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Resumo

Problemas de roteamento em arcos têm por objetivo determinar rotas de custo mí-
nimo que visitam um subconjunto de arcos de um grafo, com uma ou mais restrições
adicionais. Esta tese estuda três problemas NP-difíceis de roteamento em arcos: (1) o
problema de roteamento em arcos capacitado (CARP); (2) o problema de roteamento
em arcos capacitado e aberto (OCARP); e (3) o problema do carteiro chinês com co-
bertura (CCPP). Apresentamos formulações matemáticas e métodos exatos e heurísticos
para tratar computacionalmente esses problemas: (i) uma heurística construtiva gulosa
e randomizada é proposta para o CARP; (ii) uma metaheurística de algoritmos genéti-
cos híbrido e dois métodos de limitantes inferiores por programação linear inteira, um
branch-and-cut e um baseado em redes de fluxos, são propostos para o OCARP; e (iii)
um método exato branch-and-cut com desigualdades válidas e uma heurística construtiva
são propostos para o CCPP.

Extensivos experimentos computacionais utilizando instâncias de benchmark foram
executados para demonstrar o desempenho dos métodos propostos em relação aos métodos
da literatura, considerando tanto a qualidade das soluções obtidas quanto o tempo de
processamento. Nossos resultados mostram que os métodos propostos são estado da arte.

Os problemas estudados apresentam aplicações práticas relevantes: o CARP tem apli-
cações em coleta de lixo urbano e remoção de neve de estradas; o OCARP tem aplicações
em roteamento de leituristas e na definição de caminhos de corte em chapas metálicas;
e o CCPP tem aplicações em roteamento de leituristas com o uso de tecnologia wire-
less. A solução desses problemas remete à diminuição de custos logísticos, melhorando a
competitividade das empresas.



Abstract

Arc routing problems aim to find minimum cost routes that visit a subset of arcs of a
graph, with one or more side constraints. This thesis studies three NP-hard arc routing
problems: (1) the capacitated arc routing problem (CARP); (2) the open capacitated
arc routing problem (OCARP); and (3) the covering Chinese postman problem (CCPP).
We present mathematical formulations and heuristic and exact methods to computation-
ally solve these problems: (i) a greedy and randomized constructive heuristic is proposed
for the CARP; (ii) a hybrid genetic algorithm metaheuristic and two linear integer pro-
gramming lower bound methods, one based on branch-and-cut and one based on flow
networks, are proposed for the OCARP; and (iii) an exact branch-and-cut method with
valid inequalities and a constructive heuristic are proposed for the CCPP.

Extensive computational experiments using benchmark instances were performed to
demonstrate the performance of the proposed methods in comparison to the previous
methods, regarding both quality of solutions and processing time. Our results show that
the proposed methods are state-of-the-art.

The studied problems have many relevant practical applications: the CARP has ap-
plications on urban waste collection and snow removal; the OCARP has applications on
the routing of meter readers and the cutting of metal sheets; and last, the CCPP has
applications on automated meter readers routing. The solution of these problems leads
to the reduction of logistics costs, improving businesses competitiveness.
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Chapter 1

Introduction

1.1 Arc routing problems

The father of arc routing is considered to be the famous Swiss mathematician Leonhard
Euler with his proposal of the Königsberg bridges problem in the 18th century. After-
wards, a good number of 19th century mathematicians became interested in arc routing
problems, more specifically in graph traversing feasibility problems [25].

However, the study of modern arc routing, including algorithms and the use of com-
puters, started in the 1960s with the study of the Chinese postman problem [30]. This
section presents a description and a literature review of the most important arc routing
problems in the context of this thesis.

1.1.1 Chinese postman problem (CPP)

The famous Königsberg bridges problem considers the question “Given an undirected
and connected graph, is there a closed walk traversing all edges exactly once each?”. And
then the options are true or false, there is no optimization in it. Meigu Guan (Mei-Ko-
Kwan) introduced the optimization to the problem. The first paper in English describing
it was published in 1962 [30] where the problem is stated as: “A mailman has to cover his
assigned segment before returning to the post office. The problem is to find the shortest
walking distance for the mailman”. This problem is widely known as the Chinese postman
problem (CPP).

A more formal description of the Chinese postman problem is given next. Given an
undirected graph G(V,E) with non-negative costs on the edges, the objective is to find a
minimum cost tour such that all the edges are visited at least once.

Eiselt et al. [24] presents an efficient polynomial algorithm for the CPP composed
of two phases. The first phase determines a minimum cost set of edges that need to be
duplicated so the graph becomes Eulerian (i.e. all nodes having even degree). The second
phase is to construct a tour in this augmented graph visiting each edge once, which
is an easy task for Eulerian graphs. Edmonds and Johnson [23] described an efficient
polynomial algorithm for the first phase by solving a minimum cost matching problem.

Although the CPP is an easy problem, there is still ongoing research involving the
CPP with a wide variation of side constraints. Papadimitriou [34] shows that if the
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graph is mixed (containing both directed and undirected edges) solving the first phase
is an NP-hard problem. Corberán et al. [21] presented a survey on the Windy CPP,
a generalization of the mixed CPP where the cost of traversing an undirected edge can
be different depending on the direction the edge is traversed. A recent survey of CPP
variations, algorithms and complexity studies can be found in [43].

1.1.2 Rural postman problem (RPP)

The rural postman problem (RPP) [33] is a generalization of the CPP where given an
undirected graph G(V,E) just a subset of edges ER ⊆ E needs to be visited. In other
words, the objective is to find a minimum cost tour such that each edge e ∈ ER is visited
at least once. The problem is NP-hard, unless the graph induced by ER is connected.

Ghiani and Laporte [27] survey the RPP, while Mourão et al. [22] provides an updated
bibliography for the most recent papers addressing the problem.

1.1.3 Capacitated arc routing (CARP)

The capacitated arc routing problem [28] (CARP) is defined on an undirected graph
G(V,E) . Each edge (i, j) ∈ E has a cost cij ≥ 0 and a demand dij ≥ 0 associated to
it. If an edge (i, j) has positive demand dij > 0 then it is called a required edge. Let
ER ⊆ E be the set of required edges. A fleet of M identical vehicles is available, each with
capacity D, starting from a special node (v0) called depot. While traversing the graph,
a vehicle might (i) service an edge, which deducts its capacity by dij and increases the
solution cost by cij or (ii) deadhead an edge, which only increases the solution cost by cij.
A vehicle route is defined by a tour starting and ending at the depot.

The literature contains numerous real-world applications of the CARP, for instance,
waste collection, street sweeping, snow plowing, etc. An interested reader can found more
details of CARP applications in [10, 22].

Exact and lower bound methods

Golden and Wong [28] presented the first mathematical formulation for the CARP.
This formulation contains an exponential number of variables and constraints, and prob-
ably because of its implementation complexity, it has not been used to solve the problem.

Belenguer and Benavent [11] presented a two-index formulation for the CARP with a
polynomial number of variables. This formulation was used in a branch-and-cut algorithm
that the authors proposed a few years later [15]. The authors noted this method as
effective only for small and medium instances where a small number of vehicles was
employed.

Belenguer and Benavent [15] also proposed the so called one-index formulation. In this
formulation, just one set of variables xe ∈ Z≥0, ∀e ∈ E is used to represent the aggregated
deadheading (not servicing) number of visits performed by all vehicles. A downside of this
formulation is that its solutions are not necessarily feasible for the CARP. Nonetheless,
the lower bounds obtained are valid. In other words, it is a relaxed formulation for the
CARP.
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A cutting plane algorithm for the one-index formulation was developed by Belenguer
and Benavent [5]. This method was able to compute very good lower bounds for the
problem in a reasonably small processing time, improving substantially the best results
in comparison to previous methods.

Martinetlli et al. [20] presented a branch-and-cut lower bounding method for the
CARP, also using the one-index formulation. Their method employed exact separation
procedures for the valid inequalities previously presented by Belenguer and Benavent [5].
Additionaly, they developed an dual-ascent heuristic aiming a more efficient method for
separating the capacity constraints. This method obtained quite impressive results for
very large benchmark instances.

Many other exact and lower bounding methods were proposed for the CARP, based on
integer programming, combinatorial methods, etc. An interested reader can find a survey
on exact and lower bounding methods for CARP in [13].

Heuristic methods

Many heuristics methods have been proposed for the CARP. In general, heuristic
methods for the CARP can be classified in two categories: (i) constructive heuristics;
and (ii) metaheuristic methods. Constructive heuristics start building a solution from
scratch and progressively include elements into the solution until feasibility is obtained.
Metaheuristics are methods that aim for sampling a good set of solutions from a solution
space that is too big to be completely sampled. Metaheuristics may employ constructive
heuristics, local search, stochastic optimization and population-based evolutionary meth-
ods in order to obtain a good trade-off between solutions quality and the computational
effort to find the solutions.

The first constructive heuristic proposed for CARP was the construct-strike presented
by Golden and Wong in the seminal paper [28]. Other remarkable constructive heuristics
are path-scanning and augment-merge [29], Improved merge [14] and path-scanning with

ellipse rule [38].
Regarding the metaheuristics, many have been proposed for the CARP and they

are currently the state-of-the-art methods for finding good enough (i.e. not necessarily
optimal) solutions for the CARP in a limited processing time.

In 2000, Hertz et al. [31] published the CARPET, a tabu search method for the CARP
with three local search operators. Polacek et al. [36] published a variable neighborhood
search (VNS) method with only two kinds of moves. This method obtained good solutions
while spending relatively short processing times.

Usberti et al. [41] proposed a greedy randomized adaptive search procedure (GRASP)
method which obtained excellent results at the cost of a high processing time. In their
metaheuristic, the solutions are constructed using a procedure adapted from the PS-
Ellipse heuristic from Santos et al. [38], and then improved by a set of specialized local
search moves including some path-relinking moves able to explore the unfeasible regions
of the solution space.

Lacomme et al. [16] proposed a good performing genetic algorithm (GA) with local
searches for the CARP. In this GA, the solutions are represented by a simple permutation
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of required edges, and a special shortest path algorithm is employed to transform each
permutation in a CARP solution. This method improved many best known solution costs
for benchmark instances in its publication date.

Many others metaheuristics have been proposed for the CARP. We refer the interested
reader for the survey [37].

1.1.4 Open capacitated arc routing (OCARP)

The open capacitated arc routing problem (OCARP) was proposed by Usberti et al.
[40]. This problem is a variation of the CARP where no depot is considered and the routes
may start and end in any node. In other words, the routes may be open or closed walks
in the graph. In comparison to the CARP, the literature of OCARP is quite modest.

In the seminal paper [40] the authors proposed an integer linear programming (ILP)
formulation for the OCARP, a set of benchmark instances and obtained the first upper and
lower bounds for the problem. In a sequence work, Usberti [28] proposed a branch-and-
bound algorithm with improved results in comparison to the ILP formulation regarding
solutions costs and lower bounds. This algorithm formulated the OCARP as a special
case of the Capacity and Degree Constrained Minimum Spanning Forest Problem (CD-
CMSFP). Both the ILP formulation method and the branch-and-bound algorithm were
able to solve only small sized instances (|ER| ≤ 50) and a few of medium sized instances
(50 ≤ |ER| ≤ 100).

In relation to heuristic methods, Usberti et al. [40] proposed a reactive path-scanning
with ellipse rule (RPS) for the OCARP. This heuristic consisted of a bias-randomized
greedy heuristic where parameters were adjusted for each instance. The RPS was effective
in its objective of generating non-trivial feasible solutions with little computational effort.
One year later, Usberti [28] presented a metaheuristic method of greedy randomized
adaptive search procedure (GRASP) with path-relinking (PR) that largely improved the
RPS results. However, the author noted that in comparison to the CARP literature, the
methods for OCARP could still improve more: “The OCARP average gap is 3.94% using
the GRASP with PR upper bounds and the branch-and-bound lower bounds. This is
relatively high comparing to the CARP average gap of 0.79%. Therefore, a large room
for improvements is still available, leaving for future researches to focus on the design of
algorithms that can tighten the bounds here introduced”.

1.2 Contributions

The main contributions of this thesis are:

• A constructive heuristic for the CARP, inspired by the work of Santos et al. [38].

• A hybrid genetic algorithm (HGA) metaheuristic for the OCARP, which obtained
substantially better results than previous works.

• A feasibilization procedure, employed by the HGA, with potential to be applied to
other routing problems with limited fleet and limited capacities.
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• A one-index relaxed formulation for the OCARP, inspired by a formulation originally
designed for the CARP [15]. In addition, we propose a branch-and-cut method for
solving it.

• A parameterized flow-based relaxed formulation RFB(k) for the OCARP.

• A graph augmentation procedure, employed by the RFB(k), that is able to control
the flow-based formulation tightness. As far as we know this approach is novel in
the literature of mathematical formulations for routing problems and we believe it
has potential to be applied to other problems.

• We present a new arc routing problem called the covering Chinese postman problem
(CCPP), inspired by applications on the routing of automated meter readers.

• We model the CCPP by integer programming and we propose a branch-and-cut
method and a constructive heuristic for it.

1.3 Structure of the thesis

This thesis is a compilation of research papers written by the author in collaboration
with other researchers during the doctoral program. Chapter 2 presents a published pa-
per about a constructive heuristic called PS-Efficiency designed for the capacitated arc
routing problem (CARP). Chapter 3 shows a published paper describing a hybrid genetic
algorithm (HGA) for the open capacitated arc routing problem (OCARP). Chapter 4 con-
tains a preprint paper describing two lower bounding procedures based on relaxed mathe-
matical formulations for the open capacitated arc routing problem (OCARP). Chapter 5
consists of a paper presented in a conference where a new arc routing problem is proposed,
called covering Chinese postman problem. In addition, a branch-and-cut method and a
constructive heuristic are proposed for solving it. Chapter 6 contains a discussion sum-
marizing and making relations between the papers described in Chapters 2 to 5. Chapter
7 contains the final comments.
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Chapter 2

An efficiency-based path-scanning

heuristic for the capacitated arc routing

problem

The paper presented next is a full article published in the Computers and Opera-
tions Research in 2019 and it is co-authored with Fábio Luiz Usberti [6] (DOI: https:
//doi.org/10.1016/j.cor.2018.11.018). The original publication is available at www.
sciencedirect.com and the copyright is owned by Elsevier Ltd. In this text we present
an improved constructive heuristic with a greedy rule called PS-efficiency. This heuristic
was based on previous path-scanning heuristics which are well known in the literature
of arc routing problems. Computational experiments show the improved performance of
PS-efficiency regarding solution quality and parameterization robustness.

The capacitated arc routing problem (CARP) is an important combinatorial optimiza-
tion problem that has been extensively studied in the last decades. The objective is to
optimize routes that service demands located on the edges of a graph, given a fleet of
homogeneous vehicles with limited capacity that starts and ends its routes at a specific
node (depot). This work proposes a new path-scanning heuristic for the CARP which
introduces the concept of efficiency rule. Given the current vehicle location, its traversed
distance and the amount of serviced demand, the efficiency rule selects the most promis-
ing edges to service next. Computational experiments conducted on a set of benchmark
instances reveal that the proposed heuristic substantially outperformed all previous path-
scanning heuristics from literature.

2.1 Introduction

Given scattered demands in the edges of a network that must be serviced by a fleet
of identical vehicles with limited capacity all gathered in a central depot. How to service
these demands within the shortest distance and without exhausting the vehicles capaci-
ties? This question is addressed by the capacitated arc routing problem (CARP) proposed
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by Golden and Wong [18] in 1981. Since then CARP attracted the attention of many
researchers mainly due to its optimization difficulty and numerous applications.

The CARP has been extensively studied and we refer the reader to references [24, 29, 4]
for a comprehensive survey. Applications of CARP include but are not restricted to
waste collection [17], meter reading [14] and snow plows [23]. Moreover, many real-
world complex operations encouraged the emergence of CARP variants, where additional
constraints and special characteristics are modeled. Examples of CARP variants include
CARP with time windows [39, 1], periodic CARP [41], open CARP [37, 2], and others
[25]. The improvement in methods for CARP can often be extended to these variants.

CARP is an NP-hard problem for which many exact and heuristic methodologies
have been proposed [24]. Optimal solutions have been reported only for relatively small
instances involving around 100 edges with positive demand [7], while the best results for
larger instances are provided by heuristic methods [11].

Constructive heuristics start building a solution from scratch and progressively include
elements into the solution until feasibility is obtained. The first constructive heuristic
proposed for CARP was the construct-strike presented by Golden and Wong in the seminal
paper [18]. Two years later, Golden et al. [19] proposed two other constructive heuristics
called path-scanning and augment-merge. Since then, constructive heuristics with better
performance have been proposed, such as improved merge [3] and path-scanning with

ellipse rule [31].
Our contribution. This work proposes a constructive heuristic called path-scanning

with efficiency rule (PS-Efficiency) for CARP, which extends the ideas of the path-scanning

with ellipse rule (PS-Ellipse) proposed by Santos et al. [31]. In PS-Ellipse, an ellipse rule
is triggered when the current vehicle capacity is below a given static threshold. Once
activated, the rule restricts the next candidate edges to be within the ellipse containing
the depot and the current node as focal points. The PS-Efficiency improves these ideas
by: (i) proposing a dynamic threshold for activating the rule; (ii) the set of candidate
edges are selected based on a route efficiency index with respect to the ratio of demand
over distance.

Computational experiments conducted on a set of benchmark instances were performed
to compare the proposed method to other path-scanning heuristics from literature. Ex-
periments reveal that PS-Efficiency substantially outperformed PS-Ellipse [31].

This paper is organized as follows. The CARP is formally defined in Section 2.2.
Section 2.3 presents a review of constructive heuristics for CARP. Section 2.4 describes
the PS-Efficiency heuristic. Section 2.5 shows the computational experiments and the
performance analysis of the methodologies. Section 2.6 provides the final remarks.

2.2 Problem Definition

The Capacitated Arc Routing Problem (CARP) [18] can be formally defined as follows.
Let G(V,E) be an undirected graph with a non-negative cost or length c(vi, vj) and a non-
negative demand d(vi, vj) assigned to each edge (vi, vj) ∈ E. Let ER ⊆ E be the set of
edges with positive demand, called required edges. A fleet of identical vehicles with limited
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capacity D is used to service all required edges. While traversing an edge (vi, vj), a vehicle
might (i) service (vi, vj), which deducts its capacity by d(vi, vj) and increases the solution
cost by c(vi, vj) or (ii) deadhead (vi, vj), which only increases the solution cost by c(vi, vj).

A route is a trajectory of a vehicle in G, represented by the sequence of traversed
edges, which starts and finishes at a distinguished node v0 called depot. A set of routes is
defined feasible if the sum of demands serviced in each route does not exceed D and each
required edge is serviced by exactly one vehicle. The objective is to find a feasible set of
routes with minimum cost.

2.3 Constructive heuristics for CARP

The literature of CARP heuristics can be generally classified in three major categories:
(i) constructive heuristics, which start from an empty solution and iteratively grow it into a
feasible solution; (ii) local search methods, that start from a feasible solution and attempt
to improve it by exploring a neighbourhood; (iii) metaheuristics, which usually comprise
a combination of constructive heuristics, local search methods and likely some additional
optimization techniques, such as short and long-term memory, evolutionary framework,
diversification and intensification. Constructive heuristics are usually simple and fast. On
the other hand, metaheuristics have higher complexity and require more processing time
while often providing the best solutions. The decision of which method is more suitable
for a given application depends on the available computing time and the characteristics
of the instances.

Constructive heuristics remain an important area of research for CARP. As described
by Santos et al. [31], there are several reasons for investigating these heuristics: (i)
fast processing time, which is crucial for many real-time applications; (ii) warm starting
solutions for metaheuristics; (iii) less fine-tuning of parameters; (iv) more easily adapted
to the numerous CARP variants. For example, PS-Ellipse was used to construct initial
solutions for at least three metaheuristics [32, 38, 33] and inspired heuristics for at least
four variants of CARP [37, 20, 15, 8].

The first constructive heuristics for CARP have been proposed by Golden and Wong
[18] and Golden et al. [19]: path-scanning (PS), augment-merge (AM) and construct-

strike (CS). The CS heuristic have not attracted much attention (except for modified-CS

from Pearn [27]), possibly because of its complexity. On the other hand, PS and AM
have been extensively used as benchmark heuristics for CARP and have given rise to new
improved methods based on their classical versions. Special attention will be given to the
review of path-scanning heuristics in Section 2.3.1.

Belenguer et al. [3] proposed the improved merge (IM) heuristic based on AM, achiev-
ing very good results for large instances (more than 100 required edges) with fairly little
computational cost. Ulusoy [36] proposed an innovative route-first cluster-second method
where first a giant tour including all required edges is built which is then partitioned into
feasible tours by a Split algorithm. Later, Prins et al. [30] proposed improving methods
for Ulusoy’s algorithm. Other constructive heuristics for CARP include parallel-insert

[10], augment-insert [26] and the four heuristics proposed by Wøhlk [40] in her thesis:
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modified path-scanning, double outer scan, node duplication heuristic and A-ALG.

2.3.1 Path-scanning heuristics

The original path-scanning (PS) proposed by Golden et al. [19] is a greedy heuristic
that starts with the vehicle at the depot node, then progressively services the nearest
unserviced edge. The vehicle stops and returns to the depot when the remaining vehicle
capacity is not sufficient to service more edges. Then, a new vehicle is employed to service
the remaining edges and the process is repeated. Often there are multiple required edges
with minimum distance. In this case the heuristic employs five different criteria to decide
which unserviced edge (vi, vj) ∈ ER will be serviced next: (1) minimize c(vi, vj)/d(vi, vj);
(2) maximize c(vi, vj)/d(vi, vj); (3) minimize cost of node vj back to depot node; (4)
maximize cost of node vj back to depot node; (5) use criterion 4 if vehicle has more than
half capacity, otherwise use criterion 3. An instance is solved five times, using the five
different criteria, then the best solution is returned. Using the five different criteria often
generates five very different solutions, therefore increasing the chance of finding a good
solution.

A modified version of PS was proposed by Pearn [27] by selecting one of the original five
criteria at random as tie-breaking for each time multiple unserviced edges with minimum
distance are identified. This heuristic will be called path-scanning with random criteria

(PS-RC) from now on. One of the main advantages of PS-RC is to produce much more
than five different solutions because of its stochastic behavior. Results with number of
executions k = 30 were published and obtained better performance than the original
path-scanning for all instances experimented.

Later, Belenguer et al. [3] proposed another modified version of path-scanning, here
called path-scanning with random edge (PS-RE), which simplifies the tie-breaking decision
by just randomly selecting one of the tied edges. The authors compared the performance of
PS-RE and PS-RC on benchmark instances and found the performance of both heuristics
for k = 20 and k = 50 to be fairly similar.

Finally, Santos et al. [31] proposed the path-scanning with ellipse rule (PS-Ellipse)
that works similarly to PS-RE but also considers an “ellipse rule”. This rule triggers when
the vehicle remaining capacity is low enough and restricts the vehicle to service only a
subset of edges that are within an ellipse. The PS-Ellipse produced far better solutions
than its precedents PS-RE and PS-RC with a minor increase in computational time. A
detailed description of PS-Ellipse is provided next.

Let ned = |ER| be the number of required edges, td =
∑

(vi,vj)∈ER
d(vi, vj) be the total

demand, tc =
∑

(vi,vj)∈ER
c(vi, vj) be the total cost of required edges, α a real parameter,

(vg, vh) the last serviced edge in the route, SP (vp, vq) the shortest path cost from node
vp to node vq, rvc the remaining vehicle capacity and v0 the depot node. The heuristic
starts with an empty vehicle at the depot and iteratively inserts in the route the closest
unserviced edge (vi, vj) that does not violate the rvc. Tie-breaking rule selects one of the
tied edges at random. The ellipse rule is activated right after rvc satisfies the triggering

criteria (1). After the ellipse rule is triggered, the vehicle can only service edges that are
inside the ellipse with focal points vh and v0. An edge (vi, vj) ∈ ER is inside the ellipse
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if inequation (2) holds. The vehicle returns to the depot when its capacity is insufficient
to service any edge inside the ellipse. A new empty vehicle starts at depot node and the
process is repeated until all required edges are serviced.

rvc ≤ α× td/ned (1)

SP (vh, vi) + c(vi, vj) + SP (vj, v0) ≤ tc/ned+ SP (vh, v0) (2)

The rationale behind PS-Ellipse is that if the remaining vehicle capacity is low then
only edges that are close to the path from the current node to the depot should be
considered for servicing. The authors performed computational experiments comparing
PS-RC, PS-RE and PS-Ellipse on a set of benchmark instances. The results revealed that
PS-Ellipse reduced the average deviation from lower bounds by about 44% in comparison
to PS-RC and PS-RE.

2.4 Path-scanning with efficiency rule

The path-scanning with efficiency rule (PS-Efficiency) is a heuristic based on the path-

scanning with ellipse rule (PS-Ellipse) proposed by Santos et al. [31] described in Section
2.3.1. It constructs a set of feasible routes in a greedy fashion, where each route is
created starting from the depot and then sequentially selecting the nearest unserviced
edge (vi, vj) ∈ ER for which the demand d(vi, vj) does not exceed the remaining vehicle
capacity. Similarly to PS-Ellipse, when the vehicle reaches a certain load threshold it
activates an efficiency rule which restricts the vehicle to service only edges considered
“cost-efficient”.

2.4.1 Terminology and definitions

The terminology adopted by the algorithm is given next: ned(E ′) is the number of
required edges in the set E ′, td(E ′) =

∑

(vi,vj)∈E′ d(vi, vj) is the total demand of set E ′,
tc(E ′) =

∑

(vi,vj)∈E′ c(vi, vj) is the total cost of edges in set E ′, rvc is the remaining vehicle
capacity, α is a real parameter, (vg, vh) is the last serviced edge in the route and v0 is the
depot.

The function near(vh) is given by (3) and defines the set of unserviced edges close
enough to vh. The function SP (vi, vj) gives the shortest path cost from node vi to node
vj.

near(vh) = {(vi, vj) ∈ ER|min{SP (vh, vi), SP (vh, vj)} ≤ tc(ER)/ned(ER)

and (vi, vj) is unserviced} (3)

Let a route R be defined by the sequence ((u1, v1), (u2, v2), ...(un, vn)), where each
(ui, vi) is a serviced edge. The route efficiency index eff(R) is given by equation (4),
where the numerator is the demand serviced and the denominator is the distance traversed
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including the return to the depot. In summary, eff(R) is the ratio of the demand serviced
by distance traversed of route R.

eff(R) =

∑n

i=1 d(ui, vi)

SP (v0, u1) +
∑n

i=1 c(ui, vi) +
∑n−1

i=1 SP (vi, ui+1) + SP (vn, v0)
(4)

2.4.2 Efficiency rule

The load threshold that activates the efficiency rule is given by the triggering criteria

(5). If near(vh) is empty, the algorithm adopts inequation (1) instead of (5).

rvc ≤ α× td(near(vh))/ned(near(vh)) (5)

Once the vehicle achieves the load threshold, the vehicle is constrained to service only
edges (vi, vj) ∈ ER satisfying the efficiency rule (6).

d(vi, vj)

SP (vh, vi) + c(vi, vj) + SP (vj, v0)− SP (vh, v0)
≥ eff(R) (6)

The efficiency rule only allows edges to be serviced by the route if their demand
compensates for the increase of the route cost; we call these edges cost-efficient. More
precisely, the route efficiency index eff(R) is not allowed to decrease once the efficiency

rule is activated. Figure 2.1 gives an example with three required edges (vi, vj), (vk, vl) and
(vm, vn). In this example, only the edges (vi, vj) and (vm, vn) are satisfying the efficiency

rule.
After the determination of the cost-efficient edges, the algorithm selects the closest

one to the vehicle that does not exceed the rvc to be serviced next. Ties are broken
randomly. If the vehicle capacity is insufficient to service any cost-efficient edge then the
vehicle returns to the depot. If there are still unserviced edges, a new vehicle is employed
and the process is repeated. The PS-Efficiency pseudocode is given by Algorithm 1.

A comparison between PS-Ellipse and PS-Efficiency is provided next:

1. Comparing the triggering criteria (1) and (5), the latter considers only unserviced
edges that are close to the current node while the former considers all edges. The
reasoning for adopting the dynamic criteria (5) instead of the static criteria (1) is
that edges which are distant from the current node are often less relevant to decision
making.

2. Comparing the restricting rules (2) and (6), the efficiency rule (6) considers dynamic
information about the current route expressed by the efficiency index eff(R). On
the other hand, ellipse rule (2) relies solely on static information of the instance. The
rationale of the efficiency rule is that optimal CARP solutions are likely composed
of routes with high efficiency indices.
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Algorithm 1: PS-Efficiency
Input: G(V,E): instance graph; D: vehicle capacity; c: cost vector; d: demand vector; SP:

matrix of shortest path costs; α: real parameter; k: number of iterations;
Output: bestSol: best solution found;
begin

bestSol← ∅;
for it = 1 to k do

sol← ∅; R← {v0}; rvc← D; vh ← v0; sumDist← 0; rule← false;
for n = 1 to ned do

if near(vh) 6= ∅ and inequation (5) is satisfied then
rule← true;

else if near(vh) = ∅ and inequation (1) is satisfied then
rule← true;

if rule is false then
Determine set of candidate edges F ⊆ ER;

else
Determine set of candidate edges F ⊆ ER satisfying (6);

if F = ∅ then
sol← sol ∪ (R ∪ {v0}); // end of route
R← ∅; rvc← D; vh ← v0;
sumDist← 0; rule← false;

else
Select (vi, vj) randomly from F and add it to R; // edge is serviced
sumDist← sumDist+ SP (vh, vi) + c(vi, vj) ;
rvc← rvc− d(vi, vj); vh ← vj ;
eff(R)← (D − rvc)/(sumDist+ SP (vh, v0));

if (cost(sol) < cost(bestSol)) or bestSol = ∅ then
// If current solution is the better so far
bestSol ← sol;

return (bestSol);

2.5 Computational experiments

2.5.1 Settings and instances

The heuristics in Table 2.1 were implemented in C++ using the LEMON [12] library
for graph algorithms and data structures. The experiments were executed in an Intel
Core i7-6700K 4.0 GHz with 8 GB of RAM and Linux 64-bit operating system. Full
experimental data, instances and the algorithms source codes are available on-line1.

Table 2.2 presents the data concerning the instances benchmark considered in the
experiments, which includes 23 gdb[19], 34 val [5], 24 egl [22], 25 C [6], 25 D [6], 25 E

[6], 25 F [6], and 10 egl-large [9] instances, totaling 191 instances.

2.5.2 Comparative performance analysis

The results presented in Table 2.3 compare the PS-Efficiency with three path-scanning
methods from literature: PS-RC [27], PS-RE [3] and PS-Ellipse [31]. Each heuristic was
evaluated considering multiple values of number of iterations k. Regarding PS-Ellipse

1http://www.ic.unicamp.br/~fusberti/problems/carp
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Table 2.1: Path-scanning algorithms.
Algorithm Triggering criteria Restricting rule Tie-breaking

PS-RC (Section 2.3.1) - - random criteria

PS-RE (Section 2.3.1) - - random edge

PS-Ellipse (Section 2.3.1) static (1) ellipse rule (2) random edge

PS-Efficiency (Section 2.4) dynamic (5) efficiency rule (6) random edge

PS-Alt1 (Section 2.5.3) static (1) efficiency rule (6) random edge

PS-Alt2 (Section 2.5.3) dynamic (5) ellipse rule (2) random edge

Table 2.2: Benchmark instances for CARP.
group |V | |E| |ER|

gdb 7-27 11-55 11-55

val 24-50 34-97 34-97

egl 77-140 98-190 51-190

C 32-97 42-140 32-107

D 32-97 42-140 32-107

E 26-97 35-142 28-107

F 26-97 35-142 28-107

egl-large 255 375 347-375

and PS-Efficiency, multiple values of parameter α were considered. The results are shown
in percentage of the average deviation from lower bounds Gap(%), defined as: Gap(%)=

100(UB − LB)/LB, where UB is the solution cost and LB is the lower bound given by
[7]. Comparing PS-Efficiency and PS-Ellipse for each k and α, the best deviations are
highlighted in bold. Over all heuristics and parameters, the best results were underlined.

Overall comparison. Table 2.3 shows that the heuristics PS-Efficiency and PS-Ellipse
clearly outperformed by a great margin the PS-RC and PS-RE heuristics. For all sets of
instances, the average deviations obtained by PS-Efficiency and PS-Ellipse with k = 1000

are better than those obtained by PS-RC and PS-RE with k = 20000.
The best overall value of α for PS-Ellipse was α = 1.5 and for PS-Efficiency was

α = 3.0. Considering k = 20000, the heuristics PS-RE, PS-Ellipse(α = 1.5) and PS-
Efficiency(α = 3.0) reduced the PS-RC overall Gap(%) by 0.70%, 42.23% and 53.08%,
respectively.

PS-Efficiency vs. PS-Ellipse. In comparison to PS-Ellipse (α = 1.5), the PS-Efficiency
(α = 3.0) reduced the overall Gap(%) by 14.22%, 16.12% and 18.79% for k 1000, 10000
and 20000, respectively.

The most significant reduction of deviations from PS-Ellipse (α = 1.5) to PS-Efficiency
(α = 3.0), considering the results with k = 20000, was reported for the F instances
where the Gap(%) was reduced from 6.04% to 4.18% (reduction of 30.7%) and the least
significant reduction was observed for the gdb instances from 0.88% to 0.84% (reduction
of 4.5%).

Consistency Analysis. The results of PS-Efficiency and PS-Ellipse for each value of k
and α show that PS-Efficiency performed better for every set of instances with the only
exceptions being the gdb instances with α = 1.0 and k ∈ {1000, 10000}; and val instances
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with α = 1.0 and k = 1000. Therefore, the performance of PS-Efficiency was consistently
better for almost all instances and parameters considered.

Robustness Analysis. Table 2.3 shows PS-Efficiency as much more parameter-robust
than PS-Ellipse for all sets of instances. Let a variation factor for each heuristic be
given by: 100 × (maxGAP − minGAP )/minGAP , where maxGAP is the largest deviation
obtained in the experiment considering all values of α and minGAP the smallest. The
overall variation factor with k = 20000 for PS-Ellipse is 63.10% while the same factor
for PS-Efficiency is 23.35%. In special, the set of instances egl with k = 20000 presents
the highest difference between variation factors, where PS-Ellipse obtained 230.92% and
PS-Efficiency obtained 13.69%.

2.5.3 Effect of triggering criteria and restricting rule

PS-Ellipse and PS-Efficiency are two path-scanning heuristics distinguished by their
(i) triggering criteria that determine the conditions to activate a (ii) restricting rule which
restrain the set of edges that can be serviced. To evaluate the effectiveness of these features
we have compared PS-Ellipse and PS-Efficiency with two new path-scanning heuristics,
called PS-Alt1 and PS-Alt2. These new heuristics implement alternative combinations of
the triggering criteria and restricting rules as shown by Table 2.1.
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Figure 2.2: Comparative experiment of path-scanning algorithms.

The experiment aims to show the impact of each feature embedded in PS-Efficiency. To
achieve that, the experiment is executed for the four path-scanning heuristics: PS-Ellipse,
PS-Efficiency, PS-Alt1 and PS-Alt2. Each heuristic was executed for all instances in Table
2.2 with k = 20000 and using its overall best value of parameter α. The performance
profiles introduced by Dolan and Moré [13] are adopted as comparison method.

Figure 2.2 shows the results. The experiment works by first computing a deviation
factor from the best using the following formula for each heuristic and each instance:
(UB − UBbest)/UBbest, where UB is the solution cost obtained by the heuristic and
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UBbest is the best solution cost obtained among all heuristics. From that, it is calculated
a percentage of the instances (y-axis) that fall below certain thresholds of deviation factors
from the best (x-axis) for each method.

Figure 2.2 shows that PS-Efficiency obtained the best solutions for 55% of the instances
while PS-Alt1 obtained the best solutions for 40% of instances. Tied in the last place,
PS-Ellipse and PS-Alt2 obtained the best solutions for 20% of the instances.

Considering that PS-Efficiency and PS-Alt1 both use the same restricting rule and
diverge only by their triggering criteria, it is possible to infer from the results that the
efficiency rule is a key factor for the better performance of these methods in comparison
to PS-Ellipse and PS-Alt2.

Observing the performance of PS-Alt2 in Figure 2.2, it is revealed that the dynamic
triggering criteria was ineffective when used in combination with the ellipse rule. This
indicates that there is a synergy between the dynamic triggering criteria and the efficiency

rule, thus both features should be employed together so as to achieve the best outcome.

2.5.4 Computational times

Table 2.4 shows the CPU average processing times required by the heuristics for each
set of instances. Each method was executed for k = 20000 iterations and for six different
values of the parameter α ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5}. The PS-RC and PS-RE are shown
having the overall smallest processing times, while PS-Ellipse consumed less computing
time than PS-Efficiency. This can be explained by the fact that the dynamic information
used by PS-Efficiency requires often updates, such as identifying nearby unserviced edges
and computing the route efficiency index. On the other hand, PS-Ellipse uses only static
information from the graph thereby requiring less computation. The PS-Alt1 and PS-Alt2
processing times are positioned between PS-Ellipse and PS-Efficiency as expected since
they combine features of both methods.

Another important pattern is that the processing time of PS-Efficiency is approxi-
mately 1.5 times the processing time of PS-Ellipse for all sets of instances. In other words,
the observed time increase seems bounded by a constant factor. This was expected since
PS-Efficiency has the same worst-case asymptotic time complexity as PS-Ellipse.

2.5.5 Comparison to metaheuristic approaches

Constructive heuristics are often incorporated by metaheuristics because they are fast
procedures that produce feasible solutions with potentially good quality and high variabil-
ity. For example: TSA2 (tabu search algorithm) [9], GRASP [38] and HMA [11] used the
path-scanning heuristics PS, PS-Ellipse and PS-RE respectively to warm start its initial
solutions.

The CARP literature contains some reports on the effects of incorporating constructive
heuristics into metaheuristics frameworks. Lacomme et al. [21] proposed a memetic algo-

rithm (MA) and reported that initializing the MA initial population with three different
constructive heuristics influenced positively for the MA final solution quality. Brandão
and Eglese [9] proposed two versions of a deterministic tabu search algorithm: TSA1 and
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TSA2, with the difference being that TSA2 is the TSA1 executed 5 times starting with
5 different initial solutions obtained by 5 different constructive heuristics. Brandão and
Eglese argued that “the diversity provided by the different starting solutions was found
to be useful in ultimately finding high quality solutions”. Polacek et al. [28] proposed
a variable neighbourhood search (VNS) and reported results on initializing their method
using different solutions obtained by a constructive heuristic. It was reported that the ini-
tial solution cost did not influenced much in terms of final solution quality but influenced
greatly for shortening the VNS processing time.

Moreover, some recent metaheuristics such as HGA [2] and MAENS [34, 16] employed
constructive heuristics as internal components of its local search methods. In these local
search methods, a subset of the routes of a feasible solution is selected and reconstructed
using constructive heuristics and, if the reconstructed routes have lower costs than the
original ones, then the solution is updated. Authors of MAENS stated that their local
search method is likely to generate high-quality solutions due the adoption of constructive
heuristics (PS and Ulusoy’s) that are known to produce relatively good solutions.

In summary, good constructive heuristics are commonly incorporated by CARP meta-
heuristics. Nevertheless, a comparison between constructive heuristics and metaheuristics
is interesting considering the trade-off involving solution costs and processing times. Ta-
ble 2.5 presents results comparing the PS-Efficiency (α = 3.0) to two high performance
metaheuristics (MAENS [34] and HMA [11]). Table 2.5 upper segment presents the aver-
age deviation from lower bounds Gap(%), calculated as in Section 2.5.2. Table 2.5 lower
segment shows the average processing time CPU(s) for each method.

The processing times for the metaheuristics were obtained from Chen et al. [11].
Following the practice of literature [11, 32, 38], a CPU time conversion factor, based on
CPU frequency, was adopted. Therefore, the processing times reported for the meta-
heuristics [11] were scaled by a factor of 0.7. It is worth mentioning that differently from
other methods, HMA is stopped when its best incumbent cost achieves a known lower
bound (obtained from literature). This characteristic may substantially favor the HMA
processing time in comparison to the other methods.

Table 2.5 shows that metaheuristics obtained better solutions but at the cost of higher
processing times. For example, the overall Gap(%) for PS-Efficiency (k = 20000) is 4.71%
while for the metaheuristics vary from 0.19% to 0.55%. On the other hand, the average
processing times for PS-Efficiency is 10.14s while for the metaheuristics vary from 204.88s
to 230.30s.
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Table 2.3: Computational experiment results.

group k PS-RC(k) PS-RE(k) PS-Ellipse(k, α) PS-Efficiency(k, α)

α : 1.0 1.5 2.0 2.5 3.0 3.5 α : 1.0 1.5 2.0 2.5 3.0 3.5

gdb 1000 3.95 3.77 1.63 1.50 1.98 1.92 4.83 7.82 1.70 1.44 1.19 1.24 1.83 1.85

10000 2.65 2.15 1.10 1.02 1.34 1.22 3.52 6.44 1.16 0.74 0.78 0.80 1.03 1.16

20000 2.21 2.06 1.04 0.88 1.25 1.22 3.46 6.18 1.02 0.74 0.75 0.71 0.84 1.05

val 1000 8.42 8.35 6.12 5.38 5.10 5.26 6.03 8.17 6.20 5.29 4.85 4.83 4.65 4.36

10000 5.85 6.29 4.37 3.70 3.42 3.53 4.23 6.31 4.28 3.65 3.33 3.27 2.75 3.15

20000 5.60 5.81 3.82 3.38 3.12 3.26 3.98 5.88 3.79 3.18 2.98 2.80 2.53 2.78

egl 1000 16.64 16.43 8.59 9.02 12.04 15.05 19.96 25.32 8.50 7.49 7.51 7.74 7.73 8.03

10000 15.32 15.29 7.30 7.67 10.22 13.32 18.62 23.67 7.07 6.49 6.41 6.59 6.80 6.47

20000 14.92 15.00 7.05 7.51 10.01 12.62 18.20 23.33 6.89 6.31 6.06 6.28 6.41 6.25

C 1000 16.08 16.27 10.40 9.28 9.50 10.03 10.45 12.65 9.91 9.27 8.90 8.61 8.88 8.61

10000 13.39 12.99 7.40 7.27 7.28 7.29 8.64 9.99 7.44 6.83 6.96 6.34 6.69 6.61

20000 12.76 12.22 7.26 6.71 6.64 6.60 8.20 9.77 6.74 6.27 6.36 5.96 6.09 6.34

D 1000 12.15 12.30 10.16 9.40 8.48 7.74 7.68 7.20 9.55 8.13 7.26 7.18 6.49 6.86

10000 9.23 9.45 6.74 6.28 5.91 5.66 5.35 4.97 6.34 5.74 4.75 4.86 4.93 4.48

20000 8.77 8.85 6.26 5.71 5.33 5.03 4.92 4.45 5.73 5.15 4.40 4.20 4.13 4.30

E 1000 16.10 16.18 10.90 10.06 9.91 10.05 11.56 12.62 9.57 9.54 8.26 8.28 8.20 8.27

10000 13.09 12.60 8.04 7.68 7.72 7.98 9.25 10.25 7.45 6.93 6.29 5.97 6.00 5.82

20000 12.57 11.96 7.34 7.16 6.70 7.38 8.55 9.77 6.96 6.49 5.55 5.62 5.53 5.57

F 1000 12.34 11.53 10.04 8.92 8.96 8.47 8.64 7.75 9.48 8.27 8.50 7.78 7.40 6.66

10000 9.20 9.07 7.43 6.53 6.00 6.50 6.05 5.81 6.64 6.40 5.80 5.47 4.77 4.64

20000 8.56 8.47 6.83 6.04 5.54 5.84 5.48 5.27 6.00 5.69 5.29 4.98 4.18 4.44

egl-large 1000 28.14 27.61 17.78 16.97 16.98 17.91 18.25 19.53 17.06 16.45 16.42 16.07 16.59 16.26

10000 25.50 26.37 16.23 15.65 16.03 16.49 16.79 17.81 16.12 15.47 14.76 15.19 15.22 15.08

20000 25.09 26.12 16.01 15.16 15.45 16.09 16.10 17.27 15.65 15.05 14.69 14.50 14.23 14.95

overall 1000 12.96 12.82 8.73 8.09 8.37 8.75 10.14 11.86 8.31 7.53 7.12 6.99 6.94 6.84

10000 10.50 10.45 6.55 6.20 6.42 6.90 8.23 9.87 6.28 5.75 5.38 5.27 5.20 5.12

20000 10.04 9.97 6.15 5.80 5.94 6.41 7.81 9.46 5.81 5.33 4.98 4.85 4.71 4.89

In bold: the best results for each α comparing PS-Efficiency and PS-Ellipse.

In underline: the best results regarding all algorithms.

Table 2.4: Average processing times for k = 20000.

group PS-RC PS-RE PS-Ellipse PS-Efficiency PS-Alt1 PS-Alt2

gdb 0.76 0.70 0.74 1.19 0.91 1.08

val 2.16 2.04 2.18 3.08 2.52 3.04

egl 6.02 5.94 7.70 11.82 9.53 10.12

C 2.34 2.27 2.63 3.90 3.03 3.60

D 2.20 2.12 2.27 3.15 2.55 3.12

E 2.20 2.16 2.45 3.69 2.88 3.38

F 2.08 1.98 2.06 2.91 2.38 2.88

egl-large 59.34 58.04 71.05 97.52 81.04 87.02

overall 5.49 5.34 6.36 9.07 7.41 8.20

Average processing time in seconds (s).
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Table 2.5: Comparison of constructive heuristics and metaheuristics.

group PS-Efficiency (α = 3.0) Metaheuristics

k = 1000 k = 10000 k = 20000 MAENS HMA

Gap(%) (average deviation from lower bounds, in percentage)

gdb 1.83 1.03 0.84 0.01 0.00

val 4.65 2.75 2.53 0.22 0.06

egl 7.73 6.80 6.41 0.92 0.39

C 8.88 6.69 6.09 0.46 0.07

D 6.49 4.93 4.13 0.26 0.09

E 8.20 6.00 5.53 0.61 0.05

F 7.40 4.77 4.18 0.30 0.03

egl-large 16.59 15.22 14.23 3.54 1.97

overall 6.94 5.20 4.71 0.55 0.19

CPU(s) (average processing time, in seconds)

gdb 0.06 0.63 1.26 3.13 0.83*

val 0.21 2.10 3.29 33.85 18.70*

egl 0.69 6.75 13.49 348.94 452.22*

C 0.21 2.13 4.20 115.85 37.95*

D 0.16 1.64 3.36 153.67 24.59*

E 0.20 2.02 4.04 112.62 81.58*

F 0.16 1.55 3.10 116.79 5.91*

egl-large 5.53 55.28 110.40 1706.11 2872.80*

overall 0.51 5.09 10.14 204.88 230.30*

*: HMA is stopped when it achieves a best known lower bound

(obtained from literature).
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2.6 Conclusion

This paper proposed a constructive heuristic for the capacitated arc routing problem
called path-scanning with efficiency rule (PS-Efficiency). This heuristic uses a dynamically
activated rule which restricts the search towards promising candidate edges to be serviced
next by the current route. The efficiency rule is based on how each edge would affect the
current route efficiency calculated as the ratio of serviced demand by traversed distance.

Computational experiments conducted on a set of benchmark instances revealed that
the proposed heuristic outperformed all previous path-scanning heuristics by a consider-
able margin and was found to be more parameter-robust. Moreover, the impact of the
efficiency rule was investigated and found to be a key factor for the high performance of
the PS-Efficiency heuristic.

Future research can focus on assessing the effectiveness of PS-Efficiency when applied
to other routing problems, such as the vehicle routing problem [35]. Another possible
line of research is to investigate the speed-ups that can be achieved by implementing a
parallelized PS-Efficiency.
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Chapter 3

Hybrid genetic algorithm for the open

capacitated arc routing problem

The paper presented next is a full article published in the Computers and Opera-
tions Research in 2018 and it is co-authored with Fábio Luiz Usberti [1] (DOI: https:
//doi.org/10.1016/j.cor.2017.09.020). The original publication is available at www.
sciencedirect.com and the copyright is owned by Elsevier Ltd. In this paper we present
a hybrid genetic algorithm for the OCARP which obtained substantially better results in
comparison to previous methods. In special the proposed method was able to generate
good quality solutions with variability for instances where previous approaches presented
issues in finding feasible solutions.

The Open Capacitated Arc Routing Problem (OCARP) is an NP-hard arc routing
problem where, given an undirected graph, the objective is to find the least cost set of
routes that services all edges with positive demand (required edges). The routes are sub-
jected to capacity constraints in relation to edge demands. The OCARP differs from the
Capacitated Arc Routing Problem (CARP) since OCARP does not consider a depot and
routes are not constrained to form cycles. A hybrid genetic algorithm with feasibilization
and local search procedures is proposed for the OCARP. Computational experiments con-
ducted on a set of benchmark instances reveal that the proposed hybrid genetic algorithm
achieved the best upper bounds for almost all instances.

3.1 Introduction

The objective of arc routing problems consists of determining the least cost traversal
of a given subset of edges in a graph, with one or more collateral constraints. Many real
world applications are modeled as arc routing problems, such as street sweeping, garbage
collection, mail delivery, meter reading, etc. Estimated expenditure on these services
exceeds billions of dollars per year in the United States, thus revealing the economical
importance of such problems [9, 4, 8, 5].

The Capacitated Arc Routing Problem (CARP) [11] is a combinatorial optimization
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problem defined on an undirected graph G(V,E) with non-negative costs and demands
associated to the edges. A fleet of identical vehicles with limited capacity is considered.
The set of vehicles must service all edges with positive demand (required edges). The
objective is to find a minimum cost set of routes that start and finish in a distinguished
node, called depot. The CARP has been extensively studied over the last decades and we
refer the reader to [22, 20] for a comprehensive survey.

A CARP variation consists in allowing both closed and open routes. An open route
can use different nodes to start (source) and end (sink) the route, while a closed route
is a cycle in which the source and sink nodes are necessarily the same. This problem
in which routes are not constrained to form cycles is called the Open Capacitated Arc
Routing Problem (OCARP) [29]. There are at least two problems that can be formulated
as OCARP instances, the Meter Reader Routing Problem [26, 3, 32] and the Cutting
Path Determination Problem [19, 25].

The OCARP has been proved NP-hard [30]. Attempts were made to solve OCARP to
optimality, including a branch-and-bound algorithm [29] and an integer linear program-
ming formulation [30]. These methods solved to optimality only small-sized instances (up
to 27 nodes and 55 required edges). Thus it is of interest the development of heuristics
that achieve good solutions in reasonable time in practice, which usually involve larger
instances.

This work proposes a Hybrid Genetic Algorithm (HGA) for the OCARP. Computa-
tional experiments were performed to evaluate the proposed method. The results are
compared to other heuristic methods from literature hence revealing the HGA good per-
formance.

This paper is organized as follows. The OCARP is formally defined in Section 3.2.
Section 3.3 presents a review of previous works for OCARP and applications. Section 3.4
describes the proposed HGA for OCARP. Section 3.5 contains computational experiments
on a set of benchmark instances. Section 3.6 provides the final remarks.

3.2 Problem Definition

The Open Capacitated Arc Routing Problem (OCARP) proposed by Usberti et al. [30]
is defined as follows. Let G(V,E) be an undirected connected graph where non-negative
costs cij and non-negative demands dij are assigned to each edge (i, j) ∈ E. If an edge
(i, j) has positive demand dij > 0 then it is called a required edge. Let ER ⊆ E be the
set of required edges. A fleet of M identical vehicles is available, each with capacity D.
While traversing the graph, a vehicle might (i) service an edge, which deducts its capacity
by the edge demand and increases the solution cost by the edge cost or (ii) deadhead an
edge, which only increases the solution cost by the edge cost. A vehicle route is defined
by a sequence of directed edges (arcs) traversed by the vehicle, and here both open and
closed routes are considered, i.e., an OCARP route may start and end at distinct nodes.

A feasible OCARP solution is composed by at most M routes, which collectively service
all required edges and do not exceed the vehicles capacity D (Figure 3.1). OCARP aims
to find a feasible set of routes with minimum cost.
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Figure 3.1: OCARP: an instance and a feasible solution.

The OCARP is a variant of the CARP that considers two important differences. First,
OCARP allows routes to be open while CARP requires that all routes must start and
end at a specific node (depot). Second, many CARP heuristics considers the number
of vehicles M as decision variable, while in OCARP the number of vehicles is a fixed
parameter. Instances with a very tight number of vehicles can be harder to solve or even
to obtain good solutions, as will be discussed in Section 3.5.

3.3 Previous Work

The OCARP was introduced by Usberti et al. [30] and the authors presented an integer
linear programming formulation to the problem. This formulation has an exponential
number of variables and constraints, which could be the reason why the authors reported
difficulties to solve medium and large instances. In the following work, Usberti et al.
[29] proposed a branch-and-bound algorithm that improved the known lower bounds.
This algorithm exploited the relationship between OCARP and the Capacity and Degree
Constrained Minimum Spanning Forest Problem (CDCMSFP).

With respect to heuristic approaches, Usberti et al. [30] proposed a reactive path-
scanning with ellipse rule (RPS) that obtained the first known solutions for OCARP. Af-
terwards Usberti [28] proposed a greedy randomized adaptive search procedure (GRASP)
with path-relinking that improved the known best solutions. Nevertheless, the largest
instances still presented significant optimality gaps (greater than 30%).

Fung et al. [10] presented a memetic algorithm for another problem, which was also
called open capacitated arc routing problem. Their problem differs from the original
OCARP on three points: (i) routes starts from a depot but need not to return to the
depot; (ii) the number of vehicles is a decision variable with an associated cost; (iii) the
graph and the required edges are directed.
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3.3.1 Applications

Meter Reader Routing Problem

The Meter Reader Routing Problem (MRRP) considers the routing of employees re-
sponsible for metering electric, water and gas consumption data within urban areas. The
employees are taken by car to the starting point of their routes and after finishing their
routes they take public transport. The MRRP can be modeled as an OCARP, since the
walking routes performed by the employees start and end at possibly different nodes. The
objective is to minimize the routes travel-time and also consider working shifts. Stern
and Dror [26] consider a route-first cluster-second heuristic where initially a single non-
capacitated route cover all required edges. The route is then partitioned, and each part
is designated to a single employee. Bodin and Levy [3] consider an arc partitioning algo-
rithm that was later applied by Wunderlich et al. [32] to route employees for the Southern
California Gas Company (SOCAL) from Los Angeles, USA.

Cutting Path Determination Problem

The Cutting Path Determination Problem (CPDP) concerns in finding the trajectories
for a set of blowtorches to perform a cut pattern on a steel plate within minimum time.
Moreira et al. [21] investigated a CPDP version where the problem was transformed into
a dynamic rural postman problem. Rodrigues et al. [25] modeled another CPDP version
as rural postman problem and proposed a heuristic method for the problem. Instances of
CPDP can be formulated as OCARP instances by a polynomial transformation algorithm
explained in [30].

3.4 Hybrid Genetic Algorithm

Genetic algorithms are metaheuristics inspired by the theory of evolution, using con-
cepts such as natural selection, reproduction, genetic heritage and mutation [15]. Genetic
algorithms with local search are called hybrid genetic algorithms. Several routing prob-
lems have been successfully addressed by hybrid genetic algorithms, some examples are:
VRP (Vehicle Routing Problem) [21], CARP (Capacitated Arc Routing Problem) [16]
and PCARP (Periodic Capacitated Arc Routing Problem) [17]. This paper proposes a
hybrid genetic algorithm for the OCARP with the intent to overcome the feasibility issues
presented by previous approaches [30, 28].

3.4.1 Algorithm Overview

The proposed HGA for OCARP is composed of the traditional genetic algorithm com-
ponents (population initialization, selection and crossover) in addition to the following
procedures: (i) feasibilization procedure, (ii) local search, (iii) population restart. The
feasibilization procedure is responsible for obtaining a feasible solution from a chromo-
some. The local search explores the neighborhood of a feasible solution in an attempt to
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improve the solution. The population restart avoids premature convergence of the popula-
tion. The HGA does not employ mutation given the difficulty of finding and maintaining
feasible OCARP solutions. Algorithm 2 presents the pseudocode.

Algorithm 2: HGA
Input: G(V,E): instance graph; M : number of vehicles; D: vehicle capacity; d: demand

vector; P : population size parameter; Q: inter-route local search parameter; W : local

search filter parameter; K: restart interval parameter;

Output: bestSol: best solution found;

Objective: Search heuristically for a good OCARP solution within time limit.

begin
SP ← distance_matrix_initialization(G); // Section 3.4.2

(POP, bestSol) ← initial_population(SP, M , D, d, P , Q); // Section 3.4.5

while time limit not exceeded do
parents_selection_breeding(POP); // Section 3.4.6

for pair of selected parents (parent1, parent2) do
C ← crossover(parent1, parent2); // Section 3.4.7

sol← feasibilization(C, SP, M , D, d); // Section 3.4.8

if sol is feasible then
(sol′, C ′)← local_search(sol, SP, M , D, d, Q); // Section 3.4.9

New individual added to population;

if (cost(sol′) < cost(bestSol)) then
bestSol ← sol′;

POP ← update_population(POP, SP, M , D, d, K, Q); // Section 3.4.10

return (bestSol);

3.4.2 Distance Matrix Initialization

The first step of HGA is to initialize the matrix of distances between required arcs.
Let ER be the set of required edges and AR be the set of required arcs, where for each
required edge {i, j} ∈ ER there are two corresponding required arcs (i, j), (j, i) ∈ AR.
A matrix SP of dimensions |AR| × |AR| is computed such that each entry SP [e, f ] is
the shortest path cost from the ending node of arc e ∈ AR to the starting node of arc
f ∈ AR. For sparse graphs (where |E| is much less than |V |2) the SP can be computed
within O(|V |3) time and O(|V |2) space by using the Floyd-Warshall algorithm [6]. The
SP allows HGA to retrieve the distances between required arcs in O(1) time throughout
the optimization process.

3.4.3 Chromosome Encoding

The genetic algorithm uses a non-capacitated route encoding for the chromosome. The
chromosome is composed by a sequence of |ER| required arcs representing a single vehicle
route of unlimited capacity that services all required edges (i, j) ∈ ER (Figure 3.2).

The non-required edges are implicitly inserted in the shortest path of successive pairs
of required arcs. An OCARP solution associated to a chromosome is obtained only after
the feasibilization procedure (Section 3.4.8).
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This chromosome codification is an example of an Indirect Solution Representation

(ISR) [23] with the benefit that any ISR can be optimally solved to obtain the best
OCARP solution associated with it. This will be further discussed in Section 3.4.8.

Figure 3.2: An instance and a corresponding chromosome.

3.4.4 Fitness

The fitness of a solution sol is defined as 1/(cost(sol) − LB0), where LB0 is a trivial
lower bound: the sum of cost of all required edges. If any solution sol is found where
cost(sol) = LB0 then the HGA is halted since an optimal solution was found.

3.4.5 Initial Population

This procedure aims the initialization of P feasible individuals to fill the initial popu-
lation of the HGA, where P is the population size. The construction of an individual has
two steps. The first step constructs a non-capacitated route and the second step splits the
non-capacitated route into capacitated sub-routes in an attempt to generate an OCARP
solution.

First-step A non-capacitated route is constructed by a nearest neighbor heuristic. The
route is initialized with a random required arc. The route is then augmented by iteratively
adding the closest required arc, considering both route endpoints, until all ER required
edges are covered. Tie-breaking rule is to choose one of the closest required arcs at
random. The non-capacitated route is then improved through 2-opt local search [13] until
a local minimum is found. The nearest neighbor heuristic time complexity is O(|ER|

2) and
each 2-opt iteration is O(|ER|

2). Therefore, the construction of a non-capacitated route
is bounded by O(c|ER|

2), where c is an upper bound for the number of 2-opt iterations.
Note that c is not actually employed by HGA but rather used exclusively for the analysis
of complexity.
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Second-step The feasibilization procedure (Section 3.4.8) attempt to split the non-
capacitated route into M capacitated sub-routes. If the feasibilization is successful, the
solution is inserted in the population. Otherwise, the infeasible individual is discarded.

The whole process is repeated until the population contains P feasible individuals. If
initial population procedure is unable to generate P feasible individuals within time limit,
the HGA is halted and the best feasible solution (if any) is returned.

3.4.6 Parents Selection for Breeding

At each generation, P − 1 crossovers are performed and each crossover requires the
selection of two parent chromosomes to generate a single offspring.

The selection of the parents is made by the Stochastic Universal Selection [1]. In
this technique a wheel is created and partitioned in sections, one associated with each
individual and that have size proportional to the fitness of the individual. Then a single
pointer is spun at random, and all parents are selected by selecting them at evenly spaced
intervals starting from the random pointer. This method has the advantage to select the
parents in a more predictable behavior than the Roulette Wheel Selection, reducing the
bias of the selection operation [1].

3.4.7 Crossover

The C1 crossover operator, as described by Reeves [24], was adopted. First a point
is chosen at random. The sequence of genes from the first parent to the left of the
crossover point is copied to the offspring. The remaining genes are copied to the offspring
in the same order they appear in the second parent. Figure 3.3 gives an example with
ER = {(a, b), (c, d), (e, f)(g, h), (i, j), (k, l)}.

Figure 3.3: C1 Crossover operation.

3.4.8 Feasibilization

The feasibilization procedure starts with a non-capacitated route given by a chromo-
some C and tries to split it into capacitated sub-routes, using a Split algorithm. The Split

algorithm was first proposed by Ulusoy [27] and makes an optimal decomposition of the
non-capacitated route into a set of capacitated sub-routes. Since the OCARP considers
a limited fleet, our algorithm adapted the Split to find the optimal set composed of up
to M capacitated sub-routes, if there is at least one such decomposition. Therefore, the
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output of Split is a set of M minimum-cost sub-routes, subject to vehicle capacity and
that cover all required edges.

Algorithm 3 shows the Split algorithm while Figure 3.4 exemplifies the process. The
Split algorithm starts by creating an auxiliary graph H. Figure 3.4(i) presents the instance
and a chromosome C that is composed by a sequence of required arcs. Figure 3.4(ii)
shows the cost of shortest path between each successive pair of required arcs. Figure
3.4(iii) shows the auxiliary graph H associated to C. The graph H is a directed acyclic
graph (DAG) where each vertex represents a required arc from C and each arc represents
a capacitated sub-route of C that is feasible with respect to the vehicle capacity. The
cost of each arc of H is given by the cost of each corresponding sub-route.

Figure 3.4: Operation of Split algorithm.

The Split algorithm finds the shortest path in H starting from the first vertex, in
topological order, to the last vertex composed by at most M arcs. Since graph H is
a DAG, the shortest path can be obtained by Algorithm 4, which is a straightforward
adaptation of Bellman-Ford algorithm [6]. The OCARP solution is the set of routes
associated to the arcs selected in the shortest path of H, as shown in Figure 3.4(iv).

If the Split algorithm fails to find a shortest path with at most M arcs, then another
feasibilization procedure is attempted as explained next. Considering all capacitated sub-
routes generated by the Split algorithm (arcs of H), a sub-route with the least remainder
capacity is inserted into a new partial solution (example in Figure 3.5). Tie-breaking
rule is to choose one sub-route at random. Then, a non-capacitated route is created
containing all required edges still uncovered by the partial solution. This non-capacitated
route is constructed by the same process employed in population initialization’s first step.
Finally, the Split algorithm is applied on the new non-capacitated route, this time using
one less vehicle. If the algorithm find a feasible solution, the corresponding capacitated
sub-routes join the partial solution into a complete OCARP solution. Otherwise, the
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Algorithm 3: Split
Input: C: chromosome; SP: distance matrix; M : number of vehicles; D: vehicle capacity; d:

demand vector;
Output: sol: solution; H(VH , AH): auxiliary graph;
Objective: Find the optimal splitting of the non-capacitated route associated to chromosome
C.

begin
// Graph H(VH , AH) initialization
Let C be defined as a sequence (a1, ..., a|C|) of required arcs;
VH ← ∅;AH ← ∅; cost[]← ∅;
for i← 1 to |C| do

VH ← VH ∪ {ai};

VH ← VH ∪ {0}; // sink node
for i← 1 to |C| do

// sub-routes attending exactly one required arc
sum_demand←d[ai];
sum_deadheading ← 0;
AH ← AH ∪ {(ai, ai+1)};
cost[(ai, ai+1)] ← 0;
for j ← i+ 1 to |C| do

// sub-routes attending more than one required arc
sum_demand← sum_demand + d[aj ];
sum_deadheading ← sum_deadheading + SP[aj−1][aj ];
if sum_demand ≤ D then

AH ← AH ∪ {(ai, aj+1)};
cost[(ai, aj+1)] ← sum_deadheading;

DAG_shortest_path(VH , AH , cost, M , a1); // Algorithm 4
if exists shortest path with at most M arcs then

sol← OCARP solution associated to the found shortest path;
return (sol, ∅);

else
return (∅, H);

process is repeated up to M iterations. If the Split algorithm does not find a feasible
solution within M iterations, the chromosome C is declared infeasible and discarded.
The feasibilization procedure pseudocode is shown in Algorithm 5.
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Algorithm 4: DAG shortest path with at most M arcs.
Input: H(VH , AH): directed acyclic graph; cost: cost vector for arcs ∈ AH ; M : number of

vehicles; v1: first vertex in topological order of H(VH , AH);
Output: dst: distances; pred: predecessors;
Objective: Find shortest path in H from v1 to other vertices using at most M arcs.
begin

Initialize dst[v]←∞ and pred[v]← NIL for each v ∈ VH .
Initialize dst[v1]← 0;
for k ← 1 to M do

for vi ∈ VH in reverse topological order do
for (vi, vj) ∈ AH do

if dst[vi]+cost[(vi, vj)] <dst[vj ] then
dst[vj ]←dst[vi]+cost[(vi, vj)];
pred[vj ]← vi;

Figure 3.5: Feasibilization procedure operation: strategy to improve feasibility.
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Algorithm 5: Feasibilization procedure
Input: C: chromosome; SP: distance matrix; M : number of vehicles; D: vehicle capacity; d:

demand vector;

Output: sol: solution;

Objective: Generates an OCARP solution based on a non-capacitated route defined by C,

using the Split algorithm and a feasibilization strategy.

begin
C ′ ← C; sol← ∅; found← false;

for k ← 0 to M − 1 do
M ′ ←M − k;

(sol′, H)← Split(C ′,SP,M ′, D,d); // Algorithm 3

if sol′ is feasible then
sol← sol ∪ sol′;

found← true;

k ←M ; // Feasible solution found

else
Let Rmax be a sub-route from H that services most demand;

sol← sol ∪Rmax; // Route Rmax is added to partial solution.

Create a non-capacitated route C ′′ using population initialization first step

servicing only the required edges that are not serviced in partial solution sol;

C ′ ← C ′′;

if found is true then
return sol; // Feasibitilization success

else
return ∅; // Feasibilization failed

The feasibilization procedure goal is to intensify the search for feasible solutions even
when the Split algorithm alone is not enough to achieve feasible solutions. Additional
experiments have shown that the Split algorithm alone has a high ratio of failure for large
instances with very tight number of vehicles (Section 3.5.1).

A complexity analysis of Algorithms 3, 4 and 5 is described below. Algorithm 4 runs in
O(M |ER|

2) since |AH | is bounded by |ER|
2. The Split algorithm (Algorithm 3) first creates

the auxiliary graph H in O(|ER|
2) and then calls Algorithm 4. Thus Algorithm 3 has

complexity O(M |ER|
2). The feasibilization procedure (Algorithm 5) main loop is executed

M times in the worst case (in practice it can be much less if the instance is not tight on the
number of vehicles). At each iteration, it executes the Split algorithm and may call the
creation of a new partial solution through the population initialization’s first step (Section
3.4.5). The Split algorithm is O(M |ER|

2), while the population initialization’s first step
is O(c|ER|

2), where c is an upper bound of 2-opt local search iterations. Therefore, the
whole feasibilization procedure worst case complexity is bounded by O(M(M + c)|ER|

2).

3.4.9 Local Search

Local search algorithms search for better solutions that are similar (neighboring) to
the current solution. Local search is often the most computational expensive routine of
metaheuristics, therefore it seems wise to apply local search only to solutions that are
promising. This work uses a statistical filter for local search, proposed by Usberti et al.
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[31], able to classify bad solutions within a certain confidence interval. A variable repre-
senting the improvement ratio between initial and local search solution costs is considered.
The improvement ratio of a solution s is defined as improvement(s) = cost(s)/cost(s′),
where s′ is the local minimum solution obtained through s after local search. The filter
starts by applying local search to the first W solutions s1, s2, ..., sW and storing a sam-
pling of improvement(si), ∀i ∈ {1, 2, ...,W}. From the sampling it is computed µ as
average and ρ as standard deviation. Then this information is used to decide whether
a solution is allowed to local search or not. A solution s is considered good enough for
local search if it satisfies the following condition: cost(s)/cost(s∗) ≤ (µ + 2ρ), where s∗

is the incumbent solution. The filter gives a confidence interval of approximately 95%

probability to reject solutions that cannot be improved by local search to overcome the
incumbent solution s∗, assuming that improvement(s) is an independent random variable
with normal distribution.

The local search pseudocode is shown by Algorithm 6. The local search is composed by
the following procedures: (i) the inter-route local search that reconstructs pair of routes,
(ii) the intra-route local search that executes 2-opt for each route, and (iii) the Split local
search that first executes the Split−1 algorithm to make a new chromosome for the current
solution and then executes Split algorithm which explores the solutions neighborhood by
optimally splitting the chromosome.

Algorithm 6: Local Search
Input: sol: initial solution; SP: distance matrix; M : number of vehicles; D: vehicle capacity;

d: demand vector; Q: local search set size parameter;

Output: sol: local search solution; C: chromosome of local search solution;

Objective: Improve an OCARP feasible solution.

begin
intraCost← ∞;

while cost(sol) < intraCost do
sol← inter-route_local_search(sol, SP, M , D, d, Q); // Algorithm 7

sol← intra-route_local_search(sol, SP, M);

intraCost← cost(sol);

C ← Split−1(sol, SP, M); // Algorithm 8

sol← Split(C, SP, M , D, d); // Algorithm 3

return (sol, C);

Inter-route The inter-route local search uses a deconstruct/reconstruct approach ap-
plied to pairs of nearby routes (Algorithm 7). Consider a set S(u,v) composed by the
Q nearest routes to the required edge (u, v) ∈ ER. Each pair of routes from set S(u,v)

is submitted to the reconstruction phase, which starts by creating a new pair of routes
servicing the same required edges. The new pair of routes is created using the same pro-
cess employed by population initialization but servicing only the required edges from the
original pair and using two vehicles. The new pair of routes replaces the original pair if
a lower cost is achieved. The inter-route local search is applied for each set S(u,v), where
(u, v) ∈ ER. An example of the inter-route local search is presented in Figure 3.6, where
the set of routes Sa = {r1, r3, r4} is reconstructed.
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Intra-route The intra-route local search consists of the 2-opt local search [13] applied
to each route individually. Each 2-opt local search is executed until a local minimum is
achieved. Considering that each route is a sequence of required arcs linked by deadhead-
ing shortest paths, the 2-opt operator consists of removing two shortest path links and
replacing them by two other links with lower costs and that maintains the route integrity.

Figure 3.6: Example of inter-route local search optimization.

Split local search The Split−1 takes a solution s and generates an associated chromo-
some. For this, the Split−1 (Algorithm 8) operates on an undirected graph I(V,E ∪ Es)

where each edge (u, v) ∈ Es represents one route of s, where u is the starting vertex of the
first required arc of that route and v is the ending vertex of the last required arc of the
same route. On graph I a single non-capacitated route servicing the edges of Es is con-
structed applying the first step of population initialization. The resulting non-capacitated
route on graph I is transformed into a non-capacitated route on original graph G by re-
placing each edge of Es by its corresponding route in s. The new non-capacitated route is
then optimally split by the Split algorithm. It is worth noticing that the solution obtained
by Split(Split−1(s)) in this case is guaranteed to be feasible and to have a cost at least as
good as s since the routes of s is a viable solution for the Split algorithm.

A complexity analysis of the local search procedure is provided. Each iteration of
inter-route main loop creates and sorts a set S(u,v) in O(|ER|+MlogM), followed by the
creation of O(Q2) new pairs of routes in the reconstruction phase (where Q is a fixed
parameter). Each pair of routes is created and feasibilized in O(c|ER|

2), considering that
c is an upper bound for 2-opt iterations. The complexity of each inter-route iteration is
O(|ER|+MlogM+c|ER|

2). A non-trivial OCARP problem has M < |ER|, so the sum can
be expressed simply as O(c|ER|

2). Therefore, the inter-route local search (Algorithm 7)
complexity, including all |ER| main loop iterations, is O(c|ER|

3). The intra-route consists
of the 2-opt local search operations on each route. Since there are |ER| required arcs
distributed among the routes, the local search second step is bounded by O(c|ER|

2). The
Split−1 (Algorithm 8) is bounded by O(cM2) and the Split algorithm is O(M |ER|

2). The
complexity of the entire local search procedure (Algorithm 6) is bounded by O(c|ER|

3)
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Figure 3.7: Example of Split−1 followed by Split execution.

for each iteration.

Algorithm 7: Inter-route local search
Input: sol: initial solution; SP: distance matrix; M : number of vehicles; D: vehicle capacity;

d: demand vector; Q: set size parameter;

Output: sol: local search solution;

Objective: Improve an OCARP feasible solution by reconstructing pair of routes;

begin
Let sol be an array of routes (r1, r2, ..., r|M |);

for (u, v) ∈ ER do
Let dist(u,v)[1..M ] be a vector with M empty positions;

for i← 1 to M do
distance← +∞;

for each required arc (a, b) 6= (u, v) in the route ri of solution sol do
distance← min{distance,SP[(u, v)][(a, b)],SP[(u, v)][(b, a)],

SP[(v, u)][(a, b)],SP[(v, u)][(b, a)]};

dist(u,v)[i]← (distance, i);

Sort vector dist(u,v)[1..M ] by the distances in non-decreasing order;

Let S(u,v) be the set of the first Q routes of sol in the order defined by dist(u,v)[1..M ];

for each pair of routes ri and rj in S(u,v) do
ncr_pair ← Create a non-capacitated route using initial population first step

servicing the required edges in ri and rj ;

sol_pair ← feasibilization(ncr_pair, SP, 2, D, d); // Algorithm 5

if routes of sol_pair have lower cost than ri and rj added then
Replace routes ri and rj in sol by the routes of sol_pair;

return sol;
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Algorithm 8: Split−1

Input: s: solution; SP: distance matrix; M : number of vehicles;

Output: C: chromosome representing s;

Objective: Create a chromosome representing an OCARP solution.

begin
Initialize graph I(V,E ∪ Es);

Es ← ∅;

for i← 1 to M do
Add to Es the edge (u, v) where u is the starting vertex of the first required arc of the

i-th route of s and v the ending vertex of the last required arc of the same route;

Create a non-capacitated route ncr(s) on I using the first step method from population

initialization servicing the edges of Es;

Create the chromosome (non-capacitated route) C on G associated to ncr(s) by replacing

each edge of Es by its corresponding route of s;

return C;

3.4.10 Population Update

The new population is updated for the next generation by including the best individual
and the offspring. For each infeasible offspring, an individual from the current population
is chosen at random to be inserted into the new population. Therefore, the population is
always composed of P feasible individuals.

To maintain diversity, the HGA employs a population restart procedure executed
every K generations. This procedure was necessary to avoid the population premature
convergence, specially since HGA does not apply mutation. At each restart half of the
population is replaced by new solutions. The discarded individuals are chosen at random,
but the best solution is never selected. The new individuals are created by the same
method employed by population initialization.

3.5 Computational Experiments

The computational experiments were conducted on a benchmark of CARP instances,
which includes 23 gdb[12], 34 val [2], 24 egl [18], 32 A [14], and 24 B [14] instances,
totaling 137 instances. The depot was considered a common node while the rest of the
data left intact. Full experimental data, instances and HGA source code are available
on-line1.

The computational tests considered three classes of instances regarding the number of
vehicles: M = M∗, M = M∗ + 1 and M = M∗ + 2, where M∗ is the minimum number
of vehicles required for a feasible solution. Consequently, 137 CARP instances and three
different numbers of vehicles summed up 411 OCARP instances. Table 3.1 summarizes
the data for the OCARP instances.

The experiment compared the results obtained by the HGA (Hybrid Genetic Algo-
rithm) with two methods from literature: RPS (Reactive Path-scanning with ellipse rule)
heuristic [30] and GRASP (Greedy Randomized Adaptive Search Procedure with path-
relinking) metaheuristic [28].

1http://www.ic.unicamp.br/~fusberti/problems/ocarp
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The RPS, GRASP and HGA were executed in an Intel Xeon X3430 2.4 GHz with 8
GB of RAM and Linux 64-bit operating system. HGA was implemented in C++ and uses
the LEMON [7] library for graph algorithms. The RPS and GRASP were implemented in
C and its source codes were provided by the authors. The parameters of HGA are given
by Table 3.2, these values were selected after previous empirical tests.

Table 3.3 contains the overall results for each group-class of instances. The Gap(%) =

100∗(UB−LB)/LB is the average deviation from lower bound, where upper bounds (UB)
are provided by the heuristics and the lower bounds (LB) were reported by [29]. The
column Feas(%) measures the percentage ratio of feasible solutions, while FeasDiff(%)

measures the percentage of feasible and different solutions. Both ratios were calculated
for the set of solutions obtained until the time limit or until one million solutions were
generated. The field CPU(s) shows the average processing time to attain the best solution
(in seconds). All instances were processed for one hour by each heuristic.

Table 3.1: Benchmark instances for OCARP.
Instance set |V | |E| |ER| M∗

gdb 7-27 11-55 11-55 3-10
val 24-50 34-97 34-97 2-10
egl 77-140 98-190 51-190 5-35
A 10-40 15-69 11-63 1-25
B 13-40 15-69 11-53 2-21

Table 3.2: Hybrid genetic algorithm parameters
Parameter Description Value

P Population size 20
K Population restart interval (generations) 150
W Local search filter sampling size 100
Q Inter-route local search set size 4

Table 3.3 shows that HGA obtained significantly better overall solutions than RPS
and GRASP with less processing time. The experiment also confirmed that the value of
the parameter M has meaningful impact on results, since all algorithms have a better
performance as the value of M is increased from M∗ to M∗ + 1 and M∗ + 2.

The results in Table 3.3 for gdb and val report that HGA can attain equal or better
solutions with less processing time for small instances. The results with egl show the
superior performance of HGA for larger instances. Especially for egl instances with M =

M∗ class, which are the hardest instances, the deviation from lower bound Gap(%) was
substantially reduced from 15.94% (GRASP) to 11.83% (HGA). For A and B instances
the HGA shows a slightly worse but competitive performance in comparison to GRASP.
The overall Gap(%) show that HGA performed better than GRASP and RPS.

From Table 3.3 it is worth noticing the difference between Feas(%) and FeasDiff(%)

for each heuristic. The RPS has very similar Feas(%) and FeasDiff(%), explained by
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Table 3.3: Computational experiment overall results.

Gap(%) Feas(%) FeasDiff(%) CPU(s)

group class RPS GRASP HGA RPS GRASP HGA RPS GRASP HGA RPS GRASP HGA

gdb M∗ 0.09 0.07 0.07 77.45 85.50 98.55 77.38 78.50 97.38 172.73 0.3 < 0.1

M∗ + 1 0.05 0.05 0.05 98.47 98.91 100.00 98.47 96.44 99.69 11.5 0.1 < 0.1

M∗ + 2 0.05 0.02 0.02 99.95 100.00 100.00 99.95 97.73 99.65 14.5 0.1 < 0.1

overall 0.06 0.05 0.05 91.96 94.81 99.52 91.93 90.89 98.91 66.2 0.2 < 0.1

val M∗ 3.83 3.19 3.18 83.81 87.58 99.22 83.73 22.47 87.66 658.4 170.1 32.1

M∗ + 1 3.29 2.24 2.24 97.96 99.01 100.00 97.95 46.93 93.64 818.5 32.1 3.0

M∗ + 2 3.30 1.46 1.46 99.70 100.00 100.00 99.69 46.82 93.39 791.4 13.2 1.1

overall 3.48 2.29 2.29 93.82 95.53 99.74 93.79 38.74 91.56 756.1 71.8 12.0

egl M∗ 31.74 15.94 11.83 49.22 60.14 95.26 49.13 3.07 79.04 2066.4 1142.5 1424.0

M∗ + 1 20.69 7.20 6.75 81.10 87.69 99.99 80.87 12.95 77.80 1844.4 923.6 951.4

M∗ + 2 18.49 5.33 5.19 91.07 94.48 100.00 90.90 18.27 76.06 2057.9 1037.3 528.8

overall 23.64 9.49 7.92 73.79 80.77 98.41 73.63 11.43 77.63 1989.6 1034.5 968.1

A M∗ 4.90 3.54 3.58 65.07 69.35 94.81 58.51 30.51 64.50 492.87 35.10 95.44

M∗ + 1 3.20 1.72 1.72 84.48 87.47 97.66 78.72 60.64 86.76 439.74 16.16 23.30

M∗ + 2 2.98 1.14 1.14 90.55 94.05 98.85 84.83 76.69 93.50 410.49 0.28 1.63

overall 3.69 2.13 2.14 80.04 83.62 97.11 74.02 55.95 81.58 447.7 17.2 40.1

B M∗ 3.66 2.91 2.94 55.60 62.61 89.00 50.58 26.43 40.79 479.06 94.94 92.56

M∗ + 1 1.34 0.73 0.73 79.74 87.74 97.70 76.77 63.66 75.85 316.74 0.73 1.33

M∗ + 2 1.08 0.23 0.23 88.32 94.40 99.45 85.35 78.18 84.99 268.49 0.26 1.98

overall 2.03 1.29 1.30 74.56 81.59 95.38 70.90 56.09 67.21 354.8 32.0 32.0

overall M∗ 8.31 4.93 4.22 67.14 73.60 95.56 64.66 30.54 73.97 753.44 267.25 295.95

M∗ + 1 5.43 2.36 2.27 88.67 92.29 99.04 86.75 55.09 87.06 268.49 0.26 1.98

M∗ + 2 4.95 1.61 1.58 94.06 96.64 99.63 92.16 62.57 89.88 702.28 185.12 93.63

overall 6.23 2.96 2.69 83.29 87.51 98.08 81.19 49.40 83.64 714.0 208.7 187.6

In bold: best results regarding Gap(%).

Gap(%): average deviation from lower bound (%).

Feas(%): average ratio of feasible solutions (%).

FeasDiff(%): average ratio of feasible and different solutions (%).

CPU(s): average time for the heuristic to attain its best solution (in seconds).

the fact that RPS does not employ local search which could in turn reduce solution vari-
ability. On the other hand, GRASP relies heavily on local search methods and therefore
has FeasDiff(%) substantially lower than Feas(%). In overall, HGA has FeasDiff(%)

higher than GRASP for all instances and is very competitive with RPS, where the HGA
is better for M = M∗ and M = M∗ + 1 while RPS is better for M = M∗ + 2.

Table 3.4 presents the detailed results for the egl instances and class M = M∗. The
number of required edges (|ER|), number of vehicles (M∗), lower bound (LB), upper
bound (UB), deviation from lower bound Gap(%) and the ratio of unique feasible solutions
FeasDiff(%). In bold are the best upper bounds and in italics the instances for which
HGA produced a major Gap(%) improvement (> 5%).

Table 3.4 shows that HGA obtained the best upper bounds for all instances and im-
proved the best known upper bounds for 16 instances. In special, HGA produced a major
Gap(%) improvement over the highlighted (in italic) instances. The highlighted instances
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Table 3.4: Detailed results for egl with M = M∗ instances.

UB Gap(%) FeasDiff(%)

instance |ER| M
∗ LB RPS GRASP HGA RPS GRASP HGA RPS GRASP HGA

egl-e1-A 51 5 1673 1802 1775 1775 7.71 6.10 6.10 66.61 0.76 69.11

egl-e1-B 51 7 1591 1823 1749 1749 14.58 9.93 9.93 59.16 0.35 81.10

egl-e1-C 51 10 1523 1723 1652 1652 13.13 8.47 8.47 66.63 0.16 67.51

egl-e2-A 72 7 2019 2302 2173 2173 14.02 7.63 7.63 63.44 1.01 90.75

egl-e2-B 72 10 1944 2249 2079 2062 15.69 6.94 6.07 64.46 0.88 84.56

egl-e2-C 72 14 1900 2424 2084 2084 27.58 9.68 9.68 39.25 0.16 74.92

egl-e3-A 87 8 2277 2856 2541 2533 25.43 11.59 11.24 52.36 2.90 95.92

egl-e3-B 87 12 2221 2759 2438 2409 24.22 9.77 8.46 58.88 2.40 93.53

egl-e3-C 87 17 2188 2804 2362 2357 28.15 7.95 7.72 47.55 0.90 81.14

egl-e4-A 98 9 2453 3095 2656 2631 26.17 8.28 7.26 52.51 2.78 94.61

egl-e4-B 98 14 2453 3198 2720 2708 30.37 10.88 10.40 46.43 1.04 91.50

egl-e4-C 98 19 2453 3789 3208 2812 54.46 30.78 14.64 0.14 0.04 22.48

egl-s1-A 75 7 1584 1942 1799 1799 22.60 13.57 13.57 77.55 1.64 69.45

egl-s1-B 75 10 1475 1859 1745 1745 26.03 18.31 18.31 80.89 1.79 60.97

egl-s1-C 75 14 1415 2080 1891 1874 47.00 33.64 32.44 42.67 0.10 84.74

egl-s2-A 147 14 3228 4303 3693 3693 33.30 14.41 14.41 68.29 8.45 98.07

egl-s2-B 147 20 3176 4979 4360 3775 56.77 37.28 18.86 3.65 0.55 87.78

egl-s2-C 147 27 3174 4812 3856 3691 51.61 21.49 16.29 7.73 0.78 84.06

egl-s3-A 159 15 3393 4298 3824 3808 26.67 12.70 12.23 82.65 18.39 97.06

egl-s3-B 159 22 3379 4403 3742 3677 30.30 10.74 8.82 55.03 7.25 94.47

egl-s3-C 159 29 3379 4782 3758 3733 41.52 11.22 10.48 22.45 3.65 79.15

egl-s4-A 190 19 4186 5174 4522 4486 23.60 8.03 7.17 69.91 12.97 97.16

egl-s4-B 190 27 4186 5403 4497 4393 29.07 7.43 4.95 50.80 4.74 88.10

egl-s4-C 190 35 4186 8023 6937 4971 91.66 65.72 18.75 0.01 0.01 8.70

In bold: best results regarding UB.

In italics: instances that HGA produced a major Gap(%) improvement (> 5%).

LB: lower bound reported by Usberti et al. [29]. UB: best solution cost;

Gap(%): deviation from lower bound (%).

FeasDiff(%): ratio of feasible and different solutions (%).

are also the most difficult ones regarding feasibility. Instance egl-s4-C, for example, has
UB reduced from 6937 (GRASP) to 4971 (HGA), while FeasDiff(%) was increased from
0.01 (GRASP) to 8.70 (HGA). In conclusion, the improvement can be credited to HGA
effectiveness of generating feasible solutions with reasonably variability when the number
of vehicles is tight.

3.5.1 Feasibilization Procedure Evaluation

This section aims to evaluate the importance of the feasibilization procedure (Section
3.4.8) for the HGA performance. Let HGA′ be the HGA where the feasibilization proce-
dure (Algorithm 5) is replaced by a single call of the Split algorithm (Algorithm 3) and,
if Split fails, the solution is discarded. An experiment comparing HGA and HGA′ was
executed using the same experimental settings in Section 3.5.

In Table 3.5 n_infeasible is the number of instances for which no feasible solution was
found within the time limit. Column Feas(%) measures the percentage ratio of feasible
solutions, while FeasDiff(%) measures the percentage ratio of feasible and different
solutions. Both ratios were calculated for the set of solutions obtained until the time
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limit or until one million solutions were generated.
The results in Table 3.5 show that HGA′ could not find feasible solutions for 17

instances with class M = M∗ and 4 instances for classes M = M∗ + 1 and M = M∗ + 2

combined. Table 3.5 shows that Feas(%) and FeasDiff(%) from HGA′ are substantially
lower than the ratios from HGA, especially for egl instances with M = M∗ where a
difference of FeasDiff(%) from 18.70% to 79.04% is reported. On the other hand, the
FeasDiff(%) difference for the egl instances with M = M∗ + 2 varies only from 66.00%

to 76.06%.
As conclusion the feasibilization procedure is a key feature to make HGA competitive

on instances with very tight number of vehicles. The strategy employed by feasibilization
procedure is generic and its potential to be applied on more complex routing problems
with either (i) small fixed number of vehicles, or (ii) very onerous vehicle cost, is an
interesting research topic.

Table 3.5: Feasibilization procedure experiment results

n_infeasible Feas(%) FeasDiff(%)
group class HGA′ HGA HGA′ HGA HGA′ HGA
gdb M∗ 0 0 71.04 98.55 70.69 97.38

M∗ + 1 0 0 96.71 99.01 96.40 96.44
M∗ + 2 0 0 100.00 100.00 99.65 99.65
overall 0 0 89.25 99.52 88.91 98.91

val M∗ 0 0 88.40 99.22 75.88 87.66
M∗ + 1 0 0 99.02 100.00 92.17 93.64
M∗ + 2 0 0 99.02 100.00 93.61 93.39
overall 0 0 95.81 99.74 87.22 91.56

egl M∗ 7 0 34.55 95.26 18.70 79.04
M∗ + 1 1 0 73.24 99.99 52.45 77.80
M∗ + 2 0 0 89.77 100.00 66.00 76.06
overall 8 0 65.85 98.41 45.71 77.63

A M∗ 4 0 68.93 94.81 45.40 64.50
M∗ + 1 1 0 84.71 97.66 74.24 86.76
M∗ + 2 1 0 91.22 98.85 88.07 93.50
overall 6 0 81.62 97.11 69.24 81.58

B M∗ 6 0 62.87 89.00 28.03 40.79
M∗ + 1 1 0 81.41 97.70 66.06 75.85
M∗ + 2 0 0 91.23 99.45 81.20 84.99
overall 7 0 78.50 95.38 58.43 67.21

overall M∗ 17 0 66.77 94.67 49.12 73.97
M∗ + 1 3 0 87.60 99.04 76.99 87.06
M∗ + 2 1 0 94.58 99.63 86.22 89.88
overall 21 0 82.98 97.78 70.78 83.64

n_infeasible: number of instances with no feasible solutions.
Feas(%): average ratio of feasible solutions.
FeasDiff(%): average ratio of feasible and different solutions.
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3.6 Conclusion

This paper proposed a hybrid genetic algorithm (HGA) for the open capacitated
arc routing problem. The HGA is composed by the genetic algorithm combined with
local search and feasibilization procedures. The key features of HGA are: (i) solu-
tions are represented by a non-capacitated route; (ii) Split algorithm, which optimally
splits a non-capacitated route into feasible routes; (iii) feasibilization procedure to tackle
instances with a tight number of vehicles; (iv) inter-route local search with a decon-
struct/reconstruct approach; (v) statistical filtering of solutions for local search.

The computational experiments, using a set of benchmark instances from literature,
has shown that HGA outperformed state-of-the-art methods from literature for almost
all instances. A major difficulty reported by previous approaches was the obtainability
of feasible solutions for instances with very tight number of vehicles. The HGA perfor-
mance depended on the feasibilization procedure to overcome the feasibility issue. Future
research should focus on assessing the effectiveness of HGA methods if applied to more
complex routing problems. The design of better lower bounding procedures in order to
reduce the optimality gaps presented is also an interesting field of research.
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Chapter 4

Lower bounding methods for the open

capacitated arc routing problem: a

branch-and-cut algorithm and a

parameterized flow-based formulation

The text presented below is a preprint submitted to Computers and Operations Re-
search in 2019 and it is co-authored with Fábio Luiz Usberti. In this manuscript we
present two methods for obtaining lower bounds for the OCARP: (i) a branch-and-cut
integer programming formulation with two sets of valid inequalities, and (ii) a parameter-
ized flow-based integer linear programming formulation where the parameter can control
how tight or relaxed are the lower bounds provided by the formulation. We show ex-
tensive computational experiments and also properties regarding relations between these
formulations.

The open capacitated arc routing problem (OCARP) is a combinatorial optimization
problem. Consider an undirected graph with demands scattered over the edges and a
limited fleet of vehicles that are required to service the demands and which can start
their routes in any node and also end in any node. Vehicles have limited capacity in
relation to the amount of demands they can service. The objective is to find a set of
routes that collectively service all demands within the minimum cost. The OCARP
has been proved NP-hard. State-of-the-art solution methods developed for OCARP are
heuristics, which can obtain non-trivial solutions within reasonable computational time.
Nonetheless these solutions are unattached to any guarantee with respect to their quality.
To address this matter, this work focuses on lower bounding procedures to assess the
quality of heuristic solutions for OCARP. Two lower bounding methods are proposed:
a branch-and-cut algorithm (B&C) and a flow formulation called RFB(k). The B&C
algorithm considers an one-index formulation with two sets of valid inequalities and their
corresponding exact separation algorithms. The RFB(k) is a relaxed model for OCARP
parameterized by an integer k which expresses how tight (k → ∞) or relaxed (k → 0)
the model is. We show RFB(k = 0) is tighter than the one-index formulation and
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RFB(k = ∞) computes an optimal lower bound. Extensive computational experiments
conducted on five sets of benchmark instances revealed the good performance of proposed
methods which improved by a large margin the previous results from literature and proved
optimality for more than 70% of the instances.

4.1 Introduction

The capacitated arc routing problem (CARP), proposed by Golden and Wong [15],
aims to compute routes for a fleet of vehicles that are required to service some demands
scattered over the edges of a network, where each vehicle has a limited capacity of ser-
vicing. The objective is to build a minimum cost set of routes such that all demands are
serviced and the vehicles capacities are respected. In the CARP, all vehicles should start
and end their routes in a central node (depot).

This work addresses the open capacitated arc routing problem (OCARP) [29]: a varia-
tion of CARP which does not consider a depot node. Routes are allowed to start and end
at any node. Likewise the CARP [15], the OCARP has been proved NP-hard [29]. At
least two problems that can be modelled by the OCARP can be found in the literature:
the meter reader routing problem [27, 8] and the cutting path determination problem
[21, 25, 26]. Procedures for representing these problems in the form of OCARP instances
are discussed in [29].

The literature contains two exact methods for the OCARP: (i) an integer linear pro-
gramming formulation with an exponential number of variables and constraints [29], and
(ii) a branch-and-bound algorithm which exploited three different relaxed formulations
for the problem [28]. Computational experiments revealed that both methods were able
to solve only small-sized instances. This result is understandable since for the CARP, a
similar but much more studied problem, the proposed exact methods seem also limited
to medium-sized instances [6].

Regarding heuristic methods, two metaheuristics were proposed for the OCARP: (i)
a greedy randomized adaptive search procedure (GRASP) [28], and (ii) a hybrid genetic

algorithm (HGA) [3]. Both methods performed much better than the exact methods
in terms of solution cost and processing time, especially for large instances. However,
heuristic methods commonly does not provide any lower bounds and therefore cannot
estimate the quality of obtained solutions. The development of lower bounding procedures
comes as a tool to evaluate the performance of heuristic methods and to better assess
heuristic solutions impact on real-world applications, which usually involve large instances.

This work proposes two lower bounding methods for the OCARP: (i) a branch-and-

cut algorithm (B&C) and (ii) a parameterized flow-based formulation called RFB(k).
The B&C was based on the branch-and-cut algorithm originally proposed for CARP by
Belenguer and Benavent [5] and further improved by works [1] and [20]. The RFB(k)

is a relaxed formulation which can be more or less tight based on an integer parameter
k ∈ Z≥0, where k = 0 is the most relaxed model and the k = ∞ version is the tightest
model which we show to be a valid formulation for OCARP.

Extensive computational experiments over benchmark instances revealed that the pro-
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posed methods consistently outperformed with a large margin all the existing lower bound-
ing procedures for the OCARP. Computational experiments involving the parametrization
of RFB(k) were also investigated.

This article is organized as follows. Section 4.2 defines the OCARP. Section 4.3
presents a literature review. Section 4.4 describes the proposed branch-and-cut algo-
rithm. Section 4.5 presents the parameterized flow-based formulation. Section 4.6 shows
the computational experiments and discusses the methodologies performance. Section 4.7
contains some concluding comments.

4.2 Problem Definition

The open capacitated arc routing problem (OCARP) proposed by Usberti et al. [29]
is next defined. Let G(V,E) be undirected connected graph with costs cij ≥ 0 and
demands dij ≥ 0 assigned to each edge (i, j) ∈ E. The set of edges with positive demand
ER = {(i, j) ∈ E : dij > 0} is called the set of required edges. A group of M homogeneous
vehicles, each with limited capacity D, is considered to service the demands. In order for
an edge (i, j) ∈ E be serviced, it needs to be visited by some vehicle, which increases the
solution cost by cij and decreases the assigned vehicle capacity by dij. A vehicle is also
allowed to visit an edge (i, j) ∈ E without servicing it, which is called deadheading, and
this only increases the solution cost by cij with no effect for the vehicle capacity. A vehicle
route is defined by a path of edges in G traversed by the vehicle. Routes are allowed to
start in any node and also end in any node.

In summary, feasible OCARP solutions is a set of up to M routes such that all required
edges are serviced and the vehicles limited capacities are not violated (Figure 4.1). The
OCARP aims to find the lowest cost feasible solution.
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Figure 4.1: OCARP: an instance and a feasible solution.

The CARP and OCARP differ because the OCARP allows open or closed routes,
while the CARP allows only closed routes that start and end in a special node (depot).
Moreover, many heuristic methods proposed for CARP interpret that the number of
vehicles (M) is not restricted to any upper bound, while for OCARP the value of M is
necessarily limited, otherwise the OCARP would be trivially solvable [29].
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4.3 Previous Work

The first mathematical model proposed for the capacitated arc routing problem (CARP)
was an integer linear programming (ILP) formulation given by Golden and Wong [15] in
1981. This formulation required an exponential number of constraints and presented a
very weak linear relaxation lower bound. Two decades later, Belenguer and Benavent [5]
proposed a polynomial-size formulation with O(|E|) integer variables that produced good
lower bounds while spending a moderate computational time. This formulation inspired
our branch-and-cut algorithm for the OCARP described in Section 4.4.

The literature related to exact, heuristic and lower bounding methods for the CARP
is quite extensive. For a comprehensive survey we refer the interested reader for the
references [10, 24, 2, 6, 22] .

The open capacitated arc routing problem (OCARP) was proposed by Usberti et al.
[29]. In the seminal paper the authors proposed an integer linear programming (ILP)
formulation. In a following work, Usberti [28] proposed a branch-and-bound algorithm
whose results were competitive to the ILP formulation regarding solutions costs and lower
bounds. This algorithm formulated the OCARP as a special case of the Capacity and
Degree Constrained Minimum Spanning Forest Problem (CDCMSFP). This method main
feature was to solve three relaxed versions of CDCMSFP in order to obtain valid lower
bounds for OCARP. Regarding the performance, these exact methods were able to solve
only small sized instances (|ER| ≤ 50) and a few of the medium sized instances (50 ≤
|ER| ≤ 100).

In relation to heuristic methods, Usberti et al. [29] proposed a reactive path-scanning
with ellipse rule (RPS) for the OCARP. This heuristic consisted of a bias-randomized
greedy heuristic with some parameters that were automatically adjusted depending on
the instance characteristics. The RPS obtained non-trivial feasible solutions with lit-
tle computational effort. One year later, Usberti [28] presented a metaheuristic method
of greedy randomized adaptive search procedure (GRASP) with path-relinking that im-
proved with a large margin the previous method. After these methods were evaluated,
the set of largest instances egl still exhibited an average optimality gap of 9.49% and the
hardest instance exhibited a gap of 86.07%.

More recently Arakaki et al. [3] presented a hybrid genetic algorithm (HGA) for
the OCARP. This method consisted of a genetic algorithm hybridized with local search
procedures and a feasibilization procedure. The authors stated that the feasibilization
procedure was especially important to find solutions when the number of vehicles is very
tight: in these instances each vehicle needs to occupy its limited capacity wisely otherwise
some demands will not be able to be serviced. The HGA was shown to surpass previous
methods in terms of optimality gap. For the egl instances it exhibited an average resulting
gap of 7.92% and the hardest instance exhibited a gap of 32.44%.

It is also worth to note that Fung et al. [13] presented a different problem also
called open capacitated arc routing problem. Their version of OCARP is focused in
an application for waste collection. Their problem definition is very different from ours
since: (i) a directed complete graph is considered and demands are located in some of the
directed arcs; (ii) routes start in a depot but can end in any node; (iii) each vehicle has a
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limited capacity for demand serving and also a limited span for travelling distances; and
(iv) a solution can employ any number of vehicles where each vehicle used sums a fixed
cost in the objective function.

4.4 Branch-and-cut for the OCARP

The branch-and-cut algorithm proposed for the OCARP is presented in this section.
The model is presented in Section 4.4.1. Separation algorithms for the two sets of valid
inequalities, called odd edge cut-set constraints and capacity constraints, are described in
Sections 4.4.2 and 4.4.3 respectively.

4.4.1 One-index formulation for the OCARP

Inspired by the work of Belenguer and Benavent [5] for the CARP, here we propose the
one-index formulation for the OCARP. This relaxed formulation considers only one class
of variables xe that represents the number of times an edge e is deadheaded (i.e. when a
vehicle visit an edge without servicing it) aggregating all vehicles. Since solutions for this
formulation have all vehicles aggregated they do not necessarily correspond to a feasible
solution for OCARP. Details regarding this difficulty in the case of CARP are discussed
in [5] but applies by the same reasons for the OCARP. Nonetheless, these issues does not
prevent the formulation to compute good lower bounds at moderate computational cost.

Let G+(V +, E+) be a supergraph of G(V,E) where V + = V ∪{v+} and v+ is a dummy
node and E+ = E ∪ {(v+, vi) : vi ∈ V } includes a set of dummy edges connecting v+ to
every node in G+ with zero cost and zero demand. An example of G+ is given by Figure
4.2. From that, one can observe that open routes in G can be represented in G+ by closed
routes that visit v+ exactly once. In this formulation, v+ will represent a special node
that all routes should be connected to, visiting it exactly once.
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Figure 4.2: Graph G+ example for the instance in Figure 4.1.

Let S ⊆ V + \ {v+} be a set of nodes excluding v+. Let the cut-set δ(S) = {(i, j) ∈

E+ : i ∈ S and j 6∈ S} be the set of edges that have one endpoint in S and the other
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outside S (i.e. cut edges of S). Also, let that δR(S) = δ(S)∩ER be the set of cut edges of
S with positive demand (required edges). Similarly, we define E+(S) = {(i, j) ∈ E+ : i ∈

S and j ∈ S} as the sets of edges such that both nodes are in S and E+
R (S) = E+(S)∩ER

as the set of required edges with both nodes in S.
Consider a set S such that |δR(S)| is odd. One can observe at least one edge in δ(S)

must be deadheaded such that the vehicles collectively can service the required edges in
δR(S) considering that they need to enter and leave S. This gives the reasoning for the
odd edge cut-set constraints:

∑

e∈δ(S)

xe ≥ 1 ∀(S ⊆ V + \ {v+} where |δR(S)| is odd) (1)

Now consider a set S with multiple required edges in E+
R (S)∪δR(S). A lower bound on

the number of vehicles needed to service these demands is k(S) = ⌈
∑

(i,j)∈E+

R
(S)∪δR(S) dij/D⌉

because of vehicles limited capacities. Since each vehicle must enter and leave S at least
once, at least 2k(S) − |δR(S)| edges must be deadheaded. From that, we can define the
capacity constraints:

∑

e∈δ(S)

xe ≥ 2k(S)− |δR(S)| ∀S ⊆ V + \ {v+} (2)

Considering that the left-hand side from constraints (1) and (2) are the same, a com-
bination of them in just one set of constraints is possible. This combination considers the
greater right-hand side computed from both. To achieve that, we define α(S) as following:

α(S) =

{

max{2k(S)− |δR(S)|, 1} if |δR(S)| is odd,

max{2k(S)− |δR(S)|, 0} if |δR(S)| is even.
(3)

Finally, the one-index formulation for OCARP is defined:

MIN
∑

(i,j)∈E+

cijxij (4)

s.t.
∑

e∈δ(v+)

xe ≤ 2M (5)

∑

e∈δ(S)

xe ≥ α(S) ∀S ⊆ V + \ {v+} (6)

xe ∈ Z≥0, ∀e ∈ E+ (7)

Function (4) minimizes the cost of deadheading edges. Note that the real cost also
involves the cost of visiting each required edge once, but this is a fixed cost for every
feasible solution. Constraint (5) define the maximum number of routes allowed for the
solution. The constraints (6) combine both the odd edge cut-set constraints and capacity

constraints.
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4.4.2 Separation algorithm for odd edge cut-set constraints

This section provides an exact separation algorithm for the odd edge cut-set constraints

that aim to identify a set of constraints violated by a linear solution. This procedure uses
the odd minimum cut-set algorithm from Padberg and Rao [23].

Given a linear solution x∗ of the formulation, let each edge e ∈ E+ have capacity x∗
e;

moreover, label as odd all nodes in G+ that have an odd number of incident required edges.
An odd cut δ(S) is an edge cut-set that contains an odd number of odd nodes pertaining
to S ⊆ V + \ {v+}.

From these capacities on the edges, the odd minimum cut-set algorithm computes a
Gomory-Hu tree [17] where the odd nodes are called terminals. This algorithm creates a
tree such that each node correspond to a subset of nodes of G+ containing exactly one odd
node. This tree is called maximum flow tree, from which one can obtain a maximum flow
(or minimum cut) of any pair of odd nodes by searching the least cost edge that separate
the two odd nodes in the tree. In order to identify a violated odd edge cut-set constraints

one just need to search for the edges weighted less than one that represents a cut δ(S)

where |δR(S)| is odd. Even considering that regarding the odd edge cut-set constraints

we would need to check only for cuts where |δR(S)| is odd, our algorithm strategy is to
check all edges of the tree and add the combined constraints (4.6) whenever they are
found to be violated. More specifically, after the Gomory-Hu tree is computed, each cut
corresponding to an edge of the tree will be checked to violate or not the constraints (4.6)
and each violating constraint (4.6) found will be added to the model.

The separation algorithm executes up to |V | − 1 times a maximum flow (or mini-
mum cut) algorithm. Our method adopted the Preflow algorithm [14] which has a worst
case time complexity of O(|V |2

√

|E|). Therefore, the whole procedure complexity is
O(|V |3

√

|E|).

4.4.3 Separation algorithm for capacity constraints

Inspired by the work of Ahr [1], Martinelli et al. [20] proposed an exact separation
method for the capacity constraints in the case of CARP. This method can be used for
our OCARP one-index formulation. Here we describe the separation algorithm for the
capacity constraints.

Given a linear solution x∗, the separation algorithm should find a set S ⊆ V + \ {v+}

such that the capacity constraint is violated. More specifically, this algorithm executes
a mixed integer linear programming (MILP) formulation that searches for the set S that
has a capacity constraint that is most violated by x∗ (i.e. difference between right-hand
side and left-hand side is the greatest).

The MILP formulation is composed by five sets of variables: (i) he ∈ {0, 1}, ∀e ∈ E+

is 1 when edge e is a cut edge, i.e. one endpoint is in the cut S and the other is outside;
(ii) fe ∈ {0, 1}, ∀e ∈ E+ is 1 when both incident nodes are within S, and 0 otherwise; (iii)
si ∈ [0, 1], ∀i ∈ V is 1 if node i ∈ S and 0 otherwise; (iv) k ∈ Z

+
0 is the minimum number

of vehicles to service the demands in the cut S; and (v) γ ∈ [0, 1− β] is a slack variable,
where β ≪ 1 is a fixed small value greater than zero. From these variables, the MILP
capacity constraints separation formulation is defined:
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MAX 2k −
∑

e∈ER

he −
∑

(i,j)∈E+

x∗
ijhe (8)

s.t.

he − si + sj ≥ 0 ∀e = (i, j) ∈ E+ (9)

he + si − sj ≥ 0 ∀e = (i, j) ∈ E+ (10)

− he + si + sj ≥ 0 ∀e = (i, j) ∈ E+ (11)

si − fe ≥ 0 ∀e = (i, j) ∈ E+ (12)

sj − fe ≥ 0 ∀e = (i, j) ∈ E+ (13)

si + sj − fe ≤ 1 ∀e = (i, j) ∈ E+ (14)
∑

e∈δ({i})

(he + fe)− si ≥ 0 ∀i ∈ V + (15)

he + fe ≤ 1 ∀e = (i, j) ∈ E+ (16)

sv+ = 0 (17)

k =
∑

e∈E+

de(he + fe)

Q
+ γ (18)

he, fe ∈ {0, 1} ∀e ∈ E+ (19)

si ∈ [0, 1] ∀i ∈ V + \ {v+} (20)

k ∈ Z
+
≥0 (21)

γ ∈ [0, 1− β] (22)

Function (8) maximizes the capacity constraint violation. Constraints (9), (10) and
(11) couple the variables si and he. Similarly, constraints (12), (13) and (14) couple
variables si and fe. Constraints (15) establish that if node i is inside the cut then at least
one incident edge must be assigned as inside the cut or cut edge. Constraints (16) forbid
an edge to be inside the cut and be a cut edge at the same time. Constraint (17) prevents
the depot to be included in the cut. Constraint (18) defines a lower bound for the number
of vehicles needed to service edge demands in the cut, using γ as slack variable for a
ceiling function. Constraints (19), (20), (21) and (22) define the variables domains. It is
interesting to note that si variables do not need to be defined integral since their coupling
with he and fe already guarantee this.

4.5 Parameterized flow-based formulation

The parameterized flow-based formulation RFB(k) is executed over a directed graph
Gk(V ∪V ′∪{v0}, A∪A

′
R∪A

′
in∪A

k
out∪Av0) based on the original undirected graph G(V,E)

and an integer parameter k ≥ 0. The augmented graph Gk includes all nodes and edges
of G such that each undirected edge {vi, vj} ∈ E is represented by two opposite directed
arcs (vi, vj), (vj, vi) ∈ A with the same cost. The sets V ′, A′

R, A′
in, A

k
out contain artificial

nodes, artificial required arcs and artificial arcs that go in and out the artificial nodes,
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respectively. These sets are described as following.
For each required edge (vi, vj) ∈ ER the following elements are created: (i) two artificial

nodes v′i, v
′
j ∈ V ′; (ii) a pair of artificial required arcs (v′i, v

′
j), (v

′
j, v

′
i) ∈ A′

R with the same
cost as (vi, vj) ∈ ER; (iii) two artificial directed arcs (vi, v

′
i), (vj, v

′
j) ∈ A′

in with zero cost
that goes from original nodes to corresponding artificial nodes. At this step we have arcs
going from original nodes in V to artificial nodes in V ′ but not the other way around. We
call this partial graph Gp(V ∪ V ′, A ∪ A′

R ∪ A′
in).

The set of arcs Ak
out, which contains all artificial arcs exiting artificial nodes, is param-

eterized by an integer k ∈ Z≥0. To construct this set, for each artificial node v′i ∈ V ′, such
that ∃(v′i, v

′
j) ∈ A′

R, we execute a breath first search in the partial graph Gp starting at the
associated original node vi ∈ V and limited to a depth of k. This procedure will generate
a search tree identifying all nodes reachable from vi ∈ V by using up to k edges. This
search tree will identify two types of nodes: (i) artificial nodes and (ii) original nodes.
First, for each artificial node v′a found, where v′a 6= v′i and v′a 6= v′j, we create an artificial
arc (v′i, v

′
a) ∈ Ak

out with cost equal to the shortest path cost from vi ∈ V to va ∈ V in G.
Second, for every original node vo found to be at exactly k edges of distance from vi we
create an artificial edge (v′i, vo) ∈ Ak

out with cost equal to the shortest path cost from vi to
vo in G. After defining Ak

out, we call this partial graph Gk
p(V ∪V

′, A∪A′
R∪A

′
in∪A

k
out). It

is worth to note that by the way Ak
out is defined, the graph Gk

p has shortest paths between
any pair of artificial nodes v′a, v

′
b ∈ V ′ with cost equal to the shortest path costs between

the corresponding original nodes va, vb ∈ V in G, for any k ∈ {0, 1, ...,∞}.
Finally, we consider a special node v0 that is connected to all artificial nodes in V ′ in

both directions by a set of arcs Av0 = {(v0, v
′
i), (v

′
i, v0) : v

′
i ∈ V ′} with zero cost. These

procedures conclude the computation of the augmented graph Gk. An example is given
by Figures 4.3 and 4.4 for Gk=0 and Gk=2, respectively, for the OCARP instance given by
Figure 4.1.

The RFB(k) represents a network flow problem in which demands are located on the
artificial nodes of each artificial required arc. Each arc (v′i, v

′
j) ∈ A′

R has one arbitrary node
chosen, say v′i, to have demand d′i equal to the demand of the required edge (i, j) ∈ ER,
while the demand d′j of the other node is zero. The network flow represents the aggregated
remaining vehicle capacities, starting from v0, serving the node demands and going back
to v0. Node v0 is the source of all flows. Up to M arcs with up to D units of demand
each leave v0, each one representing the starting of one vehicle route.

Two sets of variables are defined for the model: (i) xij represents the number of times
arc (i, j) is visited by any route, and (ii) yij represents the amount of flow traversing arc
(i, j). Functions δ+(i) and δ−(i) are defined as the sets of directed arcs which leave and
enter node vi respectively. From that, the MILP flow-based formulation for the OCARP
is defined:
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Figure 4.3: Example of Gk=0 for the instance in Figure 4.1. Arcs connecting v0 are
partially hidden.

MIN
∑

(i,j)∈E

cijxij (1)

s.a.
∑

j∈δ+(i)

xij = 1 (i ∈ V ′) (2)

∑

j∈δ−(i)

xji = 1 (i ∈ V ′) (3)

xij + xji = 1 ((i, j), (j, i) ∈ A′
R) (4)

∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xji = 0 (i ∈ V ∪ {v0}) (5)

∑

j∈δ+(0)

x0j ≤M (6)

∑

j∈δ−(i)

yji −
∑

j∈δ+(i)

yij = di (i ∈ V ∪ V ′) (7)

yij ≤ (D − di)xij ((i, j) ∈ A ∪ A′
R ∪ A′

in ∪ Ak
out ∪ Av0) (8)

xij ∈ Z≥0, ((i, j) ∈ A ∪ A′
R ∪ A′

in ∪ Ak
out ∪ Av0) (9)

yij ∈ R≥0, ((i, j) ∈ A ∪ A′
R ∪ A′

in ∪ Ak
out ∪ Av0) (10)

The objective function (1) minimizes the cost of the arcs in which the flows will stream
on. Constraints (2) and (3) force artificial nodes to be visited exactly once. Constraints
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Figure 4.4: Example of Gk=2 showing arcs in Ak
out exiting from node a′ (for the instance

in Figure 4.1). Arcs leaving other artificial nodes and arcs connecting v0 are omitted.

(4) assure that artificial required arcs are visited. Constraints (5) represent the routes
continuity. Constraint (6) limits the number of flows starting from the origin v0. Con-
straints (7) establish the balance flow for each node including the demand of artificial
nodes. Constraints (8) couple visiting variables xij with flow variables yij. Constraints
(9) and (10) describe the variables domains.

The RFB(k) is a relaxed formulation since its optimal solutions are not necessarily
feasible solutions for the OCARP. That happens because the flow variables yij represent
aggregated capacities from multiple vehicles. This could represent a scenario where a
single demand is split between two or more vehicles, which is not allowed for the OCARP.
Nonetheless, this issue does not prevent RFB(k) to obtain valid lower bounds.

One important feature of RFB(k) is that parameter k can be used to set how much
relaxed or tight will be the formulation. As greater is k, more tight is the formulation (i.e.
its optimal solution cost becomes closer to the OCARP optimal solution cost). In fact,
RFB(k = 0) is the most relaxed version, while RFB(k =∞) is an exact formulation for
the OCARP, as shown by Corollary 1.

Property 1. Every route R of an optimal OCARP solution can be described as an alter-

nating sequence of required edges R = ((u1, v1), (u2, v2), ..., (un, vn)), where ∀i, (ui, vi) ∈ ER

are the edges serviced by the route, and shortest paths between subsequent arcs endpoints

(i.e. from vi to ui+1) are considered.

Proof. Let R be a route from an optimal OCARP solution. The route R necessarily: (i)
starts in a required edge endpoint that will be first serviced; and (ii) ends in a required
edge endpoint that will be last serviced. Otherwise the solution would not be optimal
since OCARP allows open routes. An exception is when non-required zero cost edges are
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considered in the start and end of R but those can be ignored. Route R starts visiting
and servicing the first required edge and successively goes to the next required edge that
will be serviced. Since the solution is optimal, the route will go necessarily through a
shortest path to reach the next required edge endpoint. This process is repeated until the
last edge is serviced and the route ends.

Property 2. Any OCARP optimal solution represents a feasible solution for RFB(k =

∞) with the same cost.

Proof. Let Ω be an OCARP optimal solution. We show next how to construct a solution
Ω′ for RFB(k = ∞) related to Ω and with the same cost. Each route R of Ω can be
described as a sequence of required edges being serviced with shortest paths between every
pair of consecutive required edges (Property 1). We show next how to transform a route
R from Ω in an equivalent route R′ in RFB(k = ∞). Route R′ starts in v0, then go to
the artificial node associated to the first required edge endpoint in R. The first artificial
required arc is visited and serviced, then R′ goes to the next artificial arc corresponding to
next required arc in R, using arcs in Ak=∞

out which correspond to all shortest paths between
artificial nodes. Route R′ is ended when the last required arc is visited, returning to v0.
Since each arc in Ak=∞

out has the same cost as its corresponding shortest path in G, it
follows that R and R′ have the same cost. Therefore, Ω and Ω′ have the same cost.

Regarding the flow constraints, an amount of D units of flow exits v0 for each starting
route and is used to service the demands of each route. Since Ω is feasible and each route
capacity is limited to D units, the flow constraints will be satisfied.

Property 3. RFB(k = ∞) solutions represent feasible solutions for the OCARP with

the same cost.

Proof. It is worth to notice that an RFB(k =∞) solution cannot visit any of the original
nodes since its routes transit through a complete graph of the artificial nodes which are
disconnected to the original nodes. Let Ω′ be a solution for RFB(k =∞). We show next
how to construct a solution Ω for OCARP related to Ω′ and with the same cost. For this,
we show first that each route R′ of Ω′ can be transformed in a route R of Ω represented
by the form given in Property 1. Route R′ starts at v0, then visits a sequence of artificial
nodes while servicing the artificial required arcs, until the route ends and returns to v0.
Since each arc in Ak=∞

out represents a shortest path in G, route R′ represents a path in G.
In other words, R′ is an alternating sequence of required edges with shortest path between
every subsequent pair. Moreover, R and R′ have the same cost. By extension, Ω and Ω′

have the same cost.
With respect to the flow constraints, Constraints (2-4) state each artificial node is

visited by one entering arc and one exiting arc, so each artificial node is visited by exactly
one route. Constraints (7-8) ensure a flow, represented by y variables, starting from v0
and going through the sequence of arcs denoted by the x variables. Considering that each
artificial node is visited by just one route, and Constraints (8) exclude flows from arcs
that are not visited, then the set of nodes incident by each flow are disjoint. Therefore up
to M flows of D units each, representing the vehicles, will leave v0 and service the edges
isolated from each other. Thus, each route R′ of respects the capacity constraints, and so
the constructed solution Ω is feasible for OCARP.
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Corollary 1. RFB(k =∞) is an exact formulation for the OCARP.

Proof. Since every OCARP optimal solution can be transformed in a solution for RFB(k =

∞) with the same cost (Property 2) and any RFB(k =∞) solution can be transformed
in a solution for OCARP with the same cost (Property 3), it follows that any optimal
solution for RFB(k =∞) represents an optimal solution for the OCARP.

Property 4. Any solution of RFB(k = 0) represents a solution for the one-index for-

mulation (Section 4.4.1) with the same cost.

Proof. Let Ω be a feasible solution for RFB(k = 0). We show that Ω can be transformed
in a solution Ω′ for the one-index formulation with the same cost. By observing Figures
4.2 and 4.3 it is not difficult to see that Gk=0 and G+ are very similar. For example, the
one-index formulation could be executed with the graph Gk=0 as input graph and it would
result in the same optimal solution cost as G+, since the zero-cost arcs linking artificial
nodes and corresponding original nodes in Gk=0 does not interfere in the optimal solution
cost.

Let a solution Ω′ be computed, starting from Ω, by replacing artificial arcs and artificial
nodes visited in Gk=0 by their equivalent original edges and nodes: (i) consider v0 and
v+ equivalent nodes; (ii) consider each artificial node equivalent to their corresponding
original node; (iii) artificial arcs (vi, v

′
i), (v

′
i, vi) : vi ∈ V, v′i ∈ V ′ in A′

in and A′
out are

ignored. Since only zero cost arcs are removed, the costs of Ω′ and Ω are the same (except
for the fact the one-index formulation only consider deadheading costs).

We show next that Ω respect capacity and odd edge cut-set constraints in Gk=0.
Regarding the odd edge cut-set constraints, since Constraints (5) from RFB(k = 0) guar-
antee routes continuity, then each node has an even number of visiting edges and so
these constraints are satisfied. About the capacity constraints, they set a lower bound of
2k(S)− |δR(S)| deadheading edges, where k(S) = ⌈

∑

(i,j)∈E+

R
(S)∪δR(S) dij/D⌉, for each cut

δ(S) from S ⊆ V \ {v+}. In the one-index formulation only the deadheading edges are
counted. In contrast, in RFB(k = 0) the required edges are counted by visiting the artifi-
cial required arcs (A′

R). We show next that Ω has a lower bound of kRFB(S
′) deadheading

edges, crossing the cut δ(S ′) for every subset of nodes S ′ ⊆ V ∪V ′ where S ′ is created based
on the set of original nodes S ⊆ V in addition to some artificial nodes, as explained next.
Let S ′ = S ∪ V ′(S) ∪ V ′

pair(V
′(S)) where V ′(S) = {vi′ ∈ V ′ : vi ∈ S and ∃(vi, vi′) ∈ A′

in}

and V ′
pair(S) = {vi ∈ V ′ : vj ∈ V ′(S) and ∃(vi, vj) ∈ A′

R}. We note that for every feasible
solution Ω the number of visited edges in the cut δ(S ′) is the same as the number of edges
visited in the corresponding constructed solution Ω′ in the cut δ(S), since Constraints
(2-4) force each artificial node to be visited once. And Ω′ has one visit on each required
edge implicit. Therefore, proving a lower bound of deadheading edges in the cut δ(S ′) for
Ω imply the same lower bound for δ(S) in the constructed solution Ω′.

We show next the lower bound kRFB(S
′) is greater than or equal to k(S). We have

that
∑

i∈S′ di =
∑

(i,j)∈E+

R
(S)∪δR(S) dij is the total demand in S ′. Summing Constraints

(7) to all nodes in S ′ we have
∑

(i,j)∈δ−(S′) yij −
∑

(i,j)∈δ+(S′) yij =
∑

i∈S′ di which means
at least

∑

i∈S′ di units of flow are crossing δ(S ′) and entering S ′. Summing Constraints
(8) for each arc (i, j) ∈ δ−(S ′) we have

∑

(i,j)∈δ−(S′) yij ≤
∑

(i,j)∈δ−(S′) (D − di)xij which
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means
∑

(i,j)∈δ−(S′) yij ≤
∑

(i,j)∈δ−(S′) D xij is satisfied. Since x variables are integers, this
means a feasible solution in RFB(0) has at least kRFB(S

′) = ⌈
∑

(i,j)∈δ−(S′) yij/D⌉ edges
entering δ(S ′). Since

kRFB(S
′) = ⌈

∑

(i,j)∈δ−(S′)

yij/D⌉ ≥ ⌈
∑

i∈S′

di/D⌉ = k(S) = ⌈
∑

(i,j)∈E+

R
(S)∪δR(S)

dij/D⌉

we conclude kRFB(S
′) ≥ k(S). Thus, considering routes continuity, at least 2kRFB(S

′)

edges cross δ(S ′) and so the capacity constraints are satisfied. Thus, the constructed
solution Ω′ is feasible and has the same cost as Ω.

Corollary 2. The optimal solution cost of RFB(k = 0) is greater or equal to the optimal

solution cost of the one-index formulation.

Proof. From Property 4, it follows directly that the optimal solution of RFB(k = 0) is
greater or equal to the optimal solution of the one-index formulation.

Corollary 2 is important since it means the potential lower bound generated by
RFB(k = 0) is greater than that of the one-index formulation (Section 4.4.1). However,
it is worth to note Property 4 does not imply that lower bounds obtained by RFB(k)

will be in practice better than those obtained by B&C. This happens simply because we
cannot guarantee the methodologies will converge to optimum within a limited amount
of time.

4.6 Computational Experiments

This section aims to evaluate the performance of the proposed methodologies: B&C
(branch-and-cut algorithm, Section 4.4) and RFB(k) (parameterized flow-based formula-
tion, Section 4.5). We compare our methodologies with two methods from literature that
are able to compute lower bounds for OCARP: the original MILP formulation from [29]
and the B&B (branch-and-bound) algorithm from [28].

Our proposed methodologies used the MILP solver Gurobi version 8 with default
settings for solving the mathematical formulations. The implementations were coded
in C++ and used the LEMON [12] library for graph algorithms. All experiments were
carried on in an Intel Xeon X3430 2.4 GHz processor with 8 GB RAM and running a
Linux 64-bit operating system. The RFB(k) was tested using the values of parameter
k ∈ {0, 1, 2, 3,∞}. All methods were executed with a time limit of one hour for each
instance.

The origin of the benchmark instances employed in the experiment is explained next.
Five sets of benchmark instances (gdb, val, egl, A and B) originally developed for the
CARP were adapted for the OCARP by considering the depot a common node and
keeping the rest of data preserved. With respect to the number of available vehicles (M),
three quantities were defined: M∗, M∗ + 1 and M∗ + 2, where M∗ means the minimum



74

number of vehicles required for a feasible solution. In the authors website1 we provide the
full data of experiments, including instances and source codes.

• gdb: 23 instances proposed by [16]. Containing from 7 to 27 nodes, 11 to 55 edges
(all required) and M∗ ranging from 3 to 10.

• val: 34 instances proposed by [7]. Containing from 24 to 50 nodes, 34 to 97 edges
(all required) and M∗ ranging from 2 to 10.

• egl: 24 instances proposed by [19]. Containing from 77 to 140 nodes, 98 to 190
edges (from 51 to 190 required) and M∗ ranging from 5 to 35.

• A: 32 instances proposed by [18]. Containing from 10 to 40 nodes, 15 to 69 edges
(from 11 to 63 required) and M∗ ranging from 1 to 25.

• B: 24 instances proposed by [18]. Containing from 13 to 40 nodes, 15 to 69 edges
(from 11 to 53 required) and M∗ ranging from 2 to 21.

Table 4.1 contains the summarizing results for each set of instances. Gap(%) = 100 ∗

(UB−LB)/LB is the average deviation of upper (UB) and lower (LB) bounds, where the
LB values were computed by each lower bounding method and UB is the best known so-
lution cost [3]. B&C+RFB(2) show the best lower bounds obtained combining B&C and
RFB(2). Analogously, B&C+RFB∗ combine B&C and all RFB(k), ∀k ∈ {0, 1, 2, 3,∞}.

As shown in Table 4.1, the B&C and RFB(k) consistently outperformed the methods
from literature, obtaining an overall Gap(%) at most one third in comparison to the
existing methods. Moreover, many instances from gdb and val sets have their optimal
values proved. With respect to the number of vehicles M , the results show that instances
with the minimum number of vehicles possible (M = M∗) are harder to solve.

The B&C method performed especially well for the egl instances, obtaining Gap(%)

of 4.10, 1.23 and 0.80 in comparison to 11.91, 6.70 and 5.12 from the literature for classes
M∗, M∗ +1 and M∗ +2 respectively. The B&C achieved the best overall results for gdb,
val and egl instances for all classes of M .

The RFB(2) was able to obtain the overall best Gap(%) of 0.69 and for the classes M∗,
M∗ + 1 and M∗ + 2 the Gap(%) was 1.46, 0.39 and 0.23 respectively. When compared
to B&C, which obtained 1.83, 0.46 and 0.24 we see that the proportional difference is
greater for smaller values of number of vehicles M . RFB(2) outperforms B&C for the A
and B instances. On the other hand, B&C is significantly better for egl instances, while
the gdb and val instances have competitive results by both methodologies. The RFB(k)

obtained better results for small and medium sized instances (|ER| ≤ 100), while B&C
performed better for the larger instances.

In Table 4.1, column B&C+RFB(2) show that these methods exhibit complementary
results for the egl instances: some instances were better solved by B&C while others by
RFB(2). B&C+RFB(2) obtained an overall Gap(%) for egl of 1.84 in comparison to 2.04

from B&C and 2.54 from RFB(2). On the other hand, with respect to A and B instances,
the best results are from RFB(k) with no complementarity to other methodologies.

1http://www.ic.unicamp.br/~fusberti/problems/ocarp
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In Table 4.1, column B&C+RFB∗ show that RFB(k) performance is sensible to
parameter k ∈ Z≥0. This difference is most notable for the hardest instances: egl, A and
B with M∗ class. For these instances B&C+RFB∗ obtained an overall Gap(%) of 3.72,
1.25 and 1.18, respectively, in comparison to 3.95, 1.28 and 1.33 from B&C+RFB(2).
This means that RFB(0), RFB(1), RFB(3) and RFB(∞) can produce better results
than B&C and RFB(2) for some instances, even though in general they have inferior
results. Thus, the parameter k ∈ Z≥0 should be adjusted in order to obtain the best
results.

Table 4.1: Computational experiment overall results.

Gap(%)

class group Literature Our methods

MILP B&B B&C RFB(0) RFB(1) RFB(2) RFB(3) RFB(∞) B&C+RFB(2) B&C+RFB∗

gdb 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

val 1.43 3.16 0.09 0.09 0.09 0.09 0.09 0.11 0.09 0.09

M∗ egl 13.91 11.91 4.10 4.54 4.68 5.16 5.22 6.31 3.95 3.72

A 3.19 3.58 2.16 1.97 1.53 1.28 1.31 1.35 1.28 1.25

B 4.28 2.94 3.37 2.48 1.42 1.33 1.41 1.41 1.33 1.18

overall 4.30 4.23 1.83 1.71 1.45 1.46 1.49 1.70 1.24 1.17

gdb 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

val 1.75 2.24 0.00 0.01 0.03 0.02 0.00 0.02 0.15 0.00

M∗ + 1 egl 8.66 6.70 1.23 1.50 1.54 1.53 1.54 2.14 1.01 0.98

A 1.44 1.72 0.47 0.47 0.34 0.30 0.29 0.32 0.30 0.29

B 1.47 0.73 0.79 0.75 0.29 0.29 0.27 0.26 0.29 0.26

overall 2.55 2.27 0.46 0.51 0.41 0.39 0.39 0.53 0.30 0.28

gdb 0.02 0.02 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00

val 1.46 1.46 0.00 0.01 0.02 0.07 0.05 0.08 0.00 0.00

M∗ + 2 egl 6.58 5.12 0.80 0.94 0.99 0.93 0.97 1.42 0.57 0.55

A 1.32 1.14 0.25 0.25 0.24 0.16 0.25 0.19 0.16 0.16

B 0.61 0.23 0.27 0.20 0.04 0.08 0.06 0.08 0.08 0.04

overall 1.93 1.57 0.24 0.26 0.24 0.23 0.24 0.33 0.15 0.14

gdb 0.05 0.05 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00

val 1.54 2.29 0.03 0.04 0.05 0.06 0.05 0.11 0.03 0.03

overall egl 9.72 7.91 2.04 2.32 2.40 2.54 2.58 3.29 1.84 1.75

A 1.98 2.14 0.96 0.89 0.70 0.58 0.62 0.62 0.58 0.57

B 2.12 1.30 1.47 1.14 0.58 0.56 0.58 0.58 0.56 0.49

overall 2.93 2.69 0.85 0.82 0.70 0.69 0.71 0.85 0.56 0.53

In underline: best results regarding Gap(%), excluding B&C+RFB(2) and B&C+RFB∗.

Gap(%): average deviation of upper bound (best known) from lower bound (%).

B&C+RFB(2): combination of best lower bounds obtained from B&C and RFB(2).

B&C+RFB∗: combination of best lower bounds obtained from B&C and RFB(k), ∀k ∈ {0, 1, 2, 3,∞}.
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4.7 Conclusion

We propose two lower bounding methods for the open capacitated arc routing prob-
lem: (i) a branch-and-cut algorithm (B&C) and (ii) a parameterized flow-based formu-
lation method called RFB(k). These methods comprehend relaxed formulations for the
OCARP. Lower bounding methods can be used to assess the performance of heuristic
methods which represent the state-of-the-art to solve OCARP [3] and many others arc
routing problems [4, 9, 11].

The B&C algorithm uses a relaxed one-index formulation where all vehicles are aggre-
gated in the same set of variables. Two sets of valid inequalities and their corresponding
exact separation algorithms are described.

The RFB(k) method is a relaxed formulation for the OCARP based on network
flows. In this formulation, the aggregated vehicles capacities are represented by flow
variables. RFB(k) explores the modification of the instance graph in order to achieve
flow formulations more or less relaxed. The integer parameter k control the tightness
of the formulation, where RFB(k = 0) is the most relaxed version while RFB(k = ∞)

is the tightest formulation. As far as we know, the approach adopted by RFB(k) in
manipulating an augmented graph for modifying a formulation tightness is quite unique
in the arc routing literature.

Some relations between OCARP, RFB(k) and B&C method are shown. We show that
RFB(k), ∀k ≥ 0 is a tighter formulation for the OCARP in comparison to the one-index
formulation from B&C. Also, RFB(k = ∞) is shown to be a valid formulation for the
OCARP.

Computational experiments revealed that the proposed methods outperformed by a
large margin previous methods. The overall optimality gap was reduced from 2.69% to
0.69%. The B&C algorithm obtained the overall best solutions for largest instances (more
than 100 required edges), while the RFB(k) method was able to provide the tightest lower
bounds for small and medium size instances. The proposed methods B&C and RFB(k)

were shown to have complementary results when solving the set of largest instances. The
RFB(k) performance was shown to be sensible to parameter k.

Future research topics include extending the ideas presented by RFB(k) to other
routing problems and also investigating other ways of generating augmented graphs to
yield better results. In relation to the B&C algorithm, studying new inequalities for
tightening the formulation even more and also developing heuristic separation algorithms
in order to speed up the computation are also interesting research directions.

4.8 Acknowledgments

This work received support from the grants #2016/00315-0 and #2015/11937-9, São
Paulo Research Foundation (FAPESP); as well as grants 435520/2018-0 and 314384/2018-
9, National Counsel of Technological and Scientific Development (CNPq).



77

References

[1] Dino Ahr. Contributions to multiple postmen problems. PhD thesis, University of
Heidelberg, 2004.

[2] Dino Ahr and Gerhard Reinelt. The capacitated arc routing problem: Combinato-
rial lower bounds. In Ángel Corberán and Gilbert Laporte, editors, Arc Routing:

Problems, Methods, and Applications, chapter 8, pages 159–181. SIAM, 2014.

[3] Rafael Kendy Arakaki and Fábio Luiz Usberti. Hybrid genetic algorithm for the
open capacitated arc routing problem. Computers & Operations Research, 90:221–
231, 2018.

[4] Rafael Kendy Arakaki and Fábio Luiz Usberti. An efficiency-based path-scanning
heuristic for the capacitated arc routing problem. Computers & Operations Research,
103:288 – 295, 2019.

[5] José M Belenguer and Enrique Benavent. A cutting plane algorithm for the ca-
pacitated arc routing problem. Computers and Operations Research, 30(5):705–728,
2003.

[6] José Manuel Belenguer, Enrique Benavent, and Stefan Irnich. The capacitated arc
routing problem: Exact algorithms. In Ángel Corberán and Gilbert Laporte, editors,
Arc Routing: Problems, Methods, and Applications, chapter 9, pages 183–222. SIAM,
2014.

[7] Enrique Benavent, Vicente Campos, Angel Corberán, and Enrique Mota. The ca-
pacitated arc routing problem: lower bounds. Networks, 22:669–690, 1991.

[8] L. Bodin and L. Levy. The arc partitioning problem. European Journal of Operational

Research, 53:393–401, 1991.

[9] Yuning Chen, Jin-Kao Hao, and Fred Glover. A hybrid metaheuristic approach for
the capacitated arc routing problem. European Journal of Operational Research,
253(1):25–39, 2016.

[10] Ángel Corberán and Gilbert Laporte. Arc Routing: Problems, Methods, and Appli-

cations. SIAM, Philadelphia, PA, USA, 2014.

[11] Jesica de Armas, Peter Keenan, Angel A Juan, and Seán McGarraghy. Solving
large-scale time capacitated arc routing problems: from real-time heuristics to meta-
heuristics. Annals of Operations Research, 273(1-2):135–162, 2019.



78

[12] Balázs Dezs, Alpár Jüttner, and Péter Kovács. Lemon - an open source c++ graph
template library. Electronic Notes in Theoretical Computer Science, 264(5):23–45,
2011.

[13] Richard YK Fung, Ran Liu, and Zhibin Jiang. A memetic algorithm for the open
capacitated arc routing problem. Transportation Research Part E: Logistics and

Transportation Review, 50:53–67, 2013.

[14] Andrew V Goldberg. An efficient implementation of a scaling minimum-cost flow
algorithm. Journal of algorithms, 22(1):1–29, 1997.

[15] B. L. Golden and R. T. Wong. Capacitated arc routing problems. Networks, 11:305–
315, 1981.

[16] L. Bruce Golden, S. James DeArmon, and K. Edward Baker. Computational exper-
iments with algorithms for a class of routing problems. Computers and Operations

Research, 10:47–59, 1982.

[17] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the

Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[18] Alain Hertz. Recent trends in arc routing. In: Sharda R., Voß S., Golumbic M. C.,

Hartman IBA, editors. Graph theory, combinatorics and algorithms. Springer US,
2005.

[19] YO Leon Li and W. Richard Eglese. An interactive algorithm for vehicle routeing for
winter-gritting. Journal of the Operational Research Society, pages 217–228, 1996.

[20] Rafael Martinelli, Marcus Poggi, and Anand Subramanian. Improved bounds for
large scale capacitated arc routing problem. Computers & Operations Research,
40(8):2145–2160, 2013.

[21] L. M. Moreira, J. F. Oliveira, A. M. Gomes, and J. S. Ferreira. Heuristics for a
dynamic rural postman problem. Computers and Operations Research, 34:3281–3294,
2007.

[22] M Cândida Mourão and Leonor S Pinto. An updated annotated bibliography on arc
routing problems. Networks, 70(3):144–194, 2017.

[23] Manfred W Padberg and M Ram Rao. Odd minimum cut-sets and b-matchings.
Mathematics of Operations Research, 7(1):67–80, 1982.

[24] Christian Prins. The capacitated arc routing problem: Heuristics. In Ángel Corberán
and Gilbert Laporte, editors, Arc Routing: Problems, Methods, and Applications,
chapter 7, pages 131–157. SIAM, 2014.

[25] Ana Maria Rodrigues and José Soeiro Ferreira. Cutting path as a rural postman
problem: solutions by memetic algorithms. International Journal of Combinatorial

Optimization Problems and Informatics, 3(1):31–46, 2012.



79

[26] Everton Fernandes Silva, Larissa Tebaldi Oliveira, José Fernando Oliveira, and
Franklina Maria Bragion Toledo. Exact approaches for the cutting path determi-
nation problem. Computers & Operations Research, page 104772, 2019.

[27] H. I. Stern and M. Dror. Routing electric meter readers. Computers and Operations

Research, 6:209–223, 1979.

[28] Fábio Luiz Usberti. Heuristic and exact approaches for the open capacitated arc

routing problem. PhD thesis, Universidade Estadual de Campinas, 2012.

[29] Fábio Luiz Usberti, Paulo Morelato França, and André Luiz Morelato França.
The open capacitated arc routing problem. Computers and Operations Research,
38(11):1543 – 1555, 2011.



80

Chapter 5

The covering Chinese postman problem

The text presented below is a paper submitted and presented in the International
Symposium on Scheduling (ISS 2019) held in Matsue, Japan, on 3-6 July, 2019. The
paper is co-authored with Fábio Luiz Usberti. In this manuscript we present a new
problem called the covering Chinese postman problem (CCPP). Inspired by applications
on the routing of automated meter readers, in this problem each edge covers a subset of
edges of the graph. The objective is to find a minimum cost tour such that the edges in
the tour collectively cover the whole graph. An exact method and a heuristic method were
proposed. Computational experiments show what kind of instances were more difficult to
solve.

The covering Chinese postman problem is a combinatorial optimization arc routing
problem. Given an undirected graph with cost and covering functions on the edges, this
problem aims to find a minimum cost tour that covers all the edges of the network. The
problem was modeled by an integer programming formulation. Two solution methods
are proposed: an exact branch-and-cut algorithm and a heuristic method. Extensive
computational experiments were performed. Branch-and-cut method was able to obtain
325 optimal solutions out of 390 instances, while the heuristic obtained better solutions
for some large instances in shorter processing times.

5.1 Introduction

Node routing problems, such as the well known traveling salesman problem (TSP),
aim to find optimum routes while visiting a set of nodes of a network. On the other hand,
arc routing problems aim to determine optimum routes that visit some arcs of the graph,
with one or more side constraints [10].

The covering Chinese postman problem (CCPP) is an arc routing problem with cover-
ing constraints whose solution consist of a minimum cost tour that must visit a set of arcs
which covers all the edges of a network. The CCPP is a new problem. To our knowledge
the CCPP has not yet been addressed by the literature even though its node routing
counterpart, the covering salesman problem (CSP) [7], have been objective of research in
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the last decades [7, 16].
One practical application of CCPP is the automated meter reading problem [17]. In

this problem, utility companies employ automated meter readers with wireless technology
to read utility meters from a distance. This way the meter reader does not need to visit
every street of the network but rather a subset of them which covers all customers. The
aim is to find the minimum cost route that is able to read all customers data using the
wireless devices.

Our contribution. This paper proposed an integer programming (IP) formulation
for the CCPP and a heuristic called greedy randomized heuristic (GRH). The problem was
solved by both an exact branch-and-cut method and the GRH. Extensive computational
experiments were performed to evaluate the proposed methods. Results show that the
branch-and-cut was able to obtain 325 optimum solutions from the total of 390 instances.
Also, the GRH was able to obtain better solutions than branch-and-cut for 24 large
instances while spending less computational time.

Section 5.2 provides the literature background. Section 5.3 formally defines the CCPP.
Section 5.4 describe an IP formulation for the problem. In Section 5.5, a heuristic method
is proposed. Section 5.6 contains the computational experiments. Finally, Section 5.7
provides the final comments.

5.2 Literature review

The Chinese postman problem (CPP) [10] is defined on an undirected graph G(V,E)

with a cost function associated to the edges and the objective is to find the minimum
cost closed circuit (it ends and starts in the same node) that visit each edge (u, v) ∈ E

at least once. This problem can be solved in polynomial time using an optimal matching
algorithm [10]. Many variations of the CPP, however, are NP-hard problems, such as the
mixed CPP and windy CPP [14].

Current and Schilling [7] proposed a node routing problem with covering constraints:
the covering salesman problem (CSP), which is a generalization of the well known traveling
salesman problem. In this problem, the objective is to find a minimum cost tour of a
subset of cities such that every city not visited by the tour is within some predetermined
fixed covering distance of a city that is on the tour. Some papers have discussed on the
applications of this problem in the fields of emergency management and disaster planning
[15, 16].

Drexl [9] recently proposed the generalized directed rural postman problem (GDRPP)
which objective is to find the minimum cost tour in a digraph such that the arcs traversed
must cover all the predefined subsets of arcs of the digraph. More specifically, at least one
arc of each predefined subset must be visited by the tour. Drexl demonstrated how to
transform many arc routing problems to the GDRPP, such as: mixed Chinese postman
problem, arc routing with turn penalties and others. As solution method, the author
proposed a branch-and-cut algorithm that was able to obtain good results including many
optimum solutions for the considered instances.
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Figure 5.1: Example of a CCPP instance and its solution (in dashed edges).
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Figure 5.2: Example of a CCPP instance with a wider covering function and its solution
(in dashed edges).

5.3 Definition

The covering Chinese postman problem (CCPP) is a new proposed variant of the
CPP that considers covering constraints. The CCPP can be formally defined as next. Let
G(V,E) be an undirected graph and cuv ≥ 0 be a non-negative cost associated to each edge
(u, v) ∈ E. Consider a covering function D(u, v) associated to each edge (u, v) ∈ E that
represents the set of edges covered by (u, v). Also, it is required that for each (u, v) ∈ E:
(i) (u, v) ∈ D(u, v); and (ii) (p, q) ∈ D(u, v) ⇐⇒ (u, v) ∈ D(p, q). The objective is to
find a minimum-cost closed circuit such that all the edges in G are covered by at least
one of the edges visited by the circuit.

An example of solution for CCPP is given by Figure 5.1 where all edges have one unit
of cost and the covering function for each edge (u, v) ∈ E is defined as the set of edges
that are incident to either the nodes u or v. Figure 5.2 shows a solution for the same
graph and costs but defining the covering function of each edge (u, v) ∈ E as all the edges
whose both extreme points are at most from three units of distance from both u and v.

5.4 Mathematical Model

An integer programming mathematical formulation for the CCPP is proposed next.
Although the graph G is undirected, the variables in the model are directed. Also, al-
though a CCPP solution can visit an specific edge many times, the variables in the model
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are binary. In fact, it can be showed that exist at least one optimal solution for the CCPP
that does not visit the same edge (u, v) ∈ E more than twice and, if it visits (u, v) twice,
then it is in opposite directions ((u, v) and (v, u)). Welz [18] proved that property for the
capacitated arc routing problem but the proof can be also applied to CCPP. Therefore,
the model works on 2|E| binary variables in the form of directed arcs xij, xji representing
each edge (i, j) ∈ E visited in opposite directions.

(CCPP )

MIN
∑

(i,j)∈E

cij(xij + xji) (1)

s.t.
∑

j∈δ(i)

xij =
∑

j∈δ(i)

xji (i ∈ V ) (2)

∑

(i,j)∈D(u,v)

(xij + xji) ≥ 1 ((u, v) ∈ E) (3)

∑

(i,j)∈(S,S̃)

(xij + xji) ≥ 2(xkl + xmn − 1)

(∀S ⊂ V, ∀(k, l), (m,n) ∈ E :

k, l ∈ S and m,n ∈ S̃) (4)

xij, xji ∈ {0, 1}, ∀(i, j) ∈ E (5)

δ(i) : edges incident to node i ∈ V .

In this model, xij and xji assume value 1 if and only if the edge (i, j) ∈ E is visited
in each direction. Therefore, the solution cost of the closed circuit is given by objective
function (1). Constraints (2) are degree constraints. Constraints (3) force that the solu-
tion must visit at least one edge of the covering functions associated to each edge. The
connectivity constraints (4) force that every pair of visited edges must be connected in
the solution. More specifically, they state that if two edges are selected, respectively be-
longing to (S, S) and (S̃, S̃), then at least two cut edges in (S, S̃) must be selected as well,
otherwise the solution is not connected. Constraints (5) define the domain of variables x.

In terms of implementation, careful must be taken in relation to constraints (4) since
they are of exponential number. A complete enumeration of them is only possible for
very small instances. Inspired by the work of Belenguer and Benavent [2], the solution we
adopted was to add incrementally the constraints (4) as they are needed in a branch-and-

cut fashion. The branch-and-cut algorithm iteratively adds a subset of the exponential
sized set of constraints (4) that are identified by a separation algorithm (Section 5.4.1)
especially developed for this formulation. When no violated constraints are found by the
separation algorithm and the solution is integer, then that solution is feasible. Details of
how a branch-and-cut algorithm operates would be omitted because of complexity, while
an interested reader can find it in [13].
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5.4.1 Separation algorithm for connectivity constraints

Since connectivity constraints are of exponential number it is impractical to solve a
model containing all of them, except for very small instances. Therefore, a polynomial-
time separation algorithm was developed to identify violated connectivity constraints (4)
on demand and add them to the model. Given a candidate solution x∗ for CCPP that
obeys constraints (2) and (3), the separation algorithm identifies a subset of connectivity
constraints (4) that are violated by x∗. The method works on both integer and real
(relaxed integer) variables.

The procedure pseudocode is described in Algorithm 9. Given candidate solution x∗,
the separation algorithm start by considering a graph G∗(V,E∗) induced by the edges
E∗ = {(i, j) ∈ E : x∗

ij + x∗
ji ≥ δ} for a small 0 < δ ≪ 1. From that, the Gomory-Hu

algorithm [11] is executed on G∗ by considering the capacity of each edge e ∈ E∗ as the
sum of corresponding arc variables: x∗

ij + x∗
ji. The Gomory-Hu algorithm computes the

minimum flow cut edges for each pair of nodes u, v ∈ V . For each found minimum flow cut,
the separation algorithm verifies if there is a suitable connectivity constraint (4) violated,
in other words, for a given set S it searches for two edges: an edge (k, l) ∈ (S, S) and an
edge (m,n) ∈ (S̃, S̃) such that the minimum flow cut value is less than 2(xkl + xmn − 1).
The algorithm output is a set of connectivity constraints, corresponding to minimum flow
cuts, that are violated by x∗.

Algorithm 9: Separation algorithm for connectivity constraints.
Data: Given solution x∗ for CCPP that obeys constraints (2) and (3).
Result: A set V C of violated connectivity constraints, if there is any.
Consider a graph G∗(V,E∗) induced by set of edges
E∗ = {(i, j) ∈ E : x∗

ij + x∗
ji ≥ δ};

Execute Gomory-Hu algorithm on G∗ considering the flow of each (i, j) ∈ E∗ as
x∗
ij + x∗

ji;
for each min (flow) cut S found by Gomory-Hu algorithm do

(k, l)← edge such that x∗
kl ≥ x∗

ij, ∀(i, j) ∈ (S, S) ;
(m,n)← edge such that x∗

mn ≥ x∗
ij, ∀(i, j) ∈ (S̃, S̃) ;

if Constraint (4) is violated by S, x∗, (k, l) and (m,n) then
v ← violated constraint by S, (k, l) and (m,n);
V C ← V C ∪ v;

return VC ;

5.5 Heuristic method

A heuristic method called greedy randomized heuristic (GRH) is proposed for the
CCPP. The primary objective of GRH is to generate feasible solutions with reasonable
quality for large instances. In addition, GRH intends to consume much less computing
time than the exact method (Section 5.4).

The GRH pseudocode is described in Algorithm 10. Given a graph G(V,E), the
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covering function D and a parameter k of number of iterations, the algorithm is executed
and the output is the best solution found. The GRH first performs a preprocessing
procedure and then runs k independent iterations. Each GRH iteration produces one
solution and consists of a constructive phase followed by a local search phase.

The preprocessing procedure starts computing a matrix SP [u][v] representing the
shortest path from node u to v for each u, v ∈ V . The matrix is computed using the
Dijkstra’s algorithm [6]. From that, an ordered non-increasing list CE(u) of closest edges,
for each node u ∈ V is computed. More specifically, the distance from node u to edge
(i, j) is defined as: min(SP [u][i], SP [u][j]), where SP is the matrix of shortest path costs
computed earlier. This step is very important for the heuristic performance because the
distance between two nodes SP and the list of closest edges CE are computed only once
but are intensively used by all following iterations of GRH.

In the constructive phase a feasible solution for CCPP is generated from scratch. The
solution is represented by a sequence of directed arcs (u1, v1), (u2, v2), ..., (un, vn) which
gives the tour direction and for each subsequent vi 6= ui+1 a shortest path from vi to ui+1

is implicitly implied. The return from node vn to u1 is also implied in this arrangement.
The constructive phase starts by selecting one edge (u, v) of E randomly (each edge has
equal probability). The edge (u, v) is added to the solution in a directed arc form (u then
v) and all edges that are in the covering function D(u, v) are marked. Then, the procedure
iteratively selects the closest edge (i, j) ∈ E to the last visited node v, considering the
computed list CE(v), and that is not covered by any edge in the solution. From that the
edge (i, j) is added to the solution and all edges in D(i, j) are marked. The process is
repeated until all edges are covered (marked) by the edges added to the solution.

Local search phase starts in a feasible solution s and attempts to improve it by consid-
ering three sets of moves in order. If, starting from s, any move finds an improving feasible
solution s′ with lower cost, that move is immediately performed rather than examining all
possible moves for a solution. The solution is updated and that set of moves is examined
again. After a set of moves is examined to exhaustion without finding any improvement,
the next set of moves is examined. Three sets of moves are considered in order:

1. Remove: remove from the solution representation any arc (u, v) that can be removed
without losing feasibility. In other words, all edges in D(u, v) are covered by at least
two edges represented in the solution.

2. Exchange: replace in the solution representation an arc (u, v) by an arc (p, q) such
that the solution is still feasible and has a lower cost.

3. 2-OPT : change the order which the edges in the solution are visited [12]. Consid-
ering that any pair of subsequent edges in the solution are connected by shortest
path links, the 2-OPT move removes two shortest path links and adds two others
shortest path links such that it stills represents a closed tour.

The local search ends when the 2-OPT set of moves is examined and no improvement
is found.
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Algorithm 10: Greedy randomized heuristic (GRH) for CCPP.

Data: Graph G(V,E), covering function D, parameter k of number of iterations.
Result: The best solution produced by GRH in the k iterations.
// preprocessing phase
Compute SP [u][v] for each u, v ∈ V ;
Compute CE(u) for each u ∈ V ;
bestSol ← ∅;
for k iterations do

sol ← a random edge (u, v) ∈ E;
M ← D(u, v);
lastNode← v;
// constructive phase
while |M | < |E| do

Search in CE(lastNode) the closest edge (i, j) such that (i, j) 6∈M ;
Add (i, j) to sol at the final position;
M ←M ∪D(i, j);
lastNode← j;

// local search phase
while sol has a improving remove move do

sol is updated by the first improving remove found;

while sol has a improving exchange move do
sol is updated by the first improving exchange found;

while sol has a improving 2-OPT move do
sol is updated by the first improving 2-OPT found;

if cost(sol) < cost(bestSol) or bestSol = ∅ then
bestSol ← sol ;

return bestSol ;

5.6 Computational experiments

Computational experiments were performed to compare the proposed exact branch-
and-cut (Section 5.4) and heuristic GRH (Section 5.5) methods on benchmark instances
from the literature. Experiments were performed in an Intel Core i7-6700K 4.0 GHz, 16
GB RAM and Linux 64-bit operating system. The methods were coded in C++ using
the LEMON library for graph algorithms [8] and compiled by g++ v4.8 with “-O3” flag.
The branch-and-cut algorithm used the commercial IP solver Gurobi v8.1 with default
parameters and time limit of 1800 seconds for each instance. Separation algorithm used
δ = 0.01 as tolerance constant. The GRH was executed for k = 10000 iterations.

The experiments employed 6 sets of benchmark instances that were originally designed
for the rural postman problem (RPP): the “Alba” set consisting of two instances modeled
from the road-network of the city of Albaida, Spain, from [4]; the 24 computer-generated
“P” instances of [3]; the 20 randomly generated “R” instances from [12]; the 36 instances
with nodes degree four “D” and the 36 grid instances “G” both from [1]; and 12 “UR500”
large instances from [5].

For each RPP instance set, three different covering functions Dα for α ∈ {1.0, 2.0, 3.0}
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were considered. Therefore, from 6 original instance sets for RPP, a total of 18 instance
sets for CCPP were generated.

The covering functions Dα(u, v) are defined for each (u, v) ∈ E as the set of edges
(i, j) ∈ E such that: max(SP [i][u], SP [i][v], SP [j][u], SP [j][v]) ≤ α × µ(c(E)), where
SP [x][y] is the shortest path distance from node x to node y, µ(c(E)) is the average cost
of edges in E, and α ≥ 0 is a real parameter. In other words, one edge cover and is covered
by the other when their nodes are close enough. Moreover, Dα(u, v) always include (u, v)

independently of α.
Table 5.1 show the data for the instance sets: first column is the set name and in

parentheses is the number of instances; |V | and |E| are the number of nodes and edges,
respectively; the last three columns are the average size of covering functions Dα for α = 1,
α = 2 and α = 3 respectively.

Tables 5.2, 5.3 and 5.4 gives the overall comparison of the branch-and-cut and GRP
methods considering the covering functions Dα for α = 1, α = 2 and α = 3 respectively.
The first column is the instance set name and in parentheses the number of instances.
For each method, OPT is the number of instances with proved optimal solution; Gap =

100 ∗ (UB − LB)/LB is the average gap in percentage between the solution cost found
by each method (UB) and the lower bound obtained by branch-and-cut (LB); and Time
is the method runtime in seconds.

From Tables 5.2, 5.3 and 5.4 one can observe the following:

• Branch-and-cut method performed very well for all instances with α = 1. In fact,
119 instances of 130 were solved to optimality and an average Gap of 0.11 was
achieved in reasonable computational time.

• Branch-and-cut also performed well for the instances Alba, P, R, D and G with
α = 2. The computational time increased in comparison to α = 1 for all instance
sets.

• Branch-and-cut performed poorly for the UR500 instances with α = 2 and α = 3.

• Branch-and-cut performed competitively in comparison to GRH for all instances
with α = 3, except for UR500.

• GRH performed much better than Branch-and-cut for the UR500 instances with
α = 2 and α = 3. In fact, the solutions obtained have Gap at least 5 times smaller
and the processing time was at least 4 times faster.

• GRH is much faster than Branch-and-cut for the majority of instance sets, for
example the D and G instances with α = 2 and α = 3 was at least 360 times faster
using GRH than Branch-and-cut.

• GRH is faster for greater values of α. For example, the overall processing time for
α = 1 was 66.9s while for α = 3 it was only 17.2s.

• GRH does not degrade its performance when considering instances with larger α

values as the branch-and-cut does. For example, GRH obtained 52, 54 and 75
optimum solutions for α = 1, α = 2 and α = 3 respectively.
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Table 5.1: Data of instances.

Set |V | |E| |Dα=1| |Dα=2| |Dα=3|

Alba(2) 90-102 144-160 2.8 9.8 18.4
P(24) 7-50 13-184 4.0 21.4 43.8
R(20) 20-50 37-203 3.8 28.0 53.8
D(36) 16-100 31-200 3.1 10.4 20.9
G(36) 16-100 24-180 1.0 7.6 18.4

UR500(12) 298-499 597-1526 3.6 15.6 35.2

Table 5.2: Experiment results for covering function Dα with α = 1.

Branch-and-cut GRH
Set OPT Gap Time OPT Gap Time

Alba(2) 2 0.00 5.2 0 2.41 3.1
P(24) 24 0.00 18.4 12 1.05 0.6
R(20) 20 0.00 1.2 3 8.43 2.6
D(36) 36 0.00 1.9 9 3.18 1.9
G(36) 36 0.00 0.4 28 0.23 1.3
UR500(12) 1 1.19 1705.3 0 12.64 708.5
overall(130) 119 0.11 161.7 52 3.64 66.9

One can conclude from these experiments that the proposed Branch-and-cut method
was especially effective for small and medium sized instances (up to 200 edges) and in-
stances with narrower covering functions (small α). On the other hand, GRH seems to
take advantage of wider covering functions in relation to processing time.

Tables 5.5, 5.6 and 5.7 show detailed experiment results for the UR500 instances,
which are the largest instances. The first column is instance number; |V | and |E| are
number of nodes and edges respectively; LB is the lower bound obtained by branch-and-
cut method. For each method, UB is the solution cost and Gap = 100 ∗ (UB − LB)/LB

is the average gap in percentage between UB and LB.
In Table 5.5 one can observe that the performance of the branch-and-cut method for

the instances with α = 1 was much better than the GRH. Moreover, all sets were solved
to optimal except for the UR500 set where the average Gap was 1.19 for branch-and-cut
and 12.64 for GRH.

In Table 5.6 and 5.7 the branch-and-cut display poor results in general for UR500 with
α = 2 and α = 3. Branch-and-cut bad performance can be partly explained because it is
an exact exponential-time algorithm in the worst case [13]. Another possibly reason may
be because the connectivity constraints (Section 5.4.1) perform worse for instances with
wider covering functions.

On the other hand, GRH did not perform so bad as branch-and-cut for UR500 with
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Table 5.3: Experiment results for covering function Dα with α = 2.

Branch-and-cut GRH
Set OPT Gap Time OPT Gap Time

Alba(2) 2 0.00 47.2 0 6.49 2.0
P(24) 24 0.00 3.0 21 1.68 0.5
R(20) 20 0.00 16.3 16 1.40 0.7
D(36) 29 0.85 398.2 6 5.83 1.1
G(36) 27 2.71 712.4 11 21.71 0.5
UR500(12) 0 323.30 1804.4 0 62.95 421.2
overall(130) 102 30.83 477.9 54 14.06 39.6

Table 5.4: Experiment results for covering function Dα with α = 3.

Branch-and-cut GRH
Set OPT Gap Time OPT Gap Time

Alba(2) 2 0.00 63.0 0 7.57 1.5
P(24) 24 0.00 1.1 24 0.00 0.1
R(20) 18 9.05 370.1 15 9.62 0.6
D(36) 33 0.24 369.1 12 4.21 0.8
G(36) 27 17.83 578.1 24 25.01 0.4
UR500(12) 0 2010.66 1801.1 0 227.70 181.6
overall(130) 104 191.99 486.7 75 30.71 17.2

α = 2 and α = 3. Also, GRH has a shorter processing time that decreases for higher
values of α. Therefore, it is observable some degree of complementarity in the proposed
methods. In the case of wide covering functions, the branch-and-cut can be very sensitive
and degrade its performance; on the other hand, GRH does not seem to degrade its
performance because of wide covering functions.
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Table 5.5: Experiment results detailed for UR500 instances and covering function Dα

with α = 1.

Branch-and-cut GRH
# |V | |E| LB UB Gap UB Gap

1 298 597 36513 37190 1.85 39298 7.63
2 458 812 30522 30832 1.02 34051 11.56
3 493 868 29823 29823 0.00 33978 13.93
4 343 862 44854 45603 1.67 50052 11.59
5 476 1104 40554 40873 0.79 45255 11.59
6 498 1112 37799 38213 1.10 42502 12.44
7 388 1135 49288 49854 1.15 56257 14.14
8 490 1305 46089 46471 0.83 51602 11.96
9 498 1310 44583 45154 1.28 50296 12.81
10 416 1403 55910 56754 1.51 64703 15.73
11 496 1513 56163 56702 0.96 63056 12.27
12 499 1526 51253 52368 2.18 59443 15.98
avg 1.19 12.64

Table 5.6: Experiment results detailed for UR500 instances and covering function Dα

with α = 2.

Branch-and-cut GRH
# |V | |E| LB UB Gap UB Gap

1 298 597 23925 25010 4.54 27262 13.95
2 458 812 16926 39161 131.37 20083 18.65
3 493 868 14967 15272 2.04 18091 20.87
4 343 862 21502 82704 284.63 28741 33.67
5 476 1104 14404 47580 230.32 22143 53.73
6 498 1112 12073 58790 386.95 18022 49.28
7 388 1135 18290 48617 165.81 26061 42.49
8 490 1305 8835 68768 678.36 17911 102.73
9 498 1310 10716 59074 451.27 17976 67.75
10 416 1403 12472 97698 683.34 22158 77.66
11 496 1513 6366 40454 535.47 16220 154.79
12 499 1526 8113 34521 325.50 17837 119.86
avg 323.30 62.95
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Table 5.7: Experiment results detailed for UR500 instances and covering function Dα

with α = 3.

Branch-and-cut GRH
# |V | |E| LB UB Gap UB Gap

1 298 597 14933 50045 235.13 18226 22.05
2 458 812 6298 40205 538.38 12949 105.60
3 493 868 5824 38083 553.90 13063 124.30
4 343 862 9492 72590 664.75 15865 67.14
5 476 1104 6312 72296 1045.37 14129 123.84
6 498 1112 3137 64432 1953.94 10869 246.48
7 388 1135 3914 58532 1395.45 10220 161.11
8 490 1305 1721 54973 3094.25 9132 430.62
9 498 1310 2241 78888 3420.21 9716 333.56
10 416 1403 1499 62148 4045.96 6942 363.11
11 496 1513 1526 59138 3775.36 8249 440.56
12 499 1526 2039 71471 3405.20 8442 314.03
avg 2010.66 227.70
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5.7 Conclusion

In this paper we have proposed a new combinatorial optimization problem called
covering Chinese postman problem (CCPP). The problem was modeled by integer pro-
gramming. Two solution methods were proposed: an exact branch-and-cut method and
a heuristic method called GRP.

Extensive computational experiments with six sets of benchmark instances have been
performed. The results show the usefulness of proposed methods. For small and medium
instances (|E| ≤ 200) the branch-and-cut obtained very good results, including many
optimal solutions. However for some large instances it was very ineffective. On the other
hand, the GRP method was able to obtain reasonable solutions in short computational
time for all instances, although for medium instances the branch-and-cut performed bet-
ter.

In addition to the instance sizes, the covering function was also show to play a major
role in instances difficulty. While instances with narrow covering functions tend to be
well solved by the branch-and-cut, wider covering functions tend to be more difficult.
The GRP was shown to perform better than branch-and-cut method for large instances
with wide covering functions.

Future works include improvements on the integer programming formulation by addi-
tion of valid inequalities. Another interesting research direction is the development of an
efficient metaheuristic for the CCPP, including local search procedures especially tailored
for the problem.
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Chapter 6

Discussion

Overview. This thesis presents four articles in Chapters 2, 3, 4 and 5 describing
computational methods to solve arc routing problems. Our objective was to explore dif-
ferent algorithmic techniques in order to obtain efficient and reliable methods considering
the trade-off between solutions quality and computation processing time. We considered
heuristic methods, exact methods and lower bounding methods. The heuristic methods
aim to obtain high-quality solutions (i.e. close enough to the optimal solution) in rela-
tively short processing time. Exact methods aim to obtain an optimal solution, which for
NP-hard problems can be intractable for large instances given their exponential process-
ing times (unless P = NP). Moreover, exact methods are interesting since many of them
are able to obtain non-trivial feasible solutions and tight lower bounds. Finally, lower
bounding methods aim to solely generate good lower bounds in a reasonable time without
the commitment of finding solutions. Lower bounds are important since they are used to
assess the quality of solutions found by other methods, especially those that do not hold
approximation guarantees (e.g. heuristics).

PS-Efficiency. The PS-Efficiency heuristic (Chapter 2) was based on well known
previous heuristics for the capacitated arc routing problem (CARP). The PS-Efficiency
computational complexity was demonstrated and we executed experiments to verify its
performance in practice. Our results show that the heuristic consistently outperformed
previous heuristics. This is especially important considering that many good performing
metaheuristics were proposed [18, 41, 20] where the previous path-scanning heuristics
were employed as subroutines (e.g. to initialize a population of solutions).

Moreover, the PS-Efficiency is a simple and easily implemented heuristic. We believe
this heuristic can be applied to other arc routing problems that consider a depot and
where more side constraints are required (e.g. distance constraints, time-windows and
others). This could be done, for example, by adapting the phase of greedy selection of
candidate edges, restricting more the set of candidate edges considering other constraints
as well.

Hybrid Genetic Algorithm. The Hybrid Genetic Algorithm - HGA (Chapter 3) is a
metaheuristic developed for the open capacitated arc routing problem (OCARP). The
HGA is a genetic algorithm with feasibilization and local search procedures specially
tailored for the OCARP. The feasibilization procedure, as shown in the experiments, was
essential to obtain a good number of feasible solutions with good variability in a limited
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processing time. Previous approaches [39] have had difficulties regarding feasibility of
solutions for instances where the number of available vehicles is low in comparison to
the amount of demand. We believe the feasibilization procedure can be applied to other
routing problems, specially those where finding feasible solutions is a non-trivial problem.
The HGA local search procedure was shown to be effective in finding good solutions for
the problem. The proposed inter-route procedure of local search employed constructive
heuristics in a destroy-and-repair fashion applied to pair of routes which are close to each
other. We believe this approach can be successfully applied to other routing problems as
soon as there are known good constructive heuristics available for these problems.

Lower bounding methods. Two lower boundings methods (Chapter 4) were proposed
for the open capacitated arc routing problem: the branch-and-cut (B&C) method and
the relaxed flow-based formulation (RFB(k)). The B&C is a branch-and-cut method
applied to a relaxed formulation with two sets of constraints and the corresponding exact
separation algorithms. The RFB(k) is a parameterized relaxed flow-based formulation
where the integer parameter k can control the tightness of the formulation (e.g. how much
its optimal solution is close to the OCARP optimal solution).

Using the proposed lower bounding methods we could prove the optimality of many
solutions previously obtained by the HGA. From the computational experiments we ob-
served that the B&C and RFB(k) can be complementary approaches: depending on the
instances characteristics and available computing power, one method can obtain better
results than the other.

The B&C was inspired by similar methods originally proposed for the CARP [12, 32].
The B&C has shown good performance for large instances, therefore improvements on the
efficiency of separation algorithms (e.g. heuristic separations) could provide even more
progress in tackling very large instances of OCARP. One downside of this method is that
its implementation is not trivial, but was simplified to some extent by adopting a library
for graph algorithms called LEMON [22].

The RFB(k) considers flow variables to generate relaxed formulations for the problem.
We believe the RFB(k) is an original approach by using a graph generation procedure
controlled by an integer parameter k in order to impact the formulation tightness. We
believe it has potential to be applied to other routing problems as well by appropriate
changes in the phase of graph generation. Regarding the performance, the RFB(k) was
able to obtain very tight lower bounds for small and medium instances. Also, choosing
the value of parameter k was shown to be very important to obtain the best results.

Covering Chinese postman problem. The covering Chinese postman problem - CCPP
(Chapter 5) is a new arc routing problem where covering constraints are considered.
We modelled the problem by integer programming. A branch-and-cut exact method
and a greedy heuristic were proposed. We show that small and medium instances were
completely solved by the branch-and-cut. At the same time, large instances with wide
covering functions are much harder to solve by the exact method and were better handled
by the greedy heuristic.

Computational experiments have shown that the proposed heuristic and exact methods
obtained complementary results. Therefore, we believe the development of a matheuristic
method [17] could be promising for this problem [9, 35].
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Chapter 7

Conclusion

Arc routing problems have attracted attention from many researchers primarily be-
cause of their many real-world applications and difficulty of optimization. In this thesis we
have studied and proposed computational methods for three arc routing problems: (i) the
capacitated arc routing problem (CARP); (ii) the open capacitated arc routing problem
(OCARP); and (iii) the covering Chinese postman problem (CCPP). The study of these
problems during the doctorate course culminated with the production of a considerable
number of publications which will be summarized next.

Table 7.1 contains a summary of journal articles linked to this thesis. Table 7.1
contains the problem name, references to the papers and chapters, status (i.e. submitted
or published), year of publication or submission, journal name and the contributions of
the paper. The Chapters 2, 3 and 4 corresponds to three papers submitted to or published
in the Computers & Operations Research journal.

Table 7.2 summarizes all conference publications published during the doctorate course.
Table 7.2 contains the problem name, references to the papers and chapters, type of pub-
lication (full paper, abstract or extended abstract), conference initials and year, city of
the venue and the contributions of the paper.

All conference publications in Table 7.2 were peer-reviewed, published and given an
oral presentation during the conference. The first three entries of Table 7.2 correspond to
papers published and presented in the national conference SBPO (Brazilian Symposium
of Operational Research) in the years of 2016, 2018 and 2019 presenting partial research
results related to the Chapters 3, 4 and 5 respectively. In 2016, in Vitória, the paper [2]
presented a partial research of the hybrid genetic algorithm for the OCARP. In 2018, in
Rio de Janeiro, the paper [3] presented an earlier version of the flow-based formulation

for the OCARP. In 2019, Limeira, the paper [4] explained some preliminary methods for
the CCPP.

The last three publications in Table 7.2 correspond to abstracts and papers presented
in international conferences. Paper [42] was presented in the 30th European Conference
on Operational Research - Dublin, Ireland, and described the PS-Efficiency heuristic for
the CARP. Paper [5] was presented in the International Symposium on Scheduling 2019
- Matsue, Japan, and reported the newly proposed problem CCPP in addition to exact
and heuristic methods for solving it. Paper [8] was presented in the 23rd International
Congress on Modelling and Simulation - Canberra, Australia, and described the CCPP,
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a practical application and an exact method for solving it. This paper was prized with
the best student presentation award in the operations research track, given by the ASOR
- The Australian Society for Operations Research1.

In order to computationally treat the proposed arc routing problems many algorith-
mic techniques were explored: linear integer programming, branch-and-cut, network flows,
genetic algorithms, randomized greedy heuristics, and others. Many metaheuristics also
required specialized data structures in order to efficiently manipulate all the data involved.
We tested our methods in benchmark instances proposed by the literature whenever pos-
sible, demonstrating their good performance, considering both quality of solutions and
processing time. Moreover, we made the experiments data and our methods source codes
public on-line 2.

We believe this thesis presents several advances for the state of the art, advancing
the scientific knowledge related to the computational treatment of these combinatorial
optimization problems. The advance of science in the treatment of combinatorial opti-
mization problems has practical application in several industries, whether minimizing the
cost of operations or increasing their reliability. Thus, the application of these techniques
has the potential to increase the competitiveness of companies (e.g. the routing of meter
readers employed by utility companies).

Future works. For the OCARP, the study of exact methods based on branch-cut-and-
price [26, 16] can be very fruitful since this technique is regarded as one of the best options
for exactly solving the VRP. The study of variants such as OCARP with time-windows
is also interesting. In the case of the CCPP, we believe that a matheuristic method [17],
which plays with the strenghts of both mathematical formulation methods and heuristics,
is promising. In addition, the creation of new instances based on real world applications
of automated meter reading would be enriching for the literature. Finally, the study of a
new problem involving the routing and covering of arc-based customers by drones seems
to be a promising research direction [19].

1https://www.asor.org.au/
2http://www.ic.unicamp.br/~fusberti/problems/carp/ and http://www.ic.unicamp.br/

~fusberti/problems/ocarp/
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Table 7.1: Summary of journal papers concluded during the doctorate.

Problem References Status Year Journal Contributions

OCARP [1] (Chapter 3) Published 2018 Computers &
Operations
Research

metaheuristics, exper-
iments

CARP [6] (Chapter 2) Published 2019 Computers &
Operations
Research

heuristics, experi-
ments

OCARP [7] (Chapter 4) Submitted 2019 Computers &
Operations
Research

model, exact and
lower bound methods,
proof of properties,
experiments

Table 7.2: Summary of conference papers published during the doctorate.

Problem Reference Type Conference City Contributions

OCARP [2] full paper SBPO 2016 Vitória metaheuristics, exper-
iments

OCARP [3] full paper SBPO 2018 Rio de Janeiro lower bounding meth-
ods, experiments

CCPP [4] full paper SBPO 2019 Limeira exact and heuristic
methods, experiments

OCARP [42] abstract EURO 2019 Dublin heuristics, experi-
ments

CCPP [5] (Chap-
ter 5)

full paper ISS 2019 Matsue new problem, model,
exact and heuristic
methods, experiments

CCPP [8] extended
abstract

MODSIM
2019

Canberra new problem, model,
exact and heuristic
methods, experiments
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