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Abstract

Automatic face recognition has attracted considerable attention from the industry and

academy due to its wide range of applications, such as video surveillance, access control,

online transactions, suspect identification, etc. The recent progress in face recognition

systems motivates the use of deep learning techniques and user-specific face represen-

tation and classification models for unconstrained scenarios, which present considerable

variations in pose, face appearance, illumination, etc. Automatic face recognition systems

make possible to build annotated face datasets through user enrollment. However, as the

face datasets grow, it becomes crucial to reduce the number of negative samples used to

train user-specific classifiers, due to processing constraints and responsiveness. Such a

discriminative learning process during the enrollment of new individuals has implications

in the design of face recognition systems. Even though it might increase recognition per-

formance, it may affect the speed of the enrollment, which in turn may affect the user

experience. In this scenario, it is important to select the most informative samples in

order to maximize the performance of the classifier. This work addresses this problem by

proposing a discriminative learning method during user enrollment with the challenges of

not negatively affecting the speed and reliability of the process, and so the user experi-

ence. Our solution combines high-dimensional representations from deep learning with an

algorithm for rapidly mining negative face images from a large mining set to build an ef-

fective classification model based on linear support vector machines for each specific user.

The negative mining algorithm has shown to be robust in building small and effective

training sets with the most informative negative samples for each given individual. We

evaluate our approach on two unconstrained datasets, namely PubFig83 and Mobio, and

show that it is able to attain superior performance, within interactive response times, as

compared to five other baseline approaches that use the same classification scheme. The

results indicate that our approach has potential to be exploited by the industry with min-

imum impact to the user experience. Moreover, the algorithm is application-independent.

Hence, it may be a relevant contribution for biometric systems that aim to maintain

robustness as the number of users increases.
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Resumo

Sistemas automáticos de reconhecimento de faces tem atráıdo a atenção da indústria e da

academia, devido à gama de posśıveis aplicações, tais como vigilância, controle de acesso,

etc. O recente progresso em tais sistemas motiva o uso de técnicas de aprendizado em

profundidade e classificadores espećıficos para cada usuário em cenários de operação não-

controlado, que apresentam variações consideráveis em pose, iluminação, etc. Sistemas

automáticos de reconhecimento de faces possibilitam construir bases de imagens anotadas

por meio do processo de cadastramento de novos usuários. Porém, à medida que as bases

de dados crescem, torna-se crucial reduzir o número de amostras negativas usadas para

treinar classificadores espećıficos para cada usuário, devido às limitações de processamento

e tempo de resposta. Tal processo de aprendizado discriminativo durante o cadastramento

de novos indiv́ıduos tem implicações no projeto de sistemas de reconhecimento de faces.

Apesar deste processo poder aumentar o desempenho do reconhecimento, ele também

pode afetar a velocidade do cadastramento, prejudicando, assim, a experiência do usuário.

Neste cenário, é importante selecionar as amostras mais informativas buscando maximizar

o desempenho do classificador. Este trabalho resolve tal problema propondo um método

de aprendizado discriminativo durante o cadastramento de usuários com o objetivo de não

afetar a velocidade e a confiabilidade do processo. Nossa solução combina representações

de alta dimensão com um algoritmo que rapidamente minera imagens faciais negativas de

um conjunto de minerção grande para assim construir um classificador espećıfico para cada

usuário, baseado em máquinas de vetores de suporte. O algoritmo mostrou ser robusto

em construir pequenos e eficazes conjuntos de treinamento com as amostras negativas

mais informativas para cada indiv́ıduo. Avaliamos nosso método em duas bases contendo

imagens de faces obtidas no cenário de operação não-controlado, chamadas PubFig83 e

Mobio, e mostramos que nossa abordagem é capaz de alcançar um desempenho superior

em tempos interativos, quando comparada com outras cinco abordagens consideradas. Os

resultados indicam que o nosso método tem potencial para ser explorado pela indústria

com mı́nimo impacto na experiência do usuário. Além disso, o algoritmo é independente

de aplicação, podendo ser uma contribuição relevante para sistemas biométricos que visam

manter a robustez à medida que o número de usuários aumenta.
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Chapter 1

Introduction

The face is our primary attention focus in social intercourse, playing a major role in

conveying identity and emotions. The earliest work on face recognition can be traced back

at least to the 1950s in psychology [1] and to the 1960s in the engineering literature [2].

However, research on automatic machine recognition of faces really started in the 1970s

after the seminal work of Kanade [3].

Over the past two decades, face recognition has been an important area of research.

Such an effort may be explained by the wide range of applications that require face

recognition, such as video surveillance, access control, online transactions, suspect iden-

tification, etc. As a consequence, many systems and approaches have been proposed for

face recognition, and some of them have achieved state-of-the-art performances in specific

applications [4, 5, 6].

An important component in typical biometric systems, such as face recognition, is

user enrollment, which is responsible for capturing appropriate biometric readings of a

new user to be enrolled in the system and for storing this data either in raw format

or as feature vectors or user models. This process is directly related to the approach

used to match biometric samples and ultimately recognize the users. For example, a

common matching approach consists of computing pairwise distances from a probe sample

to gallery samples. The enrollment process in this case essentially consists of storing

valid gallery samples — or their corresponding feature vectors — in the system database

for later distance computation. While pairwise matching approaches have been largely

used in biometrics, modern face recognition systems usually adopt more sophisticated

mechanisms, often relying on learning tasks to extend or replace the approach with models

that increase the overall robustness of the system by leveraging ever-growing collections

of face images [5, 6, 7].

From a certain perspective, these learning tasks lead to models of two types: User-

Independent (UI) and User-Specific (US). UI models do not require access to gallery sam-
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1.1. Challenges and Objectives 2

ples for their training and therefore can be built offline, even prior to system deployment.

Time and memory requirements to learn these models are usually not a matter of concern

for the system operation, since the learning task is decoupled from the operation. Princi-

pal Component Analysis (PCA) [8] and Linear Discriminant Analysis (LDA) [9] applied

on face datasets available at development time are common examples of UI models.

US models incorporate gallery samples into the learning task and are usually built with

discriminative techniques executed during user enrollment [5] or at matching time [10,

11]. Time and memory demanded by the learning task in this scenario is critical, since

they can affect the system responsiveness, which in turn can adversely impact the user

experience. One of such approach is to learn a discriminative binary classifier that assumes

the enrolling user as the positive class and a set of face images from unrelated individuals

— e.g., from other individuals in a previously curated large face dataset — as the negative

class. In this case, pairwise matching is replaced by predicting the class to which a probe

sample belongs according to the discriminative US model.

1.1 Challenges and Objectives

The recent progress in automatic face recognition systems [6, 12, 13] motivates the use

of high-dimensional feature spaces, user-specific face representation, and classification

models for unconstrained scenarios, i.e., scenarios where the face images present a large

range of the variation in pose, lighting, expression, background, among others.

Face recognition systems make possible to build potentially huge annotated face datasets

through user enrollment. For example, an industry of mobiles that provides a face recog-

nition system in its devices may build a face dataset with the images from enrolled users.

Nevertheless, as the face dataset grows, it becomes crucial to reduce the number of neg-

ative samples used to train user-specific classifiers, due to aspects such as processing

constraints and responsiveness. Indeed, a high number of negative samples makes im-

practical or impossible to use all of them for the training of a user-specific classifier for

each user. Such a discriminative learning process during the enrollment of new individuals

has implications in the design of face recognition systems. Even though it might increase

recognition performance, it may affect the speed of the enrollment, which in turn may

affect the user experience. In this scenario, it is important to select the most informative

samples in order to maximize the performance of the classifier.

The simplest approach for this problem is to select n samples from the potentially huge

negative set at random, where n is the maximum possible number of negative samples

for the training of an US model in line with the system limitations. However, there are

no guarantees that the most informative negative samples will be selected, so that it is

possible to build a classifier with poor performance if uninformative samples are chosen.
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On the other hand, Negative Mining (NM) has been extensively used in Computer

Vision, especially for object detection [14, 15, 16, 17]. Felzenszwalb et al. [16] present a

NM method for object detection systems that uses Support Vector Machines (SVMs) [18]

as basis. The method iteratively solves a sequence of training problems using a relatively

small number of examples from a large negative set. However, the training set may have

a considerable growth in some iterations reaching a high processing time, because it does

not constrain the number of negative training samples to a maximum.

Papa et al. [19], in turn, propose a generic training sample mining algorithm that

exploits the use of SVMs and Optimum-Path Forest (OPF) classifiers [20]. This algorithm

fixes a maximum number of training samples and switches non-prototype training samples

by misclassified validation samples of the same label. Its main drawback is that it does

not capture the most informative negative examples when the positive class is extremely

unbalanced with respect to the negative class, because the classifiers tend to be biased to

the negative class, by resulting in a few (or no) classification error(s) of negative samples.

In view of the challenges presented, this work aims to study an effective and efficient

negative mining approach that overcomes the limitation presented in [16, 19], in order

to select the most informative negative samples for each individual being enrolled in

the recognition system, leading to robust discriminative US models without undesirably

impacting the user experience.

1.2 Methods and Contributions

We have studied a deep learning visual representation called HT-L3-1st [13], which is based

on the use of Convolutional Networks (ConvNets) [21], for processing visual information.

HT-L3-1st has the property of outputting high-dimensional features vectors and it has

achieved the state-of-the-art performance in challenging face recognition problems [5, 6,

13, 22]. Some variants from HT-L3-1st were also implemented, such as the one that

applies supervised techniques to learn filter weights in a given layer of the network [6].

We also conducted a study about some clustering algorithms in order to build an

unsupervised negative mining approach. Since these algorithms do not require labeled

data, the mining process may be previously executed at development time, by selecting the

most general informative negative samples from a curated large face dataset. In this spirit,

two approaches were investigated. The first one simply applies a clustering technique on

the negative set and then selects the nearest samples from each group center, assuming

that these are the most representative samples from their respective clusters. The second

approach builds a hierarchical clustering of the negative set. Preliminary experiments

presented unsatisfactory results for the addressed problem, which can be explained by

the fact that clustering techniques based on neighborhood and proximity can not behave
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well for feature vectors with high dimensionality [23]. Thus, it is necessary to use a low-

dimensional visual representation, which would result in less effective classifiers for the

addressed problem when compared to the HT-L3-1st descriptor. However, we believe that

such cluster-based negative mining approaches might be promising for scenarios where the

feature vectors have low dimensionality in order to obtain well-behaved clusters.

Notwithstanding the value of the these studies, the key contribution of this work is a

new method for rapidly mining negative face images from a large mining set during user

enrollment in order to build more effective US models based on linear Support Vector

Machines (SVMs) [18]. The algorithm has shown to be fast (a few seconds) and robust

in iteratively mining a much smaller and effective subset of negative training samples,

according to a criterion based on distances to SVM decision boundaries. Our approach

has similarities with [16, 19], however, we propose a new strategy to mine informative

negative samples for a given user (positive class) being enrolled in the recognition system.

We evaluate the new approach on two unconstrained datasets, namely PubFig83 [5]

and Mobio [24], and conduct an array of experiments by increasingly mining thousands

of available images in order to simulate the potentially huge dataset scenario, which is

not available. Results show that the proposed approach can attain significantly superior

performance with respect to five other baselines, which rely on the same classification

scheme, without negatively affecting the user experience. Moreover, given that the ap-

proach can be split into client and server tiers — requiring low bandwidth between the

tiers — it is also well suited to modern face recognition systems that operate on budgeted

devices. This work has been recently submitted to IEEE Signal Processing Letters [25].

1.3 Text Organization

In Chapter 2, we present background information on concepts explored in this work.

Sections 2.1 and 2.2 summarize the main contributions in the fields of face recognition

and negative mining according to the literature. Moreover, in view of providing a deeper

explanation of the techniques used in the experiments, the subsequent sections cover,

respectively, Convolutional Networks (ConvNets), Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs) in detail.

Chapter 3 depicts the proposed linear SVM-based negative mining approach for user

enrollment and previous attempts carried out with the purpose of developing negative

mining approaches based on clustering algorithms. All details about the considered face

datasets, evaluation protocol, experimental setup, and results are presented in Chapter 4.

Finally, a compilation of our contributions and experimental findings, along with new

directions to this research line, are presented in Chapter 5.



Chapter 2

Background

This chapter summarizes the main studies and concepts in the fields of face recognition

with emphasis in user enrollment and negative mining, as well as briefly presents back-

ground information on concepts that are required for understanding the next chapters.

2.1 Face Recognition

Over the past two decades, the problem of automatic face recognition has attracted consid-

erable attention from the industry and academy, and its study has promoted an impressive

advance in basic and applied research and applications [26]. Face recognition technology

can be used for user authentication, video surveillance, photo camera applications, among

others. The earliest work on the topic can be traced back at least to the 1950s in psy-

chology [1], but research on automatic face recognition started in 1973 with the seminal

work of Kanade [3].

Since then, dramatic advances have been made in the performance of face recognition

algorithms operating on images acquired under relatively controlled conditions [27]. In-

deed, under such conditions, automated face recognition can surpass human performance

in the task of matching pairs [27]. However, variations in the appearance of a given face

due to illumination, viewing conditions, facial expressions, etc., complicate the recogni-

tion process [26], and such an unconstrained recognition scenario still imposes challenges

to state-of-the-art methods in spite of the constant progress in the development of robust

face recognition systems capable to operate under such conditions [5, 6, 10, 28, 29].

The typical operation modes of a face recognition system are presented in Section 2.1.1.

General considerations about the process of face recognition are discussed in Section 2.1.2.

5
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the individual’s identity without the subject having to claim for it. The identification

task is mostly aimed at applications not requiring user interaction, such as surveillance

applications (Figure 2.1(b)).

We call gallery a set of enrolled images from known individuals that may be used, for

example, to build models or to do pair matching. A probe image, in turn, is an image

submitted to the system for comparison with the gallery.

Both operation modes can be further split into closed-set and open-set recognition

scenarios. The first one considers that probe faces will always be of somebody that

already belongs to the gallery. On the other hand, in the open-set scenario, probe faces

may be of individuals not previously enrolled in the system and therefore not belonging

to the gallery. In this work, experiments are carried out in the open-set scenario and

results are reported by assuming that the system is operating in verification mode, even

though the proposed approach naturally extends to operates in the closed-set scenario

and identification mode.

2.1.2 The Process of Face Recognition

According to Li and Jain [4], face recognition systems usually involve four steps, as

depicted in Figure 2.2(a): face detection (localization), face preprocessing (face align-

ment/normalization, light correction, and etc.), feature extraction, and matching.

Face detection segments the face areas from the background by coarsely estimating its

location and scale in a given scene. In the case of videos, detected faces may also need to

be tracked using a face tracking component [30].

The aim of the face preprocessing step is to refine the location and to normalize the

faces provided by the face detection, so that a robust feature extraction can be achieved.

Depending on the application, face preprocessing includes alignment (translation, rota-

tion, scaling) and light normalization/correlation [4].

Subsequent to the preprocessing step, feature extraction is performed on the stable face

image to derive effective information that is useful for distinguishing among faces of dif-

ferent individuals. Eigenfaces [31], Fisherfaces [32], and Local Binary Patterns (LBP) [33]

are well known facial feature extraction methods.

Feature matching is the ultimate step of the recognition process. The feature vector

obtained from feature extraction is matched to classes (individuals) of facial images al-

ready enrolled in the database. Matching algorithms vary from fairly obvious Nearest

Neighbor classifiers to advanced classification schemes like Neural Networks and Support

Vector Machines (SVMs) [18].

For the sake of clarity, we present a more detailed face recognition system architecture

in Figure 2.2(b), which is based on Figure 2.2(a) and is essentially divided into two stages:
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improve the system performance under memory and time constraints.

2.2 Negative Mining

Binary classification is a fundamental task in many data analysis applications such as

human detection in video [41], person identity verification in biometry [6, 5], and tumor

malignancy indication in medical diagnosis [42, 43]. In such applications, the number of

negative samples is usually much greater than the number of positive ones, so that an ex-

tremely unbalanced training set usually makes the classifier to present a poor performance

on positive test samples. For example, when designing a mobile face recognition system,

the industry (designer) may have an external huge negative dataset, which consists of

face images from millions of users, resulting in an important knowledge that can be used

to build robust classifiers. The high number of negative samples makes impractical or

impossible to use all of them for training the binary classifier for each user, due to aspects

as processing constraints and responsiveness.

In order to compose an effective training set, which might still contain a reasonable

difference between the number of negative and positive samples, the main idea is to

mine the most informative negative samples. This section describes the current state of

the problem in face recognition and the main negative mining techniques that could be

explored in this context.

2.2.1 State of the Problem in Face Recognition

Face recognition has become an important technological development topic in the industry

of ATMs, mobile devices, TVs, etc. Considering a person identity verification system based

on cloud services, for example, one can imagine the huge face image set in the cloud that

results from the enrollment of a myriad of users. In order to build a robust binary classifier

(gallery model) for a given user, one can easily avoid the face images of this user (positive

samples) in the negative set. The most informative negative samples are very likely the

face images similar to those of the user. However, their identification in a huge data set

is the main challenge. As far as we know, this problem seems to not have caught any

attention in the literature of face recognition.

The fastest and simplest strategy is to randomly select a given number of negative

samples for the training set. However, what is the ideal number of negative samples?

How lucky is it to get the most informative ones for that particular user? It should be

clear that this strategy is efficient, but it might not be effective. We are interested in the

most effective and efficient negative mining (NM) approach that answers both questions.

To the best of our knowledge, our work is the first one to propose negative mining for
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user-specific gallery model building at enrollment time. Perhaps the most related work

to ours is [40], where the authors propose the use of Partial Least Squares (PLS) [44] to

build US models. Nevertheless, our work differs from [40] in at least two fundamental

ways (see Section 3). First, we mine negative samples instead of negative individuals.

Second, and more importantly, we do not build US models against gallery samples in

a closed-set scenario. Instead, we rely on a previously curated large face dataset to

mine negative samples to build the models. This not only avoids the burden of gallery

maintenance, which is the focus of [40], but it is also more realistic, since it is aligned

with face recognition in the open-set scenario.

2.2.2 Techniques and Strategies

In spite of not being well explored in the enrollment process of biometric systems, Negative

Mining (NM) has drawn the attention of researchers in the computer vision literature [14,

15, 16, 17, 19, 45, 46] due to the need for treatment of huge negative sets.

Essentially, a common NM approach consists of two steps. First, a binary classifier is

trained using the positive samples and an initial random subset of negative samples. The

second step is inspired on the bootstrapping procedure [47], and consists of mining negative

samples by giving more importance to the “hard” ones — i.e., the incorrectly classified

negative examples — thereby improving the training set. A new classifier is then trained

and this procedure may be repeated a few times. Dalal and Trigs [14], for example, use

only one mining step by adding all the false positives that are found. Dolar et al. [45] use

2 of them, while other works use more [19, 46, 48].

Felzenszwalb et al. [16] present a general negative mining method for object detection

systems that uses classical SVMs and latent SVMs. The method iteratively solves a

sequence of training problems using a relatively small number of hard examples from

a large training set. The innovation of this approach is a theoretical guarantee that it

leads to the exact solution of the training problem defined by the large training set. This

requires a margin-sensitive definition of hard examples. Additional details about the

method, with theorems and their proofs, are presented in [15].

The authors define the hard instances relative to a model β as the examples that are

incorrectly classified or inside the margin of the classifier. Similarly, the easy samples are

the samples that are correctly classified and outside the margin. Examples on the margin

(support vectors) are neither hard nor easy. Figure 2.4 presents a block diagram with

the algorithm steps for the case of keeping all positive examples in the training set and

mining the negatives. The numbers in the figure represent the algorithm steps and are

detailed below.

The method starts building an initial training set Z1, with randomly selected negative
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(OPF) [20] classifiers. This algorithm is slightly different from the previous approach,

because it considers a fixed number of training samples. Moreover, this method is able to

be applied in multi-class problems. A pseudocode for the approach can be defined as in

Algorithm 1.

Algorithm 1 Learning Algorithm

Input: Large dataset Z labeled by λ, maximum number of training samples c, and
number n of iterations.

Output: The best OPF/SVM classifier.
Auxiliary: Number of classes g, false positive and false negative arrays, FP and FN , of

sizes g, list LM of misclassified samples, and variables α, and Acc.

1. Z1 ← rand selection(Z, c)
2. Z2 ← Z \ Z1

3. For i← 1 to n do

4. LM ← ∅
5. Train OPF/SVM with Z1

6. For j ← 1 to g do

7. FP (j)← 0 and FN(j)← 0
8. For each sample t ∈ Z2 do

9. Use the classifier obtained in Line 5 to classify t, resulting in the label α

10. If α 6= λ(t) then

11. FP (α)← FP (α) + 1
12. FN(λ(t))← FN(λ(t)) + 1
13. LM ← LM ∪ t

14. Compute Acc by Equation 2.3 and save the current instance of the classifier and
15. its accuracy
16. While LM 6= ∅ do

17. Remove t from LM

18. Replace t by a random non-prototype sample of the same class in Z1

19. Return the instance of the classifier with highest system accuracy

Initially, a large dataset Z is splitted into a training set Z1 and a validation set Z2

with |Z1| and |Z2| samples, respectively (Lines 1–2). The function rand selection(N, c)

selects c randomly samples from the dataset Z with a same percentage of samples per

class. The idea is to use the validation set Z2 to improve the sample composition in Z1

without increasing its size, i.e., |Z1| = c.

In each iteration, a classifier is learned using Z1, the validation examples are classified,

and the system accuracy is computed (Lines 4–14). The accuracy of each classifier is

measured by taking into account that the classes may have different sizes in Z2. Let
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Z2(i), i = 1, 2, ..., g, be the set of samples in Z2 from each class i, then

ei,1 =
FP (i)

|Z2| − |Z2(i)|
and ei,2 =

FN(i)

|Z2(i)|
, i = 1, ..., g (2.1)

where FP (i) is the number of samples from other classes that were classified as being

from the class i in Z2 (false positives), and FN(i) is the number of samples from the class

i that were incorrectly classified as being from other classes in Z2 (false negatives). The

errors ei,1 and ei,2 are used to define

E(i) = ei,1 + ei,2, (2.2)

where E(i) is the partial sum error of class i. Finally, the accuracy Acc of the classification

is written as

Acc =
2g −

∑g
i=1 E(i)

2g
= 1−

∑g
i=1 E(i)

2g
. (2.3)

The loop in Lines 16–18 exchanges the misclassified samples from Z2 for random non-

prototype training samples. Particularly, the support vectors are the prototypes in a

SVM model. The best OPF/SVM classifier is the one with highest accuracy along the n

iterations.

The main drawback of this method is that it does not capture the most informative

negative examples when the positive class is extremely unbalanced with respect to the

negative class, which is a typical scenario, for example, in modern face recognition systems.

This is because the classifiers tend to be biased to the negative class, resulting in a few

(or no) classification error(s) of negative samples.

The negative mining approach proposed in this dissertation overcomes the problems

of both methods presented in this review with a new strategy to mine relevant negative

samples for a given user (positive class) being enrolled in the recognition system.

2.3 Convolutional Networks

Deep Learning (DL) has caught a lot of attention recently due to breakthrough results in

a number of important vision problems [6, 49, 50, 51]. Deep Learning techniques enable to

learn multi-layered data representations for categorization — therefore the term deep —

directly from a labeled training dataset, without requiring descriptor specifications from

an expert in the application domain.

In this work, we are particularly interested in the visual representation called HT-

L3-1st [13], which is based on the use of Convolutional Networks (ConvNets) [21] for

processing visual information.
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Filter Bank Convolution

Initially, let A(p) be a squared region centered at p with size LA × LA, such that A ⊂

DI ×DI and q ∈ A(p) if max(|xq − xp|, |yq − yp|) ≤ (LA − 1)/2. Let Φi = (A, ~Wi) be a

filter with weights wi,j(q) associated with pixels q ∈ A(p). We represent the weights of

multiband filters as vectors ~Wi(q) = {wi,1(q), wi,2(q), . . . , wi,m(q)} for each filter i of the

bank. A multiband filter bank Φ = {Φ1, Φ2, . . . , Φn} is a set of filters Φi = (A, ~Wi), with

i = {1, 2, . . . , n}.

The weights of a filter Φi are randomly generated from a uniform distribution, and

normalized to zero mean and unit norm, in order to ensure that they are spread over the

unit sphere. In the DL literature, this weights are usually learned by backpropagation

for a given architecture. Since we are learning the architecture, we decided to take the

proposed approach in [13], which estimates a random orthonormal basis of weight vectors.

The convolution between an input image Î and a filter Φi produces a band i of the

filtered image Ĵ = (DJ , ~J), where DJ ⊂ DI and ~J = (J1, J2, . . . , Jn), such that for each

p ∈ DJ ,

Ji(p) =
∑

∀q∈A(p)

~I(q) · ~Wi(q), (2.4)

where · represents the inner product.

In Figure 2.6, we show an illustration of the convolution between a hypothetical m-

band input image and a multiband filter bank with n filters, so that each one also has m

bands. The resulting filtered image has n bands. The convolution may be interpreted as

a projection of the input image in the direction given by ~Wi(q).

Activation

The activation operation considered in our networks is used in many state-of-the-art

ConvNet architectures [13, 50] and simply creates an image Ĵ ′ = (DJ , ~J ′) by

J ′
i(p) = max(Ji(p), 0), (2.5)

where p ∈ DJ are pixels of the image, and i = {1, 2, . . . , n} are the image bands.

In spite of its simplicity, this activation function plays an important role in the net-

work information flow, specially when coupled with random filters initialized as described

previously. The combination of random filters with zero mean and unit norm, and this

activation rule aims to output a sparse code in order to improve the overall robustness of

the features being extracted [52].
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happens not only due to the stride parameter, but also because we do not consider regions

in which the adjacency window is not entirely inside the image domain.

2.3.2 Summary of all ConvNet Hyperparameters

As shown in Figure 2.5(b), a single layer in our networks consists of four previously

presented operations in a total of six hyperparameters detailed as follows:

• LA filter size;

• n number of filters;

• LB pooling size;

• s pooling stride;

• α pooling sensitivity;

• LC normalization size;

Additionally, a ConvNet performs an input normalization prior to processing of the

first layer, which requires one more hyperparameter: the input normalization size LCin.

Therefore, our three-layered ConvNet has a total of 19 hyperparameters, determining

its architecture and behavior.

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a technique which is widely used to reduce the

dimensionality or the noise in a dataset, while retaining the most variance, by finding

patterns within it [54]. The origin of PCA can be traced back to Pearson [8] in 1901, but

the modern instantiation was formed by Hotelling [55].

PCA computes a set of new orthogonal variables with the decreasing variances within

the dataset, producing principal components. The first principal component is the linear

combination of the original dimensions that has the maximum variance. Hence, the nth

principal component is the linear combination with the highest variance subjected to being

orthogonal to the n− 1 first principal components.

2.4.1 PCA Transformation

As mentioned before, PCA is mostly used as a dimensionality reduction technique based

on the extraction of interesting information from multidimensional data. Specifically,

PCA attempts to find a new representation of the original set by constructing a set of

orthogonal vectors — the principal components — spanning a subspace of the initial

space [54].
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These principal components, or basis vectors in the transformed space, can be calcu-

lated as follows [56]. Let X be the N ×M data matrix, so that the columns x1, ..., xM

are observations of a signal embedded in R
N . The PCA basis Φ is obtained by solving

the eigenvalue problem

Λ = ΦT ΣΦ (2.8)

where Σ is the covariance matrix of the data,

Σ =
1

M

M
∑

i=1

xix
T
i (2.9)

Φ = [φ1..., φm]T is the eigenvector matrix of Σ, and Λ is the diagonal matrix with eigen-

values λ1 ≥ ... ≥ λN of Σ on its main diagonal. In this manner, φj is the eigenvector

corresponding to the jth largest eigenvalue, being λj also the variance of the data projected

on it.

Therefore, to extract k principal components of the data, one must project the data

onto Φk - the first k columns of the PCA basis Φ, which correspond to the k highest

eigenvalues of Σ. This can be seen as a linear projection R
N → R

k that retains the

maximum energy (variance) of the signal. Another important property of PCA is that

it decorrelates the data with the covariance matrix of ΦT
k X always being diagonal. This

comes from the orthogonality of the principal components Φ previously mentioned [56].

Figure 2.8 shows an example of the PCA transformation in a two-dimensional dataset.

The axis labeled φ1 in (a) corresponds to the direction of maximum variance and it is

chosen as the first principal component. The second principal component is the remaining

perpendicular axis φ2. In a higher-dimensional space, in turn, the selection process would

continue dictated by the variances of the projections.

Figure 2.8(b) shows how the original data is expressed only with the first principal

component. Even being the most discriminant way for a one-dimensional projection of

the dataset, it is possible to note some loss of information.

When the data matrix X is small, PCA is not very expensive to calculate. Nev-

ertheless, as X grows, the computation of Σ (Equation 2.9) becomes quite expensive.

Fortunately, PCA may be implemented via an iterative method called Singular Value

Decomposition (SVD) [56]. The SVD of an N ×M matrix X(N ≥M) is given by

X = UDV T (2.10)

where the N×M matrix U and the M×M matrix V have orthonormal columns, and the

M ×M matrix D has the square root of the eigenvalues of XXT on its diagonal entries,

the singular values of X.
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group i has a class mean x̄i, which is defined

x̄i =
1

Ni

Ni
∑

j=1

xi,j, (2.11)

where Ni is the number of examples in class i. Let Σi be covariance matrix from the class

i, and x̄ the grand mean for the whole data set, such that

Σi =
1

Ni − 1

Ni
∑

j=1

(xi,j − x̄i)(xi,j − x̄i)
T , (2.12)

x̄ =
1

N

g
∑

i=1

Nix̄i =
1

N

g
∑

i=1

Ni
∑

j=1

xi,j, (2.13)

where N is the total number of samples of all classes. The between-class and within-class

scatter matrix are defined as follows

Sb =
g

∑

i=1

Ni(x̄i − x̄)(x̄i − x̄)T , (2.14)

Sw =
g

∑

i=1

(Ni − 1)Σi =
g

∑

i=1

Ni
∑

j=1

(xi,j − x̄i)(xi,j − x̄i)
T . (2.15)

The Sw matrix is computed by pooling the estimates of the covariance matrices of

each class. Since each Σi has rank Ni − 1, its rank can be at most N − g.

The main objective of LDA is to find a projection matrix Φlda that maximizes the

determinant ratio of Sb to the determinant of Sw (Fisher’s criterion [9]), that is

Φlda = arg max
Φ

∣

∣

∣ΦT SbΦ
∣

∣

∣

|ΦT SwΦ|
. (2.16)

Fisher’s criterion tries to find the projection that maximizes the variance of the class

means and minimizes the variance of the individual classes.

It has been shown that Φlda is in fact the solution of the following eigensystem problem:

SbΦ− SwΦΛ = 0. (2.17)

Multiplying by the inverse of Sw:
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S−1
w SbΦ− S−1

w SwΦΛ = 0 (2.18)

S−1
w SbΦ− ΦΛ = 0 (2.19)

S−1
w SbΦ = ΦΛ (2.20)

Thus, if Sw is a non-singular matrix, and can be inverted, then the Fisher’s criterion is

maximized when the projection matrix Φlda is composed of the eigenvectors of:

S−1
w Sb (2.21)

There will be at most g−1 eigenvectors with non-zero real corresponding eigenvalues,

because there are only g points to estimate Sb.

2.5.2 LDA versus PCA

LDA is closely related to PCA because both look for linear combinations of variables

which best explain the data [61], and are commonly used for dimensionality reduction.

PCA is an unsupervised method, since it does not take into account the class label

from the samples to compute the directions — principal components — that maximize

the variance in a dataset (see Section 2.4). In contrast, LDA is a supervised technique

that finds a linear combination of features — linear discriminants — that best separates

samples of distinct classes.

Figure 2.9(a) shows a toy example that illustrates the difference between PCA and

LDA in a simple dataset with two classes. It was considered only the first basis in each

technique.

PCA treats the data as a whole and its axes indicate where the maximum variation

actually lies. It does not consider any division into classes, so that the class distribution

on the projection axis can have a considerable overlapping, as shown in Figure 2.9(b).

LDA in turn aims to find a linear combination of features that best separates samples

of distinct classes. Figure 2.9(c) shows how the original data is expressed with the only

linear discriminant. It is possible to observe that the classes are well separate.

Although it might sound intuitive that LDA is superior to PCA for a multi-class

classification task, where the class labels are known, this may not always be warranted

and may sometimes lead to faulty system design, especially if the size of the learning

dataset is small [61].

Martinez et al. [61] presented comparisons between classification accuracies for image

recognition after using PCA and LDA. The results showed that PCA tends to outperform

LDA if the number of samples per class is relatively small. In practice, it is also not
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in terms of new algorithms, such as kernel methods, and in terms of a deeper theoretical

understanding [62].

In this dissertation, the covered theory is only introductory and the discussed concepts

is narrowly related to the primal optimization of linear SVMs for pattern recognition

problems. A considerable part of this section was condensed from the study about SVMs

provided by Yu and Kim in [64].

2.6.1 Motivation

One of the fundamental problems of learning theory is stated as: given two classes of

known objects, assign one of them to a new unknown object. A linear classifier reaches

this by building a decision boundary based on a linear combination of feature values.

Considering a given empirical dataset, this problem can be formalized as follows [62]:

(x1, y1), ..., (xm, ym) ∈ X × {±1}, (2.22)

such that X is some nonempty set usually referred to as the domain from where the

patterns xi (also known as samples, inputs, or instances) are taken, and yi are called

labels, targets, or outputs. In such a problem, there are only two classes of patterns —

which for mathematical convenience are labeled by +1 and −1 — such that for a new

pattern x ∈ X , the corresponding y ∈ {±1} has to be predicted. In other words, it

indicates that a y has to be chosen, so that (x, y) is in some sense similar to the training

examples, which leads to the notions of similarity in X and in {±1}.

In the same spirit, binary SVMs are classifiers which discriminate instances of two

classes. Each instance is represented by a n-dimensional vector. A linear classifier aims

to separate the classes with an hyperplane, so that each instance belongs to only one.

Figure 2.10 illustrates two linearly separable groups of instances (training dataset) and

only three of many possible hyperplanes that correctly classify (or separate) the groups.

The best hyperplane is the one that achieves maximum separation between the two classes,

i.e., the hyperplane which has the largest margin. The margin is the summation of

the shortest distance from the separating hyperplane to the nearest instances from both

classes [64]. If such a hyperplane exists, it is known as the maximum-margin hyperplane

and the linear classifier it defines is known as a maximum margin classifier.

2.6.2 Linear SVM

Given a training set Z, such that

Z = {(x1, y1), (x2, y2), ..., (xm, ym)}, (2.23)
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minimize
w,b

Q(w) = 1
2
‖w‖2 (2.31a)

subject to yi(w · xi − b) ≥ 1,∀(xi, yi) ∈ Z. (2.31b)

The factor of 1
2

is used for mathematical convenience.

Figure 2.11 presents a toy example of maximum-margin hyperplane for an SVM trained

with instances from two classes in a two-dimensional space.

2.6.3 Solving the Constrained Optimization Problem

The constrained optimization problem shown in Equation 2.31 is called primal problem.

The objective function presented in Equation 2.31a is a convex function of w, and the

constraints are linear in w. The constrained optimization problem may then be solved by

using the method of Lagrange multipliers [65]. First, we construct the Lagrange function

J(w, b, α) =
1

2
‖w‖2 −

m
∑

i=1

αi[yi(w · xi − b)− 1], (2.32)

where the auxiliary non-negative variables α are called Lagrange multipliers. The solution

to the constrained optimization problem is determined by the saddle point of the Lagrange

function J(w, b, α), which has to be minimized with respect to w and b, and it also has

to be maximized with respect to α [64]. Formally, we can define

arg min
w,b

max
α≥0

{

1

2
‖w‖2 −

m
∑

i=1

αi[yi(w · xi − b)− 1]

}

. (2.33)

Differentiating J(w, b, α) in terms of w and b, and setting the results equal to zero,

we have the following two optimality conditions

Condition 1:
∂J(w, b, α)

∂w
= 0

Condition 2:
∂J(w, b, α)

∂b
= 0

(2.34)

The Condition 1 may then rewritten as

w =
m

∑

i=1

αiyixi, (2.35)
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and the Condition 2 yields

m
∑

i=1

αiyi = 0. (2.36)

The solution vector w is defined in terms of an expansion that involves the m training

instances.



Chapter 3

Proposed Negative Mining Approach

In this Chapter, we present an effective and efficient negative mining approach for face

recognition systems in order to build US models during user enrollment. We first detail

preliminary attempts regarding the development of cluster-based negative mining meth-

ods in Section 3.1 to then present the proposed linear SVM-based negative mining in

Section 3.2.

3.1 Preliminary Attempts

Our first idea for the development of effective and efficient negative mining approaches

was to use unsupervised learning algorithms, more specifically clustering techniques. Since

these algorithms do not require labeled data, the mining process may be previously exe-

cuted at development time, by selecting the most informative negative samples (in general)

from a curated large face dataset. Such an informative negative subset, in turn, could

then be used for the training of UI and US models at enrollment time. In this spirit, two

approaches were investigated.

Figure 3.1 shows the pipeline of the first one. From a potentially huge dataset of

negative face images, the method relies on a suitable selection of samples to create a large

mining set with respect to processing constraints. Random selection was considered for

such task. A cluster-based negative mining approach is then applied on the large mining

set, outputting a negative subset with the most informative samples from the large mining

set at development time. This approach simply applies a cluster technique on the large

mining set and selects the nearest samples to each group center, assuming that these are

the most representative samples from their respective clusters (Figure 3.2).

The second proposed approach consists of organizing the potentially huge negative set

into a hierarchical clustering [66], as shown in Figure 3.3, in order to generate a large and

informative mining set — which will be used in a negative mining approach — or the final

30







3.2. Proposed Linear SVM-based Negative Mining Approach 33

The second approach, in turn, builds a hierarchical clustering from the potentially

huge negative set and selects a given number of samples, by starting from the top and

walking down the hierarchy until achieving a level where the required number of negative

samples is satisfied in order to build the final informative negative subset.

Both cluster-based negative mining approaches presented poor recognition perfor-

mance, which can be explained by the fact that clustering techniques based on neigh-

borhood and proximity cannot behave well with high-dimensional feature vectors [23].

Indeed, as the descriptor HT-L3-1st results in feature vectors with high dimensionality

(∼25, 000 for the considered architecture), the performance of Kmeans was compromised,

leading to few clusters with many samples and other clusters with very few samples.

In order to deal with this limitation, we then reduced the dimensionality of the feature

space using PCA as well as feature selection algorithms [69, 70], but the results were still

unsatisfactory. Other metrics, such as Manhattan and Mahalanobis distances, were also

evaluated, but they also resulted in no significant improvement.

In light of these results, we decided to focus on the investigation of linear SVM-

based approaches, such as [16, 19], in order to develop an effective and efficient negative

mining method, as presented in the next section. However, we believe that cluster-based

negative mining approaches are promising for scenarios where the feature vectors have

low dimensionality so that it is possible to obtain well-behaved clusters.

3.2 Proposed Linear SVM-based Negative Mining Ap-

proach

We propose a negative mining approach based on linear Support Vector Machines (SVMs) [18]

with the following motivations. First, the ability to perform well with small sample sizes,

especially in the case where the samples are represented by high-dimensional feature

spaces, and second, we can train linear SVMs [18] quite fast under these circumstances.

Figure 3.4 illustrates user enrollment process of the proposed linear SVM-based neg-

ative mining approach. From a potentially huge dataset of negative face images, the

algorithm relies on a suitable (under the time constraints) selection of samples to create

a large mining set. Subsequently, it creates a small training set by identifying the most

informative negative samples, with respect to the positive samples from a given user, to

build an effective US model for that user in a few seconds.

A pseudocode of the proposed negative mining is presented in Algorithm 2. The

algorithm considers gallery images of the individual being enrolled as the positive set P

and a much larger negative mining set N from which a small set of c informative images

must be iteratively mined within a given maximum processing time max time. Indeed,
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Figure 3.4: User enrollment process. From a potentially huge dataset of negative face
images, the algorithm relies on a suitable (under the time constraints) selection of samples
to create a large mining set. Subsequently, it creates a small training set by identifying
the most informative negative samples, with respect to the positive samples from a given
user, to build an effective US model for that user.

the mining set is split into a negative training set Nt (|Nt| = c) and a negative validation

set Nv (Lines 1–2).

A linear SVM β is trained at each iteration by taking P ∪Nt as input (Line 7). If the

processing time from the algorithm right after the SVM training exceed the maximum

processing time, it will be returned the model βout which will correspond either to None

— no linear SVM could be trained within the maximum processing time — or to the

model trained at the previous iteration (Lines 6, 8, 9, 12). Otherwise, the algorithm saves

the current trained model in βout (Line 10).

The signed distances to the SVM hyperplane of all samples in the negative training

set — except support vector — and in the validation set are computed and inserted into

the lists Lt and Lv, respectively (Lines 14–18). These lists are then sorted, according to

the signed distance β(.), for subsequent sample swapping (Lines 19–20).

Images are swapped between Nt and Nv according to a criterion based on an “infor-

mativeness” degree, which is exactly the signed distance β(.) to the SVM hyperplane of

the given iteration (Lines 22–30).

Given a sample s ∈ Nt ∪ Nv, the assumption is that the greater β(s) is, more infor-

mative for the gallery model s will be. Therefore, the least informative samples in Nt

that are not support vectors are swapped with the most informative ones in Nv. If no

improvement in the overall informativeness of Nt is observed in a given iteration — i.e.,

no swaps occurred — or the maximum processing time max time is reached, the algo-

rithm terminates (Lines 31–34). There is no problem if the processing time exceed the
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Algorithm 2 Proposed SVM-based Negative Mining

Input: Positive set P , large mining set N , maximum processing time max time, and
number of negatives to be mined c.

Output: Best model βout for the positive set P .
Auxiliary: Sets Nt, Nv, lists Lt, Lv, variables β, swaps, stop, s, t, ds, dt, time1, proc time.

1. Nt ← random selection of c samples from N

2. Nv ← N \Nt

3. proc time← 0
4. βout ← None

5. While proc time < max time

6. time1 ← point time()
7. β ← linear SVM trained on P ∪Nt

8. proc time← proc time + (point time()− time1)
9. If proc time ≤ max time

10. βout ← β

11. Else

12. Return βout

13. time1 ← point time()
14. Lt ← empty list, Lv ← empty list
15. For each s ∈ Nt not support vector
16. insert (s, β(s)) into Lt

17. For each t ∈ Nv

18. insert (t, β(t)) into Lv

19. Lt ← sort Lt by β(.) in increasing order
20. Lv ← sort Lv by β(.) in decreasing order
21. swaps← 0, stop← 0
22. While Lt 6= empty and Lv 6= empty and stop 6= 1
23. remove (s, ds) from Lt head
24. remove (t, dt) from Lv head
25. If dt < ds

26. Nt ← (Nt \ s) ∪ t

27. Nv ← (Nv \ t) ∪ s

28. swaps← swaps + 1
29. Else

30. stop← 1
31. If swaps = 0
32. Return βout

33. proc time← proc time + (point time()− time1)
34. Return βout
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Figure 3.5: Mining process in a given iteration. The least informative samples in Nt that
are not support vectors are swapped with the most informative ones in Nv, as indicated
by the swapping sequence (1), (2), and (3). Swapping occurs no matter each side of
the margin the negative samples are, which increases the ability of the method to operate
well even in unbalanced learning scenarios. In (4), no swap occurs because such validation
sample is less informative than any other available for swapping in Nt.

max time before the informativeness checking (Line 31), because the model returned in

Line 32 was trained within the allowed processing time (Line 7).

An important property of the approach as compared to [15, 19] is that correctly

classified negative samples may also be swapped, which enables it to mine negative samples

even in extremely unbalanced learning scenarios. Moreover, we can see from Algorithm 2

that its running time is dominated by the SVM training in Line 7, which can ranges

from quadratic to cubic on the size of input training set, depending on the regularization

constant C [18]. Given that the number of negative samples predominates over the number

of positive samples in the idealized enrollment process, our expectation is that learning

gallery models by iterating a few times the mining process with c << |N | will probably

speedup the enrollment process while not compromising the recognition performance.

In Figure 3.5, we illustrate the rationale of the swapping process. The possible swaps

between negative samples of training and validation sets are enumerated according to the

informativeness degree. The least informative samples in Nt that are not support vectors

are swapped with the most informative ones in Nv, as indicated by the swapping sequence

(1), (2), and (3). Swapping occurs no matter each side of the margin the negative samples

are, which increases the ability of the method to operate well even in unbalanced learning

scenarios (see Section 4.4). Finally, there is no swap in (4), because such validation sample

is less informative than any other available for swapping in Nt.



Chapter 4

Experiments

In the absence of a really huge public face dataset, we simulated this scenario with the

two unconstrained public face datasets described in Section 4.1. The evaluation protocol

considered in this work is detailed in Section 4.2, and the baselines are presented in

Section 4.3. Finally, the results are shown in Section 4.4.

4.1 Datasets

A face dataset plays a crucial role in the effective evaluation of a recognition algorithm.

In its previous time, when automatic face recognition had just become a reality, these

databases expressed their challenges, with mostly collections representing constrained

scenarios. However, as pose, illumination, age, occlusion, or expression started to be

considered, a new perspective to face recognition research was introduced mainly with

the release of Labeled Faces in the Wild (LFW) [11], a dataset based on the original idea

of collecting images of celebrities from the Internet with the only requirement that their

faces were detectable by the Viola-Jones algorithm [71].

In this section, two public unconstrained face datasets are described. The first one is

the PubFig83 [5] that is a refined version from the PubFig dataset [68]. The second one

is the Mobio [24], a dataset recorded using mobile devices.

4.1.1 PubFig83

The PubFig83 dataset [5] is a subset of the PubFig dataset [68], which is, in turn, a

large collection of real-world images of celebrities collected from the Internet. This sub-

set was established and released to promote research on familiar face recognition from

unconstrained images, and it is the result of a series of processing steps aimed at re-

moving spurious face samples from PubFig, i.e., non-detectable, near-duplicate, etc. In
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addition, only persons for whom 100 or more face images remained were considered, lead-

ing to a dataset with 83 individuals. Each image has originally 100x100 pixels in size.

To our knowledge, this is the publicly available face dataset with the largest amount of

unconstrained, uncorrelated images per individual.

Its original evaluation protocol [5] is designed for closed-set recognition. The dataset

is splitted into ten pairs of training and test sets with images selected randomly and

without replacement. For each individual, 90 images were considered for training and the

remaining 10 for test, which in the context of this work we may call gallery and probe

images, respectively.

In Figure 4.1, we present images of four individuals in a given split of PubFig83. While

here we only have space to show 10 (out of 90) gallery images of each individual, all their

respective probe images are presented. Due to its unconstrained nature, we can observe

that PubFig83 presents at the same time all factors of variation in face appearance: pose,

expression, illumination, occlusion, hairstyle, aging, among others.

4.1.2 Mobio

The Mobio dataset used in this work is precisely the same used in the competition on

unconstrained face recognition in mobile platforms organized as part of the International

Conference on Biometrics, ICB’13 [22]. The dataset has 150 people with a female-male

ratio of nearly 1:2 (100 males and 50 females). It is the result of an international col-

laboration, in which images from six institutions of five different countries were recorded

using two types of mobile devices (laptop and mobile phone) in 12 distinct video sessions

for each individual 1. The dataset can be considered challenging in the sense that images

were acquired without control over factors such as illumination, facial expression, and face

pose. Moreover, in some cases, only parts of the face are visible.

Based on the gender of the individuals, its original evaluation protocol is split up into

female and male. Still, for the sake of fairness, individuals in the dataset are divided into

three subsets, namely the training set, the development set, and the evaluation set.

The training set has 50 individuals — 13 females and 37 males — with 192 images

each and can be used for any purpose to aid the systems, from learning subspace models

to leveraging score normalization. In addition, this is the only subset where gender can

be combined according to the participant’s needs.

The development set has 42 individuals — 18 females and 24 males — and can be

used to tune the hyperparameters of the algorithm, e.g., the number of projection vectors

while learning subspaces, which similarity measure to use, etc. For each person in this

set, there are five gallery images and 105 probe images.

1In particular for the competition, all images available were captured by mobile phones.
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The evaluation set, in turn, is used to assess the final system performance. It has 58

individuals — 20 females and 38 males — with samples arranged in exactly the same way

as the development set, i.e., five gallery images and 105 probe images.

In Figure 4.2, we present gallery and probe images of four individuals in the evaluation

set. While we can clearly see variation in pose, expression, and illumination, we can

also observe that the individuals are — to some extent — collaborating with the image

acquisition process. More importantly, however, is to observe the difference in appearance

among the gallery and the probe images. In fact, we can see that the five gallery images

of each individual look quite similar. While this is a natural consequence from the fact

that these images were recorded in the same session, this considerably diminishes the

discriminative power of learning techniques operating on them [72].

4.2 Evaluation Protocol

Since the size of both datasets is too small when compared to a real scenario (millions

or billions of images), we consider that the mining set of Figure 3.4 is already built.

Evaluations are carried out in a realistic open-set scenario, in that no information of

other gallery individuals is used for building US models of new individuals at enrollment

time (see Section 2.1.1). The results are reported assuming that the system is operating

in verification mode.

The Mobio protocol presented in Section 4.1.2 naturally addresses this scenario, and

hence we report results using the union of its original training and development set as

the mining set of Figure 3.4 — in a total of 14, 010 images — and its evaluation set

as containing images of individuals under enrollment (gallery) — the user of the system

for whom the False Acceptance Rates (FAR) and Correct Acceptance Rates (CAR) are

calculated.

PubFig83 original evaluation protocol, however, is designed for closed-set face recog-

nition. Therefore, we extended the protocol detailed in Section 4.1.1 by further splitting

the dataset into two subsets: one simulates the mining set, containing images of 60 indi-

viduals chosen at random — in a total of 6, 000 images — and the other is equivalent to

the evaluation (gallery) set, containing images of the remaining 23 individuals to report

the FAR and CAR values. Each individual from the evaluation set has 90 gallery images

and 10 probe images.

Each experiment is repeated ten times in order to enable us to report more reliable

mean values of CAR and FAR, verifying the robustness (standard error of those values) of

the algorithm with respect to different mining sets. Even though the mining set is fixed on

Mobio, these ten experiments are valid, because the considered negative mining methods

(see Section 4.3) use an initial random negative training set in each user enrollment which
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in turn will be different in each experiment. A similar scenario occurs on PubFig83 which

additionally has a different mining set in each experiment.

All images were aligned by the position of the eyes according to [6]. For feature

extraction, we use the HT-L3-1st descriptor (see Section 2.3 for details), which has the

property of outputting high-dimensional features vectors, with 25, 600 elements for the

considered architecture.

The execution times of all experiments were obtained in the same Intel I7-3770k ma-

chine with 32GB of RAM, and no experiment required memory swapping. We use LIB-

SVM [73] via Scikit-learn package [74] to train the SVMs (Algorithm 2, Line 7) with the

regularization constant C fixed at 105 as in [5, 6, 22].

4.3 Compared Methods

We compared our approach with five others. The first two are User-Independent (UI)

models built with PCA [31] and LDA [32], both methods applied in the entire mining

set. These techniques are widely used to build offline face recognition models, during

the conception of the recognition system. Both PCA and LDA implementations are from

Scikit-learn [74], the number of retained projection vectors was according to the rank of

the input covariance matrices, and the matching between face samples was done via cosine

similarity [75].

The other compared methods were based on User-Specific (US) models. We started by

comparing US models built with linear SVMs also using the entire mining set, as in PCA

and LDA. Given that this approach is also based on linear SVMs, but uses all negative

samples at disposal for learning (no negative mining), we may say that it represents

a statistical upper bound for the proposed approach, which is based on a considerably

smaller training set. Therefore, for clarity, we call it expected upper bound.

We then evaluate two negative mining approaches, one consisting of a random selection

of the negative samples — and serving as baseline and sanity check for the proposed

approach — and the other implementing the well known SVM-based negative mining

criterion of Felzenszwalb et al. [16].

The processing time of each negative mining method corresponds to the sum of the

time spent during user enrollment to mine the mining set and train the final linear SVM

classifier which will be used to assess the final recognition performance.
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4.4 Results and Discussion

Initially, we compared the performance between UI and US models with no negative

mining. That is, all methods — PCA, LDA, and linear SVM (our expected upper bound)

— using the entire mining set as input (Figure 3.4). The comparative results are shown

in Figure 4.3. Since the mining set is fixed for Mobio, only one iteration was executed, so

that the standard errors were not computed.

We can clearly see the enormous difference in Correct Acceptance Rate (CAR) between

US and UI models in all scenarios of FAR for both datasets. The difference in perfor-

mance is considerably more significant for PubFig83. These results confirm the superior

performance of US over UI models, and the effectiveness of linear SVMs to deal with

high-dimensional feature spaces in the unconstrained face recognition scenario. Indeed,

the US modeling technique presented in Figure 4.3 produces a state-of-the-art results for

Mobio dataset (vide the UC-HU method in [22]).

In Table 4.1, we present the experimental results of our negative mining approach and

the considered baselines using a system that wrongly accepts only 0.01% of the test cases

for (a) Pubfig83 and (b) Mobio.

The comparative results between UI and US models can be verified in the first three

lines of Tables 4.1a and 4.1b. PCA and LDA dismiss learning during user enrollment,

which explains the zeros in their learning times. However, this seriously compromises

their performance. The linear SVM with no mining, on the other hand, can negatively

affect the user experience, since it requires 52.72 seconds for Mobio, for instance. The

larger the base is, the higher the processing time will be. Thus, negative mining methods

are crucial to attain the “ceiling” CAR of the expected upper bound within an interactive

time without affecting the user experience.

Such an interactive response time for user enrollment requires to mine the most infor-

mative samples into a small training set. One can observe from the fourth line in Table 4.1

the results of the three US models based on negative mining. The considered maximum

processing times (third column in Table 4.1) were chosen based on the required time for

the expected upper bound in order to be less than this one and yet interactive.

We consider a negative training set with 5% of the mining set (parameter c in Algo-

rithm 2) for PubFig83 and 1% for Mobio. These values were chosen based on our power

constraints. Thus, for each gallery individual being enrolled in the system, all negative

mining methods use the same initial negative training set built randomly, which is used

in all considered maximum processing times.

Since that the spent time by the Random Selection is less than all considered maximum

processing times, it presents only one CAR value in Tables 4.1a and 4.1b. Indeed, it is

the most efficient approach, but its ability to select informative negative samples for the











Chapter 5

Conclusion and Future Work

Modern face recognition systems have reached expressive results in the unconstrained sce-

nario with the use of high-dimensional feature spaces and user-specific (US) classification

models. However, as the face datasets grow, the training time of these systems becomes

prohibitive. The problem becomes even more critical, when considering the training time

during user enrollment.

In this context, negative mining methods are necessary to considerably reduce the

training set by mining the most informative negative samples from the large face dataset,

and at the same time maximize the performance of the system in recognizing the user

under enrollment. However, the majority of these methods either fail to capture the most

informative negative examples or require high processing times, which in turn affects the

user experience for enrollment.

In this work, we addressed these issues by proposing a fast negative mining approach

suitable for application during user enrollment in modern face recognition systems. Ini-

tially, we developed two cluster-based negative mining methods to gather informative

negative samples for later US model learning, but both methods presented unsatisfactory

results for high-dimensional feature spaces. In spite of the obtained results, we believe

that unsupervised mining is promising in scenarios where the feature vectors have low

dimensionality.

Subsequently, we proposed a negative mining approach based on linear SVM given its

ability to perform well in the case where the samples are represented by high-dimensional

feature vectors. Our approach has shown to be fast and robust in mining the most infor-

mative negative samples for a given individual, being enrolled in the system, according

to a criterion based on distances to SVM decision boundaries, and outputs an US model

in a few seconds.

We compared our approach with well-known methods in terms of recognition and

time performances. In the absence of a really huge public face dataset, we simulated
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this scenario with two public unconstrained face datasets, namely PubFig83 and Mobio.

The results showed that the proposed linear SVM-based negative mining approach excels

on these datasets, achieving superior recognition rates within interactive response times.

This was not the case of the other baseline approaches, which performed worse when the

maximum processing time allowed is low. Based on such results, we may conclude that

our approach has potential to be exploited by the industry with minimum impact to the

user experience.

We argue that smart user enrollment, coupled with learning tasks to leverage data at

disposal, is a promising idea to consider in modern biometrics systems, and this disserta-

tion presents a practical and effective approach for that. To the best of our knowledge,

this is the first work to propose negative mining for user-specific gallery model build-

ing at enrollment time. This work was recently submitted to IEEE Signal Processing

Letters [25].

Given that our negative mining approach can be split into client and server tiers — re-

quiring low bandwidth between the tiers — it is also well suited to face recognition systems

that operate on budgeted devices. Moreover, our algorithm is application-independent,

so that we may conclude that it is a relevant contribution for biometric systems that aim

to maintain robustness as the number of users increases.

In the short term, we envision the extension of our linear SVM-based negative mining

approach to other problem domains, such as remote sensing and mobile systems. Indeed,

as the amount of available data has considerably grown in many problems, the use of

efficient and effective techniques for the selection of representative samples from large

databases becomes increasingly essential. Finally, we also intend to further investigate

the applicability of cluster-based negative mining approaches studied in problems that

use low-dimensional visual representations.
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