®
g

Universidade Estadual de Campinas
" Instituto de Computagao /

..\ INSTITUTO DE
UNICAMP COMPUTACAO

0

Waldir Rodrigues de Almeida

Data-driven face presentation-attack detection in
mobile devices

Deteccao de ataques de apresentacao por faces em
dispositivos moéveis

CAMPINAS
2018

Waldir Rodrigues de Almeida

Data-driven face presentation-attack detection in mobile devices

Deteccao de ataques de apresentacao por faces em dispositivos
moveis

Dissertacao apresentada ao Instituto de
Computacao da Universidade Estadual de
Campinas como parte dos requisitos para a
obtencao do titulo de Mestre em Ciéncia da
Computagao.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor /Orientador: Prof. Dr. Anderson de Rezende Rocha
Co-supervisor/Coorientadora: Dra. Fernanda Alcantara Andalo

Este exemplar corresponde a versao final da
Dissertacao defendida por Waldir Rodrigues
de Almeida e orientada pelo Prof. Dr.
Anderson de Rezende Rocha.

CAMPINAS
2018

Agéncia(s) de fomento e n%(s) de processo(s): Nao se aplica.
ORCID: https://orcid.org/0000-0002-5848-5560

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Almeida, Waldir Rodrigues de, 1990-
AL64d Data-driven face presentation-attack detection in mobile devices / Waldir
Rodrigues de Almeida. — Campinas, SP : [s.n.], 2018.

Orientador: Anderson de Rezende Rocha.

Coorientador: Fernanda Alcantara Andalé.

Dissertagao (mestrado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Aprendizado de maquina. 2. Redes neurais (Computacao). 3.
Reconhecimento facial (Computacao). 4. Biometria. 5. Dispositivos moveis. .
Rocha, Anderson de Rezende, 1980-. Il. Andalé, Fernanda Alcéantara, 1981-.
[ll. Universidade Estadual de Campinas. Instituto de Computacao. IV. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Detecgao de ataques de apresentacao por faces em dispositivos
moveis

Palavras-chave em inglés:

Machine learning

Neural networks (Computer science)

Human face recognition (Computer science)

Biometry

Mobile devices

Area de concentracéo: Ciéncia da Computagao
Titulacao: Mestre em Ciéncia da Computagao

Banca examinadora:

Anderson de Rezende Rocha [Orientador]

Adam Czajka

Hélio Pedrini

Data de defesa: 25-01-2018

Programa de Pds-Graduacéao: Ciéncia da Computacdo

N

°
"A Universidade Estadual de Campinas
°

Y Instituto de Computagao
- INSTITUTO DE
UNICAMP COMPUTAGAO

Waldir Rodrigues de Almeida

Data-driven face presentation-attack detection in mobile devices

Deteccao de ataques de apresentacao por faces em dispositivos
moveis

Banca Examinadora:

e Prof. Dr. Anderson de Rezende Rocha (Supervisor)
Instituto de Computacao - UNICAMP

e Prof. Dr. Adam Czajka
CSE - University of Notre Dame

e Prof. Dr. Hélio Pedrini
Instituto de Computacao - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida académica do aluno.

Campinas, 25 de janeiro de 2018

The purpose of computing is insight, not
numbers.
(Richard Hamming)

Acknowledgements

During a long-term work like this, one invariably relies on many people, and the way that
leads to it is also paved by many previous experiences. First and foremost, I would like
to thank my family. Although my parents had never stepped foot near a university, when
I showed interest in higher education, they immediately encouraged me. When I had to
move to an expensive city, they gave me strength and supported me financially, without
ever expecting anything in return. Father, mother, and sister, you are my safe haven —
thank you for always supporting and believing in me! I truly believe I owe most of what
I achieved to you.

Speaking of education, Brazil is a beautiful and unique country, but whether someone
who only had access to its public primary and secondary school systems is able to realize
his or her potential, is often a matter of luck. Therefore, I am eternally indebted to
two very special teachers I had during high school: Joao Calixto Garcia and Joao Garcia
Junior. Besides keeping a very high teaching standard in an environment where very few
seemed to care, they also used to give free extra Mathematics and Physics classes, on the
weekends. You were my role models, and you silently inspired me to dream of one day
attending a top university, and to take responsibility for that dream.

When I was just starting to pursue my Master’s Degree, I was lucky to meet my
girlfriend and best friend, Paola, and though we stayed physically separated for most of
that time, she was always there to give me meaning, and to keep me motivated and sane.
Paola, you make me a better person, and no words could describe what you mean to me.
I am also grateful to all unmentioned old and new friends, who in one way or another
contributed to my personal growth. In particular, I am fortunate to have met and shared
a home with some incredible people, from the very beginning of my undergraduate years.
Julian Avila, Julian Escobar, Alejandro, I will deeply miss our late night discussions!

This research was done in close collaboration with many people. My supervisors, Prof.
Dr. Anderson Rocha, and Dr. Fernanda Andald, are among the hardest-working people
I ever met, and their achievements speak for themselves. Thank you for giving me the
right amount of freedom and direction, and for being always available. I also thank Prof.
Dr. Ricardo Torres and Prof. Dr. Jacques Wainer for the helpful pieces of advice during
our meetings. Prof. Anderson and Prof. Ricardo have accompanied me since I was an
undergraduate student, and I am indebted to them for many of the opportunities I had
in the last years. To my friends and colleagues from the BioLive project, Rafael, William,
and Gabriel, I already miss our spontaneous discussions about work and beyond, and I
hope we can keep in touch. You certainly contributed in many ways to this work.

Finally, we would like to thank Motorola for the financial support. In particular,
we also thank Benicio Goulart, Thiago Resek, Guilherme Megeto (from the Eldorado
Institute), and everyone else who were in direct contact with us. The dataset collected as
part of this work relied on many volunteers, to whom we are very grateful.

Resumo

Com o crescimento e popularizacao de tecnologias de autenticacao biométrica, tais como
aquelas baseadas em reconhecimento facial, aumenta-se também a motivagao para se ex-
plorar ataques em nivel de sensor de captura ameacando a eficacia dessas aplicacoes em
cenarios reais. Um desses ataques se dd quando um impostor, desejando destravar um
celular alheio, busca enganar o sistema de reconhecimento facial desse dispositivo apresen-
tando a ele uma foto do usuério alvo. Neste trabalho, estuda-se o problema de detecgao
automatica de ataques de apresentagao ao reconhecimento facial em dispositivos moéveis,
considerando o caso de uso de destravamento rapido e as limitagoes desses dispositivos.
Nao se assume o uso de sensores adicionais, ou intervengao consciente do usuario, depen-
dendo apenas da imagem capturada pela caAmera frontal em todos os processos de decisao.
Contribuigoes foram feitas em relacao a diferentes aspectos do problema. Primeiro, foi
coletada uma base de dados de ataques de apresentagao chamada RECOD-MPAD, que
foi especificamente projetada para o cenario alvo, possuindo variagoes realistas de ilu-
minagao, incluindo sessoes ao ar livre e de baixa luminosidade, ao contrario das bases
publicas disponiveis atualmente. Em seguida, para enriquecer o entendimento do que se
pode esperar de métodos baseados puramente em software, adota-se uma abordagem em
que as caracteristicas determinantes para o problema sao aprendidas diretamente dos da-
dos a partir de redes convolucionais, diferenciando-se de abordagens tradicionais baseadas
em conhecimentos especificos de aspectos do problema. Sao propostas trés diferentes for-
mas de treinamento da rede convolucional profunda desenvolvida para detectar ataques
de apresentacao: treinamento com faces inteiras e alinhadas, treinamento com patches
(regioes de interesse) de resolucao variavel, e treinamento com uma fungao objetivo proje-
tada especificamente para o problema. Usando uma arquitetura leve como ntucleo da nossa
rede, certifica-se que a solugao desenvolvida pode ser executada diretamente em celulares
disponiveis no mercado no ano de 2017. Adicionalmente, é feita uma analise que consi-
dera protocolos inter-fatores e disjuntos de usuéario, destacando-se alguns dos problemas
com bases de dados e abordagens atuais. Experimentos no benchmark OULU-NPU, pro-
posto recentemente e usado em uma competicao internacional, sugerem que os métodos
propostos se comparam favoravelmente ao estado da arte, e estariam entre os melhores
na competi¢do, mesmo com a condi¢ao de pouco uso de memoria e recursos computaci-
onais limitados. Finalmente, para melhor adaptar a solucao a cada usuério, propoe-se
uma forma efetiva de usar uma galeria de dados do usuario para adaptar os modelos ao
usuario e ao dispositivo usado, aumentando sua eficidcia no cenario operacional.

Abstract

With the widespread use of biometric authentication systems, such as those based on face
recognition, comes the exploitation of simple attacks at the sensor level that can under-
mine the effectiveness of these technologies in real-world setups. One example of such
attack takes place when an impostor, aiming at unlocking someone else’s smartphone,
deceives the device’s built-in face recognition system by presenting a printed image of
the genuine user’s face. In this work, we study the problem of automatically detecting
presentation attacks against face authentication methods in mobile devices, considering
the use-case of fast device unlocking and hardware constraints of such devices. We do
not assume the existence of any extra sensors or user intervention, relying only on the
image captured by the device’s frontal camera. Our contributions lie on multiple aspects
of the problem. Firstly, we collect RECOD-MPAD, a new presentation-attack dataset
that is tailored to the mobile-device setup, and is built to have real-world variations in
lighting, including outdoors and low-light sessions, in contrast to existing public datasets.
Secondly, to enrich the understanding of how far we can go with purely software-based
methods when tackling this problem, we adopt a solely data-driven approach — differ-
ently from handcrafted methods in prior art that focus on specific aspects of the problem
— and propose three different ways of training a deep convolutional neural network to
detect presentation attacks: training with aligned faces, training with multi-resolution
patches, and training with a multi-objective loss function crafted specifically to the prob-
lem. By using a lightweight architecture as the core of our network, we ensure that our
solution can be efficiently embedded in modern smartphones in the market at the year of
2017. Additionally, we provide a careful analysis that considers several user-disjoint and
cross-factor protocols, highlighting some of the problems with current datasets and ap-
proaches. Experiments with the OULU-NPU benchmark, which was used recently in an
international competition, suggest that our methods are among the top performing ones.
Finally, to further enhance the model’s efficacy and discriminability in the target setup of
user authentication for mobile devices, we propose a method that leverages the available
gallery of user data in the device and adapts the method decision-making process to the
user’s and device’s own characteristics.

List of Figures

1.1
1.2
1.3

2.1

3.1

4.1
4.2
4.3

5.1
5.2
9.3
5.4
2.5

6.1
6.2
6.3
6.4
6.5

A generic biometric authentication system. L. 14
[llustration of a presentation attack in a face authentication system. 16
Examples of real access and attacks from the CASIA-FASD dataset [80]. . 17

Image acquisition process for genuine and attack samples. 21

Original SqueezeNet v1.1 architecture [32], and micro-architectural details
of a generic fire module. oL 33

Network architecture and training procedure for Method I: Whole-face CNN. 36
Construction of a mini-batch in Method II: Multi-resolution patches CNN. 39
Architectural changes and the training procedure for Method I1I: Spoof-loss

CNN. . . 42
RECOD-MPAD: variations between sessions and devices. 47
RECOD-MPAD: variations encountered in a single session. 47
RECOD-MPAD: recapture setup. 48
RECOD-MPAD: examples for acquisition device 1. 49
RECOD-MPAD: examples for acquisition device 2. 49
Training curves for the proposed methods, trained with RECOD-MPAD. . 57
True acceptance examples, with heatmaps. 74
True rejection examples, with heatmaps. 75
False acceptance examples, with heatmaps. 76
False rejection examples, with heatmaps. 7

List of Tables

2.1
5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

Comparison of recent or actively-used public face presentation-attack datasets. 24

Summary of the properties of datasets used in this work. 51
Results for the overall protocol of RECOD-MPAD. 58
Results on RECOD-MPAD: protocol cross-session 1.. 59
Results on RECOD-MPAD: protocol cross-session 2.. 59
Results on RECOD-MPAD: protocol cross-session 3.. 60
Results on RECOD-MPAD: protocol cross-session 4. 60
Results on RECOD-MPAD: protocol cross-session 5. 60
Distribution of attack types in RECOD-MPAD’s cross-attack sub-protocols. 61
Results on RECOD-MPAD: protocol cross-attack 1. 61
Results on RECOD-MPAD: protocol cross-attack 2. 61
Results on RECOD-MPAD: protocol cross-attack 3. 62
Results on RECOD-MPAD: protocol cross-attack 4. 62
Results on RECOD-MPAD: protocol cross-device 1. 63
Results on RECOD-MPAD: protocol cross-device 2. 63
Results on RECOD-MPAD: protocol controlled. 65
Results for protocol I of OULU-NPU (cross-session). 67
Results for protocol II of OULU-NPU (cross-attack). 68
Results for protocol III of OULU-NPU (cross-device). 69
Results for protocol IV of OULU-NPU (cross-*). 70
User-specific adaptation in a cross-attack scenario (1).. 71
User-specific adaptation in a cross-attack scenario (2).. 71
User-specific adaptation in a cross-device scenario (1). 72
User-specific adaptation in a cross-device scenario (2). 72
Cross-dataset evaluation on OULU-NPU. 78
Cross-dataset evaluation on RECOD-MPAD. 79
Cross-dataset evaluation on RECOD-MPAD - errors by session. 79
Computational demands of the mobile implementation. 80

Contents

Introduction

1.1 Biometric authentication in mobile devices
1.2 Presentation attacks and their detection
1.3 Constraints of the mobile-device scenario
1.4 Research questions Lo
1.5 Contributions
1.6 Thesis organization Lo

Software-based Detection of Presentation Attacks

2.1 Image acquisition and attack clues.

2.2 Existing datasets

2.3 An overview of existing methods L.
2.3.1 Methods based on liveness detection or motion
2.3.2 Methods based on physics or geometry L.
2.3.3 Methods based on texture, noise analysis or image quality
2.3.4 Methods based on feature learning

2.4 A critical look at the state of theart

Deep Convolutional Neural Networks

3.1 Neural networks
3.2 Convolutional architectures
3.3 End-to-end classification
3.4 Specific architectures

Proposed Methods

4.1 Method I: CNN trained with whole-face regions
4.2 Method II: CNN trained with multi-resolution patches
4.3 Method III: CNN trained with a multi-objective loss
4.4 On-device user-specific adaptation 0L

Datasets and Experimental Methodology

5.1 Datasets
5.1.1 RECOD-MPAD
5.1.2 OULU-NPU
5.1.3 Summary

5.2 Evaluation metrics

5.3 Baseline methods
5.3.1 Handcrafted baseline: color LBP
5.3.2 Pre-trained CNN as a feature extractor

13
13
15
17
18
18
18

20
20
22
24
25
25
26
27
28

29
29
30
31
31

34
34
37
39
43

6 Experimental Results

6.1
6.2

6.3

6.4
6.5
6.6
6.7

Overall results on RECOD-MPAD
Cross-factor experiments with RECOD-MPAD
6.2.1 Cross-session protocol L.
6.2.2 Cross-attack protocol
6.2.3 Cross-device protocol
6.2.4 Controlled protocol
Experiments with OULU-NPU
6.3.1 Cross-session protocol L.
6.3.2 Cross-attack protocol
6.3.3 Cross-device protocol L
6.3.4 Cross-*protocol
6.3.5 Final remarks
On-device user-specific adaptation
Examples of success and error cases
Extra: cross-dataset experiments
Mobile implementationo

7 Conclusion and Future Work

Bibliography

56
26
58
o8
60
62
64
65
66
67
68
69
70
70
73
7
79

81

83

13

Chapter 1

Introduction

In this work, we study the problem of automatically detecting presentation attacks against

biometric face recognition systems in modern mobile devices, such as smartphones equipped
with a camera. This chapter introduces the main concepts motivating the problem and

presents our constraints and goals. Section 1.1 introduces Biometrics and Face Authen-

tication in the context of mobile devices. Section 1.2 explains what presentation attacks

are, and how they arise as a key security problem in face-recognition technology. Finally,

Sections 1.3, 1.4, and 1.5 summarize our constraints, research questions, and contribu-

tions.

1.1 Biometric authentication in mobile devices

Biometrics, as the name implies, is an area of study that is concerned with measuring
or characterizing individual living organisms. In the more narrower sense of biometric
authentication, we wish to study how to use physiological or behavioral traits of a human
individual to verify his or her identity. Examples of so called biometric modalities include
but are not limited to fingerprint, face, and iris, as physiological traits, but also gait
analysis, keystroke dynamics, and voice, as examples of behavioral traits [34].

The relevance of biometric authentication

Humans have always naturally identified other humans by their face, or voice. Biometrics
as we know it emerged in the late 19'" century, when the distinctiveness of fingerprints was
discovered, and they started being collected to identify criminals. With the evolution of
computing and sensors, new forms of robust and automatic biometric recognition systems
based on face, voice, and iris, among others, are being deployed.

More recently, users often need to secure the privacy of their digital data, secure access
to their bank account or digital wallets, or prove their identity for claiming some other
kind of service. In most of these applications, biometrics has risen as an alternative for
knowledge-based methods of authentication, such as alphanumeric passwords or unlock
patterns. Passwords are potentially very secure when used correctly, but this comes at
the price of inconvenience, requiring users to memorize long strings of characters, which
is not something humans are good at. Biometric authentication promises to eliminate the

CHAPTER 1. INTRODUCTION 14

need for such methods by using the individual itself as a “living password”: one’s identity
is verified by who she is, instead of what she knows or what she owns.

A typical biometric authentication or verification system might look like the one de-
picted in Figure 1.1. The main components involved in data acquisition and processing
are a biometric sensor, a feature extractor, and a feature comparison or matching module.
Additionally, it is assumed that the user already registered his biometric data, which is
stored in a gallery during the so-called enrollment phase. In the face-authentication case,
the biometric sensor is a camera that captures an image of the user’s face. The feature ex-
tractor is any method or algorithm that transforms image data into a more discriminative
representation. Vectors stored in the gallery are also called templates. Finally, feature
comparison could be as simple as a vector-similarity metric that compares the incoming
user vector (probe) to the gallery, or a complex pattern classifier trained on many feature
vectors. The output of the depicted authentication phase is a yes-or-no answer to whether
the data is recognized as belonging to the enrolled user.

)
() —]

feature
—> ?
comparison el

biometric > feature > fl\ l

sensor extractor

feature vector reject

Figure 1.1: A generic biometric authentication system.

Effective biometric authentication assumes that users can be uniquely identified by
examining the chosen trait, and that the system can capture the patterns asserting this
uniqueness. Not all traits are universal or sufficiently discriminative for some security
requirements, but systems based on machine learning and novel sensors are improving
every day.

Why use face authentication in mobile devices?

In this work, we focus on the use case of user authentication in mobile devices through
face recognition. More specifically, we consider the problem of secure user authentication
for device unlocking.

The motivation for controlling access to a mobile device is clear. Smartphones have
become so popular that they are almost an extension of the user’s body and mind. Most
people use their smartphone as their main medium of communication, storing conver-
sational history, pictures, passwords, and other private data. Moreover, people are in-
creasingly relying on their device for money transactions. In summary, as much as these

CHAPTER 1. INTRODUCTION 15

devices are useful, they must be secured, so that only the owner can access the data stored
in it, even if its left unchecked on a table, lost, or stolen.

As already mentioned, although the traditional way to secure access to such devices
has been through passwords or unlock patterns, these methods are inconvenient, in that
users have to memorize digits or patterns, and make a concentrated effort every time they
wish to gain access. Moreover, these passwords and patterns can be stolen by simply
paying attention to what the user is typing. Mainly for those reasons, fingerprint and face
recognition, or even iris recognition, are taking the lead as the preferred authentication
method in mobile devices.

But which biometric trait should be used? Fingerprint is potentially more secure than
face authentication, but requires its own specialized sensor. A fingerprint sensor usually
occupies a significant area on the device surface, thus competing with screen size. Because
of that, some prominent manufactures are moving away from this option. Iris or retina
recognition, on the other hand, might also require additional sensors or a sufficiently
powerful camera, good lighting conditions, and active user cooperation. Face recognition
is thus the more convenient alternative, because it can be implemented using the stock
front-facing camera present in most modern smartphones, and requires only that the user
passively looks at the smartphone’s screen, which is natural and not different from normal
usage.

1.2 Presentation attacks and their detection

We have seen the value of face authentication in mobile devices. But even if the system
is effective in discriminating genuine users from impostors, there remains the possibility
of a malicious individual manipulating its components to gain access. That could happen
at any point of the system, and could involve inserting or manipulating unprotected
templates. In this work, however, our focus is in detecting a more direct type of attack
that happens at the sensor level. It is a bigger threat in the sense that is does not require
expert knowledge of the system to be executed, and is not easily detectable.

Vulnerability of face authentication to presentation attacks

A presentation attack (PA) against a biometric authentication system, also called a spoof-
ing attack, is an attack that happens at the sensor level. In fingerprint authentication, for
example, they would be perpetrated by using fake fingers that are created with synthetic
materials to mimic the fingerprint of a target user. In face recognition, a PA can be made
by simply showing the system an image of the target user, which requires little technical
expertise, since face images are widely available on the Internet, and the attack proce-
dure could be as simple as displaying the face image on an liquid-crystal display (LCD)
monitor, in place of the actual user face.

Figure 1.2 illustrates how presentation attacks occur at the sensor level in a face au-
thentication system. Instead of presenting the actual user face to the sensor, an impostor
impersonates the target user by showing false biometric data: an image of the target
user’s face displayed on an attack medium or instrument.

CHAPTER 1. INTRODUCTION 16

impostor

presentation |Illllllllll
attack T

feature N\,
—);) 5
comparison match? /

biometric > feature > flk l

sensor extractor

feature vector reject

Figure 1.2: Illustration of a presentation attack in a face authentication system.

Types of attack

There are three main varieties of presentation attacks against face recognition systems:
printed photo attacks, screen or display attacks, and 3D-mask attacks.

A printed photo attack consists of showing an image of the target user printed on a
sheet of paper. This was the first type of attack to attract the attention of the research
community [18, 75]. Variables that affect this type of attack include paper material and
size, printer quality, color profiles, and ambient lighting. One important characteristic
of printed photo attacks is that even though the attacker can move or fold the piece of
paper, or even impersonate eye blinking by cutting holes in the paper, the actual image
content is static.

Screen attacks are those in which the attack medium is a screen, such as an LCD
monitor, or tablet. In contrast to printed photo attacks, the attacker can choose to
display a video, instead of a static image. Attack quality depends on monitor size, pixel
density, contrast levels, color reproduction, among other factors. Moreover, lighting comes
mostly from the screen’s backlight.

3D-mask attacks are a totally different class of attacks in which the attacker wears a
mask that was built to resemble the facial features of the target user [27]. In contrast to
both printed photo and screen attacks, the attack medium is an actual 3D object instead
of a flat surface. Although relatively good-quality masks can be made from a few photos
taken from different angles, the attack effort is greater than in the previous cases, which
makes this kind of attack less likely to happen.

In this work, we focus on the detection of printed-photo and screen attacks. Other
than being less common, we believe that the detection of 3D masks would require different
methods, and therefore our focus is necessary to make the scope of our work reasonable.

Figure 1.3 shows examples of presentation attacks in comparison to a genuine authen-
tication attempt. In this case, the biometric sensor was a webcam, and the figure shows
individual frames that were captured by that device. Figure 1.3b shows a print attack,
in which the attacker is holding a printed photograph in front of the sensor. Figure 1.3c

CHAPTER 1. INTRODUCTION 17

shows a screen attack performed with a tablet, which is replaying a video of the target
user. An in-depth discussion of the characteristics of printed photo and screen attacks is

provided in Chapter 2.

(a) Real access (b) Print attack (c) Screen attack

Figure 1.3: Examples of real access and attacks from the CASIA-FASD dataset [80].

1.3 Constraints of the mobile-device scenario

Modern mobile devices are powerful machines, but their processing speed and memory
capacity are much more limited than those of a server equipped with multiple processing
cores, dedicated graphics processing units (GPUs), and terabytes of RAM. Although it is
possible to deploy machine learning models to a cloud server, and simply send captured
user data and receive model predictions, this is undesirable for three main reasons: first, it
is not reasonable to assume connectivity in every situation; second, sending full-resolution
image data through a network can be slow and expensive; third, data privacy becomes an
issue when raw user data is being transmitted.

On the other hand, in the main use-case of device unlocking, the user expects the
authentication process to be as seamless and transparent as possible, since this is repeated
at the start of each interaction.

Our constraints can be summarized in the following points:

e No connectivity is assumed: the whole pipeline should run on the user device.

e The complete pipeline must run in at most 1 second with modern smartphone
hardware.

e Model should be small enough to fit in device memory without interfering with
other applications. Ideally, memory footprint should not exceed 100 MB for a single
prediction.

e The method should not depend on special user interaction, instead only requiring
that the user looks at the frontal camera or screen.

CHAPTER 1. INTRODUCTION 18

1.4 Research questions

We guide our research by means of some investigative questions, considering the problem
of software-based presentation attack detection in mobile devices, and the constraints
specified in the previous section. Our guiding research questions are the following:

e Can we effectively and efficiently solve the problem of face presentation attack de-
tection, in the context of mobile devices?

e Can a purely data-driven method outperform handcrafted methods in controlled

benchmarks?

e In which cases software-based PAD methods are likely to fail in the real world?

1.5 Contributions

In summary, our contributions are the following;:

e The proposal of three different ways of training deep convolutional neural networks
to model and solve the problem in a purely data-driven way:

— Training a lightweight architecture with aligned whole-face images;

— Training with face patches of varying resolution, which reduces overfitting to
user-specific characteristics, and promotes the learning of more robust repre-
sentations that are not tied to a single scale;

— Training with patches, and a loss function that more closely models the PAD
objective, by promoting the compactness of intra-device genuine examples in
the learned feature space.

e An extensive study of error cases, considering multiple factor-disjoint protocols.

e A simple but effective method for adapting a trained model by using a gallery of
user data on the device.

e A novel face presentation-attack detection dataset, that is representative of our
target scenario, with realistic illumination conditions, including indoor and outdoor
sessions, in contrast to existing public datasets.

1.6 Thesis organization

Here we describe how the following text is organized. In Chapter 2, we give further context
and motivation by discussing how software-based presentation-attack detection has been
treated in prior art, giving an overview of existing public datasets and methods. Moving on
to Chapter 3, we motivate our data-driven approach by introducing convolutional neural
networks, and explaining the architecture that is at the core of our proposed methods
for PAD in mobile devices. In Chapter 4, our three methods, which involve different

CHAPTER 1. INTRODUCTION 19

ways of looking at the problem and training a convolutional neural network to solve it,
are described in detail. We also describe the procedure to adapt the trained model to a
specific user and device. In Chapter 5, we explain datasets, metrics, and baseline methods
used in our experiments. Finally, in Chapter 6 we present and discuss all experimental
results. Chapter 7 concludes this work.

20

Chapter 2

Software-based Detection of
Presentation Attacks

In this chapter, we start by looking at how real-access and attack images are created,
discussing some general assumptions that are involved in software-based presentation-
attack detection. Here, our definition of software-based PAD is similar to the one used in
the existing literature [28]. It excludes methods that are based on additional sensors [42,
81, 26, 72|, user-interaction schemes, as in challenge-response methods [38], or multi-
modal biometrics [15]. Instead, we focus on methods that only depend on looking at the
raw biometric sample: one or more RGB face images captured by a regular camera.

Continuing, Section 2.2 provides a detailed account of existing public datasets, and
Section 2.3 presents a brief overview of some of the most relevant techniques in the
literature. Finally, Section 2.4 exposes some of the problems with the state of the art,
motivating our approach.

2.1 Image acquisition and attack clues

In order to understand how we could possibly differentiate real-access from attack images
by looking only at pixel information, we need to understand how data is transformed
before being ultimately acquired by the camera in the user device.

Figure 2.1 illustrates the differences in the image acquisition process for real-access
and attack samples. While genuine or bona-fide samples are acquired as a single capture
by directly photographing the authenticating user, in an attack scenario the biometric
sensor actually recaptures a previously captured image of the user, which is displayed
on an attack instrument. The presentation-attack detection problem thus consists in
answering whether the captured biometric sample is genuine or not. In this context, our
only resource is the biometric sample itself, and the hypothesis is that we can answer the
question for many combinations of transforming factors, only by looking at raw pixels.

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 21

genuine
data
Living user I - ’
- genuine/false
light light data Camera
st genuine source system
data (sensor)

biometric sample:
genuine or false?

Camera
system

data

Figure 2.1: Image acquisition process for genuine and attack samples. Arrows represent
the flow of data, while blocks represent the “actors” that transform it.

The crucial security concern is that an image or video of the rightful user captured
by an arbitrary camera can later be obtained and used by a malicious user to make a
false identity claim. This image could have been acquired under arbitrary illumination
conditions, at an earlier date, and would be displayed on an attack medium during an
attack.

We immediately notice that while a bona-fide sample is formed when a single camera-
lens system captures photons directly reflected by a user face, attack images are formed
by a more complex process. Firstly, an “attack camera” would have already captured and
pre-processed an image of the target user face. Finally, when that image is displayed
on the attack instrument, it is further modulated by the medium’s own reproduction,
geometric and reflectance characteristics.

Each part of the process changes the data to different degrees, but unfortunately it is
not trivial to identify whether an image feature is due to the interfering attack camera or
display medium, indicating an attack, or simply a normal variation in the user facial traits
or lighting conditions during acquisition. All factors can vary arbitrarily and interact in
seemingly unforeseeable ways.

In comparison to a similar genuine image, attacks often have different color distribu-
tions, due to limitations of the reproduction medium. Overall contrast is typically lower
in printouts, due to soft focus and the influence of the light source on the flat paper
surface. On the other hand, contrast is higher in most electronic displays, due to the
strong backlight. Shadow and highlight areas are often rendered differently in both cases.
Printouts can have visible printing defects, while low-quality liquid-crystal displays can
suffer from varying brightness levels throughout the screen.

Finally, the resampling process often generates its own aliasing artifacts. A well-known
example is the moiré pattern that appears when the sensor samples images containing fine-
grained regular structures, such as the pixel grid in electronic displays. This only happens
if the system can partially resolve the regular structure. Other regular artifacts can be
caused by slow refresh rates in older displays, or low frame rates when replaying videos.

The discussion on possible attack clues will be continued in Section 2.3, in which we
present an overview of existing software-based PAD methods.

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 22

2.2 Existing datasets

In this section, we introduce the most significant public datasets for face presentation-
attack detection, with a focus on printed-photo and display attacks. As we shall see, some
of the early datasets are not relevant anymore, given the evolution of cameras and other
hardware, as well as the understanding of the problem itself. In particular, datasets and
methods focusing on high-quality smartphone cameras are only now starting to appear.

The NUAA dataset |75] was the first face spoofing dataset to be released to the public,
in 2010. It consisted only of printed-photograph attacks from 15 users, taken with a cheap
webcam in different illumination conditions. Because of the small amount of identities,
lack of a proper protocol, and low-quality of the acquisition device, it is no longer used.

Released in 2011, shortly after NUAA, the YALE-RECAPTURED database [60] was
important for being the first public dataset to include liquid-crystal display (LCD) attacks.
Nonetheless, it contains images from only 10 subjects, and the acquisition devices for real
and attack samples differ.

In 2011, the Idiap Research Institute released PRINT-ATTACK [3|, which was the first
face spoofing dataset to include a more controlled protocol and 50 users. It contains 200
real access videos and 200 print attack videos. Still, considerable drawbacks are that it is
based only on a single low-resolution webcam, and does not include display attacks. Its
use in the Competition on Counter Measures to 2-D Facial Spoofing Attacks [14] showed
that it is too simple to be used as a benchmark.

The CASIA-FASD dataset [80], released in 2012, aimed at solving some of the problems
present in NUAA and PRINT-ATTACK, namely the lack of display attacks, and lack of
multiple sensor devices. It was the first dataset to include 3 different cameras, which
vary in their image-quality capabilities: a low-quality webcam, a slightly higher-quality
webcam (referred as “normal quality”), and a high-quality Sony NEX-5 camera, which
records full-HD videos (1920 x 1080). The main drawback is that they only consider
one indoors session with each camera, recording a total of 150 real-access videos from
50 subjects. Videos from the high-quality camera were used as the basis for display and
printed-photo attacks. Videos were played back on a 1280 x 720 iPad screen. Photos were
printed on A4 paper and used in two ways: warped-photo attack, in which the attacker
introduces motion and some depth by slightly distorting paper corners; and cut-photo
attack, in which the eye regions are cut out from the photographs, and the attacker uses
his own eyes to simulate blinking. CASTA-FASD includes many different protocols that
consider sensor types and attack types separately, as well as a an overall test considering
all variations. One of the main critiques is that it does not include a development set,
while the training set consists only of 20 users, which limits cross-validation alternatives.

The Idiap REPLAY-ATTACK dataset [16] was constructed in 2012 to extend PRINT-
ATTACK by including display-based spoofs. It contains 200 real access videos from 50
users, taken in two different indoors sessions. One disadvantage is that it was built using
only one low-resolution laptop camera as the biometric sensor, much like its predecessor.
Screen attacks collected with an iPhone 3GS were displayed on the iPhone’s screen,
and attacks collected with a higher-quality compact camera were displayed on an iPad
tablet screen. Additionally, print attacks on A4 paper were created by using a color laser

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 23

printer and the same compact camera. A total of 1,000 attacks were recaptured both by
hand-holding the attack instrument in front of the sensor, and by using a fixed-support.
One of the dataset’s strong points at the time was the inclusion of an official protocol
that divides the data into user-disjoint training, development, and testing subsets. This
enabled the dataset to be used in The 2nd competition on counter measures to 2D face
spoofing attacks [17]. In that competition, some teams exploited the image background
to achieve an unrealistic perfect accuracy on the testing set. Despite the problems, it is
still being used as one of the standard benchmarks for PAD algorithms.

The Unicamp Video-Attack Database (UVAD) [62] focuses on video attacks replayed
on a screen. It is the first dataset to include hundreds of users and many different combi-
nations of attack cameras and displays. Videos were recorded with 6 compact cameras in
two different sessions: one indoors, and the other outdoor, with subjects being asked to
stay still during the recording, as in other datasets. Despite containing videos recorded at
a higher resolution than previous datasets, subjects were mostly recorded at a relatively
far distance from the camera, which makes the effective resolution of the final cropped
face low. The authors proposed many protocols that seek to assess the effect of using
different combinations of monitors and cameras in an attack.

The MSU-MFSD [76] dataset was released in 2015, and includes videos taken with
two acquisition devices: the frontal camera of a Nezus 5 smartphone (720 x 480), and
the webcam of a MacBook Air laptop (640 x 480). Its public version contains a total of
70 real access videos from 35 users, and 210 attacks from the same users. Video attacks
are created with the back camera of an iPhone 5S smartphone and a Canon 550D digital
single-lens reflex (DSLR) camera. The iPhone videos are played back on its screen, while
the DSLR videos are displayed on an iPad tablet screen. The dataset also includes a
printed-photo attack that is created with the 18-megapixel DSLR camera and printed on
A3 paper, which potentially makes the attack harder to detect. The main issues with this
dataset are that only half of its videos come from a smartphone, their resolution is low,
and it only includes one illumination scenario.

REPLAY-MOBILE [20] is one of the recently-released datasets that aim to cover the
mobile-device scenario. Its main merit is that it includes real access videos taken in 5
different illumination scenarios. Videos from 40 users were recorded in high resolution
with one LG-G/4 smartphone and one tPad Mini 2 tablet. It includes screen attacks with
a Philips 227ELH monitor, and hard-copy attacks printed on A4 matte paper using a
color laser printer. Like most face-PAD datasets, videos are mostly static, which limits
the usefulness of using multiple frames for training and evaluation, and makes it non-
representative of real-world usage of smartphones. One additional issue is that attack
videos are taken only in a more controlled session, having consistent color reflections
and color casting artifacts, as well as a different background in comparison to real-access
videos, all of which contribute to create an artificial separation between the classes.

In 2017, the OULU-NPU dataset [11] was released as a dataset focused on the mobile-
device scenario, being one of the most complete to this day. It includes 6 different smart-
phone cameras, 3 sessions, 2 print attacks based on different color printers, and 2 print
attacks based on 2 LCD monitors, for a total of 4,950 videos. It is interesting to notice
that some of the frontal smartphone cameras used as acquisition device actually have vari-

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 24

able focus, with one of the cameras (OPPO N3) actually being a back-camera that can
rotate to the front. Despite its merits, it is still based on the tradition of using sessions of
limited illumination variation, and very static video recordings, which is not completely
representative of real-world smartphone usage. OULU-NPU was used as a benchmark in
the competition of generalized software-based face PAD in mobile scenarios [10], at the
International Joint Conference on Biometrics (IJCB), in 2017.

Finally, in this work we introduce the RECOD Mobile Presentation-Attack Dataset
(RECOD-MPAD), with the goal of providing a realistic training and evaluation dataset
for the mobile-device scenario. In contrast to existing datasets, RECOD-MPAD is based
on videos collected under varying illumination conditions that cover most real-world sit-
uations: direct sunlight, outdoors with diffuse lighting (shadow), indoors with top light,
mixed-lighting indoors with natural lateral light, and low-light indoors with top-lights off.
During each recording with the frontal camera of a smartphone, users were asked to hold
the device as they would normally do, and to slowly rotate around their own axis. This
has multiple purposes: firstly, it makes the illumination vary during the video, by chang-
ing the angle of the illuminant to the face; secondly, it makes the background change from
one frame to another; thirdly, the slow rotation introduces slight but varying motion blur
throughout the video, which changes the effective resolution from one frame to another,
and is more akin to normal usage, in which the user and the camera can move in relation
to one another. Another important characteristic is the inclusion of screen attacks with
two very different electronic displays: a typical 17-inch monitor, and a 42-inch TV that
can display real-life sized images.

More detailed information regarding protocols and the construction of RECOD-MPAD
are given in Section 5.1.1. Table 2.1 puts in perspective some of the characteristics of the
most relevant public datasets. RECOD-MPAD is the only dataset with dynamic sessions
and protocols that are explicitly based on frames.

Table 2.1: Comparison of recent or actively-used public face presentation-attack datasets.

Dataset Videos Frames Resolution Users Sensor devices Sessions Attacks
RECOD-MPAD 2,250 143,997 high 45 2 smartphones 5 sessions, dynamic 2 printed
incl. outdoors 2 displays
OULU-NPU [11] 4,950 variable high 55 6 smartphones 3 sessions, static 2 printed
only indoors 2 displays
REPLAY-MOBILE [20] 1,190 variable high 40 1 smartphone 5 sessions, static 2 printed
1 tablet only indoors 1 display
MSU-MFSD [76] 280 variable low 35 1 webcam 1 session, static 1 printed
1 smartphone only indoors 2 displays
UVAD [62] 17,076 variable low /variable 404 6 compact cameras 2 sessions, static 7 displays
incl. outdoors (x 6 cameras)
CASIA [80] 600 variable low, high 50 2 webcams 1 session, static 2 printed
1 compact camera only indoors 1 video
REPLAY-ATTACK [16] 1,200 variable low 50 1 webcam 2 sessions, static 2 printed
only indoors 2 displays

2.3 An overview of existing methods

Over the last years, many methods for software-based presentation attack detection have
been proposed. The interest in the problem has grown significantly since the release of the

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 25

NUAA dataset and the advent of the first competitions. Because of that, it is no longer
feasible to give an exhaustive analysis of all published methods. It is however noticeable
that most methods are related, and tend to be based on common assumptions and feature
descriptors. In this section, our goal is to give a general but brief overview of the existing
literature.

2.3.1 Methods based on liveness detection or motion

In the context of face verification, liveness detection methods are those that seek to detect
presentation attacks through evidence for lack of vitality in the captured face. These
methods typically depend on motion information, and thus assume the sensor captures a
short video, instead of static pictures. Because of that, we include most methods based
on motion analysis, in general, in the same category.

The archetypal liveness detection method is eye-blink detection [55, 56|, which can
be effective if the attacker uses a photograph printed on a piece of paper. As one of the
early ideas, PAD countermeasures based on eye-blink detection are easily circumvented
by video replay attacks, or even by cutting holes in the hardcopy and using one’s own eyes
to simulate blinking [80]. A significant drawback is that it depends on the user actually
blinking, which can take several seconds.

Another class of methods tries to detect subtle movements characteristic of a living
human face, as opposed to static printed photographs, or even low-fidelity reproductions
in replay attacks. Overall approaches include optical-flow estimation [6, 39] and motion
magnification [8]. Other approaches are based on temporal extensions of low-level texture
descriptors |24, 40].

Some methods take advantage of motion correlations between foreground and back-
ground, or other scenic clues [2, 56, 78|. This is specially likely to succeed if the attacker
does not use a fixed-support when performing the attack with a printout or tablet display,
for example, but would probably fail otherwise.

In summary, liveness and motion-based methods have the disadvantage of requiring
a potentially long sequence of frames to make a single prediction. Even if we are willing
to wait for a full video to be captured and analyzed, most of these methods can be
circumvented by faking eye-blinks and carefully handling the attack instruments.

2.3.2 Methods based on physics or geometry

Face presentation attacks using photographs or videos typically present the forged user
representation on a flat surface, which has different reflectance properties than a living
face. Some PAD methods therefore try to detect this “flatness” or abnormal reflectance
with physical or geometric motivations.

One of the early methods tried to capture depth information via structure-from-motion
techniques [18|. Others propose to detect differences in motion between nose and ears areas
via optical flow estimation [37], or by explicitly modeling 3D projective invariants [25].
Another possibility is to model local curvatures by using multiple images [44]. These
methods typically require at least some user cooperation to succeed.

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 26

By assuming a simplified Lambertian model of reflectance, in which lighting is com-
pletely diffuse, it is also possible to model the interaction between the illuminant and the
reflective surface to extract albedo and normal maps [75]|, which are then used as repre-
sentations to help discriminate real-access from attack samples. Although the motivation
is clear and the resulting model is elegant, lighting in the real-world is mixed and un-
controlled, so the basic assumptions do not hold in practice. Another option is to model
the diffuse and specular components to try to separate the latter, which could emphasize
characteristics of the attack medium surface [5].

2.3.3 Methods based on texture, noise analysis or image quality

A broad category of software-based PAD methods seek to detect artifacts left by the
recapture process, or estimate degradation in overall image quality.

Texture characterization is typically motivated as a means of discriminating the intrin-
sic textural properties of attack instruments and living faces, but can also capture other
types of high-frequency information. Most characterizations are based on variations of
local-binary pattern (LBP) descriptors on grayscale images [51, 52, 16, 41]. Temporal
extensions were also proposed [24, 40]. Although most of these methods were tested
for grayscale images, recent proposals highlight the importance of using color informa-
tion [12, 13]. Other methods use a combination of low-level local descriptors [68, 30]

Frequency-specific information can be captured by difference-of-gaussians (DoG) fil-
tering [60, 80|, or through Fourier analysis [48, 35]. A more global characterization that
discards content information in static-content videos to analyze noise signatures is pro-
posed in [62], while the same type of residual information is encoded as mid-level temporal
representations in [61]. These methods are typically capable of capturing moiré patterns
and other regularities that arise during the recapture process. Another explicit approach
is presented in [59].

Methods based on low-level texture descriptors or high frequency information can be
effective in detecting paper texture and noise patterns, as demonstrated by their overall
popularity. Nonetheless, the effectiveness is extremely dependent on the exact acquisition
conditions, and the capability of the camera resolving fine details. Moiré-like patterns are
very strong clues for attacks, but are not always present, making countermeasures solely
based on them unreliable.

Explicit attempts at capturing image distortion artifacts can be found in [76]. More
recently, researchers have explored using generic image quality metrics directly [29, 4].
The metrics range from traditional mean-squared error to more recent structure similarity
index (SSIM) and visual information fidelity (VIF). Since some of these metrics require
a reference image, which is not available, the authors in [29] compare the probe image to
an artificially degraded version of itself. The hypothesis is that the difference is greater
between real-access images than between attack images, since the latter are already of
lower-quality.

The assumption that presentation attacks are of lower quality is not always valid.
Consider, for example, a source face image of high quality that is recaptured in a controlled
and well-lit environment. Although it is an attack, the resulting image would be sharper

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 27

and less noisy than a real-access sample captured under unstable and low-light conditions.
In summary, although under similar acquisition conditions attacks and real-access samples
would potentially be separable by generic image quality metrics and statistics, existing
algorithms do not take context into consideration, which makes them brittle in real-world
scenarios.

2.3.4 Methods based on feature learning

In 2012, Krizhevsky et al. [43] trained a convolutional neural network CNN from end
to end to win the ImageNet competition on large-scale image classification [66], surpass-
ing handcrafted methods by a considerable margin. Since then, models based on CNNs
have achieved state-of-the-art performance on many image recognition tasks. Data-driven
methods like these, which receive raw pixels as input during training, and learn interme-
diate representations directly from data, are said to perform representation or feature
learning [7].

Feature learning is underrepresented in the face PAD literature, despite the successes
of deep neural networks in other visual tasks. Menotti et al. [53] were the first to sys-
tematically study the potential of convolutional neural networks for spoofing detection.
They considered not only face PAD, but also fingerprint and iris spoofs, and explored two
different strategies: filter optimization and architecture optimization. The first one is the
standard way of training a neural network by using stochastic gradient descent and the
backpropagation algorithm [65], for a fixed architecture. Architecture optimization seeks
to find a suitable architecture, given a constrained search space (63, 21]. In this case,
many simple architectures with random convolutional filters were randomly sampled and
used as feature extractors to train a final linear classifier for the problem.

During the face PAD evaluation, they only reported results for the REPLAY-ATTACK
and the 3DMAD mask dataset [27]|. Interestingly, despite obtaining competitive results
via architecture optimization, they found out that the optimized architectures not only
could not be improved by having their parameters further adjusted with backpropagation,
but that actually made them dramatically lose accuracy in the testing set. This could
partially be attributed to insufficient hyperparameter tuning involved in SGD training.

Yang et al. [79] trained a CNN based on the AlezNet from Krizhevsky et al. [43],
using an SVM classifier at the end. During pre-processing, they experimented with a few
face-centered regions, including tighter face crops, and regions showing more background.
They reported promising results on both CASTA and REPLAY-ATTACK, but the best
pre-processing configuration was different in each case. As one of their conclusions, they
highlight the differences in background between the two datasets, which makes evident
that the network learned to exploit capture biases when too much background was used
in training.

The method by Li et al. [49] consists in extracting features from early layers of pre-
trained CNNs, namely AlexNet and VGG-Face [70]. Dimensionality is reduced with
Principal Component Analysis, and the classification model is an SVM classifier. Experi-
ments were conducted with REPLAY-ATTACK and CASIA, and the results on the latter
were similar to the ones obtained by Yang et al. [79)].

CHAPTER 2. SW-BASED DETECTION OF PRESENTATION ATTACKS 28

Patel et al. [58| also experimented with training deep CNNs using aligned faces and
the whole frame as input, but they considered only architectures that are unfeasible to be
deployed on smartphones. The choice of training with whole frames is dubious, since it is
strongly dependent on the dataset. The final system consists of a fusion scheme involving
the output of the CNN, and an eye-blink detector.

We conclude by highlighting that our approach falls into this category. In contrast to
existing methods, we are specifically concerned with the mobile-device scenario. Critically,
none of the reviewed work consider modern datasets for that scenario, and so far the
strategies for using the available data and training the networks have been limited.

2.4 A critical look at the state of the art

Early methods for face PAD were mostly based on eye-blink detection and other motion
clues, which require several frames to be acquired, and typically fail under video replay
attacks or simple cut-photo attacks. The community then moved on to exploring poten-
tially more generalizable clues based on texture description, but currently we are stuck in
a situation in which most of these methods are based on the same low-level descriptors
and simple classifiers, and yet they were shown to completely fail under more challeng-
ing cross-dataset protocols [23]. Other more recent methods also suffer from the same
problem [61, 13, 76].

As much as available public datasets have been useful for comparing different ap-
proaches, and inspiring new research efforts, they are now mostly outdated, both in terms
of available cameras and attacks, and in terms of methodology. The partial shift to cross-
dataset evaluations has shown the limitations of methods and datasets alike. Only recently
has the community started to address the specific constraints of mobile applications [76].
New datasets, such as OULU-NPU |[11] and REPLAY-MOBILE [20]| have appeared, with
accompanying modern protocols, but they still have some of the same problems as other
datasets, such as static sessions with low lighting variability.

Finally, efforts in applying deep learning, or other data-driven approaches to face PAD
have been limited, with most solutions based on very similar aligned-face pre-processing
and training strategies, and not taking into account our stated constraints. To the best
of our knowledge, there are no rigorous studies of such methods considering modern
protocols and mobile devices. It is in this context that we propose to study the problem
in a purely data-driven way, hoping to gain insight into how far we can go with software-
based methods in our constrained scenario.

29

Chapter 3

Deep Convolutional Neural Networks

In this chapter, we briefly introduce and conceptualize a class of machine learning mod-
els known as artificial neural networks. Section 3.1 discusses neural networks in general.
Section 3.2 explains convolutional neural networks, which is a particular variation of the
basic idea that is suitable for modeling learning problems involving images. Section 3.3
expands on the observation that these networks can be trained from raw pixel data to per-
form end-to-end classification. We conclude, in Section 3.4, by explaining the SqueezeNet
architecture, which is the base of our methods.

3.1 Neural networks

Neural networks are multi-layered non-linear models that are based on a connectionist
principle. One of the basic assumptions is that complex relationships in data can be
modeled by stacking linear transformations followed by non-linear activation functions.
In a very general way, we can express the function modeled by a multi-layered neural
network as having the following form:

f(x)=(ocpoWpoop, 10W,_10...0010W;)(x). (3.1)

Here, W;,i € {1, ..., L}, are real-numbered matrices defining linear transformations.!
Each o0;,i € {1, ..., L}, is an element-wise non-linear activation function.? This is impor-
tant, because otherwise the composition would be equivalent to a single linear transforma-
tion W = W, Wy, ... Wj. In fact, it was proven that even a conceptually simple network
with two layers can approximate arbitrary functions under mild assumptions, crucially if
the output at the first layer is a sufficiently large vector [22, 31].

By appropriately pre-defining the size of the output, so that the network outputs
a vector of size C', we can interpret this vector as representing class likelihoods (or log-
likelihoods), which could then be optimized to match the correct class of each input vector
in a classification problem with C' classes. In this context, the other important assumption

In practice, instead of a linear transformation, we would have an affine transformation of the form
Wx + b. Alternatively, we can represent these by augmenting the input vector with a constant 1, and
absorbing the bias vector into the weight matrix.

2Historically, the activation function was either a sigmoid or tanh, but more recently, the most popular
one is the less smooth but non-saturating Rectified Linear Unit (ReLU), which has the form max (0, z).

CHAPTER 3. DEEP CONVOLUTIONAL NEURAL NETWORKS 30

is that, if all individual transformations are differentiable, then meaningful weights can be
learned by gradient-based optimization methods, such as stochastic gradient descent [45].

The actual learning procedure thus involves the calculation of gradients of the output
with respect to all parameters in the network. An efficient algorithm for that, known as
backpropagation, was popularized in the eighties, and is a direct application of the chain
rule of derivatives [65]. The name stems from the fact that after a single forward pass, the
error at the output is successively back-propagated to parameters in previous layers. The
resulting gradient represents the direction in which each parameter should be modified to
locally decrease the overall error at the end. Owing to the linear property of derivatives,
the whole process is very modular, and is mostly automated by modern packages.

3.2 Convolutional architectures

Many extensions to the basic structure of neural networks have been proposed over the
years. In the case where the input is an image, a successful architectural idea is that of
a convolutional neural network (CNN or ConvNet) [46, 47|, which was initially proposed
in the context of handwritten-digit classification. ConvNets are now at the core of state-
of-the-art methods in most image recognition problems [43, 74].

Images reside in very high-dimensional spaces. For example, a 3 x 100 x 100 image can
be viewed as a 30,000-dimensional vector. For a 8-bit representation, where each pixel
would take values in [0, 255|, there are 2563°°%° possible images. Fortunately, relevant
images, natural images in particular, have some structure. Nearby pixels are highly
correlated, and the same basic structures typically appear at different regions in the same
image.

The vanilla network architecture previously defined is poorly-suited to explore these
characteristics. If the output size of the first layer is 512, even this single layer would
already have 30,000 x 512 = 15,360,000 weights. Most of these weights would be cor-
related, but would have to be learned independently, and if the input image would be
spatially translated even by a single pixel, output could change drastically.

Convolutional networks solve the problem by substituting weight matrices with con-
volutional filter banks. At each layer L, an input of size Dy_1 X H;_1 x Wp,_1 is convolved
with Dy, filter volumes of size D;_; x K, x K, creating a volume of size Dy x Hy, x Wp.3
These values are then typically transformed by an activation function, such as ReLU [43],
as before. If the image is properly padded, and convolutions are implemented with a
stride of 1 in each direction, the spatial dimension of the output remains constant, and
each of the Dy output maps correspond to the filter responses at each spatial position.
Filters can then be interpreted as feature detectors.

For example, for an input image of size 3 x 100 x 100, and 64 filters of size 3 x 7 x 7
at the first layer, the output would be 64 maps of size 100 x 100, corresponding to the
activations of each filter. This process would then output 64 x 100 x 100 values, but require
only 64 x 3 x 3 X 74 64 = 9,472 weights and biases. Each filter could be specialized

3Tn theory, convolutional filters could still be interpreted as the old weight matrices, but with some
groups of weights corresponding to different pixels constrained to share the same value. In practice,
convolutions are a better abstraction, and yield better implementations.

CHAPTER 3. DEEP CONVOLUTIONAL NEURAL NETWORKS 31

at detecting edges at a certain orientation, corners, or color blobs, which are naturally
occurring structures in images. The next layer of detectors would then build on the
representations of this layer to detect more complex structures.

In order to increase the number of filters in subsequent layers, without dramatically
increasing the number of parameters and computational requirements, it is common to
downsample the spatial dimension after a certain number of layers. This is typically
done either by max-pooling operations, or by using strided convolutions. Intuitively, it
can also be argued that this encourages better translational invariance in the learned
representations.

In recent years, many architectural modifications have been proposed, including differ-
ent activation functions, new ways to combine convolutions of different sizes, and normal-
ization operations in-between layers. Nonetheless, the main tendency has been to stack
small 3 x 3 convolutions, downsample by a factor of 2 in each dimension after a few layers,
and increase depth as much as possible |70, 73, 32].

3.3 End-to-end classification

The stacking of layers separated by non-linear activations can be interpreted as building
a hierarchical representation, or a transformation of the original space to a space in which
the final objective is more easily achievable. In the case of classification, the learning
procedure uses labeled data to alter weights and biases, so that intermediate layers learn
to successively transform the input space into a space in which classes are separable by a
linear classifier.

Since weights and biases of intermediate layers and the classifier are jointly learned,
we say that the model performs end-to-end classification. Most of the knowledge is in
defining the architecture, the objective or loss function in relation to the input, and tuning
hyperparameters. This is in contrast to other forms of machine learning, in which most
of the work is in feature engineering, and the actual learned classification model can be
as simple as a linear classifier on top of these fixed features.

In this work, we take the more data-driven approach of using deep neural networks to
model and solve the problem. We believe this to be promising, given the lack of robust
handcrafted models in the PAD literature, which suggests the problem is still poorly
understood. Our choice lets us focus on definitions and basic principles, in order to gain
greater insight into the problem, and understand why current approaches do not work
satisfactorily.

3.4 Specific architectures

Since the success of the original AlexNet CNN for image classification [43], much concen-
trated effort has been put into finding new architectures that are either more accurate,
or require less parameters and computation. The networks of the VGG family [70] and
later GoogLeNet [73]| showed in practice the benefits of depth in multi-layered CNNs. In
contrast to previous networks, VGG CNNs are based only on 3 x 3 convolutions with

CHAPTER 3. DEEP CONVOLUTIONAL NEURAL NETWORKS 32

ReLU activations, and max pooling operations with a stride of 2. The intuition for using
only 3 x 3 convolutions is that by stacking multiple layers we get the effect of the larger
receptive field of larger kernels, with a smaller number of parameters, but with increased
depth and expressiveness.

The process of finding or designing new architectures is non-trivial. Even if we limit our
search space or design decisions to a few operations, such as predefined filter sizes, fixed
activation functions, and a certain number of layers, there are still countless possibilities
and permutations that must be tested exhaustively. Brute-force architecture search can
yield interesting results [21]|, but it can only feasibly be done in a very limited search
space. Moreover, this strategy was already explored for spoofing detection and simpler
architectures in the work by Menotti et al. [53].

A standard approach, when considering convolutional neural networks for new visual
classification problems, has been to start from an architecture that has proven its value
by achieving competitive performance in the ImageNet benchmark [50, 77, 64|. This takes
advantage of the observation that what works well for one visual task probably works well
in another related task. In this work, we take inspiration from one of the versions of the
SqueezeNet architecture [32], and use it as our core architecture for all experiments. This
decision was taken for two reasons. Firstly, the resulting network is small and fast enough
to be directly embedded in mobile devices, in contrast to other popular architectures such
as VGG-16 |70, 57]. It has a fully-convolutional structure, which makes interpretation
of results easier, and is appropriate for modeling our kind of problem, as we shall see.
Finally, it was proven to be more accurate than AlexNet, which validates its potential for
experimentation.

SqueezeNet

The SqueezeNet v1.1 architecture 32|, which is the base of our methods, is illustrated in
Figure 3.1. Next to each arrow is the shape of the resulting output tensor for a single
input image of size 3 x 227 x 227. For instance, the fire module named fire/ receives as
input 128 activation maps of spatial dimension 28 x 28, and outputs 256 maps of size
28 x 28.

Fire modules — illustrated in the top-right corner of Figure 3.1 — are similar to inception
modules [73], and are the main building blocks in this architecture. They massively
reduce the total number of parameters in 3 x 3 convolutions by first squeezing the channel
dimension of the input tensor with 1 x 1 convolutions. For example, the squeezing layer
in fire module fire5 reduces the number of maps from 256 to S = 32, which means the
following 3 x 3 convolutional layer has 128 x 32 x 3 x 3 = 36,864 weights instead of
128 x 256 x 3 x 3 = 294,912. In addition to the 3 x 3 convolutional layer with Ej filters,
another 1 x 1 convolutional layer with F filters also receives the output of the squeezing
layer, and helps recover information, at a low computational cost. The output of a fire
module is then the concatenation at the channel axis of the F; + E activation maps. Fire
modules are thus parametrized by S, Fy, and F3, with S < E; + Es.

The complete architecture starts with a 3 x 3 convolutional layer producing 64 ac-
tivation maps, and then stacks 8 fire modules, for a total of 17 layers with learnable

CHAPTER 3. DEEP CONVOLUTIONAL NEURAL NETWORKS

parameters at its core. Spatial dimension is reduced via max-pooling operations after the
first convolutional layer, and after the second and fourth fire modules. Compensating for
the reduced spatial dimension, feature dimension is gradually increased. The classification
layer consists of a dropout operation [71, 43], to reduce overfitting, and a convolutional
layer producing a number of feature maps that matches the number of classes in Ima-
geNet. By averaging each class-specific map individually, the network also reduces the

total number of parameters by eliminating the need for fully-connected layers.

The original SqueezeNet v1.1 has approximately 1.2 million parameters, which can be
stored in less than 5MB of memory, making it suitable to be used with mobile devices.
In comparison, AlexNet and VGG-16 have 60 and 138 million parameters, respectively.

More details regarding memory footprint and running time are given in Section 6.7.

RGE image

16,64 64

32128128

32128128

48,192,192

48,192,192

64,256,256

64,256,256

In22Tw227
SqueezeNet
1.1 core
G4x113x113
pooll
| 64x56x56
16,64 64

128x56x56

128x56x56
pool3

$ 128x26x28

256x28x28

206x28x28

S12x14x14

Figure 3.1: Original SqueezeNet v1.1 architecture [32], and generic micro-architectural

details of a fire

_ 912x14x14

CxHxW
Fire
module v
1x1 conv
SxHxW

[1x1 conv] [3x3 conv]

ExHxW EazxHxW

* concat

(Eq + E3)xHxW
\

* Every convolutional layer is followed by RelU.
*convl is a 3x3 convolutional layer with stride 2.
* pool® are 3x3 max-pocling layers with stride 2.

(M 512x14x14

Classification

layer h 4
dropout 50% |

S12x14x14

1x1 conv
1000x14x14

Global average
pooling

module.

1000x1x1

Y

34

Chapter 4

Proposed Methods

In this chapter, we present our approaches to presentation-attack detection in mobile
devices. All three methods are based on training a convolutional neural network (CNN)
to distinguish between real-access and attack images. They have the same deep stack of
convolutional and max-pooling layers at their core, but differ either in what they see as
input during training, or what they are optimizing at the end. This makes sense from
a modeling perspective, because the interaction between the input and the optimization
objective is what really defines the problem, driving the learning procedure.

In Method I, described in Section 4.1, we adapt the SqueezeNet architecture to con-
sider presentation-attack detection, formulating the problem as 2-class classification, and
using only aligned whole-face images for training the network. Method II, explained in
Section 4.2, starts from the same modified architecture, but uses face patches of variable
resolution during training, which reduces overfitting to user-specific characteristics, and
promotes the learning of more robust representations that are not tied to a single scale.
Finally, in Section 4.3, we use the same patches-based approach as in Method II for train-
ing the network, but propose a loss function that more closely models the PAD objective,
promoting the compactness of intra-device genuine examples in the learned feature space.

4.1 Method I: CNN trained with whole-face regions

Our first method is based on training a deep convolutional neural network by using aligned
whole-face images, which is the traditional input format in the pipeline of most algorithms
published in the literature. In this case, however, the pipeline consists mostly of the whole
multi-layered network, which is trained from end to end.

Training with aligned whole-face images can be justified as a means of reducing un-
necessary variations during training and inference, putting the raw data in a predictable
content-domain. This is similar in spirit to other forms of pre-processing, such as input
domain normalization, which is often required by training algorithms. Although it is
not obvious whether training with aligned whole-face images is the right pre-processing
strategy for face PAD methods based on CNNs, it is certainly a valid first choice.

CHAPTER 4. PROPOSED METHODS 35

Architecture

The core architectural component for this and the other methods is the SqueezeNet net-
work illustrated in Figure 3.1. As already mentioned, this decision was taken because we
are interested in embedding the trained model in a mobile device with limited memory
and processing power.

As this is a fully-convolutional network, all feature maps are flexible in size, including
the input image. Nonetheless, we chose to keep the original shape of the spatial dimensions
as 227 x 227. The spatial size of the raw cropped-face region in our scenario typically
varies from about 300 pixels to about 550 pixels in each dimension. In face of this, keeping
the original image size of 227 x 227 ensures that little detail is lost due to rescaling in most
reasonable cases, while increasing it would also make the network too slow to train and
be used in mobile devices. Most spoofing-detection pipelines in the literature pre-process
images to a fixed size, typically varying from 64 x 64 to 256 x 256.

Pre-processing and data augmentation

We start from an aligned and square-cropped image of the face region, both in the training
phase, and in the inference phase. The basic alignment process is described in details in
Section 5.1.1, which introduces the RECOD-MPAD dataset. This alignment is done so
as to ensure that we start from a region containing only the face. The original resolution
is preserved by avoiding unnecessary rescaling at this stage. In practice, we found that
the exact alignment does not significantly impact the performance of our methods.

During training, we read the RGB image, rescale the aligned face region to 256 x 256,
and crop a central region of size 227 x 227. Before feeding the image to the network,
we randomly flip the image horizontally with probability 0.5. This is a standard data
augmentation strategy, when mirroring the image does not change the label semantics.
On the other hand, we found that randomly cropping a 227 x 227 region from the rescaled
image does not improve performance in comparison to center cropping, probably because
the difference in content is not substantial and the fully-convolutional network is already
robust to misalignments. Other data augmentation strategies that involve random photo-
metric distortions and normalization are potentially too destructive for label information.

Before feeding the image into the network, we perform a simple pixel-wise transfor-
mation from the range [0.0,1.0] to the range [—1.0,1.0], by subtracting 0.5 from each
pixel and then dividing by 0.5. Basic centering is common-place for getting meaningful
gradients in the first iterations of training, especially if parameters are initialized ran-
domly and the ReLU activation function is used [43, 70]. Researchers and practitioners
typically subtract the mean pixel from the training set and divide by the corresponding
standard deviation, but this is not strictly necessary for natural images, and creates an
unnecessary dependence with the training data. In practice, we found that the described
transformation does not affect the final accuracy significantly, but it helps to make the
training procedure more stable.

CHAPTER 4. PROPOSED METHODS 36

Training details

Training is done via standard backpropagation [65]. Figure 4.1 illustrates the architecture
and the training procedure for this method. We feed the network a pre-processed mini-
batch of images containing faces and their labels.

3x227x227

Mini-batch
with whole-face images

SqueezeNet
1.1 core

A

and max-pooling

layers
fire9

1
1
1
|
|
1
1
1
1
1
1
1
1
1
! 512x14x14
|
1
|
1
1
1
1
1
1
1
1
|
1
|
1

attack

New
classification

layer |
\\dropout 50%

512x14x14

)

1x1 conv

i

¢ ~ backprop
[cross entropy) + Global average
loss optimization

oolin

T N
I) 2x1x1

Figure 4.1: Network architecture and training procedure for Method I: Whole-face CNN.
Note that, for illustration purposes, the diagram shows normal-looking images as they
would appear before the centering transformation.

o

, 2x14x14

On each iteration, 64 images are randomly sampled with replacement from the training
set. The probability of a single image being selected is set to be inversely proportional to
the number of samples with its label in the training set, to account for class imbalance.
Therefore, each mini-batch consists of roughly 32 samples with label real, and 32 samples
with label attack. For purposes of validation and monitoring of the training procedure,
we define an epoch as the number of training iterations required to process a number of
images equal to the total number of images in the training set.

The 2-dimensional output corresponding to the two classes is used as input to a cross-
entropy criterion, which is analogous to a traditional Softmax classifier. The resulting

CHAPTER 4. PROPOSED METHODS 37

function can be interpreted as normalizing the input vector into probabilities, and then
measuring the mismatch between the predicted distribution and the expected distribution
in which the mass is fully concentrated in the true label. In practice, we average over the
whole mini-batch, giving the following expression, where f. (x) is the network output for
class ¢ and input z, and B is a mini-batch of training examples:

| e
UB) =g 2 —los (efo<w>+ef1<m‘>>- (4.1)

(z,y)€EB

After computing the loss and intermediate activations, the gradient of the loss with
respect to every adjustable parameter is computed via backpropagation. Finally, for
the optimization step, we use the Adam optimizer [36], which is an adaptive optimizer
based on stochastic gradient descent with momentum, requiring minimal hyperparameter
tuning. All experiments were done with default Adam hyperparameters and a learning
rate of 0.0001. As regularization, we add to the loss function an L2 penalty (weight decay)
with weight 0.001. We found these hyperparameters to work well by monitoring the loss
in the validation sets of the datasets we experimented with. In particular, increasing the
learning rate by a factor of 10 makes the optimization diverge, while decreasing it by
a factor of 10 makes optimization too slow, and increases the tendency to plateau at a
suboptimal point.

As for parameter initialization, we start from pre-trained ImageNet weights® for the
core part of the network, which is preferable to random initialization. For the classification
layer, we initialize biases to 0.0, and weights from a normal distribution with mean 0.0
and standard deviation 0.01.

Inference

After the network is fully trained, it can be used to infer the label of new input images.
In this case, pre-processing is mostly similar to the one during training. The detected
face region is rescaled to 256 x 256, and then centrally cropped to 227 x 227. Fach pixel
in the aligned and cropped whole-face image is centered by subtracting 0.5 from it and
dividing by 0.5, but in contrast to the training phase, no random mirroring is performed.

4.2 Method II:
CNN trained with multi-resolution patches

In motivating a different approach to solve the problem, we start by asking the following
questions:

Is a holistic view of the face really necessary to tell whether or not an image
s a presentation attack?

1Our implementation is completely based on PyTorch, and we use the pre-trained parameters made
available with the library as of version 0.2.0.

CHAPTER 4. PROPOSED METHODS 38

Is learning from a fized scale and level of detail sufficient to make the distinc-
tion, considering the low-level nature of the problem, and all possible variations
of detail due to lighting, subject distance, noise, blur, and overall attack qual-
ity?

In light of these questions, our second proposed method differs from the first by mod-
eling the problem as the task of distinguishing regions of arbitrary level of detail in attack
images from regions of arbitrary level of detail in genuine images. We accomplish this
during training by extracting patches of varying sizes from the full-resolution images, and
only then rescaling them to fit the network input format. This approach is beneficial in
many ways. Firstly, it increases the number of examples available for training, taking full
advantage of the training data by not discarding information that would be lost by prema-
ture rescaling. By forcing the network to distinguish patches at different resolutions, its
robustness to blur, adverse lighting, and unseen cameras is potentially increased. Finally,
by not always showing the whole user face, the network is encouraged to not depend on
user-specific characteristics, which could reduce overfitting.

Architecture

The architecture remains the same as in the first method. This is possible because we take
advantage of its fully-convolutional nature. The network core consists mostly of stacked
convolutional filters, which can be somewhat independent to scale. Different combination
of these filters, acting as more advanced feature detectors, can naturally specialize or learn
to adapt to the varying resolutions and feature scales. Moreover, the final classification
layer implemented as global-average pooling acts as a parameterless aggregator of the
final filter responses, and is thus invariant to locality in its input representation.

Pre-processing and data augmentation

Figure 4.2 illustrates the construction of a mini-batch in this method. Pre-processing for
each image in a mini-batch starts by uniformly sampling a variable « from the interval
[0.08, 1], defining a percentage of the raw image area. The size of the cropped region is
then S = vVaW H, where W and H are the width and height of the full-resolution whole-
face image. In practice, the smallest possible patch corresponds to an area approximately
equal to the region around one of the eyes in the original aligned image, regardless of
the image size. The patch of size S x S in then cropped from randomly sampled top-left
corners 7, j. The remaining pre-processing and augmentation procedure is similar to the
one in Method I, and includes rescaling the patch to 227 x 227, random mirroring, and
centering.?

2Models for Methods II and III in this thesis were actually trained with an additional aspect-ratio
augmentation, in which patches are sampled with a variable aspect ratio, before being rescaled to 227 x227.
The sampled rectangle is of size Wp x Hp, with Wp = vVarWH, Hp = Var-'WH, and r sampled
uniformly from [0.75,1.0]. This type of purely geometric augmentation is cheaper than rotations, and
has been used to train some models from the GoogLeNet/Inception family [73]. In terms of validation
error, the models were not significantly different from training only with undistorted square patches, but
the increased data variability could decrease test error. Thus, we see it as an optional addition.

CHAPTER 4. PROPOSED METHODS 39

Mini-batch
with patches of varying detail

Training set

A
>
* region sampling

* cropping

* rescaling

Labeled images random mirroring
in full resolution

attack

attack attack

Figure 4.2: Construction of a mini-batch in Method II: Multi-resolution patches CNN.

As a consequence of this process, we effectively generate a much larger and variable
number of examples from a single image in the dataset. Some patches will be closer to the
native camera resolution and depict only part of the user face, while others will consist
of most of the face, downscaled to the fixed input size. Different patches can emphasize
different aspects of attack artifacts. As an effect, the trained network is expected to be
more robust to variations in resolution. Moreover, the model must learn not to depend
on certain combinations of facial features, which might be informative in the context of
the users in the training dataset, but not in general, when dealing with previously unseen
faces.

Training details

After constructing a mini-batch, training proceeds exactly as in Method I. Learning rate
is set to 0.0001, weight decay to 0.001, and batch size is 64.

Inference

Crucially, because the network is fully-convolutional and is trained to be robust to varia-
tions in feature sizes, we can do fast and effective inference by using a single image. We
simply feed the network the same whole-face image that is used in Method I. Alternatively,
there could be considerable gains in accuracy by feeding multiple patches and averaging
their response, but that would make the model too slow to run on mobile devices.

4.3 Method III: CNN trained with a multi-objective
loss

When contemplating the problem of training models to be sensitive to a wide number of
attack clues and sensor device specificities, we might ask ourselves the following questions:

Assuming data from multiple devices is available, what is the best way to ac-
count for their differences during training?

CHAPTER 4. PROPOSED METHODS 40

Is it reasonable to assume that real samples from different devices should have
similar characteristics?

Is pure binary classification the best way to model the problem?

How could we guide training to make the learned representations more likely
to reflect actual differences in real versus attack samples, instead of dataset-
depend noise that happens to separate real and attack samples from multiple
devices?

Inspired by these questions, we propose another method, in which we reformulate
the original problem by adding another term to the training objective, changing the
way images are used during optimization. The goal is to encourage real samples from
a giwen device to be more compactly located in intermediate feature spaces, but farther
away from attack samples of the same device. We hypothesize that this would create
better representations by not directly confounding information from different devices, as
in traditional training strategies.

More specifically, we consider a latent representation f, (I) of the original input image
I after it has been successively non-linearly transformed by ¢ layers. Consider a triplet
of images coming from the same device, I, I, 1,, a real anchor, another real example,
and an attack example, respectively, and let n := f, (1,,), v := fo (I,), and a := f, (1,), for
short. Now, we can add the following loss function to the network:

Livipiet (0, r,a) = max (||n —r|[3—||n —al|? +m, 0) , (4.2)

where m is a margin hyperparameter that is fixed beforehand. By minimizing this loss,
we are enforcing the notion that real samples from a given device should be closer to real
samples of the same device sensor, but farther away from attack samples of the same
device, up to a margin.

In theory, this kind of triplet loss could be used by itself to optimize an embedding to
directly compare pairs of images during inference [67]. But since most benchmarks still do
not provide a protocol that is based on using reference images, and we ultimately want the
trained model to distinguish between arbitrary real-access images and attack images, we
add the previously described cross-entropy loss to jointly enforce a classification objective:

Lpoof (N, R, A) = Kk ma

X
1<:<T

[Ltm’plet (l’li, rj, ai)] + Lclass (f(R U A)), (43)

where N, R, and A are the sets of real anchors, non-anchor real images, and attack
images in a mini-batch, respectively, and T is the number of triplets. All images in a
mini-batch are sampled from a single device. Ly (f (RU A)) indicates that the cross
entropy loss is computed only for the 27" non-anchor images. In practice, the embedding
term is computed as the maximum triplet loss over triplets in a mini-batch. This can be
interpreted as performing an online selection of hard triplets [67]. The hyperparameter x
controls the relative weight of the triplet loss term.

We can interpret each term as acting as a regularizer for the other objective. The
classification loss encourages finding a single decision boundary that separates real-access

CHAPTER 4. PROPOSED METHODS 41

patterns from attack patterns in general, while the triplet loss encourages making intra-
device real-access samples as compactly located as possible in the latent space, but farther
away from attack samples of the same device.

Architecture

The core network architecture is the same as before, but we anticipate global-average
pooling to directly reduce spatial correlations and the dimension of the activations of the
fire9 layer. This is the representation we use to compute the triplet loss. Following the
512-D embedding, we include the usual classification layer consisting of dropout and a
linear mapping that generates class scores by optimizing the cross-entropy loss.

Figure 4.3 illustrates how the network is trained with the multi-objective loss. Mini-
batches are built from triplets of images coming from the same device. Three different
columns are formed, one with real-access anchors, one with real-access samples, and one
with attack samples. The triplet loss is calculated for each triplet, and it encourages the
compactness of a given device in the embedding layer, while driving attack samples away,
up to a margin. In addition to that, the non-anchor columns are forwarded further into
the classification layer, and their output is used to compute the usual cross-entropy loss.
Our spoof loss is the weighted sum of these two loss components, with the triplet-loss
component weighted by a parameter x. The dashed lines indicate that weights are shared
between the columns, i.e., we train a single network.

CHAPTER 4. PROPOSED METHODS 42

device device device
real anchor real attack

3x227x227

i

SqueezeNet
1.1 core

conv1 - e mm e e mm omm w - o (e o o e Em Em om

«—: «— <€

fire9 = e am am = mm omm n = e o (o o Em mm om

)

v512x14x14

(Global average\‘
pooling

j
TG S

v

'

Classification
layer

;dropout 50%

<« 0O« @«

512x1x1

1x1 conv e B BN e BN LI R

¥ 2xix1 o
v YV ¢ - |

backprop [tripletloss | [cross-entropy
+ loss

optimization

step | \/

AL | spoofloss |
—

Figure 4.3: Architectural changes and the training procedure for Method III: Spoof-loss
CNN.

Pre-processing and data augmentation

In this method, images from the training set are pre-processed into patches, exactly as in
Method II.

Training details

As previously mentioned, we build mini-batches consisting of three columns of images
from the same device: 64 real-access anchors, 64 real samples, and 64 attack samples.
For the construction of each mini-batch, base images are sampled without replacement.
Each triplet is passed through the network to calculate the aggregate maximum triplet
loss component of the spoof loss, while the non-anchor samples are forwarded into the
classification layer and used to compute the cross-entropy loss component. Gradients of
the total spoof loss with respect to all parameters are then computed via backpropagation.
Note that the triplet loss component does not influence the gradient at the classification
layer.

The margin parameter m in Equation 4.2 was set to 1.0, and we found little value

CHAPTER 4. PROPOSED METHODS 43

in tweaking it, although, importantly, setting it to a large value can make optimization
diverge in early iterations. The weighting parameter « in the loss function was set to 0.05.
Starting at 0.5 and successively reducing it by 0.1 and then 0.05, we found this value to
be the largest that consistently does not make training diverge in the early stages.

The remaining details are analogous to the previous methods. We use the Adam
optimizer, with a learning rate of 0.0001, and add an additional weight decay term with
weight 0.001 to the loss function. Because Adam is an optimizer with momentum, even
though we sample only from a single device on each iteration, gradients have a “memory”,
which reduces the need to accumulate them over multiple mini-batches before performing
an optimization step.

Inference

Inference is done exactly as in other methods, i.e., we pass a single whole-face image
through the network.

4.4 On-device user-specific adaptation

Previous sections described three different ways of training a convolutional neural network
to solve the face PAD problem. In this section, we describe a method to further improve
the effectiveness of these models in real-world situations, when they are deployed to mobile
devices.

Classification models are trained with a finite training set, but are expected to work
properly when presented with new data. Typically, if the operational data distribution is
similar to the distribution of training data, models tend to behave well, but in practice
there are no guarantees of generalization. More often than not, demands of the operational
scenario are more specific. For example, in our case, the model will be deployed to a
specific device, and will always be presented with images from the same user. In face
of this, we propose one simple strategy to adapt the decision boundary to the specific
characteristics of this user and sensor device.

Building a gallery of user scores

During normal operation, and possibly over the course of many days, the user will have
successfully authenticated multiple times, in different lighting situations. Perhaps even
his appearance will have changed, due to changing glasses, haircut, facial hair, etc. If
we assume that after each successful authentication the final score (probability of attack)
is stored in a user gallery, after some time we will have a representative distribution of
the system’s score for the real-access class. Alternatively, this gallery could be explicitly
updated during enrollment sessions.

CHAPTER 4. PROPOSED METHODS 44

Threshold estimation

Our strategy takes advantage of a gallery GG of user-specific real-access scores stored on
the user device during normal operation. We assume that these scores are in the range
[0, 1], and that a higher score stands for higher likelihood of the input being an attack. We
wish to find a minimal user-specific v, such that the false rejection rate FRR,, is bounded
by a predefined value €. The procedure is described in Algorithm 1.

Algorithm 1: User-specific threshold estimation.

Input: score gallery G, tolerated FRR e, threshold increment A
Output: user-specific acceptance threshold ¥

1 Y+ 0;
2 while CummulativeDistribution(G,) <1 — € do
s | vt A

4 end

5 return v

Function CummulativeDistribution(G,) returns the cummulative distribution of
scores in the gallery, from 0 to . For example, if € = 0.05, the search starts from 0 and
stops at the first threshold v for which no more than 5% of the real-access examples in
the gallery would be rejected.

Final remarks

Despite its simplicity, the described procedure effectively tightens the decision boundary;,
so that the number of false rejections is controlled, while false acceptance errors are
possibly reduced. In this way, a model is made more useful, in that it is adjusted to make
the best prediction it can for attacks, constrained to a certain user-inconvenience level,
represented by e.

To see that performance can be improved, suppose that, at the default threshold,
we observe 95 real-access attempts with scores no greater than 0.3, and 5 real-access
attempts whose scores fall between 0.3 and 0.35. Moreover, suppose that from 10 attacks
observed during the same period, 5 receive scores greater than 0.5, but 5 receive a score
strictly between 0.4 and 0.5. In this case, a default threshold would induce an FRR of
0%, and a false-acceptance rate (FAR) of 50%. On the other hand, if the system had
previously observed a similar distribution of real-access attempts, and learned a user-
specific threshold of 0.3, the result for the new observations would be FRRy3 = 5% and
FARq3 = 0%.

45

Chapter 5

Datasets and Experimental
Methodology

Training and evaluation of methods based on machine learning require representative
datasets and meaningful evaluation protocols. In Section 5.1, we describe details of the
datasets used in our experiments. Section 5.2 discusses the metrics used in the evaluation
protocols. Finally, in Section 5.3 we describe two baselines against which our methods
will be compared.

5.1 Datasets

Building representative datasets is one of the hardest aspects of machine learning, being
particularly hard in our case, in which biometric data is involved, and we cannot account
for all possible attack configurations. In a sense, they serve as the problem definition,
and are used both in training and evaluating models. Without a proper training set, we
cannot train a useful model. And without a proper evaluation protocol, we cannot be
sure if the trained model is useful.

We saw in Section 2.2 that most of the existing public datasets do not fully satisfy
our requirements, given our constraints and problem domain. Because of that, we choose
to focus on two datasets. First, in Section 5.1.1 we describe the construction process
and the details of RECOD-MPAD, a dataset that we collected as part of this work. In
Section 5.1.2, we describe OULU-NPU, which is another dataset that was recently released
for the mobile-device scenario [11]. As we will see, it does not represent our use case as
well as RECOD-MPAD, but is complementary to it. Moreover, its use as a competition
benchmark in the year 2017 makes it particularly interesting.

5.1.1 RECOD-MPAD

In this section, we describe the processes of planning and collecting the RECOD Mobile
Presentation-Attack Dataset (RECOD-MPAD), including the capture of real videos, re-
capture of attack videos, and pre-processing. The main goal in creating this dataset was
to have data that is truly representative of our fast mobile-device unlock scenario. More-
over, we wanted to cover as many illumination variations as possible, as this is something

CHAPTER 5. DATASETS AND EXPERIMENTAL METHODOLOGY 46

that is lacking in public datasets. As such, it is the main benchmark for our methods. Be-
cause capturing biometric data and making it available involve ethical aspects, the project
was sent to Unicamp’s Institutional Review Board, being approved under protocol CAAFE
53035216.6.0000.5404.

We started by selecting two main acquisition devices: a popular Moto G5 smartphone,
released in 2017, and hereafter called device 1, and a Moto X Style XT1572 smartphone
from late 2015, hereafter called device 2. These smartphones are equipped with modern
frontal cameras that are quite different from one another. Both have fixed focus, but
device 2 is sharper at a closer distance, and is in general much sharper than device 1. On
the other hand, device 1 has a wide<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>