
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Alexandre Melo Braga

Towards the Safe Development of Cryptographic

Software

Rumo ao Desenvolvimento Seguro de Software

Criptográfico

CAMPINAS

2017

Alexandre Melo Braga

Towards the Safe Development of Cryptographic Software

Rumo ao Desenvolvimento Seguro de Software Criptográfico

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Ricardo Dahab

Este exemplar corresponde à versão final da
Tese defendida por Alexandre Melo Braga e
orientada pelo Prof. Dr. Ricardo Dahab.

CAMPINAS

2017

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Alexandre Melo Braga

Towards the Safe Development of Cryptographic Software

Rumo ao Desenvolvimento Seguro de Software Criptográfico

Banca Examinadora:

• Prof. Dr. Ricardo Dahab
Instituto de Computação, Universidade Estatual de Campinas

• Prof. Dr. Alessandro Fabricio Garcia
Pontifícia Universidade Católica do Rio de Janeiro

• Prof. Dr. Ricardo Felipe Custódio
Laboratório de Segurança Em Computação, Universidade Federal de Santa Catarina

• Prof. Dr. Breno Bernard Nicolau de França
Instituto de Computação, Universidade Estatual de Campinas

• Prof. Dr. Diego de Freitas Aranha
Instituto de Computação, Universidade Estatual de Campinas

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 19 de dezembro de 2017

Dedication

To Kelcy, Gustavo, and Leonardo.

Follow your bliss
and the universe will
open doors where there
were only walls. (Joseph Campbell)

Acknowledgements

To my wife.
To my parents.
To my family.
To my advisor and my friend.
To my fellows from Coimbra.
To my defense’s committee.
To my interns.
To my bosses.
To UNICAMP.
To CPqD.

I’ve never been alone on this journey.
Like an apprentice with many masters.

My achievement had the support of each and every one of you.
Like a pilgrim with many helpers.

Thanks for being part of my adventure.
Like a hero with many faces.

Resumo

A sabedoria popular diz que qualquer sistema é tão seguro quanto o seu elo mais fraco.
Com o uso generalizado de bibliotecas criptográficas de boa reputação, baseadas em pa-
drões confiáveis de algoritmos de qualidade, implementações inseguras ou falhas na mate-
mática subjacente não são os elos fracos mais prováveis. Porém, o comprometimento da
criptografia ou da sua implementação são eventos raros de impacto catastrófico.

Atualmente, a investigação sistemática de problemas práticos associados ao mau uso de
criptografia está ganhando força. À medida que a segurança torna-se transparente para os
usuários e a criptografia de boa reputação está disponível para todos os desenvolvedores, o
elo fraco mais provável deixa de ser a infra-estrutura criptográfica para se tornar o software
em torno da criptografia, escrito por desenvolvedores não especialistas no assunto. Hoje,
o mau uso generalizado da criptografia em software é a fonte mais freqüente de problemas
de segurança relacionados à criptografia. O efeito cumulativo desse mau uso generalizado
também tem um impacto catastrófico, embora difuso.

Esta tese investiga o papel da criptografia na segurança de software e fortalece o
surgimento da segurança de software criptográfico como um novo campo de estudo
preocupado com o desenvolvimento sistemático de software criptográfico seguro.

Esta tese alcançou os seguintes resultados. Primeiramente, uma revisão da literatura
sobre programação e verificação de software criptográfico descobriu que apenas um quarto
das ferramentas identificadas poderia ser usado por programadores não especialistas em
criptografia. Em segundo lugar, uma metodologia para o desenvolvimento de software
criptográfico seguro consolidou as práticas casuais empregadas pela segurança de soft-
ware na construção de software criptográfico. Adicionalmente, um estudo empírico sobre
comunidades on-line para programação descobriu que o mau uso de criptografia é muito
freqüente, com padrões recorrentes de mau uso. Em quarto lugar, uma avaliação de fer-
ramentas de análise estática descobriu que estas ferramentas detectam pouco mais de um
terço dos maus usos criptográficos. Além deste, um estudo longitudinal e retrospectivo
sobre o mau uso da criptografia descobriu que desenvolvedores podem aprender a usar
APIs criptográficas sem realmente aprender criptografia, enquanto alguns maus usos per-
sistem ao longo do tempo. Finalmente, uma classificação dos maus usos da criptografia,
voltada para a área de segurança de software, e uma metodologia para o desenvolvimento
de software criptográfico compõem o corpo de conhecimento para o seu desenvolvimento
seguro.

Há uma grande lacuna entre o que os especialistas em criptografia vêem como maus
usos de criptografia, os maus usos que as ferramentas de segurança atuais são capazes
de detectar e aquilo que os desenvolvedores vêem como uso inseguro da criptografia. O
arcabouço conceitual proposto nesta tese contribui para preencher essa lacuna, aplicando
a segurança de software criptográfico no desenvolvimento de software seguro.

Abstract

Conventional wisdom says that any system is only as secure as its weakest link. With
the widespread use of good-standing cryptographic libraries, based upon standards of
scrutinized algorithms, insecure implementations or flaws in the underlying mathematics
are not the likely weakest links. The compromise of cryptography or of its implementations
are rare events with catastrophic impacts, though.

Nowadays, the systematic investigation of real-world issues associated to cryptogra-
phy misuse is gaining momentum. As security becomes transparent to end-users and
good-standing cryptography is readily available to every developer, the likely weakest
link moves from cryptographic infrastructure to the code surrounding cryptography, writ-
ten by ordinary developers, non-experts in cryptography. Today, the widespread misuse
of cryptography in software is the most frequent source of security issues related to cryp-
tography. The cumulative effect of this widespread misuse also has a catastrophic impact,
although a diffused one.

This thesis investigates the role of cryptography in the discipline of software security
and strengthens the emergence of cryptographic software security as a new field
concerned with the development of secure cryptographic software.

This thesis achieved the following results. First, a literature review about program-
ming and verification of secure cryptographic software found that only one quarter of
surveyed tools could be used by non-expert developers working above crypto APIs. Sec-
ond, a methodology for development of secure cryptographic software captured the casual
practices employed by software security when building cryptographic software. Third, an
empirical study in online communities for programming found that cryptography misuse
is frequent, showing recurring patterns of misuse. Fourth, an experimental evaluation of
static analysis tools for cryptography found that evaluated tools detected a little more
than one third of crypto misuses. Fifth, a longitudinal and retrospective study on how
developers misuse cryptography found that developers can learn how to use crypto APIs
without actually learning cryptography, while some misuse persists over time. Sixth, a
systematic classification of cryptography misuse for software security and a methodology
for developing secure cryptographic software compose a body of knowledge for the field
of cryptographic software security.

There is a huge gap among what cryptography experts see as cryptography misuse,
what current tools are able to detect, and what developers see as insecure use of cryptog-
raphy. The conceptual framework in this thesis contributes to bridge this gap by applying
cryptographic software security in order to safely use cryptography when developing se-
cure software.

Contents

1 Introduction 12
1.1 Terminology adopted by this text . 13
1.2 Structure of this thesis . 15

1.2.1 Purpose and scope . 15
1.2.2 Research methodology and main publications 16
1.2.3 Findings and contributions . 17
1.2.4 Main conclusions . 19
1.2.5 Future improvements . 20
1.2.6 Organization of the text . 20

2 Published works 21
2.1 Empirical studies in online communities 22

2.1.1 Mining Cryptography Misuse in Online Forums 23
2.1.2 A Longitudinal and Retrospective Study on How Developers Misuse

Cryptography in Online Communities 32
2.2 Evaluation of automated tools for cryptography 47

2.2.1 A Survey on Tools and Techniques for Programming and Verifica-
tion of Secure Cryptographic Software 48

2.2.2 Practical Evaluation of Static Analysis Tools for Cryptography . . . 63
2.3 Development methods for secure crypto software 76

2.3.1 Towards a Methodology for the Development of Secure Crypto-
graphic Software . 77

2.3.2 Understanding the Field of Cryptographic Software Security 84

3 Discussion 118
3.1 The need for systematic methods in cryptographic software security 118
3.2 A running example for designing cryptographic software 121
3.3 Code vulnerability, design flaw, and cryptography misuse 124
3.4 Cryptographic software security and secure software engineering 126

3.4.1 Secure software engineering and secure cryptographic software . . . 127
3.4.2 Software assurance for cryptographic software security 128
3.4.3 Risk management for cryptographic software security 130

3.5 A systematic approach to cryptography in software security 132
3.5.1 Software requirements for cryptographic software security 132
3.5.2 Software design for cryptographic software security 133
3.5.3 Software construction for cryptographic software security 134
3.5.4 Software testing for cryptographic software security 135

3.6 The case for cryptographic software security 137

4 Conclusion 139
4.1 Future directions . 140
4.2 Final message . 142

Bibliography 144

12

Chapter 1

Introduction

Security controls based upon cryptography are now common in software systems, available
to every developer, and affecting the life of many users of this technology. For instance,
today, we can see in every smart phone the end-points of crypto systems transparently
managing millions of keys on behalf of their users, in publicly available applications [107,
95, 102], going beyond those traditional use cases for cryptography, and sometimes, with
social and political implications [99].

Evidence for the widespread use of cryptography can be easily found in popular mobile
apps allegedly using cryptography to secure communication [107, 95, 102], in platforms for
mobile devices that offer full-disk encryption [98], and in simple searches for keywords like
cryptography and encryption on well-known app stores, which show hundreds of results
for mobile apps related to cryptography [23].

Cryptography is an essential part of software security. However, it is one of the most
misunderstood technologies in the development of secure systems [68, 46, 38, 52, 27]. Its
correct use is full of design decisions and coding pitfalls that challenge software developers,
security researchers, and tool builders.

For almost thirty years, studies have shown that vulnerabilities in cryptographic soft-
ware have been mainly caused by software defects and poor management of cryptographic
parameters and other sensitive material [12, 90, 89, 91, 56].

Nowadays, the systematic investigation of real-world issues associated to cryptogra-
phy misuse is gaining momentum, as many cryptography experts, including renowned
researchers (for instance, Ross Anderson [13], Dan Boneh [54], Phillip Rogaway [87], Pas-
cal Junod [62], Matthew Green [55], Daniel Bleichenbacher [17], and Simson Garfinkel [6]),
believe now that cryptographic software security is not only a matter of secure implemen-
tation of cryptographic algorithms encapsulated by rich APIs, but also requires a system’s
thinking approach that includes the correct usage of these APIs, conscious system design,
adequate verification technologies, and appropriate expert help, all aiming at avoiding
cryptography misuse.

However, in general, security experts (including cryptography experts, in particular)
are rare [51], adequate tools are barely available [25, 31], specialized literature is ar-
cane (from a developers’ viewpoint) [26], and online resources usually give misleading
advice [27, 29]. Therefore, developers are left unassisted most of the time when building
software with cryptographic features, resulting in the widespread misuse of cryptography.

13

For instance, recent studies found similar numbers for how frequent cryptography mis-
use is in ordinary software. Lazar et al. [68] found that 83% of cryptography vulnerabilities
are due to misuses of crypto libraries, while Egele et al. [46] and Chatzikonstantinou et
al. [38], in two different studies, found that about 88% of mobile apps (from a sample
of Google’s market place) showed some cryptography misuse. Also, Gajrani et al. [52]
found that 90% of apps from diverse app stores are exploitable because of cryptographic
vulnerabilities. Our own results [27] confirmed these high values for cryptography misuse.
We found that cryptography misuse appears in regular discussions about cryptographic
programming in online communities in 90% of posts for a Java community and 71% of
posts for an Android community.

Cryptography misuse in software has many facets and causes. In general:

• Cryptologists do not know or do not care about programming and software devel-
opment issues [13, 87, 55, 62].

• Developers of crypto libraries do not design cripto APIs to foster correct use of
cryptography [6, 62].

• There is a lack of documentation to foster proper use of cryptography in coding [6].

We augmented this list with our own findings:

• Developers learn how to use crypto APIs without actually learning cryptography
correctly [29].

• Methods for software security overlook the development of cryptographic software [28].

• Vulnerability detection tools are better in finding other security issues then in de-
tecting cryptography misuse [31].

• Developers are not exposed to comprehensive examples of cryptography misuse [30].

This introductory chapter proceeds as Section 1.1 explains concepts and terminology
adopted in this text and Section 1.2 explains the thesis and its structure.

1.1 Terminology adopted by this text

In multidisciplinary texts, it is common to find distinct understandings to similar concepts
adopted by different domains. Particularly, applied cryptography is full of domain-specific
jargon and acronyms that are difficult for outsiders to understand. This section does
not give an introduction to cryptography and its nomenclature. For that, we redirect
the reader to appropriate sources [72, 50, 26]. Instead, this section introduces common
concepts and terminology adopted throughout this text and that are discussed in more
detail in Chapter 3.

Cryptographic software (crypto software, for short) is software that preserves major
security goals (namely, confidentiality, integrity, authenticity, and non repudiation) trans-
parently blended into functionality, by using cryptographic methods available through

14

reusable libraries and frameworks. In this context, applied cryptography is the use of
cryptographic infrastructures (e.g., packages, libraries, and APIs) to build cryptography-
based security into software.

We distinguish between cryptographic software and cryptography software, where
the later is related to the traditional concept of software for cryptography that implements
only cryptography functions (e.g., encryption, signing, secure hashing, etc.) to be used by
other software as external components, services, or infrastructure. Cryptography software
usually offers generic functions that contribute to specific features of applications. Exam-
ples of cryptography software are cryptographic libraries as well as packages for secure
communication with TLS.

Cryptography misuse (crypto misuse, for short) is a programming bad practice
frequently found in cryptographic software, leading to vulnerabilities introduced by de-
velopers during coding tasks associated to use cases enabled by cryptography. In many
cases, crypto misuse is also associated to design flaws and insecure architectural choices.
For instance, a hard-coded encryption key found in code means that a key management
system is missing.

Crypto misuse is not related to implementation of cryptographic algorithms. Instead,
crypto misuses emerge when ordinary developers use cryptographic infrastructures in daily
coding activities during the development of cryptographic software. Every crypto misuse
has its corresponding good (a.k.a. correct) use of cryptography and vice-versa. A crypto
misuse can manifest itself in different forms and be instantiated in many ways, depending
on technology specifics.

Cryptography-based security (a.k.a. cryptographic security) is security provided
by the correct use of cryptography. This is an emergent property of systems and can only
be determined in the context of the whole software and its environment, e.g., by how a
crypto system interacts with its surrounding software.

Cryptographic programming is the programming of cryptographic features by
means of common coding tasks associated to cryptographic use cases. Cryptographic pro-
gramming can benefit from both secure coding of crypto software and coding secure crypto
software. Secure coding of crypto software uses general secure programming techniques
during the coding of crypto software to avoid common coding bugs (for instance, buffer
overflows and dead code) that can compromise crypto software. Coding secure crypto

software begins where the latter ends and embraces specific secure coding techniques
and programming tricks to better defend crypto software against cryptography misuse.

Cryptographic vulnerability is a defect in cryptographic software that an adversary
can exploit in actual attacks and is specifically associated to crypto misuse introduced
during coding tasks when implementing cryptographic use cases.

Cryptographic feature is a characteristic of a software functionality that results
from the successful execution of cryptographic use cases in cooperation with other soft-
ware functions. It is commonly associated to the security goals of cryptography. For
instance, confidentiality of conversation, integrity of data, authenticity of origin, and non
repudiation of authorship are all cryptographic features associated to software function-
ality.

Cryptographic use case is a sequence of actions or steps performed by a crypto-

15

graphic software to achieve one or mode security goals associated with cryptography (e.g.,
confidentiality, integrity, authenticity, and non repudiation). The cryptographic use cases
commonly found in software are encrypting data at rest, secure communication, pass-
word protection, and authentication or validation of data. In modern cryptographic

software, crypto use cases are transparently blended to the application’s functionality,
becoming invisible to end-users, as well as implementing unconventional features and
uncommon use cases.

Cryptographic (coding) task is an activity that needs to be accomplished when
coding cryptographic software, so as to produce the successful implementation of a secu-
rity goal related to cryptography. Cryptographic coding tasks commonly found in software
are the following: encryption and decryption; generation of digital signatures or authenti-
cation codes and their verification; key generation or agreement; secure channels based on
SSL/TLS; and handling and verification of digital certificates. There are also supporting
tasks, roughly associated to key management, such as storage, recovery, distribution, and
revocation of keys and certificates.

1.2 Structure of this thesis

This is a thesis by publication (a.k.a. a compilation thesis) in which the body of the
text is a verbatim compilation of published contributions or, in case of journal papers,
submitted to publication. This section explains the thesis and its structure, according
to the following topics: purpose, scope, research methodology, published contributions,
main findings, main conclusions, and future improvements.

1.2.1 Purpose and scope

The purpose of this thesis is twofold. First, to investigate the role of cryptography in
the broad field of software security. Second, to strengthen the emergence of the field of
cryptographic software security, which is concerned with the development of secure
cryptographic software. At first glance, this scope seems too broad. However, there is
a great deal of evidence that cryptographic software security is in fact an emergent field
looking for systematization. This thesis contributes to a better understanding of how
cryptographic software security can be structured as a field of study.

The scope of the thesis is the development of cryptographic software from the ap-
plication perspective (above and beyond crypto APIs) and the viewpoint of the software
developer. Central to this scope is the investigation of how cryptography is misused in
practice as a phenomenon. Another concern is to understand how security experts can
better prevent and detect cryptography misuse in software systems.

In order to understand the developer’s point of view, we (cryptography experts) tried
to avoid an adversarial attitude against developers (that attitude by which many experts
try to build developer-proof cryptography and penalize developers for not knowing the
tricky details of applied cryptography) and put ourselves in their shoes.

In this thesis, we explored three research topics:

16

1. The occurrence of cryptography misuse in online communities for programming.

2. The support of automated tools for detection of cryptography misuse in software.

3. The attention deserved by cryptography in development methods for secure software.

1.2.2 Research methodology and main publications

The research methodology, in general, followed three main activities: literature review,
technology survey, and the proposal of methods for secure cryptographic software.

The first activity (literature review) consisted in identifying and studying related lit-
erature. The activity was planned as follows:

• Study of good uses and misuses of cryptography in software applications.

• Study of tools for secure development of cryptographic software.

• Study of methods for software security applied to cryptographic software.

The second activity (technology survey) consisted in prospecting modern crypto-
graphic software and analyzing their uses of cryptography. This activity was planned
as a study of the occurrence of cryptographic bad practices in development forums for
modern software platforms.

The third activity (the proposal of methods for secure cryptographic software) focused
on a broad methodology for building secure cryptographic software. It was accomplished
in three phases, as follows:

• Elaboration of a layered architecture for cryptographic software.

• Elaboration of a framework for quality assurance of cryptographic software.

• Elaboration of a methodology for development of secure cryptographic software.

The research methodology described above reflects the planned division of work, while
the actual flow of work suffered adaptations over time, as expected, and is illustrated
by the presentation order of published papers. The chronological order of publications
reflects the evolution of our understanding on the subject and provides the reader with an
opportunity to follow the steps we went through in this research. It is also worth noting
that the Ph.D. candidate (the author of this thesis) is the main author of all these papers.

A preliminary publication, not included in this compilation, was a book chapter in-
troducing cryptography to software developers [26], distinguishing good uses and misuses
of cryptography with examples in Java and its crypto API.

The compilation of papers for this thesis is composed of six published works:

1. A survey of research papers about programming and verification of secure crypto-
graphic software [25].

2. A methodology for development of secure cryptographic software [28], which received
the award for best student paper at ICSSA’2016.

17

3. An empirical study on cryptography misuse in online communities [27].

4. An experimental evaluation of static code analysis tools concerning the support
given by these tools to cryptography [31].

5. A longitudinal and retrospective study in online communities on how developers
misuse cryptography over time [29].

6. A classification of cryptography misuse for software security and the refinement
of the working methodology to better fit cryptography in development of secure
software [30].

1.2.3 Findings and contributions

Here we describe the main findings and contributions of this thesis by publication.
First, when reviewing the research literature about tools for programming and verifica-

tion of secure cryptographic software [25], we found that only one quarter of all tools could
be used above crypto APIs, with the other three quarters consisting of domain-specific
tools for secure implementation of cryptographic algorithms, mainly applied below crypto
APIs. These tools were all academic prototypes showing preliminary results, suggesting
that secure coding for cryptography was an emerging topic, lacking support from com-
mercial tools. Also, we informally observed that none of the tools and techniques could,
by themselves, satisfy the whole landscape of development scenarios for cryptographic
software.

Second, when studying how traditional methods for software security treated cryp-
tography, we devised a working methodology for Development of Secure Cryptographic
Software (DSCS) [28], which provided an ordered way to approach cryptography into Se-
cure Software Development Life Cycles (SSDLC). Our methodology captured the casual
practices of secure software development employed by developers when building crypto-
graphic software. This methodology was based upon our previous experience in building
cryptographic software, generalizing several practices we have seen in actual software
developments, as well as practical evidence of cryptography misuse.

Third, when investigating online communities to learn how developers misuse cryptog-
raphy [27], we found that several types of cryptography misuse frequently appeared in the
communication among developers with high probabilities (90% for Java and 71% for An-
droid). By associating cryptography misuse to platform-specific issues, in three different
programming communities, we were able to identify recurring patterns of cryptography
misuse: specific misuses associated to each other in pairs or triples, including worst-case
scenarios, when at least three misuses appeared together, in the same piece of code, with
relatively high probability, and related to specific use cases or coding tasks.

In the process of investigating cryptography misuse in online communities, we devised
a method to extract association rules among types of cryptographic misuse. This method
applied a data mining technique named Apriori and, as far as we know, was the first
attempt to customize data mining techniques to learn association rules from developer’s
misbehavior when coding cryptographic software.

18

Fourth, when benchmarking static code analysis tools for cryptography [31], we per-
formed the first practical evaluation of static code analysis tools concerning the support
given by these tools to cryptography usage, including a detailed set of test cases for cryp-
tography misuse [22, 21]. In this experiment, we evaluated five free tools in order to
answer the questions of how and to which extent cryptography misuse was caught by free
tools currently available to developers.

In this benchmarking, we found that the union of misuses detected by all five tools
covered only about 35% of crypto misuses in our test cases. We also found that, in
general, evaluated tools performed better in simple misuses regarding weak cryptography
and bad randomness, and worse in issues for key management and program design flaws.
Additionally, we found that the evaluated tools were unable to detect non-trivial misuses
for insecure curve selection in Elliptic Curve Cryptography (ECC), weak parameters for
key agreement with Diffie–Hellman (DH) and ECDH, misconfigured digital signatures
with ECDSA, and many insecure configurations for RSA.

Cryptographic software security seems to always require expert help to some extent
in order to assure quality in different moments of development. Understanding that
cryptography experts are rare and that automated tools do offer useful support to both
developers and security experts, despite the huge gap between cryptography knowledge
and what tools currently detect, we also proposed a benchmarking methodology intended
to find the adequate tool for specific development contexts, considering three aspects:
team’s skills in cryptography, (un)availability of experts, and the complexity of the target
application. Our methodology was able to find the best suited (free) tools for these
distinct usage scenarios.

Fifth, when continuing our investigation about cryptography misuse in online com-
munities [29], we performed a longitudinal and retrospective study by tracking users’
activities over time, from the data provided by our third contribution [27]. We found that
the use of weak cryptography (e.g., broken algorithms or misconfigured implementations
of standards) is not only common in online communities, but also recurrent in developers’
discussions, suggesting that developers learn how to use crypto APIs without actually
learning cryptography. We also found that the lack of knowledge in cryptography is a
recurrent source of coding bugs in API usage and does not depend on how long developers
use cryptography APIs.

In this study, which we believe was the first of its kind, we concluded that users
of online communities were not learning the tricky details of applied cryptography, de-
spite their immediate gains in solving programming issues related to cryptographic APIs.
Again, in the process of investigating user’s lifespans, we devised a method based upon
data mining techniques for clustering developers’ posts from their asynchronous lifespans
into a comprehensive life cycle. This life cycle was used to compare users who were active
in different time periods.

Sixth, when assembling a body of knowledge for cryptographic software security [30],
we correlated our previous contributions [25, 27, 29, 31], using two empirical studies [27,
29] and one experimental evaluation [31] to validate our classification of cryptography
misuse, and refined our methodology [28] to better fit cryptography into secure software
development.

19

In this investigation [30] we also detailed two mapping studies. The first explored the
broad field of software security to understand the established knowledge on how cryp-
tography is approached by software security. The second mapping study complemented
the first and explored the cryptography knowledge found in software security textbooks,
systematizing our classification of cryptography misuse for software security. In this text,
we contribute to strengthen the field of development of secure cryptographic software.

Other two important contributions of this thesis are the following. Besides all the
above mentioned findings and contributions, this thesis has two byproducts that gradually
emerged from this investigation. With time, these two working products became central
to our work.

The first is the classification of cryptography misuse for software security that has
been assembled and refined from the very beginning. We can map the root ideas of it
to previous work [20], when we proposed design patterns to cryptographic software, and
preliminary results [26], when we trained developers on how not to use cryptography.
Since then, it has influenced and been influenced by findings from investigations of online
communities [27, 29] and static analysis tools [31], in successive refinements.

The second is the methodology for development of secure cryptographic software.
Over the years, as our understanding evolved, the methodology has steadily matured
in such a way that now we can clearly see two versions of it: the first one [28] based
upon our previous experience in building cryptographic software (documented by many
development cases [32, 34, 37, 24, 35]) and empirical studies [27, 29]; and the second [30],
also supported by experimental evaluation[31] of tools and systematic mapping studies[30].

1.2.4 Main conclusions

The general and emergent conclusions, cross-findings of all contributions of this thesis,
are the following.

We concluded that there is a huge gap among what cryptography experts see as cryp-
tography misuse, what tools are able to detect, and what developers see as insecure pro-
gramming for cryptography. For instance, we found many blind spots in tools’ coverage
of cryptography misuse, suggesting that tool builders have not payed enough attention to
cryptographic software. Interestingly, these blind spots were barely mentioned by devel-
opers in online communities.

We also concluded that the existing knowledge gap we identified between what cryp-
tography experts promote as secure cryptography and what tool builders and software
developers actually see as cryptographic software security gives enough evidence for the
need for a systematic approach to cryptography into software security, a new field of
study, which we name cryptographic software security. Cryptographic software se-
curity is an emergent and multidisciplinary field of study located on the intersection of
three domains: software engineering, software security, and applied cryptography.

We understand now that there is more in cryptographic software security than, for in-
stance, coding best practices to avoid obsolete cryptography or misconfigured algorithms.
We not only found statistically relevant associations among categories of cryptography
misuse, but also identified a hierarchical relationship among groups of misuses, relating

20

them to code, design, and architecture. With these relations in mind, we were able to bet-
ter understand the roles of tools and experts in the development of secure cryptographic
software.

Also, we found that static analysis tools favor the detection of simple crypto misuse
within most frequent use cases and coding tasks, suggesting a prioritization of efforts by
tool builders, in order to offer a trade-off between supporting simple misuses in frequent
use cases and coding tasks, against neglecting sophisticated misuses and rare use cases
and tasks.

In this thesis we confirmed many assumptions, only supposed by cryptography re-
searchers, by intuition, about how cryptography’s complexity is underestimated and over-
looked in software development. Based on our data and findings, we believe now that
cryptographic software security needs a new generation of supporting technology (e.g.,
verification tools, APIs, and development frameworks), which is still to be shaped, being
the subject of extensive research, worldwide. For instance, developers are driven by use
cases when coding cryptographic software with crypto APIs. Thus, APIs could adapt to
offer high-level services directly related to use cases. Also, cryptography experts will have
to adapt to a new context where cryptographic technology needs to be bullet-proof and
developer-friendly at the same time.

1.2.5 Future improvements

We foresee the following topics as future improvements to this thesis. First, more
experimental evidence is needed to validate our current findings; particularly, by the
time of writing, we did not perform any experiment (or quasi-experiment) with actual
developers, in order to validate our findings against actual behavior. Second, we are
aware that the current instance of our classification of cryptography misuse reflects what
we have seen so far. Its maintenance and enhancement is a continuous task. Third, a
tool to assist developers in building cryptographic software is in order, or, perhaps, a
novel cryptographic API or framework to better encapsulate cryptographic services for
developers.

1.2.6 Organization of the text

The next chapters are organized as follows. Chapter 2 is a verbatim compilation of
published works grouped by research topics. Chapter 3 revisits our contributions and
findings, placing them in the context of secure software engineering. Finally, Chapter 4
concludes the thesis with final remarks, expanding the discussion about future directions.

21

Chapter 2

Published works

This chapter is a verbatim compilation of published works organized by research topic. We
arranged papers by research topic, instead of ordering them by chronology of publication,
because readers are supposed to be more comfortable in reading a short sequence of papers
related to the same topic, instead of traversing a long list of apparently unrelated papers
organized in chronological order.

Next sections present published works grouped in three research topics as follows:

1. The empirical studies of crypto misuse in online communities (in Section2.1) fea-
tures the mining of crypto misuse in coding forums (third publication [27]) and the
longitudinal study on cryptography misuse over time (fifth publication [29]).

2. The evaluation of automated tools for cryptography (in Section2.2) features the
literature survey on programming and verification of secure cryptographic software
(first publication [25]) and the experimental evaluation of static code analysis tools
for cryptography (fourth publication [31]).

3. The development methods for secure crypto software (in Section2.3) contains the
methodology for development of secure cryptographic software (second publica-
tion [28]) and the systematic approach to cryptographic software security (sixth
publication [30]).

22

2.1 Empirical studies in online communities

This section contains the following publications. First, the publication entitled "Mining

Cryptography Misuse in Online Forums". Second, the publication entitled "A Longitudi-

nal and Retrospective Study on How Developers Misuse Cryptography in Online Commu-

nities".

23

2.1.1 Mining Cryptography Misuse in Online Forums

This publication is entitled "Mining Cryptography Misuse in Online Forums" and was
published at the IEEE International Conference on Software Quality, Reliability and
Security (QRS 2016), in the International Workshop on Human and Social Aspect of
Software Quality, held in the city of Vienna, Austria.

Mining Cryptography Misuse in Online Forums

Alexandre Braga and Ricardo Dahab

Institute of Computing

State University of Campinas (UNICAMP)

Campinas, Brazil

ambraga@cpqd.com.br, rdahab@ic.unicamp.br

Abstract—This work analyzes cryptography misuse by

software developers, from their contributions to online forums on

cryptography-based security and cryptographic programming.

We studied three popular forums: Oracle Java Cryptography,

Google Android Developers, and Google Android Security

Discussions. We applied a data mining technique, namely Apriori,

to elicit association rules among cryptographic bad practices,

platform-specific issues, cryptographic programming tasks, and

cryptography-related use cases. We found that, with surprisingly

high probabilities (90% for Java and 71% for Android), several

types of cryptography misuse can be found in the posts, but

unfortunately masked by technology-specific issues and

programming concerns. We also found that cryptographic bad

practices frequently occur in pairs or triples. We related triple

associations to use cases and tasks, characterizing worst case

scenarios of cryptography misuse. Finally, we observed that

hard-to-use architectures confuse developers and contribute to

perpetuate recurring errors in cryptographic programming.

Keywords—cryptography misuse; Apriori algorithm; data

mining; Java cryptographic architecture; secure coding

I. INTRODUCTION

The world is witnessing a notable increase in the use of
security functions based on cryptographic technologies.
Almost every day, ordinary developers execute common tasks
related to cryptographic programming (e.g. encryption,
signing, and key generation), in simple use cases historically
associated to secure software (e.g. secure communication, user
authentication, and file encryption). Intuitively, we see that
secure software practitioners do recognize the importance of
cryptography. However, in practice, they give little attention
to its misuse when compared to the attention warranted to
other programming vulnerabilities (e.g. buffer overflows and
SQL injection), a state of affairs that contribute to developers’
misconceptions when using cryptography in practice.

Thus, in this text, we aim at clarifying how cryptography
has been misused by software developers and underestimated
by secure software practitioners, when asking questions or
giving advice about cryptographic coding in online forums.

The contributions of this work are the following. First, we
devise a method to extract association rules among types of
cryptographic misuse. As far as we know, this is the first
attempt to use data mining techniques in order to learn
association rules related to developer’s misbehavior when
programming cryptographic software. Second, we show
evidence that several types of cryptography misuse found in
posts from online forums (90% for Java and 71% for Android)
have been masked by technology specific issues and

programming concerns, usually preferred by developers.
Third, we show that cryptographic bad practices also occur in
pair or triple combinations, with high probabilities. Fourth, we
identify worst case combinations of cryptography misuse,
which are characterized by triple association rules for misuses
related to security use cases and programming tasks.

This text is organized as follows. Section II gives
background and related work. Section III details the research
methodology. Section IV presents results. Section V discusses
at length our findings. Section VI brings the conclusions.

II. BACKGROUND AND RELATED WORK

Lazar et al [1] have shown that 17% of cryptography
vulnerabilities are inside software libraries, with the other 83%
being misuses of those libraries. Also, Chatzikonstantinou et
al [2] analyzed Android apps, concluding that about 88% of
them showed some cryptography misuse.
 According to Egele et al [3] and Shuai et al [4], the most
common misuse is symmetric deterministic encryption, when
a block cipher (e.g., AES or 3DES) uses Electronic Code
Book (ECB) mode. There are cryptographic libraries in which
ECB mode is the default option, automatically selected when
the operation mode is not explicitly specified. A variation of
this misuse is the asymmetric deterministic encryption with
non-randomized RSA, identified by Gutmann [5].

Hardcoded Initialization Vector (IV) [3] is another
frequent misuse. In several operation modes of block ciphers,
IVs must be unique and unpredictable. The Counter (CTR)
Mode requires unique IVs (without repetition). A related
misuse is hardcoded seeds for Pseudorandom Number
Generators (PRNGs) [3]. Still, other misuses arise when
operation modes are exchanged without considering IV
requirements. For instance, Java Cryptographic Architecture
(JCA) [6] allow operation modes to be easily changed.

In mobile apps, libraries to handle SSL/TLS connections
showed several issues when validating digital certificates.
Georgiev et al [7] and Fahl et al [8] have shown that these
libraries allow programmers to ignore parts of certificate
validation in favor of usability or performance, but adding
vulnerabilities. For instance, failures in signature verification
or domain-name validation ease man-in-the-middle attacks.

Finally, Nadi et al [9] studied the obstacles developers face
when using cryptography in Java, concluding that developers
usually implement simple use cases (e.g. user authentication,
login data storage, secure connections, and data encryption),
but face difficulties when using low-level Java APIs. For
instance, Shuai et al [10] discovered that password protection
in Android is greatly affected by cryptography misuse.

2016 IEEE International Conference on Software Quality, Reliability and Security Companion

978-1-5090-3713-1/16 $31.00 © 2016 IEEE

DOI 10.1109/QRS-C.2016.23

143

2016 IEEE International Conference on Software Quality, Reliability and Security Companion

978-1-5090-3713-1/16 $31.00 © 2016 IEEE

DOI 10.1109/QRS-C.2016.23

143

24

All these studies advanced the knowledge about
cryptography misuse in secure software. However, they do not
show how different kinds of cryptography misuse related to
each other and are influenced by the target platform.

III. RESEARCH METHODOLOGY

This section details our methods of study and mining.

A. Study Method

The study included classification of cryptographic bad
practices, post selection in targeted forums, and data analysis.

1) Classification of Cryptographic Bad Practices

We performed a literature review in order to identify
cryptography bad practices and related advice aimed at secure
software developers. We were not interested in advice for
secure implementation of cryptographic algorithms. Instead,
we looked for secure programming techniques for building
cryptographic software. We searched through three sources:
literature on software security that also covers cryptography
issues [11]–[16], recent studies on cryptography misuse (in
Section II), and industry initiatives for software security [17]–
[20]. The resulting classification is shown in TABLE I.

TABLE I. CRYPTOGRAPHY BAD PRACTICES

Category Bad practice type

Weak
Cryptography

(WC)

- Risky or broken cryptography
- Proprietary cryptography
- Deterministic symmetric encryption
- Reversible or broken hash function
- Custom implementation of standards

Poor Key
Management

(PKM)

- Short key, improper size, insufficient length
- Hard-coded, static or constant keys
- Hard-coded passwords for PBE
- Reuse of keys with stream ciphers
- Use of expired keys
- Key distribution issues

Bad Randomness
(BR)

- Use of statistic PRNGs
- Predictable or low entropy seeds
- Fixed, static or reused PRNG seeds

Program Design
Flaws (PDF)

- Unsafe behavior or default
- Insecure key handling (security of keys)
- Insecure use of stream ciphers
- Insecure combo of encryption and auth/hash
- Side-Channel Attacks

Improper
Certificate

Validation (ICV)

- Missing validation of certificate
- Broken SSL/TLS channel
- Incomplete certificate validation (various)
- Improper validation of hostname or user
- Trust in certificates (wildcards, self signed)

Coding and
Implementation

Bugs (CIB)

- Password-based encryption (salt, count, hash)
- Common coding errors (Various)
- Bug in IV generation
- No cryptography (e.g., NullCipher)

Cryptography
Architecture and

Infrastructure
(CAI)

- Cryptography agility
- API misunderstand, lacking knowledge or docs
- Library or module (single point of access)
- Randomness infrastructure
- PKI and CA issues

Public-Key
Cryptography

(PKC)

- RSA weak keys
- Insecure padding (no OAEP/PSS) for RSA
- Deterministic asymmetric enc. (RSA/ECB)
- Inadequate key length for RSA
- Key agreement (e.g., DH) issues
- Elliptic Curve Cryptography (ECC) issues

IV/Nonce
Management

(IVM)

- CBC mode with non-random IV
- CTR mode with static counter
- Fixed, hard-coded, or constant IV
- Reusing nonce in encryption

 There are nine main categories: weak cryptography (WC),
poor key management (PKM), bad randomness (BR), program
design flaws (PDF), improper certificate validation (ICV),
coding and implementation bugs (CIB), cryptography
architecture and infrastructure (CAI), public-key cryptography
(PKC), and IV/nonce management (IVM). Many texts [11]–
[16] already have their own classification. The bulk of work
was then to merge them all, filling the gaps with recent works
(from Section II) and industry concerns [17]–[20].

2) Targeted Forums and Posts Selection

We looked for programming forums possibly supported by
experts in applied cryptography. Three forums were selected:
(i) Oracle Java Cryptography (OJC) [21], a forum aimed at
programming with Java Cryptographic Architecture (JCA);
(ii) Google Android Developers (GAD) [22], a forum for
Android programming; and (iii) Google Android Security
Discussions (GASD) [23]. These public forums were chosen
because their core technologies share the same Java-based API
for cryptography, thus limiting the knowledge required by a
code reviewer to the following aspects: Java programming,
JCA, Android security, and applied cryptography.

Posts were collected in March 2016 and comprised a time
period of five years, from January 2011 to December 2015.
Posts were listed by date (newest first) and manually saved as
PDF files. Also, metadata for each post (such as name, date of
last activity, and number of views) were collected in a
spreadsheet. In many forums, the default option for listings of
posts is “sort by relevance”. However, relevance is context-
sensitive, so we decided to use “sort by date” instead.

OJC is the most active forum, with the most posts in the
selected time period. GAD and GASD are both very active in
general, but showed less activity for cryptographic matters.
For OJC, all 310 posts were collected, and the 155 most-
viewed were selected for further analysis (50% of total). In
both GAD and GASD, a pre-analysis showed that specific
keywords, such as “encryption”, “hash” and “sign”, were
covered by the more general keywords “cryptography” and
“encryption”, which were used to select posts in GAD and
GASD. For GAD, 170 posts were collected and the 100 most-
viewed were selected for analysis. For GASD, 146 posts were
collected and the 100 most-viewed were selected.

3) Data Analysis Method

 The manual inspection (i.e., code review) was the method
used to analyze each single post. Posts were inspected by a
cryptography expert with the skills mentioned above. Before
actually starting the analysis, he spent some time studying post
style and structure and was able to identify a set of recurring
topics related to environment and platform specific issues, in
TABLE II. It also shows common programming tasks and
simple use cases associated to cryptography in literature.
 A misuse is a bad practice or a platform specific issue.
Each post was inspected for occurrences of misuse, in various
combinations. Each post was also categorized according to the
main cryptography task carried out by its programmer, as well
as the main security use case treated by that task. Many posts
showed only discussions about threats or attacks, without a
use case or programming task. When unable to identify the use
case or task associated to a post, we discarded it from the data
set. After discard, the OJC dataset was reduced to 140 posts,
GAD to 71 posts, and GASD to 48 posts.

144144

25

TABLE II. AUXILIARY CLASSIFICATION

Category Type

Environment
and Platform

Specific
Issues (EPSI)

- Configuration and installation issues
- Key storage and recovery
- Bug found or reported
- Tool misuse or misunderstanding
- Interoperation issues (e.g., platforms, versions, etc.)
- Hardware integration issues

Cryptographic
Programming

Tasks

- Encryption and decryption (Enc)
- Signature, MAC and verification (Sig)
- Key generation or agreement (KG)
- SSL/TLS secure channel (SSL)
- Digital certificate handling (Cert)

Cryptographic
Use Cases

- Encrypting Data at Rest (e.g., database, file, etc.)
- Digital Rights Management
- Secure Communication (VPN, SSL, HTTPS, etc.)
- Password Protection and Encryption
- Authenticate or Validate Data (e.g., sign, MAC)

 This step resulted in a matrix of ones and zeros with lines
representing posts and columns representing misuses (bad
practices or platform issues), tasks, and use cases. A cell was
marked with value one when a misuse (column) was found at
the corresponding post (line). The same was done for tasks
and use cases. A matrix was generated for each forum.

B. Data Mining Method

In order to find out interesting associations among bad
practices and specific issues, we applied a data mining
technique, the Apriori algorithm [24]. This technique has been
traditionally applied in recommendation systems to suggest
cross-selling of goods. Each matrix from the previous step was
taken as a data set for the Apriori algorithm. Also, each post
(line) counted as a transaction and each misuse (column)
counted as an item present in that transaction. Data sets were
preprocessed by summarizing misuse by categories.
 In the Apriori algorithm, the support of an item (misuse)
was computed as the percentage of the data set (posts) that
contain that bad practice or issue. The support of an item set
(set of more than one misuse) was calculated as the percentage
of posts that contain this set. For instance, weak cryptography
(WC) appeared in 26% of OJC posts, so this is WC’s support.
Also, weak cryptography appeared together with coding bugs
(CIB) in 10% of OJC posts, so 10% is the support for this two-
misuse set (WC&CIB), representing an interesting association
rule between these two bad practices. This study adopted a
minimum support of 2% to select useful association rules.
 We also computed three supporting metrics in order to
easily identify trustworthy rules: confidence, lift and leverage.
The confidence of a rule was computed as the support of the
misuse set divided by the support of the main (or leading)
misuse of that set. A higher confidence indicated a trustworthy
rule. Lift and leverage were used to exclude statistically
independent (coincidental) associations [25][26].
 Lift measures the number of times in excess of the
expected, that items in a misuse set occur together, assuming
they are statistically independent. Lift is computed as the
support of a misuse set divided by the product of single
supports for all misuses in that set. Lift is 1 if the items are
statistically independent. A lift greater than 1 indicates a
useful association rule; larger lifts strengthen that association.
 Leverage measures the distance between the probabilities
of items (in a set) that appear together and what would be

expected if these items were statistically independent.
Leverage is calculated as the support of an item set minus the
product of single supports for all items in that set. Leverage is
zero when items in the set are statistically independent. If the
items have any kind of statistical dependence, the leverage
would be greater than zero.
 The evaluation of each forum proceeded by iteratively
computing values for support, confidence, lift, and leverage
for data sets consisting of single items (one bad practice or
issue) and pairs of items, when the support of the pair was at
least 2%. Triples were considered only when the supporting
pair had at least a 5% support and the resulting triple showed a
minimum support of 2%.

IV. RESULTS AND FINDINGS

This section presents general results and highlights
interesting findings. First, we present the percentages of bad
practices for all three forums together. Then, for each forum
individually, we present association rules for pairs and triples
of bad practices and issues, as well as for programming tasks
and use cases. When suitable, we instantiate cases of misuse.

A. Single Occurrence of Cryptography Misuse

Single support for cryptography misuse (bad practices,
platform specific issues), programming tasks, and use cases is
summarized in TABLE III. The table shows that weak
cryptography (WC) is the most common bad practice in both
OJC and GAD. Also, all forums suffer negative influence
from platform specific issues (EPSI).

Besides specific issues, OJC suffers the most influence
from weak cryptography (WC, 26%), architectural issues
(CAI, 20%), coding bugs (CIB, 17%), public key issues (PKC,
16%), and poor key management (PKM, 11%). This profile is
probably due to API misuse, lack of knowledge in applied
cryptography, and complexity of JCA.

TABLE III. APRIORI SINGLE SUPPORT

Misuses, Tasks and Use Cases Single Support (%)

Bad Practices and Issues (BP&I) OJC GAD GASD

Weak Cryptography (WC) 26% 21% 10%

Poor Key Management (PKM) 11% 4% 2%

Bad Randomness (BR) 0% 1% 10%

Program Design Flaws (PDF) 6% 8% 10%

Improper Cert. Validation (ICV) 4% 3% 15%

Coding and Impl. Bugs (CIB) 17% 17% 6%

Crypto Architecture and Infra. (CAI) 20% 1% 23%

Pub. Key Crypto Issues (PKC) 16% 10% 4%

IV and Nonce Management (IVM) 5% 6% 0%

Env. and Plat. Specific Issues (EPSI) 60% 32% 48%

Crypto Programming Tasks (CPT) OJC GAD GASD

Encryption and decryption 26% 32% 21%

Signature, MAC and verification 16.5% 10% 10%

Key generation or agreement 11% 4% 8.4%

SSL/TLS secure channel 8.5% 1.5% 8.3%

Digital certification 17% 1.5% 8.3%

Other or unidentified 21% 51% 44%

Crypto Use Cases (CUC) OJC GAD GASD

Encrypting Data at Rest (EDR) 31% 65% 54%

Digital Rights Management (DRM) 0% 4.5% 2%

Secure Communication (SC) 18% 11% 27%

Password Protection and Enc. (PPE) 0% 11% 8.5%

Auth. or Validate Things (AVD) 26.5% 8.5% 8.5%

145145

26

 GAD suffers most from weak cryptography (WC, 21%),
coding bugs (CIB, 17%), and public key issues (PKC, 10%).
This profile is probably due to API misuse and lack of
knowledge in cryptography programming. Despite preserving
the Java API, Android has its own architecture for enabling
cryptographic libraries, which simplifies installation and
configuration, but brings new interoperational issues.

GASD suffers most from architectural issues (CAI, 23%),
improper validation of certificates (ICV, 15%), and a mix of
design flaws (PDF, 10%), bad randomness (BR, 10%) and
weak cryptography (WC, 10%). Despite its focus on
discussions about security issues, this forum frequently
receives questions from developers about cryptographic
programming. Over the years, a severe vulnerability found in
Android’s randomness infrastructure raised serious concerns
in that community. Also, this forum is particularly concerned
with vulnerabilities associated with certificate validation.

All three forums showed similar behavior for both
programming tasks and use cases. The programming task most
found in all three forums was encryption/decryption, followed
by signing/verification. Interestingly, OJC also showed great
interest in digital certification. The use case most found in all
three forums was encrypting data at rest (EDR), followed by
cryptographically secure communication (SC). OJC also
showed great interest in data authentication (AVD).

B. Analysis of Association Rules for OJC

OJC presented association rules for cryptography misuse
specific to Java. Relevant association rules with good values
for confidence, lift and leverage are shown in TABLE IV.
Rules are sorted by support value. For pair associations,
architectural issues are strongly related to platform issues
(CAI&EPSI, 12%) due to complexity of Java’s cryptographic
architecture. Posts within rule CAI&EPSI included accessing
cryptographic hardware, configuration issues for hardware
tokens, installation or configuration issues for libraries, key
storage/recovery issues with external tools, and interoperation
issues between Java and other languages.

Weak cryptography followed by coding bugs (WC&CIB,
6%) or public key issues (WC&PKC, 6%) are other easily
recognized patterns. Posts within rule WC&CIB include uses
of strings to hold encrypted data instead of byte arrays, wrong
conversion of hexadecimal values to bytes, weak encryption
with DES or MD5, and interoperation issues between Java and
PHP. Posts within rule WC&PKC include uses of custom
implementations of cryptographic algorithms, short keys for
RSA, uses of SHA1 or MD5 hash functions, RSA without
randomization, wrong length of RSA input, and interoperation
issues between JCA and smartcards or Microsoft’s
cryptographic library and API (MSCAPI).

Mistakes in key management are also related to weak
cryptography (WC&PKM, 4%), coding bugs (CIB&PKM,
4%), or public key issues (PKM&PKC, 5%). For example,
posts within rule PKM&PKC include weak encryption with
non-randomized RSA, 1024-bit (or shorter) keys for RSA,
signing with RSA/MD5, coding proprietary key agreement,
wrong length of RSA input, and interoperation issues between
JCA and smartcards or MSCAPI.

Certificate validation suffers from platform deficiencies in
handling and storing certificates (ICV&EPSI, 3%). Weak
cryptography is also related to program design flaws when

insecure defaults are adopted (WC&PDF, 3%). Mistakes in IV
handling and design flaws (IVM&PDF, 2%) or key
management (IVM&PKM, 2%) appear together when IVs and
keys are hard-coded, and operation modes are omitted. Design
flaws also relate to coding bugs (CIB&PDF, 2%) and key
management (PDF&PKM, 2%).

For triple associations, we found occurrences of two
patterns. First, the triple rule formed by weak cryptography,
coding bugs, and design flaws (WC&CIB&PDF) showed up
in 2% of posts. Posts related to rule WC&CIB&PDF include
uses of 3DES in ECB mode, short keys for AES, and API’s
insecure default to AES/ECB. A common coding bug was the
wrong conversion of ciphertext to String and vice-versa.
Another triple rule formed by weak cryptography, coding
bugs, and key management (WC&CIB&PKM) appeared in
2% of posts. Posts within rule WC&CIB&PKM include uses
of 3DES in ECB mode, short keys for AES, and signing with
RSA/SHA1 using 1024-bit (or shorter) key. Again, wrong
conversion of keys to hexadecimal of String was common.

TABLE IV. ASSOCIATION RULES FOR OJC

Association Rule Sup. Conf. Lift Lev.

Pair Associations

CAI&EPSI 12% 0.61 1.01 +0.00

WC&CIB 6% 0.24 1.42 0.02

WC&PKC 6% 0.22 1.32 0.01

PKM&PKC 5% 0.44 2.66 0.03

WC&PKM 4% 0.16 1.42 0.01

CIB&PKM 4% 0,21 1.82 0.02

ICV&EPSI 3% 0.67 1.11 0.59

WC&PDF 3% 0.11 1.68 0.01

IVM&PDF 2% 0.43 6.67 0.02

IVM&PKM 2% 0.43 3.75 0.02

CIB&PDF 2% 0.13 1.94 0.01

PDF&PKM 2% 0.33 2.92 0.01

Triple Associations

WC&CIB&PDF 2.14% 0.33 5.19 0.02

WC&CIB&PKM 2.14% 0.33 2.92 0.01

TABLE V. BAD PRACTICES AND ISSUES BY TASK IN OJC

BP&I
Crypto Programming Tasks

Enc Sig KG SSL Cert

WC 11% 6% - 3% -

PKM 6% - 3% - -

PDF 4% - 1% 1% -

ICV - - 1% 1% 2%

CIB 9% - 2% - -

CAI - - - - 9%

PKC 5% 5% 4% - -

IVM 4% - 1% - -

EPSI - 12% - 5% 11%

TABLE VI. BAD PRACTICES AND ISSUES BY USE CASES IN OJC

BP&I
Crypto Use Cases

EDR DRM SC PPE AVD

WC 12% - 5% - 8%

PKM 7% - - - -

PDF 5% - - - -

ICV - - 4% - -

CIB 10% - - - -

CAI - - - - 5%

PKC 6% - 4% - 6%

IVM 4% - - - -

EPSI - - - - 18%

146146

27

 Misuses associated to programming tasks in OJC are in
TABLE V. Most bad practices are associated to encryption
(Enc), followed by key generation (KG) and SSL secure
channels. Bad randomness (BR) did not show up in any
programming task for this forum. Encryption and key
generation do not suffer with Java specific issues. On the other
hand, signing (Sig) and digital certification (Cert) are
frequently affected by platform specific issues.
 Bad practices and issues associated to use cases in OJC are
in TABLE VI. Most bad practices are associated to encrypting
data at rest (EDR), with attention to weak cryptography (WC)
and coding bugs (CIB). Authenticating or validating data
(AVD) is affected by mistakes specific to Java. Secure
communication (SC) is affected by mistakes in certificate
validation and (weak) public-key cryptography. In OJC,
nobody mentioned password protection or DRM, probably
because there is no direct need for these use cases in Java.
 Finally, triple rule WC&CIB&PDF is related to encryption
task in 2% of posts, which characterizes a worst case scenario
for this task. Also, triple rule WC&CIB&PDF relates to EDR
use case in 2% of posts, again, typifying this worst case.

C. Analysis of Association rules for GAD

GAD presented a great number of association rules, when
compared to OJC and GASD. Relevant rules sorted by support
value are shown in TABLE VII. For pair associations, the
most prevalent rules include weak cryptography associated to
coding bugs (WC&CIB, 10%) or platform specific issues
(WC&EPSI, 10%). Posts within rule WC&CIB are mostly
related to Password-Based Encryption (PBE) and include uses
of MD5 or SHA1, block ciphers in ECB mode, fixed IVs, and
PBE issues (e.g., small counts or fixed salt), including keys
directly derived from password hashes. Posts within rule
WC&EPSI include various misuse of weak cryptography
(MD5, SHA1, DES, and ECB), interoperation issues between
computers and Android devices, faulty SSL implementations
(in Android 2.2), errors in converting data to String, and
backward incompatibility with older versions.

Also, Android specific issues are related to coding bugs
(CIB&EPSI, 8%), public-key issues (PKC&EPSI, 7%) and
design flaws (PDF&EPSI, 6%). Posts within rule CIB&EPSI
include backward compatibility issues in Android 4.4, errors
in decrypting for different versions of Android, various PBE
issues (e.g., no KDF, fixed salt, and small count), and
improper conversion of (cipher text) byte array to String. Posts
within rule PKC&EPSI include interoperation issues when
exchanging digital signatures between dotNET and Java, use
of deterministic RSA, SSL/ECC not working in Android 2.2,
and errors when recovering RSA keys from Android keystore.

Posts related to rule IVM&CIB (6%) are affected by fixed
IVs when encrypting user generated data with PBE, confusion
between salt and IVs in PBE, deriving keys directly from
hashing passwords with MD5, and errors in converting integer
to byte and back to integer before decryption.

For triple associations, we found four patterns, all of them
affected by Android specific issues, and one of which with a
relatively high value. Weak cryptography with Android
specific issues and coding bugs (WC&EPSI&CIB) counted for
5.6% of posts and was the triple rule with the highest support
found in this study. Posts related to rule WC&EPSI&CIB are
affected by uses of DES and MD5, PBE with small count and

fixed salts, wrong conversion of cipher text to String, deriving
keys directly from password hash (MD5), and interoperation
issues when exchanging ciphertexts among Android versions.

Posts within rule WC&EPSI&PKC include deterministic
encryption with RSA, custom implementation of SSL, and
interoperation issues with SSL. Posts within triple rule
CIB&EPSI&IVM include PBE with fixed salts, improper
conversion of ciphertext to String, deriving keys directly from
hashing a password with MD5, and interoperation issues when
exchanging ciphertexts among Android versions, as well as
between a computer and an Android device. Posts within triple
rule PDF&EPSI&CIB include deriving keys directly from
hashing passwords, insecure defaults (AES/ECB), and errors
in exchanging ciphertexts among versions of Android.

TABLE VII. ASSOCIATION RULES FOR GAD

Association Rule Sup. Conf. Lift Lev.

Pair Associations

WC&CIB 10% 0.47 2.76 0.06

WC&EPSI 10% 0.47 1.10 0.01

CIB&EPSI 8% 0.50 1.18 0.01

PKC&EPSI 7% 0.71 1.69 0.03

IVM&CIB 6% 1.00 5.92 0.05

PDF&EPSI 6% 0.67 1.58 0.02

PDF&PKC 4% 0.50 5.07 0.03

WC&PKC 3% 0.13 1.35 0.01

IVM&EPSI 3% 0.5 1.18 +0.00

CIB&PDF 3% 0.17 1.97 0.01

ICV&EPSI 3% 1.00 2.37 0.42

PDF&PKM 3% 0.33 7.89 0.02

PKM&PKC 3% 0.67 6.76 0.02

Triple associations

WC&EPSI&CIB 5.6% 0.56 3.33 0.04

WC&EPSI&PKC 2.8% 0.28 2.86 0.02

CIB&EPSI&IVM 2.8% 0.35 6.25 0.02

PDF&EPSI&CIB 2.8% 0.47 2.78 0.02

TABLE VIII. BAD PRACTICES AND ISSUES BY TASK IN GAD

BP&I
Crypto Programming Tasks

Enc Sig KG SSL Cert

WC 13% 6% - - -

PKM 4% - - - -

BR 1% - - - -

PDF 6% 1% - - 1%

ICV - - 1% - 1%

CIB 11% 4% 1% - -

CAI 1% - - - -

PKC 4% 3% 1% - 1%

IVM 3% 1% 1% - -

EPSI - 6% 3% - 1%

TABLE IX. BAD PRACTICES AND ISSUES BY USE CASE IN GAD

BP&I
Crypto Use Cases

EDR DRM SC PPE AVD

WC - 3% 3% 7% -

PKM 4% - - - -

BR 1% - - - -

PDF 8% - - - -

ICV 3% - - - -

CIB - - - 7% -

CAI 1% - - - -

PKC - - 3% - 1%

IVM 6% - - - -

EPSI - - 6% - 7%

147147

28

 Bad practices and issues associated to programming tasks
in GAD are in TABLE VIII. In this Android forum, most bad
practices affect encryption, and weak cryptography and coding
bugs are the most perceived mistakes. Signing is moderately
affected by bad practices. Key generation and certificate
handling are tasks scarcely affected. Programming of SSL
channels did not show any relevant bad practice. Also, we
found three pair rules related to encryption: WC&CIB (5.6%),
WC&EPSI (7%), and CIB&EPSI (7%). Finally, encryption is
related to rule WC&EPSI&CIB in 4.2% of posts, which
typifies a worst case for this forum.

Bad practices and issues associated to main use cases in

GAD are in TABLE IX. Most bad practices are associated to

encrypting data at rest (EDR) with special attention to design

flaws and IV/nonce management (IVM). EDR is associated to

two rules in 5.6 % of posts each: CIB&IVNI and PDF&EPSI.

Secure communication (SC), password protection (PPE), and

authentication and validation of data (AVD) are moderately

affected by bad practices. Secure communication is negatively

affected by complexity of Android’s certificate storage.

Interestingly, PPE use case is related to rule WC&CIB in 7%

of posts and to rule WC&EPSI&CIB in 4.2 % of posts,

characterizing a worst case misuse.

D. Analysis of Association Rules for GASD

This forum presented the shortest rule set. The relevant
association rules sorted by support value are in TABLE X. For
pair associations, bad randomness is one of the most prevalent
rules and is associated to architectural (BR&CAI, 6%) and
platform specific (BR&EPSI, 4%) issues. Posts within rule
BR&CAI discussed the influence of bad randomness provided
by the Android platform for generation of cryptographic keys.

Design flaws and architecture issues are related to
discussions of specific topics (PDF&CAI, 4%) with no source
code. Posts within rule PDF&CAI include bugs in Android's
key storage and errors when accessing security modules. Four
low-value (2%) rules show that weak cryptography is related
to coding bugs (WC&CIB), improper certificate validation
(WC&ICV), design flaws (WC&PDF), and poor key
management (WC&PKM). Finally, public key issues are
related to design flaws (PDF&PKC) or platform issues
(PKC&EPSI). No relevant triple rule was found.

Bad practices and issues associated to programming tasks
in GASD are shown in TABLE XI. Signing and key
generation are the most negatively affected tasks of this
forum, being associated to six and five bad practices,
respectively. In particular, key generation in Android is
greatly affected by platform specific issues concerning
randomness, influencing architecture of apps. Certificate
handling and secure communication are moderately affected in
general, but special attention should be given to improper
certificate validation in both tasks. Encryption is affected only
by platform specific issues, but with a high percentage. This
happened due to interoperation issues among different
versions of Android or server-side software. IV and nonce
management do not show up with any programming task.

Bad practices and issues associated to main use cases for
GASD are in TABLE XII. In this forum, most bad practices
are associated to authentication/validation of data, with a
moderate focus in architecture issues. Encrypting data at rest

is affected by bad randomness, design flaws, and architectural
issues. Particular attention should be given to the negative
influence of platform specific issues over encryption data at
rest. IV and nonce management did not show up with any use
case. DRM concerns appeared only in high-level discussions,
so no bad practice was bound to it.

TABLE X. ASSOCIATION RULES FOR GASD

Association Rule Sup. Conf. Lift Lev.

Pair Associations

BR&CAI 6% 0.6 2.62 0.04

BR&EPSI 4% 0.4 1.07 +0.00

PDF&CAI 4% 0.4 1.75 0.02

WC&CIB 2% 0.2 3.20 0.01

WC&ICV 2% 0.2 1.37 0.01

WC&PDF 2% 0.2 1.92 0.01

WC&PKM 2% 0.2 9.60 0.02

PDF&PKC 2% 0.2 4.80 0.02

PKC&EPSI 2% 0.5 1.33 0.01

TABLE XI. BAD PRACTICES AND ISSUES BY TASK IN GASD

BP&I
Crypto Programming Tasks

Enc Sig KG SC Cert

WC - 2% - - -

PKM - 2% - - -

BR - - 4% - -

PDF - 2% - -

ICV - 4% - 4% 6%

CIB - 2% 2% - -

CAI - - 4% 2% 2%

PKC - 2% 2% - -

EPSI 10% - 4% - 4%

TABLE XII. BAD PRACTICES AND ISSUES BY USE CASE IN GASD

BP&I
Crypto Use Cases

EDR DRM SC PPE AVT

WC - - - - 2%

BR 6% - - - 2%

PDF 8% - - - 2%

ICV - - 13% - -

CIB - - - 2% 2%

CAI 13% - - - 4%

PKC - - - - 2%

EPSI 21% - 10% - -

V. DISCUSSION OF FINDINGS

 Our previous experience in developing cryptographic
software provided the necessary skills and perspective to carry
out this study. However, it could also infuse our results with a
confirmation bias for all the mistakes we have seen in practice.
We believe that by targeting three different forums, we were
able to minimize this confirmation bias, because bad practices
showed up in specific realizations for each forum, forcing us
to focus on details otherwise neglected by the accustomed eye.
 We have noticed that inherently complex, hard-to-use
architectures distract developers from actual cryptographic
bad practices and contribute to perpetuate recurring errors in
cryptographic programming. For instance, one curious reason
developers gave to use homemade code for cryptographic
algorithms (one kind of weak cryptography) is to avoid
dependencies to external libraries.

148148

29

 In programming forums, the number of posts showing any
kind of misuse is consistent with statistics found in related
work. For instance, OJC showed 90% of posts with misuse.
GAD presented 71% of posts with misuse. GASD showed
only 48%, but this forum is not for programming only. Other
research did not divide misuses in bad practices and specific
issues, as we did. Posts showing only bad practices counted
for 71% in OJC, 48% in GAD, and 56% in GASD. Also, the
small size of GASD’s data set may lead to false association
rules due to coincidence. However, findings were confirmed
by the other two forums.

A. For Java Developers

Developers frequently showed little concern to security in
general and were more interested in coding tasks. Java
cryptographic architecture presents issues with installation and
configuration that diverts developers from actual tasks of
cryptographic programming. Also, specific issues showed up
when integrating Java programs to cryptographic hardware or
communicating with applications in other platforms. These
troublesome issues frequently obfuscate bad practices in the
same code. For instance, in Java, the worst case misuse occurs
when developers write buggy code for encrypting data and use
weak cryptography by accidentally adopting insecure defaults.
This suggests that developers lack programming skills in
general, and knowledge of Java’s cryptographic API in
particular.

01
02
03
04
05
06
07
08
09
10
11
12

byte[] pt = ("OJC worst case..").getBytes();
KeyGenerator g=KeyGenerator.getInstance("AES");
g.init(128); Key k = g.generateKey();
// encryption
Cipher e = Cipher.getInstance("AES");
e.init(Cipher.ENCRYPT_MODE, k);
byte[] ct = e.doFinal(pt);
String s = new String(ct);
// decryption in other machine or platform
Cipher d = Cipher.getInstance("AES");
d.init(Cipher.DECRYPT_MODE, k);
byte[] pt2 = d.doFinal(s.getBytes());
Fig. 1. Example of Java’s worst case misuse (WC&CIB&PDF).

 For the non-expert in applied cryptography, the code
fragment in Figure 1 illustrates a realization of Java’s worst
case scenario with rule WC&CIB&PDF. This code snippet
shows that plaintext is directly obtained from a String object
(line 01) and weak cryptography is accidentally used (line 05)
when the Cipher object for AES defaults to ECB mode, due to
a program design flaw of not explicitly choosing the operation
mode. Then, a coding bug occurs when encrypted data is
saved to a String object (line 08), making it dependent of
character encodings, and retrieved for decryption (line 12),
with unexpected results.
 This defect may manifest itself when the code is executed
by different applications or distinct Java Virtual Machines
(JVMs) with distinct character encodings. This way, a
developer would ask for help concerning interoperation issues,
maybe ignoring other cryptographic misuse.

B. For Android Developers

 Android solved many of the installation and configuration
problems faced by Java developers when doing cryptographic
programming. On the other hand, this mobile platform brings

to daily troubleshooting a variety of interoperation issues
brought by the diversity of hardware and software available in
that platform. Several less than 5% rules suggest that Android
developers are more prone to use cryptography without proper
education. Again, developers get confused by troublesome
interoperation and distracted from actual cryptographic pitfalls
in the code. Android developers show specific need for DRM,
but homemade code leads to weak cryptography. Also,
encryption of locally stored passwords is a common need
when accessing remote services, but frequently misused. For
instance, a worst-case scenario occurs when developers suffer
with interoperation issues among devices, but in fact use weak
cryptography to protect stored passwords, and derive keys
directly from password hashes.

01
02
03
04
05
06
07
08
09
10

// weak hash of user's password
md = MessageDigest.getInstance("MD5");
byte[] hash = md.digest(password.getBytes());
// weak PRNG with fixed seed
sr = SecureRandom.getInstance("SHA1PRNG");
sr.setSeed(hash.getBytes());
byte[] keyBytes = new byte[16];
sr.nextBytes(keyBytes);
// crypto key derived from password
ks = new SecretKeySpec(keyBytes,"AES");

Fig. 2. Example of Android’s worst case misuse (WC&EPSI&CIB).

 Again, for the non-expert in cryptography, the code
snippet in Figure 2 illustrates a realization of Android’s worst
case misuse with rule WC&EPSI&CIB. This code snippet
shows that weak cryptography occurs when MD5 is directly
used to hash the byte representation of a String object
containing a password (lines 02 and 03). Then, in a mistaken
implementation of Password-Based Encryption, the hash value
feeds a PRNG with a fixed seed (lines 05 and 06) in order to
always generate the same bytes (line 08), from which a key is
derived (line 10). A platform specific issue, due to a backward
incompatible bug fix, may cause SHA1PRNG to behave
differently in distinct versions of Android, resulting in the
generation of different keys.
 This defect may manifest itself in two distinct ways. One,
when the user updates his/her device’s operating system to a
new version. Another, when the user changes his password to
one containing special characters. In this case, the developer
would ask for help concerning interoperation issues and
eventually discover a report about a bug fix for a specific
version. As a result, the policy for password security would be
updated to exclude special characters. However, in order to
keep backward compatibility, the custom PBE code would
never be changed.

C. For Experts in Applied Cryptography

 This study revealed that bad practices and issues appear in
different layers of programming activity. Platform specific
issues dominate architectural concerns and obfuscate
cryptography bad practices. Two shallow issues are in the
surface of programs and could be easily found by skilled
developers: weak cryptography and coding bugs. When
shallow issues are not present, programmers have to look
under the surface of programs for complex issues like
improper certificate validation, bad randomness, and public
key cryptography issues (mostly related to RSA). Avoiding
these bad practices usually require more knowledgeable

149149

30

developers or greater support from experts. Then, developers
have to dive deeper into system design and face the most
challenging problems, such as program design flaws, poor key
management, and IV/nonce management. This array of
misuses suggests that novice or unskilled developers are not
aware of key management needs and other secure design
challenges. It is not surprising that these deeper issues appear
less frequently in programming forums. These bad practices
require a change in system design in order to be tackled, and
must be supported by cryptography experts.
 When looking deeper into misuse categories, sometimes
absences were more interesting than findings. We did not see,
in programming forums (OJC and GAD), posts concerned
with insecure combination of encryption and authentication or
side-channel vulnerabilities. This suggests that developers are
not aware of design flaws for authenticated encryption or
padding oracle attacks. Another remarkable absence was the
concern with weak keys in public-key cryptography (e.g.,
RSA, DH), suggesting that developers are taking for granted
parameters generated by (faulty) tools. Also, misuse of
PRNGs was barely mentioned in these forums, suggesting that
developers have no doubts about Java’s SecureRandom API.
 On the other hand, in GASD, posts within rule BR&EPSI
are related to discussions about a severe vulnerability found in
Android's PRNG and interoperation issues among versions of
Android, when using a PRNG from an open-source library.
Discussions about entropy gathering and PRNGs internals by
security experts caused this pattern. Also, this forum showed
discussions about platform specific issues (EPSI) related to
encrypting data at rest (EDR). This was caused by developers’
misunderstandings about the internal works of Android’s
storage encryption and its influence on app-level encryption.
 Finally, the use of data mining techniques to analyze
developer’s coding mistakes in cryptographic programming is
promising, but requires further automation, in order to scale to
bigger data sets. In particular, code inspection is highly
dependent on reviewer’s experience and was performed
manually, but could benefit from customized tools for static
analysis of cryptographic code.

VI. CONCLUDING REMARKS

 This text presented a study about cryptography misuse by
software developers when contributing to online forums
specialized in cryptography-based security and cryptographic
programming. By associating cryptography bad practices to
platform specific issues, in three different forums, we were
able to identify recurring patterns of cryptography misuse,
including worst cases scenarios when at least three misuses
appear together, in the same piece of code, with a relatively
high probability.
 Finally, this study is a step forward in better understanding
pitfalls in cryptographic programming and could contribute to
building the next generation of architectures, methods, and
tools for the development of secure cryptographic software. In
the short term, we foresee the use of association rules in
metrics for measuring coding quality. In the long run, we
devise misuse-aware APIs and misuse-resistant architectures.

ACKNOWLEDGMENT

Alexandre Braga thanks CNPq and Intel for the financial
support. Ricardo Dahab thanks FAPESP, CNPq, CAPES, and
Intel for partially supporting this work.

REFERENCES

[1] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why Does
Cryptographic Software Fail?: A Case Study and Open Problems,” in
5th Asia-Pacific Workshop on Systems, 2014, pp. 7:1–7:7.

[2] A. Chatzikonstantinou, C. Ntantogian, C. Xenakis, and G. Karopoulos,
“Evaluation of Cryptography Usage in Android Applications,” in 9th
EAI Int. Conf. on Bio-inspired Information and Comm. Tech., 2015.

[3] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” ACM SIGSAC
conference on Computer & communications security, pp. 73–84, 2013.

[4] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Modelling
Analysis and Auto-detection of Cryptographic Misuse in Android
Applications,” in IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing (DASC), 2014, pp. 75–80.

[5] P. Gutmann, “Lessons Learned in Implementing and Deploying Crypto
Software,” Usenix Security Symposium, 2002.

[6] “Java Cryptography Architecture” [Online]. Available: docs.oracle.
com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html.

[7] M. Georgiev, S. Iyengar, and S. Jana, “The most dangerous code in the
world: validating SSL certificates in non-browser software,” in Proc. of
the ACM Conf. on Computer and Comm. Security, 2012, pp. 38–49.

[8] S. Fahl, M. Harbach, and T. Muders, “Why Eve and Mallory love
Android: An analysis of Android SSL (in) security,” in ACM conference
on Computer and communications security, 2012, pp. 50–61.

[9] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “‘Jumping Through
Hoops’: Why do Java Developers Struggle With Cryptography APIs?,”
in The 38th International Conference on Software Engineering, 2016.

[10] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Analysis
on Password Protection in Android Applications,” 9th Int. Conf. on P2P,
Parallel, Grid, Cloud and Internet Computing, 2014, pp. 504–507.

[11] J. Viega and G. McGraw, Building Secure Software. 2001.

[12] M. Howard and D. LeBlanc, Writing Secure Code, 2003.

[13] B. Chess and J. West, Secure Programming with Static Analysis, 2007.

[14] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software
Security, 2009.

[15] M. Howard and S. Lipner, The Security Development Lifecycle, 2006.

[16] A. Shostack, Threat Modeling: Designing for Security, 2014.

[17] “Avoiding The Top 10 Software Security Design Flaws,” IEEE
Cybersecurity Initiative (CYBSI), 2014. [Online]. Available:
http://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf.

[18] “Fundamental Practices for Secure Software Development,” Safecode,
2011. [Online]. Available: http://www.safecode.org/wp-content/uploads/
2014/09/SAFECode_Dev_Practices0211.pdf.

[19] “OWASP Testing Project v4,” OWASP, 2015. [Online]. Available:
https://www.owasp.org/index.php/OWASP_Testing_Project.

[20] “TOP 25 Most Dangerous Software Errors,” SANS/CWE. [Online].
Available: www.sans.org/top25-software-errors.

[21] “Oracle Java Cryptography.” [Online]. Available: https://community.
oracle.com/community/java/java_security/cryptography.

[22] “Google Android Developers.” [Online]. Available: https://groups.
google.com/forum/#!forum/android-developers.

[23] “Android Security Discussions.” [Online]. Available: https://groups.
google.com/forum/#!forum/android-security-discuss.

[24] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in Proceedings of the 20th International
Conference on Very Large Data Bases, 1994, pp. 487–499.

[25] M. R. Murthy, Introduction to Data Mining and Soft Computing
Techniques, 2015.

[26] EMC Education Services, Data Science and Big Data Analytics:
Discovering, Analyzing, Visualizing and Presenting Data, 2015.

150150

31

32

2.1.2 A Longitudinal and Retrospective Study on How Develop-

ers Misuse Cryptography in Online Communities

This publication is entitled "A Longitudinal and Retrospective Study on How Develop-

ers Misuse Cryptography in Online Communities" and was published at XVII Simpósio
Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2017), held
in the city of Brasília, Brazil.

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

28 © 2017 Sociedade Brasileira de Computação

3. A Longitudinal and Retrospective Study on How Developers Misuse Cryptogra-

phy in Online Communities

Alexandre Braga, Ricardo Dahab
A Longitudinal and Retrospective Study on How Developers

Misuse Cryptography in Online Communities

Alexandre Braga12, Ricardo Dahab2

1 Fundação CPqD Centro de Pesquisa e Desenvolvimento em Telecomunicações

R. Dr. Ricardo Benetton Martins, 1.000, Parque II do Polo de Alta Tecnologia

Campinas, SP, Brazil, Zip Code 13086-510

2Institute of Computing, State University of Campinas

Av. Albert Einstein, 1251, Cidade Universitária Zeferino Vaz

Campinas, SP, Brazil, Zip Code 13083-852

ambraga@cpqd.com.br,rdahab@ic.unicamp.br

Abstract. Software developers participating in online communities benefit from quick

solutions to technology specific issues and, eventually, get better in troubleshooting

technology malfunctioning. In this work, we investigate whether developers who are

part of online communities for cryptography programming are getting better in using

cryptography with time. This is a crucial issue nowadays, when ”real-world crypto”

is becoming a topic of serious investigation, not only academically but in security

management as a whole: cryptographic programming handled by non-specialists is

an important and often invisible source of vulnerabilities [RWC]. We performed a

retrospective and longitudinal study, tracking developers’ answers about cryptography

programming in two online communities. We found that cryptography misuse is not

only common in online communities, but also recurrent in developer’s discussions,

suggesting that developers can learn how to use crypto APIs without actually learning

cryptography. In fact, we could not identify significant improvements in cryptography

learning in many daily tasks such as avoiding obsolete cryptography. We conclude

that the most active users of online communities for cryptography APIs are not learning

the tricky details of applied cryptography, a quite worrisome state of affairs.

Resumo. Desenvolvedores de software, participantes de comunidades on-line,

costumam se beneficiar de soluções rápidas para problemas tecnológicos e,

eventualmente, melhoram suas habilidades na resolução de problemas de mau

funcionamento da tecnologia. Neste trabalho, investigamos se desenvolvedores de

software criptográfico que participam de comunidades on-line se tornam melhores

no uso de criptografia com o tempo. Esse é um aspecto de segurança crucial nos dias

de hoje, em que ”real-world crypto” se tornou um tópico de interesse sério, não só

academicamente, mas no gerenciamento de segurança como um todo: programação

criptográfica feita por não-especialistas é uma fonte frequente e muitas vezes invisivel

de vulnerabilidades [RWC]. Realizamos um estudo retrospectivo e longitudinal para

rastrear as respostas dos desenvolvedores sobre programação de criptografia em duas

comunidades on-line. Descobrimos que o uso indevido da criptografia é não apenas

comum em comunidades on-line, mas também é recorrente nas discussões, sugerindo

que os desenvolvedores aprendem a usar as APIs criptográficas sem realmente

aprender criptografia. Não conseguimos identificar melhora alguma na percepção

e aprendizado de vulnerabilidades criptográficas, mesmo em tarefas simples como a

de evitar o uso de criptografia obsoleta. Concluimos, assim, que os usuários ativos nas

comunidades on-line para APIs criptográficas não tem evoluı́do no seu aprendizado dos

detalhes e armadilhas do uso da criptograpfia, um estado de coisas muito preocupante.

33

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

29 © 2017 Sociedade Brasileira de Computação

1. Introduction

Software developers are regular users of security mechanisms (e.g., security APIs, protocols, and

tools), but are, by no means, security experts. They, however, do make security decisions that

have a huge impact on end-user and system security. Developers are also frequent users of online

communities for programming. The agility in problem solving provided by many question-and-

answer communities brings benefits to ordinary programmers lacking knowledge in specific topics,

such as secure coding. In this work, we investigate whether developers participating in online

communities for cryptography programming are getting better in using cryptography with time.

Also, we investigate whether cryptography misuse is persistent in posts of specific developers.

Cryptography misuse is a programming bad practice frequently found in misuse cases of

cryptographic software, ultimately leading to vulnerabilities, but also associated to design flaws

and insecure architectural choices [Braga and Dahab 2016]. Improvement in cryptography

knowledge can be evidenced by a time series showing a steady decrease in the number of

cryptography misuses. Also, persistence of a specific cryptography misuse can be illustrated

by the repetition by developers of the same misuse over and over.

We tracked users (i.e. developers) of two online communities for programming,

along with their questions and answers, from posts in a data set provided by a previous

study [Braga and Dahab 2016]. We recorded the occurrence of known cryptography misuses

for selected developers over a period of five years. We then computed statistics of cryptography

misuse associated to specific moments in time for each tracked developer.

We found that the use of weak cryptography (e.g., broken algorithms or misconfigured

implementations of standards) is not only common in online communities, but also recurrent

in developers’ discussions, suggesting that they learn how to use crypto APIs without actually

learning cryptography. We also found that the lack of knowledge in cryptography is a recurrent

source of coding bugs in API usage and does not depend on how long developers use cryptography

APIs. We observed that platform issues dominate design concerns and obfuscate many complex

cryptography misuses, which go unnoticed by developers in long lifespans. In summary, we

conclude that users of online communities are not actually learning cryptography, despite their

immediate gains in solving current programming issues related to cryptographic APIs.

This study is longitudinal, i.e., it performed repeated observations of the same developers over

a period of time. Also, it is retrospective because it looks back in time using existing data. As

far as we know, this is the first such study of cryptography misuse in online communities. The

main contributions of this work are the following: (i) a method for clustering developers’ posts

from their asynchronous lifespans in online communities; (ii) a longitudinal study of selected

developers of two communities, showing similarities and differences of these communities

concerning how developers misuse cryptography; (iii) evidence that cryptography misuse is

persistent across communities and developer lifespans; and (iv) evidence that developers learn

how to use cryptography APIs without learning cryptography.

This text is organized as follows. Section 2 analyses related work and Section 3 details our

research method. Section 4 explains our results and findings, while Section 5 details two users’

lifespans. Section 6 discusses our findings and Section 7 shows our conclusions.

2. Related Work

[Fahl et al. 2012] investigated the SSL/TLS protocol usage in Android apps from Google Play

and discovered security threats posed by misuses of that protocol. [Egele et al. 2013] were among

the first to perform large-scale experiments in Google Play App Store to measure cryptographic

34

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

30© 2017 Sociedade Brasileira de Computação

misuse in Android with the standard Crypto API. Their main contribution was a broad view of

the prevalence of misused cryptographic functionality in Android apps. These two pioneering

works were followed by others on related topics (e.g., [Lazar et al. 2014, Shuai et al. 2014,

Georgiev et al. 2012, Chatzikonstantinou et al. 2015]).

[Wang and Godfrey 2013] were among the first to analyze API-related posts from a

questions-and-answers (Q&A) website for mobile app development. They discovered repetitive

scenarios with obstacles in API usage to developers, not specifically related to security. In a recent

work [Wang et al. 2015], they investigated methods and proposed a methodology to distill and

rank Q&A posts with API-related issues that would be valuable to API designers.

[Nadi et al. 2016] performed an empirical investigation into the obstacles developers face while

using the Java cryptography APIs and the programming tasks they perform (e.g., authenticate

users, store login data, establish secure connections, and encrypt data). By triangulating data

from Stack Overflow posts, GitHub repositories, and developers’ surveys, they found that

developers find it difficult to use cryptographic algorithms correctly, despite being confident

with cryptography concepts. They also found that cryptographic APIs are generally perceived

as too low-level and not task-oriented.

[Acar et al. 2016b, Acar et al. 2016a] systematically analyzed the impact to code security of

information resources commonly used by developers. They surveyed app developers who have

published in the Google Play market, conducted a lab study with Android developers, analyzed 139

Stack Overflow threads accessed by developers during the lab study, and statically analyzed a ran-

dom sample of Google Play apps. They concluded that real-world developers use Q&A communi-

ties as a major resource for solving programming problems, including security problems, suggesting

that those online communities help developers to arrive at functional solutions more quickly than

other resources. However, because online communities contain many insecure answers, developers

who rely on this resource are likely to create less secure code. Also, access to quick solutions via a

Q&A community may also inhibit developers’ security thinking or reduce their focus on security.

[Braga and Dahab 2016] performed a transversal study to analyze how developers misuse

cryptography in two online communities: Oracle Java Cryptography (OJC) and Google Android

Developers (GAD). That work showed not only the most frequent cryptography misuses (e.g.,

weak cryptography, coding bugs, etc.), but also relationships among misuses through strong

associations of double or triple misuses that appear together with non-negligible probabilities.

Most of the above-mentioned studies focus on the same online community or app store, with

little variation. Also, none of these works study the behavior of frequent users over time, in order

to examine whether developers are getting better in using cryptography with time.

3. Methodology

We analyzed data collected by a previous study [Braga and Dahab 2016] and observed that

repeated measures were made for some developers. This fact motivated us to perform a

retrospective, longitudinal study to analyze developers’ behavior from a series of observations

already made about them. This study is longitudinal because it performed repeated observations

of the same developers (and their posts) over a period of time. Also, it is retrospective because

it looks back in time using existing data.

Roughly speaking, our method segments the set of posts (collected for specific developers

with determined lifespans) into a predefined number of clusters. When ordered chronologically,

these clusters determine the phases a developer is supposed to pass for learning cryptography.

These phases are then analyzed for the occurrence of cryptography misuses which are well-known

in secure software development and secure coding.

35

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

31 © 2017 Sociedade Brasileira de Computação

The following subsections detail our methodology in four topics: classification of cryptography

misuse, selection of communities and posts, selection of developers to evaluate, and method

for clustering posts from a developer’s lifespan.

3.1. Classification of Cryptography Misuse

The original study [Braga and Dahab 2016] introduced a classification of cryptography misuses in

order to capture how software developers actually misuse cryptography in practice. The classifica-

tion has nine categories: Weak Cryptography (WC), Bad Randomness (BR), Coding and Implemen-

tation Bugs (CIB), Program Design Flaws (PDF), Improper Certificate Validation (ICV), Public-

Key Cryptography (PKC) issues, Poor Key Management (PKM), Cryptography Architecture Issues

(CAI), and IV/Nonce Management (IVM) issues. Table 1 details categories in descriptive subsets.

The classification collected cryptography misuse from various sources, including software secu-

rity books (e.g., [Viega and McGraw 2001, Howard and LeBlanc 2003, Chess and West 2007,

Howard et al. 2009, Howard and Lipner 2006, Shostack 2014]), studies on cryptography misuse

(e.g, [Lazar et al. 2014, Chatzikonstantinou et al. 2015, Egele et al. 2013, Shuai et al. 2014,

Braga and Dahab 2015, Georgiev et al. 2012, Fahl et al. 2012]), newly discovered misuses

(e.g., [Alashwali 2013, Bos et al. 2014, Mart and Hern 2013, Adrian et al. 2015]), and industry

initiatives for software security (e.g., [Safecode 2011, OWASP , CYBSI 2014]). Table 1 shows

the grouping of misuse categories, misuse main categories, and subsets.

Cryptography misuses are not all equally difficult to avoid [Braga and Dahab 2016]: some

are easier to find and correct than others, depending on the involved complexity to identify and

fix misuses. There are three complexity groupings for the nine misuse categories (in Table 1):

1. Low complexity misuses are related to coding activities and issues in APIs, and could be

easily found by simple code reviews and skilled developers (supported by tools). This group

includes Weak Crypto (WC), Coding Bugs (CIB), and Bad Randomness (BR).

2. Medium complexity misuses are related to flaws in program design affecting a few programs

and may be difficult to identify due to feature distribution across programs. This group includes

Improper Certificate Validation (ICV) issues, Program Design Flaws (PDF), and Public-Key

Crypto (PKC) issues.

3. High complexity is related to flaws in system design and architecture, and requires

understanding of system architecture to analyze underlying cryptosystems. This group includes

Poor Key Management (PKM), IV and Nonce Management (IVM) issues, and Crypto

Architecture Issues (CAI).

3.2. Selection of Communities and Posts

The original study [Braga and Dahab 2016] selected two programming communities possibly

supported by experts in applied cryptography: Oracle Java Cryptography (OJC) [OJC], a

forum aimed at programming with Java Cryptographic Architecture (JCA), and Google Android

Developers (GAD) [GAD], a forum for Android programming.

The reasons to choose these two communities follows. Both OJC and GAD share the same

Java-based API for the Java Cryptographic Architecture (JCA) [Oracle], thus limiting the

knowledge required by a code reviewer to four aspects: Java programming, JCA, Android security,

and applied cryptography. Also, JCA offers a stable and generic API, which has been used for

a long time by a large number of developers for both server-side applications and mobile devices.

Furthermore, JCA was adopted by the Android platform as its main API for cryptographic

services. These two communities together reach a large number of ordinary developers, most

36

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

32© 2017 Sociedade Brasileira de Computação

Table 1. Classification of cryptography misuse from a developer’s viewpoint.
Low complexity Medium complexity High complexity

Cat. Misuse subtype Cat. Misuse subtype Cat. Misuse subtype

-Risky/broken crypto -Insec. default behavior -CBC w/ non-random IV

-Proprietary crypto -Insecure key handling -CTR with static counter

WC -Determin. symm. enc. PDF -Streamcipher:insec. use IVM -Hard-coded or const. IV

-Risky/broken hash -Insecure combo encr./auth -Reused nonce in encrypt.

-Risky/broken MAC -Insecure combo encr./hash

-Custom implement. -Side-channel attacks

-Wrong configs for PBE -No validation of certs -Short/improper key size

-Common coding errors -Broken SSL/TLS channel -Hard-coded/const. keys

CIB -Buggy IV generation ICV -Incomplete cert. valid. PKM -Hard-coded PBE passw.

-Null cryptography -Improper valid. host/user -Streamcipher:reused key

-Leak/Print of keys -Wildcards certs -Use of expired keys

-Self-signed certs -Key distrib. issues

-Use of Statistic PRNG -Determ. encryp. RSA -Crypto agility issues

-Predictible seeds -Insec. padding RSA enc. -API misunderstanding

-Low-entropy seeds -Weak configs RSA enc. -Multiple access points

BR -Static, fixed seeds PKC -Insec. padding RSA sign. CAI -Randomness issues

-Reused seeds -Weak RSA sign. -PKI and CA issues

-Weak ECDSA sign

-Key agr.: DH/ECDH

-ECC: insecure curves

of them are supposed to be non experts in cryptography. These assumptions may not hold for

specialized communities with other APIs, such as openssl [OpenSSL] or bouncy castle [BC].

Collected posts comprised a time period of five years, from January 2011 to December 2015.

Posts were listed by date (newest first) and manually saved as PDF files.

OJC was the most active community, with the most posts in the selected time period. GAD is

very active in general, but showed less activity for cryptographic matters. For OJC, 310 posts were

collected, and the 155 most viewed were selected for further analysis (50% of total). In GAD, a

pre-analysis showed that specific keywords, such as “encryption”, “hash” and “sign”, were covered

by the more general keywords “cryptography” and “encryption”, which were used to select posts.

For GAD, 170 posts were collected and the 100 most viewed were selected for analysis.

The manual inspection with code review was the method to analyze each single post. Posts

were inspected by a cryptography expert with the skills mentioned above. Each post was inspected

for occurrences of misuse. Many posts were discarded for not being related to cryptography

programming, showing only discussions about threats or attacks. After discarding, OJC data

set was reduced to 140 posts and GAD achieved 71 posts.

A few topics related to environment and platform specific issues were identified: configuration

and installation issues, key storage and recovery issues, bug found or reported, tool misuse or misun-

derstanding, interoperation issues (e.g., platforms, versions, etc.), and hardware integration issues.

3.3. Selection of Developers to Evaluate

We found that most developers just ask one question to the community and never return. On

the other hand, a few developers answered most questions. This fact made it possible to track

users’ answers and determine whether they had learned cryptography with time. These developers

not only failed in giving good answers to questions related to cryptography; sometimes, they

also omitted information that could prevent cryptography misuse.

In OJC, we counted 43 distinct developers who answered at least one question. Only 8 of these

37

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

33 © 2017 Sociedade Brasileira de Computação

developers answered 3 or more questions, corresponding to 74.5% of all answers. One developer

asked 11 questions, totalling 9 evaluated developers in OJC. In GAD, we counted 97 distinct devel-

opers who answered at least one question. Only 14 of them answered 4 or more questions, corre-

sponding to 52% of all answers. One developer asked 6 questions, totalling 15 evaluated developers

in GAD. In summary, this study was conducted for two cohorts: one for a cryptography-specific

forum (OJC) with 11 subjects and the other for a general-purpose forum (GAD) with 15 subjects.

The average lifespan for OJC developers was about 22 months with a standard deviation of

around 9 months. The average lifespan for GAD developers was about 20 months with a standard

deviation around 11 months. Table 2 shows lifespans and number of posts for both OJC and

GAD. OJC developers are identified by J# and GAD developers are identified by G#.

Table 2. Selected developers, their lifespans (in months) and number of posts.
OJC Developers GAD Developers

OJC# Lifespan # of posts GAD# Lifespan # of posts GAD# Lifespan # of posts

J#1 8.4 7 G#1 14.4 6 G#10 8.1 6

J#2 30.5 14 G#2 22.5 6 G#11 10.9 4

J#3 26.4 33 G#3 25.1 6 G#12 17.2 4

J#4 19.9 6 G#4 17.1 5 G#13 7.3 4

J#5 27.1 13 G#5 36.0 8 G#14 7.1 5

J#6 29.6 36 G#6 22.3 11 G#15 11.9 5

J#7 31.1 11 G#7 28.8 13 - - -

J#8 8.3 5 G#8 45.4 29 - - -

J#9 16.1 3 G#9 23.9 11 - - -

3.4. Method for Clustering Developer’s Lifespan

In online communities, interaction among users has a chronological order, but does not have

to follow simultaneous events for synchronization of activities. For instance, a developer can

show a very active participation for a few months and never return, while another can have a

consistent participation for a couple of years.

We noticed that users participate in communities within different lifespans, diverse in length

(duration) and number of posts. A user’s lifespan is counted from the first to the last participation

found in the period of study. In order to capture developers’ distinct lifespans within the studied

time period, we adopted a simple clustering technique to split the activity in each developer’s

lifespan (e.g., all posts for a user) into a defined number of clusters, as described next.

Clustering is a technique for combining observed objects into groups, segments, or

clusters [Murthy 2015]. Its goal is to partition the observations into groups (“clusters”) so that the

differences among elements assigned to the same cluster tend to be smaller than among elements

in different clusters [Friedman et al. 2009].

Clustering results need to be tied to specific semantic interpretations and applica-

tions [Murthy 2015]. Therefore, it is important to utilize expert knowledge to identify

clusters [Murthy 2015]. We observed a natural fit between clustering methods and the life cycle

presented next.

We devised a method to normalize lifespans and compare them. Our method consists in

associating a life cycle to a lifespan. A life cycle is a qualitative sequence of phases. Lifespans

use absolute time scales and are quantitative, while life cycles are relative and subjective, being

qualitative in nature. A life cycle is divided into five phases according to the progress the user

in evaluation is supposed to have had in his lifespan. The appropriate number of phases was

apparent from prior knowledge about the data set. The five phases are the following:

38

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

38© 2017 Sociedade Brasileira de Computação

to buggy PKI software, proprietary cryptography, risky cryptography (3DES in ECB), coding

errors in insecure key handling, insecure padding or inadequate key length for RSA.

In the expert phase, J#6 still talked about coding errors when using AES with password-based

encryption, hard-coded IVs and deterministic encryption, misunderstanding digital certification,

deterministic signatures with RSA, and insecure key derivation. Platform issues led to

misunderstand of PKI functions. Other misuses were associated to flawed IV generation, broken

hash function, unsafe default, insecure padding for RSA, non-random or constant IVs, and reuse

of keys with stream ciphers.

In the veteran phase, J#6 could not give correct answers to posts related to MAC with broken

hash (e.g., MD5), encoding of keys, issues in key generation, and misconfigured PKI software.

Other misuses were associated to public-key issues (insecure padding for RSA, and misconfigured

DH), unsafe defaults, improper certificate validation (non-validated hostname and self-signed

certificates), coding errors disabling cryptography, and deterministic symmetric encryption.

5.2. Life Cycle for an Android Developer (G#8)

In the entrant phase, G#8 was involved in several discussions about password-based encryption,

errors when decrypting data from strings, use of SHA1 to generate keys from passwords, use

of AES in CBC mode to encrypt files, and Android’s full encryption. Misuses were related to

broken encryption and hashes, misconfigured PBE, insecure deterministic encryption, ciphertext

encoding errors, custom implementation of PBE, and constant IVs.

In the novice phase, G#8 was involved in posts related to buggy implementations of ECC in

SSLv2 and signature verification on crypto libraries, proprietary implementation of SSL, and use of

RSA encryption. Several misuses were associated to insecure padding and deterministic encryption

for RSA, custom implementation of SSL, and attempts to use buggy implementations of ECC.

In the fellow phase, G#8 discussed cryptography adopted by Google Drive, errors when

using the wrap method for protection of keys with PBE in specific versions of Android, and

cross-platform verification of signatures (Java and dotNET). Misuses involved misconfigured PBE

with small parameters, use of risky hashes and broken encryption, errors in ciphertext encodings,

and insecure padding and deterministic encryption for RSA.

In the expert phase, G#8 was involved in discussions about several errors related to bad

padding in encryption with AES, parsing keys from certificates for RSA encryption, and backward

incompatibility of encryption algorithms in Android. Misuses associated to improper certificate

validation, insecure defaults, deterministic encryption with RSA, non-random or constant IVs,

and misconfigured PBE.

In the veteran phase, G#8 was involved in posts related to cryptography issues in Android,

such as storage and recovery of keys from the device’s keystore, cross-version decryption of files,

and encoding ciphertext as integers. Misuses were associated to improper certificate validation

with self-signed root certificates, misconfigured PBE with small parameters, insecure defaults

for AES, non-random IVs, and ciphertext encoding errors.

6. Discussion

We are aware that our analysis have to be put in context and is restricted to the main subject

of the two communities evaluated. That said, we tried to generalize our conclusions.

For developers, as much as for end-users, security is a secondary concern. Developers usually

have priorities (e.g., functional correctness, time to market, maintainability, economics, compliance

43

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

39 © 2017 Sociedade Brasileira de Computação

with other corporate policies) that often appear to conflict with security. Frequently, developers

look for quick, but insecure solutions and online communities favor this behavior.

Ideally, developers should not be forced to learn cryptography in order to correctly use

cryptographic APIs, specially for simple use cases. However, in practice, crypto APIs are unable to

foster their correct use without domain knowledge obtained from elsewhere but online communities.

Java has a stable API, with a very predictable behavior, favoring developers with enough time

to understand its particularities. In general, developers improve their skills in misuse categories

affected by platform issues, but this does not happen for simple misuses. On the other hand,

Android uses the same crypto API of the Java platform, but this fact alone is not enough to

promote a positive learning curve for cryptography. Many issues related to diversity of both

hardware and software negatively affect how developers learn cryptography in Android.

Java cryptographic architecture presents issues with installation and configuration that divert

developers from actual tasks of cryptographic programming. Also, specific issues showed up

when integrating Java programs to cryptographic hardware or communicating with applications

in other platforms. These troublesome issues frequently obfuscate crypto misuses in the same

code. For instance, in Java, a worst-case scenario occurs when developers write buggy code for

encrypting data and use weak cryptography by accidentally adopting insecure defaults.

Android solved many issues faced by Java developers, but brought to daily troubleshooting

several interoperation issues due to the diversity of both hardware and software in that platform.

Developers, confused by these issues, are distracted from actual cryptographic pitfalls. For

instance, developers suffering from interoperation issues among devices used weak cryptography

to protect stored passwords, and derived keys directly from password hashes.

Developers learn how to make APIs work, but this does not mean cryptography was used

correctly. In fact, coding bugs are persistent issues when using general-purpose (function-based)

crypto APIs to implement application-specific use cases, because developers are forced to make

insecure choices without actually understanding the whole situation. This suggests developers

would benefit from high-level cryptographic frameworks (oriented toward use cases) or task-based

APIs that could avoid simple misuses and insecure design decisions.

The overabundance of complex options for security leads to disengagement when confronted

by other concerns. We have noticed that complex architectures distract developers from actual

cryptographic misuse and contribute to perpetuate issues in cryptographic programming. For

instance, one curious reason developers gave to use homemade code for cryptographic algorithms

is to avoid dependencies to external libraries.

Finally, we did not see in developers’ lifespans any posts concerned with the insecure

combination of encryption and authentication, padding-oracle attacks, or selection of insecure

elliptic curves. This suggests that these developers never learned about design flaws for

authenticated encryption, side-channel attacks or obsolete implementations for elliptic curve

cryptography. Another remarkable absence in lifespans was the concern with weak parameters

in public-key cryptography (e.g., RSA, DH), suggesting that developers always take for granted

the quality of parameters generated by tools.

7. Concluding Remarks

Ordinary software developers are used to obtain quick solutions to daily problems from fellows

in online communities. Those communities associated to cryptographic programming are good

for finding solutions to platform-specific issues (e.g., implementation bugs, incompatible hardware,

and misconfigured software) as well as to clarify obscured aspects of API usage. On the other

44

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

40© 2017 Sociedade Brasileira de Computação

hand, developers willing to learn cryptography from online communities, if lucky, receive only

shallow advice and usually do not have a positive learning curve over time. Our study shows that

cryptography misuse is perpetuated in online communities and frequently reappear in recurrent

issues, because these communities favor quick, but insecure solutions and even active developers

(of those communities) take security as a secondary concern.

We believe this longitudinal study effectively contributes to better understanding how

cryptography is handled by ordinary developers of two online communities, bringing to light

their attitudes and priorities concerning cryptography-based security over time. It is paramount

to improve APIs to increase usability and to foster best practices. Also, there are opportunities

for future work in behavioral experiments of cryptographic programming, surveys with actual

developers, as well as replication studies focusing on other communities and crypto APIs.

Acknowledgements

We thank Intel and CNPq for the financial support, as well as CPqD and UNICAMP for the

institutional support.

References

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M. L., and Stransky, C. (2016a). You Get Where You’re Looking

For: The Impact Of Information Sources on Code Security. In Security and Privacy (SP), 2016 IEEE Symposium

on, pages 289–305. IEEE.

Acar, Y., Fahl, S., and Mazurek, M. L. (2016b). You Are Not Your Developer, Either: A Research Agenda for

Usable Security and Privacy Research Beyond End Users.

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J. A., Heninger, N., Springall, D.,

Thomé, E., Valenta, L., and Others (2015). Imperfect forward secrecy: How Diffie-Hellman fails in practice. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 5–17. ACM.

Alashwali, E. S. (2013). Cryptographic vulnerabilities in real-life web servers. In Third International Conference

on Communications and Information Technology (ICCIT), pages 6–11. Ieee.

BC. The Legion of the Bouncy Castle.

Bos, J. W., Halderman, J. A., Heninger, N., Moore, J., Naehrig, M., and Wustrow, E. (2014). Elliptic curve

cryptography in practice. In Financial Cryptography and Data Security, pages 157–175. Springer.

Bourque, P. and Fairley, R., editors (2014). Guide to the Software Engineering Body of Knowledge (SWEBOK).

IEEE Computer Society, version 3. edition.

Braga, A. and Dahab, R. (2015). Introdução à Criptografia para Programadores: Evitando Maus Usos da Criptografia

em Sistemas de Software. In Caderno de minicursos do XV Simpósio Brasileiro em Segurança da Informação

e de Sistemas Computacionais — SBSeg 2015, pages 1–50.

Braga, A. and Dahab, R. (2016). Mining Cryptography Misuse in Online Forums. In 2nd International Workshop

on Human and Social Aspect of Software Quality.

Chatzikonstantinou, A., Ntantogian, C., Xenakis, C., and Karopoulos, G. (2015). Evaluation of Cryptography Usage

in Android Applications. 9th EAI International Conference on Bio-inspired Information and Communications

Technologies.

Chess, B. and West, J. (2007). Secure programming with static analysis.

CYBSI (2014). Avoiding The Top 10 Software Security Design Flaws.

Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C. (2013). An empirical study of cryptographic misuse in

android applications. ACM SIGSAC conference on Computer & comm. security (CCS’13), pages 73–84.

45

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

41 © 2017 Sociedade Brasileira de Computação

Fahl, S., Harbach, M., and Muders, T. (2012). Why Eve and Mallory love Android: An analysis of Android SSL

(in) security. In ACM conference on Computer and communications security, pages 50–61.

Friedman, J., Hastie, T., and Tibshirani, R. (2009). The elements of statistical learning, volume 2. Springer-Verlag.

GAD. Google Android Developers.

Georgiev, M., Iyengar, S., and Jana, S. (2012). The most dangerous code in the world: validating SSL certificates

in non-browser software. In Proceedings of the 2012 ACM conference on Computer and communications security

- CCS ’12, pages 38–49.

Howard, M. and LeBlanc, D. (2003). Writing secure code.

Howard, M., LeBlanc, D., and Viega, J. (2009). 24 Deadly Sins of Software Security: Programming Flaws and

How to Fix Them. McGraw-Hill Education.

Howard, M. and Lipner, S. (2006). The Security Development Lifecycle. Microsoft Press, Redmond, WA, USA.

Hutcheson, M. L. (2003). Software testing fundamentals: methods and metrics. John Wiley & Sons.

Lazar, D., Chen, H., Wang, X., and Zeldovich, N. (2014). Why Does Cryptographic Software Fail?: A Case Study and

Open Problems. In 5th Asia-Pacific Workshop on Systems, APSys ’14, pages 7:1—-7:7, New York, NY, USA. ACM.

Mart, V. G. and Hern, L. (2013). Implementing ECC with Java Standard Edition 7. International Journal of

Computer Science and Artificial Intelligence, 3(4):134–142.

Murthy, M. R. (2015). Introduction to Data Mining and Soft Computing Techniques. Laxmi Publications.

Nadi, S., Krüger, S., Mezini, M., and Bodden, E. (2016). “Jumping Through Hoops”: Why do Java Developers

Struggle With Cryptography APIs? The 38th International Conference on Software Engineering.

OJC. Oracle Java Cryptography.

OpenSSL. OpenSSL Cryptography and SSL/TLS toolkit.

Oracle. Java Cryptography Architecture (JCA) Reference Guide.

OWASP. Cryptographic Storage Cheat Sheet.

Pandian, C. R. (2003). Software metrics: A guide to planning, analysis, and application. CRC Press.

RWC. Real World Crypto Symposium.

Safecode (2011). Fundamental Practices for Secure Software Development.

Shostack, A. (2014). Threat modeling: Designing for security. John Wiley & Sons.

Shuai, S., Guowei, D., Tao, G., Tianchang, Y., and Chenjie, S. (2014). Modelling Analysis and Auto-detection

of Cryptographic Misuse in Android Applications. In IEEE 12th International Conference on Dependable,

Autonomic and Secure Computing (DASC), pages 75–80.

Viega, J. and McGraw, G. (2001). Building Secure Software: How to Avoid Security Problems the Right Way.

Wang, W. and Godfrey, M. W. (2013). Detecting API Usage Obstacles : A Study of iOS and Android Developer

Questions. pages 61–64.

Wang, W., Malik, H., and Godfrey, M. W. (2015). Recommending posts concerning api issues in developer q&a sites.

In Proceedings of the 12th Working Conference on Mining Software Repositories, pages 224–234. IEEE Press.

46

47

2.2 Evaluation of automated tools for cryptography

This section contains the following publications. First, the publication entitled "A Survey

on Tools and Techniques for the Programming and Verification of Secure Cryptographic

Software". Second, the publication entitled "Practical Evaluation of Static Analysis Tools

for Cryptography: Benchmarking Method and Case Study".

48

2.2.1 A Survey on Tools and Techniques for Programming and

Verification of Secure Cryptographic Software

This publication is entitled "A Survey on Tools and Techniques for the Programming and

Verification of Secure Cryptographic Software" and was published at the XV Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSeg 2015),
held in the city of Florianópolis, Brazil.

63

2.2.2 Practical Evaluation of Static Analysis Tools for Cryptog-

raphy

This publication is entitled "Practical Evaluation of Static Analysis Tools for Cryptog-

raphy: Benchmarking Method and Case Study" and was published at the 28th IEEE
International Symposium on Software Reliability Engineering (ISSRE 2017), held in the
city of Toulouse, France.

Practical Evaluation of Static Analysis Tools for Cryptography:

Benchmarking Method and Case Study

Alexandre Braga, Ricardo Dahab
Institute of Computing

State University of Campinas, Brazil

ambraga@cpqd.com.br, rdahab@ic.unicamp.br

Nuno Antunes, Nuno Laranjeiro, Marco Vieira
CISUC, Department of Informatics Engineering

University of Coimbra, Portugal

nmsa@dei.uc.pt, cnl@dei.uc.pt, mvieira@dei.uc.pt

Abstract—The incorrect use of cryptography is a common
source of critical software vulnerabilities. As developers lack
knowledge in applied cryptography and support from experts is
scarce, this situation is frequently addressed by adopting static
code analysis tools to automatically detect cryptography misuse
during coding and reviews, even if the effectiveness of such tools
is far from being well understood. This paper proposes a method
for benchmarking static code analysis tools for the detection of
cryptography misuse, and evaluates the method in a case study,
with the goal of selecting the most adequate tools for specific
development contexts. Our method classifies cryptography
misuse in nine categories recognized by developers (weak
cryptography, poor key management, bad randomness, etc.) and
provides the workload, metrics and procedure needed for a fair
assessment and comparison of tools. We found that all evaluated
tools together detected only 35% of cryptography misuses in our
tests. Furthermore, none of the evaluated tools detected insecure
elliptic curves, weak parameters in key agreement, and most
insecure configurations for RSA and ECDSA. This suggests
cryptography misuse is underestimated by tool builders. Despite
that, we show that it is possible to benefit from an adequate tool
selection during the development of cryptographic software.

Index Terms—static analysis tools, cryptography,
benchmarking, software security

I. INTRODUCTION

Cryptography misuse is a common source of vulnerabilities

introduced in software during development efforts [1], being

mostly related to coding activities, but also found in design and

architecture. Frequently, developers lack knowledge in applied

cryptography, barely having support from experts when solving

issues related to it.

Nowadays, many common software applications have strong

security needs related to cryptography. For instance, mobile

apps for secure end-to-end instant messages [2], authenticated

encryption in SMS [3], and encrypted file systems with secure

deletion [4], go far beyond traditional use cases for cryptography

(e.g., SSL security, file encryption, or password protection) and

require cryptographic protocols to be blended into their func-

tionality. On the other hand, in ordinary software development,

access to experts in applied cryptography is frequently restricted

by tight schedules and limited budgets. Because these experts

are rare, expensive, and busy, their involvement in software

development is usually delayed to testing before deployment [5].

Static code analysis tools can help by detecting cryptography

misuse during coding or reviews [6]. Such tools should be

able not only to assist developers in daily coding activities,

but also to support experts in efficiently finding potential

issues during reviews and architecture analysis, according to

structured methodologies [5]. A key point for the success of

these methodologies is the correct choice of adequate static code

analysis tools for specific development scenarios. For instance, in

a simple scenario, ordinary developers, novice in cryptography,

may need to code common use cases, requiring a precise,

but not so complete, tool. In another scenario, knowledgeable

developers may work together with cryptography experts to build

sophisticated protocols blended into application functionality,

requiring the most precise and complete toolkit available.
This paper proposes a benchmark for static code

analysis tools (SCATs) focusing on their support for

detecting cryptography misuse. Roughly speaking, our

approach computes metrics (recall, precision, and f-measure)

from measurements of tool execution on a set of test cases for

cryptography misuse. The objective is twofold. First, to compare

different tools directly, showing their limitations and strengths.

Second, and more importantly, to determine how well tools

perform in the context of cryptographic software development.
We have evaluated five free SCATs in order to answer the

questions of how and to which extent cryptography misuse is

caught by free SCATs currently available to developers. Free tools

are readily available (no purchase of licences is required) and, in

many cases, are the first and only option for ordinary developers.

We found that the union of misuses detected by all five tools cover

only about 35% of crypto misuses in our test cases. We also found

that, in general, tools perform better in simple misuses regarding

weak cryptography and bad randomness, and worse in issues for

key management and program design flaws. Additionally, we

found that the tools tested are unable to detect non-trivial misuses

for insecure curve selection in Elliptic Curve Cryptography

(ECC), weak parameters for key agreement with Diffie–Hellman

(DH) and ECDH, misconfigured digital signatures with ECDSA,

and many insecure configurations for RSA.
Our method uses a pondered sum of metrics (weighted

metrics) to show how likely SCATs can detect expected

cryptography misuse in certain application types. Also, such

metrics capture development needs concerning SCATs, helping

to assemble adequate toolkits for cryptographic software. We

observed that weighted precision and weighted recall (in our

method, the weighted versions of recall and precision) are

better metrics for expressing tool strengths and limitations than

non-weighted metrics. Finally, we recommend SCAT usages

for specific scenarios of cryptographic software development,

according to tool performance during benchmarking.
To the best of our knowledge, this work is the first practical

evaluation of SCATs concerning support for cryptography usage,

2017 IEEE 28th International Symposium on Software Reliability Engineering

2332-6549/17 $31.00 © 2017 IEEE

DOI 10.1109/ISSRE.2017.27

170

64

including a detailed set of test cases for cryptography misuse.

The main contributions of this work are the following: (1)

a method for SCAT evaluation and comparison in detecting

cryptography misuse; (2) a set of realistic test cases for

cryptography misuse in Java; (3) an assessment of free

SCATs showing actual gaps in crypto misuse coverage; (4)

the evaluation of the tools according to our method; and (5)

recommendations for SCAT usage in specific development

scenarios. Java was chosen for this instance of our method

because this programming language has a well-known and stable

cryptographic API and was adopted by the Android platform,

being extensively used worldwide by ordinary developers.

The outline of this paper is as follows. Section II presents

related work and Section III overviews our method. Section IV

presents likely cryptography misuse for applications, Section V

explains development contexts for cryptography, while Section VI

describes benchmarking scenarios for cryptography. Section VII

details the assessment results and Section VIII instantiates a

benchmark as a case study. Section IX discusses our findings

and analyses threats to validity. Section X concludes the paper.

II. RELATED WORK

This section presents related works on cryptography misuse,

SCATs for cryptography, and metrics for evaluation of

vulnerability detection tools.

A. Cryptography Misuse

Lazar et al. [7] show that only 17% of cryptography

vulnerabilities are inside software libraries, the other 83% are

misuse of libraries. Also, Chatzikonstantinou et al. [8] concluded

that about 88% of Android apps misuse cryptography. Braga and

Dahab [1] investigated the occurrence of cryptography misuse

in on-line forums for cryptographic programming, showing that

crypto misuses have high probabilities (e.g., 90% for Java).

For Egele et al. [9] and Shuai et al. [10], deterministic

encryption is the most common misuse when a block cipher (e.g.,

AES or 3DES) uses the Electronic Code Book (ECB) mode.

Asymmetric deterministic encryption with non-randomized RSA

is also a misuse [11]. Hardcoded or repeated Initialization Vectors

(IV) and hard-coded seeds for Pseudorandom Number Generators

(PRNGs) are also frequent [9]. Other misuses come from

exchanging operation modes without considering IV needs [1].

Georgiev et al. [12] and Fahl et al. [13] showed that

libraries for SSL/TLS allow programmers to ignore parts of

certificate validation, adding vulnerabilities exploitable by

man-in-the-middle attacks. Recent studies showed misuses

related to weak or misplaced parameters for RSA [14], key

agreement misconfiguration (e.g., DH and ECDH) [15], and

Elliptic Curve Cryptography (ECC) [16], [17] as well.

Nadi et al. [18] observed that developers usually implement

simple use cases (e.g. user authentication, storage of login data,

secure connections, and data encryption), but face difficulties

when using low-level Java APIs. For instance, Shuai et al. [19]

discovered that password protection in Android is greatly affected

by cryptography misuse. Finally, Braga and Dahab [1] found

that the most widespread misuse is weak cryptography, affecting

several crypto use cases, and the most troublesome use case

is encrypting data at rest, which is affected by several misuses.

B. Static Code Analysis for Cryptography

The way cryptography has been approached by Secure

Software Development Lifecycles (SSDL) was recently

studied [5], [6]. The conclusion is that, in general, development

teams are aware of cryptography sensitivity, but: (i) they fail

to adopt organized lifecycles intended to develop secure crypto

software; and (ii) they lack expert help to assure quality at

different stages of the development process. Furthermore, the

development of secure crypto software still lacks professional

tool support for most issues [6].
Domain-specific tools target the coding and testing of

cryptographic algorithms and development of cryptographic

libraries [6]. On the other hand, emerging research targets tools

for development of cryptography-enabled functionality with

established and standardized algorithms, as well as trusted

libraries and frameworks, including tools for secure programming

[20], [21] and verification [9], [10], [22], with particular interest

in testing tools for crypto misuses [13], [23], [24].
Current coding standards [25], [26] do offer simple advice

and general rules against cryptography misuse that could be

automated by simple tools. Also, there are ordinary SCATs with

simple rules for crypto misuses (e.g., [27]–[31]), providing late

detection [32]. Highly specific issues (usually not detected by

ordinary tools) have been addressed by academic prototypes,

including SCATs for Android [9], [10], [13] and iOS [33] apps,

Java code [21], and misuse of SSL libraries [22].
The Juliet test suite [34] offers synthetic examples of insecure

coding and is part of a bigger set of test cases, provided by the

Software Assurance Reference Dataset (SARD) [35]–[37], and

used to evaluate SCATs [38]–[41]. However, these test suites

are quite limited, being restricted to risky or broken encryption

and hash functions (weak cryptography), and to deterministic

PRNGs (bad randomness).
The open questions answered in this paper are how and to

which extent free SCATs detect cryptography misuse.

C. Benchmarking Vulnerability Detection Tools

Benchmarking vulnerability detection tools has gained

attention in areas where long-term security assurance is more

important than detection of fancy vulnerabilities. Considering

the evaluation of static code analysis tools in general, existing

initiatives (such as the Software Assurance Metrics And Tool

Evaluation - SAMATE [35], [42]) tried to establish a minimum

set of test cases as baseline for vulnerability coverage. Recent

initiatives [43] adopted a metrics-based approach in which

general behavior for metrics (e.g., precision and recall) is more

important than detection of specific vulnerabilities. Unfortunately,

none of these initiatives focus on cryptography misuse.
Vulnerability detection tools classify parts of the target

application in one of two classes: vulnerable or non-vulnerable. In

this way, evaluation metrics are based on raw measures obtained

from calculating a confusion matrix which represents the possible

outcomes for each classified instance, according to a reference or-

acle of test cases. In Table I, True positives (TP) is the number of

actual vulnerabilities detected by evaluated tools; False positives

(FP) is the number of vulnerabilities detected that, in fact, do not

exist (false alarms); False negatives (FN) is the number of true,

but undetected vulnerabilities (omissions); and True negatives

(TN) is the number of tests without actual vulnerabilities.

171

65

Antunes and Vieira [44] studied in depth the effectiveness of

various metrics for benchmarking security tools and concluded

that benchmarks for vulnerability detection tools should consider

metrics that are able to capture the effectiveness of the tools

in the concrete scenario where those tools are to be used.

According to them [44], three metrics commonly used in

benchmarks and easily computed from raw measures are

Recall, Precision, and f-measure, but these may not be the best

ones in all cases. Antunes and Vieira [45] also addressed the

practical problem of benchmarking vulnerability detection tools

in web services environments. They defined two benchmarks

for vulnerability detection tools targeting the well-known SQL

Injection vulnerability. One benchmark uses a predefined set

of test cases, and the other is based on a user-defined selection

of tests. Their results showed that the benchmarks accurately

reflect the effectiveness of vulnerability detection tools. Their

study, however, holds only for a single type of vulnerability.

TABLE I
CONFUSION MATRIX FOR BINARY CLASSIFICATION.

Oracle Reported by evaluated tool
Test case Condition Positive (P) Condition Negative (N)
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Static code analysis of programs is undecidable in general [46].

In spite of that, many working solutions have been applied

in practice, but in quite limited ways, as shown by several

works that help understanding the limits of this technology. The

following paragraphs analyze those related to ours.

Kupsch and Miller [47] compared manual and automated

vulnerability assessment and found that from all the

vulnerabilities discovered by manual assessment, tools found

only simple implementation bugs, but did not find issues

requiring deep understanding of code or design.

Diaz and Bermejo [38] compared tools against the SARD

test suites [35] and analyzed results using known metrics (e.g.,

recall, precision, F-M), finding an average precision of 0.7 and

an average recall of 0.527. They concluded [38] that it is not

yet possible to standardized the behavior of SCATs, because

the differences in design and technologies among current tools

lead them to detect different kinds of vulnerabilities.

Mahonar et al. [48] assessed SCATs’ ability to detect

vulnerabilities in source code, concluding that it is hard to

benchmark tools just by looking at the results produced against

a certain test suite, confirming that tools find less flaws as the

cyclomatic complexity of source code increases.

Goseva-Popstojanova and Perhinschi [39] used the Juliet

test suite [34] to evaluate three commercial SCATs. They

found [39] that 27% of C/C++ vulnerabilities and 11% of Java

vulnerabilities were missed by all tools. They also found an

overall recall, for each tool, close to or below 50%.

Delaitre et al. [40] compiled results from SAMATE’s

competitions using the SARD [35] data set. They concluded

that, in general, design and coding clarity helps improving

software assurance, because the simpler the control and data

flow structure of the test case, the more effective the tools will

be at finding weaknesses [40]. They also concluded that distinct

SCATs generally do not find the same weaknesses [40], due

to differences in tool design.

Shiraishi, Mohan, and Marimuthu [49] proposed evaluation

criteria and new test suites for benchmarking SCATs. After

evaluating commercial SCATs, they concluded that there are

defects difficult to detect. This general purpose test suite does

not tackle cryptography at all.

Finally, Hoole at al. [41] analyzed test suites from SARD [35],

discussed various deficiencies and associated improvements,

evaluating such improvements against SCATs. They showed that

invalid assumptions in test design lead to imprecise measurement.

III. OVERVIEW OF THE BENCHMARKING METHODOLOGY

The methodology adopted in this work is based on that

proposed by Antunes and Vieira [45]. We built our method

around the concept of predefined, but realistic test cases [45].

The difference is that our test cases are specific for a whole

domain (e.g., cryptography), instead of a single type of

vulnerability in a broader domain. By coding test cases for

types of bad practices found in an existing classification of

cryptography misuse (described in Section III-B), we were

able to capture the diversity of this domain. A cryptography

misuse is a programming bad practice frequently found in

cryptographic software [1], leading to vulnerabilities. We do

not simply name them vulnerabilities because, in many cases,

they are design flaws and insecure architectural choices.

The basic idea of our method is to exercise SCATs using

sample programs for cryptography usage (with and without

crypto misuses) and, based on the detected misuses, calculate

a small set of metrics that capture the detection capabilities

of SCATs in the cryptography domain. Also, we argue that,

due to the many variables involved (e.g., crypto misuses, SCAT

deployments, developer expertise in cryptography, the way

misuses appear in applications, and availability of crypto experts),

the definition of a benchmark for cryptography misuse detection

tools must be specifically targeted to a particular scenario, in

order to actually make choices about the benchmark components.

A. Benchmarking Procedure

Figure 1 illustrates the proposed benchmarking procedure.

Its four stages are then described in detail.

1) Planning, where the benchmark is scoped and designed,

using knowledge about cryptography misuse, with the

following steps:

a) determine likely misuses of cryptography for certain

application profiles (refer to Section IV);

b) determine the development context, including team

experience and expert availability, and their relation with

base metrics (Section V);

c) determine the benchmarking scenario using combinations

of weighted metrics for SCATs, configured according

to profiles and contexts (Section VI).

2) Preparation consists in identifying and configuring

tools according to a selected scenario for conducting a

benchmarking campaign (Section VII).

3) Operation (Section VII), where measures are collected to

further analysis and comparison, with the following steps:

a) execution of the tools for the specified tests, detecting

misuses;

172

66

Fig. 1. Overview of the benchmarking procedure.

b) verification of raw measures (TP, FP, TN, and FN) by

experts.

4) Comparison (Sections VII and VIII), where measurements

are analyzed, interpreted, and prepared to presentation, with

the following steps:

a) normalization of results in order to compare the tools

using common formats;

b) computation of metrics from the raw measures;

c) evaluation and ranking of the tools according to weighted

metrics and scenarios.

The above procedure follows a general process for

experimentation [50], customized for benchmarking of

vulnerability detection tools [45]. The key novelty resides

in the planning phase, which presents our contribution in

systematically understanding how cryptography misuse affects

development teams and tool selection.

B. Classification of Cryptography Misuses

Braga and Dahab [1] proposed a classification of cryptography

misuses to capture how software developers actually misuse

cryptography in practice. Their classification has nine categories:

Weak Cryptography (WC), Bad Randomness (BR), Coding

and Implementation Bugs (CIB), Program Design Flaws (PDF),

Improper Certificate Validation (ICV), Public-Key Cryptography

(PKC) issues, Poor Key Management (PKM), Cryptography

Architecture and Infrastructure (CAI) issues, and IV/Nonce

Management (IVM) issues. Each category is further detailed

in more descriptive subsets in Table II.

The classification was obtained by an iterative and incremental

process. First, the authors analyzed in different case studies [2]–

[4] the pitfalls developers have to avoid to properly use cryptogra-

phy. They also reviewed selected literature for software security

that cover cryptography issues [51]–[56], and adopted their

labels, grouping them in the main categories with few sub-items.

Then, new categories were added and sub-items were refined

from industry sources [57]–[59] and recent papers [7]–[10],

[12], [13], [60]. Validation and further refinement occurred by

studying online communities for cryptography programming [1].

In this work, we extend that classification to include other mis-

uses and apply it to categorize our test cases. The main additions

are insecure elliptic curves [17], repeated nonce in ECDSA [16],

as well as misconfiguration of RSA [14] and DH [15]. The

resulting classification (in Table II) assembles cryptography

misuse in software collected from various sources: literature on

software security (e.g., [51]–[56]), recent studies on cryptography

misuse (e.g, [7]–[10], [12], [13], [60]), newly discovered misuses

in Java (e.g., [14]–[17]), and industry initiatives for software

security (e.g., [57]–[59]). Table II shows the grouping of misuse

categories, misuse main categories, subsets, and sources.

IV. APPLICATION PROFILE AND MISUSE GROUPS

The application domain defines the cryptography

requirements [5], which, in general, are satisfied by traditional

use cases associated to cryptographic services [1], [18]:

encrypting data at rest (EDR), secure communication (SC),

password protection and encryption (PPE), authentication and

validation of data (AVD), and digital rights management (DRM).

TABLE II
CRYPTO MISUSES FROM SOFTWARE SECURITY.

MG Misuse category Misuse subtype Misuse source

M
is

u
se

G
ro

u
p

1
(M

G
1
)

Weak
Cryptography
(WC)

- Risky or broken crypto
[7] [8] [9]

[10] [60] [51]
[52] [53] [54]
[55] [57] [58]

- Proprietary cryptography
- Determin. symm. encryption
- Risky or broken hash/MAC
- Custom implementation

Coding and
Implementation
Bugs (CIB)

- Wrong configs for PBE
[7] [8] [9]
[60] [19] [54]
[58]

- Common coding errors
- Buggy IV generation
- Null cryptography
- Leak/Print of keys

Bad Randomness
(BR)

- Use of statistic PRNGs [7] [8] [9]
[60] [51] [52]
[53] [54] [55]
[57] [58]

- Predict., low entropy seeds
- Static, fixed seeds
- Reused seeds

M
is

u
se

G
ro

u
p

2
(M

G
2
) Program Design

Flaws (PDF)

- Insecure default behavior
[7] [8]

[10] [11] [60]
[51] [52] [55]
[56] [57] [58]

- Insecure key handling
- Insecure use of streamciphers
- Insecure combo encrypt/auth
- Insecure combo encrypt/hash
- Side-channel attacks

Improper
Certificate
Validation (ICV)

- Missing validation of certs
[7] [10] [12]
[13] [60] [56]
[58]

- Broken SSL/TLS channel
- Incomplete cert. validation
- Improper validated host/user
- Wildcards, self-signed certs

Public-Key
Cryptography
(PKC) issues

- Deterministic encrypt. RSA

[8]
[9] [10] [11]
[60] [14] [53]
[55] [16] [17]

- Insecure padding RSA enc.
- Weak configs for RSA enc.
- Insecure padding RSA sign.
- Weak signatures for RSA
- Weak signatures for ECDSA
- Key agreement: DH/ECDH
- ECC: insecure curves

M
is

u
se

G
ro

u
p

3
(M

G
3
)

IV and Nonce
Management
(IVM) issues

- CBC with non-random IV
[8] [9]
[10] [60]

- CTR with static counter
- Hard-coded or constant IV
- Reused nonce in encryption

Poor Key
Management
(PKM)

- Short key, improper key size
[7] [8] [9]
[60] [51] [52]
[53] [54] [55]
[56] [59] [58]

- Hard-coded or constant keys
- Hard-coded PBE passwords
- Reused keys in streamciphers
- Use of expired keys
- Key distribution issues

Crypto
Architecture and
Infrastructure
(CAI) issues

- Crypto agility issues [7]
[8] [9] [10]
[11] [13] [60]
[51] [54] [55]
[56] [57] [58]

- API misunderstanding
- Multiple access points
- Randomness source issues
- PKI and CA issues

173

67

These use cases are implemented in crypto coding tasks [1],

[18]: encryption and decryption (Enc/Dec), digital signatures and

verification (Sig/Ver), hashes or authentication codes and verifica-

tion (Hash/Mac), key generation or agreement (KA), secure chan-

nels (e.g., SSL), digital certificate validation (Cert), and random-

ness generation (Rand). There are also secondary tasks, accessory

to the main ones, representing operational (but important) aspects

of crypto systems: key distribution, certificate generation, and key

storage and recovery. In general, every crypto use case can be

accomplished by a combination of coding tasks, where the com-

plexity of the task is determined by the actual use case at hand.

Cryptography misuses are introduced by developers during

coding tasks [1]. For this reason, an assessment setup for

evaluation of cryptography usage during software development

has to evaluate misuses according to their impact on coding

tasks and related use cases. Cryptography misuses are not all

equally difficult to avoid: some are easier to find and correct

than others, depending on the level of abstraction (coding,

design, architecture) required to identify the misuse. In our

experience and related work [1], there are three qualitative

groupings for the nine misuse categories (in Table II):

MG1 (low complexity) is related to coding activities and issues

in APIs, and could be easily found by early detection

techniques, simple code reviews, and skilled developers

(supported by tools). It includes Weak Crypto (WC), Coding

and Implementation Bugs (CIB), and Bad Randomness

(BR). No deep understanding of program design is required,

because fixes are likely to be simple and related to single

programs or simple code snippets.

MG2 (medium complexity) is related to flaws in program design

affecting a few different programs and may be difficult

to identify due to feature distribution across programs.

It includes Improper Certificate Validation (ICV) issues,

Program Design Flaws (PDF), and Public-Key Crypto (PKC)

issues. Fixes may require program redesign and may affect a

few programs. Avoiding them requires more knowledgeable

developers and support from experts.

MG3 (high complexity) is related to flaws in system design

and architecture, and requires understanding of system

architecture to analyze underlying cryptosystems. It includes

Poor Key Management (PKM), IV and Nonce Management

(IVM) issues, and Crypto Architecture and Infrastructure

(CAI) issues. Fixes usually require new modules or redesign

of modules, and may affect many code bases. These misuses

require cryptography experts to perform code and design

reviews, or architecture analysis.

Application’s Crypto Misuse Profile determines likely crypto

misuses in applications, as well as their complexity to be

avoided by developers and likelihood to be detected by tools. A

low-profile app benefits from early detection of misuses and is

mainly associated to MG1; a high-profile app, associated with

MG3, is better supported by late detection; and a medium-profile

app, associated to MG2, is somewhere in between.

V. DEVELOPMENT CONTEXTS AND BASE METRICS

The development context determines the availability of

cryptographic knowledge to development teams, either as

actual developers with applied cryptography knowledge or as

external consultants. There are four combinations of two binary

variables: team experience (with or without experience) and

expert availability (available or unavailable), resulting in the

development contexts listed in Table III. There is a recommended

application profile and misuse groups for each context.

TABLE III
CONTEXTS COMBINING TEAMS AND APPLICATION PROFILES.

C# Context App profile Misuse groups
C1 Novice team, no expert Low complexity MG1
C2 Novice team with expert Low to medium MG1 and MG2
C3 Skilled team, no expert Medium to high MG2 and MG3
C4 Skilled team and expert High complexity MG3

Benchmarking metrics are selected according to development

contexts and app profiles in which SCATs will be used.

Specific combinations of these factors define a benchmarking

scenario. Table IV summarizes the metrics suitable for each

development context (further discussed later for each context).

We adopt the following definitions for recall, precision, and

f-measure [44]. Recall is the proportion of positive cases that are

correctly classified as positive and is computed by the formula

TP/(TP + FN). Precision is the proportion of the classified

positive cases that are correctly classified and is computed

by the formula TP/(TP + FP). F-Measure represents the

harmonic mean of precision and recall, given by the simplified

formula 2 ∗ TP/(2 ∗ TP + FN + FP). Next subsections

describe, for each development context, how teams interact with

crypto experts, how crypto misuse shows up, how SCATs can

be used, and which metrics are better to evaluate SCATs.

TABLE IV
DEVELOPMENT CONTEXTS AND RECOMMENDED METRICS.

Context 1st. Metric 2nd. Metric
C1 Precision Recall
C2 Recall Precision
C3 F-Measure Recall
C4 Recall Precision

A. Context 1: Unsupported Novice Team

This context comprises novice developers with little expert

help, where novice developers want to avoid accessing

(expensive or unavailable) crypto experts as much as possible,

and solve simple issues by themselves. Accessing experts for

false alarms produced by SCATs can be a waste of resources,

but having expert help for double checking omissions is barely

possible. When this novice team develops low-complexity apps,

it may experience only simple misuses with code-based fixes,

where no (or very few) program design is needed.

When this novice team develops medium-complexity apps,

developers usually have to redesign a few programs when fixing

misuses. In this case, SCATs are supposed to produce more false

alarms. When the same novice team faces high-complexity apps

(a barely recommended setup), developers usually suffer from

complex misuses associated to system design and architecture.

This context can result in software with the worst security

(compared to other contexts) and is recommended only for

low-complexity apps.

174

68

This way, a low false positive rate (FPR) is required for devel-

opers and a low false negative rate (FNR) helps optimize the time

of experts. Also, precision is more important than recall, because

experts will eventually be consulted later in verification and

testing. This way, precision is the first metric for benchmarking

SCATs and recall is a second option for tie breaking.

B. Context 2: Supported Novice Team

In this context, novice developers have access to crypto experts

and want to use them as much as possible to overcome team’s lack

of skill in cryptography. Thus, accessing experts for SCATs false

alarms or omissions is not a big deal. For low-complexity apps,

the team has expert help for solving false alarms and omissions.

When the novice team develops medium-complexity apps,

expert review can be applied to remove false positives. When

the same novice team faces high-complexity apps, developers

can rely solely on cryptography experts to solve complex

misuses, and SCATs are supposed to support the expert’s work.

In this context, experts help developers to learn applied

cryptography. This can result in better security and is good

for medium- to high-complexity apps, depending on the actual

availability of experts. It is also recommended for developments

with loose schedules and low time pressure. As experts can

always help with false positives and false negatives, despite

the waste of time and delays, recall is the first metric for

benchmarking, and precision is tie tiebreaker.

C. Context 3: Unsupported Knowledgeable Team

This comprises skilled developers acting as an autonomous

team with rare expert help. In this context, experienced

developers want to solve as many of the issues as possible, in

a best effort approach, even if some issues are false positives.

When faced with simple misuses, in low-complexity apps, this

team is able to solve them quickly or recognize false alarms

with a minimum waste of time.

On the other hand, when facing medium-complexity misuses,

the time taken to discard false alarms may be relatively long, but

still acceptable for a development cycle. In this setup, experts

can be timely accessed to solve false alarms. In high-complexity

apps, when complex misuses appear, developers may not

be able to recognize all false alarms. Experts could quickly

solve difficult issues, but they are not available for double

checking omissions and false alarms. This context is suitable

for medium-complexity apps. In this case, f-measure is the first

metric and recall is the tiebreaker.

D. Context 4: Supported Knowledgeable Team

This context comprises a team with both skilled developers and

crypto experts. Developers and experts work together to solve as

many issues as possible, even if some of them are false alarms

and omissions. In both low- and medium-complexity misuses, this

team is able to solve issues quickly and recognize false alarms

with minimum delay. When complex misuses appear, developers

may not recognize all false alarms, but with expert help they

can quickly solve difficult issues within affordable delays. The

expert time taken to discard omissions may be relatively long,

but still acceptable. This context can result in the best security

and is suitable for high-complexity apps. It is also recommended

for developments with tight schedules and high time pressure.

In summary, experts and developers deal together with false

positives and false negatives. Also, a high FPR can be acceptable,

because expert support and budget are available to solve them.

In fact, it is important to maximize recall, but precision is not

as important, because team members can easily identify false

positives and plan for review in search of false negatives. In this

context, recall is the first metric and precision is the tiebreaker.

VI. BENCHMARK SCENARIOS AND WEIGHTED METRICS

Benchmark scenarios define combinations of weighted metrics

adopted to evaluate SCATs against likely misuses in development

contexts. Like contexts, there are four main scenarios. The first

scenario (S1) is a learner team with unavailable expert (C1)

developing low-complexity apps, favoring simple misuses from

MG1 (see Table III). The second (S2) is novice developers

with highly available experts (C2), developing low- to

medium-complexity apps, favoring MG1 and MG2. The third

(S3) is an skilled team with unavailable expert (C3) that favors

misuses from MG2 and MG3. The fourth scenario (S4) is skilled

team with available experts (C4) that favors complex misuses

from MG3. This section explains how the scenarios are built.

A. Metrics and Weights

The workload represents the work to be executed by SCATs

during evaluation and is given by a number of test cases actually

exercised. In our method, when evaluating tools for a specific

scenario, all available test cases are included in the workload,

and weights determine the importance of each misuse for the

benchmark scenario. Direct metrics are computed for each misuse

category (and for each tool under evaluation). Then, weighted

metrics are computed by a weighted sum of direct metrics.

We adopt a qualitative approach to determine weight, which

is derived by the expected performance of tools in each scenario.

A misuse has greater weight if tools are expected to detect it

in a specific scenario. Weights are not related to operational

risk, chance of exploitation, or expected loss.

Table V shows the weights for four scenarios. For instance,

in scenario one (S1), a SCAT should be adequate for novice

developers, without expert help, developing low-complexity

apps (C1). This SCAT should prioritize the detection of crypto

misuses in MG1. This way, weights are defined as high for

MG1 and low for both MG2 and MG3.

Weighted metrics for misuse categories can be computed by

the formula
∑

9

i=1
w(i) ∗m(i)/

∑
9

i=1
w(i), where w(i) is the

weight for misuse category i and m(i) is the measured value for

the metric in question (recall, precision, or f-measure). Weighted

metrics for misuse groups, use cases, coding tasks, or any other

criteria, can be computed accordingly. In a benchmark, it is

necessary to choose a criteria. We adopted misuse categories

for general tool evaluation, as well as misuse groups in our

study case for tool benchmarking. Table VI shows four possible

criteria to characterize misuses in a workload.

B. Workload Characterization

In our method, workload selection is not a big deal since all

test cases are always included in the workload. Characterizing

the workload is the important factor influencing metrics.

The workload was derived directly from the classification work

by writing programs to exemplify misuses and their variants, for

175

69

TABLE V
WEIGHTS FOR SCENARIOS, CONTEXT, AND MISUSE GROUPS.

Scenario Context
Weights per misuse group
MG1 MG2 MG3

S1 C1 High Low Low
S2 C2 Medium High Low
S3 C3 Low Medium High
S4 C4 Low Low High

TABLE VI
CRYPTO MISUSES DISTRIBUTED BY CATEGORIES.

Criteria Subset Misuse Good use

Misuse
group

MG1 61 34
MG2 106 99
MG3 35 49

Crypto
use cases

EDR 90 93
AVD 49 39
RND 13 10
PPE 10 5
SC 40 35

Crypto
coding tasks

Enc/Dec 83 68
Sign/Ver 26 27
Hash/MAC 22 11
KG 43 61
SSL 10 3
Cert 5 2
Rand 12 10

Misuse
categories

WC 20 10
CIB 29 16
BR 12 8
PDF 23 14
ICV 15 5
PKC/ENC 27 30
PKC/SIG 21 25
PKC/ECC 14 20
PKC/KA 6 5
IVM 8 10
PKM 19 32
CAI 8 7

each misuse category and its sub-items. Currently, our workload

consists of 202 misuses (positives) and 182 good uses (negatives),

with a total of 384 test programs for Java and its crypto API [61].

Good uses are the negative cases in the confusion matrix, pro-

vided by the testing oracle (see table I). We added expert knowl-

edge to our workload by tagging test cases with the following cri-

teria (used to sum up weights when computing weighted metrics):

• Crypto use cases and coding tasks (e.g., [1], [18]);

• Misuse groups for contexts and app profiles;

• Misuse categories (see Table II);

• Positives and negatives (see Table VI);

• Target platform (only Java [61] by the time of writing).

In order to avoid a large number of test cases in public-key

crypto (PKC) issues, 68 positives and 80 negatives, we divided

this category in four subsets for encryption with RSA, digital

signatures with RSA and ECDSA, elliptic curve cryptography

(for insecure curve selection), and key agreement with DH and

ECDH, in Table VI. The number of test cases, according to

different criteria, are shown in Table VI. All source code is public:

https://bitbucket.org/alexmbraga/cryptomisuses

https://bitbucket.org/alexmbraga/cryptogooduses

VII. ASSESSMENT OF SCATS FOR CRYPTOGRAPHY

This section describes the assessment of free SCATs with

measures (TP, TN, FN, and FP) and metrics (precision, recall,

and f-measure). We selected free SCATs from OWASP [62]

and SAMATE [42]. By reading documentation, we identified

five free SCATs for Java that also have rules for crypto issues:

FindBugs 3.0.1 [63] with FindSecBugs 1.5.0 [27] (FSB),

VisualCodeGrepper 2.1.0 [30] (VCG), Xanitizer 3.0.0 [29]

(Xan), SonarQube 6.2 [28] with sonar-scanner 2.8 (SQ), and

Yasca 3.0.5 [31]. All these tools perform late detection of

vulnerabilities [32] and should be applied after developers have

produced some source code.

Table VII puts together metrics for the five tools. They were

computed uniformly for the workload (i.e., without considering

the weights). Looking at precision and FP, a cursory glance

would choose Yasca as the best tool, with higher precision and

no FP. However, for the trained eye, Xanitizer would be a better

choice, due to a higher recall and f-measure.

The tool with higher recall, Xanitizer (Xan), detected only one

third of all misuses. The second higher recall (FSB) detected one

quarter of misuses. Tools are not mutually exclusive and, in fact,

have great intersection. When computing the union of TPs for all

tools, we found a coverage of 35%, with 72 TPs (only 4 more than

Xanitizer individually). These numbers are not good when com-

pared to assessments with a broader scope [43], suggesting that

free tools perform better in other security domains than in cryp-

tography. Without a specific scenario to direct the comparison, f-

measure seems to be the best metric to adopt, because it combines

precision and recall. In this case, Xanitizer is the best choice.

TABLE VII
RESULTS FOR FIVE FREE SCATS.

Tools
Measures Metrics

TP TN FN FP Prec. Recall F-M
FSB 51 147 151 35 0.593 0.252 0.354
Xan 68 140 134 42 0.618 0.337 0.436
SQ 5 181 197 1 0.833 0.025 0.048
VCG 7 180 195 2 0.778 0.035 0.066
Yasca 8 182 194 0 1.000 0.040 0.076

The following sections discuss the results in detail for misuse

categories in the same abstraction level (MG1, MG2, and MG3).

A. Assessment of SCATs for Misuse Group 1

Table VIII shows metrics MG1. Concerning weak

cryptography (WC), Xan and FSB seem to be the best tools

with most TPs, but their FPs are high, resulting in low precision.

SQ, VCG, and Yasca have no FP, resulting in high precision.

However, these tools show low recall. Xan has the larger

coverage, followed by FSB. Xan wins in recall and f-measure,

being the best tool in this category.

Most tools detected DES and 3DES as insecure. Yasca did

not detect 3DES. FSB and Xan detected weak hash functions

(e.g., MD2, MD4, MD5, and SHA-1). Yasca did not detect

SHA-1. Only Xan detected indirect references to weak hash

functions. Also, only Xan detected an insecure MAC based on

SHA-1. FSB and Xan detected insecure ECB mode. No tool

detected Blowfish, RC4 or insecure PBE. No tool detected

manual compositions of RSA and hashes. Most evaluated

176

70

SCATs behaved as simple pattern matchers for strings, thus,

unable to detect misuses dependent of data-flow analysis.

For coding and implementation bugs (CIB), three tools did

not score (no TP nor FP): SQ, VCG, and Yasca. Xan had most

TP, but many false alarms (FP), obtaining the largest values for

precision, recall, and f-measure. FSB got a second place, mostly

influenced by a low recall. Both Xan and FSB detected buggy IV

generation and NullCipher. Only Xan detected leaks of private

or secret keys. However, leaks of DH’s shared secrets were not

detected. Tools did not detect saved keys in strings, misconfigured

PBE, and concatenated inputs for hashes. VCG looked for the

word “password” in comments, but misses other languages.

For bad randomness (BR), Table VIII shows that FSB, Xan,

VCG, and Yasca have the highest precision with no FPs. However,

VCG and Yasca got low recall. SQ did not score. Interestingly,

FSB and Xan are tied in all three metrics (no tiebreaker). Also,

Xan and FSB detected all uses of statistic PRNG and VCG missed

a few misuses. Xan, FSB, and VCG detected only a few cases

of low-entropy seeds. No tool detected fixed seeds nor reuse of

seeds, suggesting the existence of blind spots in evaluated tools.

B. Assessment of SCATs for Misuse Group 2

Concerning program design flaws (PDF), Table IX shows that

SQ, VCG, and Yasca did not score. FSB and Xan had the same

value for recall, but FSB got the highest values for precision and

f-measure. Taking precision as tiebreaker, FSB wins this category.

FSB and Xan detected insecure default for AES. FSB and

Xan got insecure default for 3DES. Other insecure defaults

(e.g., RSA, PBE, OAEP, and PRNG) were not detected. Tools

have huge omissions in this category, showing many blind spots.

No tool detected insecure combinations of encryption with hash

or MAC. FSB and Xan detected some insecure stream ciphers.

Side channels, such as timing channels in verification of hashes

or MACs, and padding oracles, were not detected.

For public-key cryptography (PKC) issues, Table IX shows

that VCG and Yasca did not score. FSB, Xan, and SQ got the

highest precision with no FP. Xan wins this category due to

higher recall and f-measure. Despite large TPs, the highest recall

is still less than one quarter of all test cases for this category.

No tool detected insecure curves for ECC. Xan and FSB

detected all cases of insecure padding for RSA and deterministic

RSA. SQ got only one case. A bug in SQ makes it case

sensitive for algorithm names, so that, for instance, two strings

"RSA/NONE/NoPadding" and "RSA/None/NoPadding" are

different and only the first one is detected. No tool detected

insecure hashes or small parameters for RSA-OAEP. No tool

detected small parameters for key agreement (e.g., DH or

ECDH) and repeated message nonce for ECDSA. FSB and

Xan detected only one case of weak configs for ECDSA

(SHA1withECDSA), as well as only a few weak configs for

RSA signatures. Tools are optimistic in this category to reduce

FP, but having many omissions (FN). Also, tools are not updated

with recent misuses, resulting in blind spots.

For improper certificate validation (ICV), according to

Table IX, only FSB and Xan scored, with the same precision

and no FP. FSB got better recall and f-measure for a higher TP,

performing better in this category. Only FSB and Xan detected a

few issues for certificate validation related to insecure SSL/TLS.

FSB performed slightly better than Xan because of a bug in

Xan that prevented the detection of misuses in nested classes.

Again, tools limited themselves to just a few misuses in order

to avoid mistakes.

C. Assessment of SCATs for Misuse Group 3

Concerning IV and nonce management (IVM) issues (see

Table X), FSB has higher recall, but medium precision. FSB

also got a higher value for f-measure, being the best choice

for this category. VCG, SQ, and Yasca did not score. FSB and

Xan detected constant IVs. No tool detected non-random IV

for CBC, nor static counters for CTR. FSB detected one case

of nonce reuse. The high number of FPs indicates tools have

difficulty in understanding program design for IV management.

In poor key management (PKM), FSB and Xan got the same

scores in all measures, resulting in a hard tie in all three metrics,

as shown in Table X. VCG, SQ, and Yasca did not score in this

category. FSB and Xan detected the same few cases of constant

keys, constant passwords for PBE, and key reuse in stream

ciphers. In this case, tool builders were less optimistic and

tried to capture possible, but uncertain issues, resulting in more

FPs due to lack of program understanding. Key management

is made of design decisions hard to get from code analysis.

Considering Crypto Architecture and Infrastructure (CAI)

issues, insecure architectural decisions are the most difficult

cryptography misuse to detect by looking only at code. Only

Xanitizer scored in this category, obtaining relatively good

results for derived metrics. This happened because of a small

number of test cases for one issue detected only by Xanitizer:

the omission of a crypto provider during algorithm selection.

However, this may be an FP, because crypto providers can be

defined in configuration files as well.

VIII. BENCHMARKING CASE STUDY

As an example, in this case study we select SCATs to be used

by a novice team during development of an application with low-

complexity crypto usage (context C1 in Table III). For illustrative

purposes only, we suppose that the development process will

target a hypothetical (but realistic) application for password pro-

tection and management, in which secure storage for passwords is

encrypted by a master key derived from a master password. This

simple app targets a quite common need in mobile devices [19].

This app has two main use cases: password protection with

encryption (PPE) and Encrypting Data at Rest (EDR). Password

integrity should also be guaranteed (AVD). A security assessment

would show that its design and architecture are simple and key

management is limited to a single master key/password. Develop-

ment is likely to be affected by crypto misuses related to coding

bugs (CIB), bad randomness usage (BR), password-based encryp-

tion misconfiguration (in CIB), and weak cryptography (WC).

The development team favors free tools and may only have

part-time support of crypto experts, as external consultants. So

we would like to select tools to promptly address MG1 issues,

but also to point possible issues from MG2 and MG3, which

will be eventually analyzed by an expert in the future. This

way, the benchmark setup for this case study is that of scenario

one (S1), consisting of development context one (C1 - Novice

team, no expert), for a low-complexity app profile. In this setup,

precision and recall are the adequate metrics, with recall as

tiebreaker. Also, for computation of weighted metrics, misuse

177

71

TABLE VIII
RESULTS FOR MISUSE GROUP ONE (MG1).

Tools
Metrics for WC Metrics for CIB Metrics for BR

Prec. Recall F-M Prec. Recall F-M Prec. Recall F-M
FSB 0.727 0.40 0.516 0.50 0.172 0.256 1.0 0.417 0.588
Xan 0.588 0.50 0.541 0.70 0.483 0.571 1.0 0.417 0.588
SQ 1.0 0.20 0.333 0.0 0.0 0.0 0.0 0.0 0.0
VCG 1.0 0.20 0.333 0.0 0.0 0.0 1.0 0.250 0.400
Yasca 1.0 0.30 0.462 0.0 0.0 0.0 1.0 0.167 0.286

TABLE IX
RESULTS FOR MISUSE GROUP TWO (MG2).

Tools
Metrics for PDF Metrics for PKC Metrics for ICV

Prec. Recall F-M Prec. Recall F-M Prec. Recall F-M
FSB 0.417 0.217 0.286 1.0 0.221 0.361 1.0 0.267 0.421
Xan 0.357 0.217 0.270 1.0 0.235 0.381 1.0 0.133 0.235
SQ 0.0 0.0 0.0 1.0 0.015 0.029 0.0 0.0 0.0

TABLE X
RESULTS FOR MISUSE GROUP THREE (MG3).

Tools
Metrics for IVM Metrics for PKM Metrics for CAI

Prec. Recall F-M Prec. Recall F-M Prec. Recall F-M
FSB 0.286 0.500 0.364 0.263 0.263 0.263 0.0 0.0 0.0
Xan 0.231 0.375 0.286 0.263 0.263 0.263 0.800 1.0 0.889

TABLE XI
WEIGHTED METRICS FOR FIVE SCATS IN FOUR SCENARIOS.

Tools
Weighted metrics for S1 Weighted metrics for S2 Weighted metrics for S3 Weighted metrics for S4

W-Prec. W-Recall W-F-M W-Prec. W-Recall W-F-M W-Prec. W-Recall W-F-M W-Prec. W-Recall W-F-M
Xan 0.737 0.451 0.537 0.756 0.302 0.392 0.563 0.431 0.427 0.488 0.510 0.471
FSB 0.701 0.316 0.425 0.747 0.266 0.377 0.412 0.253 0.270 0.281 0.259 0.242
Yasca 0.556 0.130 0.208 0.208 0.049 0.078 0.042 0.010 0.016 0.056 0.013 0.021
VCG 0.556 0.125 0.204 0.208 0.047 0.076 0.042 0.009 0.015 0.056 0.013 0.020
SQ 0.306 0.056 0.093 0.313 0.024 0.041 0.125 0.006 0.010 0.056 0.006 0.010

groups MG1, MG2, and MG3 are weighted as high, low, and

low, respectively (see Table V).

Table XI puts together weighted metrics for the five evaluated

tools from Section VII in the four scenarios (sorted by scenario

one, the one of interest in the current example). Weighted

metrics were computed as weighted sums of metrics calculated

for misuse categories and weights associated to misuse groups,

as discussed before.

For scenario one, taking only weighted precision as reference,

Xan is the best choice. By giving a higher weight to MG1,

we actually amplified the importance of simple misuses, where

Xanitizer scored slightly better than FSB and much better than

other tools. Table XI shows three groups of scores for scenario

one (S1): Xan and FSB with high scores, VCG and Yasca with

medium scores, and SQ with a low score. These numbers indicate

that Xan and FSB not only performed better in general, but also

preferred simple misuses from MG1, confirming what we saw

in Section VII: Xan and FSB (individually) have more rules for

crypto than all other tools together and most of them are for MG1.

The unbalanced number of rules among SCATs favored Xan

and FSB. Table XI shows that Xan and FSB easily ranked in

first and second places in all scenarios. On the other hand, the

competition for ranking in third place was not that ease. For

scenario one (S1), Yasca got third place thanks to tie breaking

in recall. In scenario two (S2), where recall is the first metric,

Yasca performed better and got third place, despite being tied

with VGC and performed worst than SQ in precision.

For scenario three (S3), where f-measure rules and recall is

the tiebreaker, Yasca got third place with a tight difference from

other two SCATs. For scenario four (S4), we found not only

the smallest metrics in general, but also the smaller differences

among weighted metrics for Yasca, VCG, and SQ. Yasca and

VCG were tied in both preferred metrics for S4, so the contend

was solved by f-measure in favor of Yasca with tine advantage.

Evaluated SCATs favor scenario one because of a technology

bias found in free SCATs toward low-complexity misuses,

as discussed in Section VII. When we forced the use of free

SCATs in other scenarios, their performance reduces gradually

as misuse complexity increases. This behavior is perceived

in Table XI by the progressively reduced values of weighted

metrics (from scenarios one to four).

A. Misuse Groups and Tool Behavior

An optimistic tool only alerts about clear misuses and keeps

silent about dubious ones. On the other hand, a pessimistic tool

warns about every suspected misuse, even unlikely ones. SCATs

178

72

for security have to be pessimistic in order to avoid dangerous

omissions [53]. On the other hand, SCATs should favor early

detection of vulnerabilities in order to benefit from developer’s

short-term memories when fixing vulnerable code [32].
Based upon our observations and findings, we generalized

the following expected behaviors for crypto-friendly, pessimistic

SCATs (Table XII). Tools can be quite precise in early detection

of MG1 (WC, CIB, and BR), showing relatively few FPs. Recall

inside the misuse group (group recall) is expected to be relatively

high, with few FNs. However, non-detected misuses from MG2

and MG3 cause dangerous omissions (FNs in overall recall).
In MG2 (ICV, PDF, and PKC), tools are expected to be less

precise, producing more false alarms and omissions than in MG1.

This is expected due to FPs caused by incomplete understanding

of program design, as well as FNs due to misconceptions

about programs. In MG2, optimistic tools are expected to show

relatively low recall and many FNs, while pessimistic tools are

expected to have relatively low precision and many FPs. These

tools are better suited to late detection of crypto misuses.
In MG3 (PKM, IVM, and CAI), tools are expected to be

quite imprecise, producing more false alarms and omissions

than in other misuse groups. This behaviour is expected because

of FPs due to partial understanding of software architectures,

as well as FNs due to misconceptions about program design.

Optimistic tools will have relatively low recall, while pessimistic

tools will have lower precision. Tools for MG3 are better suited

to late detection of misuses.
As discussed previously, all free SCATs in this benchmark

favor MG1 and gradually decrease their performance in

(weighted) metrics for MG2 and MG3. Table XII summarizes

the relation between misuse groups and tool behavior.

TABLE XII
EXPECTED TOOL BEHAVIOR FOR CRYPTO-FRIENDLY SCATS.

Misuse group Tool behavior
MG1 Higher precision and high recall
MG2 Low precision and moderate recall
MG3 Lower precision and high recall

B. Use of SCATs for Cryptography

Knowing the limitations of tools is important to understand

how to use them more effectively. Table XIII summarizes tool us-

ages for misuse groups. First, the recommended usage of SCATs

for MG1. By precisely detecting many code-based misuses,

SCATs can be integrated to IDEs and provide real-time support

to developers during coding tasks (e.g., early detection). Since

precision is high, these tools will need less expert supervision in

coding. Because overall recall is low, tools alone will result in low

quality (less secure) software, which can be subjected to further

verification. This tool usage is recommended for development

context 1 (novice teams and barely available experts).
The recommended tool usage for MG2 follows. SCATs

should not be the only way to find design flaws in coding,

because design flaws are supposed to be found earlier in

development, before coding tasks. If they are being found in

coding, this may be a symptom of expert unavailability or team

amateurism. Tools can be applied during system integration

(daily or weekly build) and support design reviews or manual

inspection, possibly later in system development. This tool usage

is recommended for novice teams with expert help (context

2) or skilled teams and barely available experts (context 3).

As for MG3, SCATs should not be the only way to find

architectural flaws in coding, because they are supposed to be

found very early in development. If they are not, this may be

a symptom of expert unavailability or team building issues (e.g.,

lack of security architects). Extensive use of tools during coding

tasks is inadequate and can mistakenly divert team effort to

correct nonexistent misuses or correct existing, but complex,

misuses the wrong way. This tool usage is better for supporting

experts during manual inspections in architectural security

analysis and is recommended for development contexts where

crypto experts are always available (e.g., contexts two and four).

Considering the evaluated tools, FindSecBugs can be

integrated to IDEs and building tools. VisualCodeGrepper

(VCG) has both CLI and GUI, and its CLI can be called by

scripts in building processes, but not integrated to IDEs. Xanitizer

can be used as a standalone tool with its own GUI and also

be incorporated in a build process. SonarQube can be integrated

to building tools and claims to have plugins for many IDEs.

Finally, the current version of the best ranked tool in this bench-

mark (Xanitizer) is not easily integrated to IDEs. The second

option (FindSecBugs) is better suited for late detection of misuses

within IDEs. Also, Xanitizer and FindSecBugs are adequate for

contexts one and two, with the drawback of showing relatively

more false positives and false negatives in the second case. We

do not believe any of evaluated tools is adequate for contexts

three and four, due to their poor performance in this benchmark.

TABLE XIII
CONTEXTS LINK LIKELY MISUSES AND TOOL USAGE.

Context Misuse group Usage Tool
C1 MG1 Integrated to IDE Xan and FSB
C2 MG1 and MG2 IDE and build Xan and FSB
C3 MG2 and MG3 Build and review None
C4 MG3 Reviews None

IX. DISCUSSION AND THREATS TO VALIDITY

This section discusses limitations that threat validity, and

other general aspects of our benchmarking methodology.

A. Limitations and Threats to Validity

We are aware that our workload is a sample of all possible

test cases for cryptography misuse. For instance, we did not

implement all variations of algorithm names in case-sensitive

strings. Also, we explicitly avoided test cases for specific

technologies and platforms (e.g., web, mobile, etc.).

We found a general coverage of around 35%, with the two

best scores around 33% and 25%. These numbers are not

surprising. For instance, Antunes and Vieira [45] concluded

in their benchmark that the effectiveness of tools is poor. Also,

OWASP’s benchmark [43] of tools for web security shows

a coverage of 50% for the best tool. Other works [38], [39]

have similar results. These arguments suggest that tools perform

better in other security domains than in cryptography.

Most evaluated tools use pattern matching as the

main technique for vulnerability detection. In particular,

179

73

VisualCodeGrepper, SonarQube, and Yasca seem to use

only simple pattern matching. FindSecBugs detects some

non-trivial patterns, such as zeroed IVs and insecure interface

implementations. Xanitizer uses taint analysis to detect simple

leaks of keys and indirect references to weak algorithms.

Our workload is made of realistic test cases, meaning that

they are not artificial, but they are not real applications either.

They were collected and derived from crypto misuse patterns

found in many sources. Still, they may contain crypto misuses

not frequently found in real applications. On the other hand,

the diversity provided by our test cases is hard to obtain by

only using actual applications.

When loading test cases into tools, auxiliary code had to be

excluded from the workload. Otherwise, evaluated tools would

consider them in vulnerability scans, generating even more false

positives. A simple and fast solution is to exclude auxiliary

code from raw measures.

Our test cases target crypto misuse and neglect other aspects of

code quality (including secure coding) in order to keep programs

small, self-contained, and self-explained. However, these design

decisions were not captured by tools. Thus, when validating raw

measures, we had to exclude issues not related to crypto misuses.

Crypto misuses can appear in combinations of two or three,

showing a strong relation to each other [1]. Because of that, some

test cases had to include more than one misuse, in order to capture

the intended misbehavior. In these cases, we chose to ignore

auxiliary misuses (when detected by tools) and focus on detection

of main misuses. Auxiliary misuses have their own test cases.

When evaluated tools had no default configuration that

included verification of crypto misuses, we always preferred

the more complete (full) scan. Also, for output, we preferred

reports with all severity classes (levels) enabled. This practice

was adopted to avoid complicated settings and customized

configurations, which can be hard to reproduce.

B. General Discussion

Cryptography misuse is not related to the implementation of

cryptographic algorithms. Instead, crypto misuses emerge when

ordinary developers use cryptographic libraries (APIs) in their

daily coding activities. These developers can also use SCATs to

receive detailed reports about issues and how to correct them.

This work sits in the intersection of three domains (e.g., applied

cryptography, software engineering, and software security) shar-

ing a common knowledge base. We believe that our experiment

actually tests what we meant to test, because tool builders have

codified this knowledge (to some degree) in SCATs, which are

able to detect cryptography misuse, even in limited ways.

SCATs generate detailed reports that have to be manually

inspected. By inspecting these reports, we were able to identify

all issues related to cryptography, separating them from other

issues, and classifying them as true positives and false positives.

We mitigated the threat of mislabeling misuses, because crypto

misuses were clearly identifiable due to the systematic use of

our classification to generate test cases and our experience in

this kind of code review.

Finally, our conclusions are based upon a repeatable

experiment and are consistent with related work and our

previous results. In fact, our numbers were consistent among

executions, because evaluated SCATs are deterministic and our

benchmarking method is reproducible. Previous results were

obtained from case studies, an extensive literature review, and

empirical studies of online communities.

X. CONCLUSION

Cryptography usage is full of design decisions that defy early

detection of misuse. Also, coverage of cryptography misuse by

tools is far from good, with current tools showing many blind

spots. We saw a huge gap between what experts actually see as

cryptography misuse and what tools currently detect. Therefore,

expert help is required to assure quality in different moments of

development efforts. We argue that, with current tools’ maturity,

an adequate toolkit has to be carefully crafted to fit the needs

of teams for specific development contexts.

Our methodology was able to distinguish among tools for

distinct usage scenarios and find the best suited options, despite

limitations in current SCAT technology. Also, the method

provided the necessary context to analyze the reasons why

evaluated tools are not suitable for advanced scenarios.

As future work, in the short term, we plan to improve test

cases to include new misuses, variations of existing ones,

as well as perform assessments of commercial-off-the-shelf

tools. In the long run, we plan to expand test cases to other

programming languages, software platforms, cryptographic

libraries, as well as dynamic analysis tools. Finally, we foresee

the emergence of a new generation of tools able to better assist

the development of secure cryptographic software.

ACKNOWLEDGMENT

This work has been partially supported by CNPq, Intel, and

the projects DEVASSES (www.devasses.eu), funded by the

European Union’s FP7 under grant agreement no. PIRSES-GA-

2013-612569, and EUBra-BIGSEA (www.eubra-bigsea.eu),

funded by the European Commission under Horizon 2020 grant

agreement no. 690116. R. Dahab and A. Braga acknowledge the

support of Fapesp’s thematic project #2013/25.977-7. Authors

also thank UNICAMP, CPqD, and University of Coimbra for

the institutional support.

REFERENCES

[1] A. Braga and R. Dahab, “Mining Cryptography Misuse in Online Forums,”
in 2nd International Workshop on Human and Social Aspect of Software
Quality, 2016.

[2] A. Braga and D. Schwab, “Design Issues in the Construction of
a Cryptographically Secure Instant Message Service for Android
Smartphones,” in The 8th Inter. Conf. on Emerging Security Information,
Systems and Technologies, nov 2014, pp. 7–13.

[3] A. Braga, R. Zanco Neto, A. Vannucci, and R. Hiramatsu, “Implementation
Issues in the Construction of an Application Framework for Secure SMS
Messages on Android Smartphones,” in The 9th Inter. Conf. on Emerging
Security Information, Systems and Technologies. IARIA, 2015, pp. 67–73.

[4] A. Braga and A. Colito, “Adding Secure Deletion to an Encrypted File
System on Android Smartphones,” in The 8th Inter. Conf. on Emerging
Security Information, Systems and Technologies, nov 2014, pp. 106–110.

[5] A. Braga and R. Dahab, “Towards a Methodology for the Development
of Secure Cryptographic Software,” in The 2nd International Conference
on Software Security and Assurance (ICSSA 2016), 2016.

[6] ——, “A Survey on Tools and Techniques for the Programming and
Verification of Secure Cryptographic Software,” in XV Simpósio Brasileiro
em Segurança da Informação e de Sistemas Computacionais (SBSeg
2015), Florianópolis, SC, Brazil, 2015, pp. 30–43.

[7] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why Does Cryptographic
Software Fail?: A Case Study and Open Problems,” in 5th Asia-Pacific
Workshop on Systems, ser. APSys ’14. New York, NY, USA: ACM,
2014, pp. 7:1–7:7.

180

74

[8] A. Chatzikonstantinou, C. Ntantogian, C. Xenakis, and G. Karopoulos,
“Evaluation of Cryptography Usage in Android Applications,” 9th EAI
International Conference on Bio-inspired Information and Communications
Technologies, 2015.

[9] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” ACM SIGSAC
conference on Computer & comm. security (CCS’13), pp. 73–84, 2013.

[10] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Modelling
Analysis and Auto-detection of Cryptographic Misuse in Android
Applications,” in IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing (DASC), 2014, pp. 75–80.

[11] P. Gutmann, “Lessons Learned in Implementing and Deploying Crypto
Software,” Usenix Security Symposium, 2002.

[12] M. Georgiev, S. Iyengar, and S. Jana, “The most dangerous code in the
world: validating SSL certificates in non-browser software,” in Proceedings
of the 2012 ACM conference on Computer and communications security
- CCS ’12, 2012, pp. 38–49.

[13] S. Fahl, M. Harbach, and T. Muders, “Why Eve and Mallory love
Android: An analysis of Android SSL (in) security,” in ACM conference
on Computer and communications security, 2012, pp. 50–61.

[14] E. S. Alashwali, “Cryptographic vulnerabilities in real-life web servers,”
in Third International Conference on Communications and Information
Technology (ICCIT). IEEE, jun 2013, pp. 6–11.

[15] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, and Others,
“Imperfect forward secrecy: How Diffie-Hellman fails in practice,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 5–17.

[16] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and
E. Wustrow, “Elliptic curve cryptography in practice,” in Financial
Cryptography and Data Security. Springer, 2014, pp. 157–175.

[17] V. G. Mart and L. Hern, “Implementing ECC with Java Standard Edition
7,” International Journal of Computer Science and Artificial Intelligence,
vol. 3, no. 4, pp. 134–142, 2013.

[18] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, ““Jumping Through
Hoops”: Why do Java Developers Struggle With Cryptography APIs?”
The 38th International Conference on Software Engineering, 2016.

[19] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Analysis
on Password Protection in Android Applications,” in P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), 2014 Ninth International
Conference on, nov 2014, pp. 504–507.

[20] S. Fahl, M. Harbach, and H. Perl, “Rethinking SSL development in an
appified world,” Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security - CCS ’13, pp. 49–60, 2013.

[21] S. Arzt, S. Nadi, K. Ali, E. Bodden, S. Erdweg, and M. Mezini, “Towards
Secure Integration of Cryptographic Software,” in 2015 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward! 2015). New York, NY, USA: ACM, 2015, pp. 1–13.

[22] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang, and
Z. Zhang, “Vetting SSL usage in applications with SSLint,” in 2015 IEEE
Symposium on Security and Privacy (SP). IEEE, 2015, pp. 519–534.

[23] OWASP, “OWASP Testing Project,” 2015. [Online]. Available:
https://www.owasp.org/index.php/OWASP_Testing_Project

[24] J. Rizzo and T. Duong, “Practical padding oracle attacks,” Proc. of the
4th USENIX conf. on offensive technologies (2010), pp. 1–9, 2010.

[25] OWASP, “OWASP Top Ten Project,” 2013. [Online]. Available:
https://www.owasp.org/index.php/Top_10

[26] SANS/CWE, “TOP 25 Most Dangerous Software Errors.” [Online].
Available: www.sans.org/top25-software-errors

[27] P. Arteau, “FindSecBugs.” [Online]. Available:
https://find-sec-bugs.github.io

[28] SonarSource, “SonarQube.” [Online]. Available: https://www.sonarqube.org
[29] RigsIT, “Xanitizer.” [Online]. Available: https://www.rigs-it.net
[30] NCCGroup, “VisualCodeGrepper.” [Online]. Available:

https://github.com/nccgroup/VCG
[31] M. Scovetta, “Yasca.” [Online]. Available: http://yasca.org
[32] L. Sampaio and A. Garcia, “Exploring context-sensitive data flow analysis

for early vulnerability detection,” Journal of Systems and Software, vol.
113, pp. 337 – 361, 2016.

[33] Y. Li, Y. Zhang, J. Li, and D. Gu, “iCryptoTracer: Dynamic Analysis
on Misuse of Cryptography Functions in iOS Applications,” in 8th
International Conference on Network and System Security. Xi’an, China:
Springer International Publishing, 2014, pp. 349–362.

[34] T. Boland and P. E. Black, “Juliet 1.1 C/C++ and java test suite,”
Computer, vol. 45, no. 10, pp. 88–90, 2012.

[35] NIST, “Software Assurance Reference Dataset (SARD).” [Online].
Available: https://samate.nist.gov/SRD/

[36] P. E. Black, “Counting bugs is harder than you think,” in 11th IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2011, pp. 1–9.

[37] P. Black, “Static analyzers: Seat belts for your code,” IEEE Security &
Privacy, vol. 10, no. 3, pp. 48–52, 2012.

[38] G. Díaz and J. R. Bermejo, “Static analysis of source code security:
Assessment of tools against SAMATE tests,” Information and Software
Technology, vol. 55, no. 8, pp. 1462–1476, 2013.

[39] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of static
code analysis to detect security vulnerabilities,” Information and Software
Technology, vol. 68, pp. 18–33, 2015.

[40] A. Delaitre, B. Stivalet, E. Fong, and V. Okun, “Evaluating bug finders
- Test and measurement of static code analyzers,” Proceedings - 1st
International Workshop on Complex Faults and Failures in Large Software
Systems, COUFLESS 2015, pp. 14–20, 2015.

[41] A. M. Hoole, I. Traore, A. Delaitre, and C. de Oliveira, “Improving
Vulnerability Detection Measurement: [Test Suites and Software Security
Assurance],” Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, pp. 27:1–27:10, 2016.

[42] NIST, “Software Assurance Metrics And Tool Evaluation.” [Online].
Available: https://samate.nist.gov

[43] OWASP, “OWASP Benchmark Project.” [Online]. Available:
https://www.owasp.org/index.php/OWASP_Benchmark_Project

[44] N. Antunes and M. Vieira, “On the Metrics for Benchmarking Vulnerability
Detection Tools,” in The 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2015). Rio de Janeiro,
Brazil: IEEE, 2015.

[45] ——, “Assessing and Comparing Vulnerability Detection Tools for Web
Services: Benchmarking Approach and Examples,” IEEE Transactions
on Services Computing, vol. 8, no. 2, pp. 269–283, 2015.

[46] W. Landi, “Undecidability of static analysis,” ACM Letters on Programming
Languages and Systems (LOPLAS), vol. 1, no. 4, pp. 323–337, 1992.

[47] J. A. Kupsch and B. P. Miller, “Manual vs. automated vulnerability
assessment: A case study,” in First International Workshop on Managing
Insider Security Threats (MIST), 2009, pp. 83–97.

[48] L. Manohar, R. Velicheti, D. C. Feiock, M. Peiris, R. Raje, and J. H.
Hill, “Towards Modeling the Behavior of Static Code Analysis Tools,”
2014 9th Cyber and Information Security Research Conference, 2014.

[49] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” 2015 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 12–15, 2015.

[50] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[51] J. Viega and G. McGraw, Building Secure Software: How to Avoid
Security Problems the Right Way, 2001.

[52] M. Howard and D. LeBlanc, Writing Secure Code, 2nd ed. Redmond,
Wash: Microsoft Press, Dec. 2004.

[53] B. Chess and J. West, Secure programming with static analysis, 2007.
[54] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software Security:

Programming Flaws and How to Fix Them. McGraw-Hill Education, 2009.
[55] M. Howard and S. Lipner, The Security Development Lifecycle. Redmond,

WA, USA: Microsoft Press, 2006.
[56] A. Shostack, Threat modeling: Designing for security. John Wiley &

Sons, 2014.
[57] Safecode, “Fundamental Practices for Secure Software Development,”

2011. [Online]. Available: http://www.safecode.org/wp-content/uploads/
2014/09/SAFECode_Dev_Practices0211.pdf

[58] OWASP, “Cryptographic Storage Cheat Sheet.” [Online]. Available:
www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

[59] CYBSI, “Avoiding The Top 10 Software Security Design Flaws,” 2014.
[Online]. Available: http://cybersecurity.IEEE.org/

[60] A. Braga and R. Dahab, “Introdução à Criptografia para Programadores:
Evitando Maus Usos da Criptografia em Sistemas de Software,” in
Caderno de minicursos do XV Simpósio Brasileiro em Segurança da
Informação e de Sistemas Computacionais — SBSeg 2015, 2015, pp. 1–50.

[61] Oracle, “Java Cryptography Architecture (JCA) Reference Guide.”
[Online]. Available: docs.oracle.com/javase/8/docs/technotes/guides/
\security/crypto/CryptoSpec.html

[62] OWASP, “List of Source Code Analysis Tools.” [Online]. Available:
https://www.owasp.org/index.php/Source_Code_Analysis_Tools

[63] UMD, “FindBugs.” [Online]. Available: http://findbugs.sourceforge.net

181

75

76

2.3 Development methods for secure crypto software

This section contains the following publications. First, the publication entitled "Towards

a Methodology for the Development of Secure Cryptographic Software". Second, the pub-
lication entitled "Understanding the Field of Cryptographic Software Security".

77

2.3.1 Towards a Methodology for the Development of Secure Cryp-

tographic Software

This publication is entitled "Towards a Methodology for the Development of Secure Cryp-

tographic Software" and was published at the 2nd. International Conference on Software
Security and Assurance (ICSSA 2016). This paper was awarded the best student paper
at that conference, held in the city of St. Polten, Austria.

Towards a Methodology for the Development of Secure Cryptographic Software

Alexandre Braga and Ricardo Dahab

Institute of Computing

State University of Campinas (UNICAMP)

Campinas, Brazil

e-mail: ambraga@cpqd.com.br, rdahab@ic.unicamp.br

Abstract—Historically, software security has approached the

development of cryptographic software merely as a feature

to be added. This stance did not have a positive influence on

the design of advanced security functionalities into modern

software. Thus, this work proposes a methodology for

development of secure cryptographic software, providing a

structured way to approach cryptography into secure

development methods. Our methodology captures the

(otherwise casual) practices of secure software development

employed by modern software factories when building

security-critical software with cryptographic technologies. In

time, we compare our work with other methods, provide

actual examples, as well as analyze architectural aspects and

specialized tool support for secure coding and verification of

cryptographic software. We do believe this work contributes

to bridge the gap between modern cryptographic software

and today’s development methods for secure software.

Keywords-cryptography; software security; secure software

development; highly adaptive lifecycles; software assurance

I. INTRODUCTION

Today’s most popular cryptographic software are
massively available, cloud-based mobile apps that perform
secure, peer-to-peer communication, with security
requirements strongly related to their advanced services.
However, in general, we observed a lack of methods for
building secure cryptographic software in modern software
factories, in such a way that cryptographic security could
be easily blended to functionality. Also, historically,
practitioners reserved little attention to cryptography
misuses, compared to other vulnerabilities.

The main contribution of this work is to structure a
methodology for Development of Secure Cryptographic
Software (DSCS), which provides an ordered way to
approach cryptography into Secure Software Development
Lifecycles (SSDL). DSCS adopts software architecture
aspects, foster specialized tool support, and can enhance
the ability of other SSDL methods to handle cryptography
issues, even with highly adaptive lifecycles. Furthermore,
DSCS is supported by practical evidence of cryptography
misuse as well as generalizes several practices we have
seen and applied in actual software developments.

The text is organized as follows. Section II gives
background and motivation. Section III analyzes current
practice for cryptography in SSDL. Section IV deeply
describes our methodology. Section V concludes the text.

II. BACKGROUND AND MOTIVATION

In this text, cryptographic software (crypto software,
for short) is software that preserves major security goals
(namely, confidentiality, integrity, authenticity, and non-

repudiation) transparently blended into functionality, by
using cryptographic methods available through reusable
libraries and frameworks. Applied cryptography is the use
of cryptographic infrastructures (e.g., packages, libraries,
and APIs) to build cryptographic security into security-
critical software.

For instance, the following security-critical apps go far
beyond traditional use cases for cryptography (e.g., SSL
security, file encryption, or password protection) and
require cryptographic protocols to be blended to (or co-
designed with) app’s functionality, exemplifying our
vision of modern crypto software, as well as DSCS
principles and ideas: secure end-to-end instant messages
[1], authenticated encryption for SMS [2], encrypted file
systems with secure deletion [3], and frameworks for
cryptographic security on mobile devices [4].

The confidence in secure software is always relative to
the assurance methods in use [5]. Nevertheless, in general,
secure software engineering [5][6] seems not to directly
address the issues of cryptographic security. In fact, studies
have shown that vulnerabilities in crypto software have
been mainly caused by software defects and poorly
managed parameters [7]–[10]. Recent studies [11]–[15]
showed the occurrence of known cryptography misuses.
Sadly, current methods are unable to cope with security
issues in programming crypto features [16][17], leading to
cryptography frequent misuse [11][14][15], improper
certificate validation [12][13]; and inappropriate error
handling when orchestrating crypto services [18][19].

III. DECONSTRUCTING TRADITIONAL PRACTICE

This section illustrates our viewpoint by reviewing
cryptography’s occurrence into software security literature.
Naturally, this review is illustrative rather than exhaustive.

Cryptography texts include books [20][21] intended for
scientists and engineers embedding cryptography into
hardware or implementing it in software; also, there are
books on cryptographic APIs [22] and their programming
tricks [23]. Finally, there are software security books
covering crypto programming [24]–[27] and giving design
advice [6][28][29]. A few security resources also give
practical advice for secure crypto programming and
design: (i) the top-10 security risks [30] and testing guide
[31]; (ii) the top-10 secure design flaws [32]; (iii) the
practices for secure software development [33]; and (iv)
the top-25 most dangerous programming errors [34].

A. Cryptography and the SSDL

In general, software security recognizes cryptography’s
importance and complexity. However, cryptography stays
at low-level design, as a feature or mitigation control used
in simple tactics to achieve security goals. In fact, for

2016 International Conference on Software Security and Assurance

978-1-5090-4388-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSSA.2016.12

25

78

practitioners [5] and researchers [6], cryptographic security
is a feature to be added rather than a property to be
enforced. Thus, SSDL methods in general have no specific
activities for it.

The reality nowadays is often that secure systems have
to perform complex functionality while avoiding attacks.
Sadly, common cryptographic security only provides usual
use cases for securing data at rest or in transit, consisting
of data encryption, integrity checks, user authentication,
non repudiation, and key management. These tasks are
simple scenarios for the broad concept of cryptographic
feature, including not only cryptographic algorithms and
protocols, but also software libraries and frameworks. The
software security community agrees in not investing effort
to implement proprietary cryptography. Instead, crypto
features should be obtained from trusted infrastructures
and service providers. We believe that this posture
oversimplifies cryptography’s role in software security.

It is believed [6] that the development of cryptographic
software is better served by a waterfall-like SSDL, because
of the high predictability and ease of evidence-gathering
provided by this kind of lifecycle. This view reminds us of
the Common Criteria for Information Technology Security
Evaluation [35] and the Cryptographic Module Validation
Program [36]. We believe that this is an extreme view that
should not be adopted as is, but be adapted to fit modern
software development performed by common developers.

Also, historically, programmers have not been trained
to consider the capabilities of an adversary. This results in
protections against problems familiar to programmers, but
that are still easy for attackers to subvert [26]. We believe
that this is one of the causes cryptography misuses have
not been directly approached into the SSDL. Security tools
are often adopted, but they still require the expertise of
experienced security practitioners [37]. We add expertise
of cryptography architects as well, because developers
should understand it in order to avoid misusing it [29].

B. Cryptography into the SSDL

This section synthesizes cryptography activities into
SSDL phases, according to SWEBOK [38]. A comparison
of DSCS to main SSDL methods is shown in TABLE I.

1) Cryptography into Software Requirements Security
In software requirements security, cryptographic needs

are identified and obtained from various sources, including
security policies and regulations, business needs, non-
functional requirements, and predefined checklists. Also,
cryptographic features have been derived from the basic
security goals of confidentiality, integrity, availability,
authenticity, non-repudiation, and privacy [37][39]. The
early importance given to cryptography during gathering
and elicitation of security requirements generally depends
on the interest of stakeholders in the subject [40].

In order to avoid implicit requirements, developers
usually adopt simple ways to specify cryptography
requirements, often using checklists of controls against
known vulnerabilities, such as the OWASP top-10 [30].

2) Cryptography into Software Design Security
Policies and the target environment drive the design of

security architecture [41]. Secure design principles enforce
properties in order to avoid design flaws and secure
profiles add predefined controls against known threats
[41]. The security architecture enforces the design goal of

eliminating weak encryption by avoiding known design
pitfalls [32], such as: use of proprietary algorithms or
implementations, misuse of libraries and algorithms, poor
key management, bad randomness, decentralized crypto
infrastructures, and unsupported crypto evolution.

Only recently, secure design initiatives emerged as an
industry-led effort and began to consider cryptography
misuse as a secure design issue. For instance, the IEEE
CYBSI [32] considers the design pitfalls for cryptography
mentioned above. Also, Safecode [33] considers that the
elimination of weak encryption from software is the most
important design issue related to cryptography today.

3) Cryptography into Software Construction Security
Coding guidelines have been adopted to integrate

cryptographic features to source code [42][26]. In general,
developers avoid or prevent many security issues (e.g.,
timing attacks and weak keys) just by using good
cryptographic libraries [6]. Also, cryptographic agility
allows for rapid adaptation for new cryptography [41].

We distinguish secure coding of crypto software and
coding secure crypto software. The former uses general
secure coding techniques during the coding of crypto
software. The latter embraces specific secure coding
techniques and programming tricks to better defend crypto
software against particular misuses and bad construction of
cryptographic techniques.

A general concern is to avoid code-level vulnerabilities
when using frameworks and libraries. In general, static
analysis is the most cost-effective way to find known
vulnerabilities [26] and manual inspection is usually
adopted for small portions of code [5]. This should apply
to the detection of cryptography misuses. However, in
practice, secure coding is limited to standards enforced by
language features, security frameworks, and simple tools.

4) Cryptography into Software Testing Security

Crypto software testing usually looks for weak

cryptography issues, including functional tests of features

and penetration tests for known vulnerabilities. These tests

have been applied to simple functionality that uses

cryptographic features, as well as to cryptographic

packages encapsulated by high-level frameworks, such as

Transport Layer Security’s (TLS) libraries [12][13].
Software security organizations are concerned with

weak encryption in standardized protocols. For instance,
the OWASP testing guide [31] gives test procedures for
three types of issues on weak encryption: unencrypted
HTTP channels, insufficient TLS protection, and padding
oracles. In general [24]-[28], the software industry favors
operational aspects of security, with interest in penetration
tests and security assessments, before releasing software to
production or distribution. Also, in operation, specialized
penetration tests are periodically applied against protocols
and features, showing a relatively high cost for correction.

IV. THE PROPOSED METHODOLOGY

As far as we know, there is no documented approach to
explicitly include cryptography into SSDL and that could
be adopted by modern software factories. However, we
have observed the frequent adoption of common practices
by researchers and practitioners. This observation allows
for an informal documentation of the methodology for
Development of Secure Cryptographic Software (DSCS),
which is detailed in the next subsections.

26

79

A. Steps for DSCS

DSCS comprises a set of steps related to SSDL phases
[38] and an extra phase for deployment. The concept of
assurance gates is used to informally capture the idea of
traceability among steps and of returning to previous steps
when assurance requirements are not achieved. Figure 1(a)
captures these steps along with SSDL phases. In the figure,
orange rectangles are input information, red rectangles are
wisdom captured from crypto experts, green rectangles
represent knowledge base, blue rectangles are expected
software deliverables, and yellow rectangles are assurance
gates. The following paragraphs describe the steps.

Step 1: Crypto software requirements security. Security
policies, regulations, business needs, non-functional
requirements, and predefined checklists determine which
security goals must be accomplished. Security goals (e.g.,
anonymity, confidentiality, integrity, non-repudiation,
authenticity, etc.) are then mapped to predefined
cryptographic features. Those mappings can follow both
common user stories and developer’s coding tasks,
facilitating the detection and avoidance of crypto misuses.
The first assurance gate validates the transition from
security requirements to cryptographic features. This step
is usually supported by software security practitioners or
security architects. Crypto experts support the specification
of new user stories (use cases) as well as the related
programming tasks and crypto features.

Step 2: Crypto software design security. Cryptographic
features, design goals, and predefined control types
contribute to define a security architecture, which contains
cryptographic services and technologies. In this step,
cryptographic design patterns can provide proven solutions
to common use cases and coding tasks traditionally
associated to cryptography. The second assurance gate
validates the transition from cryptographic features and
control types to actual cryptographic services and
technologies. This step is usually supported by security
architects or software security practitioners. Cryptography
experts may provide timely advice.

 Step 3: Crypto software construction security. This
step consists in programming secure crypto software. Code

is written to integrate crypto controls and features into
software functionality. The source code must follow
conventions of crypto APIs and adopts standard
implementations of algorithms and protocols, which are
offered by frameworks and libraries. The third assurance
gate validates the transition from crypto features and
controls to APIs, libraries, and frameworks, and helps to
avoid crypto misuse. In this step, the work of software
security practitioners receives most support from experts in
applied cryptography in order to avoid crypto misuses.

Step 4: Crypto software testing security. Cryptography-
related functionality and crypto packages are submitted to
security tests of two types: functional security tests
(supported by security-inspired test cases) and penetration
tests, supported by attack scenarios and threats. The fourth
assurance gate validates the transition to deployment and
operations by assuring compliance to crypto guidelines,
policies, and requirements. In this step, the work of
software security practitioners is supported by experts in
cracking crypto software, usually by exploiting remaining
crypto misuses and other implementation bugs.

Step 5: Crypto software deployment and operation. In
this step, secure software is continuously monitored and
periodically tested for violations of policies and guidelines,
as well as for discovery of new vulnerabilities. This step is
usually performed by a software security practitioner.
Continuous attention should be given to the fast and
constant evolution of cryptographic technology in terms of
new standardized algorithms, updated best practices, and
adoption of longer key lengths.

The above steps and activities are quite straightforward
and capture the common practices we have seen so far.
They may not be the best choices made by practitioners,
but the possible ones due to several constraints. For
instance, it is quite common to involve cryptography
experts only in later steps of SSDL (e.g., coding and
testing). Also, the above steps do not explicitly handle
software architectures or tool support. These, however, are
essential items for modern software development.

B. Layers for Crypto Software in DSCS

Nowadays, crypto software might not only follow the

(a) Steps for DSCS along with SSDL phases.

 (b) A toolkit for secure coding and verification of

crypto software.

Figure 1. The methodology for Development of Secure Cryptographic Software (DSCS).

27

80

prescription of cryptography experts, but also be structured
in layers of abstraction according to software engineering
best practices. Micro architectures for crypto software
have already been proposed in a previous work [43]. This
section goes further in discussing high-level abstractions
for crypto features, proposing layers for crypto software.
We give a short description for each of these layers:
1. The user interaction layer. This layer has to be able to

promote the proper use of cryptography, inhibiting the
misuse of cryptographic features by final users when
handling security-sensitive functionality;

2. The business logic layer. This layer should be able to
properly orchestrate crypto services and components,
with the adequate design abstractions expected by
developers when securing sensitive business goals;

3. APIs and frameworks layer. This layer must be able to
provide access to cryptographic implementations in
standardized and decoupled ways, so that both the
replacement and the exchange of implementations are
easily achieved. Also, APIs, libraries, and frameworks
should not disclose sensitive information through
unauthorized side channels;

4. Algorithm and protocol implementation layer. In this
layer, cryptographic implementations of algorithms
and protocols should be robust against various failures
(e.g. hardware and memory failures), secure against
various attacks (timing, side-channel leakages, etc.),
efficient in energy (low power consumption) and
computational resources (CPU cycles, memory, etc.),
and compact for use in restricted environments;

5. Development support and infrastructure layer. In this
layer, programming languages, component libraries,
compilers, obfuscators, and even operating systems
should be able to capture the programmer's intent,
preserving security decisions, and not canceling
protections when translating source or binary code of
cryptographic implementations to machine code.

All layers of crypto software must be reliable and
useful in contributing to the security of the software as a
whole, working together to promote the secure use of
cryptography. In addition, we recognize the importance of
cryptography’s theoretical security. However, in this work,
the mathematical security of algorithms and protocols is an
unspoken assumption, taken for granted.

Finally, layers can be associated to DSCS steps, in
specific instantiations. For instance, the user interaction
layer may relate to requirements elicitation and business
modeling (software requirements security); the business
logic layer may relate to design and architecture (software
design security); the API and frameworks layer may relate
to secure coding and construction (software construction
security); and security of crypto components is related to
verification and validation against predefined requirements
and new threats (software testing security).

C. Analysis of Tool Support for DSCS

The development of secure crypto software still lacks

professional tool support for most issues, which are

currently subject of academic research. The development

of proprietary cryptography (proprietary algorithms or

homemade implementations) by ordinary programmers is

considered bad practice, so we omitted in this text all

those tools for secure programming of crypto libraries

(i.e., tools applied below crypto APIs), including domain-

specific programming languages, secure compilation, and

automated code generation. A previous work [44] surveys

tools for secure coding and testing of crypto software.

Here in this work, we focus on tools for development of

cryptography-enabled functionality with established and

standardized algorithms, as well as trusted libraries and

frameworks (i.e., tools applied above crypto APIs). A

toolkit for DSCS, illustrated in Figure 1(b), may include

tools for both secure programming and verification.

For crypto software construction, SSL/TLS frameworks

[45] offer high-level functionality and configurable

services, instead of primitive functions, enhancing

usability and avoiding unintentional mistakes. Also,

specialized tools, such as OpenCCE [46], can be

integrated to IDEs and guide developers through selection

and use of relevant crypto components, automatically

generating code with suitable API calls, and analyzing the

final code, avoiding mistakes by non-experts.

For static analysis, current coding standards [30][34] do

offer simple rules for cryptography misuse that can be

automated by simple tools. However, sophisticated issues

cannot be detected by ordinary tools and have only been

addressed by prototypes. For instance, CryptoLint [11]

and Cryptography Misuse Analyzer (CMA) [14] are both

static analysis tools for Android apps that identify

predefined sets of misuses and vulnerabilities from API

calls. Also, both SSLint [47] and MalloDroid [13] are

static analysis tools for detecting incorrect use of

SSL/TLS APIs and improper certificate validation,

detecting potential man-in-the-middle attacks.

For crypto software testing security, tests for SSL have

been used for detection of HTTPS misconfigurations in

web apps [31]. Also, MalloDroid [13] can be used to

dynamically detect SSL vulnerabilities against Android

apps. The Padding Oracle Exploitation Tool (POET) [48]

automatically finds and exploits this type of side channel.

Also, Fault Injection Attack Tool (FIAT) [49] can inject

malicious faults into cryptographic devices.

Finally, experience shows that tools are incomplete, not

overlapping, and buggy. Thus, various tools should be

combined to obtain diversity and redundancy, promoting

fault tolerance to DSCS. The incompleteness and absence

of tools in testing is more evident than in construction. In

practice, household tool development and customization,

as well as manual testing skills, have been favored.

D. Comparison of DSCS to Other SSDL Approaches

TABLE I qualitatively compares DSCS to main SSDL
approaches [5][28][51] and clarifies the differences
between our methodology and other methods. First, the
technology-driven approach [5] favors security in primary
software deliverables, such as source code, architectural
design, tests, and executables. Second, the process-driven
approach [28] emphasizes threat modeling, well-defined
processes, and vulnerability management. Third, the risk-
management approach [41][51] overstresses risk analysis
and assessment, as well as security management.

TABLE I shows that other methods are too broad to be
useful for development of modern crypto software, but
they can still be extended by DSCS, because it highlights

28

81

usually neglected crypto issues, empowering developers
with proper ways to build crypto software. For instance,
practitioners sometimes show a bias to process-driven
approaches, preferring the predictability of a waterfall-like
SSDL driven by known requirements, resulting in software
able to pass well-defined evaluation criteria.

Along the same line, other practitioners show a bias

towards the technology-driven approach, arguing that

cryptographic features are mostly well-defined controls

that will be put in place anyway, with no need for deep

threat modeling or traceable processes. For them, coding

guidelines supported by tools and a good (secure enough)

architecture are sufficient to securely apply cryptography.

In general, there is no particular interest in applying fine-

grained risk analysis deeply into daily activities for crypto

software, leaving risk analysis at the business level.

TABLE I shows that SSDL methods have no specific

activities for cryptography. However, the development of

crypto software suffers great influence from the

supporting SSDL, determining the way cryptography is

approached. For instance, modern software development

frequently adopts highly adaptive lifecycles [50],

characterized by progressive specification of requirements

based on short iterative development cycles. In this way, a

technology-driven DSCS is a better fit for modern crypto

software built within highly adaptive lifecycles, where

processes are not rigid paths and risk analysis has to be

quick enough to not slow down the team, reducing risk

gradually over time by the evolution of understanding.

In our experience, a technology-driven DSCS can be

adopted bottom-up and conducted by technical staff

(supported by executives). For instance, a lower manager

can enhance the software security capabilities of his staff

by integrating into the SSDL a well-crafted set of tools

and techniques for crypto software security, adopting

Acceptance Test-Driven Development (ATDD) during the

construction of cryptographic services [52].

E. Examples of Practical Inspiring Cases for DSCS

DSCS emerged as a response to practical needs when

proposing crypto design patterns [43], investigating

crypto misuses [53], building secure mobile apps [1]-[4],

and applying ATDD for crypto services [52].

Several inspiring cases gave us the required perspective

to generalize a working methodology able to handle

unusual use cases for cryptography. For instance, during

the development of an app for secure, end-to-end instant

messages [1], the key agreement protocol had to be

blended to the chat service, the transport of group-chat

keys had to be blended to chat rooms, and perfect forward

secrecy was preserved despite the storage of chat history.

In a second development case, an app for authenticated

encryption of SMS [2], the combination of encryption and

digital signatures was a common source of design flaws,

the transport of shared keys was masked as invitations to

be a contact, and key update was blended to user

notifications and app updates. In a third case, an app for

encrypted file system with secure deletion of files [3],

secure deletion was obtained by purging crypto keys from

storage, and copies of a file could not be deterministically

encrypted to be equal. These development cases were part

of a framework for cryptographically secure technologies

on mobile devices [4].

Finally, we noted that, without DSCS, developers are

likely to avoid entering the hardest cryptography issues,

minimizing them to high-level, theoretic knowledge and

punctual advice from experts. Many times, we have seen

practitioners complaining about cryptologists’ tendency to

foster theory, neglecting practical issues, such as crypto

misuse cases and implementation bugs. This behavior led

practitioners to react negatively to cryptography issues,

sometimes adopting high-level risk analysis as the only

assurance control available and limiting activities to

vulnerability management during operations and software

patching after system compromise.

TABLE I. DSCS COMPARED TO OTHER SSDL APPROACHES.

Technology-driven SSDL [5]

(a.k.a. McGraw’s Touchpoints)
Process-driven SSDL [28]

(a.k.a. Microsoft SDL)
Risk-driven SSDL [51]

(a.k.a. Risk management)
Development of Secure

Cryptographic Software (DSCS)

Remarkable
feature

Associated to main software

deliverables: source code,

architecture, tests, and executables

Threat modeling, well-defined

development processes, and

vulnerability management

Security is a business issue. Risk-

analysis provides evidence of due

diligence for security management

Highlights usually neglected crypto

issues, providing better ways to build

crypto software in software factories

SSDL
enforcement

Enforces process enhancement by

hardening SDLC processes with

security tools and techniques

Integrating security mindset and

processes into SDLC is the reliable

way to ensure software security

Project and risk management occur

together. Preliminary risk assessment

gives initial security requirements

Fits any SSDL, specific activities and

roles applied to adaptive lifecycles

and technology-driven SSDLs

Software
Requirements
Security

Security checklists, threat modeling,

and misuse cases

Security requirements, awareness,

and training complement threat

modeling and direct architecture

Assets and threats identified in

requirements. Risk acceptance

criteria for prioritizing mitigations.

Crypto use cases and coding tasks,

feature checklists, catalogs of crypto

misuses based on expert knowledge

Software
Design
Security

UML for secure design, attack

patterns, security patterns, and

architectural analysis for security

Design reviews for attack surface

reduction, threat modeling,

prioritized controls, and security

architecture

Threat modeling binds design and

risk analysis, attack surface reduced

by threat modeling and security

assessment of architecture

Layers for crypto software, catalogs

of crypto misuses and design flaws,

code samples, reusable libraries and

frameworks

Software
Construction
Security

Static analysis tools, code reviews,

security guidelines, and coding

standards for secure coding

Code analysis and reviews mitigate

vulnerabilities, version control tracks

changes and enables rollback

Common practices to mitigate risk:

code reviews and inspections, unit

testing, and static analysis

Coding standards and guidelines,

reviews for crypto misuses, code

samples for libs and frameworks

Software
Testing
Security

Test cases for security requirements,

risk-based test cases for common

vulnerabilities, and pentesting

Security tests verify features for

nonfunctional requirements, pentests

for common vulnerabilities

Simulated attacks and penetration

tests based on risk assessment and

prioritization

Tests for crypto misuses on crypto

use cases and tasks, pentests for

common crypto vulnerabilities

Deployment
& Operations
Security

Final security review before release

and plans to incident response

Final risk assessment, before release,

gives confidence to accept release of

software

Final risk assessment needed to

accept risk and securely authorize

deployment of software release

Monitoring and assessment, tests for

new vulnerabilities, watch for crypto

evolution and security updates

29

82

V. CONCLUDING REMARKS

Over the years, cryptography has not only been
misunderstood and misused by software developers, but
also underestimated by SSDL methods. DSCS bridges the
gap between modern cryptographic software and actual
development methods for secure software. We do believe
that DSCS, in its current stage of maturity, is a step
forward in providing better ways to build crypto software
in common software factories. Future works include
usability (behavioral) experiments and field tests
concerning developers’ acceptability of DSCS. Also, we
see tool development as fertile area of research, especially
for design and architecture of secure crypto software.

ACKNOWLEDGMENT

Alexandre Braga thanks CNPq and Intel for the
financial support. Ricardo Dahab thanks FAPESP, CNPq,
CAPES, and Intel for partially supporting this work.

REFERENCES

[1] A. Braga and D. Schwab, “Design Issues in the Construction of a
Cryptographically Secure Instant Message Service for Android
Smartphones,” in the 8th SECURWARE, 2014, pp. 7–13.

[2] A. Braga, R. Zanco Neto, A. Vannucci, and R. Hiramatsu,
“Implementation Issues in the Construction of an Application
Framework for Secure SMS Messages on Android Smartphones,”
in the 9th SECURWARE, 2015, pp. 67–73.

[3] A. Braga and A. Colito, “Adding Secure Deletion to an Encrypted
File System on Android Smartphones,” in the 8th SECURWARE,
2014, pp. 106–110.

[4] A. Braga, “Integrated Technologies for Communication Security
on Mobile Devices,” in 3rd Mobility Conf., 2013,pp. 47–51.

[5] G. McGraw, Software Security: Building Security in. 2006.

[6] R. Anderson, “Security engineering,” 2008.

[7] B. Schneier, “Cryptographic design vulnerabilities,” Computer,
Sept, pp. 29–33, 1998.

[8] P. Gutmann, “Lessons Learned in Implementing and Deploying
Crypto Software,” Usenix Security Symposium, 2002.

[9] R. Anderson, “Why Cryptosystems Fail,” in Proc. of the 1st ACM
Conf. on Computer and Commun. Security, 1993, pp. 215–227.

[10] B. Schneier, “Designing Encryption Algorithms for Real People,”
Proc. of Workshop on New Security Paradigms., pp. 98–101, 1994.

[11] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
empirical study of cryptographic misuse in android applications,”
ACM Conf. on Comp. & Comm. Sec., pp. 73–84, 2013.

[12] M. Georgiev, S. Iyengar, and S. Jana, “The most dangerous code in
the world: validating SSL certificates in non-browser software,” in
Proc of ACM Conf. on Comp. and Comm. Sec., 2012, pp. 38–49.

[13] S. Fahl, M. Harbach, and T. Muders, “Why Eve and Mallory love
Android: An analysis of Android SSL (in) security,” in ACM Conf.
on Comp. and Comm. Sec., 2012, pp. 50–61.

[14] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie,
“Modelling Analysis and Auto-detection of Cryptographic Misuse
in Android Applications,” in IEEE 12th Intl. Conf. on Dependable,
Autonomic and Secure Computing, 2014, pp. 75–80.

[15] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why Does
Cryptographic Software Fail?: A Case Study and Open Problems,”
in 5th Asia-Pacific Workshop on Systems, 2014, pp. 7:1–7:7.

[16] “The Heartbleed Bug.” [Online]. Available: http://heartbleed.com/.

[17] “Apple’s SSL/TLS ‘Goto fail’ bug.” [Online]. Available:
www.imperialviolet.org/2014/02/22/applebug.html.

[18] T. Jager and J. Somorovsky, “How to break XML encryption,”
Proc. of 18th ACM Conf. on Comp. and Comm. Sec, p. 413, 2011.

[19] T. Duong and J. Rizzo, “Cryptography in the Web: The Case of
Cryptographic Design Flaws in ASP.NET,” IEEE Symp. on
Security and Privacy, pp. 481–489, May 2011.

[20] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook
of applied cryptography. CRC press, 1996.

[21] N. Ferguson, B. Schneier, and T. Kohno, Cryptography
Engineering: Design Principles and Practical Applications, 2011.

[22] J. B. Knudsen, Java Cryptography. Oreilly, 1998.

[23] D. Hook, Beginning cryptography with Java. 2005.

[24] J. Viega and G. McGraw, Building Secure Software: How to Avoid
Security Problems the Right Way. 2001.

[25] M. Howard and D. LeBlanc, Writing secure code. 2003.

[26] B.Chess and J.West, Secure programming w/ static analysis. 2007.

[27] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software
Security: Programming Flaws and How to Fix Them. 2009.

[28] M.Howard and S.Lipner, Security Development Lifecycle. 2006.

[29] A. Shostack, Threat modeling: Designing for security. 2014.

[30] “OWASP Top Ten Project,” OWASP, 2013. [Online]. Available:
https://www.owasp.org/index.php/Top_10.

[31] “OWASP Testing Project v4,” OWASP, 2015. [Online]. Available:
https://www.owasp.org/index.php/OWASP_Testing_Project.

[32] “Avoiding The Top 10 Software Security Design Flaws,” IEEE
Cybersecurity Initiative (CYBSI), 2014. [Online]. Available:
http://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf.

[33] “Fundamental Practices for Secure Software Development,”
Safecode, 2011. [Online]. Available: http://www.safecode.org/wp-
content/uploads/2014/09/SAFECode_Dev_Practices0211.pdf.

[34] “TOP 25 Most Dangerous Software Errors,” SANS/CWE.
[Online]. Available: www.sans.org/top25-software-errors.

[35] “Common Criteria for Information Technology Security
Evaluation - Part 1: Introduction and general model.” 2012.

[36] NIST, “Cryptographic Module Validation Program (CMVP).”
[Online]. Available: csrc.nist.gov/groups/STM/cmvp/index.html.

[37] J. Ransome and A. Misra, Core Software Security. 2013.

[38] P. Bourque and R. Fairley, Eds., Guide to the Software
Engineering Body of Knowledge (SWEBOK), V3. 2014.

[39] M. Merkow and L. Raghavan, Secure and Resilient Software
Development. 2010.

[40] T. Richardson and C. Thies, Secure Software Design. 2012.

[41] M. Paul, Official (ISC)2 Guide to the CSSLP. 2011.

[42] J. Allen, S. Barnum, R. Ellison, G. McGraw, and N. Mead,
Software Security Engineering: A Guide for Proj. Managers. 2008.

[43] A. Braga, C. Rubira, and R. Dahab, “Tropyc: A pattern language
for cryptographic object-oriented software,” in PLoP, 1998.

[44] A. Braga and R. Dahab, “A Survey on Tools and Techniques for
the Programming and Verification of Secure Cryptographic
Software,” in proc. of XV SBSeg, 2015, pp. 30–43.

[45] S. Fahl, M. Harbach, and H. Perl, “Rethinking SSL development in
an appified world,” Proc. of ACM Conf. on Comp. & Comm. Sec.,
2013, pp. 49–60.

[46] S. Arzt, S. Nadi, K. Ali, E. Bodden, S. Erdweg, and M. Mezini,
“Towards Secure Integration of Cryptographic Software,” in ACM
Intl. Symp. on New Ideas, New Paradigms, and Reflections on
Programming and Software, 2015, pp. 1–13.

[47] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R.
Yang, and Z. Zhang, “Vetting SSL usage in applications with
SSLint,” in IEEE Symp. on Sec. and Privacy, 2015, pp. 519–534.

[48] J. Rizzo and T. Duong, “Practical padding oracle attacks,” Proc. of
the 4th USENIX conf. on Offensive technologies, pp. 1–9, 2010.

[49] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
injection attacks on cryptographic devices,” in Proc. of the IEEE,
vol. 100, no. 11, pp. 3056–3076.

[50] PMI, Software Extension to the PMBOK® Guide, 5th ed. 2013.

[51] S. Harris, CISSP All-in-One Exam Guide, 6th Edition. 2012.

[52] A. Braga and D. Schwab, “The Use of Acceptance Test-Driven
Development to Improve Reliability in the Construction of
Cryptographic Software,” in the 9th SECURWARE, 2015.

[53] A. Braga and R. Dahab, “Mining Cryptography Misuse in Online
Forums,” in 2nd IEEE Intl. Workshop on Human and Social Aspect
of Software Quality, 2016.

30

83

84

2.3.2 Understanding the Field of Cryptographic Software Secu-

rity

This publication is entitled "Understanding the Field of Cryptographic Software Security"

and was submitted to publication, in November 2017, to the Journal of Information and
Software Technology, maintained by the publisher Elsevier.

Understanding the Field of Cryptographic Software Security

Alexandre Bragaa, Ricardo Dahaba

aState University of Campinas (UNICAMP), São Paulo, Brazil

Abstract

Context. Cryptography is an essential part of software security and one of the most misunderstood
technologies in the development of secure systems. Its correct use is full of design decisions and coding
pitfalls that confuse the ordinary developer. The investigation of real-world issues associated to cryptography
misuse is gaining momentum, as many experts believe now that cryptographic software security is not only
a matter of secure implementation of cryptographic algorithms, but also includes correct usage of APIs,
adequate system design, and proper verification tools to avoid cryptography misuse.

Objective. This paper investigates the role of cryptography in software security, preparing the stage for
an emerging field of study concerned with the development of secure cryptographic software.

Method. This paper analyses five complementary views for the development of cryptographic software.
Two mapping studies contribute to understand the role of cryptography in software security and propose
a classification of cryptography misuse for software security. Two empirical studies regarding cryptography
misuse in online communities and one experimental evaluation of static analysis tools for cryptography
validate the proposed classification. Then, a working methodology is customized to better fit cryptography
in software security.

Results. The paper assembles a body of knowledge for this new field of study named Cryptographic
Software Security, which is supported by a validated classification of cryptography misuse and a working
methodology for developing secure cryptographic software.

Conclusion. The better the understanding regarding the role of cryptography in software security, the
most effective can be the tools and techniques for preventing, detecting, and mitigating cryptography misuse
in software systems. This work provides a validated background to appropriately position research activities.

Keywords: Software development, cryptography, software security, mapping study, cryptographic
software security

1. Introduction

When cryptography was restricted to a relatively
small number of application types, cryptography
insecurity was mainly associated to flaws in the
underlying mathematical assumptions of crypto-
graphic algorithms or to broken implementations of
those algorithms. Nowadays, many popular crypto-
graphic software are developed by ordinary devel-
opers without expert help and massive deployments
of cryptosystems transparently manage millions of
keys on behalf of their users. In this context, the
most frequent security issue related to cryptogra-
phy is its misuse.

Email addresses: ambraga@cpqd.com.br (Alexandre
Braga), rdahab@ic.unicamp.br (Ricardo Dahab)

However, in spite of the growing popularity of
cryptographic services, historically, practitioners
have always reserved little attention to cryptog-
raphy misuse, compared to other sources of vul-
nerabilities. This situation contributed to the
widespread misuse of cryptography by a multitude
of ordinary software developers.

Over the years, software security evolved from
lists of good advice (supported by vulnerability de-
scriptions and countermeasures) to a well-defined
body of knowledge with recognized methods, tools,
and techniques. Nevertheless, in general, the soft-
ware security does not adequately address the issues
of cryptographic software security, and the methods
for development of secure software have no specific
activities for cryptography. In fact, cryptography

Preprint submitted to Information and Software Technology November 10, 2017

85

has been considered only a security feature added
to software during coding, with no specific support
from development processes.

Cryptographic Software Security is a broad sub-
ject that involves at least three distinct commu-
nities, that have drifted apart from each other:
(applied) cryptologists, (software) security experts,
and software developers. Cryptologists are used to
focus on the mathematical security of cryptogra-
phy and secure implementation of algorithms. Se-
curity experts frequently only react to exposed vul-
nerabilities in the cryptographic infrastructure, af-
ter software compromises. Software developers usu-
ally take for granted the security of cryptographic
libraries, overlooking the trick details of cryptogra-
phy usage that can lead to system vulnerabilities.
This state of affairs contributed to an adversarial
posture among communities.

For instance, many times, we saw practitioners
complaining about cryptologists’ tendency to fos-
ter theory and neglect practical issues associated to
cryptography misuse. Also, many times, practition-
ers adopt high-level risk analysis as the only assur-
ance control available, limiting activities to vulner-
ability management during operations and software
patching after system compromise.

Without an ordered way to mitigate cryptogra-
phy misuse in early stages of software development,
developers are likely to overlook the hardest cryp-
tography issues, underestimating their complexity,
and minimizing them to high-level, theoretic knowl-
edge and punctual advice from experts. Therefore,
there is a need for methods to build secure crypto-
graphic software, in such a way that cryptographic
security could be easily blended to application’s
functionality.

The objective of this text is to set the stage for
a new field of study named Cryptographic Software
Security. To accomplish this goal, we correlate five
facets of this emerging field of study (a sub field
of software security) concerned with the develop-
ment of secure cryptographic software and refine a
methodology to better fit cryptography into secure
software development.

In this text, we detail two mapping studies. The
first explores the broad field of software security,
from the view given by textbooks, in order to un-
derstand the state-of-practice regarding how cryp-
tography is approached by software security. The
second mapping study complements the first and
explores the cryptography knowledge found in soft-
ware security textbooks, building a classification of

cryptography misuse for software security.

We also discuss two empirical studies and one ex-
perimental evaluation, which were used to validate
the proposed classification of cryptography misuse.
The empirical studies analyzed the occurrence of
cryptography misuse in coding communities, study-
ing how specific misuse categories relate to each
other, and determining whether users of these com-
munities improve their skills in cryptography with
time. The experimental evaluation is a benchmark
of static code analysis tools that measures the capa-
bilities of free tools in detecting cryptography mis-
use related to coding, design, or architectural is-
sues. Finally, we applied our findings to customize
a working methodology for development of secure
cryptographic software. This work sits in the in-
tersection of three domains (e.g., applied cryptog-
raphy, software engineering, and software security)
sharing a common body of knowledge.

The main contributions of this investigation are
the following. First, two mapping studies of how
software security approaches applied cryptography.
Second, a classification of cryptography misuse for
software security. Third, the joint analysis of two
empirical studies and one experimental evaluation
to validate the proposed classification. Fourth, the
refinement of a working methodology for develop-
ment of secure cryptographic software. Fifth, the
characterization of a new field of study concerned
with cryptographic software security.

The remaining parts of this text are organized as
follows. Section 2 gives necessary concepts and ex-
amples of cryptographic software. Section 3 exposes
how software security supports cryptographic soft-
ware. Section 4 details how cryptography misuse
emerges from software security issues and proposes
a classification for them. Section 5 describes how
developers misuse cryptography in online commu-
nities. Section 6 describes how static analysis tools
detect cryptography misuse. Section 7 customizes
a methodology for development of secure cryptog-
raphy software. Section 8 discusses results and Sec-
tion 9 makes concluding remarks.

2. Background

This section gives concepts and examples of cryp-
tographic software, which are necessary for the un-
derstanding of the viewpoint proposed in this text.

2

86

2.1. Concepts

The ordinary way to design, build and test soft-
ware is usually named Software Development Life
Cycle (SDLC). Secure Software Engineering (SSE),
also named Software Security, is the process of
designing, building, and testing software so that it
becomes secure [1]. SSE aims at avoiding vulnera-
bilities in software by considering security aspects
since from the very beginning and throughout the
SDLC. SSE includes processes for Secure Software
Development Life Cycles (SSDLC). The difference
between SSDLC and SDLC is that the former fo-
cuses on security and privacy, while the latter is
concerned with improving the quality in general,
usually with no specific interest for security.

Cryptographic software (crypto software, for
short) is software that preserves major security
goals (namely, confidentiality, integrity, authentic-
ity, and non repudiation) transparently blended
into functionality, by using cryptographic meth-
ods (services or mechanisms) available through
reusable cryptographic infrastructures. In this con-
text, applied cryptography is the use of cryp-
tographic infrastructures (e.g., packages, libraries,
frameworks, modules, and APIs) to build crypto-
graphic security within SSDLC efforts.

Cryptography misuse (crypto misuse, for
short) is a programming bad practice frequently
found in cryptographic software, leading to ex-
ploitable vulnerabilities, and introduced by devel-
opers during coding tasks associated to use cases
enabled by cryptography. We do not simply name
these misuses as vulnerabilities because, in many
cases, they are design flaws and insecure architec-
tural choices with code-level consequences. Crypto
misuse is not related to implementation of crypto-
graphic algorithms. Instead, crypto misuses emerge
when ordinary developers use cryptographic infras-
tructures in their daily coding activities during the
development of cryptographic software.

Crypto misuse is not simply a program fault in
the code, either. It is more like a program anomaly.
According to Sommerville [2], (coding) anomalies
are often a result of programming errors or omis-
sions that highlight things that could go wrong
when the program is executed. However, anomalies
are not necessarily program faults; they may be de-
liberate constructs introduced by the programmer.

2.2. Examples of cryptographic software

This section describes three instances of modern
cryptographic software that go far beyond tradi-

tional use cases for cryptography (e.g., SSL secu-
rity, file encryption, or password protection), and
that require cryptographic protocols to be blended
to application’s functionality: (i) secure, end-to-
end instant messages [3] (in subsection 2.2.1); (ii)
authenticated encryption for SMS [4] (in subsec-
tion 2.2.2), and (iiii) encrypted file systems with
secure deletion [5] (in subsection 2.2.3). These de-
velopment cases were part of broader framework for
cryptographic security on mobile devices [6].

2.2.1. Cryptographically Secure Instant Messages

This study case covered the design and imple-
mentation issues in the construction of a crypto-
graphically secure Instant Message (IM) application
for Android and the underlying cryptographic li-
brary that supported it [3]. Cryptographic services
were crafted to adequately fit to a secure IM service
in a way that was transparent to users, without sac-
rificing security. A well-defined architecture allowed
the selection and use of non-standard cryptography
through a standard API.

During this development case, the key-agreement
protocol had to be transparently blended to the
chat service, the transport of group-chat keys had
to be blended to broad metaphor of chat rooms, and
forward secrecy was preserved despite the storage
of chat history.

This mobile app had three main use cases for
cryptography: secure communication (SC) with key
agreement, encrypting data at rest (EDR) for se-
cure storage of chat conversations, and authentica-
tion and validation of data (AVD) for an authenti-
cated key agreement in secure communication (SC).
In its architecture, this mobile app needed a certi-
fication authority (CA) and public-key infrastruc-
tures (PKI) as external services. A complex archi-
tecture for key management blended to application
functionality amplified crypto misuses from public-
key cryptography (PKC) issues in key agreement
and improper certificate validations (ICV).

This development case needed expert support
during coding, design reviews, architecture (secu-
rity) assessment, and security testing. Other con-
cerns needing expert attention were the detection of
insecure parameters and the avoidance of insecure
settings in Android. Thus, a cryptography expert
was needed from requirements to testing.

2.2.2. Authenticated Encryption for SMS

An application framework for SMS security pro-
vided secrecy, integrity, authentication, and non re-

3

87

pudiation for Short Message Service (SMS) on mo-
bile devices [4]. The framework integrated authen-
ticated encryption and short digital signatures to
management services for keys and certificates, hid-
ing from final users all details concerning certificate
and key management.

Distinct trade-offs between security and message
length resulted in different levels of security: se-
crecy only, secrecy with message authentication,
and secrecy with origin authentication and non re-
pudiation. The application framework used short
signatures (a non-standard cryptographic function)
for authenticating the origin of SMS messages,
packing in a single, 140-byte array the information
needed to authenticate the origin of messages, while
still allowing a useful length of text for the message.

In this development case, the combination of
encryption and digital signatures was a common
source of early-detectable design flaws, the trans-
port of shared keys was masked as invitations to be-
come a (phone) contact, and the update of keys was
blended to notifications and app updates, to match
the usage style of mobile apps. Authentication and
validation of data (AVD) and secure communica-
tion (SC) were the two main use cases. Its architec-
ture had to consider distribution of public keys for
the signature cryptosystem, as well as integration
to external services for CA. A preliminary security
assessment showed that this app had chance to suf-
fer from misuses related to IV management (IVM)
and distribution of secret keys (affected by poor key
management - PKM), program design flaws (PDF)
due to combination of encryption and digital sig-
natures, improper certificate validation (ICV), and
the common issues of weak cryptography (WC) and
coding and implementation bugs (CIB).

This development case showed a relatively com-
plex architecture for key management blended to
app functionality. Like the previous example, this
development needed expert support during coding,
design review, and architecture assessment. Secu-
rity testing was applied for detection and avoid-
ance of insecure parameters for digital signatures,
iv management, and improper certificate validation.
Again, an expert in cryptography was needed from
requirements to testing.

2.2.3. Encrypted File System with Secure Deletion

This study case implemented two user-level ap-
proaches to perform secure deletion of files [5]. One
working on secure deletion of encrypted files, and

other handling deletion assurance for ordinary (un-
encrypted) files. Copies of files were randomly en-
crypted to not be equal. Also, secure deletion of en-
crypted files was obtained by purging crypto keys
from storage, and was fully integrated to an en-
crypted file system, being transparent to users. Se-
cure deletion of ordinary files was fulfilled by an
autonomous service activated under the discretion
of the user.

This app had three main use cases for cryptogra-
phy: authentication and validation of data (AVD),
encryption of data at rest (EDR), and the unusual
secure file deletion. Its development was likely to
be affected by crypto misuses related to weak cryp-
tography (WC), IV and nonce management (IVM)
issues, and program design flaws (PDF), when com-
bining encryption and authentication. Also, the
first use case had to avoid side channels in verifi-
cation of file integrity (a kind of design flaw), the
second use case had to avoid deterministic encryp-
tion (a kind of weak cryptography), and the third
use case had to avoid unauthorized access to un-
deleted data due to flawed management of keys.

Because of known use cases associated to a
reusable component (an encrypted file system), the
development needed expert support during coding,
design review, and architecture assessment. Thus,
needing expert help from design to testing.

3. Schools for Software Security: a Mapping
Study

This section is a mapping study built upon the
analysis of textbooks for software security. This
mapping study summarizes the treatment deserved
by cryptography in secure software development.
The understanding provided by this study gave us
the necessary perspective to disassemble traditional
methods for developing secure software, identify
gaps in current practice, propose areas for further
investigation, and suggest domain-specific realiza-
tions aimed at cryptographic software.

We found that software industry supports dis-
tinct viewpoints for software security. These view-
points differ in which of the available tools, tech-
niques, or practices acts as the remarkable feature
for the viewpoint. We name these viewpoints soft-
ware security schools, because they are commu-
nities sharing similar ideas. Practitioners have to
distinguish among instances of these schools and
properly apply methods, tools, and techniques ac-

4

88

cording to the dominant philosophy governing spe-
cific endeavours for software development.

The three schools are the following. The
technology-driven school is associated to pri-
mary software deliverables (e.g., code, designs, and
tests). The process-driven school is character-
ized by threat modeling, defined processes, and vul-
nerability management. The risk-driven school is
characterized by a risk mindset and security assess-
ments for management supporting.

The section is organized as follows. Sub-
section 3.1 describes our strategy to this map-
ping study. Then, Subsection 3.2 describes the
technology-driven school and Subsection 3.3 char-
acterizes the process-driven school. Subsection 3.4
explains the risk-driven school, while Subsection 3.5
discusses similarities and differences among schools.
Finally, Subsection 3.6 discusses how cryptographic
software security is influenced by these schools.

3.1. Strategy to mapping study

We searched literature composed of books related
to the broad subject of software security. We pre-
ferred textbooks concerned with the discipline of
software security, because they give stable knowl-
edge and show general practice already adopted by
software industry.

Our search targeted two digital libraries:
Books24x7 [7] and Safari Books [8]. We choose
these two libraries because they were promptly
available to authors and were specialized in in-
formation technology, showing good collections for
software development, software security, and cryp-
tography, including titles from many publishers.

Searches were conducted in the first quarter of
2016. We adopted three keywords for individ-
ual searches: "software security", "secure cod-
ing", and "security engineering". When search-
ing Books24x7, we found 1713 results for "software
security", 1413 results for "security engineering",
and 1078 for "secure coding". When searching Sa-
fari, we found 22.858 results for "software security",
17502 results for "security engineering", and 19824
for "secure coding". For both libraries and for each
keyword, results were sorted by relevance and the
list of search results was analyzed only up to page
five (5), which means that only around the fifty
(50) most-relevant results were selected for further
analysis.

Next, in order to filter only those textbooks of
interest, we applied a set of rules:

• Avoid books on specific technologies (e.g., pat-
terns, web, python, cloud, Java, etc.).

• Avoid books exclusive for software develop-
ment, information security, or cryptography.

• Avoid books on specific tasks or activities (e.g.,
coding, testing, or hacking).

• Avoid books that were collections of chapters
from various authors, as well as handbooks.

• Avoid books older than 10 years, except when
it was a classic reference mentioned by many.

• Avoid books older than 15 years anyway.

Then we were left with only those textbooks
for software security. The relevant textbooks from
Books24x7 digital library were the following. For
keyword "software security": Talukder and Chai-
tanya (2008) [9], Ransome and Misra (2013) [10],
Adam Shostack (2014) [11], Merkow and Ragha-
van (2010) [12], Viega, LeBlanc, and Howard [13],
Douglas Ashbaugh (2008) [14], and Shon Harris
(2012) [15]. For keyword "security engineering":
Ross Anderson (2008) [16]. For keyword "secure
coding": Richardson and Thies (2012) [17].

The relevant textbooks from Safari digital li-
brary were the following. For keyword "software
security": Ransome and Misra (2013) [10], Viega,
LeBlanc, and Howard [13], Viega and McGraw [18],
Dowd, McDonald, and Schuh (2006) [19], and Gary
McGraw (2006) [20]. For keyword "security engi-
neering": Allen et al. (2008) [21], Ross Anderson
(2008) [16]. For keyword "secure coding": Howard
and LeBlanc [22], Howard and Lipner (2006) [23],
Mano Paul (2011) [24], Chess and West (2007) [25].

This set of books was the base literature for the
two mapping studies in this text. Also, the fol-
lowing books were found to be useful in general
and complement the above lists: Daswani, Kern,
and Kesavan (2007) [26], Hoglund and Mcgraw [27],
Sommerville [2], the PMI Guide for Software [28],
and the IEEE Guide for Software Engineering Body
of Knowledge [29].

By reading the introductory chapters of all books,
we could clearly identify three distinct discourses
supporting distinct viewpoints for software secu-
rity. We classified the selected textbooks, regard-
ing those similarity of discourse, according to three
schools. These viewpoints differ in which of the
available tools, techniques, or practices is the re-
markable feature according to the discourse. We

5

89

name these viewpoints as software security schools.
For instance, three books are good representa-
tives of each software security school: technology-
driven [20], process-driven [23], and risk-driven [15].
The next subsections describe each school.

3.2. Technology-driven School

This school shows a technology-oriented view
(a.k.a touch points [20]) and is associated to the pri-
mary deliverables of software development: source
code, architecture design, tests, and executable bi-
naries. The dominant belief of this school is that
tools, techniques, and best practices have to be
adopted in a pragmatic way, focusing on what de-
velopers actually produce during software develop-
ment (e.g., source code and executable binaries).

The following textbooks share the same
technology-oriented discourse and characterize
this school: Gary McGraw (2006) [20]; Chess and
West (2007) [25]; Daswani, Kern, and Kesavan
(2007) [26]; Allen et al. (2008) [21]; Ross Anderson
(2008) [16]; Talukder and Chaitanya (2008) [9];
and Richardson and Thies (2012) [17].

This school does not promote specific processes
for secure software development. Instead, it en-
forces process enhancements, by hardening regu-
lar SDLCs with proper tools and techniques. The
motivation for doing that is because a security-
enhanced life cycle should compensate for security
omissions in software requirements, by adding prac-
tices and checks to software development [20].

For this school, a secure development needs
at least mechanisms for stopping the addition of
known vulnerabilities and for monitoring changing
security requirements [16], acting when needed.

3.2.1. Tools and Techniques

Automated support for secure coding and test-
ing has been the common way to obtain a security-
enhanced SDLC [20]. This school recognizes the
importance of security tests, but prefers static anal-
ysis as the primary verification technique, because
it can be applied early in development, as soon as
developers start writing source code.

Static analysis is an approach to verification that
examines the source code (or other representation)
of a software system, looking for errors and anoma-
lies [2]. It allows all parts of a program to be
checked, not just those parts that are exercised by
system tests. Static analysis tools were used to
search source code against lists of known vulner-
abilities, as well as quickly adapt to new issues [25].

However, static analysis tools frequently produce
false positives (false alarms) and false negatives
(omissions).

An advantage of security tools in general and of
static analysis tools in particular is that they are
more malleable than languages or frameworks, so
the list of vulnerabilities identified by these tools
can change faster than languages or frameworks can
adapt [25].

When time and resource constraints prevent se-
cure development practices from being applied to
an entire software system, a business-driven risk as-
sessment can determine which components receive
highest priority [20]. However, security practition-
ers can be uncomfortable when forced to postpone
implementation of security controls [16]. Risk anal-
ysis is particularly beneficial when applied to archi-
tecture and design [20].

Challenges in this school are to keep develop-
ers updated with attacks, to train them in use-
ful skills, and to support them with appropriate
tools [16]. Controversially, induce developers to
think like hackers (or attackers) is not particu-
larly favored by this school, because discovery of
new attacks is supposed to be left to security re-
searchers [16].

3.2.2. Technology-driven School into the SDLC

For requirements, techniques such as security
checklists, threat modeling, and misuse cases have
been used [9]. However, there is a need for methods
to put security requirements into functional require-
ments [17]. Also, abuse/misuse cases showed little
adoption [21].

For design, the Unified Modeling Language
(UML) has been used as a modeling tool for se-
cure design. However, UML is not a standard for
architecture and allows only indirect representation
of secure architectures [17]. Also, the adoption of
attack patterns is not an agreement and security
patterns were barely mentioned by textbooks.

For construction, authors agree that guidelines
and coding standards raise awareness and teach se-
cure coding. Besides general-purpose static analysis
tools [25], other tools for secure coding can only be
applied in specific domains [17].

Security testing should construct functional test
cases to demonstrate the adherence to functional
security requirements (positive requirements), de-
velop risk-based test cases to exercise common mis-
takes and suspected weaknesses (negative require-
ments), and perform penetration testing [21].

6

90

For some authors [20, 25], code and design issues
have to be treated first, even bypassing abuse cases,
security requirements, and risk analysis. However,
current practice emphasizes penetration testing and
pushes software security to operational aspects,
usually limited to simulated attacks [20]. This be-
havior may result from misunderstanding the idea
that, before software is released, it should undergo
a final security review with plans to incident re-
sponse.

3.3. Process-driven School

This school follows Howard and Lipner [23] pre-
scription for process-driven software security by
emphasizing threat modeling, well-defined devel-
opment processes, and vulnerability management.
This school sees risk analysis as a result of threat
modeling, not its remarkable feature.

The following textbooks share the same process-
driven discourse and characterize this school:
Howard and Lipner (2006) [23]; Merkow and
Raghavan (2010) [12]; Mano Paul (2011) [24]; Ran-
some and Misra (2013) [10]; and Adam Shostack
(2014) [11].

According to this school [12], the reliable way
to ensure software is constructed securely is by
integrating a security mindset and process view
throughout the entire SDLC. Only this way, au-
thors agree, flaws in processes can be avoided. How-
ever, the resulting engineering effort related to se-
curity may lead to an increment of around 20% of
total development costs [23]. While costs for not
implementing security may significantly exceed the
costs for implementing it.

Still regarding costs, when other aspects of de-
pendable systems have to be considered during de-
velopment, the cost for verification and validation of
such critical systems are usually much higher than
for other classes of systems. For instance [2], more
than half of a critical system’s development costs
are spent on verification and validation. Depend-
able systems encompass not only security, but also,
safety, reliability, and availability [2].

For this school, SDLC processes have not only to
correct bugs, but also to reduce the chances for in-
serting them [23]. Security is not a natural outcome
of SDLC [10]. Thus, software security requires a fo-
cused effort to be effective: First, it needs to reduce
the number of vulnerabilities and then reduces the
severity of remaining vulnerabilities [23].

This school sees software security as the continu-
ous management of risks and vulnerabilities into the

SDLC [10]. For this school, handling security with-
out specific processes can lead to frequent patching
and divert developers’ effort away from coding new
features, directing them to respond to vulnerabili-
ties in a reactive way [23].

3.3.1. Threat Modeling in Process-driven School

This school emphasizes threat modeling and un-
derstands risk assessment as a result of it, dividing
risk management in two stages. First, a product
risk assessment clarifies the effort required to ful-
fill requirements, helping determine how to spend
resources to develop secure software. Then, during
development, a system risk assessment determines
the exposure to attack.

Because system understanding for threat model-
ing is challenging, time-consuming, subjective, and
context sensitive, threat modeling should focus on
issues other techniques cannot find, such as security
flaws in architecture and business logic [11].

Threat modeling serves to understand the poten-
tial security threats to the system, determine risk,
and establish appropriate mitigation controls [23].
Developers favor software-centric threat modeling
against asset-centric risk assessment [11]. Roughly
speaking, software-centric threat modeling starts
with the creation of software models and ends with
security issues being picked up, solved, and man-
aged by normal development processes [11]. Two
well-known methods for threat modelling can be
found at the reference literature for this school [23,
30].

3.3.2. Process-driven School into the SDLC

This school starts to think security from require-
ments, trying to setup a security mindset with
awareness and training activities [10].

Security requirements direct software architec-
ture, complement threat modeling, and include re-
sources like organizational policies, external regu-
lations, and compliance obligations. Stakeholders
should be engaged in requirements elicitation and
contribute to a solid understanding, shared among
project staff, about business decisions and risk im-
plications [10]. Finally, cost analysis is also done
as part of requirements analysis. Then, security re-
quirements are documented and prioritized [10].

For secure design, authors complain that much
attention has been given to secure coding and much
less to secure design [23]. Surprisingly, authors also
reject security patterns, because they have not been
proved to be effective [11]. In spite of that, SSDLC

7

91

mandates that developers spend time in the design
phase thinking about security of features and im-
plementing secure designs.

Processes for secure design include design reviews
for reduction of attack surface, threat modeling,
identification and prioritization of security controls,
and security architecture [24]. Also, design guide-
lines and best practices have been adopted [24].

This school values code analysis and peer reviews
to mitigate or minimize code-level vulnerabilities.
Also, secure coding is not only the correction of
bugs or conformance to coding standards, but also
includes version control and change management,
which are both necessary to track changes and roll-
back to stable versions when needed [24].

In this school, security tests verify whether func-
tions designed to meet non-functional requirements
operate as expected, and validate whether imple-
mentation of these functions is not flawed [12].
Security testing should be performed by experts,
never by users or developers, because, in general,
developers are not good in uncovering flaws in their
own code that are not related to operation [12].
Software is subjected to intense testing and, as re-
sistance to attack increases, also increases the jus-
tified confidence that it is secure enough [12].

Security testing is iterative and results in lists
of issues, ranked by risk and prioritized by stake-
holders. Developers fix these issues and send the
fixed code back to regression testing [12]. Before
software is ready for deployment, it needs to be
formally accepted, which usually requires a final
assessment [24]. This last risk assessment, before
release, empowers decision makers with justifiable
confidence to accept software release [23].

3.4. Risk-driven School

This school is headed by both information secu-
rity experts and security companies, whose busi-
nesses are software security. It enforces a risk
management perspective to secure software devel-
opment. However, it is conscious about the disad-
vantages of quantitative risk analysis for software.

The following textbooks share this risk-oriented
discourse and characterize this school: Hoglund and
McGraw (2004) [27]; Dowd, McDonald, and Schuh
(2006) [19]; Doug Ashbaugh (2008) [14]; Ross An-
derson (2008) [16]; and Shon Harris (2012) [15].

This school promotes a risk-oriented approach in
order to provide strong evidence to regulators and
auditors of due diligence in security management

and governance [19]. The rationale is that real risk
is hard to measure, because every environment has
unknown vulnerabilities and persistent threats, but
prioritizing risks according to which ones must be
handle first is a realistic goal achievable in prac-
tice [15].

For this school, security is a business issue, be-
cause businesses sometimes need to operate risky
to make money and have to handle security issues
only if potential risks threaten their profit [15]. This
school values skills to identify threats, assess their
chance of occurrence, measure the resulting dam-
age, and take steps to reduce risk to acceptable lev-
els [15]. A frequent complain found in textbooks
for this school is that businesses preferred security
tools, detection/prevention of malicious code, and
penetration testing, not fostering actual risk man-
agement [15].

3.4.1. Risk Management in Risk-driven School

Authors agree that it is barely possible to per-
form huge amounts of risk calculations, because
accurate data about costs and probability of at-
tacks is seldom known, as well as the time between
vulnerability discovery and its exploitation is de-
creasing [14]. Thus, complex risk analysis to de-
cide whether small mitigation controls to common
code vulnerabilities must be put in place should be
avoided [14]. Because, in the long run, simple con-
trols will be put in place anyway.

Therefore, qualitative risk analysis is often uti-
lized in software development efforts [14], not in the
tiny scope of daily decisions, but for business-driven
planning of activities. The goal of qualitative risk
management in SSDLC is to reduce both the num-
ber of software vulnerabilities and the possibility of
system compromise [15].

Risk management balances the protection re-
quirements (for the organization and its assets)
against the costs of controls to mitigate risks [15].
When software’s functionality is limited by security
constraints, market share and the potential prof-
itability of that software could be reduced. There-
fore, a balance always exists between functionality
and security, and in businesses, functionality is usu-
ally preferred [15].

3.4.2. Risk-driven School into the SDLC

Frequently, software development is considered
a temporary endeavor managed as a project. In
this school, project management and risk manage-
ment occur together [15]. For instance, at project’s

8

92

initiation, preliminary risk assessment offers ini-
tial descriptions for security requirements [15]. At
development, risk assessment identifies vulnerabil-
ities and threats to the software and the potential
risk [15]. At deployment, it is necessary to en-
sure the effectiveness of security controls and obtain
formal authorization to deploy software to produc-
tion [15]. In operation, vulnerability assessments,
penetration tests, and remediation procedures often
result in changes. Thus, configuration management
and change control help to ensure that changes are
tested and approved before deployment [15].

In this school, the integration of risk management
and development processes encompasses not only
security requirements to direct the implementation
of safeguards and the adoption of proper develop-
ment methods, but also the verification of mitiga-
tion effectiveness and the provision of secure and
reliable distribution methods [15].

Into SDLC, risk management occurs as follows.
In requirements, assets and threats are identified
and an acceptance criteria for risk is defined to en-
sure that mitigation efforts are prioritized according
to business needs [14].

In design phase, most threat modeling occurs to
link software design to risk analysis [14]. Also in
design, attack surface analysis is combined with
threat modeling, in order to identify and reduce
the amount of functionality accessible to untrusted
users [15].

Coding activities result in the insertion of vul-
nerabilities, which are related to improper or faulty
programming practices [15]. These vulnerabilities
can be uncovered by mitigation strategies such as
code reviews, pair programming, unit testing, and
static analysis [14]. Also, mitigation strategies
started in design (such as enforcement of coding
standards) take effect during coding [14].

Simulated attacks and penetration tests identify
missed vulnerabilities [15]. After tests are com-
pleted, a final risk assessment is conducted in order
to make available to decision makers all informa-
tion needed to securely authorize the deployment
of a software release [14].

3.5. Discussion and Comparison

From an operational point of view, there is lit-
tle difference among the three schools for software
security, because they all share the same meth-
ods, tools, and techniques, which should be applied
through the SDLC. Possibly, that is the reason why

developers usually cannot see the differences. First,
this subsection shows the similarities among schools
and then discusses their differences. Table 1 com-
pares the three schools.

3.5.1. Similarities among Schools

The three schools share the objective of system-
atically build secure software in an affordable way.
Besides this intent, several common characteristics
constitute the intersection between software engi-
neering and software security.

Schools adopt two stages for risk management.
First, a high-level, business-oriented risk analysis
which helps in project planning and management.
Second, a low-level, fine-grained risk analysis, some-
times called threat modeling or architectural secu-
rity analysis, is software-centered and helps in both
software understanding and security modeling.

Security requirements related to business logic
are subjective and require specialized, time-
consuming techniques, such as misuse cases, threat
modeling, and business risk analysis. Frequently,
these are neglected in favor of security checklists
containing predefined controls (which are features,
not requirements). Misuse cases are barely used.

Secure design is the most challenging phase for
any school. Threat modeling, design reviews, archi-
tectural analysis, and attack surface reduction are
subjective techniques intended to support the work
of experts, who find design flaws by themselves.
Best practices and principles for secure design have
been adopted as high-level guidance, but requiring
specialized interpretation to be put in practice. Se-
curity design patterns are not largely adopted.

Secure programming has been limited to cod-
ing standards and styles, which are enforced by
language features, security frameworks, and static
analysis tools. Schools agree that static analysis
tools are the most cost-effective way to find well-
known, code-level vulnerabilities. However, tools
are incomplete, not overlapping, and buggy. Thus,
various tools should be combined in order to ob-
tain diversity and redundancy, promoting fault tol-
erance. Manual code inspection is usually adopted
only for small portions of code.

All schools complain that software industry fa-
vors operational security of software, with a bias to
penetration testing and final security assessments
(before release), and does not favors software se-
curity in earlier phases of development. The in-
completeness of tools is more evident for security
testing than for other phases. In this matter, all

9

93

Table 1: Comparison of three schools for software security.

Technology School Process School Risk School

Remarkable

feature

Associated to main deliver-

ables: source code, architec-

ture, tests, and executables

Threat modeling, defined

develop. processes, and vul-

nerability management

Security is business issue.

Risk analysis evidences due

diligence

SSDLC en-

forcement

Enforces process upgrade by

hardening SDLC with secu-

rity tools and techniques

Ensure software security by

integrating security mindset

and processes into SDLC

Joint project & risk man-

agement. Prior assessment

of risk gives initial require-

ments

Requirements

security

Security checklists, threat

modeling, and misuse cases

Security requirements,

awareness, and training

complement threat model-

ing

identification of assets &

threats. Scale for risk

helps prioritize mitigation

controls

Design secu-

rity

Secure design, attack pat-

terns, security patterns, and

architectural analysis for se-

curity

Reviews reduce attack sur-

face. Threat modeling, pri-

oritized controls, and secure

architecture

Threat model binds design

& risk. Threat modeling

and architecture assessment

reduce attack surface

Construction

security

Static analysis tools, code

reviews, security guidelines,

and standards for secure

coding

Code reviews mitigate vul-

nerabilities, version control

tracks changes and enables

rollback

Common practice mitigates

risk: reviews & inspections,

unit tests, and static analy-

sis

Testing secu-

rity

Test cases for sec. require-

ments, risk-based tests for

common vulns, and pen-

testing

Security tests verify non-

functional requirements,

pen-tests for common vulns

Simulated attacks and pen-

etration tests based on risk

assessment and prioritiza-

tion

Deployment

& operations

Final security review before

release and planning for in-

cident response

Final risk assessment, before

release, gives confidence to

accept software

Final risk assessment needed

to accept risk and authorize

deploy or release

schools favor homemade testing tools and manual
testing skills, but not vulnerability research.

3.5.2. Differences among Schools

The differences among schools are conceptual
viewpoints and divide experts in comrades (fellows
sharing the same ideas) or dissenters (who believe
in something else).

The technology-driven school evolved to support
developers in rapid cycles of development, where
processes are not rigid and risk analysis is fast
enough to not slow down the team, because risk
is reduced progressively over time by the evolution
of understanding. This school is good for highly
adaptive life cycle [28], characterized by progressive
specification of requirements, as well as short and
iterative cycles of development. In organizations,
this school is generally adopted bottom-up and con-
ducted by technical staff (with support from exec-
utives). A possible scenario for this school emerges
when a lower manager enhances the software secu-
rity capabilities of his team by integrating into the
SDLC a well-crafted set of tools and techniques.

The process-driven school evolved in places with
a bias to project management. This school is good
for highly predictive life cycles [28], which empha-
size specification of requirements and detailed plan-
ning in initial phases of development, because de-
tailed plans based on known requirements reduce
risks. In this school, long-term development cycles
and long-lived software products provide an ade-
quate environment for information gathering about
vulnerability reductions over time, as well as record-
ings of historical information about vulnerability
severity and security compromises. A possible sce-
nario for this school occurs, for instance, when a
middle manager uses status meetings, metrics, and
process milestones to follow progress of software de-
velopment projects.

The risk-driven school evolved in organizations
where governance and compliance have great influ-
ence on software development, as well as risk man-
agement is imposed to software development (top-
down). This school aims at providing executives
with enough evidence of due diligence concerning

10

94

software security in particular, and operations se-
curity and business risk, in general. A possible sce-
nario for this school happens when an upper man-
ager periodically receives visits of external auditors
and has to be prepared with enough evidence of due
diligence to comply with regulations.

Schools may not occur in isolation and blended
approaches are possible. Furthermore, blended ap-
proaches do not discard the current school, but en-
riches it with new ideas from other schools. For
instance, organizations accustomed to highly pre-
dictive life cycles, when pushed by time to market,
have to adapt to highly adaptive life cycles. Also,
predictive life cycles are adopted by software facto-
ries having to fulfill compliance requirements and
technology companies having to accomplish stock
market obligations for business governance.

Finally, authors [2, 20] start to think about secu-
rity as an emergent property of software systems.
Software security is not made only of features to be
added, and security features alone are not sufficient
for building secure software [20]. Instead, security
may be understood as an emergent property of soft-
ware systems [31]. In order to handle the emergence
of security properties, a systems-theoretic approach
to software security has been suggested [32] as a
paradigm shift in software industry from vulnera-
bility management to security engineering and ar-
chitecture.

3.6. The Case for Development of Secure Crypto-
graphic Software

We have seen that the development of cryp-
tographic software suffered great influence from
communities, which ultimately determined how
cryptography is approached by software security
schools.

In general, software security does not directly ad-
dress the issues of cryptographic security. Because,
cryptography is considered a security feature effec-
tively added to software during coding, with no spe-
cific support from development processes [16, 20].
For many experts, cryptography issues reside only
below APIs, inside libraries, concerned only with
the security of algorithm implementation. For in-
stance, in a survey on advanced tools for coding
and verification of cryptographic software [33], we
found that only one quarter (around of 25%) of all
surveyed tools can be applied above cripto APIs.
The other 75% being applicable only below APIs,
for algorithm implementation.

This bias towards algorithm implementation, in-
stead of its correct use, contributed to perpet-
uate misunderstandings about the correct use of
cryptography, resulting in the exploitation of sim-
ple vulnerabilities with catastrophic consequences
(see [34, 35]), as well as leading to frequent misuse
of cryptography [36–38], improper certificate val-
idation [39, 40], and inappropriate error handling
when orchestrating cryptographic services [41–43].

Many studies showed that vulnerabilities in
crypto software are mainly caused by software de-
fects and poorly managed parameters [44–47]. Re-
cent studies [36–40, 48, 49] showed the occurrence
of known crypto misuses in modern software plat-
forms. Also, current tools are unable to cope with
security issues in programming crypto software [50].
Furthermore, most advice regarding cryptography
found in textbooks for software security is obsolete
by the standards of today (as we explain in next
section).

Ross Anderson [16] suggests that there is a social
divide between the two communities of cryptology
and computer security. The computer security and
cryptology communities have drifted apart over the
years because security experts do not always under-
stand cryptographic tools, and cryptologists do not
always understand real-world problems [16]. Rog-
away [51] claims that cryptologists should acquire
a system-level view and attend to what surrounds
their field. Also, Green and Smith [52] argue that
modern security practice has created an adversar-
ial relationship between security software design-
ers and developers. For them [52], security experts
must focus instead on creating developer-friendly
approaches to strengthen systems security (in op-
position to a developer-proof attitude [53]). Rog-
away [51] suggests that one approach that might
be useful is to take an API-centric approach. For
him [51], API misunderstandings are a common se-
curity problem, and (semantic) gaps between cryp-
tography theory and API design can produce seri-
ous problems for cryptographic software.

We perceive an echo of this social divide when
experts in software security systematically avoid
entering cryptography issues during development,
minimizing them to high-level, theoretic knowl-
edge and punctual advice from experts. For in-
stance, the Open Web Application Security Project
(OWASP) [30] recognizes a current focus on high-
level guidelines for developers and architects who
implement cryptographic solutions. Software se-
curity favored penetration testing against known

11

95

vulnerabilities of standard protocols (e.g., Heart-
bleed [34]), enforcement of simple coding guidelines
against misuse of crypto libraries (e.g., dot not use
DES or MD5), and compliance to general security
policies (e.g., always use TLS with HTTP).

Finally, we argue that, regarding cryptographic
software, the complex relationships between the
components in a cryptosystem mean that it is more
than simply the sum of its parts. A cryptosystem
embedded in modern cryptographic software man-
ifests what Sommerville [2] calls functional emer-
gence, when the purpose of a system only emerges
after its components are integrated. For instance,
in general, the parts of a simple cryptosystem for
symmetric encryption are key management, ran-
domness sources, encryption algorithms, protocols
for key agreement or distribution, configurations for
key length and other parameters, as well as how all
these parts are blended to business logic.

4. Cryptography Misuse in Software Secu-
rity: a Mapping Study

In general, software developers are exposed only
to good uses of cryptography, in simple examples
related to common use cases. However, cryptogra-
phy is full of potentially dangerous design decisions
and coding pitfalls that confuse the ordinary devel-
oper, usually a non-expert in cryptography, when
developing actual cryptographic software.

On the other hand, as said before in previous
section, it is not good practice in software secu-
rity to teach developers how to attack systems or
give them incentives to research new vulnerabili-
ties. This way, cryptography misuse show up as an
intermediary alternative that sits somewhere in be-
tween misuse cases of system behavior and attack
patterns for cryptography.

Therefore, we propose cryptography misuse as a
novel way to educate developers on how to avoid
all those design flaws and coding pitfalls frequently
related to cryptographic software, increasing aware-
ness in the correct usage of cryptography, although,
without requiring from developers an adversarial
mindset.

The development of secure cryptographic soft-
ware requires a classification of recurring misuses
of cryptography in software, over which methods,
tools, and techniques could be built upon. A thor-
ough understanding of the characteristics of cryp-
tography misuse, captured by a classification, is re-
quired to design effective tools for preventing, de-

tecting, and mitigating these misuses, also provid-
ing a background to appropriately position research
activities.

For instance, by determining what kinds of
crypto misuse can be found more frequently in com-
munities of developers, we are able to investigate
how they appear in software, how they are covered
by current security tools, and how they relate to
each other.

The main contribution of this section is a classi-
fication for cryptography misuse from a software
security point of view. The proposed classifica-
tion emerged from a literature review (mapping
study) performed in an iterative and incremental
process. First, we reviewed selected literature for
software security that also cover cryptography is-
sues, and adopted their labels, grouping them in
the main categories with few sub-items. Then, new
categories were added and sub-items were refined
from industry sources and recent studies. Valida-
tion and further refinement occurred by studying
online communities for cryptography programming
as well as by evaluating static code analysis tools.
This mapping study is a refinement from the previ-
ous mapping performed in Section 3.

This section is organized as follows. First, Sub-
section 4.1 describes related works concerning other
classification efforts for computer security, and how
we selected the literature to support the mapping
study and the design of the classification. Then,
Subsection 4.2 gives a detailed description of our
classification and Subsection 4.4 discusses limita-
tions and design decisions of our approach.

4.1. Related Work and Supporting Literature

During the previous decades, a few lists and tax-
onomies of security problems have been developed
for various purposes. Unfortunately, none of the
existing works organized cryptography misuse by
characteristics that were useful for our needs.

Landwehr et al. [54] proposed a taxonomy for
security flaws in computer programs by collecting
and organizing a number of actual security flaws
in different operating systems and classifying each
flaw according to its genesis, the time it was intro-
duced into the system, or the section of code where
each flaw was introduced. Aslam, Krsul, and Spaf-
ford [55] proposed a classification of security faults
in the Unix operating system for helping in the un-
ambiguous classification of security faults suitable
for data organization and processing by tools.

12

96

Weber, Karger, and Paradkar [56] combined pre-
vious categories of security problems and reports
on security incidents in order to create a single
taxonomy for security flaws. They also correlated
their taxonomy with current threats, suggesting
that their taxonomy is suitable for tool developers.
Tan et al.[57] studied bug characteristics in three
open-source projects, finding that semantic bugs
are the dominant root cause. They also suggested
that more support is needed to help developers di-
agnose and fix security bugs, especially semantic
security bugs.

Wan et al. [58] studied the bug characteristics in
eight open source systems for blockchain, examin-
ing bug reports, categorizing bugs, and investigat-
ing the frequency distribution of bug types across
projects and programming languages of this tech-
nology. This is an example of a domain-specific
classification of bugs and vulnerabilities.

None of the above-mentioned classifications for
security flaws focus on cryptography misuse from
a software security point of view. Therefore, a
domain-specific classification was still needed to
support our work. However, we were not inter-
ested in advice for secure implementation of crypto-
graphic algorithms, such as the ones found in spe-
cialized resources [59, 60]. Instead, we looked for
programming techniques for building secure cryp-
tographic software. On the other hand, the field of
cryptography is diverse and a rough analysis of its
literature landscape showed the existence of niches.

For instance, there are books on applied cryptog-
raphy [61–63] and cryptographic engineering [60,
64], which are intended for scientists and engi-
neers actually embedding cryptographic algorithms
into hardware appliances or securely implementing
cryptography in software libraries. Also, there are
books on cryptographic APIs [65, 66] and program-
ming [67, 68], which teach how to use cryptographic
software packages or libraries in specific program-
ming languages. In general, these books do not
focus on cryptography misuse, but are mainly tar-
geted at specific APIs and their coding tricks, giving
little advice on proper use of cryptography.

Additionally, some books on software security do
cover security issues related to cryptography mis-
use. Sometimes, they give ad-hoc lists of secure
programming practices [13, 18, 22, 25, 26]; some-
times they also give advice for architectural deci-
sions [11, 16, 23]. Also, there are good-standing,
online resources trying to give practical advice on
cryptography usage. For instance: the top-10 secu-

rity risks [69] and security testing guide [30] from
OWASP; the top-10 secure design flaws [70] from
IEEE Cybersecurity Initiative (CYBSI); the prac-
tices for secure software development [71] from the
Software Assurance Forum for Excellence in Code
(Safecode); and SANS’s top-25 most dangerous pro-
gramming errors [72].

In summary, to identify cryptography misuse and
related advice aimed at software security, in this
mapping study, we searched mainly through three
source classes:

1. Literature on software security that also covers
cryptography issues (e.g., [11, 13, 18, 22, 23,
25, 26]).

2. Industry initiatives for software security
(e.g., [70–73]).

3. Studies on cryptography misuse by software
developers (e.g, [36–40, 53, 74–76]), including
analysis of complex misuses that are starting
to become known by developers (e.g., [42, 77–
80]).

4.2. A Classification of Cryptography Misuse for
Software Security

The classification of cryptography misuse pro-
posed in this section captures how software devel-
opers actually misuse cryptography. Therefore, it
is inclined to a software security viewpoint. The
classification has nine main categories: Weak Cryp-
tography (WC), Bad Randomness (BR) handling,
Coding and Implementation Bugs (CIB), Program
Design Flaws (PDF), Improper Certificate Valida-
tion (ICV), Public-Key Cryptography (PKC) is-
sues, IV/Nonce Management (IVM) issues, Poor
Key Management (PKM), and Cryptography Ar-
chitecture Issues (CAI). These categories were syn-
thesized from recommendations covered by litera-
ture and are supposed to capture the state of prac-
tice.

Additionally, we identified three qualitative
groupings for the nine categories (in Table 2) that
can be associated to software abstractions (e.g.,
code, design, system architecture) required to ac-
tually understand the issue.

In this text we adopt the ideas of McGraw [20]
to distinguish among code-level issues, design flaws,
and insecure architectures. The distinction is de-
rived from three factors: (i) how much source
code must be considered to understand the crypto
misuse, (ii) how much detail regarding the execu-
tion environment must be known to understand the

13

97

crypto misuse, and (iii) whether a design descrip-
tion is best for determining whether or not a given
crypto misuse is present.

For instance, design-level crypto misuse involves
interactions among more than one location in code
and configurations, and architecture-level crypto
misuse carry this trend further, considering exe-
cution environments and software platforms. The
groupings are as follows:

1. Misuse Group One (MG1) is related to
low-complexity issues in coding and in APIs,
and could be easily found by early detection
techniques, simple code reviews, and skilled
developers (supported by tools). It includes
Weak Crypto (WC), Coding and Implementa-
tion Bugs (CIB), and Bad Randomness (BR)
handling. No deep understanding of program
design is required to mitigate crypto misuse in
coding, because fixes are likely to be simple
and related to single programs or simple code
snippets.

2. Misuse Group Two (MG2) is related to
medium-complexity flaws in program design
affecting a few different programs and may be
difficult to identify due to feature distribution
across programs. It includes Improper Certifi-
cate Validation (ICV) issues, Program Design
Flaws (PDF), and Public-Key Crypto (PKC)
issues. Fixing these misuses may require pro-
gram redesign and may affect a few programs.
Avoiding them requires more knowledgeable
developers and support from experts.

3. Misuse Group Three (MG3) is related to
high-complexity flaws in system design and ar-
chitecture, and requires understanding of sys-
tem architecture to analyze underlying cryp-
tosystems. It includes Poor Key Management
(PKM), IV and Nonce Management (IVM) is-
sues, and Crypto Architecture and Infrastruc-
ture (CAI) issues. Fixes in this group usually
require new modules or redesign of modules,
and may affect many code bases. These mis-
uses require cryptography experts to perform
code and design reviews, or architecture anal-
ysis.

The next subsections detail misuse categories and
their sub-items. Table 2 details the descriptive sub-
sets for cryptography misuse, mapping them to lit-
erature.

4.2.1. Weak Cryptography

This category consists mainly in the program-
matic misuse of obsolete, broken, or misconfigured
cryptography; in particular, encryption algorithms,
hash functions, and message authentication codes
(MACs). We found that most authors for software
security associate the broad words of "cryptogra-
phy" or "encryption" with symmetric encryption,
putting public-key cryptography in other category.
This classification tries to capture this perception in
order to facilitate the communication with software
developers.

For Viega and McGraw [18] and Daswani,
Kern, and Kesavan [26], cryptography practition-
ers should not invent their own cryptographic algo-
rithms or protocols. Instead, these authors recom-
mend to stick with well-scrutinized protocols and to
use well-scrutinized implementations of these proto-
cols. Howard and LeBlanc [22] strongly recommend
ordinary developers to not create proprietary en-
cryption algorithms, because of the great chances of
getting it wrong. For Howard and Lipner [23], soft-
ware projects should use standard cryptographic
libraries, as well as standard high-level protocols,
rather than low-level cryptography.

Chess and West [25] recommend that a pro-
grammer should not invent nor implement crypto-
graphic algorithms or (key exchange) protocols. For
both Howard, LeBlanc and Viega [13] and Adam
Shostack [11], instead of building proprietary pro-
tocols from low-level algorithms, high-level, well-
tested protocols should be adopted.

Selection of insecure algorithms is other way to
get weak cryptography. Algorithm selection is an
example on how software security has evolved at
a slower pace than applied cryptography. For in-
stance, Howard and LeBlanc [22] enforce the use of
RC4, and Howard and Lipner [23] recommend that
block ciphers should always use CBC mode. These
advice are obsolete by the standards of today, but
have been adopted by other authors (e.g., Daswani,
Kern, and Kesavan [26]) as well as software devel-
opers as relevant for software security.

Howard and Lipner [23] demand AES for new
code, three-key 3DES for backward compatibility,
older block ciphers for decrypting old data only, and
banishment of RC4. For hashing, they [23] advice
SHA-1 for backward compatibility and SHA-2 for
dotNET and server-side code. Chess and West [25]
recommend AES for encryption and RSA for se-
cret keys exchange and digital signatures. Howard,

14

98

Table 2: A classification of cryptography misuse for software security.

Category Sub-type or sub-item Literature source
M

G
1
:

L
ow

co
m

p
le

x
it
y

Weak Cryp-
tography
(WC)

- Risky or broken encryption
[38] [74] [36] [37]

[75] [18] [22] [25]
[13] [23] [71] [73]

- Proprietary cryptography
- Determin. symm. encryption
- Risky or broken hash/MAC
- Custom implementation

Coding and
Implementa-
tion Bugs
(CIB)

- Wrong configs for PBE

[38] [74] [36] [75]
[81] [13] [73]

- Common coding errors
- Buggy IV generation
- Null cryptography
- Leak/Print of keys

Bad
Randomness
(BR)

- Use of statistic PRNGs
[38] [74] [36] [75]

[18] [22] [25] [13]
[23] [71] [73]

- Predict., low entropy seeds
- Static, fixed seeds
- Reused seeds

M
G

2:
M

ed
iu

m
co

m
p
le

x
it
y Program

Design Flaws
(PDF)

- Insecure default behavior
[38] [74] [37] [45]

[75] [18] [22] [23]
[11] [71] [73] [42]

- Insecure key handling
- Insecure use of streamciphers
- Insecure combo encrypt/auth
- Insecure combo encrypt/hash
- Side-channel attacks

Improper
Certificate
Validation
(ICV)

- Missing validation of certs

[38] [37] [39] [40]
[75] [11] [73]

- Broken SSL/TLS channel
- Incomplete cert. validation
- Improper validated host/user
- Wildcards, self-signed certs

Public-Key
Cryptogra-
phy (PKC)
issues

- Deterministic encrypt. RSA

[74] [36] [37] [45]
[75] [77] [25] [23]
[78] [79]

- Insecure padding RSA enc.
- Weak configs for RSA enc.
- Insecure padding RSA sign.
- Weak signatures for RSA
- Weak signatures for ECDSA
- Key agreement: DH/ECDH
- ECC: insecure curves

M
G

3:
H

ig
h

co
m

p
le

x
it
y

IV and
Nonce
Management
(IVM) issues

- CBC with non-random IV
[74] [36] [37] [75]

[53] [76]
- CTR with static counter
- Hard-coded or constant IV
- Reused nonce in encryption

Poor Key
Management
(PKM)

- Short key, improper key size

[38] [74] [36] [75]
[18] [22] [25] [13]
[23] [11] [70] [73]

- Hard-coded or constant keys
- Hard-coded PBE passwords
- Reused keys in streamciphers
- Use of expired keys
- Key distribution issues

Crypto
Architecture
Issues (CAI)

- Crypto agility issues
[38] [74] [36] [37]

[45] [40] [75] [18]
[13] [23] [11] [71]
[73]

- API misunderstanding
- Multiple access points
- Randomness source issues
- PKI and CA issues

15

99

LeBlanc, and Viega [13] recommend AES and SHA-
2, and warn against insecure cryptography (e.g.,
MD4, MD5, SHA-1, DES, RC4, and ECB mode).
Daswani, Kern, and Kesavan [26] recommend AES,
but also DES, 3DES, ECB mode. Daswani, Kern,
and Kesavan [26] suggests MD5, SHA-1, and SHA-2
(the only good choice) for secure hashes.

Concerning weak cryptography, Safecode [71]
strongly advises developers to prefer standardized
security technologies that have undergone public re-
view, rather than using low-level cryptographic al-
gorithms or developing custom cryptographic pro-
tocols. For insecure selection of cryptographic al-
gorithms (a subset of weak cryptography), Safe-
code [71] and OWASP [73] warn that the following
algorithms and cryptographic technologies should
be treated as insecure: MD4, MD5, SHA1, DES
(and its variants), RC4 (and other stream ciphers),
block ciphers in ECB mode, and any cryptographic
algorithm that has not been subject to open aca-
demic peer review.

Still regarding weak cryptography, according to
Egele et al. [36] and Shuai et al. [37], the most com-
mon misuse is symmetric deterministic encryption,
when a block cipher (e.g., AES or 3DES) uses Elec-
tronic Code Book (ECB) mode. There are crypto-
graphic libraries in which ECB mode is the default
option, automatically selected when the operation
mode is not explicitly specified [76].

4.2.2. Bad Randomness

This category consists in the programmatic
misuse of Pseudo-Random Number Generators
(PRNGs), mainly formed by cryptographically in-
secure PRNGs, which should not be used for cryp-
tography matters, or insecure seeding of secure
PRNGs.

Viega and McGraw [18] recommend the use of
many entropy sources, preferring hardware, to pro-
mote fault tolerance. For them [18], enough ran-
domness can be obtained from small amounts of
good entropy stretched through a PRNG. Howard
and LeBlanc [22] warn that statistical PRNGs pro-
duce predictable sequences. Chess and West [25]
explain that common errors occur when statistical
PRNGs are used instead of cryptographic PRNGs,
or a secure PRNG is seeded with insufficient en-
tropy (less than 64 bits [13]).

Daswani, Kern, and Kesavan [26] agree with all
these advice. For Howard, LeBlanc and Viega [13],
programmers should not build PRNGs, because
most operating systems today come with good

enough PRNGs. For instance, Oracle provides a
comprehensive list of PRNGs available for Java pro-
grammers in many operating system [82].

Concerning bad randomness handling, Safe-
code [71] recommends developers to use high qual-
ity PRNGs when creating cryptographic secrets
(e.g., encryption keys), and avoid algorithmic
(statistic) random number generators in crypto-
graphic code. A misuse related to bad randomness
is hard-coded or constant seeds for PRNGs [36].

4.2.3. Coding and Implementation Bugs (CIB)

This category consists of several insecure coding
practices specific to cryptographic software, such as
misconfigured Password-Based Encryption (PBE),
leakage of keys (e.g., printing), and incorrect han-
dling of binary data (e.g., saving cipher text as
strings). The most mentioned coding bug related
to cryptography misuse is misconfigured PBE. For
instance, Shuai et al. [81] discovered that password
protection in Android is greatly affected by cryp-
tography misuse, such as PBE. When using pass-
words to derive cryptographic keys, Howard and
LeBlanc [22] simply advice to make sure that pass-
words are long enough and highly random, as well
as to consider a balance between randomness and
ease of recall. For Howard and Lipner [23], a Key
Derivation Function (KDF) should always be used
to derive keys from passwords. Those authors only
provide general advice and no practical misuse.

Howard, LeBlanc and Viega [13] advise that a
good KDF, such as PBKDF2 (RFC 2898), should
be used when creating a password verifier. Also,
they recommend that the number of iterations
(when using iterated hash) should not be less than
1,000, preferring greater values (100,000 iterations)
in modern systems. Also, salts should be randomly
chosen and preferably not less than 16 bytes.

For Safecode [71], vulnerabilities come from key
exposure via insecure software. For instance, when
private or secret keys are printed to consoles or save
to log files. Safecode [71] explains that, while at
rest, keys should always be managed within a secure
database, a secure file system, or hardware storage.

4.2.4. Program Design Flaws (PDF)

Program design flaws include crypto misuses
related to incorrect use of stream ciphers, inse-
cure combinations of encryption and hashes or
MACs [53], as well as side channels due to padding
oracles [42] and timing channels in verifying hashes
for passwords or Message Authentication Codes

16

100

(MACs) [48]. Adam Shostack [11] asserts that ver-
ification of hashes and MACs should be done in
constant time.

Interestingly enough, recommendations for com-
bining hashes and MACs were made before the
advent of atomic authenticated encryption (AE).
Thus, many authors do not detail ways to mix
MAC and encryption, which, by the way, should
be avoided in favor of AE functions [53].

Viega and McGraw [18] advise to use a MAC
for message integrity anytime encryption is used
and carefully handle failed verification, exceptions,
and errors. Adam Shostack [11] asserts that all
cryptographic systems should verify authenticity
of encrypted messages before decryption. Howard,
LeBlanc and Viega [13] explain that concatenating
user-generated data before hashing is insecure, be-
cause it allows for unauthorized handling of hashes
by adversaries. In case of insecure combination of
MACs and encryption, only OWASP [73] advises
to calculate a MAC over encrypted data (Encrypt-
than-MAC), the least dangerous way, and to adopt
AE functions, but fails to show how to do it.

Insecure handling of keys is a kind of program
design flaw. Howard and LeBlanc [22] advise to
keep keys close to the point where they encrypt
and decrypt data, because the more code has ac-
cess to secret data, the greater the chance secrets
are compromised. Also, secret data or keys pass-
ing throughout applications are more likely to be
compromised than secret data kept and used only
locally. For Safecode [71], this misuse is mitigated
when access to keys is granted explicitly via ac-
cess control mechanisms. Also, after retrieving keys
from secure storage, applications should not persis-
tently store them elsewhere. Then, when keys are
no longer needed, they must be securely erased.

Insecure use of stream ciphers is other design
flaw. For Viega and McGraw [18], poor under-
standing of cryptographic primitives is the cause of
key reuse in stream ciphers (or similar block cipher
modes). Howard, LeBlanc and Viega [13] recognize
that developers often use stream ciphers incorrectly.
Howard and Lipner [23] warn that deployed stream
ciphers should always undergo security reviews.

4.3. Improper Certificate Validation (ICV)

This crypto misuse category consists of incorrect
validation of digital certificates by application soft-
ware. Sometimes the proper validation is made im-
possible, because digital certificates were generated

in insecure ways. For example, in the case of wild-
card or self-signed certificates.

In general, software security books do not talk
about the dangers and pitfalls of improper certifi-
cate validation. On the other hand, several recent
studies [37–40, 83] showed that libraries for han-
dling SSL/TLS connections has several issues when
validating digital certificates. Georgiev et al. [39]
and Fahl et al. [40, 83] showed that these libraries
allow programmers to ignore parts of certificate val-
idation in favor of usability or performance, but
adding vulnerabilities to the application. Also, fail-
ures in signature verification or domain-name vali-
dation facilitate man-in-the-middle attacks [39, 40].

For OWASP [73], it is important to ensure that
certificates are properly validated against the host-
names or users, as well as to avoid using wild-card
certificates.

4.3.1. Public-Key Cryptography (PKC) issues

This crypto misuse category contains all those
design flaws related to encryption and signing with
public-key cryptography. We found that software
security books treat public-key cryptography sepa-
rated from symmetric cryptography.

Concerning public-key cryptography, Howard
and Lipner [23] recommend the algorithms RSA,
ECDSA, and DH for digital signatures, as well as
NIST curves P-256, P-384, and P521 for Elliptic
Curve Cryptography (ECC). Daswani, Kern, and
Kesavan [26] suggests ECC and RSA for asymmet-
ric encryption.

Asymmetric deterministic encryption is a misuse
related to non-randomized RSA [45]. Also, PKC
issues include weak or misplaced parameters for
RSA [77], misconfiguration of key agreement pro-
tocols (e.g., DH and ECDH) [80], and ECC [78, 79]
misuses, concerning both the selection of insecure
curves, and the reuse of nonces for ECDSA.

4.3.2. IV and Nonce Management (IVM) issues

This crypto misuse category is formed by design
flaws and insecure architectures regarding man-
agement of Initialization Vectors (IVs) and nonces
(numbers used only once) as complementary as-
pects for cryptosystem. We found that IV and
nonce management is other cryptography misuse
that software security books do not talk about.
However, this misuse have been discovered by re-
cent studies.

For instance, hard-coded IV has been considered
a frequent misuse [36]. In several operation modes

17

101

of block ciphers, IVs must be unique and unpre-
dictable, the Counter (CTR) mode requires unique
IVs (without repetition), these options are misused
by developers [53]. Still, other misuses come from
exchanging operation modes without considering
IV requirements [48, 53]. For instance, Java Cryp-
tographic Architecture (JCA) [82] allow operation
modes to be easily changed.

4.3.3. Poor Key Management (PKM)

This crypto misuse category consists in the inse-
cure management of cryptographic keys and related
(sensitive) material through out a key’s life cycle:
creation, assignment, activation, (operational) use,
expiration, revocation, and destruction. This cat-
egory is related to insecure architectures because,
frequently, in order to fix key management issues,
whole modules have to be build. For instance, a
hard-coded key found in source code means that a
module for key management is missing.

For Howard and LeBlanc [22], all too often, good
systems are let down by poor key management,
because securely storing and using keys is hard.
They [22] strongly warn against hard-coding secret
keys in (source) code or executables. Most soft-
ware security authors are not concerned with proper
key lengths, with the exception of Howard and Lip-
ner [23], despite their outdated advice. Chess and
West [25] and Daswani, Kern, and Kesavan [26]
barely mention it by suggesting RSA with at least
1024-bit keys.

Adam Shostack [11] explains that key manage-
ment must ensure that each party gets the right
keys, and that there’s some mapping between keys
and accounts or roles within a system. He ar-
gues [11] that developers sometimes have no option
but mistakenly manage keys either locally or manu-
ally, due, for instance, to infrastructure issues that
lead to poor validation of digital certificates. He
prefers [11] asymmetric cryptosystems for key dis-
tribution. However, keys still need to be authenti-
cated.

Insecure use of stream ciphers may result from
reuse of keys. Viega and McGraw [18] explain that
stream ciphers and block ciphers in stream modes
(e.g., OFB, CFB, and CTR) do not preserve data
integrity because cipher text is malleable. Howard
and LeBlanc [22] recommend randomized modes of
operation combined with keyed-hashes, as well as
warned against key reuse in stream ciphers. All
these authors fail to advise against reuse of keys or

IVs. Only Daswani, Kern, and Kesavan [26] men-
tion the general issue of hard-coded keys, but not
for the specific context of stream ciphers.

IEEE CYBSI [70] warns that, ultimately, the se-
curity of cryptosystems still hinges on the protec-
tion of keys. CYBSI [70] warns that the following
mistakes are common: hard-coded keys in software,
failed revocation of keys, short or predictable keys,
and weak distribution mechanisms. Safecode [71]
considers that keys have very high security require-
ments, which should be assured throughout the life
cycle of the key.

4.3.4. Cryptographic Architecture Issues (CAI)

This crypto misuse category consists in all those
wrong architectural choices regarding management
of cryptographic infrastructures (cryptographic li-
braries, PRNGs, secure storages, etc.) and how
they are made available to ordinary developers.

Viega and McGraw [18] prefer well-known cryp-
tographic libraries and stable technologies instead
of unknown or experimetal ones. For them, for in-
stance, SSL is an important technology asset for
online security, despite its documented implemen-
tation problems, and should be preferred to achieve
secure communication, instead of manually crafting
secure channels from low-level cryptographic func-
tions.

Howard and Lipner [23] use the term crypto-
graphic agility, when software provides rapid and
simple ways to upgrade cryptographic algorithms
over time. Additionally, if the software uses multi-
ple algorithms to maintain backward compatibility,
it must not silently default to obsolete or depre-
cated ones. For Howard, LeBlanc and Viega [13],
cryptography agility is achieved when a software ac-
commodates updates of encryption algorithms that
developers had not anticipated, and still works cor-
rectly.

On the other hand, Adam Shostack [11] argues
against excessive flexibility. For him [11], it is com-
mon for developers to wrongly include flexibility
and negotiation of parameters when designing a
protocol (e.g., when blending cryptography into ap-
plication’s functionality). However, such negotia-
tion augments attack surface and exposes commu-
nication to man-in-the-middle attacks [11].

Still, for cryptographic architecture issues, Safe-
code [71] argues that applications should reuse
cryptographic functions as a service, avoiding com-
mon mistakes due to implementation of proprietary
cryptography. For CYBSI [70], developers should

18

102

not assume that just using strong libraries will be
enough. CYBSI [70] warns about the misuse of
libraries and algorithms and explains that under-
standing the nuances of algorithms and library us-
age is a core skill for applied cryptographers.

CYBSI [70] also warns about the failure to cen-
tralize cryptography (keeping multiple implemen-
tation of the same algorithm) and to allow for al-
gorithm adaptation and evolution, because proper
interaction among different implementations is al-
ways a concern. For secure cryptographic storage,
OWASP [73] advises that an architectural decision
must be made to determine the appropriate method
to protect data at rest. Furthermore, a standard or
policy must be kept to ensure that developers know
about approved choices for protocols, algorithms, as
well as cryptoperiods, and key management infras-
tructures.

4.4. Design decisions and limitations

This subsection discusses design decisions that
drove the structure of our classification and points
limitations to the work.

A taxonomy is not simply a neutral structure for
categorizing items, because it implicitly embodies a
theory of a field from which those items are drawn
and distinguished [54]. For us, a classification em-
beds a viewpoint. By creating a classification of
cryptography misuse for software security, we also
create a theory of such misuses that organize a field
of study and help to answer software security ques-
tions from a collection of misuse instances.

Because crypto misuses were not randomly se-
lected from a valid statistical sample of software
flaws and vulnerabilities, we make no strong claims
concerning the likely distribution of actual crypto
misuses in software. On the other hand, we do have
evidence [48, 49] for the frequency of cryptogra-
phy misuse in online communities for cryptographic
software programming and how likely crypto mis-
uses are related to use cases and coding tasks.

A populated classification contributes to the
understanding of what actually causes security
breaches [54]. Therefore, in order to satisfy the
need for actual instances of crypto misuses, we per-
formed empirical studies as well as experiments that
validated the classification. We do not suggest that
we have assembled a representative random sam-
ple of all known cryptography misuse, but we did
our best to include a wide variety of them, which
are supported by a code base filled with realistic
instances [50].

Taxonomies like ours are more relevant to de-
signers of tools as well as for code inspection [56].
Because we took the viewpoint of the developer,
we suggest our classification can help design better
cryptographic software.

The classification is not simply a list of vulnera-
bilities. In fact, it has to be designed with a goal
in mind. For example, improper use of cryptog-
raphy or under-specified crypto APIs are ease to
detect in source code by code analysis techniques.
On the other hand, the detection of design flaws
is more difficult, because programmers intent may
not be reflected in code in convenient ways. We
decided that our classification would include only
those design flaws detectable through code inspec-
tion (either manual or automated) than through
other methods. That is the reason why we needed
to identify actual instances of these misuses and
group them according to the level of system ab-
straction required to actually see the misuse: source
code, program design, or system architecture. The
very existence and importance of these groupings
were validated by empirical studies and experimen-
tal analysis described in the next sections.

5. Empirical evidence for cryptography mis-
use

This section provides empirical evidence to sup-
port the classification of cryptography misuse for
software security. We overview two complementary
empirical studies [48, 49] about cryptography mis-
use in online communities for cryptography pro-
gramming. First [48], we analyze the occurrence
of cryptography misuse in two online communities
by the contributions of their users (software devel-
opers). Second [49], we investigate whether active
developers participating in these two online com-
munities are getting better in using cryptography
with time.

Developers are frequent users of online commu-
nities for programming. In general, the agility in
problem solving provided by many question-and-
answer communities brings benefits to ordinary pro-
grammers lacking knowledge in specific topics, such
as secure coding or cryptography.

In these studies, we selected two programming
communities supported by experts in applied cryp-
tography: Oracle Java Cryptography (OJC) [84],
a forum aimed at programming with Java Crypto-
graphic Architecture (JCA) [82], and Google An-
droid Developers (GAD) [85], a popular forum

19

103

for Android programming. We picked these two
communities because they share the same Java-
based API for the Java Cryptographic Architecture
(JCA) [82], thus limiting the knowledge required by
a code reviewer to four aspects: Java programming,
JCA, Android security, and applied cryptography.
Also, JCA offers a stable and generic API, which
has been used for a long time by a large group of
developers for both server-side applications and mo-
bile devices. Furthermore, JCA was adopted by the
Android platform as its main API for cryptographic
services. These two communities together reach a
large number of ordinary developers, most of them
are supposed to be non experts in cryptography.

We found that, several types of cryptography
misuse can be found frequently in online posts (90%
for Java and 71% for Android), but were masked
by technology-specific issues. We also found that
different types of cryptography misuse were statis-
tically related, frequently appearing in double or
triple associations. Then, we found that cryptog-
raphy misuse was not only common in these cod-
ing communities, but also recurrent in developer’s
discussions, suggesting that developers learned how
to use crypto APIs without actually learning the
tricky details of applied cryptography.

Subsection 5.1 explains how cryptography misuse
appears in online communities, while Subsection 5.2
discusses how developers use crypto APIs without
learn cryptography. Then, Subsection 5.3 summa-
rizes our findings.

5.1. Cryptography misuse in online communities

We observed that OJC community suffered the
most influence from weak cryptography (WC,
26%), architectural issues (CAI, 20%), coding bugs
(CIB, 17%), public-key issues (PKC, 16%), and
poor key management (PKM, 11%). Also, in
OJC, architectural issues were strongly related to
platform-specific issues (CAI&PSI) due to complex-
ity of Java’s cryptographic architecture. Further-
more, weak cryptography followed by coding bugs
(WC&CIB) or public key issues (WC&PKC) were
other easily recognized patterns. Mistakes in key
management were also related to weak cryptog-
raphy (WC&PKM), coding bugs (CIB&PKM), or
public-key issues (PKM&PKC). Interestingly, OJC
showed occurrences of two triple patterns: a rule
formed by weak cryptography, coding bugs, and de-
sign flaws (WC&CIB&PDF) and a rule formed by
weak cryptography, coding bugs, and key manage-
ment (WC&CIB&PKM).

The GAD community suffered most from weak
cryptography (WC, 21%), coding bugs (CIB, 17%),
and public-key issues (PKC, 10%). This behav-
ior was probably due to API misunderstanding
and lack of knowledge in cryptography program-
ming. GAD presented a more association rules
than OJC. For instance, the most prevalent rules
included weak cryptography associated to cod-
ing bugs (WC&CIB) or platform specific issues
(WC&PSI). Also, Android specific issues were re-
lated to coding bugs (CIB&PSI), public-key issues
(PKC&PSI) and design flaws (PDF&PSI). Coding
bugs were also related to issues in IV management,
(IVM&CIB).

Also, GAD showed four triple patterns, all of
them affected by Android specific issues: Weak
cryptography with Android specific issues and
coding bugs (WC&PSI&CIB), weak cryptogra-
phy with platform issues in public-key crypto
(WC&PSI&PKC), coding bugs with platform is-
sues in IV management (CIB&PSI&IVM), and de-
sign flaws with platform issues and coding bugs
(PDF&PSI&CIB).

5.2. Crypto APIs and cryptography learning

In the previous study, we observed that repeated
measures were made for some developers. This fact
motivated us to perform a retrospective, longitudi-
nal study [49] to analyze developers behavior from
a series of observations already made about them.
We found that developers (which were active users
of those two communities) not only failed in giv-
ing good answers to questions related to cryptogra-
phy; sometimes, they also omitted information that
could prevent cryptography misuse.

In OJC, we observed a notable presence of mis-
uses CAI, PKC, and WC. Also, the numbers for
simple misuses (WC and CIB) were relatively sta-
ble (not decreasing) over time, suggesting that sim-
ple misuses were recurrent and developers were not
getting better at them. Also, the number of CAI
issues decreased over time, suggesting an increase
in knowledge about Java’s crypto API.

In GAD, we saw a notable decrease in crypto mis-
use early in developer’s lifespan, suggesting that de-
velopers had a fast learning curve for those misuses
less influenced by platform specific issues. Also,
four misuse categories (WC, CIB, PKC, and IVM)
were recurrent during developers’ lifespans, sug-
gesting that Android’s diverse ecosystem difficulties
learning cryptography for both simple and complex
misuses.

20

104

A straightforward analysis on misuse density over
time was used to evidence a learning curve for de-
velopers as well as to show misuse reduction (or
growing). In OJC, we observed that misuse density
was relatively stable over time, despite a gradual
reduction in density for platform issues. Also, we
observed that density of simple misuses (WC, CIB,
and BR) increase over time, while density of mod-
erate misuses (PDF, PKC, and ICV) had a small
decrease, and density for high-complexity misuses
(CAI, PKM, and IVM) showed a gradual decrease.

Our observations suggested that simple misuses
were recurrent in OJC, not depending on the ac-
tual knowledge of Java’s crypto API. On the other
hand, medium-complexity misuses were the most
influenced by platform issues. Then, complex mis-
uses decreases over time, suggesting a gradual im-
provement in developer’s knowledge about Java’s
crypto API.

Similarly, in GAD, we observed that misuse den-
sity increased over time. Also, density for complex
misuses was relatively stable, while density for low-
and medium-complexity misuses grown over time.
This behavior suggested that Android developers
were not getting better in cryptography over time.

5.3. Discussion of empirical studies

We found that inherently complex, hard-to-use
architectures distract developers from actual cryp-
tography misuse and contribute to perpetuate re-
curring errors in cryptographic programming. Also,
developers were not aware of design flaws and take
for granted parameters generated by tools.

Security is a secondary concern for developers,
which usually have priorities (e.g., functional cor-
rectness, time to market, maintainability, compli-
ance) that often conflict with security. Frequently,
developers look for quick, but insecure solutions and
online communities favor this behavior.

Ideally, developers should not be forced to learn
cryptography in order to correctly use crypto APIs,
specially for simple use cases. However, in practice,
crypto APIs are unable to foster their correct use
without domain knowledge obtained from elsewhere
but online communities.

Developers learn how to make APIs work, but
this does not mean cryptography was used cor-
rectly. In fact, coding bugs are persistent is-
sues when using general-purpose (function-based)
crypto APIs to implement application-specific use
cases, because developers are forced to make in-

secure choices without actually understanding the
whole situation.

6. Static analysis tools and cryptography
misuse

As discussed, static code analysis tools (SCATs)
are considered by software security communities the
most cost-effective way to find security bugs in early
stages of software development. We evaluated [50]
five free SCATs in order to find out how and to
which extent cryptography misuse can be detected
by free SCATs currently available to developers. We
choose to evaluated free SCATs because these tools
are readily available (no purchase of licences is re-
quired) and, in many cases, are the first and only
option for ordinary developers.

We exercised SCATs using test cases for cryp-
tography usage (with and without crypto misuses)
and, based on detected misuses, made measures
(TP, TN, FN, and FP) and calculated metrics (e.g.,
precision, recall, and f-measure) that captured the
detection capabilities of SCATs in the cryptogra-
phy domain. Test cases were derived directly from
our classification of cryptography misuse by writing
programs to exemplify misuse instances and their
variants.

We selected five free SCATs for Java from
OWASP [86] and SAMATE [87]: FindBugs
3.0.1 [88] with FindSecBugs 1.5.0 [89], VisualCode-
Grepper 2.1.0 [90] (VCG), Xanitizer 3.0.0 [91],
SonarQube 6.2 [92] with sonar-scanner 2.8, and
Yasca 3.0.5 [93]. All these tools perform late de-
tection of vulnerabilities [94] and should be applied
after developers have produced some source code.

We found that all evaluated SCATs preferred mis-
uses from MG1 and gradually decreased their per-
formance for MG2 and MG3. We also found that,
in general, tools perform better in simple misuses
regarding weak cryptography (WC) and bad ran-
domness (BR), and worse in issues for key manage-
ment (PKM) and program design flaws (PDF).

Most evaluated tools used pattern matching as
the main technique for vulnerability detection. In
particular, VCG, SQ, and Yasca used only simple
pattern matching. FSB detected a few sophisti-
cated patterns, while Xan used taint analysis to de-
tect simple leaks of keys and indirect references to
weak algorithms. Also, FSB and Xan reported all
occurrences of encryption modes that turned block
ciphers into stream ciphers (e.g. OFB and CFB),

21

105

whether they were used correctly or not, showing a
lack of discrimination [95].

Tools were not mutually exclusive and had great
intersection. When computing the union of TPs
for all tools, we found a general coverage of around
35%. That is, the union of misuses detected by all
five tools covered only about 35% of crypto mis-
uses in our test cases. The tool with higher recall
detected only one third (around 33%) of all mis-
uses. The second higher recall detected one quarter
(25%) of misuses. These numbers were not sur-
prising. For instance, other benchmarks [96–98] of
SCATs found a coverage of 50% for the best tool.
These results suggested that tools perform better
in other security domains than in cryptography.

Optimistic tools only alert about clear misuses
and keeps silent about dubious ones, while pes-
simistic tools warn about every suspected misuse,
even unlikely ones. SCATs for security are pes-
simistic in order to avoid dangerous omissions [25].
Also, SCATs should favor early detection of vulner-
abilities in order to benefit from developer’s short-
term memories when fixing vulnerabilities [94].

Based upon our findings, we generalized the be-
havior for crypto-friendly SCATs for those misuse
groups related to coding (MG1), design (MG2), and
architecture (MG3), described in Section 4.2. First,
in MG1 (WC, CIB, and BR), tools can be quite pre-
cise in early detection of crypto misuses, showing
relatively few FPs. Recall inside the misuse group
(group recall) is expected to be relatively high, with
few FNs. However, non-detected misuses from MG2
and MG3 cause dangerous omissions (FNs in overall
recall).

Second, in MG2 (ICV, PDF, and PKC), tools are
expected to be less precise, producing more false
alarms and omissions than in MG1. This is ex-
pected due to FPs caused by incomplete under-
standing of program design, as well as FNs due
to misconceptions about programs. In MG2, op-
timistic tools are expected to show relatively low
recall and many FNs, while pessimistic tools are
expected to have relatively low precision and many
FPs. These tools are better suited to late detection
of crypto misuses.

Third, in MG3 (PKM, IVM, and CAI), tools are
expected to be quite imprecise, producing more
false alarms and omissions than in other misuse
groups. This behaviour is expected because of FPs
due to partial understanding of software architec-
tures, as well as FNs due to misconceptions about
program design. Optimistic tools will have rela-

tively low recall, while pessimistic tools will have
lower precision. Tools for MG3 are better suited to
late detection of misuses.

6.1. Cryptography misuse in use cases and coding
tasks

The application domain defines the cryptography
requirements [99], which, in general, are satisfied by
(but not limited to) traditional use cases associated
to cryptographic services [48].

We found that there are simple use cases associ-
ated to cryptographic services [48], which are eas-
ily recognized by developers: Encrypting Data at
Rest (EDR), Secure Communication (SC), Pass-
word Protection and Encryption (PPE), and Au-
thentication and Validation of Data (AVD). This
list is not exhaustive and can be augmented by
sophisticated use cases where cryptographic ser-
vices can be blended to application functionality in
novel ways, as we identified in selected development
cases (from Section 2.2). For instance, we found
that Android developers have a specific use case for
cryptography regarding Digital rights Management
(DRM).

These use cases, either simple or complex, are
implemented by coding tasks [48], also easily rec-
ognized by developers in a non-exhaustive list: en-
cryption and decryption (Enc/Dec), digital signa-
tures and verification (Sig/Ver), hashes or authenti-
cation codes and verification (Hash/Mac), key gen-
eration or agreement (KA), secure channels (e.g.,
SSL/TLS), digital certificate validation (Cert), and
randomness generation (Rand). There are also sec-
ondary tasks, accessory to the main ones, represent-
ing operational (but important) aspects of crypto
systems: key distribution, certificate generation,
and key storage and recovery. In general, every
crypto use case can be accomplished by a combina-
tion of coding tasks, where the complexity of the
task is determined by the actual use case at hand.

Cryptography misuse is introduced by develop-
ers into use cases during coding tasks [48]. As dis-
cussed before, cryptography misuse instances are
not all equally difficult to avoid: some are easier to
find and correct than others, depending on the level
of abstraction (e.g., code, design, and architecture)
required to identify the misuse [48, 50], as detailed
in Section 4.2, in three groupings of the nine orig-
inal misuse categories: MG1 (WC, CIB, and BR),
MG2 (PDF, ICV, PKC), and MG3 (PKM, IVM,
and CAI).

22

106

This section correlates our empirical studies [48,
49] on cryptography misuse with the Java’s crypto
API [82], and the experimental evaluation of static
analysis tools [50], associating them to use cases
and coding tasks for cryptography.

The remaining of this subsection is organized as
follows. Subsubsection 6.1.1 details the relation be-
tween crypto misuses and use cases for cryptogra-
phy. Subsubsection 6.1.2 details the relation be-
tween crypto misuse and coding tasks for cryptog-
raphy. Subssubection 6.1.3 gives conclusions about
these relations.

6.1.1. Cryptography misuse and use cases

Concerning those use cases associated to cryptog-
raphy from [48], we learned that the most-frequent
use case (in those online communities targeted by
our studies) is Encrypting Data at Rest (EDR),
showing high percentegaes in both OJC (31%) and
GAD (65%). Authentication and Validation of
Data (AVD) is the second most frequent in OJC
(26.5%) and third in GAD (8.5%). Secure Commu-
nication (SC) is third most frequent in OJC (18%)
and second in GAD (11%). Password Protection
and Encryption (PPE) is frequent in GAD (11%).
Table 3 summarizes these numbers and adds how
static code analysis tools (SCATs) detect crypto
misuse by use cases, considering only a raw mea-
sure of all detected misuses (by all evaluated tools)
in our test cases.

These use cases suffer from crypto misuse as fol-
lows. In OJC, most misuse were associated to en-
crypting data at rest (EDR), with attention to two
misuse categories: weak cryptography (WC) and
coding bugs (CIB). Also, Secure communication
(SC) is affected by mistakes in certificate validation
and (weak) public-key cryptography. Authenticat-
ing or validating data (AVD) is affected by cod-
ing mistakes (CIB) specific to Java. In GAD, most
misuse were associated to encrypting data at rest
(EDR) with special attention to design flaws and
IV/nonce management (IVM). Also, Secure com-
munication (SC), password protection (PPE), and
authentication and validation of data (AVD) are
moderately affected by misuses. Secure communi-
cation (SC) is negatively affected by complexity of
Android’s certificate storage.

When evaluating static analysis tools for cryptog-
raphy [50], we learned that, besides an overall cover-
age of about 35%, tools behave differently for differ-
ent crypto use cases. Two use cases, EDR e AVD,
have a coverage around 40%, while RND reaches

46%. Two use cases are less covered by tools, PPE
with 30% and SC with 18%. Table 3 summarizes
these numbers and relates them to crypto misuse in
use cases from online communities.

Interestingly, the two most-frequent use cases
(EDR and AVD), which were associated to simple
misuses (WC and CIB), also had high coverage of
misuses by tools, suggesting that tools favor fre-
quent use cases with simple misuses.

In spite of being moderately frequent use cases,
SC and PPE showed a low coverage of misuse by
tools, suggesting that tools do not favor secure com-
munication or encryption for password protection,
because these use cases are affected by complex mis-
uses for public-key cryptography (PKC) issues and
improper certificate validation (ICV), where tools
had many omissions.

The high percentage for detection of misuses as-
sociated to PRNGs suggests that tools can solve
many simple misuses of random numbers in cryp-
tography. In fact, this kind of misuse did not show
up in the study of online communities, suggesting
that simple instances of this misuse category were
not common in developers discussions, but have
hidden pitfalls not recognized by ordinary devel-
opers nor tools.

6.1.2. Cryptography misuse in coding tasks

Concerning coding tasks associated to cryptog-
raphy from [48], we learned that the most-frequent
coding task is Encryption/Decryption, in both OJC
(26%) and GAD (32%). Digital certification (17%
in OJC and 1.5% in GAD), as well as Signatures
and hashes/MACs (16.5% in OJC and 10% in
GAD) are moderately frequent. SSL/TLS secure
channel is the less-frequent coding task (8.5% in
OJC and 1.5% in GAD). Table 4 summarizes the
occurrence of crypto misuse for these coding tasks
for cryptography, comparing them to the perfor-
mance of static analysis tools. Again, considering
only a raw measure of all detected misuses (by all
evaluated tools) in our test cases.

In OJC, most misuses were associated to coding
tasks for encryption (Enc), followed by key genera-
tion (KG) and SSL secure channels. Bad random-
ness (BR) did not show up in any programming task
for this community. In GAD, most misuse affected
the coding task for encryption. Also, weak cryp-
tography and coding bugs were the most perceived
crypto misuses. Signing was moderately affected by
many crypto misuses. Key generation and certifi-
cate handling were tasks scarcely affected by crypto

23

107

Table 3: Cryptography misuse and tool support by use case.
Use cases

EDR SC PPE AVD RND
OJC 31% 18% 0% 26.5% -
GAD 65% 11% 11% 8.5% -

SCATs 0.4 0.18 0.3 0.408 0.46

Table 4: Cryptography misuse and tool support by coding task.
Coding Tasks

Enc Sig & Hash/MAC KA SSL Cert Rand
OJC 26% 16.5% 11% 8.5% 17% –
GAD 32% 10% 4% 1.5% 1.5% –

SCATs 0.398 0.461 & 0.273 0.256 0.4 0.0 0.5

misuse. Programming of SSL channels did not show
any relevant crypto misuse in Android, suggesting
that GAD developers did not know what to ask re-
garding crypto misuse in these programming tasks.

Table 4 shows that tools also behave differently
for distinct coding tasks for cryptography. Two
tasks have relatively high coverage: Rand (50%)
and Sign (46%). Two tasks have moderate cover-
age: Enc (39%) and SSL (40%). Other two tasks
have relatively low coverage: KA (27%) and Hah-
s/MAC (27%). Cert was not covered at all.

Coding tasks for encryption were the most com-
mon in communities, but only moderately covered
by tools. Programming of SSL/TLS channels had
a relatively good coverage by tools, despite being
not so popular in communities. Coding for PRNGs
had a relatively good coverage by tools, despite not
being mentioned in OJC.

Misuses in Encryption/Decryption and Signa-
tures, hashes/MACs are relatively high covered by
tools, suggesting that (again) tools favor detection
of misuses in frequent coding tasks with simple mis-
uses. Evaluated tools neglected misuses of digi-
tal certification, despite this coding task being fre-
quent.

6.1.3. Correlating cryptography misuse by develop-
ers and tool’s support to cryptography

In summary, we found that static analysis tools
favor the detection of simple crypto misuse within
most frequent use cases and coding tasks, suggest-
ing a prioritization of efforts by tool builders in or-
der to offer a market trade-off between supporting
simple misuses in frequent cases and tasks against
neglecting sophisticate misuses and rare use cases
and tasks.

Finally, when we correlate the occurrence of cryp-

tography misuse in online communities (OJC and
GAD) to the evaluation of tools with the f-measure
metric (in Table 5) for the two static analysis tools
best ranked in our experiment [50], we confirm that,
in general, simple misuses of cryptography, those
ones related to code, are both common in coding
communities and preferred by static analysis tools.

We also conclude that, considering the current
state of maturity in understanding of how cryp-
tography misuse manifest itself in software, both
developers and tool builders perceive more clearly
almost only low-complexity misuse instances, those
ones related to code-level vulnerabilities in simple
use cases.

7. A Methodology for Developing Secure
Cryptographic Software

This section revisits our methodology for devel-
opment of cryptographic software in order to en-
hance it with new findings regarding cryptography
misuse.

Over the years, we have observed the frequent
adoption of common practices by researchers and
practitioners, which gave us the required perspec-
tive to generalize a working methodology for devel-
opment of secure cryptographic software. This sec-
tion presents this methodology as an ordered way
to approach cryptography into Secure Software De-
velopment Life Cycles (SSDLC).

Our methodology, named Development of Se-
cure Cryptographic Software (DSCS) [99], is part
of the knowledge base for Cryptographic Software
Security and emerged as a response to practical
needs in building cryptographic software observed
when we proposed design patterns for cryptogra-
phy [100], built cryptographically secure mobile

24

108

Table 5: Cryptography misuse correlated to tool support with f-measure metric.
MG1 MG2 MG3

WC CIB BR PDF PKC ICV PKM IVM CAI

OJC 26% 17% 0% 6% 16% 4% 11% 5% 20%
GAD 21% 17% 1% 8% 10% 3% 4% 6% 1%

Xan 0.541 0.571 0.588 0.270 0.381 0.235 0.263 0.286 0.889
FSB 0,516 0,256 0,588 0,286 0,361 0,421 0,263 0,364 0,000

apps [3–6], applied Acceptance Test Driven De-
velopment (ATDD) to cryptographic services [101]
(when building [102] and porting [103] a cryptogra-
phy library to mobile devices), surveyed tools for se-
cure programming and verification of cryptographic
software [33], trained developers in cryptography
programming [75], investigated crypto misuses in
online communities [48, 49], and evaluated static
code analysis tools for cryptograhy [50].

Now, the contribution of this text to the field of
cryptographic software security is twofold. First,
to explicitly incorporate a validated classification
of cryptography misuse for software security into
the methodology. Then, to give stronger evidence
of cryptography misuse by developers and tools, in
order to better support the use of this methodology
in secure software developments.

This section is organized as follows. Subsec-
tion 7.1 details the steps for conducting DSCS. Sub-
section 7.2 explains how to foster a layered archi-
tecture for cryptographic software. Subsection 7.3
analyses tool support for DSCS with a particular
attention to static code analysis tools. Subsec-
tion 7.4 discusses the integration of DSCS into SS-
DLC methods.

7.1. Steps for DSCS

DSCS comprises a set of steps related to SSDLC
phases, resembling software engineering methods,
and an extra phase for deployment: requirements,
design, construction, testing, and deployment and
operation. The following paragraphs describe the
steps.

Step 1: Crypto software requirements. Se-
curity policies, regulations, business needs, non-
functional requirements, and predefined checklists
determine which security goals must be accom-
plished. Security goals (e.g., anonymity, confiden-
tiality, integrity, non repudiation, authenticity, etc.)
are then mapped to predefined cryptographic fea-
tures. These mappings can follow both common
use cases or user stories and developer’s coding
tasks, facilitating the detection and avoidance of

likely crypto misuses. Potential crypto misuses
from MG3 related to architectural choices (e.g.,
crypto agility issues, PKI issues, multiple access
points, and randomness sources) and key manage-
ment (e.g., PBE passwords, expired keys, key dis-
tribution, and CA issues) can be identified and
avoided in this step. Also, the definition of poli-
cies and checklists help to avoid misuses in MG1
and MG2 at later phases. This step is usually sup-
ported by software security practitioners or security
architects. Crypto experts support the specification
of new user stories (use cases) as well as the related
programming tasks and crypto features.

Step 2: Crypto software design. Crypto-
graphic features, design goals, and predefined con-
trol types contribute to define a security archi-
tecture, which contains cryptographic services and
technologies. In this step, cryptographic design
patterns can provide proven solutions to common
use cases and coding tasks traditionally associated
to cryptography. Some crypto misuses from MG3
(e.g., IV/nonce management issues, API misunder-
standings, improper key length, and reused keys),
many misuses from MG2 (e.g., design flaws, certifi-
cate validation issues, and PKC issues), and a few
misuses from MG1 (e.g, proprietary cryptography,
custom implementation, and risky/broken cryptog-
raphy) can be identified and avoided in this step.
This step is usually supported by security architects
or software security practitioners. But, cryptogra-
phy experts may provide timely advice.

Step 3: Crypto software construction. This
step consists in programming secure crypto soft-
ware. Code is written in coding tasks to integrate
crypto controls and features into software function-
ality, according to use cases or user stories. The
source code must follow conventions of crypto APIs
and adopts standard implementations of algorithms
and protocols, which are offered by frameworks and
reusable libraries. Many crypto misuses from MG2
and all misuses from MG1 can be identified and
avoided in this step. The work of software security
practitioners receives most support from experts in

25

109

applied cryptography in order to avoid crypto mis-
uses. In this step, the proper use of static analysis
tools, either directly by developers or in supporting
reviews by experts, can benefit any development
team.

Step 4: Crypto software testing.
Cryptography-related functionality and pack-
ages are submitted to security tests of two
types: functional security tests (supported by
security-inspired test cases) and penetration tests,
supported by attack scenarios and threats. This
step includes tests for misuses from MG2 and MG1,
as well as security verification (e.g., inspections)
of misuses from MG3. In this step, the work of
software security practitioners is supported by
experts in cracking crypto software, usually by
exploiting remaining crypto misuses and other
implementation bugs.

Step 5: Crypto software deployment and
operation. In this step, secure software is con-
tinuously monitored and periodically tested for vi-
olations of policies and guidelines, as well as for
discovery of new vulnerabilities. This step is usu-
ally performed by a software security practitioner.
Continuous attention should be given to the fast
and constant evolution of cryptographic technology
in terms of new standardized algorithms, updated
best practices, and adoption of longer key lengths.
This step includes tests for misuses from MG2 and
MG1 as well as assessments for misuses from MG3.

The above steps are quite straightforward and
capture the common practices we have seen so far.
They may not be the best choices made by prac-
titioners, but the possible ones due to several con-
straints. For instance, it is quite common to involve
cryptography experts only in later steps of SSDLC.

7.2. A reference architecture for cryptographic soft-
ware

Modern crypto software has to follow software
engineering best practices. In previous works we
proposed design patterns for cryptographic sys-
tems [100] and a layered architecture for crypto-
graphic software [99]. These layers have to work
together to promote the secure use of cryptography,
and constitute the cryptographic software stack, as
follows:

1. The user interaction layer. This layer has
to be able to promote the proper use of cryp-
tography, preventing users from misusing cryp-
tography, and transparently blending security-

sensitive functionality to cryptographic fea-
tures. Today, it is well accepted [104? –108]
that ordinary users have great trouble in us-
ing cryptosystems by themselves and should
not have direct access to cryptosystems’ op-
erations. Thus, user error in operating cryp-
tosystems should be avoided by making cryp-
tography transparent or invisible to final users.

2. The business logic layer. This layer should
be able to properly orchestrate crypto services
and components, with adequate use cases and
designs expected by developers when securing
sensitive business goals, avoiding crypto mis-
uses from MG3 and MG2. This layer is where
cryptography can be blended to application
functionality in unanticipated ways.

3. APIs and frameworks layer. This layer
must be able to provide access to cryptographic
implementations in standardized and decou-
pled ways, so that both the replacement and
the exchange of implementations are easily
achieved, avoiding crypto misuses from MG2
and MG1. Also, APIs, libraries, and frame-
works should not disclose sensitive information
through unauthorized side channels;

4. Algorithm and protocol layer. In this
layer, cryptographic implementations of algo-
rithms and protocols should be robust against
various failures (e.g. hardware and memory
failures), secure against various attacks (tim-
ing, side-channel leakages, etc.), efficient in en-
ergy (low power consumption) and computa-
tional resources (CPU cycles, memory, etc.),
and compact for use in restricted environ-
ments;

5. Development support and infrastructure
layer. In this layer, programming languages,
component libraries, compilers, obfuscators,
security tools, and even operating systems
should be able to capture the programmer’s
intent, detecting deviations, preserving secu-
rity decisions, and not canceling protections
when translating source or binary code of cryp-
tographic implementations to machine code.

Additionally, the mathematical security of cryp-
tographic algorithms and protocols is, in general, an
assumption supported by choosing good-standing
standards as well as cryptography of good reputa-
tion.

These layers can be associated to DSCS steps, in
specific instantiations. For instance, the user inter-

26

110

action layer may relate to requirements elicitation
and business modeling (software requirements secu-
rity); the business logic layer may relate to design
and architecture (software design security); the API
and frameworks layer may relate to secure coding
and construction (software construction security);
and security of crypto components is related to ver-
ification and validation against predefined require-
ments and new threats (software testing security).

Finally, we suggest a new role in software devel-
opment capable of handling the security issues re-
lated to the architecture of cryptographic software:
the cryptographic architect. Unlike the cryp-
tographic engineer, the cryptographic architect is
not primarily concerned with secure construction
of cryptographic functions, neither with internal
workings of mathematical structures, because for
him, the quality of an algorithm’s implementation
is taken for granted by adopting good-stading re-
sources obtained from a trusted cryptographic in-
frastructure.

The cryptographic architect is much rather inter-
ested in safe composition and use of cryptographic
components, possibly at different levels of software
abstraction. He puts great emphasis on the crypto-
graphic architecture of software applications, with
an interest on how it can be securely reused by other
software, considering not only the (social) context
in which cryptography is applied, but also the forces
influencing its implementation.

In multidisciplinary software systems, like mod-
ern cryptographic software, differences in disci-
plines can cause crypto misuse. For instance, the
involvement of a range of professional expertise is
essential because there are other aspects to be tack-
led, different from cryptograhy and directly related
to business logic as well as other non-functional re-
quirements. However, differences among disciplines
can introduce cryptography misuse and compro-
mise the security of the software being developed.

This may happen because each involved disci-
pline makes assumptions about what can be done
by other disciplines, based on inadequate under-
standings. Disciplines try to protect their bound-
aries and may argue for certain design decisions be-
cause these decisions will call for their expertise.
This is why an explicit role for a crypto architect is
necessary to protect cryptography from being mis-
used by software developers and negatively influ-
enced by design decisions.

7.3. Analysis of tool support for DSCS

Currently, the development of secure crypto soft-
ware has quite limited tool support for most issues.
The coverage of cryptography misuse by tools is far
from good, with current tools showing many blind
spots and a huge gap between what experts actu-
ally see as cryptography misuse and what tools can
detect [50]. Therefore, expert help is required to
assure quality in different moments of development
efforts. We argue that, with current tools’ matu-
rity, an adequate toolkit has to be carefully crafted
to fit the needs of specific development contexts.

The development of proprietary cryptography
(proprietary algorithms or homemade implementa-
tions) by ordinary programmers is, in general, con-
sidered bad practice. Therefore, tools for secure
programming of cryptographic algorithms and li-
braries (i.e., tools applied below crypto APIs) are
omitted from this toolkit. A previous work [33]
studied tools for secure coding and testing of crypto
software. Here, we focus on tools for develop-
ment of cryptography-enabled functionality with
established and standardized algorithms, as well as
trusted libraries and frameworks (i.e., tools applied
above crypto APIs).

7.3.1. Assembling a toolkit for DSCS

This section is an attempt to assemble a hypo-
thetical toolkit for DSCS, which is based only on re-
lated works. This toolkit may include tools for both
secure programming and verification. For crypto
software construction, SSL/TLS frameworks [83]
offer high-level functionality and configurable ser-
vices, instead of primitive functions, enhancing us-
ability and avoiding unintentional mistakes. Also,
specialized tools, such as OpenCCE [109], can be
integrated to IDEs and guide developers through
selection and use of relevant crypto features for
use cases or coding tasks, automatically generat-
ing code with suitable API calls, avoiding mistakes
by non-experts.

For those use cases not supported by auto-
matic generation of code, current coding stan-
dards [69, 72] do offer simple rules for cryptog-
raphy misuse that can be automated by simple
static analysis tools (e.g., FindSecBugs [89], Sonar-
Qube [92], Xanitizer [91], VisualCodeGrepper [90],
and Yasca [93]).

However, sophisticated issues cannot be detected
by ordinary tools and have only been addressed
by prototypes. For instance, CryptoLint [36] and

27

111

Cryptography Misuse Analyzer (CMA) [37], for An-
droid, and ICryptoTracer [110], for iOS, are static
analysis tools that identify predefined sets of mis-
uses and vulnerabilities from API calls. Also, both
SSLint [111] and MalloDroid [40] are static anal-
ysis tools for detecting incorrect use of SSL/TLS
APIs and improper certificate validation, detecting
potential man-in-the-middle attacks.

For crypto software testing, tests for SSL have
been used for detection of HTTPS misconfigura-
tions in web apps [30]. Also, MalloDroid [40] can
be used to dynamically detect SSL vulnerabilities
against Android apps. The Padding Oracle Ex-
ploitation Tool (POET) [42] automatically finds
and exploits this type of side channel. Also, Fault
Injection Attack Tool (FIAT) [112] can inject mali-
cious faults into cryptographic devices.

Finally, experience shows that tools are incom-
plete, not overlapping, and buggy. Thus, various
tools should be combined to obtain diversity and
redundancy, promoting fault tolerance to DSCS.
In testing, the incompleteness and absence of tools
is more evident than in construction. Therefore,
household tool development and customization, as
well as manual testing skills, have been favored in
practice.

7.3.2. Static code analysis tools for cryptography

As discussed in Section 6, tools can be quite
precise in early detection of MG1 misuses. How-
ever, non-detected misuses from MG2 and MG3
can cause dangerous omissions. For MG2, tools are
expected to be less precise, producing more false
alarms and omissions than for MG1. These tools
are better suited to late detection of crypto misuses.
For MG3, tools are expected to be quite imprecise
and are better suited to late detection of misuses.
Based upon our observations [50], we generalized
the following expected usages of SCATs in DSCS.

By precisely detecting many code-based misuses
in MG1, SCATs can be integrated to IDEs and pro-
vide real-time support to developers during coding
tasks (e.g., early detection). Since precision is high,
these tools will need less expert supervision in cod-
ing. Because overall recall is low (only MG1), tools
alone will result in low quality (less secure) soft-
ware, which can be subjected to further verification.

SCATs should not be the only way to find misuses
in MG2 (e.g., design flaws in coding), because these
misuses are supposed to be found earlier in devel-
opment, before coding tasks. Tools can be applied
during system integration (daily or weekly build)

and support design reviews or manual inspection
(by experts), possibly later in system development.

Similarly, for detecting misuses in MG3, SCATs
should not be the only way to find architectural
flaws in coding, because they are supposed to be
found very early in development. Extensive use of
SCATs during coding tasks is inadequate and can
mistakenly divert team effort to correct nonexistent
misuses or correct existing, but complex, misuses
the wrong way. This tool usage is better for sup-
porting experts during manual inspections in archi-
tectural security analysis.

7.4. Integrating DSCS into SSDLC

At Section 3.5, Table 1 qualitatively compared
main SSDLC approaches or schools for schoftware
security. We observed that software security schools
have no specific activities for cryptography. How-
ever, the development of crypto software is influ-
enced by the dominant school, which determines
the way cryptography is approached. We argue
that SSDLC methods can be adapted to empower
developers with proper ways to avoid cryptography
misuse when building crypto software.

For instance, when practitioners show an incli-
nation to a process-driven approach, preferring the
predictability of a waterfall-like SSDLC (which is
driven by known requirements, resulting in soft-
ware able to pass well-defined evaluation criteria),
our classification of cryptography misuse provides
a practical checklist to watch and follow during de-
velopment.

Other practitioners may prefer a technology-
driven approach, arguing that cryptographic fea-
tures are mostly well-defined controls that will be
put in place anyway, with no need for deep threat
modeling or traceable processes. For them, cod-
ing guidelines supported by our classification and a
good (secure enough) architecture are sufficient to
securely apply cryptography. In this case, there is
no particular interest in applying fine-grained risk
analysis deeply into daily activities for crypto soft-
ware, leaving risk analysis at the business level.

Also, modern software development frequently
adopts highly adaptive life cycles [28], character-
ized by progressive specification of requirements
based on short iterative development cycles, where
processes are not rigid paths, risk analysis is fast
enough to not slow down the team, and risk grad-
ually reduced over time by the evolution of under-
standing.

28

112

Cryptographic software is frequently multidisci-
plinary and, when developed according to highly
adaptive life cycles, involves many related entities
and has no definitive problem statement or require-
ments specification until the work is done. Different
stakeholders see the software being built in differ-
ent ways and no one has a full understanding of the
system as a whole. In extreme cases, the true na-
ture of the software may only emerge as a solution
is developed.

In this case, a technology-driven DSCS is a better
fit to steadily evolve understanding from crypto use
cases, to coding tasks, to the avoidable crypto mis-
uses in our classification. In general, a technology-
driven DSCS can be adopted bottom-up and con-
ducted by technical staff (supported by executives).
For instance, a lower manager can enhance the soft-
ware security capabilities of his staff by integrating
into the SSDLC a well-crafted set of tools and tech-
niques for mitigating cryptography misuse.

8. Broad discussion

This section discusses those points common to all
aspects of the broad investigation. Other specific
topics were discussed locally, in their corresponding
section or subsection.

Historically, the responsibility for the correct use
(or misuse) of cryptography has been attributed,
simply, to the software developer. We showed that
this attribution is unfair, since the causes of security
issues found in cryptographic software are not just
the careless (or malicious) programmer, but, rather,
are associated to the paradigm currently adopted in
the development of cryptographic software.

By correlating findings from several facets of
cryptographic software development (namely, static
analysis tools, software security textbooks, coding
communities, and research on cryptography mis-
use), we observed that developers misuse APIs due
to their lack of knowledge in cryptography as well as
excessive complexity of APIs, while security experts
build flawed test cases for detecting cryptography
misuse (e.g., in static code analysis tools) due to
lack of knowledge in coding as well as in system
design and architecture.

On the other hand, the development of crypto
software suffers great influence from the supporting
SSDLC, as well as from social groups, or commu-
nities, which ultimately determine the way cryp-
tography is approached in development of secure
software. We argue that SSDLC methods can be

adapted to empower developers with proper ways
to avoid cryptography misuse when building crypto
software.

When investigating developers using crypto APIs
as well as static analysis tools built by security ex-
perts, we noticed almost the same knowledge gaps
and an overlap of blind spots. For instance, cod-
ing bugs are persistent issues when using general-
purpose (function-based) crypto APIs to implement
application-specific use cases, because developers
are forced to make insecure choices without actually
understanding the whole situation, due to many
factors. In one hand, quick advice given in online
communities are shallow and incorrect in cryptog-
raphy matters and literature is too arcane or ob-
solete. On the other hand, tools are incomplete,
non-overlapping and buggy, and experts in applied
cryptography are barely available. We found that
both builders of static analysis tools and experts in
software security underestimate cryptography mis-
use. Therefore, both security tools and security
textbooks overlook cryptography matters.

By comparing coding communities and textbooks
we observed that textbooks (when updated) are
supposed to offer better ways to obtain knowledge
on cryptography. Online communities are better for
timely advice in troubleshooting technology-specific
issues. Ideally, developers should not be forced to
learn cryptography in order to correctly use crypto-
graphic APIs, specially for simple use cases. How-
ever, in practice, crypto APIs are unable to fos-
ter their correct use without domain knowledge ob-
tained from elsewhere but online communities.

Concerning the use of tools, currently, the devel-
opment of secure crypto software has quite limited
tool support for most issues. The coverage of cryp-
tography misuse by tools is far from good, with
current tools showing many blind spots and a huge
knowledge gap between what experts actually see
as cryptography misuse and what tools can detect.
Therefore, expert help is required to assure quality
in different moments of development efforts. We ar-
gue that, with current tools’ maturity, an adequate
toolkit has to be carefully crafted to fit the needs
of specific development contexts.

There is a profile of cryptography misuse for each
application enabled by cryptography. The develop-
ment profile of a cryptographic software reflects the
likely crypto misuses developers do in practice. The
likelihood of a particular crypto misuse depends on
the use cases and related coding tasks to accomplish
them. By knowing the use cases and coding tasks

29

113

for a cryptographic software, its is possible to an-
ticipate the likely crypto misuses, and better direct
efforts to mitigate and avoid them, in an structured
way, according to our methodology for development
of secure cryptographic software.

9. Concluding remarks

This text suggests that Cryptographic Software
Security is a new field of study for developing secure
cryptographic software. The body of knowledge
supporting this field of study emerged from liter-
ature reviews (mapping studies) and development
cases; was validated by empirical studies and exper-
imental analysis; and provides a validated classifi-
cation of cryptography misuse for software security
and a working methodology for development of se-
cure cryptographic software.

We foresee, in the near future, the emergence of
a new generation of tools (e.g., developer-friendly
APIs, programming frameworks, code generators,
and static code analysis tools) to better assist
software developers in programming cryptographic
software, as well as new ways to instruct develop-
ers on how not to use cryptography. In the long
run, further investigation will uncover other archi-
tectural aspects of cryptographic software, broad-
ening the understanding about design flaws in cryp-
tography and opening opportunities for effective ar-
chitectural frameworks.

Acknowledgements

Alexandre Braga thanks CNPq and Intel for
the financial support, as well as the University of
Campinas and CPqD for the institutional support.
Ricardo Dahab thanks FAPESP, CNPq, CAPES,
and Intel for partially supporting this work.

10. References

[1] M. U. A. Khan, M. Zulkernine, On Select-
ing Appropriate Development Processes and Re-
quirements Engineering Methods for Secure Soft-
ware, 33rd Annual IEEE International Computer
Software and Applications Conference (2009) 353–
358doi:10.1109/COMPSAC.2009.206.

[2] I. Sommerville, Software Engineering, International
Computer Science Series, Pearson, 2011.

[3] A. Braga, D. Schwab, Design Issues in the Construc-
tion of a Cryptographically Secure Instant Message
Service for Android Smartphones, in: The 8th Inter.
Conf. on Emerging Security Information, Systems and
Technologies, 2014, pp. 7–13.

[4] A. Braga, R. Zanco Neto, A. Vannucci, R. Hiramatsu,
Implementation Issues in the Construction of an Ap-
plication Framework for Secure SMS Messages on An-
droid Smartphones, in: The 9th Inter. Conf. on Emerg-
ing Security Information, Systems and Technologies,
IARIA, 2015, pp. 67–73.

[5] A. Braga, A. Colito, Adding Secure Deletion to an
Encrypted File System on Android Smartphones, in:
The 8th Inter. Conf. on Emerging Security Informa-
tion, Systems and Technologies, 2014, pp. 106–110.

[6] A. Braga, D. Schwab, E. Morais, R. Neto, A. Van-
nucci, Integrated Technologies for Communication Se-
curity and Secure Deletion on Android Smartphones,
International Journal On Advances in Security 8 (1&2)
(2015) 28–47.

[7] Skillsoft Books24x7.
URL https://acm.skillport.com

[8] O’Reilly Safari Books Online.
URL https://www.safaribooksonline.com

[9] A. K. Talukder, M. Chaitanya, Architecting secure
software systems, CRC Press, 2008.

[10] J. Ransome, A. Misra, Core Software Security: Secu-
rity at the Source, CRC Press, 2013.

[11] A. Shostack, Threat modeling: Designing for security,
John Wiley & Sons, 2014.

[12] M. S. Merkow, L. Raghavan, Secure and Resilient Soft-
ware Development, CRC Press, 2010.

[13] M. Howard, D. LeBlanc, J. Viega, 24 Deadly Sins of
Software Security: Programming Flaws and How to
Fix Them, McGraw-Hill Education, 2009.

[14] C. Douglas A. Ashbaugh, Security Software Develop-
ment: Assessing and Managing Security Risks, Taylor
& Francis, 2008.

[15] S. Harris, CISSP All-in-One Exam Guide, 6th Edition,
All-in-One, McGraw-Hill Education, 2012.

[16] R. Anderson, Security engineering, 2008.
[17] T. Richardson, C. Thies, Secure Software Design,

Jones & Bartlett Publishers, 2012.
[18] J. Viega, G. McGraw, Building Secure Software: How

to Avoid Security Problems the Right Way, 2001.
[19] M. Dowd, J. McDonald, J. Schuh, The Art of Soft-

ware Security Assessment: Identifying and Preventing
Software Vulnerabilities, Pearson Education, 2006.

[20] G. McGraw, Software Security: Building Security in,
2006.

[21] J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw,
N. R. Mead, Software Security Engineering: A Guide
for Project Managers (The SEI Series in Software En-
gineering), 1st Edition, SEI Series in Software Engi-
neering, Addison-Wesley Professional, 2008.

[22] M. Howard, D. LeBlanc, Writing secure code, 2003.
[23] M. Howard, S. Lipner, The Security Development Life-

cycle, Microsoft Press, Redmond, WA, USA, 2006.
[24] M. Paul, Official (ISC)2 Guide to the CSSLP, (ISC)2

Press, Taylor & Francis, 2011.
[25] B. Chess, J. West, Secure programming with static

analysis, 2007.
[26] N. Daswani, C. Kern, A. Kesavan, Foundations of

Security: What Every Programmer Needs to Know,
Apress, Berkely, CA, USA, 2007.

[27] G. Hoglund, G. McGraw, Exploiting software: How to
break code, Pearson Education India, 2004.

[28] PMI, Software Extension to the PMBOK R© Guide, 5th
Edition, Project Management Institute, 2013.

[29] P. Bourque, R. Fairley (Eds.), Guide to the Software

30

114

Engineering Body of Knowledge (SWEBOK), version
3. Edition, IEEE Computer Society, 2014.

[30] OWASP, OWASP Testing Project (2015).
URL https://www.owasp.org/index.php/

OWASP_Testing_Project

[31] N. Husted, S. Myers, Emergent Properties and
Security: The Complexity of Security As a Sci-
ence, in: Proceedings of the 2014 Workshop on
New Security Paradigms Workshop, NSPW ’14,
ACM, New York, NY, USA, 2014, pp. 1–14.
doi:10.1145/2683467.2683468.

[32] N. Leveson, Engineering a Safer World Systems Think-
ing Applied to Safety, MIT Press, 2011.

[33] A. Braga, R. Dahab, A Survey on Tools and Tech-
niques for the Programming and Verification of Secure
Cryptographic Software, in: XV Simpósio Brasileiro
em Segurança da Informação e de Sistemas Computa-
cionais (SBSeg 2015), Florianópolis, SC, Brazil, 2015,
pp. 30–43.

[34] Codenomecon, The Heartbleed Bug (2014).
URL http://heartbleed.com/

[35] A. Langley, Apple’s SSL/TLS "Goto fail" bug (2014).
URL www.imperialviolet.org/2014/02/22/applebug.html

[36] M. Egele, D. Brumley, Y. Fratantonio, C. Kruegel,
An empirical study of cryptographic misuse in an-
droid applications, ACM SIGSAC conference on
Computer & comm. security (CCS’13) (2013) 73–
84doi:10.1145/2508859.2516693.

[37] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, S. Chen-
jie, Modelling Analysis and Auto-detection of Cryp-
tographic Misuse in Android Applications, in: IEEE
12th International Conference on Dependable, Auto-
nomic and Secure Computing (DASC), 2014, pp. 75–
80. doi:10.1109/DASC.2014.22.

[38] D. Lazar, H. Chen, X. Wang, N. Zeldovich, Why
Does Cryptographic Software Fail?: A Case Study and
Open Problems, in: 5th Asia-Pacific Workshop on Sys-
tems, APSys ’14, ACM, New York, NY, USA, 2014,
pp. 7:1—-7:7. doi:10.1145/2637166.2637237.

[39] M. Georgiev, S. Iyengar, S. Jana, The most dangerous
code in the world: validating SSL certificates in non-
browser software, in: Proceedings of the 2012 ACM
conference on Computer and communications security
- CCS ’12, 2012, pp. 38–49.

[40] S. Fahl, M. Harbach, T. Muders, Why Eve and Mal-
lory love Android: An analysis of Android SSL (in)
security, in: ACM conference on Computer and com-
munications security, 2012, pp. 50–61.

[41] T. Jager, J. Somorovsky, How to break XML en-
cryption, Proceedings of the 18th ACM conference
on Computer and communications security - CCS ’11
(2011) 413doi:10.1145/2046707.2046756.

[42] J. Rizzo, T. Duong, Practical padding oracle attacks,
Proc. of the 4th USENIX conf. on offensive technolo-
gies (2010) (2010) 1–9.

[43] T. Duong, J. Rizzo, Cryptography in the Web: The
Case of Cryptographic Design Flaws in ASP.NET,
EEE Symposium on Security and Privacy (2011) 481–
489doi:10.1109/SP.2011.42.

[44] B. Schneier, Cryptographic design vulnerabilities,
Computer (September) (1998) 29–33.

[45] P. Gutmann, Lessons Learned in Implementing and
Deploying Crypto Software, Usenix Security Sympo-
sium.

[46] R. Anderson, Why cryptosystems fail, Proceedings of

the 1st ACM conference on Computer and communi-
cations security (1993) 215–227.

[47] B. Schneier, Designing Encryption Algorithms for Real
People, Proceedings of the 1994 workshop on New se-
curity paradigms. (1994) 98–101.

[48] A. Braga, R. Dahab, Mining Cryptography Misuse in
Online Forums, in: IEEE International Conference on
Software Quality, Reliability and Security Compan-
ion (QRS-C), 2016, pp. 143–150. doi:10.1109/QRS-
C.2016.23.

[49] A. Braga, R. Dahab, A Longitudinal and Retrospec-
tive Study on How Developers Misuse Cryptography
in Online Communities, in: XVII Simpósio Brasileiro
em Segurança da Informação e de Sistemas Computa-
cionais (SBSeg’17), Brasília, DF, Brazil, 2017.

[50] A. Braga, R. Dahab, N. Antunes, N. Laranjeiro,
M. Vieira, Practical Evaluation of Static Code Anal-
ysis Tools for Cryptography: Benchmarking Method
and Case Study, in: The 28th IEEE International
Symposium on Software Reliability Engineering (IS-
SRE), IEEE, 2017.

[51] P. Rogaway, The Moral Character of Cryptographic
Work, Tech. rep., IACR-Cryptology ePrint Archive
(2015).

[52] M. Green, M. Smith, Developers are Not the
Enemy!: The Need for Usable Security APIs,
IEEE Security and Privacy 14 (5) (2016) 40–46.
doi:10.1109/MSP.2016.111.

[53] P. Junod, Towards Developer-Proof Cryptography,
Tech. rep., EPFL, Summer Research Institute, Lau-
sanne, Switzerland (2016).

[54] C. E. Landwehr, A. R. Bull, J. P. McDermott, W. S.
Choi, A Taxonomy of Computer Program Security
Flaws, ACM Comput. Surv. 26 (3) (1994) 211–254.
doi:10.1145/185403.185412.

[55] T. Aslam, I. Krsul, E. H. Spafford, Use of A Taxonomy
of Security Faults.

[56] S. Weber, P. A. Karger, A. Paradkar, A software flaw
taxonomy: aiming tools at security, ACM SIGSOFT
Software Engineering Notes 30 (4) (2005) 1–7.

[57] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, C. Zhai,
Bug characteristics in open source software, Empir-
ical Software Engineering 19 (6) (2014) 1665–1705.
doi:10.1007/s10664-013-9258-8.

[58] Z. Wan, D. Lo, X. Xia, L. Cai, Bug characteristics in
blockchain systems: a large-scale empirical study, in:
Proceedings of the 14th International Conference on
Mining Software Repositories, IEEE Press, 2017, pp.
413–424. doi:10.1109/MSR.2017.59.

[59] Cryptography Coding Standard.
URL cryptocoding.net/index.php

[60] C. Koç, About Cryptographic Engineering, 2009.
[61] D. Hankerson, S. Vanstone, A. Menezes, Guide to el-

liptic curve cryptography, 2004.
[62] J. Katz, Y. Lindell, Introduction to Modern Cryptog-

raphy.
[63] C. Paar, J. Pelzl, Understanding cryptography: a text-

book for students and practitioners, Springer Science
& Business Media, 2009.

[64] N. Ferguson, B. Schneier, T. Kohno, Cryptography
Engineering: Design Principles and Practical Appli-
cations, Wiley, 2011.

[65] J. B. Knudsen, Java Cryptography, Oreilly, 1998.
[66] P. Chandra, M. Messier, J. Viega, Network security

with OpenSSL, O’Reily, June.

31

115

[67] D. Hook, Beginning cryptography with Java, John Wi-
ley & Sons, 2005.

[68] T. S. Denis, Cryptography for Developers, Syngress
Publishing, 2006.

[69] OWASP, OWASP Top Ten Project (2013).
URL https://www.owasp.org/index.php/Top_10

[70] CYBSI, Avoiding The Top 10 Software Security Design
Flaws (2014).
URL http://cybersecurity.ieee.org/

[71] Safecode, Fundamental Practices for Secure Software
Development (2011).
URL http://www.safecode.org/wp-content/

uploads/2014/09/SAFECode_Dev_Practices0211.pdf

[72] SANS/CWE, TOP 25 Most Dangerous Software Er-
rors.
URL www.sans.org/top25-software-errors

[73] OWASP, Cryptographic Storage Cheat Sheet.
URL www.owasp.org/index.php/

Cryptographic_Storage_Cheat_Sheet

[74] A. Chatzikonstantinou, C. Ntantogian, C. Xenakis,
G. Karopoulos, Evaluation of Cryptography Usage in
Android Applications, 9th EAI International Confer-
ence on Bio-inspired Information and Communications
Technologies.

[75] A. Braga, R. Dahab, Introdução à Criptografia para
Programadores: Evitando Maus Usos da Criptografia
em Sistemas de Software, in: Caderno de minicursos
do XV Simpósio Brasileiro em Segurança da Infor-
mação e de Sistemas Computacionais — SBSeg 2015,
2015, pp. 1–50.

[76] S. Das, V. Gopal, K. King, A. Venkatraman, IV= 0
Security Cryptographic Misuse of Libraries, Tech. rep.
(2014).

[77] E. S. Alashwali, Cryptographic vulnerabilities
in real-life web servers, in: Third International
Conference on Communications and Informa-
tion Technology (ICCIT), Ieee, 2013, pp. 6–11.
doi:10.1109/ICCITechnology.2013.6579513.

[78] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore,
M. Naehrig, E. Wustrow, Elliptic curve cryptography
in practice, in: Financial Cryptography and Data Se-
curity, Springer, 2014, pp. 157–175.

[79] V. G. Mart, L. Hern, Implementing ECC with Java
Standard Edition 7, International Journal of Com-
puter Science and Artificial Intelligence 3 (4) (2013)
134–142. doi:10.5963/IJCSAI0304002.

[80] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, Others, Imperfect forward se-
crecy: How Diffie-Hellman fails in practice, in: Pro-
ceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2015,
pp. 5–17.

[81] S. Shuai, D. Guowei, G. Tao, Y. Tianchang,
S. Chenjie, Analysis on Password Protection in An-
droid Applications, in: P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), 2014 Ninth
International Conference on, 2014, pp. 504–507.
doi:10.1109/3PGCIC.2014.102.

[82] Oracle, Java Cryptography Architecture (JCA) Ref-
erence Guide.
URL docs.oracle.com/javase/8/docs/

technotes/guides/security/crypto/CryptoSpec.html

[83] S. Fahl, M. Harbach, H. Perl, Rethinking SSL devel-
opment in an appified world, Proceedings of the 2013

ACM SIGSAC conference on Computer & communi-
cations security - CCS ’13 (2013) 49–60.

[84] Oracle Java Cryptography.
URL https://community.oracle.com/

community/java/java_security/cryptography

[85] Google Android Developers.
URL https://groups.google.com/

forum/#!forum/android-developers

[86] OWASP, List of Source Code Analysis Tools.
URL https://www.owasp.org/index.php/

Source_Code_Analysis_Tools

[87] NIST, Software Assurance Metrics And Tool Evalua-
tion (SAMATE).
URL https://samate.nist.gov

[88] UMD, FindBugs.
URL http://findbugs.sourceforge.net

[89] P. Arteau, FindSecBugs.
URL https://find-sec-bugs.github.io

[90] NCCGroup, VisualCodeGrepper.
URL https://github.com/nccgroup/VCG

[91] RigsIT, Xanitizer.
URL https://www.rigs-it.net

[92] SonarSource, SonarQube.
URL https://www.sonarqube.org

[93] M. Scovetta, Yasca.
URL http://yasca.org

[94] L. Sampaio, A. Garcia, Exploring context-sensitive
data flow analysis for early vulnerability detection,
Journal of Systems and Software 113 (2016) 337 – 361.

[95] A. Delaitre, B. Stivalet, E. Fong, V. Okun, Eval-
uating bug finders - Test and measurement of
static code analyzers, Proc. of 1st International
Workshop on Complex Faults and Failures in
Large Software Systems, COUFLESS’15 (2015) 14–
20doi:10.1109/COUFLESS.2015.10.

[96] OWASP, OWASP Benchmark Project.
URL https://www.owasp.org/index.php/

OWASP_Benchmark_Project

[97] G. Díaz, J. R. Bermejo, Static analysis of source code
security: Assessment of tools against SAMATE tests,
Information and Software Technology 55 (8) (2013)
1462–1476. doi:10.1016/j.infsof.2013.02.005.

[98] K. Goseva-Popstojanova, A. Perhinschi, On the ca-
pability of static code analysis to detect security vul-
nerabilities, Information and Software Technology 68
(2015) 18–33. doi:10.1016/j.infsof.2015.08.002.

[99] A. Braga, R. Dahab, Towards a Methodology for the
Development of Secure Cryptographic Software, in:
The 2nd International Conference on Software Secu-
rity and Assurance (ICSSA 2016), 2016.

[100] A. Braga, C. Rubira, R. Dahab, Tropyc: A pattern
language for cryptographic object-oriented software,
Chapter 16 in Pattern Languages of Program Design
4 (N. Harrison, B. Foote, and, in: Also in Procs. of
PLoP, 1999.

[101] A. Braga, D. Schwab, The Use of Acceptance Test-
Driven Development to Improve Reliability in the
Construction of Cryptographic Software, in: The 9th
International Conference on Emerging Security In-
formation, Systems and Technologies (SECURWARE
2015)., 2015.

[102] A. Braga, E. Morais, Implementation Issues in the
Construction of Standard and Non-Standard Cryptog-
raphy on Android Devices, in: The 8th International
Conference on Emerging Security Information, Sys-

32

116

tems and Technologies, 2014, pp. 144–150.
[103] A. Braga, E. Nascimento, Portability evaluation

of cryptographic libraries on android smartphones,
Springer, 2012, pp. 459–469.

[104] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman,
K. Xu, M. Blaze, Why (Special Agent) Johnny (Still)
Can’T Encrypt: A Security Analysis of the APCO
Project 25 Two-way Radio System, in: Proceedings
of the 20th USENIX Conference on Security, SEC’11,
USENIX Association, Berkeley, CA, USA, 2011, p. 4.

[105] S. Fahl, M. Harbach, T. Muders, Helping Johnny 2.0
to encrypt his Facebook conversations, in: Proceedings
of the Eighth . . . , 2012.

[106] S. Garfinkel, R. Miller, Johnny 2: a user test of key
continuity management with S/MIME and Outlook
Express, in: Proceedings of the 2005 symposium on
Usable . . . , 2005, pp. 13–24.

[107] K. Ermoshina, H. Halpin, F. Musiani, Can Johnny
Build a Protocol? Co-ordinating developer and user
intentions for privacy-enhanced secure messaging pro-
tocols.

[108] M. Sweikata, G. Watson, C. Frank, C. Christensen,
Y. Hu, The usability of end user cryptographic prod-
ucts, in: 2009 Information Security Curriculum De-
velopment Conference on - InfoSecCD ’09, ACM
Press, New York, New York, USA, 2009, pp. 55–59.
doi:10.1145/1940976.1940988.

[109] S. Arzt, S. Nadi, K. Ali, E. Bodden, S. Erdweg,
M. Mezini, Towards Secure Integration of Crypto-
graphic Software, in: 2015 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward!), On-
ward! 2015, ACM, New York, NY, USA, 2015, pp.
1–13. doi:10.1145/2814228.2814229.

[110] Y. Li, Y. Zhang, J. Li, D. Gu, iCryptoTracer: Dy-
namic Analysis on Misuse of Cryptography Functions
in iOS Applications, in: 8th International Conference
on Network and System Security, Springer Interna-
tional Publishing, Xi’an, China, 2014, pp. 349–362.
doi:10.1007/978-3-319-11698-3_27.

[111] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakr-
ishnan, R. Yang, Z. Zhang, Vetting SSL usage in ap-
plications with SSLint, in: 2015 IEEE Symposium on
Security and Privacy (SP), IEEE, 2015, pp. 519–534.

[112] A. Barenghi, L. Breveglieri, I. Koren, D. Naccache,
Fault injection attacks on cryptographic devices: The-
ory, practice, and countermeasures, in: Proceedings of
the IEEE, Vol. 100, IEEE, 2012, pp. 3056–3076.

33

117

118

Chapter 3

Discussion

This thesis is about how to better assist developers in their coding tasks for blending
cryptography into software functionality in mashups, sometimes, hard to anticipate. In
order to contribute to accomplish this goal, this thesis promotes a systematic approach
to cryptographic software security.

This chapter discusses our findings and contributions in relation to accepted prac-
tice and established knowledge for secure software engineering, mainly provided by three
textbooks, well known to software practitioners: Sommerville (2015) [97], Pressman and
Maxin (2014) [85], and the IEEE Software Engineering Body of Knowledge (SWEBOK,
2013) [19]. Besides being good representatives for the established knowledge in secure
software engineering, these textbooks were chosen because they explicitly discuss the
development of secure software and complement the analysis we did before [30], now
targeting knowledge of experts on secure software engineering.

The chapter is organized as follows. Section 3.1 revisits the general motivation for
secure software engineering and relates it to the particular motivation for cryptographic
software security. Section 3.2 gives an example of a software design that exposes many
opportunities for the misuse of cryptography. Section 3.3 explains how the concept of
cryptography misuse evolved from two related concepts of code vulnerability and design
flaw. Section 3.4 discusses how cryptographic software security is linked to secure software
engineering. Section 3.5 discusses cryptographic software security into phases for develop-
ment of cryptographic software. Finally, Section 3.6 concludes the case for cryptographic
software security.

3.1 The need for systematic methods in cryptographic

software security

This section analyzes the rationale and motivation to secure software engineering in gen-
eral and for a methodology for development of secure cryptographic software [28], in
particular.

Sommerville [97] distinguishes between application and infrastructure security. For
him, application security is a software engineering problem in which a system is designed
to resist attacks, while infrastructure security is a systems management problem where

119

the infrastructure is configured to resist attacks. Also, he believes that the security of
a system is a system property that reflects the system’s ability to protect itself from
accidental or deliberate external attack.

Pressman and Maxin [85] have a process view aimed at collecting evidence for quality
assurance. They say that software security is an essential part of software quality assur-
ance for any networked software application. For them, security is the concern of every
software engineer and every stakeholder seeking to protect user privacy and intellectual
property associated with a computer system. They say that the primary working products
are a security specification and a documented security case. To develop these working
products, threat models and plans for security risk assessments and risk mitigation are
created. The evidence resulting from security reviews, inspections, and test results are
presented as a security case that allows system stakeholders to assess their degree of trust
in a system.

SWEBOK[19] states that, in addition to the usual correctness and reliability, software
developers must also pay attention to the security of the software they develop. Secure
software development builds security in software by following a set of established and/or
recommended rules and practices in software development. SWEBOK also states that
secure software maintenance complements secure software development by ensuring that
no security problems are introduced during software maintenance.

In addition, security must also be taken into consideration when performing software
maintenance as security faults and loopholes can be and often are introduced during
maintenance. Interestingly, in accordance with SWEBOK[19], the Software Extension of
the PMBOK Guide [83] provides a process-oriented treatment to software security for
software development projects.

The SWEBOK [19] accepts the view that it is much better to design security into
software than to patch it after software is developed. To design security into software,
one must take into consideration every stage of the software development life cycle [19]. In
particular, secure software development involves software requirement security, software
design security, software construction security, and software testing security, as well as
concerns on risk management and security assurance [19].

Historically, experts in software security systematically avoid entering cryptography
issues during development, minimizing them to high-level, theoretic knowledge and oc-
casional advice from experts. For instance, the Open Web Application Security Project
(OWASP) [81] recognizes a current focus on high-level guidelines for developers and ar-
chitects who implement cryptographic solutions.

Cryptologists have a tendency to value theory and neglect practical issues associated to
cryptography misuse. For many experts, cryptography issues reside only below APIs, in-
side libraries, concerned only with the security of algorithm implementation. For instance,
in a survey on advanced tools for coding and verification of cryptographic software [25],
we found that only one quarter (around of 25%) of all surveyed tools can be applied above
crypto APIs, by ordinary developers. The other 75% being applicable only below APIs,
for implementation of cryptographic algorithms.

This behavior of cryptologists may have influenced practitioners to react negatively
to cryptography issues, sometimes adopting high-level risk analysis as the only assurance

120

control available and limiting activities to vulnerability management during operations
and software patching after system compromise.

This state of affairs also contributed to perpetuate misunderstandings about the cor-
rect use of cryptography, resulting in the exploitation of simple vulnerabilities with catas-
trophic consequences (see [41, 67]), as well as leading to frequent misuse of cryptogra-
phy [46, 94, 68], improper certificate validation [54, 49], and inappropriate error handling
when orchestrating crypto services [61, 86, 45].

Many studies have shown that vulnerabilities in crypto software are mainly caused by
software defects and poorly managed parameters [89, 56, 12, 90]. Recent studies [46, 54,
49, 94, 68], including ours [27, 29], showed the occurrence of known crypto misuses in
modern software platforms. Also, current tools are unable to properly cope with security
issues in programming crypto software [31]. Furthermore, most advice about cryptography
in textbooks for software security is obsolete by the standards of today [30].

Recently, cryptography researchers started to analyze the reasons behind this situa-
tion. For Ross Anderson [13], there is a social divide between the two communities of
cryptology and computer security, because security experts do not always understand
cryptographic tools, and cryptologists do not always understand real-world problems [13].
Rogaway [87] claims that cryptologists should acquire a system-level view and attend
to what surrounds their field. Also, Green and Smith [55] argue that modern security
practice has created an adversarial relationship between security software designers and
developers. For them [55], security experts must focus, instead, on creating developer-
friendly approaches to strengthen system security (in opposition to a developer-proof
attitude [62]). Rogaway [87] also suggests an API-centric approach. For him [87], API
misunderstandings and (semantic) gaps between cryptography theory and API design are
common causes of problems in cryptographic software.

From the viewpoint of cryptographic software security, without an ordered way (for
example, as the one provided by our methodology) to mitigate cryptography misuse in
coding, design and architecture, developers are likely to overlook the hardest cryptography
issues, underestimating their complexity, and minimizing them to high-level, theoretic
knowledge and advice from experts. Therefore, there is a concrete need for methods for
building secure cryptographic software, in such a way that cryptographic security could
be easily blended into applications’ functionality.

It is important to observe that our methodology for development of secure crypto-
graphic software is not a step-by-step on how to apply best practices for specifying,
coding, and testing cryptographic software. That would be a methodology of the past,
when designs were more intellectually manageable, and the potential interactions among
components could be completely planned, understood, anticipated, and guarded against.
In that old-school scenario, less incomplete tests were possible, due to a reduced number
of possible uses for cryptographic infrastructures in software.

We found [30] that the main approaches for development of secure software fall in
this old-school style of methods and were invented when cryptography was not widely
available, and limited to few (simple) use cases. Therefore, these approaches are unable
to cope with the increasing complexity of modern cryptographic software. Today, many
incidents involving cryptography misuse are related to complex interactions involving the

121

complete software system and the cryptographic subsystem. Thus, traditional develop-
ment methods cannot describe them adequately.

According to PMI’s Agile Practice Guide [84], modern development methods are adap-
tive to changing requirements and foster continuous learning by developers, which fre-
quently requires experimentation and feedback. Experimentation is important for devel-
opers to update their knowledge and better handle changing requirements or evaluating
several options for the best solution to an unusual use case. Developers also use feedback
to update their knowledge as crypto systems evolve.

In cryptographic software security, the way for developers to determine that their
knowledge has to be updated is through experimentation, which requires appropriate
techniques and tools for feedback. That is, in order to learn where the boundaries of
safe usage are, occasionally developers have to try unsafe designs. Thus, a methodology
for development of secure cryptographic software has to provide appropriate feedback to
developers in order to correct the course of design, avoiding likely crypto misuses, instead
of only prescribing closed solutions to known use cases.

3.2 A running example for designing cryptographic soft-

ware

This section gives an example of what to watch for in the architecture design of crypto-
graphic software in order to avoid not only coding vulnerabilities, but also design flaws
and insecure architectural choices regarding cryptography misuse. The example is non-
exhaustive and favors readability.

The manual composition of encryption and MAC (Message Authentication Code) is
used to illustrate the iterative development of a secure enough composition of encryption
and MAC. For the purposes of this example, a MAC function is a keyed-hash function used
to provide authentication of content to message exchanges between two communicating
parties. Detailed explanations about Message Authentication Codes can be found in
specialized books for cryptography [72, 63, 82].

In modern cryptographic software, features for management, distribution, and storage
of keys can be blended into application functionality and are influenced by usability
requirements and system architecture, being transparent to final users.

Two applications exemplify actual use cases for the manual composition of encryption
and MAC. First, a mobile app for authenticated encryption of Short Message Service
(SMS) [37], where the combination of encryption and MACs had great potential for design
flaws, the transport of shared keys was masked as invitations to be a contact, and key
update was blended into user notifications and app updates. Second, a mobile app for
encrypted file system with secure deletion of files [24], where secure deletion was obtained
by purging crypto keys from storage, and copies of a file could not be deterministically
encrypted to be equal. In this single-user file system, the integrity of encrypted files was
granted by computing MACs.

In this running example, knowing that a cryptographic software is about to be built,
developers may start with the architectural choices regarding the cryptographic library

122

and randomness sources. These choices are related to the system’s structure and are
affected by cryptography requirements. These architectural choices can be summarized
by the following (non-exhaustive) list of best practices:

• Provide secure (Pseudo-)Random Number Generators (PRNG) as infrastructure.

• Use a single implementation (library) for cryptography, if possible.

• Choose a cryptographic library of good reputation.

• Be prepared to switch implementations if crypto library gets compromised.

• Design and build key distribution/agreement features.

• Design and build key management features.

• Design for secure key storage.

• Design for key life cycles to never use expired keys.

For the scenario of secure communication with SMS, a key agreement protocol can
provide forward secrecy and still protect past encrypted messages if the current key is
compromised. However, SMS is a best effort message service, without delivery guarantees,
and is not reliable for supporting an online key agreement protocol. Thus, an offline key
distribution is a better design from the application point of view, but it loses the forward
secrecy property.

Evidence for insecure architectural choices can be found in code. For instance, a
hard-coded key means that features for management, storage, and distribution of keys
have been neglected in system design. Also, many copies in source code of a custom
implementation for a cryptographic algorithm mean that homemade cryptography is in
use and there is no single point of access for reliable cryptography.

Proceeding to design decisions, developers choose how to structure program elements
to construct the composition of encryption and MAC. It’s well known by cryptogra-
phy experts [65] that the only secure way to manually combine encryption and MAC
is to compute the authentication tag from the cipher text, using a technique named
(Encrypt-then-Mac (EtM)). Other composition techniques are insecure. For instance, the
(Encrypt-and-Mac (EaM)) technique computes the tag from the clear text, resulting in a
deterministic tag. Also, the (Mac-then-Encrypt (MtE)) technique encrypts the tag along
with the clear text, but still results in a deterministic tag. Also, both techniques may
expose side channels based on the verification of that tag.

Also, cryptologists strongly recommend the use of single Authenticated Encryption

(AE) functions, instead of manual composition of encryption and MAC, because AE
binds the decryption to the correct verification of the tag. The clear text is unavailable
otherwise.

Nevertheless, manual composition of encryption and MAC is still possible because
those routines for encryption and MAC are readily available to programmers in many
cryptographic libraries. This happens not only because crypto libraries have to stay
compatible with past software, but also because it is not feasible to designers of generic

123

crypto libraries to predict all possible uses developers will make of these libraries in modern
cryptographic software.

Proceeding with the example, supposing that developers choose the right technique to
build a manual combination of encryption and MAC, (Encrypt-then-Mac (EtM)), there
are other design decisions to be made by developers. These design decisions can be
summarized by the following (non-exhaustive) list:

• Use different keys for encryption and MAC.

• Correctly select cryptographic primitives.

– Select secure hash functions.

– Select secure encryption algorithms (e.g., block ciphers, stream ciphers, etc.).

• Choose good randomness sources to generate nonces, IVs, and keys.

• Use an IV management technique adequate to the operation mode.

• Do not reuse IVs with the same key.

• Include the IV in MAC computation.

• Choose long enough keys with balanced sizes for encryption and MAC.

• Use a secure storage to keep keys safe.

• Avoid timing channels when comparing two MACs.

• Avoid padding oracles when exposing error messages.

Many design flaws can also be found in code. For instance, all design flaws related
to insecure selection of cryptographic primitives, insecure key sizes, insecure PRNGs can
be found by code review. Insecure block ciphers, misconfigured stream ciphers, broken
hash functions, timing channels, padding oracles, hard-coded IVs, and small keys are
straightforward on source code.

Finally, proceeding to coding tasks, there are still several concerns to watch before the
solution can be considered secure enough. The useful practice for coding cryptographic
software for this example can be summarized as follows:

• Correctly select cryptographic schemes from the available infrastructure.

– Use a MAC built with a secure hash function (e.g., HMAC).

– Use a secure block cipher for symmetric encryption.

– Use a secure operation mode for the block cipher.

– Use key derivation functions (KDF) to generate keys.

• Choose a padding technique for the encryption scheme.

• Choose seeds from selected sources for PRNGs.

124

• When recovering keys, keep their exposition in code or memory to a minimum.

• Do not decrypt before successfully verifying the authentication tag.

All these code-level decisions related to cryptography programming have counterparts
in simple cryptography misuse and can be found by code reviews supported by static anal-
ysis tools. However, developers are not trained to look for complex cryptography misuse
in software. Thus, design flaws and insecure architectures are likely to pass unnoticed
by developers without expert help from cryptologists. In general, developers are exposed
only to (good) use cases for cryptography, because, until now, there was no comprehen-
sive knowledge base of cryptography misuse from a developer’s point of view. We aim at
contributing to fulfill this gap.

3.3 Code vulnerability, design flaw, and cryptography

misuse

In this section, we explain how the concept of cryptography misuse is related to the
concepts of code vulnerability and design flaw. Information security books (e.g., [13, 57]),
as well as software engineering books (e.g., [97, 85]) usually conceptualize vulnerability
as a weakness. We do not feel comfortable with the use of this definition for software
security because, in the common language used by non experts in security, vulnerability
and weakness are synonymous.

In order to address the needs of software developers, adapting the concept to our
purposes, we adopt context-aware definitions provided by software security experts. For
instance, Merkow and Haghavan [73] say that a vulnerability is a defect in the implemen-
tation that opens a pathway for an attacker (with the right set of skills) to exploit the
defect and cause the software to behave in ways the developer never anticipated.

Allen et al. [11] adopt the following definitions. A vulnerability is a software defect
that an attacker can exploit. For them, defects typically fall into one of two categories:
bugs and flaws. A bug is a problem introduced during software implementation (coding
tasks). Most bugs can be easily discovered (with tool support) and corrected, while
flaws are more subtle, typically originating in the design and being instantiated in the
code. Examples of flaws include compartmentalization problems in design, error-handling
problems, broken access control, and some kinds of cryptography misuse.

Allen et al. [11] and Sommerville [97] also state that a failure — an externally observ-
able event — occurs when a system does not deliver its expected service (as specified or
desired), while an error is an internal state that may lead to failure if the system does not
handle the situation correctly; a fault is the cause of an error. For them, the functional
error can be leveraged into a security failure, and a number of errors can be demonstrated
to lead to exploitable failures.

McGraw [71] explains that flaws are often much more subtle than code-level vulner-
abilities, such as, for instance, a simple off-by-one error in an array reference. A flaw is
certainly instantiated in software code, but this code-level issue is in fact an expression of
a flaw present at the design level. For instance, a hard-coded key found in source code is a

125

consequence of missing features for key management that were not designed. McGraw [71]
also warns that automated technologies to detect design-level flaws do not yet exist (by

that time), though manual processes (inspections) can identify flaws.
McGraw [71] distinguishes flaws from bugs based on how much program code must

be considered to understand the vulnerability, how much detail regarding the execution
environment must be known to understand the vulnerability, and whether a design-level
description is best for determining whether or not a given vulnerability is present. He also
argues that mid-range vulnerabilities involve interactions among more than one location in
code, and design-level vulnerabilities carry this trend further. He warns that ascertaining
whether or not a program has design-level vulnerabilities requires great expertise, because
these flaws are hard to find and particularly hard to automate.

As we stated before [30] and complemented by the above arguments, a cryptography

misuse (crypto misuse, for short) is a programming bad practice frequently found in
cryptographic software, leading to vulnerabilities, and introduced by developers during
coding tasks associated to use cases enabled by cryptography. We do not simply name
these misuses vulnerabilities because, in many cases, they are design flaws and insecure
architectural choices. Crypto misuse is not related to implementation of cryptographic
algorithms. Instead, crypto misuses emerge when ordinary developers use cryptographic
infrastructures in their daily coding activities during the development of cryptographic
software.

The concept of cryptography misuse adopted in this thesis is in accordance with several
related works in the recent literature. For instance, Lazar et al. [68] found that only 17%
of cryptography vulnerabilities are inside software libraries, the other 83% are misuse
of libraries, while Egele et al. [46] and Chatzikonstantinou et al. [38], in two different
studies, found that about 88% of mobile apps (from Google’s market place) showed some
cryptography misuse. Also, Gajrani et al. [52] found that 90% of apps from diverse
app stores are exploitable because of cryptographic vulnerabilities. Our own results [27]
confirmed these high values for cryptography misuse. We found that cryptography misuse
appears in regular discussions about cryptographic programming in online communities
in 90% of posts for Java and 71% of posts for Android.

Also, related works found instances of cryptography misuse quite similar to the ones we
found in our investigation. For instance, Egele et al. [46] and Shuai et al. [94] found that
deterministic encryption is the most common misuse when a block cipher (e.g., AES or
3DES) uses the Electronic Code Book (ECB) mode. Asymmetric deterministic encryption
with non-randomized RSA is also a misuse [56]. Hardcoded or repeated Initialization
Vectors (IV) and hard-coded seeds for Pseudo-random Number Generators (PRNGs)
are also frequent [46]. Other misuses come from exchanging operation modes without
considering IV needs [27].

Additionally, Georgiev et al. [54] and Fahl et al. [49] showed that libraries for SSL/TLS
allow programmers to ignore parts of certificate validation, adding vulnerabilities ex-
ploitable by man-in-the-middle attacks. Recent studies showed misuses related to weak
or misplaced parameters for RSA [8], key agreement misconfiguration (e.g., DH and
ECDH) [7], and Elliptic Curve Cryptography (ECC) [18, 70] as well.

Furthermore, Nadi et al. [75] observed that developers usually implement simple use

126

cases (e.g. user authentication, storage of login data, secure connections, and data en-
cryption), but face difficulties when using low-level Java APIs. Also, Shuai et al. [93]
discovered that password protection in Android is greatly affected by cryptography mis-
use.

In our own investigation [27], we found that the most widespread misuse is weak
cryptography, affecting several crypto use cases, and the most troublesome use case is
encrypting data at rest, which is affected by several misuses.

We also found that the different kinds of cryptography misuse are not equally difficult
to avoid. Also, from the developer’s point of view, some misuses are easier to correct
than others. For instance, low-complexity misuse is related to code-level vulnerabilities,
and could be easily found by early detection techniques, simple code reviews, and skilled
developers (supported by tools). We showed [27, 29, 31] that this kind of misuse includes
Weak Cryptography (WC), Coding and Implementation Bugs (CIB), and Bad Random-
ness (BR) manipulation. We consider these three kinds of misuse are of low complexity
because no deep understanding of program design is required to mitigate them, as well as
fixes are likely to be related to single programs or simple code snippets.

Medium-complexity misuse is related to design flaws affecting a few different pro-
grams and may be difficult to identify due to feature distribution across programs. We
showed [27, 29, 31] that this kind of misuse includes Improper Certificate Validation
(ICV) issues, Program Design Flaws (PDF), and Public-Key Crypto (PKC) issues. We
consider these three kinds of misuse are of medium complexity because fixing them may
require program redesign, possibly affecting a few programs. Avoiding them requires more
knowledgeable developers and support from experts.

High-complexity misuse is related to insecure architectural choices, and requires un-
derstanding of system architecture to analyze underlying cryptosystems. We showed [27,
29, 31] that this kind of misuse includes Poor Key Management (PKM), IV and Nonce
Management (IVM) issues, and Crypto Architecture and Issues (CAI). We consider these
three kinds of misuse are of high complexity because fixing them usually require new
modules or redesign of modules, and may affect many code bases. These misuses require
cryptography experts to perform code and design reviews, or architecture analysis.

3.4 Cryptographic software security and secure soft-

ware engineering

This section analyzes how secure software engineering links to cryptographic software
security. This section is organized as follows. Subsection 3.4.1 relates the concepts of
secure software engineering and cryptographic software security. Then, two subsections
discuss risk management (Subsection 3.4.3) and security assurance (Subsection 3.4.2) in
the context of cryptographic software security.

127

3.4.1 Secure software engineering and secure cryptographic soft-

ware

For the purposes of this text, Secure Software Engineering, also named Software Secu-
rity [71], software engineering security [19], and (software) security engineering [97], is the
process of designing, building, and testing software so that it becomes secure [64].

According to Sommerville [97], security engineering is the set of tools, techniques,
and methods to support the development and maintenance of systems that can resist
malicious attacks intended to damage a computer-based system or its data. For him,
the main concern of security engineering is to develop systems that can resist malicious
attacks. Also, he considers software security as a sub-field of the broader field of computer
security.

According to Pressman and Maxin [85], security is a requisite for system integrity,
availability, reliability, and safety, because it provides the mechanisms that enable a system
to protect its valuable resources (e.g., information, files, programs, storage, processor
capacity) from attacks which take advantage of vulnerabilities that allow unauthorized
system access. Pressman and Maxin [85] complement that it is difficult to make software
more secure by just responding to bug reports, because security must be designed in from
the beginning.

Also, according to the SWEBOK [19], any software is only as secure as its development
process goes. So, to ensure the security of software, security must be built into the software
engineering process. The SWEBOK [19] identifies the Secure Software Development Life
Cycle (SSDLC) as an emerging trend structured as a classical spiral model, that takes
a holistic view of security from the perspective of software life cycles, and ensures that
security is inherent in software design and development, not an afterthought later in
production. Such an SDLC process is claimed to reduce software maintenance costs and
increase reliability of software, when concerned to faults related to software security.

In general, software security does not directly address the issues of cryptographic
security because cryptography is considered a security feature effectively added to software
during coding, with no specific support from development methods [71, 13]. Historically,
software security favored penetration testing against known vulnerabilities of standard
protocols, enforcement of simple, high-level coding guidelines against misuse of crypto
libraries, and compliance to general security policies.

We argue that software security methods can be enhanced to empower developers
with proper ways to avoid cryptography misuse when building crypto software. This en-
hancement can be obtained by adopting the knowledge base of the emerging discipline
of cryptographic software security, a sub-field of software security, targeting three com-
plementary aspects: a methodology for development of secure cryptographic software, a
classification of cryptography misuse for software security, and a reference layered archi-
tecture for cryptographic software.

Over the years, we have observed the frequent adoption of common practices by re-
searchers and practitioners, which gave us the required perspective to generalize a working
methodology for development of secure cryptographic software. Our methodology [28],
emerged as a response to practical needs observed when we: (i) documented design pat-

128

terns for cryptography [20]; (ii) built cryptographically secure mobile apps [34, 37, 24, 36];
(iii) applied Acceptance Test Driven Development (ATDD) to cryptographic services [35]
(when building [32] and porting [33] a cryptography library to mobile devices); (iv) sur-
veyed tools for secure programming and verification of cryptographic software [25]; (v)
trained developers in cryptography programming [26]; (vi) investigated crypto misuses in
online communities [27, 29]; and (vii) evaluated static code analysis tools for cryptogra-
phy [31].

3.4.2 Software assurance for cryptographic software security

For Sommerville [97], security is related to assurance of safety and reliability. For example,
statements about reliability and safety of an insecure system are unreliable because these
statements depend on the executing system and the developed system being the same.
However, intrusion can change the executing system and/or its data. Therefore, the
reliability and safety assurance is no longer valid.

Pressman and Maxin [85] prefer the concept of system trustworthiness, in a way that
trust is the level of confidence that software components and stakeholders (e.g., devel-
opers) can rely on one another. Verification ensures that the security requirements are
assessed using objective and quantifiable techniques traceable to the security cases. Ev-
idence used to prove the security case must be acceptable and convincing to all system
stakeholders. Most trust metrics are based on historical data derived from past behav-
ior. Complementing the above statements, for McGraw [71], the confidence in software
security is relative to the assurance methods in use.

In general, cryptologists [50] understand that cryptographic algorithms are supposed
to be perfect mathematical constructs (ideally), but are imperfect in practice due to
implementation constraints. Also, in systems with many building blocks, cryptography
practitioners have to check whether the combination of imperfect constructions leads to
security problems. Due to many combinations, this can be unworkable in practice.

The same cryptologists [50] argue that modular designs for cryptographic algorithms
can help assure local correctness. For them [50], cryptographic security is achieved by the
local correctness of cryptographic building blocks, that should work correctly no matter
what happens in the outside environment, or with the interactions with other building
blocks. This viewpoint comes from developers of cryptographic algorithms, which work
inside crypto implementations and below crypto APIs.

We believe that this mindset is incomplete and dangerous, because it minimizes (maybe
to the point of neglecting) the unexpected and unpredictable interactions among compo-
nents and how they influence the work of other components in the overall system. This
viewpoint does not see cryptographic security as an emerging property of cryptographic
software and is obsolete in relation to the current understanding of the phenomenon of
cryptography misuse in modern cryptographic software.

In modern crypto software, secure cryptographic functions are not enough for system
security, because the reliability of single cryptographic functions is not enough to assure
the reliability of whole software systems. In this context, code-level issues and design flaws
are causes of problems, even when cryptographic functions work properly and behave as

129

expected, the issues emerge from unexpected interactions among system components and
cryptographic functions in flawed designs.

For instance, when developers do not follow best practices and guidelines for secure
coding when using crypto libraries, they are being unsafe and producing insecure crypto-
graphic software. However, with generic APIs, which does not restrict developers options,
just following API’s usage prescriptions is not enough to code safely, because the resulting
code can be insecure at the system level. Cases of misconfigured algorithms as well as
unsafe compositions of crypto components are in this situation.

Reliability of crypto components is not enough for its safe use. Their correct usage
has to be assured by high-level techniques, above component usage. For instance, a secure
design can be made insecure when crypto components, even behaving reliably from an
API point of view, are in fact leaking information through some sort of side channel,
or showing flaws in accessory subsystems for key management, nonce management, and
infrastructure management.

One of the byproducts of this thesis is the understanding that cryptographic security
is not a component property (such as, for instance, reliability) that can be attributed
to a software library disconnected from its surrounding software. Instead, cryptographic
security is an emerging property of systems (such as, for instance, safety), which can be
only determined in the context of the whole system and its environment. Determining
whether a cryptographic software is secure by looking only at its implementations of
cryptography is not enough, and seems meaningless without the context of usage for such
implementations.

Inversely, cryptographic security is determined by how a cryptographic library in-
teracts with itself in different moments as well as with the environment (surrounding
software). The emergence of cryptographic security comes from the notion of hierar-
chical levels where constrains at higher levels control or allow behavior at lower levels.
Thus, cryptographic security depends on the enforcement of constraints on the behavior
of components of the system, including constraints on their potential interactions.

In cryptographic software security, the classification of cryptography misuse can pro-
vide the reference checklist to be used for assurance control against cryptography misuse.
Also, a reference architecture for cryptographic software, as the one we proposed [28], can
be used for validating the correct placement of security controls. Also, recommendations
to better use static code analysis tools (like ours [31]) can be used when supporting novice
developers to detect the early occurrence of crypto misuse, as well as security experts in
inspecting code looking for complex misuses.

Cryptographic software security requires a classification of recurring misuses of cryp-
tography in software, over which assurance methods could be built upon. A thorough
understanding of the characteristics of cryptography misuse, captured by a working clas-
sification, and targeting the viewpoint of developers, is required to design effective tools for
preventing, detecting, and mitigating these misuses early in the construction of software
systems.

The classification of cryptography misuse for software security is a core component of
the assurance framework for cryptographic software security, which is also composed of
other three complementary components:

130

• a methodology for developing secure cryptographic software.

• a reference architecture for cryptographyc software.

• guidelines on the use of static analysis tools, along with expert support, in specific
development contexts.

None of the existing works regarding taxonomies of security issues [66, 15, 106, 101,
105] organized cryptography misuse by characteristics that were useful for our needs. None
of these works focused on cryptography misuse from a software security point of view.
Therefore, a domain-specific classification was needed to support our work. However,
we were not interested in advice for secure implementation of cryptographic algorithms.
Instead, we looked for programming techniques for building secure cryptographic software.

The classification of cryptography misuse for software security captures how software
developers actually misuse cryptography. Therefore, it is inclined to a software security
viewpoint. The current version of the classification of cryptography misuse for software
security [30] assembles cryptography misuse in software collected from various sources:
literature on software security (e.g., [104, 58, 39, 58, 59, 92]), studies on cryptography
misuse (e.g, [68, 38, 46, 94, 26, 54, 49]), discovered misuses (e.g., [8, 18, 70, 7]), and
industry initiatives for software security (e.g., [88, 79, 43]).

The classification has been proposed in one of our firsts contributions [27] and refined
to fit new findings and observations in other contributions [31, 29]. Its current state
of maturity was detailed in a recent contribution [30]. The classification has nine main
categories that were synthesized from recommendations covered by literature and are
supposed to capture the state of practice: Weak Cryptography (WC), Bad Randomness
(BR), Coding and Implementation Bugs (CIB), Program Design Flaws (PDF), Improper
Certificate Validation (ICV), Public-Key Cryptography (PKC) issues, IV/Nonce Man-
agement (IVM) issues, Poor Key Management (PKM), and Cryptography Architecture
Issues (CAI).

3.4.3 Risk management for cryptographic software security

Risk management for security is not standard practice in software engineering. How-
ever, it is recognized by SWEBOK [19] that particular attention should be paid to the
management of risks related to software quality requirements such as safety or security.
SWEBOK [19] relates concepts of risk and uncertainty, because risk is often the result of
uncertainty, which results from lack of information necessary to evaluate risk.

According to SWEBOK [19], risk management entails identification of risk factors
and analysis of the probability and potential impact of each risk factor, prioritization of
risk factors, and development of risk mitigation strategies to reduce the probability and
minimize the negative impact, when a risk factor becomes reality. For the SWEBOK [19],
risk assessment methods (for example, expert judgment, historical data, decision trees,
and process simulations) can sometimes be used in order to identify and evaluate risk
factors.

Pressman and Maxin [85] seem not to be particularly interested in risk management
because (for them) it is not directly related to assurance. They simply state the commonly

131

accepted steps for security risk analysis: Identify assets, create architecture overview,
application decomposition, identify threats, document threats, and rate threats. On the
other hand, Sommerville [97] gives a corporate view to risk management when he says
that security risk analysis is a business rather than a technical process. He argues that, in
organizations, security is a business issue because security is expensive and it is important
that security decisions are made in a cost-effective way. He argues that there is no point
in spending more than the value of an asset to keep that asset secure, and organizations
use a risk-based approach to support security decision making and should have a defined
security policy based on security risk analysis.

For Sommerville [97], security risk management is concerned with assessing possible
losses from attacks and deriving security requirements to minimize losses. That way, risk
assessment and management is concerned with assessing the possible losses that might
result from attacks on the system and balancing the losses against the costs of security
procedures that may reduce these losses.

Sommerville [97] explains that risk management happens in three different moments
during system development, with different levels of detail: preliminary or business level,
life cycle or design, and operational. In a preliminary risk assessment, he says, the aim is
to identify generic risks to the system and to decide if an adequate level of security can be
achieved at a reasonable cost. This risk assessment helps identify security requirements.

Sommerville [97] details that a life cycle (design) risk assessment, takes place during
the system development life cycle and is informed by the technical system design and im-
plementation decisions. The results of this assessment may lead to changes to the security
requirements and the addition of new requirements. Also, knowledge on vulnerabilities
is used to inform decision makers about the system functionality and how it is to be im-
plemented, tested, and deployed. Finally, Sommerville [97] explains that operational risk
assessment focuses on the use of the system and the possible risks that can arise from hu-
man behavior. For him, a security risk assessment encompasses the following steps: Asset
identification, asset value assessment, exposure assessment, threat identification, attack
assessment, control identification, feasibility assessment, and security requirements defi-
nition.

In cryptographic software security, there is no particular interest in applying fine-
grained risk analysis into activities for mitigation of cryptography misuse, because all
potential misuses have to be avoided anyway. This attitude leaves risk analysis at the
business level. This way, cryptography misuse, as a broad threat with high impact, will
always receive a high score for risk.

In this case, risk is gradually reduced over time by the evolution of understanding
about how likely crypto misuses can be avoided in specific use cases and coding tasks.
Two of our contributions studied how likely crypto misuse is in use cases and coding tasks
for cryptography [27] and how likely static code analysis tools can detect crypto misuse
for the same use cases and coding tasks [30].

132

3.5 A systematic approach to cryptography in software

security

This section relates phases of our methodology for development of secure cryptographic
software [28] to the common phases for secure software engineering [19]: software require-
ments security (Subsection 3.5.1), software design security (Subsection 3.5.2), software
construction security (Subsection 3.5.3), and software testing security (Subsection 3.5.4).

3.5.1 Software requirements for cryptographic software security

In a simple way, Sommerville [97] says that, to specify security requirements, one should
identify the assets that are to be protected, as well as define how security techniques and
technology should be used to protect these assets.

Pressman and Maxin [85] explain that the elicitation of security requirements consists
in determine how users interact with system resources, create abuser stories that describe
system threats, perform user threat modeling and risk analysis to determine the system
security policies as part of the non-functional requirements, and identify solutions to
system security shortcomings. For them [85], threat analysis is the process of determining
the conditions or threats that may damage system resources or make them inaccessible
to unauthorized access.

Converging, SWEBOK [19] establishes that software requirements security is the clar-
ification and specification of security policies and objectives into software requirements.
Factors to consider in this phase include security software requirements (specific functions
that are required for the sake of security) and threats/risks (the possible ways that the
security of software is threatened) [19].

In cryptographic software security, the application domain defines the cryptography
requirements [28], which, in general, are satisfied by (but not limited to) traditional
use cases associated to cryptographic services [27]. These use cases are implemented by
coding tasks specific to cryptographic software [27]. In general, cryptography misuse is
potentially introduced by developers into use cases during coding tasks [27] as a side effect
of technology misunderstandings, semantic gaps in instances of cryptography concepts in
APIs and security tools, as well as bad coding practices applied by ordinary developers.

General security requirements for cryptographic modules can be obtained from stan-
dards, such as the FIPS-140 [78], which includes not only high-level functional require-
ments for cryptographic modules in software only or hardware and software, but also
non-functional, security requirements that will be satisfied by a cryptographic module
utilized within a security system protecting sensitive information. The security require-
ments cover areas related to the secure design and implementation of a cryptographic
module, which is understood as an implementation of security functions, including but
not limited to cryptographic algorithms and key generation, and is contained within a
defined perimeter.

It is interesting to notice that standards like FIPS-140 [78] do not cover the require-
ments for cryptographic software that uses a cryptographic module as a building block
for application’s cryptographic-based security. On the other hand, other documents, such

133

as ENISA’s reports on cryptographic algorithms, key sizes, and protocols [5, 96], provide
guidance to developers on how to choose appropriate cryptographic functions and their
security parameters when using a trusted cryptographic module. However, these reports
are still far from being easily understood by ordinary developers, because they were writ-
ten with the mindset of a cryptography expert. These reports should be distilled before
used to generate cryptographic requirements.

On the other hand, industry-led guidance, such as the guidelines given by OWASP [79],
CYBSI [43], and Safecode [88], are targeted to ordinary developers, but do not cover the
subject with appropriate depth to avoid crypto misuse.

Our methodology for developing secure cryptographic software can be used to watch
for potential crypto misuses related to architectural choices (e.g., crypto agility issues,
PKI issues, multiple access points, and randomness sources) and key management (e.g.,
PBE passwords, expired keys, key distribution, and CA issues), which can be identified
and avoided in this phase. Also, a classification of cryptography misuse can be used as
a policy to be enforced as well as a checklist of items to be avoided, helping to mitigate
cryptography misuse as early as in requirements elicitation.

3.5.2 Software design for cryptographic software security

Sommerville [97] states that the two key issues when designing a secure architecture are
organizing the system structure to protect key assets and distributing the system assets
to minimize the losses from a successful attack. He believes that it is very difficult to
make an insecure system secure after it has been designed or implemented. So, security
should be designed into a system considering architectural design and good practices.

Sommerville [97] also sees benefits in the use of design guidelines for security en-
gineering, because guidelines encapsulate good practice in secure systems design, raise
awareness of security issues in team members, and provide a basis for a review checklist
applied during validation. Finally, he advises that performing a risk assessment while the
system is being designed is good practice, because more information is available in design
than during requirements gathering, and vulnerabilities that arise from design choices
may therefore be identified.

Pressman and Maxin [85] promote security modeling as a way to capture policy objec-
tives, external interface requirements, software security requirements, rules of operation,
and description of security architecture; providing guidance during design, coding, and
review. Having concerns with security assurance, Pressman and Maxin [85] argue that
design should be measured with security metrics, which focus on system dependability,
trustworthiness, and survivability. For them, measures for asset value, threat likelihood,
and system vulnerability are needed to create these metrics. Also, a security risk anal-
ysis is done in design because it is based upon architecture overview and application
decomposition.

Promoting a practical viewpoint, SWEBOK [19] states that design for security is
concerned with how to prevent unauthorized disclosure, tempering (e.g., creation, change,
deletion), or denial of access to information and other resources. SWEBOK [19] is also
concerned with how to tolerate security-related attacks or violations by limiting damage,

134

continuing service, speeding repair and recovery, and failing and recovering securely.
For the SWEBOK [19], software design security deals with the design of software mod-

ules that fit together to meet the security objectives specified in the security requirements.
Therefore, the design step clarifies the details of security considerations and develops the
specific steps for implementation. Here in, factors considered may include frameworks
and access modes that set up the overall security monitoring/enforcement strategies, as
well as mechanisms for policy enforcement.

In cryptographic software security, some crypto misuses related to architecture (e.g.,
IV/nonce management issues, API misunderstandings, improper key length, and reused
keys), many misuses related to design (e.g., design flaws, certificate validation issues, and
PKC issues), and a few misuses related to coding (e.g, proprietary cryptography, custom
implementation, and risky/broken cryptography) can be identified and avoided in design
phase.

In design phase, attention have to be taken to explicitly design for key management,
nonce management, and crypto infrastructure management. Also, modern crypto soft-
ware has to follow software engineering best practices, including design patterns for cryp-
tographic systems [20] and a layered architecture for cryptographic software [28, 30].

We believe that by designing for management aspects of crypto systems and by adopt-
ing a layered architecture, the separation of concerns between simple functions of cryptog-
raphy and high-level behavior of crypto systems can be made explicit in software designs.
This way, constraints on the behavior of low-level components (e.g., crypto APIs) and
their interactions will be imposed by high-level components, reducing allowed behavior to
what is required by application functionality and thus limiting opportunities for cryptog-
raphy misuse.

3.5.3 Software construction for cryptographic software security

Showing a strong bias in favor of tools and techniques, SWEBOK [19] is the only one of
the three textbooks to explicitly enforce construction for security. For the SWEBOK [19],
software construction security concerns the question of how to write actual programming
code for specific situations such that security considerations are taken care of. SWE-
BOK [19] warns that the term “Software Construction Security” could mean different
things for different people. It can mean the way a specific function is coded, such that the
coding itself is secure, or it can mean the coding of security into software. The book [19]
also explains that today software construction security mostly refers to the coding of
security into software, which can be achieved by following recommended coding rules.

For the SWEBOK [19], defensive programming is different from secure programming:
Defensive programming means to protect a routine from being broken by invalid inputs.
Secure coding is called dependable programming by Sommervile[97] and is related to
programming practices that support fault avoidance, fault detection, and fault tolerance.

In cryptographic software security, not only the classification of cryptography misuse
can be adopted as a coding standard (enforced by static code analysis tools and inspected
by experts), but also many crypto misuses related to program design and all misuses
related to coding can be identified and avoided in this phase.

135

We found [27, 29, 31] that mitigation of crypto misuse in coding can be quite straight-
forward, because coding practices are likely to be simple and related to single programs
or simple code snippets, while mitigation of crypto misuse in design may require program
redesign and may affect a few programs. Avoiding them requires more knowledgeable
developers and support from experts. Also, mitigation of crypto misuse in architecture
usually require new modules or redesign of modules, and may affect many code bases.
These misuses require cryptography experts to perform code and design reviews, or ar-
chitecture analysis.

In the construction phase, the development of cryptographic software can obtain most
benefit from the adoption of static code analysis tools. Interestingly, roughly half of crypto
misuse instances in our test suite could be precisely detected by simple pattern matching.
This suggests that the effectiveness of static analysis tools in finding cryptography misuse
could be improved just by adding rules to the pattern matching engine already applied
by tools.

Also, we noticed that static analysis tools seems to not obtain the full benefit of
advanced techniques for vulnerability detection, such as data-flow analysis, to identify
cryptography misuse. Only a few tools, of the evaluated tool set, applied data-flow analysis
to detect cryptography misuse in quite limited ways, for just a couple of rules. We
believe this is due to a knowledge gap between tool builders’ current repertoire of actual
cryptography misuse and cryptologists knowledge about potential vulnerabilities in crypto
systems.

In spite of these limitations, early detection techniques have the potential to contribute
to reduce crypto misuse by promptly suggesting fixes to code-level cryptography misuse
while code is being written by developers in IDEs. Also, late detection techniques can
contribute to the work of reviewers and auditors if, in short term, tools improve recall
and precision for detection of cryptography misuse.

3.5.4 Software testing for cryptographic software security

For Sommerville [97], security testing verifies the extent to which the system can protect
itself from external attacks. He also notes two problems with security testing. First,
security validation is difficult because security requirements state what should not happen
in a system, rather than what should. Second, system attackers may have more time to
probe for weaknesses than is available for security testing.

Pressman and Maxin [85] enforce correctness checks for assurance, in such a way
that software verification activities and security test cases must be traceable to system
security cases, and data collected during audits, inspections, and test cases are analyzed
and summarized as a security case.

Finally, for SWEBOK [19], security testing is focused on the verification that the
software is protected from external attacks. Usually, security testing includes verification
against misuse and abuse (negative testing), as well as determines that the targeted
software protects its data and maintains security specification as given (by requirements).

For Ferguson, Schneier, and Kohno [50], security is the absence of (unauthorized)
functionality used by the unauthorized user (e.g., the attacker). Besides being unable to

136

prove the absence of defects, tests cannot prove the absence of unauthorized functionality.
In spite of that, is still necessary to test software, even not knowing how to do it perfectly
or completely for complex software system.

In cryptographic software security, cryptography-related functionality and packages
are submitted to functional security tests (supported by security-inspired test cases) and
penetration tests, supported by attack scenarios and threats. Likelihood of crypto misuses
in use cases can help to identify threats and define attack scenarios. Also, verification
includes automated tests for crypto misuses related to coding and program design, as well
as security inspections (supported by tools) for crypto misuses related to system design
and architecture.

During the development of this thesis, we observed that the following types of dynamic
tests for cryptography have been adopted by industry.

• Functional tests as test vectors used to validate implementations of cryptographic
algorithms against their specifications, such as test vectors for the Cryptographic
Module Validation Program (CMVP) [76], which can be applied when adopting
Acceptance Test-Driven Development (ATDD) during the coding of cryptographic
algorithms [35].

• Tests against known vulnerabilities of cryptographic algorithms that can compro-
mise the security provided by cryptographic libraries. For instance, the Project
Wycheproof [17] is a collection of unit tests that detect known weaknesses or check
for expected behaviors of a cryptographic algorithm.

• Automated tests of SSL connections for detection of unencrypted HTTP channels,
insufficient TLS protection, and padding oracles, represented by test procedures
from OWASP’s testing guide[81] as well as prototype tools like MalloDroid [49] and
Padding Oracle Exploitation Tool (POET) [86].

These tests sit midway between testing algorithm implementations and testing misbe-
havior of misconfigured API calls. Semantic tests are application logic’s dependent and
have to be customized for each cryptographic software and its use cases. In this regard,
our classification can help the development of test cases for likely crypto misuse.

Dynamic tests are associated to penetration tests and have an important role in de-
tecting vulnerabilities in deployed cryptographic software, but contribute little to avoid
cryptography misuse in source code. Penetration tests for cryptographic software reflect
that reactive attitude of postponing the evaluation of cryptographic security until the
last security assessment, before releasing software to production or delivery, when crypto
misuses related to design or architecture are not only hard to identify, but also expensive
to fix.

The reactive approach to security limits further analysis of incidents to those causal
events (causes) related to production environments and operation, promoting counter-
measures related to operation, and almost always ignoring the fundamental root cause of
poorly designed software as a fact of life. The analysis stops at the first event for which
an operational or production countermeasure can be adopted.

137

Also, penetration tests are good for promoting security awareness, but they lack the
ability to teach developers how to fix or avoid the vulnerabilities found or demonstrated
by an ethical hacker. On the other hand, the concept of cryptography misuse can con-
tribute to educate developers on how to avoid all those design flaws and coding pitfalls
frequently related to cryptographic software, increasing awareness in the correct usage of
cryptography, without requiring from developers an adversarial mindset.

3.6 The case for cryptographic software security

Cryptography is a social technology used to protect human affairs mediated by this tech-
nology. Above every cryptosystem, there are layers of social systems that provide goals,
purpose, and constraints to the underlying crypto system. One of those layers is the com-
munity of developers working to build and improve the cryptographic software composing
and surrounding the crypto system. According to this argument, a cryptosystem is a
socio-technical system [69].

In general, there is a tendency to blame the human involved in security vulnerabilities.
We observe this parallel also in the development of cryptographic software. Formerly, the
operator (final user) used to be the preferred culprit in a cryptography misuse. Then,
as soon as cryptography became transparent to users, thanks to better, user-friendly
interfaces, the developer was the one to blame. However, after understanding that tools
are sadly imperfect and processes barely tackle cryptography misuse, we argue that even
developers cannot be solely blamed for the widespread misuse of cryptography in software.

Blaming the developer is easy and comes from the fact that developer errors are the
closer events to code-level cryptography misuse. Flawed designs and flawed processes have
a not-so-close causal relationship to cryptography misuse, breaking this hindsight bias. In
this thesis, we learned that developer’s knowledge about cryptography APIs is not only
based upon training, but also in the experience of others, with the latter complementing
the limitations of the former, for good or for bad.

Developers also use feedback to update their knowledge as cryptosystems evolve. We
found that online communities for programming and automated tools for static analysis
of code were unable to provide appropriate feedback to developers about cryptography
misuse. Experimentation is important for developers to update their knowledge and
better handle changing requirements or evaluating several options for the best solution to
an unusual use case. Effective communities and tools supporting developers would have
to close the experimentation loop, updating developers’ knowledge about cryptography
misuse and how to avoid it.

Thus, the actual problem resides in providing the appropriate feedback to developers,
with smarter tools and supporting communities, allowing experimentation in design to
improve developers’ ability in avoiding crypto misuse. The missing link, the connection
absent in many methods for development of secure software, is the proper feedback from
the environment to assist developers in making safe and secure choices about the use of
cryptography.

In the cryptographic software of the past, experimentation and feedback were less

138

important because crypto use cases and coding tasks were simple compared to today’s
unusual use cases, where cryptography is blended to functionality and transparent to final
users at the same time. This blending of cryptography to system functions makes local
decisions regarding the security of a cryptography design much more difficult.

It is well accepted by the software engineering community that security has to be
treated since the very beginning of software development. However, software security
is not self-justified; instead, it is mostly related to regulatory obligations, quality assur-
ance needs, and safety requirements, as well as enforced or restricted by business goals,
hopefully without degrading other non-functional requirements, such as performance or
usability.

Additionally, cryptographic security must be considered in every stage of the software
development life cycle, including software requirement security, software design security,
software construction security, and software testing security. This way, a well performed
SSDLC can give strong evidence of compliance to security requirements and add justifiable
trust to the resulting software of the cryptosystem. Finally, in order to be cost-effective
for businesses, cryptographic software security must be supported by automated tools, as
well as subjected to continuous feedback during all SDLC phases.

In cryptographic software security, potential misuses of cryptography can be identified
early in the development of secure cryptographic software, being mitigated in design,
coding, and testing, as well as monitored after the software is released for deployment
and put into operation.

The field of cryptographic software security supports the proper use of cryptography in
the development of secure software systems by applying a conceptual framework composed
of four complementary aspects:

• a methodology for developing secure cryptographic software;

• a classification of cryptography misuse for software security;

• a reference architecture for cryptographic software;

• a set of guidelines on how to use current static analysis tools to detect cryptography
misuse.

139

Chapter 4

Conclusion

We (cryptography experts) have released a Pandora’s box and developers have opened it.
Today, the use of cryptography is common in software systems and, finally, cryptographic
services are widely available to every software developer. However, there are many oppor-
tunities for misusing cryptography, as shown by our classification of cryptography misuse,
and developers have been very creative in finding them, as evidenced by our findings when
investigating online communities for programming. On the other hand, security experts
and tool builders have been ineffective in promoting the proper use of cryptography in
software systems, as we saw when benchmarking static analysis tools.

We believe that, ideally, developers do not have to learn all the tricky details in order
to correctly use cryptography. However, in reality, training developers in using crypto
APIs is a partial solution to the problem of cryptography misuse, since it assumes that
APIs are well designed from a usability point of view, behave as expected, decoupled
from cryptographic algorithms’ internals, and tools can precisely detect all deviations
from guidelines. As we found in our investigation, this is not the case.

It is our duty, as a community of cryptography experts, to assist developers in the cor-
rect use of cryptographic technology. The recognition of cryptographic software security
as a serious field of study and a legitimate topic of research can contribute to accomplish
this goal.

In this investigation, we were able to clearly see the evolution of understanding regard-
ing cryptography misuse in software systems. At the beginning, before cryptography mis-
use was even considered a wide-spread, real-world issue by experts in the field, researchers
noticed that the misuse of cryptography was associated to serious security breaches.

A lack of reference materials and the advent of attacks exploiting cryptography misuse
in actual deployed software (for instance [41, 67, 4, 42, 10, 3, 74, 103, 2, 9]) motivated the
study of code vulnerabilities by an emergent community of researchers and practitioners.
A great number of vulnerabilities were analyzed and categorized. Knowledge on those
vulnerabilities were made available to the community as libraries of programming bad
practices, catalogs of simple countermeasures, and high-level design principles.

Soon, researchers and practitioners realized that there was no ultimate security con-
trol to avoid cryptography misuse and then redirected efforts to pragmatic solutions and
exploratory research. For instance, giving developers the opportunity to educate them-
selves on the correct use of cryptography is not enough to avoid cryptography misuse. It

140

is also necessary to provide appropriate feedback to software developers when applying
cryptography in specific development environments.

Vulnerability research in applied cryptography is a never-ending effort and now cryp-
tography experts also face the challenge of giving feedback to developers in effective ways
and appropriate tool support. We believe that the next step to be taken by this commu-
nity is to approach the problem of cryptography misuse in software in a systematic way.
This thesis contribute to better understand this systematization effort.

We believe that cryptography misuse seems to be pervasive in software and frequent
in communities for software development, because cryptographic software security was
not approached in a systematic way by software development methods, techniques, and
tools. Our findings suggest that those people involved in software development overlook
cryptography misuse because, in general, it is hard to identify with current detection
tools, except for simple cases,

Based on our findings, we believe that cryptographic software security needs a new
generation of supporting technology composed not only by verification tools, APIs, and
development frameworks, but also by appropriate development methods able to foster
effective feedback to developers regarding the misuse of cryptography.

The conceptual framework provided by our investigation (and documented in this
thesis, particularly in Chapter 2, Section 2.3) represents a sound contribution to the
current knowledge base for the emergent field of study of cryptographic software security.
This framework can support developers willing to use cryptography when developing
secure software systems as well as security experts when supporting development teams.

4.1 Future directions

The work is not done. In order to promote cryptographic software security, we have to keep
its knowledge base as complete and up-to-date as possible, which implies that a constant
effort of investigation should be conducted. As technology keeps evolving and human
behavior has greater influence on (secure) software development, we see that experiments
with actual developers regarding cryptography misuse in specific technologies is a fertile
area of research.

Specially, we noticed an increasing interest in evaluating the usability of security APIs
in general [55] and of cryptographic APIs in particular [6, 60, 47, 75], from a developers’
point of view, instead of the evaluation of cryptography controls’ usability from a final
users’ point of view [40, 48, 53, 100].

Also, we foresee a new generation of tools and techniques to better assist both devel-
opers in building cryptographic software, as well as cryptography experts in supporting
development teams. Tools and techniques can evolve, roughly speaking, in two directions.
First, as support for coding tasks (e.g., crypto APIs, security frameworks, early detection
static analysis tools) and design activities (e.g., reference architectures, case tools, code
generators, and best practices). Second, as support for verification activities in late de-
tection of code-level issues (either static or dynamic detection) as well as in supporting
the work of reviewers and auditors.

141

In the first direction, regarding cryptography misuse in coding tasks, there are oppor-
tunities for new APIs and frameworks showing alternative abstractions for cryptographic
services, as well as (functional) test suites for crypto APIs and security frameworks, in
order to compare them against a (predefined) baseline specification of acceptable behav-
ior. Research in this direction is still in the beginning and concerns only correct usage of
cryptographic algorithms. A few pioneering works are described below.

The NaCl crypto library [1, 16] was one of the first attempts to offer alternative
abstractions for cryptographic services. NaCl was studied in the first usability evaluation
of crypto APIs [6], showing promising results in simplifying to developers the concepts of
public-key cryptography, despite its apparent difficulty when compared to other crypto
libraries.

The Project Wycheproof [17] is the first attempt to provide publicly available unit tests
for cryptographic libraries. These tests focus on implementation defects of cryptographic
algorithms that can be detected by exercising the cryptographic API with appropriate
parameters that expose the defect. Although not interested in cryptography misuse by
application developers, Project Wycheproof uses negative unit tests to identify potential
defects in algorithms’ internals that can be accidentally exposed by application developers
or exploited by adversaries. This approach is distinct from our previous works [35] in
using test vectors as simple user stories and positive tests for validating implementations
of cryptographic algorithms.

Regarding cryptography misuse in design activities, this investigation showed that
there is important research being conducted in this direction. However, most of research
is exploratory, mapping what is crypto misuse and how it can be detected by prototype
tools. For instance, OpenCCE [14] is a prototype static analysis tool that also generates
code for simple use cases of cryptography.

Due to the success we achieved in using unsupervised learning techniques (for associ-
ation and clustering) to investigate cryptography misuse, we see as promising the use of
other machine learning techniques as a supporting technology present in the next gener-
ation of tools. However, we warn that there is a need for techniques for automating the
analysis of source code in order to identify crypto misuse in the first place, before using
other machine learning techniques to find relevant relations among instances of crypto
misuse.

In the second direction, regarding tools for detection of cryptography misuse, the
definition of a standardized grounding truth against which such tools could be com-
pared should be a first-order priority, because the current lack of standards resulted in
non-overlapping tools and no reference baseline for what these tools should detect at a
minimum. We found that there are important efforts being conducted to benchmark
static analysis tools for security issues in general [80, 77, 44]. However, none of these
works covered cryptography issues in depth. In this regard, our own research, the first
practical evaluation of static analysis tools for cryptography, can contribute to strengthen
the efforts for benchmarking vulnerability detection tools for cryptography.

Also, there are research opportunities in investigating better ways to assist reviewers
and auditors to identify design flaws and insecure architectural choices regarding cryp-
tography misuse in large software systems and complex architectures. We saw that most

142

effort is directed to code-level cryptography misuse, while design-level misuse (for instance,
insecure composition of cryptographic services) and flawed architectures (for instance, in-
secure key management in distributed systems) are barely mentioned. Our own research
found that the automated detection of cryptography misuse is far from being understood
by current technology, presenting many blind spots in important areas, such as public-key
cryptography.

4.2 Final message

We finish this text with a few words about empathy and multidisciplinary teams. This
research would never be possible without the willing force to combine efforts and work
together with non experts (experts in other fields), often putting ourselves in their shoes
in order to (try to) understand why the obvious, from our point of view, is not that so
to others. Cryptography, in spite of being full of wonderful mathematical constructs, is
tough to developers. Thus, we had to learn how to smooth it for them, before they could
handle it more easily.

We (software engineers, security experts, and cryptologists) are all allies in the ultimate
goal of building secure software, despite all the uncertainty of current trends for fast-
changing technology, agile development efforts, loosely defined user requirements, and
increasingly dangerous threats.

When presenting our research to software engineering researchers, we were glad to see
them getting surprised by just realizing that cryptography is not only that arcane science
responsible for security features embedded into pluggable components, whose correctness
is taken for granted. In fact, we received quite positive feedback about exposing cryptog-
raphy misuse from a software engineering point of view and bringing developers to the
loop of cryptographic software security.

Between cryptologists, who devise novel crypto systems, and users, who demand new
security requirements, there are developers, who actually build applications. Software
development is a human activity, highly influenced by social contexts. With the wide-
spread use of cryptographic services, we (cryptography experts) have been pushed to
software development. Today, it is not enough (although extremely necessary) to securely
implement cryptography algorithms, pack them in executable binaries and release them in
spartan APIs, intended to be developer-proof artifacts. We have to adapt ourselves and
avoid the adversarial attitude against developers, trying to produce developer-friendly
artifacts and tools.

This thesis emphasizes four complementary aspects that can help developers in sys-
tematically handle cryptography in the development of secure software and avoid cryptog-
raphy misuse. First, a methodology for developing secure cryptographic software directs
the infusion of cryptographic security into software functionality, from requirement iden-
tification to testing. Second, a classification of cryptography misuse for software security
offers a taxonomy to locate actual instances of cryptography misuse in relation to each
other as well as structures checklists of avoidable coding pitfalls in crypto software pro-
gramming. Third, a reference architecture for cryptographic software helps to design a

143

layered stack of software abstractions, in which upper layers impose constraints that limit
the behavior of lower layers, separating the concerns of distinct components of crypto sys-
tems and reducing the opportunities for cryptography misuse. Fourth, a set of guidelines
on how to use static analysis tools to detect cryptography misuse helps to understand the
limitations of these tools and still get some benefit when applying actual tools in specific
development contexts, despite tools’ imprecision and incompleteness.

Finally, this thesis also was an exercise in empathy that led us to figure out a new
role in secure software development, the cryptographic architect. This new role is
interested in the correct use of cryptographic features, as well as in the safe composition
of cryptographic components, possibly at different levels of software abstractions (e.g.,
code and design), focusing attention on the architecture of cryptographic software, and
considering not only the (social) context in which cryptography is applied, but also the
forces influencing its proper use.

144

Bibliography

[1] NaCl: Networking and Cryptography library.

[2] The CRIME attack, 2012.

[3] The DROWN attack, 2016.

[4] The Logjam Attack and Weak Diffie-Hellman, 2016.

[5] Michel Abdalla, Benedikt Gierlichs, Kenneth G Paterson, Vincent Rijmen, Ahmad-
Reza Sadeghi, Nigel P Smart, Martijn Stam, Michael Ward, Bogdan Warinschi, and
Gaven Watson. Algorithms, Key Size and Protocols. Technical report, 2014.

[6] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,
Michelle L Mazurek, and Christian Stransky. Comparing the usability of crypto-
graphic apis. In Proceedings of the 38th IEEE Symposium on Security and Privacy,
2017.

[7] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew
Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé,
Luke Valenta, and Others. Imperfect forward secrecy: How Diffie-Hellman fails in
practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 5–17. ACM, 2015.

[8] Eman Salem Alashwali. Cryptographic vulnerabilities in real-life web servers. In
Third International Conference on Communications and Information Technology

(ICCIT), pages 6–11. Ieee, jun 2013.

[9] Nadhem AlFardan and Kenny Paterson. Lucky Thirteen Attack, 2013.

[10] Thijs Alkemade. Piercing Through WhatsApp’s Encryption, 2013.

[11] Julia H. Allen, Sean Barnum, Robert J. Ellison, Gary McGraw, and Nancy R.
Mead. Software Security Engineering: A Guide for Project Managers (The SEI Se-

ries in Software Engineering). SEI Series in Software Engineering. Addison-Wesley
Professional, 1 edition, 2008.

[12] Ross Anderson. Why cryptosystems fail. Proceedings of the 1st ACM conference on

Computer and communications security, pages 215–227, 1993.

[13] Ross Anderson. Security engineering. 2008.

145

[14] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg, and Mira
Mezini. Towards Secure Integration of Cryptographic Software. In 2015 ACM

International Symposium on New Ideas, New Paradigms, and Reflections on Pro-

gramming and Software (Onward!), Onward! 2015, pages 1–13, New York, NY,
USA, 2015. ACM.

[15] Taimur Aslam, Ivan Krsul, and Eugene H Spafford. Use of A Taxonomy of Security
Faults. 1996.

[16] DJ Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryp-
tographic library. Progress in Cryptology – LATINCRYPT 2012 (LNCS), 7533:159–
176, 2012.

[17] Daniel Bleichenbacher, Thai Duong, Emilia Kasper, and Quan Nguyen. Project
Wycheproof - Scaling crypto testing. In Real World Crypto Symposium, New York,
USA, 2017.

[18] Joppe W Bos, J Alex Halderman, Nadia Heninger, Jonathan Moore, Michael
Naehrig, and Eric Wustrow. Elliptic curve cryptography in practice. In Finan-

cial Cryptography and Data Security, pages 157–175. Springer, 2014.

[19] Pierre Bourque and Richard Fairley, editors. Guide to the Software Engineering

Body of Knowledge (SWEBOK). IEEE Computer Society, version 3. edition, 2014.

[20] A Braga, C Rubira, and R Dahab. Tropyc: A pattern language for cryptographic
object-oriented software, Chapter 16 in Pattern Languages of Program Design 4 (N.
Harrison, B. Foote, and. In Also in Procs. of PLoP. 1999.

[21] Alexandre Braga. Cryptography Misuse Source Code Repository (crypto good use
samples), 2017.

[22] Alexandre Braga. Cryptography Misuse Source Code Repository (crypto misuse
instances), 2017.

[23] Alexandre Braga. Search in Google Play for cryptographic apps, 2017.

[24] Alexandre Braga and Alfredo Colito. Adding Secure Deletion to an Encrypted File
System on Android Smartphones. In The 8th Inter. Conf. on Emerging Security

Information, Systems and Technologies, pages 106–110, nov 2014.

[25] Alexandre Braga and Ricardo Dahab. A Survey on Tools and Techniques for the
Programming and Verification of Secure Cryptographic Software. In XV Simpó-

sio Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSeg

2015), pages 30–43, Florianópolis, SC, Brazil, 2015.

[26] Alexandre Braga and Ricardo Dahab. Introdução à Criptografia para Progra-
madores: Evitando Maus Usos da Criptografia em Sistemas de Software. In Caderno

de minicursos do XV Simpósio Brasileiro em Segurança da Informação e de Sis-

temas Computacionais — SBSeg 2015, pages 1–50. 2015.

146

[27] Alexandre Braga and Ricardo Dahab. Mining Cryptography Misuse in Online Fo-
rums. In IEEE International Conference on Software Quality, Reliability and Secu-

rity Companion (QRS-C), International Workshop on Human and Social Aspect of

Software Quality, pages 143–150, 2016.

[28] Alexandre Braga and Ricardo Dahab. Towards a Methodology for the Development
of Secure Cryptographic Software. In The 2nd International Conference on Software

Security and Assurance (ICSSA 2016), 2016.

[29] Alexandre Braga and Ricardo Dahab. A Longitudinal and Retrospective Study on
How Developers Misuse Cryptography in Online Communities. In XVII Simpósio

Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSeg’17),
Brasília, DF, Brazil, 2017.

[30] Alexandre Braga and Ricardo Dahab. Understanding the Field of Cryptographic
Software Security. Journal of Information and Software Technology, 2017.

[31] Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro, and Marco
Vieira. Practical Evaluation of Static Code Analysis Tools for Cryptography: Bench-
marking Method and Case Study. In The 28th IEEE International Symposium on

Software Reliability Engineering (ISSRE). IEEE, 2017.

[32] Alexandre Braga and Eduardo Morais. Implementation Issues in the Construction
of Standard and Non-Standard Cryptography on Android Devices. In The 8th Inter-

national Conference on Emerging Security Information, Systems and Technologies,
pages 144–150, nov 2014.

[33] Alexandre Braga and Erick Nascimento. Portability evaluation of cryptographic
libraries on android smartphones. pages 459–469. Springer, 2012.

[34] Alexandre Braga and Daniela Schwab. Design Issues in the Construction of a Cryp-
tographically Secure Instant Message Service for Android Smartphones. In The 8th

Inter. Conf. on Emerging Security Information, Systems and Technologies, pages
7–13, nov 2014.

[35] Alexandre Braga and Daniela Schwab. The Use of Acceptance Test-Driven Devel-
opment to Improve Reliability in the Construction of Cryptographic Software. In
The 9th International Conference on Emerging Security Information, Systems and

Technologies (SECURWARE 2015)., 2015.

[36] Alexandre Braga, Daniela Schwab, Eduardo Morais, Romulo Neto, and André Van-
nucci. Integrated Technologies for Communication Security and Secure Deletion on
Android Smartphones. International Journal On Advances in Security, 8(1&2):28–
47, 2015.

[37] Alexandre Braga, Romulo Zanco Neto, André Vannucci, and Ricardo Hiramatsu.
Implementation Issues in the Construction of an Application Framework for Secure
SMS Messages on Android Smartphones. In The 9th Inter. Conf. on Emerging

Security Information, Systems and Technologies, pages 67–73. IARIA, 2015.

147

[38] Alexia Chatzikonstantinou, Christoforos Ntantogian, Christos Xenakis, and Geor-
gios Karopoulos. Evaluation of Cryptography Usage in Android Applications. 9th

EAI International Conference on Bio-inspired Information and Communications

Technologies, 2015.

[39] Brian Chess and Jacob West. Secure programming with static analysis. 2007.

[40] Sandy Clark, Travis Goodspeed, Perry Metzger, Zachary Wasserman, Kevin Xu,
and Matt Blaze. Why (Special Agent) Johnny (Still) Can’T Encrypt: A Security
Analysis of the APCO Project 25 Two-way Radio System. In Proceedings of the

20th USENIX Conference on Security, SEC’11, page 4, Berkeley, CA, USA, 2011.
USENIX Association.

[41] Codenomecon. The Heartbleed Bug, 2014.

[42] Nicolas Courtois. Attack on ECDSA in bitcoin, 2014.

[43] CYBSI. Avoiding The Top 10 Software Security Design Flaws, 2014.

[44] Gabriel Díaz and Juan Ramón Bermejo. Static analysis of source code security:
Assessment of tools against SAMATE tests. Information and Software Technology,
55(8):1462–1476, 2013.

[45] Thai Duong and Juliano Rizzo. Cryptography in the Web: The Case of Crypto-
graphic Design Flaws in ASP.NET. EEE Symposium on Security and Privacy, pages
481–489, may 2011.

[46] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An
empirical study of cryptographic misuse in android applications. ACM SIGSAC

conference on Computer & comm. security (CCS’13), pages 73–84, 2013.

[47] Ksenia Ermoshina, Harry Halpin, and Francesca Musiani. Can Johnny Build a
Protocol? Co-ordinating developer and user intentions for privacy-enhanced secure
messaging protocols. 2017.

[48] Sascha Fahl, Marian Harbach, and Thomas Muders. Helping Johnny 2.0 to encrypt
his Facebook conversations. In Proceedings of the Eighth . . . , 2012.

[49] Sascha Fahl, Marian Harbach, and Thomas Muders. Why Eve and Mallory love
Android: An analysis of Android SSL (in) security. In ACM conference on Computer

and communications security, pages 50–61, 2012.

[50] N Ferguson, B Schneier, and T Kohno. Cryptography Engineering: Design Principles

and Practical Applications. Wiley, 2011.

[51] Frost&Sullivan and ISC2. The 2015 (ISC)2 Global Information Security Workforce
Study, 2015.

148

[52] J. Gajrani, M. Tripathi, V. Laxmi, M. S. Gaur, M. Conti, and M. Rajarajan. spec-
tra: A precise framework for analyzing cryptographic vulnerabilities in android
apps. In 2017 14th IEEE Annual Consumer Communications Networking Confer-

ence (CCNC), pages 854–860, Jan 2017.

[53] SL Garfinkel and RC Miller. Johnny 2: a user test of key continuity management
with S/MIME and Outlook Express. In Proceedings of the 2005 symposium on

Usable . . . , pages 13–24, 2005.

[54] Martin Georgiev, S Iyengar, and Suman Jana. The most dangerous code in the
world: validating SSL certificates in non-browser software. In Proceedings of the

2012 ACM conference on Computer and communications security - CCS ’12, pages
38–49, 2012.

[55] Matthew Green and Matthew Smith. Developers are Not the Enemy!: The Need
for Usable Security APIs. IEEE Security and Privacy, 14(5):40–46, 2016.

[56] Peter Gutmann. Lessons Learned in Implementing and Deploying Crypto Software.
Usenix Security Symposium, 2002.

[57] Shon Harris. CISSP All-in-One Exam Guide, 6th Edition. All-in-One. McGraw-Hill
Education, 2012.

[58] M Howard, D LeBlanc, and J Viega. 24 Deadly Sins of Software Security: Pro-

gramming Flaws and How to Fix Them. McGraw-Hill Education, 2009.

[59] Michael Howard and Steve Lipner. The Security Development Lifecycle. Microsoft
Press, Redmond, WA, USA, 2006.

[60] Soumya Indela, Mukul Kulkarni, Kartik Nayak, and Tudor Dumitraş. Helping
Johnny encrypt: toward semantic interfaces for cryptographic frameworks. Proc. of

the ACM International Symposium on New Ideas, New Paradigms, and Reflections

on Programming and Software - Onward! 2016, pages 180–196, 2016.

[61] Tibor Jager and Juraj Somorovsky. How to break XML encryption. Proceedings

of the 18th ACM conference on Computer and communications security - CCS ’11,
page 413, 2011.

[62] Pascal Junod. Towards Developer-Proof Cryptography. Technical report, EPFL,
Summer Research Institute, Lausanne, Switzerland, 2016.

[63] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. 2006.

[64] Muhammad Umair Ahmed Khan and Mohammed Zulkernine. On Selecting Appro-
priate Development Processes and Requirements Engineering Methods for Secure
Software. 33rd Annual IEEE International Computer Software and Applications

Conference, pages 353–358, 2009.

149

[65] Hugo Krawczyk. The order of encryption and authentication for protecting com-
munications (or: How secure is SSL?). Advances in Cryptology—CRYPTO 2001,
2001.

[66] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A Tax-
onomy of Computer Program Security Flaws. ACM Comput. Surv., 26(3):211–254,
1994.

[67] Adam Langley. Apple’s SSL/TLS "Goto fail" bug, 2014.

[68] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why Does Cryp-
tographic Software Fail?: A Case Study and Open Problems. In 5th Asia-Pacific

Workshop on Systems, APSys ’14, pages 7:1—-7:7, New York, NY, USA, 2014.
ACM.

[69] Nancy Leveson. Engineering a Safer World Systems Thinking Applied to Safety.
MIT Press, 2011.

[70] V Gayoso Mart and L Hern. Implementing ECC with Java Standard Edition 7.
International Journal of Computer Science and Artificial Intelligence, 3(4):134–142,
2013.

[71] Gary McGraw. Software Security: Building Security in. 2006.

[72] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied

cryptography. CRC press, 1996.

[73] Mark S Merkow and Lakshmikanth Raghavan. Secure and Resilient Software De-

velopment. CRC Press, 2010.

[74] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. The POODLE attack, 2014.

[75] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. “Jumping Through
Hoops”: Why do Java Developers Struggle With Cryptography APIs? The 38th

International Conference on Software Engineering, 2016.

[76] NIST. Cryptographic Module Validation Program (CMVP).

[77] NIST. Software Assurance Metrics And Tool Evaluation (SAMATE).

[78] NIST. Security Requirements for Cryptographic Modules (FIPS PUB 140-2), 2001.

[79] OWASP. Cryptographic Storage Cheat Sheet.

[80] OWASP. OWASP Benchmark Project.

[81] OWASP. OWASP Testing Project, 2015.

[82] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for students

and practitioners. Springer Science & Business Media, 2009.

150

[83] PMI. Software Extension to the PMBOK R© Guide. Project Management Institute,
5 edition, 2013.

[84] PMI and AgileAlliance, editors. Agile Practice Guide. Project Management Insti-
tute, 2017.

[85] Roger Pressman and Bruce Maxin. Software Engineering: A Practitioner’s Ap-

proach (8th ed.). 8th edition, 2014.

[86] Juliano Rizzo and T Duong. Practical padding oracle attacks. Proc. of the 4th

USENIX conf. on offensive technologies (2010), pages 1–9, 2010.

[87] Phillip Rogaway. The Moral Character of Cryptographic Work. Technical report,
IACR-Cryptology ePrint Archive, 2015.

[88] Safecode. Fundamental Practices for Secure Software Development, 2011.

[89] B Schneier. Cryptographic design vulnerabilities. Computer, (September):29–33,
1998.

[90] Bruce Schneier. Designing Encryption Algorithms for Real People. Proceedings of

the 1994 workshop on New security paradigms., pages 98–101, 1994.

[91] Adi Shamir and Nicko Van Someren. Playing ’hide and seek’with stored keys.
Financial cryptography, pages 1–9, 1999.

[92] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.

[93] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chenjie. Analysis
on Password Protection in Android Applications. In P2P, Parallel, Grid, Cloud

and Internet Computing (3PGCIC), 2014 Ninth International Conference on, pages
504–507, nov 2014.

[94] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chenjie. Modelling
Analysis and Auto-detection of Cryptographic Misuse in Android Applications. In
IEEE 12th International Conference on Dependable, Autonomic and Secure Com-

puting (DASC), pages 75–80, 2014.

[95] skype.com. Does Skype use encryption?

[96] Nigel Smart, Vincent Rijmen, Martijn Stam, Bogdan Warinschi, and Gaven Watson.
Study on cryptographic protocols. 2014.

[97] Ian Sommerville. Software Engineering. International Computer Science Series.
Pearson, 2011.

[98] source.android.com. Android Encryption, 2017.

[99] Supremo Tribunal Federal. STF inicia audiência pública que discute bloqueio judi-
cial do WhatsApp e Marco Civil da Internet, 2017.

151

[100] Michael Sweikata, Gary Watson, Charles Frank, Chris Christensen, and Yi Hu.
The usability of end user cryptographic products. In 2009 Information Security

Curriculum Development Conference on - InfoSecCD ’09, pages 55–59, New York,
New York, USA, 2009. ACM Press.

[101] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. Bug characteristics in open source software. Empirical Software Engineering,
19(6):1665–1705, 2014.

[102] telegram.org. Telegram MTProto Mobile Protocol, 2017.

[103] US-CERT. The FREAK attack, 2015.

[104] John Viega and Gary McGraw. Building Secure Software: How to Avoid Security

Problems the Right Way. 2001.

[105] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. Bug characteristics in blockchain
systems: a large-scale empirical study. In Proceedings of the 14th International

Conference on Mining Software Repositories, pages 413–424. IEEE Press, 2017.

[106] Sam Weber, Paul A Karger, and Amit Paradkar. A software flaw taxonomy: aiming
tools at security. ACM SIGSOFT Software Engineering Notes, 30(4):1–7, 2005.

[107] whatsapp.com. WhatsApp Encryption Overview, 2017.

	Introduction
	Terminology adopted by this text
	Structure of this thesis
	Purpose and scope
	Research methodology and main publications
	Findings and contributions
	Main conclusions
	Future improvements
	Organization of the text

	Published works
	Empirical studies in online communities
	Mining Cryptography Misuse in Online Forums
	A Longitudinal and Retrospective Study on How Developers Misuse Cryptography in Online Communities

	Evaluation of automated tools for cryptography
	A Survey on Tools and Techniques for Programming and Verification of Secure Cryptographic Software
	Practical Evaluation of Static Analysis Tools for Cryptography

	Development methods for secure crypto software
	Towards a Methodology for the Development of Secure Cryptographic Software
	Understanding the Field of Cryptographic Software Security

	Discussion
	The need for systematic methods in cryptographic software security
	A running example for designing cryptographic software
	Code vulnerability, design flaw, and cryptography misuse
	Cryptographic software security and secure software engineering
	Secure software engineering and secure cryptographic software
	Software assurance for cryptographic software security
	Risk management for cryptographic software security

	A systematic approach to cryptography in software security
	Software requirements for cryptographic software security
	Software design for cryptographic software security
	Software construction for cryptographic software security
	Software testing for cryptographic software security

	The case for cryptographic software security

	Conclusion
	Future directions
	Final message

	Bibliography

