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Resumo

Com o crescimento e popularização de tecnologias de autenticação biométrica, tais como
aquelas baseadas em reconhecimento facial, aumenta-se também a motivação para se ex-
plorar ataques em nível de sensor de captura ameaçando a eficácia dessas aplicações em
cenários reais. Um desses ataques se dá quando um impostor, desejando destravar um
celular alheio, busca enganar o sistema de reconhecimento facial desse dispositivo apresen-
tando a ele uma foto do usuário alvo. Neste trabalho, estuda-se o problema de detecção
automática de ataques de apresentação ao reconhecimento facial em dispositivos móveis,
considerando o caso de uso de destravamento rápido e as limitações desses dispositivos.
Não se assume o uso de sensores adicionais, ou intervenção consciente do usuário, depen-
dendo apenas da imagem capturada pela câmera frontal em todos os processos de decisão.
Contribuições foram feitas em relação a diferentes aspectos do problema. Primeiro, foi
coletada uma base de dados de ataques de apresentação chamada RECOD-MPAD, que
foi especificamente projetada para o cenário alvo, possuindo variações realistas de ilu-
minação, incluindo sessões ao ar livre e de baixa luminosidade, ao contrário das bases
públicas disponíveis atualmente. Em seguida, para enriquecer o entendimento do que se
pode esperar de métodos baseados puramente em software, adota-se uma abordagem em
que as características determinantes para o problema são aprendidas diretamente dos da-
dos a partir de redes convolucionais, diferenciando-se de abordagens tradicionais baseadas
em conhecimentos específicos de aspectos do problema. São propostas três diferentes for-
mas de treinamento da rede convolucional profunda desenvolvida para detectar ataques
de apresentação: treinamento com faces inteiras e alinhadas, treinamento com patches
(regiões de interesse) de resolução variável, e treinamento com uma função objetivo proje-
tada especificamente para o problema. Usando uma arquitetura leve como núcleo da nossa
rede, certifica-se que a solução desenvolvida pode ser executada diretamente em celulares
disponíveis no mercado no ano de 2017. Adicionalmente, é feita uma análise que consi-
dera protocolos inter-fatores e disjuntos de usuário, destacando-se alguns dos problemas
com bases de dados e abordagens atuais. Experimentos no benchmark OULU-NPU, pro-
posto recentemente e usado em uma competição internacional, sugerem que os métodos
propostos se comparam favoravelmente ao estado da arte, e estariam entre os melhores
na competição, mesmo com a condição de pouco uso de memória e recursos computaci-
onais limitados. Finalmente, para melhor adaptar a solução a cada usuário, propõe-se
uma forma efetiva de usar uma galeria de dados do usuário para adaptar os modelos ao
usuário e ao dispositivo usado, aumentando sua eficácia no cenário operacional.



Abstract

With the widespread use of biometric authentication systems, such as those based on face
recognition, comes the exploitation of simple attacks at the sensor level that can under-
mine the effectiveness of these technologies in real-world setups. One example of such
attack takes place when an impostor, aiming at unlocking someone else’s smartphone,
deceives the device’s built-in face recognition system by presenting a printed image of
the genuine user’s face. In this work, we study the problem of automatically detecting
presentation attacks against face authentication methods in mobile devices, considering
the use-case of fast device unlocking and hardware constraints of such devices. We do
not assume the existence of any extra sensors or user intervention, relying only on the
image captured by the device’s frontal camera. Our contributions lie on multiple aspects
of the problem. Firstly, we collect RECOD-MPAD, a new presentation-attack dataset
that is tailored to the mobile-device setup, and is built to have real-world variations in
lighting, including outdoors and low-light sessions, in contrast to existing public datasets.
Secondly, to enrich the understanding of how far we can go with purely software-based
methods when tackling this problem, we adopt a solely data-driven approach – differ-
ently from handcrafted methods in prior art that focus on specific aspects of the problem
– and propose three different ways of training a deep convolutional neural network to
detect presentation attacks: training with aligned faces, training with multi-resolution
patches, and training with a multi-objective loss function crafted specifically to the prob-
lem. By using a lightweight architecture as the core of our network, we ensure that our
solution can be efficiently embedded in modern smartphones in the market at the year of
2017. Additionally, we provide a careful analysis that considers several user-disjoint and
cross-factor protocols, highlighting some of the problems with current datasets and ap-
proaches. Experiments with the OULU-NPU benchmark, which was used recently in an
international competition, suggest that our methods are among the top performing ones.
Finally, to further enhance the model’s efficacy and discriminability in the target setup of
user authentication for mobile devices, we propose a method that leverages the available
gallery of user data in the device and adapts the method decision-making process to the
user’s and device’s own characteristics.
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Chapter 1

Introduction

In this work, we study the problem of automatically detecting presentation attacks against
biometric face recognition systems in modern mobile devices, such as smartphones equipped
with a camera. This chapter introduces the main concepts motivating the problem and
presents our constraints and goals. Section 1.1 introduces Biometrics and Face Authen-
tication in the context of mobile devices. Section 1.2 explains what presentation attacks
are, and how they arise as a key security problem in face-recognition technology. Finally,
Sections 1.3, 1.4, and 1.5 summarize our constraints, research questions, and contribu-
tions.

1.1 Biometric authentication in mobile devices

Biometrics, as the name implies, is an area of study that is concerned with measuring
or characterizing individual living organisms. In the more narrower sense of biometric
authentication, we wish to study how to use physiological or behavioral traits of a human
individual to verify his or her identity. Examples of so called biometric modalities include
but are not limited to fingerprint, face, and iris, as physiological traits, but also gait
analysis, keystroke dynamics, and voice, as examples of behavioral traits [34].

The relevance of biometric authentication

Humans have always naturally identified other humans by their face, or voice. Biometrics
as we know it emerged in the late 19th century, when the distinctiveness of fingerprints was
discovered, and they started being collected to identify criminals. With the evolution of
computing and sensors, new forms of robust and automatic biometric recognition systems
based on face, voice, and iris, among others, are being deployed.

More recently, users often need to secure the privacy of their digital data, secure access
to their bank account or digital wallets, or prove their identity for claiming some other
kind of service. In most of these applications, biometrics has risen as an alternative for
knowledge-based methods of authentication, such as alphanumeric passwords or unlock
patterns. Passwords are potentially very secure when used correctly, but this comes at
the price of inconvenience, requiring users to memorize long strings of characters, which
is not something humans are good at. Biometric authentication promises to eliminate the
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devices are useful, they must be secured, so that only the owner can access the data stored
in it, even if its left unchecked on a table, lost, or stolen.

As already mentioned, although the traditional way to secure access to such devices
has been through passwords or unlock patterns, these methods are inconvenient, in that
users have to memorize digits or patterns, and make a concentrated effort every time they
wish to gain access. Moreover, these passwords and patterns can be stolen by simply
paying attention to what the user is typing. Mainly for those reasons, fingerprint and face
recognition, or even iris recognition, are taking the lead as the preferred authentication
method in mobile devices.

But which biometric trait should be used? Fingerprint is potentially more secure than
face authentication, but requires its own specialized sensor. A fingerprint sensor usually
occupies a significant area on the device surface, thus competing with screen size. Because
of that, some prominent manufactures are moving away from this option. Iris or retina
recognition, on the other hand, might also require additional sensors or a sufficiently
powerful camera, good lighting conditions, and active user cooperation. Face recognition
is thus the more convenient alternative, because it can be implemented using the stock
front-facing camera present in most modern smartphones, and requires only that the user
passively looks at the smartphone’s screen, which is natural and not different from normal
usage.

1.2 Presentation attacks and their detection

We have seen the value of face authentication in mobile devices. But even if the system
is effective in discriminating genuine users from impostors, there remains the possibility
of a malicious individual manipulating its components to gain access. That could happen
at any point of the system, and could involve inserting or manipulating unprotected
templates. In this work, however, our focus is in detecting a more direct type of attack
that happens at the sensor level. It is a bigger threat in the sense that is does not require
expert knowledge of the system to be executed, and is not easily detectable.

Vulnerability of face authentication to presentation attacks

A presentation attack (PA) against a biometric authentication system, also called a spoof-
ing attack, is an attack that happens at the sensor level. In fingerprint authentication, for
example, they would be perpetrated by using fake fingers that are created with synthetic
materials to mimic the fingerprint of a target user. In face recognition, a PA can be made
by simply showing the system an image of the target user, which requires little technical
expertise, since face images are widely available on the Internet, and the attack proce-
dure could be as simple as displaying the face image on an liquid-crystal display (LCD)
monitor, in place of the actual user face.

Figure 1.2 illustrates how presentation attacks occur at the sensor level in a face au-
thentication system. Instead of presenting the actual user face to the sensor, an impostor
impersonates the target user by showing false biometric data: an image of the target
user’s face displayed on an attack medium or instrument.
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shows a screen attack performed with a tablet, which is replaying a video of the target
user. An in-depth discussion of the characteristics of printed photo and screen attacks is
provided in Chapter 2.

(a) Real access (b) Print attack (c) Screen attack

Figure 1.3: Examples of real access and attacks from the CASIA-FASD dataset [80].

1.3 Constraints of the mobile-device scenario

Modern mobile devices are powerful machines, but their processing speed and memory
capacity are much more limited than those of a server equipped with multiple processing
cores, dedicated graphics processing units (GPUs), and terabytes of RAM. Although it is
possible to deploy machine learning models to a cloud server, and simply send captured
user data and receive model predictions, this is undesirable for three main reasons: first, it
is not reasonable to assume connectivity in every situation; second, sending full-resolution
image data through a network can be slow and expensive; third, data privacy becomes an
issue when raw user data is being transmitted.

On the other hand, in the main use-case of device unlocking, the user expects the
authentication process to be as seamless and transparent as possible, since this is repeated
at the start of each interaction.

Our constraints can be summarized in the following points:

• No connectivity is assumed: the whole pipeline should run on the user device.

• The complete pipeline must run in at most 1 second with modern smartphone
hardware.

• Model should be small enough to fit in device memory without interfering with
other applications. Ideally, memory footprint should not exceed 100 MB for a single
prediction.

• The method should not depend on special user interaction, instead only requiring
that the user looks at the frontal camera or screen.
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1.4 Research questions

We guide our research by means of some investigative questions, considering the problem
of software-based presentation attack detection in mobile devices, and the constraints
specified in the previous section. Our guiding research questions are the following:

• Can we effectively and efficiently solve the problem of face presentation attack de-
tection, in the context of mobile devices?

• Can a purely data-driven method outperform handcrafted methods in controlled
benchmarks?

• In which cases software-based PAD methods are likely to fail in the real world?

1.5 Contributions

In summary, our contributions are the following:

• The proposal of three different ways of training deep convolutional neural networks
to model and solve the problem in a purely data-driven way:

– Training a lightweight architecture with aligned whole-face images;

– Training with face patches of varying resolution, which reduces overfitting to
user-specific characteristics, and promotes the learning of more robust repre-
sentations that are not tied to a single scale;

– Training with patches, and a loss function that more closely models the PAD
objective, by promoting the compactness of intra-device genuine examples in
the learned feature space.

• An extensive study of error cases, considering multiple factor-disjoint protocols.

• A simple but effective method for adapting a trained model by using a gallery of
user data on the device.

• A novel face presentation-attack detection dataset, that is representative of our
target scenario, with realistic illumination conditions, including indoor and outdoor
sessions, in contrast to existing public datasets.

1.6 Thesis organization

Here we describe how the following text is organized. In Chapter 2, we give further context
and motivation by discussing how software-based presentation-attack detection has been
treated in prior art, giving an overview of existing public datasets and methods. Moving on
to Chapter 3, we motivate our data-driven approach by introducing convolutional neural
networks, and explaining the architecture that is at the core of our proposed methods
for PAD in mobile devices. In Chapter 4, our three methods, which involve different
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ways of looking at the problem and training a convolutional neural network to solve it,
are described in detail. We also describe the procedure to adapt the trained model to a
specific user and device. In Chapter 5, we explain datasets, metrics, and baseline methods
used in our experiments. Finally, in Chapter 6 we present and discuss all experimental
results. Chapter 7 concludes this work.
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Chapter 2

Software-based Detection of

Presentation Attacks

In this chapter, we start by looking at how real-access and attack images are created,
discussing some general assumptions that are involved in software-based presentation-
attack detection. Here, our definition of software-based PAD is similar to the one used in
the existing literature [28]. It excludes methods that are based on additional sensors [42,
81, 26, 72], user-interaction schemes, as in challenge-response methods [38], or multi-
modal biometrics [15]. Instead, we focus on methods that only depend on looking at the
raw biometric sample: one or more RGB face images captured by a regular camera.

Continuing, Section 2.2 provides a detailed account of existing public datasets, and
Section 2.3 presents a brief overview of some of the most relevant techniques in the
literature. Finally, Section 2.4 exposes some of the problems with the state of the art,
motivating our approach.

2.1 Image acquisition and attack clues

In order to understand how we could possibly differentiate real-access from attack images
by looking only at pixel information, we need to understand how data is transformed
before being ultimately acquired by the camera in the user device.

Figure 2.1 illustrates the differences in the image acquisition process for real-access
and attack samples. While genuine or bona-fide samples are acquired as a single capture
by directly photographing the authenticating user, in an attack scenario the biometric
sensor actually recaptures a previously captured image of the user, which is displayed
on an attack instrument. The presentation-attack detection problem thus consists in
answering whether the captured biometric sample is genuine or not. In this context, our
only resource is the biometric sample itself, and the hypothesis is that we can answer the
question for many combinations of transforming factors, only by looking at raw pixels.
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2.2 Existing datasets

In this section, we introduce the most significant public datasets for face presentation-
attack detection, with a focus on printed-photo and display attacks. As we shall see, some
of the early datasets are not relevant anymore, given the evolution of cameras and other
hardware, as well as the understanding of the problem itself. In particular, datasets and
methods focusing on high-quality smartphone cameras are only now starting to appear.

The NUAA dataset [75] was the first face spoofing dataset to be released to the public,
in 2010. It consisted only of printed-photograph attacks from 15 users, taken with a cheap
webcam in different illumination conditions. Because of the small amount of identities,
lack of a proper protocol, and low-quality of the acquisition device, it is no longer used.

Released in 2011, shortly after NUAA, the YALE-RECAPTURED database [60] was
important for being the first public dataset to include liquid-crystal display (LCD) attacks.
Nonetheless, it contains images from only 10 subjects, and the acquisition devices for real
and attack samples differ.

In 2011, the Idiap Research Institute released PRINT-ATTACK [3], which was the first
face spoofing dataset to include a more controlled protocol and 50 users. It contains 200
real access videos and 200 print attack videos. Still, considerable drawbacks are that it is
based only on a single low-resolution webcam, and does not include display attacks. Its
use in the Competition on Counter Measures to 2-D Facial Spoofing Attacks [14] showed
that it is too simple to be used as a benchmark.

The CASIA-FASD dataset [80], released in 2012, aimed at solving some of the problems
present in NUAA and PRINT-ATTACK, namely the lack of display attacks, and lack of
multiple sensor devices. It was the first dataset to include 3 different cameras, which
vary in their image-quality capabilities: a low-quality webcam, a slightly higher-quality
webcam (referred as “normal quality”), and a high-quality Sony NEX-5 camera, which
records full-HD videos (1920 × 1080). The main drawback is that they only consider
one indoors session with each camera, recording a total of 150 real-access videos from
50 subjects. Videos from the high-quality camera were used as the basis for display and
printed-photo attacks. Videos were played back on a 1280×720 iPad screen. Photos were
printed on A4 paper and used in two ways: warped-photo attack, in which the attacker
introduces motion and some depth by slightly distorting paper corners; and cut-photo
attack, in which the eye regions are cut out from the photographs, and the attacker uses
his own eyes to simulate blinking. CASIA-FASD includes many different protocols that
consider sensor types and attack types separately, as well as a an overall test considering
all variations. One of the main critiques is that it does not include a development set,
while the training set consists only of 20 users, which limits cross-validation alternatives.

The Idiap REPLAY-ATTACK dataset [16] was constructed in 2012 to extend PRINT-
ATTACK by including display-based spoofs. It contains 200 real access videos from 50
users, taken in two different indoors sessions. One disadvantage is that it was built using
only one low-resolution laptop camera as the biometric sensor, much like its predecessor.
Screen attacks collected with an iPhone 3GS were displayed on the iPhone’s screen,
and attacks collected with a higher-quality compact camera were displayed on an iPad
tablet screen. Additionally, print attacks on A4 paper were created by using a color laser



CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 23

printer and the same compact camera. A total of 1,000 attacks were recaptured both by
hand-holding the attack instrument in front of the sensor, and by using a fixed-support.
One of the dataset’s strong points at the time was the inclusion of an official protocol
that divides the data into user-disjoint training, development, and testing subsets. This
enabled the dataset to be used in The 2nd competition on counter measures to 2D face

spoofing attacks [17]. In that competition, some teams exploited the image background
to achieve an unrealistic perfect accuracy on the testing set. Despite the problems, it is
still being used as one of the standard benchmarks for PAD algorithms.

The Unicamp Video-Attack Database (UVAD) [62] focuses on video attacks replayed
on a screen. It is the first dataset to include hundreds of users and many different combi-
nations of attack cameras and displays. Videos were recorded with 6 compact cameras in
two different sessions: one indoors, and the other outdoor, with subjects being asked to
stay still during the recording, as in other datasets. Despite containing videos recorded at
a higher resolution than previous datasets, subjects were mostly recorded at a relatively
far distance from the camera, which makes the effective resolution of the final cropped
face low. The authors proposed many protocols that seek to assess the effect of using
different combinations of monitors and cameras in an attack.

The MSU-MFSD [76] dataset was released in 2015, and includes videos taken with
two acquisition devices: the frontal camera of a Nexus 5 smartphone (720 × 480), and
the webcam of a MacBook Air laptop (640 × 480). Its public version contains a total of
70 real access videos from 35 users, and 210 attacks from the same users. Video attacks
are created with the back camera of an iPhone 5S smartphone and a Canon 550D digital
single-lens reflex (DSLR) camera. The iPhone videos are played back on its screen, while
the DSLR videos are displayed on an iPad tablet screen. The dataset also includes a
printed-photo attack that is created with the 18-megapixel DSLR camera and printed on
A3 paper, which potentially makes the attack harder to detect. The main issues with this
dataset are that only half of its videos come from a smartphone, their resolution is low,
and it only includes one illumination scenario.

REPLAY-MOBILE [20] is one of the recently-released datasets that aim to cover the
mobile-device scenario. Its main merit is that it includes real access videos taken in 5
different illumination scenarios. Videos from 40 users were recorded in high resolution
with one LG-G4 smartphone and one iPad Mini 2 tablet. It includes screen attacks with
a Philips 227ELH monitor, and hard-copy attacks printed on A4 matte paper using a
color laser printer. Like most face-PAD datasets, videos are mostly static, which limits
the usefulness of using multiple frames for training and evaluation, and makes it non-
representative of real-world usage of smartphones. One additional issue is that attack
videos are taken only in a more controlled session, having consistent color reflections
and color casting artifacts, as well as a different background in comparison to real-access
videos, all of which contribute to create an artificial separation between the classes.

In 2017, the OULU-NPU dataset [11] was released as a dataset focused on the mobile-
device scenario, being one of the most complete to this day. It includes 6 different smart-
phone cameras, 3 sessions, 2 print attacks based on different color printers, and 2 print
attacks based on 2 LCD monitors, for a total of 4,950 videos. It is interesting to notice
that some of the frontal smartphone cameras used as acquisition device actually have vari-
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able focus, with one of the cameras (OPPO N3 ) actually being a back-camera that can
rotate to the front. Despite its merits, it is still based on the tradition of using sessions of
limited illumination variation, and very static video recordings, which is not completely
representative of real-world smartphone usage. OULU-NPU was used as a benchmark in
the competition of generalized software-based face PAD in mobile scenarios [10], at the
International Joint Conference on Biometrics (IJCB), in 2017.

Finally, in this work we introduce the RECOD Mobile Presentation-Attack Dataset
(RECOD-MPAD), with the goal of providing a realistic training and evaluation dataset
for the mobile-device scenario. In contrast to existing datasets, RECOD-MPAD is based
on videos collected under varying illumination conditions that cover most real-world sit-
uations: direct sunlight, outdoors with diffuse lighting (shadow), indoors with top light,
mixed-lighting indoors with natural lateral light, and low-light indoors with top-lights off.
During each recording with the frontal camera of a smartphone, users were asked to hold
the device as they would normally do, and to slowly rotate around their own axis. This
has multiple purposes: firstly, it makes the illumination vary during the video, by chang-
ing the angle of the illuminant to the face; secondly, it makes the background change from
one frame to another; thirdly, the slow rotation introduces slight but varying motion blur
throughout the video, which changes the effective resolution from one frame to another,
and is more akin to normal usage, in which the user and the camera can move in relation
to one another. Another important characteristic is the inclusion of screen attacks with
two very different electronic displays: a typical 17-inch monitor, and a 42-inch TV that
can display real-life sized images.

More detailed information regarding protocols and the construction of RECOD-MPAD
are given in Section 5.1.1. Table 2.1 puts in perspective some of the characteristics of the
most relevant public datasets. RECOD-MPAD is the only dataset with dynamic sessions
and protocols that are explicitly based on frames.

Table 2.1: Comparison of recent or actively-used public face presentation-attack datasets.

Dataset Videos Frames Resolution Users Sensor devices Sessions Attacks

RECOD-MPAD 2,250 143,997 high 45 2 smartphones 5 sessions, dynamic 2 printed

incl. outdoors 2 displays

OULU-NPU [11] 4,950 variable high 55 6 smartphones 3 sessions, static 2 printed

only indoors 2 displays

REPLAY-MOBILE [20] 1,190 variable high 40 1 smartphone 5 sessions, static 2 printed

1 tablet only indoors 1 display

MSU-MFSD [76] 280 variable low 35 1 webcam 1 session, static 1 printed

1 smartphone only indoors 2 displays

UVAD [62] 17,076 variable low/variable 404 6 compact cameras 2 sessions, static 7 displays

incl. outdoors (x 6 cameras)

CASIA [80] 600 variable low, high 50 2 webcams 1 session, static 2 printed

1 compact camera only indoors 1 video

REPLAY-ATTACK [16] 1,200 variable low 50 1 webcam 2 sessions, static 2 printed

only indoors 2 displays

2.3 An overview of existing methods

Over the last years, many methods for software-based presentation attack detection have
been proposed. The interest in the problem has grown significantly since the release of the
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NUAA dataset and the advent of the first competitions. Because of that, it is no longer
feasible to give an exhaustive analysis of all published methods. It is however noticeable
that most methods are related, and tend to be based on common assumptions and feature
descriptors. In this section, our goal is to give a general but brief overview of the existing
literature.

2.3.1 Methods based on liveness detection or motion

In the context of face verification, liveness detection methods are those that seek to detect
presentation attacks through evidence for lack of vitality in the captured face. These
methods typically depend on motion information, and thus assume the sensor captures a
short video, instead of static pictures. Because of that, we include most methods based
on motion analysis, in general, in the same category.

The archetypal liveness detection method is eye-blink detection [55, 56], which can
be effective if the attacker uses a photograph printed on a piece of paper. As one of the
early ideas, PAD countermeasures based on eye-blink detection are easily circumvented
by video replay attacks, or even by cutting holes in the hardcopy and using one’s own eyes
to simulate blinking [80]. A significant drawback is that it depends on the user actually
blinking, which can take several seconds.

Another class of methods tries to detect subtle movements characteristic of a living
human face, as opposed to static printed photographs, or even low-fidelity reproductions
in replay attacks. Overall approaches include optical-flow estimation [6, 39] and motion
magnification [8]. Other approaches are based on temporal extensions of low-level texture
descriptors [24, 40].

Some methods take advantage of motion correlations between foreground and back-
ground, or other scenic clues [2, 56, 78]. This is specially likely to succeed if the attacker
does not use a fixed-support when performing the attack with a printout or tablet display,
for example, but would probably fail otherwise.

In summary, liveness and motion-based methods have the disadvantage of requiring
a potentially long sequence of frames to make a single prediction. Even if we are willing
to wait for a full video to be captured and analyzed, most of these methods can be
circumvented by faking eye-blinks and carefully handling the attack instruments.

2.3.2 Methods based on physics or geometry

Face presentation attacks using photographs or videos typically present the forged user
representation on a flat surface, which has different reflectance properties than a living
face. Some PAD methods therefore try to detect this “flatness” or abnormal reflectance
with physical or geometric motivations.

One of the early methods tried to capture depth information via structure-from-motion
techniques [18]. Others propose to detect differences in motion between nose and ears areas
via optical flow estimation [37], or by explicitly modeling 3D projective invariants [25].
Another possibility is to model local curvatures by using multiple images [44]. These
methods typically require at least some user cooperation to succeed.
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By assuming a simplified Lambertian model of reflectance, in which lighting is com-
pletely diffuse, it is also possible to model the interaction between the illuminant and the
reflective surface to extract albedo and normal maps [75], which are then used as repre-
sentations to help discriminate real-access from attack samples. Although the motivation
is clear and the resulting model is elegant, lighting in the real-world is mixed and un-
controlled, so the basic assumptions do not hold in practice. Another option is to model
the diffuse and specular components to try to separate the latter, which could emphasize
characteristics of the attack medium surface [5].

2.3.3 Methods based on texture, noise analysis or image quality

A broad category of software-based PAD methods seek to detect artifacts left by the
recapture process, or estimate degradation in overall image quality.

Texture characterization is typically motivated as a means of discriminating the intrin-
sic textural properties of attack instruments and living faces, but can also capture other
types of high-frequency information. Most characterizations are based on variations of
local-binary pattern (LBP) descriptors on grayscale images [51, 52, 16, 41]. Temporal
extensions were also proposed [24, 40]. Although most of these methods were tested
for grayscale images, recent proposals highlight the importance of using color informa-
tion [12, 13]. Other methods use a combination of low-level local descriptors [68, 30]

Frequency-specific information can be captured by difference-of-gaussians (DoG) fil-
tering [60, 80], or through Fourier analysis [48, 35]. A more global characterization that
discards content information in static-content videos to analyze noise signatures is pro-
posed in [62], while the same type of residual information is encoded as mid-level temporal
representations in [61]. These methods are typically capable of capturing moiré patterns
and other regularities that arise during the recapture process. Another explicit approach
is presented in [59].

Methods based on low-level texture descriptors or high frequency information can be
effective in detecting paper texture and noise patterns, as demonstrated by their overall
popularity. Nonetheless, the effectiveness is extremely dependent on the exact acquisition
conditions, and the capability of the camera resolving fine details. Moiré-like patterns are
very strong clues for attacks, but are not always present, making countermeasures solely
based on them unreliable.

Explicit attempts at capturing image distortion artifacts can be found in [76]. More
recently, researchers have explored using generic image quality metrics directly [29, 4].
The metrics range from traditional mean-squared error to more recent structure similarity
index (SSIM) and visual information fidelity (VIF). Since some of these metrics require
a reference image, which is not available, the authors in [29] compare the probe image to
an artificially degraded version of itself. The hypothesis is that the difference is greater
between real-access images than between attack images, since the latter are already of
lower-quality.

The assumption that presentation attacks are of lower quality is not always valid.
Consider, for example, a source face image of high quality that is recaptured in a controlled
and well-lit environment. Although it is an attack, the resulting image would be sharper
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and less noisy than a real-access sample captured under unstable and low-light conditions.
In summary, although under similar acquisition conditions attacks and real-access samples
would potentially be separable by generic image quality metrics and statistics, existing
algorithms do not take context into consideration, which makes them brittle in real-world
scenarios.

2.3.4 Methods based on feature learning

In 2012, Krizhevsky et al. [43] trained a convolutional neural network CNN from end
to end to win the ImageNet competition on large-scale image classification [66], surpass-
ing handcrafted methods by a considerable margin. Since then, models based on CNNs
have achieved state-of-the-art performance on many image recognition tasks. Data-driven
methods like these, which receive raw pixels as input during training, and learn interme-
diate representations directly from data, are said to perform representation or feature

learning [7].
Feature learning is underrepresented in the face PAD literature, despite the successes

of deep neural networks in other visual tasks. Menotti et al. [53] were the first to sys-
tematically study the potential of convolutional neural networks for spoofing detection.
They considered not only face PAD, but also fingerprint and iris spoofs, and explored two
different strategies: filter optimization and architecture optimization. The first one is the
standard way of training a neural network by using stochastic gradient descent and the
backpropagation algorithm [65], for a fixed architecture. Architecture optimization seeks
to find a suitable architecture, given a constrained search space [63, 21]. In this case,
many simple architectures with random convolutional filters were randomly sampled and
used as feature extractors to train a final linear classifier for the problem.

During the face PAD evaluation, they only reported results for the REPLAY-ATTACK
and the 3DMAD mask dataset [27]. Interestingly, despite obtaining competitive results
via architecture optimization, they found out that the optimized architectures not only
could not be improved by having their parameters further adjusted with backpropagation,
but that actually made them dramatically lose accuracy in the testing set. This could
partially be attributed to insufficient hyperparameter tuning involved in SGD training.

Yang et al. [79] trained a CNN based on the AlexNet from Krizhevsky et al. [43],
using an SVM classifier at the end. During pre-processing, they experimented with a few
face-centered regions, including tighter face crops, and regions showing more background.
They reported promising results on both CASIA and REPLAY-ATTACK, but the best
pre-processing configuration was different in each case. As one of their conclusions, they
highlight the differences in background between the two datasets, which makes evident
that the network learned to exploit capture biases when too much background was used
in training.

The method by Li et al. [49] consists in extracting features from early layers of pre-
trained CNNs, namely AlexNet and VGG-Face [70]. Dimensionality is reduced with
Principal Component Analysis, and the classification model is an SVM classifier. Experi-
ments were conducted with REPLAY-ATTACK and CASIA, and the results on the latter
were similar to the ones obtained by Yang et al. [79].
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Patel et al. [58] also experimented with training deep CNNs using aligned faces and
the whole frame as input, but they considered only architectures that are unfeasible to be
deployed on smartphones. The choice of training with whole frames is dubious, since it is
strongly dependent on the dataset. The final system consists of a fusion scheme involving
the output of the CNN, and an eye-blink detector.

We conclude by highlighting that our approach falls into this category. In contrast to
existing methods, we are specifically concerned with the mobile-device scenario. Critically,
none of the reviewed work consider modern datasets for that scenario, and so far the
strategies for using the available data and training the networks have been limited.

2.4 A critical look at the state of the art

Early methods for face PAD were mostly based on eye-blink detection and other motion
clues, which require several frames to be acquired, and typically fail under video replay
attacks or simple cut-photo attacks. The community then moved on to exploring poten-
tially more generalizable clues based on texture description, but currently we are stuck in
a situation in which most of these methods are based on the same low-level descriptors
and simple classifiers, and yet they were shown to completely fail under more challeng-
ing cross-dataset protocols [23]. Other more recent methods also suffer from the same
problem [61, 13, 76].

As much as available public datasets have been useful for comparing different ap-
proaches, and inspiring new research efforts, they are now mostly outdated, both in terms
of available cameras and attacks, and in terms of methodology. The partial shift to cross-
dataset evaluations has shown the limitations of methods and datasets alike. Only recently
has the community started to address the specific constraints of mobile applications [76].
New datasets, such as OULU-NPU [11] and REPLAY-MOBILE [20] have appeared, with
accompanying modern protocols, but they still have some of the same problems as other
datasets, such as static sessions with low lighting variability.

Finally, efforts in applying deep learning, or other data-driven approaches to face PAD
have been limited, with most solutions based on very similar aligned-face pre-processing
and training strategies, and not taking into account our stated constraints. To the best
of our knowledge, there are no rigorous studies of such methods considering modern
protocols and mobile devices. It is in this context that we propose to study the problem
in a purely data-driven way, hoping to gain insight into how far we can go with software-
based methods in our constrained scenario.
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Chapter 3

Deep Convolutional Neural Networks

In this chapter, we briefly introduce and conceptualize a class of machine learning mod-
els known as artificial neural networks. Section 3.1 discusses neural networks in general.
Section 3.2 explains convolutional neural networks, which is a particular variation of the
basic idea that is suitable for modeling learning problems involving images. Section 3.3
expands on the observation that these networks can be trained from raw pixel data to per-
form end-to-end classification. We conclude, in Section 3.4, by explaining the SqueezeNet

architecture, which is the base of our methods.

3.1 Neural networks

Neural networks are multi-layered non-linear models that are based on a connectionist
principle. One of the basic assumptions is that complex relationships in data can be
modeled by stacking linear transformations followed by non-linear activation functions.
In a very general way, we can express the function modeled by a multi-layered neural
network as having the following form:

f (x) = (σL ◦WL ◦ σL−1 ◦WL−1 ◦ . . . ◦ σ1 ◦W1) (x). (3.1)

Here, Wi, i ∈ {1, ..., L}, are real-numbered matrices defining linear transformations.1

Each σi, i ∈ {1, ..., L}, is an element-wise non-linear activation function.2 This is impor-
tant, because otherwise the composition would be equivalent to a single linear transforma-
tion W = WLWL−1 . . .W1. In fact, it was proven that even a conceptually simple network
with two layers can approximate arbitrary functions under mild assumptions, crucially if
the output at the first layer is a sufficiently large vector [22, 31].

By appropriately pre-defining the size of the output, so that the network outputs
a vector of size C, we can interpret this vector as representing class likelihoods (or log-
likelihoods), which could then be optimized to match the correct class of each input vector
in a classification problem with C classes. In this context, the other important assumption

1In practice, instead of a linear transformation, we would have an affine transformation of the form
Wx + b. Alternatively, we can represent these by augmenting the input vector with a constant 1, and
absorbing the bias vector into the weight matrix.

2Historically, the activation function was either a sigmoid or tanh, but more recently, the most popular
one is the less smooth but non-saturating Rectified Linear Unit (ReLU), which has the form max (0, x).
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is that, if all individual transformations are differentiable, then meaningful weights can be
learned by gradient-based optimization methods, such as stochastic gradient descent [45].

The actual learning procedure thus involves the calculation of gradients of the output
with respect to all parameters in the network. An efficient algorithm for that, known as
backpropagation, was popularized in the eighties, and is a direct application of the chain
rule of derivatives [65]. The name stems from the fact that after a single forward pass, the
error at the output is successively back-propagated to parameters in previous layers. The
resulting gradient represents the direction in which each parameter should be modified to
locally decrease the overall error at the end. Owing to the linear property of derivatives,
the whole process is very modular, and is mostly automated by modern packages.

3.2 Convolutional architectures

Many extensions to the basic structure of neural networks have been proposed over the
years. In the case where the input is an image, a successful architectural idea is that of
a convolutional neural network (CNN or ConvNet) [46, 47], which was initially proposed
in the context of handwritten-digit classification. ConvNets are now at the core of state-
of-the-art methods in most image recognition problems [43, 74].

Images reside in very high-dimensional spaces. For example, a 3×100×100 image can
be viewed as a 30,000-dimensional vector. For a 8-bit representation, where each pixel
would take values in [0, 255], there are 25630000 possible images. Fortunately, relevant
images, natural images in particular, have some structure. Nearby pixels are highly
correlated, and the same basic structures typically appear at different regions in the same
image.

The vanilla network architecture previously defined is poorly-suited to explore these
characteristics. If the output size of the first layer is 512, even this single layer would
already have 30, 000 × 512 = 15, 360, 000 weights. Most of these weights would be cor-
related, but would have to be learned independently, and if the input image would be
spatially translated even by a single pixel, output could change drastically.

Convolutional networks solve the problem by substituting weight matrices with con-
volutional filter banks. At each layer L, an input of size DL−1×HL−1×WL−1 is convolved
with DL filter volumes of size DL−1×KL×KL, creating a volume of size DL×HL×WL.3

These values are then typically transformed by an activation function, such as ReLU [43],
as before. If the image is properly padded, and convolutions are implemented with a
stride of 1 in each direction, the spatial dimension of the output remains constant, and
each of the DL output maps correspond to the filter responses at each spatial position.
Filters can then be interpreted as feature detectors.

For example, for an input image of size 3× 100× 100, and 64 filters of size 3× 7× 7

at the first layer, the output would be 64 maps of size 100 × 100, corresponding to the
activations of each filter. This process would then output 64×100×100 values, but require
only 64 × 3 × 3 × 7 + 64 = 9, 472 weights and biases. Each filter could be specialized

3In theory, convolutional filters could still be interpreted as the old weight matrices, but with some
groups of weights corresponding to different pixels constrained to share the same value. In practice,
convolutions are a better abstraction, and yield better implementations.
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at detecting edges at a certain orientation, corners, or color blobs, which are naturally
occurring structures in images. The next layer of detectors would then build on the
representations of this layer to detect more complex structures.

In order to increase the number of filters in subsequent layers, without dramatically
increasing the number of parameters and computational requirements, it is common to
downsample the spatial dimension after a certain number of layers. This is typically
done either by max-pooling operations, or by using strided convolutions. Intuitively, it
can also be argued that this encourages better translational invariance in the learned
representations.

In recent years, many architectural modifications have been proposed, including differ-
ent activation functions, new ways to combine convolutions of different sizes, and normal-
ization operations in-between layers. Nonetheless, the main tendency has been to stack
small 3×3 convolutions, downsample by a factor of 2 in each dimension after a few layers,
and increase depth as much as possible [70, 73, 32].

3.3 End-to-end classification

The stacking of layers separated by non-linear activations can be interpreted as building
a hierarchical representation, or a transformation of the original space to a space in which
the final objective is more easily achievable. In the case of classification, the learning
procedure uses labeled data to alter weights and biases, so that intermediate layers learn
to successively transform the input space into a space in which classes are separable by a
linear classifier.

Since weights and biases of intermediate layers and the classifier are jointly learned,
we say that the model performs end-to-end classification. Most of the knowledge is in
defining the architecture, the objective or loss function in relation to the input, and tuning
hyperparameters. This is in contrast to other forms of machine learning, in which most
of the work is in feature engineering, and the actual learned classification model can be
as simple as a linear classifier on top of these fixed features.

In this work, we take the more data-driven approach of using deep neural networks to
model and solve the problem. We believe this to be promising, given the lack of robust
handcrafted models in the PAD literature, which suggests the problem is still poorly
understood. Our choice lets us focus on definitions and basic principles, in order to gain
greater insight into the problem, and understand why current approaches do not work
satisfactorily.

3.4 Specific architectures

Since the success of the original AlexNet CNN for image classification [43], much concen-
trated effort has been put into finding new architectures that are either more accurate,
or require less parameters and computation. The networks of the VGG family [70] and
later GoogLeNet [73] showed in practice the benefits of depth in multi-layered CNNs. In
contrast to previous networks, VGG CNNs are based only on 3 × 3 convolutions with
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ReLU activations, and max pooling operations with a stride of 2. The intuition for using
only 3× 3 convolutions is that by stacking multiple layers we get the effect of the larger
receptive field of larger kernels, with a smaller number of parameters, but with increased
depth and expressiveness.

The process of finding or designing new architectures is non-trivial. Even if we limit our
search space or design decisions to a few operations, such as predefined filter sizes, fixed
activation functions, and a certain number of layers, there are still countless possibilities
and permutations that must be tested exhaustively. Brute-force architecture search can
yield interesting results [21], but it can only feasibly be done in a very limited search
space. Moreover, this strategy was already explored for spoofing detection and simpler
architectures in the work by Menotti et al. [53].

A standard approach, when considering convolutional neural networks for new visual
classification problems, has been to start from an architecture that has proven its value
by achieving competitive performance in the ImageNet benchmark [50, 77, 64]. This takes
advantage of the observation that what works well for one visual task probably works well
in another related task. In this work, we take inspiration from one of the versions of the
SqueezeNet architecture [32], and use it as our core architecture for all experiments. This
decision was taken for two reasons. Firstly, the resulting network is small and fast enough
to be directly embedded in mobile devices, in contrast to other popular architectures such
as VGG-16 [70, 57]. It has a fully-convolutional structure, which makes interpretation
of results easier, and is appropriate for modeling our kind of problem, as we shall see.
Finally, it was proven to be more accurate than AlexNet, which validates its potential for
experimentation.

SqueezeNet

The SqueezeNet v1.1 architecture [32], which is the base of our methods, is illustrated in
Figure 3.1. Next to each arrow is the shape of the resulting output tensor for a single
input image of size 3 × 227 × 227. For instance, the fire module named fire4 receives as
input 128 activation maps of spatial dimension 28 × 28, and outputs 256 maps of size
28× 28.

Fire modules – illustrated in the top-right corner of Figure 3.1 – are similar to inception
modules [73], and are the main building blocks in this architecture. They massively
reduce the total number of parameters in 3×3 convolutions by first squeezing the channel
dimension of the input tensor with 1× 1 convolutions. For example, the squeezing layer
in fire module fire5 reduces the number of maps from 256 to S = 32, which means the
following 3 × 3 convolutional layer has 128 × 32 × 3 × 3 = 36, 864 weights instead of
128× 256× 3× 3 = 294, 912. In addition to the 3× 3 convolutional layer with E3 filters,
another 1× 1 convolutional layer with E1 filters also receives the output of the squeezing
layer, and helps recover information, at a low computational cost. The output of a fire
module is then the concatenation at the channel axis of the E1 +E3 activation maps. Fire
modules are thus parametrized by S, E1, and E3, with S < E1 + E3.

The complete architecture starts with a 3 × 3 convolutional layer producing 64 ac-
tivation maps, and then stacks 8 fire modules, for a total of 17 layers with learnable
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Chapter 4

Proposed Methods

In this chapter, we present our approaches to presentation-attack detection in mobile
devices. All three methods are based on training a convolutional neural network (CNN)
to distinguish between real-access and attack images. They have the same deep stack of
convolutional and max-pooling layers at their core, but differ either in what they see as
input during training, or what they are optimizing at the end. This makes sense from
a modeling perspective, because the interaction between the input and the optimization
objective is what really defines the problem, driving the learning procedure.

In Method I, described in Section 4.1, we adapt the SqueezeNet architecture to con-
sider presentation-attack detection, formulating the problem as 2-class classification, and
using only aligned whole-face images for training the network. Method II, explained in
Section 4.2, starts from the same modified architecture, but uses face patches of variable
resolution during training, which reduces overfitting to user-specific characteristics, and
promotes the learning of more robust representations that are not tied to a single scale.
Finally, in Section 4.3, we use the same patches-based approach as in Method II for train-
ing the network, but propose a loss function that more closely models the PAD objective,
promoting the compactness of intra-device genuine examples in the learned feature space.

4.1 Method I: CNN trained with whole-face regions

Our first method is based on training a deep convolutional neural network by using aligned
whole-face images, which is the traditional input format in the pipeline of most algorithms
published in the literature. In this case, however, the pipeline consists mostly of the whole
multi-layered network, which is trained from end to end.

Training with aligned whole-face images can be justified as a means of reducing un-
necessary variations during training and inference, putting the raw data in a predictable
content-domain. This is similar in spirit to other forms of pre-processing, such as input
domain normalization, which is often required by training algorithms. Although it is
not obvious whether training with aligned whole-face images is the right pre-processing
strategy for face PAD methods based on CNNs, it is certainly a valid first choice.
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Architecture

The core architectural component for this and the other methods is the SqueezeNet net-
work illustrated in Figure 3.1. As already mentioned, this decision was taken because we
are interested in embedding the trained model in a mobile device with limited memory
and processing power.

As this is a fully-convolutional network, all feature maps are flexible in size, including
the input image. Nonetheless, we chose to keep the original shape of the spatial dimensions
as 227 × 227. The spatial size of the raw cropped-face region in our scenario typically
varies from about 300 pixels to about 550 pixels in each dimension. In face of this, keeping
the original image size of 227×227 ensures that little detail is lost due to rescaling in most
reasonable cases, while increasing it would also make the network too slow to train and
be used in mobile devices. Most spoofing-detection pipelines in the literature pre-process
images to a fixed size, typically varying from 64× 64 to 256× 256.

Pre-processing and data augmentation

We start from an aligned and square-cropped image of the face region, both in the training
phase, and in the inference phase. The basic alignment process is described in details in
Section 5.1.1, which introduces the RECOD-MPAD dataset. This alignment is done so
as to ensure that we start from a region containing only the face. The original resolution
is preserved by avoiding unnecessary rescaling at this stage. In practice, we found that
the exact alignment does not significantly impact the performance of our methods.

During training, we read the RGB image, rescale the aligned face region to 256× 256,
and crop a central region of size 227 × 227. Before feeding the image to the network,
we randomly flip the image horizontally with probability 0.5. This is a standard data
augmentation strategy, when mirroring the image does not change the label semantics.
On the other hand, we found that randomly cropping a 227×227 region from the rescaled
image does not improve performance in comparison to center cropping, probably because
the difference in content is not substantial and the fully-convolutional network is already
robust to misalignments. Other data augmentation strategies that involve random photo-
metric distortions and normalization are potentially too destructive for label information.

Before feeding the image into the network, we perform a simple pixel-wise transfor-
mation from the range [0.0, 1.0] to the range [−1.0, 1.0], by subtracting 0.5 from each
pixel and then dividing by 0.5. Basic centering is common-place for getting meaningful
gradients in the first iterations of training, especially if parameters are initialized ran-
domly and the ReLU activation function is used [43, 70]. Researchers and practitioners
typically subtract the mean pixel from the training set and divide by the corresponding
standard deviation, but this is not strictly necessary for natural images, and creates an
unnecessary dependence with the training data. In practice, we found that the described
transformation does not affect the final accuracy significantly, but it helps to make the
training procedure more stable.
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function can be interpreted as normalizing the input vector into probabilities, and then
measuring the mismatch between the predicted distribution and the expected distribution
in which the mass is fully concentrated in the true label. In practice, we average over the
whole mini-batch, giving the following expression, where fc (x) is the network output for
class c and input x, and B is a mini-batch of training examples:

L(B) =
1

|B|
∑

(x,y)∈B

− log

(

efy(x)

ef0(x) + ef1(x)

)

. (4.1)

After computing the loss and intermediate activations, the gradient of the loss with
respect to every adjustable parameter is computed via backpropagation. Finally, for
the optimization step, we use the Adam optimizer [36], which is an adaptive optimizer
based on stochastic gradient descent with momentum, requiring minimal hyperparameter
tuning. All experiments were done with default Adam hyperparameters and a learning
rate of 0.0001. As regularization, we add to the loss function an L2 penalty (weight decay)
with weight 0.001. We found these hyperparameters to work well by monitoring the loss
in the validation sets of the datasets we experimented with. In particular, increasing the
learning rate by a factor of 10 makes the optimization diverge, while decreasing it by
a factor of 10 makes optimization too slow, and increases the tendency to plateau at a
suboptimal point.

As for parameter initialization, we start from pre-trained ImageNet weights1 for the
core part of the network, which is preferable to random initialization. For the classification
layer, we initialize biases to 0.0, and weights from a normal distribution with mean 0.0
and standard deviation 0.01.

Inference

After the network is fully trained, it can be used to infer the label of new input images.
In this case, pre-processing is mostly similar to the one during training. The detected
face region is rescaled to 256× 256, and then centrally cropped to 227× 227. Each pixel
in the aligned and cropped whole-face image is centered by subtracting 0.5 from it and
dividing by 0.5, but in contrast to the training phase, no random mirroring is performed.

4.2 Method II:

CNN trained with multi-resolution patches

In motivating a different approach to solve the problem, we start by asking the following
questions:

Is a holistic view of the face really necessary to tell whether or not an image

is a presentation attack?

1Our implementation is completely based on PyTorch, and we use the pre-trained parameters made
available with the library as of version 0.2.0.
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Is learning from a fixed scale and level of detail sufficient to make the distinc-

tion, considering the low-level nature of the problem, and all possible variations

of detail due to lighting, subject distance, noise, blur, and overall attack qual-

ity?

In light of these questions, our second proposed method differs from the first by mod-
eling the problem as the task of distinguishing regions of arbitrary level of detail in attack
images from regions of arbitrary level of detail in genuine images. We accomplish this
during training by extracting patches of varying sizes from the full-resolution images, and
only then rescaling them to fit the network input format. This approach is beneficial in
many ways. Firstly, it increases the number of examples available for training, taking full
advantage of the training data by not discarding information that would be lost by prema-
ture rescaling. By forcing the network to distinguish patches at different resolutions, its
robustness to blur, adverse lighting, and unseen cameras is potentially increased. Finally,
by not always showing the whole user face, the network is encouraged to not depend on
user-specific characteristics, which could reduce overfitting.

Architecture

The architecture remains the same as in the first method. This is possible because we take
advantage of its fully-convolutional nature. The network core consists mostly of stacked
convolutional filters, which can be somewhat independent to scale. Different combination
of these filters, acting as more advanced feature detectors, can naturally specialize or learn
to adapt to the varying resolutions and feature scales. Moreover, the final classification
layer implemented as global-average pooling acts as a parameterless aggregator of the
final filter responses, and is thus invariant to locality in its input representation.

Pre-processing and data augmentation

Figure 4.2 illustrates the construction of a mini-batch in this method. Pre-processing for
each image in a mini-batch starts by uniformly sampling a variable α from the interval
[0.08, 1], defining a percentage of the raw image area. The size of the cropped region is
then S =

√
αWH, where W and H are the width and height of the full-resolution whole-

face image. In practice, the smallest possible patch corresponds to an area approximately
equal to the region around one of the eyes in the original aligned image, regardless of
the image size. The patch of size S × S in then cropped from randomly sampled top-left
corners i, j. The remaining pre-processing and augmentation procedure is similar to the
one in Method I, and includes rescaling the patch to 227 × 227, random mirroring, and
centering.2

2Models for Methods II and III in this thesis were actually trained with an additional aspect-ratio
augmentation, in which patches are sampled with a variable aspect ratio, before being rescaled to 227×227.
The sampled rectangle is of size WP × HP , with WP =

√
αrWH, HP =

√
αr−1WH, and r sampled

uniformly from [0.75, 1.0]. This type of purely geometric augmentation is cheaper than rotations, and
has been used to train some models from the GoogLeNet/Inception family [73]. In terms of validation
error, the models were not significantly different from training only with undistorted square patches, but
the increased data variability could decrease test error. Thus, we see it as an optional addition.
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Is it reasonable to assume that real samples from different devices should have

similar characteristics?

Is pure binary classification the best way to model the problem?

How could we guide training to make the learned representations more likely

to reflect actual differences in real versus attack samples, instead of dataset-

depend noise that happens to separate real and attack samples from multiple

devices?

Inspired by these questions, we propose another method, in which we reformulate
the original problem by adding another term to the training objective, changing the
way images are used during optimization. The goal is to encourage real samples from

a given device to be more compactly located in intermediate feature spaces, but farther
away from attack samples of the same device. We hypothesize that this would create
better representations by not directly confounding information from different devices, as
in traditional training strategies.

More specifically, we consider a latent representation fℓ (I) of the original input image
I after it has been successively non-linearly transformed by ℓ layers. Consider a triplet
of images coming from the same device, In, Ir, Ia, a real anchor, another real example,
and an attack example, respectively, and let n := fℓ (In), r := fℓ (Ir), and a := fℓ (Ia), for
short. Now, we can add the following loss function to the network:

Ltriplet (n, r, a) = max
(

||n− r||22 − ||n− a||22 +m, 0
)

, (4.2)

where m is a margin hyperparameter that is fixed beforehand. By minimizing this loss,
we are enforcing the notion that real samples from a given device should be closer to real
samples of the same device sensor, but farther away from attack samples of the same
device, up to a margin.

In theory, this kind of triplet loss could be used by itself to optimize an embedding to
directly compare pairs of images during inference [67]. But since most benchmarks still do
not provide a protocol that is based on using reference images, and we ultimately want the
trained model to distinguish between arbitrary real-access images and attack images, we
add the previously described cross-entropy loss to jointly enforce a classification objective:

Lspoof (N,R,A) = κ max
1≤i≤T

[Ltriplet (ni, ri, ai)] + Lclass(f(R ∪ A)), (4.3)

where N , R, and A are the sets of real anchors, non-anchor real images, and attack
images in a mini-batch, respectively, and T is the number of triplets. All images in a
mini-batch are sampled from a single device. Lclass (f (R ∪ A)) indicates that the cross
entropy loss is computed only for the 2T non-anchor images. In practice, the embedding
term is computed as the maximum triplet loss over triplets in a mini-batch. This can be
interpreted as performing an online selection of hard triplets [67]. The hyperparameter κ
controls the relative weight of the triplet loss term.

We can interpret each term as acting as a regularizer for the other objective. The
classification loss encourages finding a single decision boundary that separates real-access
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patterns from attack patterns in general, while the triplet loss encourages making intra-
device real-access samples as compactly located as possible in the latent space, but farther
away from attack samples of the same device.

Architecture

The core network architecture is the same as before, but we anticipate global-average
pooling to directly reduce spatial correlations and the dimension of the activations of the
fire9 layer. This is the representation we use to compute the triplet loss. Following the
512-D embedding, we include the usual classification layer consisting of dropout and a
linear mapping that generates class scores by optimizing the cross-entropy loss.

Figure 4.3 illustrates how the network is trained with the multi-objective loss. Mini-
batches are built from triplets of images coming from the same device. Three different
columns are formed, one with real-access anchors, one with real-access samples, and one
with attack samples. The triplet loss is calculated for each triplet, and it encourages the
compactness of a given device in the embedding layer, while driving attack samples away,
up to a margin. In addition to that, the non-anchor columns are forwarded further into
the classification layer, and their output is used to compute the usual cross-entropy loss.
Our spoof loss is the weighted sum of these two loss components, with the triplet-loss
component weighted by a parameter κ. The dashed lines indicate that weights are shared
between the columns, i.e., we train a single network.
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in tweaking it, although, importantly, setting it to a large value can make optimization
diverge in early iterations. The weighting parameter κ in the loss function was set to 0.05.
Starting at 0.5 and successively reducing it by 0.1 and then 0.05, we found this value to
be the largest that consistently does not make training diverge in the early stages.

The remaining details are analogous to the previous methods. We use the Adam
optimizer, with a learning rate of 0.0001, and add an additional weight decay term with
weight 0.001 to the loss function. Because Adam is an optimizer with momentum, even
though we sample only from a single device on each iteration, gradients have a “memory”,
which reduces the need to accumulate them over multiple mini-batches before performing
an optimization step.

Inference

Inference is done exactly as in other methods, i.e., we pass a single whole-face image
through the network.

4.4 On-device user-specific adaptation

Previous sections described three different ways of training a convolutional neural network
to solve the face PAD problem. In this section, we describe a method to further improve
the effectiveness of these models in real-world situations, when they are deployed to mobile
devices.

Classification models are trained with a finite training set, but are expected to work
properly when presented with new data. Typically, if the operational data distribution is
similar to the distribution of training data, models tend to behave well, but in practice
there are no guarantees of generalization. More often than not, demands of the operational
scenario are more specific. For example, in our case, the model will be deployed to a
specific device, and will always be presented with images from the same user. In face
of this, we propose one simple strategy to adapt the decision boundary to the specific
characteristics of this user and sensor device.

Building a gallery of user scores

During normal operation, and possibly over the course of many days, the user will have
successfully authenticated multiple times, in different lighting situations. Perhaps even
his appearance will have changed, due to changing glasses, haircut, facial hair, etc. If
we assume that after each successful authentication the final score (probability of attack)
is stored in a user gallery, after some time we will have a representative distribution of
the system’s score for the real-access class. Alternatively, this gallery could be explicitly
updated during enrollment sessions.
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Threshold estimation

Our strategy takes advantage of a gallery G of user-specific real-access scores stored on
the user device during normal operation. We assume that these scores are in the range
[0, 1], and that a higher score stands for higher likelihood of the input being an attack. We
wish to find a minimal user-specific ψ, such that the false rejection rate FRRψ is bounded
by a predefined value ǫ. The procedure is described in Algorithm 1.

Algorithm 1: User-specific threshold estimation.
Input: score gallery G, tolerated FRR ǫ, threshold increment ∆
Output: user-specific acceptance threshold ψ

1 ψ ← 0;
2 while CummulativeDistribution(G, ψ) < 1− ǫ do

3 ψ ← ψ +∆;
4 end

5 return ψ

Function CummulativeDistribution(G,ψ) returns the cummulative distribution of
scores in the gallery, from 0 to ψ. For example, if ǫ = 0.05, the search starts from 0 and
stops at the first threshold ψ for which no more than 5% of the real-access examples in
the gallery would be rejected.

Final remarks

Despite its simplicity, the described procedure effectively tightens the decision boundary,
so that the number of false rejections is controlled, while false acceptance errors are
possibly reduced. In this way, a model is made more useful, in that it is adjusted to make
the best prediction it can for attacks, constrained to a certain user-inconvenience level,
represented by ǫ.

To see that performance can be improved, suppose that, at the default threshold,
we observe 95 real-access attempts with scores no greater than 0.3, and 5 real-access
attempts whose scores fall between 0.3 and 0.35. Moreover, suppose that from 10 attacks
observed during the same period, 5 receive scores greater than 0.5, but 5 receive a score
strictly between 0.4 and 0.5. In this case, a default threshold would induce an FRR of
0%, and a false-acceptance rate (FAR) of 50%. On the other hand, if the system had
previously observed a similar distribution of real-access attempts, and learned a user-
specific threshold of 0.3, the result for the new observations would be FRR0.3 = 5% and
FAR0.3 = 0%.
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Chapter 5

Datasets and Experimental

Methodology

Training and evaluation of methods based on machine learning require representative
datasets and meaningful evaluation protocols. In Section 5.1, we describe details of the
datasets used in our experiments. Section 5.2 discusses the metrics used in the evaluation
protocols. Finally, in Section 5.3 we describe two baselines against which our methods
will be compared.

5.1 Datasets

Building representative datasets is one of the hardest aspects of machine learning, being
particularly hard in our case, in which biometric data is involved, and we cannot account
for all possible attack configurations. In a sense, they serve as the problem definition,
and are used both in training and evaluating models. Without a proper training set, we
cannot train a useful model. And without a proper evaluation protocol, we cannot be
sure if the trained model is useful.

We saw in Section 2.2 that most of the existing public datasets do not fully satisfy
our requirements, given our constraints and problem domain. Because of that, we choose
to focus on two datasets. First, in Section 5.1.1 we describe the construction process
and the details of RECOD-MPAD, a dataset that we collected as part of this work. In
Section 5.1.2, we describe OULU-NPU, which is another dataset that was recently released
for the mobile-device scenario [11]. As we will see, it does not represent our use case as
well as RECOD-MPAD, but is complementary to it. Moreover, its use as a competition
benchmark in the year 2017 makes it particularly interesting.

5.1.1 RECOD-MPAD

In this section, we describe the processes of planning and collecting the RECOD Mobile
Presentation-Attack Dataset (RECOD-MPAD), including the capture of real videos, re-
capture of attack videos, and pre-processing. The main goal in creating this dataset was
to have data that is truly representative of our fast mobile-device unlock scenario. More-
over, we wanted to cover as many illumination variations as possible, as this is something
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that is lacking in public datasets. As such, it is the main benchmark for our methods. Be-
cause capturing biometric data and making it available involve ethical aspects, the project
was sent to Unicamp’s Institutional Review Board, being approved under protocol CAAE

53035216.6.0000.5404.
We started by selecting two main acquisition devices: a popular Moto G5 smartphone,

released in 2017, and hereafter called device 1, and a Moto X Style XT1572 smartphone
from late 2015, hereafter called device 2. These smartphones are equipped with modern
frontal cameras that are quite different from one another. Both have fixed focus, but
device 2 is sharper at a closer distance, and is in general much sharper than device 1. On
the other hand, device 1 has a wider field of view, and is slighly brighter than device 2.

Collection of genuine videos

We carefully designed five illumination scenarios for capturing the real-access videos,
which were also used as a basis for the recaptures. The five scenarios are the following:

• Session 1: Outdoors, with direct sunlight on a sunny day.

• Session 2: Outdoors, in a shadow, resulting in diffuse lighting.

• Session 3: Indoors, with artificial top light.

• Session 4: Indoors, with natural lateral light (window or door).

• Session 5: Indoors, with lights off (noisy).

Each session has its own characteristics. Figure 5.1 shows some representative exam-
ples, with cropped face regions. Frames in session 1 are almost noiseless because of the
vast amount of available light, but tend to have strong specular reflections or suffer from
lens flare, which are visually similar to artifacts found in some attacks. On the other
hand, besides being darker, frames in session 5 are very noisy. Frames in session 2 are
mostly well behaved, because of the diffuse lighting. Session 3 is the most similar to how
other PAD datasets were collected. Session 4 represents a mix of direct natural light
with diffuse reflections, potentially with more intra-session variations, due to our capture
strategy.
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distance. On the other hand, because of the lower pixel density, aliasing or moiring
artifacts tend to be much more prominent. The smaller monitor results in blurrier images
with darker corners, and is more similar to the displays used in other datasets.

Display attacks were performed with the smartphone on a steady tripod at a fixed
distance from the monitors, except for small variations from one video to another. The
distances were set to reduce aliasing artifacts, while covering the maximum possible video
area. Lights were turned off to reduce reflections, and an opaque surface was held in front
of the smartphone to eliminate reflections from its backlit screen on the attack screen.
Each video captured with a given device was displayed on each monitor and recaptured
with the same device. In total, we recaptured 900 videos. The setup is shown in Figure 5.3.

(a) HP 17" monitor. (b) Large CCE TV.

Figure 5.3: RECOD-MPAD: recapture setup.

Printed-photo attacks were created by extracting two frames from each of the original
videos, roughly at 25% and 75% of the total duration. The images were then printed
on high-quality A4-sized glossy paper, by using a professional BIZHUB C308 color laser
printer. The first frame was then recaptured in one scenario with abundant natural diffuse
light, while the second frame was recaptured in a darker living room also lit with diffuse
natural light. The devices were set on a table with the camera pointing to the ceiling,
while the attacker hand-held the hard copy. For about 8 to 10 seconds, the attacker started
by holding the photograph close to the camera, while warping it and then pulling it away
from the camera. The recapture finishes with the attacker slowly pushing the photograph
towards the camera. This process was used to increase the number of variations between
frames, since the photographs are static, and to simulate possible attack behavior, in the
spirit of CASIA-FASD. In total, we generated another 900 attack videos. Figures 5.4 and
5.5 illustrate some of the differences between real-access and attack frames.





CHAPTER 5. DATASETS AND EXPERIMENTAL METHODOLOGY 50

eye centers is made horizontal and they occupy a standard position in the cropped face
region. The transformation closely preserves the original resolution by mapping each eye
so that the distance between them is roughly 50% of the final crop size, which is defined
as two times the original inter-eye distance. To reduce the introduction of artifacts during
this phase, the final alignment is done through an interpolation of order 5 (bi-quintic).

All the code for pre-processing the videos in the dataset will be made available with
the official release of the data.

5.1.2 OULU-NPU

The OULU-NPU dataset is a recently released public dataset for face-presentation de-
tection in mobile devices [11]. It does not completely fit our scenario, since it is based
only on 3 static indoor sessions. Its main merit is that it includes real-access and at-
tack videos taken with 6 different smartphone cameras. More importantly, it was used in
the IJCB-2017 competition on face presentation-attack detection in mobile authentication

scenarios3. Because of that, we use it as an additional benchmark, which lets us compare
our methods to the ones that were part of the competition.

In this section, we highlight some of its characteristics. Some of the details were
already discussed in Section 2.2, and a more in-depth description can be found in the
original paper [11]. Protocols are fully described in Section 6.3.

Collection of genuine videos

Real-access videos were captured with the front camera of 6 smartphones: Samsung

Galaxy S6 edge, HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony XPERIA

C5 Ultra Dual, and OPPO N3. All videos were captured in full-HD.
Most of these smartphone cameras are unusual, with only 2 smartphones having nor-

mal fixed-focus frontal cameras: Samsung Galaxy S6 edge, and MEIZU X5. OPPO N3

actually has a single rotating camera, which is comparable to a normal high-quality back
camera. The other 3 frontal cameras have auto-focusing capabilities. This is important,
because focusing dramatically influences the characteristics of resulting images in close-
distance recaptures. If a camera can properly focus on the attack surface, the result will
be a more detailed depiction of the original scene, but this can also emphasize details on
the attack surface and result in aliasing or moiring artifacts.

In general, for each camera and user, three 5-second indoors videos were captured. In
the recordings, subjects and cameras remain relatively static, and the background does
not change.

Recaptures

Attacks were based on photos and videos captured with the back-camera of a Samsung

Galaxy S6 Edge smartphone. Videos were then displayed on two different monitors, a

3https://sites.google.com/site/faceantispoofing/home
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19-inches desktop monitor, and a 13-inches laptop display. Photos were printed on glossy
A3 paper using two different printers.

As in RECOD-MPAD, print attacks were created by holding the device in front of a
fixed smartphone camera for about 5 seconds. Unlike RECOD-MPAD, movements are
very small and there is no change in paper distance to the camera throughout the video.
Since some of the cameras have variable focus, in some videos we can notice the effect
of auto-focus hunting, effectively causing some variations in resolution during very short
intervals.

Pre-processing

The official dataset comes with video files consisting of bundled JPEG images, and no
audio. Accompanying each video is a text file with eye positions that were automatically
localized with DLib, similarly to RECOD-MPAD. Some eye locations are missing.

For the purposes of this work, since videos are mostly static and frames are very
similar, we extracted and kept only 1 in 7 available frames, which results in 17 to 21
frames per video, in most cases. We manually localized eyes, in case annotations were
missing. The remaining pre-processing is exactly as the one for RECOD-MPAD, described
in Section 5.1.1. We aligned and cropped face regions in a way that preserves the original
resolution. This is the raw input to the algorithms.

In total, we have 96,661 frames from 4,950 videos, covering 55 users, 3 sessions, 6
sensor devices, 2 print attacks, and 2 display attacks. Each official protocol considers
user-disjoint training, validation/development, and test sets, containing videos from 20,
15, and 20 users, respectively.

5.1.3 Summary

Table 5.1 summarizes the properties of the two datasets used in this work.

Table 5.1: Summary of the properties of datasets used in this work.

Property RECOD-MPAD OULU-NPU

Number of videos 2,250 4,950
Number of frames 143,997 (official protocol) variable
Number of users 45 55
Smartphone cameras 2 (fixed focus) 6 (fixed or auto-focus)
Pixel resolution 1920× 1080 1920× 1080

Number of sessions 2 outdoors, 3 indoors 3 indoors
Session type dynamic static
Display attacks 1 large, 1 medium 2 medium
Print attacks 2 (diff. recapture lighting) 2 (different printers)
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5.2 Evaluation metrics

In order to evaluate the efficacy of trained models, we use the standard metrics of the
presentation-attack detection literature. For a given frame or video, the output of each
algorithm is a score that represents its confidence that the input should be classified as
attack as opposed to real. In this work, all scores can be interpreted as probabilities in
the range [0, 1].

False acceptance rate (FAR)

Let f(x) be the predicted score for input x, D a dataset, Dattack its attack subset, and
Dreal its real-access subset. The false acceptance rate FARτ over the dataset D, for a
given acceptance threshold τ is defined as:

FARτ =
1

|Dattack |
∑

x∈Dattack

✶[f(x) < τ ], (5.1)

where the function ✶[·] is 1 if its argument is true, or 0 otherwise. In other words, false
acceptance rate is the fraction of attack samples in the dataset that are wrongly classified
as real. Unless otherwise specified, τ is assumed to be equal to 0.5.

False rejection rate (FRR)

The false rejection rate FRRτ is analogously defined as:

FRRτ =
1

|Dreal |
∑

x∈Dreal

✶[f(x) ≥ τ ]. (5.2)

It is the fraction of real-access samples that are classified as attack.

Half total-error rate (HTER)

The half total-error rate HTERτ is defined as:

HTERτ =
FARτ + FRRτ

2
. (5.3)

As such, it is the mean of the two types of errors for the same threshold, and is useful
as a summary measure of the overall performance of the algorithm.

Equal error rate (EER)

FARτ , FRRτ and HTERτ always depend on an underlying threshold τ . As a single
threshold-independent metric, the equal error rate (EER) is often used to compare models.
For our purposes, we use the following definition:

EER = HTERt | t satisfies min
t

(FARt − FRRt) . (5.4)

In other words, EER is the error at the threshold point t where FARt = FRRt.
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APCER, BPCER and ACER

Attack presentation classification error rate (APCER) and bona-fide classification error

rate (BPCER) are recently proposed metrics, that were specifically thought of for the
evaluation of presentation-attack detection methods. They are now part of ISO stan-
dard ISO/IEC 30107-3:2017 [33]. BPCER is analogous to FRR. APCERPAIS , on the
other hand, is similar to FAR, but is calculated for each presentation-attack instrument

species (PAIS) separately. An aggregate version, APCERAP is defined as the maximum
APCERPAIS among instruments at a given attack potential (AP), which considers how
likely that attack is. In other words, its goal is to model a worst-case scenario.

The average classification error rate (ACER) is based on BPCER and APCER, and
is used to assess the efficacy of algorithms in the official protocols of the OULU-NPU
dataset [11]. In this context, BPCER is the same as FRR. APCER, on the other hand, is
defined as the highest FAR when considering each attack variety in the dataset separately.
ACER is then analogous to HTER, and is defined as the average of BPCER and APCER.

A note on frame scores versus video scores

Benchmarks created for evaluating face PAD algorithms differ in whether they count the
whole video as a single example for evaluation purposes, or each frame separately. Unless
otherwise noted, OULU-NPU evaluations are based on video scores, while RECOD-MPAD
evaluations are based on frame scores. Because the proposed methods and baselines in this
work always generate scores for static frames, video scores for the OULU-NPU protocols
are computed as the average score over each predicted frame. This makes comparison
with other methods possible and fair.

5.3 Baseline methods

In order to validate our proposal, we also define two baseline methods to be compared to
ours, when considering RECOD-MPAD. The first one is a recently published handcrafted
method [12] that combines both texture and color characterizations, and was shown to
outperform other popular texture-based methods. The second baseline is a simplified
version of Method I introduced in Chapter 4, in which only the classification layer is
learned, with the pre-trained frozen core serving as a feature extractor.

5.3.1 Handcrafted baseline: color LBP

As a representative of handcrafted approaches, to be used as baseline, we choose a recently
proposed color-texture method [12]. It is based on the local-binary pattern (LBP) texture
descriptor [54], which is also at the core of many other PAD methods [51, 52, 24, 40, 59].
It differs from previous uses of LBP by considering multiple alternative color channels,
instead of focusing on grayscale images or RGB channels. Because of that, we refer to it
as the color-LBP method in this work.
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Uniform LBP descriptor

At the core of the method is the basic LBPP,R operator, which transforms a single image
channel of size H ×W into a map of the same size, with codes corresponding to local
texture patterns. The pattern at each location (x, y) is defined by the following equation:

LBPP,R(x, y) =
P−1
∑

i=0

δ(ri − rc)× 2i−1, (5.5)

where R is the radius of a circular neighborhood in the original image, centered at (x, y),
from which P points are sampled. rc refers to the pixel at (x, y), while ri is i’th pixel in
the neighborhood. The thresholding function δ(ri− rc) = 1, if ri− rc ≥ 0, or 0 otherwise.

These patterns can be compactly represented by P bits. For example, for P = 8, the
pattern 000000002 corresponds to the case in which the center pixel is greater than all 8
pixels in its neighborhood.

In practice, a variation of the basic LBP called uniform LBP is used. In this case, the
so-called uniform patterns are separated from the non-uniform. A pattern is uniform if its
binary representation has at most two 0/1 transitions. For example, patterns 000000002,
001110002, 001111112 are uniform, but 010000102 and 001101002 are not.

The final LBP descriptor is a normalized histogram recording the frequencies of each
pattern. For a uniform LBP8,1 map, the histogram would consist of 58 bins for uniform
patterns, and a single bin for all non-uniform patterns.

Frame pre-processing

For each frame, a square region containing only the centered user face is cropped and
rescaled to 64× 64, as in the original paper. The resulting RGB image is then converted
to two different color spaces: HSV, with hue, saturation and value channels, and YCbCr,
with luminance, chrominance blue, and chrominance red channels.

Feature vector

From each of the six HSV and YCbCr channels, a uniform LBP8,1 histogram with 59 bins
is computed. The final feature vector is defined as the concatenation of all six histograms,
for a total of 354 dimensions.

Training an SVM classifier

Feature vectors computed from each frame in the training set are used to train a binary
support-vector machine classifier (SVM) [9, 19] to separate genuine from attack frames. In
our experiments, we use radial basis function kernels (RBF), which results in a non-linear
classifier. Hyperparameters are tuned with a validation set.

The color-LBP method based on HSV and YCbCr achieves 6.2% EER on the overall
protocol of the CASIA dataset, which is significantly better than similar characterizations
that use grayscale images or RGB channels, achieving 24.8% and 16.1% EER, respectively.
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It also performs better than chance on cross-dataset experiments considering REPLAY-
ATTACK and CASIA, while most previous methods completely fail [12].

5.3.2 Pre-trained CNN as a feature extractor

In addition to the handcrafted baseline, we also evaluate the potential of using a pre-
trained CNN baseline, in the spirit of transfer learning.

We use almost the same methodology described for Method I, with the same archi-
tecture, and with parameters up to layer fire9 pre-trained on ImageNet. During training,
instead of optimizing the whole network, we freeze the parameters of the core part of the
architecture and optimize only the linear classification layer. We can interpret this as
using the pre-trained network as a non-linear feature extractor that generates a more dis-
entangled image representation, which is then used to train a linear classifier. Otherwise,
data is pre-processed exactly as in Method I, and the training procedure is also the same,
with the same hyperparameters.

This kind of transfer learning scheme was shown to work better than optimizing the
whole network when the original and target problems are related and limited data is
available [69]. It also trains much faster and requires much less memory, since only the
gradient with respect to parameters in the last layers must be computed, and intermediate
activations must not be saved.
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Chapter 6

Experimental Results

In this chapter, we evaluate the efficacy of the proposed methods by performing care-
ful experimentation with the RECOD-MPAD dataset. We also present results for the
OULU-NPU dataset, which was used in a recent face PAD competition at the IJCB-2017
conference. In each section, we start by presenting the experimental protocol. We then
proceed to describing any relevant details about the tested methods, if applicable. Finally,
we present and discuss the results.

6.1 Overall results on RECOD-MPAD

In this section, we describe an experiment comparing the proposed methods and the
baselines by using all available data on the RECOD-MPAD dataset. This protocol is
similar to the official protocol in most other existing datasets, in the sense that it is
user-disjoint, but otherwise includes all factors present in the data.

Protocol definition

In RECOD-MPAD’s overall protocol, we include 64 frames from each video, as described
in Section 5.1.1. These frames are pre-aligned face crops of maximum resolution, which
ensures every algorithm starts from a common ground. In summary, there are 143,997
frames covering 45 users, 2 sensor devices, 5 sessions or illumination scenarios, and 4
attack types. These frames are divided into 3 user-disjoint subsets:

• A training set, containing a total of 76,798 frames from 24 users;

• A validation or development set, containing a total of 19,200 frames from 6 users;

• A test set, containing a total of 47,999 frames from 15 users.

The testing set is to be used exclusively for reporting the final results of a method.
On the other hand, the validation set can be used freely for any kind of hyperparameter
tuning, as an early stopping criterion, or simply for monitoring the training procedure.
In general, the HTER, FAR, and FRR metrics at the standard threshold of 0.5 should be
calculated on a per-frame basis, and reported for both subsets.
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Table 6.1: Results for the overall protocol of RECOD-MPAD.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Color-LBP 3.87 1.02 6.72 4.94 0.72 9.16
Pre-trained CNN 3.62 2.62 4.61 6.59 2.32 10.86

Whole-face CNN (I) 0.91 0.40 1.43 0.82 0.35 1.29
Patches CNN (II) 0.56 0.67 0.44 1.14 0.34 1.94
Spoof-loss CNN (III) 0.35 0.29 0.42 0.63 0.12 1.15

Performance on the validation set suggests that, in comparison to Method I (Whole-
face CNN), Methods II (Patches CNN) and III (Spoof-loss CNN) can more closely model
the problem, in the sense that they reach points of lower validation error during training.
This is a pattern that will also be evident in the next experiments. Although Method II
reached lower validation error than Method I, the latter still performed better on the test
set. On the other hand, compared to the other two methods, Method III performed much
better, making less false-rejection errors, and roughly a third of false-acceptance errors.

6.2 Cross-factor experiments with RECOD-MPAD

The goal of the overall experiment described in Section 6.1 was to assess how well the
tested methods could generalize to new users, and more data in general, but assuming
similar acquisition and attack conditions. That protocol is most similar to how traditional
PAD methods are evaluated. From the results, we could conclude that our proposed meth-
ods are better than the baselines. Equally important, we could validate their potential to
be used as a data-driven tool for more challenging experimentation.

In the next experiments, we report only results for the three proposed methods. Each
experiment defines a protocol in which we train and validate with only a subset of what
we call the factors in the dataset, i.e., sessions, attack types, sensor devices, etc., leaving
the other variables to make up the test dataset. As usual, the test set is to be used
exclusively for reporting the final results of a method.

Models were trained by following the same procedure and hyperparameters described
in Section 6.1 and Chapter 4. Because of that, each of the following subsections only
describes protocols and results.

6.2.1 Cross-session protocol

In the cross-session experiment, our goal is to test how well models trained only in a
limited number of illumination scenarios can generalize to new conditions. This is partic-
ularly important, since it is assumed that any useful method should work in all typical
illumination scenarios. Unfortunately, this is one of the most overlooked aspects when
constructing PAD datasets.
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Protocol definition

We start from the same user-disjoint subsets defined in the overall protocol, with 24, 6,
and 15 users in the training, validation and test sets, respectively. We then create a total
of 5 cross-session sub-protocols by using a leave-one-session-out strategy. In other words,
for session i ∈ {1, 2, 3, 4, 5}, sub-protocol i retains only session i in its test set, with frames
from the remaining session making up the training and validation sets. This enables us
to test how difficult it is to separate genuine from attack frames in each illumination
scenario. More importantly, it can suggest how important it is to include examples from
those scenarios in the training set. Details about each session are given in Section 5.1.1.

Results

By examining Table 6.6 we see the numbers for each sub-protocol are quite different.
Most noticeable, the results for sub-protocol 5 suggest that models do not generalize so
well to the extreme unseen conditions in session 5. False-rejection rate for Method I, for
example, is 43.54%. This highlights the importance of accounting for these situations
when developing PAD methods or building training and evaluation datasets.

From the point of view of model evaluation, we can see that there is no clear winner.
For example, Methods I (Whole-face CNN ) and II (Patches CNN ) perform incredibly well
in comparison to the others in sub-protocols 2 and 1, respectively. In fact, the numbers
suggest that they perform better at the unseen test scenario than in the validation set,
in each case. On the other hand, in sub-protocol 5, Method III (Spoof-loss CNN ) is the
only one that could be said to be acceptable, although false-rejection rate is still not low
enough for industry standards.

Table 6.2: Results on RECOD-MPAD: protocol cross-session 1.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 1.07 0.54 1.60 0.85 0.56 1.15
Patches CNN (II) 0.57 0.38 0.75 0.34 0.36 0.31
Spoof-loss CNN (III) 0.34 0.22 0.46 3.57 0.26 6.88

Table 6.3: Results on RECOD-MPAD: protocol cross-session 2.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 1.53 0.92 2.15 0.66 0.34 0.99
Patches CNN (II) 0.47 0.71 0.23 2.66 0.31 5.00
Spoof-loss CNN (III) 0.40 0.48 0.33 1.77 0.00 3.54
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Table 6.4: Results on RECOD-MPAD: protocol cross-session 3.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.94 0.70 1.17 6.99 2.58 11.41
Patches CNN (II) 0.51 0.80 0.23 5.27 3.15 7.40
Spoof-loss CNN (III) 0.28 0.41 0.16 4.54 0.27 8.80

Table 6.5: Results on RECOD-MPAD: protocol cross-session 4.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 1.09 1.07 1.11 1.73 1.99 1.46
Patches CNN (II) 0.45 0.54 0.36 1.41 1.21 1.61
Spoof-loss CNN (III) 0.40 0.51 0.29 2.85 0.27 5.42

Table 6.6: Results on RECOD-MPAD: protocol cross-session 5.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.42 0.08 0.75 21.82 0.09 43.54
Patches CNN (II) 0.24 0.29 0.20 16.07 0.27 31.87
Spoof loss CNN (III) 0.08 0.06 0.10 12.15 0.55 23.75

6.2.2 Cross-attack protocol

In RECOD-MPAD’s cross-attack protocol, the goal is to evaluate how well presentation-
attack detection methods generalize to unseen attack variations. This is done by sepa-
rating the available data into attack-disjoint subsets. More specifically, we build training
and validation sets that only contain a subset of the attack varieties, while remaining
attacks make up the test set.

Protocol definition

We start with the same strategy described in Section 6.1 for dividing frames into user-
disjoint training, validation and test sets. Each subset contains only data from 24, 6 and
15 users, respectively. We then further filter these subsets to create 4 sub-protocols. In
each sub-protocol, we select one type of display attack and one type of print attack to be
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part of the training and validation sets, while the test set is left only with the other two
remaining attacks. We call the display attacks CCE42 and HP17, referring to the monitor
brand and size, for short. The two varieties of print attacks are called print1 and print2,
and refer to the printed-photo attacks recaptured with more or less light, respectively.
More details about the dataset can be found in Section 5.1.1. Table 6.7 summarizes how
attacks are separated among subsets in each sub-protocol.

Table 6.7: Distribution of attack types in RECOD-MPAD’s cross-attack sub-protocols.

Training Validation Test
Sub-protocol Attacks #frames Attacks #frames Attacks #frames

1 CCE42 46,079 CCE42 11,520 HP17 28,799
print1 print1 print2

2 HP17 46,079 HP17 11,520 CCE42 28,799
print1 print1 print2

3 CCE42 46,079 CCE42 11,520 HP17 28,799
print2 print2 print1

4 HP17 46,079 HP17 11,520 CCE42 28,799
print2 print2 print1

Results

Tables 6.8 to 6.11 summarize the results for the cross-attack protocol.

Table 6.8: Results on RECOD-MPAD: protocol cross-attack 1.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.83 0.47 1.20 3.47 5.56 1.38
Patches CNN (II) 0.27 0.23 0.31 5.30 9.77 0.82
Spoof-loss CNN (III) 0.23 0.25 0.21 4.67 7.90 1.44

Table 6.9: Results on RECOD-MPAD: protocol cross-attack 2.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.75 0.79 0.70 11.52 20.61 2.43
Patches CNN (II) 0.24 0.20 0.29 12.70 24.43 0.98
Spoof-loss CNN (III) 0.31 0.22 0.39 11.76 22.03 1.48
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Table 6.10: Results on RECOD-MPAD: protocol cross-attack 3.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.95 0.44 1.46 2.77 4.26 1.29
Patches CNN (II) 0.46 0.51 0.42 1.81 2.74 0.88
Spoof-loss CNN (III) 0.31 0.43 0.18 3.37 5.49 1.25

Table 6.11: Results on RECOD-MPAD: protocol cross-attack 4.

Validation Set Test Set

Method HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 1.02 0.59 1.46 12.64 23.09 2.19
Patches CNN (II) 0.59 0.65 0.52 11.97 22.72 1.22
Spoof-loss CNN (III) 0.32 0.46 0.18 10.43 19.54 1.32

In general, models trained with attacks from the larger display demonstrated accept-
able generalization when predicting unseen attacks performed by the smaller monitor.
The opposite did not happen. In fact, models trained with the 17-inch monitor are only
slightly better than chance at detecting attacks from the larger display. They account for
most of the false-acceptance errors in sub-protocols 2 and 4.

Attacks performed with a smaller monitor and recaptured with a fixed-focus sensor
tend to have limited resolution, due to soft focus at closer distances. There are certainly
other factors that could account for the difference between the two display attacks, but
we hypothesize that when training only with lower resolution attacks, models are more
likely to get biased to the difference in resolution, instead of other differences between
real-access and attack images. This highlights the importance of having more realistic
attacks in the training set.

6.2.3 Cross-device protocol

In this experiment, our goal is to test how well models trained only with a subset of the
available sensor devices generalize to the difficult task of distinguishing between real-access
and attack frames from unseen devices.

Protocol definition

We start by separating users into training, validation and test sets, exactly as in the overall
protocol. Since RECOD-MPAD has two sensor devices, we create two sub-protocols, each
with roughly half of the available data. Sub-protocol 1 has only frames from device 2 (Moto
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X Style) in the training and validation sets, and only frames from device 1 (Moto G5 ) in
the test set. Sub-protocol 2 has only frames from device 1 (Moto G5 ) in the training and
validation sets, and only frames from device 2 (Moto X Style) in the test set.

Results

Tables 6.12 and 6.13 summarize the results for this experiment. The immediate observa-
tion is that models trained only with device 2 (Moto X Style) generalize relatively better
than the other way around, when faced with the problem of distinguishing real-access
attempts from attacks of device 1 (Moto G5 ).

Table 6.12: Results on RECOD-MPAD: protocol cross-device 1.

Validation Set Test Set

Model HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.24 0.27 0.21 8.58 8.18 8.98
Patches CNN (II) 0.10 0.10 0.10 6.66 7.28 6.04
Spoof-loss CNN (III) 0.06 0.07 0.05 6.33 4.00 8.67

Table 6.13: Results on RECOD-MPAD: protocol cross-device 2.

Validation Set Test Set

Model HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.55 0.53 0.57 16.57 27.37 5.77
Patches CNN (II) 0.19 0.22 0.16 17.98 18.29 17.67
Spoof-loss CNN (III) 0.19 0.22 0.16 8.84 8.49 9.19

To find explanations, we could start by looking at the differences between the two
cameras. Similarly to the situation with the cross-attack protocol, the most obvious
difference is in resolution. Device 1, used for training in sub-protocol 2, has a lower
capacity of resolving finer details at the considered distances. This, again, could encourage
models to learn a more artificial separation between real and attack frames, that does
not generalize to new situations in which attacks are more similar in quality to real
frames. That quality depends on the sensor camera itself interacting with attack variables.
Ironically, a camera with focus fixed at longer distances would be bad at capturing good-
quality close-up pictures, but this could aid in detecting presentation attacks performed
with smaller display or paper sizes.

In terms of individual model performance, we note that in sub-protocol 1 the two
methods based on training with patches performed better than the whole-face method.
Moreover, the boundaries at the standard threshold of 0.5 seem to be complementary,
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in the sense that one model makes less false-rejection errors, while the other makes less
false-acceptance errors.

In sub-protocol 2, although Methods I and II undoubtedly perform much worse than
in sub-protocol 1, Method III performs surprisingly better than the other two. The multi-
objective loss and the associated training procedure were envisioned chiefly as a naturally
more sensible way of training with multiple sensor devices, but this experiment suggests
that there is a benefit even when training with a single device. This is probably due
to the way the triplet loss component encourages a similarity between real samples and
an explicit dissimilarity between real and attack samples in the learned space, which is
different than just separating two classes.

6.2.4 Controlled protocol

Finally, we also present a special experimental protocol in which we would like to evaluate
what happens when we train only with “well-behaved” frames, excluding most extremely
distorted printed-photo frames and all frames in session 5, which are much darker, noisier
and blurrier than other frames.

Protocol definition

This protocol uses the same disjoint subsets of users as in the overall experiment in
Section 6.1 to separate data into training, validation and test subsets. The test set
remains exactly the same, which makes it possible to directly compare with the numbers
reported for that protocol.

The training and validation sets, however, are filtered so that all frames from session
5 are removed. In addition to that, the first 32 frames from all printed-attack videos,
corresponding to the first half of these recordings, are also removed. As described in Sec-
tion 5.1.1, printed-photo videos start with the attacker deliberately distorting or warping
the paper while moving it away from the camera, which makes the cropped face area very
small. The eliminated frames correspond mostly of the frames in those parts of the video.

Results

Results for this experiment are shown in Table 6.14. Although the whole-face CNN

performed relatively bad in this scenario, the other methods, based on training with
patches, showed promising generalization potential.

In the aggregate, we see that there is a deterioration in performance, as compared to
test error in the overall protocol (Section 6.1). This suggests that training with distorted
and low-quality frames does not hurt overall performance, while removing them from
training can make models fail when encountering the situations they represent in the real
world.
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Table 6.14: Results on RECOD-MPAD: protocol controlled.

Validation Set Test Set

Model HTER FAR FRR HTER FAR FRR

Whole-face CNN (I) 0.40 0.14 0.65 4.76 0.44 9.07
Patches CNN (II) 0.28 0.24 0.33 1.86 0.38 3.33
Spoof-loss CNN (III) 0.17 0.25 0.10 2.20 0.58 3.81

6.3 Experiments with OULU-NPU

Veering away from the experiments using RECOD-MPAD, we now focus on an analysis
considering the OULU-NPU dataset. Some important details about the dataset were
already given in Sections 2.2 and 5.1.2. We also refer the reader to the original paper in
which it was proposed [11].

In the following subsections, we describe each of its official user and factor-disjoint
protocols, with the accompanying results and discussion. For that, we draw on the results
of the IJCB-2017 competition [10], briefly mentioned in Section 5.1.2. During the analysis,
it would be unfeasible to list the results of all participants in the competition. Therefore
we decided to add only the performance figures of the top-3 entries in each protocol,
considering one entry per team. In addition to that, we also include the official baseline
and our own entry in the competition.

The competition baseline is based on the same method we described in Section 5.3.1,
but with small changes in face alignment, and a different type of classifier at the end: a
Softmax classifier, instead of an SVM with RBF kernel. In practice, we compared the
accuracy of our own implementation to the competition implementation and they were
very similar.

Our entry in the competition is considerably different than the solutions we propose
in this dissertation. At that time, we also used SqueezeNet as our core architecture, but
there are several differences in the overall pipeline. Most importantly, our competition
entry was based on the mean score of the LBP baseline and the CNN classifier. The
CNN classifier itself was based on pre-training with the aligned whole-face crops from the
UVAD and CASIA datasets, selecting the checkpoints with the lowest validation error,
and then retraining with the appropriate OULU-NPU subset.

In addition to our three proposed methods, in this section we also include the results
for combining the predictions of Methods II and III, and all three methods. The late
fusion strategy consists in computing the arithmetic average of the final scores. The idea
is to give a glimpse of the complementarity of these methods, and to estimate how much
we could gain in accuracy by running the multiple networks in an operational scenario.



CHAPTER 6. EXPERIMENTAL RESULTS 66

Evaluation metrics

On each protocol, evaluation is based on the equal error rate (EER) and the attack
classification error rate (ACER), as described in Section 5.2. More specifically, EER
should be computed and reported on the validation set (officially called development set),
which happens at a specific score threshold t. Subsequently, this threshold is used to
compute the ACERt on the test set, which is the main metric used to compare different
solutions. All metrics are calculated considering each video as a single example, instead
of frames. For our solutions, video scores are calculated as the average score of sampled
frames in that video, which makes for a fairer comparison.

6.3.1 Cross-session protocol

In the cross-session protocol of OULU-NPU (Protocol I), the goal is to evaluate general-
ization to unseen illumination conditions.

Protocol definition

Since the full dataset considers videos from 3 sessions, in this protocol training and valida-
tion sets are filtered to contain only videos from the first two sessions, while the test set is
then composed of videos from the remaining session. Unfortunately, the official protocol
does not test generalization to the other two available illumination conditions. Training,
validation, and test sets are user-disjoint, with 20, 15, and 20 users, respectively. In total,
there are 1200, 900, and 600 videos in the training, validation and test sets, respectively.

Results

Table 6.15 summarizes the results. Compared to our other solutions, we see that Method
II (Patches CNN ) is the best performer in this case, being significantly better than the
competition baseline. In general, it is among the top-performing methods in the context
of the competition, and would place us in position 3 out of 13 participants. In fact,
our actual entry was already the third best. If we consider score-level fusion, combining
Methods II and III would put us at the second place, while combining all three methods
would surpass all participants in the competition.

Although all three sessions in the dataset are similar, in the sense that they are con-
trolled static indoor sessions, this protocol still proved to be a challenge, which highlights
the fragility of PAD methods in general.
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Table 6.15: Results for protocol I of OULU-NPU (cross-session).

Method Validation EER (%) Test ACER (%)

Whole-face CNN (I) 2.6 8.3
Patches CNN (II) 0.3 7.5

Spoof-loss CNN (III) 0.8 8.8
Score fusion (II + III) 0.8 6.7
Score fusion (I + II + III) 0.8 6.2

Competition baseline 4.4 12.9
Competition 1st 0.7 6.5
Competition 2nd 0.6 6.9
Competition 3rd 2.2 8.3
Our entry (different method) 2.2 8.3

6.3.2 Cross-attack protocol

In the cross-attack protocol (Protocol II) of OULU-NPU, the goal is to test generalization
to new attack conditions.

Protocol definition

Attack videos created by using display 1 and printer 1 are selected to compose the training
and validation subsets, while the test set is made up only from attack videos that use
display 2 and printer 2. Users are distributed among subsets exactly as in Protocol I.

Results

Table 6.16 shows results for this protocol. We note that our two methods trained with
patches (Patches CNN and Spoof-loss CNN ) show significantly lower error rates than the
Whole-face CNN method. With an ACER of 7.2%, they lead to less than half the errors
the baseline would make, and are slightly worse than the third place in the competition.
A simple score-level fusion of Methods II and III would be placed only 0.1% behind the
second best in the competition.
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Table 6.16: Results for protocol II of OULU-NPU (cross-attack).

Method Validation EER (%) Test ACER (%)

Whole-face CNN (I) 3.7 11.3
Patches CNN (II) 0.3 7.2

Spoof-loss CNN (III) 0.7 7.2

Score fusion (II + III) 0.4 6.2

Score fusion (I + II + III) 1.1 7.6

Competition baseline 4.1 14.6
Competition 1st 0.9 2.5
Competition 2nd 1.3 6.1
Competition 3rd 4.4 6.7
Our entry (different method) 3.7 10.0

6.3.3 Cross-device protocol

The goal of the cross-device protocol of OULU-NPU (Protocol III) is to test generalization
across sensor devices.

Protocol definition

As usual, subsets are user-disjoint, and users are distributed exactly as in the other
protocols. In this case, however, a leave-one-device-out strategy is used to create 6 sub-
protocols. In each sub-protocol, a single sensor device is left out for testing, while videos
from the remaining 5 devices are used to compose the training and validation sets. In
each of the 6 sub-protocols, there are 1500, 1125, and 300 videos making up the training,
validation, and test sets, respectively.

Instead of reporting EER and ACER individually, the mean and standard deviation
of these metrics over each sub-protocol are to be reported.

Results

Table 6.17 presents the results for this protocol. We notice two patterns. Firstly, this is the
first protocol in which the proposed solutions are behind the baseline. Most importantly,
on average we see that Method II (Patches CNN ) performed better than Method I (Whole-

face CNN ), and Method III (Spoof-loss CNN ) performed better than the other two.
Fusion did not improve performance, suggesting that Method III was strictly better in
this case. Although variance is high, this still offers some support to the hypothesis that
Method III can better deal with multiple devices during training, and that patches-based
methods can model more generalizable clues.

This dataset was constructed with cameras that are very different from one another.
Arguably, generalization across very different devices is the less important goal. After all,
we do expect a useful model to work reasonably well under typical, but unseen lighting
conditions, or even in face of a new attack instrument. But it is not surprising that a
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trained model can fail if deployed on a system in which the sensor is very different than
the one it was trained with, given the low-level nature of the problem.

Table 6.17: Results for protocol III of OULU-NPU (cross-device).

Method Validation EER ±σ (%) Test ACER ±σ (%)

Whole-face CNN (I) 4.5± 0.9 19.7± 5.8

Patches CNN (II) 0.6± 0.3 15.6± 6.9

Spoof-loss CNN (III) 0.6± 0.3 13.6± 7.0

Score fusion (II + III) 0.5± 0.3 13.6± 6.7

Score fusion (I + II + III) 0.6± 0.5 14.2± 6.5

Competition baseline 3.9± 0.7 11.4± 4.6

Competition 1st 0.9± 0.4 3.8± 2.4

Competition 2nd 1.4± 0.5 6.5± 4.6

Competition 3rd 0.9± 0.4 7.4± 3.3

Our entry (different method) 2.9± 0.7 9.6± 6.7

6.3.4 Cross-* protocol

In Protocol IV of OULU-NPU, all factors are considered. Because of that, we call it
the cross-* protocol. Its goal is to evaluate how well models generalize to totally unseen
conditions: new sensor device, new illumination, and new attack instrument. As such, it
is the hardest protcol.

Protocol definition

Protocol definition is analogous to Protocol III, with each test set containing only one
of the sensor devices. Moreover, test sets contain only videos taken in session 3, while
training and validation sets contain only videos from sessions 1 and 2. Attacks are also
divided, with printed photo 1 and display attack 1 making up the training and validation
sets, and printed attack 2 and display attack 2 left for the test set. In each sub-protocol,
training, validation, and test sets have 600, 450, and 60 videos, respectively.

Results

The overall results for Protocol IV are shown in Table 6.18. As expected, all models show
very high ACER in the test set, with high variance. Nonetheless, all three of our proposed
solutions compare favorably to methods presented in the competition, especially Method
III (Spoof-loss CNN ). If we were to submit any of our solutions to the competition, we
would take the second place out of 13. In particular, mean error and standard deviation
are much lower than those of other methods based on feature learning.
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Table 6.18: Results for protocol IV of OULU-NPU (cross-*).

Method Validation EER ±σ (%) Test ACER ±σ (%)

Whole-face CNN (I) 3.9± 0.3 19.2± 10.5

Patches CNN (II) 0.5± 0.3 18.3± 7.5

Spoof-loss CNN (III) 0.5± 0.3 14.2± 6.1

Score fusion (II + III) 0.4± 0.2 13.3± 5.1

Score fusion (I + II + III) 0.6± 0.5 14.2± 6.5

Competition baseline 4.7± 0.6 26.3± 16.9

Competition 1st 1.1± 0.3 10.0± 5.0

Competition 2nd 1.0± 0.4 22.1± 17.6

Competition 3rd 2.2± 1.7 22.1± 20.8

Our entry (different method) 3.7± 0.7 22.5± 18.2

6.3.5 Final remarks

With these experiments, we were able to understand how the proposed methods compare
to the state of the art in a different but standardized PAD setting. The results are
promising, especially for Methods II and III, which were better than Method I in all
protocols.

Methods II and III compare favorably to methods that were part of the competition.
The first place achieved significantly lower error rates than other entries, but is based on
a handcrafted approach that uses temporal information. Some of the other methods also
explored the temporal dynamics or background. We highlight that it is not clear whether
these methods would work well under our constraints, in which a decision must be made
from at most a few frames, and the user is not necessarily standing still. Considering
that our approach is purely data-driven, frame-based, and not specifically tuned to this
dataset in particular, the results are satisfying. More importantly, our proposed solutions
showed better generalization than all except the first-place in the hardest protocol.

6.4 On-device user-specific adaptation

In this experiment, the goal is to evaluate how well the method for threshold adaptation
described in Section 4.4 actually works in practice.

Protocol definition

We focus on two cases: the cross-attack scenario described in Section 6.2.2 and the cross-
device scenario described in Section 6.2.3. We start from the Spoof-loss CNN models
trained in cross-attack subprotocols 1 and 2, and cross-device subprotocols 1 and 2. For
each of these 4 models, we partition the test set so that, for each user, approximately 128
real-access frames from 2 sessions play the role of the gallery, while the real and attack
frames from the remaining 3 sessions are kept in the test set for error estimation. We then
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report the total HTER on the new test set for the default threshold of 0.5, and the total
HTER using the learned threshold. For convenience, although each user uses a different
threshold, we report only the aggregate error of all 15 users in the test set. Threshold
estimation is done as described in Section 4.4, with ǫ = 0.05 and ∆ = 0.05.

Results

Results corresponding to the models trained in RECOD-MPAD’s cross-attack subproto-
cols 1 and 2 are shown in Tables 6.19 and 6.20, respectively. As we can see, even by using
only two sessions as gallery, overall HTER is reduced by as much as 33.4%.

Table 6.19: User-specific adaptation in a cross-attack scenario (1).

Standard threshold User-specific threshold
Gallery HTER HTER Error reduction (%)

1, 2 5.33 3.55 33.4
1, 3 4.19 2.89 31.0
1, 4 4.96 3.80 23.4
1, 5 4.52 3.62 19.9
2, 3 4.64 3.09 33.4
2, 4 5.40 4.06 24.8
2, 5 4.97 3.66 26.4
3, 4 4.26 3.73 12.4
3, 5 3.82 2.96 22.5
4, 5 4.59 4.05 11.8

Table 6.20: User-specific adaptation in a cross-attack scenario (2).

Standard threshold User-specific threshold
Gallery HTER HTER Error reduction (%)

1, 2 11.65 9.37 19.6
1, 3 9.35 8.16 12.7
1, 4 11.35 9.24 18.6
1, 5 14.37 11.25 21.7
2, 3 9.44 7.86 16.7
2, 4 11.45 9.35 18.3
2, 5 14.47 11.36 21.5
3, 4 9.15 7.98 12.8
3, 5 12.17 10.76 11.6
4, 5 14.17 11.25 20.6

Tables 6.21 and 6.22 show the results when considering the cross-device evaluations.
In contrast to the previous case, here the benefit is not so evident or consistent. For the



CHAPTER 6. EXPERIMENTAL RESULTS 72

model trained with the Moto X smartphone and tested with Moto G5, we see considerable
gains when using session 1 as part of the gallery, but in other cases, error either increased
or did not change so much. For the model trained with Moto G5 and tested with Moto X,
the situation is worse, with errors consistently increasing when trying to learn user-specific
thresholds from only 2 sessions.

Table 6.21: User-specific adaptation in a cross-device scenario (1).

Standard threshold User-specific threshold
Gallery HTER HTER Error reduction (%)

1, 2 6.11 5.13 16.0
1, 3 6.10 4.65 23.8
1, 4 6.61 4.56 31.0
1, 5 6.11 5.95 2.6
2, 3 6.15 5.63 8.5
2, 4 6.66 6.28 5.7
2, 5 6.16 6.32 -2.6
3, 4 6.65 6.87 -3.3
3, 5 6.15 6.13 0.3
4, 5 6.66 6.56 1.5

Table 6.22: User-specific adaptation in a cross-device scenario (2).

Standard threshold User-specific threshold
Gallery HTER HTER Error reduction (%)

1, 2 11.25 12.28 -9.2
1, 3 9.32 11.41 -22.4
1, 4 10.56 11.58 -9.7
1, 5 6.40 6.61 -3.3
2, 3 10.29 13.58 -32.0
2, 4 11.53 13.55 -17.5
2, 5 7.36 7.29 1.0
3, 4 9.60 12.41 -29.3
3, 5 5.43 5.84 -7.6
4, 5 6.67 7.63 -14.4

Overall, the results suggest that learning user-specific cutoffs on the target device is
beneficial, as long as the sensor camera is not too different from the ones seem during
training. In fact, this chaotic behavior with cross-device protocols was already observed
in previous experiments. Here we highlight the surprising reduction of error rates even
when considering new attacks and a gallery consisting only of two sessions.
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6.5 Examples of success and error cases

In this section, we present some success and error cases when training with RECOD-
MPAD under the protocol described in Section 6.1. To enhance interpretability, we de-
scribe a procedure to generate heatmaps from class-specific activations in the final layers
of a CNN, which is similar to the method used by Zhou et al. [82].

Heatmap generation

Fully-convolutional architectures avoid the traditional stack of fully-connected layers for
classification at the end of deep neural networks. This greatly reduces the number of
parameters, as already explained in Chapter 3. Because the final class-likelihood vector
is generated by directly averaging class-specific activation maps, these architectures have
another advantage: we can easily generate class-specific heatmaps, which highlight which
regions in the image were most responsible for the prediction.

For Methods I and II, we consider the 2× 14× 14 activation maps preceding the final
global-average pooling (GAP) operation. At each spatial location, we generate normalized
local attack probabilities by applying a modified Softmax function:

p (i, j) =
ef1(i,j)/T

ef0(i,j)/T + ef1(i,j)/T
, (6.1)

where f1 (i, j) represents the activation for the attack map at spatial position (i, j). This
mimics the Softmax function that is applied to spatially averaged activations, when train-
ing the network with the cross-entropy loss (see Section 4.1). T is a so called “temperature”
constant, which effectively flattens the resulting distribution for values greater than 1. We
use T = 10 to make visualizations more nuanced. When the resulting heatmap image
is rescaled and resized for visualization purposes, the differences in brightness highlight
which regions in the original image were more important for classifying it as attack or
genuine.

For Method III, the procedure is slightly different, since the spatial dimensions were
already “eliminated” by GAP after the fire9 layer, where maps still correspond to feature
activations. Instead of considering class-specific activation maps directly, we therefore
consider the 512 feature maps of size 14× 14 from the fire9 layer. Given the 512 attack
weights in the classification layer, we generate an attack map by first multiplying each of
the 512 fire9 maps by the respective attack weight, and then summing over the feature
axis. The map for the real-access class is generated analogously. The procedure for
generating heatmaps is then exactly the same as before.

Visualizations

Here we present examples of success and error cases, with visualization of associated
heatmaps. For each example, we show its min-max normalized heatmap, which helps to
emphasize the relative differences in activation strength of different areas in the image.
We also present a resized and overlaid heatmap, in which smoothed local probabilities
are not scaled. In this case, the red channel of the overlaid heatmap is defined as p(i, j),
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MPAD, and, conversely, using RECOD-MPAD to test models trained on OULU-NPU.

Training on RECOD-MPAD and testing on OULU-NPU

We start by taking the models trained with all available training data from RECOD-
MPAD. Details were discussed in Section 6.1. For the test set, we consider all videos from
the test subset of OULU-NPU, i.e., all videos corresponding to users 36-55. To get more
comparable and stable results, we compute all metrics based on the EER threshold of the
whole set.

Results are shown in Table 6.23. We see that the numbers are generally not good,
but this was expected. Still, performance is well above chance, except when presented
with the second kind of print-attack in the dataset. This print attack is the sharper
one between the two, which might explain the difference. In terms of predicting display
attacks, the numbers are much better, which suggests that the algorithms were able to
learn generalizable clues from the attacks present in RECOD-MPAD. There is however
a difference between the two display attacks, with the first one proving to be harder to
detect.

Table 6.23: Cross-dataset evaluation on OULU-NPU.

BPCER APCER

Model Real Print 1 Print 2 Display 1 Display 2

Whole-face CNN (I) 27.22 36.67 52.78 11.11 8.33
Patches CNN (II) 29.17 35.83 52.22 18.89 9.44
Spoof-loss CNN (III) 25.28 28.89 48.89 16.39 6.67

Training on OULU-NPU and testing on RECOD-MPAD

Now we consider models trained on OULU-NPU. More specifically, we consider models
trained for protocol I, described in Section 6.3. For the evaluation dataset we use all frames
from the test partition of RECOD-MPAD, exactly as in Section 6.1. Here, however, we
use the ERR threshold to calculate the other metrics.

The overall results are shown in Table 6.24. In general, we see that display attacks
simulated with the 42-inch CCE TV (display 1) were much harder to detect than attacks
with the smaller monitor, which is consistent with previous observations in the RECOD-
MPAD cross-attack protocol. Surprisingly, the model corresponding to Method II was
much better than Method III at detecting print attacks in this case.
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Table 6.24: Cross-dataset evaluation on RECOD-MPAD.

BPCER APCER

Model Real Print 1 Print 2 Display 1 Display 2

Whole-face CNN (I) 30.58 43.07 38.14 36.85 4.24
Patches CNN (II) 15.15 6.79 3.88 37.51 12.38
Spoof-loss CNN (III) 21.05 33.90 23.31 21.02 5.98

Table 6.25 shows the errors on the RECOD-MPAD dataset broken down by sessions.
We see that although errors are mostly consistent between sessions for the Whole-face

CNN model, there are some patterns. In general, frames from session 3 were easier to
classify than frames from sessions 1, 2, and 4. This is consistent with the fact that the
illumination conditions in session 3 are more similar to the indoor sessions in OULU-NPU.
It is, however, surprising that Methods II and III were relatively successful at classifying
frames from session 5, whose dimmer and noisier conditions are not well represented in
OULU-NPU.

Table 6.25: Cross-dataset evaluation on RECOD-MPAD - errors by session.

HTER

Model Session 1 Session 2 Session 3 Session 4 Session 5

Whole-face CNN (I) 34.53 30.59 28.25 29.77 29.75
Patches CNN (II) 19.97 15.08 13.63 19.15 7.90
Spoof-loss CNN (III) 25.55 21.86 16.47 28.54 12.86

6.7 Mobile implementation

From the start, one of our goals was to develop a method that not only could successfully
detect attacks against face authentication in mobile devices, but could also be efficiently
embedded in these devices. Therefore, in the context of our research project, we are
also developing a working prototype that combines face authentication with presentation-
attack detection. Here we provide evidence that our mobile implementation is feasible.

The CNN-part of our Android implementation is based on TensorFlow [1]. Assuming
we forward a single image into the network, all methods have essentially the same running
time, since the bulk of the computation is in the shared architectural core. Table 6.26
summarizes running time and peak memory usage for pre-processing and forwarding a
single 227 × 227 RGB image into the network. This does not include face detection and
alignment, but that is much faster and negligible in comparison to a forward pass through
the network. Mean running time and standard deviation is calculated over 20 independent
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runs. We highlight that the following figures are for non-optimized code, so improvement
is to be expected.

Table 6.26: Computational demands of the mobile implementation.

Device Release date CPU PAD time (ms) Peak memory

Moto Z Play 09/2016 8-core 2.0 GHz 197.75± 34.57 <50MB
Moto G5S Plus 08/2017 8-core 2.0 GHz 233.85± 28.55 <50MB

From these numbers, we observe that the proposed methods can run in modern smart-
phone devices in under one second, which would be almost instantaneous and thus trans-
parent to most users. In fact, it is still feasible to run two or forward steps in sequence,
which would be interesting in a score fusion scheme, exploring the complementarity of the
trained models. The small amount of required memory ensures that the authentication
step does not interfere with other applications.
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Chapter 7

Conclusion and Future Work

In this work, we proposed three different ways of training a convolutional neural network
to model and solve the face presentation-attack detection problem in a completely data-
driven way. We focused on the constraints of the mobile-device scenario, with its data
acquisition peculiarities and hardware limitations.

By using a powerful but lightweight deep convolutional architecture as a foundation,
our data-driven approach lets us focus on the problem definition itself instead of being
tied to specific handcrafted features. In the first method, we show how to adapt this
architecture to classify images as genuine or attack, and train a deep model using aligned
whole-face images as input, much like the majority of existing PAD pipelines. In the
second method, we leverage the available training data and the fully-convolutional archi-
tecture, showing how to train the network with face patches of varying detail, increasing
the number of available training examples, encouraging the model to be robust to changes
in resolution, and avoiding overfitting to specific combinations of facial features. In the
third method, we build upon the previous idea, but further reformulate the problem by
training with a multi-objective loss function that encourages real-access examples from
the same devices to be more compactly located in the learned feature spaces, while also
reducing inter-device confusion.

In the context of this work, we also collected a novel face PAD dataset targeted at
the mobile-device scenario. RECOD-MPAD contains videos from 45 users captured with
2 modern smartphones in 5 sessions, covering low-light and outdoor lighting scenarios,
with much higher intra and inter-session variability than in existing public datasets. For
evaluating PAD methods, we defined not only an overall protocol considering all available
data, but also more challenging factor-disjoint protocols.

Our data-driven approach proved to be superior to a recent competitive handcrafted
baseline, as well as a similar CNN with pre-trained features. This suggests that, contrary
to popular belief, complex deep learning models can generalize better than handcrafted
alternatives, even when trained with arguably limited amounts of data. Crucially, the
trained architecture has very small memory requirements, and can make predictions within
a fraction of a second in modern smartphones. This validates the potential of data-driven
approaches in solving the presentation-attack detection problem in mobile environments.

By evaluating the data-driven models under RECOD-MPAD’s factor-disjoint proto-
cols, in which the testing sets retain unseen sessions, attack varieties, or user devices, we
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were able to test the limits of software-based PAD methods. Despite the generalization
challenges, our patches-based methods performed well in most cases, but degradation in
performance is significant when compared to evaluations in which the only disjoint factor
is the user identity. More specifically, the results highlight the importance of training
with diverse illumination scenarios – performance for unseen extreme low-light conditions
is particularly bad. In the cross-attack protocol, we observed the greatest difficulty in
generalization when dealing with unseen attacks from the larger display. In the cross-
device protocol, generalization was better when training with the user device that cap-
tures sharper images, although we highlight the significant advantage of using the method
trained with the proposed loss function in this case, which suggests the benefit goes be-
yond separating devices during training. These insights are useful both for motivating
future PAD algorithms, and for the construction of new training and evaluation datasets.

We also proposed a computationally cheap on-device procedure that can be used to
find user-specific decision thresholds, improving a model’s usefulness in the operational
phase. By taking advantage of the diverse sessions in RECOD-MPAD, we showed that
error rates can effectively be reduced in most cases, even when considering a reference
gallery of only 2 sessions. At the very least, the procedure can make a model operate at
its best, constrained to a controlled user-inconvenience level.

Additional evaluations with the OULU-NPU dataset – used as benchmark in a com-
petition in the year 2017 – demonstrated how our methods compare to the state of the
art in another standardized setting. Even though our models were not particularly tuned
for this dataset, the results are promising when compared to the top-performing par-
ticipants. A simple score-fusion strategy further improved performance in most cases,
suggesting some degree of complementarity among the models. More importantly, the
three proposals surpassed all but the first place in the most challenging protocol of the
competition, with Method III performing particularly well.

Our models demonstrated promising results in terms of error rates, when compared
to the state of the art, but we call attention to the important fact that single software-
based PAD methods are still not good enough for real-world security requirements. As of
now, the biggest challenge is in limitations of datasets available for training and evaluating
models. As the size and quality of these datasets improve, we expect to see a proportional
improvement in the accuracy and usefulness of data-driven models.

We realize not everything can fit in a single work, and many more questions than can
be answered arise during a researcher’s journey. As future work, we can suggest a few
directions. More immediately, one could systematically study the complementarity and
fusion potential of the proposed methods to existing PAD methods. Another promising
path is in evaluating the effect of using other architectures, but care must be taken with
regards to the constraints of the target scenario. Finally, we hypothesize the proposed
multi-objective loss would perform particularly well when training with multiple more
heterogeneous datasets, but the question is still open.
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