa de imagens 3D para responder as ações do usuário em tempo real. O algoritmo

da DIFT funciona da seguinte forma: o usuário desenha marcadores (traço com voxels de

semente) rotulados dentro de cada objeto e o fundo, enquanto o computador interpreta a

imagem como um grafo, cujos nós são os voxels e os arcos são definidos por pixels vizinhos,

produzindo como resultado uma floresta de caminhos ótimos (partição na imagem) en-

raizada nos nós sementes do grafo. Nesta floresta, cada objeto é representado pela floresta

de caminhos ótimos enraizado em suas sementes internas. Tais árvores são pintadas com

a mesmo cor associada ao rótulo do marcador correspondente. Ao adicionar ou remover

marcadores, é posśıvel corrigir a segmentação até o mapa de rótulo de objeto representar

o resultado desejado. Para garantir consistência na segmentação, métodos baseados em

semente sempre devem manter a conectividade entre os voxels e suas sementes. Entre-

tanto, isto não é mantido em algumas abordagens, como Random Walkers ou quando o

mapa de rótulos é filtrado para suavizar a fronteira dos objetos. Esta conectividade é pri-

mordial para realizar correções sem recomeçar o processo depois de cada intervenção do

usuário. Todavia, foi observado que a DIFT falha em manter consistência da segmentação

em alguns casos. Consertamos este problema tanto no algoritmo da DIFT, quanto após

a suavização dos objetos. Estes resultados comparam diversas estruturas anatômicas 3D

de imagens de ressonância magnética e tomografia computadorizada.

xi



xii



Acknowledgements

In the past two years I had the opportunity to meet many people that were involved in

different steps of my work. It was an amazing experience.

First of all, I would like to thank Prof. Alexandre Xavier Falcão for his dedication while

supervising me. His guidance, availability, patience, and enthusiasm were fundamental

within this period.

Many thanks to Prof. Krzysztof Ciesielski (West Virginia University) and Prof. Ja-

yaram Udupa (University of Pennsylvania) for comments, suggestions, and email discus-

sions.

I would like to thank Prof. Luiz Eduardo Buzato and all other professors in the

Institute of Computing at UNICAMP that taught me excellent classes. I will definitely

take this knowledge with me along my career.

A special gratitude to FAPESP (2013/17991-0) and CAPES for funding my studies.

I would also like to thank the jury members of my dissertation committee for the

interesting advices that helped to improve this manuscript.

A special thanks to my day to day friends, Paulo, John, Samuel, Spina, David, and

Renzo. It was immeasurable the importance of our discussions about project ideas, coding,

and writing skills. I believe that we all grew up together in this journey.

I do not want to forget my friends from Curitiba for their support and friendship along

these academic years. Gregory, Mattioli, Pâmela, Guilherme, and Michele, the moments
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Chapter 1

Introduction

This chapter offers an overview of the present dissertation. It initially provides the motiva-

tion and explains the context of the work, which focus on tridimensional (3D) interactive

segmentation of medical images by optimum graph cuts. The main research challenges and

objectives on this topic are presented secondly. Finally, it outlines the main contributions

and describes the structure of the text.

1.1 Context of the work

Medical image segmentation is crucial to analyze the shape and texture of body anatom-

ical structures (3D objects) in computer-based systems for diagnosis and treatment of

diseases [1]. Automated methods are desirable for these systems, but they can fail in sev-

eral situations and are not viable in others. Despite the progress of object shape-texture

models [2, 3, 4, 5] for automated medical image segmentation, the above difficulties make

user (expert) interaction a necessity. Interactive segmentation methods are also needed

to create object examples for shape-texture model construction.

Therefore, the present work focus on 3D interactive segmentation methods for anatom-

ical medical images — i.e., Computer Tomography (CT) and Magnetic Resonance (MR)

images. In this context, the challenges stem from artifacts in image acquisition, increas-

ing image resolution when the response time to the user’s actions need to be interactive,

similar tissue properties that limit the image contrast between objects, and visual limi-

tations of displaying 3D objects on a 2D screen (Figure 1.1). These difficulties challenge

the methods and the user, who must verify the segmentation results and interact with

the computer for correction.

In interactive segmentation, it is very important to minimize the user’s time and effort

and, at the same time, maintain the user’s control over the segmentation process. For

any input provided by the user, the computer should respond as close as possible to real

1
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(a) (b)

Figure 1.1: (a) Axial slice of a 3D CT image from a human thorax. Each object is painted
in a different color. (b) The 3D rendition of the objects. The structures are touching each
other and their boundaries are hard to be visually distinguished.

time. In this context, graph-cut interactive segmentation methods are certainly among

the state-of-the-art approaches [6, 7, 8, 9, 10, 11], being able to produce a fast response

to the user’s actions. These methods interpret the image as a graph, whose voxels are

the nodes and arcs are defined by an adjacency relation between voxels. The graph is

weighted on the arcs by some similarity (dissimilarity) measure, according to local image

properties of their nodes, and object image properties (when available).

In order to make the human-computer interface more efficient and intuitive (Fig-

ure 1.2), the user input can be a set of colored markers (user-drawn strokes of connected

seed voxels) selected inside and outside each object. The computer finds a minimum

(maximum) energy graph cut based on the arc weights, which includes the internal seeds

and excludes the external ones, separating objects and background. The color of the

marker indicates the object and the user can add/remove markers to correct segmenta-

tion. However, the correction must be presented in interactive time, which requires a

solution that does not start over the segmentation process for every new marker set [6, 9].

Figure 1.2 illustrates the behavior of a canonical interactive segmentation algorithm.

Let Î = (D, I) be a medical image, where D ⊂ Z3 is its discrete domain and I : D → Z

assigns an integer value to every voxel in D, representing some physical property related to

the medical imaging modality (CT or MR). The body anatomical structures (3D objects)

are subsets of D. By drawing colored markers in each object and background on image

slices (coronal, sagittal, and axial), the user indicates a seed set S in which the object

label of each voxel s ∈ S is known by λ(s) ∈ {0, 1, . . . , n} as 0 for background and

1 ≤ i ≤ n for object i. Additionally, each marker can be identified by a number id(s) ∈
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(a) (b) (c)

Figure 1.2: (a) The user examines orthogonal slices and draws green, yellow and orange
markers (connected seed voxels) to indicate three bones of interest in a CT image of the
knee. A white marker is also selected in the background. The bottom-right part displays
the 3D rendition of the resulting label map. (b) The user verifies the result and changes
mind, picking any voxel in the influence zone of the green marker in (a) to remove a bone
selected by mistake (the dark blue color indicates marked for removal). At the same time,
the user inserts new markers (light blue for the correct bone and white for background) to
adjust segmentation.(c) The algorithm removes the green bone and creates a new result
for user verification.

{1, . . . , m}, where m > n. Note that one object may be defined from multiple markers.

All these markers have the same object label, given by λ, but each marker has a distinct

identification number, given by id. For a given adjacency relation A, the pair (D,A) is

a graph whose arcs (s, t) ∈ A are weighted by a function w(s, t) ≥ 0 based on properties

extracted from I.

The seeds compete among themselves and their object labels are propagated in D in

order to minimize (maximize) some energy function E. Let LO(s) ∈ {0, 1, . . . , n} be the

object label propagated to s from some seed in S. The label map LO defines a cut C
in the graph, as the maximal subset of arcs (s, t) ∈ A such that LO(s) 6= LO(t). The

corresponding marker label id(s) of each seed s ∈ S is also propagated in a marker label

map LM : D → {1, 2, . . . , m}. By doing that, the user has control over the markers, which

can be selected for removal as well, by clicking on any voxel of their influence zones in LM .

This user action provides a setM with all voxels from the markers selected for removal in

order to eliminate the influence zones of their seeds in LO. Therefore, in a next execution

of the algorithm, new seeds in S and marker voxels inM are provided by the user, and the

algorithm must update LO and LM without starting over the process. In each execution,
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the canonical algorithm searches for the graph cut with minimum (maximum) energy

E(C). This algorithm is presented next.

Algorithm 1 – Canonical Interactive Segmentation Algorithm

Input: An image Î = (D, I), adjacency relation A, arc-weight function w, and energy

function E.

Output: Object label map LO: D → {0, 1, . . . , n} and marker label map LM : D →
{1, 2, . . . , m}.

1. do

2. Get from the user, seeds in S labeled by λ and id, and marker voxels in M.

3. Run graph-cut segmentation with Î, A, S, M, and w

4. to minimize E and propagate labels to get LO and LM .

5. Present the label map LO to the user.

6. While User is not satisfied with LO.

The above algorithm provides full control to the user, who can add and remove markers

until satisfaction. The graph-cut segmentation method should prepare the influence zones

of markers for removal to be reconquered. The previous and added markers must compete

in the current segmentation execution, but without starting over segmentation process.

Markers with the same color indicate the same object in LO, which may consist of

multiple connected components according to A. However, for consistency, each voxel

t ∈ D labeled by a seed s ∈ S must remain connected to that seed according to A. That

is, there must exist a sequence πs→t = 〈s1, s2, . . . , sk〉, s1 = s, sk = t, (si, si+1) ∈ A,

i = 1, 2, . . . , k − 1, of distinct nodes in the graph (simple path) such that LO(si) = λ(s),

i = 1, 2, . . . , k. If this condition is not satisfied for some voxel in D, the segmentation is

said inconsistent.

1.2 Objectives

This work aims to develop efficient and effective graph-cut segmentation methods for

Algorithm 1. Efficient in the sense that it:

• minimizes the number of markers and executions to achieve satisfactory segmenta-

tion,

• updates segmentation without starting over the process, and

• provides response time proportional to the number of modified voxels when updating

segmentation (sub linear time in practice).
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Effective in the sense that it provides consistent segmentation results that best match

with the users’ expectations.

In [12, 13], it was shown that, for real images, graph-cut segmentation requires hard

constraints (internal and external seeds) to be effective. Ciesielski et al. [14] showed that

several approaches, such as power watersheds [15], watershed cuts [16], iterative relative

fuzzy connectedness [17, 18, 19], grow-cut [20], actually minimize one of two types of

energy functions, Esum and Emax.

Esum(C) =
∑

∀(s,t)∈C

wα(s, t), (1.1)

Emax(C) = max
∀(s,t)∈C

w(s, t), (1.2)

where α ≥ 1. These equations are only valid in the absence of tie zones. Miranda and

Falcão [21] also observed that the previous formulation used in [12] must actually be

reduced to Equation 1.1 when internal and external seeds are used as hard constraints

for the sake of effectiveness. Moreover, when α increases, both energy functions produce

similar results.

Graph-cut segmentation methods based on Esum are named GCsum while methods

based on Emax are named GCmax in [14]. GCsum approaches can produce objects with

smoother boundaries than GCmax, and that is the motivation for hybrid approaches [8, 10].

On the other hand, GCsum is limited to binary segmentation, being an NP-hard problem

for multi-object segmentation. Therefore, solutions for Algorithm 1 based on GCsum are

suboptimal in the sense that each object must be segmented by turn, also compromising

the efficiency of the algorithm. On the other hand, GCmax can segment multiple objects

simultaneously, satisfying Equation 1.2. Moreover, GCmax usually requires less seeds (user

effort) and is more robust to seed location than GCsum (Figure 1.3).

The polynomial-time max-flow/min-cut algorithm [22] is the standard choice to imple-

ment methods based on GCsum while GCmax can be implemented in linear time by several

algorithms [19, 9], being the most efficient implementations easily reduced to an Image

Foresting Transform (IFT) [23]. Indeed, in order to achieve respose time proportional to

the modified regions during segmentation updates and avoid to start over the process for

every new seed set, one should use the Differential IFT (DIFT) algorithm [9].

Therefore the solutions proposed in this work are based on the DIFT algorithm. It

is also desirable to obtain objects with smooth boundaries. Given that GCmax tends to

produce more irregular boundaries than GCsum, the label map LO can be filtered by dif-

fusion [24], for instance, after each segmentation execution or at the end of Algorithm 1.

Figure 1.4, however, shows that shape relaxation can destroy connectivity between seeds

and voxels labeled by them, causing inconsistent segmentation. This also makes segmen-

tation correction ineffective with the DIFT algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: (a) shows that GCmax requires less seeds than (b) GCsum; and (c) and (d)
show that GCmax is more robust to seed positioning than (e) and (f) GCsum.

1.3 Contributions

This dissertation proposes and evaluates the following solutions for Algorithm 1: GCmax

approaches based on the DIFT algorithm without boundary relaxation, with boundary

relaxation during segmentation, and with boundary relaxation afterwards. The base-

line is the Dynamic Graph Cut method (GCsum) [6], which represents the most efficient

implementation of the max-flow/min-cut algorithm. The DGC algorithm can update seg-
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1.4 Organization

This dissertation is organized as follows: Chapter 2 presents the basic concepts, such

as representing an image as a graph, discusses in more details the related graph-cut

segmentation methods, such as the Image Foresting Transform. Chapter 3 covers the

proposed solutions and implementation details. The experiments made for validation

are shown in Chapter 4. The conclusive remarks and discussion about future work are

presented in Chapter 5.



Chapter 2

Image Segmentation

Segmentation can be defined as the process of identifying and separating relevant objects

in a given image. It is a fundamental image analysis problem and constitutes one of

the main challenges in Image Processing and Computer Vision. This chapter presents

the main tasks and methods for image segmentation, and subsequently discusses inter-

active segmentation from the viewpoint of user-given constraints. We are interested in

region-based constraints and image segmentation by optimum graph cuts. Therefore, the

chapter describes how to interpret images as graphs and reduce segmentation into an

optimum graph-cut problem. It addresses two main algorithms for interactive graph-cut

segmentation and concludes by justifying our choice for these algorithms.

2.1 Main tasks and methods

The segmentation process consists of two tightly coupled tasks: recognition and delineation

[27]. Recognition is the task of roughly determining the location of a desired object in

the image, while delineation consists in determining its exact spatial extent. Humans

outperform computers in recognition, but the other way around is observed for delineation.

As consequence, interactive (semi-automatic) segmentation methods usually combine the

superior abilities of humans for recognition with a more precise object delineation by the

computer. The most successful approaches, however, can provide user control over the

process, to guarantee the desired result, and simultaneously minimize user time and effort

in segmentation. Ciesielski et al.[14] classify segmentation methods into three groups:

purely image-based, object model-based, and hybrid approaches. Figure 2.1 illustrates

this classification, with examples of well known segmentation methods.

Image-based methods exploit local image properties basically for object delineation,

with user input usually taken for object recognition. They can be further divided accord-

ing to their delineation strategy into region-based, boundary-based, and hybrid approaches.

9
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Optimum thresholding [28] and pixel classification [29] are the simplest image-based ap-

proaches for region-based delineation. However, the absence of object recognition in these

approaches make their use limited to situations where object and background do not

present similar image properties. More effective region-based methods, such as random

walkers [30], geodesic-path segmentation [31], watersheds [32, 33, 34, 35, 15, 16], max-

flow/min-cut segmentation[12], fuzzy connectedness algorithms [17, 18, 19], and level sets

[36], define the regions that constitute the interior of the object based on some hard con-

straint. For example, they usually take internal and/or external markers as user input

for delineation. In boundary-based approaches, such as live wire [37] and 3D live wire

[38], user input is a set of anchor points selected along the object’s boundary during de-

lineation. Another example of user input for recognition in boundary-based approaches is

the initialization of a parametric curve, such as a “snake model” [39], which subsequently

deforms to delineate the object. Hybrid approaches can combine different types of user

input and delineation methods to explore the best features of each [40, 41].

In some controlled situations, image-based methods can be used with object location

based on image properties only [42]. The user input (e.g., internal and external markers)

can also improve delineation by taking into account the image properties that best distin-

guish the object from its surrounding background [43]. However, image-based methods

do not build any object model to assist segmentation. Methods based on object models,

such as active appearance models (AAM) [4], active shape models (ASM) [5], and atlas-

based methods (AM) [44], encode texture and/or shape information about the object, as

obtained from interactively segmented images. In AAM and ASM, recognition is usually

helped by the user, who initializes the model close to the object, and delineation can be

very simple, by searching for high-contrast points that match with the control points of

the model. In AM, recognition is based on deformable image registration. By placing the

image in the same coordinate system of the atlas, the methods assume that the object can

be delineated by thresholding a probabilistic map. However, more effective approaches

are hybrid, since they exploit the above methods for image-based delineation while the

object model helps on recognition. Examples are cloud models (CM) [2], fuzzy object

models (FOM) [3], oriented active shape models (OASM) [45], and atlas with local object

search [46].

2.2 Interactive image segmentation

At the most basic level, the user can interact with the computer by tunning the parameters

that control the delineation algorithm. However, this type of interaction does not provide

the full user control as desired for the interactive segmentation process. Instead, we are

more interested in pictorial input [47], for example, methods where the user guides the
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(a) (b)

Figure 2.2: (a) Initialization of a parametric curve (snake) around an object of interest.
(b) Final segmentation after convergence, using the software in [48]. In order to correct
segmentation, the process has to start over, sometimes from a different position of the
curve and with adjustment of the parameters.

computer delineates optimum segments between subsequent points. The user has full

control over the process, because a new point is only selected when the segment from the

previous point and the current position of the mouse’s cursor describes a desired boundary

segment, according to the user’s judgement.

For region-based constraints, the object labels provided by the user must be preserved

inside the objects in the final segmentation. For example, segmentation methods based

on geodesic paths [31], watershed transform [49], and fuzzy connectedness [19]. Labeled

(colored) markers are drawn by the user in each object (and background) and the seg-

mentation result must include those markers. Such hard constraints aim at reducing the

search space for a desired segmentation, but at the same time, they must reduce user

time and effort, avoiding exhaustive and extensive marker selection. In grabcut [50], for

instance, the user draws a rectangle around the desired object (Figure 2.3). By doing

that, the user indicates background image properties, which are used to estimate object

markers automatically. For 3D images, however, it is not so simple to select a bounding

box for a given body anatomical structure. In such a case, the most suitable and intu-

itive hard constraints are colored markers (scribbles) drawn inside and outside the object

(Figure 2.4). It is also not intuitive for the user to impose boundary-based constraints

by examining cross sectional slices. This naturally guide us to the choice of region-based

approaches for object delineation.

The interpretation of the input image as a graph is a powerful abstraction to adapt

the vast literature of graph algorithms for object delineation. The most efficient examples

from the state-of-the-art are the dynamic version of the max-flow/min-cut algorithm [6]
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CT and MR images are routinely used to generate high resolution 3D images of the

human body, wherein the spels are referred to as volume elements (voxels). Since they

are acquired in grayscale, we will refer to them as a pair Î = (D, I) with image domain

D ⊂ Z3 and mapping function I : D → Z that assigns an integer value I(s) to each

voxel s ∈ D. Higher values are displayed as brighter voxels and lower values as darker

ones. In CT images, voxel intensities are proportional to the tissue density. We will use

only MR images whose intensities measure the differences in the T1 relaxation time of

tissues. In this case, the contrast between different tissues is determined by the rate at

which excited hydrogen atoms from water molecules return to the equilibrium state, after

being subjected to one of the basics pulse sequences of the magnetic field.

In order to interpret a 3D image as a weighted graph, one needs to define an adjacency

relation between voxels and an arc-weight function. For image segmentation, the arc-

weight function should assign lower (higher) weights to arcs across the object boundaries

and higher (lower) weights elsewhere. This helps the algorithms to separate objects and

background by either following the arcs along the object’s boundary or by avoiding them

during delineation (region-based approach). In both cases, the arcs along the object’s

boundary must be cut according to some minimization (maximization) criterion in order

to separate objects and background. The image-graph definition can then be presented

as follows.

2.3.1 Adjacency relation

An adjacency relation A is a binary relation which takes into account a distance criterion

between voxels. It is also possible to use additional image properties, but they might

output disconnected graphs with no relation to the object definition. From the practical

viewpoint of user control, it is desirable that the adjacency relation be symmetric and

shift-invariant, forming a connected graph.

It is also common to define the adjacency relation based on the Euclidean metric. A

voxel t belongs to the adjacent set A(s) of a voxel s when the distance between them is

less than a given scalar ρ > 0.

∀s ∈ D,A(s): {t ∈ D, ‖t− s‖ ≤ ρ} (2.1)

This implies an image graph (D,A), where the arc (s, t) ∈ A. Figure 2.5 shows examples

for 2D and 3D images. For 2D images, ρ =
√

2 defines an 8-neighborhood image graph.

For 3D images, we use ρ =
√

3 to connect all 26 neighbors of each voxel.
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~G(s) =

∑

t∈A(s) [I(t)− I(s)]~st

|A(s)| , (2.2)

for all s ∈ D, where ~st is the unit vector from voxel s to voxel t. The arc weights are

defined by w(s, t) = ‖~G(t)‖— i.e., (D,A) is a directed and weighted image graph, suitable

for image segmentation by watershed transform, as we will see. Other algorithms require

lower and symmetric arc weights along the object’s boundary than inside and outside it.

In this case, we use w̄(s, t) = w̄(t, s) = Gmax − ‖ ~G(s)‖+‖ ~G(t)‖
2

, where Gmax is the maximum

value of ‖~G(s)‖, for all s ∈ D.

Depending on the body anatomical structure and imaging modality, the arc-weight

estimation can be considerably improved. For instance, diffuse filtering could be used

before arc-weight assignment to reduce noise in MR images without blurring the edges.

The values of the gradient image, resulting from Equation 2.2, can be changed to enhance

the low-contrast boundary of a desired object, for instance. In this work, we simply

assume the same gradient image, computed by Equation 2.2, for all methods, objects,

and imaging modalities.

Despite the effort to improve arc-weight estimation for a given application, the pos-

sibility of displaying arc weights around each voxel s as a gradient image ~G(s) allows

to assess the quality of the arc-weight assignment. After applying Equation 2.2, for in-

stance, it is expected higher values along the object boundaries than inside and outside

them (Figure 2.6).

Figure 2.6: Example of arc-weight assignment suitable for lung delineation in CT images
of the thorax.
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2.4 Graph-based object delineation

Approaches for graph-cut segmentation are based on criterion functions that measure

some global property of the object’s boundary from the arc-weight assignment. The idea

is to define a cut boundary in the graph — i.e., a set C of arcs linking nodes labeled as

object and nodes labeled as background — that represents the desired segmentation when

a graph-cut measure is minimum (maximum).

Wu and Leahy [51] were the first to propose a solution for graph-cut image segmen-

tation using as measure the sum of the arc weights in the cut boundary (Equation 2.3).

This cut measure has the bias towards small boundaries and to circumvent this problem,

other objective functions were proposed, such as average cut [52], mean cut [53], average

association [54], ratio cut [55], and normalized cut [56].

E1(C) =
∑

∀(s,t)∈C

w̄(s, t) (2.3)

Unfortunately, the problem of segmenting a desired object in a given image cannot be

simply reduced to finding a minimum of a criterion function in the entire search space,

since false-cut boundaries due to similarities between object and background are very

common in practice. Indeed, the problem of finding the minimum cut in a generic graph

is NP-hard. Heuristic solutions have been proposed in polynomial time [57], but with

poor computational performance and results that are sometimes far from the desired

segmentation. The running time of the graph-cut algorithms is usually O(mn2), being m

the number of arcs and n the number of nodes.

Energy functions that incorporate object and background information in their for-

mulation are more recent alternatives to reduce the small cut problem. For example,

two terminal nodes (source and sink) can be added to the image graph, representing

the object and background respectively [12, 58, 59]. These nodes are directly connected

to all voxels by arcs whose weights reflect penalties for assigning a voxel to object and

background based on image region properties (probability maps). A min-cut/max-flow

algorithm from source to sink [22, 60] is used to compute the minimum-cut boundary,

according to Equation 2.4:

E2(C) = E1(C) + γ(
∑

∀(s,t)∈C

P̄o(s) +
∑

∀(s,t)∈C

P̄b(t)) (2.4)

where P̄o(s) and P̄b(t) are the complement of the probability maps Po and Pb that measure

how well the intensities of voxels s and t fit into a known intensity model of the object

and background, respectively.
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If the method fails to detect the desired boundary, the user can impose the weights

of the arcs that connect voxels with the source and sink by selecting seeds inside and

outside the object. After a sufficient number of user intervetions, increasing the number

of seeds at each interaction, the method can converge to the desired solution. However,

this approach adds a lot of difficulties in Equation 2.4. The parameter γ specifies the

importance of the region property term versus the boundary property term. If γ is low,

the cut is the same as in Equation 2.3, and if γ is high the method becomes very dependent

on the probability maps (it becomes an optimum thresholding). That is, the pixels are not

guaranteed to be connected to the markers that have labeled them in the image domain

(a segmentation inconsistency), whenever object and background present regions with

similar image properties.

A solution to overcome these problems is to drop the terms with probability maps (as

in Equation 2.5) and force the entire simulated flow from source to pass through the in-

ternal markers, travel through the image graph, and achieve the sink through the external

markers. Note that, higher values of α favor larger cut boundaries in the minimization of

Equation 2.5. As the parameter α is lowered, object delineation requires more user effort

in marker imposition (Figure 1.3b) to avoid small cuts. An interesting particular case,

however, is the equivalence between the minimization of Equations 2.5 and 2.6, when

α→ +∞ — i.e., limα→+∞ Esum(C) = Emax(C).

Esum(C) =
∑

∀(s,t)∈C

w̄α(s, t) (2.5)

Emax(C) = max
∀(s,t)∈C

w̄(s, t) (2.6)

This equivalence makes the cut boundary obtained by the min-cut/max-flow algorithm

be the same as obtained by the image foresting transform (IFT) algorithm, when used to

implement the relative fuzzy connectedness segmentation [21]. In the case of segmentation

by watershed transform, this is also equivalent to the maximization of Emin(C), in the

absence of tie zones.

Emin(C) = min
∀(s,t)∈C

w(s, t). (2.7)

According to Ciesielski et al. [14], many segmentation methods from the state-of-the-

art can be reduced to a graph-cut problem, whose solution is obtained by the minimization

of either Esum or Emax using internal and external markers as region-based hard con-

straints. Moreover, the min-cut/max-flow algorithm and the IFT algorithm are among

the most efficient solutions to implement those segmentation methods. Therefore, the

next sections present more details about these solutions.
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2.4.1 Selecting region-based hard constraints

We must recall Algorithm 1 in this section. The user draws colored markers in each

object, including background. For 3D images, the user interface shows three orthogonal

slices (axial, coronal and sagittal) for marker selection and the user can scroll these cross-

sectional slices along the axes x, y, and z. Each marker is a connected set of seed voxels

in D. The colors indicate object labels λ(s) ∈ {0, 1, . . . , n}, being 0 for markers in the

background and 1 ≤ i ≤ n for markers in the object i. For the sake of efficiency and user

control, the markers are also labeled by an id function. Therefore, the user provides a

seed set S from all markers, where each seed s ∈ S has object label λ(s) and marker label

id(s) ∈ {1, 2, . . . , m}, m > n.

The markers propagate their labels in Lines 3-4 of Algorithm 1, while minimizing a

given energy function, Esum or Emax (or maximizing Emin), such that the cut boundary

will be defined by arcs (s, t) ∈ A where LO(s) 6= LO(t). Therefore, each marker will label

a connected region of voxels (influence zone) in the resulting label maps LO and LM , by

propagating object label LO(s) ∈ {0, 1, . . . , n} and marker label LM(s) ∈ {1, . . . , m} to

each voxel s ∈ D.

For segmentation in Lines 3-4 using the min-cut/max-flow algorithm, the method must

first obtain the binary segmentation of each object 1 ≤ i ≤ n — i.e., label maps LO1
,

LO2
, . . . , LOn

— from internal markers with label i and external markers with label j 6= i,

0 ≤ j ≤ n. The multi-label map LO can then be defined as LO(s) = maxi=1,2,...,n LOi
(s)

for each s ∈ D, assuming that the intersection between any pair of objects is empty.

Similarly, it must create an unique marker label map LM .

Given that marker selection may not be effective to solve segmentation in a single

execution of Algorithm 1, the user should be able to add and remove markers to correct

segmentation in a sequence of executions. The set M provides all voxels from markers

selected for removal, which implies that the entire influence zone of removed markers must

disappear from LO and LM after a next segmentation execution in Lines 3-4.

In order to achieve interactive response time to the user’s actions in 3D image seg-

mentation, it is paramount to correct segmentation in time proportional to the modified

influence zones between executions. Object delineation by the min-cut/max-flow algo-

rithm and the IFT algorithm cannot satisfy this condition. However, their variants, Dy-

namic Graph-Cut (DGC)[6] and Differential IFT[9], can update the label maps LO and

LM without starting over the segmentation process, as required in the desired canonical

solution (Algorithm 1).

The marker label map LM and marker identification function id are not necessary

when segmentation is computed from the beginning at each execution of Lines 3-4 in

Algorithm 1. Therefore, they will be omitted in the next sections.
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2.4.2 Object delineation by the min-cut/max-flow algorithm

Given an image graph (D,A), whose arcs (s, t) are weighted by a function w̄(s, t) suitable

to separate an object 1 ≤ i ≤ n from the background, the user provides a λ-labeled

seed set S = So ∪ Sb, with object seeds in So and background seeds in Sb. For object

delineation using the min-cut/max-flow algorithm[58], the graph must be extended by two

virtual nodes, a source o and a sink b, with arcs (o, s) and (s, b) connecting them to each

voxel s ∈ D (Figure 2.7). This algorithm is based on the Ford-Fulkerson theorem[22].

The delineation method simulates a flow from o to b, which should reach the object

through its internal markers; visit the object’s nodes, cross the object’s boundary, and

visit the background’s nodes by passing through the arcs in the image domain; and finally

reach b through its external markers. If the arc weights w̄(s, t) are lower across the

object’s boundary than inside and outside it; the arc weights w̄(o, s) = 0 for s ∈ Sb and

w̄(o, s) = +∞ for s ∈ So; and the arc weights w̄(s, b) = 0 for s ∈ So and w̄(s, b) = +∞ for

s ∈ Sb, the minimization of Esum(Ci) will clearly insert in the cut Ci the arcs that connect

So to background voxels; object voxels to Sb; and internal voxels s to external voxels t.

This process propagates object labels from the internal markers to all voxels inside the

cut Ci, leaving the remaining voxels with label 0. By eliminating from Ci the arcs with o

and b, the final cut boundary Ci = {(s, t) ∈ A, LOi
(s) 6= LOi

(t)} is implicitly represented

in the resulting label map LOi
.

Given that arc-weight assignment is never perfect, the user can add/remove markers,

enforcing the object’s voxels to be inside the cut. Such segmentation correction can be

more efficiently by Markov random fields[6]. The algorithm, called Dynamic Graph-Cut

(DGC), stores the flow obtained in the previous execution and uses it to initialize the

subsequent execution, taking time proportional to the number of arcs in the modified

regions of the label map LOi
.

2.4.3 Object delineation by the IFT algorithm

The Image Foresting Transform (IFT) is a methodology to the design of image operators

based on optimum connectivity [23]. For a given adjacency relation and connectivity

function (path-value function), the IFT algorithm minimizes (maximizes) a connectiv-

ity map to partition the image graph into an optimum-path forest rooted at the minima

(maxima) of the resulting connectivity map. The image operation is then obtained by a

local processing on attributes of the forest (e.g., root labels, optimum paths, connectivity

values). Examples can be found for image filtering [61], segmentation [62, 9], representa-

tion [63, 64], analysis [65], classification [66], and clustering [67].

In this section, we instantiate the IFT algorithm for multi-object image segmentation

from a λ-labeled seed set S, such that S = S0 ∪ S1 ∪ . . . ∪ Sn with seeds for object
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(a) (b)

Figure 2.7: (a) A 2D image graph with 4-adjacent pixels s and t. (b) An extended graph
obtained by adding two terminal nodes (source o and sink b), which represent object and
background, respectively.

i in each set Si and background seeds in S0. The method promotes an optimum seed

competition wherein each seed in S conquers its most closely connected voxels in the

image domain, according to the connectivity function. In the resulting optimum-path

forest, an object i may be defined by multiple connected components, as represented by

the optimum-path trees rooted at its internal seeds in Si (Figure 2.8). The root labels are

propagated during the IFT algorithm such that a resulting label map LO defines a graph

cut C = {(s, t) ∈ A, LO(s) 6= LO(t)} with maximum value of Emin(C) (Equation 2.7). The

details about this process are given next.

Paths

For a given 3D image graph (D,A), a simple path πt with terminus t is a sequence

of distinct nodes 〈t1, t2, . . . , tk〉 with (ti, ti+1) ∈ A, 1 ≤ i ≤ k − 1, and tk = t. The

concatenation of a path πs and an arc (s, t) is denoted by πs · 〈s, t〉, being πt = 〈t〉, i.e.

k = 1, called a trivial path.

Connectivity function

A connectivity function assigns a value f(π) to any path π in the image graph (D,A). A

path πt is optimum if f(πt) ≤ f(τt) for every other path τt, disregarding the origin. The

IFT algorithm is essentially Dijkstra’s algorithm generalized for multiple sources (seeds)
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(a) (b)

Figure 2.8: (a) Markers with the same label can indicate a single object with multiple
connected components. (b) The resulting label map shows the object as composed by
voxels in the optimum-path forest rooted at those markers.

and more general connectivity functions. However, it requires that function f be smooth.

This means that for any voxel t ∈ D, there must exist an optimum path πt, which is

either trivial or has the form of τs · 〈s, t〉, where:

1. f(τs) ≤ f(πt)

2. τs is optimal.

3. for any optimum path τ ′
s, f(τ ′

s · 〈s, t〉) = f(πt).

Optimum-path forest

For image segmentation from a λ-labeled seed set S, we will consider arc weights w(s, t) =

||~G(t)||— a gradient image value — such that the weights of arcs across the object bound-

aries are meant to be higher than the weights of internal and external arcs (Figure 2.6).

Therefore, we may think of the image Ĝ = (D, G), where G(s) = ||~G(s)||, as the gradient

image used for arc-weight assignment. The connectivity function is defined to penalize

paths that cross the object boundaries:

f(〈t〉) = h(t)

f(πs · 〈s, t〉) = max{f(πs), G(t)} (2.8)

where h(t) is a finite handicap value, usually defined as h(t) = 0 if t ∈ S and h(t) = +∞
otherwise, to force optimum paths to start in S.

The IFT algorithm minimizes a connectivity (cost) map C, by assigning to each node

t ∈ D, the path πt of minimum cost value:

C(t) = min
∀πt∈Πt(D,A)

{f(πt)} (2.9)
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where Πt(D,A) is the set of all possible paths with terminus t in the image graph. If

the arc-weight assignment were ideal, it would be enough for segmentation to place a

single seed per object and background. All optimum paths from the internal seed and

other object voxels would have lower values than paths from other seeds, since paths

with external source would be penalized by the higher arc weight across the boundary

(Figure 2.9). Given that arc-weight assignment is never ideal, the segmentation requires

more seeds per object.

The above solution is essentially a watershed transform from labeled markers [34]. The

gradient image Ĝ = (D, G) may be interpreted as a surface where the object is formed

by basins and its boundary is expected to be at the ridges between basins. Markers with

distinct colors are holes from which colored water floods the surface. When waters from

distinct colors meet at the ridges (boundary), a barrier is built to avoid their misture[49,

32]. However, the IFT algorithm also outputs an optimum-path forest — an acyclic

predecessor map P that assigns to every voxel s ∈ D\S its predecessor P (s) ∈ D in the

optimum path from S, or P (s) = nil 6∈ D when s ∈ S. As we will see in the next chapter,

since the predecessor map stores the connectivity between S and the remaining voxels,

it allows to correct segmentation without starting over the process. This is a unique

feature of the region-based image segmentation by IFT as compared to most watershed

algorithms [68, 69]. The only exception is the watershed-cut algorithm [16], which is

based on the relation between minimum spanning trees and optimum-path trees for the

connectivity function f used in this section. Its results are equivalent to those of the IFT

algorithm as long as the arc weight assignment does not create tie zones — regions where

voxels can be conquered by multiple seeds with the same optimum path cost. It is not

clear in [16], how they solve tie zones and removal of markers.
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(a)

(b)

(c)

Figure 2.9: (a) Arc weights are meant to be higher on object boundaries than inside and
outside them. (b) Markers A (yellow) and B (red) compete by offering optimum paths to
the remaining voxels. Due to the arc-weight assignment, f(πAC) < f(πBC), making C to
be conquered by A. Similarly, B conquers D due to f(πBD) < f(πAD). (c) B conquers all
voxels around the object, before A can reach E due to the ordered path-cost propagation
in the IFT algorithm. This provides a consistent solution for tie zones. That is, even for
f(πBE) = f(πAE), voxel E is conquered by B.
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The IFT-watershed algorithm

Algorithm 2 presents a Watershed Transform from Labeled Markers using the IFT algo-

rithm. This formulation was first presented in [64].

Algorithm 2 – IFT-watershed

Input: Gradient image Ĝ = (D, G), adjacency relation A, seed set S ⊂ D labeled by λ.

Output: Optimum path forest P , connectivity C, root R, and object label LO maps.

Auxiliary: Priority queue Q and a variable tmp.

1. For each t ∈ D, do

2. P (t)← nil, R(t)← t, C(t)← +∞
3. If t ∈ S, then

4. C(t)← 0, LO(t)← λ(t)

5. Insert t in Q

6. While Q 6= ∅, do

7. Remove s from Q such that C(s) is minimum

8. For each t ∈ A(s), such that C(t) > C(s), do

9. tmp← max{C(s), G(t)}.
10. If tmp < C(t), then

11. If C(t) 6= +∞, then remove t from Q

12. Set P (t)← s, R(t)← R(s), C(t)← tmp, LO(t)← LO(s)

13. Insert t in Q

14. Return (P, C, R, LO)

Lines 1–5 initialize maps and insert seeds in the priority queue Q. The roots of the

forest will come from the minima of the handicap function h. In this case, h(t) = 0 (Line

4) if t ∈ S, or h(t) = +∞ (Line 2) otherwise. When this is not the case, it is possible

that a seed be conquered by another seed which offers to it a path whose cost is less than

its handicap value. The algorithm not only propagates optimum paths in P , their costs

in C, and root labels in LO, but it also propagates the root R(t) that has conquered each

voxel t ∈ D. The main loop computes an optimum path from S to every voxel s in a non-

decreasing order of cost (Lines 6–13). At each iteration, a path of minimum cost C(s) is

obtained in P when we remove its last voxel s from Q (Line 7). Ties are broken in Q using

first-in-first-out (FIFO) policy. That is, when two optimum paths reach an ambiguous

voxel s with the same minimum cost, s is assigned to the first path that reached it. The

rest of the lines evaluate if the path that reaches an adjacent voxel t through s is cheaper

than the current path with terminus t and update Q and all maps accordingly. Actually,

according to [34], Line 11 is not necessary for the case w(s, t) = G(t), but we kept it in

case the reader decides to implement the algorithm with other arc-weight function w(s, t).

Figure 2.10 exemplifies the execution of the IFT algorithm.
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(a) (b)

Figure 2.10: (a) An image graph with 4-connected adjacency, where the integers are
the gradient values G(s). (b) An optimum-path forest for the connectivity function f

(Equation 2.8), where w(s, t) = G(t) and h(t) = 0, if t is one of the three seed pixels
represented by bigger dots, and h(t) = +∞ otherwise. [23]

Priority queue

Asymptotically, the bottleneck of Algorithm 2 lies in Line 7 — the selection of the

minimum-cost voxel s ∈ Q. If Q is implemented as a balanced heap data structure,

the total running time will be O(|A| + |D| log |D|). Given that the connectivity costs

f(πt) can be integers, Q can be implemented as a circular queue of K + 1 entries, each

pointing to a circular doubly linked list of voxels. Let K be a fairly small upper bound

to the incremental cost f(πs · 〈s, t〉)− f(πs) of extending an optimum path πs by an arc

(s, t) ∈ A, and to the maximum difference f(〈t〉) − f(〈t′〉) between the costs of trivial

paths (excluding infinite values). The insertion, deletion, and cost update of a voxel can

be done in O(1) time. Finding the next minimum-cost voxel in Q may require to skip

over several empty entries; however, since the cost of the next voxel never decreases, the

total time of Line 7 is O(K). Algorithm 2 will then run in O(|A| + |D| + K) time and

O(|D|+ K) space. Figure 2.11 shows this data structure.

2.5 Complementary comments

The chapter has reduced our choices for seed-based interactive segmentation of medical

images to two main approaches: one that minimizes Esum (Equation 2.5) and the other

that maximizes Emin (Equation 2.7 — i.e., it minimizes Emax, Equation 2.6). The Dynamic

Graph cut algorithm [6] is the best current surrogate for the minimization of Esum, rather

than the min-cut/max-flow algorithm, since it takes time proportional to the number of

arcs in the modified regions between consecutive segmentation executions with different

seed sets. Similarly, the Differential IFT algorithm [9] can take time proportional to the
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Figure 2.11: Nodes t are inserted in bucket C(t)%(K + 1) (left), forming K + 1 lists
(right). The property f(πs · 〈s, t〉) − f(πs) ∈ [0, K] guarantees that nodes with different
values are never in a same bucket.

number of voxels in the modified regions between consecutive segmentation executions,

which makes it the best choice of Emin maximization. However, as presented in [9],

the DIFT algorithm does not guarantee that all voxels are connected to the roots that

labeled them, when distinct markers are addeed and removed at the same time. The same

segmentation consistency problem may occur when the resulting label map LO is filtered

to smooth object boundaries. Therefore, the next chapter shows how to fix the problem

for both situations.



Chapter 3

Differential and Relaxed Image

Foresting Transform

In this chapter we revisit the Differential Image Foresting Transform (DIFT) algorithm [9]

and a shape filtering procedure for object boundary relaxation [24] to fix inconsistencies

that might be created by both methods in seed-based image segmentation. Additionally,

for interactive segmentation, object relaxation must be much faster in responding to the

user’s actions in interactive time. We solve the problem such that the user can decide

when and how many times the relaxation procedure will be applied during the segmen-

tation process. The improvements made on both methods result into a fast interactive

image segmentation algorithm, named Differential and Relaxed Image Foresting Trans-

form (DRIFT), able to produce consistent label maps with smooth object boundaries.

3.1 Inconsistency in seed-based image segmentation

Let LO be a label map resulting from a seed-based image segmentation procedure using

adjacency relation A to propagate labels from the seed set. The label map LO is said

inconsistent when a voxel s was labeled by a seed R(s) — i.e., LO(s) = LO(R(s)) — but

there is no path using the same adjacency relation that connects s and R(s) by a sequence

of voxels with the same label LO(R(s)). Note that this definition applies to any seed-

based segmentation algorithm and, according to it, a random walker cannot guarantee a

consistent label map.

It should be clear by definition that the IFT-watershed algorithm (Algorithm 2) gener-

ates consistent label maps LO. In order to achieve interactive response time when the user

corrects segmentation by adding new seeds, Algorithm 2 must be modified such that the

optimum-path forest and its attributes can be updated without starting over the process.

Therefore, we wish to execute a variant of the IFT-watershed algorithm multiple times

28
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for different seed sets, using the forest and its path connectivity values of the previous

execution as initial condition for seed competition in the next execution. However, a

simple change in Lines 1-5 after the first execution, eliminating Line 2 and adding to Line

4 R(t)← t and P (t)← nil, is not enough to guarantee consistent label maps.

Figure 3.1 illustrates a possible label inconsistency problem. Figure 3.1a presents a 4-

adjacent image graph, where the numbers indicate the gradient values G(s) of the nodes s

(pixels) in Algorithm 2. Higher values (darker gray) are the ridges between basins, where

the object boundaries are expected to be. For a single yellow seed, Figure 3.1b shows

a possible optimum-path forest with one tree rooted at that seed. The numbers now

indicate the connectivity values of the optimum paths from the selected seed. Suppose

that a second seed (darker red) is added to the competition process. Due to the previous

connectivity values, the modified Algorithm 2 will only propagate optimum paths with

red labels to nodes reached by better connectivity values (smaller costs). Although the

optimum-path forest is always correctly updated, the tie zones may cause an inconsistent

label map. Figure 3.1c shows the problem for a tie zone of value 10 — it remains yellow

when the optimum paths of its nodes have been updated to the red root. The situation

with seed addition was foreseen in the original DIFT algorithm [9] and treated by adding

a predecessor test, P (t) = s, in Line 10 of the modified Algorithm 2. The test forces to

visit the nodes of the tie zones and update their labels as shown in Figure 3.1d.

Alternatively, one can think of updating the forest and connectivity values during

the DIFT, and propagating labels and roots only afterwards. However, the main idea of

interactive response time is to visit only nodes that require some modification. In this case,

we wish to propagate labels and roots correctly on-the-fly. Note that, the DIFT algorithm

is general and can also be used for applications with distinct connectivity functions. Some

of them, as for example the Euclidean distance transform, require the root information

to compute connectivity values.

In spite of the facts that seed addition has been treated correctly in the DIFT al-

gorithm [9] and that in most situations the user corrects segmentation by adding new

markers, we found in this work that the inconsistency problem arise when markers are

added and removed at the same time. Note that, when marker addition and removal

are treated in separated DIFT executions, the problem does not appear. However, the

simultaneous addition and removal of markers can create a situation where a tie-zone

node is removed from the priority queue before its label is updated with respect to a

new root. Figure 3.2 illustrates the problem. Figure 3.2a shows a 4-adjacency image

graph, where numbers indicate the gradient values of the pixels, and Figure 3.2b shows a

possible optimum-path forest, labels and connectivity values for Algorithm 2 from three

seeds (darker red, yellow, and blue). In the DIFT algorithm [9], when the user removes a

seed, the nodes of its tree become available to be reconquered by new seeds and also by
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Figure 3.1: (a) A 4-adjacent image graph with numbers indicating gradient values for
the IFT-watershed transform. (b) An optimum-path forest with a single tree rooted at a
yellow seed, where the numbers indicate the connectivity values. (c) An optimum-path
forest with two trees, being the second rooted at a darker red seed added to the segmen-
tation in (b), and an inconsistent label map where the yellow tie zone with connectivity
value 10 is not visited for label update with respect to the new root (darker red seed).
(d) The correct result with consistent label map when using a predecessor test, P (t) = s,
in Line 10 of Algorithm 2.

non-removed seeds, as represented by their frontier nodes — i.e., nodes of non-removed

trees that are adjacent to those available nodes. The new seeds are inserted in the priority

queue Q with handicap value h(t) = 0, as always, but the frontier nodes are inserted in Q

with C(t) equal to their final connectivity values from the previous execution. Figure 3.2c

shows one example where the yellow tree is removed and new darker blue seeds are added.

The frontier pixels are indicated by squares. This represents an instant before executing

the DIFT algorithm for the second time. Figure 3.2d shows a possible optimum-path for-

est, connectivity values and labels resulting from the second execution. Note that some

frontier pixels may be conquered by new seeds. The predecessor test can partially correct
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the label inconsistency problem (red components with darker blue roots), but tie-zone

nodes with value 2, which are frontier pixels, will leave Q before other nodes in the same

tie zone due to the FIFO tie-breaking policy. Given that the predecessor test does not

account for removed nodes, the subtrees of these frontier pixels will remain with their

previous labels, creating an inconsistent label map.

This would not be a problem if we had implemented the DIFT algorithm with Last-In-

First-Out (LIFO) tie-breaking policy in Q, as described in [23], but such a policy cannot

equally share tie-zone nodes among disputing seeds and so, visually, the FIFO policy

better matches the label map with the users’ expectations. Most methods assume that

tie zones do not represent relevant components in seed-based segmentation. This is not

our experience, specially in the case of 3D medical images using local gradient estimators.

Figure 3.2e shows the expected result and the complete solution that corrects label

inconsistencies in the DIFT algorithm is presented next.

3.2 Differential Image Foresting Transform

User corrections in seed-based image segmentation are usually necessary, given that gener-

ally there is no way to know a priori where seeds must be placed with 100% effectiveness.

The user very often needs to add markers (connected seed sets) and, to correct possible

user mistakes, markers must be removed. The predecessor map of the Image Foresting

Transform (IFT) [23] stores the connectivity information between seeds and voxels, which

makes it possible to add and remove markers without starting over the process when its

differential version [9] is used. Other seed-based approches have to recompute segmen-

tation for every new seed set, with the exception of watershed cuts [16] which can store

connectivity information in a minimum spanning forest. Considering a 3D image with

5123 (≈ 134 million) voxels and a linear-time algorithm running on a modern PC, each

segmentation execution takes about 55 seconds making the interactive process unfeasible.

In practice, the DIFT algorithm [9] can considerably reduce the computational time for

marker addition and removal to a few seconds (e.g., less than 3s) per execution.

It is also worth mentioning that automatic solutions based on seed-based image seg-

mentation may use fuzzy/statistical object models to derive the seeds [2, 46]. However,

the best seed location requires some optimization algorithm based on an effective crite-

rion function. When these methods fail, most interactive approaches can only start over

the segmentation process, disregarding the fact that the segmentation errors might be

localized in a few regions of the label map. Miranda et al. [70] presented a solution to

transform any label map into an optimum-path forest with a minimum number of trees

(“supposedly less user effort”) for segmentation correction using the DIFT algorithm. In

this case, tree removal is usually required since their choice was part of the automatic
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Figure 3.2: (a) A 4-adjacent image graph whose numbers indicate gradient values for IFT-
watershed transform. (b) A possible optimum-path forest with connectivity values and
labels from three seeds (darker yellow, red, and blue). (c) The user marks the yellow tree
for removal and adds new darker blue seeds. Frontier pixels are indicated by squares. (d)
Even with the predecessor test, the DIFT algorithm [9] cannot avoid label inconsistency
(the two red components with darker blue roots), since frontier pixels in tie zones may
leave Q before other tie-zone nodes, preventing their subtrees to have their labels fixed
with respect to the new roots. (e) The desired result.
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segmentation process.

In this section, we present a path forest data structure and the DIFT-watershed algo-

rithm with the proposed correction to compute an optimum-path forest with its attributes

in that data structure in a consistent way.

3.2.1 Path forest data structure

A path forest data structure can be defined as an image F̂ = (D, ~F ), as follows.

Path forest F̂ = (D, ~F ) where ~F (s) = (F1(s), F2(s), . . . , F5(s)) ∀s ∈ D

D: is the image domain in Z
3,

F1: Predecessor map F̂ .P : D → D ∪ {nil},
F2: Connectivity map F̂ .C : D → Z,

F3: Root map F̂ .R : D → D,

F4: Object label map F̂ .LO : D → Z, and

F5: Marker label map F̂ .LM : D → Z.

The DIFT-watershed algorithm is a variant of Algorithm 2 that allows multiple execu-

tions of the image foresting transform in F̂ , using the attributes of the previous execution

as initial values and modifying them by influence of the new seeds. Given that the

connectivity values are integers, the priority queue Q can be implemented as described

in Section 2.4.3, achieving time proportional to the number of voxels in D in the first

execution and time proportional to the size of the modified regions in the subsequent

executions.

As input, the algorithm receives F̂ , a gradient image Ĝ = (D, G), an adjacency relation

A, an initial seed set S with voxels from all markers, labeled by the user via λ and id

functions, and a set M of voxels for marker removal (empty in the first execution). The

labeling function λ(s) ∈ {0, 1, . . . , n} assigns to seed voxels s ∈ S their object labels in

{1, 2, . . . , n} or a background label 0. The labeling function id assigns to each voxel s ∈ S
its corresponding marker label id(s) ∈ {1, 2, . . . , m}.

The algorithm essentially propagates the predecessor F̂ .P (t) in the optimum path

with terminus t, its connectivity value F̂ .C(t), the root node F̂ .R(t) ∈ D, object label

F̂ .LO(t) ∈ {0, 1, 2, . . . , n}, and marker label F̂ .LM(t) ∈ {1, 2, . . . , m} to each node t ∈ D

in a seed competition process, such that F̂ .P is an optimum-path forest, where voxels t

are conquered by their most closely connected seed F̂ .R(t).

For marker removal, the user clicks on a single voxel of the influence zone in F̂ .LM

conquered by a marker selected for removal. In the next execution, the input setM must

contain all voxels from the markers selected for removal.





3.2. Differential Image Foresting Transform 35

previous execution, as represented by the frontier voxels. This is consistent with the con-

nectivity function f (Equation 2.8, with h(t) = 0 when t ∈ S, and h(t) = +∞ otherwise).

Optimum path propagation in the DIFT starts from the seeds in S, as in Algorithm 2,

but whenever a node s cannot offer a better path to an adjacent node t (no matter t

is in the priority queue Q or has already been removed from it), the predecessor test,

F̂ .P (t) = s, must be applied to avoid segmentation inconsistencies (Figure 3.1). This

process updates the maps in F̂ and, since we wish to relax boundaries between regions of

processed voxels with distinct labels, a set P of voxels processed in the current execution

also returns from the algorithm. The DIFT-watershed algorithm from labeled markers is

presented below.

Algorithm 3 – DIFT-watershed

Input: Path forest F̂ = (D, ~F ), gradient image Ĝ = (D, G), adjacency relation A, seed

set S ⊂ D labeled by λ and id, and a voxel set M for tree (marker) removal.

Output: Optimum-path forest F̂ and set P of processed voxels.

Auxiliary: Priority queue Q and variable tmp.

1. Set P ← ∅
2. If M 6= ∅, then

3. (F̂ ,Sf )←DIFT-TreeRemoval(F̂ , A, M)

4. While Sf 6= ∅, do

5. Remove t from Sf and insert t in Q

6. While S 6= ∅, do

7. Remove t from S
8. If t ∈ Q, then Remove t from Q

9. F̂ .C(t)← 0, F̂ .LO(t)← λ(t), F̂ .LM (t)← id(t), F̂ .R(t)← t, and F̂ .P (t)← nil

10. Insert t in Q

11. While Q 6= ∅, do

12. Remove s from Q, such that F̂ .C(s) is minimum and set P ← P ∪ {s}
13. For each t ∈ A(s) do

14. tmp← max{F̂ .C(s), G(t)}
15. If tmp < F̂ .C(t) or F̂ .P (t) = s, then

16. If t ∈ Q, then Remove t from Q

17. Set F̂ .P (t)← s, F̂ .C(t)← tmp, F̂ .R(t)← F̂ .R(s),

18. F̂ .LM (t)← F̂ .LM (s), and F̂ .LO(t)← F̂ .LO(s)

19. Insert t in Q

20. Return (F̂ ,P)

Line 1 initializes the set of processed nodes as empty. Subsequently, the DIFT-

TreeRemoval procedure (Algorithm 4) is executed and frontier voxels are inserted in
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Q with their attributes unchanged (Lines 2–5). Lines 6–10 initialize the new seeds and

insert them in Q, such that they have precedence over frontier voxels (Line 8). The main

loop (Lines 11–19) propagates optimum paths from seeds and frontier voxels (by extend-

ing their current paths) as described for Algorithm 2, except for two details. Set P is

constructed in Line 12 for subsequent object relaxation (Section 3.3.1). The predecessor

test, F̂ .P (t) = s, in Line 15 accounts for the cases where tmp = F̂ .C(t) (tie zone) by

forcing consistent label propagation along optimum paths, no matter t has already been

removed or not from Q (Figure 3.2e). Algorithm 4 for tree (marker) removal is presented

next.

Algorithm 4 – DIFT-TreeRemoval

Input: Path forest F̂ , adjacency A, and voxel set M for tree removal.

Output: F̂ with removed trees and set Sf of frontier voxels.

Auxiliary: Sets T1 and T2.

1. Sf ← ∅, T1 ← ∅, and T2 ← ∅
2. For each s ∈M, do

3. If F̂ .C(R(s)) 6= +∞, then

4. Set r ← R(s), F̂ .C(r)← +∞, F̂ .P (r)← nil, and T1 ← T1 ∪ {r}
5. While T1 6= ∅, do

6. Remove s from T1 and set T2 ← T2 ∪ {s}
7. For each t ∈ A(s), do

8. If F̂ .C(t) 6= +∞ and F̂ .P (t) = s, then

9. Set F̂ .C(t)← +∞, F̂ .P (t)← nil, and T1 ← T1 ∪ {t}
10. While T2 6= ∅, do

11. Remove s from T2

12. For each t ∈ A(s), do

13. If F̂ .C(t) 6= +∞, then

14. Set Sf ← Sf ∪ {t}
15. Return (F̂ ,Sf )

Line 1 initializes the auxiliary and frontier sets to empty. Lines 2-9 visit all nodes from

each tree rooted at F̂ .R(s) for each voxel s ∈M to reinitialize their path and connectivity

value. Note that, even if s ∈ M is not a root voxel, the tree it belongs to is removed.

The visited region, set T2 (Line 6), consists of the union of all removed trees. Finally, the

frontier voxels are identified in Lines 10-14 and inserted in Sf (Line 14), as voxels t 6∈ T2

that are adjacent to voxels s ∈ T2.
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3.3 Relaxing object boundaries

Segmentation methods that minimize Emax in Equation 2.6 (maximize Emin in Equa-

tion 2.7) are more susceptible to leaking [16, 34, 19] — errors when the label of the object

(background) propagates to background (object) voxels, as an analogy to the water that

fills up the object (background) basins in a gradient image and leaks to the background

(object). The correction of such segmentation errors is more effective when markers are

drawn around the lowest gradient parts of the object’s boundary, where the leakings occur

(Figure 3.4). However, small leakings are usually common in such approaches, creating

more irregular (“jagged”) segmentation boundaries than methods that minimize Esum in

Equation 2.5 [12, 50, 8].
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Figure 3.4: (a) A 4-adjacent image graph with numbers indicating gradient values. The
desired boundary is represented by darker nodes. (b) The plateaus of optimum connec-
tivity value equal to 4 with respect to the yellow seed provokes the leaking, since the red
seed can only reach it by paths of value equal to 5.

Human body structures usually present regular (“smooth”) boundaries and even Esum-

based segmentation methods cannot provide user control over the desired degree of object

smoothness. This can be achieved by controlling the parameters of a diffusion filter [24].

However, any relaxation filter cannot guarantee segmentation consistency and this oper-

ation needs to respond in interactive time. We present a fast scheme for object boundary

relaxation by diffusion filtering followed by label consistency correction (Figure 3.5).
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(a) (b)

Figure 3.5: (a) DIFT-watershed segmentation of multiple body anatomical structures in
the thorax. (b) Our approach can relax multiple object boundaries in a consistent way,
within interactive response time, and under user control.

3.3.1 Object boundary relaxation

The irregular segmentation boundaries in the object label map F̂ .LO can be represented

by a set B of voxels s ∈ P such that F̂ .LO(s) 6= F̂ .LO(t) for some t ∈ A(s). The set

P of processed voxels is equal to the image domain D after the first execution of the

DIFT-watershed algorithm (Algorithm 3), but P ⊆ D is usually much smaller than D in

the subsequent executions. The user can also decide when and how much the boundary

set B will be relaxed, by calling the object boundary relaxation procedure described in

this section with given parameters.

The boundary relaxation procedure is a variant of the diffusion filtering algorithm

proposed by Malmberg et al. [24]. The original algorithm reprocesses all voxels in D at

every iteration of diffusion, while our variant processes only voxels in a set Bd ⊆ D that

dilates from B by the adjacency relation A (planar structure element) at each iteration.

If the number T of iterations is small, as chosen by the user, the dilated boundary set

Bd will still be much smaller than D. As mentioned earlier, the procedure can create

inconsistencies in F̂ .LO, but those segmentation inconsistencies can be efficiently corrected

from voxels in Bd (Section 3.3.2).

The diffusion process starts from a previous map Mp that assigns membership value

Mp(s) ← 1, ∀s ∈ D, with respect to the previous object label LOp
(s) = F̂ .LO(s), as

initially chosen by the DIFT-watershed algorithm, to decide a next object label LOn
(s)←

lmax ∈ {0, 1, 2, . . . , n} for s of maximum membership µ(lmax) = maxl=0,1,...,n{µ(l)}. The

membership values µ(l) are defined based on Mp(t) and diffusion weights W (t) of adjacent

voxels t ∈ A(s):

µ(l) =
1

Nf (s)

∑

∀t∈A(s)|LOp (t)=l

Mp(t)W (t) (3.1)
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Nf (s) =
∑

∀t∈A(s)

W (t), (3.2)

W (s) =
1

1 + βG′(s)
, (3.3)

where Nf (s) is a normalization factor of the diffusion weights around s, 0 ≤ β ≤ 1 is an

user-defined relaxation factor, and G′(s) = G(s)
max∀s∈D{G(s)}

is the normalized gradient value

at s. The maximum membership value µ(lmax) computed for s must then be stored in

a next membership map as Mn(s). Given that each voxel s ∈ D is also associated to

a previous marker label LMp
(s) = F̂ .LM(s), as initially chosen by the DIFT-watershed

algorithm, the marker label LMp
(t) of the adjacent voxel t ∈ A(s) is stored in mk(l),

where l = LOp
(t). Therefore, mk(lmax) must then be stored in a next marker label

map as LMn
(s). This diffusion process, however, is only applied to voxels in a previous

boundary set Bp (initially equal to B), whose dilation by A creates voxels stored in a

next boundary set Bn. The process is then repeated by T iterations, by making Mp(s)←
Mn(s), LOp

(s)← LOn
(s), LMp

(s)← LMn
(s) for all s ∈ Bp, and then Bp ← Bn.

The parameters that do not change in the algorithm can be previously computed only

once. They are stored in a quadruple Ω = (W, Nf , β, T ) defined as follows: The diffusion

Relaxation Ω is
Ω.W : Diffusion weights Ω.W : D → R

Ω.Nf : Normalization factors Ω.Nf : D → R

Ω.β: Relaxation factor within [0, 1].
Ω.T : Integer for the number of relaxation iterations.

procedure is presented in Algorithm 5.

Algorithm 5 – ObjectRelaxation

Input: Consistent path forest F̂ = (D, ~F ), adjacency relation A, set P of processed

voxels by Algorithm 3, relaxation quadruple Ω.

Output: Relaxed object label map L′
O, relaxed marker label map L′

M , and dilated bound-

ary set Bd.

Auxiliary: Previous and next object label maps LOp
and LOn

, previous and next marker label

maps LMp
and LMn

, previous and next boundary sets Bp = ∅ and Bn = ∅, previous

and next membership maps Mp and Mn (set to 1 for all s ∈ D), label membership

µ(l) and marker membership mk(l) with respect to each label l = 0, 1, 2, . . . , n.
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1. For each s ∈ P, do

2. For each t ∈ A(s), do

3. If F̂ .LO(s) 6= F̂ .LO(t)

4. Bp ← Bp ∪ {s, t}
5. LOp

← F̂ .LO, LOn
← F̂ .LO, LMp

← F̂ .LM , LMn
← F̂ .LM

6. For each relaxation iteration from 1 to Ω.T , do

7. Bn ← ∅
8. For each s in Bp, do

9. Bn ← Bn ∪ {s}
10. For each l ∈ {0, 1, . . . , n}, do

11. mk(l)← −1 and µ(l)← 0

12. For each t ∈ A(s), do

13. Set l← LOp
(t), µ(l)← µ(l) + Ω.W (t)Mp(t)

14. mk(l)← LMp
(t), and Bn ← Bn ∪ {t}

15. For each l ∈ {0, 1, . . . , n}, do

16. µ(l)← µ(l)/Ω.Nf (s)

17. Compute lmax such that µ(lmax) = maxl=0,1,...,n{µ(l)}.
18. LOn

(s)← lmax, Mn(s)← µ(lmax), and LMn
(s)← mk(lmax)

19. While Bp 6= ∅, do

20. Remove s from Bp

21. Set LOp
(s)← LOn

(s), LMp
(s)← LMn

(s), and Mp(s)←Mn(s).

22. Bp ← Bn

23. L′
O ← LOn

, L′
M ← LMn

, Bd ← Bn

24. Return (L′
O, L′

M ,Bd)

Lines 1–4 compute the initial boundary set Bp from P , and Line 5 initializes the

auxiliary maps. Lines 6–22 represent the diffusion filtering process on the label maps,

according to the earlier description based on computed object memberships Equation 3.1.

The number Ω.T of relaxation iterations is an important parameter. If it is too high,

the object may deform too much, loosing shape indentations and protrusions, and thus

increasing the segmentation error. Set Bn holds the dilated boundary set (Lines 9 and

14) along the iterations. The output variables L′
O, L′

M , and Bd (Line 23) are used next

to correct possible label inconsistencies created by the diffusion process.

3.3.2 Correcting label inconsistencies

Let πt be the optimum path with terminus t in F̂ .P for some t ∈ Bd. A label inconsistency

due to relaxation occurs when exists an inconsistent node r in the path πt, such that:

• either r = F̂ .R(t) is the root of πt and its label changed, L′
O(r) 6= F̂ .LO(r),
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• or the new label of r is different from the new label of its predecessor in πt, L′
O(r) 6=

L′
O(F̂ .P (r)).

In any case, the sub-tree of r is inconsistent, irrespective to the new labels of its nodes.

This inconsistency can be corrected by:

• finding the inconsistent node r in πt, which is the closest to F̂ .R(t);

• making it a new root, F̂ .P (r)← nil and F̂ .R(r)← r, called relaxation root; and

• propagating the new attributes of r to each node s of its subtree, including the

new label maps, as F̂ .LO(s) ← L′
O(s) ← L′

O(r), F̂ .LM(s) ← L′
M(s) ← L′

M(r), and

F̂ .R(s)← r.

Note also that only nodes t ∈ Bd such that L′
O(t) 6= F̂ .LO(t) need to be verified and since

we also update previous and current label maps for each first detected inconsistent tree,

we can avoid verification for several nodes t that initially had to be verified. One example

of a consistent segmentation turning into an inconsistent segmentation due to relaxation

is presented in Figure 3.6 and the label correction procedure is presented in Algorithm 6.
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Figure 3.6: (a) Segmentation with two seeds: background (yellow) and object (red). The
numbers are the connectivity costs from the roots to each node. (b) and (c) Inconsistent
object, cost and marker segmentation. Note that the thin path of nodes connecting the
red components was labeled as background, causing an inconsistency.
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Algorithm 6 – LabelCorrection

Input: Path forest F̂ , adjacency relation A, relaxed object label map L′
O, relaxed marker

label map L′
M , and dilated border Bd computed during relaxation.

Output: Relaxed and consistent forest F̂ .

Auxiliary: Set T of new roots and color ∈ {white, gray, black}.

1. While Bd 6= ∅
2. Remove t from Bd

3. If L′
O(t) 6= F̂ .LO(t) then

4. color ← white

5. (r, color)← SearchRelaxationRoot(F̂ , L′
O, t, color)

6. If color = black then

7. PropagateRootAttributes(F̂ ,A, L′
O, L′

M , r)

8. F̂ .P (r)← nil

Each node t ∈ Bd is checked if its label changed during relaxation. In such cases,

function SearchRelaxationRoot (Line 5) searches if there is any inconsistency in the path

with terminus t and returns the inconsistency node r with color equals black, when the

path is consistent or white, otherwise. Line 8 creates a relaxation tree by making r a

root of the forest with its subtree the new tree. Figure 3.7a shows the expected consistent

output, with relaxation roots denoted by the rectangles. The numbers are the connectivity

cost of each path. In Figure 3.7b, the numbers are the markers identification after the

relaxations that were propagated from existing markers to the corresponding relaxation

roots. If the relaxation roots were assigned with a new id, these roots would have to be

removed manually one by one compromising the user control over the process.

The SearchRelaxationRoot and PropagateRootAttributes procedures are presented in

Algorithms 7 and 8.

Algorithm 7 – SearchRelaxationRoot

Input: Path forest F̂ , relaxed object label map L′
O, voxel t, and color variable

Output: A tuple (r, color), with color = black or color 6= black.

1. If F̂ .P (t) = nil, then

2. color ← gray

3. If L′
O(t) 6= F̂ .LO(t), then
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Figure 3.7: (a) Obtained cost and label map after execution of the LabelCorrection pro-
cedure. The relaxation roots are denoted by the rectangles. (b) Marker map after the
correction. The marker ids are propagated from existing markers to the corresponding
relaxation roots.

4. r ← t, color ← black

5. Else

6. (t, color)← SearchRelaxationRoot(F̂ , L′
O, F̂ .P (t), color)

7. If color = gray, then

8. If L′
O(t) 6= L′

O(F̂ .P (t)) then

9. r ← t, color ← black

10. Return (r, color)

Algorithm 8 – PropagateRootAttributes
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Input: Path forest F̂ , adjacency relation A, relaxed object label map L′
O, relaxed marker

label map, L′
M , and root r

Output: Path forest F̂ , maps L′
O, and L′

M are updated.

Auxiliary: Subtree set T

1. T ← {r}
2. While T 6= ∅
3. Remove s from T
4. F̂ .LO(s)← L′

O(r), L′
O(s)← L′

O(r), F̂ .LM (s)← L′
M (r), L′

M (s)← L′
M (r), F̂ .R(s)← r

5. For each t ∈ A(s), do

6. If P (t) = s then

7. T ← T ∪ {t}

Algorithm 7 is a recursive method that traverses from a node t searching for a node

r that satisfies any of the conditions described in the beginning of this section. That

is, L′
O(r) 6= F̂ .LO(r) or L′

O(r) 6= L′
O(F̂ .P (r)). This procedure also ensures that the

relaxation root r is the closest one to F̂ .R(t). The variable color is used to check if any

of the conditions were satisfied and in case color 6= black, the path with terminus in t is

said consistent.

In case color = black, Algorithm 8 updates the attributes LO, L′
O, LM , L′

M , and R

(Line 4) for all nodes in the subtree of r (Lines 2–7).

3.4 Segmentation using relaxation

The segmentation process using relaxation can be divided in two paradigms: after each

execution of DIFT-watershed the relaxation is applied in the propagated region; or the

relaxation is applied only once, at the end of the process. We will present both versions

based in the canonical Algorithm 1 mentioned in Chapter 1.

Both Algorithms receives as input a gradient image, an appropriate adjacency relation,

the relaxation factor β, and the number of relaxation iterations T . More user input is

required during the execution, in order to set new seeds and mark voxels for removal.

Differential and Relaxed Image Foresting Transform (DRIFT) (Algorithm 9) applies the

relaxation several times and DIFT Terminus Relaxation (DIFT-TR) (Algorithm 10) only

once at the end. In order to use the same ObjectRelaxation (Algorithm 5) procedure for

both Algorithms we set the list of processed nodes P with the image domain D so that

the relaxation is applied in the entire image.
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Algorithm 9 – DRIFT

Input: An image Ĝ = (D, G), adjacency relation A, relaxation factor β, and number of

relaxation iterations T .

Output: Object label map LO: D → {0, 1, . . . , n} and marker label map LM : D →
{1, 2, . . . , m}.

1. Create a path forest structure F̂ using D.

2. Create relaxation structure Ω from Ĝ, β, and T .

3. do

4. Get from the user, labeled seeds S with λ and id, marker voxels in M
5. (F̂ ,P)←DIFT-watershed(F̂ , Ĝ,A,S,M).

6. (L′
O, L′

M ,Bd)← ObjectRelaxation(F̂ ,A,P, Ω).

7. F̂ ← LabelCorrection(F̂ ,A, L′
O, L′

M ,Bd).

8. Present the label map F̂ .LO to the user.

9. While User is not satisfied with F̂ .LO.

10. Return (F̂ .LO, F̂ .LM )

Algorithm 10 – DIFT-TR

Input: An image Ĝ = (D, G), adjacency relation A, relaxation factor β, and number of

relaxation iterations T .

Output: Object label map LO: D → {0, 1, . . . , n} and marker label map LM : D →
{1, 2, . . . , m}.

1. Create a path forest structure F̂ using D.

2. Create relaxation structure Ω from Ĝ, β, and T .

3. do

4. Get from the user, labeled seeds S with λ and id, marker voxels in M
5. (F̂ ,P)←DIFT-watershed(F̂ , Ĝ,A,S,M).

6. Present the label map F̂ .LO to the user.

7. While User is not satisfied with F̂ .LO.

8. P ← D.

9. (L′
O, L′

M ,Bd)← ObjectRelaxation(F̂ ,A,P, Ω).

10. F̂ ← LabelCorrection(F̂ ,A, L′
O, L′

M ,Bd).

11. Return (F̂ .LO, F̂ .LM )

The operations in Algorithm 6 are sufficient to circumvent possible inconsistencies dur-

ing the relaxation while maintaining forest topology (predecessor map) and connectivity

costs, but the sub-trees affected by diffusion now have a new root.

The drawback of this solution is the relaxation trees are usually small (trivial in many

cases). To facilitate user corrections, a few implementation rules had to be defined:
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1. Relaxation trees are associated with user-drawn markers from which they inherit

the new labels and marker ids during diffusion.

2. User-drawn markers have higher priority than relaxation roots.

The first rule is important to avoid manual removal of relaxation trees, as explained

in Section 3.3.2. The second rule is exemplified in Figure 3.8. Given the expected result

after the LabelCorrection procedure (Figure 3.7a), suppose that the user wants to override

regions represented by relaxation trees. New seeds in those regions would have to compete

with the relaxation roots. This can be avoided by automatically inserting the respective

relaxation roots into the deletion set M. Figure 3.8a shows an example where a seed is

inserted in a relaxation tree rooted at a blue node. Since the blue node will be inserted in

M there will be no competition between it and the new seed. The corresponding result

of the DIFT-watershed is shown in Figure 3.8b.

We noticed that by applying the relaxation procedure at every iteration, several re-

laxation roots are created (Figure 3.9). Rule 2 then allows the user to easily correct this

effect by drawing new markers on influence zones of relaxation roots, which will cause

the automatic insertion of those roots in the deletion set M. However, this is not easy

when the relaxation trees are trivial. In this case, it is better to select their corresponding

markers for removal, turn off the relaxation procedure, and add new markers to correct

segmentation. The relaxation procedure can be turned on again in subsequent execu-

tions. Since set P of processed nodes will be different, future corrections will not make

the relaxation roots to reappear.

We have implemented the DRIFT Algorithm in a software tool, called Volumetric

Image Segmentation for Visualization and Analysis (VISVA), and performed a preliminary

evaluation of it using a non-expert user and an MR-Brain image. Figure 3.10 shows

the ground truth, the resulting segmentation of the DRIFT algorithm, and the relaxed

segmentation of the DIFT-watershed Algorithm (i.e., the relaxation is only applied at the

end). The ground truth (Figure 3.10a) shows the DIFT-watershed segmentation of the

cerebellum, left and right hemispheres as obtained by a neurologist. Figures 3.10b and

3.10c show the segmentation results as obtained by a non-expert user. Given that the

hemispheres are connected by the corpus callosum, and the cerebellum is connected to

them by the spinal cord and medulla, which must not be considered in the segmentation,

the markers must be selected around those connected components. Moreover, due to

partial volume, these objects must also be disconnected in other parts of the image. The

non-expert user has found difficult to select markers for segmentation, which indicates

that intelligent techniques to suggest potential marker locations are important to be

investigated in a future work. Experts trained in using the software tool may show a

different experience and this has to be evaluated in a future work. The user could finish
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Figure 3.8: (a) This image represents the instant before executing the DIFT-watershed
algorithm after a user correction. When the user adds a new marker (red), since this
marker is placed under a relaxation tree, the root of this tree is inserted into set M in
order to avoid competition with the new user marker. (b) The result after the execution
of DIFT-watershed with the relaxation root r ∈M and the red user marker in S.

Figure 3.9: By applying the relaxation procedure at every iteration, several relaxation
roots are created.
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segmentation in about 10 executions of the algorithms, taking about 4 minutes mostly to

choose marker locations. On the other hand, the results have shown to be very accurate

according to Dice metric [71]: the mean accuracies of DRIFT and DIFT-TR (DIFT with

terminal relaxation) were 0.92 and 0.93, respectively. For the DIFT algorithm 5 relaxation

iterations were applied at the end of the process, increasing Dice’s value from 0.92 to

0.93. The DIFT algorithm required more corrections, markers, user’s time but achieved

a better accuracy at the end. Table 3.1 presents all the metrics that were evaluated. A

correction is a user intervention to place more markers followed by a another execution

of the algorithm.

Algorithm Markers Corrections Total time Dice

DRIFT 17 6 3m21s 0.92
DIFT-TR 27 13 6m50s 0.93

Table 3.1: Evaluation of DIFT-TR (DIFT with terminal relaxation) and DRIFT algo-
rithms by a non-expert user.

(a) (b) (c)

Figure 3.10: (a) Ground truth of a MR-brain: left brain hemisphere, right brain hemi-
sphere, and cerebellum. (b) Interactive segmentation of the brain image using the DIFT
algorithm with relaxation at the end.(c) Interactive segmentation of the brain image using
the DRIFT algorithm.

In Chapter 4 we perform more experiments with DIFT, DIFT with terminal relaxation,

DRIFT, and DGC on three distinct medical image datasets. Table 3.1 raises the question

if the best approach is to apply the relaxation only at the end of the process or during

segmentation.



Chapter 4

Experiments

In this chapter we present a experimental setup to compare four graph-cut segmentation

methods using three datasets. In each dataset, there are multiple objects of interest for

segmentation. The main challenge comes from the absence of contrast in several parts,

which makes difficult to disconnect objects and eliminate background.

In order to avoid bias from distinct experts, the experiments adopted a geodesic robot

user [26] — an algorithm that selects markers on error components for each new execution

of the segmentation method until a convergence criterion to the available ground-truth

image is reached. Finding several experts to perform segmentation experiments is also

very difficult. The bias comes from possible disagreements among them with respect to

the delineation of a same object. Robot users avoid such a problem and make it possible

to repeat the experiments many times. Indeed, robot users have been proposed and

exploited in several works of the segmentation literature [72, 73, 26, 11]. Robot users are

also not free of bias since they can favor specific methods [11]. However, since the geodesic

robot user places the markers at the center of the error components, this certainly does

not favor any of the methods under comparison. On the other hand, once we choose the

best approach, it is also important to perform experiments with real users (experts) in

order to further improve and validate the practical use of the method.

4.1 Datasets

The datasets cover three distinct regions of the human body: thorax, brain, and foot1.

They consist of CT and MR images and the corresponding multiple-label images of the

interest objects, as interactively segmented by experts.

1We would like to thank Prof. Udupa from the University of Pennsylvania for the thorax and foot
datasets, and Prof. Cendes from the University of Campinas for the brain dataset.

49
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Dynamic Graph Cut algorithm [6] for each object separately, followed by merging of their

binary label maps into a multi-object label map. The MODGC algorithm is presented

below.

Algorithm 11 – MODGC

Input: An image Ĝ = (D, G) and adjacency relation A.

Output: Object label map LO: D → {0, 1, . . . , n}.

1. For each object i from 1 to n, do

2. do

3. Get from the user, labeled seeds S with λ to segment i

4. LOi
← DynamicGraphCut(Ĝ,A,S) as in [6].

5. Present the label map LOi
to the user.

6. While User is not satisfied with LOi
.

7. For each p ∈ D, do

8. LO(p)← maxi=1,2,...,n LOi
(p)

9. Return LO

All methods executed in the same graph, whose nodes are the voxels of the input 3D

image.

4.2.1 Geodesic robot

A robot can be used to simulate the behavior of a real user during segmentation. More

specifically, it was observed that real users tend to place markers at big error components

and usually in the center of these components. More specifically, a geodesic robot [74]

creates after each segmentation execution a sorted list L that defines the order in which

markers should be placed. In order to achieve that, the robot computes an image Ê =

(D, E), with E(t) = −1 if voxel t was correctly labeled or E(t) = λ(t) if the correct

label for t should be λ(t). By using Ê, the robot finds every connected component with

the same label through a breadth-first search, ignoring the label −1. These components

are called error components. Using the Euclidean Distance Transform [64], the list L

is populated with seed voxels at the geometric centers of the error components in the

decreasing order of distance to the border of the component. This way, the larger is the

component, higher is the priority of placing a marker in its geodesic center. Also, this

procedure limitates the robot to only insert new markers during the segmentation. Figure

4.2 illustrate some markers (colored spheres) created by the geodesic robot in the task of

thoracic image segmentation into three objects of interest and background. The color of

the markers indicates object membership.
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separated by object, therefore the efficiency gain of multi-object segmentation methods

over MODGC increases with the number of objects.

For accuracy evaluation, we used the mean values of the Average Symmetric Sur-

face Distance [75] and Dice [71] measures. Since all methods, including MODGC (Algo-

rithm 11), output a multi-object label map, these measures are presented for each object

separately, and also their average for the corresponding dataset.

Dice coefficient offers a global and intuitive idea of the correspondence between the

resulting segmentations. However, the surface distance is better when analyzing local dif-

ferences. Both metrics are often used in the scientific literature [75, 46] and segmentation

challenges 2.

4.3.1 Average Symmetric Surface Distance

Average Symmetric Surface Distance (ASSD) is the distance between two surfaces. It is

averaged because it computes the average from surface A to surface B and from surface B

to surface A. Let Bl be the border set of each object l = 1, 2, . . . , n under segmentation,

Gl be the set with the real borders of each one of those objects. Let D(t,Gl) be the

Euclidean Distance value [64] of each voxel t ∈ Bl related to its closest voxel in Gl. The

mean error for each object is measured by Equation 4.1. This metric is only symmetric if

it is computed the average from all t ∈ Bl to Gl and for all t ∈ Gl to Bl:

ASSD =
1

n

∑n

l=1

[

1

|Bl|

∑

∀t∈Bl
D(t,Gl)

]

+ 1

n

∑n

l=1

[

1

|Gl|

∑

∀t∈Gl
D(t,Bl)

]

2
(4.1)

This value is multiplied by the voxel dimension to convert the results to millimeters

(mm). When computing the distance, it is important to compute the closest distance to a

border voxel with the same label, instead of considering only the closest voxel disregarding

its label.

This operation consists of computing the distance between two surfaces, therefore in

a perfect segmentation the distance is 0.

Figure 4.3 shows a segmentation in green and the correct segmentation in red. Voxels

are only painted in red when they were segmented incorrectly. In this example, the first

and second rows show the best and worst segmentation results with ASSD 0.65mm and

1.55mm, respectively.

2http://mbi.dkfz-heidelberg.de/grand-challenge2007/sites/eval.htm
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Three orthogonal slices of an MR-brain image showing the best with ASSD
0.65 in (a-c) and the worst with ASSD 1.55 in (d-f) segmentation results. Voxels correctly
labeled are shown in green and errors in red.

4.3.2 Dice coefficient

Sørensen–Dice coefficient [71], is a statistical measure to compute the similarity between

two samples. The similarity between the obtained segmentation label map and the ground

truth can be computed with Equation 4.2. Let LO be the achieved segmentation and G the

correct segmentation (ground truth). Dice coefficient is the ratio between the intersection

of both label maps divided by the size of each label map. In our case, |LO| = |G|:

dice = 2×|LO∩G|
|LO|+|G|

(4.2)

Dice value is a number within [0, 1] with 1 being the best possible value. This metric

can be misleading in the sense that a small object can be completely misplaced but since

there is high intersection of the background pixels, it would still result in a high dice

value.
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4.4 Choice of parameters

For each dataset a training was performed on 25% of the images, randomly chosen to find

the best parameter values for each method. This choice aimed to maximize the mean

accuracy of the method, including the robot user, with respect to the ground-truth of the

training images. The remaining 75% images were used as test for comparison among the

methods.

In the case of MODGC, the parameter α in Equation 2.5 was optimized within [1, 9]

in order to avoid its reduction to Equation 2.6. For DRIFT and DIFT-TR, we optimized

the number T of relaxation iterations and fixed the relaxation factor Ω.β at 0.5 (Section

3.3.1).

4.5 Experiments and Results

We divided the experiments into two parts. The first part aimed at showing that multi-

object image segmentation is more effective than single-object segmentation. The sec-

ond part compared DRIFT, DIFT, DIFT-TR, and MODGC, using statistical significance

tests. We used the one-way Analysis of Variance (ANOVA) followed by a Tukey’s HSD

test. An interval of 95% confidence was considered. The tables in Section 4.5.2 show in

bold the best approach according to the statistical test. No values in bold are presented

when the methods are equivalent.

4.5.1 Single-Object versus Multi-Object Segmentation

In order to justify a multi-object segmentation, we executed the experiments for each

object individually and a multi-object segmentation using the DIFT algorithm on the

thorax dataset.

Regarding the ASSD metric, the thoracic images were benefited with the multi-object

algorithm as shown in Table 4.1.

DIFT Single Object (mm) DIFT Multiple Object (mm)

AS RPC LPC Average Average
8.73 1.57 1.94 4.08 1.29 ±0.20

Table 4.1: Comparison between single-object and multi-object segmentation in the thorax
dataset.

Since the execution time of the segmentation algorithms using the IFT framework

is independent of the number of objects, segmenting each object separately yields to a



4.5. Experiments and Results 56

considerably slower process than segmenting objects simultaneously. Also, since an object

may be close to another, its easier for a real user to determine the boundaries between

them in the same image than in separated segmentation tasks.

4.5.2 Comparison among Multi-Object Segmentation Methods

The ASSD values in Table 4.2 are in mm and they correspond to the mean error over

the 27 images (75% of the images) of the thorax dataset. Table 4.3 and Table 4.4 present

the Dice result and the user effort (efficiency) measurements, respectively. Values in

bold represent statistical significance among the other values, according to ANOVA and

Tukey’s HSD test.

For the thorax dataset, the best number of relaxation iterations was 1 for DRIFT and

5 for DIFT-TR. The best α parameter in MODGC was 9.

ASSD - Thorax

Average AS RPC LPC

DIFT 0.67 ± 0.06 1.09 ± 0.1 0.46 ± 0.08 0.46 ± 0.06
DIFT-TR 0.60 ± 0.05 0.93 ± 0.1 0.44 ± 0.07 0.43 ± 0.05
DRIFT 0.63 ± 0.13 1.08 ± 0.3 0.41 ± 0.06 0.40 ± 0.03

MODGC 0.80 ± 0.05 1.19 ± 0.1 0.62 ± 0.06 0.59 ± 0.04

Table 4.2: ASSD Error in millimeters for the thorax dataset.

Dice - Thorax

Average AS RPC LPC

DIFT 0.90 ± 0.01 0.77 ± 0.02 0.96 ± 0.01 0.96 ± 0.01
DIFT-TR 0.90 ± 0.01 0.79 ± 0.02 0.96 ± 0.01 0.96 ± 0.01
DRIFT 0.90 ± 0.01 0.77 ± 0.02 0.96 ± 0.01 0.96 ± 0.01

MODGC 0.89 ± 0.05 0.76 ± 0.03 0.96 ± 0.01 0.96 ± 0.01

Table 4.3: Dice coefficient for the multiple object thorax dataset.

The ASSD values in Table 4.5 are in mm and they correspond to the mean error

over the 30 images (75% of the images) of the brain dataset. Table 4.6 and Table 4.7

present the Dice result and the user effort (efficiency) measurements, respectively. Values

in bold represent statistical significance among the other values, according to ANOVA

and Tukey’s HSD test.
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Efficiency Measures - Thorax

Num Markers Num Executions Response time (s)

DIFT 70 ± 12 16 ± 4 0.40 ± 0.08
DIFT-TR 70 ± 12 16 ± 4 0.49 ± 0.10
DRIFT 57 ± 12 17 ± 4 0.51 ± 0.11

MODGC 88 ± 16 14 ± 3 7.08 ± 1.69

Table 4.4: Mean number of markers, mean number of corrections, and the mean waiting
time for the user after each correction in the thorax dataset.

For the brain dataset, the best number of relaxation iterations was 1 for DRIFT and

5 for DIFT-TR. The best α parameter in MODGC was 9.

ASSD - Brain

Average C LBH RBH

DIFT 0.73 ± 0.05 0.91 ± 0.1 0.64 ± 0.07 0.64 ± 0.06
DIFT-TR 0.63 ± 0.04 0.83 ± 0.1 0.53 ± 0.07 0.53 ± 0.05
DRIFT 0.73 ± 0.06 0.90 ± 0.1 0.64 ± 0.07 0.64 ± 0.06

MODGC 0.85 ± 0.07 0.91 ± 0.1 0.75 ± 0.18 0.89 ± 0.08

Table 4.5: ASSD Error in millimeters for the brain dataset.

Dice - Brain

Average C LBH RBH

DIFT 0.96 ± 0.00 0.93 ± 0.01 0.97 ± 0.00 0.97 ± 0.00
DIFT-TR 0.96 ± 0.00 0.94 ± 0.01 0.97 ± 0.00 0.97 ± 0.00
DRIFT 0.96 ± 0.00 0.93 ± 0.01 0.97 ± 0.00 0.97 ± 0.00

MODGC 0.96 ± 0.01 0.94 ± 0.01 0.97 ± 0.01 0.96 ± 0.00

Table 4.6: Dice coefficient for the multiple object brain dataset.

The ASSD values in Table 4.8 are in mm and they correspond to the mean error

over the 15 images (75% of the images) of the foot dataset. Table 4.9 and Table 4.10

present the Dice result and the user effort (efficiency) measurements, respectively. Values

in bold represent statistical significance among the other values, according to ANOVA

and Tukey’s HSD test.
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Efficiency Measures - Brain

Num Markers Num Executions Response time (s)

DIFT 335 ± 79 26 ± 8 0.17 ± 0.04
DIFT-TR 335 ± 79 26 ± 8 0.22 ± 1.25
DRIFT 296 ± 84 24 ± 7 3.08 ± 2.03

MODGC 332 ± 47 28 ± 6 15.91 ± 7.29

Table 4.7: Mean number of markers, mean number of corrections, and the mean waiting
time for the user after each correction in the brain dataset.

For the foot dataset, the best number of relaxation iterations was 5 for DRIFT and

50 for DIFT-TR. The best α parameter in MODGC was 9.

ASSD - Foot

Average Calcaneous Talus

DIFT 1.30 ± 0.10 1.44 ± 0.12 1.17 ± 0.11
DIFT-TR 0.90 ± 0.06 0.96 ± 0.08 0.85 ± 0.06
DRIFT 1.05 ± 0.09 1.17 ± 0.12 0.93 ± 0.10

MODGC 1.52 ± 0.20 1.99 ± 0.41 1.05 ± 0.06

Table 4.8: ASSD Error in millimeters for the foot dataset.

Dice - Foot

Average C Talus

DIFT 0.93 ± 0.01 0.93 ± 0.00 0.93 ± 0.01
DIFT-TR 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.01
DRIFT 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01

MODGC 0.90 ± 0.01 0.87 ± 0.02 0.92 ± 0.01

Table 4.9: Dice coefficient for the multiple object foot dataset.

4.6 Visual Performance

This Section presents a visual (Figure 4.4, Figure 4.5, Figure 4.6) comparison between

DRIFT/DRIFT-TR (the best for each dataset according to ASSD) and DIFT with respect



4.7. Discussion 59

Efficiency Measures - Foot

Num Markers Num Executions Response time (s)

DIFT 393 ± 144 45 ± 4 0.5 ± 0.1
DIFT-TR 393 ± 144 45 ± 4 1.8 ± 0.2
DRIFT 243 ± 116 47 ± 3 2.4 ± 0.4

MODGC 436 ± 17 55 ± 4 19.5 ± 6.6

Table 4.10: Mean number of markers, mean number of corrections, and the mean waiting
time for the user after each correction in the foot dataset.

to the ground truth segmentation. In Figure 4.4, the DRIFT result (c), presents visual

improvements over the DIFT segmentation (b). This is not true for Figure 4.5 in which

DIFT and DRIFT are pratically equivalent. The foot comparison 4.6 is greatly improved

with the relaxation at the last iteration (c) compared to no relaxation at all (b). Since

MR images are usually noisier than CT, DRIFT did not perform well in this dataset and

the best result was achieved with DIFT-TR.

(a) (b) (c)

Figure 4.4: (a) Ground truth segmentation of the left pleural cavity, right pleural cavity,
and arterial system. (b) DIFT segmentation of the thorax CT using the geodesic robot.
(c) Relaxed segmentation of the thorax CT using 1 relaxation iteration per execution.

4.7 Discussion

The first part of the experiments shows that multi-object segmentation can provide more

accurate results than single-object segmentation. This is possibly due to the lack of

precision in merging the individual label maps into a multi-object label map. Although

we did not account for efficiency it is possible to observe from the efficiency tables in

the previous section that the multi-object segmentation methods are significantly more
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(a) (b) (c)

Figure 4.5: (a) Ground truth segmentation of the left brain hemisphere, right brain
hemisphere and cerebellum. (b) Non relaxed segmentation of the MR-brain using the
geodesic robot. (c) DIFT-TR segmentation of the brain with 5 relaxation iterations.

efficient than MODGC.

During the experiments it was noticed that Emin-based methods are more accurate

than Esum-based. In practical terms, small differences in ASSD may represent significant

segmentation errors (Figure 4.3). The efficiency gain of Emin-based methods over Esum-

based is clearly due to the multi-object segmentation paradigm.

Object relaxation is another relevant factor to be considered. Applying object relax-

ation after each execution (DRIFT) consistently reduces the number of required markers

without compromising the response time, matching our experience in the interactive seg-

mentation test presented in Section 3.4. This also indicates that the high number of

relaxation trees created by DRIFT does not affect user control over the process. How-

ever, DIFT-TR was consistently more accurate (at least equivalent to) than DRIFT. This

was achieved at the price of more markers, indicating that the user can also put more ef-

fort in segmentation without worrying about small corrections and leave those corrections

to be automatically done at the end by the relaxation procedure.

The Dice coefficient is fast to compute and a good metric to provide a preliminary

evaluation, but it is not precise enough to compare methods in our experience. All results

turned out to be equivalent in this metric.

Ideally, a suitable gradient image for each dataset should be created focused in the

image modality and in the image properties of the objects. For instance in the brain

dataset, it is possible to provide a better gradient by degrading the contrast between the

pia mater and CSF (Cerebral Spinal Fluid) in favor to the contrast between CSF and

gray matter (the boundary between hemispheres and CSF) [2].

The foot dataset contains very noisy images and a low-pass filter was applied be-

fore computing the gradient image by Equation 2.2. However, this was not enough to
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(a) (b) (c)

Figure 4.6: (a) Ground truth segmentation of the talus and calcaneous. (b) Non relaxed
segmentation of the foot MRI using the geodesic robot. (c) Relaxed segmentation of the
brain MRI using 50 relaxation iterations at the end of the process.

avoid leaking in several parts which, required a considerably higher number of relaxation

iterations in DIFT-TR.



Chapter 5

Conclusion and Future Works

According to [14], graph-cut image segmentation algorithms may be divided into two

types of energy minimizers, Emax and Esum. Approaches based on Emax minimize Equa-

tion 2.6 (the same as maximize Equation 2.7), while approaches based on Esum minimize

Equation 2.5. In the context of interactive segmentation, where the user adds and re-

moves markers to indicate the objects of interest, these approaches can be more efficiently

implemented with the Differential Image Foresting Transform (DIFT) algorithm [9] and

Dynamic Graph Cut (DCG) algorithm [6], respectively. While the latter is limited to

binary segmentation, the former provides more irregular object boundaries. Moreover, we

observed that the original DIFT algorithm could not guarantee a consistent segmentation

when marker addition and removal were performed simultaneously.

In this work, we first fixed the inconsistency problem by presenting a new version of

the DIFT algorithm. In order to provide more regular object boundaries and inspired

on the previous work of Filip Malmberg [24], we proposed a fast diffusion filtering algo-

rithm for object boundary relaxation on the results of the DIFT algorithm. The diffusion

filtering, as any other independent boundary regularization procedure, may make the seg-

mentation result inconsistent with respect to the user-selected markers, but we presented

a solution that adds relaxation trees to the resulting optimum-path forest. As side effect,

the relaxation trees tend to be small for user corrections, but we provided two rules that

amend this problem: (1) relaxation trees are associated with user-drawn markers, so they

can be deleted by removing their corresponding marker, and (2) user-drawn markers have

higher priority than relaxation roots, so relaxation trees are automatically removed when

the user draws markers that intercept them. However, this is not easy when the relaxation

trees are trivial. In this case, it is better to select their corresponding markers for removal,

turn off the relaxation procedure, and add new markers to correct segmentation and turn

on the relaxation procedure afterwards. The resulting interactive segmentation method,

named DRIFT, relies on the new DIFT algorithm to segment multiple objects simultane-
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ously and on the new diffusion filtering procedure for object boundary relaxation. It was

compared to multi-object segmentation using MODGC, DIFT, and DIFT-TR (another

proposed approach). The experiments involved eight body anatomical structures from

several CT-thorax images, MR-brain images, and MR-foot images, and a geodesic robot

user [74] to avoid human bias.

The experiments showed the advantages in accuracy and efficiency of the multi-object

segmentation paradigm over single-object. We may conclude that DRIFT is the most

efficient approach (less user effort), being only slightly less accurate than the most accurate

one, DIFT-TR.

In [76] it is observed that unexperienced users tend to spend more time fixing small

error components. In this context, the relaxation procedure seems to be helpful in DRIFT

and DIFT-TR. However, the choice of the best approach may change depending on the

application (e.g., different object shapes) and the human user. In this sense, it is important

to consider experiments with real users in a future work.

It is also important to improve the gradient image depending on the application. All

segmentation methods can benefit from gradient images that present higher values on the

object boundaries than elsewhere. This aspect is also left for a future work.

DRIFT and DIFT-TR represent important contributions for interactive segmenta-

tion which can provide accurate results with minimum effect to the user controllability

and waiting time between corrections. We intent to explore them in real medical image

analysis applications. Moreover, the algorithm presented in [77] allows to convert the

segmentation result of any method into an optimal path forest with minimal number of

roots for interactive corrections. Therefore the proposed relaxation procedure can also be

applied to relax those object boundaries.
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