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Resumo

O sistema de memória dos computadores tem se baseado fortemente no uso de memó-
rias voláteis para prover um bom desempenho. A tecnologia SRAM é utilizada como um
intermediário que acelera o acesso à memória principal, comumente composta pela tec-
nologia DRAM. Memórias não-voláteis são colocadas como memórias secundárias. Pelo
fato dos dados persistentes estarem armazenados no nível de memória mais distante do
processador, eles normalmente são manipulados de maneira indireta através de cópias
transientes. Tais cópias transientes, além de possívelmente estarem presentes em mais de
um nível de memória volátil, podem não ter a mesma forma de suas formas persistentes,
o que leva à necessidade de uma tradução entre essas formas. Tecnologias emergentes
de memórias não-voláteis (NVMs) prometem possibilitar a existência de dados persisten-
tes na memória principal, permitindo que os mesmos sejam manipulados diretamente, e
potencialmente reduzindo a quantidade de cópias transientes. Infelizmente, NVMs ainda
não estão amplamente disponíveis no mercado, e pesquisas em seu uso são normalmente
feitas através de simulação. Neste documento é apresentado um simulador que tem como
fim explorar o uso de NVMs na memória principal. Por enquanto, a tecnologia DRAM
provê um tempo de acesso inferior ao das NVMs, restringindo o uso de NVMs na memória
principal em questão de desempenho. São mostrados aqui dois cenários para o uso do
simulador. No primeiro caso, há a utilização de uma memória principal composta apenas
de NVM. Como NVM é mais lenta, são observados certos slowdowns de até 5,3, mas em
alguns programas o desempenho é marginalmente afetado. Em um segundo caso, há a
exploração da memória híbrida, onde DRAM e NVM coexistem na memória principal.
Uma API, chamada NVMalloc, é fornecida para permitir que programas consigam utili-
zar a não volatilidade presente na memória principal. É mostrado que há casos onde a
manipulação direta dos dados persistentes é vantajosa, mas existem outros em que ainda
é preferível trabalhar com cópias transientes na DRAM. É esperado que esse simulador
seja utilizado como um ponto de partida para futuras pesquisas sobre o uso de NVMs.



Abstract

Computer memory systems have relied on volatile memories to enhance their performance
for quite a time by now. SRAM technology is used at the closest layer to the CPU to ac-
celerate the access time to the main memory, which is traditionally composed by DRAM
technology. Non-volatile memories are left as secondary memories, serving as an exten-
sion of the main memory and allowing data to be persisted. Persistent data, for residing
in the farthest memory layer from the CPU, are commonly not manipulated directly.
They are indirectly manipulated with their transient copies that may differ, in form, from
their persistent form. These transient copies will also be scattered throughout the several
volatile memories in the memory hierarchy, incurring in data replication. This scenario
may change with the adoption of emerging non-volatile memories (NVMs), like phase
change memory for example, that may allow persistent data to exist in the main mem-
ory. This might allow a direct manipulation of persistent data, accelerating their access
time and probably reducing the usage of replications. Unfortunately, NVMs are still not
broadly available on the market, and research on their usage is still mostly done through
simulation. We present a simulator to explore the usage of NVMs in the main memory.
We demonstrate the usage of the simulator in two scenarios, the first where DRAM is
completely replaced for NVMs, and the second in which a hybrid architecture employ-
ing DRAM and NVM is explored. For now, DRAM provides faster access times when
compared with NVMs. We show that the use of a main memory composed exclusively
of NVMs may incur in slowdowns as high as 5.3, but may be negligible in some cases.
In the hybrid main memory scenario, we showed that, although persistent data can be
manipulated directly, there are cases in which is still better to work with transient copies,
depending on the frequency of usage of the persistent data. To allow programs to make
use of the non-volatility presented in main memory, we provide an API, called NVMalloc,
that is able to allocate persistent memory in the main memory. We expect the simulator
to be a starting point for future researches regarding the usage of NVMs.
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Chapter 1

Introduction

The way data is manipulated by the software is highly influenced by how the hardware is
built and organized. Transient data, that do not need to outlive a program’s execution, can
be stored in volatile memories, while persistent data cannot. Current memory systems are
composed by several memory technologies, each serving for a purpose. These memories are
in a hierarchical organization, letting smaller but faster memories closer to the processor
and slower but denser memories farther [43]. These smaller and faster memories are
volatile, usually built using the Static Random Access Memory (SRAM) technology for
caching and Dynamic Random Access Memory (DRAM) technology as main memory,
and so responsible for dealing with transient data. The slower and denser technologies
are non-volatile memories, usually with Hard Disk Drives (HDDs) and Solid State Drives
(SSDs), responsible for providing a high storage capacity and a place to store persistent
data. The volatile memories role in this context is usually known as working memory,
and the non-volatile memories role is known as storage memory.

The urge for better qualities in entertainment media [24], the Internet of things
(IoT) [22] and the growth in big data usage [97] may indicate that the amount of data
will grow in the coming years, to an amount that current memory system may not be
suitable to handle [11,32,88,93]. The current memory system, organized as it is, relies too
much on volatile memory to lower its latency, that consumes energy just to hold the data.
As there are several levels of volatile memory, such as main memory and cache, there
is the replication of data in these, resulting in more than one memory holding the same
data. Besides that, persistent data must be manipulated using transient copies of itself.
The data replication through the hierarchy might result in an excess of energy consump-
tion and a suboptimal memory capacity utilization, and the incapacity of manipulating
persistent data directly may lead to performance loss.

A solution to adapt the memory system to the future amount of data is to rely less on
volatile memories, trying to get persistent data closer to the processor and eliminate data
replication through the memory hierarchy. Emerging non-volatile memory technologies,
being collectively known as Non-Volatile Memories (NVMs) [23, 38, 54, 100], may allow
persistent data to exist closer to the processor. They are byte-addressable, have access
timings similar to DRAM and SRAM, and might be as dense as current storage memories.
Actually, these new memory technologies are good candidates to fulfill the role of both
storage and working memory [26, 67, 89, 94]. This opens the possibility to bring both
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working and storage memory to a same level in the memory hierarchy. Where NVMs
will be used in the memory hierarchy and how software will take advantage of them are
questions that arise when one considers this solution to adapt the memory system.

Unfortunately, NVMs are still not widely accessible, making it a hard task to explore
their usage. For this reason, researchers usually rely in the use of simulators. Simulation of
a machine through software is something that has been done for at least 60 years [36] and
it is a well-known technique to optimize the exploration of computer’s architecture [96]. In
order to facilitate the exploration of NVMs usage in the memory system, we propose a new
customized simulator. The simulator is able to simulate a computer with a main memory
composed partially or totally of NVM. In Chapter 2 we present a deeper discussion about
the reasons that made the current memory systems to take their current form, bringing
to the context where this work was made. In Chapter 3, we describe the simulator, how it
was made and its characteristics. We also describe an Application Programming Interface
(API) to be used together with the simulator, called NVMalloc, to explore the possibility
of usage of a hybrid main memory by the software.

In Chapter 4, we demonstrate the usage of the simulator for both a partial and a
total NVM adoption as main memory. Despite of the promises from the NVMs, they are
still slower than the DRAM technology. The results show that utilizing a main memory
based only on NVMs may result in slowdowns as high as 5.3, but it is also, in some
cases, negligible. Considering a hybrid approach, where the main memory is made by
both DRAM and NVM, we show how advantageous it can be to persist data in the main
memory, and discuss when still is worth to transfer this data to DRAM.

Finally, in Chapter 5, we conclude and discuss possible enhancements to the proposed
simulator. Results obtained during the development of the simulator were already pub-
lished in two occasions. The first as a short paper [70] and the second as a full paper [69].
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Figure 2.1 ilustrates an overview of the computer system and its two sides, CPU and
memory system, both connected by an interconnection system, with data flowing in both
ways. The amount of data required by the CPU will be dictated by the software that it
is running. The same is valid to the amount of data that will go back to the memory
system. Taking this into account, the enchancement of this relationship is possible by
both software, adapting it to take the best performance, and hardware, designing the
memory system according to the software.

Despite having passed more than 60 years, concepts that appeared in the draft of the
Electronic Discrete Variable Computer (EDVAC) [66] are still present in the current com-
puter architecture. Hence, we will use this computer, that is simple for current standards,
as a starting point to explore the concepts that surrounds the computer architecture and
the memory hierarchy.

2.1 Memory system from a hardware perspective

One of the first modern computers was the Electronic Discrete Variable Computer (ED-
VAC) [37]. It was built for military purposes and to be one of the most performant
computers of its time. Its memory was a mercury delay line memory [30]. This kind of
memory utilized mechanical waves propagated in a material, mercury in this particular
case, to store the data. Since a mechanical wave tends to lose energy as it travels through
a material, it needs to be reestimulated from time to time in order to keep the wave, and
in this way, to keep the data. If the reestimulation did not happen, the wave would be
lost, and so would the data. The medium that data are kept in a memory was named
memory cell, and it usually defines a memory technology. In the example of the delay
line memory used in EDVAC, the mercury was the memory cell.

The characteristic that memory cells need to be reestimulated in order to keep the data
leads to an inevitable characteristic for these kind of memories, that they are volatile. A
volatile memory is a memory that can not hold data without a constant supply of energy.
A volatile memory may not be the most reliable of the memories, since a power loss would
mean that all data in it will be lost. This is the reason why EDVAC also had a magnetic
drum memory [29, 50] as a non-volatile memory. The drum memory was used to store
important data that needed to be kept even after the computer was turned off. It is said
that, when data need to be stored in a non-volatile memory, they need to be persisted,
and these data are labeled as persistent data. In contrast to persistent data, those that
are not needed to be persisted are labeled as transient data.

One may ask why the EDVAC did not have only the drum memory, since it is non-
volatile and, in principle, could store data just like the mercury delay line memory. Per-
formance was the answer. The mercury delay line memory had an average of 1000 times
lower access time than the magnetic drum memory, being faster to provide data. The
downsides of the mercury delay line memory were that it was volatile and had a little
storage capacity when compared to the magnetic drum memory. In addition to the drum
memory, EDVAC had also punched and magnetic tapes [50, 82]. All of these additional
storage memories were non-volatile, however they also had a higher access time.
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access time, and smaller storage capacity. Cache memories purpose is to hold recent data
that was requested by the CPU in chunks known as cache lines, and keep them as much
as the CPU needs them, reducing the number of accesses to the working memory. Since
it is faster to access cache than the main memory, the more a memory system can rely
on cache, the faster it will be. Caches work best when the program displays good spatial
and/or temporal locality behaviors.

2.2 Memory system from a software perspective

Cache memories are invisible to programs. That means that programmers do not need
to worry about managing them2. On the other hand, the working memory and storage
memory are handled by programs. As mentioned, working memory is for temporal data,
and storage memory is for persistent data. A program must know if data is persistent
in order to require its storage to the storage memory. An issue that a programer may
encounter is when the amount of transient data from a program surpasses the main
memory storage capacity. When it happens, the storage memory can be used as an
extension from the working memory to store transient data, making the working memory
to behave like a cache memory to the storage memory. Initially, in computers like EDVAC,
this extension of working memory to the storage memory were left as a responsibility of
the programs. Later, a concept called virtual memory [25, 33, 51, 83] was implemented
in computer systems that allows this management to be made in an automatic way,
decoupling this responsability from the program.

Indeed, management of computer resources is far from trivial. Operating Systems
(OS) [83] are employed in computational systems to do it. An OS provides an abstraction
of the hardware to programs, so programs do not need to worry about every aspect of the
hardware. An example is virtual memory. Paging [25, 83] is a method of implementing
it. In Paging, the memory is divided in chunks called pages. If a memory access does
not have its page loaded in main memory, a page fault will occur, and the page will be
allocated in main memory. When the main memory is full of pages and a new one is
needed, a page from the main memory will be transfered to storage memory, and a new
page will be allocated in its place. This page that was moved to storage memory may
be accessed again, and if so, it will be moved back to the main memory in the place of
another page that will be moved to storage memory. This operation of swapping pages
between main memory and storage memory is called swap. This mechanism is completely
handled by the OS, and oftentimes programs do not need to be aware of it.

Besides providing an abstraction of the hardware to programs, the OS also comes to
enhance the usage of computational resources. Since the memory system might not always
give the fastest access times, the CPU might become idle when waiting for data. Trying to
maximize the CPU usage, OSs implement a concept known as multiprograming [83], that
allows the scheduling, at the same time, of two or more programs to be executed. The
programs are organized in a queue, usually known as execution queue, and if a program

2Even if programmers do not need to manage the cache memory, they should be aware of it, since
keeping spatial locality and temporal locality in their programs should improve their performance.



CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 16

issue an instruction that may result in a long access time to the memory system, it stops
and goes to the end of the execution queue, waiting for its data to arrive, yielding the
CPU to another program. An access to the storage memory usually is considered a long
access time, resulting in a program to go to the end of the execution queue.

The storage memory, as already stated, can store both transient and persistent data.
Besides being responsible for automatically manage the exchange of transient data be-
tween working and storage memory, the OS also provides the access to persistent data
in storage memory. This access occurs through system calls (syscalls) to read and write
data in storage memory. The persistent data is stored in an abstract structure called
file, and the whole storage memory, excluding the swap partition, is organized by a file
system [83]. Every file, when accessed, needs to be loaded to the main memory. In this
way, it reinforces the terminology of storage memory as secondary memory, being treated
as an I/O device.

Usually, transient data, when need to be persisted, can not be persisted in the same
format that they are in the transient form. For example, the several nodes from a linked
list might be sparse, and if so, to persist them, they will need to be arranged together
in memory in order to be inserted into a file. If this file is ever accessed to recover
the linked list, the program might need to translate it back to its transient form. This
need of translation between transient and persistent form is known to be a burden to
the programmers. It is so that several programming languages have proposed special
interfaces to aid the programmers in dealing with persistent data [4, 5, 79]. PS-algol [4]
for example extends the S-algol language to use instructions in a key-value manner that
automatically translates transients to persistent data and vice-versa. There is also the
possibility to map an entire file to the program’s address space, acessing it directly like
transient data, something known as memory mapped file [84], removing several syscalls
that would be needed to modify them. Actually, memory mapped files are implemented
using syscalls, so the OS is the one that makes it possible and is the one responsible for
managing it. If a file is memory mapped, it will be divided in pages and loaded to working
memory as soon as the pages are being accessed.

2.3 Current memory technologies and future memory

systems

Besides all the enhancements that were made in the memory system, the division of its
memories has not changed that much since the EDVAC [64]. Figure 2.3 shows the current
state of the memory system [43]. Dynamic Random Access Memory (DRAM) as the main
memory, backed by Hard Disk Drives (HDDs) and Solid State Drives (SSDs)3, and being
accelerated by several levels of cache made with Static Random Access Memory (SRAM).

Several levels of caches were implemented to exploit as much as possible the charac-
teristic of being smaller means being faster. The closest cache level to the CPU, called

3Although the drum memories and punched cards/tapes are now history, magnetic tapes are still
employed as storage memories [20], but they are not in the majority of the computer systems and are
only used in specific cases.
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Non-Volatile Memory (NVM)6 [38, 54, 100]. Magnetoresistive Random Access Memory
(MRAM), like Toogle MRAM [28] and Spin-Transfer Torque RAM (STTRAM) [41], and
Phase-Change Memory [90] are examples of NVMs. These non-volatile memories, as
shown in Figure 2.4, have the potential to rivalize the storage capacity from HDDs and
SSDs, and the access time of DRAM and SRAM, being suitable to fullfill any role in the
memory hierarchy.

As storage memory, indicated in Figure 2.4b, NVMs would provide a faster storage
memory than current tecnologies. NVMs, in contrast to HDDs and SSDs, are byte-
addressable, being able to connected to the memory bus just like the main memory,
removing the overhead of being treated as an I/O device. Several works already considered
this possibility [14,19,27,92], proposing file systems that would take advantage from this.
In most of them, they try to exploit the possibility of execute-in-place (XIP), that allows
to access data directly from the storage memory, eliminating the need of a transient copy
in the working memory7.

As working memory, NVMs may share the role with the DRAM technology, as indi-
cated in Figure 2.4c, allowing data to be persisted in its transient format. As NVMs still
struggle in beating DRAM’s access time and endurance, this seems to be the most fea-
sible way to adopt NVMs for working memory. Just like storage memory, several works
considered this possibility [13, 17, 86, 99]. They propose a new Aplication Programing
Interface (API) to manage this new situation where there is non-volatile memory in the
main memory. The use of NVMs as working memory tends to have a better performance
than utilizing other memory technologies for this end, like in eNVy [91], that proposes
the utilization of flash technology in the main memory.

Even if NVMs still do not surpass DRAM’s performance, some researchers have con-
sidered them as cache memories [95, 99], as indicated by Figure 2.4d. SRAMs are too
expensive and, since they are volatile, they spend a considerable amount of energy just
for holding the data. These are adversaties that do not exist in NVMs. Actually, like
already said, volatile memories may not be the most reliable ones, since they lose their
data when energy is removed. Whole-System Persistence [65] for example considered a
whole main memory made with NVMs, as indicated in Figure 2.4e.

If NVMs may fulfill the roles of working and storage memory, they might be able to
fullfill them both at the same time, becoming an Universal Memory [26,67,89,94] (that is,
a memory that plays both roles). If it happens, the hierarchy levels that refers to working
and storage could be collapsed in a single level, like indicated by Figure 2.4f. A few works
considered this possibility [46, 47, 57, 62, 68, 73]. NVM DUET [57] for example evaluated
memory bank paralelism to try to hide NVM latencies when treating both transient
and persistent data in the same memory. Memorage [46] investigated the possibility of
controlling, by software, portions of the same memory to fulfill both working and storage
roles. Reducing the levels of the memory hierarchy can lead to less useless data replication

6Despite slight nuances in their meaning, NVM and all the following terms commonly found in the
literature can be used interchangeably: Storage-Class Memory (SCM), Byte-Addressable Persistent Ran-

dom Access Memory (BPRAM), Nonvolatile Random Access Memory (NVRAM), Persistent Random

Acceess Memory (PRAM) and Persistent Memory (PM).
7It is worth to point out that XIP is already a reality with NOR Flash technology [8], so it is not an

exclusivity from NVMs.
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compared to the execution on a real machine, and flexibility is how easy is to introduce
changes in your model. Usually, to achieve higher precision, the simulator needs to lower
the abstraction level, increasing the time that is need to execute the simulation.

It is also important to know if the simulator is able or not to simulate an OS. If a
simulator is capable of it, it is called a Full-System Simulator. If not, it is said that
the simulator only simulates the user space, and is called user space simulator or partial
simulator. Examples of Full-System simulators are QEMU, MARSSx86 [71], Simics [60]
and Gem5 [9]. To consider the execution of a OS in the simulation may inccur in a high
overhead in simulation. For that reason, some simulators, like Simics and Gem5, also
provide partial simulation as well.

The trend for manycore architectures has driven the creation of software that are
multithreading, and the same occurs with simulators. MCSimA+ [2], Sniper [12] and
ZSIM [78] are simulators that were built targeting the simulation of manycore architec-
tures. They promise to have a good balance between abstraction level and precision, to
have a low simulation time, being partial simulators but providing a thin layer of OS
functions, that allow process schedule to processors and even time sharing. These simula-
tors utilize dynamic binary translation, provided by the PIN [59] instrumentation tool, to
input code inside a binary that is running in the simulator. This inputted code updates
its timing model, and leave the functional simulation to the host machine. Delegating
the functional simulation to the host machines diminishes the simulation overhead, but
restrains its usage for the fact that the target simulated ISA must be the same as the host
machine.

2.5 Problem statement, proposal and contribution

As indicated in Figure 2.4 there are several possibilities to introduce NVMs in the memory
system. Unfortunately, despite the many prototypes that were made [15,31,44,55,58,98],
NVMs are not yet widely accessible, especially in the Dual Inline Memory Module (DIMM)
format [35] that is used by the DRAM. If one wants to use NVMs as main memory, they
can rely on Non-Volatile DIMM (NVDIMM) [75], that are DRAMs modules backed by
Flash memory, storing data to Flash when turned off, and restoring data from Flash
to DRAM on turning on. NVDIMMs uses batteries or the energy from an energized
capacitor to save data in Flash memory in case of a power failure. Intel has announced a
NVM technology in 20158, the 3D XPoint, and has recently released a product that uses
it. The Intel Optane [10] is built using 3D XPoint technology, but is interfaced with the
Non-Volatile Memory Express (NVMe) [16] interface, that uses the Peripheral Component
Interconnect (PCI), an I/O interface, and not the memory bus, making it a secondary
memory, limiting its usage.

As inaccessible NVMs may still be, researches in their utilization are already a reality.
To make it possible, researchers must rely on making prototypes by themselfs, like in
WSP [65], or in the use of simulators, like in Kiln [99]. Those that relies in simulators

8Announced at: https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-
memory-technology/
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face the fact that, usually, the simulator is not ready to work with NVMs, and may need
adaptations. NVM Duet [57] for example had to use both MARSSx86 [71], a full-system
simulator for the x86 architecture, with the DRAMSim2 [77], a main memory simulator.
Memorage [46] modified the Linux kernel to allow to simulate NVMs using the file system.
Since each research creates an environment to test their own proposals, they may not be
able to be reused by other researchers and, even worse, they may not be made public.
Thinking in the struggle that researching the use of NVMs might be, this document
describes a simulator focusing on researches in NVM utilization, and hopes that it may
contribute to future’s researches in this area.

The simulator currently can already simulate the impact of NVMs being deployed as
main memory, like in Figure 2.4c and Figure 2.4e, and is still in development to allow
researches as secondary memory and cache. It is expected that NVMs will continue to
be a hot subject in both academic side, with projects like FireBox [3], and industry side,
with projects like Hewlett-Packard’s The Machine [49], which just highlights the relevance
of the simulator.
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memory technology in which it must be stored. For an example, consider a main memory
composed by DRAM and NVM. Memory requests for persistent data must be routed to
the NVM, while transient ones to the DRAM. To simulate and make use of hybrid main
memories, we created a main memory router called NVMallocAddrMemory, that works
together with a proposed API called NVMalloc, that must be used in the program that
will be inspected by the simulator in order to properly simulate the hybrid main memory
scenario.

3.1 NVMain integration

The NVMain simulator is a trace driven main memory simulator, created with the purpose
of simulating NVMs. It can work with both a precomputed trace of memory requests, or
integrated with a simulator that generates memory requests, like ZSIM.

The integration between ZSIM and NVMain that exists here is the same as made
by the AXLE Project [1]. It was made by modifying the most detailed DRAM’s model
from ZSIM, called DDRMemory, including an interface in it to the NVMain, creating a
new memory model, that is called NVMain inside the ZSIM. This new memory model is
capable of receiving memory requests and calculate the correct latencies for them using
the NVMain. These latencies will depend on the NVMain configuration file that it was
built on. As there are NVMain configuration files for NVMs, this new memory model can
behave like a NVM. With this, the simulator ends up with the following main memory
models:

• Simple: a simple memory model that always returns the same latency in every
access, and does not have support for weave phase;

• MD1: models the main memory with a M/D/1 queue, and does not have support
for weave phase;

• WeaveMD1: same as MD1 but adds support to weave phase;

• WeaveSimple: same as Simple but adds support to weave phase;

• DDR: is the most detailed DRAM model from ZSIM, supports weave phase;

• DRAMSim: utilizes a memory model provided by the DRAMSim2 [77] simulator,
supports weave phase;

• NVMain: utilizes a memory model provided by the NVMain simulator, supports
weave phase.

To properly make use of bound weave scheme, both memory and processor must
support the weave phase. ZSIM counts with the following processor models:

• Null: consider that each instruction spends only 1 cycle to execute, resulting in an
instruction per cycle (IPC) equals to 1, ignoring any memory reference;
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3.2 Hybrid main memory and NVMalloc

To use ZSIM, one must provide a configuration file. One of the parameters from the
configuration file is the main memory. Originally, ZSIM does not support different tech-
nologies in the main memory. We modified ZSIM to allow it, resulting in a change in the
way that the main memory is declared in the configuration file.

In Listing 1 there are two examples of main memory declaration in the ZSIM config-
uration file. One, Listing 1(a), is the original way that the main memory is declared in
ZSIM. The user sets the type of the memory in the parameter type and the number of
memory controllers in the parameter controllers. This way of declaration did not allow
the use of different memory technologies. In the new way (Listing 1(b)), a new keyword
was added called mem_controllers, and inside this parameter, each memory controller
can be declared separately. It is the same way as cache memories are declared in ZSIM, but
in main memory you cannot set a hierarchical relation between them. Every memory con-
troller in the main memory is considered to be at the same level in the memory hierarchy.
Note that in Listing 1(b), we declared two memory controllers, one of the type DDR and
another of the type NVMain. Note that the techIni parameter is specifying a NVMain
configuration file that the memory model is built on. It determines what this memory
will be (DRAM or NVM). Since every memory declaration is made independently from
each other, it is possible to utilize any memory combination, allowing using the NVMain
memory with legacy memories from ZSIM. However, we discourage this practice, because
we believe, for fairness, that every memory presented in the main memory should have
similar abstraction levels, what incur in using the same main memory models, just like
we propose in Figure 3.2.

1 mem = {

2 controllers = 2;

3 type = "NVMain";

4 techIni = "pcm-nvmain.config";

5 envVar = "ZSIMPATH";

6 outputFile = "nvmain.out";

7 };

(a)

1 mem = {

2 mem_controllers = {

3 DRAM = {

4 type = "DDR";

5 };

6 NVM = {

7 type = "NVMain";

8 techIni = "pcm-nvmain.config";

9 outputFile = "nvmain.out";

10 envVar = "ZSIMPATH";

11 };

12 };

13 splitAddrs = false;

14 nvmallocIntegration = true;

15 };

(b)

Listing 1: Configuration file from ZSIM. (a) Original ZSIM main memory declaration.
(b) New way to declare the main memory.

In the scenario where there are volatile and non-volatile memories in the main memory,
the memory requests router should route each kind of data to the correct memory. The
usual ZSIM main memory router is the SplitMemory. It uses memory address interleaving
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to route the memory requests between memory controllers. It does not account for the
kind of memory, making it unsuitable for a hybrid main memory scenario. To support the
use of a hybrid main memory, NVMallocAddrMemory was implemented as a new main
memory router. NVMallocAddrMemory works with a range of address to know if a data
is persistent or not, and if it needs to be routed to the NVM or not. Listing 1(b) shows
a typical NVMallocAddrMemory declaration. It must have a volatile memory and a non-
volatile memory, building up a hybrid memory. NVMallocAddrMemory works together
with NVMalloc, a proposed API that allows software to proper declare data in a region
mapped to a NVM. A limitation of the NVMallocAddrMemory is that it only supports 2
memory controllers. The first must be the volatile memory and the second the NVM.

The file abstraction was used to persist data in the storage memory. With NVM in
main memory, it is possible to persist data without the need to use a storage memory,
allowing programs to decide where to allocate its data. If a datum is persistent, it must
be allocated in a memory region that will be mapped to NVM. To allow programs to
address their data to the correct memory region, we implemented the NVMalloc API.

Listing 2 shows the API provided by NVMalloc, that allows to work with persistent
data in the heap data region of a program, just like transient data. It counts with
two memory allocation functions, pmalloc and pcalloc, and one function for memory
deallocation, pfree. They work just like the malloc, calloc and free provided by the C
standard library, but with the guarantee that the allocated memory address belongs to a
NVM.

The big difference from manipulating transient data is the concept of a root pointer.
A root pointer must point to some data that is able to reach every other data that is
persistent and was allocated with NVMalloc. This pointer will be used as the point of
origin to recover the persistent data in future executions from the software. The function
pset_root is used to determine the root pointer, and the function pget_root is used
to recover the root pointer in future executions.

1 //Allocate size bytes at NVM

2 void *pmalloc (size_t size);

3 //Allocate size bytes at NVM and equal all of them to 0

4 void *pcalloc (size_t nmemb, size_t size);

5 //Free a persistent memory region pointed by p

6 void pfree (void *p);

7 //Defines p as the root of the NVM data. p must point to all of the regions

8 //previously allocated at NVM with pmalloc or one of its variations

9 void pset_root(void *p);

10 //Returns a pointer to the root of the persistent data that was defined with pset_root

11 void *pget_root();

12 //Initialize the persistent region from a dump file

13 //Initialize an empty persistent region if dump file does not exist

14 NVMALLOC_SHR_NVM_STATE *pinit (char *id);

15 //Store the persistent region to a dump file

16 void pdump (void);

Listing 2: Signature of the functions provided by the NVMalloc API.

Since NVMalloc was made to still run in a computer that uses a storage memory
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to persist its data, it works with a file. We call this file that holds information from
persistent data allocated with NVMalloc a dump file. The function pinit is used to read
the dump file and recover the persistent data to the programs address space. The function
pdump is used to write the persistent data allocated with NVMalloc to the dump file. A
program that uses NVMalloc should use the pinit in the beginning of its execution, and
the pdump function in the end of its execution. It is important that a root pointer is
determined during the program execution, using the pset_root function, before the use
of the pdump function.

Listing 3 shows an example of use of the NVMalloc API. It allows a linked list to
be persisted without a file abstraction. After reading a number from the standard input
(line 13), it inserts or deletes an element from the list. In both cases, it uses the function
pget_root to recover the root pointer from the persistent data, that in this case is the
first element of the linked list. After the first node has changed, the root pointer is also
changed with the function pset_root. Persistent allocations of new nodes are made with
the pmalloc function (line 20) and deallocations of these nodes are made with the pfree

function (line 18).
Note that, in this example, persistent data is manipulated in the same way as transient

data. This allows that transient and persistent data to be exchanged between memories
in this hybrid main memory context, without the need of translations between transient
and persistent forms or making use of APIs. For example, the value of the variable v,
that is volatile, is copied to the variable val from a node (line 21), that is persistent. In
general, every data that is allocated with NVMalloc will be mapped to the NVM, and
the rest to the DRAM.

Observe in Listing 3 that pinit is called in the beginning of the program (line 10),
to recover the persistent data, and the pdump() is used by the end of the program (line
31). They are only needed because we still rely on files stored in the storage memory
to persist the data. In a computer with NVM in the main memory, they should not be
needed. To allow the program to run like if it was running in a computer with NVM in
the main memory, we implemented the pinit and pdump functions in ZSIM. In this way,
the program shall not need to use these functions if it is running in ZSIM. An exception
here is with the function pinit, that is still needed to be used by the program, but will
only do a part of its function. We give a further explanation about the necessity of still
calling pinit in the program in Section 3.3.

Listing 4 shows an example of declaration of a process to be executed by ZSIM. The
user declares the command to execute the process in the command parameter. There is
the option to declare a dump file in the parameter dumpFileName in case the process
uses the NVMalloc API. If this is the case, ZSIM will call the pinit function and the
pdump for the process. Therefore, if it is executed together with ZSIM, the process does
not need to use the pdump function and it will already have made a great part of the
pinit function, and the recovery and persistence of the data allocated with the NVMalloc
API are made almost entirely by ZSIM. This is crucial to provide the hybrid main memory
scenario for the process.
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1 #include <stdio.h>

2 #include "nvmalloc.h"

3

4 struct ll_node {

5 int val;

6 struct ll_node *next;

7 };

8

9 int main () {

10 pinit("dump.file");

11 int v;

12 printf ("Type a number (0 removes the 1st. element from the list):\n");

13 fscanf (stdin, "%d", &v);

14 struct ll_node *curr = NULL;

15 if (v == 0) {//Removes the first element from the list

16 struct ll_node *head = pget_root();

17 if (head) curr = head->next;

18 pfree (head);

19 } else { //Adds an element in the beginning of the list

20 curr = pmalloc (sizeof (struct ll_node));

21 curr->val = v;

22 curr->next = pget_root ();

23 }

24 pset_root (curr);

25 printf("List: ");

26 while (curr) {

27 printf("%d ", curr->val);

28 curr = curr->next;

29 }

30 printf("\n");

31 pdump();

32 return 0;

33 }

Listing 3: Example of usage of the NVMalloc API in a program to be run in ZSIM.
Insertion and removal of nodes from a persistent linked list.

3.3 NVMalloc implementation

NVMalloc was built to simulate the hybrid main memory, but it still runs in the current
memory system that has only DRAM in the main memory. Therefore, NVMalloc needs
to make use of files stored in the secondary memory to persist the data through distinct
executions. Actually, every data that was allocated with the NVMalloc API is saved
into a file in the end of the execution, known as dump file, using the pdump function.
The program may restore these persistent data in future executions by using the pinit

function.
Figure 3.3 shows the cycle that a program that works with NVMalloc must follow to

proper persist the data from the NVM. Considering the first execution of the program,
several persistent data should be allocated with functions like pmalloc for example. These
persistent data are allocated in memory regions called carriers. A carrier is the unit that
NVMalloc uses to allocate memory. Every datum that is allocated through NVMalloc
API is allocated inside a carrier. Carriers are allocated using the Unix system call mmap,
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allocating the carriers with mmap and loading their contents with functions like fread.
Observe in Figure 3.3 that the pinit has two functionalities: load persistent data

and persist addresses. When a program that uses the NVMalloc API is executed inside
ZSIM, ZSIM is able to execute pinit and recover the persistent data, but is unable to
map this data to the process address space. Hence, the program still needs to call the
pinit function to map the persistent data to its address space. The pinit call from the
program will perceive that the data is already recovered by ZSIM, and will map them,
using mmap, to its address space, and will not need to proper recover them with fread.

3.4 NVMalloc limitations

NVMalloc was based on another API called Atlas [13]1. Table 3.1 shows NVMalloc
limitations when compared against Atlas. NVMalloc, for now, treats NVM data like in a
big chain of data, that starts from the root pointer until whatever data it can reach. It
does not allow to split NVM into several chains, having more than one root pointer, like
it could be done with a file system. If it is desirable to have more than one root pointer in
NVMalloc, there must exist a structure that points to all the desired root pointers, and
the pointer to its structure will actually be the root pointer.

NVMalloc Atlas
NVM data allocation Yes Yes
Multiple root pointers No Yes
Multithread execution No Yes
Failure resilient No Yes
ZSIM integrated Yes No

Table 3.1: Comparison between NVMalloc and the API it was based on, Atlas.

Atlas allows several root pointers. It works with the concept of persistent regions,
where each region has its own root pointer. A program can work with several persistent
regions, and each of them can be invoked with a function that works like the pinit

function from NVMalloc. This treatment of the NVM resembles the interface that exists
to work with shared memory regions. Each persistent region has its key ID, just like
shared memories.

Persistent regions are implemented in Atlas with files in a temporary file storage
(TMPFS), that resides in main memory, while NVMalloc implements it with files in the
secondary storage. The way that Atlas implements it makes it easier to share persis-
tent regions between processes, since each process just needs to know the key from each
persistent region, and not where it is actually stored. NVMalloc does not support mul-
tiprocessing, and cannot provide functional allocation to more than one process or even
for a multithreaded process.

Energy failures may corrupt the persistent data that resides in NVM. This is mainly
for the fact that there are still volatile memory (caches) between the CPU and the NVM.

1Atlas repository in: https://github.com/HewlettPackard/Atlas
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For example, in the code from Listing 3, where a linked list is persisted using NVMalloc,
imagine that only half of the list is at NVM, and the other half is only at caches. If a
power failure occurs, half of the list will be lost. To make matters worse, imagine that the
root pointer from that list is still not in NVM. If a power failure occurs, all the list will
be lost. Atlas provides functions to prevent data corruption in a power loss, and recovery
routines to when its powered up. NVMalloc does not provide such routines, so it is still
not ready to deal with power failure.

The main characteristic that outlines NVMalloc against Atlas is its integration with
ZSIM, facilitating the exploration, with quantitative results, of the hybrid main memory
scenario. NVMalloc provides the proper allocation of persistent data to NVMs, and we
give examples of its usage in Chapter 4.
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Chapter 4

Simulator case studies - Experimental

results

In this chapter, we show examples of usage of the simulator. In the first experiment,
we remove DRAM from the system and use a main memory composed only by NVM.
As NVMs still cannot match DRAM’s access time, we demonstrate the slowdown that
will occur using only NVMs. After that, we analyze the case of the hybrid main memory,
using the NVMalloc API, showing advantages and disadvantages from this approach when
compared with the traditional persistence in the storage memory.

In total, there are 3 models of NVMs provided by NVMain presented in our tests: a
PCM model based on [15], a Resistive RAM (RRAM) model based on [48], and a STTM
model based on [31]. We also use a DRAM model from NVMain, that represents a DDR3
model working at 1600 MHz. There are two CPU models that we used in our experiments.
One for the first experiment, described in Section 4.1, and another for the experiments in
the hybrid main memory scenario, described in Section 4.2. After we have done the first
experiments, we decided to change the CPU model to reduce the LLC size. Our intention
was to increase the impact that the main memory performance has by using a smaller
LLC. Despite this difference in CPU models, this does not affect our conclusions, since
each experiment is done independently from each other, and we do not compare them
directly.

All the tests were executed in a cluster of computers managed by Condor [56]. All
nodes were running Linux 64 bits (Ubuntu 14.04) with kernel 3.13. ZSIM used PIN 2.14,
and the NVMain version was the most recent obtained from the repository at July 1st,
2016. The compiler utilized was the GNU Compiler Collection (GCC) in version 4.8.5. It
is possible that two executions from the same program in ZSIM shows different results.
Unfortunately, we could not determine a worst-case scenario to these differences. However,
empirically, in tests that we executed more than one time, this difference showed to be
within a maximum of 1% of the highest value.
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4.1 DRAM vs. NVMs

In this first experiment, where we explore the total substitution of DRAM by NVM, we
utilized the out-of-order (OOO) core model, with 3 levels of cache: 64KB of L1 (32KB
for data + 32KB for instructions), 256KB of L2 and 12MB of L3. The CPU frequency
was set to 2.27 GHz. These parameters are based on the Intel Xeon L5640 processor.

Table 4.1 shows the slowdown obtained when executing the STREAM [61] benchmark
using NVMs in comparison with using DRAM. The STREAM benchmark is a software
that has an irregular memory access pattern with a big memory footprint. Big here means
that it uses more memory than the last level cache can hold. We configured STREAM
to work with data of 8 bytes distributed in 3 vectors, each with 6M positions, totalizing
a memory footprint of 144MB, 12 times greater than LLC (12MB).

STTM RRAM PCM
Slowdown 1.5 1.5 5.3
Slowdown AMAT 1.7 1.8 6.8

Table 4.1: Slowdown executing the STREAM benchmarks with NVMs compared to the
execution with DRAM

There are two kinds of slowdown in Table 4.1, the slowdown from the program and the
slowdown in the average memory access time (AMAT) of the main memory. PCM had
the highest slowdowns, with 6.8 slowdown in AMAT and 5.3 in the execution speed. The
other 2 NVMs had almost the same slowdowns, giving only 1.5 slowdown in execution
speed. The slowdown in AMAT shows how slower these memories are when compared
to DRAM, and the slowdown in execution speed shows how slower this program can be
when using NVMs.

STREAM is a benchmark that is made to be memory bound, so the higher latencies
in main memory should affect directly its performance. Programs that are less dependent
from the memory should have a smaller impact in overall performance when utilizing
slower memories. To also analyze programs that were not made to be memory bound,
we ran a few benchmarks from SPEC2006 [40], with the reference input, to evaluate how
they are affected by a slower main memory.

We did not execute all the benchmarks from SPEC2006 due to errors that we could
not resolve and execution times that were too long and we decided to not complete the
simulation. Hence, the benchmarks here presented from SPEC2006 are the ones that we
could execute, and were not chosen for any peculiarity from them when compared with
the others SPEC2006 benchmarks. In total, we took between 1 and 2 months to run this
experiment.

Figure 4.1 shows the AMAT from main memory, in cycles of CPU, from SPEC2006
benchmarks. They follow the pattern from STREAM, with DRAM being the fastest and
PCM the slowest.

The relation of slowdown in execution speed and in AMAT to main memory for
SPEC2006 benchmarks is shown in Figure 4.2. Besides not having the highest values of
AMAT slowdown between the benchmarks, soplex had the highest slowdown, of 1.4, 1.4
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Since the total execution time of both programs is the sum of execution time of step
1 and execution time of step 2, if we are able to skip step 1, the execution time becomes
only the execution time of step 2. This is where we expect that the hybrid main memory
shows its advantage, since it will be able to skip step 1 after its first execution.

The speedup expected from the hybrid main memory is proportional to how repre-
sentative the time of step 1 is in the total execution time. We utilized only one set of
persistent data for each program, resulting in step 1 having a constant time. We vary
the amount of queries, always doubling this amount. Each time we increased the amount
of queries, we reduced the relevance from step 1 to the total execution time. Figure 4.4
exemplifies this fact. In this example, Step 1 takes 10 units of time (10T), while each
query takes 1 unit of time (1T). With only one query, the relevance of step 1 is 90%.
With 8 queries, the relevance of step 1 is 55%, being really close to lose the dominance
in execution time. With 16 queries, the relevance of step 1 is only 38%, resulting in not
being responsible for the majority of the execution time.

As NVMs are slower than DRAM, we expect that both step 1 and step 2 to perform
slower in the hybrid main memory, but from the second execution and beyond, the hybrid
main memory scenario will be able to skip step 1, and gain advantage from the current
main memory (that has only DRAM). As step 2 is also slower in hybrid main memory,
we expect that there will be a point where skipping step 1 will not translate in speedup
anymore. The cost of each query in hybrid main memory is higher than the current main
memory.

Considering the example of Figure 4.4, we expect that the hybrid main memory to
have speedup over the current main memory until 8 queries, where it still is the majority
of the execution time. Between 8 queries and 16, it will probably start to lose, giving
slowdowns when compared to the current main memory.

Two versions of each program were created. One without the NVMalloc API, targeting
the current main memory (DRAM only), and another with the NVMalloc API, targeting
the hybrid main memory (DRAM + NVM). As our simulator still cannot account the
secondary memory access, we make an estimation to be used in the tests. In Section 4.2.1
we explain how this estimation was done. In Section 4.2.2 and Section 4.2.3, we explain
with more details these programs, and in Section 4.2.4 we show the results.

4.2.1 Secondary memory access time estimation

Step 1 involves the access to the secondary storage, something that our simulator is
still unable to account. We estimate the time spent with accesses to secondary storage,
outside of ZSIM, using the versions without the NVMalloc API and with 0 queries. Our
estimation is based on the difference between real time and user time from the output of
the command time of the Unix system. Figure 4.5 shows a typical output of the time

command. User is the time spent in CPU with instructions from user space. Sys is the
time spent in CPU with instructions from the kernel, and real is the program execution
time. Access to the secondary storage are made by kernel code, so it is in the sys time.
The sum between sys and user time may not give real time due to the multiprogramming
implemented by the OS.
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CPU: Intel core i7 3770k
Motherboard: Asus Maximus V Formula
Main Memory: 24GB Corsair Vengeance CML16GX3M2A1600C9
Hard Disk Drive: 1TB Seagate Barracuda ST1000DM003-1CH162
OS: Ubuntu 14.04 kernel 4.4.0-83-generic

4.2.2 Case study 1 - Adaptive Radix Tree

Our first program to explore the hybrid main memory is about the usage of an enhanced
version of a trie [34]. A trie is a data structure that serves to store pairs of keys and
values in an efficient way, acting as an index for fast content retrieval. The term trie was
conceived because of the word reTRIEval, that is just what this structure is made for.
A trie is a tree that stores keys on its edges, and values on its nodes. The keys of a trie
are sequences of symbols, and the set of these symbols that can compose a key is called
alphabet.

Trie and Radix Tree

Figure 4.7a shows and example of a binary trie, that contains the keys AABA, ABAA,
ABBA and ABB. It is called binary because its alphabet contains only two symbols: A

and B. Like already stated, the keys are stored on the edges. They are written inside
the nodes only to illustrate the path that was followed to reach its node, but they are
not actually inside these nodes. To check if a trie contains a certain key, the key is used
to follow a path in the trie, using its symbols from the leftmost symbol to the rightmost
symbol, just like can be seen in Figure 4.8.

In Figure 4.8a, the key ABB is used in a query. It follows the edges, beginning in the
root of the tree, until it reaches a leaf. The last character from ABB is consumed in step
3. When the last character is consumed, it checks if the current node is a leaf or not. If
it is a leaf, then the key is currently in the trie. If it is not a leaf, then it checks if it has a
path for the terminator symbol. A terminator symbol serves to delimitate the end of the
key. It is an extra symbol to be accounted in the trie, as it cannot compose a key. If it
has a path for the terminator symbol, it follows it and reaches a leaf, concluding that the
key is currently in the trie2. In Figure 4.8b is shown an example of search where it is not
needed to make use of the terminator symbol. In Figure 4.8c, the key AAA is used in a
query. In step 3 of the search, it cannot follow any path, being unable to continue, and
concluding that this key is not in the trie. Note that a search for a key that is not in the
trie tends to be faster than a search for one that is, because it does not need to reach a
leaf, and can end in the inner nodes.

Every key has some value associated with it, and it can be any data. For example,
imagine that a trie contains names of people as a key, and telephone number as value.
Considering the trie from Figure 4.8, the leaf where terminates the search for the key
AABA would contain the telephone number of a person called AABA.

2It is possible to implement a trie that does not need to reach a leaf to conclude that it has certain
key. The only requirement is to have some variable that marks if is acceptable a search to end in a certain
inner node
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adaptation is able to build an ART, fill it with a set of keys and persists it using the
NVMalloc API. From the second execution of the program and beyond, if the ART is the
same, it does not need to build it again, since it is persisted from a previously execution.

There is also an adaptation of ART to work with the libvmem, that is a library that
provides an API with the same functionality of NVMalloc. libvmem is a library that
composes, along with another 7 other libraries, the NVM library6, that is a set of libraries
to work with NVMs in the main memory.

4.2.3 Case study 2 - Kevin Bacon Game

Our second program to explore the hybrid main memory is an application that resembles
the Kevin Bacon Game7. In this game, actors are nodes of a graph, and they are connected
with each other if they already participated in the same movie. The player provides the
name of an actor as input and the program answers with the shortest distance between
the given actor and Kevin Bacon. The objective is to dare who ever plays it to provide
an actor that has a certain minimum distance from Kevin Bacon. We utilized a more
generalized approach that does not need to focus only on the actor Kevin Bacon. Two
actors must be provided to the program, and it will answer with a shortest path between
these actors (one of the shortests if more than one exists).

In our implementation, the graph contains nodes representing movies and nodes repre-
senting actors. An actor is connected with a movie if this actor participated in this movie,
and, in other words, a movie is connected with an actor if it belongs to the list of movies
that this actor has worked. Therefore, there are no connections between actors, and there
are no connections between movies. The graph is bipartite, with actors on a side, and
movies on the other. To maintain coherence with the original Kevin Bacon Game, the
length of a path is not the number of connections, or edges, that it contains, but the
number of movies it contains. That ends up being the half of the number of connections.
Figure 4.12 shows an example of a graph from our Kavin Bacon Game, composed by 3
movies and 5 actors.

To find the shortest path between two actors, lets say actor A to actor B, we utilize
the Breadth-First Search (BFS) algorithm [21, Chapter 22, p. 594], starting in the node
of actor A, until it reaches actor B. In this algorithm, it is verified every node that is a
distance of 1 from actor A, and then every node that is a distance of 2, and so on, until
it finds actor B or is unable to increase the distance (in this case, B is unreachable from
A). If there is not a path between A and B, we say that the distance between these nodes
is infinite.

Figure 4.13 shows examples of queries in the graph. Figure 4.13a ilustrates the search
from the actor Hugh Jackman until the actor Kevin Bacon. First, all the nodes from
distance of 1 are verified. As the graph is bipartite, all the nodes with distance 1 from the
actor are referent to movies, and certainly none of them is the aimed actor. After verifying
every node with distance of 1, it starts to verify the ones with distance of 2. In this step,

6Informations about the NVM library can be found at the following url: http://pmem.io/
7A deeper discussion about this game can be found at [18] and, by the time of the writing of this

dissertation, it can be played at the following url: http://www.oracleofbacon.org/
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this attempt, every allocation of nodes and edges are made individually, in a way that may
strongly take to a great sparseness of the data, resulting into a bad spatial and temporal
locality of its data in our implementation of the Kevin Bacon Game.

4.2.4 Results

Listing 6 shows the code from the main function from both our ART and Kevin Bacon
Game program. In the ART implementation, in Listing 6(a), the function pinit is called
to recover the persistent data (line 7 or 9). The function pget_root is called to try
to recover an ART from a previously execution (line 12). If there is a persisted ART,
pget_root will return its address, and the function responsible to build the tree can be
skipped (condition from IF in line 13 will be false), and the execution goes straight to the
makeSearches function (line 16), that is responsible to execute the queries. A query in
our ART program is to check if a certain key is in the ART or not.

The execution from the Kevin Bacon Game follows the same pattern as the ART
program, as can be seen in Listing 6(b). It first calls the pinit function to recover the
persistent data, then tries to get the address of a persisted graph, using the pget_root

function (line 12). If there is a persisted graph, then the execution can skip the function
that builds up the graph (condition from IF in line 13 will be false) and goes straight to
the makeSearches function (line 17), that is responsible to execute the queries. A query
in the Kevin Bacon Game is to return the shortest path between two actors. Note that, in
both examples, the pinit function is used and the pdump function is commented. That
is because we intended to run these applications with ZSIM, and as already explained in
Section 3.3, pinit still needs to be called even in this case, because it still needs to map
the persistent data to the programs address space.

1 int main(int argc, char **argv){

2 if(argc < 3 || argc > 4){

3 printf("[ERROR] Parameters\n");

4 return -1;

5 }

6 if(argc == 4){

7 pinit(argv[3]);

8 }else{

9 pinit("art.dump");

10 }

11 art_tree *artTree;

12 artTree = pget_root();

13 if(artTree == NULL){

14 artTree = buildTheArtTree(argc, argv);

15 }

16 makeSearches(artTree, argc, argv);

17 //pdump();

18 return 0;

19 }

(a)

1 int main(int argc, char **argv){

2 if(argc < 3 || argc > 4){

3 printf("[ERROR] Parameters\n");

4 return -1;

5 }

6 if(argc == 4){

7 pinit(argv[3]);

8 }else{

9 pinit("kb.dump");

10 }

11 pStruct *pRoot;

12 pRoot = pget_root();

13 if( pRoot == NULL ){

14 pRoot = buildTheGraph(argc, argv);

15 }

16 colorThreshold = pRoot->savedColorThreshold;

17 makeSearches(pRoot, argc, argv);

18 pRoot->savedColorThreshold = colorThreshold;

19 //pdump();

20 return 0;

21 }

(b)

Listing 6: Code of the main function from both our (a) ART program and (b) Kevin
Bacon Game.

To compose the hybrid main memory in our tests, we utilized the DRAM with the
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in our ART queries, we utilized the shuf command to generate the queries for the Kevin
Bacon Game.

Differently from the ART program, our Kevin Bacon Game showed much more humble
results. Executing only 1 query, it has 6.64 of speedup, that is close to the speedup that
we got with 1 million queries in ART. The results with 8 queries is almost the crosspoint
between the hybrid main memory performance and the current main memory that has
only DRAM, incurring in only 10% speedup. From 16 queries and beyond, the hybrid
main memory loses its advantage, resulting in only slowdowns.

Veredict from hybrid main memory

As already stated, a program that uses the hybrid main memory must weight the frequency
of usage of its persistent data to check if is worth or not to transfer it to DRAM. The
ART, as stated by their authors [53], can make good use of the cache memories, something
that appeared to be true with our results, reaching speedups up to 32K and hardly having
a slowdown. On the other hand, our implementation of the Kevin Bacon Game utilizes
data in a way much more sparse. Every node can point to nodes that can be far away
from them in the memory. Even the edges from a same node may be afar from each
other in memory. This results in a bad usage of the cache memories and having a tightly
dependence from the performance of the main memory. Fact that takes our Kevin Bacon
Game to start showing slowdowns in much more modest amounts, with 16 queries.

Besides the bad use of the cache memories, the cost of each query in Kevin Bacon
Game might be much greater than the cost of a query from ART. In ART, in the worst
case, the number of nodes visited will be the length of the key, that in our case had a
maximum length of 55. In the Kevin Bacon Game, the number of nodes might be much
higher. For example, as an initial lower bound of visited nodes, all the movies that a
certain actor A has done will be visited in a search starting from A. In our database,
Kevin Bacon has a degree of 135, meaning that in a search starting from him, more than
135 nodes will be visited, and that is more than the double of the worst case from ART.

The case of the ART and Kevin Bacon Game resembles our example from STREAM
and the benchmarks from SPEC2006. Programs that are highly dependent on the per-
formance of the main memory, like Kevin Bacon Game and STREAM, may have its
performance highly debilitated when utilizing NVMs. For these cases, it is worth to bring
the persistent data to the DRAM, making the NVM to act just like a fast storage memory.
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Chapter 5

Conclusion and future work

In this work, we proposed a simulator that is capable to explore the use of NVMs in
the main memory. It was based on an existing integration between the ZSIM and the
NVMain simulator. We allowed the use of more than one kind of memory in the main
memory, permitting the hybrid main memory to be simulated, and proposed an API called
NVMalloc, to be used together with the simulator, in order for a program to be able to
use the non-volatility of the main memory. Results obtained during the development of
this simulator were already published in two occasions. The first as a short paper [70]
and the second as a full paper [69].

To exemplify the usage of the simulator, we first explored the total substitution of
DRAM by NVMS. In total, we explored 3 NVMs: PCM, STTM and RRAM. We tested
this substitution running the benchmark STREAM, that is highly memory bound, and
a few benchmarks from the SPEC2006, that are more CPU bound. We observed that
in STREAM we had slowdowns as high as 5.3, but in SPEC2006, at least half of the
benchmarks had a maximum of 10% slowdown, indicating that the NVMs performance
might be tolerable in some cases.

For the hybrid main memory scenario, we presented two applications that might make
use of this configuration. One, the Adaptive Radix Tree (ART), being a structure for fast
content retrieval, makes good use of the cache memories and have its queries in a well
defined upper bound. The other, Kevin Bacon Game, however, does not worry that much
with good spatial and temporal locality of its data. It also has an undefined upper bound
for its queries, allowing that two different queries might have a drastically difference in its
cost. The results showed that the ART is capable of getting a great advantage in persisting
itself in main memory, showing speedups as high as 32k. In the opposite direction, Kevin
Bacon Game, with only 8 queries, already almost matched the execution from the current
main memory (DRAM only) with the hybrid main memory. In this case, it might be
advantageous to transfer the whole graph from Kevin Bacon Game to DRAM, leaving the
NVM as a fast storage memory.

Future work

As future work, the first thing that we hope to do is to be able to account for the secondary
memory access. Our estimation here is not very accurate, since computers already count
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with hardware prefetchers and are able to overlap execution with secondary memory
access (superscalar processor). We also want to simulate a page table. With the account
of secondary memory access and page table simulation, we will be able to explore the
effects of swapping from main memory to storage memory caused using more memory
than the main memory capacity, possibly having its penalties diminished by the use of
NVMs.

NVMalloc, as indicated by Table 3.1. is still very limited, having plenty space to be
improved. We intend to adapt NVMalloc to be used by multithreaded programs. For its
crash consistency, we can both implement it as software, in NVMalloc, or we can rely on
hardware solutions. ThyNVM [76] for example utilized memory remapping in the main
memory, providing a transparent checkpoint and restore for the software. We can improve
this scheme with other memory remapping approaches, like page overlays [80] for example,
that is used to reduce memory usage but may be adapted as a checkpoint/restore scheme.

There are several points that were not even scratched by our work here, like soft-
ware protocols for accessing both main memory and storage memory, energy consump-
tion, memory endurance, possible data errors, high bandwidth exploration. For this last
one, there are new improvements with DRAM technology, like the Hybrid Memory Cube
(HMC) [45], that are promising. Trying to merge the NVMs with new improvements with
DRAM, and that would be the hybrid main memory, might be a good idea.

The source codes used in this work can be found in a provided repository1. We hope
this simulator to be used in future research about the usage of NVMs and we encourage
its development and enhancement in even cases that we did not mention here.

1Repository URL: https://github.com/Dragonslair5/NVMExploration
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