
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Antonio Carlos Guimarães Junior

Secure and efficient software implementation of

QC-MDPC code-based cryptography

Implementação segura e eficiente em software de

criptografia baseada em códigos QC-MDPC

CAMPINAS

2019



Antonio Carlos Guimarães Junior

Secure and efficient software implementation of QC-MDPC

code-based cryptography

Implementação segura e eficiente em software de criptografia

baseada em códigos QC-MDPC

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Diego de Freitas Aranha
Co-supervisor/Coorientador: Prof. Dr. Edson Borin

Este exemplar corresponde à versão final da
Dissertação defendida por Antonio Carlos
Guimarães Junior e orientada pelo Prof.
Dr. Diego de Freitas Aranha.

CAMPINAS

2019





Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Antonio Carlos Guimarães Junior

Secure and efficient software implementation of QC-MDPC

code-based cryptography

Implementação segura e eficiente em software de criptografia

baseada em códigos QC-MDPC

Banca Examinadora:

• Prof. Dr. Edson Borin
IC/UNICAMP

• Prof. Dr. Marcos Antonio Simplicio Junior
POLI/USP

• Prof. Dr. Julio Cesar López Hernández
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 19 de março de 2019



Agradecimentos

Gostaria de agradecer a todos que de alguma forma contribuíram para realização deste
trabalho. As inestimáveis contribuições que recebi foram fundamentais para obtenção dos
resultados alcançados e consequente conclusão do curso de mestrado. Dentre as muitas
pessoas e instituições que merecem ser aqui mencionadas, eu gostaria de agradecer, em
especial:

• Aos meus pais, Antônio Carlos Guimarães e Evani Moreira Cézar Guimarães.

• Ao meu orientador, Professor Diego Aranha e ao meu coorientador, Professor Edson
Borin.

• À Intel e à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
por patrocinarem o projeto Execução segura de algoritmos criptográficos, processo
nº 2014/50704-7, do qual minha pesquisa fez parte.

• Aos professores, pesquisadores e colegas que participaram do projeto acima men-
cionado. Em especial ao Professor Julio López e ao Professor Ricardo Dahab; e aos
pesquisadores da Intel, Marcio Juliato e Rafael Misoczki.

• Ao Professor Marcos Simplicio e ao Professor Sandro Rigo, que participaram de
minhas bancas de defesa e exame de qualificação.

• Aos demais professores do Instituto de Computação da Unicamp, em especial à
Professora Islene Garcia.

• Aos funcionários do Instituto de Computação da Unicamp.

• Aos laboratórios LASCA e LMCAD; e aos colegas que deles participam.

• À Microsoft por fornecer a infraestrutura de nuvem computacional necessária a
diversos dos experimentos realizados.

• À minha família e amigos.



Resumo

A expectativa do surgimento de computadores quânticos impulsiona uma transição sem
precedentes na área de criptografia de chave pública. Algoritmos convencionais, represen-
tados principalmente por criptografia baseada em curvas elípticas [41] e pelo RSA [59],
são vulneráveis a ataques utilizando computadores quânticos e, portanto, precisarão ser
substituídos. Criptosistemas baseados em códigos corretores de erros são considerados
alguns dos candidatos mais promissores para substituí-los em esquemas de encriptação.
Entre as famílias de códigos, os códigos QC-MDPC [51] alcançam os menores tamanhos
de chave, enquanto mantêm as propriedades de segurança desejadas. Seu desempenho,
no entanto, ainda precisa ser melhorado para atingir um nível competitivo.

Este trabalho tem ênfase na otimização do desempenho dos criptosistemas baseados
em código QC-MDPC através de melhorias em suas implementações e algoritmos. Primei-
ramente, é apresentada uma nova versão aprimorada do mecanismo de encapsulamento de
chaves da QcBits [16], uma implementação em tempo constante do Criptosistema Nieder-
reiter [56] utilizando códigos QC-MDPC. Nesta versão, os parâmetros da implementação
foram atualizados para atender ao nível de segurança quântica de 128 bits, alguns dos
principais algoritmos foram substituídos para evitar o uso de instruções mais lentas, o
código foi inteiramente vetorizado utilizando o conjunto de instruções AVX 512 e ou-
tras pequenas melhorias foram introduzidas. Comparando com o atual estado-da-arte
para códigos QC-MDPC, a implementação BIKE [2], a implementação apresentada neste
trabalho executa 1,9 vezes mais rápido ao decriptar mensagens.

Em seguida, foca-se na otimização de desempenho dos sistemas criptográficos baseados
em códigos QC-MDPC por meio da inserção de uma taxa de falhas configurável em seus
procedimentos aritméticos. São apresentados algoritmos com execução em tempo cons-
tante que aceitam uma taxa de falhas configurável para multiplicação e inversão sobre
polinômios binários, as duas sub-rotinas mais caras utilizadas nas implementações QC-
MDPC. Usando uma taxa de falhas negligível comparada ao nível de segurança (2−128), a
multiplicação é 2 vezes mais rápida que a multiplicação utilizada pela biblioteca NTL [63]
em polinômios esparsos e 1,6 vezes mais rápida que uma multiplicação polinomial es-
parsa ingênua em tempo constante. O algoritmo de inversão, baseado no algoritmo de
Wu et al. [68], é 2 vezes mais rápido que o original e 12 vezes mais rápido que o algoritmo
de inversão de Itoh e Tsujii [40] utilizando o mesmo polinômio de módulo (x32749− 1). Ao
inserir esses algoritmos na versão aprimorada da QcBits, atingiu-se uma aceleração de 1,9
na geração de chaves e de até 1,4 na decriptação.

Comparando com a BIKE, a versão final da QcBits apresentada neste trabalho executa
a decriptação uniforme 2,7 vezes mais rápida. Além disso, as técnicas aqui apresentadas
também podem ser aplicadas à BIKE, abrindo novas possibilidades de melhorias para
criptosistemas QC-MDPC.



Abstract

The emergence of quantum computers is pushing an unprecedented transition in the
public key cryptography field. Conventional algorithms, mostly represented by elliptic
curves [41] and RSA [59], are vulnerable to attacks using quantum computers and need,
therefore, to be replaced. Cryptosystems based on error-correcting codes are considered
some of the most promising candidates to replace them for encryption schemes. Among
the code families, QC-MDPC codes [51] achieve the smallest key sizes while maintaining
the desired security properties. Their performance, however, still needs to be greatly
improved to reach a competitive level.

In this work, we focus on optimizing the performance of QC-MDPC code-based cryp-
tosystems through improvements concerning both their implementations and algorithms.
We first present a new enhanced version of QcBits’ key encapsulation mechanism [16],
which is a constant time implementation of the Niederreiter cryptosystem [56] using QC-
MDPC codes. In this version, we updated the implementation parameters to meet the
128-bit quantum security level, replaced some of the core algorithms avoiding slower in-
structions, vectorized the entire code using the AVX 512 instruction set extension and
introduced some other minor improvements. Comparing with the current state-of-the-art
implementation for QC-MDPC codes, the BIKE implementation [2], our code performs
1.9 times faster when decrypting messages.

We then optimize the performance of QC-MDPC code-based cryptosystems through
the insertion of a configurable failure rate in their arithmetic procedures. We present
constant time algorithms with a configurable failure rate for multiplication and inver-
sion over binary polynomials, the two most expensive subroutines used in QC-MDPC
implementations. Using a failure rate negligible compared to the security level (2−128),
our multiplication is 2 times faster than the one used in the NTL library [63] on sparse
polynomials and 1.6 times faster than a naive constant-time sparse polynomial multipli-
cation. Our inversion algorithm, based on the inversion algorithm of Wu et al. [68], is 2
times faster than the original and 12 times faster than the inversion algorithm of Itoh and
Tsujii [40] using the same modulus polynomial (x32749− 1). By inserting these algorithms
in our enhanced version of QcBits, we were able to achieve a speedup of 1.9 on the key
generation and up to 1.4 on the decryption time.

Comparing with BIKE, our final version of QcBits performs the uniform decryption
2.7 times faster. Moreover, the techniques presented in this work can also be applied to
BIKE, opening new possibilities for further improvements.
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Chapter 1

Introduction

Transmitting information has been a major necessity for society throughout history. While
the basic concept is universally known, the transmission channels have greatly evolved
over time. The technological development enabled much faster transmission channels,
facilitating communication and enabling new possibilities of use. It also introduced new
challenges to achieve some important and common requirements. Among the many re-
search fields raised from the necessities and particularities of transmitting information,
two of them are of our particular interest: the fields of error correcting codes and cryp-
tography. The first emerged from the fact that transmitting information is an imperfect
process. Physical transmission channels invariably introduce errors in the information
and they need to be removed. The second is responsible to achieve or verify properties
such as confidentiality, authentication, and integrity.

In this work, we provide a brief background about these two fields, but our major
interest is in a specific intersection between them: the code-based cryptography field.
This field started with Robert McEliece’s discovery that it was possible to achieve some
cryptographic properties using error-correcting codes. In 1978, he presented the McEliece
Cryptosystem [47], the first code-based public-key encryption scheme. At the time, the
public-key cryptography field as a whole was still a novelty. It had been only two years
since Diffie and Hellman published the famous “New Directions in Cryptography” [20],
marking the public discovery of the field. Many public-key cryptosystems were derived
from their work. Notably, also in 1978, Rivest, Shamir, and Adleman presented the RSA
algorithm [59], a number-theoretic public-key cryptosystem which would later become a
standard in public-key cryptography.

In its original form, McEliece’s cryptosystem has great performance and is more effi-
cient than the RSA, but it relies on very large keys. For example, it requires keys with
460Kb (kilo-bits) to achieve an 80-bit classical security level. In a time when computers
used to have just a few tens of kilobytes of RAM, this was a major drawback for the cryp-
tosystem. Even the performance advantage was lost when, in 1985, Koblitz and Miller
independently presented the elliptic curve cryptography (ECC) [41, 50]. ECC cryptosys-
tems not only enabled the use of much smaller keys but also present better performance
than both the RSA and McEliece cryptosystem.

RSA and ECC are the current standards of public-key cryptography. They are consid-
ered secure techniques and they suffice the present needs. However, the computing field
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might be on the verge of a new technological breakthrough: the creation of large scalable
quantum computers. Developing applications which could benefit from them is mostly
an open field of study, but their impact on the current public-key cryptography standard
has long been known. In 1994, Peter Shor formulated an algorithm that can solve integer
factorization in polynomial time using a quantum computer [61, 62]. This is the problem
in which the RSA is based, and a polynomial-time solution for it entirely undermines the
security. The same occurs with the discrete logarithm problem, the base of the ECC and
Diffie-Hellman key exchange.

While the community diverges over predictions, some specialists foresee quantum com-
puters capable of breaking the 2048-bit RSA in the next few decades [54]. Therefore, a
secure and efficient replacement for the current standard of public-key cryptography is
necessary. This scenario creates a new opportunity for the McEliece cryptosystem, 40
years after its creation. Based on a known NP-complete problem (the decoding of general
linear codes), the cryptosystem has so far shown to be resistant against attacks using
quantum computers and is one of the promising candidates to become the next standard
for encryption in public-key cryptography.

Overshadowed by the RSA and ECC, the McEliece cryptosystem and, more generally,
the code-based cryptography field had diminished progress until the 2000s. Most of its
original problems are still present in many of current implementations. Derivatives using
smaller keys have been proposed, but they usually result in the introduction of vulnera-
bilities. An exception to that is the implementation of McEliece using QC-MDPC codes,
which is believed to be secure. Presented in 2013 by Misoczki et al. [51], the cryptosystem
provides keys about 100 times smaller than the original McEliece, but it comes at the
cost of deteriorating the performance and introducing perceptible failure rates to the de-
cryption process. In this context, a performance improvement to QC-MDPC code-based
cryptosystems is necessary and, in this work, we present some contributions toward this
goal.

1.1 Objective

Our general objective in this work is to contribute to the implementation of secure and
efficient cryptosystems based on error-correcting codes. To do this, we consider three
main aspects:

• Key-size: A 2016 NIST report [15] highlighted the key size as a primordial factor
to be considered on post-quantum cryptosystems. Thus, we opt for the use of QC-
MDPC codes, since, for cryptographic purposes, they seem to be the most reliable
code family featuring compact keys.

• Efficiency: Code-based cryptosystems using QC-MDPC codes are significantly
slower than the original McEliece, which uses Goppa codes [31]. In this work,
we pursue performance enhancement for these cryptosystems contributing not only
to the development of implementation techniques but also to the improvement of
their algorithms.
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• Side-channel protection: Side channel protection is an important requirement
for any modern cryptographic implementation. It is not possible to guarantee side-
channel protection for an algorithm or implementation without deep knowledge of
the machine executing them. However, taking as bases broadly used architectures
such as Intel x86 and its extensions, we design all contributions presented in this
work to avoid the most common side-channel vulnerabilities. In specific, all imple-
mentations presented feature constant-time or uniform execution.

1.2 Contributions

The contributions presented in this work are divided into three sets. The first two concern
the development of new implementation techniques aiming at optimizing the performance
of QcBits, an implementation of QC-MDPC code-based cryptography. The last one con-
cerns the presentation of improvements in the basic arithmetic algorithms necessary to
implement a QC-MDPC code-based cryptosystem. This set presents contributions much
more generic and that can be explored in other fields of cryptography, even though they
were planned in a specific context. The contributions are summarized below.

• An optimization of the decoding process of the original QcBits implementation.

– We achieve a speedup of up to 4.8 times over the original implementation
through the use of techniques such as vectorization, loop unrolling, and pre-
calculation.

– We estimate that gains could be as high as 5.06 times considering the intro-
duction of simple and generic extensions to the Intel x86 architecture.

– We mitigate of all known power vulnerabilities found in the original implemen-
tation with an almost negligible (< 1%) impact on the overall performance.

• A new enhanced version of QcBits.

– We update the security level from 80-bit classical security level to 128-bit quan-
tum security level.

– We vectorize the entire implementation using the AVX512 instruction set ex-
tension.

– We replace some of the core algorithms with others that have a better perfor-
mance in face of the new AVX512 instructions.

– Comparing to BIKE, the current state-of-the-art of QC-MDPC code-based
cryptography, this implementation decrypts messages 1.9 times faster.

• A method to accelerate the arithmetic algorithms used to implement QC-MDPC
code-based cryptosystems.

– We introduce the concept of using arithmetic subroutines with a controlled
failure rate to accelerate QC-MDPC code-based cryptosystems.
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– We present constant-time algorithms for multiplication and inversion over bi-
nary polynomials that operate with configurable failure rates.

– We define methods to obtain a correlation between failure rate and performance
improvement for each algorithm.

– We show that these algorithms provide a significant performance improvement
while introducing an arithmetic failure rate that is negligible compared to the
security level of the cryptosystem.

– By introducing these algorithms in our enhanced version of QcBits, we achieve
a speedup of 1.9 times on the key generation and 1.4 times on the decryp-
tion process. Comparing with BIKE, our final version of QcBits performs the
uniform decryption 2.7 times faster.

The first two sets of contributions were published at the Brazilian Symposium on

High-Performance Computational Systems (WSCAD-2017) [35] and at Wiley’s Concur-

rency and Computation: Practice and Experience (CCPE) journal [36]. The last set of
contributions is currently under submission.

1.3 Structure

Chapter 2 presents the basic theoretical background necessary in this work. It aims at
being as self-contained as possible. Therefore, most of the chapter presents very basic
concepts about cryptography and error-correcting codes. If the reader is familiar with
these topics, the reading of Subsection 2.4.3 should be enough for understanding this
work.

Chapters 3 and 4 present our contributions towards the performance improvement
of QC-MDPC code-based cryptosystems. Each chapter starts with a brief summary of
contributions and ends with a small discussion about the achieved results. An overall
discussion is provided in Chapter 5, as well as some possible future work.
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Chapter 2

Theoretical Basis

The understanding of code-based cryptography requires knowledge of two distinct fields:
cryptography and error-correcting codes. The former defines the goals and properties
to be achieved, whereas the latter provides the tools to achieve them. While these are
extensive fields, the broadness of concepts presented in this chapter is mostly restricted
to the information necessary for the understanding of the basic functioning of QC-MDPC
code-based cryptosystems and, furthermore, the proposals and contributions presented in
this work.

2.1 Cryptography

As defined by Menezes et al. in the Handbook of Applied Cryptography [48], cryptography
is “the study of mathematical techniques related to aspects of information security such

as confidentiality, data integrity, entity identification, and data origin authentication”.
Figure 2.1 illustrates these aspects. Two parties, A and B, want to communicate through
an arbitrary channel. This channel is open, in the sense that a third party, C, can read
and modify freely the information being transmitted.

The confidentiality aspect enables A to communicate with B through the channel
without C understanding the message contents. In fact, C should not be able to differ-
entiate the encrypted information from random noise. The data integrity enables A and
B, upon receiving a message, to verify if its content was modified since it was sent by the
trusted party. This aspect should enable the detection of modifications caused not only
by transmission errors in the channel but also by deliberated attempts of data temper-
ing by C. Entity identification enables A and B to unequivocally identify themselves to
other parties, and data origin authentication ensures whether or not a certain message
was written by the party who claims it.

In this section, we will present the basic concepts of symmetric and public-key cryp-
tography, as well as an introduction to the post-quantum cryptography.

2.1.1 Symmetric Cryptography

In a symmetric cryptosystem, A and B own a common piece of secret information, called
shared secret, and use it to encrypt and decrypt messages. The communication can be
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Figure 2.1: Basic communication illustration.

performed symmetrically in both directions. The AES [19] is the current standard and the
most used algorithm of symmetric cryptography. It was originally presented as Rijndael
and became the standard for symmetric encryption in 2001. The basic algorithm only
provides confidentiality, but it can be easily extended to provide data integrity, entity
identification, and data origin authentication with the help of hash functions. Currently,
most of the computer architectures feature hardware implementation of the AES or ex-
tensions to accelerate its software implementation, making it a very fast algorithm.

Even without hardware support, symmetric cryptosystems usually are very efficient
and have their security level directly defined as the size of the secret key. A major
problem, however, is their dependency on the shared secret. In order to establish a secure
communication channel, the parties must first combine the shared secret. Using only
symmetric cryptosystems, however, to securely combine the shared secret, it is necessary
to have a prior secure communication channel. Solving this deadlock is one of the main
purposes of public-key cryptography.

2.1.2 Public-key Cryptography

Before the public-key cryptography discovery [20], in order to establish an encrypted
communication channel, it was necessary to have a prior secure channel to combine a
shared secret. Historically, this secure channel used to be a trusted courier or face-to-face
meetings, which would be a great drawback in the modern computing age. The public-
key cryptography enables two new possibilities: to define encryption schemes that work
without a shared secret; and to securely combine a shared secret without a prior secure
channel.

Public-key encryption schemes function through the use of different keys for encryp-
tion and decryption. They usually operate with two keys: the public key, used in message
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Figure 2.2: Symmetric cryptography illustration.

encryption and signature verification; and the private key, used in message decryption
and signature process. In general, the public-key cryptography capabilities are based on
the hardness of obtaining private information from the knowledge of public information,
which is granted by one-way functions, such as integer multiplication and modular ex-
ponentiation. Figure 2.3 illustrates an encryption and signature scheme using public-key
cryptography. The public-key is publicly distributed and anyone can encrypt a message
or verify whether a signature is valid. Once encrypted, only those who know the private
key (A) are able to decrypt the ciphertext (encrypted message).

Figure 2.3: Public-key cryptography illustration.

The Diffie-Hellman (DH) key exchange protocol [20] and the RSA [59] are some of the
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main representatives of public-key cryptography. The first was published 1976, marking
the discovery of public key cryptography. It exploits the hardness of discrete logarithm
to combine a shared secret securely using an insecure channel. The second was presented
in 1978 and consists of an encryption and signature scheme exploiting the difficulty of
factorizing the product of prime integers.

Encryption schemes, such as RSA, can also be used in a key encapsulation mechanism
(KEM) to define a shared secret. The basic difference is that, instead of a message, the
cryptosystem is used to encrypt the shared secret which will be then transmitted to the
other party.

2.1.3 Post-Quantum Cryptography

No algorithm to solve integer factorization or discrete logarithm in polynomial time using
a conventional computer is known. The best methods proposed are sub-exponential [1],
but there are no proofs that assure the exact hardness of the problems. In a quantum
computer, however, polynomial time algorithms that can solve them were already pre-
sented [61, 62]. Although the development of quantum computers could be considered as
still in its beginning, it is necessary to have secure and efficient public key cryptography
algorithms that are resistant to attacks by a quantum computer.

Algorithms that do not rely on the aforementioned problems are known since the late
70s and today constitute the post-quantum cryptography field. In December 2016, the
USA’s National Institute of Standards and Technology (NIST) started the standardization
process for post-quantum public key cryptography by publishing a Call for Proposals [57].
A previous report [15] of the Institute presented some of the promising areas for the con-
course, among them: Lattice-based cryptography, Code-based cryptography, Multivariate
polynomial cryptography, and Hash-based signatures.

Impact on symmetric encryption

The security of symmetric cryptosystems is also affected by attacks using quantum com-
puters. Hence, the definition of security level needs to be changed to specify the computing
model considered (classical or quantum). An N-bit classical security level is defined as
the computational effort necessary to perform an exhaustive search on 2N keys to break,
for example, the N-bit AES. Grover’s Algorithm [32] on a quantum computer is capable of
recovering the key through an exhaustive search in O(

√
2N) time. In this way, the quan-

tum security level is related to the classical one by a square root in the complexity of an
exhaustive search algorithm. For example, the 80-bit classical security level corresponds
to the 40-bit quantum security level.

2.2 Error-Correcting Codes

Transmitting information is an imperfect process. During the transmission process, many
physical factors can lead to information loss and noise insertion, usually in a probabilistic
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way. The error correcting codes field dedicates to develop methods to encode and decode
information in a way that errors can be detected and, if possible, corrected.

Redundancy is the basic principle that enables error detection and correction capabil-
ities. A very primitive way of correcting, for example, is to just repeat the message an
odd number of times and take a majority vote on each bit. This method is functional
and the processing time to encode and decode the information is minimal. However, the
overhead added to the information is too high compared with the correction capabilities
of the method. Moreover, the costs of transmitting the redundant information greatly
surpass the processing cost. Thus, it is necessary to have methods presenting smaller
overheads and better error correcting capabilities while providing efficient encoding and
decoding algorithms.

Better error correcting methods can be designed with the use of parity checks. To
illustrate this concept, we first define the Hamming Weight of a binary vector as the
number of one-value positions in it. In a binary vector A of length n, the parity check bit
of the entire vector is the Hamming Weight of A (HW (A)) modulus 2, i.e. if HW (A) is
even, the parity is 0, otherwise, it is 1. The simplest encoding for error detection is done
using just one parity bit for the whole vector, as illustrated in Equation 2.1. The overhead
is just one bit and this method is capable of detecting the occurrence of an odd number
of errors. The error correction, on the other hand, can only be performed if n = 1. Notice
that the parity bit is concatenated to the end of the message before the transmission since
it must be equally protected. In this way, the parity of the whole block (message + parity
check bits) will be 0 if no error occurs.

Message : 101001010

Parity Check : 0

Block : 1010010100

(2.1)

A little more advanced use of parity check is in the rectangular codes. In this case,
the data is organized in a rectangular pattern, as shown by Equation 2.2, where bolded
numbers represent the parity check bits. One parity check is calculated for each row and
for each column. In the example, the overhead is 6 bits. This code is capable of detecting
any two 2 errors and correcting one of them. Depending on where the error occurs, more
of them can be detected and corrected. A slightly improved version of rectangular codes
are the triangular ones, exemplified in Equation 2.3, where underlined numbers represent
padding bits. This code does not present double error detection, but it presents less
redundancy than rectangular codes while maintaining the single error correction.

1 0 1 0

0 0 1 1

0 1 0 1

1 1 0 0

(2.2)

1 0 1 0 0

0 1 0 1

1 0 0

0 1

0

(2.3)

A useful metric to evaluate a code is the Rate, which is given by the size of the message
over the total size transmitted. For example, the single parity check code has Rate = n

n+1
,
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since it only uses 1 parity check; rectangular codes have rate (n−1)2

n2 ; and triangular codes
have rate n−1

n+1
, for messages with n(n−1)

2
bits.

Although intuitive for explaining basic codes, geometric representations of data are
not useful for more advanced schemes. Thus, we use a more algebraic representation by
making lists of the positions checked by each parity bit. Equation 2.4 shows the equivalent
lists of indexes for the triangular code of Equation 2.3. These lists can be then represented
as a system of equations (Equation 2.5), which, in turn, can be represented in a matrix,
one per row, as shown in Equation 2.6. With this last representation, the parity check
can be calculated by multiplying the parity check matrix and the transposed code-word,
as also shown in Equation 2.6. The result of this multiplication is called syndrome and it
should be composed of zeros if there are no errors in the block.

1o : 1, 2, 3, 4

2o : 4, 5, 6, 7

3o : 3, 7, 8, 9

4o : 2, 6, 9, 10

5o : 1, 5, 8, 10

(2.4)

m1 +m2 +m3 +m4 − p1 = 0

m4 +m5 +m6 +m7 − p2 = 0

m3 +m7 +m8 +m9 − p3 = 0

m2 +m6 +m9 +m10 − p4 = 0

m1 +m5 +m8 +m10 − p5 = 0

(2.5)















1 1 1 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 1 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 1 1 0 0 0 1 0

1 0 0 0 1 0 0 1 0 1 0 0 0 0 1
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0

0

0

0

0















(2.6)

Note that, since it represents a system of equations, any elementary row operation can
be applied over the parity check matrix. The elementary row operations are listed below.

• Swap two rows.

• Multiply a row by a scalar in R
∗.

• Add one row to another.
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Two matrices are row equivalent if it is possible to obtain one from the other through a
sequence of elementary row operations. A particularly useful row-equivalent matrix is the
row-reduced echelon form [49]. Equation 2.7 exemplifies it for the parity check matrix of
the triangular code example (Equation 2.6). In each row, the first non-zero element is the
only non-zero element of its column and it is located at least one column to the right of
the first non-zero element of the previous row. In the example, looking only at the first 10
elements (which corresponds to message bits), the last row have value 0 in all elements.
This indicates that only three out of four rows are linearly independent, i.e. any one
of four rows can be obtained through a sequence of elementary row operations over the
other three. For error correcting codes and, more generally, for solving a system of linear
equations, only linearly independent rows are relevant. Therefore, in our example, the last
row can be removed from the parity check matrix. The number of linearly independent
rows in a matrix is called Rank and it can be used to determine the error correction
capabilities of a code.















1 0 0 0 1 0 0 1 0 1 0 0 0 0 1

0 1 0 0 0 1 0 0 1 1 0 0 0 1 0

0 0 1 0 0 0 1 1 1 0 0 0 1 0 0

0 0 0 1 1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0















(2.7)

2.2.1 Hamming Codes

Hamming codes (HC) [38] are a special class of parity check codes which present the best
possible Rate for one error correction on a binary channel. One of its most basic instanti-
ations uses 3 parity check bits to provide one error correction and one error detection for a
4-bit message. Equation 2.8 shows the list of indexes of its parity checks and Equation 2.9
shows the equivalent parity check matrix. To facilitate the decoding process, the parity
check bits are inserted in the message on the positions 1, 2 and 4.

1o : 1, 3, 5, 7

2o : 2, 3, 6, 7

3o : 4, 5, 6, 7

(2.8) H =





0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1



 (2.9)

Encoding: As exemplified below, to encode a 4-bit message A, we first insert the parity
check bits (p1, p2 and p3) at positions 1, 2 and 4, creating A′. Then, we multiply the
parity check matrix,H, by the transposed vector representation of A′. Finally, we solve the
simple linear system in Equation 2.10 to obtain the values of pi. In our example the values
are p1 = 0, p2 = 1 and p3 = 0, resulting in the code-word A′ =

(

0 1 1 0 0 1 1
)

.

A = 1011 =
(

1 0 1 1
)

−→ A′ =
(

p1 p2 1 p3 0 1 1
)
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H × A′T =





p3 + 1 + 1

p2 + 1 + 1 + 1

p1 + 1 + 1



 ≡





0

0

0



 (mod 2) (2.10)

Decoding: Similarly to the encoding, we multiply the parity check matrix, H, by the
transposed vector representation of A′, which, in this case, is the received message possibly
containing an error. If the multiplication result, the syndrome, is zero, then the code-
word is valid and either there is not an error in the message or there are more errors
than the code is capable of correcting/detecting. If the syndrome is different from 0, then
the number represented by the syndrome in the binary base is the column in which the
error occurred (considering that only one error occurred). The coincidence between the
syndrome value and the column number happens because the parity bits were inserted
in positions such that each column represents numbers from 1 to 7 in the binary base
(bottom-up) sorted from left to right in the parity check matrix. This positioning is not
necessary to decode and the columns of matrix H can be at any order. However, if they
are not ordered, it is necessary to search for the column which matches the number of
the syndrome to identify where the error occurred. Equation 2.11 exemplify the decoding
process with error in the (0112 = 310)-th column.

Block (A’) :
(

0 1 1 0 0 1 1
)

Error :
(

0 0 1 0 0 0 0
)

Block + Error :
(

0 1 0 0 0 1 1
)

Syndrome :





0

1

1





(2.11)

Using a Generator matrix: An alternative method to encode data is the use of a
generator matrix, G. Equations 2.12, 2.13, and 2.14 show one of the ways to construct
it. First, all parity bits are moved to the end of the message, creating a new parity check
matrix, H ′. Then, the columns corresponding to parity check bits are removed from H ′,
resulting in the matrix G′. Any elementary row operation can then be applied to G′.
Finally, G′ is transposed and concatenated with the identity matrix, I. The encoding is
performed by simply multiplying the value of the message and G.

H =





0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1



 −→ H ′ =





0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1



 (2.12)

G′ =





0 1 1 1

1 0 1 1

1 1 0 1



 (2.13)
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G =











1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1











(2.14)

Notation: The notation [n, k, d]-code usually represents a binary linear code with block
length n, message length k and minimum Hamming distance d. The use of square brackets
("[ ]") indicates a linear code and the absence of a base after the closing bracket defaults to
the binary base. The example of Hamming Codes presented in this section is a [7,4,3]-code.
The Hamming distance between two vectors A and B is the Hamming Weight of (A⊕B),
i.e. the number of positions in which they differ. The minimum Hamming distance is the
smallest Hamming distance between any two valid code words. This concept comes from
a geometric view of error-correcting codes and is useful to determine the error correction
and detection capabilities of a code. The minimum Hamming Distance is also the rank
(number of linear independent rows) of the parity check matrix.

2.2.2 LDPC Codes

In 1960, Robert Gallager introduced Low-Density Parity Check (LDPC) Codes [28], a
family of parity check codes which presents a very good rate and error correction capa-
bility. The generator and parity check matrices are similar to Hamming Codes, as well as
the encoding process. We define the density of a matrix as the fraction of one-valued bits
that it contains. The main particularity of LDPC over Hamming Codes is in the density
of the parity check matrix, which is, as the name states, low. The decoding process is
more complex and LDPC codes can be instantiated to correct an arbitrary number of
errors.

Basic Construction

In general, the parity check matrix, H, for LDPC codes can be generated in any arbitrary
way that results in a relatively low density. If the code is regular, then all columns and
all rows of H present the same Hamming Weight. The generator matrix creation and the
encoding process are essentially the same as for Hamming Codes.

Decoding

There are many published algorithm for decoding LDPC codes. Algorithm 1 shows a very
simple version of Gallager’s bit-flipping decoding algorithm. It is composed of a syndrome
calculation (lines 1 and 7), similar to HC, and the decoding algorithm itself (lines 3 to 6),
which is applied iteratively. Although significantly more complex, the decoding slightly
reassembles the one of Hamming Codes, since the syndrome is compared to each column
of the parity check matrix.
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Algorithm 1: Bit-flipping decoding algorithm.
Input : H, c and Threshold
Output: c

1 s← H × c
2 while s 6= 0 do
3 foreach column hi in H do
4 if HammingWeight(hi ∧ s) > Threshold then
5 FlipBit(c, i)

6 end
7 s← H × c
8 end

The Hamming Weight of the logical and between the syndrome and the i-th column
of H (i.e. the number of one-value positions in common between them) determines the
probability of the i-th positions of the code-word containing an error. If this number is
greater then a certain threshold (Line 4 of Algorithm 1), the i-th bit is considered an
error and is, consequently, flipped. The syndrome is then recalculated and the procedure
restarts until all errors are corrected (i.e. the syndrome = 0). There are several ways
of defining the threshold, but most of them are based on the original Gallager’s equa-
tions [28]. The syndrome should tend to zero over the iterations, but the decoding is a
probabilistic procedure and, hence, it has a probability of failure.

Quasi-cyclic Structure

The parity check matrix of LDPC codes can be generated in any arbitrary way that results
in a relatively low density. While the use of random matrices is possible, some structures
enable much better decoding performance and require less storage space. The quasi-cyclic
structure, exemplified below, is a great example of this. For each circulating block (the
example has 2), the i-th row is the (i − 1)-th row rotated one bit to the right. This
structure allows the matrices to be represented by its first row only and to be treated as
polynomials over xr − 1, where r is the size of each circulating block.















1 0 0 1 0 0 0 0 1 1

0 1 0 0 1 1 0 0 0 1

1 0 1 0 0 1 1 0 0 0

0 1 0 1 0 0 1 1 0 0

0 0 1 0 1 0 0 1 1 0















2.3 Arithmetic

In this section, we present the basic arithmetic concepts necessary in this work.
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2.3.1 Basic Definitions

Definition 2.3.1. Set: A basic Algebraic Structure which represents an unordered col-
lection of elements.

Definition 2.3.2. Well-defined operation: An operation ⋆ over elements of an algebraic
structure A which satisfies the following properties:

• Closure: For all a, b ∈ A, a ⋆ b = c, such that c ∈ A.

• Associativity: For all a, b, c ∈ A, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

• Identity: For any a ∈ A, ∃b ∈ A, such that a ⋆ b = b ⋆ a = a

• Inverse: For each a ∈ A, ∃b ∈ A, such that a ⋆ b = Identity.

Definition 2.3.3. Group: A set equipped with one well-defined operation.

Definition 2.3.4. Abelian Group: A group in which the well-defined operation satisfies
one additional property:

• Commutativity: For all a, b ∈ A, a ⋆ b = b ⋆ a.

Definition 2.3.5. Ring: An abelian group equipped with an additional operation sat-
isfying Associativity and Identity. The additional operation · is distributive over the
well-defined operation ⋆.

• Distributivity: For all a, b, c ∈ A, a · (b ⋆ c) = a · b ⋆ a · c.

Definition 2.3.6. Field: An abelian group equipped with an additional well-defined op-
eration. One operation is also distributive over the other. Every field is a ring, but
the converse is not true since the additional operation of a ring is not required to be
well-defined.

Definition 2.3.7. Finite algebraic structure: An algebraic structure (e.g set, group, field
or ring) containing a finite number of elements. A finite field is also called a Galois field
and is represented by the notation GF (p), where p is a field characteristic.

Definition 2.3.8. Monomial: A product expression between a constant coefficient c and
any number of variables xi. Each xi can also present an exponent ei. This work uses only
single variable monomials (Equation 2.16). The degree of a single variable monomial is
the value of its exponent.

m(x) = c×
∏

i

xi
ei (2.15) m(x) = cxe (2.16)

Definition 2.3.9. Polynomial: A sum of monomials. This work uses only single variable
polynomials. The usual notation and some properties are listed below.

p(x) =
∑

i

ci × xi
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• Degree = max(i, such that ci 6= 0)

• Notation: [xi](p(x)) = ci

Definition 2.3.10. Polynomial Ring: A ring composed of polynomials with coefficients
belonging to another ring.

2.3.2 Modular Arithmetic

The use of modular arithmetic is an easy way to define operations in a finite algebraic
structure. In this work, we will use a finite polynomial ring with coefficients in the GF (2)
(finite field of characteristic 2).

Operations in GF(2)

The finite field of characteristic 2 is composed of two elements {0, 1} and is equipped with
the operations addition and multiplication, which are executed modulus 2.

Examples:

0 + 0 ≡ 0 (mod 2)

0 + 1 ≡ 1 (mod 2)

1 + 0 ≡ 1 (mod 2)

1 + 1 ≡ 0 (mod 2)

0× 0 ≡ 0 (mod 2)

0× 1 ≡ 0 (mod 2)

1× 0 ≡ 0 (mod 2)

1× 1 ≡ 1 (mod 2)

Operations in the Polynomial Ring

To define the basic operations, we first select a modulus polynomial P .

Addition: The addition between two polynomials is defined as the addition in GF (2)

between the coefficients of their monomials with the same degree. It is equivalent to a
bit-wise exclusive or (XOR) between their binary representations. Examples:

(x2 + x) + (x3 + x) ≡ (x3 + x2) (mod P )

(x+ 1) + (x4 + x+ 1) ≡ (x4) (mod P )

(x2 + x) + (x2 + x) ≡ (0) (mod P )

(x3+x2)+(x+1) ≡ (x3+x2+x+1) (mod P )

Multiplication: The multiplication is executed similarly to regular polynomial multi-
plication. However, whenever the result is greater than the modulus polynomial, it needs
to be reduced. The reduction is done by subtracting the modulus polynomial (or multiples
of it) from the result. Example, using P = x4 + x+ 1:

Distributive property: (x2 + x)× (x3 + x) = x× (x3 + x) + x2 × (x3 + x)

First monomial multiplication: x× (x3 + x) = (x4 + x2)

Reduction: (x4 + x2)− (x4 + x+ 1) = (x2 + x+ 1)

Second monomial multiplication: x2 × (x3 + x) = (x5 + x3)

Reduction: (x5 + x3)− (x4 + x+ 1)× x = (x3 + x2 + x)

Result: (x2 + x+ 1) + (x3 + x2 + x) = (x3 + 1)
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Multiplicative Inversion: From the definition of the inverse property: For each a ∈
A, ∃b ∈ A, such that a ⋆ b = Identity. The multiplicative inverse operation consists
of finding b for some a when ⋆ is the multiplication and the algebraic structure A is
the polynomial ring. There are several ways of calculating it. A simple one is using
exponentiation. Fermat’s Little Theorem states that, for a prime p, ap ≡ a (mod p) ,
thus ap−1 ≡ 1 (mod p) −→ ap−2 ≡ a−1 ≡ b (mod p). In this way, we can obtain the
inverse by exponentiating a to (p − 2). For polynomials, it functions equivalently by
exponentiating to (2d − 2), where d is the polynomial degree. Itoh and Tsujii defined a
method to efficiently calculate such exponents in its inversion algorithm [40].

2.4 Code-based Cryptography

In Section 2.2, we presented the basic structure and decoding methods for Hamming
Codes and LDPC codes. In both cases, decoding requires the knowledge of specific in-
formation, the parity check matrix. In fact, without the knowledge of some structural
information such as the parity check matrix, the problem of decoding a general linear
code is NP-complete [6]. Starting from this observation, we can define a simple sym-
metric cryptosystem. The parity check matrix is the shared key, the encryption process
is the encoding followed by a deliberated error insertion to mask the message, and the
decryption is the decoding process using the parity check matrix. Those who know the
parity check matrix will be able to decode the message. Those who do not would have to
guess the error or the parity check matrix.

From this basic symmetric cryptosystem, it is easy to define a public key one. As
we mention in Section 2.2, any elementary row operations can be performed over the
generator matrix. Thus, we can apply to the generator matrix (G) a one-way operation
(composed of elementary row operations) that hides the parity check matrix (H) structure.
In this way, G can be used as the public key of the cryptosystem, while H remains as
the secret key. Note that, to guarantee the security in this scheme, it is also necessary to
consider the possibility of an attacker exploiting the knowledge of G to discover H. Details
vary according to the code family used, but this is the main idea behind code-based
cryptography and it was first presented in 1978 with the McEliece Cryptosystem [47].

2.4.1 The McEliece Cryptosystem

The McElice cryptosystem [47] was the first code-based encryption scheme ever proposed
and still remains as the most relevant one. The original scheme used Goppa Codes, which
enabled great performance due to very efficient decoding algorithms, but keys took 460Kb
at the 80-bit security [10], making the system not competitive among the alternatives.

Equation 2.17 shows the encryption in the original McEliece Cryptosystem: m is a
message of length k; z is an error vector with Hamming Weight t; and G′ is a k×n matrix
defined in Equation 2.18, where S is a scrambling matrix, G is the generator matrix for
the chosen code (e.g. Goppa Code) and P is a permutation matrix. All these matrices are
randomly generated and the last 3 compose the private key of the cryptosystem, while
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their product G′ is the public key. The decryption is shown in Equation 2.19, where
Decode is the decoding algorithm for the chosen code.

c′ = mG′ + z (2.17)

G′ = SGP (2.18)

m = Decode(cP−1)S−1 (2.19)

Using Goppa codes at the 80-bit security level, the parameters k, n, and t are chosen
respectively as 1632, 1269 and 34 bits, resulting in the 460Kb public key size. Many tech-
niques were proposed in order to reduce the key size of Goppa codes. Misoczki and Bar-
reto [52] proposed a dyadic structure, but although they successfully presented a viable
small-key alternative with just 20Kb, it resulted in structural vulnerabilities [25].

In 2000, Monico et al. [53] suggested the use of Low-Density Parity-Check (LDPC)
codes [28] in the McEliece cryptosystem. At the time, these codes were considered the
state-of-the-art on error correction, providing very good error correction capabilities at
a low cost. For cryptographic purposes, the code presented compact keys and a reason-
ably good performance. However, the low density of the parity check matrix, its private
key, enabled structural vulnerabilities which resulted in very efficient attacks against the
cryptosystem [58].

There were several attempts to solve the structural vulnerabilities of LDPC codes.
Most of them were proven to be insecure or resulted in cryptosystems with impractical
performance levels and key sizes [3]. In 2002, the proposal of using a parity check matrix
with a Quasi-Cyclic (QC) structure for LDPC codes [45] brought great advantages in
terms of performance and key size. It did not intend to solve the structural vulnerability
problem of LDPC codes, but it created the necessary basis for the development of new
families of codes that would avoid such vulnerabilities.

2.4.2 QC-MDPC codes

In 2013, Misoczki et al. [51] proposed the use of Quasi-Cyclic Moderate Density Parity
Check (QC-MDPC) codes, a derivative of QC-LDPC using higher density parity check
matrices. The cryptosystem kept the compact size of keys from LDPC cryptosystems
and avoided its structural vulnerabilities by increasing the density of the parity check
matrix. Table 2.1 shows a key length comparison between QC-MDPC codes and some of
the previous alternatives.

Table 2.1: Key length in bits for different codes (from [51])

Security Level QC-MDPC QD-Goppa Goppa
80 4,801 20,480 460,647
128 9,857 32,768 1,537,536
256 32,771 65,536 7,667,855

Another advantage of QC-MDPC codes is eliminating the need for scrambling and
permutation matrices. In the original proposal, the generator matrix G is the row-reduced



28

echelon form of the parity check matrix H. In this way, the first bits of G are the identity
matrix and there is no need to store the matrix of linear transformation since it is not
necessary to reverse the transformation after decoding. Considering this, the decryption
process boils down to the plain decoding (Algorithm 1) and the original message can be
extracted from the first bits of the decoded code-word.

The QC-MDPC codes were proposed using Gallager’s decoding algorithm [28], which
was originally developed to decode LDPC codes. Soft-decision algorithms were also pro-
posed later [4]. In both cases, the algorithms are iterative and present a non-negligible
failure rate in which they are unable to recover the message. Following the notation of
Section 2.2, the first version of QC-MDPC cryptosystem used a [9602, 4801, 90]-code
capable of correcting 84 errors to achieve 80-bit classical security level. Table 2.2 shows
the parameters for a [2 × R, R, W ]-code capable of correcting T errors to achieve the
respective quantum security level.

Table 2.2: Suggested parameters (from Aragon et al. [2])

Quantum Security Level R W T
64 bits 10,163 142 134
96 bits 19,853 206 199
128 bits 32,749 274 264

Niederreiter Cryptosystem: The Niederreiter Cryptosystem [56] is a simpler varia-
tion of McEliece where the message is equal to the first half of the error vector. In this
way, for QC-MDPC cryptosystems, the first half of the (invalid) code-word is always zero,
reducing the size of the block. The error becomes the only secret information stored in the
ciphertext and it can be used, for example, as a key for a symmetric cryptosystem. This
cryptosystem is implemented by most of the modern implementations since it enables
faster encryption and more compact messages and public keys.

2.4.3 QcBits

In 2016, Chou published QcBits [16], a constant time implementation of the Niederreiter
cryptosystem using QC-MDPC codes. It was the first fully constant-time implementation
of a QC-MDPC based cryptosystem and the fastest at the time. The speed improve-
ment was achieved mostly through the use of bit-slicing techniques for the polynomial
arithmetic. QcBits was presented in two versions: the C-only ref version, and the clmul

version using the PCLMULQDQ instruction [34] to accelerate polynomial arithmetic. In both
versions, the bit-flipping decoding (Algorithm 1) was implemented using constant-time
vector rotations and bit-slicing.

Aside from raw performance, the constant-time execution is an important feature
since side-channel attacks against implementations of code-based cryptography have been
frequently explored in the literature [23, 60, 66]. The decoding algorithm is the most
challenging part of the implementation to protect. As shown in Algorithm 1, the original
form of the algorithm is inherently variable time because the decoding only stops when
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all errors are corrected. To work around this problem, QcBits determines a maximum
number of iterations for the decoding (6 at the 80-bit security level). There is no proof
or strict estimate indicating that 6 iterations are enough for practical secure use of the
implementation, but empirical tests showed an acceptably low failure rate [16].

Key Generation

Algorithm 2 shows the key generation process. The parameters R, W and T are defined by
the target security level (Table 2.2), where R is the degree of the modulus polynomial, W is
the Hamming weight of the key, and T is the Hamming weight of the error polynomial. The
function GeneratePolynomial generates a binary polynomial with the specified Hamming
weight and maximum degree. The verification in line 4 is necessary to assure that the
generated polynomial belongs to the multiplicative polynomial ring, i.e. the polynomial
has no factors in common with xR − 1.

As described in Section 2.4.2, the generator matrix G is the row-reduced echelon
form of the parity check matrix, H. The probably most intuitive way of obtaining G

is through Gaussian Elimination, but there are more simple and efficient methods to
calculate it. The goal is to find a matrix E such that [E] × [H0 : H1] = [I : G]. Note
that [E]× [H0] = [I], therefore E = H−1

0 and H−1
0 ×H1 = G, which is calculated in line 5

of Algorithm 2. In QcBits, the polynomial inversion of H0 is calculated using Itoh-Tsujii
inversion algorithm [40].

Algorithm 2: Key Generation.
Input : GeneratePolynomial, R and W
Output: PrivateKey and PublicKey

1 repeat
2 H0 ← GeneratePolynomial(MaxDegree = R− 1, HammingWeight = W

2
)

3 H1 ← GeneratePolynomial(MaxDegree = R− 1, HammingWeight = W
2
)

4 until H−1
0 ×H0 ≡ 1 (mod xR − 1);

5 G← H−1
0 ×H1

6 PublicKey ← G
7 PrivateKey ← (H0, H1)

Encryption

The encryption process (Algorithm 3) is structured to be part of a Key Encapsulation
Mechanism (KEM). The error polynomials e0 and e1 are randomly generated and can be
used as a key for a symmetric cryptosystem. The input G is the public key and the other
inputs are the same of the key generation. The encryption could also be used to encrypt
an arbitrary message. In this case, the polynomials ei would be part of the input and the
message would need to be encoded as a binary polynomial complying with the restrictions
of maximum degree and Hamming weight.
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Algorithm 3: Encryption.
Input : G, R, T and GeneratePolynomial
Output: Ciphertext and Key

1 e0 ← GeneratePolynomial(MaxDegree = R− 1, HammingWeight = T
2
)

2 e1 ← GeneratePolynomial(MaxDegree = R− 1, HammingWeight = T
2
)

3 Ciphertext← e1 ×G+ e0
4 Key ← (e0, e1)

Decryption

Algorithm 4 shows the polynomial view of the decryption process. The function Trans-

posePolynomial obtains the polynomial representing the column for a Quasi-Cyclic matrix
from the polynomial representing the row. The polynomial sum is an integer polynomial
and the function IntegerPolynomialAddition interprets w as an integer polynomial and
adds it to sum. The function CalculateThreshold calculates the threshold used to define
which bits probably belong to the error polynomials. The method used to determine it
varies with the implementation and QcBits uses fixed pre-calculated values.

Algorithm 4: Polynomial view of the decryption using the bit-flipping algorithm.
Input : H and c
Output: e0 and e1

1 e0 ← 0, e1 ← 0
2 H ′

0(x)← TransposePolynomial(H0(x)), H ′
1(x)← TransposePolynomial(H1(x))

3 s← (H0 × (e0 + c)) + (H1 × e1)
4 while s 6= 0 do
5 for j = 0→ 1 do
6 sum← 0
7 foreach monomial xi ∈ H ′

j(x) do
8 w ← s× xi
9 sum← IntegerPolynomialAddition(sum,w)

10 end
11 Threshold← CalculateThreshold(s)
12 foreach monomial xi ∈ sum(x) do
13 if [xi](sum(x)) > Threshold then
14 ej ← ej + xi

15 end

16 end

17 end
18 s← (H0 × (e0 + c)) + (H1 × e1)
19 end

Algorithm 5 shows the constant-time implementation of each decoding iteration in
QcBits. The value TH is the iteration threshold, s is the syndrome, c is the ciphertext
and H ′ the sparse representation of the parity check matrix, which is an array of non-
zero indices. The BitSliceAdder function consists in adding each bit individually by
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positioning and storing each bit of the result in an array position (Algorithm 6), similarly
to a half adder circuit. The BitSliceSubtractor is implemented in the same way, but with
a full adder or subtractor instead.

Algorithm 5: QcBits Bit-flipping implementation logic
Input : H ′, c, s and TH
Output: c

1 N ← 1 + ⌈log2(|H ′|)⌉
2 sum[N ]← 0′s
3 foreach index i in H ′ do
4 w ← s≪ i
5 sum← BitSliceAdder(sum,w)

6 end
7 sum← BitSliceSubtractor(sum, TH)
8 c← ¬sum[N − 1]⊕ c

Algorithm 6: BitSlice Adder Implementation Logic
Input : N , sum and w
Output: sum

1 for i = 0 to N do
2 cout ← sum[i] ∧ w
3 sum[i]← sum[i]⊕ w
4 w ← cout
5 end

Line 1 in Algorithm 5 calculates the number of bits necessary to represent the number
of elements belonging to H ′, which is the maximum result that can be stored on the sum
array by the BitSliceAdder. Line 2 initializes sum with zeros. The loop on line 3 iterates
over the private key indices: for each index, the syndrome is rotated left on the index
value (line 4) and the result is added to the sum array using the BitSliceAdder function.
This process is equivalent to calculating the Hamming Weight of the bitwise AND between
each matrix column and the syndrome. However, for 80-bit security, instead of iterating
over the 4801 rows of the parity check matrix, this method just needs to iterate over the
90 indices of the sparse matrix representation. At the end of the loop, the threshold is
subtracted from the sum of each bit. If the most significant result bit is one on line 8, it
indicates that the threshold is greater than the sum and the corresponding bit must not
be flipped. Otherwise, the bit is flipped.

2.4.4 BIKE

In 2017, Aragon et al. published the BIKE suite [2] containing 3 key encapsulation
schemes using QC-MDPC codes. BIKE is the main representative of QC-MDPC codes in
NIST’s standardization project [57] and its Variation 2 implements the same cryptosystem
as QcBits.
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Comparing with the original QcBits, BIKE presents several improvements. It uses
updated parameters to achieve up to 128-bit quantum security level; it features an en-
hanced version of the bit-flipping algorithm (Algorithm 7); it exploits the Montgomery
Trick to perform batch key generations (Algorithm 9); it present versions using modern
instruction sets, such as Intel AVX-512; among other minor improvements. BIKE, how-
ever, does not present a fully constant time version, which could be considered a problem
from the side-channel protection perspective.

Algorithm 7 shows the bit-flipping decode variant presented in BIKE. H is the parity
check matrix, s is the syndrome, and W is a security parameter(Table 2.2). S, δ and the
threshold function are additional parameters and function with values depending on the
security level and on the BIKE variant being implemented.

2.5 Side-Channel Protection

Side-channel attacks are those that exploit the possible correlation between the cryp-
tosystem secret data (keys and plain-text) and the physical behavior of the hosting ma-
chine during its execution. Examples of physical data that can be gathered to perform a
side-channel attack are power consumption, execution time, heat emanation, and sound
emission. In a side-channel attack, the information leakage occurs accidentally as a char-
acteristic of the implementation [29]. Although most of them require physical access to
the host machine, some can be entirely executed through remote connections. Timing
side-channel attacks are an example of side-channel attacks that can usually be executed
in remote ways [13] and, hence, protection against them became a requirement in modern
cryptographic implementations. Protections against more intrusive data collection are
also important depending on the context.

Both conventional and post-quantum cryptography algorithms are a target for side-
channel attacks. Considering conventional algorithms, there are, for example, attacks
against the AES, exploiting the cache memory behavior [7]; time-based attacks against
Diffie-Hellman and RSA [43], and fault-based attacks against elliptic curve cryptogra-
phy [17]. In the post-quantum cryptography field, can be cited, for example, attacks
against code-based cryptography [66, 23].

The implementation of QcBits is fully constant time in order to protect the im-
plementation against timing side-channel attacks. However, it was demonstrated that
the power consumption of original implementation execution depends on the secret key.
Rossi et al. [60] presented a power-based side-channel attack against the syndrome cal-
culation of QcBits. The attack exploited a power-leakage at the store of the rotated
code-word (line 4 of Algorithm 5). They also provided a simple countermeasure in order
to prevent the attack. Another power side-channel vulnerability concerning QcBits is the
conditional copy implementation used along the code, which will be further discussed in
Section 3.3.
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2.5.1 Constant-time implementations

The use of constant-time implementations is the main countermeasure used to avoid
timing side-channel attacks. The definition of constant-time implementation, however,
varies in the literature. Strictly speaking, a constant-time implementation is one whose
execution always take the same amount of time. While sometimes used, this definition
could only be achieved considering an execution on an ideal machine. On real machines,
small variations in the execution time occur naturally due to the physical properties of
hardware. Modern architectures also present features that are out of the application’s
control and that can significantly impact the execution time, such as the dynamic voltage
and frequency scaling [67]. Some less strict but achievable definitions are presented below.
In these cases, the variations in the execution time caused by the execution environment
are disregarded.

1. The execution time does not depend on any data being processed, except for data
that is public by construction (e.g. the public key, the security parameters, and the
length of an arbitrary message). This is the definition we adopt in this work.

2. The execution time does not depend on secret data being processed, but it may
vary depending on derivatives of secret data, such as data resultant of masking or
blinding techniques.

3. The execution time depends on secret data being processed, but there are no known
attacks capable of recovering any significant information about secret data through
the observation of execution time. While this definition arguably results in similar
protection against currently known timing side-channel attacks, it lacks guarantees
against possible future attacks.

A more relaxed variation of this concept is a uniform implementation: given an it-
erative algorithm with the number of iterations depending on secret data, a uniform
implementation executes each iteration in constant time, but the number of executed it-
erations is variable. If the number of iterations is not sufficient to obtain any significant
information about secret data, then this definition fits the definition of constant-time im-
plementation present on Item 3. The decoding process of BIKE is an example of Uniform
implementation that fits the definition on Item 3.

Implementing conditional statements in constant-time

The implementation of conditional statements in constant-time is fundamental to the
implementation of algorithms presented in this work. In this section, we present a brief
example of how we implemented them. Generally, we execute all possible execution flows
and select the correct result using constant-time conditional copies. These conditional
copies, in turn, are implemented in constant-time through specialized instructions, such
as Intel’s CMOV, BLENDV or AVX-512 masked instruction; or through the explicit use of
masks with a bit-wise AND operation.

Listing 1 shows an example of a non-constant-time conditional operation. Assuming
that A and B are secret data, this implementation is vulnerable to timing side-channel
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attacks. Listing 2 shows the equivalent constant-time implementation (considering that
Function1 and Function2 do not have side effects). The operations using 64-bit integers
(uint64_t) had their results conditionally selected through a bit-wise AND with the mask
cond. When using AVX-512 registers, the implementation of conditional operations is
significantly simplified. The AVX-512 instruction set extension already provides masked
versions for most of its instructions. In this way, we simply use the mask cond in the
mask field of the intrinsics of these instructions.

uint64_t A, B, C, D, cond;

__m512i V1, V2, V3;

[...]

if(A < B){

C = Function1();

D += 5;

V1 -= V2;

}else{

C = Function2();

D ^= 0xf;

V1 &= V3;

}

Listing 1: Non-constant-time conditional operations

cond = ((int64_t) (A - B)) >> (63);

C = cond & Function1() | ~cond & Function2();

D = cond & (D + 5) | ~cond & (D ^ 0xf);

V1 = _mm512_mask_sub_epi64(V1, cond, V1, V2);

V1 = _mm512_mask_and_epi64(V1, ~cond, V1, V3);

Listing 2: Constant-time conditional operations

2.5.2 Reaction Attack

The current implementations of QC-MDPC code-based cryptography rely on imperfect
decoding processes that present a non-negligible failure rate in which they are unable to
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remove the errors. The implementations usually deal with this Decoding Failure Rate
(DFR) by establishing an upper bound and adjusting the decoding parameters accord-
ingly. It is commonly accepted that the DFR should be at most 10−7 [5]. QcBits uses a
DFR of 10−8 and 10−5 for the 40-bit and 64-bit quantum security level, respectively. BIKE
defined the upper bound of 10−7 for the DFR for 64-bit, 96-bit, and 128-bit quantum se-
curity level implementations. Considering QC-LDPC, we can refer to the cryptanalysis
work by Fabšič et al. [24] that estimated the DFR of recent implementations to be around
10−5 for a 40-bit quantum security level.

The DFR used to be an issue only from the usability perspective, but it also became
a security issue with the publication of the Reaction Attack [37]. It was first discov-
ered in 2016, when Guo et al. [37] presented an attack exploiting the relation between
the parity check matrix bits and the decoding failure rate of QC-MDPC codes. Later,
Fabšič et al. [24] showed that it also works for QC-LDPC codes and even with the use
of a soft-decision decoding algorithm [44] instead of bit flipping. The attack was named
Reaction Attack and is capable of recovering the entire secret key once provided with a
large number of decoding attempts. It works as follows:

1. Given a group ψD containing all possible error vectors, such that each element is
composed of t

2
pairs of bits with a distance D between them:

(a) Send M messages encrypted with error vectors belonging to ψD to the decryp-
tion process.

(b) Based on the number of failures, calculate the failure rate for the distance D.

2. Repeat step 1 for all possible values of D.

3. Based on failure rates, for each D, determine if there are two bits at the distance
D of each other in the private key. In a simple way, this relation can be defined as:
the higher the failure rate, the lower the number (multiplicity) of pairs of bits with
distance D between them in the private key.

4. Reconstruct the private key from this distance spectrum.

The main countermeasure being applied to avoid this attack is the use of ephemeral
keys [5]. More recent implementations also featured methods for obtaining a DFR neg-
ligible in the security level [23], but they did not achieve practical levels of performance
and message length yet.

2.6 Summary

Chapter 2 presented the concepts necessary for the understanding of this work. Most of
them regard basic notions of cryptography and error correcting codes, but some are more
context-specific, such as in Section 2.4.3, where the QcBits implementation is presented.

The Chapter started by introducing symmetric, public-key, and post-quantum cryp-
tography in Section 2.1. Section 2.2 presented a basic background on error-correcting
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codes, focusing specifically on parity check codes. Section 2.3 developed the arithmetic
concepts from the definition of set up to the definitions of polynomial, field and ring, which
are used in this work. Section 2.4 included an introduction to code-based cryptography,
but it focused mainly on presenting QcBits as an example of modern implementation of
QC-MDPC code-based cryptosystem. Finally, Section 2.5 first introduced side-channel
attacks in a generic way and then presented some more specific cases in which QC-MDPC
code-based cryptosystems are affected.

Chapters 3 and 4 will present our contributions to the performance improvement of
QC-MDPC cryptosystems. These contributions are built upon QcBits, therefore the un-
derstanding of its functioning (Section 2.4) will be necessary, as well as the basic concepts
of arithmetic over binary polynomials (Section 2.3).
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Algorithm 7: BIKE’s One-Round Bit Flipping Algorithm [2]
Input : H, S, W , δ and s
Output: e

1 T ← threshold(s)
2 J ← [[]] ; // Empty array of arrays

3 foreach column hi in H do
4 l ← min(HammingWeight(hi ∧ s), T )
5 Jl ← Jl ∪ hi
6 end
7 e← JT
8 s′ ← s− eHT

9 while HammingWeight(s′) > S do
10 for l = 0 to δ do
11 e′ ← 0
12 for hi ∈ JT−l do
13 if HammingWeight(hi ∧ s) ≥ W/4 then
14 e′i ← 1
15 end

16 end
17 (e, s′)← (e+ e′, s′ − e′HT )

18 end

19 end
20 e′ ← 0
21 for i = 0 to length(e) do
22 if ei = 1 and HammingWeight(hi ∧ s) ≥ W/4 then
23 e′i ← 1
24 end

25 end
26 (e, s′)← (e+ e′, s′ − e′HT )
27 while HammingWeight(s′) > u do
28 j ← −1
29 while j = −1 do
30 r ← RandomV alueFrom({x ∈ [0, length(s)) | sx = 1})
31 foreach column hi in {H | Hi,j = 1} do
32 if HammingWeight(hi ∧ s) ≥ W/4 then
33 j ← i
34 end

35 end

36 end
37 (e, s′)← (ej + 1, s′ + hj)

38 end
39 return e
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Chapter 3

Accelerating the implementation of

QcBits

The original QcBits presents a very good performance level due to the employed techniques
and some of the algorithm choices. However, it does not exploit modern instruction set
extensions which could improve the performance even further. Moreover, it was published
using outdated parameters that achieves only 40-bit quantum security level. Considering
this in this chapter, we present several contributions towards a performance improvement
of QcBits, as well as an update on its parameters.

First, we focused on improving the performance of the decoding process in 40-bit
QcBits and presented the following contributions.

• An optimization of the decoding process for both versions of QcBits, achieving a
speedup of 3.6 times over the clmul version and 4.8 times over ref. The performance
improvement came from vectorization using AVX instructions, loop unrolling on hot
spots and pre-calculation of vector rotations.

• An estimation that performance gains could be as high as 5.06 times on clmul

version if new instructions for conditional vectorial moves and 256-bit register shifts
were added to the architecture.

• The mitigation of all known power vulnerabilities found in the original implemen-
tation with an almost negligible (< 1%) impact on the overall performance.

These contributions were published at WSCAD-2017 [35]. Then, we extended this
work by rewriting the entire implementation optimizing it through both algorithmic and
implementation techniques. Our newer contributions are listed below.

• The update of the security level from 80-bit classical security level to 128-bit quan-
tum security level, meeting NIST’s highest security level requirement for the stan-
dardization process.

• The vectorization of the entire implementation using the AVX512 instruction set
extension.

• The replacement of some of the core algorithms with others that have a better
performance in face of the new AVX512 instructions.
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• The implementation of BIKE’s batch key generation processes using QcBits’ algo-
rithms.

As a result of the above-mentioned contributions, our implementation takes 928, 259
and 9,803 thousand Skylake cycles to respectively perform the batch key generation (cost
per key), encryption, and decryption. These times were measured using our constant-time
implementation, which prevents time-based side-channel attacks [23]. Using a uniform
implementation, our decryption takes 5,008 thousand cycles.

Comparing to BIKE, we have a 1.91-factor speedup on the uniform decryption and a
1.34-factor speedup on the constant-time encryption. Our constant-time key generation is
3 times slower than BIKE’s since we choose to uphold the constant-time execution. BIKE
does not provide constant time implementations for key generation and decryption [33].
Its decryption is uniform, its encryption is constant time and its key generation relies on
the NTL Library [63], which is neither constant-time nor uniform.

3.1 Optimizing the decoding process of QcBits

We began our optimization of the decoding process of the original QcBits by extending
the vectorization to the whole code using the SSE4, AVX2 and AVX512 instruction set
extensions. Our initial expectation was to obtain a 2, 4 and 8 factor speedup in each of
the cases, respectively, since these values correspond to the number of SIMD lanes found
on these standards. Most of the code was composed of bitwise operations, such as XOR and
AND of the bit slice adder, and were easily vectorizable, resulting in an immediate gain of
2.6 times when using the AVX2 instruction set, for example. However, the absence of some
instructions in the SIMD instruction sets prevented the expectation from materializing.

The main obstacle for vectorization was the implementation of shifts on registers larger
than 64 bits. These operations are necessary to perform the vector rotations shown on
line 4 of Algorithm 5. For the 80-bit security level, the rotation target has 4,801 bits and
it is implemented in two steps using C language: first, the words that compose the vector
are permuted following the rotation logic; next, the rotation is done inside each word,
shifting its bits and inserting next word bits in the shifted area. For registers with size
smaller or equal to 64 bits, there is a single instruction to shift all the register bits, which
facilitates the implementation. For larger registers, bit shift instructions operate over the
64-bit lanes only. Hence, we had to perform a custom multi-instruction logic, making the
implementation slower and more complex.

Listing 3 and 4 show our implementation of a shift right with carry on AVX2 and
AVX512 registers, respectively, used in the vector rotation shown on line 4 of Algorithm 5.
The code is composed of 10 intrinsics for vector instructions. It works by permuting 64-bit
sets to reduce the shift amount to less than 64, then the Carry In is inserted using the
BLENDV instruction and the shift is finished using instructions that shift inside the 64-bit
lanes. Some of the used instructions are very expensive. For example, the PERMUTEVAR

instruction on line 12 and 19, which has 3-cycle latency in Skylake, according to Agner
Fog’s instruction tables [27].
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1 word_t bitShiftRight256bitCarry (word_t data, index_t count, word_t * carryOut, word_t carryIn){

2 word_t innerCarry, out, countVet;

3 word_t idx = _mm256_set_epi32(0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0);

4 const word_t zeroMask = _mm256_set_epi64x(-1, -1, -1, 0);

5 word_t zeroMask2 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,

6 0x82, 0x82, 0x82, 0x82, 0x82, 0x82, 0x82, 0x82,

7 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84,

8 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86);

9

10 countVet = _mm256_set1_epi8((count >> 5) & 0xE);

11 idx = _mm256_add_epi8(idx, countVet);

12 data = _mm256_permutevar8x32_epi32(data, idx); // rotate

13 *carryOut = data;

14 zeroMask2 = _mm256_sub_epi8(zeroMask2, countVet);

15 data = _mm256_blendv_epi8 (carryIn, data, zeroMask2);

16 // shift less than 64

17 count = (count & 0x3F);

18 innerCarry = _mm256_blendv_epi8(carryIn, data, zeroMask);

19 innerCarry = _mm256_permute4x64_epi64(innerCarry, 0x39); // >> 64

20 innerCarry = _mm256_slli_epi64 (innerCarry, 64 - count);

21 out = _mm256_srli_epi64 (data, count);

22 out = _mm256_or_si256 (out, innerCarry);

23 return out;

24 }

Listing 3: 256-bit register shift implementation

For the clmul version vectorized with AVX2 instruction, the syndrome calculation
was also a problem. Executed at the beginning of the decoding process, it was originally
implemented using the carry-less multiplication instruction which is only available for
128-bit size registers. Therefore, this code snippet, which takes approximately 20% of the
code execution time, is stuck at the 128-bit implementation.

3.1.1 Basic Vectorization Results

We compiled the implementations using the three industry-standard compilers: GCC
7.3.1, CLANG 8.0.0 and ICC 18.0.3. For all the compilers, the compilation optimization
flags used were -O3 and -march=native. The flag -funroll-all-loops was also used
when compiling with GCC. Equivalent flags for aggressive loop unrolling on the other
compilers were tested, but they did not result in any performance improvement and
therefore were removed. The implementations were executed on two machines: the first
one, named Haswell, uses an Intel i7-4770 processor and the second, named Skylake, uses
an Intel i7-7820X processor. Both machines run the Fedora operating system and, aiming
at experiment reproducibility and cycle accuracy, had the Intel Turbo Boost and Hyper-
Threading mechanisms disabled [8]. We measured the number of cycles using the Intel
RDTSC instruction and reproduced each experiment 10 thousand times, which enabled us
to achieve a 99% confidence interval that is negligible compared to the average (≪ 1)%,
hence we will omit it from the charts.

The performance results of this first vectorization are shown in the chart of Figure 3.1.
As can be noted, the execution time, considering the compilation with GCC, reduced from
1,306,618 Skylake cycles and 1,399,015 Haswell cycles to, respectively, 791,829 and 898,996
cycles when using the SSE instruction set, which represents a speedup of 1.6 times; and to
500,146 and 656,294 cycles when using the AVX2 instruction set, which in turn represents
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word_t bitShiftRight512bitCarry (word_t data, index_t count, word_t * carryOut, word_t carryIn){

word_t innerCarry, out, countVet, idx, idx1;

idx = _mm512_set_epi32(0xf, 0xe, 0xd, 0xc, 0xb, 0xa, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0);

countVet = _mm512_set1_epi8((count >> 5) & 0xE);

idx1 = _mm512_add_epi32(idx, countVet);

data = _mm512_permutexvar_epi32(idx1, data);

*carryOut = data;

data = _mm512_mask_blend_epi32(0xFFFF >> ((count >> 5) & 0xe), carryIn, data);

// shift less than 64

count = (count & 0x3F);

innerCarry = _mm512_mask_blend_epi64(0xFE, carryIn, data);

innerCarry = _mm512_alignr_epi64 (innerCarry, innerCarry, 1);

innerCarry = _mm512_slli_epi64 (innerCarry, 64 - count);

out = _mm512_srli_epi64 (data, count);

out = _mm512_or_si512 (out, innerCarry);

return out;

}

Listing 4: 512-bit register shift implementation
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Figure 3.1: Initial vectorization results

speedups of 2.6 and 2.1 times, also respectively. Using the AVX512 instructions, the
speedup was 4.76 times, reducing the execution time to 274,423 cycles. The chart also
shows the performance improvement between the two processors generations, especially
for the vectorized versions: The Skylake processor is 10% faster than the Haswell processor
on the original 64-bit version and on the SSE version, while, for the AVX2 version, Skylake
is 24% faster than Haswell. These conclusions are based on the average results obtained
with the three compilers. The Haswell architecture does not present AVX512 instructions.

3.1.2 Vector Rotation Table

Although there is a likely more efficient implementation for Listing 3, it will probably
be always inefficient without special hardware support. Instead of trying to optimize fur-
ther our implementation, we focused on reducing the number of shift operations executed.
The word permutation of the vector rotation, which is shown on line 4 of Algorithm 5
and is composed of conditional copies and register shifts, represented almost 40% of the
code execution time and 90 of them were calculated in the decoding implementation, one
for each parity check matrix index. However, the permutation is done based on the first
bits of each index and, using 256-bit registers and considering the 80-bit for the security
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level, there are only 32 possible permutations of words following the rotation logic.
Considering that, we construct a table of all possible word rotations at the beginning

of the decoding process and just query that table instead of calculating the permutations
every time. The chart in Figure 3.2 shows the correlation between the number of word
rotations that were calculated and the number of possible rotations for each word size.
As can be seen, the pre-calculated table of rotations would not be worth for the original
64-bit, but it is faster for all our optimized versions.

25 26 27 28 29

Word Size (bits)

50

100

150

200

250

Ro
ta
tio

ns

Calculated
Possible

Figure 3.2: Number of word rotations computed and possible for each implementation

This approach, however, has some obstacles to be used in a constant time implemen-
tation. The table access pattern cannot depend on the private key because it would leak
cache-timing information that could be exploited on a side-channel attack [66]. In order
to prevent this leak, we implemented the code so that it iterates over all the table ele-
ments conditionally copying each one of them. These extra memory accesses add a great
performance penalty and the table of rotation alone became slower than the calculations
even on 256-bit registers version.

Despite that, we were able to improve the rotation table by doing a trade-off between
the calculation and the table access. Basically, we construct a table with just a small
subset of the possible rotations. Then, when a rotation is needed, the implementation
iterates over the table, picks the nearest rotation and calculates the pending rotation
amount starting from the pre-calculated value. Since the rotation calculation is done
based on each bit of the rotation amount, its performance is proportional to the logarithm
of the maximum rotation amount. This way, we achieved a 1.24-factor speedup on the
AVX version, when comparing to the basic vectorization time, using tables with 3 stored
rotations only. The number of Skylake cycles, when compiling with GCC, was further
reduced from 500,146 cycles to 404,883 cycles and the overall speedup increase from 2.6
times to 3.2 times. The use of the rotation table also drastically reduced the number
of iterations necessary to calculate the rotations. This reduction allowed a manual loop
unrolling which leads to a 1.22-factor speedup over the best time, bringing down the
number of Skylake cycles when compiling with GCC to 332,974 cycles.

As shown in Figure 3.2, the number of possible rotations when using 512-bit words is
only 16. In this way, for the AVX512 implementation, we pre-calculated and stored all the
rotations. The number of cycles reduced from 274,423 to 208,989 resulting in an overall
speedup of 6.25 times. All the presented optimization techniques were also applied to
QcBits ref version, which uses only C code. Table 3.1 shows the results for all versions.
The speedups relatively to the Original Version execution are shown in Figure 3.3.



43

Table 3.1: Final optimization results (in cycles)

Machine Version Compiler Original SSE AVX2 AVX512
GCC 1,306,591 535,232 332,974 208,989
CLANG 1,079,710 512,913 301,371 242,781CLMUL
ICC 1,406,311 724,027 391,451 225,212
GCC 2,144,799 834,374 504,126 203,508
CLANG 1,450,582 758,856 387,434 281,339

Skylake

REF
ICC 2,175,998 1,135,434 552,619 238,781
GCC 1,420,750 767,157 508,900 -
CLANG 1,158,520 745,768 466,732 -CLMUL
ICC 1,582,715 859,520 525,901 -
GCC 2,190,229 1,101,205 660,981 -
CLANG 1,566,766 1,074,068 559,744 -

Haswell

REF
ICC 2,309,771 1,239,992 678,288 -
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Figure 3.3: Final speedups achieved with the optimization (relatively to the corresponding
Original version execution)

Analyzing the clmul version results in the chart, we can note that the results using SSE
instructions overcome our initial expectation with a speedup of 2.44 times on Skylake with
GCC. This was possible thanks to the rotation table and the loop unrolling, previously
explained. For the version vectorized with AVX2 instructions, however, the speedup is
still below 4 times, being 3.92 times with GCC on Skylake. It happens mostly because of
the absence of a 256-bit clmul instruction, which creates the need for the use of 128-bit
register instructions in the syndrome calculation. This hurts the performance not only
because of the use of small registers but also due to the transition between the instruction
set extensions, which is known to be expensive [46].

The ref version uses the same constant-time rotation process shown in Algorithm 5
to calculate the matrix multiplications. The only modification in the algorithm is that
the BitSliceAdder is replaced by a simple XOR. Once this method does not rely on clmul

instruction, the ref version could be better optimized. The execution time using AVX2
instructions was 504,126 cycles while using AVX512 instructions it was reduced to 203,508
cycles, which was the best time achieved. The speedups were 4.25 and 10.54 times,
respectively.
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3.1.3 Potential gains with new instructions

As explained at the beginning Section 3.1, the two main hindrances for the vectorization
were the absence of vector instructions for register shifts and conditional moves. This
procedure is currently done by the BLENDV instruction, which is much more powerful and,
hence, expensive than we need for this purpose. Although Fog [27] reports a reciprocal
throughput of 1 cycle for this instruction, it is difficult to use the instruction in a sequential
way to achieve this performance. The introduction of AVX512 instructions solved this
problem by allowing conditional moves at a very low cost. However, the absence of shift
instructions for register larger than 64 bits is still a major problem for all our vectorized
versions.

In order to estimate the possible gains if the shift instruction exists, we experimented
with the clmul version to suppose its existence. The experiment was done by replacing
the vector shift algorithm by a simple 64-bit lanes shift. This version, of course, does not
result in the correct output, but it serves as an estimation. Testing the AVX512 version
on Skylake and compiling with GCC, we execute it in 185,843 cycles, which represents a
1.14 times speedup compared to our best correct clmul version and a total speedup of
7.03 times.

3.2 Enhanced version of QcBits

During the optimization process of the decoding, we held the 80-bit classical security level
since the only source of comparison against our results was the original implementation of
QcBits. However, when we started to optimize other snippets of the code, new implemen-
tations were published using the recommended 128-bit quantum security level. In this
way, we decided to rewrite the entire implementation of QcBits, updating the security
level, optimizing all its processes and reapplying all our previously developed techniques.
Following the trend in other optimized post-quantum implementations, we also decided
to use the AVX512 instruction set extension.

Table 3.2 compares the parameters used in the implementation to achieve the 128-bit
quantum security level and the ones used by the original implementation. Similarly to
Table 2.2, R is the size of the polynomials, and W and T are the Hamming Weight of
the secret key and the error vector, respectively. We represented each 32,749-bit size
polynomial as 64 words of 512 bits each.

Table 3.2: Parameters of each implementation. Obtained from QcBits [16] and BIKE [2]

R (bits) W T Security Level
Original QcBits 4,801 90 84 80-bit classical

This Version 32,749 274 264 128-bit quantum

We executed our performance tests in the same Skylake machine used in Section 3.1.
The number of cycles was measured using the Intel RDTSC instruction and each result is
the average of 10,000 measurements, which we analyzed and concluded that the greatest
majority of the samples are very close to the average. The standard deviation and a
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99% confidence interval were calculated from the data. For the key generation processes
and the constant-time decryption, both the values are negligible compared to the average
(≪ 1%) and, therefore, were omitted in the results. For the encryption, due to the time
variance of the random polynomial generation, and for the uniform decryption, whose
the execution time is intrinsically variable, the standard deviation is about 10% while the
99% confidence interval is also negligible and, therefore, was also omitted.

In order to have a fair comparison, we also measured the times for BIKE on the
same machine. We used Additional Implementation of BIKE1, which is an optimized
version using AVX512 instructions and several code snippets in assembly language; and
the version 11.3.0 of the NTL library [63].

3.2.1 Random Polynomial Generation

Both the key generation and the encryption process need randomly generated polynomi-
als with a specific Hamming Weight. Since the generation procedure is not critical in
terms of performance, we implemented the same algorithm presented by BIKE, without
investigating possible optimizations. The strategy is to randomly generate one index of
the polynomial at the time: if the index is not repeated, we add it to the polynomial;
otherwise, we discard it. To guarantee the constant time execution, we can establish the
number of indexes that we need to generate to obtain a certain number of non-repeated
indexes with high probability. Drucker and Gueron [22], when defining this polynomial
generation method, demonstrated that generating 2 × N indexes is sufficient to achieve,
with high probability, N valid indexes. We followed this definition in our implementation.

For the random generation of the indexes, we used the RDRAND instruction to generate a
256-bit value and expanded it using the OpenSSL EVP Library (version 1.1.1-pre2 alpha)
and its implementation of the SHAKE256 algorithm. For older versions of OpenSSL,
which do not include SHAKE256, we generated all the bytes using the RDRAND instruction.

3.2.2 Key Generation

The key generation process of QcBits (Algorithm 2), in terms of implementation, can be
resumed to 3 steps:

1. The random generation of two polynomials with a specific Hamming Weight.

2. A binary polynomial inversion.

3. Two binary polynomial multiplications.

The second step is the most expensive in the process. While it takes dozens of millions
of cycles to be executed (99.4% of the time), the multiplication takes just a little over one
hundred thousand cycles and the random generation only takes a few tens of thousand
cycles. Therefore, we focused mainly on it in our optimization.

The original implementation used the Itoh-Tsujii Algorithm [40] for the polynomial
inversion. This algorithm works by exponentiating the polynomial to 2R − 2, where R is

1Available on the official website. Version dated 05/23/2018.
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the degree of the modulus polynomial. The exponentiation is carried out as a sequence
of squares and multiplications following an addition chain. The degree of the modulus
polynomial, which defines the addition chain, is public information. Therefore, to be
implemented in constant time, the algorithm only requires constant-time implementations
of multiplications and squarings over binary polynomials. It is simple to implement these
operations in constant-time, but they rely on the carry-less multiplication instruction for
efficiency. As mentioned in Section 3.1, this instruction is limited to 128-bit registers and
its performance was already a problem in the AVX2. The problem intensifies when using
the AVX512 instruction set and our best alternative was to replace the algorithm.

The Wu et al. inversion algorithm, shown in Algorithm 8, is a modified version of
Brunner Algorithm [14] designed to be a hardware implementation. For this reason, it is
relatively easy to implement in software in a constant time way. The primary function
of the algorithm is to calculate the division between two polynomials u and f modulus
the polynomial g = s. Since we need the inverted value multiple times (lines 4 and 5 of
Algorithm 2), we use u = 1 to just calculate the inverse of f = H0. The algorithm is
composed of polynomial additions (lines 5 and 8) and polynomial divisions per x (line
11). The sum of binary polynomials is just a XOR between them, while the divisions per
x are just a rotation of 1 bit to the right in the polynomial representation (considering
g in the format xr − 1). These operations have a great performance improvement when
vectorized, with gains almost reaching the increment of the number of SIMD lanes.

Algorithm 8: Wu et al. Inversion Algorithm [68]
Input : f , s and u
Output: v = u

f
(mod s)

1 v ← 0, δ ← −1, g ← s
2 for i = 0 to 2×Degree(g) do
3 if f0 = 1 then
4 if δ < 0 then
5 (f, s, u, v)← (f + s, f, u+ v, u)
6 δ ← −δ
7 else
8 (f, u)← (f + s, u+ v)
9 end

10 end
11 (f, u)← (f/x, (u/x)g)
12 δ ← δ − 1

13 end

Another important aspect to consider is the constant time execution of each iteration of
the algorithm. As explained in Section 2.5.1, the ifs on lines 3 and 4 must be replaced by
conditional operations of its contents. When vectorizing with AVX2 we would execute the
operations, store the results in temporary variables, and then use the BLENDV instruction to
select between the temporary variables and the original content depending on the value of
the if condition. Using the AVX512 instructions this process is simplified. Most AVX512
instructions allow the use of a mask to select between the result of the calculation and the



47

content of another register. This behavior results in a great performance improvement, but
also raises some questions about the security of generating masks from the sensitive data,
which will be further discussed in Section 3.3. Listing 5 presents two implementations
of a conditional addition of polynomials to illustrate the difference between the AVX2
implementation (lines 1 to 6) and the AVX512 implementation (lines 8 to 11).

1 void conditional_add_polynomial_AVX2(__m256i p1[N], __m256i p2[N],

__m256i output[N], __m256i mask){→֒

2 for(int i = 0; i < N; i++){

3 __m256i tmp = _mm256_xor_si256 (p1[i], p2[i]);

4 output[i] = _mm256_blendv_epi8 (output[i], tmp, mask);

5 }

6 }

7

8 void conditional_add_polynomial_AVX512(__m512i p1[N], __m512i p2[N],

__m512i output[N], __mmask16 mask){→֒

9 for(int i = 0; i < N; i++)

10 output[i] = _mm512_mask_xor_epi32 (output[i], mask, p1[i],

p2[i]);→֒

11 }

Listing 5: Comparison between AVX2 and AVX512 implementation of a conditional ad-
dition of polynomials

We tested the replacement of Itoh-Tsujii in the 80-bit version of QcBits: the original
Itoh-Tsujii algorithm took 402,020 cycles, while the Wu et al. algorithm took 715,993
cycles. These results, however, are biased by the great advantage Itoh-Tsujii takes from
the composition of the modulus polynomial at the 80-bit version. As mentioned previously,
Itoh-Tsujii works by exponentiating the polynomial to 2R − 2, where R is the degree of
the modulus polynomial. The 80-bit version uses the polynomial x4,801−1 as the modulus
polynomial. This polynomial can be decomposed in (x − 1) × f0 × f1 × f2 × f3, where
each fi has a degree of 1,200. Itoh-Tsujii takes advantage of that composition to calculate
the inverse by exponentiating to 21,200 − 2, rather than 24,801 − 2. Wu et al. does not
operate in that way. In fact, the algorithm is indifferent to the composition of the modulus
polynomial.

Polynomials composed of small factors (other than x− 1) are no longer recommended
due to some security concerns [5]. Therefore, Itoh-Tsujii lost its advantage on newer
implementations while Wu et al. upheld its performance. Our 128-bit quantum security
level version, for example, uses the polynomial x32,749 − 1 as the modulus (the same as
BIKE). This polynomial can only be decomposed in (x− 1)× f , where f has a degree of
32748.

Our complete key generation took 40,265,904 cycles to be executed, which represents a
3.1 times slowdown comparing to BIKE, which took only 12,944,920 cycles. Nonetheless,
our implementation is fully constant time, while BIKE’s utilizes the NTL Library [63],
which is not constant-time.
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3.2.3 Batch Key Generation

The batch key generation process, presented by BIKE [2], exploits Montgomery’s Trick [18]
to calculate multiple polynomials inversion at once. If we want to calculate, for example,
the inverse of the polynomials A, B, and C:

1. We first multiply them: F = A× B × C

2. Then, we calculate the inverse of the product F−1 = Polynomial_Inversion(F )

3. Finally, we retrieve each inverse through multiplications:
• A−1 = F−1 × B × C • B−1 = A× F−1 × C
• C−1 = A× B × F−1

The main observation of the trick is the small cost of the multiplication in comparison
with the inverse. The trick can be used in an arbitrary number of polynomials and it costs
3 multiplications per inverted polynomial after the first. The exact algorithm is shown
in Algorithm 9. L is a list of N polynomials to be inverted and the output IL is the list
of the inverted polynomials. The algorithm is the same implemented by BIKE, our only
advantage is the implementations of the multiplications and the inversion.

Algorithm 9: Montgomery’s trick for polynomial inversion algorithm (from
BIKE [2])
Input : L, N
Output: ILi = L−1

i | 0 ≤ i < N
1 prod0,0 ← L0

2 for i = 1 to N − 1 do
3 prod0,i ← prod0,i−1 × Li

4 end
5 prod1,N−1 ← prod−1

1,N−1

6 for i = N − 2 to 1 do
7 prod1,i ← prod1,i+1 × Li+1

8 end
9 IL0 ← prod1,1 × L1

10 for i = 1 to N − 1 do
11 ILi ← prod1,i × prod0,i−1

12 end

Table 3.3 shows the results of the batch key generation execution. For 100 keys, we
achieved a 97% execution time reduction over just one inversion. BIKE’s paper reports
an 84% gain for the same case. We were not able to execute BIKE’s batch key generation
using the constant time flags provided by the authors (the execution fails). In this way,
we compiled and executed its non-constant version. It should be noted that, in this
version of BIKE, not only the polynomial inversion is non constant time but also all other
procedures. Their version (fully non-constant time) takes 967,331 cycles per inversion
using the batch key generation with 100 keys, which is 22% faster than our version (fully
constant time).
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Table 3.3: Execution time of the Batch Key Generation

Number of Keys Cycles - Total Cycles Per Key
1 40,265,904 40,265,904

100 123,169,967 1,231,700
200 208,169,716 1,040,849
300 289,744,382 965,815
400 371,597,787 928,994

3.2.4 Encryption

Our contribution in the encryption process of QcBits (Algorithm 3) concerns only the mul-
tiplication implementation. Originally, QcBits prefer dense multiplications implemented
using the PCLMULQDQ instruction. Even our AVX2 optimized implementation still used it.
When we introduced the AVX512 to the implementation, however, the reduced cost of
the conditional operations made the sparse multiplication become much faster than the
dense one. Algorithm 10 shows the sparse multiplication implementation. It was already
used by the ref version of QcBits when PCLMULQDQ was not supported. Besides the vec-
torization using the AVX512 instructions, we also optimized it through the techniques
presented in Section 3.1.2.

Algorithm 10: Sparse multiplication algorithm.
Input : A sparse polynomial P1 and a polynomial P2

Output: The result polynomial PR

1 PR ← 0
2 foreach monomial mi ∈ P1 do
3 PR ← PR + P2 ×mi

4 end

Since the introduction of the AVX512 represented a great speedup to the rotation
calculations, the gain provided by the pre-calculated table of rotations became propor-
tionally small. In Section 3.1, we use a table with 3 pre-calculations, whereas, in this
version, we use just 1 pre-calculated rotation, which results in a gain of about 4% in the
encryption time. Our encryption takes 259,306 cycles to be executed, being 1.34 times
faster than BIKE, which takes 348,227 cycles. These numbers were measured compiling
our implementation without the OpenSSL EVP Library, while BIKE has its own imple-
mentations of hash functions. When using the OpenSSL SHAKE256 algorithm to expand
the randomly generated indexes, we were able to increase our speedup up to 1.6 times.

3.2.5 Decryption

The algorithm implemented for the decryption is the one presented in Algorithm 5. Be-
sides updating the security level and using the AVX512 instructions, our improvements
in the decoding process of this version were mainly focused on the Bit Counter imple-
mentation (line 5 of the algorithm). For the same reasons mentioned in Section 3.2.4,
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the pre-calculated table of rotations was also reduced to just 1 bit in this version, which
resulted in a gain of about 2.5% on the decoding time.

Bit Counter Optimization

The original implementation of the Bit Counter is the BitSlice Adder function, shown in
Algorithm 6 and explained in Section 4. The number of iterations N is constant in the
original implementation, being equal to the number of bits needed to store the maximum
possible value of the bit addition. This upper estimation is necessary for the last iterations
of the loop in line 3 of Algorithm 5 when the value being stored is large enough to take
N bits. However, each loop iteration can add at most 1 to the adder, so the stored
value cannot be higher than the current number of iterations. In this way, the number of
iterations of the bit counter can be incremented proportionally to the log of the number
of iterations executed by the outer loop, as shown in Algorithm 11. Lines 5 to 9 represent
the optimized BitSlice Adder function (Algorithm 6).

In order to avoid any significant performance penalty, we pre-calculated the log func-
tion and approximate the results. Since the number of iterations in this algorithm phase
is not related to any sensitive data, it does not characterize a side-channel leakage.

Algorithm 11: QcBits Bit-flipping implementation logic with BitSlice Adder Opti-
mization
Input : H ′, c, s and TH
Output: c

1 N ← 1 + ⌈log2(|H ′|)⌉
2 sum[N ]← {0, 0, ..., 0}
3 foreach index hi in H ′ do
4 w ← s≪ hi
5 for j = 0 to ⌈log2(i)⌉ do
6 cout ← sum[j] ∧ w
7 sum[j]← sum[j]⊕ w
8 w ← cout
9 end

10 end
11 sum← BitSliceSubtractor(sum, TH,N)
12 c← ¬sum[N − 1]⊕ c

Another possible optimization in this algorithm and, especially, in its full adder version
is the use of the Ternary Logical instruction, presented in the AVX512 instruction set
extension. This instruction is capable of executing any logical operation between three
operands and it has a great impact on reducing the number of instructions needed to
implement these algorithms. It is also useful to reduce slightly the code size and it has
a good latency, but its reciprocal throughput is two times the one of the conventional
logical instructions. Nonetheless, we could not observe any performance improvement
from its use. Future versions of the instruction, with a better reciprocal throughput, may
represent a performance enhancement.
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Uniform and constant-time implementation

With the update of security level and, consequently, the parameters of the implementa-
tion, it was necessary to recalculate the decoding thresholds and the failure rate for the
implementation. For the thresholds, we used the same formula as BIKE. For the failure
rate, BIKE defined 10−7 as a reasonable failure rate for practical purposes and we also
follow their definition. To calculate the number of iterations needed to achieve this failure
rate, we executed our algorithm 108 times: 104 encryptions and decryptions for each key
pair, for 104 generated key pairs. This testing procedure was defined in the specification of
QcBits. BIKE does not provide such information since they did not implement a constant
time version of the decoding procedure. The results of the experiment are presented in
Table 3.4. It shows, in the first row, the number of decoding iterations needed to recover
an error vector; and, in the second row, it shows how many instances (a pair of randomly
generate keys and error vector) needed that respective number of iterations to be correctly
decoded.

Table 3.4: Distribution of instances per iterations needed for the decoding

Iterations: 3 4 5 6 7 8 9 10 11 12 13 14 15+
Instances: 3,741 6.7× 107 3.2× 107 1.9× 105 2,916 176 27 13 5 3 0 0 4

As can be observed from the table, over 99.8% of the instances are solved with 5
iterations or less. And, from the 10−8 instances, only 7 took more than 11 iterations to
be correctly decoded. Considering these results and the target failure rate of 10−7, we
can have a constant time implementation by fixing the number of iteration to eleven.
This version takes 9,803,835 cycles to be executed, which represents 891,257 cycles per
iteration, on average. Following this metric, a uniform version would execute in a little
less than 5 × 891,257 = 4,456,288 cycles on average. Unfortunately, this performance
was not achieved. The uniform implementation has the overhead of verifying, at each
iteration, if the result of the syndrome calculation is zero (line 2 of Algorithm 1). More
than that, the simple possibility of a premature abort makes the compiler avoid more
aggressive optimization features. Our final result for the uniform implementation was
5,008,429 cycles.

In comparison, BIKE takes 9,572,412 cycles to execute a uniform decoding and does
not present constant-time. It is also worth mentioning that most of its decoding code
hot-spots are implemented directly in assembly language, while our implementation only
uses C code and Intel Intrinsics macros. Table 3.5 summarizes the results presented in
this section.

3.3 Power side-channel vulnerability

A simplified snippet of the original implementation code used for the word rotation is
shown in Listing 6. As discussed in Section 3.1, the rotation amount depends directly on
the secret key bits and, therefore, must be executed mitigating most side-channel leakages.
On line 1, a mask is constructed using the variable sk_bit, which represents a secret key
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Table 3.5: Performance comparison between this work and BIKE (in cycles)

Operation This work BIKE 2 Speedup over BIKE
Key Generation 40,265,904 12,944,920 0.32 a

Batch Key Gen. (100 keys) c 1,231,700 967,331 b 0.79 a

Batch Key Gen. (400 keys) c 928,994 422,133 b 0.45 a

Encryption 259,306 348,227 1.34
Constant Time Decryption 9,803,835 - -

Uniform Decryption 5,008,429 9,572,412 1.91
a BIKE’s polynomial inversion is not constant time.
b Result from a fully non-constant time version.
c Cost per key

bit: If the bit is one, then the mask will be all ones, otherwise, the mask will be all zeros.
Following this, on line 4, the vector is copied shifted or not depending on this mask.

1 mask = 0 - sk_bit;

2 us = 1 << i; // shift amount

3 for (j = 0; j < LEN; j++)

4 w[ j ] = (x[ j + us ] & mask) ^ (x[ j ] & ~mask);

Listing 6: Vulnerable implementation of conditional copy for vector rotation

The problem lies on the fact that the power consumption of setting all bits in a register
is perceptibly higher than keeping the register with all its bits zero. An attacker can
exploit that fact and discover the secret key through a power measurement of the algorithm
execution [55]. We are able to mitigate this vulnerability by using the instruction BLENDV,
as shown in Listing 7. This vulnerability used to occur not only in the word rotation but in
all conditional copies implemented in the original version. We fix all of them in the same
way and verified that this modification had little impact on the overall performance (<
1%). The performance results presented in Section 3.1 already include this modification.

1 mask = _mm_set1_epi8(sk_bit << 7);

2 us = 1 << i; // shift amount

3 for (j = 0; j < LEN; j++)

4 w[ j ] = _mm_blendv_epi8(x[ j ], x[ j + us ], mask);

Listing 7: Secure implementation of conditional copy for vector rotation

When implementing these operations using the AVX512 instructions, this issue re-
turns. Although smaller, the AVX512 instructions use very distinguishable masks for
the conditional operations. It is not clear, however, in what measure a power-based at-
tack is viable to succeed against modern Intel Architectures. Their high complexity and
relatively low power consumption could make such attacks difficult. Nonetheless, pro-
tection against the most common power-based attacks, such as DPA [42], CPA [12] and
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MIA [30] were considered an important feature for the implementations in the last NIST’s
standardization process [11].

3.4 Discussion

In this chapter, we presented an optimized implementation of the decoding process of
QcBits for 80-bit classical security level and a entirely rewritten version of QcBits for
128-bit quantum security level. In the decoding optimization, we vectorized the entire
algorithm, inserted a table of pre-computed vector rotations and unrolled the rotation
calculation loop for the versions ref and clmul. In the ref version, using the SSE, AVX2
and AVX512 instruction sets, we achieved a maximum speedup of 2.57, 4.25 and 10.54
times, respectively, while in the clmul version we achieved a speedup of 2.44, 3.92 and
6.25 times when using SSE, AVX2 and AVX512 instructions and compiling with GCC. We
also implemented countermeasures for some known side channel vulnerabilities without
any significant performance penalty.

Our results clearly demonstrate the algorithm’s aptitude for vectorization. The ref

version, which does not rely on the clmul instruction, presented higher gains than the
register size increment, showing the great impact of the rotation pre-computation tech-
nique. The same occurred with the clmul version vectorized with SSE instructions. The
use of the table could also be much more efficiently implemented if the hardware provided
constant-time memory accesses. Besides that, we also demonstrated that some hardware
improvements, such as shifting instructions for 128-bit, 256-bit and 512-bit registers, can
be very useful for the algorithm performance, as shown by our 1.12-factor speedup esti-
mation considering this instructions. A 256-bit version of the clmul instruction would
also provide significant performance gains.

In the rewritten version, we optimized all the QcBits procedures using the AVX512
instruction set; we replaced the polynomial inversion algorithm and the dense multipli-
cations by algorithms that better exploit the new AVX512 instructions; we implemented
BIKE’s batch key generation process using QcBits’ algorithms and our optimization tech-
niques; and we presented new optimization techniques for decoding bit counter. We also
executed experiments to determine the number of decoding iterations for a constant-time
decoding implementation and pointed out that improvements on some instructions, such
as the Ternary Logic Instruction, can have great impact on the performance of this code.

Our rewritten version of QcBits confirms the great impact of our previously devel-
oped optimization techniques as well as the new improvements. We achieved speedups
of up to 1.9 times in comparison with the current state-of-the-art, BIKE, and most of
our optimizations can be applied to BIKE itself, which could bring even faster implemen-
tations for QC-MDPC code-based cryptography. Considering the current post-quantum
cryptography scenario, the code-based cryptography field is just beginning its rise and,
considering the latest performance improvements, it is shaping up as one of the most
promising candidates for that end.
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Chapter 4

Accelerating the arithmetic algorithms

The three main arithmetic operations used in QC-MDPC implementations are the addi-
tion, multiplication, and inversion over binary polynomials. The first is efficient, but the
others usually represent over 90% of the execution time of the cryptosystem. Algorithms
for arithmetic over binary polynomials are very well-known and studied. Hence, new
generic optimizations for them are usually restrained to the implementation aspect only.

In this chapter, we take a different approach to optimize binary field arithmetic, fo-
cusing specifically on the QC-MDPC code-based cryptography case. We first selected
constant-time algorithms from the literature that better exploit the special characteris-
tics of QC-MDPC polynomials on modern computer architectures, such as the large size
and relatively low density. Then, we modified the algorithms to accept configurable pa-
rameters that greatly accelerate them at the cost of introducing a negligible probability of
failure depending on the input. Finally, we defined methods to correlate this probability
of failure (or failure rate) of each algorithm with the impact on performance. In this way,
we present the following contributions.

• We introduce the concept of using arithmetic subroutines with a controlled failure
rate to accelerate QC-MDPC code-based cryptosystems.

• We present constant-time algorithms for multiplication and inversion over binary
polynomials that operate with configurable failure rates.

• We define methods to obtain a correlation between failure rate and performance
improvement for each algorithm.

• We show that these algorithms provide a significant performance improvement while
introducing an arithmetic failure rate that is negligible compared to the security level
of the cryptosystem.

We start by reviewing the algorithms of Section 2.4.3 to observe the use of binary
field arithmetic in each phase of the cryptosystem. Key generation (Algorithm 2) uses
two multiplications and an inversion over binary polynomials. Encryption (Algorithm 3)
uses a multiplication and an addition. Decryption (Algorithm 4) explicitly uses two
multiplications and two additions (line 13) per iteration, but the monomial multiplications
in line 8 and the monomial additions in line 12 can also be implemented as just one
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polynomial multiplication and addition, respectively. In this way, the decryption takes
four multiplications and four additions per iteration, plus two of each one at the beginning
(line 3).

The addition is implemented as a sequence of XOR instructions in most architectures,
very efficient operations which leave very little space for software optimization, even con-
sidering the introduction of failure. Thus, our work focus on the multiplication and
inversion operations. We benchmarked our implementations on an Intel i7-7820X pro-
cessor with Hyper-Threading and TurboBoost disabled to improve the reproducibility of
the experiments [8]. We implemented the algorithms in C language using intrinsics for
the AVX-512 instruction set extension and compiled with GCC 7.3.1. We used inverted
binary and sparse representations of polynomials (example in Section 4.1.1) with a maxi-
mum degree of 32,748 and Hamming weight of 137. These values are defined based on the
parameters for 128-bit quantum security level in QC-MDPC implementations (Table 2.2).

We implemented the conditional statements of the algorithms in constant-time using
conditional operations, as discussed in Section 2.5.1. We choose to implement our code
using AVX-512 instructions to allow a direct comparison with other highly optimized
implementations of QC-MDPC cryptosystems, such as the Additional Implementation

in BIKE. Moreover, our implementation benefits from the possibility of implementing
constant-time operations using mask registers, as shown in Sections 2.5.1 and 3.2.2. This
feature was only introduced recently in Intel architectures, but it is common in others
(e.g. ARM A32).

4.1 Polynomial Inversion

We based our inversion method on the inversion algorithm by Wu et al. [68], which we
showed in Algorithm 8 in Section 3.2.2. We reproduce it again in Algorithm 12 us-
ing a slightly different notation. The algorithm was created as an extended version of
Stein’s algorithm [65], which avoids the extra costs of calculating degrees of polynomials
that is common in Extended Euclidean Algorithms [39]. It is similar to Brunner et al.

algorithm [14], differing by the testing of the least significant bit instead of the most sig-
nificant one. While theoretically equivalent, this modification makes the implementation
of Wu et al. much simpler than Brunner et al.’. Moreover, Wu et al. was also designed to
be a hardware implementation, which makes it easy to implement in constant-time. The
algorithm receives the binary polynomials r, s and u and calculates u

r
(mod s). It also

receives the size of the polynomials, N .
The algorithm iterates over the polynomial r, verifying the existence of a 0-degree

monomial and dividing it per x until the monomial is found. Once it occurs, the if (line
3) is executed and the resultant polynomial v is modified. As we mentioned, compared to
Euclidean Algorithms, one of the main advantages of Stein’s algorithm and its derivatives
is avoiding expensive degree comparisons between polynomials. To enable the possibility
of introducing failures in Wu et al., we had to make a step back on this advantage.
We reintroduced a degree verification in the algorithm as a search for the lowest degree
monomial of r. This way, we produced the modified version of Wu et al. in Algorithm 13.
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Algorithm 12: Wu et al. Inversion Algorithm [68].
Input : r, s, u and N
Output: v = u

r
(mod s)

1 v ← 0, δ ← −1, g ← s
2 for i = 0 to 2×N do
3 if r0 = 1 then
4 if δ < 0 then
5 (r, s, u, v)← (r + s, r, u+ v, u)
6 δ ← −δ
7 else
8 (r, u)← (r + s, u+ v)
9 end

10 end
11 (r, u)← (r/x, (u/x)g)
12 δ ← δ − 1

13 end

In Section 4.1.1, we discuss how we implemented the degree verification efficiently.

Algorithm 13: Modified version of the Wu et al. Inversion Algorithm [68].
Input : r, s, u, N and F
Output: v = u

r
(mod s)

1 v ← 0, δ ← −1, g ← s
2 for i = 0 to F × 2N do
3 b← Smallest_Monomial_Degree(r)
4 (r, u)← (r/xb, (u/xb)g)
5 δ ← δ − b
6 if r 6= 0 then
7 if δ < 0 then
8 (r, s, u, v)← (r + s, r, u+ v, u)
9 δ ← −δ

10 else
11 (r, u)← (r + s, u+ v)
12 end

13 end

14 end

The condition (now in line 6) remained unchanged, a function to find the monomial
with the smallest degree was inserted (line 3), the divisors in line 4 were changed from
x to xb, and, finally, the number of iterations is now reduced by the factor 0 < F ≤ 1.
Using F = 1 would cover all cases, but it would also result in no performance gains. Using
lower values of F accelerates the algorithm, but it also inserts the possibility of failure. In
this way, our modification exposed a parameter F that allows us to control the trade-off
between performance and failure rate in the algorithm. We need now to define a method
to precisely associate these two measures and to obtain a good value of F for our case.
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Since F changes the number of loop iterations directly, the performance speedup is
simply 1

F
. Defining the Failure Rate (FR) in terms of F is significantly more difficult.

First, using r0,i as the value of r0 in line 3 at the i-th iteration of Algorithm 12, we define
a polynomial R(x) =

∑2×N

i=0 r0,i x
i. The failure rate can be defined as the probability

(function P ) of R(x) having a Hamming Weight (HW) greater than (F × 2 × N), i.e
FR = P (HW (R(x)) > (F × 2N)). To solve this correlation exactly, we would have to
consider the number of possible R(x) polynomials and the probability of each one being
generated by the algorithm. A simpler approach that results in a good approximation is
to consider the probability of each monomial value individually.

Supposing that each monomial coefficient of R has an independent probability p of
being 1, we can use the Binomial Expansion [38] to obtain the approximation in Equa-
tion 4.1. Further supposing that p = 0.5 and using N = 32749, we obtain the chart of
Figure 4.1, which correlates the Failure Rate with the parameter F and give us the value
F = 0.5254 to achieve a negligible failure rate. Using this value of F , the cost of Wu et al.

reduces from 39,747,301 to 20,773,925 cycles, which represents a speedup of 1.9.

FR = P (HW (R(x)) > (F × 2N)) ≈ 1−
⌈F×2N⌉
∑

i=0

(

2N

i

)

(1− p)(2N−i)pi (4.1)

Figure 4.1: Correlation between failure rate and parameter F in the inversion algorithm.
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In this way, we defined the method to correlate Failure Rate and Performance Speedup
using the parameter F and found a value that fits our case. However, we did it based on
the assumption that each monomial coefficient of R(x) has an independent probability
p = 0.5 of being 1. To show that this is a good estimation for any input polynomials, we
define the recurrence relation in Equation 4.2 for the probability of r0,i = 1. Analyzing
it, we have that if P (rj,0 = 1) < 0.5 then P (rj,i = 1) ≤ 0.5 for all 0 ≤ i ≤ 2N , which
is demonstrated in Proposition 1. This approximation is not as tight as it could for low-
density polynomials, but the F parameter resultant is sufficiently close to the optimization
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limit (0.5).

P (rj,i = 1) =















P (rj,0 = 1), if i = 0

P (r0,i−1 = 1)× P (sj+1,i−1 ⊕ rj+1,i−1 = 1)

+ P (r0,i−1 = 0)× P (rj+1,i−1 = 1), if i > 0

(4.2)

Proposition 1. In Equation 4.2, if P (rj,0 = 1) ≤ 0.5 then P (rj,i = 1) ≤ 0.5 for all i ≥ 0.

Proof. We prove it using induction on i.
Base case: If i = 0, then P (rj,i = 1) = P (rj,0 = 1) ≤ 0.5.
Inductive Hypothesis: if P (rj,0 = 1) ≤ 0.5 then P (rj,i = 1) ≤ 0.5 for all 1 ≤ i < n

Inductive Step: Let i = n.

P (rj,n = 1) = P (r0,n−1 = 1)×P (sj+1,n−1⊕rj+1,n−1 = 1)+P (r0,n−1 = 0)×P (rj+1,n−1 = 1)

Knowing that

P ((X ⊕ Y ) = 1) = P (X = 1)× P (Y = 0) + P (X = 0)× P (Y = 1)

= P (X = 1)× (1− P (Y = 1)) + (1− P (X = 1))× P (Y = 1)

= P (X = 1) + P (Y = 1)− 2× P (Y = 1)× P (X = 1)

(4.3)

We have

P (rj,n = 1) = P (r0,n−1 = 1)× [P (rj+1,n−1 = 1) + P (sj+1,n−1 = 1)

−2× P (sj+1,n−1 = 1)× P (rj+1,n−1 = 1)] + P (r0,n−1 = 0)× P (rj+1,n−1 = 1)

= P (rj+1,n−1 = 1) + P (r0,n−1 = 1)× [P (sj+1,n−1 = 1)

−2× P (sj+1,n−1 = 1)× P (rj+1,n−1 = 1)]

(4.4)

Let f(X, Y, Z) be the value of P (rj,n = 1) for X = P (r0,n−1 = 1), Y = P (rj+1,n−1 = 1)

and Z = P (sj+1,n−1 = 1). By our inductive hypothesis, 0 ≤ P (r0,n−1 = 1) ≤ 0.5 and
0 ≤ P (rj+1,n−1 = 1) ≤ 0.5. We could obtain a tighter interval for P (sj+1,n−1 = 1)

addressing its own recurrence relation, but that is not necessary. Thus, we consider
0 ≤ P (sj+1,n−1 = 1) ≤ 1. To maximize the value of f in these intervals, we first check the
boundaries:

f(0, 0, 0) = f(0, 0, 1) = f(0.5, 0, 0) = 0

f(0, 0.5, 0) = f(0, 0.5, 1) = f(0.5, 0, 1) = f(0.5, 0.5, 0) = f(0.5, 0.5, 1) = 0.5

The next step would be a search for a local maximum, which clearly does not exist
since f is linear in all variables.



59

4.1.1 Implementation

Our modification of Wu et al. algorithm introduced two main drawbacks in the perfor-
mance of the algorithm. The first is the constant-time implementation of the function
Smallest_Monomial_Degree. For large polynomials (such as the ones used in code-
based cryptography), it would be very expensive to search the smallest monomial on the
entire polynomial. Therefore, we search only the first E bits of the polynomial, change the
If condition to test if the result is different of E and adjust the number of iterations to
compensate for this limitation. Algorithm 14 shows this modification. Using the inverted
binary representation of the polynomial (shown in Figure 4.2), we can obtain the degree
of the smallest monomial by calculating the number of leading zeros of the representa-
tion. Most of the modern architectures enable this calculation with just an instruction.
Intel, for instance, provides the leading zeros instructions executed in constant-time for
32-bit words (since i386), 64-bit words (since Haswell), and 64-bit lanes on SIMD reg-
isters (AVX-512). Other architectures enable equivalent or complementary operations,
such as rounded binary logarithm or trailing zeros, which may require modifications in
the polynomial representation, but, ultimately, would not impact the performance.

x7 + x3 + x2 + 1↔
[

1, 0, 1, 1, 0, 0, 0, 1
]

↔
[

0, 2, 3, 7
]

Figure 4.2: Example polynomial, its inverted binary representation and its sparse repre-
sentation, respectively.

Algorithm 14: Modified version of Wu et al. Inversion Algorithm [68] considering
the parameter E.
Input : r, s, u, N , F and E
Output: v = u

r
(mod s)

1 v ← 0, δ ← −1, g ← s

2 for i = 0 to F × (2×N + 2×N
E

) do
3 b← Smallest_Monomial_Degree(r, E)
4 (r, u)← (r/xb, (u/xb)g)
5 δ ← δ − b
6 if b 6= E then
7 If ’s content, unchanged
8 end

9 end

The second drawback in our version are the divisions. In the original algorithm, the
divisor was always x. We modified it to xb, where 0 < b ≤ E. Constant-time divisions
usually have its execution time defined by the upper bound of the divisor and, thus,
the parameter E also appears as a trade-off between the number of iterations and the
performance of each iteration. Fortunately, it is easy to optimize its value in our case.
Using SIMD registers in the Intel architecture, the execution time of dividing by x or
x64 is the same, while greater exponents require much more expensive instructions to
move bits across the SIMD lanes. In this way, we choose E = 64, which also helps the
implementation of the function Smallest_Monomial_Degree.



60

4.1.2 Experimenting with higher failure rates

Another optimization through the introduction of the possibility of failure we found on
Wu et al. algorithm concerns the operations over the polynomials r and s. When a
polynomial is large enough to need more than one word to be stored, which is our case,
any operation over the polynomial is implemented iteratively over the array of words that
stores it. In the Wu et al. algorithm, the polynomial r always converges to zero, which
implies in a degree reduction of the polynomial along the iterations of the algorithm. As
the higher part of the binary representation of the polynomial becomes zeros, it does not
need to be processed anymore. In constant-time implementations, however, all the words
belonging to the array are always processed. In this way, we cannot check whether the
higher parts are zeros or not and only process it based on this information. Nevertheless,
we can estimate the degree reduction of the polynomials to decide if the higher parts need
to be processed. This estimation aims to cover only the majority of the cases, but not all
of them. Therefore, a failure rate can also be explored at this point.

For this modification, however, we did not define a strict correlation between the
failure rate and the performance level. Instead, we estimate the failure rate through
experimental data targeting at a 10−8 failure rate. Since the cryptosystems already have
a global failure rate (the DFR) of around 10−7 in modern implementations, we can also
introduce algorithms for the arithmetic operations that fail with a small but non-negligible
probability. If we guarantee that this probability is at least one order of magnitude smaller
than the DFR, then the impact on the global failure rate of the cryptosystem will be almost
negligible.

To achieve a 10−8 failure rate, we measured the degree of 108 polynomials along the
iterations of the algorithm. Figure 4.3 shows the minimum, maximum and average de-
grees of the polynomials. The step-function curve represents the upper bound estimation
applied to achieve a failure rate smaller than 10−8. It is a step-function because we only
choose to process or not entire words of 512 bits. The zoomed portion shows that there
is no intersection between the curves of upper bound and maximum value.

A similar optimization can be applied to the polynomials u and v. The convergence
of v to the inverse of r is similar to the convergence of r to zero. While r has its degree
reduced along the iterations, v grows from the higher part through the insertions of 0-
degree monomials followed by modular divisions. In this way, the lower part of v (and,
consequently, u) is composed of zeros in the first iterations and, hence, does not need
to be processed. We also estimated the degree of the lowest monomial of u along the
iterations and establish a lower bound to achieve a 10−8 failure rate. Figure 4.4 shows the
results. An exception in the values of the lower part is the 0-degree monomial, which is
not zero from the beginning. We eliminated it by dividing u per x before the algorithm
and multiplying the result by x afterward.

The result of our upper and lower bound estimations for the degree of, respectively, r
and u, was that r has its degree reduced at least 0.94 per iteration starting from 32,768
while u has the degree of its smallest monomial decreased at most 2 per iteration starting
from 23,552. Using these bound estimations, we further reduced the number of cycles
needed to calculate the inverse in our implementation from 20,773,925 to 14,979,764,
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Figure 4.3: Minimum, maximum and average degrees of r for 108 randomly generated
polynomials along the iterations of Algorithm 14. The step-function curve represents an
estimated upper bound to achieve a 10−8 failure rate.
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Figure 4.4: Minimum, maximum and average degrees of u for 108 randomly generated
polynomials along the iterations of Algorithm 14. The step-function curve represents an
estimated lower bound to achieve a 10−8 failure rate.
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which represents an overall speedup of 2.65.
Once we inserted the possibility of non-negligible failures, we also need to provide the

methods to detect it. Ideally, we would detect the failure before trying to calculate the
inverse, which would avoid a useless execution of this expensive procedure. Unfortunately,
it is not simple to describe a correlation between the input and the occurrence of a
failure. However, after the execution of the algorithm, it is easy to detect whether the
inverse is correct or not by verifying if the product between the result and the input is
the identity (one). This verification is already done by most implementations of code-
based cryptography and is shown in line 4 of Algorithm 2. It should also be noted that
the insertion of non-negligible failure rates requires a more thorough security analysis.
The failure occurrence can usually be detected by an attacker and accumulating failures
from multiple sources might result in an undesirably high overall failure rate for the
cryptosystems.

4.2 Polynomial Multiplication

We start with a very basic algorithm that multiplies an operand by each monomial from
the other and adds the results. Algorithm 15 shows this procedure. For generic polyno-
mials, this algorithm is usually outperformed by specialized instructions, such as Intel’s
PCLMULQDQ. However, the algorithm has a good performance if at least one of the polyno-
mials has a relatively low density. As a general rule, this algorithm will outperform the
specialized instructions if the density of bits of at least one of the polynomials is less than

1
word size

, where word size is the word size of the instructions.

Algorithm 15: Sparse multiplication algorithm.
Input : A sparse polynomial P1 and a polynomial P2

Output: The result polynomial PR

1 PR ← 0
2 foreach monomial mi ∈ P1 do
3 PR ← PR + P2 ×mi

4 end

Since additions are very cheap, the cost of the procedure can be estimated as the num-
ber of monomials multiplied by the cost of each monomial × polynomial multiplication.
Considering that it is not possible to reduce the number of monomials, we focused on op-
timizing the monomial multiplication. Our modulus polynomial has the format (xn − 1),
with n ≥ 1. Thus, the monomial multiplication can be implemented as just a rotation of
the binary representation of the polynomial. This rotation is very simple to implement
when the polynomial is small enough to be stored inside just one word of the architec-
ture. For larger polynomials, however, it is necessary to perform a rotation of the words
followed by a rotation with carry inside the words.

Algorithm 16 shows how the operation can be implemented in constant-time. It is
based on the implementation used by QcBits [16]. M is the degree of the monomial, P is
the polynomial in the binary representation, word_size is the word size in which a shift
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or rotation operation can be executed in the architecture, and Mmax is an upper bound
for M . This procedure has complexity O(log2(Mmax)). It should be noted that M in
Algorithm 16 is the degree itself. In Algorithms 15, 17, 18 and 19, however, mi is the
entire monomial mi = cix

Mi , where (ci ∈ 0, 1) is the coefficient and Mi is the degree.

Algorithm 16: Constant-time implementation of a Monomial × Polynomial mul-
tiplication
Input : M , P , word_size, Mmax

Output: Pout = xM × P
1 Pout ← P

/* Word rotations */

2 for i← ⌊log2(Mmax)⌋ to log2(word_size) + 1 by − 1 do
3 if M ∧ 2i then
4 Pout ← Pout ≪ 2i // Implemented through word copies

5 end

6 end
/* Rotation inside the words (with carry) */

7 Pout ← Pout ≪ (M ∧ (word_size− 1))

There are two ways of improving the performance of this algorithm: to increase the
word size, which would rely on hardware modifications; or to decrease the upper bound
of M , which we explore in this work. In the original version, the algorithm multiplies the
polynomial with higher density, P2, by the absolute values of each monomial belonging to
the sparse polynomial P1. Our first modification, presented in Algorithm 17, is to store
the result of the previous multiplication and use it to reduce the monomial exponent
of the following multiplications. This is basically an application of Horner’s rule. For
example: If we want to multiply Pex by (x13 + x7 + x2), Algorithm 15 would calculate
(Pex × x13) + (Pex × x7) + (Pex × x2) while Algorithm 17 calculates (Pex × x2) × ((x5 ×
(x6 + 1)) + 1). The number of operations is the same, but Algorithm 17 reduces the
value of Mmax from 13 to 6. This reduction is more significant the higher the number of
monomials and, in a non-constant-time implementation, it might provide an immediate
gain with this modification.

On constant-time implementations, if we consider the worst-case scenario, the upper
bound Mmax is close to the maximum degree of the monomials, resulting in almost no
performance gain. At this point, we introduce a trade-off between performance and failure
rate by defining an upper bound Mmax which does not cover all the cases. Using 512-bit
words and 32749-bit polynomials, the possible values for Mmax are 2i for 9 ≤ i ≤ 15.
While this already represents a controlled failure rate, its granularity and the correlation
with performance are not good enough. Thus, we produce a third version of the algorithm,
depicted in Algorithm 18. If we set, for example, Mmax = 512, we would have a great
performance gain, but our failure rate in Algorithm 17 would be almost 100%. The
algorithm fails because at least one pair of consecutive monomials has a difference between
their exponents greater than the defined upper bound. In Algorithm 18, we introduce
an auxiliary polynomial, PA, which is specially constructed by inserting one or more
monomials between those pairs, until the upper bound is respected and the failure is,
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Algorithm 17: Sparse multiplication algorithm using the relative degree of the
monomials.
Input : A sparse polynomial P1 and a polynomial P2

Output: The result polynomial PR

1 PR ← 0
2 foreach monomial mi ∈ P1 do
3 if i = 0 then
4 P2 ← P2 ×m0

5 else
6 P2 ← P2 × mi

mi−1

7 end
8 PR ← PR + P2

9 end

consequently, eliminated. When adding the results to PR (line 9 of Algorithm 18), the
intermediate results generated by monomials belonging to PA are ignored, not affecting
the final product. In this way, PA enables the algorithm to perform the multiplications
in which it would fail. Algorithm 19 shows how to construct the auxiliary polynomial PA

in constant time.

Algorithm 18: Sparse multiplication algorithm using the relative degree of the
monomials and an auxiliary polynomial.
Input : A sparse polynomial P1, a polynomial P2, Mmax and HWPA

Output: The result polynomial PR

1 PR ← 0
2 PA ← ConstructPA(P1,Mmax, HWPA

)
3 foreach monomial mi ∈ (P1 + PA) do
4 if i = 0 then
5 P2 ← P2 ×m0

6 else
7 P2 ← P2 × mi

mi−1

8 end
9 if mi /∈ PA then

10 PR ← PR + P2

11 end

12 end

The number of monomials in PA also needs to be fixed to preserve the constant-time
execution. In this way, we have to define the Hamming weight of PA, HWPA

, for a given
upper bound Mmax, to achieve a desired failure rate. To define this failure rate in terms
of HWPA

and Mmax, we will count the number of polynomials that would either fail or
succeed under each of the possible parameters. To do that, we enunciate our problem as a
problem of counting the number of restricted compositions of an Integer. A k-composition
of n is an ordered sum of k positive integers that results in n [64]. A composition is an
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Algorithm 19: Construction of the auxiliary polynomial PA

Input : P1, Mmax and HWPA

Output: PA

1 PA ← 0
2 for i← 0 to HWPA

do
3 foreach monomial mi ∈ (P1 + PA) do
4 if i = 0 then
5 if mi ≥ xMmax then
6 PA ← PA + xMmax−1

7 break

8 end

9 else
10 if mi

mi−1

≥ xMmax then

11 PA ← PA +mi−1 × xMmax−1

12 break

13 end

14 end

15 end
16 if HammingWeight(PA) ≤ i then

/* Adds monomials with degrees greater than degree of P1 */

17 PA ← PA + xDegree(P1)+i

18 end

19 end

ordered partition, for example: (2 + 5 + 3) and (2 + 3 + 5) are the same partition of 10,
but they are two different 3-compositions of 10.

The number of possible polynomials for each key of the cryptosystem is equal to the
number of W

2
-compositions of R, where W and R are the security parameters. To find

the failure rate for the multiplication algorithm, we need a restriction to the composition
count. For each part p of a composition, we define the number of M-violations as ⌊ p

M
⌋.

The total number of M-violations of a composition, H, is the sum of the number of M-

violations of each part. Defining a k-composition of n with at most H M-violations as a
(M,H)-restricted k-composition of n, the failure rate for the multiplication algorithm is

(

1− number of (Mmax, HWPA
)-restricted W

2
-compositions of R

number of W
2

-compositions of R

)

To calculate the number of compositions, we define the recurrence relation in Equa-
tion 4.5, where C[k, n,H] is the number of k-compositions of n with exactly H M-

violations. Using dynamic programming, we solve the recurrence and produced the
chart in Figure 4.5. We did not analyze values of Mmax greater than 4096 (212) be-
cause their performance considering HWPA

= 0 was already worse than Mmax = 512 with
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HWPA
= ⌊ R

Mmax
⌋ − 1, which is a case without failure.

C[k, n,H] =























1, if k = 1 and H = ⌊ n
M
⌋

n−1
∑

i=max(k−1,n+1−M(H+1))

C[k − 1, i, H − ⌊n−i
M
⌋], if k > 1

0, otherwise

(4.5)

Figure 4.5: Correlation between failure rate and the value of the parameters Mmax and
HWPA

in the multiplication algorithm.
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Mmax = 2048
Mmax = 1024
Mmax = 512

We estimated the performance cost of each Mmax presented in the chart using the
HWPA

necessary to obtain negligible failure rates. Table 4.1 shows the performance
results. The best estimated result was for Mmax = 1024, closely followed by Mmax = 512.
Despite being slightly slower, we recommend the use of Mmax = 512 with HWPA

= 47

because it facilitates the implementation. Over the initial multiplication algorithm, these
parameters provide a speedup of 1.63, reducing the execution time from 130,023 cycles to
76,805 cycles.

Table 4.1: Estimated and measured execution cost (cycles) of the multiplication according
to the value of Mmax.

Mmax Multiplication Cost HWPA
Estimated Total Cost Total Cost

512 56,388 47 75,733 76,805
1024 65,747 20 75,345 76,094
2048 74,645 9 79,549 -
4096 87,014 4 89,555 -

Sorting the degree of monomials. Our multiplication algorithm requires the mono-
mials of the sparse polynomial to be sorted by their degree. Thus, a constant-time sorting
algorithm is necessary. We implemented a vectorized constant-time version of Counting
Sort that sorts by degree and creates the polynomial PA at the same time. Its execu-
tion takes 66,833 cycles, which raises the total cost of the multiplication to 130,464 if we
consider that only one multiplication will be executed over a certain sparse polynomial.
That is the case in the encryption of QC-MDPC cryptosystems, and, in this step, we
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have no performance gain on the multiplication. On the decryption, however, the same
sparse monomial is used in many multiplications. In the constant-time case in QcBits, for
example, each key needs to be sorted once and is then used in 22 multiplications. In this
way, the sorting cost per multiplication is about 3,000 cycles, raising the multiplication
cost to only 79,843. Moreover, the sorting can be pre-processed at the key-generation
procedure. Alternatives to overcome this problem are to design a polynomial generation
algorithm that provides monomials already sorted by the degree or to use more efficient
constant-time sorting algorithms, such as Bernstein’s djbsort [9].

Consideration about the new VPCLMULQDQ instruction. An AVX-512 version of
Intel’s PCLMULQDQ instruction is announced as part of the Ice Lake architecture.
Drucker et al. [21] estimated that this instruction will bring a speedup of about 2 times
to multiplication algorithms that use it, which is the case of the NTL Library, for exam-
ple. This forthcoming improvement, however, does not diminish the importance of our
multiplication algorithm. Our algorithm not only accelerates the generic sparse multipli-
cations but also the Unsatisfied Parity-Check Counting (lines 7 and 8 of Algorithm 4),
which is very similar to a sparse multiplication, but that can not be implemented using
the PCLMULQDQ instruction. Moreover, our implementation relies only on instructions
that are much more commonly available than a carry-less multiplicator and that are also
more likely to receive hardware improvements.

4.3 Results

First, in order to improve our analysis, we measured the use and cost of each of the
arithmetic operations in the implementation. Table 4.2 shows the results. We considered
a constant-time decryption using 11 iterations.

Table 4.2: Use and execution cost (cycles) of the arithmetic operations in QcBits at the
128-bit quantum security level.

Addition Multiplication Inverse
Procedure

# Cost % # Cost % # Cost %
Total

Key Generation 0 0 0.00 2 260,046 0.65 1 39,762,389 98.75 40,265,904
Encryption 1 91 0.04 1 130,023 50.14 0 0 0.00 259,306
Decryption 46 4,186 0.04 46 5,981,058 61.01 0 0 0.00 9,803,835

As expected, the cost of the addition is negligible. The inversion takes 98.8% of
the key generation and the multiplication takes 61% and 50% of the decryption and
encryption, respectively. The remaining time in the key generation and encryption is
taken by the random generation of the polynomials. In the decryption, the remaining
time corresponds to the counting of satisfied parity-checks, represented by the function
IntegerPolynomialAddition in Algorithm 4. To obtain a comparison basis for the opera-
tions, we executed two other inversion algorithms and one other multiplication algorithm
in the same machine and for the same modulus polynomial. All of them use AVX-512
instructions and are highly optimized implementations. Table 4.3 presents the results.
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Table 4.3: Comparison among implementations of multiplication and inversion. Bolded
lines represent results from this chapter.

Operation Implementation Failure Rate Constant Time Cost (cycles)

Inversion

Wu et al. modified 2−128 Yes 20,773,925
Wu et al. modified 10−8 Yes 14,979,764

Wu et al. 0 Yes 39,747,301
NTL 0 No 12,088,846

Itoh-Tsujii 0 Yes 243,226,595

Multiplication
Sparse Mult. 2−128 Yes 79,843
Sparse Mult. 0 Yes 130,023

NTL 0 ? 161,715

For benchmarking, we have used version 11.3.0 of the NTL library [63] with gf2x
support. Its inversion algorithm, used in BIKE, takes 12,088,846 cycles to invert, which
is 1.7 times faster than our algorithm. Considering, however, that NTL’s inversion is
not constant-time, a 1.7 slowdown is still a good result for our algorithm, which is fully
constant-time. The second evaluated algorithm for inversion was Itoh-Tsujii [40], one of
the most used constant-time inversion algorithms. We implemented it using NTL’s multi-
plications and squarings and one of the shortest addition chains [26]. It takes 243,226,595
cycles to invert, which is 12 times slower than our algorithm. For the multiplication,
using NTL takes 161,715 cycles, which is more than 2 times slower than our multiplica-
tion algorithm, even considering the cost of sorting the polynomials (in the context of
decryption).

To calculate the impact of our algorithms in a real implementation, we introduced
them in QcBits [16]. We are using a version of QcBits at the 128-bit quantum security
level, fully constant time and vectorized using AVX-512 instructions [36]. Table 4.4 shows
the execution time (cycles) for each of the procedures of the encryption scheme with
and without the use of a negligible Failure Rate in the Arithmetic. We also present the
execution time of BIKE (Variant 2), for comparison. We compiled the Additional version
of BIKE (dated 05/23/2018) using NTL version 11.3.0, gf2x support and the following
command: make BIKE_VER=2 CONSTANT_TIME=1 RDTSC=1 AVX512=1 LEVEL=5.

It is important to note that BIKE paper and this work present different definitions of
“constant-time implementations”. In this work, we define constant-time implementations
as those in which the execution time does not depend on data being processed. The
authors of BIKE apparently define constant-time implementations as those which are
not vulnerable to known timing side-channel attacks. As we discussed in Section 2.5.1,
objectively, both definitions are sufficient to provide security against the currently known
attacks, but they need to be differentiated to compare the performance results. For
example, the “constant-time” decryption in BIKE executes a variable number of constant-
time iterations. In this paper, we refer to it as a Uniform Implementation. The number
of decoding iterations is dependent on the secret key and can be used to retrieve it [23].
However, all known attacks exploiting the number o decoding iterations rely on a large
number of decoding attempts, whereas BIKE uses ephemeral keys [5]. Moreover, BIKE
also makes use of masking and blinding techniques on non-constant time procedures,
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which we also do not consider as a constant-time implementation.

Table 4.4: Execution time (cycles) of QcBits, with (this chapter) and without (Chapter 3)
the Arithmetic Failure Rate; and of the official BIKE implementation, for comparison.

128-bit QcBits BIKE-2
This chapter Chapter 3 Speedup Additional Speedup

Key Generation 21,332,058 40,265,904 1.89 12,944,920 0.61 *
Encryption 256,655 259,306 1.01 348,227 1.36
Constant-Time Decrypt. 8,016,312 9,803,835 1.22 ** **
Uniform Decryption 3,505,079 5,008,429 1.43 9,572,412 2.73

* BIKE’s polynomial inversion is not constant-time.
** BIKE does not present constant-time decryption.
The results for BIKE are equivalent to the column “Constant time implementation” and line “AVX-512” from Table 19 in

their paper [2].

The speedups achieved in the Key Generation and in the Decryption were the expected
considering the speedup of the operations and their use in the procedures. The Encryption
did not present any significant gains, despite having its execution time 50% corresponding
to a multiplication. This occurs due to the cost of sorting the monomials, as explained
at the end of Section 4.2. The speedups over the official BIKE implementation are not a
result solely of the techniques presented in this chapter. As can be observed, the enhanced
version of QcBits presented in Section 3.2, which does not present any Failure Rate in the
arithmetic, is already faster than BIKE. Nonetheless, the results help to support the ad-
vantages of our techniques, which can also be applied to BIKE. Our uniform decryption is
2.7 times faster and our key generation was 1.7 times slower than BIKE’s. This slowdown
is explained by the use of NTL’s polynomial inversion, which is not constant-time.

4.4 Discussion

In this chapter, we presented the concept of inserting a Failure Rate (FR) to the arith-
metic of QC-MDPC code-based cryptosystems to achieve significant performance gains.
We provided algorithms for multiplication and inversion over binary polynomials that
accept a controlled failure rate and defined methods to correlate the failure rate with
the performance level. By introducing a negligible (< 2−128) FR in these algorithms, we
achieved a 1.9-factor performance speedup in the inversion and a 1.63-factor performance
speedup in the multiplication. We also showed that our multiplication is 2 times faster
than NTL’s and that our inversion is 12 times faster than Itoh Tsujii. Finally, we used
our algorithms in the QcBits implementation, where we achieved speedups of 1.89 and up
to 1.43 in the key generation and decryption, respectively.

Our experimental results show the performance impact of our approach, while the
negligible failure rate has basically no downsides to the cryptosystem. The correlation
between failure rate and performance improvement was also shown to be very promising,
once it is possible to achieve much lower failure rates with little performance penalties.
The algorithms we presented have certain advantages when used in QC-MDPC cryp-
tosystems, but, ultimately, they are generic algorithms for arithmetic in GF(2n) and,
thus, could be used in other contexts.



70

Chapter 5

Conclusion

Our main objective in this work was to optimize the performance of QC-MDPC code-
based cryptosystems and we presented several contributions towards this goal. Since
we are interested in side-channel protection, we focused on the QcBits implementation
and constant-time algorithms. In Chapter 3, the improvements were focused on the
implementation aspects. We first vectorized the decoding process of the original QcBits
achieving speedups of up to 10.5 times through the use of AVX-512 instructions and pre-
calculation. Still in Chapter 3, we presented a new enhanced version of QcBits, entirely
vectorized and featuring more efficient algorithms and the updated security parameters
from BIKE. Our implementation decrypts messages up to 1.9 times faster than BIKE.

In Chapter 4, we focused on improving the arithmetic procedures used in the imple-
mentation of QC-MDPC code-based cryptosystems. We presented methods to accelerate
them through the insertion of a controlled probability of failure. By following this ap-
proach and introducing a failure rate negligible compared to the security level, we achieved
a further speedup of 1.9 times on the key generation and 1.43 times in the decryption.
Our final implementation performs the decryption process 2.73 times faster than BIKE.

While we focused on the QcBits implementation, the techniques developed in this
work are not restricted to it. Most of them can be applied to other QC-MDPC code-
based implementations, such as BIKE, enabling the possibility of further improvements
in the field.

5.1 Future Work

As future work, among other contributions, we intend to:

• Apply the techniques developed in the optimization process of QcBits in the BIKE
implementation.

• Investigate further optimizations for the Wu et al. algorithm and for the syndrome
calculation.

• Replicate the approach of failure introduction to other expensive algorithms used
in QC-MDPC cryptosystems, for example, the Unsatisfied Parity-Check Counting;
or other arithmetic algorithms of cryptographic interest.
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Open challenges that might also be considered as future work include the develop-
ment of viable countermeasures to the Reaction Attack for encryption schemes using
non-ephemeral keys; the construction of decoding algorithms that achieve lower failure
rates without compromising the performance; the vectorized implementation of QcBits
to other architectures, such as ARM, RISC-V and POWER9; and the adaptation of the
current implementations to more constrained contexts, such as IoT and embedded devices.
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