
Uma Implementação Distribuída da
Máquina Virtual Java Visando o
Compartilhamento do Compilador

"Just-In-Time"

Rodrigo Augusto Barbato Ferreira

Dissertação de Mestrado

Instituto de Computação
Universidade Estadual de Campinas

Uma Implementação Distribuída da Máquina Virtual

Java Visando o Compartilhamento do Compilador
"J ust-In-Time"

Rodrigo Augusto Barbato Ferreira1

02 de Março de 2001

Banca Examinadora:

• Prof. Dr. Guido Costa Souza de Araújo (Orientador)

• Prof. Dr. Roberto Ierusalimschy
Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro

• Profa. Dra. Cecília Mary Fischer Rubira
Instituto de Computação
Universidade Estadual de Campinas

• Pro f. Dr. Luiz Eduardo Buzato (Suplente)
Instituto de Computação
Universidade Estadual de Campinas

1 Bolsa de mestrado concedida pela PRPG /CAPES.

11

F413u

FICHA CATALOGRÁFICA ELABORADA PELA
BffiLIOTECA DO IMECC DA UNICAMP

Ferreira, Rodrigo Augusto Barbato

Uma implementação distribuída da Máquína Virtual JAVA visando o

compartilhamento do compilador "Jnst-ln-Time" I Rodrigo Augusto Barbato

Ferreira- Campinas, [S.P. :s.n.], 2001.

Orientador : Guido Costa Souza de Araújo

Dissertação (mestrado)- Universidade Estadual de Campinas, Instituto de

Computação.

I. Compiladores (Programa de computador). 2. Linguagem de

programação (Computadores). I. Araújo, Guído Costa Souza de. 11.

Universidade Estadual de Campinas. Instituto de Computação. ill. Titulo.

iii

Uma Implementação Distribuída da Máquina Virtual
Java Visando o Compartilhamento do Compilador

"Just-In-Time"

Este exemplar corresponde à redação final
da Dissertação devidamente corrigida e defen­
dida por Rodrigo Augusto Barbato Ferreira e
aprovada pela Banca Examinadora.

Campinas, 29 de Março de 2001.

~ dv ffrCM-J r
Prof. ~ui~o Costa Souza d~aújo

(Orientador)

Dissertação apresentada ao Instituto de Com­
putação, UNICAMP, como requisito parcial para
a obtenção do título de Mestre em Ciência da
Computação.

IV

TERMO DE APROVAÇÃO

Tese defendida e aprovada em 29 de março de 2001, pela Banca

Examinadora composta pelos Professores Doutores:

Prof. Dr. Roberto lerusalimschy
PU C-Rio

Profa. Ora ecllia Mary Fischer Rubira
IC- UNICAMP

Prof. Dr. Gu· Costa Souza
IC- UNICAMP

v

© Rodrigo Augusto Barbato Ferreira, 2001.
Todos os direitos reservados.

Vl

Resumo

A compilação Just-In- Time (JIT) é urna técnica amplamente utilizada no aperfeiçoamento
do desempenho da Máquina Virtual Java (JVM, do inglês Java Virtual Machine). Con­
tudo, o tempo gasto internamente pelo compilador JIT degrada, em muitos casos, o tempo
de execução das aplicações. Algumas técnicas têm sido usadas com o objetivo de diminuir
o impacto negativo do JIT sobre a execução, ainda sim preservando a sua eficácia. En­
tretanto, sempre haverá urna relação inversa entre o tempo gasto pelo compilador JIT e
o tempo de execução do código objeto por ele produzido. Segundo nossa concepção, uma
Máquina Virtual Java que visa usuários finais executa o mesmo código a maior parte do
seu tempo. Os usuários sempre utilizam os mesmos aplicativos, os quais são tipicamente
compostos pelo mesmo conjunto de classes. Por outro lado, em grandes companhias,
dezenas ou até mesmo centenas de empregados compartilham a mesma aplicação ou pa­
cote de aplicações. Usualmente, eles estão conectados a uma mesma Intranet, rápida e
segura. Neste cenário, o esforço do JIT por usuário é repetitivo e bem maior que o estri­
tamente necessário. O objetivo deste trabalho é o de desacoplar atividades de tempo de
ligação da JVM para um servidor compartilhado, de maneira distribuída. Desta forma,
cada cliente JVM se torna um componente de software muito simples que executa código
Java nativarnente, dispensando um JIT ou interpretador. Todas as atividades complexas
de tempo de ligação- corno detecção de erros, verificação do formato binário Java e com­
pilação JIT - são efetuadas pelo servidor, que armazena suas respostas em urna cache.

Este documento é urna descrição de uma implementação alternativa da Máquina Virtual
Java que inova em muitos pontos. Em particular, são contribuições deste trabalho: as
técnicas para a detecção e recuperação de contextos repetidos em tempo de ligação; um
procedimento alternativo, off-line, para a verificação do bytecode Java; o projeto e a im­
plementação de urna representação intermediária específica para Java; a descrição, em
detalhes, de diversos aspectos de implementação da JVM.

VIl

Abstract

Just-ln-Time (JIT) compilation is a well-known technique used to improve the execution
time in the Java Virtual Machine (JVM). However, the amount of time used by the JIT
internais degrades, in many cases, the application execution time. Some techniques have
been used to decrease the JIT overhead, while still keeping its effectiveness. However, the
trade-off between the JIT running time and its object code execution time will always
exist. From our observation, an end-user Java Virtual Machine deals with the same
code most of its time. Users always launch the same applications, which are typically
composed of the same set of classes. On the other hand, in big companies, dozens or
even hundreds of employees share the same application or application suite. Usually, they
are connected under the same fast and secure Intranet. In this scenario, the per-user
JIT effort is repetitive and Iargely greater than the strictly required. The goal of our
work is to detach linking activities from the JVM to a shared server, on a distributed
fashion. By doing that, the client JVM turns to be a very simple piece of software
that runs Java code natively, not requiring a JIT or interpreter. Ali complex linking
activities - like link-time error checking, class file verification and JIT compilation -
are done by the server, which caches its responses. This document is a description of an
alternate implementation of the Java Virtual Machine that inovates. It covers specially:
the techniques for detecting and caching repetitive link-time contexts; an alternate, off­
line, bytecode verification procedure; the design and implementation of a Java specific
intermediate representation; the detailed description o f many JVM implementation issues.

Vlll

Agradecimentos

Gostaria de agradecer inicialmente à CAPES, bem como aos outros órgãos de fomento à
produção científica e tecnológica do País pelo suporte financeiro ao meu trabalho porque,
sem ele, não haveria condições de realizá-lo.

Agradeço ao Prof. Guido Araújo pela disposição em me orientar, pela liberdade pro­
porcionada na medida exata para a minha produção e por ter compartilhado sua expe­
riência comigo. Seu tempo, sua atenção e suas preocupações para com o meu trabalho
foram, para mim, sem preço. Não poderia deixar de agradecê-lo por seus esforços na
direção do desenvolvimento profissional de seus alunos, bem como pelas pizzas e pelo
divertimento por ele proporcionados ao final de cada ano.

Agradeço aos colegas, professores, funcionários, enfim, a toda a comunidade do Ins­
tituto de Computação da UNICAMP, pelo ambiente agradável, organizado e propício ao
trabalho. Em particular, gostaria de agradecer ao pessoal do Laboratório de Sistemas de
Computação e àquelas pessoas, embora poucas, com as quais tive um maior contato.

Deixo um agradecimento especial a Natália Fargasch por ter sido uma companheira
dedicada e uma amiga paciente durante todo o período em que estivemos cursando o
mestrado.

Agradeço aos meus pais, Jorge e Aparecida, e às minhas irmãs, Daniela e Fernanda,
pelo apoio e compreensão, dada a minha ausência. Estendo meu agradecimento a todos
os familiares e amigos que, mesmo distantes, se fizeram presentes.

Por fim, agradeço a todas aquelas pessoas quase anônimas que me receberam e me
acolheram na cidade de Campinas. Sem elas, tudo seria muito mais difícil.

Campinas, São Paulo
Março/2001

IX

Rodrigo Augusto Barbato Ferreira

Preâmbulo

Esta dissertação de mestrado se subdivide em duas partes, seguindo o formato alternativo
para dissertações do Instituto de Computação. A primeira parte corresponde ao Relatório
Técnico IC-01-003 e está organizada em onze capítulos e dois apêndices. Este relatório
contém o material resultante de todas as atividades realizadas ao longo dos últimos dois
anos. A segunda parte é um artigo, no formato de extended abstract, submetido à USENIX
JVM'01 Symposíum (na categoria Work In Progress), que ocorrerá nos dias 23 e 24 de
abril de 2001, em Monterey, Califórnia. Este preâmbulo em português tem como objetivo
introduzir as idéias a serem descritas e motivar a leitura do texto em inglês.

Motivação

"The best way to predíct the future ís to ínvent ít" -Alan Kay

Desde a sua apresentação em maio de 1995, a linguagem de programação Java vem se
tornando cada vez mais popular na indústria de informática. Java não é somente a mais
bem-sucedida linguagem de programação de propósito geral surgida nos últimos 20 anos,
mas é também a tecnologia que mais atraiu investimentos por parte dos desenvolvedores
de software nesses sete anos. Hoje em dia, é possível encontrar aplicações Java que vão de
utilitários para a Internet a Processadores de Texto, de SGBDs a Sistemas Operacionais.
Atualmente, estima-se que cerca de três milhões de desenvolvedores utilizem a linguagem
de programação Java (Fonte: http://www.javasoft.com/, Janeiro/2001).

Desenvolvida a partir de um projeto interno da Sun Mícrosystems, Java conquistou seu
espaço trazendo promessas como independência de plataforma, segurança e facilidade de
integração com a Internet. Entretanto, foi sua similaridade com C/C++ e sua disciplina
de programação que despertaram o interesse da indústria. Java é a primeira linguagem
de produção a incorporar técnicas de requisição automática de memória, aumentando a
produtividade e reduzindo os custos de teste, depuração e manutenção do software. Em­
bora Eiffel e outras linguagens de programação já tenham incorporado algum mecanismo
de coleta de lixo, não tiveram uma adoção tão bem sucedida.

X

Contudo, a tecnologia utilizada na implementação do ambiente de execução Java ainda
está aquém das expectativas de seus usuários. Decorrente deste fato, o desempenho
de aplicativos Java é inferior ao de aplicativos similares escritos em outras linguagens
de programação. Isto, em muitos casos, é motivo suficiente para a adoção de outra
linguagem. Por outro lado, muitas empresas estão baseando seus produtos em Java,
por acreditarem que um ambiente de execução satisfatório ainda não existe devido à
precocidade da tecnologia e ao pouco tempo investido em pesquisa.

O ambiente de execução Java, mais conhecido como Máquina Virtual Java (JVM, do
inglês Java Virtual Machine), é o componente de software necessário à execução indepen­
dente de plataforma de aplicativos Java. Mesmo sendo Java urna linguagem proprietária,
a arquitetura é aberta, estando disponíveis as especificações da linguagem[29J e do ambi­
ente de execução[43]. Estes documentos definem aspectos funcionais da JVM e deixam
inúmeras brechas para a criatividade dos implementadores.

Nossa motivação está em inovar na implementação do ambiente de execução Java.
Estando este trabalho dentro de um escopo acadêmico, ternos a oportunidade de buscar
abordagens alternativas para os diversos componentes da JVM. Em particular, estamos
interessados em explorar aspectos ainda não incorporados ao estado da arte corno, por
exemplo, o compartilhamento de partes da JVM por múltiplos usuários, de forma a au­
mentar o desempenho da execução para cada um deles.

Visão Geral

Segundo nossa concepção, urna Máquina Virtual Java que visa usuários finais executa
o mesmo código a maior parte do seu tempo. Os usuários sempre utilizam os mesmos
aplicativos que são tipicamente compostos pelo mesmo conjunto de classes. E esta situação
repetida não muda até que o usuário faça urna atualização do software que vem utilizando.
Em conjunto, grande parte do código executado por toda aplicação corresponde à API

da Plataforma Java, e esta só muda quando urna nova versão da JVM é lançada. Então,
qual a razão pela qual o JIT precisa recompilar todas estas classes, repetidamente, a cada
inicialização da JVM? Certamente, a dinâmica do modelo de ligação da JVM - com
class loaders e uma unidade de ligação de fina granularidade - torna difícil para o JIT
a captura e o armazenamento do contextos complexos.

Por outro lado, em grandes companhias, dezenas ou até mesmo centenas de pessoas
compartilham a mesma aplicação ou pacote de aplicações. Usualmente, elas estão conec­
tadas a urna mesma Intranet, rápida e segura. Por que não concentrar os esforços da
compilação JIT em um servidor, construindo um repositório de código compilado? Desta
forma, não somente os usuários irão ter o caso comum rápido, mas também irão fazer com
que o caso comum seja rápido para outros usuários.

X!

Nesse cenário, a companhia não precisará comprar um hardware poderoso para cada
usuário. Ao invés disto, a companhia faz um investimento racional na máquina que estará
rodando o servidor de compilação JIT. Mesmo se cada usuário possuir uma máquina
limitada, ele irá receber código nativo otimizado, tendo de esperar, no pior caso, por sua
compilação em um servidor rápido. Isto é tecnologia Java sendo empregada em cima de
hardware padrão.

Esta abordagem pode ser estendida para a Internet assim que haja uma confiança em
servidores de compilação JIT, e que métodos seguros de conexão sejam utilizados.

Objetivo

Acreditamos que a portabilidade da plataforma Java é grande parte de sua contribuição.
Contudo, sua representação independente de máquina, o bytecode, não é apropriada para
execução na maioria dos processadores do mundo real. Este fato, em conjunto com o
modelo e a filosofia de segurança adotados pela plataforma Java, torna a JVM um software
muito pesado. Nosso esforço não está em criticar o projeto da plataforma Java, mas sim
em obter uma implementação leve e direta da mesma.

O objetivo deste trabalho é o de desacoplar atividades de tempo de ligação da JVM
para um servidor compartilhado, de maneira distribuída. Desta forma, cada cliente JVM
se torna um componente de software muito simples que executa código Java nativamente,
dispensando um JIT ou interpretador. Todas as atividades complexas de tempo de ligação
- como detecção de erros, verificação do formato binário Java e compilação JIT - são
efetuadas pelo servidor, que armazena suas respostas em uma cache. O software foi
projetado de modo que tanto o modelo monolítico (servidor embutido) como o distribuído
possam ser alcançados.

O seguinte conjunto de características foi definido como parte integrante da funciona­
lidade que gostaríamos de atingir.

Máquina Virtual O sistema deve ser uma máquina virtual e não um compilador estático,
de forma que as aplicações possam ser distribuídas em bytecode padrão.

Funcionalidade Completa para Usuários Finais Deve ser uma JVM para a distri­
buição, aceitando toda a funcionalidade requerida por usuários finais incluindo JNI
(Java Native Interface) e stack traces completos. As interfaces padrão para depu­
ração e verificação do desempenho não estão incluídas por coerência. Elas não são
requeridas por usuários finais.

Execução 100% Nativa A execução deve ser nativa, dispensando interpretador. Amai­
oria das implementações usam um modelo de execução h1brido (com interpretação)

xii

ao invés da execução 100% nativa. Em JVMs, isto acontece para evitar o esforço de
compilação dos inicializadores estáticos de classe porque serão executados apenas
uma vez. Em compiladores nativos, a execução é tipicamente 100% nativa.

Código JIT Persistente e Compartilhado O código gerado pelo compilador JIT de­
ve ser armazenado em memória secundária para reúso futuro. Este sistema de cache

deve permitir o compartilhamento de múltiplas instâncias da JVM rodando em
um mesmo computador. Até onde sabemos, nenhuma JVM salva código JIT em
memória secundária. Algumas JVMs suportam one time loading, o qual mantém
código JIT em memória primária. A persistência do código JIT torna possível a
execução 100% nativa.

Capacidade Distribuída O compilador JIT pode residir fora do computador que roda
a JVM. Múltiplas JVMs podem compartilhar um único servidor de compilação JIT.
Isto estende a idéia de compartilhamento de código JIT de um computador para
uma rede de computadores.

Compilação Agressiva Técnicas agressivas de compilação podem ser utilizadas, uma
vez que o sistema de cache dilui o tempo de compilação. Assim, o servidor JIT
pode reotimizar código freqüentemente requerido em seu tempo ocioso. Objetivamos
com isso não somente permitir a realização de otimizações "clássicas", mas também
permitir otimizações caras (incluindo orientadas por objeto) somente disponíveis em
compiladores nativos.

Em sua Maioria Escrita em Java Em sua vasta maioria, a máquina virtual é escrita
usando a Linguagem de Programação Java, incluindo o verificador de bytecodes e
as estruturas de dados e algoritmos do compilador. Com isto, tiramos vantagem
da clareza e reúso da orientação por objetos e definimos um compromisso com o
desempenho: a máquina virtual irá rodar tão rapidamente quanto o código que ela
produz.

Métodos são Objetos de Primeira Classe Os métodos compilados pelo JIT são re­
presentados internamente pela JVM como objetos de primeira classe. Portanto,
métodos podem sofrer coleta de lixo e ser manipulados a partir do código Java.

Otimização Adaptativa O ambiente de execução da JVM deve ser construído de forma
a aceitar algum tipo de otimização adaptativa, baseando-se em informações coleta­
das a partir da inspeção da pilha. A recompilação ocorre convenientemente para os
métodos e classes mais utilizados. A troca de métodos por novas versões torna as
versões antigas passíveis à coleta de lixo.

Xlll

Coleta de Lixo Precisa O ambiente de execução deve ser capaz de computar precisa­
mente, a qualquer momento, o conjunto de objetos alcançáveis. A coleta de lixo
precisa é clara, confiável e flexíveL

Ambiente de Execução Pequeno e Flexível O ambiente de execução deve ser pe­
queno (somente JNI, threading e o heap com coleta de lixo), permitindo a substi­
tuição das estratégias de threading e coleta de lixo. Partes do ambiente de execução
que podem ser escritas em Java o são (menor dependência na correção e desempenho
do compilador fornecido por terceiros).

Altamente Portável A máquina virtual é altamente portável, sendo escrita em sua
quase totalidade na linguagem Java. O ambiente de execução é escrito em C padrão
com interfaces bem definidas para threading nativo e alocação de memória junto
ao sistema operacionaL A portabilidade é atingida rapidamente para plataformas
baseadas no mesmo processador. Quando o porte é feito para um novo processa­
dor, um novo back-end do compilador deve ser escrito. A maioria das otimizações
ocorrem a nível de representação intermediária e não precisam ser reescritas.

Classes de Sistema Pré-Compiladas As classes de sistema, incluindo o coração da
API e as classes que compõem o compilador JIT, são pré-compiladas durante a
geração da máquina virtuaL Estas classes não são alteradas por usuários e só mudam
quando uma nova versão da JVM é lançada. Isto provê um desempenho instantãneo
para as classes de sistema e evita problemas cíclicos de compilação (porque o JIT é
escrito em Java).

Metadados sob Demanda O ambiente de execução não precisa desperdiçar memória
primária com metadados para todas as classes carregadas. Ele deve extrair meta­
dados do sistema de cache sob demanda. Metadados são requeridos por aplicações
que utilizam algumas APis especiais da linguagem Java (e.g. reflexão) e para a
impressão de stack traces.

Organização

Este documento está organizado da seguinte forma:

Capítulo 1 Este capítulo apresenta uma visão geral do trabalho. Em particular, é descri­
to o cenário em que baseamos nossos esforços, bem como o objetivo a ser alcançado.

Capítulo 2 Este capítulo apresenta o estado da arte na implementação do ambiente de
execução Java. Inicialmente, são descritas as técnicas mais utilizadas para imple-

XIV

mentar o ambiente de execução da linguagem Java. Estas técnicas vão de inter­
pretadores a compiladores nativos, passando por soluções híbridas e compiladores
Just-In-Time. Em seguida, são apresentadas as características de várias implemen­
tações de ponta do ambiente de execução Java. Por fim, são definidos os objetivos
deste trabalho e como eles se encaixam no contexto atual.

Capítulo 3 Neste capítulo, é dada uma visão geral de como foi projetada a nossa im­
plementação da JVM. Mais que uma Máquina Virtual Java, o sistema é melhor
classificado como uma arquitetura de Máquina Virtual Java. Atualmente, esta ar­
quitetura é composta de três componentes de software: um cliente, um servidor e um
gerador de clientes. Os componentes, seus papéis e a forma com que eles interagem
são descritos neste capítulo.

Capítulo 4 Este capítulo discute a identificação de contextos de ligação. O servidor tem
que efetivamente detectar situações repetidas nos clientes, de forma a implementar
o sistema de cache persistente, e responder utilizando dados previamente compu­
tados. São discutidos também os detalhes de como a identificação de contextos foi
implementada, assim como os problemas que surgiram durante esta etapa.

Capítulo 5 Este capítulo provê detalhes a respeito do procedimento de verificação do
bytecode Java. Este procedimento é, em sua maioria, simbólico, o que significa que
pode ser efetuado off-line com algumas poucas verificações sendo feitas em tempo
de execução. A abordagem que utilizamos para a análise de fluxo de dados difere
do procedimento padrão[43, §4.9] no sentido que itera sobre blocos básicos ao invés
de instruções. Também são relaxadas as restrições sobre sub-rotinas, de forma a
atingir a generalidade.

Capítulo 6 Neste capítulo, cobrimos questões relativas à conversão de bytecode para a
representação intermediária. Durante esta conversão, operações implícitas em al­
guns bytecodes são explicitadas. Isto pode ser observado.principalmente em byteco­
des que efetuam verificações de tempo de execução (run-time checks). O código para
detectar e lançar exceções é disposto imediatamente antes do código que implementa
o bytecode. O mesmo acontece com bytecodes que podem disparar a inicialização de
classes. A quebra do bytecode em operações menores aumenta a chance de remoção
de código redundante. Além de prover exemplos de conversão, este capítulo descre­
ve a abordagem que utilizamos para janelas e tratadores de exceção, assim como a
solução que adotamos para sub-rotinas (que não requer duplicação de código). Por
fim, descrevemos otimizações inerentes ao procedimento de conversão.

Capítulo 7 Este capítulo descreve o back-end para a família de processadores da ar­
quitetura Intel de 32-bits. O back-end x86 é uma implementação de um gerador

XV

de código simples e ingênuo. São descritas a estratégia de geração de código; as
estruturas de dados requeridas pelo ambiente de execução de forma a implementar
a coleta de lixo, inspeção das pilhas e tratamento de exceções; as tabelas de reJo­
cação e ajustes usadas para atualizar o código dos métodos quando recebidos pelos
clientes; as melhorias que deverão aparecer em novas versões deste back-end.

Capítulo 8 Neste capítulo, é descrita a implementação do ambiente de execução nos
clientes. O ambiente de execução é composto de um heap com capacidade de co­
leta de lixo, múltiplas pilhas de threads, uma tabela de alocação de monitores e a
implementação da JNI.

Capítulo 9 Este capítulo provê detalhes a respeito do coletor de lixo (GC, do inglês
Garbage Collector) implementado como parte do ambiente de execução. Inicial­
mente, discutimos as facilidades desejadas do esquema de coleta de lixo, conforme
elas foram definidas durante seu projeto. Em seguida, identificamos os requisitos
do ambiente de execução e descrevemos nossa implementação. Por fim, discutimos
as melhorias para o esquema atual.

Capítulo 10 Este capítulo cobre a geração automática de máquinas virtuais. Este pro­
cesso consiste na ligação estática das classes de sistema ao ambiente de execução.
O gerador de máquinas simula o heap da JVM durante a carga e ligação das classes
especificadas em um arquivo de configuração. Quando este processo termina, um
arquivo assembly é gerado de acordo com a imagem do heap para uma específica
arquitetura alvo.

Capítulo 11 Neste capítulo, são apresentadas as conclusões deste trabalho, bem como
descritos alguns dos problemas que devem ser resolvidos em trabalhos futuros.

Apêndice A Este apêndice provê uma especificação minuciosa da representação inter­
mediária projetada para ser utilizada em nossa implementação do compilador JIT.
Cada opcode é descrito, e são salientadas as restrições sintáticas e semânticas ao seu
uso.

Apêndice B Neste apêndice, descrevemos RING, uma ferramenta de reescrita de árvores
projetada para gerar tree pattem matchers, os quais fazem programação dinâmica
em tempo de execução. Esta ferramenta é utilizada não somente para a produção
automática de geradores de código, mas também para facilitar a manipulação da
representação intermediária. A linguagem de especificação da entrada é um super­
conjunto da Linguagem de Programação Java.

XVI

Apêndice C Este apêndice é precisamente um artigo, no formato de extended abstract,

submetido à USENIX JVM'Ol Symposium na categoria Work In Progress. Ele é
um resumo, em alto nível, do trabalho contido neste documento.

XVll

Conteúdo

Resumo vii

Abstract viii

Agradecimentos ix

Preâmbulo X

I Context-Based JIT: The D&I of a Distributed JVM 1

1 Overview
1.1 The Scenario

1.2 Our Goal ..

1.3 Contributions

1.4 Road Map .

2 Related Work

2.1 Approaches to the Java Runtime Environment

2.2 High-End Machines and Native Compilers

2.3 Best of Ali Worlds

3 Virtual Machine Design

3.1 A JVM Architecture .

3.2 Software Components .

3.2.1 Client JVM ..

3.2.2 Server JVM ..

3.2.3 Client JVM Generator

3.3 Functional Overview

XVIII

3

3

4

5

5

7

7

9

14

17

17

18

18

20
21

21

4 Server-Side Context Identification
4.1 States & Phases
4.2 Computing Class Versions
4.3 Dealing with Class Loaders

4.3.1 Extended Loader-Based Class Names
4.3.2 Type Uncertainty and Interfaces ...

4.4 A Portable Way of Describing Sizes and Offsets
4.5 Describing Each Phase .

4.5.1 REGISTER Phase
4.5.2 LOAD Phase . . .

META Phase ..
CONTEXT Phase
LINK Phase ...

4.5.3
4.5.4
4.5.5
4.5.6
4.5.7

RELINK Phase (Not Implemented)
TRANSLATE Phase

5 Efficient Bytecode Verification
5.1 Symbolic Bytecode Verification
5.2 Parsing the Class File
5.3 Checking Static Constraints . .
5.4 Checking Structural Constraints .
5.5 Verification Example
5.6 What is Required to Go Further .

6 Bytecode Conversion
6.1 Intermediate Representation Presentation .
6.2 Conversion Examples .

6.2.1 Constants, Local Variables, and Control Constructs
6.2.2 Arithmetic
6.2.3 More Control Examples
6.2.4 Receiving Arguments . .
6.2.5 Invoking Methods
6.2.6 Working with Class Instances
6.2.7 Arrays
6.2.8 Compiling Switches
6.2.9 Operations on the Operand Stack
6.2.10 Throwing and Handling Exceptions
6.2.11 Compiling Finally .
6.2.12 Synchronization

XIX

23
23
24
25
27
28
30
30
30
31
33
34
35
37
38

39
39
40
40
42
47
54

57
58
59
59
63
64
67
69
72
76
80
82
83
89
93

6.3 Extra Conversion Examples ..
6.4 Exception Windows Conversion
6.5 Subroutine Conversion
6.6 Post Conversion Optimizations

6.6.1 Building Expression Trees
6.6.2 Eliminating Null Checks .
6.6.3 Factoring Exception Throwing Code
6.6.4 Control Optimizations

6.7 Discussion about Assynchronous Exceptions

7 The x86 Back-End
7.1 Code Generation

7.1.1 Stack Frame and Registers Usage Protocol
7.1.2 Local Variable Binding .
7.1.3 Instruction Selection

7.2 Cooperative Runtime Support
7.2.1 Live Frame References and Stack Tracing Tables.
7.2.2 Exception Catching Routine .
7.2.3 Method Text Reference Table

7.3 Relocation and Patch Tables
7.3.1 Relocation Table
7.3.2 Runtime Callback Patch Table .
7.3.3
7.3.4
7.3.5

Method Text Patch Table
String Literal Patch Table
Meta Class Patch Table

7.4 Back-End Improvements

8 Runtime Environment
8.1 Heap Structures ...

8.1.1 Ordinary Objects
8.1.2 Array Objects . .
8.1.3 Method Text Objects .
8.1.4 Meta Class Objects
8.1.5 Free Cells
8.1.6 Block Records .. .

8.2 Allocator Implementation
8.2.1 GC Info Word ...
8.2.2 Allocation Procedure
8.2.3 Deallocation Procedure .

XX

95
98

100
102
102
103
105
107
107

109
109
109
111
112

. 115

. 115

. 118

. 121

. 122
122
123
124
125
126
127

129
129

. 130
131
131
133
135
136

. 136

. 136

. 138

. 141

8.2.4 Heap Traversal Procedure
8.3 Thread Stacks

8.3.1 Stack Organization
8.3.2 Stack Traversal Procedure
8.3.3 Stack Overflow Detection .

8.4 Monitor Implementation . . .
8.5 JNI Implementation
8.6 JVMDI and JVMPI Support .

9 The Garbage Collector
9.1 Desired Features . .
9.2 Runtime Requirements .
9.3 Implementation Details .
9.4 Future Improvements . .

10 Automatic Machine Generation
10.1 Static Heap Image
10.2 Machine Generation Configurations
10.3 Machine Generator Functionality
10.4 Heap Initialization Procedure

11 Conclusions
11.1 Experimental Results .

A Intermediate Representation Specification
A.1 Grammar
A.2 Opcodes

B Yet Another Tree Rewriting Tool
B.1 Specifications . .
B.2 Implementation . . .
B.3 RING Extensions . .

B.3.1 Default Rules
B.3.2 Non-Terminal Templates
B.3.3 Non-Terminal Inlining .

II Usenix JVM'Ol WIP Submission

142
144
144
144
146
147
149
150

151
. 151
. 152
. 152
. 158

159
. 159
. 161
. 162
. 163

165
. 166

169
. 169
. 174

221
. 221
. 227
. 233
. 233
. 234
. 235

239

C A Distributed Java™ Execution Engine for JIT Compiler Sharing 241

XXI

C.l Overview. 241
C.2 Context Identification . 242
C.3 Additional Features . . 243
C.4 Preliminary Results . . 243
C.5 Further Information . . 244

Bibliografia 245

XXI!

Lista de Tabelas

5.1 Pseudo code instruction set.
5.2 Untyped bytecodes and their possible operands.

6.1 Valid register índices for each IR type.
6.2 Truth table for the confluence operator u. . . .
6.3 Flow item for each opcode that provides reference result.

7.1 Registers used to store return values.

11.1 Spec JVM'98 benchmark experimental results.

xxiii

44
55

58

103
104

110

167

Lista de Figuras

1.1 A shared JIT server. 4

3.1 JVM architecture and its components. 17
3.2 Client JVM subcomponents. . . 18
3.3 JIT interface implementations. . 19
3.4 Server JVM subcomponents. 20
3.5 System functional diagram. . . 21

4.1 Diagram showing class states and phases. . 24
4.2 Extending non-public class, context: (a) Static; (b) Before Joading; (c)

Both classes defined by the same class loader; (d) Each class defined in a
different class Joader. 26

4.3 Mapped contexts. 27
4.4 Extended class name syntax. 27
4.5 Two contexts: (a) Single interface; (b) Multiple interface. 29
4.6 Different contexts that are identified equally. 29
4.7 REGISTER phase result information for class Stack. . 30
4.8 LOAD phase result information for class Stack. . . 32
4.9 META phase result information for class Stack. . . 34
4.10 CoNTEXT phase result information for class Stack.

4.11 LINK phase result information for class Stack . .

5.1 Verifier example control flow graph

6.1 Exception windows: (a) Nested; (b) Non-nested; (c) Nested after transfor-
mation.

7.1 Stack frame organization.
7.2 Sample tree pattem rules extracted from the x86 specification.
7.3 Relocation of absolute addresses.
7.4 Patching of runtime callbacks. .

XXIV

35
36

49

99

111

114
122
123

7.5 Patching of method text calls
7.6 Patching of string literal references.
7. 7 Patching of meta class references.

8.1 Ordinary objects layout.
8.2 Arrays layout
8.3 Method texts layout.
8.4 Meta classes layout ..
8.5 Free cells layout. . .
8.6 Block Records layout ..
8. 7 GC Info bits for each heap object ..
8.8 Stack organization.

B.1 EBNF grammar excerpt for Java based matcher specifications.
B.2 Sample matcher specification.
B.3 Sample matcher specification (continued).
B.4 Sample matcher usage.
B.5 Structures generated for the reg rule. . . .
B.6 Matcher variables and constructors
B.7 Action method generated for the reg rule.
B.8 Tree matching methods.
B.9 Closure methods for chain rules.
B.lO Default rule syntax
B.ll Default rule implementation .. .
B.l2 Rule template syntax.
B.13 Rule template implementation.
B.14 Non-terminal inlining syntax. .
B.l5 Non-terminal inlining implementation.

XXV

125
126
126

130
131
132

. 134

. 135

. 136

. 137

. 145

. 222

. 224

. 225

. 226

. 227

. 229

. 230

. 231

. 232

. 233

. 234

. 235

. 236

. 236

. 237

PartI

Context-Based JIT Compilation:
The Design & lmplementation of a

Distributed JVM

1

Chapter 1

Overview

Just-In-Time compilation, also known as JJT, is a well-known technique used to improve
the execution time in the Java1 Virtual Machine (JVM). However, the amount of time,
and sometimes memory, used by the JIT internais, in many cases, degrades the application
execution time. Some techniques have been used to decrease the JIT overhead while
keeping its effectiveness[48, 39]. Some of these techniques make use of heuristics to detect
execution hot spots and produce quality code for them[56]. Other techniques try to focus
on providing faster algorithms only for gain-proven compiler tasks[60]. However, the
trade-off between the JIT running time and its object code execution time will always
exist. There is no silver bullet.

1.1 The Scenario

From our observation, an end-user Java Virtual Machine deals with the same code most
of its time. Users always launch the same applications, which are typically composed of
the same set of classes. That repetitive situation does not change until the user buys an
upgrade of the software he/she has been using. Also, the Java Platform API[30, 31] is
a huge slice of the code being executed by every application, and it only changes on a
JVM release basis. So, why does the JIT need to recompile ali those classes, over and
over, on every JVM start up? Surely, the dynamics of the JVM linking model- with
class loaders and a fine-grained linking unit makes it difficult for the JIT to catch and
cache complex contexts.

On the other hand, in big companies, dozens or even hundreds of employees share the
same application or application suíte. Usually, they are connected under the same fast
and secure Intranet. Why not hoist the JIT to a server, building a shared repository of

1 Java is a registered trademark of Sun Microsystems, Inc.

3

4 Chapter 1. Overvíew

compiled code? Thus not only users will get the common case fast, but also they will
make the common case fast for other users.

User Machines

g~

Q==
o===:::: L5. context -----­

..,_____ binary code

JIT Server

Figure 1.1: A shared JIT server.

In this scenario, depicted on Figure 1.1, the company will not have to buy powerful
hardware for each employee. Instead, the company makes a rational investment on the
JIT server machine. Even if the employee runs a poor machine, he/she will get optimized
native code - at the expense of waiting for its compilation on a fast server in the worst
case. This is true2 Java technology being delivered on standard hardware.

This approach can be extended to the whole Internet once JIT servers are trusted and
connections made over secure sockets.

1.2 Our Goal

It is our believe that the Java platform shines on its portability. However, its machine­
independent bytecode is not well suited for execution on most real-world processors. This
fact, in conjunction with the security model and philosophy adopted by the Java platform,
makes the JVM a heavy piece of software. Our effort is not to criticize the Java plat­
form design, but to ask ourselves how we can achieve a straight-on-business light-weight
implementation of it.

Our goal is to detach linking activities from the JVM to a shared server, on a dis­
tributed fashion. The client JVM turns to be a very simple piece of software that runs
Java code natively, not requiring a JIT or interpreter. Ali complex linking activities -
like link-time error checking, class file verification and JIT compilation- are done by the

2 ln the sense of a JVM, nota native compiler.

1.3. Contributions 5

server, which caches its responses. The software is designed in a way that both standalone
(built-in server) and distributed models could be achieved.

1.3 Contributions

We present a summary of contributions provided by this work:

• A technique to identify link-time contexts in the JVM by associating versions to
classes. This technique enables storing JIT code in secondary memory.

• An alternate bytecode verification procedure designed to be done symbolically, gen­
eralizing subroutines semantics and iterating over basic blocks.

• A tree-based Java specific intermediate representation which handles exception win­
dows explicitly.

• A subroutine implementation technique that simplifies its control structure and does
not require code duplication.

• RING, a tree rewriting system targeting the Java programming language.

1.4 Road Map

The work herein described addresses ali the issues discussed so far. Each chapter provides
insight and details of every construction stage of a Java 2 JVM implementation.

This document is organized as follows: In Chapter 2, the state-of-the-arl on JVM
implementation is presented. In Chapter 3, the design possibilities of a distributed JVM
architecture are discussed. In Chapter 4, we give details about the context identification
techniques we have adopted, as well as the solutions to problems arisen during their
implementation. In Chapter 5, an efficient bytecode verification algorithm is described as
a replacement for the standard algorithm. In Chapter 6, we introduce the intermediate

representation and describe how to convert bytecode to it. In Chapter 7, we describe the
platform-independent back-end for the Intel Architecture 32-bit family of processors. In
Chapter 8, we give implementation details about the runtime environment, including data
layout on heap and stack. In Chapter 9, we describe the garbage collection algorithrn we
have implernented. In Chapter 10, the mechanics of automatic virtual machine generation
is exposed. Finally, we present the conclusions in Chapter 11.

Two appendices are provided as additional inforrnation to the reader. In Appendix A,
we give a complete specification o f the interrnediate language. In Appendix B, we describe
the tree rewriting tool that we developed targeting the Java Programming Language[6].

Chapter 2

Related Work

This chapter presents the state-of-the-art on Java Runtime implementation. First, we
describe the most used techniques to implement the Java Language Runtime. They range
from interpreters to native compilers, passing through mixed execution engines and JIT
tricks. Second, we present bleeding edge Java Runtime implementations from various
vendors. Finally, we discuss the goals of our work and how they fit into the whole picture.

2.1 Approaches to the Java Runtime Environment

There are basically two implementation approaches to the Java Language Runtime Envi­

ronment: native "static" compilers[22, 53] and virtual machines[39, 60].
A na tive compiler performs platforrn-dependent translation from Java bytecodes to

machine language. Since the translation occurs before execution, native compilers cannot
take advantage of run-time information. That is why native compilation is also refer­
enced to as static compilation1

. Native compilation is a Java adaptation of the standard
compilation approach present in the C/C++ world. Native cornpilers differ from virtual
machines in the sense that they are unable to efficiently handle bytecode loaded on-the-fly.
While virtual machines usually have an interpreter or Just-In-Time (JIT) compiler to do
that job, most native compilers do not have. Therefore, native compilers only provide
limited support for class loaders2

• Native compilers usually lack some other Java fea­
tures like refiective prograrnming and built-in object serialization, but that is nota must.
Although some virtual machines provide native embedding of core class libraries, the dif­
ference from native compilers is the fact that on native compilers user classes are included
on preliminary compilation. The intense usage of Java native compilers is due to the

1 The technique is also kno"IY-n as Way Ahead o f Time (WAT) compilation.
2Some implementations have no support for dynamic class loading at ali. Others let applications load

classes known at compile time.

7

8 Chapter 2. Related Work

belief that they provi de faster execution. This is true nowadays, since native compilation
time is not a constraint, but it will not hold on a near future, once virtual machine tech­
nology matures. Vendors claim that native compilers protects intellectual property since
reverse engineering compiled code is considerably harder. However, bytecode obfuscators
can address this matter while still keeping its portability. Usually, native compilation is
used for deployment of large scale or mission-critical Java systems.

A virtual machine can be seen as a feature-unconstrained Java Language Runtime

implementation. Virtual machines provide a bytecode execution-engine, which is usually
an interpreter or JIT compiler[61]. Some virtual machines use a mixed execution model,
where bytecode known at virtual machine compile time is translated to machine lan­
guage and coupled with the bytecode execution-engine provided by the implementation.
High-end virtual machines use advanced JIT techniques and other methods to achieve
performance.

Preliminary implementations of the Java Virtual Machine made use of bytecode inter­
pretation as the only execution mechanism. Literal bytecode interpreters are slow, since
bytecode semantics require link-time and run-time checks. The first effort to remove
extra bytecode checks during interpretation resulted in a simple rewriting technique[42,
§9.1]. This technique replaces bytecode opcodes by quick opcodes[42, §9.2] after first ex­
ecution. Quick opcodes are free of link-time checks, since they will only execute when
linkage actions are guaranteed to take place. Interpretation has beerr proven to constrain
performance horizons, and it is a barrier to the Java technology.

Just-In-Time compilation is a technique incorporated by the Java Virtual Machine to
address performance issues. JIT compilers have been used in language runtime implemen­
tations of symbolic systems for many years. In the Java Virtual Machine, the JIT is used
to translate bytecodes to machine language in a method basis. After the first interpreted
execution, subsequent method calls are faster since they executed natively. The main task
of a Java JIT compiler isto remove redundant run-time checks[54, 45]. Also the JIT must
produce as good as possible machine code. However, JIT compilation is constrained on
time because it occurs during application execution. So there is a trade-off between JIT
compilation time and object code execution time.

A technique used to decrease JIT compilation time, while not sacrificing object code
execution time, is Aware JIT[7] compilation. Aware JIT compilation consists of an off­
line bytecode preprocessing, which performs expensive analyses and optimizations. The
information gathered is annotated in the bytecode. By doing that, the Aware JIT wastes
less time during translation, since most of the information required to generate code is
already present in the annotated bytecode. The Aware JIT technique has been proven
to be effective when doing register allocation for RISC architectures and removing extra
null pointer and array bounds checks. The major problem with the Aware JIT approach

2.2. High-End Machines and Native Compilers 9

is security. The information annotated on the bytecode is usually trusted by the A ware
JIT. This represents a real security hoJe since malicious modifications on the annotated
information can produce serious hazard. Verification of annotated information could be
a possibility if it were not as expensive as the computation itself.

Another technique present in the current generation of virtual machines[56] is adap­

tative optimization. This technique has considerably improved performance in dynamic
typed Janguages, like Smalltalk[28] and Sel/[12]. The idea behind adaptative optimization
is based on the fact that a computer program spends most of its execution time in small
portions of its code, the so-called hot-spots. JIT compilers should give special attention
to hot-spots and Jet the other portions of the program be interpreted. An adaptative op­
timization execution engine must have profiler support embedded in its interpreter, and
a hot-spot detection algorithm. The major problem with the adaptative optimization ap­
proach is the performance penalty for short-lived applications. Unfortunately, hot-spots
are only noticeable after the application is running for a while, and starts to repeat itself.
This technique is appropriate for server applications and extensions.

Another attempt to improve the performance of JIT compilers is code caching. The
idea behind code caching is to identify repetitive situations and use code generated by the
JIT compiler in previous executions. This saves JIT time on cache hits, and encourages
the JIT to apply aggressive optimizations since the output code is likely to be reused. To
the best o f our knowledge no production JVM supports persistent caching o f JIT produced
code (by December/2000). Some systems provide one time JVM Joading, meaning that
the code produced by the JIT is compiled once at least for the API classes. However,
this cannot be considered a true caching scheme since the JVM must stay loaded, wasting
primary memory, and it cannot save the context to be used in a subsequent loading.
There are many praticai problems when trying to identify and cache a repetitive context
in the Java Virtual Machine. The main source of problems is the runtime typing model
ofthe JVM.

2.2 High-End Machines and Native Compilers

This section provides an overview about major performance-aware implementations o f the
Java Runtime Environment: JVMs, native compilers and JITs. Each software description
is a summary based on technical information available online and publications.

Sun Microsystems' Java 2 SDK

The Java 2 Platform SDK, Standard Edition (J2SE) is a feature-complete development
and deployment platform. J2SE is the standard Java implementation from Sun Microsys-

10 Chapter 2. Related Work

tems, which includes a Java Virtual Machine and related libraries. J2SE JVM incorporates
Sun's proprietary adaptative optimization technology known as HotSpot[56]. HotSpot pro­
vides an optimizing JIT compiler, profiler based hot-spot detection heuristics, dynamic
deoptimization capabilities (to handle earlier optimizations invalidated by code loaded
on-the-fly), and an accurate generational garbage collection algorithm[59]. Currently, it
is available on Windows, Solaris and Linux platforms.

URL: http:j jwww.javasoft.com/

Kaffe

Kaffe is a complete, fully compliant open source Java environment. It comes with its own
standard class libraries, native libraries, and a highly configurable virtual machine with
a just-in-time and native compiler. Kaffe was desigued with portability and scalability in
mind. Its threading model allows the choice between an internai, Java-specific user-level
threading system, and a native kernel-level threading system for platforms where this is
available. Kaffe has its own heap management system with a mark-and-sweep garbage
collector. It provides the ability to replace the garbage collection algorithm with one that
may be more appropriate to the application: reference counting, generational or copying.
An interesting feature of Kaffe is the execution engine, which comes in three different
flavors: interpreter, just-in-time compiler and native compiler. The interpreter is smaller
and easier to port, but is significantly slower when executing code. The JIT requires a
layer of macros to be written, containing the actual assembler instructions. This allows
bytecodes to be translated to native code "on-demand". The native compiler allows java
code to be compiled ahead of time directly to native code.

URL: http:j jwww.kaffe. orgj

LaTTe

LaTTe[60] is a Java Virtual Machine created by the MASS (Microprocessor Architecture

and System Software) Laboratory ofthe School of Electrical Engineering at Seoul National

University, as ajoint work with the VLIW Research Group at IBM T.J. Watson Research

Center. It includes a novel JIT compiler targeted to RISC machines, specifically the
UltraSPARC. The JIT compiler generates quality RISC code through a dever mapping
of Java stack operands to registers with a negligible overhead. Additionally, the runtime
components ofLaTTe, including thread synchronization, exception handling, and garbage
collection, are optimized. As a result, the performance of LaTTe is competitive with that
of other production JVMs. LaTTe was initially developed based on Kaffe virtual machine,

2.2. High-End Machines and Native Compilers 11

but most parts ofthe JVM, including the JIT compiler, the garbage collector, monitor lock
handling, and exception handling, have been replaced by clean room implementations.

URL: http:/ /latte.snu.ac.kr/

JRockit

JRockit claims to be the fastest and most scalable JVM for server applications. Similar to
Sun Microsystems' HotSpot technology, JRockit uses adaptative optimization to improve
execution performance. It provides severa! different garbage collection policies: stop
and copy, generational, "train based" incrementai. JRockit uses Thin Threads, a better
implementation of Java threads which allocates no more native threads than available
machine processors. Each native thread executes one or more Java threads. Context
switch and scheduling are clone internally by the runtime. The Thin Threads model takes
up less memory and is much faster.

URL: http:j /www.jrockit. com/

TowerJ

TowerJ consists of a native compiler and a runtime that optionally includes a dynamic
linker and a bytecode interpreter. TowerJ takes bytecode as input and produces an
optimized functionally equivalent self-contained executable program. It delivers a Java
application deployment solution that provides native compilation benefits while preserv­
ing the flexibility of Java's dynamic capabilities. TowerJ is based on Tower's proprietary
TRIPLE CROWN technology, which has been evolving since the early 1990s. TRIPLE
CROWN technology was developed while looking for ways to significantly improve the
performance of advanced object-oriented programming languages. It was originally im­
plemented for Eiffel[44] and due to the similarities of Eiffel and Java, the migration of
TRIPLE CROWN was straightforward. The TRIPLE CROWN Runtime/VM is currently
supported on Hewlett-Packard HP-UX, Compaq Tru64 Unix and NT / Alpha, Microsoft
Windows NT, Sun Solaris, IBM AIX, Silicon Graphics IRIX, and Linux.

URL: http:/ jwww.towerj.com/

JET

JET[40] compiles Java applications into native Win32 executables. JET is the first Ex­

celsior project that employs their XNJ technology. XNJ (XDS Native Java) is based

12 Chapter 2. Related Work

on the XDS multi-target optimizing compiler construction framework. The XDS frame­
work supports generation of highly optimized native code for severa! widely used CPU
architectures, such as Intel x86, Motorola M680x0, PowerPC, and Sun SPARC (and also
generation ofC/C++ source code). The core ofthe framework defines classes for internai
representation (IR) of the program. As usual, the XDS framework has three major com­
ponents: front-end, IR transformer (or middle-end) and back-end. The middle-end and
back-end components support various optimization techniques commonly used in "classi­
cal" compilers[4, §10]. Among them are: global inline substitution of methods[47, §15],
common subexpressions elimination[18], constant propagation, loop unrolling[46, §9.7],
redundant run time checks removal[54, 45], advanced register allocation algorithms[ll]
and instruction scheduling[46, §12]. Some object-oriented optimizations are also avail­
able: type inference[13] and stack allocation[27]. Static Single Assignment[19] (SSA)
is used in internai program representation greatly improving the quality of these opti­
mizations. JET has a non-concurrent mark-compact garbage collection algorithm that
possesses advantages of both mark-and-sweep and copying garbage collection algorithms.
It is accurate and causes less memory fragmentation than traditional mark-and-sweep
algorithms.

URL: http:j jwww. excelsior-usa. com/

JOVE

JOVE is an optimizing native compiler for large-scaie Java applications. JOVE combines
sophisticated whoie-program and object-oriented optimization technologies, native com­
pilation, and a scalable runtime architecture. The runtime system includes precise muiti­
threaded muiti-generationai garbage collection, native threading, low overhead poiymor­
phism, and a great number of minor optimizations. Object oriented optimizations include
selective method inclusion, type anaiysis, poiymorphic call-site reduction, and selective
generation of reflective metadata. At this time, JOVE only targets the Intel 32-bit family
of processors running Windows.

URL: http:j jwww.instantiations.com/

IBM High Performance Compiler

The IBM High Performance Compiler[34] (IBM-HPC) is an optimizing native code com­
piler for Java. Currentiy, there are beta-levei versions for both A IX and Windows. Byte­
codes are processed by a transiator to produce an internai compiier intermediate language
(IL) representation of each class. The common back-end from IBM's XL family of com­
pilers for the RS/6000 is then used to turn this intermediate representation into an object

2.2. High-End Machines and Native Compilers 13

module (.o file) which is linked with other object modules from the application and Ji­

braries to produce an executable program. The libraries implement garbage collection,
the Java Platform API, and various system routines to support object creation, threads,
exception handling, application startup and termination. The use of a common back-end
grants high-quality, robust code optimization capabilities. However, it also dictates the
use a conservative garbage collector since the back-end provides no special support for
garbage collection. It uses the publicly available Boehm[9] conservative garbage collec­
tor, which has been ported to many platforms. Code optimizations include instruction
scheduling, common subexpression elimination, intra-module inlining, constant propaga­
tion, global register allocation. Java specific optimizations, like run time checking remova!,
are done during IL translation.

URL: http:j jwww.alphaworks.ibm.com/

BulletTrain

BulletTrain is a system for statically compiling and linking JVM bytecode applications for
Windows platforms. It includes an optimizing native compiler, a linker and recompilation
manager, an advanced thread-hot runtime, and a core set of Java 2 optimized libraries.
The crafting of the runtime system to the needs of the Java language provides high-speed
locking, class casts, memory allocation, plus support for thousands of threads and smooth
scaling onto multiprocessors. In addition, BulletTrain provides tools for observing the
behavior of programs. Heap use can be categorized by object type and thread deadlocks
can be automatically detected. JNI (Java Native Interface) operations are always checked
for correct parameters and stack traces always contain line numbers.

URL: http: / jwww. natura/bridge. com/

GNU Compiler for Java

The GNU Compiler for Java[lO] (GCJ) is a portable, optimizing, native compiler for
the Java Programming Language. GCJ is part of the widely known GNU Compiler

Collection (GCC). It compiles Java, in both source code and bytecode forms, to machine
code. GCJ provides a set of auxiliary libraries which consist of the Java Platform API
core classes, garbage collector, threading and optional bytecode interpreter. The presence
of a bytecode interpreter means that GCJ compiled applications can dynamically load
and interpret class files, resulting in a mixed execution modeL

URL: http: / /sources. redhat. comjjava/

14 Chapter 2. Related Work

Marmot

Marmot[22] is a performance competitive research native compiler developed at Microsoft

Research. It was aimed to study the potential performance of large applications written
in object-oriented languages. Marmot does static program analysis and transformation,
including data flow and type-based local and whole-program analyses. Transformations
include elimination of runtime safety checks and synchronization operations, allocating
objects on the stack, elimination of unnecessary memory references, and profile-based
method specialization and inlining. Garbage collection is supported by three garbage
collection schemes: conservative, copying and generational.

URL: http:j jwww.research.microsoft.com/

OpenJIT

The OpenJIT[5l] project is an ongoing Java Programming Language JIT compiler project
as a collaborative effort between Tokyo Institute of Technology and Fujitsu Laboratory,

partly sponsored by the Information Promotion Agency of Japan. OpenJIT is a "reflec­
tive" JIT compiler in that it is almost entirely written in Java; it bootstraps and compiles
itself during execution of the user program. Compiler components coexist as first-class
objects in the user heap space; thus, users can tailor and customize the compilation of
classes at runtime for a variety of purposes: application-specific optimization, partia! eval­
uation, dynamic environment adaptation ofprograms, debugging, language extension, etc.
OpenJIT allows full dynamic update of itself by Ioading the compiler classes on-the-fly.
It is fully JDK compliant, and plugs into standard JVMs on severa! Unix platforms such
as Solaris (Sparc), Linux (x86), and FreeBSD (x86).

URL: http:j jwww. openjit. orgj

2.3 Best of Ali Worlds

The JVM described by this document was designed to comprise the advantages, and
supercede the ambitions, of ali implementations available so far. In an early stage of
development, the following features were defined as the set of goals we would like to
achieve.

Virtual Machine The system must be a virtual machine, not a native compiler, in the
sense that applications should be deployed on standard bytecode.

2.3. Best of All Worlds 15

Full Functional End-User It must be a deployment JVM, supporting all end-user fea­
tures including JNI[55] and stack traces. Standard debugging and profiling interfaces
were dropped on behalf of coherence. They are not required by end-users.

100% Native Execution Execution must be done natively, no interpreter bundled.
Most implementations use mixed execution instead of 100% native execution. On
JVMs this happens to avoid the overhead of compiling class initializers which will
run only once. On native compilers, execution is 100% native for code compiled
ahead of time. Some native compilers provide an interpreter to execute code loaded
on-the-fly, but most do not do that.

Persistent Shared JIT Code Code generated by JIT must be cached on secondary
memory for future reuse. The cache system must support sharing by multiple JVM
instances running on the same computer. As far as we know, no JVM attempts
to save JIT code on secondary memory. Some JVMs support one time loading
which keeps JIT code on primary memory. Persistent caching enables 100% native
execution.

Distributed Capability The JIT compiler may reside outside the computer that runs
the JVM. Multiple JVMs may share a single JIT server. This extends the idea of
sharing JIT code from a compu ter to a computer network.

Aggressive Compilation Aggressive compiler optimization techniques may apply, since
the cache system dilutes compilation time. The JIT server has the ability to reop­
timize frequently requested code on its idle time. We foresee not only "classical"
optimizations, but also expensive whole-program optimizations (including object­
oriented) only available on native compilers.

Mostly Written in Java The vast majority of the virtual machine is ;~-Titten in the Java
Programming Language[6], including bytecode parser and verifier, and compiler data
structures and algorithms. This takes advantage of object-oriented clarity and reuse
and sets up a performance compromise: the virtual machine will run as fast as the
code it generates. OpenJIT[51] have been successful on that.

Methods as First-Class Objects JIT compiled methods are represented inside the
JVM as first-class objects. Therefore, methods may be garbage collected and han­
dled from Java code.

Adaptative Optimization The JVM runtime must be constructed so as to support
adaptative optimization. Profiling is done by inspecting stack frames from run­
time callbacks. Recompilation occur conveniently for popular methods and classes.
Replacement makes old version of methods eligible for garbage collection.

16 Chapter 2. Related Work

Accurate Garbage Collection The runtime must be able to compute accurately, at
any time, the set of reachable objects. The accurate GC is clear, reliable, and
flexible.

Small and Flexible Runtime The runtime must be small (simply JNI, threading and
garbage collected heap). Easy replacement of threading and garbage collection
strategies is a must. Portions of the runtime that can be written in Java are (less
dependent on the correctness and performance o f third party compilers).

Highly Portable The virtual machine is highly portable, being written almost totally
in Java. The runtime is written in standard C[38] with well defined OS interfaces
for native threading and memory allocation. Portability is achieved rapidly for
platforms based on the same processor. When porting to a new processor, a new
compiler back-end must be written. Most optimizations occur in the intermediate
representation, and do not require to be rewritten.

Precompiled Bootstrap Classes Bootstrap classes, including core library classes and
JIT compiler classes, are precompiled during virtual machine generation. Those
classes do not need to be changed by users, they only change when a new JVM
version is released. This provides instant performance for system classes and avoid
chicken-egg compilation problems (because the JIT is written in Java).

Selective Metadata The runtime does not need to waste primary memory with meta­
data for ali Joaded classes. It should be retrieved on demand from the cache system.
Metadata are required by applications that use some special Java APis (e.g. reflec­
tion) and for printing stack traces.

Chapter 3

Virtual Machine Design

This chapter describes the overall design of our JVM implernentation. Rather than a
Java Virtual Machine, the systern is best qualified as a Java Virtual Machine architecture.

Currently, this architecture is cornposed of three software cornponents: a client, a server
and a client-generator. The cornponents, their roles, and how they interact are described
here.

3.1 A JVM Architecture

Our irnplementation of the Java Runtirne is best qualified as a Java Virtual Machine
architecture. That is because it is not a single software that irnplements the JVM. There
are software components that work independently and do specific tasks. Part of the systern
is generated by itself and the communication is rnade using a simple service-oriented
protocol. Currently, the JVM architecture is composed of three software components (see
Figure 3.1):

JVM Architecture i---------------------------------------

Machine
Generator

: Distributed JVM
: r-------,.
•

produces: Client communicates Server
Machine c:> c:> Machine <;:::J c:>

~.-,_, ~ : •. . .
"" ·-~--~--~--~--~--~--~---------------------------·

Figure 3.1: JVM architecture and its components.

Client JVM The virtual rnachine itself, it comes in two flavors: Standalone and Thin­

Client.

17

18 Chapter 3. Virtual Machine Design

Server JVM The virtual rnachine server, cornprises basically the class file parser, byte­
code verifier and JIT cornpiler. It has a secondary rnernory cache systern.

Client JVM Generator The virtual rnachine generator, autornatically produces a Client
JVM based on a given configuration.

3.2 Software Components

This section provides inforrnation about the software cornponents that rnake up the JVM
architecture.

3.2.1 Client JVM

The Client JVM cornponent is the software that irnplernents the user levei Java Virtual
Machine. Most of it is generated frorn Java bytecodes and coupled with a C runtirne.
Figure 3.2 shows the structural decornposition of the Client JVM in subcornponents.

As usual, the JVM is irnplernented as a platforrn dependent library that is Ioaded from
an application, the Launcher, using JNI[55]. It reads core and user classes frorn the file
systern (using the CLASSPATH1

) or another application defined source. Native rnethods
are irnplernented extemally in Native Líbraries which are Ioaded on dernand by the JVM.

,. ... -........... .
• •
: Launcher:
• • • •

........................
• •

Native :
Libraries :

• • • • •

Client Virtual Machine

~--- ---------------.. ------------------ \

C Runtíme Embedded :

[JNI l 1 Bootstrap Classes 1

' [Core Classes] !
Jc;;;l~ :
~~ .

g UserC!asses

(OS Interface) :
~---~

JIT Interface

Figure 3.2: Client JVM subcornponents.

Internally, the Client JVM has a C runtirne which cornprises the irnplernentation of
JNI, heap structures and garbage collector algorithrns, multithreading, exported extra

1 The CLASSPATH ís specífied by the launcher, which reads ít from the command line or from an
environment variable.

3.2. Software Components 19

JVM calls, and anOS interface (including assembly required calls). Most ofthe C runtime
is written in standard C on a portable manner. There are special interfaces to proces­
sar and platform dependent operations. Both the garbage collector and multithreading
subsystems have a well defined interface, which makes strategies replacement easy. The
heap structures, however, are meant to be fixed. The extra JVM calls are calls required
by native libraries that cannot be implemented from JNI calls (e.g. Object. clone()),
they exist to decrease JVM internais exposure to core native libraries. The C runtime
implementation details are described in Chapter 8. The garbage collector is detailed in
Chapter 9.

As said before, part of the Client JVM is generated from Java bytecodes. These
Java bytecodes comprise the core API classes[15, 14, 16] and some JVM implementation
interna] classes, including JIT compiler and Java language type support[41]. During
generation, those classes are translated to assembly and placed on a segment following
the heap layout. When the JVM is created, the C runtime does the bootstrap using those
embedded classes. This enables the implementation of most of the Client JVM using the
Java language.

The JIT Interface, as depicted on Figure 3.2, is part of the Java code embedded on
the Client JVM. This interface defines a set of methods used by the Client JVM to handle
dynamically loaded code, as well as other link-time activities. During generation, a JIT
Interface implementation must be chosen to be embedded on the Client JVM. Currently,
two implementations of the JIT Interface are provided, as shown in Figure 3.3.

Standalone JIT (x86)

-------------------------. . Execution Engine .
Thln-Cllent JIT i (V erifier) Embedded

x86

i (Optimizer) Back-End

(------~~~~-~.~~~~-------; g§
(Cache Subsystem

:---c~~~~~~~~--:

'------------------'

g '1'!:ol
Cache

~
Server Cormection

(a) (b)

Figure 3.3: JIT interface implementations.

The Standalone JIT Interface implementation (Figure 3.3 (a)) provides standard be­
havior to the Client JVM. As other JVM implementations, the complete functionality of
the Client JVM is bundled in a single monolithic piece of software. In this case, all code
- including class file parsing, bytecode verifier, JIT compiler and cache subsystem

20 Chapter 3. Virtual Machine Design

wi!l be embedded on the Client JVM. A specialized target-specific compiler back-end is
also provided. The Standalone implementation allows compiled code caching and sharing
on a single computer.

The other JIT Interface implementation available is the Thin-Client (Figure 3.3 (b)).
A Client JVM that uses the Thin-Ciient implementation will require a Server JVM to ex­
ecute, which receives requests delegated through a secure network connection. Therefore,
the Thin-Ciient implementation is light-weight and is not required to run on a computer
with secondary memory. Optionally it may have a local cache to minimize network ac­

tivity.

3.2.2 Server JVM

The Server JVM component implements an externai JIT compiler engine that receives one
or more connections from Thin-Ciient JVMs. It is entirely written in the Java language
and its core is composed of the same set of classes as the Standalone Client JVM.

Client~

~
~

Server Virtual Machine

Figure 3.4: Server JVM subcomponents.

Figure 3.4 shows the structure and subcomponents of the Server JVM. Similar to
Standalone Client JVM, it has a class file parser, bytecode verifier, JIT compiler, and
cache subsystem. The major difference is the Back-End Plug-in Interface which targets
multiple simultaneous back-end implementations instead of a single embedded target­
specific back-end. A Server JVM may generate machine code for many processors, as well
as provide methods in raw intermediate representation. This raw IR mode can be used
by Interpreted Client JVMs2 which interpret IR, rather than bytecode, on unsupported
processors.

2Not implemented on the architecture.

3.2. Software Components 21

Since it is written in the Java Programming Language, the Server JVM requires a
Java Virtual Machine to execute. Instead of running the Server JVM on a third-party
JVM, which could have a negative impact on performance, or run it on a Thin-Client
JVM, which would require another Server JVM, we run it on a Standalone Client JVM.
Doing that makes possible the sharing of common components of both the Server JVM
and the underlying Standalone Client JVM, ideally.

3.2.3 Client JVM Generator

The Client JVM Generator generates Client JVMs based on a configuration. The Client
JVM Generator configuration specifies the set of classes, and their linkage state, upon
bootstrap. It simulates the loading and linking of core classes on a virtual heap - con­
necting to a Server JVM - and outputs an assembly file. The assembly file contains a
segment declaration and the virtual heap transcript to the target platform layout. Auto­
matic virtual machine generation is covered on Chapter 10.

Platfonn
C Compiler

Figure 3.5: System functional diagram.

22 Chapter 3. Virtual Machíne Desígn

3.3 Functional Overview

The Figure 3.5 depicts a functional diagram of the whole system.
At generate-time, a Client JVM is produced by linking objects resulting from compiling

the C runtime and assembling the core classes output by the Client JVM Generator. For
both Standalone and Thin-Ciient JIT Interface implementations, the C runtime is the
same, but the core classes vary according to the configuration. During generation, the
Client JVM Generator connects to the server to link classes and compile their associated
methods. After linkage, a platform dependent shared library is output, and can be loaded
using the standard JNI primitives.

At run-time, the Launcher application loads the Client JVM shared library using the
platform loader. Depending on the configuration chosen during Client JVM generation,
two run-time possibilities exist. In the Thin-Ciient implementation, the Client JVM con­
nects to the server and delegates linkage requests to it. In the Standalone implementation,
the Client JVM has embedded linkage functionality, it directly accesses the local cache
system.

Aside from the rest of the system, the Server JVM is used by both the Thin-Ciient
JVM and the Client JVM Generator to compile and link classes. It has a local cache
system which may be shared with other instances of the JVM.

Chapter 4

Server-Side Context Identification

This chapter covers context identification. In order to implement the cache system, the
Server JVM has to effectively detect repetitive situations in Client JVMs and respond
using stored data. Details about how context identification was implemented and the
problems that carne up during its implementation are discussed.

4.1 States & Phases

The communication between Client JVMs and the Server JVM was designed using a very
simple scheme. This communication is service-oriented and the special term phase is used
to name services made available by the Server JVM. A phase has parameters that must
be provided by the Client JVM, and a response that is computed by the Server JVM.
Each phase starts a task for which the same parameters always yield the same response.
This fact is the key point of the cache system.

The execution of the phase task always handles information regarding a particular
class in a particular state. A class may be in one of three states: registered, loaded or
linked, as depicted in Figure 4.1. Each one of these states is associated to a context
required to compute the phase response.

A brief description of each phase is given bellow. As some important concepts are
made clear in the following sections, an insight of each phase is provided to clarify the
idea.

Register Phase In this phase, a class image - as extracted from the class file - is
registered in the system.

Load Phase In this phase, a registered class is hierarchicalized; information about its
ancestors classes becomes available.

23

24 Chapter 4. Server-Síde Context Identificatíon

Load* Link* ;:õlate

v
Register*

Meta. Context

Figure 4.1: Diagram showing class states and phases.

Meta Phase This phase provides meta information about a class.

Context Phase This phase provides class names for classes involved on the linkage of a
loaded class.

Link Phase In this phase, a loaded class is linked. This means it was fully verified and
its methods have been optimized based on context information.

Relink Phase In this phase, the methods of a linked class are reoptimized based on
more context information.

Translate Phase This phase provides the binary native translation of the methods of a
linked class.

The RELINK phase is not available on our first implementation. However, its purpose
is exposed since a limited, but still useful, dynamic recompilation feature can be achieved
based on it.

4.2 Computing Class Versions

In order to identify classes and class contexts off-line in the server side, we compute class
versions. The class version is a number that in conjunction with the class name identifies
a class in a particular context. There are three types of class versions: registered, loaded
and linked {the states in the Figure 4.1). Some phases {REGISTER, LOAD, LINK, RELINK)

change the version of a class.
The registered version is the version associated to a particular class image outside

a context. A registered pair <name#rg-version > identifies the attempt to associate a
particular class image, valid or not, with a class name.

4.3. Dealing with Class Loaders 25

The loaded version is the version of a class when it is placed in a type hierarchy. A
loaded pair <name#ld-version > provides not only information about a class but also
information about its ancestors.

The linked version is the version of a class when the information about classes and its
neighborhood is known. The term neighborhood is used here to define ali classes directly
referenced by a particular class. Those classes comprises classes from which fields are
accessed, methods are called, etc. It also includes classes handled by the JVM for some
implicit operations (e.g. ArrayindexOutOfBoundsException class may be instantiated
by the iaload bytecode).

Not limited to class versions, the pair <name#version> is also used to identify phases
(the arrows in the Figure 4.1). It is used as key to cache system entries.

In our implementation, the class version is coded as a 64-bit integer obtained from
the 160-bit integer result of the application of the SHA-1 hashing algorithm[49} to some
parameters. The parameters depend on the information being requested. For instance,
during class registration the hashing algorithm is applied over the class file image; on
loading the algorithm is applied over the loaded versions of the ancestors of the class
being loaded as well as its registered version and some other specific data. The mapping
from 160-bit integer to the 64-bit is done by applying 4 xor operations over each 32-
bit chunk shifted by 8. This map is done solely to provide shorter file names when
writing the response to the cache system, since the file name is derived from the pair
<name#version>.

Since this is the first implementation of our system, we did not handle clashes in class
versions. We believe that the validation of the caching idea was important enough to
ignore this fact. Moreover, the SHA-1 algorithm was designed to avoid clash occurrence.
It is even computationally infeasible to simulate it1. However, its identification is an
important issue since it is related to the system predictability. We intend to handle this
issue in future implementations.

4.3 Dealing with Class Loaders

Class loaders offer a great challenge when trying to effectively identify contexts, which
is crucial to exploit the cache system. The main problems which regard the existence
of class loaders are related to safe type manipulation, the java security (package private
members accesses) and the mapping of its dynamic nature.

Types inside the JVM are identified by a pair {class name, class loader). However,
since class loaders are instances of class ClassLoader, they may be instantiated at run-

1It did not happen during testing and benchmarking of the system.

26 Chapter 4. Server-Side Context Identification

time. Therefore, new types can be introduced in the system during its execution. This
feature gives some dynamic typing !lavor to the Java language. As class loaders have
a dynamic nature, it is difficult to identify and detect contexts inside the JVM. This is
explained by the example, showed in Figure 4.2.

-~----- -- -' '

() ' ' ' A#2 ' ' ' ' ' ' ' ' ' -
.::::-. ' ' ' ' ' (B#l) '

(a) (b) (d)

Figure 4.2: Extending non-public class, context: (a) Static; (b) Before loading; (c) Both
classes defined by the same class loader; (d) Each class defined in a different class loader.

Suppose we are loading class B which symbolically extends a non-public class A (Fig­
ure 4.2 (a)). At load time, we h ave already registered class B so we h ave its registered
version, say 1; class A is also loaded and has its loaded version, say 2 (Figure 4.2 (b)).

By now, lets forget about class loaders. The Client JVM sends to the Server JVM the
parameters to the LoAD phase which are: superclass = <A#2>; interfaces = 0; class =
<B#1 >. Note that we are trying to capture a context here (the detailed description of
how this occurs will be given on Section 4.5 when we look at each phase). The Server
JVM then analyses the context for the LOAD phase and sends to the Client JVM an error
response or the Joaded version of class B, say 2. So, by ignoring class loaders, the server
will send back to the client the response <B#2> (Figure 4.2 (c)).

However, when considering that class A was not defined in the same class loader as
class B, then class A is not in the same runtime package o f class B. Therefore, since class
A is non-public, the access must be denied by the Server JVM. In the Client JVM, an
instance of IllegalAccessError must be thrown (Figure 4.2 (d)).

How to capture this simple context when class loaders, and therefore types, cannot
be trivially identified? The solution we found was not to identify class loaders at ali.
However, we associate to each class relation- where class loader existence matters (e.g.
extended class, implemented interface, accessed field owner) - a boolean value indicating
if both elements of the relation where defined by the same class loader.

Figure 4.3 shows the two contexts mapped using class loader information (In the
figure, dashed !ines group together classes defined by the same class Joader). Note that
the version of class B is different on each context, since the class Joader flag is considered

4.3. Dealing with Class Loaders

Same Loader Context

'
' ' '

' ' ' '

: ' ' '
' '
~ Different Loader Context

Figure 4.3: Mapped contexts.

in version calculation.

4.3.1 Extended Loader-Based Class Names

27

Given that class loaders are not identifiable by our context mapping scheme, we have
to provide an alternate form of identification for types. This is required if we intend to
handle classes from outside the namespace2 of the class in which a particular context is
based.

We have extended the fully-qualified internai class name form[43, §2. 7.4] in order to
address this issue. The new syntax is shown in Figure 4.4.

ExtendedClassName -+ FullyQualifiedClassName
ExtendedClassName "-" FullyQualifiedClassName

Figure 4.4: Extended class name syntax.

The extended class name is always interpreted in the sense of a particular class, in
the same way as class names are interpreted in the sense of a class loader. The first
fully-qualified name (from left to right) identifies a class with that name in the current
namespace. So on, each fully-qualified name identifies a class with that name component
in the namespace o f the previously identified class. For instance, the dass name B -c, when
interpreted in the context of class A, identifies the class C obtained from the namespace
of class B which is obtained from the namespace o f class A.

Obviously, each class may be identified by multiple extended class names. Sometimes,
it is possible to tell if two extended class names refer to the same class; if they surely refer

2 The association of namespaces to classes is an overloaded usage of the term, when we refer to the
namespace of a class we are actually refering to its defining class loader namespace.

28 Chapter 4. Server-Side Context Identification

to distincts classes; as well as not being able to state any of that at ali.
Here are some facts about extended class narnes:

• Two extended class names only refer to the sarne class if the rightrnost fully-qualified
name is the same for both.

• The syntax and semantics of extended class names in the context of a class is
upwards compatible with the syntax and sernantics of the fully-qualified class narnes
of classes referenced by that class.

• Every subsequence of fully-qualified class narnes - where each narne identifies a
class defined by the same class loader as others - may be ornitted, but the first,
from the extended class narne.

• No special syntax is used to identify bootstrap classes. Since the hierarchy root is
the bootstrap Object class, any bootstrap class rnay be identified by first identifying
the hierarchy root and then refering to a class in its namespace.

4.3.2 Type Uncertainty and Interfaces

Although it enables context mapping and caching, the mechanism for dealing with class
loaders has serious problems regarding type inference. In some situations, the amount
of context inforrnation available about class relations is not enough to tell if a versioned
class represents one or many distinct classes. This is explained by an exarnple.

Suppose we have two runtime contexts. In the first context, depicted in Figure 4.5 (a),
a subclass B reimplernents an interface I already irnplemented by its superclass A. In the
second context, depicted in Figure 4.5 (b), the subclass B irnplements another interface
binary compatible with interface I but defined in another class loader, so it represents
another type.

When rnapping these two contexts we get the sarne class relation, as depicted in Fig­
ure 4.6. This occurs because there is not enough context information to let us distinguish
interfaces I in the second context. Both interfaces are subclasses of O not defined in its
class loader. Therefore two distinct contexts have the same rnapping; avoiding this cannot
be done effectively.

The type uncertainty occurs whenever at least two class relation edges in the path
frorn one class to another are false. This rneans that there is no way to tell i f those classes
are defined by the sarne class loader or not. In that case, both contexts have the sarne
rnappmg.

Type uncertainty lirnits the use of type inference in optimizations. For instance, in
the exarnple shown, we cannot tell from class B if class A -r equals class I.

4.3. Dealing with Class Loaders

(a)

' " ' '-·-'
-----'-.:--~,--'

\,,.;;;;..,J '' '

(b)

Figure 4.5: Two contexts: (a) Single interface; (b) Multiple interface.

29

Luckly, when constructing method tables, there is no need to reserve distinct method
areas inside method tables for each path leading to a versioned ancestor class3 passing
through two or more false edges. Since ali classes represented by the versioned class have
binary compatibility, they can share the same method area.

Figure 4.6: Different contexts that are identified equally.

3 Actually, it only occurs to interfaces since the Java language does not support true multiple
inheritance.

30 Chapter 4. Server-Side Context Identification

4.4 A Portable Way of Describing Sizes and Offsets

Since we did not want to tailor the Server JVM to a particular architecture or platform,
we had to provide a portable way of describing sizes and offsets of heap associated infor­
rnation. That was achieved by representing sizes or offsets by a pair (references, bytes).
The first elernent of the pair is the nurnber of references that contribute to the rneasure.
The second elernent of the pair is the nurnber of bytes that contribute to the rneasure. To
calculate the actual value in bytes represented by the pair, the Client JVM rnust scale the
first element, using the size in bytes of references in its implernentation, and add to the
second elernent. For instance, the value ofthe pair (3,4) in a 32-bit systern is 3*4+4 = 16
bytes.

4.5 Describing Each Phase

In this section, each one of the phases introduced in Section 4.1 is described. We fo­
cus on the rnain features of each phase rather than providing a precise specification or
listing ali implementation details. However, whenever necessary, issues regarding precise
understanding of these features are detailed.

4.5.1 Register Phase

In the REGISTER phase, the Client JVM sends to the Server JVM the expected name and
binary contents of the class file associated with the class being processed.

The Server JVM applies the hashing algorithrn to the class file contents; the result is
used as the register version number for that class. Then, the Server JVM looks for an
entry <name#version > in the cache system. On a rniss, it tries to parse the class file
contents (Pass 1 on the verification process[43, §4.9.1]), caches it and returns a response.

REGISTER (java/util/Stack)

class-id: <java/util/Stack#8ee05ed6bda9bce1>

access flags: Ox21
superclass: java/util/Vector

<no interfaces>

Figure 4.7: REGISTER phase result inforrnation for class Stack.

4.5. Descríbíng Each Phase 31

Figure 4. 7 shows the result o f applying the REGISTER phase to class Stack.

The response depends on successful parsing of the class file contents. If the class file
contents are valid, the Server JVM sends back to the Client JVM the registered version
number, the access flags, the superclass name (if any) and the implemented interfaces
names (if any). As the result of an error during class registration, the Server JVM may
provide three possible causes: unsupported class file version number, malformed class file
contents or unexpected class name.

Upon the successful response, the Client JVM will proceed to the LOAD phase which
in conjunction with the REGISTER phase makes up the JVM class creation and load­
ing process ([43, §5.3]). In the case of an error response, the Client JVM will throw
an instance of the following classes, respectively: UnsupportedClassVersionError,
ClassFormatError or NoClassDefFoundError.

4.5.2 Load Phase

As said before, to complete the JVM class loading process the LOAD phase takes place
just after the REGISTER phase. In the LOAD phase the associated class is híerarchicalized,

meaning that ali its ancestors in the type hierarchy must be known. Once hierarchicalized,
more inforrnation can be gathered about that class, including instance and static sizes,
field offsets, dynamic dispatch method table length, method dispatch índices, etc. Also,
after the LOAD phase has successfully being completed, a new version number is associated
to that class.

In order to request a LOAD phase, the Client JVM should provide some parameters:
the class name and registered version of the class being processed; a boolean value indi­
cating if it is a bootstrap class; the superclass name, the superclass loaded version and a
boolean value indicating if it was defined by the same class loader as the processed class;
for each direct implemented interface, its name, its loaded version and a boolean value
indicating if the interface was defined by the same class loader as the processed class.

The Server JVM then computes the loaded version number for the class being pro­
cessed, by applying the hash algorithm to these parameters. A <name#version > pair is
obtained and used as key in the cache system. On a miss, the Server JVM has to compute
the response to the LOAD phase, otherwise the response is ready to be sent to the Client
JVM.

As occurred in the REGISTER phase, the Server JVM processes the parameters and
provide some useful client data or return an error message on failure. The data provided
by the Server JVM in the LOAD response contains mostly information about the size of
the areas used by the associated class, it comprises the loaded version, the static field area
size, the offset and length of the reference table inside the static field area, the instance

32 Chapter 4. Server-Side Context Identification

field area size, the offset and Jength o f the reference table inside the instance field area, the
dynamic dispatch method table length, the direct interfaces base offsets in the dynamic
dispatch method table and the native pointer table length. The meaning and use of each
of these informations will become clear when we describe the client runtime in Chapter 8.
As result of an error in this phase, the Server JVM may provide two possible causes: the
class is unable to access its direct ancestors, or its superclass is an interface (or any of its
direct implemented interfaces is a class).

In the client side, the information provided by the Server JVM is used to change the
version number and allocate storage for the class being processed. On error, the Client
JVM should throw an instance o f the following classes respectively: IllegalAccessError
and IncompatibleClassChangeError. Also, the Client JVM is responsible for keeping
track of hierarchy circularity, throwing a ClassCircularityError instance whenever
necessary.

LOAD (java/util/Stack)

class-id: <java/util/Stack#5c5614ee3f7ba14>

static fields: size (0,8) refs O offset (0,8)
instance fields: size (1,12) refs O offset (1,12)
static methods: table length (2)

instance methods: table length (91)
native methods: pointers (0)

Figure 4.8: LOAD phase result information for class Stack.

Figure 4.8 shows the result of applying the LOAD phase to class Stack.
The size and offset for the field areas are represented, as described in Section 4.4,

using a pair (references,bytes}. The Server JVM tries to place the fields assuming that
every field area will be padded based on the target architecture word size (as commonly
implemented in the memory allocator). For instance, for field areas, it first tries to fill
in boles Jeft blank by the padding on the superclasses areas, then it places the remaining
fields on a decreasing size order assuming references are 32-bit wide. Using this policy,
the Server JVM generates the best alignment for 32-bit systems. Also the Server JVM

tries to generate the best alignment for 64-bit systems, by leaving a 4-byte hoJe before
placing 8-byte fields on an unaligned area; but this is done only if the hoJe is filled after
the remaining fields are placed. We prefer having some misaligned references on 64-bit
systems rather than wasting a word space on 32-bit systems. For static field areas, we

4.5. Describing Each Phase 33

place fields on a decreasing size order, getting the best alignment for ali systems.
The calculation of dispatch method table size and placement is simpler. There is no

alignment problem since ali method pointers have the same size for ali systems. The
dispatch method table placement for the current class uses the superclass dispatch table
as start point. Then, for each interface implementation not yet implemented by the
superclass its dispatch table is appended, its base index is associated to the interface
being implemented. At last, for every new method declared in the current class, an entry
is appended to the method table. This provides the size of the dispatch method table for
the current class. The initialization and override patches for the dispatch method table
are clone in the LINK and TRANSLATE phases. Static methods are placed on a separate
table, since they need not to appear in subclasses dispatch tables.

4.5.3 Meta Phase

In the META phase, the Server JVM sends back to the Client JVM meta information
about a particular class. The meta inforrnation is required basically by the JNI, the
reflection API and when printing stack traces. The META phase does not change the
linking state of the class nor cause any link-time error to be thrown.

The major advantage of having the META phase is the fact that the Client JVM does
not need to store meta information for most of its loaded classes. It is an effort to decrease
the memory footprint on the client side.

In order to request a META phase, the Client JVM should provide the loaded version
or linked version4 of the related class. The Server JVM then sends its response, which is
the compilation of ali meta information currently required by the runtime.

Figure 4.9 shows the result of applying the META phase to class Stack.

Metadata comprises the following information:

• Access flags (from source declaration).

• Owned fields metadata:

- Access flags.

- N ame and descriptor.

- Offset.

• Owned methods metadata:

- Access flags.

4 The loaded version is always availahle from the linked version on the server side.

34 Chapter 4. Server-Side Context Identification

META (java/util/Stack)

class-id:

access flags:
field[O]:

method[O]:
method[1]:
method[2]:
method[3]:
method[4]:
method[5]:

declaring class:

<java/util/Stack#5c5614ee3f7ba14>

Ox21
Oxla serialVersionUID J offset (0,0)

Oxl empty()Z index 86
Oxl push(Ljava/lang/Object;)V; index 87
Ox21 peek()Ljava/lang/Object; index 88
Ox21 pop()Ljava/lang/Object; index 89
Ox21 search(Ljava/lang/Object;)I index 90
Oxl <init>()V index 92

<top level>

<no inner classes>

source file: Stack.java

Figure 4.9: META phase result information for class Stack.

- Name and descriptor.

- Exceptions thrown (from source declaration).

- Dispatch index.

• The declaring class if this class is an inner class.

• Owned inner classes metadata:

- Access flags.

- Name.

• Source file, if available.

4.5.4 Context Phase

The CONTEXT phase provides the class names of ali classes required to proceed with the
LINK phase of a particular class. The class names present in the CoNTEXT response are

4.5. Describing Each Phase 35

in the extended fully-qualified form (Section 4.3.1). The CONTEXT phase does not change
the linking state of the class nor cause any link-time error to be thrown.

CONTEXT (java/util/Stack)

class-id: <java/util/Stack#5c5614ee3f7ba14>

context[0]: java/lang/IllegalMonitorStateException
context[1]: java/util/EmptyStackException
context[2]: java/lang/NullPointerException
context [3] : j ava/util/Vector

Figure 4.10: CONTEXT phase result information for class Stack.

Figure 4.10 shows the result of applying the CONTEXT phase to class Stack.

4.5.5 Link Phase

During the LINK phase, a particular class is linked, verified (see Chapter 5) and its
methods are converted to the intermediate representation (see Chapter 6).

In order to request a LINK phase, the Client JVM should provide some parameters:
the class name and loaded version of the class being processed; for each class in the
neighborhood: its loaded or linked version, a boolean indicating if that class has been
initialized, and a boolean for each of its superclasses (including itself) indicating if they
were defined in the same class loader as the class being processed. This last parameter
is used to correctly implement the resolution and overriding of package private members
only accessible by classes in the same runtime package.

The Server JVM then computes the linked version number for the class being pro­
cessed, by applying the hash algorithm to these parameters. A <name#version> pair is
obtained and used as key in the cache system. On a miss, the Server JVM has to compute
the response to the LINK phase, otherwise the response is ready to be sent to the Client
JVM.

As occurred in other phases, the Server JVM processes the parameters and provide
some useful client data or return an error message on failure. The data provided by the
Server JVM in the LINK response comprises: verification constraints, loading constraints,
interface implementation dispatch table patches, and a flag indicating if instances of the
processed class will require finalization. The verification constraints are a set of pairs
that symbolically encode subtype tests that must hold to complete the class verification

36 Chapter 4. Server-Side Context Identification

process. Each pair is composed of an extended class name representing the supertype
and a set of extended class names representing the subtypes. To validate a verification
constraint, the Client JVM must check if the supertype class can be assigned from the
first common superclass of the subtype classes (Details are given in Chapter 5). If any
of the verification constraints fail, verification also fails. Similarly, the loading constraints

are a set of pairs that symbolically encode type equality tests that must be imposed
whenever execution crosses class loader boundaries ([43, §5.3.4]). Both elements of the
loading constraint are extended class names.

The interface implementation díspatch table patch set is a set of pairs indicating which
method table entries must be copied from the superclass method table to cover new
interface method areas whose method implementation was inherited. The construction of
the dispatch method table is partially done during the LINK phase and completed in the
TRANSLATE phase. In the LINK phase, the dispatch table is initialized with a snapshot
of the superclass dispatch table, also some entries in the new interface method areas are
initialized using the interface implementation patches. In the TRANSLATE phase, each
method is sent back to the client with a set of patches that completes the dispatch table
construction process. In case of an errar during this phase, the Server JVM may provide
seven possible causes: a access to class or member is denied, class did not pass verification,
field does not exists, method does not exists, static method or interface is used where a
non-static method or class is expected (or vice-versa), method to be invoked is abstract,
or class to be instantiated is abstract.

LINK (java/util/Stack)

class-id:

verify target[0]:
source[O]:

verify target[1]:
source[O]:

<java/util/Stack#9287908c86cf3330>

java/util/Vector
j ava/util/Stack
java/lang/Throwable
java/util/EmptyStackException

<no loading constraints>

<no implementation patches>

finalizes: false

Figure 4.11: LINK phase result information for class Stack.

4.5. Describing Each Phase 37

Figure 4.11 shows the result of applying the LINK phase to class Stack.

In the client side, the information provided by the Server JVM is used to change
the version number, check verification constraints, impose loading constraints, perform
the first step of dispatch table initialization, and optimize garbage collection. When an
errar occurs, the Client JVM should throw an instance of the following classes, respec­
tively: IllegalAccessError, VerifyError, NoSucbFieldError, NoSuchMethodError,
IncompatibleClassChangeError, AbstractMethodError, and InstantiationError.

Also, the Client JVM is responsible for throwing a VerifyError or LinkageError, re­
spectively, if the checking of verification constraints or the imposing of loading constraints
fails.

4.5.6 Relink Phase (Not Implemented)

The RELINK phase allows the Client JVM to update the context information for a par­
ticular class. Once a class has been relinked, usually, the Server JVM will have more
information about classes on its neighborhood. At the same time, more information
about that class will become available to classes whose neighborhood contains it. More
information means that the JIT will have a greater opportunity to optimize the code
during a subsequent TRANSLATE phase. The optimization is applied to ali methods of a
particular class, and the results are kept associated with the new context in the system
cache.

Although the RELINK phase has not been fully implemented in our system, it has
been foreseen in our design. The RELINK phase allows a limited but still valuable form
of dynamic adaptative reoptimization. It allows the Client JVM to implement heuristics
for detecting criticai classes and replace their methods by improved versions. Although
the Client JVM does not provide explicit runtime profiling data, those heuristics may be
constructed by analysing each thread stack during callbacks to the runtime. As described
on Chapter 8, this support for discovering the method call chain - and their declaring
classes - in a thread stack, is a requirement to print stack traces and implement caller
class inspection security checks in the API.

Similarly to the LINK phase, each RELINK phase receives as parameters the versions
of the classes in a given neighborhood; it responds by just modifying the related class
version. That version update reflects on the neighborhoods in which that class takes part.

If a class takes part of another class neighborhood (N), and vice-versa, the RELINK

request in one will modify the other class context. When the latter is relinked the former
context will also be affected. This should happen only until no more change on contexts
happens, but versions could keep changing indefinately. The convergence criteria which
avoids this is that a class C can only be relinked until ali classes on its iterated neighborhood

38 Chapter 4. Server-Side Context Identification

(N*) are in a linked state. The iterated neighborhood of a class is the union of the set of
classes in its neighborhood, and the classes in their iterated neighborhoods.

N; =Ncu U N;
dEN,

This criteria prevents the system from applying the RELINK phase indefinately for a
particular class. However, this criteria does not help the system from applying useless
RELINK phases - and version changes - until all classes are in linked state. A RELINK
phase is useless if the cardinality of the iterated neighborhood subset of classes in loaded
state does not change upon its application. This can be detected in the server side and,
in this case, the Server JVM must not apply a class version change. It does not prevent
the useless RELINK phase from taking place, but prevents a class version change which
increases the probability of a cache hit.

4.5. 7 Translate Phase

In the TRANSLATE phase, the Server JVM sends to the Client JVM the native binary
images of its methods, as well as the entries in the dynamic dispatch method table that
should point to each of them. The parameters to the TRANSLATE phase are the línked

class version and a back-end name. Upon a TRANSLATE request, the Server JVM applies
the hashing algorithm over its parameters and check for an entry in the cache system.
On a miss, the Server JVM will uses the back-end name to dynamically load an imple­
mentation of its back-end interface. If such back-end implementation exists, each method
is translated, otherwise an error is returned to the Client JVM. At this time, our imple­
mentation supports two back-end implementations: raw and x86.

The raw back-end returns to the Client JVM the methods without translating then to
any machine language, they are kept in interna] intermediate representation IR form. The
raw back-end is intended to be used by client implementations based on interpretation.
The interpretation of the IR is simpler and faster than the interpretation of the Java
bytecodes. In the IR form, complex operations are broken into simpler ones, and execution
takes advantage of mid-level optimizations.

The x86 back-end, described on Chapter 7, translates the methods from IR form to the
Intel Architecture 32-bit machine language, targeting the 80386 processar. The response
sent to the client is an array of bytes, as well as some relocation tables that should be
used to patch it in the client side.

Chapter 5

Efficient Bytecode Verification

This chapter provides details about the bytecode verífication procedure. The verification
procedure herein described is mostly symbolic, which means it can be done off-line with
some checks at run-time (the approach we use for the data flow analysis is different from
the standard procedure[43, §4.9] in the sense that it iterates over basic blocks instead
of instructions). Moreover subroutines restrictions are relaxed for the sake of generality.
Bytecode conversion to intermediate representation, covered in Chapter 6, relies on in­
formation provided by the verification procedure to discover the actual types of untyped
operations (e.g. dup bytecode).

5.1 Symbolic Bytecode Verification

Symbolic bytecode verification provides the same results of standard bytecode verification
but working with class names instead of using actual class and hierarchy information. It
was designed to be performed off-line, when actual type information is not available. It

generates data to be used to complete the verification process once type information is
available. Actual type inforrnation is required at two times during verification:

1. To discover the type of two or more references that share the storage after a path
merge in the data flow analysis. The type after the merge is considered to be the
first common superclass of the types prior the path merge.

2. To test subtyping whenever a type is used where another type is expected. The
former must be a subtype of the latter.

We have implemented the verification procedure in a way that both situations can be
handled !ater, when type information becomes available. First, to handle types resulting
of a path merge, we encode types not as bare class names but as class name sets. So, each

39

40 Chapter 5. Efficient Bytecode Verification

set represents the first common superclass of its elements. Trivially, a set of cardinality
1 represents its uni que element. During a path merge, a union of the sets is performed.
Second, to handle subtype tests, we generate a set of veríjication constraínts. A verification
constraint is a pair of class name sets that encodes a subtype test. The first element of
the pair is the target type which must be a supertype of the second element of the pair.
The symbolic verification can thus take place off-line. If it does not fail, it generates a set
of verification constraints that rnust be checked using actual type information. If any of
the verification constraints fail, the verification procedure also fails.

5.2 Parsing the Class File

The parsing of the class file is performed in the REGISTER phase and it ensures that
the format is not corrupted. During parsing the constant pool, class, fields, methods and
attributes are extracted from the class file and checked for their basic layout and contents.
Narnes and descriptors have their syntax checked. The bytecode array for each method is
read from the class file but it is not checked; the check is postponed until the LINK phase
when static and structural constraints are checked.

5.3 Checking Static Constraints

Checking the static constraints of the bytecode guarantees that instructions and their
corresponding placements obey certain simple rules. It can also be used to gather some
important information that will be required !ater in the verification process. Failures
during static constraint check should throw an instance of VerifyError. The procedure
for checking static constraints is the following:

1. Check if the bytecode array size is greater than zero.

2. Set leader flag, used to identify basic blocks.

3. Starting at offset O, for each instruction do:

(a) Check if the opcode at the offset is legal.

(b) Mark the offset as valíd.

(c) I f leader is set, mark the offset as leader and reset leader.

(d) If the instruction has size greater than 1, check if its size exceeds the byte­
code array (special care should be taken to handle variable sized instructions
tableswi tch and lookupswi tch).

5.3. Checking Static Constraints 41

(e) If the instruction accesses local variables, check i f the frame index is less than
the frame capacity (special care should be taken to handle instructions that
accesses long and double data).

(f) If the instruction makes references to the constant pool, check if the constant
pool entries are legal according to the instruction semantics.

(g) If the instruction makes an explicit branch, check if the branch target offset is
inside the bytecode array and mark it as leader and target.

(h) If the instruction may throw an exception, and is enclosed by at least one
exception handler then set leader flag.

(i) If the instruction does not fali through then set leader flag.

(j) If the instruction is a return instruction, check if it is the one required by the
return type of the associated method.

(k) If the instruction is a invoke instruction, check if the number of parameter
words required by it does not exceed 255. Also check if the method being
called is not <ini t>, except for invokespecial.

(I) If the instruction allocates an array, check if the array dimensions does not
exceed 255 and is legal according to the instruction semantics.

(m) Increment offset by the instruction size.

4. For each exception handler do:

(a) Check i f the start pc offset is valid.

(b) Check i f the end pc offset is valid or equals the bytecode array length.

(c) Mark the handler pc offset as leader and target.

5. Starting at the offset O, for every offset do:

(a) Check i f the offset is not valid and is target.

(b) If the offset is leader or equals the bytecode array length, mark the previous
visited offset as trailer.

If none of the checks have failed, the bytecode has been successfully checked against
the static constraints.

42 Chapter 5. Efflcient Bytecode Verification

5.4 Checking Structural Constraints

Checking structural constraints requires computing operand stack sizes and accurate type
information. This is done by applying data fiow analysis over the bytecode array since
that information depends on the execution fiow.

In order to provi de an efficient- faster and consuming less memory- implementation
of the data fiow analysis, we extract the control fiow graph from the bytecode array,
differently from the specification proposal[43, §4.9] which suggests doing the data fiow
on a instruction basis. Working with basic blocks instead of instructions is a well known
technique to speedup data fiow analysis[5]. We have successfully adapted this technique
to the bytecode verification.

The control fiow graph is built using information gathered during the static constraints
check. Each basic block encloses instructions from a leader offset to a trailer offset
inclusive. By looking at the instruction in each trailer offset, it is possible to add the
edges to the graph. Edges are classified in two types: normal edges and exception edges.
Normal edges are those edges generated from explicit control actions in the code, i.e.
branching and falling through. Exception edges are those edges generated implicitly by
assuming that an exception is thrown and catched by a handler. There will be an exception
edge from each instruction that may throw an exception, to each handler that encloses
that instruction. Each exception edge is labeled with the class name of the exception
being handled.

In our implementation, the ret instruction does not generate edges during control
fiow graph building nor during the data fiow analysis (it is treated specially as described
a further ahead).

Once the control fiow graph has been built, for each basic block we generate useful
information required to semantically provide the effects of the verification on that block.
This information comprises:

Operand Stack Delta The increment or decrement of the operand stack size after the
execution of this basic block. Used during fiow analysis to compute operand stack
sizes at each basic block entry.

Ma:ximum Operand Stack Decrement Used to check if this basic block will under­
fiow the operand stack.

Ma:ximum Operand Stack Increment Used to check if this basic block will overfiow
the operand stack.

Written Frame Indexes Set A set of índices written by this basic block when exe­
cuted. Used to fiow through ret instructions.

5.4. Checking Structural Constraints 43

Flow Function Pseudo code modeling the effects of the verifier on the basic block as a
whole.

The set of pseudo code instructions used by the verifier to encode the semantics of
basic blocks is show in Table 5. L During the construction o f the flow function, some
simplifications may be applied to the sequence of pseudo code instructions. For instance,
if an IPUSH is followed by an IPOP then both pseudo code instructions can be removed
from the instruction sequence without affecting its semantics.

In order to compute the data flow analysis, we have to define the data flow item that
reflects execution state for each point in the bytecode. The data flow item comprises the
current operand stack size and types, the current local frame types, and a boolean flag
indicating if the this parameter has been initialized so far. The data flow item types
used by the verifier during the data flow analysis are:

Integer The data flow item represents an integer.

Float The data flow item represents a float.

Long First Word The data flow item represents the first word of a long.

Long Second Word The data flow item represents the second word of a long.

Double First Word The data flow item represents the first word of a double.

Double Second Word The data flow item represents the second word of a double.

Null The data flow item represents the null reference.

Reference The data flow item represents a reference to an instance of a known type.
The type is encoded as a set of class names which symbolically refers to the first
common superclass of those classes.

U ninitialized Reference The data flow item represents a reference to a newly created
instance, not yet initialized (i.e. lacks class or superclass constructor cal!). It

is encoded as the offset of the instantiation instruction or a negative flag if it is
the this parameter of a constructor. When a <init> method is called using an
uninitialized reference, the data flow analyser searches the local frame and operand
stack for copies of that uninitialized references, using its offset, and replace them
by its actual type as extracted from the instruction at that offset. Specially if the
uninitialized reference offset is negative, the data flow item flag for this parameter
initialization is set, and the copies are replaced the the type of the current class.

44 Chapter 5. Eflicient Bytecode Verification

PSEUDO CODE ATTRIBUTE SEMANTICS

IPUSH pushes integer
IPOP pops integer

IENSURE frame index ensures local variable is integer
ISET frame index sets local variable to integer

LPUSH pushes long
LPOP popslong

LENSURE frame index ensures local variable is long first word
LENSURE2 frame index ensures local variable is long second word

LSET frame index sets local variable to long first word
LSET2 frame index sets local variable to long second word

FPUSH pushes fioat
FPOP pops float

FENSURE frame index ensures local variable is fioat
FSET frame index sets local variable to fioat

DPUSH pushes double
DPOP pops double

DENSURE frame index ensures local variable is double first word
DENSURE2 frame index ensures local variable is double second word

DSET frame index sets local variable to double first word
DSET2 frame index sets local variable to double second word

APUSH class name pusbes reference
APOP pops reference

APOPSUBTYPE class name pops reference ensuring its a subtype
APOPARRAY pops array reference

APOPBARRAY pops boolean or byte array reference
AGETCOMP pops array reference and pushes component type reference
ASETCOMP pops reference and array ensuring component subtyping

AULOAD frame index loads and pushes reference or uninitíalized reference
AURSTORE frame index pops and stores reference, uninitialized reference or ret address

UPUSH offset pushes uninitialized reference
UPOPINIT class name pops uninitialized reference and records its initialízation

RPUSH offset pushes ret address
RENSURE frame index ensures local variable is ret address

POPl same semantics as bytecode pop

POP2 same semantics as bytecode pop2

DUPl same semantics as bytecode dup

DUPIXl same semantics as bytecode dup..x1

DUP1X2 same semantics as bytecode dup..x2

DUP2 same semantics as bytecode dup2

DUP2Xl same semantics as bytecode dup2..x1

DUP2X2 same semantics as bytecode dup2..x2

SWAPlXl same semantics as bytecode sTilap

CHECKINIT checks if tbis has been initialized
CHECKFALL checks if execution falls through the bytecode array

Table 5.1: Pseudo code instruction set.

5.4. Checking Structural Constraints 45

Ret Address The data flow item represents a subroutine ret address. It is encoded as
a set of pairs. Each pair consists of the ret address actual offset and the set of
frame índices written since the associated subroutine start. It is used when flowing
through ret instructions.

The data flow analysis algorithm we have implemented uses a basic block working list.
Initially the working list contains only the entry basic block; the algorithm iterates until
the Iist is empty. Each iteration, a basic block is chosen and removed from the working
list, its fiow function is used to compute the data fiow item at the exit point of the basic
block (output data fiow item) using the data flow item at its entry point (input data fiow
item). The data fiow item in the exit point is merged and compared to the data fiow
item at the entry point of each of the successor basic blocks. If the comparison fails the
data fiow item at the entry point of the successor is overridden by the new value and it
is inserted into the working list.

Performing the dat fiow analysis through a basic block consists of the following simple
steps:

L Check for operand stack overfiow. This is done by comparing the input data fiow
item operand stack size plus the current basic block maximum operand stack incre­
ment with the bytecode maximum operand stack size.

2. Check for operand stack underfiow. This is done by comparing the input data
fiow item operand stack size minus the current basic block maximum operand stack
decrement against zero.

3. For each ret address in the input data fiow item do:

(a) Replace the set of frame índices of each pair by its union with current basic
block written frame índices.

4. For each pseudo code instruction do:

(a) Modify the input data fiow item operand stack and local frame according to
the semantics of the pseudo code instruction.

(b) Check if the available types in the input data fiow item matches the pseudo
code instruction operands required types.

(c) If the pseudo code instruction requires a subtype test then a new verification
constraint is added.

(d) If the pseudo code instruction requires this initialization (CHECKINIT),
check if the fiow data this initialization fiag is set.

46 Chapter 5. Efficíent Bytecode Verification

(e) Fails if the pseudo code instruction is CHECKFALL because the execution
reaches the last basic block of the bytecode which falls through.

5. Replace the output data flow item for the current basic block by the current data
flow item.

6. For each control edge leavíng current basic block do:

(a) If the control edge ís a normal edge and the last pseudo opcode was a UP­
OPINIT, then broadcast in the frame the ínítialization o f associated unínítíal­
ized reference.

(b) If the control edge is a normal edge, merge and compare the current input data
with the successor input data. If there is a change, override the input data and
insert the successor in the working list.

(c) If the control edge is an exception edge, clear the operand stack and pus h the
associated reference type. Then, merge and compare the current input data
wíth the successor input data. If there ís a change, override the input data and
insert the successor in the workíng list.

7. If the last bytecode of the basic block is a return from subroutine (ret), then for
each ret address pair do:

(a) Replace the local frame slots whose índices are not present in the associated
frame índices set by its value in the output data flow item of the basic block
precedíng the target basic block.

(b) If any o f the frame slots replaced contains a ret address data flow item, replace
the frame índices set by its union with the frame índices set associated to
current ret address.

(c) Merge and compare the current input data with the target basic block input
data. I f there is a change override the input data and insert the target basic
block in the working list.

The procedure for merging data flow ítems is the following:

1. Check if the operand stack size is the same.

2. For each operand stack and local frame slot do:

(a) If both types match and are integer, float, long first word, long second word,
double first word, double second word or null, keep the type.

5.5. Verification Example 47

(b) If one type is a reference and the other is null, keep the reference type.

(c) If both types are references, the result type will be a reference type with a class
name set obtained from the union of both classes name sets.

(d) If both types are uninitialized reference and their offset is the same, keep the
type.

(e) I f both types are ret address, the result type will be a ret address where the
set of pairs is the union of both set of pairs. The union is done over the frame
índices set for pairs with same ret address offset, so that at most one pair is
associated to the same offset.

(f) Otherwise, if the slot is a local frame slot, mark the slot as being invalid. If
the slot is an operand stack slot, fail.

3. Apply an and operation using both this parameter initialization flags.

Failures during structural constraint check should throw an instance of VerifyError.

The verification procedure presented above allows extended semantics for subroutines,
while still keeping bytecode secure. In our opinion, the subroutine semantics allowed by
the JVM specification[43, §4.9.6] is tailored to the implementation of the verification algo­
rithm provided by their authors. We believe that this is wrong since the implementation
should be tailored to the semantics, and not the opposite. So we have generalized the
semantics of subroutines, and provided an alternate verification procedure. In our gener­
alized semantics, subroutines are allowed to recurse, no ret addresses are invalidated by
any subroutine return (including itself), and subroutines may share or have more than
one returning site (ret bytecode). Those restrictions to the subroutine semantics where
clearly imposed by limitations of the standard verification procedure, and not by real
security threats.

5.5 Verification Example

The following method is used to illustrate the verification procedure. It is a constructor
that invokes the superclass constructor catching exceptions, and then do some "spaghetti"
subroutine use. The bytecode was hand written and does not pass the standard verifi­
cation procedure. However, the code demonstrates that subroutine semantics can be
extended without damage. Specially, it has out of order return from subroutines and a
recursive subroutine cal!.

. method public < init> () V
.limit stack 2

48

.limit locais 5
a/oa<LO

Chapter 5. Eflicient Bytecode Verification

@ 1: invokespecial javajlang/Object/< init> ()V
@4: i const-O

istore 4
jsr @15

iconst-1

istore 4
ret 2

@15: astore..1
jsr @28
getstatic javajlangjSystemjout LjavajiojPrintStream;

iload 4
invokevirtual javajio/PrintStreamjprintln(I) V
return

@28: astore..2
jsr @34

ret 1

@34: astore..3
a/oa<LO
ifnonnull @45
fconst-0
jstore 4
jsr @34

@45: ret 3
@.1,7: pop

new javaj/angjRuntimeException
dup
invokespecial javajlang/RuntimeExceptionj< init> ()V
athrow
.catch javajlangjException from @1 to @J, using @47

.end method

The first step of the verification procedure is to construct the contrai flow graph and
the information required to do the data flow analysis in a basic block basis. That can be
seen in Figure 5 .1.

Once the control flow graph and basic block data flow information has been con­
structed, we start doing the data flow analysis by iterating over a basic block work list.

Iteration 1 Processing BB[O], the input data flow item is:

this initialized: false
local frame: U[-l]XXXX
operand stack: empty

5.5. Verification Example

BB[O] stack delta: o
1-----"'""'-----1< ==tt;~ ~

AULOAD O writun set: f J
UPOPJl".iTI javallang!Object

java/lang!Excepricn
stack ddta: 1

f--'B"B'-'[-'
4]'--f! ma:t stack dec: o

IPUSH max $1at:k inc: 1
IPOP writunset: (4}

ISET4
RPUSH @10

staek lkl14: -1
i-::------"B::B:.cl4.:;7JO!._ _____ -{:::t=~ Jl
POp 1 writun ut: {}
UPUSH @48

BB[lS] .tack "'"""
0

1-A-UR....::::S.:.T::O'-'RE--1 -f = :t =~~ Õl
RPUSH @19 writunut: (1}

BB[2S] stacktk!Ja: o
f-A::-UR::=ST:='O:!RE::-2-it = :: =· Õl
RPUSH @

32
writún ut: (2}

-" ~ BB[34] túlekrleita: -1

J-A-U..:JRST::OC:OC:RE'--3-{ = = 1::: Õl
wrilúnut: {3}

AULOADO

APOP

DUP1
UPOPI!'IITI javallang/RuntimeException
APOPSUBTYPE javaflang!Throwable

' ' ' '
'

'
' '

... --..
' '

:' \
stack delta: o

1--'B::;B:::[::l O:!]'-{ max stack dec: O
ma% $1at:k im: 1

IPUSH writún ut: {2.4}
IPOP

ISET4
RENSURE2

,' .. - , : :
,' ~ : \
' ' '

f f BB[32]) I dack deli4: o I ' ?nu stack dec: O 1

,' I RENSURE 1 j)mar s~«k inc: O \
, 1 writúnut: {1)

1

' ' ' ' __ ,/ .;
,...----:-:L--:----

BB[19] .tack "'""" O /~
BB[39] stack delta: 1 : (: stack delta: O

t _ _::::.c::;.,_-{ maxstock~c: O 1 BB[45] k:M~Ustackdcc: 0
r marstackmc: 1

1 l]: .

1-AP-u-·s-H-
1
-·a-vaJ-io/PtintS..:::;.c_ =tream'-------1! :: :t = g

wriJúnsd: {}
IE."SURE4
!PUS H

FPUSH .tú! t· 141 ' RENSURE 3 1 max s~k me: o FPOP >m nse. 1 , wrntenset: (3}
\ I 1 I

FSET4 " ' ... _./
RPUSH@45

IPOP

APOPSUBTYPE java/ioiPrintStream
CHECKJNIT

Figure 5.1: Verifier example control flow graph.

49

50 Cbapter 5. Efficient Bytecode Verification

BB[4] is scheduled with input data flow item:

this initialized: true
local frame: LExample;XXXX
operand stack: empty

BB[47] is scheduled with input data flow item:

this initialized: false
local frame: U[-l]XXXX
operand stack: Ljavajlang/Exception;

Iteration 2 Processing BB[4], the input data flow item is:

this initialized: true
local frame: LExample;XXXX
operand stack: empty

BB[l5] is scheduled with input data flow item:

this initialized: true
local frame: LExample;XXXI
operand stack: R{(©llO,{})}

Iteration 3 Processing BB[15], the input data flow item is:

this initialized: true
local frame: LExample;XXXI
operand stack: R{(@lü,{})}

BB[28] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{(@lO,{l})}XXI
operand stack: R{(@19,{})}

lteration 4 Processing BB[28], the input data flow item is:

5.5. Veríficatíon Example

this initialized: true
local frame: LExample;R{(@lO,{l})}XXI
operand stack: R{(@l9,{})}

BB[34] is scheduled with input data fiow item:

this initialized: true
local frame: LExample;R{ (@10,{1,2})}R{ (@19,{2}) }XI
operand stack: R{(@32,{})}

Iteration 5 Processing BB[34], the input data fiow item is:

this initialized: true
local frame: LExample;R{(@10,{1,2})}R{(@19,{2})}XI
operand stack: R{(@32,{})}

BB[39] is scheduled with input data fiow item:

this initialized: true
local frame: LExample;R{ (@10,{1,2,3})}R{ (@19,{2,3})}R{ (@32,{3})}I
operand stack: empty

BB[45] is scheduled with input data fiow item:

this initialized: true
local frame: LExample;R{(@10,{1,2,3})}R{(@19,{2,3})}R{(@32,{3})}I
operand stack: empty

Iteration 6 Processing BB[39], the input data fiow item is:

this initialized: true
local frame: LExample;R{ (@10, { 1,2,3})} R{(@l9, { 2,3})} R{ (@32, { 3})} I
operand stack: empty

BB[34] is scheduled with input data fiow item:

this initialized: true
local frame: LExample;R{ (@10,{1,2,3,4})} R{ (@19,{2,3,4}) }XX
operand stack: R{(@32,{}),(@45,{})}

51

52 Chapter 5. Eflicient Bytecode Verification

Iteration 7 Processing BB[34), the input data flow item is:

this initialized: true
local frame: LExample;R{ (@10,{1,2,3,4})} R{ (@19,{2,3,4 })}XX
operand stack: R{(@32,{}),(@45,{})}

BB[39] is scheduled with input data flow item:

this initialized: true
local frame:
LExample;R{ (@10,{1,2,3,4}) }R{ (@19,{2,3,4}) }R{ (@32,{3}),(@45,{3}) }X
operand stack: empty

BB[45] is scheduled with input data flow item:

this initialized: true
local frame:
LExample;R{ (@10,{1,2,3,4}) }R{ (@19,{2,3,4}) }R{ (@32,{3}),(@45,{3}) }X
operand stack: empty

Iteration 8 Processing BB[39], the input data flow item is:

this initialized: true
local frame:
LExample;R{ (@10,{1,2,3,4})} R{ (@19,{2,3,4})} R{ (@32,{3}),(@45,{3}) }X
operand stack: empty

Iteration 9 Processing BB[45], the input data flow item is:

this initialized: true
local frame:
LExample;R{ (@10,{1,2,3,4}) }R{ (@19,{2,3,4}) }R{ (@32,{3}),(@45,{3}) }X
operand stack: empty

BB[32] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{ (@10,{1,2,3})} R{ (@19,{2,3}) }R{ (@32,{3}),(@45,{3}) }I
operand stack: empty

5.5. Verification Example 53

Iteration 10 Processing BB[32J, the input data flow item is:

this initialized: true
local frame: LExample;R{ (@10,{1,2,3}) }R{ (@19,{2,3})}R{(@32,{3}),(@45,{3})}I
operand stack: empty

BB[10] is scheduled with input data flow item:

this initialized: true
local frame:
LExample;R{ (@10,{1,2,3})} R{ (@19,{1,2,3}) }R{ (@32,{1,3}),(@45,{1,3}) }I
operand stack: empty

Iteration 11 Processing BB[10], the input data flow item is:

this initialized: true
local frame:
LExample;R{ (@10,{1,2,3}) }R{ (@19,{1,2,3}) }R{ (@32,{1,3}),(@45,{1,3}) }I
operand stack: empty

BB[19] is scheduled with input data flow item:

this initialized: true
local frame: LExam-
ple;R{ (@10,{1,2,3,4})} R{ (@19,{1,2,3,4}) }R{ (@32,{1,2,3,4}),(@45,{1,2,3,4})} I
operand stack: empty

Iteration 12 Processing BB[19], the input data flow item is:

this initialized: true
local frame: LExam-
ple;R{ (@10,{1,2,3,4}) }R{ (@19,{1,2,3,4}) }R{ (@32,{1,2,3,4}),(@45,{1,2,3,4}) }I
operand stack: empty

Iteration 13 Processing BB[47], the input data flow item is:

this initialized: false
local frame: U[-1]XXXX
operand stack: Ljavaflang/Exception;

54 Chapter 5. Eflicient Bytecode Verification

5.6 What is Required to Go Further

As said before, the verification procedure gathers information that simplifies the bytecode
conversion to the intermediate representation (Chapter 6). This information comprises,
for each offset in the bytecode array, of:

1. A valid flag indicating if the offset is the start offset of an instruction.

2. A target flag indicating if the offset is the target of a branch or the entry point of
an exception handler.

3. A leader flag indicating if the offset is the first instruction of its enclosing basic
block.

4. A trailer flag indicating if the offset is the last instruction of its enclosing basic
block.

5. A unreachable flag indicating if the instruction at this offset is not reachable, i.e.
will never be executed.

6. A stack size integer indicating the bytecode operand stack size prior to executing
of current instruction.

7. The type of the operands of untyped bytecodes, see Table 5.2.

Using this attributes computed during verification the conversion procedure occurs
without having to do any extra analysis. Table 5.2 displays the bytecodes that are un­
typed, i. e. are allowed to handle multiple types, and the possible types of their operands.
In the table, pair32 represents ali pair combinations of types: integer, float, reference and
ret address.

5.6. What is Required to Go Further 55

BYTECODE I FIRST OPERAND SECOND OPERAND

baload boolean or byte array
astore reference or ret address

astore_O reference or ret address
astore_1 reference or ret address
astore..2 reference or ret address
astore_3 reference or ret address
bastore boolean or byte array

pop integer, float,
reference or ret address

pop2 pair32, long or double
dup integer, float, reference

or ret address
dup..x1 integer, float, reference integer, float, reference

or ret address or ret address
dup..x2 integer, float, reference pair32, long or double

or ret address
dup2 pair32, long or double

dup2..x1 pair32, long or double integer, float, reference
or ret address

dup2..x2 pair32, long or double pair32, long or double
swap integer, float, reference integer, float, reference

or ret address or ret address

Table 5.2: Untyped bytecodes and their possible operands.

Chapter 6

Bytecode Conversion

This chapter addresses issues regarding bytecode to intermediate representation conver­

sion 1. The conversion takes place after bytecode verification. The conversion algorithm
can thus be simplified to rely on the checks already perforrned during verification. Extra
inforrnation gathered by the verifier is also used to simplify the identification of basic
blocks and the processing of untyped bytecodes (e.g. dup).

During the conversion, operations implicit to some bytecodes are made explicit. That
can be observed specially for bytecodes that may throw runtime exceptions. The code
for checking an exceptional situation - and throwing the exception - is placed right
before the code that implements the bytecode. The same happens when dealing with
bytecodes that can trigger class initialization. Breaking the bytecode into smaller and
simpler operations increases the chances of removing redundant code by the intermedi­
ate representation optimizer. Care was taken not to discard semantic information when
designing the intermediate language and its converter.

The approach used for exception windows and handlers deserves special attention.
After conversion, exception windows are eliminated. Instead, the control information
associated to exception handling is stored within each operation giving more freedom
for rearranging the code. Exception handlers are expanded to explicitly check exception
subtyping. The impact of this approach over asynchronous exceptions is discussed.

We describe the solution we gave for implementing subroutines (jsr fret). Subrou­
tines impose a lot of difliculties not only to the verifier, but also to the bytecode converter.
The main problem of subroutines deals with liveness inforrnation required to do accurate
garbage collection[l]. It is a well-known problem related to the Java Virtual Machine.
The solution here described is not only simple and elegant, but also effective. It does not

1The term translation would be a natural choice. However, the term conversion has been adopted
to avoid confusion with the transformation from intermediate representation to machine language tbat
occurs during the TRANSLATE phase.

57

58 Chapter 6. Bytecode Conversion

require code duplication.
This chapter does not treat optimization. Although some of the examples herein were

hand-tuned for the sake of clarity, optimization is not central to this chapter. However,
we do expose the optimizations that could be done during conversion but were left out

based on the compiler motto:

Make each compilation stage as simple and clear as possible.

Achíeve a relíable and effective code by grouping them together.

6.1 Intermediate Representation Presentation

The íntermediate representation (IR) was crafted to be a fine-grained optimization-aware
representation of Java programs. It is more flexive than bytecode, and also machine
independent. This section gives a shallow presentation of the IR features. For a complete
reference check Appendix A.

The IR is typed, it works with five types: integers (32-bit signed), long integers (64-bit
signed), floats, doubles and references. For each type there is a set of virtually infinite
registers. Table 6.1 describes valid register índices for each type.

TYPE VALID INDICES

integer {n I n%5- O}
long integer {n I n%5 = 1}

float {n I n%5 = 2}
double {n I n%5 = 3}

reference {n I n%5 = 4}

Table 6.1: Valid register índices for each IR type.

Each method, when translated to the IR, consists of a sequence of IR statements

forming an IR program. Each IR program has its own set of registers which is not shared
with others. Communication between IR programs is done through heap memory and
parameters passed on calls.

An IR statement is a tree of IR opcodes where the root is an untyped IR opcode. It

may be control related or not, may define registers, write memory, call other IR programs,

etc.
The IR opcodes are the building blocks of the intermediate language. Each IR opcode

defines an operation which may have arguments (provided by other IR opcodes), a result
and attributes. There are IR opcodes for doing arithmetics, reading/writing memory,

6.2. Conversion Examples 59

using/ defining registers, converting between types, allocating memory, synchronization,
receiving/passing parameters, calling methods, among others.

Next section gives a broad idea of the intermediate language by showing various ex­
amples of conversion from bytecode.

6.2 Conversion Examples

The examples provided by this section were based on the examples used to explain source
to bytecode compilation in [43, §7]. Those examples were borrowed not only because
they are a good way to introduce the matter, but also because they cover most of the
constructs we would like to show.

The translation from Java source code to bytecode is assumed to be known by the
reader. Readers not familiar with Java source code to bytecode translation should check
[43, §6 and §7].

6.2.1 Constants, Local Variables, and Control Constructs

We start looking at a very simple example, the spin method. It is a bounded loop with
empty body.

void spinO {
for (int i = O; i < 100; i++)

}

The translation from Java source to bytecode is given .

. method spin () V
./imit stack 2
.limit locais 2
iconst..O
utore_1

goto @8

@5: iinc 1 1
@8: iload..1

bipush 100
if-icmplt @5

return
.end method

60 Chapter 6. Bytecode Conversion

The conversion from bytecode to the intermediate language of method spin is the
following.

1. areceive(%4,#Example)
2. idefine(%O,iconst($0))
3. jump(@8)
4. label(@5)
5. idefine(%0,iadd(iuse(%O),iconst($1)))
6. label(@8)
7. ijump(LT,iuse(%0),iconst($100),@5)
8. vreturn()

The first statement defines register %4 with the this parameter, note that spin is not
a static method. The type of the this parameter is the class where spin was declared,
Example. Next variable i, binded to register %0, is initialized with value O in statement 2.
Statement 3 transfers unconditionally the execution to statement 6. Statements 4 and 6
simply defines labels used as target of control statements. The loop body is basically two
statements: 5 and 7. Statement 7 checks if register %0 is less than constant 100 keeping
the execution in the loop. Statement 5 increments variable i by adding to register %0 the
constant 1. Finally, when leaving the loop, the void method returns in statement 8.

Some points can be highlighted when looking at the IR program for the spin method.
First, stack based operations are converted to tree based expressions. Tree based ex­
pressions are easier to handle when rearranging code. Second, similar operations are
represented equally. The bytecodes iconst_O and bipush 100 do something similar,
push an integer constant. They were unified in the IR opcode iconst. Finally, resources
that were limited in the bytecode are not yet limited in the IR program.

Next example is the double version of the spin method.

void dspin O {
for (double i = 0.0; i < 100.0; i++)

}

The translation of the dspin method from Java source code to bytecode is given

below .

. method dspin() V

.limit stack 4

.limít locais 3
dconst..O

dstore..J

goto @9

6.2. Conversíon Examples

@5: dload_J
dconst_J
dadd
dstore_J

@9: dload_J

ldc2_w 100.0
dcmpg
ifit @5

return
.end method

61

The conversion frorn Java bytecodes to IR is similar to that of the spin rnethod. There
are a few differences though. Variable i is binded to double register %3. IR operations
are typed so the narne of operations with doubles start with letter d instead of letter i.

1. areceive(%4,#Example)
2. ddefine(Y.3,dconst($0.0))
3. jump(<09)
4. label (<05)
5. ddefine(Y.3,dstrict(dadd(duse(Y,3),dconst($1.0))))
6. label(<09)
7. ijump(LT,dcmpg(duse(Y.3),dconst($100.0)),iconst($0),<05)
8. vreturn()

The greatest difference is the dstrict opcode. This opcode does value set conver­
síon[43, §2.6.6]. Value set conversion rernaps values with extended exponents - as al­
lowed in the sernantics of floats and doubles -to the standard encoding. This conversion
may lead to underflow or overflow and is required at some points in the bytecode. In
rnethod dspin, extended exponents are allowed in interrnediate stack values, but not in
frarne slots. So it is necessary to generate a dstri ct opcode before writing back register
%3 in staternent 5.

The next example is the doubleLocals rnethod which receives two doubles as pararn­
eters and returns their surn.

double doubleLocals(double dl, double d2) {
return d1+d2;

}

The bytecode generated for the doubleLocals is shown below. The rnain reason of
this exarnple is showing that double variables use two slots in the frarne.

62

. method doubleLocals{DD)D

.limit stack 4

.limit locais 5

dload..1
dload..3

dadd
dreturn

.end method

Chapter 6. Bytecode Conversion

The IR program for doubleLocals obtained from bytecode is very simple. It consists
of four statements. The first three are parameter receiving statements. The fourth does
ali the job, sums the values passed as parameters and returns from the double method.

1. axeceive(%4,#Example)
2. dreceive(%3)
3. dreceive(%8)

4. dreturn(dadd(duse(%3),duse(%8)))

The following example is the sspin method. It has exactly the same functionality as
the spin method except that the loop counter was declared as short integer.

void sspin O {

for (short i = O; i < 100; i++)

}

The translation to bytecode of the sspin method is shown below. The i2s bytecode
is used to keep variable i value within the short integer range .

. method sspin() V
.limit stack 2
.limit locais 2
i const-O
istore_J
goto @10

@5: iload..1

iconst-1

iadd

i2s
istore_J

@10: iload..1

bipush 100
if_icmplt @5

6.2. Conversion Examples

return

.end method

63

The conversion from Java bytecode to IR is similar to that of the spin method. The
only difference appears in statement 5 where a i2s opcode is used.

1. areceive(%4,#Example)
2. idefine(%0,iconst($0))
3. jump(~10)

4. label(~5)

5. idefine(%0,i2s(iadd(iuse(%0),iconst($1))))
6. label(~10)

7. ijump(LT,iuse(%0),iconst($100),~5)

8. vreturn()

6.2.2 Arithmetic

The align2grain method is used to show how arithmetic expressions are handled in the
IR.

int align2grain(int i, int grain) {
return (i+grain-1)&-(grain-1);

}

The translation of method align2grain from Java source co de to bytecode is straight­
forward. Note that the logical negation operation (- operator) is not supported on byte­
code. It is implemented by applying an exclusive or operation over the operand and the
integer constant -1.

.method align2grain(II)I
.limit stack 3
.limit locais 3
iload..l
iload..2
iadd
iconsLJ

isub
iload..2
iconsLJ

isub
iconst..ml
ixor

iand

64

ireturn

.end method

Chapter 6. Bytecode Conversion

The conversion of bytecode to IR is also straightforward. The expression, as appeared
in the Java source, is extracted from the stack based bytecode and rewritten as an ex­
pression tree in statement 4.

1. arecei v e (%4, #Example)
2. ireceive(%0)
3. ireceive(%5)
4. ireturn(iand(isub(iadd(iuse(Y.O),iuse(Y,5)),iconst($1)),ixor(isub(iuse(%5

),iconst($1)),iconst($-1))))

6.2.3 More Control Examples

The wllileint method implements the same functionality as the spin method using the
while construct.

void vhileint() {
int i = O;
vhile (i < 100)

i++;

}

The bytecode generated from the wllileint method is actually the same bytecode as
the one generated from the spin method. It is provided below .

. method whilelnt() V
.limit stack 2
.limit locais 2
iconst.O
istore_1
goto @8

@5: iinc 1 1

@8: iload.1
bipush 100
if.icmplt @5

return

.end method

The conversion of the wllileint method from bytecode to IR also yields the same
result.

6.2. Conversion Examples 65

1. areceive(%4,#Example)
2. idefine(%0,iconst($0))
3. jump(@8)
4. label(@5)
5. idefine(%0,iadd(iuse(%0),iconst($1)))
6. label(@8)
7. ijump(LT,iuse(%0),iconst($100),@5)
8. vreturnO

Next example is the whileDouble method that is a slightly modified version of the
dspin method using the while construct.

void whileDouble() {
double i = 0.0;
while (i< 100.1)

i++;
}

Its translation to bytecode is provided below .

. method whileDouble() V

.limit stack 4

.limit locais 3

dconst..O

dstore_J

goto @9

@5: dload_1

dconsU

dadd

dstore_1

@9: dload_1

ldc2_w 100.1

dcmpg

ifit @5

return

.end method

As expected, the conversion of the whileDouble method provides a result similar to
the one obtained from the conversion of the dspin method.

1. areceive(%4,#Example)
2. ddefine(%3,dconst($0.0))
3. jump(@9)
4. label(@5)

66 Chapter 6. Bytecode Conversion

5. ddefine(%3,dstrict(dadd(duse(%3),dconst($1.0))))
6. label(@9)
7. ijump(LT,dcmpg(duse(%3),dconst($100.1)),iconst($0),@5)
8. vreturn()

The following example is the lessTllan100 method. This method receives a double
parameter and returns 1 i f it is less than 100. O, o r -1 otherwise.

int lessThan100(double d) {
if (d < 100.0)

return 1;

else
return -1;

}

The translation of method lessTllan100 to bytecode is presented below. Note that
the dcmpg / ifge bytecodes are used; if parameter d is NaN, the lessTllan100 method
will return -1.

.method /essThan100{D)I

.limit stack 4

. /imit locais 3

dload...1

ldc2-w 100.0
dcmpg
ifge @10
iconst_1

ireturn

@10: iconst-m1
iretum

.end method

The conversion of method lessTh.an100 from bytecode to IR is straightforward.

1. areceive(%4,#Example)
2. dreceive(%3)
3. ijump(GE,dcmpg(duse(%3),dconst($100.0)),iconst($0),@10)
4. ireturn(iconst($1))
5. label(@10)
6. ireturn(iconst($-1))

The next example is method greaterTllan100. It is similar to the lessTllan100

method.

6.2. Conversion Examples

int greaterThan100(double d) {
if (d > 100.0)

return 1;

else
return -1;

}

67

The difference in the translation to bytecode from the lessTban100 method and the
greaterTban1 00 method is the i f test which uses dcmpl I ifle instead of dcmpg I ifge

bytecodes .

. method greaterThan100(D)I
.limit stack 4

.limit locais 3
dload..1
/dc2-w 100.0
dcmpl
ifle @10

iconsLl

ireturn

@ 10: iconst..m1
ireturn

.end method

The conversion of method greaterTban100 from bytecode to IR is also straightfor­
ward.

1. areceive(%4,#Example)
2. dreceive(%3)
3. ijump(LE,dcmpl(duse(%3),dconst($100.0)),iconst($0),@10)
4. ireturn(iconst($1))
5. label(©10)
6. ireturn(iconst($-1))

6.2.4 Receiving Arguments

Two examples are provided to show how arguments are received in the IR. It is not any
different from the code already shown in the examples presented so far.

The first example is the addTwo method. It receives two integer arguments and returns
its sum. Note that the addTwo method was not declared as a static method.

int addTwo(int i, int j) {

68 Chapter 6. Bytecode Conversion

return i+j;

}

The translation of method addTwo from Java source code to bytecode is presented
below .

. method addTwo{II)I

.limit stack 2

.limit locais 3

iload_J

iload_2

iadd

ireturn

.end method

The conversion of method addTwo is shown below. Statements 1 to 3 are parameter

receiving statements. In statement 1, the this parameter is stored in reference register
%4 with associated type #Example. In statements 2 and 3, parameters i and j are stored
into integer registers %0 and %5, respectively. Finally, statement 4 adds the two integers
and returns the result.

1. areceive('l,4,#Example)
2. ireceive('l,O)
3. ireceive(%5)

4. ireturn(iadd(iuse(%O),iuse(%5)))

The second example is the addTwoStatic method. It is similar to the addTwo method
except that is was declared as a static method.

static int addTwoStatic(int i, int j) {

return i+j;
}

The translation of the addTwoStatic method to bytecode is shown below .

. method static addTwoStatic(II)I

.limit stack 2

.limit locais 2
iload..O

iload..J

iadd

ireturn

.end method

6.2. Conversion Examples 69

The IR program obtained from the conversion of method addTwoStatic is exactly
the same IR program obtained from the addTwo method, except that statement 1 was
removed. This occurred because the addTwo method is static and does not receive the
this implicit parameter.

1. ireceive(%0)
2. ireceive(%5)
3. ireturn(iadd(iuse(%0),iuse(%5)))

6.2.5 Invoking Methods

The add12and13 method is used to show how method invocation is handled in the IR. It
simply invokes the addTwo method passing constants 12 and 13 as parameters.

int add12and13() {
return addTwo(12, 13);

}

The bytecode result of the translation of method add12and13 is shown below. It

pushes onto the local operand stack the this reference and integer constants 12 and
13 respectively. In the sequence, the addTwo method is invoked and the result of its
execution is kept on the top of the operand stack. Finally, it is used as the return value
of method add12and13 .

. method add12and13(}1
.límit stack 3
.limit locais 1
aload_O

bipush 12
bipush 13
invokevirtual ExamplejaddTwo(II)I

ireturn

.end method

The conversion of method add12and13 from bytecode to IR is the following.

1. areceive(%4,#Example)
2. ipass(iconst($13))
3. ipass(iconst($12))
4. apass(ause(%4))
5. call(mlookup(getclass(ause(%4)),[10]),[$Example,12,61])
6. iresult(%0)

70 Chapter 6. Bytecode Conversion

7. ireturn(iuse(%0))

The IR program for method add12and13 requires some explanation. Statement 1
defines reference register %4 with the this parameter because add12and13 is not a static
method. Statements 2 to 4 are parameter passing statements to the subsequent call that
will occur in statement 5. The parameters are passed from right-to-left - instead of
left-to-right as adopted in the Java bytecode therefore integer constants 13, 12 and
the implicit this reference are passed, respectively.

Statement 5 implements a method invocation (IR program call). It uses the IR pro­
gram at dispatch index 10 of a class object to transfer execution (mlookup opcode). This
is a virtual invocation, and thus the invoked method depends on the actual type of the
object pointed by the this reference (its class is retrieved using the getclass opcode).
The index 10 is the dispatch index of method addTwo assigned during the LOAD phase
of class Example. Finally, the triple that can be seen in statement 5 is a stack trace in­
formation. If a stack trace is requested during the addTwo call, the 12th declared method
of class Example (the add12and13 method actually) and line 61 of its source file will be
included in the stack trace2

.

In statement 6, the result of the invocation of method addTwo is assigned to integer
register %0. In statement 7 integer register %0 is used as the return value.

The next example is the static version o f method add12and13. The addStatic12and13

method simply invokes static method addTwoStatic passing as parameters the integer
constants 12 and 13.

int addStatic12and13() {
return addTwoStatic(12, 13);

}

The translation from Java source to bytecode of method addStatic12and13 is shown
below .

. method addStatic12and13()1
.limit stack 2
.límit locais 1
bipush 12
bipush 13
invokestatic Examplej addTwoStatic{II) I
ireturn

.end method

2 The stack trace information is not solely a triple, but a triple list, which can be empty or have more
than one triple. This enables inlining optimizations to occur without damaging stack traces, for instance.

6.2. Conversion Examples 71

The IR program obtained from the conversion of method addStatic12and13 is similar
to the IR program obtained from method add12and13. There is a difference though.
Since the method being called is static, the class used by the mlookup opcode is known
at conversion time, and its reference is provided using the aclass opcode.

1. areceive(%4,#Example)
2. ipass(iconst($13))
3. ipass(iconst($12))
4. call(mlookup(aclass($Example),[19]),[$Example,13,65])
5. iresult(%0)
6. ireturn(iuse(%0))

The following example shows a bit more about method invocation. Two methods are
examined: getitNear and getitFar. Both methods use non-virtual instance method
invocation to delegate execution.

class Near {

}

int it;

public int getitNear() {
return getit();

}

private int getlt() {
return it;

}

class Far extends Near {

int getitFar() {
return super.getitNear();

}

}

The following bytecode is the translation of method getitNear. Since it delegates
execution to a private method, invokespecial is used .

. method public getltNear{)I
.limít stack 1
.limit locais 1

72

aload...O
invokespecial Nearjgetlt{)I
ireturn

.end method

Chapter 6. Bytecode Conversion

The following bytecode is the translation of method getitFar. Since it delegates
execution to a superclass method, invokespecial is used .

. method getltFar{)l
. /imit stack 1
./imit locais 1
a/oad...O

invokespecia/ NearjgetltNear()I
ireturn

.end method

The conversion of method getitNear is similar to the method invocation examples
shown so far. Note that the invokespecial method is known at conversion time, thus
aclass is used in statement 3.

1. arecei ve (%4, #Near)
2. apass(ause(%4))
3. call(mlookup(aclass($Near),[8)),[$Near,1,75])
4. iresult(%0)
5. ireturn(íuse(%0))

The conversion of method getitFar is similar to the method invocation examples
shown so far. Note that the invokespecial method is known at conversion time, thus
aclass is used in statement 3.

1. areceive('l.4,#Far)
2. apass(ause(%4))
3. call(mlookup(aclass($Near),[5)),[$Far,1,86])
4. iresult('l.O)
5. ireturn(iuse('l.O))

6.2.6 Working with Class Instances

The next example is method create that instantiate class Object and retums the newly
created instance.

6.2. Conversion Examples

Object create() {
return neY Object();

}

73

The translation from Java source code to bytecode is shown below. The instantia­
tion consists of allocating heap space for the new object (new bytecode) and invoking a
constructor over it (invokespecial bytecode) .

. method create()LjavajlangjObject;
.limit stack 2
.limit locais 1

new javajlang/Object
dup

invokespecial javajlang/Object/<init> ()V
areturn

.end method

The conversion of method create to IR is the following. The usage of the newinstance
opcode is shown in statement 2. The newinstance opcode has as arguments the class to
be instantiated; here Object provided by the aclass opcode. Like invocation opcodes,
the newinstance opcode also provides stack trace information. The newly created in­
stance becomes available in statement 3 where register %4 is defined with a reference to
it.

1. areceíve(%4,#Example)
2. newínstance(aclass($java/lang/Object),[$Example,14,69])
3. aresult(%4,#java/lang/Object)
4. apass(ause(%4))
5. call(mlookup(aclass($java/lang/Object),[12]),[$Example,14,69])
6. areturn(ause(%4))

Next we present two more methods: example and silly. The example method
instantiates class MyObj and returns by calling the silly method. The silly method
does a useless null reference test, on the received reference, and returns it anyway.

MyObj example() {

}

MyObj o= new MyObj();
return sílly(o);

MyObj sílly(MyObj o) {
íf (o != null)

74

}

returno;
else

return o;

Chapter 6. Bytecode Conversion

The translation of method example from Java source code to bytecode is shown below .

. method example()LMyObj;
.limit stack 2
.limit locais 2
new MyObj
dup

invokespecial MyObj/< init> ()V
astore..l

aloatLO
aloatL1
invokevirtual Examplejsilly{LMyObj;)LMyObj;
areturn

.end method

The translation of method silly from Java source code to bytecode is shown below .

. method silly{LMyObj;)LMyObj;
.limit stack 1
.limit locais 2
aloatL1
ifnull @6
aloatL1
areturn

@6: aloatL1

areturn

.end method

The conversion of method example from bytecode to IR is shown below. The usage
o f the ini t opcode is shown in statement 2.

Instantiating a class requires its initialization prior to allocating the new object. As
shown above in method create, the initialization ofthe class being instantiated, Object,

is redundant. In that case, the initialization is redundant because the class that declared
method create, Example, executes only after its initialization and is a subclass of the
class to be initialized. Since class initialization is only successful after superclass initial­
ization the ini t operation can be suppressed.

6.2. Conversíon Examples 75

1. areceive(%4,#Example)
2. init(aclass($My0bj),[$Example,15,73])
3. newinstance(aclass($My0bj),[$Example,15,73])
4. aresúÍt(%9,#My0bj)
5. apass(ause(%9))
6. call(mlookup(aclass($My0bj),[6]),[$Example,15,73])
7. apass(ause(%9))
8. apass(ause(%4))
9. call(mlookup(getclass(ause(%4)), [19]),[$Example,15,74])

10. aresult(%4,#My0bj)
11. areturn(ause(%4))

The conversion of rnethod silly from bytecode to IR is straightforward.

1. areceive(%4,#Example)
2. areceive(%9,#My0bj)
3. ajump(EQ,ause(%9),anull(),06)
4. areturn(ause(%9))
5. label C 06)
6. areturn(ause(%9))

The next exarnple shows how an integer instance field is written and read in rnethods
setit and getit, respectively.

int i;

void setit(int value) {
i = value;

}

int getit () {
return i;

}

The following bytecode is obtained frorn the translation of rnethod setit .

. method setlt(I) V

.limit stack 2

.limit locais 2
aload_o

iload..J
putfield Exampleji I
return

.end method

76 Chapter 6. Bytecode Conversion

The following bytecode is obtained from the translation of method getit .

. method getlt(}J
.limit stack 1
.limit locais 1

aloarLO
getfield Exampleji I

ireturn
.end method

The conversion of method setit is shown below. The istore is used in statement
3. Its first argument is the reference to the object being written, the this reference read
from register %4. Its second argument is the integer value to be written, the parameter
value read from register %0. Two attributes make up the istore opcode: the field offset
in the instance (dynamic) field area (using the encoding described in Section 4.4); anda
volatile write flag.

1. arecei ve (%4, #Example)
2. ireceive(%0)
3. istore(ause(%4),dynamic(O,O),false,iuse(%0))
4. vreturnO

The conversion of method getit is shown below. The iload opcode is used similarly
as in the istore opcode in setit IR program.

1. areceive(%4,#Example)
2. ireturn(iload(ause(%4),dynamic(O,O),false))

6.2. 7 Arrays

The createBuffer method is an example of how to instantiate integer arrays and access
its elements.

void createBuffer() {
int buffer [] ;

}

int bufsz = 100;
int value = 12;
buffer = new int[bufsz];
buffer[10] = value;
value = buffer[11];

6.2. Conversion Examples 77

The translation ofmethod createBuffer from Java source code to bytecode is shown
below .

. method createBuffer(} V
.limit stack 3

.limit locais 4

bipush 100
istore..2

bipush 12

istore..3

iload..2
newarray int

astore_1

aload-1
bipush 10

iload..3

iastore

aload_1

bipush 11

iaload

istore..3
return

.end method

The following IR program was obtained from the conversion of method createBuffer.

Special attention should be given to statements 4, 6 and 7. In statement 4, a new integer
array is being instantiated using the newarray opcode. The arguments of the newarray
opcode are the array class to be instantiated and the desired length of the new array.
The new instance becomes available in statement 5 when register %9 is defined with its
reference. In statements 6 and 7, IR opcodes iastore and iaload are used to write and
read array elements, respectively. Both opcodes receive as arguments the array to be
accessed and the element index. In the case of the iastore opcode, an extra argument
is the value to be written. The iaload opcode provides the value read from the array.

1. areceive('l,4,#Example)
2. idefine('l.O,iconst($100))
3. idefine('l.S,iconst($12))
4. newarray(aclass($[I),iuse('l,O),[$Example,19,98])
5. aresult(%9,#[I)
6. iastore(ause('l,9),iconst($10),iuse(%5))
7. idefine(%5,iaload(ause(%9),iconst($11)))
8. vreturn()

The next example is method createThreadArray. The createThreadArray method
instantiates a Thread array and initializes its first element with a new instance.

78

void createThreadArray() {
Thread tbreads[];

}

int count ::::: 10;

tbreads = new Tbread[count];
tbreads[O] = new Thread();

Chapter 6. Bytecode Conversion

The translation of method createThreadArray from Java source code to bytecode is
shown below .

. method createThreadArray() V

.limit stack 4

.limit locais 3

bipush 10

istore_2
iload..2
anewarray javajlang/Thread
astore_J
aload..J
iconst..O
new javajlang/Thread
dup
ínvokespecial javajlang/Threadj<inít> ()V
aastore

retum

.end method

The following IR program is obtained from the conversion ofmethod createThreadArray.
The aastore is the only IR opcode not presented before. It writes a reference read from
register %14 to index $0 of array read from register %9.

1. areceive(%4,#Example)
2. idefine(%10,iconst($10))
3. newarray(aclass($[Ljava/lang/Thread;),iuse(%10),[$Example,20,106])
4. aresult(%9,#[Ljava/lang/Thread;)
5. init(aclass($java/lang/Thread),[$Example,20,107])
6. newinstance(aclass($java/lang/Thread),[$Example,20,107])
7. aresult(%14,#java/lang/Thread)
8. apass(ause(%14))
9. call(mlookup(aclass($java/lang/Thread),[44)),[$Example,20,107])

10. aastore(ause(%9),iconst($0),ause(%14))
11. vreturnO

6.2. Conversion Examples 79

The create3DArray method is an example ofhow multidimensional arrays are created
in the IR. It instantiates two dimensions of a three dimensional integer array and returns
the newly created instance.

int [] [] [] create3DArray O {
int grid [] [] [] ;

}

grid = new- int [10] [5] [] ;
return grid;

The translation of method create3DArray from Java source to bytecode is shown
below. The multidimensional array is created using the multianewarray bytecode .

. method create3DArray()[{[I

.limit stack 2

.limit locais 2
bipush 10
iconst_5

multianewarray [[{I 2
astore_J

aload_J

areturn

.end method

The IR program for the create3DArray method is shown below. Since the IR does
not support a multidimensional opcode, the instantiation is implemented by nesting loops
and instantiating each array at its time. Statement 2 instantiates the first dimension array
with length $10. Statements 4 to 10 is the loop that executes $10 times instantiating the
second dimension arrays with length $5.

1. areceive(%4,#Example)
2. new-array(aclass($[[[I),iconst($10),[$Example,21,112])
3. aresult(%9,#[[[I)
4. idefine(%0,iconst($0))
5. label(@6)
6. new-array(aclass($[[I),iconst($5),[$Example,21,112])
7. aresult(%14,#[[I)
8. aastore(ause(%9),iuse(%O),ause(%14))
9. idefine(%0,iadd(iuse(%0),iconst($1)))

10. ijump(LT,iuse(%0),iconst($10),@6)
11. areturn(ause(%9))

80 Chapter 6. Bytecode Conversion

6.2.8 Compiling Switches

This section presents two exarnples of cornpiling swítch staternents. The first is irnple­
rnented using a tableswitch bytecode, and the second using a lookupswitch bytecode.
As shown, both table driven contrai transfer bytecodes are rnapped to a single IR opcode.

The first exarnple is the chooseNear rnethod shown below.

int chooseNear(int i) {
SYitch (i) {

}

case 0: return O;

case 1: return 1;
case 2: return 2 ;
default: return -1;

}

The translation of rnethod chooseNear from Java source code to bytecode is the
following. The Java cornpiler detects that the case values are sequential and generates a
tableswitch bytecode .

. method chooseNear(I)I

.límit stack 1

.limit locais 2

iload_J

tableswitch O
@28

@30

@32

default: @34

@28: iconsLO

ireturn

@30: iconst-1

ireturn

@32: iconst_2

ireturn

@34: iconst_mJ

ireturn

.end method

The conversion of rnethod chooseNear to IR prograrn is shown below. The iswitch is
used to irnplernent the table driven contrai transfer in staternent 3. The iswitch opcode
does not define how the contrai transfer is clone, it only defines a rnap between integer
values and labels. Also the iswitch does not define a label for default (not rnapped)

6.2. Conversion Examples 81

values; if a not rnapped value is used as argurnent the iswitch opcode will sirnply falls
through. The default transfer should then be done in the next staternent (the jump opcode
in staternent 4 transfers execution to default label @34).

1. areceive(%4,#Example)
2. ireceive(%0)
3. iswitch(iuse(%0),[$0,@28] [$1,@30] [$2,@32])
4. jump(@34)
5. label (@28)
6. ireturn(iconst($0))
7. label(i1l30)
8. ireturn(iconst($1))
9. label(i1l32)

10. ireturn(iconst($2))
11. label(@34)
12. ireturn(iconst($-1))

The second switch exarnple is rnethod chooseFar shown below.

int chooseFar(int i) {
switch (i) {

}

case -100: return -1;

case 0: return O;
case 100: return 1;
default: return -1;

}

The translation of rnethod chooseFar from Java source code to bytecode is below.
Since switch key values are not sequential the Java cornpiler generates a lookupswitch

bytecode .

. method chooseFar(I)I

.limit stack 1

.limit locais 2

iload..1

lookupswitch

-100: @36

0: @38

100: @40

default: @42

@36: iconst_m1

ireturn

@38: iconst-0

82

ireturn

@4 0: iconst-1

ireturn

@42: iconst_m1

iretum

.end method

Chapter 6. Bytecode Conversion

The conversion of rnethod chooseFar is shown below. It is similar to the conversion
of rnethod chooseNear, also using the iswi tch opcode.

1. arecei v e (%4, #Example)

2. ireceive(%0)
3. iswitch(iuse(%0),[$-100,~36] [$0,@38] [$100,@40])

4. jump(<Q42)

5. label(~36)
6. ireturn(iconst ($-1))

7. label(~38)
8. ireturn(iconst ($0))

9. label(MO)
10. ireturn(iconst($1))
11. label(<Q42)
12. ireturn(iconst($-1))

6.2.9 Operations on the Operand Stack

The next exarnple is rnethod nextindex shown below. It provides a read and incrernent
index generation procedure.

private long index = O;

public long nextindex() {

return index++;

}

The translation of rnethod nextindex frorn Java source code to bytecode is the fol­
lowing .

. method pub/ic nextlndex()J

. /imit stack 7

. /imit locais 1

aload..O

dup

getfield Examplejindex J

6.2. Conversion Examples

dup2..x1

lconsLJ
ladd
putfield Examplejindex J
lreturn

.end method

83

The IR program obtained from the conversion of method nextindex is shown below.

1. areceive(%4,#Example)
2. ldefine(%1,lload(ause(%4),dynamic(O,O),false))
3. lstore(ause(%4),dynamic(O,O),false,ladd(luse(%1),lconst($1)))
4. lreturn(luse(%1))

6.2.10 Throwing and Handling Exceptions

This section presents four examples of throwing and handling exceptions. They provide
an overview of the IR support for exception handling. The presentation is completed in
the next section when we describe the conversion of try / finally constructs.

The first example is method canBeZero. It instantiates and throws an exception if
the integer parameter is zero.

void cantBeZero(int i) throws TestExc {
if (i == O)

throw new TestExc();
}

The translation of method canBeZero from Java source code to bytecode is shown

below .

. method cantBeZero(I)V
.limit stack 2

.limit locais 2

iload.1
ifne @12

new TestExc
dup

invokespecial TestExc/< init> ()V
athrow

@12: return

.end method

84 Chapter 6. Bytecode Conversion

The conversion of method canBeZero from bytecode to IR is below. The athrow is
used to throw the newly created exception into the caller method frame (statement 9).

1. areceive(%4,#Example)
2. ireceive(%0)
3. ijump(NE,iuse('l.O),iconst($0),@12)
4. init(aclass($TestExc),[$Example,25,141])
5. newinstance(aclass($TestExc),[$Example,25,141])
6. aresult(%9,#TestExc)
7. apass (ause(%9))
8. call(mlookup(aclass($TestExc),[12]),[$Example,25,141])
9. athrow(ause(%9))

10. label(@12)
11. vreturnO

The next exarnple is method catchOne. It calls rnethod tryitOut protected by an
exception handler that calls method handleExc if a TextExc exception occur.

void catchOne() {
try {

tryitOutO;

}

} catch (TestExc e) {
handleExc(e);

}

The translation of method catchOne from Java source to bytecode is below. An
exception window is defined from label @0 inclusive to label @4 exclusive with the handler
at label @7 .

. method catchOne(} V

.limit stack 2

.limit locais 2
@0: a/oad..O

invokevirtual ExamplejtryltOut() V
@4: goto @13

@7: astore..1

a/oad..O
aload..1

invokevirtua/ ExamplejhandleExc(LTestExc;) V
@13: return

. catch TestExc from @O to @4 using @7

.end method

6.2. Conversion Examples 85

The conversíon of method catchOne from bytecode to IR ís shown below. In statement
3, the callx opcode ís used ínstead of a call opcode once exceptíons thrown duríng the
cal! are handled by the current IR program and not delegated to the caller IR program.
The callx opcode has exactly the same semantícs as the call opcode except that ít
defines a la bel as exception catching entry point (<1!15 is the exception catchíng entry
point for the exceptíon window that encloses the tryitOut call). Statements 11 to 14
implements explicit exception catching, subtype testing, handler delegation or rethrowing.
Statement 12 defines register %9 with the reference of the exception thrown during the
tryitOut cal!. Statement 13 tests if the catched exception is a subtype of class TestExc.

If true the control is transfered to the exceptíon handler at label @7. Otherwise, the
exception is rethrown in the frame of the caller method in statement 14.

1. areceive('l,4,#Example)
2. apass(ause(%4))
3. callx(mlookup(getclass(ause('l,4)),[29]),[$Example,28,152] ,~15)
4. jump(iU13)
5. label(~7)

6. apass(ause(%9))
7. apass(ause(%4))
8. call(mlookup(getclass(ause(%4)),[30]),[$Example,28,154])
9. label(~13)

10. vreturnO
11. label(~15)
12. acatch(%9)
13. ijump(NE,subtypeof(getclass(ause(%9)),aclass($TestExc)),iconst($0),Q7)
14. athxov(ause(%9))

The next example, method catchTwo, is a varíant of the previous example that defines
two exception handlers for method tryitOut.

void catchTvo() {

}

try {
tryitOutO;

} catch (TestExc1 e) {
handleExc(e);

} catch (TestExc2 e) {
handleExc(e);

}

The translation of method catchTwo from Java source code to bytecode is shown
below. Two exception windows are defined for the same code segment (@0 inclusive to
@4 exclusive), however the test for TestExc1 exception occurrence ís clone before the test
for TestExc2 exception occurrence.

86

. method catch Two(} V
.limit stack 2
.limit locais 3

@0: aload..O
invokevirtual ExamplejtryJtOut() V

@4: goto @22
@7: astore_1

aload..O
aload..1
invokevirtual ExamplejhandleExc(LTestExc;) V
goto @22

@ 16: astore-2
aload..O
aload..2
invokevirtual ExamplejhandleExc(LTestExc;) V

@22: return
. catch TestExcJ from @O to @4 using @7

. catch TestExc2 from @0 to @4 using @ 16

.end method

Chapter 6. Bytecode Conversion

The conversion of method catchTwo is similar to the conversion of method catchOne.

In statement 3, a callx is also used defining label @24 as exception catching entry point.
The major difference is on the code that catches the exception in statements 16 through
22. Statements 18 and 19 implement the test for TestExc1 subtyping. On success, they
transfer the execution to its handler at label @7. On subtyping failure, the exception catch­
ing is delegated to the enclosing exception window, which tests for TestExc2 subtyping
in a similar manner (statements 20 to 22).

1. areceive(%4,#Example)
2. apass(ause(%4))
3. callx(mlookup(getclass(ause(%4)),[29]),[$Example,29,160] ,@24)
4. jump(@22)
5. label (@7)
6. apass(ause(%9))
7. apass (ause(%4))
8. call(mlookup(getclass(ause(%4)),[30]),[$Example,29,162])
9. jump(Q22)

10. label(Q16)
11. apass(ause(%9))
12. apass (ause(%4))
13. call(mlookup(getclass(ause(%4)),[30]),[$Example,29,164])
14. label(Q22)
15. vreturnO
16. label(Q24)

6.2. Conversion Examples

17. acatch(%9)
18. ijump(EQ,suhtypeof(getclass(ause(%9)),aclass($TestExc1)),iconst($0),@25

)

19. jump(@7)
20. label(4125)
21. ijump(NE,subtypeof(getclass(ause(%9)),aclass($TestExc2)),iconst($0),@16

)

22. athrow(ause(%9))

87

As probably noted by the reader, the exception catching scheme- implicit on byte­
code- is made explicit in the IR program. Protected calls define their exception catching
labels as the entry points associated to its first enclosing exception window. The excep­
tion catching code for each exception window tests for exception subtyping, transfering
the control to its handler; otherwise it delegates the catching to its enclosing exception
window or, i f it is a top levei exception window, throwing the exception in the caller
method frame. This scheme only works if every exception window is fully enclosed by
another (or not enclosed at ali); sometimes it is necessary to rewrite exception windows
to achieve that. The rewriting technique is discussed in Section 6.4.

The next exception handling example is the nestedCatch method shown below. It
has similar semantics to the catchTwo method (it tests first for TestExc1 subtyping and
then for TestExc2 subtyping), but written in a different syntax. The main difference
is subtle, the handler for the TestExc1 exception is also protected by the TestExc2

exception window.

void nestedCatch() {
try {

}

try {
tryitOutO;

} catch (TestExc1 e) {
handleExc(e);

}
} catch (TestExc2 e) {

handleExc(e);
}

The translation of method nestedCatch from Java source code to bytecode is below.
Note that it is clear that one exception window encloses another .

. method nestedCatch() V
.limit stack 2
.limit locais 2

88 Chapter 6. Bytecode Conversion

@0: aload..O

invokevirtual Examplejtry!tOut() V
@4: goto @13
@7: astore_1

aload..O

aload..1
invokevirtual ExamplejhandleExc(LTestExc;) V

@13: gato @22

@16: astore..1

aload..O

aload..1
invokevirtual ExamplejhandleExc{LTestExc;) V

@22: return

. catch TestExc! from @O to @4 using @7

.catch TestExc2 from @O to @13 using @16

.end method

The conversion ofmethod nestedCatch from bytecode to IR is shown below. In state­
ment 3, the tryitOut method is invoked using a callx opcode with exception catching
label @24. In statement 8, the handlerExc method is invoked from an exception handler
also using a callx opcode with exception catching label @25. Statements 17 through
25 implements the exception catching code. Statements 17 and 18 catch exceptions for
the innermost exception window. Statements 19 and 20 test for TestExc1 subtyping,
transfering control to the handler label @7 on success, o r delegating exception catching
to its enclosing exception window in label @26. Statements 21 and 22 catch exception
for the outermost exception window. Statements 23 to 25 test for TestExc2 subtyping,
transfering control to the handler label @16 on success, or throwing the exception into the
caller method frame.

1. areceive(%4,#Example)
2. apass(ause(%4))
3. callx(mlookup(getclass(ause(%4)),[29]),[$Example,30,171] ,@24)
4. jump(013)
5. label(@7)
6. apass(ause(%9))
7. apass(ause(%4))
8. callx(mlookup(getclass(ause(%4)),[30]),[$Example,30,173],025)
9. label(@13)

10. jump(022)
11. label(@16)
12. apass(ause(%9))
13. apass(ause(%4))
14. call(mlookup(getclass(ause(%4)),[30]),[$Example,30,176])

6.2. Conversion Examples

15. label(i!122)
16. vreturn()
17. label(i!l24)
18. acatch(%9}
19. ijump(EQ,subtypeof(getclass(ause('l.9)),aclass($TestExc1)),iconst($0),i!126

)

20. jump(i!l7)
21. label(i!l25)
22. acatch(%9)
23. label(i!126)
24. ijump(NE,subtypeof(getclass(ause(%9)),aclass($TestExc2)),iconst($0),i!116

)

25. athroY(ause(%9))

6.2.11 Compiling Finally

89

This section presents two examples of the try / finally construct. These examples demon­
strate how subroutines are translated to the IR.

The first example is the tryFinally method shown below. It calls method tryitOut

protected by a finally block that calls method wrapitUp.

void tryFinally() throYs TestExc {
try {

tryitOut ();
} finally {

wrapitUp();
}

}

The translation of method tryFinally from Java source code to bytecode is shown
below. The jsr /ret bytecodes are used to implement a shared subroutine that is exe­
cuted in both normal and exceptional cases .

. method tryFinally()V

. /imit stack 1

./imit locais 3
@0: aload_O

invokevirlual ExamplejtryltOut() V
jsr @16

goto @23

@10: astore_J

jsr @16

aload_1

athrow

90

@16: astore_2

aloa<LO
invokevirtual ExamplejwrapltUp(} V

ret 2

@23: return
. finally from @0 to @ 1 O using @ 1 O

.end method

Chapter 6. Bytecode Conversion

The conversion of method tryFinally from bytecode to IR is shown below. The ex­
ception catching and handling implementation for finally exception windows is exactly the
same as the implementation of the exception windows presented so far, except that there
is no subtyping test and the handler is always executed (that can be seen in statements
22 to 24).

The conversion of the subroutine requires special attention. There is no construct
similar to subroutines in the IR, however subroutines are implemented using available
opcodes. The jsr bytecode is converted to a call-site identification integer assignment,
followed by an unconditional branch. That can be seen in statements 5 to 6 and 10 to 11.
The ret bytecode is converted to a iswi tch opcode that maps each call-site identification
integer to the label after each j sr, followed by an unreachable infinite loop. Statements
17 to 19 show that.

1. areceive(Y,4,#Example)
2. adefine(Y,9,anull())
3. apass(ause(%4))
4. callx(mlookup(getclass(ause(Y.4)),[29]),[$Example,32,182],~25)
5. idefine(Y.O,iconst($0))
6. jump(lll16)
7. label(lll7)
8. jump (lll23)
9. label(Q10)

10. idefine('l.O,iconst($1))
11. jump ((1!16)
12. label(i!l14)
13. atbxoY(ause(%9))
14. label(lll16)
15. apass(ause(%4))
16. call(mlookup(getclass(ause(%4)),[31]),[$Example,32,184])
17. isYitch(iuse(Y,0),[$0,(1!7] [$1,(1!14])
18. label(Q26)
19. jump(lll26)
20. label(lll23)
21. vreturn O
22. label(<025)

6.2. Conversion Examples 91

23. acatch(%9)
24. jump(@10)

By doing so, we transfer the semantics of the subroutine from a powerful and complex
control structure to a simple data driven control structure, with the advantage of no code
duplication. However, as a result of the semantic translation from control to data we face
a liveness problem. The reference register %9 is now live during the finally code execution
(statements 14 to 16) because it is used by reachable statement 13. But %9 may not be
initialized at that time, since it is only initialized through the exceptional path (statement
23). Therefore we need to generate a reference nullifying statement for each uninitialized
live reference register at the top of the IR program (statement 2 in this example). This
guarantees that ali live reference registers always hold legal values, avoiding problems
with garbage collection. The detailed description of this subroutine conversion procedure
is given in Section 6.5.

The second example is the method tryCatchFinally that mixes the exception han­
dling and finally constructs.

void tryCatchFinally() {
try {

}

tryitOut () ;
} catch (TestExc e) {

handleExc(e);
} finally {

wrapitUp () ;
}

The translation of the method tryCatchFinally from Java source code to bytecode
is the following .

. method tryCatchFinally() V

.limit stack 2

.limít locais 4
@0: aload_O

invokevirtual ExamplejtryltOut{} V

@4: jsr @28

goto @35

@10: astore_J

aload_O

aload_J

invokevirtual ExamplejhandleExc(LTestExc;) V

jsr @28

92

gato @35

@22: astore..2
jsr @28

aload.-2

athrow
@28: astore_3

aload.-0
invokevirtual ExamplejwrapltUp() V

ret 3
@35: return

. catch TestExc from @0 to @4 using @ 1 O

.finally from @O to @22 using @22

.end method

Chapter 6. Bytecode Conversíon

The conversion of method tryCatchFinally is shown below. This is a bit longer
example that consolidates the idea behind explicit exception catching and subroutine
implementation, coupled together. Only features discussed so far are presented.

1. areceive(Y,4,#Example)
2. adefine(%9,anull())
3. apass (ause(%4))
4. callx(mlookup(getclass(ause(%4)),[29]),[$Example,33,190] ,037)
5. idefine(Y,O,iconst($0))
6. jump(028)
7. label((!l7)
8. jump(Q35)
9. label(Q10)

10. apass(ause(%9))
11. apass(ause(%4))
12. callx(mlookup(getclass(ause(%4)),[30]),[$Example,33,192] ,Q38)
13. idefine(Y,O,iconst($1))
14. jump(l!l28)
15. label(C!l19)
16. jump(035)
17. label(«l22)
18. idefine(Y,O,iconst($2))
19. jump(<028)
20. label(Q26)
21. athrow(ause(%9))
22. label(Q28)
23. apass(ause(%4))
24. call(mlookup(getclass(ause(%4)),[31]),[$Example,33,194])
25. iswitch(iuse(%0), [$0,Q7] [$1,1!)19] [$2,1!)26])
26. label(@36)
27. jump(036)

6.2. Conversion Examples 93

28. label(@35)

29. vreturn()

30. label(@37)

31. acatch(%9)

32. ijump(EQ,subtypeof(getclass(ause(%9)),aclass($TestExc)),iconst($0),@22)

33. jump(<il10)

34. label(@38)

35. acatch(%9)

36. jump(@22)

6.2.12 Synchronization

This last example demonstrates how synchronization primitives are implemented in the
IR. The method onlyMe receives a reference parameter which is synchronized during the
call to method doSomething.

void onlyMe(Foo f) {

synchronized (f) {

doSomethingO;

}

}

The translation of the method onlyMe from Java source code to bytecode is shown
below. The monitorenter and monitorexit bytecodes are used to lockjunlock the pa­
rameter object monitor, respectively. Implicitly the Java compiler generates code similar
to a try f finally construct enclosing the synchronized code. It does that to guarantee that
the object monitor will always be exited before the method termination .

. method onlyMe(LFoo;)V

.limit stack 1

.limit locais 4
aload.1
astore.2

aload.2

monitorenter

@4: aload.O

invokevirtual Examplej doSomething() V
aload..2

monitorexit

goto @18

@13: astore.3

aload..2
monitorexit

94

aload..3

athrow
@18: return

.finally from @4 to @13 using @13

.end method

Chapter 6. Bytecode Conversion

The IR program obtained from the conversion of method onlyMe is shown below.
Statements 3 to 9 is code generated to test the parameter object f for a null value and
throwing a NullPointerException if the case. Statements 11 to 12 implement the
moni torenter operation; it is broken in two opcodes: lock to enter the object monitor,
and readbarrier to invalidate cached memory reads. Statements 15 to 16 (and 19 to
20) implement the monitorexit operations, it is broken in two opcodes: unlock to
exit the object monitor, and writebarrier to writeback cached memory writes. Both
readbarrier and writebarrier do nothing but limit the way that the IR program could
be rearranged.

1. arecei v e (%4, #Example)
2. areceive(7.9,#Foo)
3. ajump(NE,ause('l.9),anull(),~3)
4. init(aclass($java/lang/NullPointerException),[$Example,35,201])
5. newinstance(aclass($java/lang/NullPointerException),[$Example,35,201])
6. aresult(%14,#java/lang/NullPointerException)
7. apass(ause(%14))
8. call(mlookup(aclass($java/lang/NullPointerException),[12]),[$Example,35,

201])
9. athrow(ause(%14))

10. label(~3)
11. lock(ause(%9),[$Example,35,201])
12. readbarrierO
13. apass(ause(%9))
14. callx(mlookup(getclass(ause('l.9)),[37]),[$Example,35,202],~20)
15. writebarrier()
16. unlock(ause(%9))
17. jump(iU18)
18. label(~13)
19. writebarrierO
20. unlock(ause(%9))
21. athrow(ause(%14))
22. label(<H8)
23. vreturnO
24. label(@20)
25. acatch(%14)
26. jump(@13)

6.3. Extra Conversion Examples 95

6.3 Extra Conversion Examples

This section provides two extra conversion examples to clarify the idea behind handling
collateral effects in expressions by IR programs.

The first example is method vecDot, a static method that computes the dot product
for two multidimensional double vectors. This example shows how the increment of integer
variables i and j is done during conversion of the main expression. Moreover, it shows
how related exceptions are tested and thrown during the computation of the expression.

static double vecDot(double[] a, int i, double[] b, int j, int length) {
double dot = 0.0;

}

for (int k = O; k < length; k++)
dot += a[i++] • b[j++];

return dot;

The translation of the method vecDot from Java source code to bytecode is shown
below .

. method static vecDot([DI[DII)D

.limit stack 6

.limit locais 8
dconst_O

dstore 5

iconst..O

istore 7
goto @30

@9: dload 5

aload_O

iload..1

iinc 1 1

daload

aload..2

iload..3

iinc 3 1

daload

dmul

dadd

dstore 5

iinc 7 1

@30: iload 7
iload 4
if_icmplt @9

dload 5

96

dretu.rn

.end method

Chapter 6. Bytecode Conversion

After conversion of method vecDot, the following IR program is obtained. Statements
10 to 19 implement the expression present in the vecDot loop. Statements 11 and 16 do
the increment of variables i and j, respectively. Statements 12 and 17 test if reference
variables a and b are not null, throwing an exception if necessary (Statements 24 to 30).
Statements 13 and 18 check if the array índices, i and j, are not out of bounds, throwing
an exception if necessary (Statements 31 to 38).

1. areceive(%4,#[D)
2. ireceive(%0)
3. areceive(%9,#[D)
4. ireceive(%5)
5. ireceive(%10)
6. ddefine(%3,dconst($0.0))
7. idefine(%15,iconst($0))
8. jump(C30)
9. label(C9)

10. idefine(%20,iuse(Y,O))
11. idefine(Y,O,iadd(iuse(Y.O),iconst($1)))
12. ajump(EQ,ause(Y,4),anull(),@16)
13. ijump(AE,iuse(Y.20),length(ause(%4)) ,C18)
14. ddefine(%8,daload(ause(%4),iuse(Y.20)))
15. idefine(%20,iuse(Y,5))
16. idefine(Y,5,iadd(iuse(%5),iconst($1)))
17. ajump(EQ,ause(Y.9),anull(),@16)
18. ijump(AE,iuse(Y.20),length(ause(Y,9)),~18)
19. ddefine(%3,dstrict(dadd(duse(%3),dmul(duse(%8),daload(ause(%9),iuse(%20

))))))
20. idefine(%15,iadd(iuse(%15),iconst($1)))
21. label(@30)
22. ijump(LT, iuse(%15) ,.iuse(%10), @9)
23. dreturn(duse(%3))
24. label(@16)
25. init(aclass($java/lang/NullPointerException),[$Example,36,221])
26. newinstance(aclass($java/lang/NullPointerException),[$Example,36,221])
27. aresult(%4,#java/lang/NullPointerException)
28. apass(ause(%4))
29. call(mlookup(aclass($java/lang/NullPointerException),[12]),[$Example,36,

221])
30. athrow(ause(%4))
31. label(@18)
32. init(aclass($java/lang/ArrayindexOut0fBoundsException),#Example36221)

6.3. Extra Conversion Examples 97

33. newinstance(aclass($java/lang/ArrayindexOutOfBoundsException),[$Example,
36,221])

34. aresult(%4,#java/lang/Arrayindex0utOfBoundsException)
35. ipass(iuse(%20))
36. apass(ause(%4))
37. call(mlookup(aclass($java/lang/ArrayindexOutOfBoundsException),[14]),[$Example,

36,221])
38. athrow(ause(%4))

Next example is method vecLen which computes a rnultidimensional vector length
by applying the square root over the result of rnethod vecDot. This exarnple shows how
rnethod calls present in expressions are converted to the IR.

static double vecLen(double[] a, int i, int length) {
return Math.sqrt(vecDot(a, i, a, i, length));

}

The translation of rnethod vecLen from Java sources to bytecode is show below .

. method static vecLen([DII)D

.limit stack 5

.limit locais 3

aload..O
i/oad..1
aload_O

iload..l
i/oad..2

invokestatic ExamplejvecDot([DI{DII)D

invokestatic javajlangjM athjsqrt(D)D
dreturn

.end method

The IR prograrn obtained frorn the conversion of rnethod vecLen is shown below. The
expression is broken in two parts: the vecDot rnethod call (Staternents 4 to 10) and the
sqrt method call (Staternents 11 to 14). Interrnediate results are stored in IR register
%3.

1. areceive(%4,#[0)
2. ireceive(%0)
3. ireceive(%5)
4. ipass(iuse(%5))
5. ipass(iuse(%0))
6. apass(ause(%4))

98 Chapter 6. Bytecode Conversion

7. ipass (iuse(%0))
8. apass(ause(%4))
9. call(mlookup(aclass($Example),[41]),[$Example,37,226])

10. dresult(%3)
11. init(aclass($java/lang/Math),[$Example,37,226])
12. dpass(dstrict(duse(%3)))
13. call(mlookup(aclass($java/lang/Math),[26]),[$Example,37,226])
14. dresult(%3)
15. dreturn(duse(%3))

6.4 Exception Windows Conversion

As described in the examples presented on Section 6.2, during the conversion of bytecode
to intermediate representation, exception windows are replaced by explicit control code.
Exceptional operations will have a direct reference to their exception catching entry point
in the current IR program. For nested exception windows, each window will be associated
to an exception catching entry point where subtyping test and handler delegation is
implemented. Non-nested exception windows must be transformed to nested ones.

Exception windows in the bytecode are encoded as a per method array. The exception
windows at the beginning of the array are the innermost. The exception windows at the
end of the array are the outermost. When an exception is thrown, the JVM must search
linearly the array, from the innermost to the outermost, for the first exception window
that encloses the exception PC. If the exception thrown is catched by that particular
window (the subtyping test does not fail) the contrai is transfered to its associated handler,
otherwise the search continues. If no window catches the exception, the JVM rethrows it
in the caller method frame.

The exception windows conversion procedure we have implemented requires nested
exception windows. Exception windows usually are nested (Figure 6.1 (a)). This is
specially true for bytecode generated from Java sources. Although its occurrence is very
rare, non-nested exceptions can occur[43, §4.9.5] and must be treated correctly.

The algorithm for transforming non-nested exception windows to nested ones is very
simple. For each exception window, from the outermost to the innermost, break it into
the minimum number of equivalent exception windows, so that each one of them is either
fully enclosed by an outermost exception window or not enclosed at ali. Figure 6.1 (b) and
Figure 6.1 (c) shows a non-nested exception window and its equivalent nested exception
window.

In the worst case, the number of exception windows after applying the algorithm in­
creases exponentially. However, non-nested exception windows are rare enough to prevent
choosing this implementation. Most important is that it provides correct behavior for ali

6.4. Exception Windows Conversion 99

(a) (b) (c)

Figure 6.1: Exception windows: (a) Nested; (b) Non-nested; (c) Nested after transforma­
tion.

cases, although in some rare cases it lacks efficiency.
The procedure for converting exception windows is the following:

1. Adjust exception windows to have a nested structure. Each exception window must
be top-level or fully enclosed in another exception window.

2. For each exception window do:

(a) Create an exception catching label and entry point (acatch opcode).

(b) Create a label for catching delegation.

(c) If the exception window is not a finally exception window, generate a test
for exception subtyping delegating control - if the test fails - to its directly
enclosing exception window (using its catching delegation Jabel), or rethrowing
the exception in the caller frame (using athrow opcode) if it is a top-level
exception window.

(d) Transfer control unconditionally to the exception handler.

3. For each implicit exceptional operation do:

(a) If the operation is not enclosed by an exception window, generate the operation
using its usual opcode.

100 Chapter 6. Bytecode Conversion

(b) Otherwise, generate the operation using the exceptíon-prone opcode variant
and set its exception catching Iabel to be the exception catching Iabel of its
directly enclosing exception window.

4. For each explicit exception throwing operation do:

(a) If the operation is not enclosed by an exception window, throw the exception
into the calier frame (using athrow opcode).

(b) Otherwise, define the appropriate register with the reference to the exception
being thrown and transfer control unconditionaliy to its directly enclosing ex­
ception window (using its catching delegation Iabel).

Examples of exception windows conversion are shown in Section 6.2.10 and Sec­
tion 6.2.11.

6.5 Subroutine Conversion

We choose not to include in the IR special opcodes for implementing subroutines (im­
plemented using jsr and ret bytecodes). Typicaliy, subroutines would be implemented
using an intra-procedural call/ retum construct. However, since ali subroutíne call-sítes
are known at conversion time, we decided to implement it by indexing call-sites and
switching at return points. This can be implemented without having to extend the IR,
and no code is duplicated.

The subroutine conversion procedure is straightforward:

1. Initialize the call-síte índex to zero.

2. For each subroutine call-site (jsr bytecode) do:

(a) Define an integer register with current call-síte índex. The integer register
must be the register bounded to the top of the bytecode operand stack after
the subroutine call.

(b) Unconditional transfer control to the subroutine entry point.

(c) Declare a uni que retum label and associa te it with the current call-síte índex.

(d) Increment the call-síte índex.

3. For each subroutine return point (ret bytecode) do:

(a) Switch on the integer register bounded to the top ofthe bytecode operand stack
before the subroutine return (using iswitch opcode). Include in the switch a
case entry for ali call-site índices and their associated Iabels.

6.5. Subroutine Conversion 101

(b) For the fali through path, declare a label and an unconditional transfer to it,
defining an unreachable infinite loop.

4. For each register live at the IR program entry point do:

(a) Displace a default value regíster defining statement just after ali parameter­

receiving opcodes.

In principie, the subroutine conversion procedure could take advantage of precise con­
trol flow information (gathered during the bytecode verífication) to suppress useless un­
reachable case labels. In our implementation, we choose not to use that control flow
information in order to minimize the interface between the bytecode verification and the
bytecode conversion modules. It is not a big overhead to keep those useless unreachable
case labels, because rarely a method has more than one subroutine. Also, the data flow
analysis to detect useless unreachable case labels can be formulated easily.

The infinite loop generated for the default path of the iswitch opcode is a simple
workaround. An alternate implementation may choose to elect one of the call-site índices
and use it as the default path.

This implementation of subroutines is efficient, even though it requires an integer
switch during the subroutine return. Since switch case labels are actually call-site índices
- which were generated sequentially - the svdtch can have a table-based translation.

The last step of the subroutine conversion procedure is a repair in the IR program to
guarantee that ali registers are initialized before their use. Although the use o f initialized
variables is a property o f verífied bytecode, the control structure simplification, that occurs
duríng the subroutine conversion, inserts previously non-existing paths in the control flow
graph, in which variables could be used without being initialized. We decided to keep this
bytecode property also in IR programs. This is specially important when we discuss our
implementation of garbage collection in Chapter 9. The accurate GC algorithm requires
some live reference tables to run. Although uninitialized reference registers are not used
in the IR program, it can possibly be included in a reference table for a portion of the
IR program where it is considered live and is not initialized. This happens because
the liveness analysis is a conservative approximation, and unfortunately semantic control
information to detect this situation is not available anymore after conversion. In the best
case, an uninitialized reference included in a live reference table makes the GC algorithm
crash.

Subroutines makes GC hard, it is no news[l]. This approach is simple and elegant.
The price we pay is the cost of executing the initializing statements on method entry
(for Java programs they are at most one per subroutine), and the increase of IR registers
lifetime which may impact register allocation.

Examples of subroutine conversion are shown in Section 6.2.11 and Section 6.2.12.

102 Chapter 6. Bytecode Conversion

6.6 Post Conversion Optimizations

This section describes optimizations that must be applied to IR programs after conversion.
In principie, the conversion algorithm could produce IR programs that would not require
those optimizations. However, we decided to simplify the conversion algorithm, for the
sake of correctness, and apply these optimizations only afterwards.

6.6.1 Building Expression Trees

During conversion, bytecode local variables and operand stack values are bounded to
IR registers. However, most operand stack values are intermediate values of complex
expressions being computed. Therefore, representing them as expressions trees, rather
than as a sequence of three operand statements, is a better choice. The greater the
expression tree, the more effective is its translation to machine code. There are optimal
ínstructíon selectíon and regíster allocatíon algorithms for expression trees[2].

The transformation of three operand statements to an expression tree is simple. We
look for register definitions that are used only once in the IR program; that use must
be inside the same basic block where the definition is. Then we replace the use of the
associated register by its defining expression.

Care should be taken when the defining expression contains a memory read or reg­
ister use operation. If the memory read is volatíle, or there is a memory read barrier
(readbarrier opcode) after the defining statement and before the use statement, the
optimization must not occur. Also, it must not occur if, between those statements, there
is a memory write operation possibly aliased to the same memory location as the memory
read present in the defining expression (a similar restriction applies to registers).

The following IR program was obtained from the conversion of method align2grain
before applying the expression tree optimization. The optimized IR program is shown in
Section 6.2.2.

1. areceive(%4,#Example)
2. ireceive(%0)
3. ireceive(%5)
4. idefine(Y.lO,iuse(%0))
5. idefine(%15,iuse(%5))
6. idefine(%10,iadd(iuse(%10),iuse(%15)))
7. idefine(%15,iconst($1))
8. idefine(Y.10,isub(iuse(%10),iuse(%15)))
9. idefine(%15,iuse(%5))

10. idefine(%20,iconst($1))
11. idefine(%15,isub(iuse(%15),iuse(%20)))
12. idefine(%20,iconst($-1))

6.6. Post Conversion Optimizations 103

13. idefine(%15,ixor(iuse(%15),iuse(%20)))
14. idefine(%10,iand(iuse(%10),iuse(%15)))
15. ireturn(iuse(%10))

6.6.2 Eliminating Null Checks

Null check elimination is an important optimization for converted IR programs. The null

check is the most common runtime check present in bytecodes. Performing a null check
for each operation that semantícally requires it is expensive and usually redundant. By
performing data flow analysis, we can discover that many checks can be safely suppressed
and substituted by an equivalent check performed previously in the execution. Specífically,
the tllis implicít parameter is never null, and its storage is never redefined in the bytecode
generated from Java sources.

This optimization consists in removing IR statements of the form

ajump(EQ,ause(%4),anull(),@5)

where %4 is neve r null, o r replacíng by an unconditional control transfer (jump opcode) if
%4 is always null. The similar idea can be applíed to statements of the form

ajump(NE,ause(%4),anull(),@5)

they can be removed if %4 is always null, or replaced by an unconditional control transfer
if %4 is never null.

The data flow analysis that provides information required by null check elimination
is a forward analysis based on reference registers. The analysis works with three sets
of reference registers: null registers (NL), non-null register (NN) and unknown registers

(UK). As usual, the implementation of these sets is done using bit vectors, each reference
register is associated to two bit positions (c1c2). The first bit position indicates if the
register is null (O) or non-null (1). The second bit position supercedes the value of the
first bit position if the register contents cannot be known (1). Table 6.2 is the truth table

for the conftuence operator U.

u NL (00) NN (10) UK (X1)
NL (00) NL (00) UK (X1) UK (X1)
NN (10) UK (X1) NN (10) UK (Xl)
UK (Xl) UK (X1) UK (Xl) UK (Xl)

Table 6.2: Truth table for the confluence operator U.

104 Chapter 6. Bytecode Conversion

The logical equations obtained from the above truth table are show below. Both can
be implemented efficiently for bit vectors.

C = A u B :;, { c1 = a1 + b1
c2 = a2 + b2 + (a1 0 b1)

In order to implement the data flow analysis, we associate to each basic block a fiow

function. The flow function consists of a data flow item (NL, NN, UK), that each reference
register assumes at the basic block exit point, or a source register index from where the
item must be copied at the basic block entry point. To compute the flow function we use
the following procedure:

1. Initialize the flow function, each register is associated with its index.

2. For each statement basic block statement in forward direction do:

(a) Ifthe current statement is a reference copy statement, replace the item or index
of the defined register in the flow function by the current value or index of the
used register in the flow function.

(b) If the current statement defines a reference register and is not a copy statement,
replace the item or index of the defined register by the value associated to the
defining expression (see Table 6.3).

(c) Otherwise, do nothing.

Table 6.3 defines the flow value associated to each opcode that provides a reference as
result.

OPCODE FLOW ITEM

getclass NN
aload UK

aaload UK
mlookup NN

imlookup UK
anull NL

aclass NN
astring NN

Table 6.3: Flow item for each opcode that provides reference result.

The data flow is computed iteratively. Starting at the entry basic block the flow
functions are applied until convergence. During computation, edges leaving basic blocks

6.6. Post Conversion Optimizations 105

that end with a null check are treated specially; the flow item of the reference register
being checked must be rnodified to reflect the test result on each path. Once the data
flow analysis is over, the flow items at exit point of basic blocks are used to determine if
the transformation may apply.

6.6.3 Factoring Exception Throwing Code

The IR program is generated by the conversion algorithm with a srnall section of code, for
throwing internai exceptions, after each check for a violated property (e.g. null pointer
access, division by zero). However, the conversion algorithm is naive enough to miss the
fact that the same code may be replicated many times inside the same IR program.

The extra code generated to instantiate and throw an internai exception can usually
be shared by many checks of the sarne property that occurs in the same line of code. This
can be seen in the example below.

Object getNextNext() {
return next.next;

}

Assurning that no null checks were elirninated yet, two null pointer checks are present
in the IR program generated frorn the getNextNext method. The first check is done for
the this parameter when reading field next. The second check is done when reading
field next from the possibly null reference just read frorn field next of this object. The
IR program obtained from the conversion of method getNextNext is shown below.

1. areceive('l.4,#Example)
2. adefine('l,9,ause(Y,4))
3. ajump(NE,ause(%9),anull(),~6)
4. inít(aclass($java/lang/NullPointerException),[$Example,1,6])
5. newinstance(aclass($java/lang/NullPointerException),[$Example,1,6])
6. aresult(%19,#java/lang/NullPointerException)
7. apass(ause(%19))
8. call(mlookup(aclass($java/lang/NullPointerException),[12]),[$Example,1,

6])

9. atbrow(ause(%19))
10. label (@6)
11. adefine(Y.9,aload(ause('l.9),dynamic(O,O),false,#Example))
12. ajump(NE,ause(%9),anull(),lil21)
13. init(aclass($java/lang/NullPointerException),[$Example,1,6])
14. newinstance(aclass($java/lang/NullPointerException),[$Example,1,6])
15. aresult(%19,#java/lang/NullPointerException)
16. apass(ause(%19))

106 Chapter 6. Bytecode Conversion

17. call(mlookup(aclass($java/lang/NullPointerException) ,[12]),[$Example,1,
6])

18. athrow(ause(%19))
19. label(@21)
20. adefine(%9,aload(ause(%9),dynamic(O,O),false,#Example))
21. areturn(ause(%9))

It is easy to see that the code instantiating and throwing the NullPointerException

for both checks is the same (statements 4 to 9 and 13 to 18). The IR program can thus
be rewritten to share that code.

1. areceive(%4,#Example)
2. adefine(%9,ause(%4))
3. ajump(NE,ause(%9),anull(),@6)
4. label(@21)
5. init(aclass($java/lang/NullPointerException),[$Example,1,6])
6. newinstance(aclass($java/lang/NullPointerException),[$Example,1,6])
7. aresult(%19,#java/lang/NullPointerException)
8. apass(ause(%19))
9. call(mlookup(aclass($java/lang/NullPointerException),[12]),[$Example,1,

6])

10. athrow(ause(%19))
11. label(@6)
12. adefine(%9,aload(ause(%9),dynamic(O,O),false,#Example))
13. ajump(EQ,ause(%9),anull(),@21)
14. adefine(%9,aload(ause(%9),dynamic(O,O),false,#Example))
15. areturn(ause(%9))

The idea we have used to implement this factoring exception throwing code optimiza­
tion is the same used in Language Theory to minimize states in a Deterministic Finite

Automaton (DFA) [50, 33]. We divide the IR statements in sets, each set containing
initially statements that are equal in syntax, including their attributes. Then we start
partitioning each set that contains statements leading execution to statements in different
sets. When no more sets can be created, the sets with more than one statement indicates
the statements that are replicated and can be removed from the IR program. Actually
the replicated code is not removed but the contrai structure of the IR program is modified
to shared a single copy of replicated code. The other copies are eliminated by unreachable

code elimination described on Section 6.6.4.

This algorithm is generic and do the factoring for any replicated code, including the
exception throwing code as well as user code.

6. 7. Discussion about Assynchronous Exceptions 107

6.6.4 Control Optimizations

The control optimizations to be applied to IR programs after conversion are basically two:
unreachable code elimination and jump optimization.

Unreachable code elimination is a trivial optimization, it eliminates from the contra/

fiow graph of the IR program basic blocks not reachable by any path. Code may become
unreachable after applying the optimizations described in Section 6.6.2 and Section 6.6.3.

The jump optimization changes the linear placement of the control flow graph of a IR
program - sometimes merging basic blocks - in order to remove useless unconditional
control transfers. To merge two basic blocks one of them must be the only predecessor of
the other, which must also be its only successor. The following IR program was obtained
from applying the jump optimization to the method tryFinally shown in Section 6.2.11.

1. areceive(%4,#Example)
2. adefine(%9,anull())
3. apass(ause(%4))
4. callx(mlookup(getclass(ause(%4)),[29]),[$Example,32,182],Q25)
5. idefine(Y.O,iconst($0))
6. label(t016)
7. apass(ause(%4))
8. call(mlookup(getclass(ause('l,4)),[31]),[$Example,32,184])
9. iswitch(iuse(%0),[$0,Q7] [$1,Q14])

10. label (Q26)
11. jump(Q26)
12. label(t07)
13. vreturnO
14. label(t014)
15. athrow(ause(%9))
16. label(t025)
17. acatch(%9)
18. idefine('l,O,iconst($1))
19. jump(Q16)

6. 7 Discussion about Assynchronous Exceptions

An important issue to be discussed in the shade of the bytecode conversion is the assyn­

chronous exception support. An assynchronous exception is an exception thrown by one
Java thread in the context of another Java thread.

Although user levei assynchronous exception throwing has been deprecated3 from the
Java platform (stop method), it is also required in some implementations of the runtime

3 Deprecation means it should not he used by new software, but must he still available for backward
compatibility.

108 Chapter 6. Bytecode Conversion

to implement safely part of its internai operations (e.g. destroying the JVM).
Assynchronous exceptions are precise and may be detected after a small but bounded

amount oftime [43, §2.16.2]. The assynchronous exception detection by the JVM must be
designed and implemented with care- not to sacrifice performance- since its occurrence
is rare.

The intermediate representation does not have explicit opcodes for checking assyn­
chronous exceptions. However, it was designed to check for assynchronous exceptions, at
its convenience, by some selected opcodes. Those opcodes are actually the opcodes that
are expensive and usually require runtime callbacks. They must also have support for stack
trace information and have a variant forrn that defines exception catching labels. Those
opcodes comprise the opcodes for calling native methods, allocating memory, initializing
classes and synchronizing. We believe most multithreaded programs will inevitably use
one of these operations from time to time.

With this scheme, it is true that some Java code may never check for assynchronous
exceptions. I f the code does not do any o f the special operations listed above, this will hap­
pen. For instance the following loopForever method will never check for assynchronous
exceptions in our implementation.

void loopForever() {
for (;;)

}

However, code like this does not follow the Java multithreading guidelines. Since
thread scheduling is not strictly defined in the Java platform, the loopForever method
may stuck; not even given the chance to another thread execute and post an assynchronous
exception. Portable well-written multithread Java programs will sometimes yield on tied
loops (by calling native method yield), giving the runtime the possibility for throwing
any pending assynchronous exceptions. The loopForever method could be rewritten
this way.

void loopForever() {
for (;;)

Thread.yield();

}

Chapter 7

The x86 Back-End

This chapter describes the back-end for the Intel Architecture 32-bit family of processors.
The x86 back-end is a simple and naive platform-independent code generator implemen­
tation. As a first implementation, reliability and simplicity where the main goals.

We describe the code generation strategy; the data structures required by the runtime
to implement garbage collection, stack tracing and exception handling; the relocation and
patch tables used to update the method text once in the client-side; and improvements
that should appear in an enhanced version of this x86 back-end.

The reader is assumed to be familiar with the popular Intel 32-bit architecture features
and instruction set [35, 36]. Code samples are displayed using AT&T assembly syntax.

7.1 Code Generation

The x86 back-end uses a simple and naive code generation strategy. In a first moment,
the back-end does the binding of IR registers on the stack frame by doing liveness analysis
and building an interference graph. Afterwards, in a second moment, it does instruction
selection by pattern matching using the tool described in Appendix B. Register allocation
is done only for expression trees, using a well-known technique applied during instruc­
tion selection [2]. The x86 back-end lacks local or global register allocation, instruction
scheduling and peephole optimizations. A discussion about its improvement is left to
Section 7.4.

7.1.1 Stack Frame and Registers Usage Protocol

The code generated by the x86 back-end obeys the following protocol:

• Ali parameters are passed in the stack.

109

110 Chapter 7. The x86 Back-End

• Ali general purpose registers are caller-saved.

• Return values are kept in registers (see Table 7.1).

• Callees pop parameters on return.

TYPE REGISTER

integer /.eax
long integer %eax (low word) %edx (high word)
float %st (O)

double %st (O)

reference %eax

Table 7.1: Registers used to store return values.

The stack frame organization is depicted in Figure 7.1. During calls, callers push
parameters and the return address. Callees create a new frame by saving caller frame
pointer and making room for local variables. Local variables are actually IR registers,
the term local variable is used to avoid confusion with processo r physical registers (e.g.
%eax). Local variables are bounded to the new frame but parameters storage is reused
whenever possible (see Section 7.1.2 for details). The general prologue for methods is the
following:

SELF:

ENTRY:
pushl Y,ebp
movl 'l.esp,'l.ebp
pushl $SELF
subl $8,%esp

;object fields

;save caller frame pointer
;set frame pointer
;push text reference
;make room for 2 local variables

The text reference is a reference to the method implementation itself. Since method
texts are first-class objects, which may become eligible for garbage collection, this reference
prevents the method from becoming unreachable during its execution (see Chapter 9 for
details about garbage collection). For the same reason, the area between the SELF label
and the ENTRY label is reserved for instance fields.

During method return, the caller stack frame must be restored and the control trans­
fered back to the instruction immediately following the cal! instruction. Also the callee is
responsible for popping parameters from the stack. The general epilogue for methods is
the following:

7.1. Code Generation

EXIT:
leave
ret $4

%esp
Local

Variables

Text Reference

%ebp- Caller Frame

Return Address

Parameters

(Local

Variables)

stack
growth
direction

Figure 7.1: Stack frame organization.

;restore prevíous frame
;return and pop 1 parameter

7.1.2 Local Variable Binding

111

The first step in code generation is local variable binding. Local variable binding consists
of associating stack frame indices and thus reserving storage to each local variable
(IR register).

In order to efficiently allocate storage to each local variable, we need to compute a
data flow analysis called liveness analysis. Liveness analysis provides information about
the liveness of each local variable for every point of the IR program. A local variable
is live at a particular point if there is at least one definition of that local variable that
reaches an use of the same variable passing through that point1

.

The characteristics of the liveness data flow analysis are:

1 A local variable use without a definition also makes that local variable live, but that should never
occur in IR programs.

112 Chapter 7. The x86 Back-End

• It is a backward analysis.

• In a path rnerge, the set of live variables is obtained by the union of the set of live
variables on each path.

• A local variable use inserts that local variable into the set of live variables.

• A local variable definition removes that variable frorn the set of live variables.

Using liveness information we can compute the interference graph, a graph where
nodes represent local variables and edges represents liveness interferences. A liveness

interference encodes a pair of local variables that are both live at least in one point in
the IR program. Using the interference graph we can discover the storage required by a
particular IR prograrn. The number of words required to do the local variable binding is
at most one plus the degree of the node with greatest degree.

After building the interference graph, we assign to each node a stack frame index.
For local variables defined by a pararneter-receiving IR statement, e.g. ire c e i v e, the
frame index is positive and obtained frorn the parameter order. For other local variables,
the stack frame index is usually negative and its assignrnent is done greedily - until ali
índices are assigned do: select a node not yet assigned, and assign an index different from
the already assigned adjacent nodes índices.

Care must be taken when handling two word local variables (i.e. long integers and
doubles). In our interference graph irnplernentation, they are split into two separate nodes.
Since two word local variables must be allocated contiguously, during stack frame index
assignrnent we have to consider that the high word index rnust be subsequent to the low
word index.

By doing local variable binding using an interference graph we obtain a very good al­
location, which does not waste storage. Therefore, ordinary local variables are sometimes
bound to the sarne storage as parameter local variables, because their liveness does not
interfere (and thus it has positive index).

7.1.3 Instruction Selection

Instruction selection is done by tree pattern matching using the tree rewriting tool de­
scribed in Appendix B. During instruction selection, we do register allocation for expres­
sion trees, based on a well-known technique (2].

The tree pattern rnatcher is generated by the tree rewriting tool based on a gramrnar
specification. The grammar specification contains the set of tree patterns and associated
actions to generate code. Each tree pattern, plays one of two roles:

7.1. Code Generation 113

1. Matches a tree pattern that is a straight map of one instruction format available on
the underlying instruction set. Tries to capture ali addressing modes and minimize
sizejcycles.

2. Matches a tree pattern that cannot be mapped to a single instruction format. Usu­
ally a small pattern covering a special IR opcode. Generates a code segment with
fixed addressing and instructions. In general, the number of pattern variants to
cover ali possible instruction formats and order combinations is impracticable.

Figure 7.2 shows sample tree pattern rules extracted from the x86 back-end grammar
specification (see Appendix B for a full reference about the specification syntax). These
are rules for matching the signed integer division (idiv opcode). The signed division in
the x86 architecture requires the dividend to be in the %eax register, being the divisor
in any other general purpose register. Before executing the division instruction, the
issue o f a cl td instruction is mandatory in order to sign extend %eax to the 64-bit pai r
eax: edx. Once the division takes place (idivl), the result is kept in %eax register while
the associated remainder is written to the %edx register.

Both rules shown in Figure 7.2 matches the signed integer division idivl instruction.
The difference between the two rules is in the scheduling of the code generated from
subexpressions, which tries to accommodate the register pressure of the whole expres­
sion. This is exactly the implementation technique for expression tree register allocation
described in [2] adapted to a CISC machine. The general idea - employed for orthog­
onal registers sets architectures - is that the minimum number of registers required by
an expression tree r will be the max(rb r2), if r1 =f r2 , or r1 + 1, if r1 = r2 , where r1

and r 2 are the minimum number of registers required by each subexpression respectively.
For the x86 architecture, we have implemented this technique using a written registers

set for each expression instead o f using r. This was done beca use o f the x86 instruction
set operand restrictions in which registers are not homogeneous (as past mentioned for
the idivl instruction). Fortunately, the implementation of written registers sets could
be done efficiently using 32-bit integers; and this was possible exactly because the x86
architecture register set is small.

Let's look a little closer at this grammar specification excerpt in Figure 7.2. Rules have
the non-terminal eax on their left hand size because the result of the idi vl instruction
is always kept in %eax. The non-terminal eax synthetizes three attributes: a mixed
time/space cost, the register that stores the resulto f the expression, and the set o f registers
killed during the computation of this expression. The cost attribute is used to choose the
best tree matching. The tree pattern rules are similar, changing only the subexpressions
scheduling. The tree patterns are simple, they match an i di v opcode requiring that the
dividend must be %eax (eax non-terminal) and the divisor any general purpose register

114 Chapter 7. The x86 Back-End

private void eax()
<int cost, int reg, int kill> [@@.cost < cost]

I IR.IDIV(eax,r32) [@3.reg != as.EDX && (@3.kill k @2.reg) == O]
{ @@.cost = cost(6,3)+@2.cost+@3.cost;

@@.reg = as.EAX;
@@.kill = as.EAXIas.EDXI@2.killl@3.kill; }

= { @2();
@3();
as.cltd();
as.idivl(@3.reg);}

IR.IDIV(eax,r32) [@3.reg != as.EDX && (@2.kill k @3.reg) == O]
{ @@.cost = cost(6,3)+@2.cost+@3.cost;

@@.reg = as.EAX;
Q@.kill = as.EAXIas.EDXI@2.killl@3.kill; }

= { @3();
@2();
as.cltd();
as.idivl(@3.reg);}

Figure 7.2: Sarnple tree pattern rules extracted frorn the x86 specification.

(r32 non-terrninal). It is irnportant that the divisor rnust not be register %edx because
the dividend will be sign-extended to the 64-bit register pair %eax: %edx (it can be seen
that this is captured sernantically rather than syntatically). Also, each rnatch rnust only
occur if the subexpression that is scheduled Iast does not overwrite the register storing the
result of the subexpression scheduled first. The attributes synthetization for both rules is
very sirnple: the cost is the surn of the costs of each subexpression plus a 6 cycles and 3
bytes of the cl td/ i di vl instructions; the result register is %eax; the written registers set
is the union of the written registers set of each subexpressions, including registers %eax
and %edx for the current expression. The code generation for these tree pattern rules is
also sirnple, first the code for each subexpression is generated according to the expected
scheduling (rnethods @2() and @3()), then the instructions related to the division are
generated.

The following assernbly code was generated by the x86 back-end for the expression
idiv(iuse(%O),iadd(iuse(%5),iuse(%0))).

movl [%ebp+8] ,%eax ;left subexpression, Yrite %eax

movl [%ebp-8] ,%ebx ;right subexpression, write %ebx

7.2. Cooperatíve Runtíme Support 115

addl [%ebp+8],%ebx ;must not kill %eax

cltd ;division, write %eax,%edx

idivl %ebx ;result kept in %eax

The rest of the x86 back-end grammar specification is vast and repetitive. Besides,
the ideas used to implement each rule are exactly the same as described in the example
above.

7.2 Cooperative Runtime Support

This section describes extra information provided by the x86 back-end as a requirement
of the language runtime in arder to carry out some of its tasks, namely: live references
identification in the stack frame, stack traces printing, contrai transference to appropriate
exception handler, and identification of references hard-coded in method text objects.

7.2.1 Live Frame References and Stack Tracing Tables

At certain times, the runtime has to inspect the thread cal! stack in arder to gather
information about it. This is only possible when the executing method does a runtime

callback, then the runtime is able to look at the underlying stack. Also, information about
each method in the stack frame must be made available by the code generator to be used
by the runtime during callbacks. The runtime inspects the stack for two reasons: to
discover the set of live root references in the thread stack, and to print a stack trace2

.

We have classified some IR opcodes as inspection-point, they mark points in the IR pro­
gram where the stack frame may be inspected. The code generator identifies inspection­
point opcodes and provides comprehensive information about the IR program during their
execution. There are two types of inspection-point IR opcodes:

Call Opcodes Opcodes that cause another Java method invocation. Provides informa­
tion for ali frames in the cal! stack but the topmost. Namely: call and callx.

Runtime Callback Opcodes Opcodes that cause a runtime callback. Provides infor­
mation for the topmost frame. Namely: init, initx, lock, lockx, ncall, ncallx,
newarray, newarrayx, newinstance, newinstancex.

The inforrnation required by the runtime is generated using a return address indexed
table. After each cal! instruction that is generated to implement an inspection-point IR

2 Also, the security API inpects the stack to discover caller classes and associated protection domains

116 Chapter 7. The x86 Back-End

opcode, the code generator provides a return address label. The return address indexed
table is built associating an entry to each return address label, and its pointer is made
available via the method text header. When necessary, the runtime steps through the
stack collecting the desired information by looking for the return address of each call in
the indexed table associated to each stack frame (see Chapter 8 for object headers/heap
structures layout, and details about stack traversal). Each indexed table entry is a pair of
pointers to two other tables: the live frame references table, and the stack tracing table.
The table is sorted by return address to speedup the search. This can be seen in the
following code sample.

pushl
call

IPOINT-0:
addl

pushl
call

IPOINT-1:
addl
movl

%eax
init

$4,%esp

%eax
ne-winstance

$4,%esp
%eax,12(%ebp)

;pass parameter
;initialize class, runtime callback

;C protocol, caller pop parameters

;instantiate class, runtime callback

;C protocol, caller pop parameters
;save return value

pushl -20(%ebp) ;pass parameter
call *CALLEE-CLASS+96;call method through table

IPOINT.2:
movl %eax,-16(%ebp) ;save return value

INSPECTOR:
.long IPOINT..O
.long TRACE-O
.long o

.long IPOINT_1

.long TRACE_O

.long o

.long IPOINT.2

.long TRACE-1

.long LIVES_O

;the class initialization info
;stack tracing table
;no live references

;the class instantiation info
;stack tracing table, same so is shared
;no live references

;the static method table call info
;stack tracing table
;live frame references table

The live frame references table is a zero-terminated array of signed 8-bit frame índices.

7.2. Cooperative Runtime Support 117

It is used by the runtime to determine the set of live root references for the current stack
frame. It is built using data flow information gathered by liveness analysis during local
variable binding (see Section 7.1.2). The set of índices that make up a live frame references
table is the set of frame índices assigned to the IR registers live at the point immediately
following the inspection-point IR opcode associated to current return address. The en­
coding of the 8-bit frame índices addresses words instead of bytes, also the return address
and text reference índices are skipped to expand the indexing capacity (see Figure 7.1
for stack frame layout). Therefore, an 8-bit index with value 4 addresses the reference at
(4+1)*4(%ebp); an 8-bit index with value -2 addresses the reference at (-2-1)*4(%ebp).

The encoding of the live frame references table using signed 8-bit índices may sound very
limited but it is not. It provides support for identifying up to 128 parameters and 255 lo­
cal variables (including parameters storage being reused by local variables). This is rather
enough though java methods may have up to 255 parameters and, in some pathological
cases, as many simultaneous live references in a single inspection-point as required to
exceed the supported limit. The encoding, however, has sufficed our first implementation
needs, and can be easily reviewed. The following code sample is the live frame references
table for the method translation shown previously.

LIVES-0:
.byte -4 ;reference at -20(Y,ebp) is live
.byte 2 ;reference at 12(%ebp) is live
.byte 3 ;reference at 16(%ebp) is li v e

.byte o ;marks the end of table

The stack tracing table is an array of three field records. Each record contains in­
formation about a source code point that must appear in the stack trace for the current
return address. The first field of the record is a reference to the class that declares the
method that must appear in the stack trace. The second field is the index of that method
as it appears in the declaring class file. The third field is the source code line number that
must appear in the stack trace. If the line number is not available the second field must
have flag value 65535 and the third index must be the index of the method (methods
are indexed from O to 65534 while line numbers, when available, are indexed from O to
65535, so this special encoding was chosen). Each stack tracing table end is marked 'Nith
a null reference. The following code sample shows the stack tracing tables for the method
translation shown above (note that the stack trace information for the first two inspection
points was the same, so a single stack tracing table is shared by both).

118 Cbapter 7. The x86 Back-End

TRACE_O:
.long THIS_CLASS ;class reference
.short 18 ;method index
.short 77 ;line number
.long o

TRACE-1:
.long THIS..CLASS ;same class reference
.short 18 ;same method index
.short 79 ;two lines below
.long o

For IR programs translated right after the conversion from bytecode, each stack tracing
table has at most one three field record. However, multiple records are supported in
order to correctly implement stack traces when inlining optimizations occur before the
translation by the back-end takes place. Inlining optimizations replace in loco method
calls by the contents of the callee methods. Then method calls are eliminated and related
stack trace information would be lost. In order to keep stack trace integrity, the stack
trace information of the eliminated method call is added to the stack trace information
of each inspection point in the code being inlined. The following code sample shows the
stack tracing table resulted from the inlining of a method call.

TRACE-1:
.long CALLEE..CLASS
.short 34
.short 203

.long THIS..CLASS

.short 18

.short 79

.long O

;class that oYns the callee method
;callee method index
;line number

;previous stack trace information
;that would have been lost after applying
;the inlining optimization

As in the case of the live frame reference table encoding, the stack tracing table
encoding was chosen for simplicity. Better alternatives are certainly available.

7 .2.2 Exception Catching Routine

IR programs that h ave exception catching entry points (acatch opcode) are translated
to method texts that must provide an exception catching routine. An exception catching

7.2. Cooperative Runtime Support 119

routine is a small code segment that, based on the return address of a cal!, catches and
delegates an exception to its appropriate handler. The exception catching routine of a
caller method is used by the runtime to search for a handler whenever an exception is
thrown through the frame of the callee method.

When a method cannot handle an exception, it rethrows the exception which may
be catched by any caller method in the call chain. This rethrown action is done by
calling a runtime routine called _athrow_. The _athrow_ routine receives as parameter
the exception instance being thrown. Then the _athrow_ routine steps through the stack
looking for a method who catches the exception (see Section 8.3.2 for details about stack
traversal). For each frame visited, it uses the text reference to reach the associated method
text instance and check if it implements an exception catching routine (a possibly null
pointer field in the method text header). If the method text does not implement an
exception catching routine then the step through the stack continues. Otherwise, the
exception catching routine is invoked. The parameters to the exception catching routine
are: the exception being thrown, the return address. for the method ass.ociated to the
current stack frame, and the current stack frame base pointer. A sketch code for the
athrow routine is shown above.

athrow:

popl %e ex

popl %eax

NEXT:

movl 4(%ebp),%edx
movl (l(ebp),%ebp
movl -4(%ebp),l(ebx

testl %ebx,%ebx
je C..FRAME

movl -8(%ebx),%ecx
movl -12(%ecx),%ebx

testl %ebx,%ebx
je NEXT

pushl %ebp
pushl %edx
pushl %eax

call *%ebx

;discard return address,
;_athrow_ never returns
;save exception instance in Y.eax

;save return address in %edx
;goto caller frame
;save text reference in Y.ebx

;if text reíerence is null
;its not a java frame

;save method text header pointer in %ecx
;save exception catching routine in %ebx

;if no exception catching available
;proceed to caller frame

;pass frame pointer as parameter
;pass return address as parameter
;pass exception instance as parameter

;jump to exception catching routine
;it never returns ...

120 Chapter 7. The x86 Back-End

C..FRAME:
;C trame, return to JNI

In order to implement the exception catching routine, the x86 back-end must keep
track of ali possible return addresses of exception-prone opcodes (e.g. callx, newinstancex,
etc) for a particular IR program. During code generation an extra sequentiallabel is placed
after each call instruction associated to an exception-prone opcode. That can be seen in
the code excerpt above for a direct method cal!.

pushl -12(Y,ebp)
pushl -8(Y.ebp)
call CALLEE~Y

XRETADDR..2 :
movl %eax,8(%ebp)

HANDLER..2:
movl Y.eax,-8(Y,ebp)

;push second parameter
;push first parameter
;direct method call
;return address label
;save return value in local

;handler enclosing the call
;store exception instance in local
;handle exception

The code for the exception catching routine is generated by the back-end just after the
actual method translation. The exception catching routine restores the current method
stack frame and searches the exception-prone return labels using the return address. If

any label matches the return address, then control is transfered to its handler entry point
label. Otherwise, the exception was thrown in a point not enclosed by a exception handler,
and is not handled by current method; it is then rethrown in caller frame by calling the
athrow routine. A sample exception catching routine is shown above, note that the
return rnethod search is done sequentially for the sake of clarity, actual irnplernentation
uses a lookup table method.

CATCMER:
popl %e ex
popl %eax
popl %edx
popl %ebp

;discard return address, never returns
;save exception instance in Y.eax
;save return address in %edx
;restore current stack frame

leal -12(%ebp),%esp ;restore top of tbe stack

cmpl $XRETADDR-O,%edx;search for return address
j e HANDLER..O ; and transfer control to handler
cmpl $XRETADDR-1,%edx;exception instance is kept in %eax

7.2. Cooperative Runtime Support

j e HANDLER-1

cmpl $XRETADDR-2,%edx

j e HANDLER..2

pushl %eax

call _athroW"_
;exception not catched
;rethrow in caller frame

7.2.3 Method Text Reference Table

121

Each heap allocated class instance must provi de information about the layout of references
in its field area. The instance class is usually the common placeholder for that kind of
information. During garbage collection, each class instance is visited, and using its class
referencé, it is possible to locate the references inside the field area, which are scheduled
to be visited in the future according to the garbage collection scheme.

Since in our implementation method texts are first-class objects (instances of final
class MethodText), there must be a way to Iocate references directly referenced in its
body. The types of references directly referenced by a method text are:

• Method texts, used in direct calls.

• String literais, intemalized instances of class String.

• Meta class objects, instances of class Class.

In order to obtain that information, each method text instance has in its header a
pointer to a table of references, the method text reference table. That table is simply a
immutable null-terminated array of references. Some other possibilities for encoding such
table are possible but we choose this encoding for simplicity rather than storage efficiency.
For instance, storing a 16-bit offset in the method text, indicating a reference encoded as
instruction immediate data, would save half the memory; however it would limit method
text length to be near 64K, and method text reference offsets should be flagged since, as
immediate data, they are stored as PC relative addresses (even after we have obtained the
absolute address from the relative address, this absolute address still is not the method
text reference (SELF), but a pointer to its entry point ENTRY; a constant value must be
subtracted from it). Simplicity was then an adequate choice specially because, in practice,
this table is rather small and duplicate entries can be easily eliminated.

In addition, each method text instance has in its header a reference to its declaring
class. This reference is required to prevent the class from being garbage collected while the

3Some implementations do not store the class reference in each instance, but a class record pointer.

122 Chapter 7. The x86 Back-End

method text is still executing (reachable by a text reference in any stack frame). Object
headers and heap structures layout are described in Section 8.1.

7.3 Relocation and Patch Tables

This section provides details about relocation and patches that must be done by the
runtime whenever a new method text is instantiated. Relocation consists of updating
memory locations inside the method text by adding its base offset to them. Patches
are updates to memory locations inside the method text in order to reflect the actual
reference of another object. The relocation and patch tables are part of each method text
information sent to the client-side during the TRANSLATE phase using the x86 back-end.

7.3.1 Relocation Table

The relocation table specifies method text offsets that contain absolute addresses to mem­
ory locations relative to its base address. The table is required because the run-time
address of a method text is not known prior to its instantiation, and relative addressing is
not available. Usually, relative addressing is not available when a label has to be placed
in a table or used as immediate data of a non control transfer instruction. For instance,
ali the contents of the return address indexing table described in Section 7.2.1 need to be
relocated; the address of each word must be included in the relocation table.

Prior to relocation, relocatable addresses contents are the zero-based offset of each
label inside the method text. Relocating an address means adding the base address of
the method text to this offset, resulting in its absolute address.

Method Text

OOOOOOOOH

OOOOOl.OOH

00000200B

' ;,..-

'

• OOOOOlOOH

Relocation Table

looooo2ooH~

Run-Time Image

01083000B '
,.......

01083l.OOH '

01083200H ; 01083100H ·

Figure 7.3: Relocation of absolute addresses.

7.3. Relocation and Patch Tables 123

Figure 7.3 shows how relocation is irnplemented. During code generation, each ab­
solute address to a label inside the method text is initialized with its offset from the
base offset (OOOOOlOOH); also the offset of the absolute address is recorded for relocation
(00000200H). At run-tirne, each entry in the relocation table is visited and the rnethod
text base address is added to the absolute address at the associated offset.

01083000H+00000100H=01083100H

7.3.2 Runtime Callback Patch Table

The runtime callback patch table specifies method text offsets that contains PC relative
addresses to runtirne callback routines. The table is required because the address distance
between the method text object and the callback entry point is not known before run­
tirne. This address difference is exactly the value used as irnmediate data to relative calls.
Relative addressing needs patching when target addresses are located outside the sarne
block of code, which is the case.

Prior to patching, PC relative addresses contents are the difference between the rnethod
text base offset and the offset following the irnrnediate data. Patching means adding the
address difference between the callback entry point and the method text to that value.

Metbod Text

0000000011: ~ """
~--

00000100B: FFFFFEFCH f-- _Dlhraw_

00000200H: FFFFFDFCH r- _ailuaw_

Callback Patch Table

ativuw 00000100H '

00000200H .

Run-Time Image

01083000ll '
,._

010$3100H : OOFFFEFCH

\

01083200H : OOFFFDFCH

_atbrow

03083000H '

Figure 7.4: Patching of runtime callbacks.

""'' --

Figure 7.4 shows how runtime callback patching is irnplemented. During code gen­
eration, each PC relative address to runtirne callback is initialized with the difference
between the base offset and the offset following the immediate data.

124 Chapter 7. The x86 Back-End

OOOOOOOOH-00000104H= FFFFFEFCH

OOOOOOOOH-00000204H=FFFFFDFCH

Also the offset of the immediate data is recorded for patching according to the associ­
ated runtime callback (_athrow_). At run-time, each entry in the runtime callback patch
table is visited and the address distance between the runtime callback entry point and
the method text base address is added to the immediate data at the associated offset.

02083000H-01083000H= 01000000H

FFFFFEFCH + 01000000H = OOFFFEFCH

FFFFFDFCH + 01000000H = OOFFFDFCH

7.3.3 Method Text Patch Table

The method text patch table is similar to the runtime callback patch table but instead
of specifying runtime calls, it specifies other directly called method texts. This table is
also required because the address distance between the method text objects is not known
before run-time. Method text references are symbolically identified as an entry in a class
dispatch table (e.g. java/lang/System[3]).

As occurred in the runtime callback patch table, prior to patching, PC relative address
contents are the difference between the method text base offset and the offset following
the immediate data. Patching means adding the address difference between method texts
to that value.

Figure 7.5 shows how method text patching is implemented. During code generation,
each PC relative address to runtime callback is initialized with the difference between the
base offset and the offset following the immediate data.

OOOOOOOOH-00000104H= FFFFFEFCH

OOOOOOOOH-00000204H=FFFFFDFCH

Also the offset of the immediate data is recorded for patching according to the as­
sociated method text (java/lang/System[3], java/lang/System[7]). At run-time, each

7.3. Relocation and Patch Tables

MethodText Run-Time Image

OOOOOOOOH ' 1"- 01083000H

OOOOOlOOB : FFFFFEFCH - j~S;ptemf 7 1 01083100H

OOOOOlOOB ; FFFPFDFCH - j<MJilantfSyttem{3J 01083200B

Method Text Pakh Table

jaoullangJS)'$tmrfJJ !ooooo2ooHp 02083000B

javalkmg/SJ.<kln(71 looooo1ooHm

02084000H

' .-
: OlOOOEFCH

\

: OOFFFDFCH

javallang!Syste~

'

java/lang!Syste,f

'

Figure 7.5: Patching of method text calls.

125

entry in the method text patch table is visited and the address distance between the
method texts addresses is added to the immediate data at the associated offset.

02083000H-01083000H=01000000H

02084000H-01083000H=01001000H

FFFFFEFCH+01001000H=01000EFCH

FFFFFDFCH+01000000H=OOFFFDFCH

7.3.4 String Literal Patch Table

The string literal patch table specifies method text offsets that contains direct references
to string literais. The table is required because the run-time address of a string literal
(instance of String) is not known during code generation. Direct references to string
literais are obtained from the translation of the astring IR opcode.

Prior to patching, string references are initialized with null (OOOOOOOOH). Patching
means overwriting that value with a~tual string reference. The actual string reference is
obtained from the internalized string table (see String. in tem() API call).

Figure 7.6 shows how string literal patching is implemented.

126

Metbod Text

OOOOOOOOH ' -
00000100H : OOOOOOOOH '----

Striog Literal Pakb Table

"He/.k>_wqrldl• loooOOlOOH~

Chapter 7. The x86 Back-End

Run-Time Image

01083000B ' !--.
'

01083100B : 02083000H

"'
"HeUo, World!"

02083000B '

Figure 7.6: Patching of string literal references.

7 .3.5 Meta Class Patch Table

The meta class patch table specifies method text offsets that contains direct references to
meta class objects. The table is required because the run-time address of a meta class
object (instance of Class) is not known during code generation. Direct references to
meta class objects are obtained from the translation of the aclass IR opcode.

Prior to patching, meta class references are initialized with null (OOOOOOOOH). Patch­
ing means overwriting that value with actual meta class reference.

Metbod Text

OOOOOOOOH~

OOOOOlOOB: OOOOOOOOH - j4wJIIang/SysU:m

Meta Class Pakh Table

~g/S~um looOOOlOOH'

Run-Time Image

Ol083000B ' i--

01083100H : 02083 OOOH h

jwvallant:fSysteDI

02083000B '

Figure 7. 7: Patching of meta class references.

Figure 7.7 shows how meta class patching is implemented.

7.4. Back-End Improvements 127

7.4 Back-End lmprovements

The current implementation of the x86 back-end still lacks a lot of improvements. The
most important improvements deal to:

Processor Specialization The back-end should be split in multiple back-ends sharing
a common framework - one for each base processar of the Intel family. This would
give us the opportunity to generate better code for machines that have processors
with better hardware resources.

Instruction Selection The instruction selection must be simplified not to address ex­
pression tree register allocation. We noticed that trying to allocate registers to
expression trees for a CISC machine results in large and heavy matchers. Removing
this task from instruction selection is a better choice. The new implementation
would be faster and consume less memory.

Global Register Allocation Since register allocation is not performed during instruc­
tion selection, a register allocator should be provided. Global register allocation
does a map from virtual registers to machine registers trying to minimize memory
accesses. It may be extended to allocate machine registers also to local variables
that would be removed from the stack frame.

Peephole Optimizations Some peephole optimizations should be incorporated into the
x86 back-end. Peephole optimization is a gain-proven cost-effective well-known tech­
nique used to implement simple optimizations based on a small window of code.
Peephole optimization could be used in the x86 back-end to find and replace seg­
ments of code that can be rewritten as machine idioms (e.g. hardware loops and
SIMD MMX instructions).

Instruction Scheduling For superscalars processors, instruction scheduling is an im­
portant optimization. It is basically the reordering of instructions in order to opti­
mize the processor pipeline instruction flow.

Chapter 8

Runtime Environment

This chapter describes the Client JVM runtime implementation. The runtime is composed
of a garbage-collected heap, multiple thread stacks, a monitor allocation table and the
JNI implementation. Garbage collection, is the most complex runtime component, and
thus deserves a separa te chapter (Chapter 9).

8.1 Heap Structures

The garbage-collected heap is a linked-list of memory blocks. The allocation of memory
blocks is clone in page units, using the underlying operating system memory allocation
interface. Each memory block, contains a sequence of word-aligned heap objects placed
contiguously inside the block. There are six types of heap objects, namely:

Ordinary Objects Instances of ordinary classes (e.g. String, Thread, etc).

Array Objects Instances of array classes.

Method Text Objects Instances of class MethodText, each one representing a Java
method binary translation.

Meta Class Objects Instances of class Class, each representing a loaded class.

Free Cells Memory blocks not currently associated to the storage of a Java object.

Block Records Information about the current heap memory block in the heap linked­
list.

The first memory block in the heap linked list is the only block allocated ahead of
time. It is allocated in the data segment and contaíns objects resulting from the core
libraríes embeddíng (see Chapter 10).

129

130 Chapter 8. Runtime Environment

In addition to the memory block linked-list, the heap irnplementation provides a free

cell cache, as being the usual implementation of the allocator. It is a table used to speed
up the search for small free cells during allocation. Each cache entry points to the first
element of a linked-list of fixed-size free cells. The allocator implementation is described
in details in Section 8.2.

Each heap object has a two-word internai header which contains information associated
to the heap implementation. The internai header has a negative offset and its contents
varies according to the object type.

8.1.1 Ordinary Objects

Ordinary objects are instances of ordinary classes. The heap layout of ordinary objects,
depicted in Figure 8.1, is logically divided in two areas: the inherited field area and the
new field area.

GC lnfo

~- Class Reference
··-~-- ~~------------i

References

lnherited

Fields

New

Fields

Figure 8.1: Ordinary objects layout.

The inherited field area is used to store instance fields declared in superclasses. Its
layout must match the layout of both inherited and new field areas of the superclass. The
new field areais used to store instance fields declared in the current class. However, some­
times new fields are placed in the inherited field area to fill gaps left by word alignment.
The placement of instance fields in the field areas is done by the Server JVM as described
in Section 4.5.2.

For ordinary objects, the internai header is composed of its class reference, used to
determine its type, its size and implement virtual calls; and the GC lnfo word, which
is a bit field that contains information regarding monitor, garbage collection and heap
implementations.

8.1. Heap Structures 131

8.1.2 Array Objects

Array objects are instances of primitive and reference arrays. The heap layout for array
objects is depicted in Figure 8.2. As in the case of ordinary objects, array objects have
inherited and new field areas. In addition, it have a variable length area reserved for the
array elements. The inherited and new field areas are usually empty for array objects;
therefore the access to the elements can be done directly using their reference as the base
offset. Array classes are final, so its variable length layout does not need to be matched
by subclasses.

Program­
References

I.ength
--·---------- -----------

Class Reference

lnherited

Fields

New

Fields

Array

Elements

GClnfo

Figure 8.2: Arrays layout.

~

..

The internai header of array objects is composed of its class reference and its length.
The actual size of an array object is the sum of its instance size, retrieved from class, with
its length scaled by its element width. Since there is no room in the internai header for
the GC Info, it is placed after the array elements area.

8.1.3 Method Text Objects

A method text object is a first-class object that represents the binary translation of a Java
method. It has special semantics, and its layout is depicted in Figure 8.3. Like arrays, the
MethodText class is final, and thus no subclasses will have to match its layout. Also, the

132 Chapter 8. Runtime Environment

inherited and new field areas are usually empty (it declares no fields and extends Ob ject,

which also declares no fields in its standard implementation).
The binary code is placed right after the new field area. It contains not only the method

translation, but also the exception catching routine and the live frame references, stack
tracing, and method text reference tables, that were described in Section 7.2. Following
the binary code area comes a four entry table that identifies these entities inside the
method text. The reference to the class that declares the associated method is provided
as well.

Program

Re!erences -

Entry
Point ~

/
/
/

~
\

Tail Pointer

\ -·----------------·-
Class Reference

Inherited

Fields

New

Fields

Binary

C ode

Declaring Class
-----------·----------·

Catcher Routine
--------------------·-

Inspection Table

.J ------------------
Reference Table

GClnfo

Figure 8.3: Method texts layout.

The internai header of method text objects is composed of its class reference (class
MethodText) and a tail pointer. The tail pointer is required to determine the method text
size since the binary area has a variable length. Also, it identifies the bottom of the four
entry table described above used by the runtime to access the method text internais. That
table has a fixed-size and could have been placed after the new fields area. However, once
both inherited and new fields areas are usually empty, moving that table to the bottom
makes the binary code entry point equals to the method text reference, simplifying method
calls. At last, since no room is left for the GC Info in the method text internai header, it

8.1. Heap Structures 133

is placed after the four entry table.

8.1.4 Meta Class Objects

Meta class objects are instances of final class Class. Apart from holding its instance
fields, each meta class object is also the common placeholder for the dispatch table and
static field area of the Java class it represents. Also it provides room to store extra
information required by the runtime to implement some o f its operations (e.g. runtime
type compatibility checks, linkage state, etc). Figure 8.4 depicts the layout for meta class
objects.

Following the inherited and new field areas comes the dispatch table which is composed
of three parts. The first part is a single entry to the class initializer (<clinit>); this
entry is null if the class does not provide a static initializer. The second part is the subset
of dispatch entries associated to methods that may be overriden by subclasses. The layout
of subclasses must match the layout of the superclass for these entries. The third part is
the subset of method entries that will never be overriden by subclasses (i.e. static or final
methods and constructors).

The next area in the meta class object layout is reserved for static fields, those fields
declared static in the class represented by the current meta class object. On the sequence,
comes the native pointer table, one for each native method declared in the associated
class. Native methods are resolved and bound by the runtime during their first use; after
resolution, the entry point address of the actual JNI native method implementation is
stored into the native pointer table.

The internai fields area contains information used by the runtime to access and operate
over the class object and its instances. This information comprises:

• Name and version number.

• Superclass reference.

• Interfaces references and associated dispatch table base offsets.

• Defining class loader reference.

• Element class reference, dimensions, and element width (for array classes).

• The linkage state, any of: loaded, linked, initialized or erroneus.

• The initialization thread id (refer to the class initialization procedure [43, §2.17.5]).

• A flag indicating i f the instances need to be finalized, as part of garbage collection
efficiency [43, 2.17.7].

134

Program __...,.
References

Dispatcb
Table -

Chapter 8. Runtime Environment

Tail Pointer

\ -------------------
Class Reference

Inherited

Fields

New

Fields

Class lnilializer
------------------·

lnherited

Entries

·-----------------·

Overridable

New Entries

·-----------------·
Non-Overridable

New Entries

Static

Fields

Native

Pointers

Internai

Fields

----------------------· i) Meta lnfo Pointer

GClnfo -
Figure 8.4: Meta classes layout.

8.1. Heap Structures 135

• The offset and type of the weak reference (if the case).

• Static and instance sizes.

• Static and instance reference table offsets and sizes.

• Overridable dispatch table entry count.

• Non-overridable dispatch table entry count.

The meta info pointer points to a structure that contains meta information about
the associated class. This meta class information is actually the information provided by
the META phase, as described in Section 4.5.3, required to print stack traces and by the
Reftection API (it is also required by the JNI).

The internai header of meta class objects is composed o f its class reference (class
Class) and a tail pointer. The tail pointer is required to determine the meta class size.
Since no room is left for the GC Info in the method text internai header, it is placed just
after ali areas.

8.1.5 Free Cells

Free cells are heap objects whose storage was reclaimed by garbage collection and was
still not assigned to an actual Java object. The layout of free cells is simple, as depicted
in Figure 8.5. It is basically a size word followed by some uninitialized space followed by
a trailing mirror size word.

Runtime
Pointers __.....,.

-----~~!~----- i
Null Reference '

Ce/l Size

Unused

Are a

Ce/l Size

'=====-·"'

Figure 8.5: Free cells layout.

For three-word free cells (including the size of internai header) the size words overlap.
Two-word free cells does not provide a size word but a bit set in its GC Info word (see

136 Chapter 8. Runtime Environment

Section 8.2.1). One-word free cells are not allowed since they cannot be represented as
a heap object (every heap object must have a two-word internai header), this is done
by preventing the allocator from fragmenting free cells that would leave just one-word
remaining.

Non-Java heap objects, i.e. free cells and block records, are identified by having a
null reference in their internai header, instead of a class reference as in the case of Java
objects.

8.1.6 Block Records

Block records store information about a particular memory block of the heap linked list. It
is placed at the bottom of the memory block and contains basically two information: the
memory block size (including itself), anda pointer to the block record of the next memory
block in the heap linked list. The layout of a block record can be seen in Figure 8.6. The
pointer to the next block record is not shown beca use it is encoded as part o f the GC In f o
word, as described further in Section 8.2.1.

GClnfo

Runtime Null Reference
Pointers ___. t-------1!

Block Size

Figure 8.6: Block Records layout.

8.2 Allocator lmplementation

This section describes the heap memory allocator implementation. It does not cover ali
the gory details behind the implementation, but gives the reader a broad idea about how
it works. The allocator has no great innovations if compared to similar implementations
for other language runtime implementations.

8.2.1 GC Info Word

Every heap object has a two-word internai header. One of the words holds a reference
to the class of a Java object or a null reference for non-Java objects. The other word is
the GC lnfo word, or an object specific value that enables the localization of the GC Info
word inside it.

8.2. Allocator Implementation 137

As the name implies, the GC Info word holds garbage collection information associated
to each particular object. But it also holds information about the object monitor and
heap flags as we!Jl. Figure 8. 7 shows the contents o f the GC In f o word for each object
type.

Class Instance GC lnfo
n-1 8 7

' Monitor!D /

I O

GC Bits \
'

Fina1ized Bit

'---GrayBit

'---- Finalizer Reachability Bit

'----- Phantom ReachabHity Bit

'------ Weak Reachabj]jty Bit

'------- 5oft Reachability Bit

'-------- Strong Reachability Bit

Free Cell GC Info
n-1 2 1 O

Next Cell Pointer O

L Zero Size Bit

'---- Free Ccll/Block Record Bit

Block Record GC Info
n-1 2 1 O

Next Record Pointer I

L Previous Free Bit

Fl'ee Ccll/Block Record Bit

Figure 8.7: GC Info bits for each heap object.

The GC Info for Java class instances can be divided in three parts. The first part is
composed of bit O which is set by the heap allocator to indicate that the area immediately
preceding the object is a free cell. That information is used to merge two consecutive free

1 The name GC lnfo may not be so appropriate. It was kept in this documentation because, since
early implementation, it was used repeatedly in the source code.

138 Cbapter 8. Runtime Environment

blocks when an object is garbage collected. The second part goes from bit 1 to bit 7 and
is information used by the garbage collection algorithm to store the state of the object.
Bit 1 is used to mark objects who have been finalized. Bit 2 is a gray bit required by
incrementai garbage collection. Bits 3 to 7 makes up the the reachability for the associated
object. Bit 3 is set whenever the object can become live through the execution of another
object finalizer method. Bits 4 to 7 are set according to the reachability type for the
object, if none of these bits is set then the object is unreachable. Garbage collection is
treated on Chapter 9.

The GC Info for free cells contains two flag bits and a pointer. The pointer points to
the next free cell in the linked list of fixed size free cells. That linked list is reachable by
the free cell cache table. Since ali free cells are word aligned the Jeast two bits (three bits
for 64-bit systems) are always zero and their storage can be reused. One o f these bits
(bit 1) is used to distinguish free cells from block records. The other bit (bit O) is set to
identify empty free cells.

The GC Info for block records is similar to the GC Info for free cells except that bit O
indicates that the preceding area is a free cell, and the pointer points to the block record
of the next heap memory block in the heap linked list.

8.2.2 Allocation Procedure

This section describes the heap allocation procedure. Whenever a Java class is instantiated
storage for it must be obtained from the garbage-collected heap. As seen before, the size of
the storage area depends of the class being instantiated. The procedure herein described
allocates an area given that its size is already provided.

First we describe the global variables required by the heap implementation. These
variables comprise a pointer to the block record associated to the head memory block of
the heap linked list; a free cell cache indexed by size for small objects; and a free cell
cache for big objects (usually big objects are considered to have size greater than 1024
words).

blockrecord heaptop
freecell smallcache[SMALL..SIZE]
freecell bigcache

Next we provide a helper function that, given a free cell already removed from the
free cell cache, adjusts the area size to the required size. This occurs because usually the
search for an small area may demand fragmenting a larger one. The remains of the area
are inserted back into the free cell cache. If the area has the expected size then the object

8.2. Allocator Jmplementation 139

placed right after the free area is modified to reflect the fact that its preceding area is not
free anymore.

void ReclaimTail(freecell f, integer size)
integer freesíze +- f.size
if freesize = size

(f+size).previous.iree +- false
e !se

f.size +- size
f+- (f+size)
size +- freesize-size
f.size +- size
if size < SMALL..SIZE

f.next +- smallcache[size]
smallcache[size] +- f

e! se
f.next +- higcache
bigcache +- f

The following two procedures are used to search for a free area in both small and big
free cell caches. Attention should be given to the fact that free cells greater than the
required size in one word cannot be used to allocate the associated object. This is denied
because that would leave a one word free area which cannot be used to represent a heap
object. If such restriction is obeyed and an object is found, it is removed from the cache,
its size is adjusted and it is returned to the caller routine. If no appropriate free cell can
be found in the caches, a null pointer is returned.

freecell SearchSmall(integer size)
if size < SMALL..SIZE

integer i +- size
if smallcache[i] # null

freecell f +- smallcache[i]
smallcache[i] +- f.next
Reclaim Tail (f, size)
return f

for i in size+2 to SMALL..SIZE-1 do
if smallcache[i] # null

freecell f +- smallcache[i]
smallcache[i] +- f
ReclaimTail(f, size)
return f

return null

140

freecell SearchBig(integer size)
if bigcache i null

if bigcache.size = size or bigcache.size 2: size+2
freecell f t- bigcache
bigcacbe t- f.next
ReclaimTail(f, size)
return f

eis e
freecell prev t- bigcache
freecell f t- prev.next
while f i null

if f.size = size or f.size 2: size+2
prev.next t- f.next
ReclaimTail(f, size)
return f

prev t- f
f t- prev .next

return null

Chapter 8. Runtime Environment

The main allocation procedure is shown below. First it tries to search for a free cell
in both small and big caches. If a free cell is not available then is requires the underlying
operating system to allocate fresh memory. The size of the memory area to be allocated
is the smallest multiple of the memory page size that is big enough to hold the free cell
(size), its header (2 words), a block record (3 words), and still does not leave a one word
space left blank (2 words). The new memory block is inserted into the heap linked list
and extra space is inserted into the free cell caches.

freecell A!locate(integer size)
freecell f t- SearchSmall (size)
if f= null

f t- SearchBig(size)
if f= null

integer memsize t- 0Spagealign(2+size+2+3)
freecell f t- OScommit(memsíze)
if f= null

return null

blockrecord b t- (f+memsize-1)
b.size +- memsize
b.next t- heaptop
heaptop t- b

f t- (f+2)
f.size t- memsize-2-3

8.2. Allocator Implementation

f.next +- nu!!
ReclaimTail(f, size)

return f

8.2.3 Deallocation Procedure

141

This section details the heap deallocation procedure, it does the reverse of the allocation
procedure. It reclaims used area, merging adjacent free cells, and inserts the new area in
the free cell cache.

The following routine searches and removes a particular free cell from the free cell
caches. Free cell caches are implemented as simple linked lists.

boolean RemoveFree(freecell f)
integer size +- f.size
if size < SMALL..SIZE

if smallcache[size] ~ nu!!

e !se

if f= smallcache[size]
smallcache[size] +- f.next
return true

else

freecell prev +- smallcache[size]
freecell p +- prev .next
while p ~ null

if p =f
prev.next +- p.next
return true

prev +- p
p +- prev .next

if bigcache ~ null
if f = bigcache

bigcache +- f.next
return true

else
prev +- bigcache
p +- prev .next
w hile p ~ null

if p =f
prev.next +- p.next
return true

prev +- p
p +- prev .next

ret urn f a! se

142 Chapter 8. Runtíme Envíronment

The deallocation procedure is shown below. First it checks i f the area immediately
preceding the area being deallocated is free, it does that in order to maximize free cells
and thus avoid fragmentation. If the preceding area is free, it is removed from the free
cell cache and merged with the object being reclaimed. The same thing occurs for the
area immediately following the object; if it is free, it is removed from the free cell cache
and merged. At last if inserts the resulting free cell into the caches, and updates the GC
Info of the following object to record that the preceding area is a free cell.

void Deallocate(object o)
integer size +- o.size

if o.prev..free
freecell f +- o
integer prevsize +- (f-3).size
f +- f-(2+prevsize)
o+-f
size t- size+2+prevsize
RemoveFree(f)

freecell f +- o+size+ 2
if f.class = null

if f.is..free
size +- size+2+f.síze
RemoveFree(f)

f+- o
f.size +- size
if size < SMALL..SIZE

f.next +- smallcache[size]
smallcache[size] +- f

else
f.next +- bigcache
bigcache +- f

o +- f+síze+2;
o.prev..free +- true

8.2.4 Heap Traversal Procedure

This section presents the procedure for walking through the garbage-collected heap. This
procedure is required by the garbage collector to visit ali objects, usually called when it
is operating in incrementai mode or collecting the garbage.

8.2. Allocator Implementation 143

This first routine returns the reference to the first object of the heap. From the heap
linked list head block record is starts scanning current block skipping free cells until it
encounters a Java object or the block record. In the last case it continues the scan in the
next memory block.

object HeapStart()
blockrecord b +-- heaptop
object o +-- (b+l-h.size+2)
while o.class = null

freecell f +-- o
if f.is..free

o +-- (f+f.size+2)
eis e

blockrecord b +-- f.next
if b = null

return null
o+-- (b+l-b.size+2)

returno

The following procedure is used to proceed to the next heap object given the current
one. What it does is jumping the area of the current object and searching for the next
object in memory blocks skipping free cells, as described above.

object HeapNext(object o)
object class +-- o.class
if class = Class or class = MethodText

o+-- (class.taiLpointer+3)
e !se

integer size f- class.instanca.size
if class.dimensions ;" O

size +-- size+o.length *class.array _width+ 1;
o+-- (o+size+2)

while o.class = null
freecell f +-- o
if f.is..free

o +-- (f+f.size+2)
eis e

blockrecord b +-- f.next
if b = null

return null
o+-- (b+l-b.size+2)

returno

144 Chapter 8. Runtime Environment

8.3 Thread Stacks

At run-time, each started Java thread has its own thread stack allocated in the virtual
machine address space using underlying platform primitives. In our implementation, each
Java thread is implemented as a native thread for simplicity. At first, we decided not to
implement green-threads nor any other resource-aware alternate strategy, though, in the
future, they may be incorporated with reasonable ease.

Different from other Java runtime implementations, our implementation stores Java
stack frames in the native thread stack interleaved by native frames. The detection
of stack overflow is not done explicitly on each method cal!, but captured in a native
stack overflow signal handler, or whatever similar mechanism available in the underlying
platform. Even though detecting stack overflow using this approach eliminates method
calls overhead, it revealed limitations of our exception catching scheme when dealing with
its assynchronous nature.

8.3.1 Stack Organization

The stack organization for our interleaved stack implementation is exemplified in Fig­
ure 8.8. Java stack frames are composed of five elements: the parameters, the return
address, the previous frame pointer, a reference to the associated method text and the
local variables. During native calls, the topmost Java frame pointer is stored in a thread

local storage ín order to be retrieved back when Java code starts executíng again.
When the native implementation decides to do a Java method callback, it must create

a pseudo frame in the stack used to separate the native and Java areas in the stack. The
pseudo frame, similar to a Java frame, has parameters provided from JNI calls, a return
address, and a frame pointer backup. In addition, it has a null reference, instead of a
method text reference, used to identify the pseudo frame; a previous Java frame pointer
read from the thread local storage during the callback; and a area reserved for saving
registers assumed not to be written by callees using the standard native protocol.

8.3.2 Stack Traversal Procedure

In this section we provide the procedure for traversing a thread stack. The thread stack
traversal is required when printing stack traces, collecting garbage collection root refer­
ences, and discovering caller classes. This last operation is required by the Java security
mo dei.

The stack traversal procedure is fairly simple, and is below:

boolean TraverseStack(address top..frame, boolean process(address, address))
address frame +- top..frame

8.3. Thread Stacks

Topmost
JavaFrame

Callback
Pseudo Frame

Native Stack
Organizati.on

Native Metbod
JavaFrame

Ordinary
JavaFrame

Bottom
Pseudo Frame

Native Stack
Organization

Local
Variables

Retum Address

Parameters

Callee-Save
Registers

Figure 8.8: Stack organization.

stack
growth
direction

145

146

while frame # null
address ret.address +- frame.ret.address
frame +- frame.previous
object method_text +- frame.method..text
if method_text = null

frame +- frame.java.previous
eis e

boolean continue +- process(frame, reL.address)
if not continue

return false
return true

Cbapter 8. Runtime Environment

To traverse the thread stack we need two parameters: the topmost Java frame pointer,
which can be read from the thread local storage, and an action function. Then we start
visiting Java stack frames skipping pseudo frames until we find the bottom pseudo frame.
For each Java frame the action function is called passing as parameter the frame pointer
and the return address of its callee. The stack traversal continues while the action function
returns false or the bottom pseudo frame is reached. It returns true if definately ali Java
frames have been processed.

8.3.3 Stack Overfiow Detection

As said before, in our implementation the stack overflow detection is done by handling a
native stack overflow signal, or a similar rnechanism in the underlying platform. In the
signal handler code, a new instance of class StackOvertlowError must be created and
thrown in the context of the currently executing method.

However, since native stack overflow may occur arbitrarily, it is possible that the
program counter at that time assumes any value inside the address space of the method
text. This turns out to be a problem because the exception catching mechanism we have
implemented (described in Section 6.4) requires that exceptions occur at some prescribed
points. Therefore it may not be possible to determine the exception catching entry point
to transfer control.

The solution we provided to this problem is awkward. Whenever we cannot determine
the exception catching entry point for a given program counter value, in the context of
the topmost java frame, we throw the exception in the caller frame instead. Throwing
the exception in the caller frame can always be done because every call site either has an
associated exception catching entry point or does not catch exceptions at ali.

The adoption of this scheme dictates that our implementation may sometimes ignore
StackOverflowError exception windows. It was our belief that rarely a program catches
stack overflow exceptions. However this was a fallacy. Although programs that catch stack

8.4. Monitor lmplementation 147

overflow exception are rare, many programs catch ali types of exception usually to free
resources (try / finally construct). Ignoring these handlers may lead to unpredictable
program behavior (e.g. object locks being hold when the stack overflow occurs in a
synchronized method).

A better approach is to avoid the generation of code that may overflow the stack in
the program points for which the exception catching entry point cannot be determined.
We intend to use this approach in the future.

8.4 Monitor lmplementation

In our implementation, each class instance has in its GC Info word 24 bits (56 bits for
64-bit machines) that are reserved to implement its associated monitor. These 24-bits
are used to index a monitor table where the object monitor lies. Since most objects do
not use their monitor, storing an index in its header - rather than the whole monitor
- saves storage space. However, a monitor must be allocated to the object whenever it
is first used, and that requires precise synchronization. Monitors are released, becoming
available to others, when the object is garbage collected.

union monitor
OSmutex mutex
integer next

integer top..id +- 1
integer recycled +- O

monitor monitors[MAX-_MONITORS]

The monitor table is a table of platform dependent monitors. The monitor at index O
is a special monitor used to synchronize during monitor allocation. The management of
free monitors is done using a free monitor linked list. Since the monitor table is statically
allocated in the data segment of the virtual machine, we always try to reuse free monitors
at the bottom of the table prior to allocating a monitor on the top of the table. This is
done in order to avoid the commitment, i.e. physical allocation, of the associated memory
pages by the underlying operating system.

The procedure for entering an object monitor - including its compulsory allocation
- is shown below:

boolean MonitorEnter(object o)
integer id +- o.monitor..id
OS!ock(monitors[id].mutex)
if id = o

148

id +- o.monitor J.d
if id =o

if recycled ~ O
id ;- recycled
recycled t- monitor[recycled] .next

e !se

if top..id =O
OSunlock(monitors[O].mutex)
return false

id ;- top..id
top..id t- (top..id+l) mod MAX..MONITORS

o.monitor ..id t- id
OSinit(monitors[id].mutex)

OSunlock(monitors[OJ.mutex)
OSlock(monitors[id].mutex)

return true

Chapter 8. Runtime Environment

At first, it locks the monitor using the object monitor id. If no monitor has been
allocated to the object it willlock monitor at entry O. After locking, it tests the monitor
id before locking. If it was non-zero then the object has a monitor allocated already.
Otherwise, it reads the monitor id again to check if the monitor has been allocated con­
currently while it was blocked by the lock operation. If this is the case, it releases monitor
at index O and locks monitor at the specified index. If no monitor has been associated
to the object yet, then a new monitor is allocated, initialized, the monitor at index O is
released, and the new monitor is locked.

The procedure for exiting an object monitor is trivial, simply unlocks the associated
monitor.

void MonitorExit(object o)
integer id t- o.monitor..id
OSuniock(monitors[id].mutex)

When an object is garbage collected, the monitor that has been associated to it, if
any, is recycled. This is done synchronizedly using the monitor at index O.

void MonitorRecycle(object o)
integer id t- o.monitor..id
if id ~o

OS!ock(monitors[O].mutex)
monitors[id].next t- recycled
recycled t- id
OSunlock(monitors[OJ.mutex)

8.5. JNI Implementation 149

o.monitor Jd +- O

These routines where crafted to implement monitors efficiently while still preserving
the correct behavior for ali concurrency possibilities.

8.5 JNI lmplementation

Our runtime implementation has full support for the Java Native Interface (JNI). JNI
is used to instantiate the virtual machine from native programs as well as implementing
native methods. We highlight the points we judge to be important:

No Reference Handles In our implementation, JNI object wrapper types are direct
references to their target objects. It is a common implementation to use one levei
of indirection when implementing the wrapper types, so that the native program
hold handles to the objects. These handles are índices to a table that holds the
reference to the object. Representing wrapper types as direct references speeds up
the implementation of most operations though it makes difficult the implementation
of JNI weak references. JNI weak references are references automatically cleared by
the virtual machine when an object becomes weakly reachable. In the handle based
implernentation this means writing a null reference in the associated table entry. In
our implementation however, it is not possible to clear each reference because they
became available to the na tive program which may have copied it to other locations.
Luckly, the only JNI call that requires checking if a weak reference has been cleared
is IsSameObject. During this call, if one of the parameters is null and the other is
not, we search ali internai reference tables to check if the non-null reference is not
strong and also not present in the weak reference table. In this case, the routine
will be slower than usual. The policy we recommend and follow is to minimize the
use and the functionality of native methods. Natíve methods where not rneant to
improve performance, but to implement semantics not available in the bytecode.

String Manipulation in Java Ali string manipulation calls of the JNI are done by
invoking the appropriate Java implemented methods ofthe class String. Including
the implementation of the intern set of strings (see String. intern ()).

Local References AllocationjDeletion is Fast Using Stack Protocol Local refer­
ences are references made available to the native program during the liveness of a
native method execution. They need to be recorded as live to implement proper
garbage collection. In our implementation they are recorded in an array of refer­
ences. New references are inserted at the end of the array. The deletion of local

150 Chapter 8. Runtíme Envíronment

references requires scanning backwards the whole array and moving the reference at
the end to the freed entry. Therefore, deleting references in the reverse allocation
order (stack protocol) is the better choice, since they will be found right in the first
entry.

Arguments Array is Inefficient Invoking Java methods passing arguments through
an array rather then the stack is inefficient. These calls are mapped to their equiv­
alent stack based version, requiring parsing method descriptors to find out which
array elements uses one or two words.

8.6 JVMDI and JVMPI Support

In our design, we have focused on a high-performance end-used JVM; therefore we provide
no implementation for the standard Java Virtual Machine Debugging Interface (JVMDI)
and Java Virtual Machine Profiling Interface (JVMPI). Neither the support nor the im­
pact of the implementation of these interfaces were part of our requirements when we set
up our goals. Currently, the lack of knowledge about these interfaces prevents us from
measuring the difficulty of incorporating them in our implementation.

Chapter 9

The Garbage Collector

This chapter describes the garbage collector (GC) implemented as part of our JVM run­
time. At first, we discuss the desired features of our garbage collection scheme, as they
were defined during its design. In the sequence, we identify the GC runtime requirements,
and describe our implementation. At last, we focus on the improvements to the current
scheme.

9.1 Desired Features

The definition of the behavior and desired features of the garbage collector has a great
impact over the runtime design (and the opposite is also true). For instance, the im­
plementation of an accurate garbage collector is only possible if the available runtime
provides support for discovering references in stack frames and objects. On the other
hand, if the avaílable GC does not handle concurrency, the runtime must provide proper
synchronizatíon, which may degrade performance. Therefore, the best strategy is design
the GC having the runtíme in mind, and vice-versa.

The features we have defined for our garbage collection scheme are listed below. Ali
of them where conceived based on a GC/runtíme co-design. Some of them are not yet
available in our prelíminary implementation.

Accurate The set of memory locations that contains object references can be obtaíned
accurately. No pointer aliases will prevent unreachable objects from being collected,
thus eliminating GC memory leaks.

Cooperation Without Run-Time Penalty Mutators, i.e. user threads, cooperate
with the GC without run-tíme penalty (e.g. no reference counting).

151

152 Chapter 9. The Garbage Co/lector

Pinned Objects Objects cannot be moved to alternate memory locations. They must
have the same address and use the same storage during ali their lifetime. This denies
the use of a copying collection scheme.

Incrementai The garbage collection may be suspended and resumed, interleaved with
mutator execution. The GC executes as a separate thread or co-routine.

Concurrent Mutators may execute during garbage collection.

Generational Objects may be divided in generations. Each generation deserves more or
less GC attention based on the probability of its survival to yet another collection.

9.2 Runtime Requirements

In order to perform the GC task, the runtime must provide support to, or interact with,
the garbage collector. The runtime is required to cooperate with the GC exactly in two
tasks: to discover references inside objects and stack frames; to access each thread stack
synchronizedly.

In order to implement an accurate garbage collector, the runtime generates extra GC
information embedded in meta class and method text objects. With that information
the garbage collector can identify roots and traverse the whole object graph. We have
already described how that information is computed and represented in Chapter 7 and
Chapter 8. In Section 9.3, we show how that information can be used to implement the
garbage collection.

At certain prescribed times, each thread must provide safe access to the contents of its
stack. Also, the GC must be able, at that time, to suspend the thread if desired. In our
implementation, this runtime requirement is implemented non-preemptively; i.e., prior to
proceed, the GC must wait for each thread until it does a runtime callback. This occurs
because we renounce to use thread execution contexts in order to simplify and increase
the runtime portability. However, the arguments we present to explain why this scheme
is effective are similar to the arguments we have presented for assynchronous exceptions
in Section 6. 7.

9.3 Implementation Details

This section provides details about our current garbage collection implementation. The
current implementation is simple and straightforward. It works in a Mark-and-Sweep[37,

§2.2] fashion, and is non-incremental nor concurrent. Before garbage collection, ali threads

9.3. Implementation Details 153

are suspended to avoid problems when collecting references in their stacks and when
accessing the heap.

The mark phase is done in a mixed-mode between iterative and depth-first recursive.
An iterative mark phase works by doing multiple passes on the heap, marking grayed
objects and coloring their children, until ali reachable objects are marked. A depth-first
recursive mark phase visits each root object and does a depth-first traversal until the
complete reachable object subgraph is marked. We adopt a mixed-mode mark phase, in
which it iterates doing a bounded depth-first traversal, because the convergence for the
iterative method is too slow, and the stack size for a pure recursive depth-first method
can be prohibitive. As dictated by the Java language, marking an object is not simply
stating that it is reachable, one must provide complete reachability information including
its strength (strongly, softly, weakly, and phantom) and its type (direct or finalizer)[29,
§12.6].

The sweep phase is simply a traversal of the heap, reclaiming the storage from the un­
reachable objects. For the Java garbage collector, this also means scheduling unreachable
unfinalized objects to finalization, and clearing weak references.

The following routine marks an object based on a given reachability. It returns true
if the object reachability has changed. Children are marked if the maximum depth was
not yet reached.

boolean Mark(object o, set reachability, integer depth)
if o ;.f null

reachability +- reachability U o.reachability
if reachability ;.f o.reachability

o.reachability +- reachability
o.gray +- true
if depth = MAx..DEPTH

return true
else

return MarkChildren(o, depth)
return false

The next routine marks the children o f a gray object. Based on the object class (and its
superclasses), it is possible to determine which memory locations inside it are references;
they are marked with the same reachability as the current object. Array, meta class and
method text objects are treated specially since they provide extra references. At last,
we mark the target reference of each soft or weak wrapper object using its corresponding
reachability.

boolean MarkChildren(object o, integer depth)
boolean changed +- false

154

if o.gray
o.gray ,_ false
set reachability ,_ o.reachability

changed ,_,or Mark(o.class, reachability, depth+1)

object class ,_ o.class
while clazz ,P null

objectO refs ,_ o@class.instance..refs..offset

Chapter 9. The Garbage Collector

for integer i in O to class.instance..refs_count-1
changed ,_,or Mark(refs[i], reachability, depth+1)

class ,_ class.superclass

class ,_ o.class

if class = "Class"
objectO refs ,_ o@class.dispatch_table..offset
for integer i in O to class.dispatch_table_entries-1

changed ,_,or Mark(refs[i], reachability, depth+l)
refs ,_ o@class.static..refs_offset
for integer i in O to class.static..refs_count-1

changed ,_,or Mark(refs[i], reachability, depth+l)
changed ,_,or Mark(o.loader, reachability, depth+1)
changed ,_,or Mark(o.e!ementClass, reachability, depth+1)
changed ,_,or Mark(o.superC!ass, reachability, depth+ 1)
for integer i in O to o.interfaces_count-1

changed ,_,or Mark(o.interfaces[i], reachability, depth+1)

if class = "MethodText"
changed ,_,or Mark(o.declaring.dass, reachability, depth+1)
for integer i in O to o.references_count-1

changed ,_,or Mark(o.references[i], reachability, depth+1)

if o.class.dimensions > O

if o.class.name[1] = 'L' or o.class.name[1] = '['

objectO refs ,_ o@class.instance..size
for integer i in O to o.length-1

changed +->0 r Mark(refs[i], reachability, depth+1)

if o.class.is..soft
changed ,_,or Mark(o.weak, { SOFTLY} U (reachability n { FINALIZER }), depth+1)

if o.class.is_weak
changed ,_,or Mark(o.weak, { WEAKLY} u (reachability n { FINALIZER }), depth+l)

if o.class.is..phantom
changed ,_,or Mark(o.weak, { PHANTOM} u (reachability n { FINALIZER }), depth+l)

return changed

9.3. Implementation Details 155

The following routine marks ali references live in the stack of a particular thread. It
traverses the stack using return addresses to determine the live reference variables at the
time each call was performed. Also the method text associated to each stack frame is
marked.

boolean MarkStack(address frame)
boolean changed t- false

boolean MarkFrame(address frame, address ret..address)
changed ~or Mark(frame.methocLtext, { STRONGLY }, O)
byteO lives t- frame.methocLtext.lives[ret..address]
integer i +- O
while lives[i] # O

changed ~or Mark(frameOives[i]], { STRONGLY }, O)
i~+l

return true

TraverseStack(frame, MarkFrame)
ret urn changed

The main garbage collection routine is presented next. It may be divided in three
phases: initialization, mark and sweep.

The initialization phase consists of traversing the entire heap reseting the reachability
and clearing the gray bit for ali objects.

void GC(javavm jvm)

/* Reset objects */
object o t- HeapStart()
w hile o # null

o.reachability t- 0
o.gray t- false
o t- HeapNext(o)

The mark phase is subdivided in three parts: marking roots, marking finalizer reach­
able, and iterating. The marking roots part marks ali direct references from the JVM, and
its threads, to the heap. The marking finalizer reachable part marks ali objects not yet
finalized as finalizer reachable (by themselves). Finally, the iterating part marks, using
the according reachability, ali remaining objects in the object graph.

156 Chapter 9. The Garbage Collector

boolean changed +-- false

I* Mark roots *I
changed,or MarkQvm.system_threacLgroup, { STRONGLY }, O)
for integer i in O to jvm.globals_count-1 do

changed,or MarkQvm.globals[i], { STRONGLY }, O)
for integer i in O to jvm.weaks..count-1 do

changed,or MarkQvm.weaks[i], { WEAKLY }, O)
jnienv env +- jvm.envs
w hile env 'I null

changed,or Mark(env.thrown, { STRONGLY }, O)
changed,or Mark(env.thread, { STRONGLY }, O)
changed,or MarkStack(env.top_javaframe)
jniframe frame +-- env.top_jniframe
while frame 'I nu!!

for integer i in O to frame.entry_count-1 do
changed,or Mark(frame.entries[i], { STRONGLY }, O)

frame +-- frame.previous
env +- env .next

I* Mark fina/izer reachable *I
o +-- HeapStart()
w hile o 'I null

if not o.finalized
changed,or Mark(o, { FINALIZER }, O)

o +-- HeapNext(o)

I* Iterate marking ali heap *I
while changed

changed +-- false
o +-- HeapStart()
while o 'I null

changed,or MarkChildren(o, O)
o+-- HeapNext(o)

The sweep phase is also subdivided into three parts: reclaiming unreachable objects,
queueing unfinalized objects for finalization, and clearing weak references. The reclaim­
ing part traverses the heap looking for unreachable objects (reachability set is empty)
and reclaim their storage and monitor. Unreachable objects are known to be already
finalized because, if not, their reachability set would not be empty. The queueing un­
finalized objects part traverses the heap looking for finalizer reachable objects whose
strength is at most phantom. Those objects are marked as finalized and enqueue for
finalization (they then become strongly reachable again). Finalization occurs when the
method Runtime.runFinalization() is invoked by the user, or by the runtime under

9.3. Implementation Details 157

low memory conditions. At last, weak reference wrappers whose target reference has a
reachability weaker than required are cleared and enqueued (see ReferenceQueue class
in the standard API).

/* Reclaim unreachable *I
o +- HeapStart()

while o "' nu!!
object moribund +- o
o+- HeapNext(o)
if moribund.reachability = 0

RecycleLock{moribund)
Deallocate(moribund)

/* Enqueue unfinalized *I
o +- HeapStart()

while o "' nu!!
set reacbability +- o.reachability n { STRONGLY, SOFTLY, WEAKLY, PHANTOM }
if reacbability = 0 or reachability = { PHANTOM }

if not o.finalized
EnqueueFor Finalization(o)
o.finalized +- true

o +- HeapNext(o)

/* Clear weak references *I
for integer i in O to jvm.weaks..count-1 do

object weak +- jvm.weaks[i]

if weak "' null
if weak.reachability n { STRONGLY, SOFTLY} = 0

jvm.weaks[i] +- null
o +- HeapStart()

while o "' null
if o.class.is..soft

if o.weak "' null
if o.weak.reacbability n { STRONGLY} = 0

o.weak +- null
EnqueueReferenceO bject(o)

if o.class.is_weak

i f o. weak "' null
if o.weak.reachability n { STRONGLY, SOFTLY } = 0

o.weak +- null
EnqueueReferenceO bject(o)

o +- HeapNext(o)

I* End of GC */

158 Chapter 9. The Garbage Collector

9.4 Future Improvements

The most important improvement our current garbage collection asks for is the incorpo­
ration of a generational strategy. Although generational collection wastes more memory,
it reduces significantly the pause time of each collection. This has been proven to work
on other Java runtime implementations[56, 22].

An alternate possibility, is implementing a concurrent collector that runs in a separate
thread. It is a good scheme specially i f the JVM is targeted to a multiprocessor system.
However, care must be taken to implement it correctly, without increasing execution
contention.

Chapter 10

Automatic Machine Generation

This chapter covers automatic machine generation. Automatic machine generation con­
sists of ahead-of-time linkage (including JIT compilation) o f core libraries, which are
embedded in the runtime. The machine generator simulates a JVM heap as it loads and
links the classes specified in a configuration file. When ali activities finish, an assembly
file reflecting the heap image placement, according to the specified target architecture, is
output.

There are basically two reasons that motivate us to implement the automatic machine
generator. First, as seen in Chapter 8, many runtime tasks are implemented in Java, and
some of them are required to be promptly available upon machine startup. Second, the
off-line embedding of core libraries speeds up the machine bootstrap that occurs every
time it is started up.

Off-line embedding core libraries is a technique that succeeds based on the premiss
that core classes are not supposed to be replaced by users, nor will need to change before
the next JVM release.

10.1 Static Heap Image

The static heap image is a heap image reflecting some ahead-of-time link-time activities
symbolically performed and output by the machine generator. As expected, the static
heap layout must conform with the memory heap layout described in Chapter 8.

The objects that compose a static heap image are:

• Meta class objects, instances of Class, representing the classes embedded.

• Method text objects, instances of MethodText, representing methods declared in
those classes.

159

160 Chapter 10. Automatic Machine Generation

• String objects, instances of String, implementing string literais directly referenced
from method texts.

• Array of char objects, instances of char[], used to store the contents of string
objects.

Two details must be highlighted about the static heap image. First, method text
objects are translated using the appropriate back-end for the underlying architecture
being targeted by the machine generator. Second, strings and their associated array of
chars must be placed contiguously, so that the runtime can identify that association during
the heap initialization procedure (see Section 10.4).

The static heap image must provide imported and exported symbols information in
order to be linked with the C runtime by the platform linker. It exports a single symbol,
_heapstart-, that is used by the runtime to locate the static heap in its address space.
The symbols imported by the static heap image are exactly the labels for runtime callback
entry points, namely:

• Exception throwing: _athrow_.

• Long integer division and remainder: _ldiv_ and _lrem...

• Class initialization: _ini t_.

• Instance and array instantiation: ..newinstance_ and ..newarray -·

• Synchronization primitives: _lock_, _unlock_ and _islockecL.

• Type testing: _subtypeof_ and _comptypeoL.

• Interface method lookup: _imlookup_.

• Native method call: ..ncallL, ..ncallz_, ..ncallb_, ..ncallc_, ..ncalls_, ..ncallL,
..ncallj_, ..ncallL, ..ncallcL and ..ncallv_.

In our current implementation, the static heap image is generated in a data segment
and, at run-time, its contents are modified as the machine executes. This means that
only a single JVM instance can be created in the context of a process, providing a limited
implementation of the JNLCreateJavaVM JNI caiJl. A workaround to this limitation
can be clone using dynamic mapping of process segments by copying the original heap
layout from the executable binary to a different memory location every time a JVM is
created. For platforms that do not support dynamic segment mapping, this could be
clone explicitly by the application. In both cases, some patching is required to update the
runtime callback addresses.

1 This is a common limitation in most JVM ímplementations including Sun's reference implementation.

10.2. Machine Generation Configurations 161

10.2 Machine Generation Configurations

The automatic machine generation is a configuration driven process. The machine gen­
erator executes and produces a static heap image based on a input configuration file.
The configuration file defines the behavior of the machine to be generated by providing
information about the classes to be off-line embedded in it.

A machine generation configuration comprises the foliowing information:

• The path list from where class files wili be read during the generation process (usu­
aliy referenced to as CLASSPATH).

• The name of the classes to be embedded into the static heap image. In addition
each class has two attributes:

L An attribute indicating if the class must be linked off-line.

2. An attribute indicating if meta class information must be included beforehand.

In a configuration file, the list of classes can partitioned into two sets: behavior defin­

ing classes and dependent classes. Behavior defining classes are classes that implement
a particular JVM operation following some desired strategy or algorithm. Dependent
classes are more generic classes used by behavior defining classes to complete or help in
their implementation. Since some Java implemented extensions of the runtime must be
promptly available upon machine startup, some dependent classes - in conjunction with
behavior defining classes - need to be embedded avoiding chicken-egg problems (e.g.
linking a class that is part of class linkage implementation).

However, the detection of the minimum set of dependent classes required to bootstrap
the machine is a difficult task. It is difficult because we have to find the closure set of
the methods reachable from ali methods directly called by the runtime during bootstrap.
We do that in order to ensure that ali execution paths required to bootstrap the machine
are already present in the binary executable before the bootstrap (otherwise the machine
shuts down unpredictably). Actualiy, the difficulty is not in finding the whole closure
set, which can be done conservatively, but in finding a subset of the closure set that is an
approximate superset of the minimum set of methods possibly executed during bootstrap.
Automatic conserva tive detection of bootstrap dependencies generates a huge static heap
image. This has impact in the amount of memory consumed by the JVM2 , sometimes
wasted by the storage of classes linked beforehand and never used.

In our configurations, we have decided to detect bootstrap dependencies by hand. This
task is repetitive and time-consuming but, once the core libraries basic structure is kept,

2 1t also has a strong impact in the machine generation time. Luckly, machines are generated once.

162 Chapter 10. Automatic Machine Generation

it will need few revisions. As foreseen in our design (see Chapter 3), we have written
two machine generation configurations: the Thin-Ciient Client JVM configuration and
the Standalone Client JVM configuration.

10.3 Machine Generator Functionality

The machine generator is a tool that uses a configuration to generate a static heap image
to be incorporated by the runtime. The tool is very simple, it simulates the bootstrap
loading and linking activities of the JVM using a simulated heap; when ali classes in the
configuration are processed, it uses the target back-end to produce an assembly output.

The simulation of the JVM bootstrap is very simple. Reading classes from the CLASS­
PATH provided in the configuration file, it allocates storage in the simulated heap for each
meta class being loaded, their method texts, string literais and associated arrays of chars.

Two tables play an important role in machine generation process: the bootstrap class

loader table and the string intern set table. The former table records the classes al­
ready loaded during generation. The latter table is a map between string literais and
simulated heap allocated string instances, avoiding the occurrence of duplicate string in­
stances associated with the same string literal. Both tables are implemented internally
by the generator - and not allocated in the simulated heap - even though they will
be instantiated and initialized as soon as possible during the machine bootstrap. They
cannot be allocated into the simulated heap because their initialization requires calling
their methods and bytecode interpretation is not supported during machine generation
(we foresee bytecode interpretation as part of the future improvements to the generator,
most of its complexity is dueto native methods existence).

The internai representation of the simulated heap is symbolic. Instead of actually re­
serving storage for class instances, we retain the size required for each object in the heap.
Meta class and method text instances have extra internai fields that store information
about their link state and binary translation, respectively. This extra information is ex­
actly the extra information stored in the instance headers or extended bodies as described
in Chapter 8.

Ali the generation process is done through a Server JVM used to register, load, link
and translate class files. Linkage errors during generation make the generator abort with
a detailed message.

10.4. Heap Initialization Procedure 163

10.4 Heap Initialization Procedure

The heap initialization procedure, that must be done by the runtime during machine
creation, is fairly simple. The initialization consists of a heap traversal executing one of
three actions:

Construct and Load Class Meta class instance constructor (see Class ()) is executed
and the class is recorded to be loaded by the bootstrap class loader. Usually the
meta class constructor does nothing but return, if the case, may be omitted.

Construct Method Text Method text instance constructor (see MethodText ()) is ex­
ecuted. Usually the method text constructor does nothing but return, if the case,
may be omitted.

Construct and Internalize String String literal constructor is executed using the sub­
sequent array of chars as parameter (see String (char [])) , afterwards the string
is internalized (see String.intern()).

Chapter 11

Conclusions

This document has described an alternate implementation of the Java Virtual Machine.
The most important feature of that implementation is its ability to externally hoist and
cache link-time activities (specially JIT compilation) on a network based computer. It
improves the performance of JIT produced code, decreases runtime overheads, and makes
better use of hardware resources. The explanation goes beyond the solutions proposed to
implement this innovative approach. It comprises:

• Techniques for detecting and caching repetitive link-time contexts.

• An alternate, off-line, bytecode verification procedure.

• The design and implementation of a Java specific intermediate representation, its
conversion from Java bytecodes, the manipulation tool, some analyses and transfor­
mation algorithms.

• A simple unified back-end for the Intel family of 32-bit processors.

e Runtime data organization on heap and thread stack, including support for full­
fledged stack traces on optimized compiled code.

• Accurate garbage collection requirements and implementation issues.

• Off-line embedding of core libraries in the virtual machine runtime.

There were two important simplification problems in our work. However, we noticed
that they can be solved without significant impact on the overall system design. The
alternatives, in both cases, speed up execution and save memory.

The first problem regards lazy resolution. In an early specification, we decided to
adopt eager resolution in our preliminary implementation, as allowed by the JVM speci­
fication. Eager resolution is the premature resolution, at link-time, of classes, fields, and

165

166 Chapter 11. Conclusions

methods symbolically referenced by a class. On the other hand, lazy resolution states
that those symbolic entities need only to be resolved on their first use during execution.
We indeed verified that, using eager resolution, a large amount of link-time activities
tends to concentrate on applications startup. Eager resolution generates a startup delay
that should be avoided on short-lived applications. The solution to this problem can be
achieved by extending the IR to support lazy resolution operations. By adopting lazy
resolution, context classes need not to be loaded on the LINK phase, saving memory.

The second problem regards method compilation. According to what has been de­
scribed, ali class methods are converted to IR during the LINK phase. In a similar man­
ner, ali methods are translated to machine code during the TRANSLATE phase. This
means client JVMs have to wait for the compilation of ali methods even if they need to
execute just some of them. This batch compilation scheme introduces delay on link-time
operations. The solution to this problem is tricky. Instead of using the compiled ver­
sion of methods to initialize dispatch tables, the runtime uses synthetic versions. Each
synthetic version is responsible for, synchronizedly, replacing itself by the actual version
of the method. The TRANSLATE phase must then be modified to handle requests on a
method granularity. Synthetic methods are usually smaller and save memory.

Due to time constraints, we have not implemented a mid-level optimizer. It is a key
component of the system and part of the future work. Also, data structures and related
algorithms used during the verification and conversion of bytecode need to be optimized.

11.1 Experimental Results

Table 11.1 shows the execution times for a subset of the Spec JVM'98 Java benchmark
suíte running over our system and the standard Java runtime implementation of Sun
Microsystems (with and without JIT support). Those programs were executed in an
unloaded Pentium II PC system running RedHat Linux 7.0 (kernel version 2.2.16-22)
with 96Mb of primary memory. Each execution time was obtained from the best of three
consecutive executions of each application using UNIX program time.

For this suíte subset, our system exhibited better performance than the interpreter
bundled with the standard Java runtime. As a first implementation, we believe it was an
important result. However, our system lacks a mid-level optimizer and some optimizations
to be done in the back-end (e.g. global register allocation), therefore its performance was
worst than Suns' HotSpot JIT implementation.

11.1. Experimental Results 167

BENCHMARK OUR SYSTEM

APPLICATION REAL USER SYS

..20Lcompress lm34.363s lm24.660s Oml.230s
..202_jess lm53.445s lm34.190s Om0.430s
..209-db 2m59.497s 2m52.960s Om0.300s

..209-javac 3m54.884s 3m23.475s Om0.572s
..209..mpegaudio 6m46.600s 6m24.735s Om0.850s

..228_jack lm39.197s lml8.177s Om0.407s

BENCHMARK HOTSPOT 1.3.0
APPLICATION REAL USER SYS

..20Lcompress Om46.907s Om44.280s Oml.880s
..202_jess Om28.859s Oml9.950s Oml.OlOs
..209-db Om57.121s Om50.420s Om0.720s

..209-javac lm23.795s Om32.170s Om2.180s
-209..mpegaudio Om50.492s Om41.160s Oml.330s

..228_jack Om27.353s Oml7.220s Oml.760s

BENCHMARK INTERPRETER 1.3.0
APPLICATION REAL USER SYS

..20Lcompress 9m52.020s 9m28.080s Om0.670s
_202_jess 2m20.764s 2m15.700s Om0.420s
..209_db 5m21.485s 4ml8.300s Om2.720s

..209_javac 4ml4.198s 3m54.520s Om3.130s
..209..mpegaudio 8m47.265s 8m45.620s Om0.350s

_228_jack lm45.042s lm40.070s Oml.860s

Table 11.1: Spec JVM'98 benchmark experimental results.

Appendix A

Intermediate Representation
Specification

The intermediate representation, for short IR, consists of a set of IR opcodes. An IR
opcode defines a simple but semantically clear operation. Each IR opcode may have
arguments, attributes and optionally provide a result. The arguments of an IR opcode
are actually the result of other IR opcodes coupled to it. The attributes of an IR opcode
extend its semantics. IR opcodes that provide a result are used as arguments by others.
IR opcodes that do not provide a result define IR statements. An IR program is the
sequence of IR statements that implements a particular Java method. This appendix
gives details about the syntax of each IR opcode and the semantics of the operation it
performs.

A.l Grammar

The following IR Grammar defines syntatically how IR opcodes can be coupled to forrn
an IR staternent. An IR prograrn is a sequence of IR staternents and a virtually infinite
set of registers. The IR is typed, which rneans that IR opcodes can only couple to and
work with entities of the expected type.

The IR supports five types: signed 32-bit integers, signed 64-bit long integers, floats,
doubles and object references. Floats and doubles are encoded and handled as the 32-bit
and 64-bit IEEE standards. Whence on registers, those types rnay have an extended
exponent[43, §3.3.2] which is a choice of interpretation. However, at some points, those
extended values rnay need to be rnapped to non-extended values (fstrict, dstrict).

The reference type does not dernand an encoding and is left unspecified.
The IR opcodes are partitioned into six sets, one for each type described above and

one associated with IR staternents. Each opcode rnay provide a result, and thus it rnay

169

170 Appendix A. Intermediate Representation Specification

be classified according to the type of the result. If the opcode does not provide a result
then it defines an IR statement.

Each IR staternent is a tree. The root of the tree must be an opcode that does not
provide a result and is represented in the IR Grammar by the S non-terminal. The rest
of the tree is obtained by applying the rules present in the IR Grarnmar to the argurnents
of the root opcode. This happens until no more arguments are left for expansion.

The IR Grarnmar defines only part of the constraints which the IR is required to obey,
precisely those constraints that could be captured by syntax. Constraints regarding the
IR semantics are exposed on next section when each opcode is revisited.

Syntax Page

S: irecei ve (%i) 201

S: 1receive(%1) 210
S: freceive(%f) 192

S: drecei ve (%d) 186

S: areceive(%a,#c) 177

S: ipass(I) 200

S: 1pass(L) 209

S: fpass (F) 192

S: dpass(D) 186

S: apass (A) 177

S: ca1l(A ,#t) 181

S: callx(A ,#t,<!l1) 182

S: ncall(#c,#s,#t) 213

S: nca11x(#c,#s,#t,<!l1) 213

S: iresu1t(%i) 201

S: 1resu1t(%1) 210

S: fresu1t(%f) 193

S: dresu1t(%d) 187

S: aresu1t(%a,#c) 177

S: label(<!ll) 205

S: jump(<!ll) 204

S: ajump(#x,A ,A ,@1) 176

S: ijump(#x,I ,I ,@1) 197

S: iswitch(I, [$i,<!ll] ...) 203

S: acatch(%a) 175

A.l. Grammar 171

S: athrow(A) 179

S: ireturn(I) 201

S: 1return(L) 210

S: freturn(F) 193

S: dreturn(D) 187
S: areturn(A) 178
S: vreturn() 218

S: ide f in e (%i , I) 197
S: 1def in e C%1, L) 206

S: fdefine(%f,F) 191
S: ddef in e (%d, D) 185
S: adef in e C%a, A) 175

S: bstore(A,#o,#v,I) 181
S: sstore(A,#o,#v,I) 217
S: istore (A ,#o ,#v, I) 202
S: 1st ore (A ,#o ,#v ,L) 211
S: fstore(A,#o,#v,F) 193

S: dstore (A ,#o ,#v ,D) 187
S: astore (A ,#o ,#v ,A) 178

S: bastore(A ,I ,I) 180

S: sastore(A ,I ,I) 217

S: iastore(A ,I ,I) 197

S: 1astore (A , I ,L) 206

s: fastore(A ,I ,F) 189

S: dastore(A ,I ,D) 184

S: aastore(A ,I ,A) 174

S: init (A ,#t) 199

S: initx(A ,#t,@1) 200

S: newinstance (A , #t) 215

S: newinstancex(A ,#t,@1) 216

S: newarray(A ,I ,#t) 214

S: newarrayx(A ,I ,#t,@1) 215

S: lock (A ,#t) 208

S: 1ockx (A , #t, @1) 208

S: un1ock(A) 218

S: readbarrier () 216

172 Appendix A. Intermediate Representation Specification

S: wri tebarrier () 219

A: getclass (A) 194
A: aload(A ,#o,#v,#c) 176
A: aaload (A , I) 174
A: mlookup(A ,#i) 212
A: imlookup (A ,A , #i) 198
A: ause (%a) 179
A: anullO 176
A: aclass($c) 175
A : astring($s) 179

I: i2b(I) 195
I: i2c(I) 195
I: i2s(I) 196
I: 12i (L) 205
I: f2i(F) 189
I: d2i (D) 183
I: iadd(I ,I) 196
I: isub(I ,I) 203
I: imul(I ,I) 199
I: idiv(I, I) 197
I: irem(I ,I) 201
I: ineg(I) 199
I: ishl(I ,I) 202
I: ishr(I ,I) 202
I: iushr(I, I) 204
I: iand(I ,I) 196
I: iorCI ,I) 200
I: ixor(I ,I) 204
I: lcmp(L ,L) 206
I: fcmpg(F,F) 190
I: fcmpl(F ,F) 190
I: dcmpg(D ,D) 184
I: dcmpl(D,D) 184
I: length(A) 207
I: bload(A ,#o ,#v) 180
I: sload(A ,#o ,#v) 217
I: iload(A ,#o,#v) 198

A.l. Grammar 173

I: baload (A , I) 179
I: saload (A , I) 216
I: iaload (A , I) 196
I: islocked (A) 202
I: subtypeof (A ,A) 218
I: comptypeof (A , A) 182
I: iuse(%i) 203
I: iconst ($i) 197

L: i21(I) 196
L: f2l(F) 189
L: d21(D) 183

L : 1add(L ,L) 205
L: 1sub(L ,L) 212
L: lmul(L ,L) 208
L : 1div(L ,L) 207
L : 1rem(L ,L) 210
L: 1neg(L) 208
L: 1sh1(L ,I) 211
L: 1shr(L ,I) 211
L : 1ushr(L ,I) 212
L: 1and(L ,L) 205
L: 1or(L ,L) 209
L: lxor(L ,L) 212
L: lload(A ,#o,#v) 207
L: 1a1oad(A ,I) 205
L: 1use (%1) 212
L: 1const ($1) 206

F: i2f(I) 195
F: 12f(L) 204
F: d2f(D) 183
F: fstrict (F) 194
F: fadd(F ,F) 189
F: fsub(F ,F) 194

F: fmul(F ,F) 191
F: fdiv(F ,F) 191
F: frem(F ,F) 193
F: fneg(F) 192

174 Appendix A. Intermedíate Representatíon Specíficatíon

F: fload(A ,#o ,#v) 191
F: faload (A , I) 189
F: fuse(%f) 194
F: fconst($f) 190

D: i2d(I) 195
D: 12d(L) 204

D: f2d(F) 188

D: dstrict(D) 188
D: dadd(D ,D) 183
D: dsub(D ,D) 188
D: dmul(D ,D) 185

D: ddiv(D ,D) 185
D: drem(D ,D) 187
D: dneg(D) 186
D: dload(A ,#o,#v) 185
D: daload (A , I) 183
D: duse (%d) 188
D: dconst($d) 184

A.2 Opcodes

aaload

Operation Load reference from array

Syntax jA: aaload(A ,I) I

Description The aaload opcode reads a reference from array A at index I. A must be
a non-null reference to a reference array instance. I must be non-negative
and less than A length.

Class memory-accesszng

aastore

Operation Store into reference array

Syntax

A.2. Opcodes 175

Description The aastore opcode writes a reference A 2 into array A 1 at index I. A 1

must be a non-null reference to a reference array instance. I must be non­
negative and less than A 1 length. A 2 must be a subtype of A 1 component
type.

Class memory-accessing

acatch

Operation Catch exception

Syntax I S : acatch (%a) I

Description The acatch opcode defines an exception handler entry point in an IR pro­
grarn. It stores a non-null reference to the exception thrown in register
%a.

Notes

aclass

The acatch is only reachable by exception-prone opcodes: callx, ncallx,
initx, newinstancex, newarrayx and lockx.

The acatch opcode sirnply defines a unified exception handler entry point
for a set of exception-prone opcodes. The check for exception subtyping and
delegation to appropriate handler is responsibility of the code following it.

Operation Provide class reference

Syntax I A : aclass ($c) I

Description The aclass opcode provides the reference for the Class instance associated
to type $c.

adefine

The type $c is represented by the narne of a class or interface in its extended

fully-qualified internai forrn (Section 4.3.1).

Operation Write reference register

Syntax ls: adefine(%a,A)I

Description The adefine opcode stores the value of expression A in register %a.

176 Appendix A. Intermediate Representation Specification

ajump

Operation Transfer control if reference comparison succeeds

Syntax

Description The ajump opcode transfers execution to label @1 if the comparison of A1

and A 2 succeeds.

aload

The attribute #x defines the behavior of the ajump opcode in the following
way:

\ #x I TRANSFER CONTROL IF I

~~~~ ~:;~: I 

Operation Load reference from field 

Syntax I A : aload(A ,#o ,#v ,#c) I 

Description The aload opcode reads a reference field from A at offset #o. A must be a 
non-null reference. 

Class 

anull 

The attribute #o specifies the reference field offset using the encoding de­
scribed on Section 4.4. It also tells, using a boolean flag, which of the static 
or instance field tables must be used. 

The attribute #v indicates if the read is volatile, i. e. cannot be cached. 

The attribute #c is the type of the reference provided by aload. It 1s 
represented by the name of a class or interface in its extended fully-qualified 

internai form (Section 4.3.1). 

memory-accessing 

Operation Provide null reference 

Syntax IA: anull() I 
Description The anull opcode provides a null object reference. 



A.2. Opcodes 177 

apass 

Operation Pass reference as parameter to method call 

Syntax I S : apass (A ) I 

Description The apass opcode passes a reference A as parameter to a subsequent 
method cal!. 

Class 

Notes 

areceive 

parameter-passing 

The parameter passing protocol in an IR program is right-to-left rather 
than left-to-right, as adopted in Java bytecodes. 

The number and types of parameter-passing opcodes must match the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method-call opcode. 

Operation Write method parameter to reference register 

Syntax I S: areceive C%a,#c) I 

Description The areceíve opcode stores the parameter received by a method, upon its 
call, in reference register %a. 

Class 

Notes 

aresult 

The reference written to reference register %a points to an object of type 
#c or one of its subtypes. The type #c is represented by the name of a class 
or interface in its extended fully-qualified internai form (Section 4.3.1). 

parameter-receiving 

Parameter-receiving opcodes must appear on top of IR programs, before 
ali other opcodes. They must be placed according to the method signature 
in left-to-right order. 

Operation Write method result to reference register 

Syntax ls: aresult(%a,#c)l 



178 Appendix A. Intermediate Representation Specification 

Description The are sul t opcode stores the result o f a method c ali in reference register 
%a. It rnust appear just after the method call opcode and be used only 
when calling reference methods. 

Class 

Notes 

areturn 

The reference written to reference register %a points to an object of type 
#c or one of its subtypes. The type #c is represented by the name of a class 
o r interface in its extended fully-qualijied internai form (Section 4.3.1). 

result-saving 

The aresul t opcode is also used after memory-allocation opcodes to store 

the reference to the newly allocated object in a reference register. 

Operation Return from reference method 

Synta:x I S: areturn(A) I 
Description The areturn opcode returns from the current executing method. The cur­

rent executing method must be a reference method. The value of expression 
A is used as the return value. 

Class 

Notes 

astore 

method-returning 

Method-retuming opcodes may appear anywhere in an IR program, not 
simply at the end as one would expect. 

Operation Store into reference field 

Synta:x 

Description The astore opcode writes A 2 into a reference field of A 1 at offset #o. A 1 

must be a non-null reference. 

Class 

The attribute #o specifies the reference field offset using the encoding de­

scribed on Section 4.4. It also tells, using a boolean flag, which of the static 
or instance field tables must be used. 

The attribute #v indicates if the write is volatile, i. e. cannot be cached. 

memory-accessing 



A.2. Opcodes 179 

astring 

Operation Provide string reference 

Syntax IA: astring($s)l 

Description The astring opcode provides the reference for the String instance result 
of $s internalization. $s is any Java string literal. 

athrow 

Operation Throw exception 

Syntax I S : athrow (A ) I 
Description The athrow opcode throws an exception in the frame of the caller method. 

Notes 

a use 

The expression A must evaluate to a non-null reference. 

The athrow opcode is used only when throwing or rethrowing exceptions 
outside the current frame. The athrow opcode is not used when throwing 
exceptions in code protected by the current frame. In this case, the excep­
tion handling is done explicitly by transfering the control to the appropriate 
handler. 

Operation Read reference register 

Syntax I A : ause (%a) I 

Description The ause opcode loads the value of register %a. 

baload 

Operation Load boolean or byte from array 

Syntax I I : baload (A , I) I 

Description The baload opcode reads the lower 8 bits of integer from array A at index 
I. A must be a non-null reference to a boolean or byte array instance. I 

must be non-negative and less than A length. The higher 24 bits of the 
integer provided by baload are left unspecified. 



180 

Class 

Notes 

bastore 

Appendix A. Intermedíate Representatíon Specíficatíon 

memory-accessing 

Booleans are coded as integers. Non-zero integers when treated as booleans 
have true semantics, otherwise they have false semantics. 

Operation Store into boolean or byte array 

Syntax 

Description The bastore opcode writes the lower 8 bits of integer I 2 into array A 

at index I 1 . A must be a non-null reference to a boolean or byte array 
instance. I 1 must be non-negative and less than A length. 

Class 

Notes 

bload 

memory-accessing 

Booleans are coded as integers. Non-zero integers when treated as booleans 
have true semantics, otherwise they have false semantics. 

Operation Load boolean or byte from field 

Syntax \r: bload(A,#o,#v)\ 

Description The bload opcode reads the lower 8 bits of the integer from boolean or 
byte field of A at offset #o. A must be a non-null reference. The higher 24 
bits of integer provided by bload are left unspecified. 

Class 

Notes 

The attribute #o specifies the boolean or byte field offset using the encoding 
described on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the read is volatile, i.e. cannot be cached. 

rnemory-accessing 

Booleans are coded as integers. Non-zero integers when treated as booleans 
have true semantics, otherwise they have false semantics. 



A.2. Opcodes 181 

bstore 

Operation Store into boolean or byte field 

Syntax ls: bstore(A ,#o,#v,I) I 
Description The bstore opcode writes the lower 8 bits of integer I into a boolean or 

byte field of A at offset #o. A must be a non-null reference. 

Class 

Notes 

call 

The attribute #o specifies the boolean or byte field offset using the encoding 
described on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the write is volatile, i.e. cannot be cached. 

memory-accessing 

Booleans are coded as integers. Non-zero integers when treated as booleans 
have true semantics, otherwise they have false semantics. 

Operation Call method 

Syntax I S: call(A ,#t) I 

Description The call opcode calls method A. A must evaluate to a non-null reference 
of class MethodText. The parameters to the call are passed before this 
opcode using parameter-passíng opcodes. If the callee method is not void, 
a result-saving opcode may be used just after the call opcode to store the 
result in a register. 

Class 

Notes 

The attribute #t contains information regarding stack inspection and trac­
mg. 

method-call, inspection-point 

The parameter passing protocol in an IR program is right-to-left rather 
than left-to-right, as adopted in Java bytecodes. 

The number and types of parameter-passíng opcodes must match the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method-call opcode. 

The type of the result-saving opcode must match the type of the method 
being called. 



182 

callx 

Appendix A. Intermediate Representation Specification 

This opcode is not exception-prone, hence, upon failure an exception is 
thrown in the frame of the caller method. 

Operation Call method, handle failure 

Syntax J S: callx(A ,#t ,@1) J 

Description The callx opcode calls method A. A must evaluate to a non-null reference 
of class MethodText. The parameters to the call are passed before this 
opcode using parameter-passing opcodes. If the callee method is not void, 
a result-saving opcode may be used just after the callx opcode to store 
the result in a register. 

Class 

Notes 

The attribute #t contains information regarding stack inspection and trac­
ing. 

Upon failure, the control is transfered to label @1. An acatch opcode must 
be the first statement following the label @1. 

method-call, inspection-point, exception-prone 

The parameter passing protocol in an IR program is right-to-left rather 
than left-to-right, as adopted in Java bytecodes. 

The number and types of parameter-passing opcodes must match the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method-call opcode. 

The type of the result-saving opcode must match the type of the method 
being called. 

comptypeof 

Operation Determine array component subtyping 

Syntax ) I : comptypeof (A 1 , A 2 ) J 

Description The comptypeof opcode checks if class or interface A 1 is a subtype of the 
component type of array class A 2 • Both expressions must evaluate to non­
null references of class Class. 



A.2. Opcodes 183 

d2i 

Operation Convert double to integer 

Syntax I I: d2i(D) I 

Description The d2i opcode converts the double expression D to integer. 

d2f 

Operation Convert double to float 

Syntax 

Description The d2f opcode converts the double expression D to float. 

d21 

Operation Convert double to long integer 

Syntax I L: d2l(D) I 

Description The d21 opcode converts the double expression D to long integer. 

dadd 

Operation Add doubles 

Syntax 

Description The dadd opcode provides the result of addition D1 + D2 . 

daload 

Operation Load double from array 

Syntax ID: daload(A ,I) I 
Description The daload opcode reads a double from array A at index I. A must be a 

non-null reference to a double array instance. I must be non-negative and 
less than A length. 

Class memory-accessing 



184 Appendix A. Intermediate Representation Specification 

dastore 

Operation Store into double array 

Synta:x I S : dastore (A , I ,D) I 
Description The dastore opcode writes a double D into array A at index I. A must 

be a non-null reference to a double array ínstance. I must be non-negatíve 
and less than A length. 

Class rnernory-accessing 

dcmpg 

Operation Compare doubles 

Synta:x 

Description The dcmpg opcode compares doubles D 1 and D 2 . If D 1 < D 2 , a negatíve 
ínteger value is províded. If D 1 = D2 , the integer value O ís províded. If 

D 1 > D2, a posítíve ínteger value is províded. If at least one of D 1 or D2 ís 
NaN, a positíve integer value is províded. 

Notes The dcmpg and dcmpl ínstructíons díffer only when treatíng NaN. 

dcmpl 

Operation Compare doubles 

Synta:x 

Description The dcmpl opcode compares doubles D1 and D 2 • If D1 < D 2 , a negative 
ínteger value ís províded. If D 1 = D 2 , the integer value O ís províded. I f 
D1 > D 2 , a posítíve ínteger value is províded. If at least one of D1 or D 2 ís 
NaN, a negatíve ínteger value is provided. 

Notes The dcmpg and dcmpl ínstructíons díffer only when treatíng NaN. 

dconst 

Operation Províde double constant 

Synta:x I D : dconst ($d) I 

Description The dconst opcode provides the double constant $d. 



A..2. Opcodes 185 

ddefine 

Operation Write double register 

Synta:x ls: ddefine(%d,D)I 

Description The ddefine opcode stores the value of expression D in register %d. 

ddiv 

Operation Divide doubles 

Synta:x 

Description The ddiv opcode provides the result of division D,jD 2 . 

dload 

Operation Load double from field 

Synta:x I D: dload(A ,#o ,#v) I 

Description The dload opcode reads a double field from A at offset #o. A must be a 
non-null reference. 

Class 

dmul 

The attribute #o specifies the double field offset using the encoding de­
scribed on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the read is volatíle, i.e. cannot be cached. 

memory-accessíng 

Operation Multiply doubles 

Synta:x 

Description The dmul opcode provides the result of multiplication D1 * D2 • 



186 Appendix A. Intermediate Representation Specification 

dneg 

Operation Negate double 

Syntax 

Description The dneg opcode provides the result of negation -D. 

dpass 

Operation Pass double as parameter to method call 

Syntax I S : dpass (D) I 

Description The dpass opcode passes a double D as parameter to a subsequent method 
cal!. 

Class 

Notes 

dreceive 

parameter-passing 

The parameter passing protocol in an IR program is right-to-left rather 
than left-to-right, as adopted in Java bytecodes. 

The number and types of parameter-passing opcodes must match the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method-call opcode. 

Operation Write method parameter to double register 

Syntax ls: dreceive(%d)j 

Description The drecei ve opcode stores the parameter received by a method, upon its 
call, in double register %d. 

Class 

Notes 

parameter-receiving 

Parameter-receiving opcodes must appear on top of IR programs, before 
ali other opcodes. They must be placed according to the method signature 
in left-to-right order. 



A.2. Opcodes 187 

drem 

Operation Remainder doubles 

Syntax 

Description The drem opcode provides the result of remainder D 1%D 2 . 

dresult 

Operation Write method result to double register 

Syntax ls: dresult(%d) I 

Description The dresul t opcode stores the result o f a method call in double register 
%d. It must appear just after the method call opcode and be used only 
when calling double methods. 

Class result-saving 

dreturn 

Operation Return from double method 

Syntax I S: dreturn(D) I 

Description The dreturn opcode returns from the current executing method. The cur­
rent executing method must be a double method. The value of expression 
D is used as the return value. 

Class 

Notes 

dstore 

method-retuming 

Method-returning opcodes may appear anywhere in an IR program, not 
simply at the end as one would expect. 

Operation Store into double field 

Syntax I S: dstore (A ,#o ,#v ,D) I 



188 Appendix A. Intermediate Representation Specification 

Description The dstore opcode writes D into a double field of A at offset #o. A must 
be a non-null reference. 

Class 

dstrict 

The attribute #o specifies the double field offset using the encoding de­
scribed on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the write is volatile, i.e. cannot be cached. 

rnernory-accessing 

Operation Convert to double value set 

Syntax Jn: dstrict(D) I 

Description The dstrict opcode provides the nearest element of the double value set 

representing the double-extended-exponent value set element D. The value 

set conversion procedure is described on [43, §2.6.6]. 

dsub 

Operation Subtract doubles 

Syntax 

Description The dsub opcode provides the result of subtraction D1 - D 2 • 

duse 

Operation Read double register 

Syntax ID: duse(%d) I 

Description The duse opcode loads the value of register %d. 

f2d 

Operation Convert float to double 

Syntax In= f2ct<n 1 

Description The f2d opcode converts the float expression F to double. 



A..2. Opcodes 189 

f2i 

Operation Convert float to integer 

Synta.x li: f2i(F) 1 

Description The f2i opcode converts the float expression F to integer. 

f2l 

Operation Convert float to long integer 

Synta.x 

Description The f2l opcode converts the float expression F to Jong integer. 

fadd 

Operation Add floats 

Synta.x 

Description The fadd opcode provides the result of addition F 1 +F 2 • 

faload 

Operation Load float from array 

Synta.x lF: faload(A,I)l 

Description The faload opcode reads a float from array A at index I. A must be a 
non-null reference to a float array instance. I must be non-negative and 
less than A length. 

Class memory-accessing 

fastore 

Operation Store into float array 

Synta.x I S: fastore(A ,I ,F) I 



190 Appendix A. Intermediate Representation Specification 

Description The fastore opcode writes a float F into array A at index I. A must be 
a non-null reference to a float array instance. I must be non-negative and 
less than A length. 

Class rnernory-accessing 

fconst 

Operation Provide float constant 

Syntax I F: fconst ($f) I 

Description The fconst opcode provides the float constant $f. 

fcmpg 

Operation Compare floats 

Syntax 

Description The fcmpg opcode compares floats F 1 and F 2 . If F 1 < F 2 , a negative 
integer value is provided. If F 1 = F 2 , the integer value O is provided. If 
F 1 > F 2 , a positive integer value is provided. If at least one of F 1 o r F 2 is 
NaN, a positive integer value is provided. 

Notes The fcmpg and fcmpl instructions differ only when treating NaN. 

fcmpl 

Operation Compare floats 

Syntax 

Description The fcmpl opcode compares floats F 1 and F 2 • If F 1 < F 2 , a negative 
integer value is provided. If F 1 = F 2 , the integer value O is provided. If 
F1 > F2, a positive integer value is provided. If at least one of F 1 or F 2 is 
NaN, a negative integer value is provided. 

Notes The fcmpg and fcmpl instructions differ only when treating NaN. 



A.2. Opcodes 191 

fdefine 

Operation Write float register 

Syntax \ S: f define (%f, F) \ 

Description The fdefine opcode stores the value of expression F in register %f. 

fdiv 

Operation Divide floats 

Syntax 

Description The fdiv opcode provides the result of division FtfF 2 • 

fioad 

Operation Load float from field 

Syntax \F: fload(A ,#o,#v) \ 

Description The fload opcode reads a float field from A at offset #o. A must be a 
non-null reference. 

Class 

fmul 

The attribute #o specifies the float field offset using the encoding described 
on Section 4.4. It also tells, using a boolean flag, which of the static or 
instance field tables must be used. 

The attribute #v indicates if the read is volatile, i. e. cannot be cached. 

memory-accessing 

Operation Multiply floats 

Syntax 

Description The fmul opcode provides the result of multiplication F 1 *F 2-



192 Appendix A. Intermediate Representation Specification 

fneg 

Operation Negate float 

Syntax I F: fneg(F) I 

Description The fneg opcode provides the result o f negation -F. 

fpass 

Operation Pass float as pararneter to rnethod call 

Syntax ls: fpass(F) I 

Description The fpass opcode passes a float F as pararneter to a subsequent rnethod 
cal!. 

Class 

Notes 

freceive 

parameter-passíng 

The parameter passing protocol in an IR prograrn is ríght-to-left rather 
than left-to-ríght, as adopted in Java bytecodes. 

The nurnber and types of parameter-passíng opcodes rnust rnatch the nurn­
ber and types of the rnethod being called. They should appear in the 
expected order just before the associated method-call opcode. 

Operation Write rnethod pararneter to float register 

Syntax ls: freceive(%f) J 

Description The frecei ve opcode stores the pararneter received by a rnethod, upon its 
call, in float register %f. 

Class 

Notes 

parameter-receívíng 

Parameter-receívíng opcodes must appear on top of IR prograrns, before 
ali other opcodes. They rnust be placed according to the method signature 
in left-to-ríght order. 



A.2. Opcodes 193 

frem 

Operation Remainder floats 

Syntax 

Description The f rem opcode provides the result o f remainder F 1 %F 2 . 

fresult 

Operation Write method result to float register 

Syntax ls: fresult(%f)l 

Description The fresul t opcode stores the result o f a method call in float register %f. 

Class 

freturn 

It must appear just after the method call opcode and be used only when 
calling float methods. 

result-savíng 

Operation Return from float method 

Syntax I S: freturn(F) I 

Description The freturn opcode returns from the current executing method. The 
current executing method must be a float method. The value of expression 
F is used as the return value. 

Class 

Notes 

fstore 

method-returning 

Method-returníng opcodes may appear anywhere in an IR program, not 
simply at the end as one would expect. 

Operation Store into float field 

Syntax ls: fstore(A ,#o,#v,F) I 



194 Appendíx A. Intermedíate Representatíon Specíficatíon 

Description The fstore opcode writes F into a float field of A at offset #o. A must be 
a non-null reference. 

Class 

fstrict 

The attribute #o specifies the float field offset using the encoding described 
on Section 4.4. It also teUs, using a boolean flag, which of the static or 
instance field tables must be used. 

The attribute #v in di cates if the write is volatile, i. e. cannot be cached. 

memory-accesszng 

Operation Convert to float value set 

Syntax I F: fstrict (F) I 

Description The fstrict opcode provides the nearest element of the fioat value set 
representing the fioat-e:ctended-exponent value set element F. The value 

set conversion procedure is described on [43, §2.6.6]. 

fsub 

Operation Subtract floats 

Syntax 

Description The f sub opcode provides the result of subtraction F 1 -F 2 . 

fuse 

Operation Read float register 

Syntax JF: fuse(%f) I 

Description The fuse opcode loads the value of register %f. 

getclass 

Operation Get object class 

Syntax J A : getclass (A ) j 



A.2. Opcodes 195 

Description The getclass opcode provides a reference to a Class instance representing 
the class of A . A expression must evaluate to a non-null reference. 

Notes 

i2b 

The getclass opcode may be handled as i f it were an arithmetic expression. 
It does not have side effects and will always provide the same value once 
its argument is fixed. 

Operation Convert integer to byte 

Syntax 

Description The i2b converts the integer e:xpression I to byte. The integer value pro­
vided by i2b is the result of sign-extending I lower 8 bits. 

i2c 

Operation Convert integer to char 

Syntax 

Description The i2c converts the integer expression I to char. The integer value pro­
vided by i2c is the result of zero-extending I lower 16 bits. 

i2d 

Operation Convert integer to double 

Syntax 

Description The i2d opcode converts the integer expression I to double. 

i2f 

Operation Convert integer to float 

Syntax I F: i2f (I) I 

Description The i2f opcode converts the integer expression I to float. 



196 Appendíx A. Intermedíate Representation Specíficatíon 

i21 

Operation Convert integer to long integer 

Syntax IL: i2l(I) I 

Description The i2l opcode converts the integer expression I to Jong integer. 

i2s 

Operation Convert integer to short 

Syntax ji: i2s(I)I 

Description The i2s converts the integer expression I to short. The integer value 
provided by i2s is the result of sign-extending I Jower 16 bits. 

iadd 

Operation Add integers 

Syntax 

Description The iadd opcode provides the result of addition I 1 +I 2 . 

iaload 

Operation Load integer from array 

Syntax li: iaload(A,I)j 

Description The iaload opcode reads an integer from array A at index I. A must be 
a non-null reference to a integer array instance. I must be non-negative 
and Jess than A length. 

Class memory-accessíng 

iand 

Operation Bitwise and integers 

Syntax I I : iand (I 1 , I 2 ) j 

Description The iand opcode provides the result of operation I 1&I 2 . 



A.2. Opcodes 197 

iastore 

Operation Store into integer array 

Syntax I S : iastore (A , I 1 , I 2 ) I 

Description The iastore opcode writes an integer I 2 into array A at index I 1 . A must 
be a non-null reference to a integer array instance. I 1 must be non-negative 
and less than A length. 

Class memory-accessing 

iconst 

Operation Provide integer constant 

Syntax I I : iconst ($i) I 

Description The iconst opcode provides the integer constant $i. 

i define 

Operation Write integer register 

Syntax I S : idef in e (%i, I ) I 

Description The idefine opcode stores the value of expression I in register %i. 

idiv 

Operation Divide integers 

Syntax 

Description The idiv opcode provides the result of division I 1/ I 2 . I 2 must be non­
zero. 

ijump 

Operation Transfer control if integer comparison succeeds 

Syntax 



198 Appendix A. Intermediate Representation Specificatíon 

Description The ijump opcode transfers execution to label @l i f the comparison of I 1 

and I 2 succeeds. 

iload 

The attribute #x defines the behavior of the ijump opcode in the following 
way: 

#x I TRANSFER OONTROL IF I 
EQ I1 = I2 

NE I1ofi2 

LT I1 < I2 

LE I1$I2 

GE I12':I2 

GT I1 > I2 

B I 1 < ( unsigned) I 2 

BE I 1 $(unsigned) I 2 

AE I 1 2':( unsigned) I 2 

A I 1 > ( unsian~d) I 2 

Operation Load integer from field 

Syntax I I: iload(A ,#o ,#v) I 
Description The iload opcode reads an integer field from A at offset #o. A must be a 

non-null reference. 

Class 

imlookup 

The attribute #o specifies the integer field offset using the encoding de­
scribed on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the read is volatile, i. e. cannot be cached. 

rnernory-accessing 

Operation Search for interface method 

Syntax 

Description The imlookup provides the method at dispatch table index #i, from base 
offset o f interface A 2 , o f class A 1 . Both the expressions A 1 and A 2 must 
evaluate to non-null references of class Class. The imlookup provides a 



A.2. Opcodes 199 

Notes 

imul 

non-null reference of class MetbodText if class A 1 implements interface A 2 • 

Otherwise, the null reference is provided. 

The imlookup opcode may be handled as if it were an arithmetic expression. 
It does not have side effects and will always provide the same value once 
its arguments and attribute are fixed. 

Operation Multiply integers 

Syntax 

Description The imul opcode provides the result of multiplication I 1 * I 2• 

ineg 

Operation Negate integer 

Syntax ji: ineg(I)j 

Description The ineg opcode provides the result of negation -I. 

init 

Operation Initialize class 

Syntax js: init(A ,#t) I 

Description The init opcode triggers the initialization procedure ([43, §2.17.5]) for 
class A. The expression A must evaluate to a non-null reference of an 
instance of class Class. 

Class 

Notes 

The attribute #t contains information regarding stack inspection and trac­
ing. 

inspection-point 

This opcode is not exception-prone, hence, upon failure an exception 1s 
thrown in the frame of the caller method. 



L:UV Appena1x A. 1Dtermed1ate Hepresentatíon :ipecífícation 

initx 

Operation Initialize class, handle failure 

Syntax ls: initx(A,#t,@l)l 

Description The initx opcode triggers the initialization procedure ([43, §2.17.5]) for 
class A . The expression A must evaluate to a non-null reference of an 
instance of class Class. 

Class 

ior 

The attribute #t contains information regarding stack inspection and trac­
ing. 

Upon failure, the control is transfered to label @1. An acatch opcode must 
be the first statement following the label @1. 

ínspectíon-poínt, exceptíon-prone 

Operation Bitwise or integers 

Syntax 

Description The ior opcode provides the result of operation I 1 II 2 . 

ipass 

Operation Pass integer as parameter to method call 

Syntax ls: ipass(I) J 

Description The ipass opcode passes an integer I as parameter to a subsequent method 
call. 

Class 

Notes 

parameter-passíng 

The parameter passing protocol in an IR program is ríght-to-left rather 
than left-to-ríght, as adopted in Java bytecodes. 

The number and types of parameter-passíng opcodes must match the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method-call opcode. 



A.2. Opcodes 201 

ireceive 

Operation Write rnethod pararneter to integer register 

Syntax ls: ireceive(%i)l 

Description The ireceive opcode stores the pararneter received by a rnethod, upon its 
call, in integer register %i. 

Class 

Notes 

irem 

parameter-receiving 

Parameter-receiving opcodes must appear on top of IR programs, before 
ali other opcodes. They must be placed according to the method signature 
in left-to-right order. 

Operation Remainder integers 

Syntax 

Description The irem opcode provides the result of remainder I 1 %I 2 . I 2 must be 
non-zero. 

iresult 

Operation Write method result to integer register 

Syntax ls: iresult(%i) I 

Description The ire sul t opcode stores the result o f a method call in integer register 
%i. It must appear just after the method call opcode and be used only 
when calling integer methods. 

Class result-saving 

ireturn 

Operation Return from integer method 

Syntax ls: ireturn(I) I 



202 Appendix A. Intermediate Representation Specification 

Description The ireturn opcode returns from the current executing method. The cur­
rent executing method must be an integer method. The value of expression 
I is used as the return value. 

Class 

Notes 

ishl 

method-returning 

Method-returning opcodes may appear anywhere in an IR program, not 
simply at the end as one would expect. 

Operation Shift left integer 

Syntax 

Description The ishl opcode provides the result o f operation I 1 < < I 2 • 

ishr 

Operation Arithmetic shift right integer 

Syntax I I : ishr (I 1 , I 2 ) I 

Description The ishr opcode provides the result of operation I 1 >>I 2 . 

islocked 

Operation Determine if lock is acquired 

Syntax I I: islocked (A) I 

Description The islocked opcode determines if the lock for object A has been ac­
quired by the current thread. The expression A must evaluate to a non-null 
reference. If the lock has been acquired the islocked opcode provides a 
non-zero integer value. Otherwise, it provides the integer O value. 

istore 

Operation Store into integer field 

Syntax ls: istore(A ,#o,#v,I) I 



A.2. Opcodes 203 

Description The istore opcode writes I into an integer field of A at offset #o. A must 
be a non-null reference. 

Class 

isub 

The attribute #o specifies the integer field offset using the encoding de­
scribed on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the write is volatile, i.e. cannot be cached. 

memory-accessing 

Operation Subtract integers 

Syntax 

Description The i sub opcode provides the result of subtraction I 1 - I 2 . 

iswitch 

Operation Transfer control based on integer jump table 

Syntax I S: iswi tch (I, [$i, @1] ... ) I 

Description The iswitch opcode uses the result of expression I to transfer execution 
based on an integer jump table. Each entry $i defines a label @1 that will 
be used to transfer execution if there is a match. If there is no match, 
execution is not transfered and continues sequentially. No entry $i may 
appear twice on the jump table. 

i use 

Operation Read integer register 

Syntax I I : i use (%i) I 

Description The i use opcode loads the value of register %i. 



204 Appendix A. Intermediate Representation Specification 

iushr 

Operation Logical shift right integer 

Syntax I I: iushr(I 1 ,I 2 ) I 

Description The iushr opcode provides the result o f operation I 1 > > > I 2 . 

ixor 

Operation Bitwise xor integers 

Syntax I I : ixor (I 1 , I 2) I 

Description The ixor opcode provides the result of operation I 1 ·I 2 . 

jump 

Operation Transfer control unconditionally 

Syntax I s = jumpc<m I 
Description The jump opcode transfer execution to label @1, unconditionally. 

l2d 

Operation Convert long integer to double 

Syntax In: 12d(L) I 

Description The 12d opcode converts the long integer expression L to double. 

l2f 

Operation Convert long integer to fioat 

Syntax 

Description The 12f opcode converts the long integer expression L to fioat. 



A.2. Opcodes 205 

l2i 

Operation Convert long integer to integer 

Syntax I I: 12i(L) I 
Description The 12i opcode converts the long integer expression L to integer. 

la bel 

Operation Declare label 

Syntax I S: label(@l) I 

Description The label opcode associates the current point in the IR program to label 
@1. 

ladd 

Operation Add long integers 

Syntax 

Description The ladd opcode provides the result of addition L1 + L2 . 

laload 

Operation Load long integer from array 

Syntax IL: laload(A,I)j 

Description The laload opcode reads a long integer from array A at index I. A must 
be a non-null reference to a long integer array instance. I must be non­
negative and less than A length. 

Class memory-accessmg 

land 

Operation Bitwise and long integers 

Syntax 

Description The land opcode provides the result of operation L 1&L 2 . 



206 Appendix A. Intermediate Representation Specification 

lastore 

Operation Store into long integer array 

Syntax \s: 1astore(A ,I ,L)\ 

Description The 1astore opcode writes a long integer L in to array A at index I. A 

must be a non-null reference to a long integer array instance. I must be 
non-negative and less than A length. 

Class rnernory-accessing 

lcmp 

Operation Compare long integers 

Syntax 

Description The 1cmp opcode compares signed long integers L 1 and L 2 • I f L 1 < L 2 , 

a negative integer value is provided. If L 1 = L 2 , the integer value O is 
provided. If L 1 > L 2 , a positive integer value is provided. 

lconst 

Operation Provide long integer constant 

Syntax I L : 1const ($1) \ 

Description The 1const opcode provides the long integer constant $1. 

ldefine 

Operation Write long integer register 

Syntax I S: 1define (%1,L) I 

Description The 1def in e opcode stores the value o f expression L in register %1. 



A.2. Opcodes 207 

ldiv 

Operation Divide long integers 

Syntax 

Description The ldiv opcode provides the result of division L 1 /L 2 • L 2 must be non­
zero. 

length 

Operation Get length of array 

Syntax I I: length(A) I 

Description The length opcode provides the number of elements of an array instance. 

Notes 

lload 

The expression A must evaluate to a non-null array reference. It provides 
a non-negative integer. 

The length opcode may be handled as if it were an arithmetic expression. 
It does not have side effects and will always provide the same value once 
its argument is fixed. 

Operation Load long integer from field 

Syntax Ir: lload(A,#o,#v)l 

Description The lload opcode reads a long integer field from A at offset #o. A must 
be a non-null reference. 

Class 

The attribute #o specifies the long integer field offset using the encoding 
described on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the read is volatile, i. e. cannot be cached. 

memory-accessing 



208 Appendix A. Intermediate Representation Specification 

I mui 

Operation M ultiply long integers 

Syntax 

Description The lmul opcode provides the result o f rnultiplication L 1 *L 2· 

lneg 

Operation Negate long integer 

Syntax jL: lneg(L) I 
Description The lneg opcode provides the result of negation -L. 

lock 

Operation Acquire lock for object 

Syntax ls: lock(A ,#t) I 
Description The lock opcode acquires the Iock for object A . The expression A must 

evaluate to a non-null reference. If the lock has been previously acquired 
by another thread it will block until the lock is released. 

Class 

Notes 

lockx 

The attribute #t contains inforrnation regarding stack inspection and trac­
ing. 

inspection-point 

Locks are recursive. 

The lock opcode has no sernantics regarding the rnernory rnodel. The 
invalidation of cached rnernory reads is done using the readbarrier opcode. 

This opcode is not exception-prone, hence, upon failure an exception is 
thrown in the frarne of the caller rnethod. 

Operation Acquire lock for object, handle failure 

Syntax js: lockx(A,#t,@l)J 



A.2. Opcodes 209 

Description The lockx opcode acquires the lock for object A . The expression A must 
evaluate to a non-null reference. If the lock has been previously acquired 
by another thread it will block until the lock is released. 

Class 

Notes 

lo r 

The attribute #t contains information regarding stack inspection and trac­
ing. 

Upon failure, the control is transfered to label @1. An acatch opcode must 
be the first staternent following the !abel @1. 

inspection-point, exception-prone 

Locks are recursive. 

The lock opcode has no semantics regarding the memory model. The 
invalidation of cached memory reads is done using the readbarrier opcode. 

Operation Bitwise or long integers 

Syntax 

Description The ler opcode provides the result of operation L1 IL 2 • 

lpass 

Operation Pass long integer as parameter to method cal! 

Syntax ls: lpass(L)I 

Description The lpass opcode passes a long integer L as parameter to a subsequent 
method cal!. 

Class 

Notes 

parameter-passing 

The parameter passing protocol in an IR program is right-to-left rather 
than left-to-right, as adopted in Java bytecodes. 

The number and types of parameter-passing opcodes must match the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method-call opcode. 



210 Appendix A. Intermediate Representation Specífication 

lreceive 

Operation Write method parameter to Jong integer register 

Syntax js: 1receive(%1)1 

Description The 1receive opcode stores the parameter received by a method, upon its 
call, in long integer register %1. 

Class 

Notes 

Irem 

parameter-receiving 

Parameter-receiving opcodes must appear on top of IR programs, before 
ali other opcodes. They must be placed according to the method signature 
in left-to-right order. 

Operation Remainder long integers 

Syntax 

Description The 1rem opcode provides the result of remainder L 1 %L 2 • L 2 must be 
non-zero. 

lresult 

Operation Write method result to Jong integer register 

Syntax I S: 1resu1t (%1) I 

Description The lresu1t opcode stores the result of a method call in long integer 
register %1. It must appear just after the method call opcode and be used 
only when calling Jong integer methods. 

Class result-saving 

lreturn 

Operation Return from long integer method 

Syntax I S : 1return (L) I 



A.2. Opcodes 211 

Description The lreturn opcode returns frorn the current executing rnethod. The 
current executing rnethod rnust be a long integer rnethod. The value of 
expression L is used as the return value. 

Class 

Notes 

lshl 

method-retuming 

Method-returning opcodes rnay appear anywhere in an IR prograrn, not 
sirnply at the end as one would expect. 

Operation Shift left long integer 

Syntax IL: lshl(L ,I) I 

Description The lshl opcode provides the result of operation L < < I. 

lshr 

Operation Arithrnetic shift right long integer 

Syntax IL: lshr(L,I)I 

Description The lshr opcode provides the result of operation L > > I. 

lstore 

Operation Store into long integer field 

Syntax I S: lstore (A ,#o ,#v ,L) I 

Description The lstore opcode writes L into a long integer field of A at offset #o. A 

rnust be a non-null reference. 

Class 

The attribute #o specifies the long integer field offset using the encoding 
described on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables rnust be used. 

The attribute #v indicates if the write is volatile, i.e. cannot be cached. 

memory-accessing 



212 Appendix A. lntermediate Representation Specification 

lsub 

Operation Subtract long integers 

Syntax 

Description The lsub opcode provides the result of subtraction L 1 - L 2 . 

I use 

Operation Read long integer register 

Syntax jL: luse(%1)1 

Description The luse opcode loads the value of register %1. 

lushr 

Operation Logical shift right long integer 

Syntax Ir: lushr(L,I)I 

Description The lushr opcode provides the result of operation L > > > I. 

lxor 

Operation Bit"~Vise xor long integers 

Syntax 

Description The lxor opcode provides the result of operation L1 'L 2 • 

mlookup 

Operation Search for method 

Syntax IA: mlookup(A,#i)l 

Description The mlookup provides the method at dispatch table index #i of class A. 

Notes 

The expression A must evaluate to a non-null reference of class Class. The 
mlookup provides a non-null reference of class MethodText. 

The mlookup opcode may be handled as if it were an arithmetic expression. 
It does not have side effects and will always provide the same value once 
its argument and attribute are fixed. 



A.2. Opcodes 213 

ncall 

Operation Cal! native method 

Syntax js: ncall(#c,#s,#t) j 

Description The ncall opcode calls the native implementation of native method iden­
tified by signature #s declared on class #c. The parameters to the cal! are 
passed before this opcode using parameter-passing opcodes. If the callee 
method is not void, a result-saving opcode may be used just after the call 
opcode to store the result in a register. 

Class 

Notes 

ncallx 

The attribute #c identifies the declaring class of the method to be called by 
ncall. It is represented by the name of a class or interface in its extended 

fully-qualified internai form (Section 4.3.1 ). 

The attribute #s contains the name and descriptor of the callee method. 

The attribute #t contains information regarding stack inspection and trac­
mg. 

method-call, inspection-point 

The parameter passing protocol in an IR program is right-to-left rather 
than left-to-right, as adopted in Java bytecodes. 

The number and types of parameter-passing opcodes must match the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method- call opcode. 

It the callee method is static, an extra reference to the class that declares 
it must be passed right before the ncall opcode. 

The type of the result-saving opcode must match the type of the method 
being called. 

This opcode is not exception-prone, hence, upon failure an exception is 
thrown in the frame of the caller method. 

Operation Cal! native method, handle failure 

Syntax js: ncallx(#c,#s,#t,@l) I 



214 Appendix A. Intermediate Representation Specification 

Description The ncallx opcode calls the na tive implementation of na tive method iden­
tified by signature #s declared on class #c. The parameters to the call are 
passed before this opcode using parameter-passing opcodes. If the callee 
rnethod is not void, a result-savíng opcode may be used just after the call 
opcode to store the result in a register. 

Class 

Notes 

newarray 

The attribute #c identifies the declaring class of the method to be called by 
ncall. It is represented by the name of a class or interface in its extended 

fully-qualified interna! form (Section 4.3.1). 

The attribute #s contains the name and descriptor of the callee method. 

The attribute #t contains information regarding stack inspection and trac­
ing. 

Upon failure, the control is transfered to label @1. An acatch opcode must 
be the first statement following the label @1. 

method-call, ínspection-point, exception-prone 

The pararneter passing protocol in an IR prograrn is right-to-left rather 
than left-to-right, as adopted in Java bytecodes. 

The nurnber and types of parameter-passing opcodes must rnatch the num­
ber and types of the method being called. They should appear in the 
expected order just before the associated method-call opcode. 

It the callee method is static, an extra reference to the class that declares 
it must be passed right before the ncallx opcode. 

The type of the result-saving opcode must match the type of the method 
being called. 

Operation Allocate new array 

Syntax \ S: newarray(A ,I ,#t) \ 

Description The newarray opcode allocates space for a new array in the garbage col­
lected heap. The expression A must evaluate to a non-null reference of an 
array type instance of class Class. The expression I must evaluate to a 
non-negative value. The new array will have room for I elernents of the 
appropriate type, initialized with default values. 



A.2. Opcodes 215 

Class 

Notes 

newarrayx 

The attribute #t contains information regarding stack inspection and trac­
ing. 

memory-allocation, inspection-point 

This opcode is not exception-prone, hence, upon failure an exception Js 
thrown in the frame of the caller method. 

Operation Allocate new array, handle failure 

Syntax I S: newarrayx(A ,I ,#t,@1) I 

Description The newarrayx opcode allocates space for a new array in the garbage col­
lected heap. The expression A must evaluate to a non-null reference of an 
array type instance of class Class. The expression I must evaluate to a 
non-negative value. The new array will have room for I elements of the 
appropriate type, initialized with default values. 

Class 

The attribute #t contains information regarding stack inspection and trac­
mg. 

Upon failure, the control is transfered to label @1. An acatch opcode must 
be the first statement following the la bel @1. 

memory-allocation, inspection-point, exception-prone 

newinstance 

Operation Allocate new object 

Syntax ls: newínstance(A,#t)l 

Description The newínstance opcode allocates space for a new instance in the garbage 
collected heap. The expression A must evaluate to a non-null reference of 
a non-abstract instance of class Class. The new object have ali its fields 
initialized with default values. 

Class 

The attribute #t contains information regarding stack inspection and trac­
ing. 

memory-allocation, inspection-point 



216 

Notes 

Appendix A. Intermediate Representation Specification 

This opcode is not exception-prone, hence, upon failure an exception 1s 

thrown in the frame of the caller method. 

newinstancex 

Operation Allocate new object, handle failure 

Syntax \ S : newinstancex (A , #t, @1) \ 

Description The newinstancex opcode allocates space for a new instance in the garbage 
collected heap. The expression A must evaluate to a non-null reference of 
a non-abstract instance of class Class. The new object h ave ali its fields 
initialized with default values. 

Class 

The attribute #t contains information regarding stack inspection and trac­
ing. 

U pon failure, the control is transfered to label @1. An acatch opcode must 
be the first statement following the label @1. 

memory-allocation, inspection-point, exception-prone 

readbarrier 

Operation Discards cached reads 

Syntax ls: readbarrier()l 

Description The readbarrier opcode marks a point in the IR program where ali cached 
memory reads must be discarded. 

Notes 

saload 

Once its single-threaded semantics does not change, the IR program may be 
transformed to anticipate memory reads, keeping values cached on registers. 
The readbarrier opcode prevents those values from staying cached. 

Operation Load char or short from array 

Syntax I I : saload (A , I) I 
Description The saload opcode reads the lower 16 bits of the integer from array A at 

index I. A must be a non-null reference to a char or short array instance. 



A.2. Opcodes 217 

Class 

sastore 

I must be non-negative and less than A length. The higher 16 bits of the 
integer provided by saload are left unspecified. 

memory-accessmg 

Operation Store into char or short array 

Syntax 

Description The sastore opcode writes the lower 16 bits of integer I 2 into array A at 
index I 1 . A must be a non-null reference to a char or short array instance. 
I 1 must be non-negative and less than A length. 

Class memory-accessmg 

sload 

Operation Load char or short from field 

Syntax li: sload(A,#o,#v)l 

Description The sload opcode reads the lower 16 bits of the integer from char or short 
field of A at offset #o. A must be a non-null reference. The higher 16 bits 
of the integer provided by sload are left unspecified. 

Class 

sstore 

The attribute #o specifies the char or short field offset using the encoding 
described on Section 4.4. It also tells, using a boolean flag, which of the 
static or instance field tables must be used. 

The attribute #v indicates if the read is volatile, i.e. cannot be cached. 

memory-accessmg 

Operation Store into char or short field 

Syntax ls: sstore(A ,#o,#v,I) I 

Description The sstore opcode writes the lower 16 bits of integer I into achar or short 
field of A at offset #o. A must be a non-null reference. 



218 

Class 

subtypeof 

Appendix A. Intermediate Representation Specificatíon 

The attribute #o specifies the char or short field offset using the encoding 
described on Section 4.4. It also tells, using a boolean flag, which of the 
statíc or ínstance field tables must be used. 

The attribute #v indicates if the wríte is volatile, i. e. cannot be cached. 

rnernory-accesszng 

Operation Determine subtypíng 

Syntax 

Description The subtypeof opcode checks if class or interface A 1 is a subtype of class 
or interface A 2 • Both expressions should evaluate to non-null references of 
class Class. 

unlock 

Operation Release lock for object 

Syntax I S: unlock(A) I 
Description The unlock opcode releases Jock for object A . The expression A must eval­

uate to a non-null reference. The Jock must have been previously acquíred 
before this opcode is reached. 

Notes 

vreturn 

Locks are recursive. 

The unlock opcode has no semantics regarding the memory model. The 
flush of cached memory writes is done using the writebarrier opcode. 

Operation Return from void method 

Syntax I S : vreturn () I 

Description The vreturn opcode returns from the current executing method. The 
current executing method must be a void method. 

Class rnethod-returníng 



A.2. Opcodes 219 

Notes Method-returning opcodes may appear anywhere in an IR program, not 
simply at the end as one would expect. 

writebarrier 

Operation Flush cached writes 

Syntax Js: writebarrierC)J 

Description The writebarrier opcode marks a point in the IR program where ali 
cached memory writes must be flushed. 

Notes Once its single-threaded semantics does not change, the IR program may 
be transformed to handle memory writes lazily, keeping values cached on 
registers. The writebarrier opcode prevents those values from staying 
cached. 



Appendix B 

Yet Another Tree Rewriting Tool 

This chapter describes RING (Rewriting for INtermediate Grammar), a tree rewriting 

tool that uses tree pattern matching[32, 17, 52] and dynamic programming. Its design is 
based on iburg[25, 24], although it has a different language and interface. It outputs a 
hard-coded matcher that does dynamic programming at compile time, similarly as iburg. 

The input specification is a superset of the Java Programming Language[6]. It supercedes 
iburg functionality since it supports default rules and non-terminal templates. Also, it 
provides a limited, but still useful, non-terminal inlining facility. Matchers are generated 
targeting the Java Programming Language. 

This tree rewriting tool serves not only as a code generator generator[23], but also 
as an intermediate representation manipulator. The tool is tailored to the intermediate 
representation (described in Appendix A), therefore it provides no syntax for declaring 
grammar terminais. For the same reason, it supports at most ternary arity tree patterns. 

B.l Specifications 

The language for RING specification is an extension of the Java Programming Language. 
Figure B.l shows the subset of the rules of a Java EBNF grammar[29, §8] that defines 
the specification language extensions. To specify a tree matcher, the user must declare 
tree pattern rules in the class that he/she chooses to implement the matcher. Every tree 
pattern rule is associated to a non-terminal. Non-terminals are declared in the same way 
as fields and methods are declared in the body of the matcher class. 

A non-terminal declaration consists of some access flags, a name, a signature, tem­
plate parameters, non-terminal attributes, optimality expression, and rule declarations. 
The access flags define the visibility of the non-terminal. In the generated matcher, any 
non-terminal can be used as start symbol. Visibility flags may be used to hide non­
terminals not meant to be start symbols. The abstract access flags may be used to 

221 



222 Appendix B. Yet Another Tree Rewriting Tool 

mark the non-terminal as inline (see Section B.3.3). The name is used to identify the 
non-terminal. The non-terminal signature defines the signature of the action function 

that users call when the optimal match is found. Template parameters can be declared 
when creating template non-terminals (see Section B.3.2). A non-terminal may declare 
attributes which are synthetized during pattern matching. The optimality expression is 
a boolean expression, based on synthetized attributes, used to test and replace matches 
for the non-terminal. The set of rule declarations defines the possible matches for that 
particular non-terminal. 

ClassBodyDeclaration -+ Initializer 
N ested ClassD eclaration 
NestedinterfaceDeclaration 
ConstructorDeclaration 
M ethodDeclaration 
FieldDeclaration 
NonTermina/Declaration 

NonTerminalDeclaration -+ ( "public" I "protected" I "private" I "abstract" )* 
ResultType Identifier [ Templateid ] 
FormalParameters ( "[" "]" )* [ "throws" NameList ] 
[ N on Terminal Vars [ "[" Expression "]" ]] 
~':" RuleDeclaration ( "I" RuleDeclaration )* ";" 

NonTermina/Vars -+ "<" NonTerminalVar ( "," NonTermina/Var )* ">" 

NonTermina/Var -+ Type VariableDeclaratorid 

RuleDec/aration -+ TreePattern [ "[" Expression "]" ] [ B/ock ] [ "=" Block ] 
"default" [ B/ock ] [ "=" Block ] 

TreePattern -+ Name 
[ "(" TreePattern ( "," TreePattern )* ")" ] 
[ TreePattern ] 
I dentifier [ Templatei d ] 

Temp/ateid -+ "<" Identifier ( "," Identifier )* ">" 

Figure B.l: EBNF grammar excerpt for Java based matcher specifications. 

Each rule declaration consists of a tree pattern and three optional functions: a predi­
cate expression, a synthetize function and an action function. It is also possible to declare 
default rules (see Section B.3.1). The tree pattern is constructed using terminais as parent 



B.l. Specifications 223 

nades and non-terminals as child nades. Each terminal is associated to an intermediate 
representation opcode of fixed arity. Instead of a tree pattern, a rule may have a single 
non-terminal on its right hand side. Rules with a single non-terminal on its right hand 
side are known as chaín rules. Tree patterns provi de syntax based matching which suffices 
on many cases. Sometimes extra information must be considered when matching, and this 
can be done by writing a predicate expression. Predicate expressions are boolean expres­
sions that may deny a match based on an undesired semantic property. The synthetize 
function is used to synthetize the non-terminal attributes, normally using attributes in­
herited from its children, once a match takes place. The action function is the function 
called by the user when the optimal match is found. It is responsible for calling the action 
function of the tree pattern children. 

Figures B.2 and B.3 show a sample matcher specification. It implements a toy back­
end for a generic RISC machine based on a subset of the intermediate representation. Five 
non-terminals are defined: stmt to match statements, reg to match register expressions, 
disp to match reference expressions, rc to match register or constant expressions, and 
con to match constant expressions. We assume the reader is familiar with tree rewriting 
systems, like [25, 26, 3, 57, 58, 20, 8]. 

The stmt non-terminal is the only non-terminal defined as public, so it is the start 
symbol. It has a cost attribute that stores the number of cycles required to execute the 
whole statement. The optimality expression @@. cost < cost is used to choose the match 
with the smallest cost. The @@. cost identifies the cost o f a recent match, cost is the best 
cost so far. The stmt non-terminal declares two tree pattern rules. The first rule matches 
integer field assignment (istore). For that rule, the cost of the match is computed by 
the sum of subexpressions disp and reg plus 2 cycles of memory access. In the action 
function, the code for each subexpression is generated first, then a store instruction is 
emitted on out. The second rule matches integer register definition (idefine). Since the 
rule already requires that the definition expression stays on a register, reg, the cost of 
the match is the cost inherited from reg. Similarly, the action function does not require 
an operation different from calling the reg action function. 

The reg non-terminal matches expressions whose values are kept in registers. I t 
has a cost attribute similar to the stmt non-terminal. In addition, it provides a reg 
attribute which stores the index of the register that holds the expression result value. 
The optimality expression defines the same behavior as in stmt, it chooses the match 
with the smallest cost. The reg non-terminal declares three tree pattern rules. The 
first matches an iadd opcode generating an add reg,reg or add imm,reg instruction, 
keeping the result in the register synthetized by reg with cost 1. The second rule matches 
a zero valued expression. It uses a predicate expression to accept the match only if the 
iconst constant value is O. This rule h as cost zero and no action, so the reg attribute 



224 Appendix B. Yet Another Tree Rewriting Tool 

public class Sample { 

public void stmt(PrintStream out) 
<int cost> [~~.cost < cost] 

IR.ISTORE(disp,reg) 
{ @@.cost = 2+02.cost+@3.cost; } 
= { 02(out); 

03(out); 
out.print("st "+RA.name(@3.reg)); 
out .println(", ("+RA.name(02.reg)+") "+@1.get0fs ()); } 

I IR.IDEFINE(reg) 
{ @@.cost = @2.cost; } 
= { 02(out); } 

private void reg(PrintStream out) 
<int cost, int reg> [Q~.cost < cost] 

IR.IADD(reg,rc) 
{ @@.cost = 1+@2.cost+@3.cost; 

@@.reg = @2.reg; } 
= { 02(out); 

03(out); 
out.println("add ''+@:3.addr+ 11 , 11 +RA.name(@:2.reg)); } 

I IR.I2B(IR.ILOAD(disp)) 
{ @:@:.cost ; 3+~3.cost; 

@@.reg = @3.reg; } 
= { @3(out); 

out. print("ld ("+RA.name(03.reg)+")+"+@2.get0fs0); 
out. println (" , "+RA. name ( @:3. reg)) ; 
out.println("sx "+RA.name(@3.reg));} 

IR.ICONST [01.getValue() == O] 
{ @@.cost = O; 

@@.reg= RA.zero(); } 
= { } 

I disp 
{ @@.cost = @l.cost; 

@@.reg = 01.reg; } 
= { @1(out); } 

Figure B.2: Sample matcher specification. 



B.l. Specifications 

} 

private void disp(PrintStream out) 
<int cost, int reg> [@@.cost < cost] 

IR.ALOAD(reg) 
{ QQ.cost = 2+@2.cost; 

QQ.reg = Q2.reg; } 
{ @2(out); 

out.print("ld ("+RA.name(Q2.reg)+")+"+@l.get0fs()); 
out.println(", "+RA.name(@2.reg)); } 

I IR.AUSE 
{ @@.cost = O; 

@@.reg= RegAlloc.alloc(@l.getReg());} 
= { } 

private void rc(PrintStream out) 
<int cost, String addr> [~@.cost < cost] 

con 
{ Q@.cost = O; 

«!@.addr = "$ 11 +<0:1. value; } 

= { } 

I reg 
{ <Q@.cost = @1.cost; 

@@.addr = RA.name(@l.reg); } 
= { @1(out); } 

private void con() 
<int value> 

IR. ICONST 
{ @@.value = @l.getValue();} 
I IR.IADD(con,con) 
{ @@.value = @2.value+@3.value; } 

Figure B.3: Sample matcher specification (continued). 

225 



226 Appendix B. Yet Another Tree Rewriting Tool 

is synthetized with the read-only zero valued register. The third rule is a chain rule, it 
means that matches for disp non-terminal will apply similarly for the reg non-terminal. 

The disp non-terminal acts like the reg non-terminal, however, it deals with reference 
expressions. The first rule matches an expression that reads a reference field. The result 
value is kept in the register provided by a reg expression, the cost is increased by 2 and 
it outputs an ld instruction. The second rule matches a reference register use. It has no 
cost and an empty action function. The synthetized attribute reg is determined by the 
register allocator. 

The rc non-terminal matches a constant or register expression. It computes the cost 
in the usual way, and has an assembly String attribute with the result operand. The 
first rule is a chain rule that matches constant expressions. It synthetizes the constant 
with an immediate syntax $. The second rule is also a chain rule that matches register 
expressions. The addr attribute is synthetized with the register name. 

The con non-terminal matches integer constant expressions. There is no need for a 
cost attribute since there is no runtime cost for constant expressions. The only attribute 
synthetized by the con non-terminal is value, which holds the constant value of the 
expression. The first rule matches the iconst opcode which provides a constant value. 
The second rule performs constant folding for the iadd opcode, by computing the constant 
result of an expression at compile time. 

public class Main { 

} 

public static void main(String[] args) { 

} 

IR.snode stmt =f* ... snip ... *f; 
Sample matcher = new Sample(stmt); 
System.out.println( 11 cost:: "+matcher.stmt.cost); 
matcher.stmt(System.out); 

Figure B.4: Sample matcher usage. 

The sample matcher, shown in Figures B.2 and B.3, provides a broader idea of basic 
matcher specification. The usage of the matcher is very simple: The user must instantiate 
a matcher passing as argument the IR tree to be processed. After construction, the 
matcher will have performed tree pattern matching and dynamic programming on stmt. 

The attributes and action functions for each accessible non-terminal become available for 
usage. A sample usage can be seen on Figure B.4. 



B.2. Implementation 227 

B.2 Implementation 

The rnatcher generated frorn the Sa.mple specification is irnplernented by the class Sa.mple. 

An instance of class Sa.mple is associated to each IR node in the IR tree, it stores attributes 
and best rnatches. For each non-terrninal, two fields are added to the matcher class: the 
non-terrninal rule index and a non-terrninal attribute class reference. The non-terrninal 
attribute class is an inner class that declares the attributes as fields and the optimality 
expression as a rnethod. Figure B.5 shows the declaration of those fields and inner classes 
for non-terrninals stmt and reg. 

private byte stmt$id; 
public stmt stmt; 

public static final class stmt { 

} 

public int cost; 

private boolean better$(final stmt $$) { 
return $$.cost < cost; 

} 

private byte reg$id; 
private reg reg; 

private static final class reg { 

} 

public int cost; 
public int reg; 

private boolean better$(final reg $$) { 
return $$.cost < cost; 

} 

Figure B.5: Structures generated for the reg rule. 

Additional inforrnation is generated on the matcher class. The dynamic prograrnrning 
algorithm is irnplernented on the constructor of the class. Extra instance fields are gen­
erated in the class to irnplernent a rnirror of the IR tree. Figure B.6 shows the fields and 
constructors generated for class Sa.mple. Field node$ points to the IR opcode that the 
current node mirrors. Fields left$, middle$ and right$ are used to store the mirrors 



228 Appendix B. Yet Another Tree Rewriting Tool 

for the children of the IR opcode, according to its arity. Two constructors are generated, 
the public one is used by users to instantiate a matcher and the private one implements 
the bottom-up matching recursively. 

Bottom up matching is achieved by first switching on the opcodes that appear on the 
root of tree patterns. Once the opcode has been identified, a matcher node is created for 
each of its children by invoking the constructor recursively. After that, each tree pattern 
is tested and possibly replaced by calling tree$ methods. 

The action function is implemented by testing the rule index of a particular non­
terminal for the current matcher node. If the rule index is O then there was no match and 
an Error is thrown. Otherwise the associated action code is executed, if provided by the 
user. Figure B. 7 shows the action function implementation generated for the non-terminal 
reg of the Sample matcher. 

Figure B.8 shows some of the tree$ functions generated for the Sample matcher. The 
rule match is computed by first checking if there is a pattern match. Then, for each rule 
that declares that pattern as the right hand side, the predicate expression is checked for 
a semantic test. If the semantic test passes, the synthetized function is used to synthetize 
the attributes of the non-terminal. At last, the optimality function for that non-terminal 
is used to compare the new match with the best match so far. If no best match results is 
found, the new match is accepted automatícally. 

The function tree$0 computes the match for pattern IR. ICONST. This pattern ap­
pears in a rui e o f non-termínal con and a rui e o f non-terminal reg. Since thís pattern 
is composed of a single root terminal - and has no children - the syntatic match has 
already been completely computed. In a first moment, the rule of non-terminal con ís 
handled. Its value attribute is computed in a temporary register and, since con does 
not define an optimality expression, the match ís only registered if it is the first occurred 
( con$id = O). Since con is the right hand side of chain rules, upon a match we must 
check the match on the letf hand side of each of those chain rules. This is done by calling 
method con$closure. Next, the same occurs when the rule of non-terminal reg ís han­
dled. The associated predicate expression is checked, and the match occurs only if the 
constant value is O. The attributes o f reg are synthetized and the rui e is accepted i f no 
match has been accepted so far, or if it is better than the current best match. The chain 
rules that have reg as right hand side are checked by calling method reg$closure. 

For the patterns IR.IADD(reg,rc) and IR.I2B(IR.ILOAD(disp)), similar code is 
generated to check matches on methods tree$1 and tree$4 respectively. However, since 
those patterns are a bit more than just childless terminais, the code is generated enclosed 
by a syntatic test expression. The syntatíc test expression checks i f the non-root terminais 
of the pattern occur in the IR tree and if there ís a match in each IR subtree assocíated 
to every non-terminal. 



B.2. lmplementation 

private final TreeNode node$; 
private Sample left$, middle$, right$; 

publíc Sample(TreeNode node$) { 
this(null, node$); 

} 

private Sample(TreeNode root$, TreeNode node$) { 
this.node$ = node$; 

} 

swítch (node$.op()) { 
case IR.I2B: { 

} 

final IR.í2b $1 = (IR.i2b)node$; 
left$ = new Sample(root$, $1.left()); 
tree$4(root$, $1); 
break; 

case IR. IADD: { 

} 

final IR.íadd $1 = (IR.íadd)node$; 
left$ = new Sample(root$, $1.left()); 
right$ = new Sample(root$, $1.right()); 
tree$1(root$, $1); 
tree$2(root$, $1); 
break; 

I* .. snip ... */ 
default: 

} 

if (node$.hasNext()) 
root$ = node$; 

switch (node$.arity()) { 
case O: break; 
case 1: left$ = new Sample(root$, node$.left()); break; 
case 2: left$ = new Sample(root$, node$.left()); 

right$ = new Sample(root$, node$.right()); break; 
case 3: left$ = new Sample(root$, node$.1eft()); 

middle$ = new Sample(root$, node$.middle()); 
right$ = new Sample(root$, node$.right()); break; 

default: throv new Error( 11 Illegal arity"); 
} 

Figure B.6: Matcher variables and constructors. 

229 



230 Appendix B. Yet Another Tree Rewriting Tool 

private final void reg(PrintStream out) { 
final Sample $$ = this; 

} 

switch (reg$id) { 
case O: throw new Error ("No match 11 ) ; 

case 1: { 

} 

final IR.iadd $1 = (IR.iadd)$$.node$; 
final Sample $2 $$.left$; 
final Sample $3 = $$.right$; 
$2.reg(out); 
$3.rc(out); 
out .println("add ''+$3 .rc .addr+", "+RA .name($2.reg.reg)); 
break.; 

case 2: { 

} 

final IR.i2b $1 = (IR.i2b)$$.node$; 
final IR.iload $2 = (IR.iload)$$.left$.node$; 
final Sample $3 = $$.left$.left$; 
$3.disp(out); 
out.print("ld ("+RA.name($3.disp.reg)+")+"+$2.get0fs0); 
out.println(", "+RA.name($3.disp.reg)); 
out .println("sx "+RA.name($3.disp.reg)); 
break; 

case 3: { 
final IR.iconst $1 = (IR.iconst)$$.node$; 

break; 
} 
case 4: { 

} 

final Sample $1 = $$; 
$1.disp(out); 
break; 

default: throw new Error("Unimplemented rule"); 
} 

Figure B. 7: Action method generated for the reg rui e. 



B.2. Implementation 

private final void tree$0(TreeNode root$, IR.iconst $1) { 
final con $$ = new con(); 

} 

$$.value = $1.getValue(); 
if (con$id == O) { 

con = $$; con$id = 1; con$closure(root$); 
} 
if ($1.getValue() == O) { 

final reg$$= new reg(); 
$$.cost = O; 

} 

$$.reg= RA.zero(); 
if (reg$id ==O I I reg.better$($$)) { 

reg= $$; reg$id = 3; reg$closure(root$); 
} 

private final void tree$1(TreeNode root$, IR.iadd $1) { 

} 

if (left$.reg$id != O && right$.rc$id != O) { 
final Sample $2 = left$; 

} 

final Sample $3 = right$; 
final reg$$= new reg(); 
$$.cost = 1+$2.reg.cost+$3.rc.cost; 
$$.reg = $2.reg.reg; 
if (reg$id ==O li reg.better$($$)) { 

reg= $$; reg$id = 1; reg$closure(root$); 
} 

private final void tree$4(TreeNode root$, IR.i2b $1) { 
if (left$.node$.op() == IR.ILOAD 

} 
} 

&& left$.left$.disp$id != O) { 
final IR.iload $2 = (IR.iload)left$.node$; 
final Sample $3 = left$.left$; 
final reg$$= new reg(); 
$$.cost = 3+$3.disp.cost; 
if (reg$id ==O I I reg.better$($$)) { 

reg=$$; reg$id = 2; reg$closure(root$); 
} 

Figure B.8: Tree matching methods. 

231 



232 Appendix B. Yet Another Tree Rewriting Tool 

private final void con$closure(final TreeNode root$) { 
final Sample $1 ; this; 
final rc $$; new rc(); 
$$.cost = O; 
$$.addr = 11 $u+$1.con.value; 
if (rc$id == O I I rc.better$($$)) { 

rc = $$; rc$id ; 1; 
} 

} 

private final void disp$closure(final TreeNode root$) { 
final Sample $1 = this; 

} 

final reg$$; new reg(); 
$$.cost = $1.disp.cost; 
$$.reg= $1.disp.reg; 
if (reg$id =; O I I reg.better$($$)) { 

reg;$$; reg$id = 4; reg$closure(root$); 
} 

private final void reg$closure(final TreeNode root$) { 
final Sample $1 = this; 
final rc $$ = new rc(); 
$$.cost = $1.reg.cost; 
$$.addr = RA.name($1.reg.reg); 
if (rc$id == O I I rc.better$($$)) { 

rc = $$; rc$id = 2; 
} 

} 

Figure B.9: Closure methods for chain rules. 



B.3. RING Extensions 233 

For each non-terminal that appears in the right hand side of a chain rule, a closure 

method is generated. Figure B.9 shows the implementation of closure methods for non­
terminals rc, disp and reg. Those methods are implemented just like tree matching 
methods. Chain rules may include cycles in the grammar, which are implemented by 
recursive calls of closure methods. To avoid infinite looping during tree matching, the cost 
( or whatever metric used to achieve optimality) must increase when applying a direct o r 
indirect recursive chain rule. 

B.3 RinG Extensions 

This section describes the extensions to the bare tree rewriting tool described above. 
These extensions were designed to reduce the developing time of large complex matchers. 

B.3.1 Default Rules 

Default rules are rules that match only if no other rule matches. Although they are not 
considered to be a match by the rules that use the associated non-terminal, default rules 
provide a mechanism to synthetize and write actions when no match takes place. 

public void stmt(PrintStream out) throws NoMatchException 
<int cost> [Q@.cost < cost] 

IR.ISTORE(disp,reg) 
I* . . . snip . . . *I 
I default 
{ Q@.cost = Integer.MAX-VALUE; } 
= { throw new NoMatchException(@l.toString());} 

public class NoMatchException extends Exception { 

} 

public NoMatchException() { } 

public NoMatchException(String message) { 
super(message); 

} 

Figure B.lO: Default rule syntax. 

Figure B.lü shows a default rui e added to non-terminal stmt of matcher Sa.mple. 



234 Appendix B. Yet Another Tree Rewriting Tool 

This default rule was declared to throw a NoMatchException (instead of internai Error) 
when there is no match. 

private Sample(TreeNode root$, TreeNode node$) { 
this.node$ ; node$; 

} 

f* . . . snip . . . *f 
if (stmt$id == O) { 

} 

final stmt $$ = new stmt(); 
final TreeNode $1 = node$; 
$$.cost = Integer.MAX-VALUE; 
stmt = $$; 

public final void stmt(PrintStream out) throws NoMatchException { 
final Sample $$ = this; 

} 

switch (stmt$id) { 
case 0: { 

final TreeNode $1 = $$.node$; 
if (true) { 

throw new NoMatchException($1.toString()); 
} 
break; 

} 
f* . . . snip *f 

Figure B.ll: Default rule implementation. 

The implementation of default rules is very simple. In the matcher constructor, before 
returning, we check the rule indices for ali non-terminals that declare a default rule. For 
those whose index is O, we apply the default rui e. In the action function, the code declared 
for default rules is emitted for the case value O. That can be seen on Figure B.ll. 

B.3.2 Non-Terminal Templates 

Non-terminal templates are useful to declare multiple similar non-terminals with the same 
rules. Instead of writing a declaration for each of many similar non-terminals, the user 
writes the template declaration and instantiates it by using it with a defined parameter. 

Figure B.l2 shows a template, reg<RID>, which is instantiated as reg<GRO> and 
reg<GR1> on stmt non-terminal. That way, instead of having a match for generic regis­
ters, appropriate for RISC machines, you can make the matching for each register sepa­
rately, what saves time when describing CISC matchers. 



B.3. RING Extensions 235 

public static final int ridGRO = 16, ridGR1 = 17; 

public void stmt(PrintStream out) 
<int cost> [~@.cost < cost] 

I* . . . snip . . . *I 
I IR.IDEFINE(reg<GRO>) { @@.cost = @2.cost; } 
= { @2(out, ridGRO); } 
I IR.IDEFINE(reg<GR1>) { @@.cost = @2.cost; } 
= { @2(out, ridGR1); } 

private void reg<RID>(PrintStream out, int rid) 
<int cost> [@@.cost < cost] 

IR.IADD(reg<RID>,rc) { @@.cost = 1+@2.cost+@3.cost; } 
= { @2(out, reg); @3(out); 

out .println("add 11 +@3.addr+", "+RA.nam.e(rid)); } 

I* snip .. . *I 

Figure B.l2: Rule ternplate syntax. 

The irnplernentation of non-terrninal ternplates is straightforward. It is clone by sub­
stituting non-terrninal ternplates by rnultiple specialized non-terrninals in the grarnrnar. 
For each different cornbination of ternplate pararneters in a non-terrninal ternplate, an as­
sociated non-terrninal is declared to irnplernent that ternplate instance. In the declaration 
of this new non-terrninal, its actual ternplate pararneters are replaced on subsequent tern­
plate uses on the right hand side of its rules. This rnay produce new ternplate instances 
which are processed the sarne way. Once ali non-terrninal ternplate uses are replaced by 
new non-terrninals, they can be rernoved frorn the specification. The result grarnrnar is 
show in Figure B.l3. 

B.3.3 Non-Terminal Inlining 

Non-termínal ínlíníng allows the user to declare a non-terrninal that cornprises a set of 
subpatterns to be used by other non-terrninals. This saves times when writing patterns 
having subpatterns. The special non-terrninal, rnarked with an "abstract" rnodifier, will 
not be considered by the rnatcher as a point of best rnatch choice. For this reason, 
"abstract" non-terrninals cannot declare optirnality expressions. This "abstract" non­
terrninal feature provides the sarne behavior as if the right hand side of the rules were 
"inlined" in the patterns that use the "abstract" non-terrninal. That is why it is called 
non-terrninal inlining. 



236 Appendix B. Yet Another Tree Rewriting Tool 

public void stmt(PrintStream out) 
<int cost> [@@.cost < cost] 

I• . . . snip . . . •I 
I IR.IDEFINE(reg-GRQ_) { @@.cost = @2.cost; } 
= { @2(out, ridGRO); } 
I IR.IDEFINE(reg-GR1-) { @@.cost = @2.cost; } 
= { @2(out, ridGR1); } 

private void reg_GRO_(PrintStream out, int rid) 
<int cost> [Q@.cost < cost] 

IR.IADD(regJ;RO_,rc) { @@.cost = 1+@2.cost+@3.cost; } 
= { @2(out, reg); @3(out); 

out.println("add "+@3~addr+ 11 ,"+RA.name(rid)); } 
I• snip . . . •I 

private void reg_GR1_(PrintStream out 1 int rid) 
<int cost> [Q@.cost < cost] 

IR.IADD(reg-GRl_,rc) { @@.cost = 1+@2.cost+@3.cost; } 
= { @2(out, reg); Q3(out); 

out.println( 11 add "+@3.addr+","+RA.name(rid));} 
I• snip . . . •I 

Figure B.13: Rule template implementation. 

public void stmt(PrintStream out) 
<int cost> [@@.cost < cost] 

I• . . . snip . . . •I 
I IR.IDEFINE(greg) { @@.cost = @2.cost; } = { Q2(out); } 

private abstract void greg(PrintStream out) 
<int cost, int reg> 

reg<GRO> 
{ @@.cost = ©Lcost; @@.reg = ridGRO; } = { @1(out, ridGRO); 
I reg<GR1> 
{ @@.cost = @l.cost; @@.reg = ridGR1; } = { @1(out, ridGR1); 

} 

} 

Figure B.l4: Non-terminal inlining syntax. 



B.3. RING Extensions 237 

Figure B.l4 shows the use of non-terminal inlining to create a unified generic register 
non-terminal, greg, while keeping independent matching for each one of them. This way, 
instead of declaring a different pattern for each generic register template instance, the 
user writes one single pattern that captures ali generic registers. 

public void stmt(PrintStream out) 
<int cost> [~~.cost < cost] 

I* . . . snip . . . *I 
I IR.IDEFINE(gregO) { ~~.cost ; ~2.cost; } 
; { @2(out); } 

IR.IDEFINE(greg1) { ~@.cost ; @2.cost; } 
; { @2(out); } 

private void gregO(PrintStream out) 
<int cost, int reg> 

reg<GRO> 
{ Q@.cost; ~1.cost; ~~.reg; ridGRO; } ; { @1(out, ridGRO); } 

private void gregl(PrintStream out) 
<int cost, int reg> 

reg<GR1> 
{ ~@.cost; @l.cost; ~~.reg; ridGR1; } ; { ~1(out, ridGR1); } 

Figure B.l5: Non-terminal inlining implementation. 

Similarly to non-terminal templates, non-terminal inlining implementation is straight­
forward and can be achieved by rewriting the matcher specification. For each "abstract" 
non-terminal rule, a new non-terminal is declared to match only the associated pattern. 
This prevents the matcher from choosing patterns at that point, since at most one match 
will occur. Then, each rule that uses an "abstract" non-terminal is replaced by many 
similar rules, one for each non-terminal recently associated to each right hand side. This 
can be seen on Figure B.l5. 

Non-terminal inlining is a powerful mechanism to express many complex patterns 
without having to write ali the combinations. "Abstract" non-terminals reachable by 
themselves are not allowed. This would require the generation of an infinite pattern 
matcher which is not currently supported by RING. 



Part II 

Usenix JVM'Ol Work In Progress 
Submission 

239 



Appendix C 

A Distributed Java™ Execution 
Engine for JIT Compiler Sharing 

This work provides an alternate implementation of the Java Virtual Machine that hoists 
link-time activities to a server, enabling JIT compiler sharing by multiple clients. 

C.l Overview 

The JIT compiler is a key component in the performance of the Java Virtual Machine. 
However, in our concept, the JIT compiler effort is repetitive and much larger than strictly 
required. 

Every time the JVM is started up, the JIT compiler is invoked to produce native code 
for some of the methods being executed. The set of methods to be processed depends on 
the policy defined by the underlying execution engine, ranging from naive to sophisticated 
schemes, but always trying to speed up future execution. However, this "future execution" 
usually does not cross the JVM instance lifetime boundaries. 

In a first moment, we have focused our work on achieving JIT code persistency. Based 
on the belief that an end-user JVM executes the same code most of its time, we have 
studied and designed a link-time context-based cache mechanism to store JIT code. This 
mechanism not only speeds up the JIT processing, but also speeds up other link-time 
activities like class file verification. Having a cache system that effectively captures repet­
itive contexts dilutes the JIT compiler overhead, providing it with the opportunity to 
spend time in expensive optimizations. For the same reason, we have eliminated the need 
for a bytecode interpreter providing 100% native execution. Context identification is done 
in the presence of class loaders - without simplification - and is capable of capturing 
multi-class contexts, enabling inter-procedural analyses and transformations. The way 
we have built our system makes it possible for concurrent JVM instances running on the 

241 



242 Appendix C. A Distributed Java™ Execution Engine for JIT Compiler Sharing 

same computer to share the JIT code repository. 
In a second moment, we have extended the idea of JIT code sharing from a compu ter to 

a computer network. Once we have defined the basic set of services to be provided by the 
cache system, we h ave hoisted its activities to a serve r machine in a distributed fashion. 
By doing that, the cache system becomes available for multi pie users that share JIT code. 
This is particularly interesting for companies that have many employees running the same 
application suíte. In this scenario, buying a powerful server is a rational investment that 
speeds up JIT for ali clients. Moreover, the server may use heuristics to identify most 
requested pieces of code, and work harder on those during its idle time. Security is kept 
by encrypted connections. 

C.2 Context Identification 

In order to identify contexts, we assign version numbers to classes. The key pair ( class 

name, version) is used to identify a context in the cache system. Version numbers are 
computed by applying a SHA-1[49] hashing algorithm to some parameters, which vary 
according to the state of the class. A class may be in one of three states: registered, loaded 

or linked. 
When a class loader attempts to define a class, we apply the hashing algorithm to the 

class file image, generating a key pair using the class name provided and the resulting 
version number. This key pair identifies a register context. So that the definition of a 
class can be completed, it needs to be placed in the hierarchy. We then compute the key 
pair for a load context. It is obtained by applying the hashing algorithm to the class 
register key pair, as well as to the loaded key pairs of its direct ancestors. A similar 
procedure is done during the class linkage, when we identify a link context by applying 
the hashing algorithm to the loaded key pair as well as to the loaded or linked key pairs 
of classes directly referenced by it. 

Associated to each context, we provi de useful information that is computed at the first 
request, and cached for future reuse. For register contexts, this information comprises 
the access flags and direct ancestor names for the associated class. For load contexts, 
this information comprises the size and offsets of field and method tables. For the link 

contexts, this information comprises the binary translation of methods. 
Prior to computing the context information, the system checks for linkage errors. If a 

linkage error check does not pass, this is recorded in the cache system, and any attempt 
to retrieve information about that context fails. 

This is a simplified overview of context identification, but the basic idea is exploited. 
We would Jike to highlight the fact that depending on the state of classes directly refer­
enced by the class being linked, more or less context information becomes available. As 



C.3. Additional Features 243 

more context becomes available, the greater the portion of the call graph that can be 
explored by the JIT, which works incrementally. 

C.3 Additional Features 

The JIT compiler internais were designed by ourselves and implemented completely in 
the Java Programming Language. It uses a tree-based intermediate representation (IR) 
crafted for Java. On top of the IR, we have developed a data flow framework and a 
manipulation tool based on [25]. 

Most optimizations operate on the IR, which is used as input by the appropriate 
back-end to produce native code. By this time, the system provides only a x86 back-end, 
though it is designed to support other back-ends as we!L Methods are sent to clients in 
their "cooked" binary form, with some relocation and patches being done at the client 
si de. 

The client runtime is small and simple. It comprises basically the JNI, a mark-and­
sweep garbage collected heap, a monitor allocation table, and the operating system inter­
face. Runtime extensions are implemented in Java, so a mechanism to embed compiled 
bytecode in the JVM is provided. The system is able to run in both Standalone (built-in 
server) and Thin-Client modes. 

During the development of our system, we have faced some problems and provided 
valuable solutions. We describe a procedure to perform symbolic, off-line, bytecode ver­
ification that performs the data flow on a basic block basis and generalizes subroutines. 
It produces a set of verification constraints to be checked when type hierarchy informa­
tion becomes available. Another interesting solution was given to the implementation 
of subroutines. During the conversion from bytecode to IR, subroutines are transformed 
into simpler data-driven control structures. The transformation does not require code 
duplication, and simplifies garbage collection support. 

C.4 Preliminary Results 

We have achieved a mostly stable system that was used to run the SPEC JVM'98 bench­
marks. However, due to the simplifications we have adopted to build the first running 
version, we have observed no noticeable performance gains. The system lacks improve­
ments to the mid-level optimizer. Also, the current x86 back-end does not attempt to do 
register allocation and instruction scheduling. At server side, we still need to optimize 
data structures and algorithms to save memory and speed up execution time. Tuning is 
an important phase in the development of server-side Java. 



244 Appendix C. A Distributed Java™ Execution Engine for JIT Compiler Sharing 

One of the goals we have set was met: portability. Most of the code is written in 
the Java Programming Language, being naturally portable. The rest of the system is 
written in standard C. The system was initially targeted to the Linuxjx86 platform. A 
port to a Win32/x86 was done in less than two days by a single programmer1

. A port 
to another x86-based platform is fast; however, porting to a new architecture requires 
writing a back-end. 

C.5 Further Information 

This work h as been developed as a master thesis in the Institute of Computing, University 
of Campinas, BRAZIL. A technical report (21] is available by this time, containing deeper 
facts about our work. A document with a comprehensive description of our system is also 
available online at http://www.jewelvm.comj. 

1 Not including native libraries which we do not consider part of the JVM. 



Bibliografia 

[1 J OI e Agesen, David Detlefs, e J. Elitot B. Moss. Garbage collection and local variable 
type-precision and liveness in Java Virtual Machines. Em Proceedings of the ACM 

SIGPLAN'98 Conference on Programming Language Design and Implementation, 

Junho de 1998. 

[2] A. V. Aho e S. C. Johnson. Optimal code generation for expression trees. Journal 

of the ACM, 23(3):488-501, Julho de 1976. 

[3] Alfred V. Aho, Mahadevan Ganapathi, e Steven W. K. Tjiang. Code generation 
using tree matching and dynamic programming. A CM Transactions on Programming 

Languages and Systems, 11(4):491-516, Outubro de 1989. 

[4] Alfred V. Aho, Ravi Sethi, e Jeffrey D. Ullman. Compilers: Principies, Techniques, 

and Tools. Addison-Wesley, 1986. 

[5] F. E. Allen e J. Cocke. A program data flow analysis procedure. Communications of 

the ACM, 19(3):137-147, Março de 1976. 

[6] Ken Arnold e James Gosling. The Java Programming Language. The Java Series. 
Addison-Wesley, terceira edição, Junho de 2000. 

[7] Ana Azevedo. Java anotation- aware Just-In-Time (AJIT) compilation system. 
Em ACM Java Grande Conference, Junho de 1999. 

[8] A. Balachandran, D. M. Dhamdhere, e S. Biswas. Efficient retargetable code gene­
ration using bottom-up tree pattern matching. Computer Languages, 15(3):127-140, 
1990. 

[9] Hans-Juergen Boehm e Mark Weiser. Garbage collection in an uncooperative envi­
ronment. Software - Practice 8 Experience, 18(9):807-820, Setembro de 1988. 

[10] Per Bothner. A GCC-based Java Implementation. Cygnus Solutions, Fevereiro de 
1997. 

245 



246 BIBLIOGRAFIA 

[11] Gregory Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. 
Hopkins, e Peter W. Markstein. Register allocation via coloring. Computer Langua­

ges, 6:4 7-57, Janeiro de 1981. 

[12] C. Chambers, D. Ungar, e E. Lee. An efficient implementation of SELF, a dynamic­
typed object-oriented language based on prototypes. Lísp and Symbolíc Computation, 

4(3):243-281, 1991. 

[13] Craig Chambers e David Ungar. Iterative type analysis and extended message split­
ting: Optimizing dynamically-typed object-oriented programs. Em Proceedings of 

the ACM SIGPLAN'90 Symposium on Compíler Construction, 1990. 

[14] Patrick Chan e Rosanna Lee. The Java Class Libraries, Volume 2: java.applet, 
java.awt, java.beans. The Java Series. Addison-Wesley, segunda edição, Outubro de 
1997. 

[15] Patrick Chan, Rosanna Lee, e Doug Kramer. The Java Class Libraries, Volume 1: 
java.io, java.lang, java.math, java.net, java.text, java.util. The Java Series. Addison­
Wesley, segunda edição, Março de 1998. 

[16] Patrick Chan, Rosanna Lee, e Doug Kramer. The Java Class Libraríes, Volume 1: 

1.2 Supplement. The Java Series. Addison-Wesley, segunda edição, Maio de 1999. 

[17] David R. Chase. An improvement to bottom up tree pattern matching. Em Four­
teenth Annual ACM Symposium on Principies of Programming Languages, pp. 168-
177, Janeiro de 1987. 

[18] J. Cocke. Global common subexpression elimination. SIGPLAN Notices, 5(7):20-25, 
Julho de 1970. 

[19] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, e F. Kenneth Za­
deck. Efficiently computing static single assignment form and the control dependence 
graph. ACM Transactions on Programming Languages and Systems, 13(4):451-490, 
Outubro de 1991. 

[20] Helmut Emmelmann, Friedrich-Wilhelm W. Schrõer, e Rudolf Landwehr. BEG­
A generator for efficient back ends. Em Proceedings o f the SJGPLAN'89 Conference 
on Programming Language Design and Implementation, pp. 227-237, Julho de 1989. 

[21] Rodrigo Ferreira e Guido Araujo. Context-based JIT compilation: The design & 

implementation of a distributed JVM. Relatório Técnico IC-01-003, Instituto de 
Computação, Universidade Estadual de Campinas (UNICAMP), Março de 2001. 



BIBLIOGRAFIA 247 

[22] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, e David Tar­
diti. Marmot: An optimizing compiler forjava. Relatório Técnico MSR-TR-99-33, 
Microsoft Research, Junho de 1999. 

[23] Christopher W. Fraser. Automatic Generation of Code Generators. Tese de Douto­
rado, Yale University, 1977. 

[24] Christopher W. Fraser. A language for writing code generators. Em Proceedings of 

the SIGPLAN'89 Conference on Programming Language Design and Implementation, 
pp. 238-245, Julho de 1989. 

[25] Christopher W. Fraser, David R. Hanson, e Todd A. Proebsting. Engineering a 
simple, efficient code generator generator. ACM Letters on Programming Languages 
and Systems, 1(3):213-226, Setembro de 1992. 

[26] Christopher W. Fraser, Robert R. Henry, e Todd A. Proebsting. BURG - Fast 
optimal instruction selection and tree parsing. SIGPLAN Notices, 27(4):68-76, Abril 
de 1992. 

[27] David Gay e Bjarne Steensgaard. Stack allocating objects in java. Relatório técnico, 
Microsoft Research, 1999. 

[28] A. Goldberg, D. Robson, e D. H. H. Ingalls. Smalltalk-80: The Language and Its 
Implementation. Addison-Wesley, 1983. 

[29] James Gosling, Bill Joy, e Guy Steele. The Java Language Specification. The Java 
Series. Addison-Wesley, Junho de 1996. 

[30] James Gosling, Frank Yellin, e The Java Team. The Java Applicatíon Programming 
Interface, Volume 1: Core Packages. The Java Series. Addison-Wesley, Maio de 1996. 

[31] James Gosling, Frank Yellin, e The Java Team. The Java Application Programmíng 
Interface, Volume 2: Window Toolkit and Applets. The Java Series. Addison-Wesley, 
Junho de 1996. 

[32] Christoph Hoffmann e Michael J. O'Donnell. Pattern matching in trees. Journal of 
the ACM, 29(1):68-95, 1982. 

[33] John E. Hopcroft. An n log n algorithm for minimizing the states in a finite auto­
maton. Em Z. Kohavi, editor, Theory of Machines and Computations, pp. 189-196. 
Academic Press, New York, 1971. 



248 BIBLIOGRAFIA 

[34] IBM Corporation. IBM High Performance Compiler for Java: An Optimizing Native 
Code Compiler for Java Applications, Julho de 1998. 

[35] Intel Corporation. Intel Architecture Software Developer's Manual: Volume 1: Basic 

Architecture, 1997. Order Number 243190. 

[36] Intel Corporation. Intel Architecture Software Developer's Manual: Volume 2: Ins­
truction Set Reference, 1997. Order Number 243191. 

[37] Richard Jones e Rafael Lins. Garbage Collection: Algorithms for Automatic Dynamic 

Memory Management. John Wiley & Sons, 1996. 

[38] Brian W. Kernighan e Dennis M. Ritchie. The C Programming Language. Prentice 
Hall, segunda edição, 1988. 

[39] A. Krall e R. Grafi. CACA O a 64-bit Java VM just in time compíler. Java for 
Computational Science and Engineering- Simulation and Modeling !I, 9(11):1017-
1030, Novembro de 1997. 

[40] Dmitry Leskov. JET, Deployment Environment that Boosts Performance and Saves 
Resources. Excelsior, Dezembro de 1999. Whitepaper. 

[41] Sheng Liang e Gílad Bracha. Dynamic class loading in the Java Virtual Machine. 
Em Proceedings o f the 13th Annual ACM SIGPLAN Conference on Object-Oriented 
Programming Systems, Languages, and Applications (OOPSLA '98}, Vancouver, BC, 
Canada, Outubro de 1998. 

(42] Tim Lindholm e Frank Yellin. The Java Virtual Machine Specification. The Java 
Seríes. Addison-Wesley, Junho de 1996. 

[43] Tim Lindholm e Frank Yellín. The Java Virtual Machine Specification. The Java 
Seríes. Addison-Wesley, segunda edição, Abril de 1999. 

(44] Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, 1991. 

[45] Samuel P. Midkiff, José E. Moreira, e Marc Snir. Optimizing array reference checking 
in java programs. Research Report RC 21184(94652), IBM Research Division, Maio 
de 1998. 

[46] Robert Morgan. Building an Optimizing Compiler. Butterworth-Heinemann, 1998. 

[47] Steven S. Muchnick. Advanced Compiler Design f3 Implementation. Morgan Kauf­
mann, 1997. 



BIBLIOGRAFIA 249 

[48] Gilles Muller, Bárbara Moura, Fabrice Bellard, e Charles Consel. Harissa: a flexible 
and efficient Java environment mixing bytecode and compiled code. Em Proceedings 
o f the Third Conference on Object-Oriented Technologies and Systems {COOTS'97), 

1997. 

[49] National Institute of Standards and Technology, U.S. Department of Commerce. 
Secure Hash Standard, Abril de 1995. Federal Information Processing Standards 
Publication (FIPS PUB) 180-1. 

[50] Anil Nerode. Linear automaton transformations. Em Proceedings of the American 
Mathematical Society, pp. 541-544, 1958. 

[51] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, e Y. Kimura. Open­
JIT: An open-ended, reflective JIT compiler framework for Java. Em ECOOP 2000, 
pp. 362-387, 2000. 

[52] Eduardo Pelegrí-Llopart. Tree Transformations in Computer Systems. Tese de Dou­
torado, University of California, Dezembro de 1987. 

[53] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim 
Newsham, e Scott A. Watterson. Toba: Java for applications: A Way Ahead of 
Time (WAT) compiler. Em Proceedings o f the Third Conference on Object-Oriented 
Technologies and Systems (COOTS'97), 1997. 

[54] Bjarne Steensgaard. Points-to analysis in almost linear time. Em Proceedings o f the 
23rd ACM SIGPLAN-SIGACT Symposium on Principies of Programming Langua­

ges, pp. 32-41, Janeiro de 1996. 

[55] Sun Microsystems. Java Native Interface Specíficatíon, Maio de 1997. 

[56] Sun Microsystems. The Java HotSpot Virtual Machine Archítecture, A \iVhite Paper 

About Sun's Second Generation Java Virtual Machíne, Março de 1998. Whitepaper. 

[57] Steven W. K. Tjiang. Twig language manual. Computing Science 120, AT&T Bell 
Laboratories, Murray Hill, NJ, Janeiro de 1986. 

[58] Steven W. K. Tjiang. An Olive Twig. Relatório técnico, Synopsys Inc., 1993. 

[59] David Ungar. Generation scavenging: A non-disruptive high performance storage 
reclamation algorithm. Em Proceedíngs of the ACM SIGSOFT/SIGPLAN Software 

Engineering Symposium on Practícal Software Development Envíronments, pp. 157-

167, 1984. 



250 BIBLIOGRAFIA 

[60] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Junpyo Lee, Seungii Lee, Jinpyo 
Park, Yoo C. Chung, Suhyun Kim, Kemal Ebcioglu, e Erik Altman. LaTTe: A Java 
VM Just-In-Time compiler with fast and efficient register allocation. Em Internati­

onal Conference on Parallel Architectures and Compilation Techniques (PACT'99), 

New Port Beach, Outubro de 1999. 

[61] Frank Yellin. The JIT Compiler API. Sun Microsystems, Outubro de 1996. 


