
Rafael de Oliveira Werneck

“A unified framework for design, deployment,

execution, and recommendation of machine learning

experiments”

“Uma ferramenta unificada para projeto,

desenvolvimento, execução e recomendação de

experimentos de aprendizado de máquina”

CAMPINAS

2014

i

ii

vi

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

A unified framework for design, deployment,

execution, and recommendation of machine learning

experiments

Rafael de Oliveira Werneck1

August 22, 2014

Examiner Board/Banca Examinadora:

• Prof. Dr. Ricardo da Silva Torres (Supervisor/Orientador)

• Prof. Dr. André Santanchè

Institute of Computing - UNICAMP

• Prof. Dr. José Gustavo de Souza Paiva

Faculty of Computing - UFU

• Profa. Dra. Cećılia Mary Fischer Rubira

Institute of Computing - UNICAMP (Substitute/Suplente)

• Dra. Vanessa Testoni

Samsung Research Institute Brazil (Substitute/Suplente)

1Financial support: CAPES scholarship (2012) and Samsung Eletrônica da Amazônia Ltda., through
the project “Pattern recognition and classification by feature engineering, *-fusion, open-set recognition,
and meta-recognition” in the framework of law No. 8248/91.

vii

viii

c© Rafael de Oliveira Werneck, 2014.

Todos os direitos reservados.

ix

x

Abstract

Due to the large growth of the use of technologies for data acquisition, we have to

handle large and complex data sets in order to extract knowledge that can support the

decision-making process in several domains. A typical solution for addressing this issue

relies on the use of machine learning methods, which are computational methods that

extract useful knowledge from experience to improve performance of target applications.

There are several libraries and frameworks in the literature that support the execution of

machine learning experiments. However, some of them are not flexible enough for being ex-

tended with novel methods and they do not support reusing of successful solutions devised

in previous experiments made in the framework. In this work, we propose a framework for

automating machine learning experiments that provides a workflow-based standardized

environment and makes it easy to evaluate different feature descriptors, classifiers, and

fusion approaches in a wide range of tasks. We also propose the use of similarity measures

and learning-to-rank methods in a recommendation scenario, in which users may have ac-

cess to alternative machine learning experiments. We performed experiments with four

similarity measures (Jaccard, Sørensen, Jaro-Winkler, and a TF-IDF-based measure) and

one learning-to-rank method (LRAR) in the task of recommending workflows modeled as

a sequence of activities. Experimental results show that Jaro-Winkler yields the highest

effectiveness performance with comparable results to those observed for LRAR. In both

cases, the recommendations performed are very promising and might help real-world users

in different daily machine learning tasks.

Resumo

Devido ao grande crescimento do uso de tecnologias para a aquisição de dados, temos

que lidar com grandes e complexos conjuntos de dados a fim de extrair conhecimento que

possa auxiliar o processo de tomada de decisão em diversos domı́nios de aplicação. Uma

solução t́ıpica para abordar esta questão se baseia na utilização de métodos de apren-

dizado de máquina, que são métodos computacionais que extraem conhecimento útil a

partir de experiências para melhorar o desempenho de aplicações-alvo. Existem diversas

bibliotecas e arcabouços na literatura que oferecem apoio à execução de experimentos de

aprendizado de máquina, no entanto, alguns não são flex́ıveis o suficiente para poderem

ser estendidos com novos métodos, além de não oferecerem mecanismos que permitam o

reuso de soluções de sucesso concebidos em experimentos anteriores na ferramenta. Neste

trabalho, propomos um arcabouço para automatizar experimentos de aprendizado de

xi

máquina, oferecendo um ambiente padronizado baseado em workflow, tornando mais fácil

a tarefa de avaliar diferentes descritores de caracteŕısticas, classificadores e abordagens de

fusão em uma ampla gama de tarefas. Também propomos o uso de medidas de similari-

dade e métodos de learning-to-rank em um cenário de recomendação, para que usuários

possam ter acesso a soluções alternativas envolvendo experimentos de aprendizado de

máquina. Nós realizamos experimentos com quatro medidas de similaridade (Jaccard,

Sørensen, Jaro-Winkler e baseada em TF-IDF) e um método de learning-to-rank (LRAR)

na tarefa de recomendar workflows modelados como uma sequência de atividades. Os

resultados dos experimentos mostram que a medida Jaro-Winkler obteve o melhor de-

sempenho, com resultados comparáveis aos observados para o método LRAR. Em ambos

os casos, as recomendações realizadas são promissoras, e podem ajudar usuários reais em

diferentes tarefas de aprendizado de máquina.

xii

Acknowledgements

First and foremost, I would like to thank God, whose many blessings have made me who

I am today. I would like to thank my parents and siblings, who supported me in every

step of this journey. My family, who prayed for me this whole time, despite my distance

these last days.

I would like to thank my advisors, Ricardo da Silva Torres and Anderson de Rezende

Rocha, who inspired me to always seek something more. My friends from the Samsung

project (Waldir, Pedro, Otávio, Bernardo, and Daniel), that always helped me.

I also would like to thank my friends, all of them, that even with the distance, always

gave me strength to keep moving forward.

Finally, I would like to thank CAPES and Samsung Eletrônica da Amazônia Ltda. for

the financial support.

xiii

xiv

“kitto ano sora wa miteta ne

nando mo tsumazuita koto

soredemo saigo made aruketa koto

(I’m sure, the sky above us saw it all

All the times we tripped

But also all the times we walked on till

the end)”

Tenshi ni Fureta yo!

(Touched by an Angel!)

Inaba Emi

xv

xvi

Contents

Acknowledgements xiii

Epigraph xv

1 Introduction 1

2 Concepts and Related Work 5

2.1 Machine Learning . 5

2.1.1 Typical machine learning experiment 6

2.1.2 Machine Learning Frameworks . 7

2.2 Workflows . 11

2.2.1 Concepts . 11

2.2.2 Related Work on Workflow Management 12

2.3 Recommendation Systems . 16

2.3.1 Content-based filtering . 16

2.3.2 Collaborative-filtering . 17

2.3.3 Hybrid approaches . 17

2.3.4 Related work on Recommendation Systems 18

2.4 Learning to Rank: LRAR . 20

2.4.1 Learning to Rank . 20

2.4.2 Learning to Rank using Association Rules 21

2.5 Final Considerations . 23

3 Machine Learning Framework 25

3.1 Modeling a Machine Learning Experiment as a Workflow 25

3.2 Machine Learning Framework . 26

3.3 Implementation Aspects . 28

3.3.1 Plugin scheme . 28

3.3.2 XML Documents . 29

3.3.3 Module Implementation . 31

xvii

4 Validation 35

4.1 Case study . 35

4.1.1 Application . 35

4.1.2 Use of the framework . 36

4.2 Integration with another workflow management system 45

4.3 Workflow recommendations . 46

4.3.1 Overview . 46

4.3.2 Experiments . 52

5 Conclusions 59

5.1 Contributions . 59

5.2 Future Work . 60

Bibliography 61

A Experiment Result 75

B Algorithms 81

C XML Document 91

xviii

List of Figures

2.1 Organization of a typical machine learning experiment. 7

3.1 Workflow representation of a typical machine learning experiment. 25

3.2 Architecture of the framework to automate machine learning experiments. 27

3.3 List of the plugins implemented in the framework. 29

3.4 XML Schema of a collection XML document. 30

3.5 XML Schema of a plugin XML. 30

3.6 XML Schema of an experiment XML document. 31

4.1 Initial interface of the framework. 36

4.2 Modules of the framework. 37

4.3 List of databases in the framework. 38

4.4 Parameters of the K-Fold plugin. 39

4.5 Two modules of the framework linked. The Collection Module (Tropical

Fruits) is used as input for the Train-and-Test Module (K-Fold) in the

execution. 40

4.6 A complete machine learning experiment built in the framework. 41

4.7 It is possible to build another machine learning experiment just by creating

output edges from a module and connecting with another module. 42

4.8 Complex machine learning experiment, to compare the results of two dif-

ferent feature extraction. 43

4.9 Top bar of the machine learning framework, with parameters of the execu-

tion and a button to begin the experiment execution. 44

4.10 As the execution of the workflow goes, the modules being executed and al-

ready executed get a green borderline, with the percentage of the execution

already done. 45

4.11 Example of an experiment workflow in the machine learning framework

and in the VisTrails system. 47

xix

4.12 “Recommend” button must be used to begin the Recommendation Module

of the framework. The Recommendation Module will use the experiment

under configuration (the workflow in the center of the screen) as a query

for searching for existing similar experiments. 50

4.13 “Recommender” window showing the plugin options that are implemented

in the Recommendation Module. 51

4.14 The five most similar existing experiments ranked according to the recom-

mendation method selected. In this example, we can see that the LRAR

method recommends very similar experiments, only changing the normal-

izer and the classifier. 52

4.15 Interface shown to the specialists. At the top of the window we have the

query workflow, at the bottom there is a button to generate a file with the

labels of the specialists, and between them a list of the workflows to be

labeled. 53

4.16 Precision of the LRAR method for each combination of confidence and

support. 54

4.17 Student’s t-test for the Precision@5, comparing all recommendation meth-

ods. Dots below the horizontal line indicate that the first method in the

corresponding pair of the x-axis is better. Dots above the line indicate the

opposite. If the error bar touches the horizontal line, there is no statistical

difference between the two methods being compared. The Wilcoxon test

confirmed the results obtained in the t-test. 56

xx

List of Tables

2.1 Overview of existing machine learning frameworks. 10

2.2 Comparison of recommendation techniques 18

2.3 Queries, Documents and Relevance, extracted from [117] 21

2.4 Learning to Rank using Association Rules for the document id 10. 22

4.1 Precision of each similarity measure and LRAR for each fold. 55

4.2 Accuracy of the LRAR method. 57

xxi

xxii

Chapter 1

Introduction

Nowadays, due to several technologies to acquire and store data, we have to handle large

and complex data sets that are difficult to process using traditional data analysis tools,

as such, for some scenarios, it is too big, or it exceeds the current processing capacity.

For example, the Sloan Digital Sky Survey (SDSS)1 collects 200GB of astronomical data

per night, storing a total of 140TB of information [37]; in the imaging hosting website

Flickr2, about 1.42 and 1.6 million of public photos were uploaded per day in 2012 and

2013, respectively [80]; and the NASA Center for Climate Simulations (NCCS)3 stores

32PB of climate observations and simulations.4

With this vast amount of data, it is necessary to devise appropriate computational

tools for extracting information that can lead to knowledge acquisition. This knowledge

extraction process is usually performed by means of data mining and machine learning

methods. The ultimate goal is to improve the decision-making process in a target appli-

cation. Decision making is the practice of basing decision on the analysis of data [95].

For example, scientists use data mining techniques to find unusual patterns from text and

visual content, while doctors can make decisions using similar cases from the past.

A typical machine learning solution comprises several steps, including, for example,

feature extraction and normalization methods, and the definition of appropriate classifiers.

Since there is no silver bullet that solves all machine learning problems, each technique has

its own pros and cons when designed for specific applications. In this sense, one common

strategy adopted for developers of machine learning systems consists in performing several

experiments with the objective of identifying which techniques are more appropriate for

a given application.

1http://www.sdss.org/ — as of July 2014.
2https://www.flickr.com/ — as of July 2014.
3http://www.nccs.nasa.gov/ — as of July 2014.
4http://www.csc.com/cscworld/publications/81769/81773-supercomputing_the_climate_

nasa_s_big_data_mission — as of July 2014

1

2 Chapter 1. Introduction

Several libraries and machine learning frameworks have been proposed in the litera-

ture to support users in the process of defining the most appropriate methods for their

applications. However, these frameworks have some flaws, as they are not flexible enough

for being extended with novel proposed descriptors or machine learning methods. Also,

another important issue concerns the identification and the reuse of successful solutions

devised in the past.

In this work, we address these issues by modeling scientific machine learning exper-

iments as workflows. Workflow is the automation of a process, in which information is

passed from one resource to another for action, according to a set of rules. The advantages

of using workflows are that they are easily understandable, flexible, and reproducible, in

which it is possible to redesign them and reproduce their results. The objective of this

work is to specify and implement a workflow-based framework that can be used for de-

signing, deploying, executing, and recommending machine learning experiments. This

framework is able to provide a standardized environment, making it easy to evaluate dif-

ferent feature descriptors, normalizers, classifiers, fusion approaches in a wide range of

tasks involving machine learning.

We also included in the framework a service for recommending machine learning work-

flows. This service is very important, even for experienced users, but specially for begin-

ners in machine learning, as it may guide the user during the configuration of an ex-

periment when facing new and challenging classification problems. We also performed

experiments in the recommendation system aiming at evaluating four similarity measures

(Jaccard, Sørensen, Jaro-Winkler, and a TF-IDF-based measure) in order to define which

one is more appropriate for ranking workflows. We also performed experiments with the

Learning to Rank using Association Rules (LRAR) method with the objective of compar-

ing its accuracy performance with the methods that do not use any learning mechanism.

We concluded that the LRAR method and the Jaro-Winkler similarity measure have the

best performance in the recommendation, being not significantly different from each other.

In summary, the main contributions of this work are:

1. Specification and implementation of a workflow-based standardized framework for

devising and running machine learning experiments;

2. Proposal of a workflow recommendation service that relies on the use of similarity

measures that rank machine learning experiments modeled as a sequence of activi-

ties; and

3. Discussion upon the use of learning-to-rank methods for ranking workflows.

This dissertation is organized as follow: Section 2 presents some concepts used and

related work in workflow management, machine learning framework, and recommendation

3

systems. Section 3 describes the proposed machine learning framework and how it was

implemented. A case study is presented in Section 4, in which the use of the framework

is shown. This section also presents the extensibility of the implemented framework with

another workflow management system, and an overview of the recommendation system

framework execution, with the experiments performed to evaluate different similarity

measures used in our recommendation system. Finally, Section 5 presents our conclusions

and proposes important research directions for future work.

4

Chapter 2

Concepts and Related Work

This chapter presents the main concepts used in this dissertation, as well as some related

work. Section 2.1 defines concepts related to machine learning, presenting a typical ma-

chine learning experiment, and related work on machine learning frameworks. Section 2.2

describes the concepts related to workflow management. Section 2.3, in turn, describes

existing state-of-the-art recommendation systems. Finally, Section 2.4 presents concepts

related to learning to rank. Special attention is given to the learning-to-rank method

LRAR, used in our experiments.

2.1 Machine Learning

In this work, we developed a framework for the design, execution, and recommendation

of machine learning experiments. Machine learning is the study of computational meth-

ods that extract useful knowledge from experience to improve performance of a target

application [70].

We can separate the types of machine learning methods based on the available input

on the training step:

• Supervised learning: The training data has known target values and the machine

learning method is required to make predictions on data with unknown target value.

An example of supervised learning is the classification of a person as male or female

according to his/her height and weight, taking into account the heights and weights

of a heterogeneous group.

• Unsupervised learning: In this case, there is no training data. The method

deduces the structure present in the testing data to make predictions for a new

data. An example of unsupervised learning is clustering people according to their

height.

5

6 Chapter 2. Concepts and Related Work

• Semi-supervised learning: The semi-supervised learning makes use of data with

unknown values for training. This method uses data without target values to deduce

the structure present in the training data, and uses the data with target values for

making predictions. An example of semi-supervised learning is the classification of

Web images, as some images have tags describing their context/content, while others

do not. In this case, the features of the images without tags provide information

regarding the distribution of dataset images. This information can be later combined

with image tags in the learning process.

In this work, our focus on machine learning experiments on classification, that is the

problem on identifying to which categories observed in the training data a new observation

belongs.

2.1.1 Typical machine learning experiment

A typical machine learning classification experiment is composed of six main steps, namely:

1. selection of a collection;

2. selection of an approach to splitting the collection into train and test sets;

3. selection of a feature descriptor;

4. optional selection of a normalization method;

5. selection of a classification method;

6. and selection of an evaluation measure to assess the effectiveness performance of the

defined machine learning solution.

Figure 2.1 presents the typical six-step machine learning classification experiment. In

the following, we present a high-level view of how each step works when an experiment is

running. Once the input collection is defined, the method selected for splitting it into train

and test sets is executed and a feature descriptor is then employed to extract a feature

vector from each object within the collection. If a normalization method is selected, the

feature vectors of all data in the train and test sets are normalized accordingly. After

that, a classification method is applied and the results are analyzed considering the chosen

evaluation measure.

8 Chapter 2. Concepts and Related Work

interface. However, WEKA does not provide recommendation services.

Apache Mahout

The Apache Mahout framework2 is a set of machine learning Java libraries systems used

for classification, clustering, evaluation, pattern-mining, and building recommender. The

advantage of the Mahout is that it was designed to be used for very large data sets, using

the power of a Hadoop [118, 121] environment for distributed computing. Although it

can implement a recommender, the Apache Mahout does not make recommendations for

experiments in the framework, and it lacks an interface to design and visualize experiment

specifications.

GraphLab

GraphLab [74, 75] is a parallel framework for machine learning that exploits the sparse

structure and patterns of machine learning algorithms. It has a collection of applications

for some tasks in large-scale graph computation, such as graph analytics, graphical models,

computer vision, clustering, and collaborative filtering. Is it implemented in C++, being

extensible for methods implemented in this language. The disadvantages of this framework

are the absence of an interface and the lack of recommendation facilities.

Machine learning framework for Mathematica

The machine learning framework for Mathematica3 (mlf) [85] is a collection of machine

learning algorithms for intelligent data analysis, combining an optimized kernel with the

manipulation, descriptive programming and graphical capabilities of Mathematica. As

this framework is focused on intelligent data analysis, it has a limited number of ma-

chine learning algorithms. However, it is possible to combine them to solve problems.

The disadvantages of the mlf is the lack of a way of extending the framework with other

algorithms, the small number of machine learning algorithms, and the lack of a recom-

mendation system.

Jubatus

Jubatus [52] is a distributed processing framework and streaming machine learning library.

It has a client-server architecture, in which the client side has two commands: UPDATE

that corresponds to the training phase of a machine learning algorithm, and ANALYZE,

2http://mahout.apache.org — as of April 2014.
3Mathematica is a registered trademark of Wolfram Research Inc. (www.wolfram.com) — as of July

2014.

2.1. Machine Learning 9

that corresponds to the prediction phase of a machine learning algorithm; the server

side consists of a feature vector preprocessing module and an algorithm module, which

supports classification, regression, recommendation of data, simple statistics, and graph

analysis. However, Jubatus framework lacks an interface for experiment design, although

it supports the inclusion of new algorithms.

Encog

Encog [49] is a machine learning framework that supports a variety of algorithms, as well

as data preprocessing. It has a GUI to help modeling and training the machine learning

algorithms. Encog also supports multi-threads, scales well to multicore hardware, and can

make use of GPUs. The disadvantage of this framework is the lack of a recommendation

system to support the design of a more suitable machine learning experiment.

Accord.NET Framework

Accord.NET4 is a framework that provides several scientific computing related methods,

such as machine learning, statistics, and computer vision, to the .NET environment.

The disadvantages of this framework is the lack of a recommendation system to improve

experiments and the lack of mechanisms to include new algorithms to the framework.

KNIME

Konstanz Information Miner (KNIME) [10] is a platform based on the Eclipse platform,

which enables easy visual assembly and interactive execution of data pipelines. It has

a powerful intuitive interface, allows the integration of new modules, and supports the

parallelization of the workload. However, this platform does not have a recommendation

system to support the design of a more suitable machine learning experiment for specific

applications.

Rattle

The R Analytical Tool To Learn Easily (Rattle) [123] is a R5 package that provides a

graphical user interface for data mining using R. Although it implement an interface

for machine learning experiments, it is not intuitive. Also, the Rattle package does not

implement parallelization, neither a mechanism to include new algorithms in the tool.

The package also does not implement a recommendation system to support users in their

experiment design process.

4http://accord.googlecode.com — as of April 2014.
5http://www.r-project.org/ — as of July 2014.

10 Chapter 2. Concepts and Related Work

Rapidminer

Rapidminer, formely known as YALE (Yet Another Learning Environment) [81] is an

environment for machine learning and data mining process. It provides a rich variety of

methods which allows rapid prototyping for new applications. Rapidminer uses XML doc-

uments to represent knowledge discovery process as operator trees. It contains more than

100 learning schemes for regression, classification, and clustering, and the environment

is also easily to extend. However, Rapidminer does not implement a recommendation

system to support users.

An overview of the related work is presented in Table 2.1. This overview describes

each related framework according to different criteria: the number of machine learning

algorithms, if the framework uses parallelization, if it is extensible, if it has an interface,

and if it makes recommendations of experiments.

Frame-

work

Machine

Learning

Algorithms

Parallel Extensible Interface Recommendation

PyML1 A few No No No No

WEKA [46] Many
Some

Algorithms
Yes Yes No

Apache Ma-

hout2

A few Yes No No No

GraphLab

[74,75]

Many Yes Yes No No

mfl [85] A few No No Yes No

Jubatus [52] Many Yes Yes No No

Encog [49] Many Yes Yes Yes No

Accord.NET 4 Many No No No No

KNIME [10] Many Yes Yes Yes No

Rattle [123] A few No No Yes No

Rapidminer

[81]

Many Yes Yes Yes No

Table 2.1: Overview of existing machine learning frameworks.

2.2. Workflows 11

2.2 Workflows

This section presents some concepts of workflow and some related work regarding workflow

management systems.

2.2.1 Concepts

The proposed framework relies on the use of workflows to model machine learning exper-

iments. This section describes the main terms related to workflows, such as workflow,

activity, and workflow management system. These terms were defined by the Workflow

Management Coalition (WfMC) [125] to standardize the terminology of workflows.

Activity

An activity is the description of a part of the work to be performed within the process.

An activity can be atomic, representing an undivided action for the workflow, or may be

composed by other activities. Activities are the basic elements of the construction of a

workflow [125].

Process

A process is a set of one or more linked procedures or activities that fulfill a particular

objective. We can split a process into business and scientific process, distinguishing them

by its context: involving trades or conducting scientific experiments [125].

Workflow

A workflow is the automation of a process, in which documents, information or tasks are

passed from one resource to another for action, according to a set of procedural rules [125].

Figure 2.1 shows the representations of a typical machine learning experiment workflow.

Workflow Management System

A Workflow Management System (WfMS) is an automatic system to design, manage, and

monitoring the execution of a sequence of tasks, arranged as a workflow [125].

Scientific Workflow

A scientific workflow is the specification of a process that describes a scientific exper-

iment [120]. There are some differences between scientific and business workflows, in

12 Chapter 2. Concepts and Related Work

which scientific workflows need to provide an easy-to-use environment for individual ap-

plications, simplify the process of sharing and reuse of process between scientists, and

enable to track the provenance of the workflow execution and the workflow creation steps.

Ludäscher et al. [76] summarize some requirements of scientific workflows, such as:

• Seamless access to resources and services;

• Activity composition and workflow design, in which complex tasks are performed

through the composition of simple activities;

• Scalability, as some workflows involve large volume of data or computational re-

sources;

• Detached execution, as workflows with long running requires that it can be exe-

cuted in the background or in a remote server, without being connected to a user’s

application;

• Reliability and fault tolerance, especially with Web services, as it can fail or become

unacceptably slow;

• User-interaction, as many workflows require interaction of the user at some step of

the execution;

• ‘Smart’ re-runs. Modifying an already executed workflow, the system does not need

to execute the whole workflow again, only the parts that were modified;

• ‘Smart’ (semantic) links, as the system assisting the workflow design in which ac-

tivity can be linked with other activities;

• Data provenance, in which scientific workflows should be reproducible and indicate

specific data and tools used to perform the experiment.

2.2.2 Related Work on Workflow Management

This section presents related work on workflow management systems. Our objective is to

illustrate typical solutions proposed in the literature for the management of workflows.

VisTrails

VisTrails [9] is an open-source tool that provides data and process management support

for computational tasks. By combining features of workflows and visualization systems,

it allows the combination of resources and libraries, and provides mechanisms to compare

2.2. Workflows 13

different results. The major difference of the VisTrails to other workflows systems is a

comprehensive provenance infrastructure that maintains history and steps in the evolution

of workflows and data in the course of exploratory tasks. Workflows are heavily used by

scientists and engineers to generate and evaluate hypotheses, being constantly changed.

VisTrails was designed to manage these workflows [20].

Here, we list the main features of the VisTrails tool:

• Flexible Provenance Architecture: VisTrails can track changes in the workflows and

run-time informations about the execution;

• Querying and Re-using History: The tool provides an intuitive query interface to

the exploration and reuse of the provenance information;

• Extensibility: Packages and libraries can be added dynamically in the system, with-

out any change in the user-interface or recompilation of the system;

• Scalable Derivation of Data Products and Parameter Exploration: VisTrails sup-

ports the specification of a set of values for different parameters of the workflows [9].

Taverna

Taverna [86] is an open source workflow tool that enables scientists to manipulate existing

bioinformatics applications in workflows. This project represents workflows in the Scufl

language. Sculf is an XML-based, conceptual language in which each processing step of

the workflow represents an atomic task.

The Taverna tool also contains a workbench that allows users to write workflows even

without having to learn the Scufl language that acts as a container for a number of

interface components which provide views and controllers involved in the composition of

workflows. Workflows can be executed in the workbench using a local instance of the

Freefluo enactment engine, a Java workflow orchestration tool for Web services.

Kepler

Kepler [5,76] is a software system for designing, executing, reusing, and sharing scientific

workflows. It is build upon Ptomely II [38], a mature, dataflow-oriented system, that has

as main advantage a modeling and design paradigm called actor-oriented modeling. This

paradigm calls workflow activities as actors, and the execution model of the workflow is

specified by an object called director. The director defines how actors are executed and

how it communicates with each other, improving the reusability of actor designs.

The Kepler system permits users to prototype the scientific workflow before imple-

menting its actual code; it allows the use of computational resources on the net in a

14 Chapter 2. Concepts and Related Work

distributed workflow; it supports other language interfaces via Java Native Interface, per-

mitting the reuse of existing analysis components and to target appropriate computational

tools. This system also permits to run scientific workflows in batch mode using Ptomely’s

background execution feature.

This system has been used to design and execute scientific workflows in various fields,

such as biology, ecology, astrophysics, and chemistry.

WOODSS

WOrkflOw-based spatial Decision Support System (WOODSS) [78, 105] is a computa-

tional tool implemented to be used in conjunction with Geographical Information System

(GIS). This system is centered in monitoring the user activities in GIS and documenting

them by means of scientific workflows.

WOODSS has three main objectives: document the user interactions with GIS in a

scientific workflow representation, that: allows comparison between different methods,

thus helping to understand standard GIS programming facilities; support the decision-

making process, allowing reproducibility of steps, interactive updating, reuse as partial

solutions, and validation against predefined criteria; and support progressive construction

of the spatial analysis model and decision methods of decision support systems [78,105].

WOODSS system started from environment studies and was upgraded to an agro-

environmental planning, challenging a scientific workflow specification still combining

preservation and exploitation issues.

SciPhylomics

SciPhylomics [34] is a data-intensive workflow proposed to produce phylogenomic trees

based on a set of protein sequences to infer evolutionary relationships. This workflow was

designed to benefit from parallel processing techniques, such as SciCumulus [35] cloud

engine and Hadoop [118].

SciPhylomics provides for the users the management of the experiments during their

execution, an analysis of local and distributed computation provenance, advantages of

elasticity and adaptivity in managing virtual machines, and the benefit of cloud processing

without assembling expensive infrastructure.

WASA

Workflow-based Architecture to support Scientific Applications (WASA) [79] is a system

that integrates database knowledge with tools in a scientific environment, and that sup-

ports the management of scientific experiments. This system provides an environment

2.2. Workflows 15

that helps scientists to plan, organize, conduct, evaluate, document, and disseminate

results of scientific experiments.

The WASA architecture supports not only the scientific data management, but also

the development of scientific experiments, allowing users to specify new experiments and

to reproduce and reuse past experiments. This system has the following key features: it

is constructed according to distinct layers of abstraction and functionality, but it includes

the core components on which a scientific environment relies. This architecture uses

emerging standards for interoperability on datasets, enabling it to build top arbitrary

types of databases, and its operation is centered on workflow and workflow management

paradigms.

WASA has been applicable in a lot of scientific environment, like molecular biology,

deciphering the genetic DNA information of organisms, and in an experiment of the impact

of deforestation in hummingbird populations.

Workflow for the Alignment, Taxonomy, and Ecology of Ribosomal Sequences (WA-

TERS) [48] is a workflow system that integrates software tools for sequence alignment,

chimera removal, OTU determination, taxonomy assignment, phylogenetic tree construc-

tion, ecological analysis, and visualization tools. WATERS uses the Kepler [5,76] system

as a platform for its collection-oriented approach.

The motivation for building WATERS was to minimize technical challenges when per-

forming DNA sequence clustering, pylogenetic tree, and statistical analysis by automating

the workflow, minimize technical analysis, making it more available and allowing users

with little skills to still use the software, and standardize the analysis methods of riboso-

mal sequences, facilitating comparability and reproducibility of results.

Armadillo

Armadillo [73] is a workflow platform built to design and conduct phylogenetic studies.

It includes a number of phylogenetic and general bioinformatics tools, and also permits

the extension of new bioinformatics tools. A typical bioinformatics task is described as a

workflow with the following steps: data acquisition, data analysis, and report and result

generation.

This platform represents datasets and bioinformatics applications as components that

can be linked together to create a dataflow. The configuration of each application is

made in a dialog box, facilitating the use of the most used features. It also integrates a

sequence viewer and provides access to phylogenetic tree interference and manipulation

applications.

16 Chapter 2. Concepts and Related Work

Towards Adapting Scientific Workflows System to Healthcare Planning

Vilar et al. [119] proposed a context-driven approach to produce workflows in healthcare

activities. Healthcare is a dynamic scenario, in which professionals constantly interact

with a tool, registering patient information, intervention plans, and desired outcomes,

creating the need for a workflow management system that supports different kinds of ac-

tivities, as well as allows annotation of tasks, provenance analysis, and changes according

to context variables. Their work identified three aspects in healthcare workflow: each

tasks may have subworkflows that are conducted according to a context; tasks can be

interrupted or changed; and tasks must provide a record of performed changes.

2.3 Recommendation Systems

The difference between the available set of data and user’s interest subset of data is enor-

mous, and it grows daily. However, the identification of the user’s subset is difficult, and

therefore, tools that help this identification, like search methods, metadata and recom-

mendations, are very important. Recommendation is defined by Gonçalves [45] as: given

a collection and an actor, and a set of ratings for objects in that collection produced by

others or the same actor, recommends (produces a subset of that collection) for that par-

ticular actor. This kind of service is of great value when the actor has a little knowledge

about the subject, or either for experts actors, especially for a rapidly growing database.

Recommendation systems became an important research area since middle 1990 [53,

96, 106] and continues to be studied because it is a problem-rich research area with sev-

eral practical applications, such as recommendation of books [56], musics [27], CDs [71],

movies [82], friends [72], and news [11]. The recommendation problem is usually for-

mulated as a problem of estimating ratings for objects that have not been rated by an

actor. There are two possible ways of rating unknowns objects: using traditional heuris-

tics based on information retrieval methods or model-based that uses a model learned

from the underlying data using statistical learning and machine learning techniques.

The literature in recommender systems classifies them into different categories based

on how the recommendations are made [8,23,56,115]: Content-based filtering [12,36,126,

128,132], Collaborative-Filtering [16,47,51,89,130], and hybrid approaches [19,101,107].

2.3.1 Content-based filtering

The Content-based filtering is a recommendation technique based on the similarity be-

tween the content of the objects [25]. Its idea is that an actor may have interest in similar

objects to the item already rated. Therefore, the system identifies and recommends the

objects similar to the previously rated by the actor.

2.3. Recommendation Systems 17

The advantages of this type of recommendation system are: it does not need infor-

mation of the user, only his/her history behavior in the system; it is adaptive, making

better recommendations over time; and it does not need previously knowledge about

the domain to work [94]. However, recommendation systems face the new-user problem,

where the lack of information about the actor prevents any recommendation based on

user preferences.

2.3.2 Collaborative-filtering

The collaborative-filtering is a recommendation technique based on the assumption that

actors who had similar object interest in the past, will probably have similar interest in

other objects [96]. Therefore, for an user, the system identifies other users with similar

interest and recommends their well-rated objects.

The collaborative-filtering has the same advantages of the content-based filtering (it

does not need data from the user, it is adaptive, and does not need previously knowledge

of the domain) and an exclusive advantage, which refers to the possibility of recommend-

ing objects that do not have similarities with the objects rated by the actor, thereby

identifying cross-genres niches [94].

The disadvantages of the collaborative-filtering are: the new-user problem; new-item

problem, according to which, when a new object is included, the system does not have

any information about the object, which hampers novel recommendations until other

actors rate it; the black-sheep problem, according to which when users present unusual

preferences, the system will have difficult to find other users with similar preferences,

leading to bad recommendations; and sparsity, which refers to the fact when the number

of items already rated are very small compared to the number of ratings that need to be

predicted, e.g., in a movie recommendation system there may be some movies rated by

only few people, and these movies would be rarely recommended, even if the movies had

a good rating [1, 23].

Table 2.2 summarizes the advantages and disadvantages of content-based and collaborative-

filtering.

2.3.3 Hybrid approaches

Hybrid approaches consist in the combination of content-based and collaborative-filtering

techniques to combine its advantages and minimize its disadvantages. Burke [19] presents

a taxonomy to those hybrid methods:

• Weighted: Several recommendation techniques produce scores to be combined into

a single recommendation;

18 Chapter 2. Concepts and Related Work

Technique Advantages Disadvantages

Content-based
filtering

• Does not need data from user

• Adaptive

• Domain knowledge not necessary

• New-user problem

Collaborative-
filtering

• Does not need data from user

• Adaptive

• Domain knowledge not necessary

• Cross-genre niches

• New-user problem

• New-item problem

• Black-sheep problem

• Sparsity

Table 2.2: Comparison of recommendation techniques

• Switching: The system switches between recommendation techniques according to

the current situation;

• Mixed: The result recommendation of several techniques are mixed in the final

recommendation;

• Feature combination: Features from different recommendation data sources are used

in a single recommendation technique;

• Cascade: One recommendation technique refines the recommendation output of

another;

• Feature augmentation: The output of a technique is used as input of another;

• Meta-level: the model learned by a recommendation technique is used as input of

another.

2.3.4 Related work on Recommendation Systems

In this subsection, we introduce research related to the construction of recommendation

systems.

Huang et al. [56] described a two-layer graph model on book recommendation using

a hybrid approach. In the first stage of the computation, the users and books in the

digital library are represented as feature vector. The user feature vector contains the user

2.3. Recommendation Systems 19

demographic data and the book feature vector contains the book attributes and content

information. The recommendation model computes the similarities between the users and

the similarities between the books. At the second stage, a two-layer graph is constructed

with a book layer and an user layer. Inter-layer links are based on the purchase histories

of all users. In this system, the recommendation is made using graph searches, traversing

the graph to find books with strong association with the user.

Miller et al. [83] presented the PocketLens algorithm that solves two key problems in

recommendation system: portability and trust. This algorithm performs in a peer-to-peer

environment, wherein, when the user is online, it creates a model that can be used to make

recommendations offline. The trust issue is resolved by the personal recommender, which

shares only the information explicitly identified by the user.

Lacerda et al. [69] proposed a framework for associating advertisements (ads) with web

pages. It implements a content-based filtering, using the structural parts of an ad: title,

textual description, and hyperlink, a genetic programing to learn a model to recommend

the most appropriate ads, given the context of the Web page.

Lo and Lin [72] proposed a new graph-based algorithm named weighted minimum-

message ratio (WMR), which generates a personalized friend list by message interaction

among web members. The link in the graph was defined as the minimum number of

interactions between the users, and the WMR algorithm considers that, the longer the

path, the lower the recommendation. The recommendation rating is calculated as:

Ro,j =
∑

k

[Pk(j).CSum×
∏

i

C(Si−1, Si)]

where Ro,j is the rating for the node j from the node o; Pk(j).CSum is the sum of the

path from the node o to j; C(Si−1, Si) is the proportion of the message from the path and

the total messages of the level i.

Bollen et al. [14] presented a system for recommendation on videos based on the

content-based filtering that comprises three stages. First, the system harvests download

logs and metadata (video title, abstract, description, type, usually generated by users)

from all videos. Next, a video relationship matrix derived from video downloads is gen-

erated. Finally, a Spreading Activation search in the relationship matrix that encodes

paths connecting related videos is performed to generate the recommendations.

Koenigstein et al. [65] presented a work of recommendation on the Yahoo! Music

dataset using collaborative filtering. This dataset is characterized by three features:

multi-taped rated items, four level taxonomy (dealing with the sparsity), and timestamps

associated with the ratings. The system employs a model based on matrix factorization

to map items and users into comparable latent factors, being the predicted rating by an

user u to item i the following equation:

r̂ui = µ + bi + bu + pT
u qi

20 Chapter 2. Concepts and Related Work

where µ is the average rating, bu and bi are the user and item biases respectively, and pT
u qi

the affinity of user u to item i.

Tayebi et al. [114] presented a novel approach (CrimeWalker) to crime suspect rec-

ommendation based on partial knowledge of offenders involved in a crime incident and

a known co-offending (offender who have committed crimes together) network. The pro-

posed model extends a existing random walk based model, TrustWalker [59], to address

link prediction combined with the ability to perform recommendations based on a set of

offenders given as input. CrimeWalker performs several walks on the co-offending network

starting with an already charged offender, to recommend offender suspicious.

Kaster et al. [63] presented the use of Case-Based Reasoning (CBR) [97] as a retrieval

mechanism in the WOODSS [78, 105] (Section 2.2.2) to help users choose the most ad-

equate models from those available in the database. CBR is a reasoning model which

consists in solving new problems by adapting solutions that were already used to solve

previous problems [97]. The similarity retrieval applied with the CBR approach uses the

metadata associated with each WOODSS workflow, which contains the problem focused

by the workflow and its meaning. The process of similarity analysis employed by the CBR

system is described as the following steps: (i) Find correspondences, aligning the input

problem with the stored workflows; (ii) Compute the degree of similarity of corresponding

features; and (iii) Assign importance values to features. WOODSS’ CBR mechanism uses

city-blocks metrics to calculate the similarity evaluation between the input and the stored

workflow.

For a further deep investigation on existing solutions for recommendation services,

please refer to the following surveys: Almazro et al. [4] and Bobadilla et al. [13].

Different from the above approaches, we proposed in this dissertation the use of a

recommendation based in the search of similar workflows that were previously executed

in the framework.

2.4 Learning to Rank: LRAR

For making recommendations in the framework, we propose the use of a learning-to-rank

method based in association rules. We describe the concept of learning to rank and the

learning-to-rank approach used in this work in the next sections.

2.4.1 Learning to Rank

Ranking models and functions is an important research topic in many fields. In the

literature several empirical ranking methods are proposed, such as boolean, vector space,

and probabilistic models [7]. However, it is difficult to empirically tune the parameters of

2.4. Learning to Rank: LRAR 21

ranking functions of the above methods, therefore, recently, learning-to-rank approaches

have been proposed. These methods exploit machine learning methods to automatically

learn effective ranking functions.

The task of learning to rank is defined as follow. A training data D consisting of

a set < q, d, r >, where q is a query, d is a document, represented as a list of features

(f1, f2, ...fn), and r is the relevance of d to q, with discrete values, is used to create a

model to relate the features of the document to the corresponding relevance. The test

set T consists of a set < q, d, ? >, where the relevance of the document d for the query

q is unknown. The model learned is used to produce a likelihood of relevance of such

documents to the corresponding queries, which are used to generate the final ranking.

2.4.2 Learning to Rank using Association Rules

The learning-to-rank methods in the literature rely on techniques such as support vector

machines [50,131], neural networks [18], and genetic programming [39]. Veloso et al. [117]

proposed an alternative method using associative rules [2], that generates a model R,

composed of rules of the form fi ∩ ... ∩ fj → r, describing the training data by feature-

relevance associations. Once the model is built, the rules are used to estimate the relevance

of documents in the test set. There are two measures used to quantify the quality of a

rule: the confidence θ (conditional probability of relevance r given fi ∩ ... ∩ fj) and the

support σ (fraction of training examples containing features fi ∩ ...∩ fj and relevance r).

Query
Documents

Relevance
id Feature 1 Feature 2 Feature 3

Training Data

Query 1

1 [0.85-0.92] [0.36-0.55] [0.23-0.27] 1

2 [0.74-0.84] [0.36-0.55] [0.46-0.61] 1

3 [0.51-0.64] [0.56-0.70] [0.23-0.27] 0

Query 2

4 [0.74-0.84] [0.36-0.55] [0.28-0.45] 0

5 [0.65-0.73] [0.56-0.70] [0.46-0.61] 1

6 [0.93-1.00] [0.36-0.55] [0.62-0.76] 0

Query 3

7 [0.74-0.84] [0.22-0.35] [0.12-0.22] 0

8 [0.65-0.73] [0.56-0.70] [0.46-0.61] 0

9 [0.85-0.92] [0.71-0.80] [0.46-0.61] 1

Test Data Query Test

10 [0.85-0.92] [0.56-0.70] [0.46-0.61] 1

11 [0.51-0.64] [0.36-0.55] [0.28-0.45] 0

12 [0.34-0.50] [0.22-0.35] [0.46-0.61] 1

Table 2.3: Queries, Documents and Relevance, extracted from [117]

22 Chapter 2. Concepts and Related Work

Consider the training and test sets shown in Table 2.3, with three queries for the train-

ing data and one query for test data, and each query having three documents associated,

represented by three features. We can generate the following rules:

• Feature 1 = [0.85-0.92] → r = 1 (θ = 1.00, σ = 0.22)

• Feature 1 = [0.74-0.84] → r = 0 (θ = 0.67, σ = 0.22)

• Feature 2 = [0.36-0.55] → r = 1 (θ = 0.50, σ = 0.22)

• Feature 3 = [0.28-0.45] → r = 0 (θ = 1.00, σ = 0.11)

• Feature 1 = [0.74-0.84] ∩ Feature 2 [0.36-0.55] → r = 1 (θ = 0.50, σ = 0.11)

However, generating every rule for the training data is costly. The method of Veloso

et al. [117] generates the rules on demand-driven basis, making it fast. Using the id 10 as

example, only a few documents will be used to generate the rules, as seen in Table 2.4.

Documents
Relevance

id Feature 1 Feature 2 Feature 3

1 [0.85-0.92] — — 1

2 — — [0.46-0.61] 1

3 — [0.56-0.70] — 0

4 — — — 0

5 — [0.56-0.70] [0.46-0.61] 1

6 — — — 0

7 — — — 0

8 — [0.56-0.70] [0.46-0.61] 0

9 [0.85-0.92] — [0.46-0.61] 1

10 [0.85-0.92] [0.56-0.70] [0.46-0.61] 1

Table 2.4: Learning to Rank using Association Rules for the document id 10.

The generated rules, ordered by its confidence, are:

• Feature 1 [0.85-0.92] → r = 1 (θ = 1.00, σ = 0.22)

• Feature 1 [0.85-0.92] ∩ Feature 3 [0.46-0.61] → r = 1 (θ = 1.00, σ = 0.11)

• Feature 3 [0.46-0.61] → r = 1 (θ = 0.75, σ = 0.33)

• Feature 2 [0.56-0.70] → r = 0 (θ = 0.67, σ = 0.22)

2.5. Final Considerations 23

• Feature 2 [0.56-0.70] ∩ Feature 3 [0.46-0.61] → r = 1 (θ = 0.50, σ = 0.11)

• Feature 2 [0.56-0.70] ∩ Feature 3 [0.46-0.61] → r = 0 (θ = 0.50, σ = 0.11)

• Feature 2 [0.56-0.70] → r = 1 (θ = 0.33, σ = 0.11)

• Feature 3 [0.46-0.61] → r = 0 (θ = 0.25, σ = 0.11)

These rules are combined to estimate the relevance of document id 10, and the score

of each rule is weighted according to its confidence by the Equation 2.1, where Rd is the

total number of rules generated and θ(ri) are the rules confidence with relevance ri.

s(ri) =

∑
ri∈Rd

θ(ri)

|Rd|
(2.1)

Therefore, the rank of a document is estimated by the linear combination of the

normalized score for each relevance, as shown in Equation 2.2.

rank =
k∑

i=0

ri

s(ri)∑k
j=0

s(rj)
(2.2)

With this, we have that the rank of document id 10 is: s(0) = 0.1775 and s(1) =

0.4475, and rank = 0.716.

2.5 Final Considerations

In this work, we approach three different topics to elaborate our framework: Machine

Learning, Workflow Management, and Recommendation System. In machine learning,

we presented 11 related work and its features. We concluded that some are not extensible

to novel features (e.g., [85, 123]), some does not have an interface (e.g., [52, 74, 75]), and

none of them has a functionality for recommending previous experiments made in the

system.

We also present eight related work on Workflow Management, being applied in a

number of scenarios, such as ecology (e.g., [5,76,78,105]) and biology (e.g., [34,73,79,86]).

Each one of these systems has its own advantages, however, a few of them are general

enough to be extended to a machine learning application, like VisTrails [9], Kepler [5,76],

and WASA [79], and just one of them (WOODSS [78,105]) has a system for recommending

previous experiments.

As none of the studied machine learning frameworks and workflow management sys-

tems have a functionality for recommending experiments made in the system, we also

studied recommendation systems in the literature to guide the implementation of the

24 Chapter 2. Concepts and Related Work

functionality in our machine learning framework. Some of the recommendation systems

are based on graph models between its itens, e.g., Huang et al. [56] and Lo and Lin [72],

and others are based on content, e.g., Lacerda et al. [69] and Bollen et al. [14]. Differ-

ent from the approaches, we proposed the use of similarities measures to calculate the

similarities between similar workflows that were previously executed in the framework.

26 Chapter 3. Machine Learning Framework

3.2 Machine Learning Framework

The objective of the proposed machine learning framework is to facilitate the automation

of classification experiments. It is responsible for managing the steps of machine learning

experiments. Each step consists of a module in the framework (e.g., collection, train and

test set definition, feature extraction, normalization, classification, fusion, and evalua-

tion), that runs independently of others. Efficiency aspects on the workflows execution

are addressed by exploiting multiple cores in the extraction and normalization modules.

The architecture of the proposed framework is shown in Figure 3.2. It consists of three

layers: an interface, the core of the framework, and a set of repositories. The interface is

responsible for the communication with the user. Using the interface modules, users can

design, call the execution of a workflow, and receive the results of the execution. In the

design of a workflow, the core of the framework is in charging of connecting to the methods

of each module in the repositories to build the machine learning experiment, and call

them again for the execution of the experiment, being responsible for the communication

between the executing modules. Once the execution is done, the workflow and its results

are stored in a repository, which can be used later for making recommendations. The

recommendation service can help users in their task of building a workflow experiment,

by avoiding common errors and providing best practices from the past. The service will

look for past experiments that are similar to the built one, intending to provide the user

with alternative solutions that can lead to better results. The use of a recommendation

service in this context also allows users to reuse experiments and activities successfully

used previously. For this recommendation, we used similarity functions to estimate the

similarity of two graph-based representation of machine learning experiments.

28 Chapter 3. Machine Learning Framework

• Predefined matching: With a specific and predefined matching between modules,

users are not able to introduce errors in the workflow during the design of an ex-

periment;

• Productivity: Having defined modules, a specialist is more productive on designing

and deploying experiments; and

• Recommendation system: The insertion and implementation of recommendation

tools is easier in the new framework.

3.3 Implementation Aspects

In this section, we present the main decisions for the implementation of the machine

learning framework, such as the language that the framework was implemented, the use

of XML-based documents for storing configuration parameters of module plugins and for

representing a workflow experiment, and the definitions of the connections between the

modules.

3.3.1 Plugin scheme

In order to provide a extensibility functionality in the build framework, we decided to use

a plugin scheme. Plugins consists of components that implement or encapsulate new fea-

tures to an existing software, developed according to defined standards and interfaces [94].

Each module of the machine learning framework is composed of plugins of different

implemented methods. This plugin scheme makes the framework more flexible and easily

extensible, i.e. it is possible to define methods in any programming language, and add

those methods to the framework using only a Python wrapper. The plugins are organized

according to the step of a machine learning experiment (module).

This framework has already implemented a wide variety of plugins. Table 3.3 summa-

rizes the plugins already available in the framework.

3.3. Implementation Aspects 29

Modules Number of

plugins

List of plugins

Train and Test 5 K-fold [66], Leave Video Out [66], Number of Im-

ages, Percentage of Images, Read Files

Extraction 18 ACC [55], Bag of Visual Words, BIC [110],

CCOM [67], CCV [92], CEDD [26], GCH [112],

Gist [88], HOG [31], HTD [77, 127], JAC [122],

LAS [113], LBP [87], M-SPyd [84], QCCH [54],

SASI [21,22], Statsa, Unser [116]

Normalization 4 Min-Max [3], Term Frequency [100], TF-IDF [100],

Z-Score [3, 58]

Classification 21 DecisionTree [17], kNN [6], LDA [42, 44],

libSVM [24], LogisticRegression [15],

MCOCSVMb, MCOSOPF1b, MCOSOPF2b,

MCSVM1VSb, MCSVMDBCb, MCSVMexternalb,

MCSVMSHb, OCSVMb, OPF [91], OSOPF1b,

OSOPF2b, OSOPF mcb, SVM [24], SVM1VSb,

SVMDBC [32,33], SVMSHb

Fusion 3 Concatenation [99], Majority Voting [68], Proba-

bility Fusionc

Evaluation Measures 10 Confusion Matrix [111], False Negative, False Pos-

itive, F-measure, Global Accuracy Score, Cohen’s

Kappa [28], Normalized Accuracy Score, ROC

curve [41,109], True Negative, True Positive

Figure 3.3: List of the plugins implemented in the framework.

aThis is a descriptor recently proposed by the research group. Its description has not been published

yet.
bThis is a classifier recently proposed by the research group. Its description has not been published

yet.
cThis is a fusion method recently proposed by the research group. Its description has not been

published yet.

3.3.2 XML Documents

For organizing experiments, the use of files in the eXtensible Markup Language (XML)1

was implemented. The XML documents store the values of parameters of the methods

implemented in each plugin and the setup of a machine learning experiment. The XML file

1http://www.w3.org/XML/ — as of May 2014.

3.3. Implementation Aspects 31

The workflow is represented as a graph, with a list of modules and a list of links between

the modules (nodes and edges, respectively). A root tag “experiment” contains a name

for the experiment, the name of the author, the number of iterations in the experiment

and a date and hour control. Child tags of the root are: the modules present in the

workflow, with an identification for the module, the plugin selected and its parameters;

and a “link” tag representing the input and output links for each module id. Figure 3.6

shows an example of an experiment XML file.

Figure 3.6: XML Schema of an experiment XML document.

With the XML document of the machine learning experiment, the framework traverses

the workflow as in a deep-first traversing, beginning in the Collection Module and following

the output links present in the XML file until there is no more modules to be visited.

This method favors the execution of a whole branch in the machine learning experiment,

saving the result of the branch, and avoid possible conflicts between the results of two

different branches on a parallel execution of modules.

Each module of the framework has a default construction for the plugin wrapper, based

on which functions of the plugin and their parameters are defined. This construction is

explained in the next sections.

3.3.3 Module Implementation

This section describes the implementation of each module in the framework, providing

pseudo-algorithms for the plugins of each module. These algorithms are presented in

Appendix B.

32 Chapter 3. Machine Learning Framework

The framework was implemented in Python Programming Language2, due to its easy

usability, efficient high-level data structures, its wide range of supported libraries and

its easily interface with other languages, and its simple but effective approach to object-

oriented programming. The basic machine learning methods in the framework were im-

plemented using the Scikit-learn [93] tool for machine learning in Python. This tool

has all the well-known algorithms implemented, and it is fast and has a better memory

footprint [30] than other machine learning tools (e.g., WEKA [46]).

Collection Module

The Collection Module is responsible for reading the XML document that contains the

path to the objects of the collection and associate each objects with each class of the

collection. A new collection can be added to the framework simply including its XML

document to the collection module in the framework folder.

Train-and-Test Module

This module is responsible for splitting the collection selected in the workflow into two sets:

a training set, used to train the classification method and create a classifier model; and

a testing set, used to test the built classifier model to evaluate the proposed workflow.

This module is selected before the feature extraction because some extraction features

methods need a train and test split to perform the calculation, e.g., the Bag of Visual

Words [110]. The Train and Test Module has two functions: split train test, that calls

the selected plugin for splitting the collection into train and test (Line 2 of Algorithm 1);

and write tex for writing the parameters of the module in the result TeX file (Line 2 of

Algorithm 2).

Plugins in this module have at least two functions: train test (Algorithm 3), to create

the train and test sets, and write tex (Algorithm 4), to write the parameters of the train

and test plugin in the file with the results of the experiment.

Feature Extraction Module

The Feature Extraction Module extracts features from the objects in the collection that

describe them according to the descriptor method selected. The module has only one

function (extract features presented in Algorithm 5), which is responsible for checking if

the collection has its features already extracted (Line 1) and calling the plugin for feature

extraction for each object without the feature extracted in the collection (Line 5).

2https://www.python.org/ — as of May 2014.

3.3. Implementation Aspects 33

Each plugin of a descriptor method has two main functions: extract and fv transform.

Algorithm 6 performs the extraction of the feature vector for an object, according to the

method selected. Algorithm 7 transforms the feature vector returned by the method in the

defined standard of the framework. To avoid unnecessary reruns, the Feature Extraction

Module always saves the result of the extraction, to reuse it in subsequent executions.

Normalization Module

The Normalization Module is responsible for encoding every feature vector into the same

feature space, to avoid problems with distances, and facilitating the combination between

the feature vectors in the classification step. This module has one function normal-

ize features, presented in Algorithm 8, that calls the selected plugin to normalize the

feature vector of the collection (Lines 3 and 5).

Plugins of this module has one main function normalize, shown in Algorithm 9, which

uses training set parameters of the normalization in Line 2, and normalize the feature of

the object according to the parameters in Line 4.

Classification Module

A classification consists in allocating new objects in previously defined classes, so that

objects belonging to the same class share the same properties. This module performs

the classification of the feature vectors in the testing set, using a model trained with

the objects in the training set. The classification function of the Classification Module,

responsible for performing the classification of the testing set according to a model learned

with the training set, is shown in Algorithm 10.

The main function of plugins for the Classification Module, classify, is shown in Al-

gorithm 11. A classification model is learned with the training set in Line 1, and used to

predict the objects in the testing set (Line 3).

34 Chapter 3. Machine Learning Framework

Fusion Module

For different problems, the ability to combine the results of multiples algorithms provides a

significant improvement in overall performance [103]. There are two levels of fusion, early

fusion (sensors and features) and late fusion (rank and classifiers). This Fusion Module

is a complex module that performs fusion both for feature vectors and for classification

results. The XML document of the plugin defines which modules are possible to be

merged by the plugin. As fusion, this module is the only one that accepts more than one

input link. fusion (Algorithm 12) is the function of the Fusion Module responsible for

performing the fusion.

The main function of a plugin for this module is described in Algorithm 13, which in

Line 1 performes the fusion of the results of linked modules.

Evaluation Module

This module shows how the built workflow performs in the classification experiment,

according to the methods selected (e.g., accuracy score, confusion matrix, etc.). The

Evaluation Module is responsible for creating a PDF file at the end of the execution

to show the result of the workflow experiment, helping the interpretation of the results.

For creating the PDF with the results of the experiment, it was implemented the use of

the TEX [64] typesetting system. The TEX was selected because it produces a high-level

result using a minimum effort, provides the same result in any machine, and is robust with

the use of complex mathematical formulae. The wrapper of the plugins of this module

consists of three function: evaluation (Algorithm 15) that performs the evaluation of the

classification result according to the method implemented; string file (Algorithm 16) to

write its results at the end of each execution; and write tex (Algorithm 17) to write in a

TeX file the results to be shown to the user.

Recommendation Module

The Recommendation Module works apart from the other modules. This module receives

as input the built experiment workflow in the framework and a recommendation plugin. It

uses the selected plugin to rank previous experiment workflows executed in the framework

and presents the top-ranked ones recommended by the plugin. The wrapper of the method

contains the main function distance, as shown in Algorithm 19, that calculates the distance

between a sequence in the previous experiments and the sequence currently built in the

framework. With the distance to every previous experiments, the module ranks this values

and shows to the user the top-ranked ones.

Chapter 4

Validation

In this chapter, we present a case study (Section 4.1), in which we create a workflow

experiment. Our objective is to show the use of the framework in a real-world scenario

concerning the evaluation of machine learning algorithms. Section 4.2 describes how the

framework can be extended to be used with other workflow management systems, e.g., the

VisTrails system [9]. Finally, Section 4.3 presents an overview about the recommendation

module and the conducted experiments related to its validation.

4.1 Case study

In this section, we present a case study concerning the use of the framework in the design

and the execution of a machine learning experiment.

4.1.1 Application

Suppose that we want to compare the results of a machine learning experiment using two

different methods of feature extraction. For exemplifying this experiment, we selected a

fruit and vegetable identification problem, a recurrent task in supermarkets. This problem

is defined as: given a product, identify its species (e.g., apple, potatoes, oranges) and its

variety (e.g., Gala and Fuji apples) to define its price [40,98].

For this experiment, we selected a representative collection of fruits [98], with 15

classes and 2,633 images. The K-Fold plugin was selected to split this collection into

train and test sets. The plugin splits the collection into 3 folds, in which each fold is

used as test, and the other two as the training set. For the Feature Extraction Module,

we select two descriptor plugins, Border/Interior Pixel Classification (BIC) [110] and

Local Activity Spectrum (LAS) [113]. These descriptors extract the feature vectors based

on color and texture visual properties, respectively. With those two methods, we can

35

46 Chapter 4. Validation

provenance infrastructure that maintains history and steps in the evolution of workflows

and data in the course of exploratory tasks.

To extend the machine learning framework in another workflow management system,

each module of the framework is integrated in the management system. With this, the

execution of a machine learning experiment will be made in the framework, however, it is

possible to take advantage of the features of the management system, e.g., in VisTrails,

the provenance of the evolution of the workflow is the most important feature.

Figure 4.11 shows an experiment workflow considering both the framework interface

and the VisTrails interface, implemented using the modules of the framework added in

the VisTrails management system.

However, the VisTrails workflow management has some limitations, as it lacks a func-

tionality for recommending previous experiments designed in the system.

4.3 Workflow recommendations

In this section, we present an overview of the recommendation system execution, with the

methods used to perform the recommendation and the experiments made to evaluate the

system.

4.3.1 Overview

In this work, we describe the process of sequences of activities, more specifically, a work-

flow recommendation. The objective is to support the reuse of experiments and activities

successfully used in the past, avoiding common mistakes in workflow design. To make the

recommendations, we implemented four similarities measures to estimate the proximity

of two workflow experiments and a learning-to-rank method, that “learns” how to rank

workflows according to the user interests.

The similarities measures implemented in the framework consider that an experiment

workflow is a textual sentence, in which each module is represented by a word in the

sentence. To calculate the distance between two sentences, we implemented the Jac-

card [57], Sørensen [108], and Jaro-Winkler [60,61,124] distances and a measure based on

Term Frequency-Inverse Document Frequency (TF-IDF) [100] to represent an experiment

workflow.

Jaccard Distance

Let A and B be two sequences, the Jaccard index calculates the similarity between these

two sequences using Equation 4.1, and Equation 4.2 measures the distance between A

and B.

48 Chapter 4. Validation

J(A, B) =
|A ∩B|

|A ∪B|
(4.1)

dJ(A, B) = 1− J(A, B) (4.2)

Sørensen Distance

This measure, represented by Equation 4.3, is used to compare the similarity of two

samples (A and B) and was originally used to be applied to presence/absence data.

Equation 4.4 represents the distance between two samples.

QS =
2|A ∩B|

|A|+ |B|
(4.3)

dQS = 1−QS (4.4)

Jaro-Winkler Distance

The Jaro-Winkler distance measures the similarity between two strings. This similarity

measure is composed of two algorithms. Equation 4.5 refers to the Jaro distance,

dj(A, B) =

0 if m = 0
1

3

(
m

|A|
+

m

|B|
+

m− t

m

)
otherwise

(4.5)

where m is the number of matching characters, if they are the same and not farther than

⌊
max(|A|, |B|)

2
− 1

⌋
,

and t is the number of matches in different sequence order, divided by 2.

Equation 4.6 is an extension of the Jaro distance that gives favorable ratings to strings

that match from the beginning.

dw(A, B) = dj(A, B) + (lp(1− dj(A, B))) (4.6)

where l is the length of common prefix at the start of the string, and p is a constant

scaling factor (p = 0.1).

4.3. Workflow recommendations 49

TF-IDF-based Distance

This distance measure relies on the fact that, if a workflow is often used, it should be

recommended. This measure calculates the Inverse Document Frequency of each item of

the sequences in the previous experiments, measuring if the item is common or rare in

the sequences. Let p be an item of a experiment workflow, s a experiment workflow, and

S the set of previous experiments of the framework. The Inverse Document Frequency

of each item is obtained by dividing the total number of sequences NS by the number of

sequences that contains the item, and taking the logarithm of the quotient (Equation 4.7).

idf(p, S) = log
NS

|s ∈ S : p ∈ s|
(4.7)

The Term Frequency of an item in a experiment workflow (tf(p, s)) is represented by

the raw frequency of the item in the sequence. Therefore the feature vector of a sequence is

the product of this two statistics for each item of the sequence, as shown in Equation 4.8.

tf − idf(p, s, S) = tf(p, s)× idf(p, S) (4.8)

With the feature vector of two sequences, the distance between them is calculated

using the Euclidean distance.

To perform the recommendation, the framework uses the workflow that is being built in

the ongoing experiment configuration (the query workflow) to search for similar workflows

in previous experiments. Figure 4.12 shows the “Recommend” button, that initiates the

recommendation system, with the simple workflow experiment built in the framework.

4.3. Workflow recommendations 51

Figure 4.13: “Recommender” window showing the plugin options that are implemented

in the Recommendation Module.

When the user selects the plugin and clicks in the “Recommend” button in the new

window, the framework starts the execution of the recommendation module. At the end

of the execution, the framework lists five workflow experiments that are similar to the

workflow that is being built in the framework, according to the selected method, as shown

in Figure 4.14.

52 Chapter 4. Validation

Figure 4.14: The five most similar existing experiments ranked according to the rec-

ommendation method selected. In this example, we can see that the LRAR method

recommends very similar experiments, only changing the normalizer and the classifier.

4.3.2 Experiments

Our experiments aim to address two different research questions: (i) Which similarity

measure is more appropriate for ranking workflows modeled as a sequence of activities?

and (ii) Is the use of learning-to-rank methods a suitable research venue for ranking work-

flows?

In order to address the first question, we performed experiments in the recommen-

dation system using four similarity measures (Jaccard, Sørensen, Jaro-Winkler, and a

TF-IDF-based measure). For the second question, we performed experiments with the

Learning to Rank using Association Rules (LRAR) with the objective of comparing its

accuracy performance with the methods that do not use any learning mechanism.

To perform these experiments, we had to define a ground truth that indicates the

relevance of experiments (workflows). To obtain this ground truth, we invited five spe-

cialists in machine learning experiments to label workflows as relevant or not for some

queries. For this, we randomly created 1,000 workflow experiments, and selected 18 of

those workflows as queries.

For each query workflow, we applied the four similarity measures (Jaccard, Sørensen,

4.3. Workflow recommendations 55

Fold 1

Jaccard Jaro-Winkler Sørensen TF-IDF-based LRAR

mean P@5 0.60 0.70 0.60 0.25 0.75

mean P@10 0.42 0.42 0.42 0.25 0.40

mean P@20 0.23 0.29 0.23 0.21 0.20

Fold 2

Jaccard Jaro-Winkler Sørensen TF-IDF-based LRAR

mean P@5 0.75 0.90 0.75 0.50 0.90

mean P@10 0.60 0.57 0.60 0.43 0.55

mean P@20 0.44 0.52 0.44 0.30 0.28

Fold 3

Jaccard Jaro-Winkler Sørensen TF-IDF-based LRAR

mean P@5 0.60 0.85 0.60 0.20 0.85

mean P@10 0.50 0.55 0.50 0.25 0.48

mean P@20 0.30 0.42 0.30 0.25 0.24

Fold 4

Jaccard Jaro-Winkler Sørensen TF-IDF-based LRAR

mean P@5 0.53 0.67 0.53 0.13 0.67

mean P@10 0.40 0.40 0.40 0.27 0.40

mean P@20 0.22 0.27 0.22 0.22 0.20

Fold 5

Jaccard Jaro-Winkler Sørensen TF-IDF-based LRAR

mean P@5 0.60 0.87 0.60 0.33 0.87

mean P@10 0.57 0.57 0.57 0.37 0.53

mean P@20 0.32 0.38 0.32 0.27 0.27

Mean of Folds

Jaccard Jaro-Winkler Sørensen TF-IDF-based LRAR

mean P@5 0.62 0.80 0.62 0.28 0.81

mean P@10 0.50 0.50 0.50 0.31 0.47

mean P@20 0.30 0.38 0.30 0.25 0.24

Table 4.1: Precision of each similarity measure and LRAR for each fold.

We can conclude, by Table 4.1, that the Learning to Rank using Association Rules

(LRAR) has the best performance, with precision P@5 of 81%, followed by the Jaro-

Winkler similarity measure with P@5 of 80%. We noted that the relevant workflows

are those that are very similar to the query, specially maintaining the early steps of

4.3. Workflow recommendations 57

ground-truth. It recommends relevant workflows. The accuracy measures shown in Ta-

ble 4.2 highlight this property of LRAR.

Folds Accuracy

Fold-1 0.88

Fold-2 0.81

Fold-3 0.80

Fold-4 0.86

Fold-5 0.89

Mean 0.85

Table 4.2: Accuracy of the LRAR method.

58

Chapter 5

Conclusions

In this chapter, we present our contributions and discuss possible research directions for

future work.

5.1 Contributions

Nowadays, we have to handle large and complex data sets that are difficult to process using

some of the existing data analysis tools. To extract knowledge from this data, we usually

perform machine learning experiments. There are several libraries and machine learning

frameworks in the literature, however, they have some flaws, as they are not flexible for

being extended with novel methods, and they often do not identify and reuse successful

solutions devised in the past. In this work, we addressed these two flaws directly.

We have proposed a workflow-based framework for designing, deploying, executing,

and recommending machine learning experiments. An important contribution of this

work is the implementation of a tool that implements the proposed framework. This tool,

as explained in the previous chapters, is able to provide a standardized environment for

performing machine learning experiments. The tool makes it easy to evaluate different

feature descriptors, normalizers, classifiers, fusion approaches in a wide range of tasks

involving machine learning.

Another contribution is the evaluation of similarity measures and a learning-to-rank

method in a recommendation scenario, in which it makes the recommendation of machine

learning experiments modeled as a sequence of activities. We compared the performance of

four similarity measures (Jaccard, Sørensen, Jaro-Winkler, and a TF-IDF-based measure)

and the learning-to-rank method LRAR. Among the similarity measures, Jaro-Winkler

had the best performance, with a precision P@5 of 80%, and the LRAR method obtained

precision P@5 of 81%. With these precision values, we applied the Student’s t test and

the Wilcoxon test to confirm that these two methods are not significantly different from

59

60 Chapter 5. Conclusions

each other. A good result in the recommendation system can help beginner users, and

also experienced ones, to design more effective machine learning experiments, presenting

possible workflows used previously in the framework.

5.2 Future Work

Several research venues can be addressed for future work. Some of them are listed below:

• We propose the use of other recommendation measure, aside the distance between

the workflows, such as the global accuracy and the number of false positives of an

experiment.

• We propose the study of other learning-to-rank techniques, like RankSVM [50, 62],

AdaRank [129] or RankBoost [43]. Another strategy concerns the use of rank aggre-

gation approaches to combine ranked lists defined by different similarity functions.

• Another important research direction concerns the use of graph-based methods to

compare workflows using machine learning techniques. With that, it is possible to

improve the recommendation and it is possible to recommend pieces of a workflow,

improving some steps of the machine learning experiment.

• In different applications, the design of an appropriate machine solution may be a

time-consuming task. We propose the investigation of strategies for automatically

designing a workflow-based solution for a given problem. We propose the use of evo-

lutionary techniques to search for suitable workflows for a given target application.

For this, we will generate random workflow experiments, select the ones with better

performance (e.g., greater accuracy or fewer false positives) to reproduction, breed

new workflows, evaluate these new experiments, and replace some of them from the

population with the breed ones.

• To improve the usability of the framework, we propose the investigation of novel

visualization approaches for guiding the user in the design of a workflow experiment.

The objective is to provide an overview regarding the behavior of each step of an

experiment. One starting point would be the use of similarity trees as proposed

in [90].

• We also plan to incorporate other plugins so that the tool can be used for designing

and executing more complex machine learning experiments. In special, we would

like to incorporate meta-recognition methods [102], expanding the range of tasks to

be performed in the framework.

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of rec-

ommender systems: a survey of the state-of-the-art and possible extensions. IEEE

Transactions on Knowledge and Data Engineering, 17(6):734–749, June 2005.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, 22(2):207–216, June 1993.

[3] Selim Aksoy and Robert M Haralick. Feature normalization and likelihood-based

similarity measures for image retrieval. Pattern Recognition Letters, 22(5):563–582,

2001.

[4] Dhoha Almazro, Ghadeer Shahatah, Lamia Albdulkarim, Mona Kherees, Romy

Martinez, and William Nzoukou. A survey paper on recommender systems. Com-

puting Research Repository, 2010.

[5] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher,

and Steve Mock. Kepler: an extensible system for design and execution of scientific

workflows. In Scientific and Statistical Database Management, 2004. Proceedings.

16th International Conference on, pages 423–424. IEEE, 2004.

[6] Naomi S Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric

Regression. The American Statistician, 46(3):175–185, 1992.

[7] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Re-

trieval - the concepts and technology behind search. Pearson Education Ltd., Harlow,

England, 2 edition, December 2010.

[8] Marko Balabanović and Yoav Shoham. Fab: Content-based, collaborative recom-

mendation. Communications of the ACM, 40(3):66–72, March 1997.

[9] Louis Bavoil, Steven P. Callahan, Patricia J. Crossno, Juliana Freire, Carlos Ed-

uardo Scheidegger, Cláudio T. Silva, and Huy T. Vo. Vistrails: Enabling interactive

61

62 BIBLIOGRAPHY

multiple-view visualizations. In 16th IEEE Visualization Conference, pages 135–142.

IEEE, IEEE Computer Society, October 2005.

[10] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias

Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd

Wiswedel. Knime: The konstanz information miner. In Christine Preisach, Hans

Burkhardt, Lars Schmidt-Thieme, and Reinhold Decker, editors, Data Analysis,

Machine Learning and Applications, Studies in Classification, Data Analysis, and

Knowledge Organization, pages 319–326. Springer Berlin Heidelberg, 2008.

[11] Daniel Billsus, Clifford A. Brunk, Craig Evans, Brian Gladish, and Michael Paz-

zani. Adaptive interfaces for ubiquitous web access. Communications of the ACM,

45(5):34–38, May 2002.

[12] Yu Bo and Qi Luo. Personalized web information recommendation algorithm based

on support vector machine. In The 2007 International Conference on Intelligent

Pervasive Computing, pages 487–490. IEEE, IEEE Computer Society, October 2007.

[13] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.

Recommender systems survey. Knowledge-Based Systems, 46(0):109 – 132, 2013.

[14] Johan Bollen, Michael L. Nelson, Gary Geisler, and Raquel Araujo. Usage derived

recommendations for a video digital library. Journal of Network and Computer

Applications, 30(3):1059 – 1083, August 2007.

[15] Carl R Boyd, Mary Ann Tolson, and Wayne S Copes. Evaluating trauma care: the

triss method. Journal of Trauma-Injury, Infection, and Critical Care, 27(4):370–

378, 1987.

[16] John S. Breese, David Heckerman, and Carl Myers Kadie. Empirical analysis of pre-

dictive algorithms for collaborative filtering. In Proceedings of the 14th Conference

on Uncertainty in Artificial Intelligence, UAI’98, pages 43–52, San Francisco, CA,

USA, July 1998. Morgan Kaufmann Publishers Inc., Morgan Kaufmann Publishers

Inc.

[17] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifi-

cation and Regression Trees. Wadsworth, 1984.

[18] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Gregory N. Hullender. Learning to rank using gradient descent. In

Proceedings of the 22nd international conference on Machine learning, volume 119

BIBLIOGRAPHY 63

of ACM International Conference Proceeding Series, pages 89–96, New York, NY,

USA, August 2005. ACM.

[19] Robin Burke. Hybrid recommender systems: Survey and experiments. User Model-

ing and User-Adapted Interaction, 12(4):331–370, November 2002.

[20] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos Eduardo Scheideg-

ger, Cláudio T. Silva, and Huy T. Vo. Managing the Evolution of Dataflows with

VisTrails. In Roger S Barga and Xiaofang Zhou, editors, Proceedings of the 22nd

International Conference on Data Engineering Workshops, page 71. IEEE, IEEE

Computer Society, April 2006.

[21] Abdurrahman Çarkacıoǧlu and Fatoş Yarman-Vural. Sasi: a new texture descriptor

for content based image retrieval. In Proceedings of the International Conference

on Image Processing, volume 2, pages 137–140, 2001.

[22] Abdurrahman Çarkacıoǧlu and Fatoş Yarman-Vural. Sasi: a generic texture de-

scriptor for image retrieval. Pattern Recognition, 36(11):2615–2633, 2003.

[23] Śılvio César Cazella and Eliseo Berni Reategui. Sistemas de recomendação. In XXV

Congresso da Sociedade Brasileira de Computação, 2005.

[24] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

2011.

[25] Ruey-Ming Chao, Jen-Tu Huang, and Chin-Wen Yang. The study of knowledge

service-oriented recommendation mechanism - a case of e-learning platform. In

Proceedings of 2005 International Conference on Machine Learning and Cybernetics,

volume 4, pages 2228–2233 Vol. 4. IEEE, August 2005.

[26] Savvas Chatzichristofis and Yiannis Boutalis. Cedd: Color and edge directivity

descriptor: A compact descriptor for image indexing and retrieval. In Computer

Vision Systems, pages 312–322. Springer, 2008.

[27] Hung-Chen Chen and Arbee LP Chen. A music recommendation system based on

music data grouping and user interests. In Proceedings of the 10th ACM CIKM

International Conference on Information and Knowledge Management, volume 1,

pages 231–238. ACM, November 2001.

[28] Jacob Cohen. A Coefficient of Agreement for Nominal Scales. Educational and

Psychological Measurement, 20(1):37–46, 1960.

64 BIBLIOGRAPHY

[29] Thomas Cover and Peter E. Hart. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1):21–27, 1967.

[30] Ryan R Curtin, James R Cline, Neil P Slagle, William B March, Parikshit Ram,

Nishant A Mehta, and Alexander G Gray. MLPACK: A scalable C++ machine

learning library. Journal of Machine Learning Research, 14(1):801–805, March 2013.

[31] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-

tion. In Conference on Computer Vision and Pattern Recognition, pages 886–893,

2005.

[32] Filipe de O. Costa, Michael Eckmann, Walter J. Scheirer, and Anderson Rocha.

Open set source camera attribution. In Proceedings of the 25th SIBGRAPI Confer-

ence on Graphics, Patterns and Images, pages 71–78, Aug 2012.

[33] Filipe de O. Costa, Ewerton Silva, Michael Eckmann, Walter J. Scheirer, and An-

derson Rocha. Open set source camera attribution and device linking. Pattern

Recognition Letters, 39(0):92 – 101, 2014.

[34] Daniel de Oliveira, Kary A.C.S. Ocaña, Eduardo Ogasawara, Jonas Dias, João

Gonçalves, Fernanda Baião, and Marta Mattoso. Performance evaluation of par-

allel strategies in public clouds: A study with phylogenomic workflows. Future

Generation Computer Systems, 29(7):1816 – 1825, 2013.

[35] Daniel de Oliveira, Eduardo S. Ogasawara, Fernanda Araujo Baião, and Marta Mat-

toso. Scicumulus: A lightweight cloud middleware to explore many task computing

paradigm in scientific workflows. In Proceedings of the IEEE 3rd International Con-

ference on Cloud Computing, pages 378–385, July 2010.

[36] Souvik Debnath, Niloy Ganguly, and Pabitra Mitra. Feature weighting in content

based recommendation system using social network analysis. In Proceedings of the

17th International Conference on World Wide Web, WWW ’08, pages 1041–1042,

New York, NY, USA, April 2008. ACM.

[37] The Economist. Data, data everywhere. http://www.economist.com/node/

15557443, February 2010.

[38] Johan Eker, Jorn W Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,

Sonia Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming heterogeneity - the

ptolemy approach. Proceedings of the IEEE, 91(1):127–144, 2003.

BIBLIOGRAPHY 65

[39] Weiguo Fan, Michael D. Gordon, and Praveen Pathak. Genetic programming-based

discovery of ranking functions for effective web search. Journal of Management

Information Systems, 21(4):37–56, Spring 2005.

[40] Fábio Augusto Faria, Jefersson Alex dos Santos, Anderson Rocha, and Ricardo

da Silva Torres. Automatic classifier fusion for produce recognition. In Proceedings

of the 25th SIBGRAPI Conference on Graphics, Patterns and Images, pages 252–

259, Aug 2012.

[41] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,

27(8):861 – 874, 2006.

[42] Ronald Aylmer Fisher. The statistical utilization of multiple measurements. Annals

of Eugenics, 8(4):376–386, 1938.

[43] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting

algorithm for combining preferences. The Journal of machine learning research,

4:933–969, November 2003.

[44] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition (2Nd Ed.).

Academic Press Professional, Inc., San Diego, CA, USA, 1990.

[45] Marcos André Gonçalves, Edward A. Fox, Layne T. Watson, and Neill A. Kipp.

Streams, structures, spaces, scenarios, societies (5s): A formal model for digital

libraries. ACM Transactions on Information Systems, 22(2):270–312, April 2004.

[46] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H. Witten. The WEKA data mining software: an update. ACM Special

Interest Group on Knowledge Discovery and Data Mining Explorations Newsletter,

11(1):10–18, November 2009.

[47] Abhay S. Harpale and Yiming Yang. Personalized active learning for collaborative

filtering. In Proceedings of the 31st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’08, pages 91–98,

New York, NY, USA, July 2008. ACM.

[48] Amber L Hartman, Sean Riddle, Timothy McPhillips, Bertram Ludäscher, and

Jonathan A Eisen. Introducing waters: a workflow for the alignment, taxonomy,

and ecology of ribosomal sequences. BMC bioinformatics, 11(1):317, 2010.

[49] Jeff Heaton. Introduction to neural networks with Java. Heaton Research, Inc., 2nd

edition, 2008.

66 BIBLIOGRAPHY

[50] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large Margin Rank Bound-

aries for Ordinal Regression. In Advances in Large-Margin Classifiers, chapter 7,

pages 115–132. MIT Press, January 2000.

[51] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.

Evaluating collaborative filtering recommender systems. ACM Transactions on In-

formation Systems, 22(1):5–53, January 2004.

[52] Shohei Hido, Seiya Tokui, and Satoshi Oda. Jubatus: An open source platform for

distributed online machine learning. In NIPS Workshop on Big Learning, 2013.

[53] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and

evaluating choices in a virtual community of use. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’95, pages 194–201.

ACM Press/Addison-Wesley Publishing Co., ACM/Addison-Wesley, May 1995.

[54] Chao-Bing Huang and Quan Liu. An orientation independent texture descriptor for

image retrieval. In Proceedings of the International Conference on Communications,

Circuits and Systems, pages 772–776, July 2007.

[55] Jing Huang, S.R. Kumar, M. Mitra, Wei-Jing Zhu, and R. Zabih. Image index-

ing using color correlograms. In Proceedings of the 1997 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 762–768, Jun 1997.

[56] Zan Huang, Wingyan Chung, Thian-Huat Ong, and Hsinchun Chen. A graph-based

recommender system for digital library. In Proceedings of the 2nd ACM/IEEE-CS

Joint Conference on Digital Libraries, pages 65–73. ACM, ACM, June 2002.

[57] Paul Jaccard. Étude comparative de la distribution florale dans une portion des

Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–

579, 1901.

[58] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1988.

[59] Mohsen Jamali and Martin Ester. TrustWalker: A random walk model for combin-

ing trust-based and item-based recommendation. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

397–406, New York, NY, USA, July 2009. ACM.

[60] Matthew A Jaro. Advances in record-linkage methodology as applied to matching

the 1985 census of tampa, florida. Journal of the American Statistical Association,

84(406):414–420, 1989.

BIBLIOGRAPHY 67

[61] Matthew A Jaro. Probabilistic linkage of large public health data files. Statistics

in medicine, 14(5-7):491–498, 1995.

[62] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceed-

ings of the 8th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 133–142. ACM, July 2002.

[63] Daniel S. Kaster, Claudia B. Medeiros, and Heloisa V. Rocha. Supporting modeling

and problem solving from precedent experiences: the role of workflows and case-

based reasoning. Environmental Modelling & Software, 20(6):689 – 704, 2005.

[64] Donald Ervin Knuth. Computers & Typesetting: The TEXbook, volume A. Addison

Wesley, Reading, Massachusetts, 1986.

[65] Noam Koenigstein, Gideon Dror, and Yehuda Koren. Yahoo! music recommen-

dations: Modeling music ratings with temporal dynamics and item taxonomy. In

Proceedings of the 5th ACM Conference on Recommender Systems, RecSys ’11,

pages 165–172, New York, NY, USA, October 2011. ACM.

[66] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In International Joint Conference on Artificial Intelligence, pages

1137–1143, New York, NY, USA, 1995. ACM.

[67] Vassili Kovalev and Stephan Volmer. Color co-occurrence descriptors for querying-

by-example. In Proceedings of the International Conference on Multimedia Model-

ing, pages 32–38, Oct 1998.

[68] Ludmila I. Kuncheva. A theoretical study on six classifier fusion strategies. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(2):281–286, 2002.

[69] Ańısio Lacerda, Marco Cristo, Marcos André Gonçalves, Weiguo Fan, Nivio Ziviani,

and Berthier Ribeiro-Neto. Learning to advertise. In Proceedings of the 29th annual

international ACM SIGIR conference on Research and development in information

retrieval, SIGIR ’06, pages 549–556. ACM, ACM, August 2006.

[70] Pat Langley and Herbert A. Simon. Applications of machine learning and rule

induction. Communications of the ACM, 38(11):54–64, November 1995.

[71] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-

to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, January 2003.

68 BIBLIOGRAPHY

[72] Shuchuan Lo and Chingching Lin. Wmr–a graph-based algorithm for friend recom-

mendation. In Proceedings of the 2006 IEEE/WIC/ACM International Conference

on Web Intelligence, WI ’06, pages 121–128, Washington, DC, USA, December 2006.

IEEE Computer Society, IEEE Computer Society.

[73] Etienne Lord, Mickael Leclercq, Alix Boc, Abdoulaye Baniré Diallo, and Vladimir

Makarenkov. Armadillo 1.1: An original workflow platform for designing and con-

ducting phylogenetic analysis and simulations. PLoS ONE, 7(1):e29903, 01 2012.

[74] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and

Joseph M. Hellerstein. Graphlab: A new framework for parallel machine learning. In

Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pages

340–349. AUAI Press, July 2010.

[75] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and

Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning in

the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, April 2012.

[76] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,

Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific workflow

management and the kepler system. Concurrency and Computation: Practice and

Experience, 18(10):1039–1065, 2006.

[77] Fariborz Mahmoudi, Jamshid Shanbehzadeh, Amir-Masoud Eftekhari-Moghadam,

and Hamid Soltanian-Zadeh. Image retrieval based on shape similarity by edge

orientation autocorrelogram. Pattern Recognition, 36(8):1725–1736, 2003.

[78] Claudia Bauzer Medeiros, José de Jesús Pérez Alcázar, Luciano A. Digiampietri,

Gilberto Zonta Pastorello Jr., André Santanchè, Ricardo da Silva Torres, Edmundo

Roberto Mauro Madeira, and Evandro Bacarin. Woodss and the web: Annotating

and reusing scientific workflows. ACM SIGMOD Record, 34(3):18–23, September

2005.

[79] Claudia Bauzer Medeiros, Gottfried Vossen, and Mathias Weske. Wasa: A workflow-

based architecture to support scientific database applications. In Norman Revell

and AMin Tjoa, editors, Database and Expert Systems Applications, volume 978

of Lecture Notes in Computer Science, pages 574–583. Springer Berlin Heidelberg,

1995.

[80] Franck Michel. How many public photos are uploaded to flickr every day,

month, year? https://www.flickr.com/photos/franckmichel/6855169886/,

April 2014.

BIBLIOGRAPHY 69

[81] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler.

Yale: Rapid prototyping for complex data mining tasks. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 935–940, 2006.

[82] Bradley N. Miller, Istvan Albert, Shyong K. Lam, Joseph A. Konstan, and John

Riedl. Movielens unplugged: Experiences with an occasionally connected recom-

mender system. In Proceedings of the 8th International Conference on Intelligent

User Interfaces, IUI ’03, pages 263–266, New York, NY, USA, January 2003. ACM,

ACM.

[83] Bradley N. Miller, Joseph A. Konstan, and John Riedl. Pocketlens: Toward a per-

sonal recommender system. ACM Transactions on Information Systems, 22(3):437–

476, July 2004.

[84] Javier A Montoya-Zegarra, Neucimar Jerônimo Leite, and Ricardo da S. Torres.

Rotation-invariant and scale-invariant steerable pyramid decomposition for texture

image retrieval. In Proceedings of the XX Brazilian Symposium on Computer Graph-

ics and Image Processing, pages 121–128, Oct 2007.

[85] Thomas Natschläger, Felix Kossak, and Mario Drobics. Extracting knowledge and

computable models from data-needs, expectations, and experience. In Proceedings

of the IEEE International Conference on Fuzzy Systems, volume 1, pages 493–498.

IEEE, July 2004.

[86] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark

Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, and Peter

Li. Taverna: a tool for the composition and enactment of bioinformatics workflows.

Bioinformatics, 20(17):3045–54, November 2004.

[87] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 24(7):971–987, Jul 2002.

[88] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. International Journal of Computer Vision,

42(3):145–175, 2001.

[89] Mark O’Connor and Jon Herlocker. Clustering items for collaborative filtering. In

Proceedings of the ACM SIGIR workshop on recommender systems, volume 128. UC

Berkeley, August 1999.

70 BIBLIOGRAPHY

[90] Jose Gustavo Paiva, Laura Florian, Hélio Pedrini, Guilherme P. Telles, and Rosane

Minghim. Improved similarity trees and their application to visual data classifica-

tion. IEEE Transactions on Visualization and Computer Graphics, 17(12):2459–

2468, Dec 2011.

[91] Joao P Papa, Alexandre X Falcão, Paulo AV Miranda, Celso TN Suzuki, and Nel-

son DA Mascarenhas. Design of robust pattern classifiers based on optimum-path

forests. In Mathematical Morphology and its Applications to Signal and Image Pro-

cessing (ISMM), pages 337–348. MCT/INPE, 2007.

[92] Greg Pass, Ramin Zabih, and Justin Miller. Comparing images using color coherence

vectors. In Proceedings of the 4th ACM International Conference on Multimedia,

MULTIMEDIA ’96, pages 65–73, New York, NY, USA, 1996. ACM.

[93] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau, Matthieu

Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research, 12:2825–2830, October 2011.

[94] Daniel Carlos Guimarães Pedronette. Uma plataforma de serviços de recomendação

para bibliotecas digitais. Master’s thesis, Universidade Estadual de Campinas,

March 2008.

[95] Foster Provost and Tom Fawcett. Data Science and its Relationship to Big Data

and Data-Driven Decision Making. Big Data, 1(1):51–59, February 2013.

[96] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.

Grouplens: An open architecture for collaborative filtering of netnews. In Proceed-

ings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW

’94, pages 175–186, New York, NY, USA, October 1994. ACM.

[97] Christopher K. Riesbeck and Roger C. Schank. Inside Case-Based Reasoning. L.

Erlbaum Associates Inc., Hillsdale, NJ, USA, 1989.

[98] Anderson Rocha, Daniel C. Hauagge, Jacques Wainer, and Siome Goldenstein. Au-

tomatic fruit and vegetable classification from images. Computers and Electronics

in Agriculture, 70(1):96 – 104, January 2010.

[99] Arun A Ross and Rohin Govindarajan. Feature level fusion of hand and face bio-

metrics. In Defense and Security, pages 196–204. International Society for Optics

and Photonics, 2005.

BIBLIOGRAPHY 71

[100] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for auto-

matic indexing. Communications of the ACM, 18(11):613–620, 1975.

[101] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.

Methods and metrics for cold-start recommendations. In Proceedings of the 25th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’02, pages 253–260, New York, NY, USA, August

2002. ACM.

[102] Walter J. Scheirer, Anderson Rocha, Ross J. Michaels, and Terrance E. Boult.

Meta-recognition: The theory and practice of recognition score analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 33(8):1689–1695, 2011.

[103] Walter J. Scheirer, Anderson Rocha, Ross J. Micheals, and Terrance E. Boult.

Robust fusion: Extreme value theory for recognition score normalization. In Pro-

ceedings of the 11th European Conference on Computer Vision, pages 481–495, New

York, NY, USA, September 2010. ACM.

[104] Walter J. Scheirer, Anderson Rocha, Archana Sapkota, and Terrance E. Boult.

Toward open set recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(7):1757–1772, July 2013.

[105] Laura A. Seffino, Claudia Bauzer Medeiros, Jansle V. Rocha, and Bei Yi. WOODSS

- a spatial decision support system based on workflows. Decision Support Systems,

27(1-2):105–123, November 1999.

[106] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for

automating “word of mouth”. In Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, CHI ’95, pages 210–217. ACM Press/Addison-

Wesley Publishing Co., ACM/Addison-Wesley, May 1995.

[107] Ya-Yueh Shih and Duen-Ren Liu. Hybrid recommendation approaches: Collabora-

tive filtering via valuable content information. In Proceedings of the 38th Annual

Hawaii International Conference on System Sciences, pages 217b–217b, 2005.

[108] Thorvald Sørensen. A Method of Establishing Groups of Equal Amplitude in Plant

Sociology Based on Similarity of Species Content and Ist Application to Analyses of

the Vegetation on Danish Commons. Det Kongelige Danske Videnskabernes Selskab.

Munksgaard, 1948.

[109] Kent A. Spackman. Signal detection theory: Valuable tools for evaluating inductive

learning. In Proceedings of the 6th International Workshop on Machine Learning,

pages 160–163, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

72 BIBLIOGRAPHY

[110] Renato O. Stehling, Mario A. Nascimento, and Alexandre X. Falcão. A compact

and efficient image retrieval approach based on border/interior pixel classification.

In Proceedings of the 11th ACM CIKM International Conference on Information

and Knowledge Management, CIKM ’02, pages 102–109. ACM, November 2002.

[111] Stephen V. Stehman. Selecting and interpreting measures of thematic classification

accuracy. Remote Sensing of Environment, 62(1):77 – 89, 1997.

[112] Michael J. Swain and Dana H. Ballard. Color indexing. International Journal of

Computer Vision, 7(1):11–32, 1991.

[113] Bo Tao and Bradley W. Dickinson. Texture recognition and image retrieval using

gradient indexing. Journal of Visual Communication and Image Representation,

11(3):327–342, September 2000.

[114] Mohammad A. Tayebi, Mohsen Jamali, Martin Ester, Uwe Glässer, and Richard

Frank. Crimewalker: A recommendation model for suspect investigation. In Pro-

ceedings of the 5th ACM Conference on Recommender Systems, RecSys ’11, pages

173–180, New York, NY, USA, October 2011. ACM.

[115] Roberto Torres, Sean M. McNee, Mara Abel, Joseph A. Konstan, and John Riedl.

Enhancing digital libraries with techlens+. In Proceedings of the 4th ACM/IEEE-

CS Joint Conference on Digital Libraries, JCDL ’04, pages 228–236, New York, NY,

USA, June 2004. ACM, ACM.

[116] Michael Unser. Sum and difference histograms for texture classification. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(1):118–125,

January 1986.

[117] Adriano Veloso, Humberto Mossri de Almeida, Marcos André Gonçalves, and Wag-

ner Meira Jr. Learning to rank at query-time using association rules. In Sung-Hyon

Myaeng, Douglas W. Oard, Fabrizio Sebastiani, Tat-Seng Chua, and Mun-Kew

Leong, editors, Proceedings of the 31st annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pages 267–274. ACM,

ACM, July 2008.

[118] Jason Venner and Steve Cyrus. Pro Hadoop, volume 1. Springer, 2009.

[119] Bruno S. C. M. Vilar, Claudia Bauzer Medeiros, and André Santanchè. Towards

adapting scientific workflow systems to healthcare planning. In HEALTHINF, pages

75–84, 2013.

BIBLIOGRAPHY 73

[120] Jacques Wainer, Mathias Weske, Gottfried Vossen, and Claudia Bauzer Medeiros.

Scientific workflow systems, 1996.

[121] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[122] Adam Williams and Peter Yoon. Content-based image retrieval using joint correlo-

grams. Multimedia Tools and Applications, 34(2):239–248, August 2007.

[123] Graham J. Williams. Data Mining with Rattle and R: The art of excavating data

for knowledge discovery. Use R! Springer, 2011.

[124] William E Winkler. String comparator metrics and enhanced decision rules in the

fellegi-sunter model of record linkage. In Proceedings of the Section on Survey

Research, pages 354–359, 1990.

[125] Workflow Management Coalition. Terminology and Glossary Document Number

WFMC-TC-1011. Technical Report 3.0, Workflow Management Coalition, February

1999.

[126] Bing Wu, Luo Qi, and Xiong Feng. Personalized recommendation algorithm based

on svm. In International Conference on Communications, Circuits and Systems,

pages 951–953. IEEE, July 2007.

[127] Peng Wu, Bangalore S. Manjunath, Shawn Newsam, and Hyundoo Shin. A texture

descriptor for browsing and similarity retrieval. Signal Processing: Image Commu-

nication, 16(1):33–43, 2000.

[128] Yan-Wen Wu, Qi Luo, Min Liu, Zheng-Hong Wu, and Li-Yong Wan. Research

on personalized service system in e-supermarket by using adaptive recommendation

algorithm. In International Conference on Machine Learning and Cybernetics, pages

4507–4510, August 2006.

[129] Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In

Proceedings of the 30th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 391–398. ACM, 2007.

[130] Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, and Hans-Peter Peter

Kriegel. Probabilistic memory-based collaborative filtering. IEEE Transactions

on Knowledge and Data Engineering, 16(1):56–69, January 2004.

[131] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support

vector method for optimizing average precision. In Proceedings of the 30th Annual

74 BIBLIOGRAPHY

International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 271–278. ACM, July 2007.

[132] Massimiliano Zanin, Pedro Cano, Javier M Buldú, and Oscar Celma. Complex

networks in recommendation systems. In Modern Topics of Computer Science,

pages 120–124. World Scientific and Engineering Academy and Society, January

2008.

Appendix A

Experiment Result

75

❊①♣❡r✐♠❡♥t ❊①❛♠♣❧❡

❲❡r♥❡❝❦✱ ❘✳ ❖✳

▼❛② ✷✵✱ ✷✵✶✹

✶ ❊①♣❡r✐♠❡♥t ❲♦r❦✢♦✇

✷ Pr♦t♦❝♦❧✿ ❑✲❋♦❧❞

P❛r❛♠❡t❡r ❱❛❧✉❡

◆✉♠❜❡r ♦❢ ❋♦❧❞s ✸

❚❛❜❧❡ ✶✿ P❛r❛♠❡t❡rs ♦❢ t❤❡ ❑✲❋♦❧❞ ▼❡t❤♦❞✳

✷✳✶ ●❧♦❜❛❧ ❆❝❝✉r❛❝② ❙❝♦r❡

▼❡❛♥ ❉❡✈✐❛t✐♦♥ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧ ✭✾✺✪✮

✾✽✳✹✽ ✵✳✵✵ ♥❛♥

❚❛❜❧❡ ✷✿ ❆✈❡r❛❣❡✱ ❙t❛♥❞❛r❞ ❉❡✈✐❛t✐♦♥ ❛♥❞ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧ ♦❢ t❤❡ ●❧♦❜❛❧
❆❝❝✉r❛❝② ❙❝♦r❡ ♦❢ ◆♦❞❡ ✻

✶

76

❛
❣
❛
t❛
❴
♣
♦
t❛
t♦

❛
st
❡r
✐①
❴
♣
♦
t❛
t♦

❝❛
s❤
❡✇

❞
✐❛
♠
♦
♥
❞
❴
♣
❡❛
❝❤

❢✉
❥✐
❴
❛
♣
♣
❧❡

❣
r❛
♥
♥
②
❴
s♠

✐t
❤
❴
❛
♣
♣
❧❡

❤
♦
♥
♥
❡②
❞
❡✇

❴
♠
❡❧
♦
♥

❦
✐✇
✐

♥
❡❝
t❛
r✐
♥
❡

♦
♥
✐♦
♥

♦
r❛
♥
❣
❡

♣
❧✉
♠

s♣
❛
♥
✐s
❤
❴
♣
❡❛
r

t❛
✐t
✐❴

❧✐
♠
❡

✇
❛
t❡
r♠

❡❧
♦
♥

❛❣❛t❛❴♣♦t❛t♦ ✶✵✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
❛st❡r✐①❴♣♦t❛t♦ ✵✳✺✺ ✾✽✳✸✺ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✺✺ ✵✳✺✺ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵

❝❛s❤❡✇ ✵✳✵✵ ✵✳✵✵ ✶✵✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
❞✐❛♠♦♥❞❴♣❡❛❝❤ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✾✻✳✷✶ ✸✳✼✾ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵

❢✉❥✐❴❛♣♣❧❡ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✸✳✼✼ ✾✺✳✼✺ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✹✼ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
❣r❛♥♥②❴s♠✐t❤❴❛♣♣❧❡ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✾✾✳✸✺ ✵✳✵✵ ✵✳✻✺ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
❤♦♥♥❡②❞❡✇❴♠❡❧♦♥ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✾✼✳✾✸ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✷✳✵✼ ✵✳✵✵ ✵✳✵✵

❦✐✇✐ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✶✳✶✼ ✵✳✵✵ ✵✳✺✽ ✵✳✵✵ ✾✽✳✷✺ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
♥❡❝t❛r✐♥❡ ✵✳✵✵ ✵✳✵✵ ✵✳✹✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✹✵ ✾✾✳✶✾ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
♦♥✐♦♥ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✶✵✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
♦r❛♥❣❡ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✶✵✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵
♣❧✉♠ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✼✻ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✸✽ ✵✳✵✵ ✵✳✵✵ ✾✽✳✶✶ ✵✳✼✻ ✵✳✵✵ ✵✳✵✵

s♣❛♥✐s❤❴♣❡❛r ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✶✳✷✻ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✷✳✺✷ ✾✻✳✷✸ ✵✳✵✵ ✵✳✵✵
t❛✐t✐❴❧✐♠❡ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✶✵✵✳✵✵ ✵✳✵✵
✇❛t❡r♠❡❧♦♥ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✶✵✵✳✵✵

❚❛❜❧❡ ✹✿ ❆✈❡r❛❣❡ ❈♦♥❢✉s✐♦♥ ▼❛tr✐① ♦❢ ◆♦❞❡ ✼✳

✸

78

❛
❣
❛
t❛
❴
♣
♦
t❛
t♦

❛
st
❡r
✐①
❴
♣
♦
t❛
t♦

❝❛
s❤
❡✇

❞
✐❛
♠
♦
♥
❞
❴
♣
❡❛
❝❤

❢✉
❥✐
❴
❛
♣
♣
❧❡

❣
r❛
♥
♥
②
❴
s♠

✐t
❤
❴
❛
♣
♣
❧❡

❤
♦
♥
♥
❡②
❞
❡✇

❴
♠
❡❧
♦
♥

❦
✐✇
✐

♥
❡❝
t❛
r✐
♥
❡

♦
♥
✐♦
♥

♦
r❛
♥
❣
❡

♣
❧✉
♠

s♣
❛
♥
✐s
❤
❴
♣
❡❛
r

t❛
✐t
✐❴

❧✐
♠
❡

✇
❛
t❡
r♠

❡❧
♦
♥

❛❣❛t❛❴♣♦t❛t♦ ✻✷✳✻✾ ✶✵✳✾✺ ✹✳✾✽ ✵✳✵✵ ✵✳✵✵ ✾✳✹✺ ✵✳✺✵ ✶✳✹✾ ✸✳✹✽ ✵✳✵✵ ✶✳✵✵ ✵✳✺✵ ✷✳✹✾ ✵✳✺✵ ✶✳✾✾
❛st❡r✐①❴♣♦t❛t♦ ✾✳✸✹ ✽✶✳✽✼ ✵✳✺✺ ✵✳✵✵ ✵✳✵✵ ✶✳✻✺ ✵✳✵✵ ✷✳✷✵ ✵✳✵✵ ✵✳✺✺ ✷✳✷✵ ✵✳✺✺ ✶✳✶✵ ✵✳✵✵ ✵✳✵✵

❝❛s❤❡✇ ✶✳✹✸ ✵✳✵✵ ✽✵✳✹✽ ✵✳✹✽ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✾✺ ✷✳✸✽ ✸✳✸✸ ✷✳✽✻ ✵✳✵✵ ✵✳✾✺ ✵✳✹✽ ✻✳✻✼
❞✐❛♠♦♥❞❴♣❡❛❝❤ ✵✳✵✵ ✵✳✵✵ ✵✳✹✼ ✼✼✳✷✺ ✺✳✷✶ ✵✳✵✵ ✸✳✸✷ ✵✳✵✵ ✵✳✹✼ ✵✳✵✵ ✵✳✵✵ ✹✳✷✼ ✾✳✵✵ ✵✳✵✵ ✵✳✵✵

❢✉❥✐❴❛♣♣❧❡ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✶✵✳✸✽ ✽✶✳✻✵ ✵✳✹✼ ✵✳✹✼ ✵✳✵✵ ✵✳✾✹ ✵✳✵✵ ✵✳✵✵ ✸✳✸✵ ✷✳✽✸ ✵✳✵✵ ✵✳✵✵
❣r❛♥♥②❴s♠✐t❤❴❛♣♣❧❡ ✶✳✾✹ ✵✳✵✵ ✵✳✻✺ ✵✳✵✵ ✵✳✵✵ ✽✾✳✻✽ ✵✳✵✵ ✷✳✺✽ ✹✳✺✷ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✻✺
❤♦♥♥❡②❞❡✇❴♠❡❧♦♥ ✵✳✻✾ ✵✳✵✵ ✵✳✵✵ ✸✳✹✺ ✶✳✸✽ ✵✳✻✾ ✺✸✳✼✾ ✵✳✻✾ ✶✸✳✼✾ ✵✳✵✵ ✵✳✵✵ ✹✳✶✹ ✶✾✳✸✶ ✵✳✻✾ ✶✳✸✽

❦✐✇✐ ✵✳✺✽ ✾✳✾✹ ✶✳✼✺ ✵✳✵✵ ✵✳✵✵ ✸✳✺✶ ✵✳✺✽ ✼✽✳✸✻ ✵✳✵✵ ✶✳✼✺ ✶✳✶✼ ✵✳✺✽ ✶✳✶✼ ✵✳✵✵ ✵✳✺✽
♥❡❝t❛r✐♥❡ ✶✳✻✷ ✵✳✵✵ ✵✳✵✵ ✵✳✽✶ ✶✳✷✶ ✵✳✵✵ ✹✳✽✻ ✵✳✵✵ ✼✾✳✼✻ ✵✳✽✶ ✶✳✷✶ ✸✳✷✹ ✺✳✻✼ ✵✳✽✶ ✵✳✵✵
♦♥✐♦♥ ✹✳✵✵ ✷✳✻✼ ✶✵✳✻✼ ✵✳✵✵ ✵✳✵✵ ✷✳✻✼ ✵✳✵✵ ✵✳✵✵ ✹✳✵✵ ✻✶✳✸✸ ✽✳✵✵ ✵✳✵✵ ✵✳✵✵ ✹✳✵✵ ✷✳✻✼
♦r❛♥❣❡ ✶✳✾✹ ✺✳✽✸ ✺✳✽✸ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✾✼ ✵✳✾✼ ✶✷✳✻✷ ✻✷✳✶✹ ✵✳✵✵ ✵✳✾✼ ✹✳✽✺ ✸✳✽✽
♣❧✉♠ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✸✳✼✾ ✵✳✸✽ ✵✳✵✵ ✶✳✶✹ ✵✳✵✵ ✵✳✸✽ ✵✳✵✵ ✵✳✵✵ ✽✺✳✷✸ ✾✳✵✾ ✵✳✵✵ ✵✳✵✵

s♣❛♥✐s❤❴♣❡❛r ✵✳✻✸ ✵✳✻✸ ✵✳✵✵ ✶✵✳✵✻ ✶✳✽✾ ✵✳✵✵ ✹✳✹✵ ✵✳✵✵ ✶✳✽✾ ✵✳✵✵ ✵✳✵✵ ✶✾✳✺✵ ✻✶✳✵✶ ✵✳✵✵ ✵✳✵✵
t❛✐t✐❴❧✐♠❡ ✵✳✾✹ ✶✳✽✾ ✶✳✽✾ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✵✳✵✵ ✹✳✼✷ ✹✳✼✷ ✸✳✼✼ ✵✳✵✵ ✵✳✾✹ ✽✵✳✶✾ ✵✳✾✹
✇❛t❡r♠❡❧♦♥ ✷✳✵✽ ✷✳✵✽ ✶✻✳✻✼ ✵✳✺✷ ✵✳✵✵ ✵✳✺✷ ✵✳✵✵ ✵✳✺✷ ✵✳✺✷ ✸✳✶✷ ✻✳✼✼ ✵✳✵✵ ✶✳✵✹ ✵✳✺✷ ✻✺✳✻✷

❚❛❜❧❡ ✺✿ ❆✈❡r❛❣❡ ❈♦♥❢✉s✐♦♥ ▼❛tr✐① ♦❢ ◆♦❞❡ ✶✷✳

✺

80

Appendix B

Algorithms

81

82 Appendix B. Algorithms

Algorithm 1: split train test(collection coll, classes classes,
train test method plugin, parameters param values):

1 Import plugin;
2 train test ← plugin.train test(coll, classes, param values);
3 for each train and test set in train test do
4 Save training set into file;
5 Save testing set into file;

6 end
7 Return train test;

Algorithm 2: write tex(train test method plugin, parameters param values):

1 Import plugin;
2 tex text ← plugin.write tex(plugin, param values);
3 Return tex text;

Algorithm 3: train test

Definition: Function responsible for splitting the objects of a collection into train
and test sets.

Input:

• collection: python dictionary containing, for each object, the classes and
feature vectors associated with it;

• classes: python dictionary containing, for each class, its objects;

• param values: parameters of the train and test method (dictionary with the
parameters of the XML file).

Output:

• list train test: python list containing the training set and the testing set:

– training set: python list containing all objects belonging to the training
set;

– testing set: python list containing all objects belonging to the testing
set;

1 Perform the split of the collection according to the plugin.

83

Algorithm 4: write tex

Definition: Function responsible for writing into the result TeX file the
parameters of the train and test method.

Input:

• plugin: name of the method being written into the TeX file;

• param values: parameters of the train and test method (dictionary with the
parameters of the XML file).

Output:

• tex string: string in the TeX format to be written into the TeX file.

1 Write a LaTeX table containing the parameters of the plugin of the Train and Test
Module.

Algorithm 5: extract features(collection coll, classes cla, fea-
ture extraction method plugin, parameters param values):

1 for object obj in coll do
2 if obj already extracted then
3 Load its feature vector;
4 end

5 end
6 Import plugin;
7 for object obj in coll do
8 feature ← plugin.extract(obj, param values);
9 Save feature into file;

10 end
11 Return file path;

84 Appendix B. Algorithms

Algorithm 6: extract

Definition: Function responsible for performing the extraction of the feature
vector

Input:

• object: path of the object being processed (string);

• param values: parameters of the descriptor (dictionary with the parameters of
the XML file).

Output:

• object name: name of the object (string);

• object class: class of the object (string);

• feature: feature vector (list of floats).

1 Extract feature from object;
2 feature ← fv transform(feature);

Algorithm 7: fv transform

Definition: Function responsible for transforming the feature vector in the

standard of the framework.

Input:

• string: variable containing the feature vector extracted from the object (string).

Output:

• list: feature vector in the defined standard (list of floats).

1 Receive feature vector from the extract function;

2 Convert the feature vector to the defined standard of the framework;

85

Algorithm 8: normalize features(collection coll, train test sets train test,
normalization method plugin, parameters param values):

1 Import plugin;
2 for Each set of training and testing do
3 Normalize the training set;
4 Save the training set into file;
5 Normalize the testing set;
6 Save the testing set into file;

7 end
8 Return train and test file paths;

Algorithm 9: normalize

Definition: Function that normalizes the feature vector according to the
parameters of the normalizer method. The feature vector can be
normalized according to its own values, or can depend on the values
all feature vectors of the database.

Input:

• object: an object of the collection;

• collection: collection of objects;

• objects train: objects in the training set;

• param values: parameters of the normalizer (dictionary with the parameters of
the XML file);

• train param: parameters used in the training step of the normalization.

Output:

• object name: name of the object (string);

• object class: class of the object (string);

• fv norm: feature vector normalized (list of floats);

• train param: parameters of the training step of the normalization, to avoid the
training phase in the normalization of the next objects.

1 if train param is empty then
2 Train parameters with objects train;
3 end
4 Normalize feature vector of object according to the train param;

86 Appendix B. Algorithms

Algorithm 10: classification(files with feature vectors fv paths, train test sets

train test, classification method plugin, parameters param values)

1 Import plugin;

2 for Each set of training and testing do

3 test classification, model file ← plugin.classify(fv paths,

training set, testing set, param values);

4 Save test classification in file;

5 end

6 Return test classification;

Algorithm 11: classify

Definition: Function responsible for performing the classification of the testing set
according to the model learned from the training set.

Input:

• fv paths: paths of the files containing the feature vector of all objects;

• train set: python list containing all objects belonging to the training set;

• test set: python list containing all objects belonging to the testing set;

• param values: parameters of the classification method;

Output:

• test set: python list containing all objects belonging to the test set, with its
paths and feature vector;

• list class: python list with the ground truth of the test set;

• list result: python list containing, for each index, the predictions of the
classification as a list with the probability of each class;

• model path: path to the saved model trained in the classification.

1 Build a classifier model with the training set;
2 Save model into file;
3 Predict the testing set according to the classifier model;

87

Algorithm 12: fusion(collections list collections, train test sets
list train test, fusion method plugin, parameters param values)

1 Import plugin;
2 new collection, new train test ← plugin.fusion(list collections,
list train test, param values);

3 Return new collection, new train test;

Algorithm 13: fusion

Definition: Function responsible for performing the fusion of any type of module
of the framework.

Input:

• list collections: python list containing python dictionaries with the
information of objects and feature vectors of the inputs links in the fusion module;

• list train test: python list containing the training and testing set of all
inputs in the fusion module;

• param values: parameters of the fusion method being applied;

Output:

• result collection: python dictionary with the result of the fusion method

according to each object;

• result train test: python list with the result of the fusion of training and

testing sets;

1 Perform the fusion (train and test, feature vector, or result of classification.)
according to the selected method;

2 Save the result of the fusion;

Algorithm 14: evaluation(collection objects, train test set train test, eval-
uation method plugin, parameters param values)

1 Import plugin;
2 train, test ← train test evaluation ← plugin.evaluate(objects,
train test, param values);

3 plugin.string file(evaluation);
4 plugin.write tex(evaluation);
5 Return evaluation;

88 Appendix B. Algorithms

Algorithm 15: evaluate

Definition: Function responsible for computing the output representation
according to the evaluation method.

Input:

• objects classification: python dictionary containing, for each data path,
the classes and the classification predictions associated to it;

• test set: python list containing all data paths belonging to the test set;

• param values: parameters of the output method;

Output:

• evaluation: result of the output method;

1 Performs the computations of the selected evaluation method.

Algorithm 16: string file

Definition: Function responsible for writing the result of the output method to a
file for each execution of the framework.

Input:

• result: result of the evaluation function;

Output:

• string result: a string representation of the result to be written into the file;

1 Creates a string with the evaluation result of the experiment execution.

89

Algorithm 17: write tex

Definition: Function responsible for processing the result of the output method
into a format to be written into the result TeX file.

Input:

• evaluation path: path to the file containing the results of all executions of the

framework for this evaluation method;

• classes: python list with the classes of the database;

Output:

• tex string: string with the formated output to be written into the result TeX

file;

1 As the evaluation path has the result of all executions of the framework, the
write tex has the job to calculate the average result and write it into the TeX file.

Algorithm 18: recommendation(workflows previous workflows, workflow
test workflow, recommendation method plugin)

1 Import plugin;
2 extra ← previous workflows;
3 for workflow train workflow in previous workflows do
4 list distances ← plugin.distance(test workflow, train workflow,

extra);
5 end
6 sorted distances ← sort(list distances);
7 Return sorted distances;

90 Appendix B. Algorithms

Algorithm 19: distance

Definition: Function responsible for calculating the distance between two
sequences of workflows.

Input:

• seq1: First sequence representing a workflow;

• seq2: Second sequence representing a workflow;

• extras: Dictionary containing any extra parameter to calculate the distance
between the sequences;

Output:

• distance: Float value with the distance between the sequences;

1 According to the define function, calculate the distance between seq1 and seq2.

Appendix C

XML Document

<?xml version ="1.0" ?>

<experiment author =" Werneck R. O." date ="2014 -05 -20" hour

→֒ ="11:57:50" id =" Experiment Example " executions ="1" number

→֒ ="1" openset =" False ">

<module module =" database " id ="1" name =" tropical_fruits "

→֒ parameters ="{}"/ >

<module module =" train_test_method " id ="2" name =" k_fold "

→֒ parameters ="{ ’ Number of Folds ’: 3}"/ >

<module module =" descriptor " id ="3" name =" bic" parameters

→֒ ="{ ’ Bins ’: 128}"/ >

<module module =" normalizer " id ="4" name =" min_max "

→֒ parameters ="{ ’Max ’: 1.0 , ’Min ’: 0.0}"/ >

<module module =" classifier " id ="5" name =" libSVM "

→֒ parameters ="{ ’ Kernel ’: ’Linear ’, ’C ’: 1.0 , ’degree ’:

→֒ 3, ’Probabilities ’: False , ’Cross - Validation ’: 3, ’

→֒ gamma ’: 0.0}"/ >

<module module =" evaluation_measure " id ="6" name ="

→֒ global_accuracy_score " parameters ="{}"/ >

<module module =" evaluation_measure " id ="7" name ="

→֒ confusion_matrix " parameters ="{}"/ >

<module module =" descriptor " id ="8" name =" las" parameters

→֒ ="{}"/ >

<module module =" normalizer " id ="9" name =" min_max "

→֒ parameters ="{ ’Max ’: 1.0 , ’Min ’: 0.0}"/ >

<module module =" classifier " id ="10" name =" libSVM "

→֒ parameters ="{ ’ Kernel ’: ’Linear ’, ’C ’: 1.0 , ’degree ’:

→֒ 3, ’Probabilities ’: False , ’Cross - Validation ’: 3, ’

→֒ gamma ’: 0.0}"/ >

91

92 Appendix C. XML Document

<module module =" evaluation_measure " id ="11" name ="

→֒ global_accuracy_score " parameters ="{}"/ >

<module module =" evaluation_measure " id ="12" name ="

→֒ confusion_matrix " parameters ="{}"/ >

<links >

<link id ="1" >

<out >2 </out >

</link >

<link id ="2" >

<in >1 </in >

<out >3 </out >

<out >8 </out >

</link >

<link id ="3" >

<in >2 </in >

<out >4 </out >

</link >

<link id ="4" >

<out >5 </out >

<in >3 </in >

</link >

<link id ="5" >

<out >6 </out >

<out >7 </out >

<in >4 </in >

</link >

<link id ="6" >

<in >5 </in >

</link >

<link id ="7" >

<in >5 </in >

</link >

<link id ="8" >

<in >2 </in >

<out >9 </out >

</link >

<link id ="9" >

<in >8 </in >

<out >10 </out >

</link >

<link id ="10" >

93

<out >11 </out >

<in >9 </in >

<out >12 </out >

</link >

<link id ="11" >

<in >10 </in >

</link >

<link id ="12" >

<in >10 </in >

</link >

</links >

</ experiment >

Listing C.1: XML of the experiment built in Figure 4.8.

	Acknowledgements
	Epigraph
	Introduction
	Concepts and Related Work
	Machine Learning
	Typical machine learning experiment
	Machine Learning Frameworks

	Workflows
	Concepts
	Related Work on Workflow Management

	Recommendation Systems
	Content-based filtering
	Collaborative-filtering
	Hybrid approaches
	Related work on Recommendation Systems

	Learning to Rank: LRAR
	Learning to Rank
	Learning to Rank using Association Rules

	Final Considerations

	Machine Learning Framework
	Modeling a Machine Learning Experiment as a Workflow
	Machine Learning Framework
	Implementation Aspects
	Plugin scheme
	XML Documents
	Module Implementation

	Validation
	Case study
	Application
	Use of the framework

	Integration with another workflow management system
	Workflow recommendations
	Overview
	Experiments

	Conclusions
	Contributions
	Future Work

	Bibliography
	Experiment Result
	Algorithms
	XML Document

