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Abstract

Genome rearrangements are events where large blocks of DNA exchange places during
evolution. With the growing availability of whole genome data, the analysis of these events
can be a very important and promising tool for understanding evolutionary genomics.

Several mathematical models of genome rearrangement have been proposed in the
last 20 years. In this thesis, we propose two new rearrangement models. The first was
introduced as an alternative definition of the breakpoint distance. The breakpoint distance
is one of the most straightforward genome comparison measures, but when it comes
to defining it precisely for multichromosomal genomes, there is more than one way to
go about it. Pevzner and Tesler gave a definition in a 2003 paper, and Tannier et al.
defined it differently in 2008. In this thesis we provide yet another alternative, calling it
single-cut-or-join (SCJ). We show that several genome rearrangement problems, such as
genome median, genome halving and small parsimony, become easy for SCJ, and provide
polynomial time algorithms for them.

The second model we introduce is the Adjacency Algebraic Theory, an extension of the
Algebraic Formalism proposed by Meidanis and Dias that allows the modeling of linear
chromosomes, the main limitation of the original formalism, which could deal with circular
chromosomes only. We believe that the algebraic formalism is an interesting alternative for
solving rearrangement problems, with a different perspective that could complement the
more commonly used combinatorial graph-theoretic approach. We present polynomial time
algorithms to compute the algebraic distance and find rearrangement scenarios between
two genomes. We show how to compute the rearrangement distance from the adjacency
graph, for an easier comparison with other rearrangement distances. Finally, we show how
all classic rearrangement operations can be modeled using the algebraic theory.
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Resumo

Rearranjo de genomas é o nome dado a eventos onde grandes blocos de DNA trocam
de posição durante o processo evolutivo. Com a crescente disponibilidade de sequências
completas de DNA, a análise desse tipo de eventos pode ser uma importante ferramenta
para o entendimento da genômica evolutiva.

Vários modelos matemáticos de rearranjo de genomas foram propostos ao longo dos
últimos vinte anos. Nesta tese, desenvolvemos dois novos modelos. O primeiro foi proposto
como uma definição alternativa ao conceito de distância de breakpoint. Essa distância é
uma das mais simples medidas de rearranjo, mas ainda não há um consenso quanto à
sua definição para o caso de genomas multi-cromossomais. Pevzner e Tesler deram uma
definição em 2003 e Tannier et al. a definiram de forma diferente em 2008. Nesta tese, nós
desenvolvemos uma outra alternativa, chamada de single-cut-or-join (SCJ). Nós mostramos
que, no modelo SCJ, além da distância, vários problemas clássicos de rearranjo, como a
mediana de rearranjo, genome halving e pequena parcimônia são fáceis, e apresentamos
algoritmos polinomiais para eles.

O segundo modelo que apresentamos é o formalismo algébrico por adjacências, uma
extensão do formalismo algébrico proposto por Meidanis e Dias, que permite a modelagem
de cromossomos lineares. Esta era a principal limitação do formalismo original, que só
tratava de cromossomos circulares. Apresentamos algoritmos polinomiais para o cálculo
da distância algébrica e também para encontrar cenários de rearranjo entre dois genomas.
Também mostramos como calcular a distância algébrica através do grafo de adjacências,
para facilitar a comparação com outras distâncias de rearranjo. Por fim, mostramos como
modelar todas as operações clássicas de rearranjo de genomas utilizando o formalismo
algébrico.
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Chapter 1

Introduction

In the last decades, large-scale genome mapping and sequencing allowed a finer understand-
ing of the evolutionary processes occurring at the molecular level. Besides point mutations,
movements of larger genome blocks are key contributors to changing the genetic footprint
of living organisms.

With literally thousands of genomes now available at the sequence level, whole genome
comparisons rises in importance. Recent years have seen an increasing interest in developing
methods and algorithms to perform such comparisons, focusing on the larger DNA genome
movements, known as genome rearrangements.

The history of genome rearrangements in Brazil can be traced back to 1996, when
there was a DIMACS Challenge event involving both fragment assembly and genome
rearrangement problems. Professor João Meidanis, my PhD advisor, was there because of
his work in fragment assembly, but he soon got interested in rearrangements. At that time,
Maria Emília Walter was his PhD student at the University of Campinas, and Zanoni
Dias was also part of this initial group that started the study of rearrangement problems
in Brazil. From this period are the first conference articles published by the group in the
subject, a notable example being the seminal paper introducing the Algebraic Formalism,
that was later studied by several of Meidanis’ students, myself included, with an entire
chapter devoted to it in this thesis. A short paper in JCB also dates from his period [75].

Walter graduated in 2000 and took back to her hometown, Brasilia, the genome
rearrangement spark. Several of her students worked on the problem. Dias graduated in
2002, on the same topic, and, after spending some time in a private enterprise, is now a
faculty member at the University of Campinas, where many of his students also picked up
the topic.

More recently, Celina Figueiredo, a faculty member in Rio de Janeiro, with a long and
successful career in graph theory, started a genome rearrangement line of research with
several of her students, working mainly with the transposition diameter, which is an open

1



2 Chapter 1. Introduction

problem [32].
Very recently, Marilia Dias, a former MSc student of Meidanis, obtained her PhD

degree in France under Marie-France Sagot on genome rearrangements [21]. She later spent
some time in the University of Bielefeld with Jens Stoye, joining the Brazilian community
as a researcher in Rio de Janeiro in 2011.

In the University of Campinas, other MSc and PhD that worked on genome rearrange-
ment problems under the supervision of João Meidanis include Vinicius Fortuna (MSc
2005 [45]), Andre Almeida (MSc 2007 [7]), Cleber Mira (PhD 2007 [76]), Patrícia Côgo
(MSc 2008 [29]), Karina Zupo de Oliveira (MSc 2010 [33]), and now myself.

This thesis is focused on two mathematical models for genome rearrangements that
were introduced during the course of my doctorate studies.

This text is organized as follows: in Chapter 2, we give an overview of the current
research on the field of genome rearrangements. Then, theoretical background on three
different mathematical models of rearrangement is presented.

In Chapter 3, a new rearrangement model, called Single-Cut-or-Join, published by
Feijão and Meidanis [40], is presented. Another new model is presented in Chapter 4,
the Adjacency Algebraic Model [41], which is an extension of the Algebraic Formalism
proposed by Meidanis and Dias [74]. Finally, in Chapter 5, we give concluding remarks
about both of the presented models and some possibilities for future investigation.



Chapter 2

Genome Rearrangements

Genome rearrangements are evolutionary events where large, continuous pieces of the
genome shuffle around, and have been studied since shortly after the very advent of
genetics [73,82,94]. With the increased availability of whole genome sequences, gene order
data have been used to estimate the evolutionary distance between present-day genomes,
and to reconstruct the gene order of ancestral genomes. The inference of evolutionary
scenarios based on gene order is a hard problem, with its simplest version being the
pairwise genome rearrangement problem: given two genomes, represented as sequences
of conserved segments called syntenic blocks, find the most parsimonious sequence of
rearrangement events that transforms one genome into the other. The number of events of
such a sequence is the distance between the two genomes. If fact, in a more general setting,
the distance is the sum of the weights of all the events in the sequence, since in models
where multiple types of operations are allowed, each operation can have a different weight.

When more than two genomes are considered, we have the more challenging problem
of rearrangement-based phylogeny reconstruction, when we want to find an evolutive
rearrangement scenario for the input genomes; in a parsimonious sense, this means finding
a tree that minimizes the total number of rearrangement events (or, more generally, the
sum of the event weights). Two problems are cornerstones used to find the gene order of
ancient genomes in rearrangement-based phylogeny reconstruction: the median problem
and the halving problem. As we will see, these problems are NP-hard in many cases, even
under the simplest distances.

In the next section we will present a very brief overview of research related to genome
rearrangement theory. This is not an extensive review by any means, but a highlight of
important papers in this field.

3



4 Chapter 2. Genome Rearrangements

2.1 Background

Several rearrangement events, or operations, have been proposed. In Figure 2.1 the most
commonly studied operations are summarized. The unsigned reversal inverts the order
in a block of genes, without changing orientation; a signed reversal is similar, but also
changes the orientation of the genes within the inverted block; in a transposition, two
adjacent blocks of genes exchange position within the same chromosome; a translocation is
the operation where two different chromosomes exchange genes in their extremities; in a
block-interchange (also called generalized transposition) two blocks of genes, not necessarily
adjacent, exchange position within the same chromosome; a fission divides one circular
chromosome into two, and a fusion is the inverse operation.

2.1.1 Rearrangement Distance Between Two Genomes

When analyzing two genomes in the context of rearrangement, there are two main questions
to be answered: (i) what is the evolutionary distance between them? and (ii) can we find
a sequence of rearrangement events that transforms one genome into the other, giving a
possible evolutive scenario between the two?

One of the first attempts to answer these questions was the notion of breakpoints,
introduced by Sankoff and Blanchette [90]. A breakpoint between two genomes occurs
when a pair of genes is adjacent in one genome but not adjacent in the other. The
breakpoint distance is then defined as the number of breakpoints between two genomes.
This rearrangement distance measure is trivial to compute and, although very simple, it
may be as realistic as others, more sophisticated distances, in many situations [90].

When we are interested in inferring a possible rearrangement scenario between two
genomes, usually the assumption of the parsimony criteria is considered, that is, we
are looking for scenarios with the smallest number of events. The problem of pairwise

rearrangement distance can be stated as follows: given two genomes π and σ, find a
shortest sequence of rearrangement operations that transforms π into σ. The length of
such a sequence is called the distance between π and σ.

This problem is sometimes called genome sorting, because the target genome σ is
usually the so-called identity genome, where all genes are in an ascending order. Therefore,
to transform π into σ would be equivalent to sort it. Note that any given unichromosomal
genome can be transformed into the identity, with a gene label change. Although the term
“sort” makes perfect sense in the unichromosomal domain, it is somewhat awkward when
multichromosomal genomes are considered, since there is no way to define an identity
that is equivalent to any genome apart from a gene label change. Nevertheless, the term
sorting is still used to specify that one is interested not only in the distance, but also in
the rearrangement events, and we will use it in this sense throughout this text.
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(a) Unsigned Reversal

1 2 3 4 5

1 3 2 4 5

(b) Signed Reversal

1 2 3 4 5

1 −4 −3 −2 5

(c) Transposition

1 2 3 4 5

1 4 2 3 5

(d) Translocation

1 2 3 4 5

1 5 4 2 3

(e) Block Interchange

1 2 3 4 5 6

1 5 4 2 3 6

(f) Fission/Fusion

1

2

3

4

5

6

1

2

3

4

5

6

Figure 2.1: An overview of the most commonly studied rearrangement operations. Genes are represented
by arrows and labeled with integers; arrow direction and corresponding integer sign indicate gene orientation;
red arrows represent genes being affected by the operations, and dotted lines show where gene adjacencies
are being cut. (a) Unsigned reversal: reversal of the order in a block of genes, without changing
orientation; (b) Signed reversal: reversal of the order in a block of genes, also changing the orientation;
(c) Transposition: two adjacent blocks of genes exchange positions within the same chromosome; (d)
Translocation: two different chromosomes exchange gene blocks in their extremities; (e) Block-interchange
(also called generalized transposition): two blocks of genes, not necessarily adjacent, exchange positions
within the same chromosome; (f) Fission: fission of one circular chromosome into two; Fusion: the inverse
operation.



6 Chapter 2. Genome Rearrangements

Early approaches to solving the sorting problem considered the case where just one
operation is allowed. One of the first studied operations was the unsigned reversal,
introduced by Watterson et al. [106] on circular permutations. Kececioglu and Sankoff
developed 2-approximation algorithms [57], later improved to a factor of 7

4
by Bafna and

Pevzner [10]. It was then shown to be NP-hard by Caprara [25]. More recently, Berman
et al. reduced the approximation factor even further, to 11

8
, the best known to date [17].

The signed reversal problem has drawn much more attention, since it seems to be
more biologically relevant, taking into consideration the orientation of the genes. Also,
fast algorithms are currently available, as opposed to the NP-hardness of the unsigned
case. From now on, when the word “reversal” is used on its own, it refers to the signed
case. The reversal sorting problem was introduced by Bafna and Pevzner [10]. The first
polynomial solution was developed by Hannenhalli and Pevzner [51], using the breakpoint

graph, a structure introduced by Bafna and Pevzner [10] and largely used on several
sorting algorithms (see Section 2.2.1 for the formal definition and an example of this
graph). Several faster implementations followed [16, 55] and the reversal distance can now
be calculated in linear time [8], but the best sorting algorithm — which also finds the
optimal sequence of reversals — runs in O(n3/2

√
log n) [97].

Another largely studied rearrangement operator is the transposition, where two adjacent
blocks are exchanged, without changing gene orientation. Since its introduction by Bafna
and Pevzner [11], it was studied in several papers. Transposition sorting was recently
shown to be NP-hard [24]. Current approaches strive to find the best approximation
algorithms. The best algorithm so far is by Elias and Hartman [38], running in O(n2) with
an approximation factor of 11

8
. Recently, Dias and Dias developed an algorithm with the

same theoretical factor but with better experimental results [34].

A related operation is the block-interchange, which is a generalization of the transposi-
tion, where the exchanged blocks are not necessarily consecutive. It was introduced by
Christie [28], and the block-interchange distance can be found in O(n). If the distance is δ

for a given instance, then the sorting problem can be solved in O(δn) [67]. Alternatively,
the sorting problem can be solved in O(n log n) using a data structure by Feng and Zhu [42].

When multichromosomal genomes are considered, additional rearrangement operations
are relevant. The first studied multichromosomal operation was the translocation, defined
by Kececioglu and Ravi [56], where two chromosomes exchange blocks at their ends. It
was solved polynomially by Hannenhalli [49], with further corrections by Bergeron et
al. [14]. Computing distance alone can be done in linear time (Li et al. [63]) and the
sorting problem is solvable in O(n3/2

√
log n) [84].

Other multichromosomal operations are fissions and fusions. In the fission operation,
a chromosome is split forming two new chromosomes. The fusion is the inverse operation,
joining two different chromosomes into one. Algorithms that use these operations usually
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include a third operation to move genes within a chromosome. Dias and Meidanis solved
the problem using fissions, fusions and transpositions in O(n2) [35]. It was the first
polynomial algorithm for a rearrangement problem involving transpositions. Using fissions,
fusions and block-interchanges, Lu et al. [70] developed an O(n2) algorithm.

Ideally, we would like a rearrangement problem combining several types of operations
in the same model, preferably assigning weights that correspond to their probability
occurrence. The two papers just cited in the previous paragraph are examples of combined
operation models, combining fissions and fusions with another rearrangement operation.
A very well-known model was introduced by Hannenhalli and Pevzner, allowing reversals
and translocations in linear genomes, sometimes called the RT-distance [50]. The best
known algorithms for this distance run in O(n2) [15, 99]. Another notable example is a
model combining reversals and block-interchanges [68,77].

A model that combined several operations was proposed by Yancopoulos et al. [110]
as a unifying operation for genomic distance, called Double Cut-and-Join (DCJ), and it
has become very popular. It consists of cutting the genome in two points and rejoining
the resulting four unconnected extremities. Depending on the selected edges and the
possible ways of rejoining the vertices, this single operation models reversals, translocations,
fissions and fusions. The authors also developed an O(n) sorting algorithm using the DCJ.
Bergeron, Mixtacki and Stoye [13] improved the DCJ theory introducing a structure called
adjacency graph, a simple graph that is a union of paths and cycles and can be used to
model genomes. Using this structure they developed a new distance equation and an
optimal greedy sorting algorithm that runs in O(n).

Although several rearrangement models were proposed, each having their precise
definitions, there were no formal definitions of what is a rearrangement model. To expand
in this direction, Bergeron et al. [12] proposed a formal definition of rearrangement models
and operations, using it to compare various versions of the DCJ model with unichromosomal
and linear/circular restrictions. They also proposed a single cut-and-join model, presenting
a linear time algorithm for computing its distance.

Another single-cut model was proposed by Feijão and Meidanis [40], the Single Cut-or-
Join (SCJ), as an attempt to unify the definition of the breakpoint distance, where only
operations like a single cut or a single join are allowed. The SCJ is very similar to previously
proposed multichromosomal breakpoint distances [86, 98], but several rearrangement
problems have polynomial time solutions, where in other distances the same problems are
NP-hard.

In the search for a unifying theory there is also the approach of Meidanis and Dias [74],
in which they use permutation groups to develop a rearrangement theory with a strong
algebraic formalism. With this formalism many different operations can be easily modeled,
without the need for graphs that are often used in rearrangement algorithms. Some of
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γ

π1

π2

π3

Figure 2.2: The median of three input genomes π1, π2 and π3 is any genome γ that minimizes the
median score d(π1, γ) + d(π2, γ) + d(π3, γ).

the papers already cited in this review applied this theory to develop their algorithms
(for instance [35,77]). The resulting genomic distance is equal to DCJ but is limited to
circular genomes only. Recently, Feijão and Meidanis [41] extended this theory to allow
linear genomes also, resulting in a model very similar to DCJ but slightly different. In fact,
this extended model is an important part of this thesis. The model will be introduced in
Section 2.2.2 and detailed in Chapter 4.

2.1.2 Multiple Genome Rearrangement

A natural generalization of the genome rearrangement problems is to infer evolutionary
scenarios with more than two genomes, leading to the inference of ancestral genomes and
rearrangement-based phylogenies.

When the number of genomes increases from two to three or more, most of the resulting
problems become NP-hard, even when the problem with two genomes is trivial.

The best studied multiple genome rearrangement problem is the genome median

problem, in which we are given three genomes and need to find a fourth one minimizing
the sum of its distances to each of the other three. Such a genome is called a median, and
the sum of the distances is the median score. Figure 2.2 shows a graphical representation
of the median. It was proposed by Sankoff and Blanchette [90] and Blanchette et al. [19],
using breakpoints as the genomic distance, and was later studied under different distances.
This problem can be used to infer ancestral genomes [20] or as a subproblem for a more
general multiple genome problem, as we will see later in this section.

When genomes are unichromosomal, this problem is NP-hard under the breakpoint [23,
85], reversal, and DCJ distances [27], despite the fact that the pairwise problem is
polynomial in these distances. In the multichromosomal general case, when there are no
restrictions as to whether the genomes are linear or circular, Tannier et al. [98] showed that
the problem is still NP-hard under the DCJ distance, but it becomes polynomial under the
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breakpoint distance (BP), the first polynomial time result for the median problem. Feijão
and Meidanis [40] also showed that the median problem is linear under their breakpoint-like
SCJ model.

Despite its NP-completeness, there have been numerous studies on exact [92, 107,108]
and heuristic [48,62,87] solutions for the DCJ median problem, but they are limited to
small genomes.

Genome median problems aim at inferring ancestral genomes by finding a genome that
is, in a sense, as close as possible to all the input genomes. Another ancestor reconstructing
problem is the so-called genome halving problem, where it is assumed that a genome has
suffered whole genome duplication followed by rearrangement events, and one needs to
find the ancestral genome right before the duplication event.

The whole genome duplication event was postulated by Susumu Ohno in 1970 [83] and
has been very controversial over the years. Recently, evidence in its favor has been found on
different species, with particularly convincing examples occurring in yeast species [58, 61].

In order to understand problems with duplications, additional definitions are needed.
A duplicated gene g is a pair of genes g1 and g2 identified as homologous. A duplicated

genome is any genome defined on a set of duplicated genes. For instance, Figure 2.3 (a)
shows a duplicated genome with duplicated genes 1, 2, 3 and 4, forming the gene set
{11, 12, 21, 22, 31, 32, 41, 42}. This definition should not be confused with the concept of
doubled genome: given a genome π with gene set G, without duplicated genes (called an
ordinary genome), a doubled genome is a genome in the set of duplicated genes from G
where each chromosome of π is duplicated, with an arbitrary assignment of labels 1 and
2 (indicating the homologous genes). The set of all possible doubled genomes from π is
denoted by π ⊕ π, and it has an exponential number of genomes, namely 2n, where n is
the number of adjacencies in π.

Therefore, while both doubled and duplicated genomes are defined on a duplicated
gene set, a doubled genome represents a genome that has just suffered a whole genome
duplication, while a duplicated genome has also suffered rearrangements after the whole
duplication event.

A problem that helps in the definition of the halving problem in the double distance

problem, proposed by Alekseyev and Pevzner [4]. Given a duplicated genome γ, an ordinary
genome π, and a genomic distance d, the double distance between π and γ is

dd(γ, π) = min
α∈π⊕π

d(γ, α). (2.1)

Tannier et al. showed how to solve this problem in O(n3) for the breakpoint distance [98],
later improved to O(n log n) by Kováč [59]. It is NP-hard for the DCJ distance [98].

With the double distance definition, we have an easy definition for the genome halving
problem: given a duplicated genome γ and a distance d between genomes, the genome
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(a) A duplicated genome.

11 22 31 −12 42 41 −21 −32

(b) A doubled genome.

11 −22 −31 42 12 −21 −32 41

(c) The ordinary genome that generated the doubled genome in (b).

1 −2 −3 4

Figure 2.3: Examples of a (a) duplicated genome and a (b) doubled genome both with duplicated
genes 1, 2, 3 and 4, in the gene set {11, 12, 21, 22, 31, 32, 41, 42}. The doubled genome (b) was obtained
from the genome shown in (c).

π π ⊕ π γ
genome duplication rearrangement

reconstruct ancestral genome

Figure 2.4: The genome halving problem consists in finding the ancestral genome π right before the
whole genome duplication, given genome γ with duplicated genes that also suffered rearrangement events.

halving problem consists in finding an ordinary genome π that minimizes dd(γ, π). This
problem is summarized in Figure 2.4.

The genome halving problem was introduced by El-Mabrouk [36]. El-Mabrouk and
Sankoff devised a linear time solution for this problem under the reversal and translocation
distance [37]. Alekseyev and Sankoff solved it in O(n2) for the reversal and DCJ distances
on unichromosomal circular genomes [5]. For the DCJ distance on multichromosomal
genomes, there are solutions by Mixtacki [78] and also by Warren and Sankoff [104]. Kováč,
Warren and Braga developed a linear time algorithm for the case where only linear genomes
are allowed (the so-called restricted DCJ model) [60].

Warren and Sankoff recently proposed a generalization of the halving problem, the
genome aliquoting problem [103]. While in the halving problem the input genome has
exactly two copies of each gene, in the aliquoting problem it has p copies of each gene,
with p > 2. The biological motivation of this problem is the polyploidation event, common
in plants. In their original paper, the authors presented a heuristic algorithm for the
problem under the DCJ distance. In a follow-up paper, they showed that this problem can
be solved in linear time with the breakpoint distance, and proposed a 2-approximation
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πanc

π

π′

π ⊕ π γ

δ

speciation

genome duplication rearrangement

rearrangement

Figure 2.5: The guided halving is a variant of the halving problem where an outgroup genome δ,
assumed to share a common ancestor with γ before the duplication event, is also given to guide in the
reconstruction.

algorithm for the DCJ distance [105].
Seoighe and Wolfe [93] observed that the genome halving problem can yield a very

large number of solutions, suggesting that this problem can be reduced by using as an
outgroup a second species that diverged from the duplicated genome right before the
duplication event, as shown in Figure 2.5. This problem was later proposed by Zheng et
al. [114], and is called the guided halving problem. Formally, given a duplicated genome
γ, an ordinary genome δ, and a genomic distance d, find an ordinary genome π that
minimizes dd(γ, π) + d(δ, π). The guided halving problem under the breakpoint distance is
polynomial on general multichromosomal genomes [98], but NP-hard on multichromosomal
linear genomes [98] and unichromosomal genomes [59]. It is also NP-hard for the DCJ
distance on multichromosomal genomes, and open in the other variants for DCJ [98].

As we will see in detail on Chapter 3, the genome halving and guided halving problems
are polynomial for the SCJ distance. If fact, both problems are solved in the more general
formulations, the genome aliquoting and guided aliquoting problems.

When more than three genomes are involved, we have the multiple genome rear-

rangement problem, also called the large parsimony problem, when we search the most
parsimonious phylogenetic tree, where the given genomes (usually extant genomes) are
leaves, and the inferred ancestral genomes are internal nodes. This problem can be seen as
a particular case of the more general Steiner tree problem. We define the weight of a tree
as the sum of the weights of its edges, where the weight of an edge is the weight between
the vertices of the edge. The weight function is required to be a metric, and in the context
of genome rearrangements it is usually a rearrangement distance, such as breakpoint or
reversal distance. The Steiner tree problem can be defined as: given a graph G(V, E) with
weight function w and a subset of vertices Π ⊆ V , find a tree T with minimum weight
spanning all vertices in Π.

The tree T is called a Steiner tree with Steiner set Π. When G is a complete graph,
Π is a set of genomes, and the weight function is a rearrangement distance, the Steiner
tree problem seeks a phylogenetic tree explaining the evolution of the genomes in Π under
the maximum parsimony criterion. However, since the genomes in Π are usually extant
genomes, from a phylogenetic point of view an additional constraint is needed; that the
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genomes in Π are leaves in T . But this is the exact definition of a full Steiner tree: T is a
full (or terminal) Steiner tree when the elements in Π label the leaves of T . With this, we
can formally define the large parsimony problem: given a set of genomes Π = {π1, . . . , πn}
from a set V and a distance d between genomes, find a full Steiner tree T with Steiner set
Π.

The full Steiner tree is an APX-hard problem [64], admitting a 2.52-approximation
algorithm [72]. However, although formally the large parsimony problem is a particular
case of the full Steiner tree problem, it is not feasible to approximate the former using
algorithms for the latter, because of the size of the vertex set. In the large parsimony
problem, V is the set of all possible genomes, which can be huge. Specifically, for signed
genomes with n genes, there are 2nn! combinations.

The first approaches of solving the large parsimony problem used distances that could be
easily computed in the pairwise case, such as breakpoint and reversal distances. Blanchette
et al. [19] and Sankoff and Blanchette [91] proposed the breakpoint phylogeny: solving
the large parsimony under the breakpoint distance. They proposed an algorithm, called
BPAnalysis, with an approach consisting in two parts: generating all tree topologies
with the input genomes as leaves, and then, for each such tree, labeling the internal
nodes with genomes in order to minimize the weight of the tree. This second step is
usually called the small parsimony problem. It is NP-hard for any distance in which the
genome median problem is already NP-hard. Even for the breakpoint distance, where the
multichromosomal median is polynomial, the small parsimony with four or more genomes
is NP-hard [59]. The only rearrangement distance for which a polynomial algorithm for
the small parsimony was introduced is the SCJ distance [40], and its solution will be shown
on Chapter 3.

In the breakpoint phylogeny paper, Blanchette et al. [19] proposed an iterative heuristic
— sometimes called the Steinerization algorithm — for the small parsimony problem that
solves a genome median problem for the three neighbors of each internal node of the tree,
replacing the internal node with the median, repeating until convergence is reached. The
downside of this algorithm is that the median problem is NP-hard for most distances,
including the breakpoint distance for unichromosomal genomes, used in the original paper.

Later, Moret et al. developed a faster alternative method called GRAPPA [79], based
on BPAnalysis, that improved the speed by several orders of magnitude. Also, with
the availability of a linear algorithm for reversal distance [8], the reversal phylogeny

was included, with better results [80]. Since all possible trees must be computed, both
BPAnalysis and GRAPPA are limited to trees of 15 genomes. To overcome this limitation,
Tang and Moret proposed using the Disk-Covering method [54] to allow GRAPPA to scale
to up to about a thousand genomes [96], trading accuracy for scalability.

Another approach to the reversal phylogeny problem was presented by Bourque and
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Pevzner in their MGR program [20]. MGR does not search all possible trees, but instead
uses a sequential addition heuristic to grow a tree one genome at a time, therefore handling
a larger number of genomes than the previous approaches.

Heuristics for other rearrangement distances were proposed to solve the large parsimony
problem, using an approach similar to BPAnalysis and GRAPPA. Adam and Sankoff
developed a heuristic for the median problem with the Double Cut-and-Join distance and
used it in their Steinerization algorithm [1]. In other example, Bader et al. [9] presented a
heuristic using weighted reversals and transpositions, with different weight ratios.

Different approaches to tackling the MGRP have also been proposed in the past years.
Ma et al. [71] proposed an algorithm (inferCARs) for inferring contiguous ancestral regions
(CARs) of genomes at the internal nodes of a given rooted weighted tree with extant
genomes at the leaves. They use a variation of Fitch’s small parsimony algorithm [44],
using gene adjacencies as the discrete character, to infer which adjacencies will be present
in ancestral genomes. Zhao and Bourque [111, 112] presented EMRAE, an algorithm
that focuses on predicting highly reliable rearrangement events, by analyzing which
gene adjacencies are conserved along the edges of the phylogenetic tree. Another recent
algorithm is MGRA, proposed by Alekseyev and Pevzner [6], where they formulated the
MGRP as finding a shortest series of DCJ operations needed to transform a multiple
breakpoint graph [26] into an identity breakpoint graph. MGRA has the advantage of not
needing a phylogeny tree as input, unlike inferCARs and EMRAE.

Another possibility is building a phylogeny tree using distance-based methods, such
as Neighbor-Joining [89], which runs in polynomial in the number of genomes and genes.
Therefore, this approach has the advantage of being very fast, although only a phylogenetic
tree is returned, without ancestral genomes in its internal nodes.

When using distance-based methods, it is important to try to estimate the true distance

between the genomes. Since the rearrangement distance is defined as the minimum number
of rearrangements, it is usually an underestimate of the true distance, and some form of
statistical correction is usually applied. This kind of correction has long been used for
sequence (DNA) data [95].

A number of rearrangement distance corrections were proposed, using the breakpoint
distance [100, 101], inversion distance [81, 102], and DCJ distance [65]. Lin et al. later
refined this DCJ distance correction including gene duplication and loss events [66]. The
trees generated with the distance corrections are usually better than the uncorrected
distances [102]. Distance-based methods can be a valuable method for rearrangement-
based phylogenetic reconstruction, specially for their fast speed, when one in interested
only in the inferred tree topology, without ancestor reconstruction.

In this text, we will show some initial results of our experiments in solving the large
parsimony problem with the Single Cut-or-Join distance, in Section 3.6, that were recently
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presented by Biller in her Master’s thesis [18]. The main advantage of this approach is
that the small parsimony is polynomial under the Single Cut-or-Join distance.

2.2 Genome Rearrangement Theory

In this section we will present different theories that were used to model genomes and
rearrangement events, in the chronological order that they were introduced.

The first theory, that we call here Classic Genome Rearrangement Theory, is based
on representing genomes as permutations, and is used in seminal works such as the first
polynomial algorithm for the reversal distance, by Hannenhalli and Pevzner [51]. Later,
Meidanis and Dias [74] introduced the Algebraic Formalism, based on representing genomes
and operations using permutation group theory. More recently, a different view of genomes
as a set of adjacencies (connections between adjacent genes) is becoming increasingly more
popular, specially in papers using the DCJ distance (for instance, [13]). In this document
we will call this approach the Adjacency Set Theory.

In the following three subsections we will show basic concepts of each of these theories,
focusing on the last two, since they will be important for the understanding of Chapter 3,
where the Adjacency Set Theory is used to define a new rearrangement model, and
Chapter 4, were the Algebraic Formalism Theory will be extended to allow the modeling
of linear chromosomes.

2.2.1 Classic Genome Rearrangement Theory

The first way to represent genomes in the context of rearrangement problems was by using
permutations. Most of this section will be based on the excellent presentation found in
the 2009 book by Fertin el al. [43].

Basic Concepts

A permutation π is a bijection over the set {1, 2, . . . , n}. The image of i ∈ {1, 2, . . . , n}
is denoted by π(i) or usually in a more simplified way, as πi. A classical notation in
combinatorics to denote a permutation π is using the two-row notation

π =

(

1 2 · · · n

π1 π2 · · · πn

)

but in the genome rearrangement literature a more compact version is used, where only
the second line is kept, that is,

π = (π1 π2 · · · πn)



2.2. Genome Rearrangement Theory 15

2 1 4 5 3

Figure 2.6: Unsigned genome with five genes that can be represented by the permutation π = (2 1 4 5
3).

2 −1 −4 5 −3

Figure 2.7: Signed genome with five genes that can be represented by the permutation π =
(2 −1 −4 5 −3).

For instance, the permutation π satisfying π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5, and
π(5) = 3 is denoted by π = (2 1 4 5 3). Figure 2.6 shows a genome that can be represented
by this permutation.

To model genomes more realistically, it is more adequate to use signed permutations,
because they take into account gene orientation, that corresponds to the direction in
which genes are transcribed. A signed permutation π on {1, 2, . . . , n} is a permutation of
the set {−n, . . . , −2, −1, 1, 2, . . . , n} that satisfies π−i = −πi. The one-row notation used
for unsigned permutations can also be used for signed permutations. For instance, the
permutation

π =

(

−4 −3 −2 −1 1 2 3 4
3 −1 4 2 −2 −4 1 −3

)

can be represented as

π = (−2 −4 1 −3)

in which the mapping of negative elements is dropped because it is redundant. Figure 2.7
shows an example genome with the corresponding signed permutation.

The operation of multiplication or composition is applied in genomes the same way
as in permutations, from right to left; for instance, the permutation π ◦ σ is obtained by
applying σ and then π, resulting in the permutation (πσ1

πσ2
· · · πσn). For example, if

π = (3 1 4 2) and σ = (4 1 3 2), then π ◦ σ = (2 3 4 1).
In fact, using the composition operation, we see that genome rearrangements can also

be modeled as permutations. For instance, the reversal of a segment πi, . . . , πj (i < j)
from a permutation π, is modeled by the permutation

ρ = (1 · · · i − 1 j j − 1 · · · i + 1 i j + 1 · · · n)

in the unsigned case, and in the signed case (where the gene orientation is also reversed),

ρ = (1 · · · i − 1 −j −(j − 1) · · · −(i + 1) −i j + 1 · · · n)
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and

π ◦ ρ = (π1 · · · πi−1 πj πj−1 · · · πi+1 πi πj+1 · · · πn)

and in the signed case

π ◦ ρ = (π1 · · · πi−1 −πj −πj−1 · · · −πi+1 −πi πj+1 · · · πn)

The identity permutation ı = (1 2 · · · n) is the neutral element for permutation
composition.

The problem of transforming a genome π into another genome σ is then equivalent to
finding a sequence ρ1, . . . , ρk of permutations such that π ◦ ρ1 ◦ · · · ◦ ρk = σ. The problem
of generating a single permutation by composing a series of permutations had been studied
long before its use in genome rearrangements. For a general set of allowed permutations,
this problem is known to be NP-hard [39]. However, when the set is fixed beforehand,
there might be an easy solution. Notable examples include the “bubble sort”, when the
allowed permutations are exchanges between adjacent elements; also, in the context of
genome rearrangements, this problem has a polynomial time solution for some operations,
for instance signed reversals, as we saw in Section 2.1.

During the development of the classical rearrangement theory, some important graph
structures were proposed to help solving the sorting problems. These structures are usually
based on what is called the linear extension of a permutation, obtained by adding two
dummy genes on the extremity of the corresponding linear chromosome. Since permutations
are defined in the set {1, . . . , n}, the dummy genes are commonly labeled 0 and n + 1.
Formally, the linear extension of a (signed or unsigned) permutation π of {1, 2, . . . , n} is
the permutation of {0, 1, . . . , n, n + 1} defined by πl = (0 π1 · · · πn n + 1).

The first graph structure was introduced in the context of sorting by unsigned reversals,
and it was proposed by Bafna and Pevzner [10]. It is called the breakpoint graph, with its
vertices representing genes and two types of edges, called reality edges (representing the
input genome) and desire edges (representing the genome we need to get to, usually the
identity). Another very similar structure is the cycle graph, proposed by Bafna and Pevzner
later, this time in the context of sorting by transpositions [11]. The only difference between
the cycle and breakpoint graphs is that the former is directed, while the latter is undirected.
In fact, sometimes the terms cycle and breakpoint graph are used interchangeably.

The formal definitions are as follows: the cycle graph of a permutation π of {1, 2, . . . , n}
is the directed graph G(π) with vertex set {0, 1, . . . , n, n + 1} and two types of edges: (i)
black (or reality) edges (πl

i, πl
(i−1)) for 1 ≤ i ≤ n + 1; (ii) gray (or desire) edges, (i, (i + 1))

for 0 ≤ i ≤ n.
As we saw, reality edges represent the input permutation π, and desire edges indicate

what we want to obtain (the permutation ı). Figure 2.8 shows the cycle graph of a
permutation.
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0 5 4 1 6 3 2 7

0 5 4 1 6 3 2 7

0 5 4 1 6 3 2 7

Figure 2.8: Cycle graph of the permutation π = (5 4 1 6 3 2) and its decomposition into three cycles.
Adapted from Fertin et al. [43, pp. 28]

The breakpoint graph of a permutation π, denoted BG(π), is the undirected version of
the cycle graph. An example is shown in Figure 2.9.

For signed permutations, the breakpoint graph is slightly different, to take into account
the gene orientation. The breakpoint graph of a signed permutation π is the graph
BG(π) = (V, E) where the vertex set V contains, for 1 ≤ g ≤ n, two vertices gt and gh,
called the tail and the head of the gene, plus two vertices denoted 0h and (n + 1)t. The
edge set E of BG(π) has two types of edges: (i) desire edges (gh, (g + 1)t) for 0 ≤ g ≤ n,
and (ii) reality edges from πih

if πi is nonnegative, and from πit otherwise, to π(i+1)t if
πi+1 is nonnegative, and to π(i+1)h

otherwise, for 0 ≤ i ≤ n. We see an example of the
breakpoint graph in Figure 2.10.

An important property of the breakpoint graph is that it can be decomposed in cycles
that alternate reality and desire edges, and the number of cycles has a direct relationship
with the distance of the input genome to the identity. Specifically, when both genomes
are equal, the number of cycles is maximum, and equal to n (or n + 1 in the signed case).
Therefore, when studying a particular type of rearrangement operations, analyzing how
these operations change the number of cycles in the breakpoint graph leads to distance
bounds and possibly to polynomial algorithms for the sorting problem. For instance, if we
define a set of rearrangement operations and are able to prove that any operation of this
type can change the number of cycles in BG(π) by h, then d(π) ≥ n−c(π)

h
, where d(π) is

the distance from π to the identity, and c(π) is the number of cycles in BG(π).

Although genomes and rearrangements are modeled by permutations, most results in
the classic rearrangement theory are based on graphs, such as the breakpoint graph. In
the next section, we will see a rearrangement theory that aims to use permutation group
theory directly to derive its results.
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0 4 3 1 5 6 8 2 7 9

0 4 3 1 5 6 8 2 7 9

0 4 3 1 5 6 8 2 7 9

0 4 3 1 5 6 8 2 7 9

Figure 2.9: Breakpoint graph of the permutation π = (4 3 1 5 6 8 2 7) and a maximal cycle
decomposition into five alternating cycles. Adapted from Fertin et al. [43, pp. 42]

0h 7h 7t

−7

3t 3h
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1h 1t

−1

4t 4h

4

2t 2h

2

8t 8h

8

6h 6t

−6

5h 5t

−5

9t

Figure 2.10: Breakpoint graph of the signed permutation π = (−7 3 −1 4 2 8 −6 −5 ). Adapted
from Fertin et al. [43, pp. 65]
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2.2.2 Algebraic Formalism Theory

Meidanis and Dias [74] introduced a model where permutation group theory was used to
model genome rearrangement problems, and called it the algebraic rearrangement theory.
The main motivation was to prove in an algebraic way some previous results that were
proved using graph-theoretic arguments. In its original form, it is limited to circular
chromosomes only. Some new problems were solved using this theory, such as sorting by
fusions, fissions, and transpositions [35]. Also, some new algorithms for problems that were
already solved under the classic theory, such as sorting by block-interchanges [52, 67] and
sorting circular genomes with Double Cut-and-Join (2-break) operations [70,77], gained
new proofs.

Since the algebraic formalism theory is limited to circular chromosomes only, adapta-
tions are needed in order to use it for linear chromosomes, usually in the form of dummy
genes, sometimes called caps. For unichromosomal genomes, the linear and circular prob-
lems are usually equivalent, but this is not usually the case for multichromosomal genomes.
Recently, Huang and Lu solved the problem of sorting by reversals, generalized transpo-
sitions, and translocations using permutation groups, allowing linear chromosomes [53].
This was the first model to use algebraic theory with multichromosomal linear genomes,
and it is essentially the same model as the DCJ, under a different perspective. However,
while DCJ is a very simple and straightforward model, the one by Huang and Lu is more
complex, involving a pre-processing step for the addition of caps.

Another approach allowing linear chromosomes in the algebraic formalism theory was
proposed by Feijão and Meidanis [41], in which they introduce an alternative genome
representation scheme, expanding the theory but at the same time maintaining most of its
important results. This new model, called adjacency algebraic theory, is also one of the
main results of the present text and will be explained in more detail on Chapter 4.

Basic Concepts

Given a set E, a permutation α is a map from E onto itself, that is, α : E → E. The set E

can be composed by any type of element, and in the original formulation by Meidanis and
Dias usually lowercase roman letters are used. In this text we will use integer numbers
from 1 to n, to use a closer notation to the other rearrangement theories that also usually
denote genes with integers.

Permutations are represented with each element followed by its image. For instance,
with E = {1, 2, 3}, α = (1 2 3) is the permutation where 1 is mapped to 2, which is
mapped to 3, which in turn is mapped back to 1. In other words, α(1) = 2, α(2) = 3 and
α(3) = 1. This representation is not unique; (2 3 1) and (3 1 2) are equivalent. Figure 2.11
gives a graphical representation of the permutation (1 2 3 4 5)(6 7 8).
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Figure 2.11: Graphic representation of the permutation (1 2 3 4 5)(6 7 8), composed by one 5-cycle
and one 3-cycle.

Permutations are composed of one or more cycles. For instance, the permutation
α = (1 2 3)(4 5)(6) on the set E = {1, 2, 3, 4, 5, 6} has three cycles. A cycle with k

elements is called a k-cycle. An 1-cycle represents a fixed element in the permutation and
is usually omitted. For instance, in the permutation α shown in this paragraph, we have
the fixed element α(6) = 6, and α is usually represented as α = (1 2 3)(4 5). Figure 2.11
shows an example of a permutation composed by two cycles.

The support of a permutation is the set of its non-fixed elements. In the previous
example, Supp(α) = {1, 2, 3, 4, 5}.

The product or composition of two permutations α, β is denoted by αβ. The product
αβ is defined as αβ(x) = α(β(x)) for x ∈ E. For instance, with E = {1, 2, 3, 4, 5, 6},
α = (2 4 5) and β = (3 1 5 2 6 4), we have αβ = (3 1 2 6 5 4).

In general αβ 6= βα, but when α and β are disjoint cycles, that is, when their supports
do not have any element in common, they commute: αβ = βα. Every permutation can be
written in a unique way as a product of disjoint cycles; this is called the cycle decomposition

of a permutation.
The identity permutation, which maps every element into itself, will be denoted by 1.

Every permutation α has an inverse α−1 such that αα−1 = α−1α = 1. For a cycle, the
inverse is obtained by reverting the order of its elements: (3 2 1) is the inverse of (1 2 3).

The conjugation of β by α, denoted by α · β, is the permutation αβα−1. This results
in a permutation with the same structure as β, but with α applied to each element. For
instance, if β = (b1 b2 . . . bn) then α · β = (αb1 αb2 . . . αbn), where αbi is a simpler
notation for α(bi).

A k-cycle decomposition of a permutation α is a representation of α as a product of
k-cycles, not necessarily disjoint. All permutations have a 2-cycle decomposition. The
k-norm of a permutation α, denoted by ‖α‖k, is the minimum number of cycles in a
k-cycle decomposition of α. The norm of a permutation is defined as the 2-norm, and the
subscript can be omitted, that is, ‖α‖ ≡ ‖α‖2.

For any permutations α and β we have the following known results on the norm [77]:
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• ‖α‖ = 0 if and only if α = 1

• ‖α−1‖ = ‖α‖

• ‖β · α‖ = ‖α‖

• ‖αβ‖ = ‖βα‖

• ‖αβ‖ ≤ ‖α‖ + ‖β‖

Another important concept in the algebraic theory is divisibility. A permutation α

divides another permutation β if ‖βα−1‖ = ‖β‖ − ‖α‖. This is denoted by α|β. The
divisibility is transitive, that is, if α|β and β|γ, then α|γ.

Modeling Genomes and Rearrangement Operations

Let En = {−1, +1, −2, +2, . . . , −n, +n}, where n is the number of genes, be the base set
to model genomes as permutations, representing all genes in both orientations. We also
define the very important permutation Γ, as the permutation that maps each gene into its
reverse complement, that is,

Γ = (−1 +1)(−2 +2) . . . (−n +n)

We can think of Γ as the equivalent of a “minus sign” in the classical rearrangement theory,
that is, it inverts the sign (and therefore the orientation) of a gene.

A circular chromosome is the product of two cycles α and Γ · α−1, representing
the strands of the chromosome. A circular genome is the product of disjoint circular
chromosomes.

A necessary and sufficient condition for a permutation π to represent a valid genome
is: (1) ΓπΓ = π−1 and (2) no cycle in π contains both −i and +i for any gene i.

For instance, the circular genome depicted in Figure 2.12 is modeled by π = (+1 +2 +3
+4 +5 +6)(−6 −5 −4 −3 −2 −1). Notice that (+1 +2 +3 +4 +5 +6) = Γ ·
(−6 −5 −4 −3 −2 −1), making it a valid product of cycles representing a circular
chromosome, and also guaranteeing ΓπΓ = π−1.

A rearrangement operation ρ applicable to a genome π is defined as a permutation
ρ for which π′ = ρπ is a valid genome. On problems where more than one type of
rearrangement operation is allowed, we need a definition of the weight of each operation.
Usually, in the algebraic theory, the weight of an operation ρ is defined as ‖ρ‖/2 (for
instance [77]). With this definition, reversals, circular fusions and circular fissions are
modeled with permutations formed with two 2-cycles, and have therefore weight 1, whereas
transpositions are modeled with two 3-cycles, and block interchanges with four 2-cycles,
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Figure 2.12: A circular genome represented by the permutation π = (+1 +2 +3 +4 +5 +6)
(−6 −5 −4 −3 −2 −1), with two 6-cycles, one for each strand.

both with a resulting weight of 2 [77]. This weight definition agrees with usual weights,
for instance, the Double Cut-and-Join model for operations on circular genomes [110].

With this background, we can formulate the algebraic rearrangement problem as finding
permutations ρ1, ρ2, . . . , ρn that minimally transform π into σ, that is, ρn . . . ρ2ρ1π = σ,
with ρnρn−1 · · · ρi · · · ρ1π representing a valid genome for every i = 1, . . . , n, and and the
sum of the weight of the operations,

∑n
i=1 ‖ρi‖/2, is minimum.

As we mentioned earlier, in this original algebraic theory only circular chromosomes
are allowed. Recently, Feijão and Meidanis [41] extended this model to allow linear
chromosomes as well by introducing an additional genome representation scheme, expanding
the theory but at the same time maintaining most of its important results. This new
model, called adjacency algebraic theory, is also one of the main results of the present text
and will be explained in more detail on Chapter 4.

In the next section we will show another theory used for modeling genomes in the
context of rearrangement problems.

2.2.3 Adjacency Set Theory

This theory is based on representing genomes as sets of adjacencies, the connections
between consecutive genes in a genome. Several representative papers of this approach are
found in more recent literature [13,40,98].

Basic Definitions

A gene is an oriented sequence of DNA that starts with a tail and ends with a head, called
the extremities of the gene. The tail of a gene a is denoted by at, and its head by ah. Given
a set of genes G, the extremity set is E = {at : a ∈ G} ∪ {ah : a ∈ G}. An adjacency is an
unordered pair of two extremities, which represents the linkage between two consecutive
genes in a certain orientation on a chromosome, for instance 2t3h in Figure 2.13. An
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Figure 2.13: A genome π = {1h2h, 2t3h, 4h6h, 6t5t} with two linear chromosomes, represented by the
graph Gπ above. Black directed edges represent genes, while gray edges link consecutive extremities.

extremity that is not adjacent to any other extremity is called a telomere, for instance, 1t

in Figure 2.13.
A genome is represented by a set of adjacencies where the tail and head of each gene

appear at most once. Telomeres will be omitted in our representation, since they are
uniquely determined by the set of adjacencies and the extremity set E . Two adjacencies
are said to be conflicting when they have at least one extremity in common. Thus, a
genome can be characterized as a set of mutually non-conflicting adjacencies.

The graph representation of a genome π is a graph Gπ in which the vertices are the
extremities of π and there is a gray edge connecting the extremities x and y when xy is
an adjacency of π or a directed black edge from x to y when they are tail and head of the
same gene, respectively. A connected component in Gπ is a chromosome of π, and it is
linear if it is a path, and circular if it is a cycle. A circular genome is a genome composed
by circular chromosomes only, and a linear genome is a genome with linear chromosomes
only.

A string representation of a genome π, denoted by πS, is a set of strings corresponding
to the genes of π in the order they appear on each chromosome, with a bar over the gene
if it is read from head to tail and no bar otherwise. Notice that the string representation
is not unique: each chromosome can be replaced by its reverse complement.

For instance, given the set G = {1, 2, 3, 4, 5, 6}, and the genome π = {1h2h, 2t3h,

4h6h, 6t5t}, the graph Gπ is given in Figure 2.13. Notice that telomeres 1t, 3t, 4t, and 5h

are omitted from the set representation without any ambiguity.
A string representation of this genome is πS = (1 2 3, 4 6 5).
In problems where gene duplicates are allowed, a gene can have any number of

homologous copies within a genome. Each copy of a gene is called a duplicated gene and
is identified by its tail and head with the addition of an integer superscript identifying
the copy. For instance, a gene g with three copies has extremities g1

h, g1
t , g2

h, g2
t , g3

h,
and g3

t . An n-duplicate genome is a genome where each gene has exactly n copies. An
ordinary genome is a genome with a single copy of each gene. We can obtain n-duplicate
genomes from an ordinary genome with the following operation [103]: for an ordinary
genome π on a set G, nπ ≡ π ⊕ π ⊕ . . . ⊕ π represents a set of n-duplicate genomes on
nG = {a1, a2, . . . , an : a ∈ G} such that if the adjacency xy belongs to π, n adjacencies
of the form xiyj belong to any genome in nπ. The assignment of labels i and j to the
duplicated adjacencies is arbitrary, with the restriction that each extremity copy has to
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2Π

All combinations of duplicate labels

Π = {ab, cd, ef}

{a2b2, c2d2, e2f1} ∪ {a1b1, c1d1, e1f2}

...

{a1b2, c1d1, e1f1} ∪ {a2b1, c2d2, e2f2}

{a2b1, c1d1, e1f1} ∪ {a1b2, c2d2, e2f2}

{a1b1, c1d1, e1f1} ∪ {a2b2, c2d2, e2f2}

Figure 2.14: Example of the n-duplicate operation, with n = 2 and π = {ab, cd, ef}.

appear exactly once. For instance, for n = 3 a valid choice could be {x1y2, x2y1, x3y3}.
Since for each adjacency in π we have n! possible choices for adjacencies in nπ, the number
of genomes in the set nπ is n!|π|, where |π| is the number of adjacencies of π.

The theory presented in this section will be used in Chapter 3, where the rearrangement
model called Single-Cut-or-Join, introduced by Feijão and Meidanis [40], will be explained
in more detail.



Chapter 3

The Single-Cut-or-Join - a New

Breakpoint-like Operation

In this chapter we present the Single-Cut-or-Join operation (SCJ), introduced by Feijão
and Meidanis [40].

The motivation for this new operation is to introduce a very simple model, closely
related to the breakpoint distance, but with the advantage of simplifying problems that
are NP-hard under other models, such as the genome median and small parsimony, for
which solutions can be found in polynomial time under the SCJ model.

This model is based on the Adjacency Set Theory, presented in Section 2.2.3. The
sections in this chapter are organized as follows: in Section 3.1, the SCJ operation is defined;
in the following sections, several rearrangement problems are considered under this model,
such as pairwise distance (Section 3.2), genome median (Section 3.3), genome halving and
aliquoting (Section 3.4), and multiple genome rearrangement (Section 3.5). In Section 3.6,
some preliminary experimental results of using SCJ for phylogenetic reconstruction are
shown.

3.1 Defining the SCJ Operation

First, we will define two simple operations applied directly on the adjacencies and telomeres
of a genome. A cut is an operation that breaks an adjacency in two telomeres (namely, its
extremities), and a join is the reverse operation, pairing two telomeres into an adjacency.
These operations have been used to define other models, for instance the well-known
Double-Cut-and-Join (DCJ) model [110], where any operation that is composed by two
cuts followed by two joins on the extremities that where cut is considered a DCJ.

In our model any operation that is a single cut or a single join applied to a genome
will be called a Single-Cut-or-Join (SCJ) operation. In this chapter we will show how to
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join 2h3t cut 2h3t

Figure 3.1: Example of cut and join operations.

solve several rearrangement problems under the SCJ model. Figure 3.1 shows an example
of a cut and a join applied to a genome.

3.1.1 Rearrangement Operations Modeled as Set Operations

Since each genome is a set of adjacencies, standard set operations such as union, intersection
and set difference can be applied to two (or more) genomes. In particular, we note that
a cut is equivalent to the removal of an adjacency in the set that models a genome, or,
more formally, a set difference between a genome π and a singleton set with the removed
adjacency xy, denoted by π − {xy}. Equivalently, a join is the opposite operation, namely,
the inclusion of an adjacency in a genome set, or the union between the genome and a
singleton set with the included adjacency, denoted by π ∪ {xy}.

When applying set operations to genomes, we must be careful not to generate an
invalid genome. It is easy to see that intersection and set difference are closed operations
in the genome space, that is, when both operands are genomes, the resulting set is also a
genome. On the other hand, the set resulting from a union operation between genomes
might not represent a genome, since the same extremity could be present in adjacencies of
distinct genomes, that is, the union may have conflicting adjacencies. As we will use these
set operations throughout this chapter in the presented algorithms, whenever a union is
applied, we will prove that the resulting set represents a valid genome.

3.2 Pairwise Distance and Sorting

In this section, we are interested in SCJ sorting, that is, solving the pairwise distance
problem using only SCJ operations. The SCJ distance is the length of a minimal sorting
sequence between genomes π and σ, and is denoted as dSCJ(π, σ). Since the only possible
operations are to remove (cut) or include (join) an adjacency in a genome, the obvious
way of transforming π into σ is to remove all adjacencies that belong to π and not to σ,
and then include all adjacencies that belong to σ and not to π.

Lemma 3.1. Consider the genomes π and σ, and let γ = π − σ and λ = σ − π. Then, γ



3.2. Pairwise Distance and Sorting 27

π

1t 1h

1

2h 2t

−2

3h 3t

−3

4t 4h

4

6h 6t

−6

5t 5h

5

AG(π, σ)

1t 1h2h 2t3h 3t 4t 4h6h 6t5t 5h
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Figure 3.2: The adjacency graph AG(π, σ) between genomes π = {1t, 1h2h, 2t3h, 3t, 4t, 4h6h, 6t5t, 5h}
and σ = {1h, 1t2t, 2h3h, 3t4t, 4h6t, 6h5t, 5h}, with the graph representation of π and σ shown above and
below the adjacency graph, respectively.

and λ can be found in linear time and they define a minimum set of SCJ operations that

transform π into σ, where adjacencies in γ define cuts and adjacencies in λ define joins.

Consequently, dSCJ(π, σ) = |π − σ| + |σ − π|.

Proof. Considering the effect an arbitrary cut or join on π can have on the quantity
fσ(π) = |π − σ| + |σ − π|, it is straightforward to verify that fσ(π) can increase or decrease
by at most 1. Hence, the original value is a lower bound on the distance. Given that the
sequence of operations proposed in the statement leads from π to σ along valid genomes
in that number of steps, we have our lemma.

3.2.1 SCJ Distance with the Adjacency Graph

The Adjacency Graph, introduced by Bergeron et al. [13], was used to find an easy equation
for the DCJ distance. The adjacency graph AG(π, σ) is a bipartite graph whose vertices
are the adjacencies and telomeres of the genomes π and σ and whose edges connect two
vertices that have a common extremity. Therefore, vertices representing adjacencies will
have degree two and telomeres will have degree one, and this graph will be a union of
paths and cycles.

A formula for the SCJ distance based on the cycles and paths of AG(π, σ) can be easily
found, as we will see in the next lemma. We will use the following notation: C and P

represent the number of cycles and paths of AG(π, σ), respectively, optionally followed
by a subscript to indicate the number of edges (the length) of the cycle or path, or if the
length is odd or even. For instance, P2 is the number of paths of length two, C≥4 is the
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number of cycles with length four or more and Podd is the number of paths with an odd
length.

Lemma 3.2. Consider two genomes π and σ with a common set of genes G. We have

dSCJ(π, σ) = 2N − 2C2 − P, (3.1)

where N is the number of genes, C2 is the number of cycles of length two, and P the

number of paths in AG(π, σ).

Proof. We know from the definition of SCJ distance and basic set theory that

dSCJ(π, σ) = |π − σ| + |σ − π| = |σ| + |π| − 2|σ ∩ π|.

Since the number of cycles of length two in AG(π, σ) is the number of common
adjacencies of π and σ, we have |σ ∩ π| = C2. For any genome π, we know that |π| =
N − tπ/2, where tπ is the number of telomeres of π. Since each path in AG(π, σ) has
exactly two vertices corresponding to telomeres of either π or σ, the total number of paths
in AG(π, σ), denoted by P , is given by P = (tπ + tσ)/2. Therefore,

dSCJ(π, σ) = |σ| + |π| − 2|σ ∩ π|
= 2N − (tπ + tσ)/2 − 2C2

= 2N − 2C2 − P.

3.2.2 Comparing the SCJ Distance to Other Distances

Based on the adjacency graph, we have the following equation for the DCJ distance [13]:

dDCJ(π, σ) = N − C − Podd/2, (3.2)

where N is the number of genes, C is the number of cycles, and Podd is the number of odd
paths in AG(π, σ).

For the BP distance defined by Tannier et al. [98], we have

dBP (π, σ) = N − C2 − P1/2, (3.3)

where C2 is the number of cycles with length two and P1 is the number of paths with
length one in AG(π, σ).
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The breakpoint distance br of Pevzner and Tesler [86] is defined in a study involving
linear chromosomes only (human and mouse genomes). The number of breakpoints br(π, σ)
is given by

br(π, σ) = i(π, σ) + e(π, σ)

= i(π, σ) + e1(π, σ) + e2(π, σ),

where i(π, σ) is the number of internal breakpoints of (π, σ), while the term e(π, σ) counts
the external breakpoints of (π, σ), which in turn are classified into external breakpoints of
the first or second kind, and their quantities indicated by e1(π, σ) and e2(π, σ), respectively.
Although Pevzner and Tesler do not explicitly state it, it is reasonable to assume that
circular chromosomes do not generate external breakpoints of either kind, which permits
us to extend their distance to any type of chromosome and relate it to our notation and
to parameters of the adjacency graph as follows:

i(π, σ) = |π − σ|,
e1(π, σ) = tπ − P1,

e2(π, σ) = max(0, νπ − νσ),

where tπ = 2(N − |π|) is the number of telomeres of π, the term P1 is the number of
paths of length 1 in the adjacency graph, and νπ is the number of null chromosomes
in π. The null chromosomes are a device created to deal with genomes with different
numbers of linear chromosomes. One needs to add as many null chromosomes to the
genome with smaller number of linear chromosomes as needed to leave the number of
linear chromosomes the same in both genomes.

The br distance is symmetric. Adding br(π, σ) to br(σ, π), dividing by 2, and observ-
ing that |νπ − νσ| is exactly the difference |tπ/2 − tσ/2| between the numbers of linear
chromosomes in each genome, we have the following formula:

br(π, σ) = N − C2 − P1 + P/2 + |tπ − tσ|/4. (3.4)

Although the SCJ, DCJ, br and BP distances were derived from different contexts,
their distance formulae show a surprisingly similar form.

With these equations we can find relationships between SCJ, br, BP, and DCJ distances.
First, for the BP distance, we have

dSCJ(π, σ) = 2dBP (π, σ) − P≥2.

As expected, the SCJ distance is related to the BP distance, differing only by a factor
of 2 and the term P≥2, the number of paths with two or more edges. For circular genomes,
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P = 0 and the SCJ distance is exactly twice the BP distance. For the general case, the
following sandwich formula holds:

dBP (π, σ) ≤ dSCJ(π, σ) ≤ 2dBP (π, σ). (3.5)

The proof is outlined in Section 3.2.3. The inequalities are tight, as witnessed by
genomes of the form (ahbh, chdh, ehfh, . . .) and (atbt, ctdt, etft, . . .) for the lower bound, and
by circular genomes for the upper bound.

For the br distance, the sandwich formula is:

1
2

br(π, σ) ≤ dSCJ(π, σ) ≤ 2 br(π, σ). (3.6)

Again, the proof is outlined in Section 3.2.3, and circular genomes provide equality
with the upper bound. Taking π to be any linear unichromosomal genome with k genes
and σ = ∅, that is, each of the k genes alone in a linear chromosome in σ, we see that the
lower bound is also tight.

For the DCJ distance, a reasonable guess is that it would be one fourth of the SCJ
distance, since a DCJ operation, being formed by two cuts and two joins, should correspond
to four SCJ operations. This is not always true, however, for two reasons.

To begin with, a DCJ operation may correspond to four, two, or even one SCJ operation.
Examples of these three cases are shown in Figure 3.3, with caps represented by the symbol
◦. In each case the target genome is π = {1h2t, 2h3t, 3h4t}, or πS = (1 2 3 4) in the
string representation. The figure shows a reversal, an affix reversal, and a linear fusion,
all of which have the same weight under the DCJ model, but different SCJ distances.
Incidentally, they have different BP distances as well.

The second reason is that, when consecutive DCJ operations use common spots, the
SCJ model is able to “cancel” operations, resulting in a shorter sequence. Both arguments
show SCJ saving steps, which still leaves four times DCJ distance as an upper bound on
SCJ distance. The full sandwich result is

dDCJ(π, σ) ≤ dSCJ(π, σ) ≤ 4dDCJ(π, σ). (3.7)

The proof is outlined in Section 3.2.3. Here again the inequalities are tight, as witnessed
adjacency graphs consisting entirely of paths of length 2, for the lower bound, and by
adjacency graphs consisting entirely of cycles of length 4, for the upper bound.

Another interesting relationship is

dSCJ(π, σ) = 2dDCJ(π, σ) + (2C≥4 − Peven),

coming directly from Equations 3.1 and 3.2.
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(a) DCJ operation corresponding to a reversal.

1t 1h

1

3h 3t

−3

2h 2t

−2

4t 4h

4

(b) DCJ operation corresponding to an affix reversal, a reversal including a telomere.
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(c) DCJ operation corresponding to a linear fusion.
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Figure 3.3: Three types of single DCJ operations transforming each genome into π = {1h2t, 2h3t, 3h4t}
(or πS = (1 2 3 4) in the string representation) that correspond to different quantities of SCJ operations.
(a) Reversal – four SCJ operations. (b) Affix Reversal – two SCJ operations. (c) Linear Fusion – one SCJ
operation. Caps are represented by ◦.

3.2.3 Alternative Distance Equations

The proofs of the sandwich results rely on the following formula, in which the number 2N

of edges of AG(π, σ) is expressed in terms of the numbers of paths and cycles of different
lengths:

2N =
∞∑

i=1

iCi +
∞∑

i=1

iPi. (3.8)

Using Equation 3.8 to eliminate N from Equations 3.1, 3.2, 3.3, and 3.4, we have:
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The sandwich inequalities easily follow from these formulae, by comparing the summa-
tions term by term. One exception is the lower bound for br, in which we need the fact
that

|tπ − tσ| = |(tπ − P1) − (tσ − P1)|
≤ |tπ − P1| + |tσ − P1|

≤
N∑

i=2

Pi,

because paths of length strictly greater than 1 will have their extremities in the set of non
common telomeres (P1 being the number of common telomeres). The tightness results
also follow easily, for instance, since dDCJ = dSCJ when just P2 is different from zero.

Although the theoretical bounds do not seem very tight, with ratios of 2:1 between
SCJ and BP (Eq. 3.5) and up to 4:1 between SCJ and br (Eq. 3.6) and DCJ (Eq. 3.7), we
found empirically that the ratios are actually much tighter, as we can see in the scatter
plots of Figure 3.4. From an initial genome with 5 linear chromosomes with 200 genes
each, we generated 1000 other genomes simulating rearrangement evolution by applying
between 1 and 250 random reversals, translocations and transpositions, with ratio 17:2:1,
and calculating the distances between the original genome and the simulated ones.

As expected, SCJ is very close to twice the value of BP and br distances, differing by 1
or less in 93% of the cases for BP and 76% for br. As for DCJ, when the distance is small,
SCJ distance is four times the DCJ distance, with this ratio decreasing as the distance
increases.

3.3 The Genome Median Problem

The Genome Median Problem (GMP) is an important tool for phylogenetic reconstruction
of trees with ancestral genomes based on rearrangement events. When genomes are
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Figure 3.4: Scatter plots comparing SCJ with (a) DCJ, (b) BP, and (c) br distances between randomly
evolved genomes.
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unichromosomal this problem is NP-hard under the breakpoint [23, 85], reversal and DCJ
distances [27]. In the multichromosomal general case, when there are no restrictions as
to whether the genomes are linear or circular, Tannier et al. [98] recently showed that
under the DCJ distance the problem is still NP-hard, but it becomes polynomial under
the breakpoint distance (BP), the first polynomial time result for the median problem.
The problem can be solved in linear time for SCJ, our version of the breakpoint distance.

We show this by proposing a more general problem, Weighted Multichromosomal

Genome Median Problem (WMGMP), where we find the genome median among any
number of genomes with weights for the genomes. We will give a straightforward algorithm
for this problem under the SCJ distance in the general case, from which the special case
of GMP follows with unique solution, and then proceed to solve it with the additional
restrictions of allowing only linear or only circular chromosomes.

3.3.1 Weighted Multichromosomal Median

The WMGMP is stated as follows: Given n genomes π1, . . . , πn with a common set of
genes G, and nonnegative weights w1, . . . , wn, we want to find a genome γ that minimizes
the median score mγ defined as

mγ =
n∑

i=1

wi d(πi, γ).

For the SCJ distance, we know that
n∑

i=1

wi dSCJ(πi, γ) =
n∑

i=1

wi|πi| +
n∑

i=1

wi|γ| − 2
n∑

i=1

wi|γ ∩ πi|

and, since
∑n

i=1 wi|πi| does not depend on γ, we want to minimize

f(γ) =
n∑

i=1

wi|γ| − 2
n∑

i=1

wi|γ ∩ πi|. (3.9)

To simplify the notation, we will write f(α) for f({α}). Then we have

f(α) =
n∑

i=1

wi|{α}| − 2
n∑

i=1

wi|{α} ∩ πi|

=
n∑

i=1

wi − 2
∑

α∈πi

wi =
∑

α/∈πi

wi −
∑

α∈πi

wi

and it is easy to see that for any genome γ we have

f(γ) =
∑

α∈γ

f(α). (3.10)
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Since we want to minimize f(γ), a sensible approach would be to choose γ as the
genome with all adjacencies α such as f(α) < 0. As we will see from the next two lemmas,
this strategy is optimal. Lemma 3.3 below shows that if an adjacency α has f(α) < 0,
then any adjacency conflicting with α has a positive value for f .

Lemma 3.3. Given n genomes π1, . . . , πn and nonnegative weights w1, . . . , wn, consider

the function

f(α) =
∑

α/∈πi

wi −
∑

α∈πi

wi.

Let xy be an adjacency such that f(xy) < 0. Then, for any extremity z with z 6= y and

z 6= x, we have f(xz) > 0.

Proof. If xy ∈ πi then xz /∈ πi, and if xz ∈ πi then xy /∈ πi. Therefore,

f(xz) =
∑

xz /∈πi

wi −
∑

xz∈πi

wi

≥
∑

xy∈πi

wi −
∑

xy /∈πi

wi = −f(xy) > 0.

With that result, we show in the next lemma that an optimal solution can be found by
selecting all adjacencies for which f is negative.

Lemma 3.4. Given n genomes π1, . . . , πn and nonnegative weights w1, . . . , wn, the genome

γ = {α : f(α) < 0} minimizes
∑n

i=1 wi dSCJ(πi, γ). Furthermore, if there is no adjacency

α ∈ πi for which f(α) = 0, then γ is a unique solution.

Proof. From Lemma 3.3 we know that all adjacencies α with f(α) < 0 do not have
extremities in common. Therefore, it is then possible to add all those adjacencies to form
a valid genome γ, minimizing f(γ) and consequently

∑n
i=1 wi dSCJ(πi, γ).

To prove the uniqueness of the solution, suppose there is no adjacency α such that
f(α) = 0. Since any adjacency α belonging to γ satisfies f(α) < 0 and any other adjacency
α′ satisfies f(α′) > 0, for any genome γ′ 6= γ we have f(γ′) > f(γ), confirming that γ is a
unique solution. If there is α with f(α) = 0, then γ′ = (γ ∪ α) is a valid genome (that is,
the extremities of α are telomeres in γ), which is also a solution, and uniqueness does not
hold.

One corollary of this lemma is that the GMP has a unique solution under the SCJ
distance, because when the number of genomes is odd and the weights are unitary there is
no adjacency α with f(α) = 0.

After solving the general case, we will restrict the problem to circular or linear genomes
in the next two sections.
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3.3.2 Weighted Multichromosomal Circular Median

In this section we will solve the WMGMP under SCJ restricted to circular genomes: given
n circular genomes π1, . . . , πn with a common set of genes G, and nonnegative weights
w1, . . . , wn, we want to find a circular genome γ which minimizes

∑n
i=1 wi dSCJ(πi, γ).

It is easy to see that a genome is circular if and only if it has N adjacencies, where
N is the number of genes. Basically we want to minimize the same function f defined in
equation (3.9) with the additional constraint |γ| = N . To solve this problem, let G be a
complete graph where every extremity in the set E is a vertex and the weight of an edge
connecting vertices x and y is f(xy). Then, a perfect matching on this graph corresponds
to a circular genome γ and the total weight of this matching is f(γ). A minimum weight
perfect matching can be found in polynomial time [69] and it is an optimum solution to
the weighted circular median problem.

3.3.3 Weighted Multichromosomal Linear Median

The solution of this problem under SCJ is found easily beginning with the same strategy as
in the WMGMP. The procedure is as follows. First, construct γ as defined in Lemma 3.4,
including only adjacencies for which f < 0. If γ is linear, this is an optimum solution. If γ

has circular chromosomes, a linear median γ′ can be obtained by removing, in each circular
chromosome of γ, an adjacency α with maximum f(α). To see that this is indeed a valid
solution, consider any linear genome σ minimizing f . Without loss of generality, we may
assume that σ ⊆ γ, since adjacencies α with f(α) ≥ 0 can be deleted keeping the genome
linear and without increasing f(σ). The minimality of σ implies that it must contain all
linear chromosomes of γ, and all but one adjacency from each circular chromosome of γ.
In addition, the missing adjacencies α must have maximum f(α) in their γ chromosome.
It follows that σ and γ′ have the same value under f , and we conclude that γ′ is indeed
an optimum solution.

This is the first polynomial time result for this problem.

3.4 Genome Halving and Aliquoting

The Genome Halving Problem (GHP) is motivated by whole genome duplication events in
molecular evolution, postulated by Susumu Ohno in 1970 [83]. Whole genome duplication
has been very controversial over the years, but recently, very strong evidence in its favor
was discovered in yeast species [58,61]. The goal of a halving analysis is to reconstruct the
ancestor of a 2-duplicate genome at the time of the doubling event.

The GHP is stated as follows: given a 2-duplicate genome ∆, find an ordinary genome
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γ that minimizes d(∆, 2γ), where

d(∆, 2γ) = min
σ∈2γ

d(∆, σ). (3.11)

If both ∆ and γ are given, computing the right hand side of Equation (3.11) is known as
the Double Distance problem, which has a polynomial time solution under the breakpoint
distance but is NP-hard under the DCJ distance [98].

The genome halving problem was introduced by El-Mabrouk [36]. El-Mabrouk and
Sankoff devised a linear time solution for this problem under the reversal and translocation
distance [37]. Alekseyev and Pevzner solved it in O(n2) for the reversal and DCJ distances
on unichromosomal circular genomes [5]. For the DCJ distance on multichromosomal
genomes, there are solutions by Mixtacki [78] and also by Warren and Sankoff [104].

Warren and Sankoff recently proposed a generalization of the halving problem, the
Genome Aliquoting Problem (GAP) [103]: Given an n-duplicate genome ∆, find an ordinary
genome γ that minimizes

d(∆, nγ) = min
σ∈nγ

d(∆, σ).

In their paper, they use the DCJ distance and develop heuristics for this problem, but
a polynomial time exact solution remains open. In a follow-up paper, they showed that
this problem can be solved in linear time with the breakpoint distance, and proposed a
2-approximation algorithm for the DCJ distance [105]. We will show that under the SCJ
distance this problem has a polynomial time solution in the general multichromosomal
case.

For a n-duplicate genome ∆ and an adjacency xy, let ∆xy be the set of all adjacencies
of the form xiyj in ∆, that is,

∆xy = ∆ ∩




n⋃

i,j=1

{xiyj}


 .

Let us consider the effect the presence or absence of an adjacency α in γ has on the
distance dSCJ(∆, nγ). If α is not in γ, then in any genome γ′ ∈ nγ we will have to apply
exactly |∆α| joins to include in γ′ the necessary adjacencies. Conversely, if α = xy is
present in γ, then the best course of action is to include in γ′ the |∆xy| adjacencies of ∆
plus n−|∆xy| arbitrarily superscripted adjacencies xiyj, provided they do not conflict with
the ones already added or among themselves. In this case we still need to apply n − |∆xy|
cuts, to remove the arbitrarily superscripted adjacencies xiyj that are not present in ∆.
Another factor in the distance dSCJ(∆, nγ) is the presence of adjacencies of the form xixj

in ∆. These adjacencies cannot occur in any genome from nγ, and will always result in
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extra cuts. Adding the contribution of all adjacencies, and using the indicator function
δα(π) defined as

δα(π) =







1, α ∈ π

0, α /∈ π,
(3.12)

we have

dSCJ(∆, nγ) =
∑

α/∈γ

|∆α| +
∑

α∈γ

(n − |∆α|) +
∑

x∈E

|∆xx|

=
∑

α∈A

[(1 − δα(γ))|∆α| + δα(γ)(n − |∆α|)] +
∑

x∈E

|∆xx|

=
∑

α∈A

[|∆α| + δα(γ)(n − 2|∆α|)] +
∑

x∈E

|∆xx|

= |∆| +
∑

α∈A

δα(γ)(n − 2|∆α|)

where A is the set of all adjacencies xy with x 6= y.
Since we want to minimize dSCJ(∆, nγ), a sensible approach would be to choose γ as

the genome with all adjacencies α such as n − 2|∆α| < 0. As we will see from the next
two lemmas, this strategy is optimal.

Lemma 3.5. Given an n-duplicate genome ∆, let xy be an adjacency such that n−2|∆xy| <

0. Then, for any extremity z with z 6= y and z 6= x, we have n − 2|∆xz| > 0.

Proof. We have that |∆xy|+ |∆xz| ≤ n, because at most n copies of extremity x can belong
to ∆. Using this equation and n − 2|∆xy| < 0, we have our result.

Lemma 3.6. Given an n-duplicate genome ∆, the genome γ = {α : n − 2|∆α| < 0}
minimizes dSCJ(∆, nγ). Furthermore, if there is no adjacency α for which n − 2|∆α| = 0,

then γ is a unique solution.

Proof. From Lemma 3.5 we know that all adjacencies α with n − 2|∆α| < 0 do not have
extremities in common. Therefore, it is possible to add all these adjacencies to form a
valid genome γ, minimizing

∑

α∈A δα(γ)(n − 2|∆α|) and consequently dSCJ(∆, nγ).
The unicity can be proved using the same arguments as in Lemma 3.3.

Both linear and circular constrained versions of the GHP can be solved polynomially
using the same procedures as in Sections 3.3.2 and 3.3.3.
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3.4.1 Guided Genome Halving

Seoighe and Wolfe [93] observed that the genome halving problem can yield a very
large number of solutions, suggesting that this problem can be reduced by using as an
outgroup a second species that diverged from the duplicated genome right before the
duplication event. This problem was later proposed by Zheng et al. [114], and is called
the Guided Genome Halving (GGH). Formally, it can be stated as follows: given a 2-
duplicate genome ∆ and an ordinary genome γ, find an ordinary genome π that minimizes
d(∆, 2π) + d(γ, π). The guided genome halving problem under the breakpoint distance is
polynomial on general multichromosomal genomes [98], but NP-hard on multichromosomal
linear genomes [98] and unichromosomal genomes [59]. It is also NP-hard for the DCJ
distance on multichromosomal genomes, and open in the other variants for DCJ [98].

As in the Halving Problem, here we will solve a generalization of GGH, the Guided

Genome Aliquoting problem: given an n-duplicate genome ∆ and an ordinary genome
γ, find an ordinary genome π that minimizes d(∆, nπ) + d(γ, π). It turns out that the
version with an n-duplicate genome ∆ as input is very similar to the “unguided” version
with an (n+1)-duplicate genome.

Lemma 3.7. Given an n-duplicate genome ∆ and an ordinary genome γ, let ∆′ be the

(n+1)-duplicate genome defined as ∆′ = ∆ ∪ {xn+1yn+1 : xy ∈ γ}. Then, for any genome

π, we have dSCJ(∆′, (n + 1)π) = dSCJ(∆, nπ) + dSCJ(γ, π).

Proof. We have that

min
σ′∈(n+1)π

dSCJ(∆′, σ′) = |∆′| + (n + 1)|π| − 2 max
σ′∈(n+1)π

|∆′ ∩ σ′|.

We notice that ∆′ does not have adjacencies mixing superscript n + 1 with superscripts
up to n. Then, to maximize ∆′ ∩ σ′, we must include in σ′ all |γ ∩ π| common adjacencies
between γ and π with both superscripts equal to n + 1, add the remaining π adjacencies
also with both superscripts equal to n + 1, and maximize over the part with superscripts
up to n, yielding

max
σ′∈π

|∆′ ∩ σ′| = |γ ∩ π| + max
σ∈nπ

|∆ ∩ σ|.

On the other hand,

min
σ∈nπ

dSCJ(∆, σ) = min
σ∈nπ

(|∆| + |σ| − 2|∆ ∩ σ|)
= |∆| + n|π| − 2 max

σ∈nπ
|∆ ∩ σ|.

Since |∆′| = |∆| + |γ|, and dSCJ(γ, π) = |γ| + |π| − 2|γ ∩ π|, we have our result.

The last lemma implies that GGH is a special case of GAP, therefore the constrained
linear or circular versions are also polynomial for GGH in the SCJ model.
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3.5 Multiple Genome Rearrangement

In the multiple genome rearrangement problem, given more than three genomes, we search
the most parsimonious phylogenetic tree where the given genomes (usually extant genomes)
are leaves, and the inferred ancestral genomes are internal nodes. In the parsimonious
sense, this corresponds to finding a tree with minimum weight, where the weight of a
tree is the sum of the weight of all its edges, and in turn the weight of an edge is the
rearrangement distance between the genomes at its vertices.

This problem is also called the large parsimony problem, in contrast with the small

parsimony problem, where a tree is given, and the problem is to find only internal nodes
that minimize the weight of the tree.

In the next sections, the small and large parsimony problems will be considered under
the SCJ distance.

3.5.1 The Small Parsimony Problem

Given a tree T in which each leaf corresponds to a genome defined over a common set
of genes G, the small parsimony problem (SPP) consists in finding an ancestral genome
γv for each internal node v of T such that the total branch length of T (the sum of the
weight of each edge, defined as the distance between the genomes of its incident vertices)
is minimized. Formally, we want to find

M = min
G

∑

uv∈E(T )

d(γu, γv), (3.13)

where E(T ) is the set of edges of T and G is the mapping from v to γv.
A traditional way to solve this problem is the approach proposed by Blanchette et

al. [19], where one iterates over each internal node of T , solving a GMP until convergence
to a local minimum is achieved. This method has been used with some rearrangement
distances, such as BP [19, 20], reversal [80] and DCJ [1] distances. One difficulty with
this technique is that the GMP is NP-hard for most rearrangement distances, notable
exceptions being the SCJ distance [40] and the BP distance in some specific cases [98].
Since the GMP is easy under the SCJ distance, we could use the same approach, but we
will show the stronger result that the SPP has a polynomial time solution under the SCJ
distance, the first (and, to the best of our knowledge, the only known) polynomial time
result for this problem under any proposed rearrangement distance.

In the SCJ model we can think of each adjacency as a binary character, and charge
a unitary cost for including or removing an adjacency — changing a character. Using
this analogy, we can solve the SPP running Fitch’s algorithm for small parsimony with
binary characters [44] for every adjacency, deciding which ancestral genomes contain the
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adjacency. When the characters are independent, inference of ancestral genomes is just a
matter of running Fitch’s algorithm for each character and joining the results. In our case,
however, the characters are not independent, since conflicting adjacencies cannot belong
simultaneously to the same genome. Nevertheless, with a little care, this very strategy
generates valid ancestral genomes in polynomial time and is indeed optimal, as we will see
in Theorem 3.1.

Fitch’s algorithm runs on rooted trees, whereas SPP has an unrooted tree as its input.
The usual procedure to transform an unrooted problem into a rooted one, which works
here as well, is to choose any edge, remove it, and make its two extremes the children of a
newly created root. Afterwards, the root is simply removed and its two children linked by
an edge. The total branch length is conserved in this procedure. If we have an outgroup
in our genome set, the edge leading to it is the natural candidate. Otherwise, any edge
will do.

We need some additional definitions related to Fitch’s algorithm before proceeding. In
the first part of the algorithm, every internal node is assigned a set depending on the sets
of its children, in a bottom-up way. We will call these sets bottom-up sets. Furthermore,
given an adjacency α and a rooted tree T with leaves corresponding to the genomes being
analyzed, consider the result of running Fitch’s algorithm on tree T , using as binary
characteristic the presence of adjacency of α, and initializing the root with zero (absence)
when its bottom-up set is {0, 1}. We denote by B(α, v) the bottom-up set generated
for node v of T in the first (bottom-up) pass of the algorithm, and by F (α, v) the final
character assignment to node v.

It is important to notice that in the original Fitch’s algorithm, whenever the bottom-up
set of the root contains more than one element, we are free to choose any element for the
root’s state. However, in our case, since we need to avoid conflicts, the safest bet is to not

include the adjacency. Therefore, when the bottom-up set of the root is {0, 1}, we will
always initialize it with 0.

Before we prove the main theorem, we will need the results of two preliminary lemmas.

Lemma 3.8. Given two conflicting adjacencies α and β, we have the following result: for

each node v of T , if B(α, v) = {1}, then B(β, v) = {0}.

Proof. We will prove the result by strong induction on h, the height of an internal node v,
defined as the maximum length of a path from v to any of its descendant leaves.

When h = 0, the node is a leaf, and both B(α, v) and B(β, v) are singletons. If
B(α, v) = {1}, the corresponding genome contains adjacency α, and therefore does not
contain adjacency β, since they are conflicting, giving us B(β, v) = {0}. The property is
therefore valid for nodes with h = 0.

For an internal node v with height h ≥ 1, assume by induction that any node with
height k < h satisfies the property. By definition of height, both children of v have heights
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strictly smaller than h, and therefore satisfy the property. To prove the property for v,
it can be observed that there are two ways for B(α, v) to be {1}, shown in Figure 3.5.
In case (a), both children have sets {1} with respect to α. Therefore, by the induction
hypothesis, both children have sets {0} with respect to β, implying that B(β, v) = {0}.
In case (b), one child has set {1} and the other has set {0, 1} with respect to α. Then,
with respect to β, one child has set {0} and the other cannot have set {1} (otherwise the
corresponding set with respect to α would be {0}, by the induction hypothesis), again
implying that B(β, v) = {0}.

(a)

B(α, v)

{1}

{1} {1}

⇒

B(β, v)

{0}

{0} {0}

(b)

B(α, v)

{1}

{1} {0, 1}

⇒

B(β, v)

{0}

{0} {0} or {0, 1}

Figure 3.5: Possible cases for an internal node with bottom-up set {1}, where α and β are conflicting
adjacencies.

Lemma 3.9. Given two conflicting adjacencies α and β, for every node v of T , if

F (α, v) = 1 then F (β, v) = 0.

Proof. The proof is by contradiction. Suppose that there are internal nodes with value 1
with respect to both α and β. Choose such a node with minimum depth (distance from
root to node) and call it v. Since F (α, v) = 1, we have that B(α, v) is either {1} or {0, 1}.
It cannot be {1}, otherwise Lemma 3.8 would imply that B(β, v) = {0}, contradicting the
fact that F (β, v) = 1. Therefore, B(α, v) = {0, 1}. The same reasoning applies exchanging
α and β, implying that B(β, v) = {0, 1} as well.

We now notice that v cannot be the root of the tree, otherwise F (α, v) = F (β, v) = 0
by the way we set up Fitch’s algorithm to decide ties at the root. Since v is not the
root, its parent node p must have F (α, p) = 1, because this is the only explanation for
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having F (α, v) = 1 given that B(α, v) = {0, 1}. Similarly, we must have F (β, p) = 1,
contradicting the minimality of v’s depth, and concluding the proof.

Theorem 3.1. Consider a rooted tree T with leaves corresponding to genomes over a

common set of genes G. Then the sets γv = {α : F (α, v) = 1}, where v is an internal node

of T , are valid genomes and assigning γv to node v minimizes the total SCJ branch length

of the tree T .

Proof. From the definition of SCJ distance, we derive a distance equation where the
contribution of each adjacency is independent:

dSCJ(π1, π2) = |π1| + |π1| − 2|π1 ∩ π2|
=

∑

α∈A

(

δα(π1) + δα(π2) − 2δα(π1 ∩ π2)
)

,

where A is the set of all adjacencies and δα is the indicator function defined in Equa-
tion (3.12).

We want to minimize the total branch length of the tree, which can be written as:

M = min
G

∑

uv∈E(T )

dSCJ(γu, γv)

= min
G

∑

uv∈E(T )

∑

α∈A

(

δα(γu) + δα(γv) − 2δα(γu ∩ γv)
)

= min
G

∑

α∈A

∑

uv∈E(T )

(

δα(γu) + δα(γv) − 2δα(γu ∩ γv)
)

=
∑

α∈A

min
G

∑

uv∈E(T )

(

δα(γu) + δα(γv) − 2δα(γu ∩ γv)
)

.

Fitch’s algorithm guarantees that, given an adjacency α, the minimum

min
G

∑

uv∈E(T )

(

δα(γu) + δα(γv) − 2δα(γu ∩ γv)
)

is achieved including the adjacency α in every node v where F (α, v) = 1. Repeating
this procedure for each adjacency, we build the genomes γv, which are valid because no
pair of conflicting adjacencies can belong to the same genome, as a result of Lemma 3.9.
Therefore, assigning genome γv to node v for all v in T minimizes the total sum of the
branch lengths.

3.5.2 The Large Parsimony Problem

The large parsimony problem under SCJ can be stated as follows. Given n genomes
π1, . . . , πn defined on a common set of genes G, find a tree T whose leaves are in one-to-one
correspondence with the genomes π1, . . . , πn, and find an ancestral genome γv for each



44 Chapter 3. The Single-Cut-or-Join - a New Breakpoint-like Operation

internal node v of T so that the total branch length of T (the sum of the weights of all
edges, defined as the distance between the genomes of its vertices) is minimized.

To prove that the large parsimony problem under the SCJ distance is NP-hard, we will
use a reduction from the Steiner tree problem in {0, 1}N under the Hamming distance,
which is NP-hard [46].

Again, we can think of each adjacency as a binary character, and charge a unitary cost
for including or removing an adjacency — changing a character. Using this analogy, we
can easily see that the Hamming distance between two vectors in {0, 1}N is the same as the
SCJ distance between two genomes if we choose N appropriate adjacencies, assuming that
0 and 1 correspond to absence and presence of the adjacencies in the genomes, respectively.
We must choose the N adjacencies carefully though, otherwise conflicting adjacencies
might arise.

It is actually very simple to code any Steiner tree problem in {0, 1}N as a SCJ
large parsimony problem while avoiding conflicting adjacencies. Given a vector v =
(v1, v2, . . . , vN) of size N , consider the set of genes G = {g1, g2, ..., gN} and code v as a
genome π(v) having adjacencies:

π(v) = {gi
hgi+1

t : 1 ≤ i ≤ N and vi = 1},

where the sum i + 1 “wraps around”, that is, when it becomes N + 1 we assume the value
is in fact 1.

Given a set V of n binary vectors of size N , think about the instance of the large
parsimony problem under SCJ formed by the genomes π(v) for v ∈ V . With no loss of
generality, there is a solution to this problem containing only adjacencies present in at least
one of the input genomes, since any other adjacency can be safely removed throughout
without increasing the total distance. Such a solution can be translated back to {0, 1}N

vectors, that is, for each genome π at an internal node there will be a unique vector v

such that π(v) = π. This yields a solution to the original Steiner tree problem, because
the coding preserves distances (Hamming distance in the origin, SCJ distance in the
destination). Therefore, the SCJ large parsimony problem is NP-hard.

Table 3.1 summarizes the complexity of the problems we treated in this chapter under
the Breakpoint, DCJ and SCJ models.

3.6 Experimental Results

To verify the accuracy of the SCJ model as a tool for phylogenetic reconstruction, a series
of initial experiments was performed, with the collaboration of the student Priscila Biller.
The results of these experiments are thoroughly explained in Biller’s Master’s thesis [18].
In this section, we will give a brief overview of the most important results.
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Problems

Models Distance Median Halving Guided Halving SPP

Breakpoint

Unichromosomal P NP [23] open open NP [23]

Multichr., general P [98] P [98] P [98] P [98] NP [59]

Multichr., linear P [98] NP [98] open NP [113] NP [98]

DCJ

Unichromosomal P [13,110] NP [27] P [4] open NP [27]

Multichr., general P [13,110] NP [98] P [78,104] NP [98] NP [98]

Multichr., linear P [60,110] NP [60] P [60] open NP [60]

SCJ

Unichromosomal P open open open open

Multichr., general P P P P P

Multichr., linear P P P P open

Table 3.1: Complexity of several rearrangement problems under different distances. Aliquoting and
Guided Aliquoting Problems are not listed, but are polynomial for SCJ and open for the other distances.

3.6.1 Experiment Setup

We investigated two main questions: first, how accurate are the reconstructed topologies?
Second, how accurate are the reconstructed ancestral genomes?

To answer these questions, we developed two experiments. In the first experiment, we
solved the large parsimony problem for simulated genome trees, giving as input only the leaf
nodes, and comparing the inferred trees with the simulated ones using the Robinson-Foulds
(RF) distance [88]. Because we used trees from different sizes, we measured what we will
call the RF error, the actual RF distance divided by the maximum RF distance for a
given tree size.

In the second experiment, where the objective was to measure the accuracy of the
reconstructed ancestral genomes, we solved the small parsimony problem for simulated
trees and analyzed the percentage of reconstructed adjacencies that were present on the
original simulated genomes, also checking for false-positives and false-negatives.

There were two types of data: real datasets and simulated datasets. We used two
real datasets; the Campanulaceae family [31], with 13 genomes and 105 chloroplast DNA
markers, and another with the mitochondrial DNA of 66 Protostome species, with 36 genes
each [47].
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For the simulated datasets, we first generated several random trees using the beta-

splitting model, proposed by Aldous [2], for which parameter β, that varies from −2 to ∞,
alters the balancing of the simulated trees. We used β = −1, which, according to Aldous,
is the value of β that better simulates the balancing observed in real trees. We generated
trees with 12, 32, 64, 128, and 200 leaves.

Given a random tree, we simulated an evolutionary scenario by creating an arbitrary
genome at the tree’s root, then applying a random number of rearrangement events on
each tree edge until all internal nodes and leaves were generated. Several parameters were
used in this simulated evolution, but in this summary we will focus on the most influential
parameters: (a) the number of events per edge, also called rearrangement rate (varying
from 5% to 25% of the number of genes in the initial genome) and (b) the number of tree
leaves of the simulated tree. The genome at the tree root was initialized with 2000 genes in
5 linear chromosomes, and the random rearrangements were reversals and translocations,
with 9:1 ratio.

The simulated evolutionary scenario was then used as an input for both experiments. In
the case of the large parsimony problem, only the leaf nodes were given as input, whereas
in the small parsimony problem, the tree topology was also given.

In our current implementation, the large parsimony problem was solved exactly using
a branch-and-bound method for trees with up to 12 leaves. For larger trees, we used a
sequential addition-based heuristic, where at each step we choose a genome to include in
the current tree and solve a number of genome median problems to greedily find the most
suitable position for this new genome. This strategy is similar to previously used methods
(for instance, [43, pp. 216]).

For the small parsimony problem, the polynomial algorithm shown in Section 3.5.1
was used.

3.6.2 Results

Large Parsimony Problem - topology reconstruction

For the simulated datasets, when varying the number of genomes, the average RF distance
ranged from 10% of the maximum RF distance, for trees with 12 genomes, up to 30%,
for trees with 200 genomes, using a fixed rearrangement rate of 20%. When varying the
rearrangement rate, using trees with 64 genomes, RF distances varied from 20% (with a
5% rearrangement rate) up to 35% (with a 25% rearrangement rate).

For the real datasets, the resulting trees were compared to trees proposed in similar
studies, and in both datasets the resulting trees were mostly in agreement with previously
proposed trees. For instance, in Figure 3.6, we see that the SCJ tree is very similar to the
other trees.
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Small Parsimony Problem - ancestor reconstruction

In the small parsimony problem, we noticed that the SCJ is very conservative in choosing
which adjacencies are included in the ancestral genomes. Therefore, the number of false-
positive adjacencies (adjacencies that are present in the reconstructed ancestral but not in
the simulated one) is very low, less than 3% on average. On the other hand, the proportion
of correctly reconstructed adjacencies is very high when the rearrangement rate is small,
about 95% of reconstruction with 5% rearrangement rate. Increasing the rearrangement
rate lowers this figure to about 70% reconstruction when the rearrangement rate is 25%.

The proportion of correctly reconstructed adjacencies also depends on the position of
the ancestral genome in the tree. The farther it is from the leaves, the lower the number
of correctly reconstructed adjacencies. On average, with 25% of rearrangement rate, 78%
of the adjacencies were reconstructed in the bottom third of the tree, while 62% and 57%
of the adjacencies were reconstructed in the middle and top thirds of the tree, respectively.



Chapter 4

Adjacency Algebraic Theory

In this chapter we will present an extension to the algebraic theory of Meidanis and
Dias [74] that was proposed by Feijão and Meidanis [41]. Its main advantage is the
possibility of representing linear chromosomes, which it was believed to be not possible in
the original algebraic theory.

The original algebraic formulation focuses on representing the order in which genes
appear in chromosomes, and because of that we will call it the chromosomal algebraic

theory. In this theory, the cyclic nature of permutations forces it to be applied to circular
chromosomes only. In the new proposed formulation of Feijão and Meidanis, we shift our
attention to genome adjacencies, adequately extending the algebraic theory to the general
multichromosomal case, with both linear and circular chromosomes, while keeping most of
the properties of the original formulation. This new formulation is called the adjacency

algebraic theory.

4.1 Adjacency Algebraic Theory

The formulation of the adjacency algebraic theory is based on the set representation of a
genome [13,40], that was explained in Section 2.2. In this representation, each gene a has
two extremities, called tail and head, respectively denoted by at and ah, or, alternatively,
using signs, with −a = ah and +a = at. An adjacency is an unordered pair of extremities
indicating a linkage between two consecutive genes in a chromosome. An extremity not
adjacent to any other extremity in a genome is called a telomere. A genome is represented
as a set of adjacencies and telomeres, with telomeres possibly omitted when the gene set
is given, and where each extremity appears at most once. For instance, the genome in
Fig. 4.1 is represented by {{+1}, {−1, −2}, {+2, −3}, {+3, +4}, {−4, +5}, {−5}} or just
by {{−1, −2}, {+2, −3}, {+3, +4}, {−4, +5}}.

In the adjacency algebraic theory, genomes are also represented by permutations, just
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+1 −1

1

−2 +2

−2

−3 +3

−3

+4 −4

4

+5 −5

5

Figure 4.1: A genome composed of just a linear chromosome, with gene extremities labeled according
to the adjacency set genome representation, also used in our adjacency algebraic theory.

as in the chromosomal algebraic theory, but a genome is a product of 2-cycles, where each
2-cycle corresponds to an adjacency. Therefore, the genome in Fig. 4.1 is represented as
πadj = (−1 −2)(+2 −3)(+3 +4)(−4 +5). Note that in this representation telomeres can
be safely omitted, since they are 1-cycles. With this formulation, linear chromosomes can
be represented.

The first property of the adjacency representation is that there is a direct relationship
with the chromosomal representation. Let us recall that Γ is the permutation that changes
the sign of each gene, that is,

Γ = (−1 +1)(−2 +2) · · · (−n +n).

Then, if πchr is a permutation representing a circular genome in the chromosomal algebraic
formulation, πadj = πchrΓ represents the same genome in the adjacency algebraic theory.
Since Γ = Γ−1, multiplying again by Γ returns to the original formulation, that is,
πchr = πadjΓ. Therefore, multiplying by Γ always switches the representation of a genome
between adjacency and chromosomal representations.

For instance, for the genome in Fig. 4.2, we have

πchr = (+1 +2 +3 +4 +5 +6)(−6 −5 −4 −3 −2 −1)

and

πadj = πchrΓ = (−1 +2)(−2 +3)(−3 +4)(−4 +5)(−5 +6)(−6 +1).

Another property is that the rearrangement events are represented by the same

permutations in both formulations. If πchr and σchr are genomes in the chromosomal
formulation such that ρπchr = σchr, then by multiplying by Γ on the right we easily get
ρπadj = σadj, where πadj and σadj represent the same genomes in the adjacency formulation.
Also, we have that

σadjπ
−1
adj = σchrΓ(πchrΓ)−1 = σchrΓΓ−1π−1

chr = σchrπ
−1
chr.

So, both the rearrangement operations and the all-important permutation σπ−1 remain
the same in the adjacency theory, meaning that we have many results (all related to
circular genomes) already demonstrated.



4.2. Sorting by Algebraic Operations 51

(a) Chromosomal model
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(b) Adjacency model
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Figure 4.2: The same genome modeled using both chromosomal and adjacency formulations. In
(a), the genome is modeled by the permutation πchr = (+1 +2 +3 +4 +5 +6)(−6 −5 −4 −3 −2 −1),
where each cycle corresponds to a chromosome strand. In (b), the permutation is πadj = πchrΓ =
(−1 +2)(−2 +3)(−3 +4)(−4 +5)(−5 +6)(−6 +1), each cycle corresponding to an adjacency between two
genes.

4.2 Sorting by Algebraic Operations

In this section we are interested in solving the sorting problem under the adjacency
algebraic theory. Let us recall some basic definitions that were introduced in Section 2.2.

A rearrangement operation ρ applicable to a genome π is defined as a permutation ρ

for which π′ = ρπ is a valid genome. The weight of an operation ρ is defined as ‖ρ‖/2.
With this definition, reversals, translocations, circular fusions and circular fissions are
modeled with permutations formed with two 2-cycles, and have therefore weight 1, whereas
transpositions are modeled with two 3-cycles, and block interchanges with four 2-cycles,
both with a resulting weight of 2 [77]. This weight definition agrees with usual weights,
for instance, the Double Cut-and-Join model [110]. We will use this weight definition
in this chapter, but it is important to notice that it is possible to change the weight
of rearrangement operations, for instance, by changing the norm used in its definition,
potentially modifying the sorting problem and its resulting complexity. This seems like an
interesting area for further investigation.

In the context of the algebraic theory, we can formulate the algebraic rearrangement

problem as finding permutations ρ1, ρ2, . . . , ρn that minimally transform π into σ, that is,
ρi . . . ρ2ρ1π is a valid genome for every i, ρn . . . ρ2ρ1π = σ, and

∑n
i=1 ‖ρi‖/2 is minimum.

This minimum value is called the algebraic distance between π and σ, and will be denoted
by d(π, σ).

It is not hard to see that d(π, σ) = ‖σπ−1‖/2: we can easily show that ‖σπ−1‖/2 is a
lower bound for the distance with some algebraic manipulation of the definition, as follows.
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If ρ1, ρ2, . . . , ρn minimally transform π into σ, we have:

‖σπ−1‖
2

=
‖ρn . . . ρ2ρ1‖

2
≤
∑n

i=1 ‖ρi‖
2

= d(π, σ). (4.1)

On the other hand, σπ−1 itself can be considered a (possibly very heavy) rearrangement
operation, because (σπ−1)π = σ is a valid genome, and its weight equals the lower bound,
showing that this is in fact the distance value.

The classical approach restricts the available operations to small weight permutations,
such as just reversals, translocations, fusions, fissions, etc. We will show in Section 4.2.2
that one can achieve the same distance using only operations of weight 1 or less.

A permutation ρ is called a sorting operation from π to σ if ρπ is a valid genome and

d(ρπ, σ) = d(π, σ) − ‖ρ‖/2, (4.2)

that is, applying ρ in π decreases the distance between π and σ by the weight of operation
ρ, that we already defined as being half the norm. But we see that, if ρ is such a sorting
operation,

‖(σπ−1)ρ−1‖ = ‖σ(ρπ)−1‖
= 2d(ρπ, σ)

= 2d(π, σ) − ‖ρ‖
= ‖σπ−1‖ − ‖ρ‖. (4.3)

Therefore, equation (4.3) shows that if ρ decreases the distance by its weight, then ρ

divides σπ−1. In other words, a sorting operation from π to σ is an applicable operation
on π that divides σπ−1.

We will now give some results on applicable operations and divisibility in the following
lemmas. Let us briefly recap some important algebraic properties that will be used in the
proofs of these lemmas. For two permutations α and β, we have that (αβ)−1 = β−1α−1. The
conjugation of β by α, denoted by α · β, is the permutation αβα−1. For any permutations
α and β we have the following known results on the norm: ‖α−1‖ = ‖α‖, ‖β · α‖ = ‖α‖,
and ‖αβ‖ = ‖βα‖.

Lemma 4.1 (Applicable operations). Given a genome π, a permutation ρ is applicable to

π, that is, ρπ is a valid genome, if and only if π · ρ = ρ−1.

Proof. A permutation π is a valid genome if π2 = 1. If ρπ is valid, then (ρπ)2 = 1 and
(ρπ)2 = ρπρπ = ρ(π · ρ) = 1, since π = π−1. Then π · ρ is the inverse of ρ. On the other
hand, if π · ρ = ρ−1, then (ρπ)2 = ρπρπ = ρ(π · ρ) = ρρ−1 = 1.

Corollary 4.1. Any permutation ρ in the format ρ = µ(π · µ−1) is applicable to π.
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α

γ

β

δ

Figure 4.3: Permutations represented as sets, as an intuitive way of thinking about division and
constructiveness. Disjoint sets represent constructive permutations, and subsets represent divisors. In this
example, γ|α, δ|β, and α and β are constructive.

Proof. If ρ = µ(π · µ−1), then

π · ρ = π ·
[

µ(π · µ−1)
]

= (π · µ)µ−1 =
[

µ(π · µ−1)
]−1

= ρ−1

and since π · ρ = ρ−1, by Lemma 4.1 ρ is applicable to π.

This corollary is important because permutations of the form ρ = α(π · α−1) will be the
basis of our sorting operations, as we will see when we study the permutation σπ−1 below.

For the next results, we will need a new definition: two permutations α and β are said
to be constructive if ‖αβ‖ = ‖α‖ + ‖β‖.

An intuitive way of thinking about the some of the concepts in algebraic theory is
to relate them to set theory concepts. For instance, permutation product can be related
to set union. Therefore, when ‖αβ‖ = ‖α‖ + ‖β‖, meaning that permutations α and β

are constructive, we can think of a similar set-theoretic equation |A ∪ B| = |A| + |B|,
implying that sets A and B are disjoint. Permutation divisibility, on the other hand, can
be seen as set difference. Then, ‖αβ−1‖ = ‖α‖ − ‖β‖, meaning that β|α, in set theory
would roughly correspond to a similar relation |A \ B| = |A| − |B|, implying that B is
a subset of A. Therefore, constructive permutations can be seen as disjoint sets, and a
permutation dividing another permutation can be seen as a set contained in another set.

This intuition will be useful for understanding some permutation properties. For
instance, given permutations α, β, γ, and δ such that γ|α, δ|β, and α and β are constructive,
we can represent these relationships as sets, shown in Fig. 4.3. In this particular case, it is
intuitive to see that γ and δ are also constructive, and γδ|αβ, as we will prove formally in
Lemmas 4.2 and 4.3.

Lemma 4.2. Given permutations α, β, and γ, if α and β are constructive and γ|α, then

β and γ are constructive.

Proof. From the norm properties we know that ‖βγ‖ ≤ ‖β‖ + ‖γ‖, and

‖α‖ + ‖β‖ = ‖βα‖ = ‖βγγ−1α‖ ≤ ‖βγ‖ + ‖γ−1α‖ =

= ‖βγ‖ + ‖α‖ − ‖γ‖
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which means that ‖βγ‖ ≥ ‖β‖ + ‖γ‖. Therefore ‖βγ‖ = ‖β‖ + ‖γ‖, so β and γ are
constructive.

Lemma 4.3. Given permutations α, β, γ, and δ, if γ|α, δ|β, and α and β are constructive,

then γδ|αβ.

Proof. Since δ|β, and α and β are constructive, by Lemma 4.2 we have that δ and α

are constructive. Similarly, since γ|α, and δ and α are constructive, γ and δ are also
constructive.

Now, we will show that αδ|αβ:

‖αβ(αδ)−1‖ = ‖αβδ−1α−1‖ = ‖βδ−1‖ = ‖β‖ − ‖δ‖

and since ‖αβ‖ = ‖α‖ + ‖β‖ and ‖δα‖ = ‖δ‖ + ‖α‖ we get

‖β‖ − ‖δ‖ = (‖αβ‖ − ‖α‖) − (‖δα‖ − ‖α‖) = ‖αβ‖ − ‖δα‖,

and indeed αδ|αβ. Also, we will show that γδ|αδ:

‖αδ(γδ)−1)‖ = ‖αδδ−1γ−1‖ = ‖αγ−1‖ = ‖α‖ − ‖γ‖.

Since ‖αδ‖ = ‖δ‖ + ‖α‖ and ‖γδ‖ = ‖γ‖ + ‖δ‖ we have

‖α‖ − ‖γ‖ = (‖αδ‖ − ‖δ‖) − (‖γδ‖ − ‖δ‖) = ‖αδ‖ − ‖γδ‖,

and we have that γδ|αδ. Since αδ|αβ, with the transitivity of the division, we have that
γδ|αβ.

Next we will show an important result about permutation divisibility, stating that
applying the reverse conjugation maintains divisibility:

Lemma 4.4. Given a genome π and a permutation α, for any permutation µ where µ|α
we have π · µ−1|π · α−1.

Proof. Since µ|α, we have ‖αµ−1‖ = ‖α‖ − ‖µ‖. Then:

‖(π·α−1)(π·µ−1)−1‖ = ‖π·(α−1µ)‖ = ‖α−1µ‖ = ‖αµ−1‖ = ‖α‖−‖µ‖ = ‖π·α−1‖−‖π·µ−1‖,

the exact definition of π · µ−1|π · α−1.

Using these previous lemmas, we will prove a theorem that will be the base for finding
sorting operations from σπ−1.
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Theorem 4.1. Given a genome π and a permutation τ = α(π ·α−1) with ‖τ‖ = ‖α‖+‖π ·
α−1‖, then for any permutation µ for which µ|α we have that the permutation ρ = µ(π ·µ−1)
divides τ , and ρ is an applicable operation on π.

Proof. Since µ|α, π · µ−1|π · α−1 (from Lemma 4.4), and ‖α(π · α−1)‖ = ‖α‖ + ‖π · α−1‖,
from Lemma 4.3 we have that µ(π · µ−1)|α(π · α−1), therefore, ρ = µ(π · µ−1) divides τ .
Also, from Corollary 4.1 we know that ρ = µ(π · µ−1) is an applicable operation on π.

It should be noted that finding all cycles µ = (e1 . . . ek) that divide a cycle α is easy:
it suffices to choose e1, . . . , ek as a subset of elements of α in the cyclic order that they
appear in α. For instance, if α = (1 2 3 4 5), then µ = (1 3 4) divides α, but µ′ = (1 4 3)
does not. A formal proof of this fact can be found in a paper by Huang and Lu [53, Lemma
2.7].

A last lemma exposes the relationship between these µ(π · µ−1) operations and the
k-break operation, introduced by Alekseyev and Pevzner [3]. A k-break is an operation
that cuts k adjacencies in π and then joins k new ones with the same extremities.

Lemma 4.5. A permutation ρ = µ(π · µ−1) where µ and π · µ−1 are disjoint cycles and

||µ|| = k − 1, is a k-break operation on π.

Proof. Let µ = (e1 e2 · · · ek), so ‖µ‖ = k − 1, and let ρ = µ(π · µ−1), that is, ρ =
(e1 e2 · · · ek)(πek · · · πe2 πe1). If µ and π · µ−1 are disjoint, no ei is fixed in π, so π must
have the adjacencies (e1 πe1) . . . (ek πek) and can be written as π = (e1 πek) · · · (ek πek−1)π′,
where π′ and ρ are disjoint. Applying ρ in π we have

ρπ = µ(π · µ−1)π

= (e1 e2 · · · ek)(πek · · · πe2 πe1)π

= (e1 e2 · · · ek)(πek · · · πe2 πe1)(e1 πe1) · · · (ek πek)π′

= (e1 πek)(e2 πe1)(e3 πe2) · · · (ek πek−1)π′

and ρπ will have the adjacencies (e1 πek)(e2 πe1) . . . (ek πek−1). Therefore, k adjacencies
of π were removed and changed to k new ones, and ρ is a k-break.

In the next section we will use Theorem 4.1 to find sorting operations, that is, applicable
operations that divide σπ−1.

4.2.1 Characterizing σπ−1 and Finding Sorting Operations

In this section we will use the Adjacency Graph between two genomes π and σ, defined by
Bergeron, Mixtacki, and Stoye [13]. In this graph, denoted as AG(π, σ), the vertices are
the adjacencies and telomeres of π and σ, and for each u ∈ π and v ∈ σ there is an edge
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between u and v for each extremity that u and v have in common. We will show that
every connected component in AG(π, σ) has a direct relationship with cycles in σπ−1 and
then determine sorting operations on these permutations.

i) Cycles in AG(π, σ)

A cycle of size n in AG(π, σ) contains the following adjacencies as vertices, starting with
an adjacency (e1, e2) in π and alternating vertices of π and σ:

(e1, e2)
︸ ︷︷ ︸

π1

, (e2, e3)
︸ ︷︷ ︸

σ1

, . . . , (e2k−1, e2k)
︸ ︷︷ ︸

πk

, (e2k, e2k+1)
︸ ︷︷ ︸

σk

, . . . , (en−1, en)
︸ ︷︷ ︸

πn/2

, (en, e1)
︸ ︷︷ ︸

σn/2

Therefore, adjacencies in π will have the form πk = (e2k−1, e2k) and in σ the form
σk = (e2k, e2k+1), for k = 1, . . . , n/2 (assuming for simplicity that en+1 ≡ e1).

In the product σπ−1, the adjacencies in the AG(π, σ) cycle will be 2-cycles and disjoint
from the rest of the adjacencies in π and σ. Therefore, they will be part of the cycle
decomposition of σπ−1. We can multiply the 2-cycles in this AG(π, σ) cycle to obtain the
restriction τ of σπ−1 to the AG(π, σ) cycle (recalling that π−1

i = πi for each i):

τ = σ1σ2 . . . σn/2 π1 . . . πn/2

τ = (e2 e3) . . . (e2k e2k+1) . . . (en e1)(e1 e2) . . . (e2k−1 e2k) . . . (en−1 en)

τ = (en en−2 . . . e4 e2)(e1 e3 . . . en−3 en−1)

τ = (en en−2 . . . e4 e2)(πe2 πe4 . . . πen−2 πen)

τ = α(π · α−1),

where α = (en en−2 . . . e4 e2). Therefore, a cycle of length n in AG(π, σ) corresponds to
2 (n/2)-cycles in σπ−1, where one is the reversed π-conjugation of the other. Figure 4.4(a)
shows an example with n = 8.

To extract sorting operations in this case, we see that τ satisfies Theorem 4.1, therefore
any µ that divides α generates a sorting operation ρ = µ(π ·µ−1), with weight w = ‖ρ‖/2 =
‖µ‖.

An example showing the relationship between AG(π, σ) and σπ−1 and how to extract
sorting operations from σπ−1 is given in Figure 4.5.

ii) Odd Paths in AG(π, σ)

An odd path of size n in AG(π, σ), that is, a path with n edges where n is odd, starting
with a telomere e1 in π and ending at a telomere en in σ, has vertices

(e1)
︸︷︷︸

π

, (e1, e2)
︸ ︷︷ ︸

σ

, (e2, e3)
︸ ︷︷ ︸

π

, . . . , (e2k−1, e2k)
︸ ︷︷ ︸

σ

, (e2k, e2k+1)
︸ ︷︷ ︸

π

, . . . , (en−1, en)
︸ ︷︷ ︸

π

, (en)
︸︷︷︸

σ
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(a) Cycle of length n = 8 in AG(π, σ). In this case, π = (e1 e2)(e3 e4)(e5 e6)(e7 e8), σ =
(e2 e3)(e4 e5)(e6 e7)(e8 e1), and σπ−1 = (e8 e6 e4 e2)(e1 e3 e5 e7). Notice that (e8 e6 e4 e2) =
π · (e1 e3 e5 e7)−1.

π

σ

e1e2 e3e4 e5e6 e7e8

e2e3 e4e5 e6e7 e8e1

(b) Odd path of length n = 7 in AG(π, σ). In this case, π = (e1)(e2 e3)(e4 e5)(e6 e7)(e8), σ =
(e1 e2)(e3 e4)(e5 e6)(e7)(e8), and σπ−1 = (e7 e5 e3 e1 e2 e4 e6), which can be rewritten as σπ−1 =
(e7 e5 e3 e1)(e1 e2 e4 e6), with (e7 e5 e3 e1) = π · (e1 e2 e4 e6)−1.

π

σ

e1 e2e3 e4e5 e6e7 e8

e1e2 e3e4 e5e6 e7 e8

(c) Even path of length n = 8, with both telomeres in σ. In this case, π = (e1 e2)(e3 e4)(e5 e6)(e7 e8),
σ = (e1)(e2 e3)(e4 e5)(e6 e7)(e8), and σπ−1 = (e8 e6 e4 e2 e1 e3 e5 e7), which can be rewritten as
σπ−1 = (e1 e8)(e8 e6 e4 e2)(e1 e3 e5 e7), with (e8 e6 e4 e2) = π · (e1 e3 e5 e7)−1.

π

σ

e1e2 e3e4 e5e6 e7e8

e1 e2e3 e4e5 e6e7 e8

(d) Even path of length n = 8, with both telomeres in π. In this case, π = (e1)(e2 e3)(e4 e5)(e6 e7)(e8),
σ = (e1 e2)(e3 e4)(e5 e6)(e7 e8), and σπ−1 = (e7 e5 e3 e1 e2 e4 e6 e8), which can be rewritten as
σπ−1 = (e7 e8)(e7 e5 e3 e1)(e1 e2 e4 e6), with (e7 e5 e3 e1) = π · (e1 e2 e4 e6)−1.

π

σ

e1 e2e3 e4e5 e6e7 e8

e1e2 e3e4 e5e6 e7e8

Figure 4.4: Cycles and paths in AG(π, σ) and their relationship with σπ−1
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(a) Genomes π = (−1 −3)(+2 +3)(−2 +4) and σ = (−1 +2)(−2 +3)(−3 +4) and the adjacency graph
AG(π, σ).

π

+1 −1

1

−3 +3

−3

+2 −2

2

+4 −4

4

AG(π, σ)

+1 −1−3 +3+2 −2+4 −4

+1 −1+2 −2+3 −3+4 −4

σ

+1 −1

1

+2 −2

2

+3 −3

3

+4 −4

4

(b) Genome σ1 = ρ1π, obtained by applying the sorting operation ρ1 = (−1 +4)(−2 −3) to π.
The permutation ρ1 models a reversal on the block containing genes 3 and 2.

+1 −1

1

−2 +2

−2

+3 −3

3

+4 −4

4

(c) Genome σ2 = ρ2π, obtained by applying the sorting operation ρ2 = (+4 +3)(+2 −2) to π.
The permutation ρ2 models a reversal on the gene 2.

+1 −1

1

−3 +3

−3

−2 +2

−2

+4 −4

4

(d) Genome σ3 = ρ3π, obtained by applying the sorting operation ρ3 = (−1 +3)(+2 −3) to π.
The permutation ρ3 models the circular excision of gene 3.

+1 −1

1

+2 −2

2

+4 −4

4

+3 −3

3

Figure 4.5: Example of obtaining sorting operations from the permutation σπ−1, with π =
(−1 −3)(+2 +3)(−2 +4) and σ = (−1 +2) (−2 +3)(−3 +4). In this case, σπ−1 = (−1 +4 +3)(+2 −2 −3).
These two 3-cycles correspond to one cycle of length 6 in the adjacency graph AG(π, σ) shown in (a).
The permutation σπ−1 itself is a sorting operation, but if we want smaller operations, we can notice
that the cycle (−1 +4 +3) has three possible 2-cycles dividing it: µ1 = (−1 +4), µ2 = (+4 +3), and
µ3 = (−1 +3). Each one generates a sorting operation of the form ρi = µi(π · µ−1

i
), for i = 1, 2, 3, namely,

ρ1 = (−1 +4)(−2 −3), ρ2 = (+4 +3)(+2 −2), and ρ3 = (−1 +3)(+2 −3). The results of applying each of
these operations is shown in Figures (b),(c) and (d).
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Then, similarly to the previous case, computing the restriction τ of σπ−1 to these
adjacencies, we have

τ = (e1 e2) . . . (e2k−1 e2k) . . . (en)(e1)(e2 e3) . . . (e2k e2k+1) . . . (en−1 en)

τ = (en en−2 . . . e3 e1 e2 e4 . . . en−3 en−1).

Therefore, an odd path in AG(π, σ) corresponds to an n-cycle in σπ−1. Notice that we
can write this as a product of (non disjoint) reversed π-conjugates:

τ = (en en−2 . . . e3 e1)(e1 e2 e4 . . . en−3 en−1)

τ = (en en−2 . . . e3 e1)(πe1 πe3 πe5 . . . πen−2 πen) = α(π · α−1),

where α = (en en−2 . . . e3 e1), then τ satisfies Theorem 4.1, and with any µ such that µ|α
we derive a sorting operation ρ = µ(π · µ−1), with weight w = ‖ρ‖/2 = ‖µ‖.

iii) Even Paths in AG(π, σ)

An even path of size n in AG(π, σ) will have both path extremities (telomeres) in the
same genome. Then, we have two cases: both telomeres in π or in σ.

iii.1) Both telomeres in σ. If both telomeres are in σ, the vertices are of the form

(e1)
︸︷︷︸

σ

, (e1, e2)
︸ ︷︷ ︸

π

, (e2, e3)
︸ ︷︷ ︸

σ

, . . . , (e2k−1, e2k)
︸ ︷︷ ︸

π

, (e2k, e2k+1)
︸ ︷︷ ︸

σ

, . . . , (en−1, en)
︸ ︷︷ ︸

π

, (en)
︸︷︷︸

σ

Then, computing the restriction τ of σπ−1, we have

τ = (e1)(e2 e3) . . . (e2k e2k+1) . . . (en)(e1 e2) . . . (e2k−1 e2k) . . . (en−1 en)

τ = (en en−2 . . . e4 e2 e1 e3 . . . en−3 en1
),

which is an n-cycle in σπ−1, and with some manipulation we get to

τ = (en en−2 . . . e4 e2 πe2 πe4 . . . πen−2 πen)

τ = (πe2 en)(en en−2 . . . e4 e2)(πe2 πe4 . . . πen−2 πen)

τ = (e1 en)α(π · α−1),

that is, the product of a 2-cycle with permutation α(π ·α−1), where α = (en en−2 . . . e4 e2).
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iii.2) Both telomeres in π. If both telomeres are in π, the vertices are of the form

(e1)
︸︷︷︸

π

, (e1, e2)
︸ ︷︷ ︸

σ

, (e2, e3)
︸ ︷︷ ︸

π

, . . . , (e2k−1, e2k)
︸ ︷︷ ︸

σ

, (e2k, e2k+1)
︸ ︷︷ ︸

π

, . . . , (en−1, en)
︸ ︷︷ ︸

σ

, (en)
︸︷︷︸

π

Then, the restriction τ of σπ−1 will be

τ = (e1 e2) . . . (e2k−1 e2k) . . . (en−1 en)(e1)(e2 e3) . . . (e2k e2k+1) . . . (en−2 en1
)(en)

τ = (en−1 en−3 . . . e3 e1 e2 . . . en−4 en−2 en),

again an n-cycle in σπ−1. With more manipulation we get to

τ = (en−1 en−3 . . . e3 e1 πe3 . . . πen−3 πen−1 en)

τ = (en en−1)(en−1 en−3 . . . e3 e1)(πe1 πe3 . . . πen−3 πen−1)

τ = (en en−1)α(π · α−1),

and again we get to a product of a 2-cycle with a permutation in the format α(π · α−1),
where α = (en−1 en−3 . . . e3 e1).

In both even path cases, the permutation α(π ·α−1) divides τ , and then any permutation
ρ = µ(π · µ−1), where µ divides α is a sorting operation with weight w = ‖ρ‖/2 = ‖µ‖.

iii.3) Special cases. In both types of even paths there is one special case, specifically
when n = 2, where permutation α becomes the identity and τ is reduced to a 2-cycle;
in both cases, τ = (e1 e2). In the first case, both telomeres are in σ and τ is a cut in
π, splitting the adjacency (e1 e2) of π into two telomeres. We have that τ is a sorting
operation, since it divides σπ−1. On the second case, both telomeres are in π, and τ is a
join in π, joining telomeres e1 and e2 into an adjacency. Again, τ is a sorting operation.
In both cases, this operation has weight 1/2, since it is formed by just one 2-cycle.

In this section we learned that there is a direct relationship between the adjacency
graph AG(π, σ) and the permutation σπ−1 and how to derive sorting operations from
σπ−1. Sorting operations are usually in the format ρ = µ(π · µ−1), where µ divides a cycle
of σπ−1, and these operations are known as k-breaks, where k = ‖µ‖ + 1. There are also
special cases of single 2-cycle operations such as cuts and joins.

4.2.2 Algebraic Sorting with 2-break (DCJ) Operations

From the previous section we saw that we can always find a sequence ρ1, . . . , ρn of sorting
operations such that ρn . . . ρ1π = σ, and

∑n
i=1 ‖ρi‖/2 = ‖σπ−1‖/2 = d(π, σ). But that

leaves the following question: can we always find sorting operations ρ1, . . . , ρn where
ρn . . . ρ1π = σ and

∑n
i=1 ‖ρi‖/2 = d(π, σ), with the additional constraint that ‖ρi‖/2 ≤ w,
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for i = 1, . . . , n, for any given w? It should be noted that when we choose different values
of w, the distance does not change, since the weight of the rearrangement operations is
always the same, but we change the scenario of the rearrangement sorting.

Of particular interest are operations of weight 1 or less, corresponding to 2-breaks,
that we know from DCJ theory that correspond to all classic operations of reversal,
translocation, fusion and fissions (generalized transpositions are also possible by applying
two specific operations of weight 1).

Using the results from Section 4.2.1 we can see that it is always possible to find sorting
2-breaks. In all cases where the sorting operation is of the form ρ = µ(π · µ−1), if µ is
a 2-cycle, then the operation weight is ‖ρ‖/2 = ‖µ‖ = 1 and ρ is a 2-break. There are
also the special cases of cuts or joins, and in these cases the operation has weight 1/2.
Therefore, using algebraic theory, it is always possible to find a rearrangement scenario
using only operations of weight 1 or less, which means that only classical operations are
being used.

Also, it is not difficult to see that the operations found by the algorithm for sorting
with DCJ operations by Bergeron, Mixtacki, and Stoye [13] are also sorting operations
under the algebraic theory, which means that algebraic sorting by 2-breaks can be achieved
in linear time.

4.2.3 Comparing the Algebraic Distance with the DCJ Distance

To compare the algebraic and DCJ distances, we will use the graph AG(π, σ) again. From
Section 4.2.1, we know that any cycle of size 2n in AG(π, σ) will correspond to two n-cycles
in σπ−1, and a path of size n in AG(π, σ) will become an n-cycle in σπ−1. Since the norm
of an n-cycle is n − 1 and the algebraic weight of an operation is the norm divided by two,
the cost of sorting a cycle of size 2n is n − 1, and sorting a path of size n costs (n − 1)/2.
Then, the algebraic distance can be computed as follows:

dalg(π, σ) =
n∑

k=1

(k − 1)C2k +
n∑

k=1

k − 1
2

Pk, (4.4)

where C2k is the number of cycles of size 2k and Pk is the number of paths of size k in
AG(π, σ). Also, we know that there are 4N extremities in the vertices of AG(π, σ), where
N is the number of genes. Since each cycle of size 2k has 2k vertices, comprising 4k

extremities, and each path of size k has k + 1 vertices with a total of 2k extremities, we
have

N =
n∑

k=1

kC2k +
n∑

k=1

k

2
Pk. (4.5)
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Using (4.4) and (4.5) we have

dalg(π, σ) = N −
n∑

k=1

C2k −
n∑

k=1

1
2

Pk = N − (C +
P

2
), (4.6)

where C =
∑n

k=1 C2k and P =
∑n

k=1 Pk are respectively the number of cycles and paths in
AG(π, σ). Since the DCJ distance [13] is given by

dDCJ(π, σ) = N − (C + Podd/2), (4.7)

we have

dalg(π, σ) = dDCJ(π, σ) − Peven

2
, (4.8)

where Podd and Peven denote the number of odd and even paths in AG(π, σ), respectively.
This small difference is due to the fact that although most DCJ operations have the

same weight in the algebraic theory, when sorting an even path at least one cut or join

must be performed. Since these operations are modeled as permutations with a single
2-cycle, they have weight 1/2 under the algebraic theory, but weight 1 in the DCJ model,
hence the difference in the distances.

Another difference is that the DCJ model allows operations that recombine two even
paths into two odd paths [22]. We can see in the distance equations (4.6) and (4.7) that
this kind of operation is indeed optimal in the DCJ model (that is, it reduces the distance
by 1) but in the algebraic model the distance is not changed.

In addition to the distance formula comparison, we also compared algebraic and DCJ
distances with a scatter plot between randomly evolved genomes. Starting with a genome
with 1000 genes and 5 chromosomes, we applied a random number of rearrangement
operations and then measured the distance between the original and evolved genomes
under both algebraic and DJC distances, resulting in the scatter plot shown in Figure 4.6.

4.3 Modeling Linear Genomes with the Chromoso-

mal Algebraic Theory

We saw in this chapter that using the adjacency representation, linear chromosomes can
be modeled in the algebraic theory. But, in the chromosomal algebraic theory, it was
believed that only circular chromosomes could be modeled, due to the cyclical nature of
the permutations not allowing to model the extremities of linear chromosomes. But we
also saw that there is a direct relationship between genomes modeled using the adjacency
theory and the chromosomal theory, that is, a right multiplication by the permutation Γ.
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Figure 4.6: Scatterplot comparing algebraic and DCJ distances between randomly evolved genomes.
Linear regression on the points resulted in the equation y = 0.95x − 0.18.

So the following question arises: what happens if we transform a linear genome from the
algebraic representation to the chromosomal representation, multiplying it by Γ?

Take for instance the linear genome πadj = (−1 −2)(+2 −3)(+3 +4)(−4 +5), repre-
sented using the adjacency algebraic theory. To obtain the same genome, represented by
πchr, in the chromosomal algebraic theory, we have

πchr = πadjΓ = (+1 −2 −3 +4 +5 −5 −4 +3 +2 −1).

Both representations are shown in Figure 4.7.
Indeed, a linear chromosome can be represented in the chromosomal algebraic theory;

instead of each strand being modeled by a different cycle, in a linear chromosome both
strands are contained inside the same cycle, where if an extremity u is a telomere, then

u and Γu are consecutive. In the example of Figure 4.7(b), +1 and −5 are telomeres,
since −1 and +1 are consecutive, as well as +5 and −5. More formally, if an extremity u

satisfies u = πΓu, then u is a telomere.
Note that the cycle π = (+1 −2 −3 +4 +5 −5 −4 +3 +2 −1) satisfies the equation

ΓπΓ = π−1, which is a necessary condition for a permutation to represent a genome, as
we saw in Section 2.2.2, page 21. However, in that same section, another condition was
given, namely that no strand in π contains both −i and +i for any gene i. This second
condition is necessary only for circular chromosomes. Then, new definitions are needed to
accommodate linear chromosomes and genomes.

Any cycle π that satisfies ΓπΓ = π−1 is a linear chromosome. If a pair of disjoint
cycles π1 and π2 satisfy Γπ1Γ = π−1

2 , then π = π1π2 is a circular chromosome, where π1

and π2 represent each strand. Note that π = π1π2 also satisfies ΓπΓ = π−1. A genome is
the product of any number of disjoint chromosomes.



64 Chapter 4. Adjacency Algebraic Theory

(a) The genome πadj = (−1 −2)(+2 −3)(+3 +4)(−4 +5), modeled with the
adjacency algebraic theory.

+1 −1

1

−2 +2

−2

−3 +3

−3

+4 −4

4

+5 −5

5

(b) The same genome modeled with the chromosomal algebraic theory, by the
permutation πchr = (+1 −2 −3 +4 +5 −5 −4 +3 +2 −1)

+1 −2 −3 +4 +5

−1 +2 +3 −4 −5

Figure 4.7: The same linear genome represented by the adjacency and chromosomal algebraic theories.

Therefore, linear genomes could always be modeled in the chromosomal algebraic theory,
but until now no one had realized that dropping the condition that no cycle in π contains
both −i and +i for any gene i was all that was necessary.

In the next section, we will show how all the usual rearrangement operations can be
modeled using the classic algebraic theory, and how all of the operations share the same
general formula.

4.3.1 Classic Rearrangement Operations

In this section we will model several classic rearrangement operations using permutations
with small norm. In this whole section we will use the chromosomal representation, that
is, π = πchr.

Some of these permutations modeling rearrangement operations were already proposed
in earlier studies, since they are applicable in circular genomes [70, 77]. Along with
these known permutations, we will introduce new ones that model operations on linear
chromosomes, namely translocations, operations involving telomeres, and single cut or
join operations, highlighting the fact that all these permutation have a common format.

For instance, all 2-break operations (signed reversals, translocations, fissions and
fusions) on a genome π are modeled by the same permutation composed by two 2-cycles,
ρ = (u v)(πΓv πΓu), with ||ρ|| = 2, by choosing appropriate elements u and v. Other
classic operations such as transpositions and block-interchanges can also be modeled by
permutations composed by two 3-cycles and four 2-cycles, respectively, as we will see.
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i) Reversals

When u and v belong to different strands in a chromosome, the permutation ρ =
(u v)(πΓv πΓu) is a signed reversal. For instance, we can take the genome

π = (· · · π−1u u · · · Γv
A1

πΓv · · · )(· · · π−1v v · · · Γu
A2

πΓu · · · )

where u and v are in different strands (notice that u and v might be in the same cycle in
a linear chromosome, but in different cycles in a circular chromosome, as in this example).
Applying the permutation ρ = (u v)(πΓv πΓu) generates the genome

σ = ρπ = (· · · π−1u v · · · Γu
A2

πΓv · · · )(· · · π−1v u · · · Γv
A1

πΓu · · · )

where blocks A1 and A2 were exchanged between strands, effectively applying a signed
reversal in the segment from gene u to Γv, as depicted in Figure 4.8.

An example might help. Consider the genome

π = (+1 +2 +3 +4 −4 −3 −2 −1),

shown in Figure 4.9. To apply a reversal in the block of genes (+2 +3), we can choose
u = +2 and v = −3 (the reverse complement of 3) in the template 2-break permutation
ρ = (u v)(πΓv πΓu), originating the operation ρ = (+2 −3)(+4 −1). The resulting
genome is then

σ = ρπ = (+1 −3 −2 +4 −4 +2 +3 −1)

after the application of the reversal, with the chosen block reversed as expected.

ii) Translocations

When u and v belong to two different linear chromosomes, ρ = (u v)(πΓv πΓu) is a
translocation. For instance, we can take the genome

π = (· · · π−1u u · · · Γu
A

πΓu · · · )(· · · π−1v v · · · Γv
B

πΓv · · · )

where u and v are in two different linear chromosomes. We know that each of these cycles
represents a linear chromosome because u and Γu are in the same cycle, as are v and Γv.
Applying the permutation ρ = (u v)(πΓv πΓu) generates the genome

σ = ρπ = (· · · π−1u v · · · Γv
B

πΓu · · · )(· · · π−1v u · · · Γu
A

πΓv · · · )

where the blocks A and B, located at the extremities of the chromosomes, were exchanged.
This operation is depicted in Figure 4.10.
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(a) Genome π with elements u and v in different strands.

A1

A2

π−1u u Γv πΓv

πΓu Γu v π−1v

(b) Genome σ = ρπ, where ρ = (u v)(πΓv πΓu), corresponding to a reversal.

A2

A1

π−1u v Γu πΓv

πΓu Γv u π−1v

Figure 4.8: Example of the application of a reversal, modeled by the permutation ρ = (u v)(πΓv πΓu),
when u and v belong to different strands of a chromosome. Blocks A1 and A2, which are reverse
complementary, exchange places, resulting in a reversal.

iii) Fissions and Fusions

If u and v belong to the same strand of a circular chromosome, ρ = (u v)(πΓv πΓu) is a
fission, breaking the chromosome in two.

For instance, if we take the genome

π = ( · · · π-1u
B1

u · · · π-1v
A1

v · · ·
B1

)( · · · Γv
B2

πΓv · · · Γu
A2

πΓu · · ·
B2

)

in which u and v are in the same circular chromosome, where each strand is modeled by
one cycle. Blocks A1 and A2 are reverse complementary, as are B1 and B2. Applying the
permutation ρ = (u v)(πΓv πΓu) generates the genome

σ = ρπ = ( · · · π-1v u · · ·
A1

)( · · · Γu πΓv · · ·
A2

)( · · · π-1u v · · ·
B1

)( · · · Γv πΓu · · ·
B2

)

where blocks A1 and B1 were separated, each into its own cycle, and the same happened
to A2 and B2. This has the effect of dividing the circular chromosome in two, as shown in
Figure 4.11, resulting in a fission. Applying the same operation again, this time in σ, results
in the inverse operation, the fusion of two circular chromosomes into one. This is because
whenever u and v belong to two different circular chromosomes, ρ = (u v)(πΓv πΓu)
models a fusion, merging two chromosomes into one.
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(a) Linear genome π = (+1 +2 +3 +4 −4 −3 −2 −1).

A1

A2

+1 +2 +3 +4

−1 −2 −3 −4

(b) Applying the operation ρ = (u v)(πΓv πΓu), with u = 2 and v = −3, changes the connections
between genes, modeling a rearrangement operation.

+1 +2 +3 +4

−1 −2 −3 −4

(c) Genome σ = ρπ, where ρ = (u v)(πΓv πΓu), with u = 2 and v = −3, corresponding to a
reversal.

A2

A1

+1 −3 −2 +4

−1 +3 +2 −4

Figure 4.9: In genome π = (+1 +2 +3 +4 −4 −3 −2 −1), shown in (a), to apply a reversal in the
block (+2 +3), we choose u = +2 and v = −3 (the reverse complement of 3) in the template 2-break
ρ = (u v)(πΓv πΓu), resulting in ρ = (+2 −3)(+4 −1). Applying this operation results in the genome
σ = ρπ = (+1 −3 −2 +4 −4 +2 +3 −1), shown in (b) and also (c).



68 Chapter 4. Adjacency Algebraic Theory

(a) Genome where elements u and v belong to different linear chromosomes. Blocks A and
B represent the tail of each chromosome starting with elements u and v, respectively.

A B

π−1u u π−1v v

πΓu Γu πΓv Γv

(b) Applying the operation ρ = (u v)(πΓv πΓu) results in a translocation, exchanging blocks
A and B between the chromosomes.

B A

π−1u v π−1v u

πΓu Γv πΓv Γu

Figure 4.10: Example of the application of a translocation, modeled by the permutation ρ =
(u v)(πΓv πΓu), when u and v belong to different linear chromosomes, exchanging the blocks A and B
between chromosomes.

If u and v are in the same linear chromosome, a particular case of fission called circular

excision happens. In this operation, a block is removed from a linear chromosome to form
a new circular chromosome. For instance, the genome

π = ( · · · π-1u
A1

u · · · π-1v
B1

v · · · Γv
C

πΓv · · · Γu
B2

πΓu · · ·
A2

)

has u and v are in the same linear chromosome, therefore in the same cycle, as are Γu and
Γv. Applying the ρ = (u v)(πΓv πΓu) results in the genome

σ = ρπ = ( · · · π-1v u · · ·
B1

)( · · · Γu πΓv · · ·
B2

)( · · · π-1u
A1

v · · · Γv
C

πΓu · · ·
A2

)

that is composed by the circular chromosome (· · · π−1v u · · · )(· · · Γu πΓv · · · ), formed
by blocks B1 and B2, and the linear chromosome (· · · π−1u v · · · Γv πΓu · · · ), with
blocks A1, C, and A2, as seen in Figure 4.12.

Circular excisions were discussed for the first time in the context of the DCJ model [110],
where the block-interchange operation is modeled by two consecutive DCJ operations.
First, a circular excision is applied, creating what is called a circular intermediate, followed
by the reabsorption of the circular intermediate into the original linear chromosome, with
the net effect of a block-interchange. The reabsorption operation is a particular case of
the fusion operation, and can also be modeled with the permutation ρ = (u v)(πΓv πΓu),
when one of u, v belongs to a linear chromosome and the other to a circular chromosome.



4.3. Modeling Linear Genomes with the Chromosomal Algebraic Theory 69

(a) Genome π with elements u and v in the same strand of a circular chromosome.

A

B

π−1v

v
π−1u

u

πΓv

ΓvπΓu

Γu

(b) Genome σ = ρπ, where ρ = (u v)(πΓv πΓu), corresponding to a fission.

A

π−1vu

πΓvΓu

B

v
π−1u

ΓvπΓu

Figure 4.11: Example of the application of a fission operation ρ = (u v)(πΓv πΓu), when u and v

belong to the same strand in a circular chromosome. The same operation also models the inverse fusion
operation, if applied to σ, transforming it back to π.

As we will see in the subsection on block-interchanges, a similar concept occurs in the
algebraic theory, since a block-interchange is modeled by the product of two permutations
of the form ρ = (u v)(πΓv πΓu).

iv) Transpositions

Transpositions on a genome π are modeled by the permutation ρ = (u v w)(πΓw πΓv πΓu),
if u, v, and w belong to the same chromosome and appear in this order (or more formally,
(u v w) divides π). For instance, we can take the genome

π = (· · · π−1v v · · · π-1w
A1

w · · · π-1u
B1

u · · · )(· · · Γu πΓu · · · Γw
B2

πΓw · · · Γv
A2

πΓv · · · )

where blocks A1 and A2 are reverse complementary, as are B1 and B2. Applying ρ =
(u v w)(πΓw πΓv πΓu) we get the genome σ = ρπ,

σ = (· · · π−1v w · · · π-1u
B1

v · · · π-1w
A1

u · · · )(· · · Γu πΓw · · · Γv
A2

πΓu · · · Γw
B2

πΓv · · · )

where blocks A1 and B1 where exchanged, and also A2 and B2, resulting in a transposition,
where two consecutive blocks exchange positions, as shown in Figure 4.13.
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(a) Genome π with elements u and v in the same strand of a linear chromosome.

A B C

π−1u u π−1v v

πΓu Γu πΓv Γv

(b) Genome σ = ρπ, where ρ = (u v)(πΓv πΓu), corresponding to the excision of block B from the
linear chromosome into a new circular chromosome.

B

π−1vu

πΓvΓu

A C

π−1u v

πΓu Γv

Figure 4.12: Example of the application of a circular excision operation ρ = (u v)(πΓv πΓu), when u

and v belong to the same strand in a linear chromosome.

(a) Genome π with elements u, v and w on the same strand, in this order.

A B

π−1v v π−1w w π−1u u

πΓv Γv πΓw Γw πΓu Γu

(b) Genome σ = ρπ, where ρ = (u v w)(πΓw πΓv πΓu), resulting in a transposition of blocks A and B.

B A

π−1v w π−1u v π−1w u

πΓv Γw πΓu Γv πΓw Γu

Figure 4.13: Example of the application of a transposition, modeled by the permutation ρ =
(u v w)(πΓw πΓv πΓu), when u,v, and w are in the same strand and in this order.
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v) Block-interchanges

The permutation ρ = (u v)(πΓv πΓu)(w x)(πΓx πΓw) defines a block-interchange in π,
given that elements x, u, w and v are on the same strand and in this order in π. For
instance, in the genome

π = (· · · π−1x x · · · π-1u
A1

u · · · π−1w w · · · π-1v
B1

v · · · )

(· · · Γv πΓv · · · Γw
B2

πΓw · · · Γu πΓu · · · Γx
A2

πΓx · · · )

where blocks A1 and A2 are reverse complementary, as are B1 and B2, applying
ρ = (u w)(πΓw πΓu)(v x)(πΓx πΓv) we get the genome

σ = ρπ = (· · · π−1x w · · · π-1v
B1

u · · · π−1w x · · · π-1u
A1

v · · · )

(· · · Γv πΓu · · · Γx
A2

πΓw · · · Γu πΓv · · · Γw
B2

πΓx · · · )

resulting in a block-interchange, swapping blocks A and B, as shown in Figure 4.14.
Notice that, as we said in the section about fusion and fissions, the block-interchange

operation can be seen as a combination of two 2-break operations, just as in the DCJ
model [110]. If the affected chromosome is circular, then the operations will be a fission
followed by a fusion; if the chromosome is linear, then we will have a circular excision,
creating a circular intermediate chromosome, followed by a circular reabsorption. In fact,
we can see that the permutation ρ = (u v)(πΓv πΓu)(w x)(πΓx πΓw) is the product of two
2-break operations, modeled by the permutations (u v)(πΓv πΓu) and (w x)(πΓx πΓw).
If we apply them separately, say (u v)(πΓv πΓu) first, the result is a fission (or circular
excision), since the elements u and v are on the same strand of the chromosome. After
applying this first operation, the element w will be on one of the resulting chromosomes
and x in the other. Therefore, the permutation (w x)(πΓx πΓw) will merge these two
chromosomes with a fusion (or circular reabsorption).

vi) Operations on Telomeres

When a 2-break operation involves telomeres, the resulting permutation is slightly modified.
Intuitively, this happens because the telomere is not connected to another extremity, and
therefore we “save” a cut and a later join, that is, we do not need two cut-and-joins, a
single cut-and-join will do. For instance, the reversal of a block of genes in the tail of a
linear chromosome can be achieved by cutting the start of the block and then joining the
telomere of the block back in the cut position.

In the context of the chromosomal algebraic theory, we saw in the beginning of
Section 4.3 that if an extremity v of a genome π satisfies v = πΓv, then v is a telomere. If
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(a) Genome π with elements x, u, w and v on the same strand, in this order.

A B

π−1x x π−1u u π−1w w π−1v v

πΓx Γx πΓu Γu πΓw Γw πΓv Γv

(b) Genome σ = ρπ, where ρ = (u v)(πΓv πΓu)(w x)(πΓx πΓw), resulting in a block-
interchange of blocks A and B.

B A

π−1x w π−1v u π−1w x π−1u v

πΓx Γw πΓv Γu πΓw Γx πΓu Γv

Figure 4.14: Example of the application of a block-interchange, modeled by the permutation ρ =
(u v)(πΓv πΓu)(w x)(πΓx πΓw), when x,u, w, and v are in the same strand and in this order.

we build a 2-break permutation ρ = (u v)(πΓv πΓu) with such a v, the permutation can
be simplified, since

ρ = (u v)(πΓv πΓu) = (u v)(v πΓu) = (u v πΓu),

meaning that this particular case of 2-break operation is modeled by a 3-cycle, instead of
the usual product of two 2-cycles. Notice that even though the permutation is slightly
simpler, its norm remains the same, since the norm of a 3-cycle is also two.

We have two types of 2-break operations involving chromosome extremities. One is
the affix reversal, that is, the reversal of a block of genes in a tail of a linear chromosome.
For instance, we can take the genome

π = (· · · π−1u u · · · Γv
A1

v · · · Γu
A2

πΓu · · · )

where u and v are in different strands of a linear chromosome and v is a telomere (since
v and Γv are consecutive), and blocks A1 and A2 are reverse complementary. Applying
ρ = (u v)(πΓv πΓu) = (u v πΓu) results in

σ = ρπ = (· · · π−1u v · · · Γu
A2

u · · · Γv
A1

πΓu · · · )

swapping A1 and A2, reversing the tail, and causing u to be the new telomere, as shown
in Figure 4.15.
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(a) Genome π with elements u and v in different strands, and v a telomere.

A1

A2

π−1u u Γv

πΓu Γu v = πΓv

(b) Genome σ = ρπ, where ρ = (u v)(πΓv πΓu) = (u v πΓu) and v is a telomere,
corresponding to an affix reversal.

A2

A1

π−1u v Γu

πΓu Γv πΓu

Figure 4.15: Example of the application of an affix reversal, modeled by the permutation ρ =
(u v)(πΓv πΓu) = (u v πΓu), when u and v belong to different strands of a chromosome and v is a
telomere. Blocks A1 and A2, which are reverse complementary, exchange places, resulting in this reversal.

The other type of operation on linear chromosomes extremities is the non-reciprocal

translocation. This operation is similar to a translocation, but instead of two linear
chromosomes exchanging tails, only one tail of a chromosome is moved to the other
chromosome. For instance, taking the genome

π = (· · · Γu πΓu · · · π-1u
A

u · · · )(· · · Γv v · · · ),

where u and v are in different linear chromosomes we observe that v is a telomere. We
know that the block A is a tail of the genome π, since it is surrounded by complementary
extremities u and Γu. Applying ρ = (u v)(πΓv πΓu) we get

σ = ρπ = (· · · Γu u · · · )(· · · Γv πΓu · · · π-1u
A

v · · · ),

that is, the block A is removed from π and inserted σ, resulting in a non-reciprocal
translocation, as shown in Figure 4.16. Notice that, in σ, the extremity u becomes a
telomere and the gene with extremity v becomes an internal gene.

vii) Single Cut-or-Join Operations

This last subsection deals with single cut-or-join rearrangement operations, where a single
cut or join is applied. They are modeled using a single 2-cycle, as we will see.
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(a) Genome π with elements u and v in different linear chromo-
somes, and v a telomere

A

π−1u u Γv

πΓu Γu v = πΓv

(b) Genome σ = ρπ, where ρ = (u v)(πΓv πΓu) and v is a telomere,
corresponding to a non-reciprocal translocation.

A

u Γv πΓu

Γu v π−1u

Figure 4.16: Example of the application of a non-reciprocal translocation, modeled by the permutation
ρ = (u v)(πΓv πΓu), when u and v belong to different linear chromosomes and v is a telomere. The block
A is removed from π and included in σ, making u a telomere.

A cut between two adjacent extremities u and v breaks the connection between their
two genes. Each gene will then have a free extremity, which will become a telomere. The
opposite operation, join, links two telomeres creating a new adjacency.

Considering the genome

π = (· · · u v · · · )(· · · Γv Γu · · · ),

where u and v are adjacent, that is, πu = v, suppose we want to make a cut between u

and v. After applying this cut, in the new genome the successor of u will be Γu, and the
predecessor of v will be Γv. Formally, if ρ is the permutation modeling the cut, then

ρπ(u) = Γu (4.9)

and

ρπΓ(v) = v. (4.10)

From Equation (4.9) we have that ρ(v) = Γu, since πu = v. Also, since π is a
valid genome, it satisfies π = Γπ−1Γ, which implies that πΓ = Γπ−1. Using this in
Equation (4.10), we get ρΓπ−1(πu) = v implying that ρ(Γu) = v. Therefore, we have that
ρ = (Γu v). Indeed, applying ρ to the genome π we get

σ = ρπ = (· · · u Γu · · · )(· · · Γv v · · · ),
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(a) Genome π with consecutive elements u and v on the same strand.

u v

Γu Γv

(b) Genome σ = ρπ, where ρ = (Γu v), resulting in a cut between u and v.

u v

Γu Γv

Figure 4.17: Example of the application of a cut operation, modeled by the permutation ρ = (Γu v),
when u and v are in the same strand and are consecutive, that is, πu = v.

cutting the connection between u and v, causing Γu and v to become telomeres in σ. This
operation is shown in Figure 4.17.

If the chromosome where u and v are is linear, a cut can be called a linear fission, an
operation that breaks a linear chromosome in two. If the chromosome is circular, the cut
is a linearization, transforming the circular chromosome into a linear chromosome.

Since ρ = ρ−1, applying the same permutation ρ to the genome σ results in the inverse
operation, a join. In this case, Γu and v are telomeres, so σu = Γu and σΓv = v. If u and
v belong to the same linear chromosome, the operation is a circularization. If u and v

belong to different linear chromosomes, it is a linear fusion.
So, to summarize, a cut in a genome π between consecutive elements u and v, such

that πu = v, is modeled by a permutation ρ = (Γu v). A join in a genome π between
telomeres Γu and v, such that πu = Γu and πΓv = v, is also modeled by a permutation
ρ = (Γu v).

Table 4.1 shows a summary of the classic rearrangement operations and how they are
modeled with algebraic permutations.
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Permutation Operation Conditions

(Γu v) Cut u and v are consecutive,
satisfying πu = v.

Join Γu and v are telomeres in π,
with πu = Γu and πΓv = v.

(u v)(πΓv πΓu) Signed reversal u and v in different strands of
the same chromosome.

Fission u and v on the same strand of
a circular chromosome.

Fusion u and v in different circular
chromosomes.

Translocation u and v in different linear
chromosomes.

Circular excision u and v on the same strand of
a linear chromosome.

Circular reabsorption u and v in different circular
and linear chromosomes.

Translocation u and v in different linear
chromosomes.

(u v w)(πΓw πΓv πΓu) Transposition u, v and w in same strand
and appear in this order.

(u v)(πΓv πΓu)(w x)(πΓx πΓw) Block-interchange x, u, w and v in same strand
and appear in this order.

Table 4.1: Permutations modeling classic rearrangement operations.
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Conclusions

In this thesis, we presented two new genome rearrangement models, that have been
published in the last three years.

In Chapter 3, we presented an alternative measure of the breakpoint distance, based on
the Single-Cut-or-Join (SCJ) operation, that allows linear- and polynomial-time solutions
to some rearrangement problems that are NP-hard under the breakpoint distance. This is
the case, for instance, for the multichromosomal linear versions of the genome halving,
guided halving and genome median problems. In addition, the SCJ approach is able
to produce a rearrangement scenario between genomes, not only a distance. Also, the
multiple genome rearrangement problem under the SCJ distance is a much easier problem
than in any other rearrangement distance. In fact, it is the only proposed distance for
which the small parsimony problem has a known polynomial time algorithm.

From a biological point of view, we can think of a rearrangement event as an accepted
mutation, that is, a mutational event involving large, continuous genome segments that
was accepted by natural selection, and therefore became fixed in a population. SCJ may
model the mutation part well, but a model for the acceptance part is missing. For instance,
while the mutational effort of doing a fission seems to be less than that of an inversion,
the latter is more frequent as a rearrangement event, probably because it has a better
chance of being accepted. This may have to do with the location and movement of origins
of replication, since any free segment will need one to become fixed.

Other considerations, such as the length of segments, hotspots, presence of flanking
repeats, etc. are likely to play a role in genome rearrangements, and need to be taken into
account in a comprehensive model.

Although crude from the standpoint of evolutionary genomics, this distance may serve
as a fast, first-order approximation for other, better founded genomic rearrangement
distances, and also for reconstructed phylogenies.

In Chapter 4, the Adjacency Algebraic Theory, which is an expansion to the Alge-
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braic Theory of Meidanis and Dias [74], was presented, allowing the modeling of linear
chromosomes using the algebraic theory of genome rearrangements.

With the possibility of modeling multichromosomal linear and circular genomes, we
believe that the algebraic theory is a interesting alternative for solving rearrangement
problems, with a different perspective that might complement the usual combinatorial,
graph-theoretical approach.

Since the algebraic rearrangement distance is different from other proposed models,
such as Double Cut-and-Join, several rearrangement problems are still open, such as the
genome median and genome halving problems. This opens up a vast area of investigation
of the potential for the algebraic theory to solve these problems in different ways.

We are particularly interested in the genome median, since it is a fundamental problem
in rearrangement-based phylogenetic reconstruction. Not only in trying to solve it in its
original formulation, but also investigating new metrics for defining what is a good genome
median. Instead of the usual definition, minimizing the sum of its distances to the three
input genomes, alternative metrics such as minimizing the maximum distance could be
used. The algebraic theory can be an important tools in solving this and several other
open problems.
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