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Resumo

Neste trabalho apresentamos Computer Security by Hardware-Intrinsic Authentication
(CSHIA), uma arquitetura de computadores segura para sistemas embarcados que tem
como objetivo prover autenticidade e integridade para código e dados. Este trabalho está
divido em três fases: Projeto da Arquitetura, sua Implementação, e sua Avaliação de Segu-
rança. Durante a fase de projeto, determinamos como integridade e autenticidade seriam
garantidas através do uso de Funções Fisicamente Não Clonáveis (PUFs) e propusemos
um algoritmo de extração de chaves criptográficas de memórias cache de processadores.
Durante a implementação, flexibilizamos o projeto da arquitetura para fornecer diferentes
possibilidades de configurações sem comprometimento da segurança. Então, avaliamos
seu desempenho levando em consideração o incremento em área de chip, aumento de con-
sumo de energia e memória adicional para diferentes configurações. Por fim, analisamos
a segurança de PUFs e desenvolvemos um novo ataque de canal lateral que circunvê a
propriedade de unicidade de PUFs por meio de seus elementos de construção.



Abstract

This work presents Computer Security by Hardware-Intrinsic Authentication (CSHIA), a
secure computer architecture for embedded systems that aims at providing authenticity
and integrity for code and data. The work encompassed three phases: Design, Implemen-
tation, and Security Evaluation. In design, we laid out the basic ideas behind CSHIA,
namely, how integrity and authenticity are employed through the use of Physical Un-
clonable Functions (PUFs), and we proposed an algorithm to extract cryptographic keys
from the intrinsic memories of processors. In implementation, we made CSHIA’s design
more flexible, allowing different configurations without compromising security. Then, we
evaluated CSHIA’s performance and overheads, such as area, energy, and memory, for
multiple configurations. Finally, we evaluated security of PUFs, which led us to develop a
new side-channel-based attack that enabled us to circumvent PUFs’ uniqueness property
through their architectural elements.
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Chapter 1

Introduction

The upcoming large connectivity among different systems in the so-called Internet of
Things (IoT) [21] will expand the current range of billions of Embedded System devices
[62] to a scale yet unseen. Fridges, bicycles, light switches, and more [6], will have embed-
ded capabilities of processing information and transfer it through the Internet. Although
security in Embedded Systems has been a concern for a long time, the expected vol-
ume of devices intercommunicating in the IoT poses more complex challenges to security.
Among these challenges, data authentication [60] and trust [37] will have to be addressed
integrating local and network security. Network security has been constantly improved
over decades of research and technological development, and despite requiring further
improvements, it has developed technologies that are well established and allow secure
data transfer, privacy, device authentication, etc. Nonetheless, current network security
mostly aims at issues related to human users, while for the future, it is expected that
autonomous and smart devices will be the dominating entities in the Internet. Therefore
a major conundrum will be how to ensure authenticity and authentic behavior of devices
to enable network security.

Enforcing authenticity and authentic behavior can be a role played by local security,
yielding a layer of trust that network security can leverage on. Thus, local security needs to
ensure that adversaries cannot tamper with systems’ behavior and identity, even if he/she
has physical access to them. In that regard, physical access not only includes physical or
visual contact, but also the capability of provoking physical interference or capturing side
channel information of systems at a small distance. Hence, threats against local security
encompass a variety of physical attacks to Embedded Systems. For instance, a resource-
ful adversary can: capture electromagnetic information [35], decapsulate components and
collect photonic emission [22], and even change physical behavior of components by apply-
ing laser [54], among other different non-invasive, semi-invasive, and invasive attacks [66].
Additionally, a less resourceful adversary can: tamper with systems by connecting his/
her own device to buses and memories, modifying memory through controlling operating
system, replacing physical memory with a tampered one, among other attacks.

To fully physically protect Embedded Systems, two major concepts need to be incor-
porated into their design: a robust fabrication processes and a secure architectural design.
A robust fabrication process will hinder attacks of a resourceful adversary. However, that
may involve technological advances that are yet to be discovered. Moreover, this protec-
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tion alone does not enable data authentication and trust. Therefore, secure architectural
design is the essential part of local security. Only a secure architectural design can yield
data authentication and trust. In order to do that, device-intrinsic identification stamps
can be used to attest data origin and code authenticity, and hardware-based mechanisms
can guarantee integrity for code and data. These features implemented by an architec-
tural design not only tackle those threats of less resourceful adversaries, but also enable
verification of authenticity and authentic behavior of Embedded Systems, which is im-
portant for multiple kinds of applications, even for those that will not be integrating the
Internet of Things.

The literature abounds with secure architectural designs [63, 52, 43, 58, 26] that aim
at providing local security. However, many of these works have some relevant drawbacks:
they overlook systems with less processing power and/or impose a large number of design
modifications, from instruction sets to operating systems, requiring sometimes the re-
design of the whole tool-chain [63, 52]. Some works do not handle authenticity [26], while
others deal with device-intrinsic identification, but they do not take into consideration
some important practical limitations of that [43, 58].

In the face of the requirements of local security, we present Computer Security by
Hardware-Intrinsic Authentication (CSHIA). CSHIA is a secure architecture that lever-
ages on Physical Unclonable Functions (PUFs) to extract unique information, like a hard-
ware fingerprint, that is used to ensure that code and data of embedded systems will be
kept as designed during system lifetime. CSHIA ensures that violation of the authenticity
and integrity of code and data will be immediately detected, preventing corrupted sys-
tems from doing further actions. Moreover, CSHIA combines all that with flexible design
parameters, reduced overheads, and transparent integration to processor architectures,
thus avoiding modifications on peripherals and software tool-chains.

1.1 General View of This Work

The use of PUFs in security applications has been explored for more than one decade
now [13]. A physical system that responds to a stimulus, called challenge, can be seen as
a PUF if it has 4 properties: (a) it behaves as a function; (b) it is consistent over time
(robustness); (c) its responses are unpredictable; (d) no other system replicates its behavior
(uniqueness). In electronic devices, we have a particular class of PUFs: Silicon PUFs (or
Electronic PUFs). In those, a binary input is the challenge, and a binary output is the
response. Due to properties (a), (b), (c), and (d), binary outputs of PUFs can be used
in multiple applications from hardware fingerprints to cryptographic keys [13]. CSHIA
extracts from PUFs a unique binary output that is used as a cryptographic key in a
Pseudo-Random Function (PRF) to generate authentication tags. An authentication tag
is created for each memory block from main memory during an enrollment procedure. On
runtime, CSHIA recreates these tags and verifies them against the original ones, looking
for tampered memory blocks and tags. If the verification proves that both memory block
and tag are authentic, execution proceeds. Otherwise, all further operations are stalled.

Therefore, CSHIA verification ensures integrity of code and data. While the tag cre-



19

ation using a PUF-based key gives uniqueness to every tag. The uniqueness ensures that
code and data belong to a specific instance and they were originally placed there by the
manufacturer/vendor during the enrollment procedure. So, CSHIA yields to Embedded
Systems guarantees of authenticity and authentic behavior.

1.2 Work Relevance

Inhibiting physical attacks on Embedded Systems in the IoT age will be crucial, mainly
because these devices will operate autonomously and unsupervised, allowing attackers to
do on-field exploration of vulnerabilities. Consequently, code and data will be at risk of
being tampered with. Thus, CSHIA’s goal is to complement full physical protection when
robust fabrication processes are provided, seeking to ensure authenticity and authentic
behavior of an Embedded System. What is unique about CSHIA, in comparison to other
works, is its endeavour towards robust use of PUFs. Although PUFs would need to have
properties (a), (b), (c), and (d), physical implementations constantly fail in (a) and (b),
generating a reliability problem. This work tackles this problem intensively. It not only
analyzes security downsides of the problem, but also presents analyses that show how to
extract stable keys from PUFs, in a complete integrated way to the architecture design.

Additionally, CSHIA architecture presents advantageous design decisions that include
a dedicated bus and memory for authentication tags. This additional memory that has
an isolated bus enables designers to choose many parameters such as bandwidth, clock
frequency, among others, that can reduce performance overhead. The CSHIA design can
deal with replay attacks, a class of attacks that violates data integrity, in different forms,
allowing designers to take into account design constraints and, therefore, consider pros
and cons of each replay attack solution in their system. All that can be integrated to
Embedded Systems in a transparent way, avoiding modification in peripherals, operating
systems, compilers, programs, etc.

Over the course of this work, while pursuing improvements in the use of PUFs in
CSHIA, we developed a new threat to PUFs. Using a known technique called Template
Attack [14], we present an attack that circumvents property (d) of PUFs (uniqueness).
We show that in a particular PUF, called XOR Arbiter PUF, we were able to reveal
unknown Challenge-Response Pairs (CRPs) of one PUF instance using information from
another one. That is a relevant finding that increases awareness of security issues not
only for current systems that already employ PUFs, but also for new devices that plan
to join the Internet of Things. With multiple instances of the same device working in
the IoT environment, using one device instance to reveal intrinsic information from other
instances is a serious threat, particularly when this information is related to the system
identity and authenticity, as in CSHIA’s case.

All that is presented in this work in a collection of papers that were either published
or have been submitted to publication. These works are described in the next section.
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1.3 Publications

The papers presented in this work are pre-printed versions or are under review. Therefore,
there is no copyright infringement as stated in [11]. The papers are:

1. Computer Security by Hardware-Intrinsic Authentication. Authors: Caio Hoffman,
Mario Côrtes, Diego F. Aranha, Guido Araujo. Published at CODES+ISSS 2015:
International Conference on Hardware/Software Codesign and System Synthesis.
DOI: 10.1109/CODESISSS.2015.7331377 [25].

2. Implementing a Secure Architecture for Code and Data Authenticity and Integrity

in Embedded Systems. Authors: Caio Hoffman, Augusto F. R. Queiroz, Diego F.
Aranha, Mario L. Côrtes, Guido Araujo. Submitted to Microprocessors and Mi-
crosystems, Journal, Elsevier. Submission Date: 26/Aug/2018. Submission Code:
MICPRO_2018_332.

3. Applying Template Attacks on XOR Arbiter PUFs. Authors: Caio Hoffman, Cather-
ine H. Gebotys, Diego F. Aranha, Mario Côrtes, Guido Araujo. Submitted to DAC
2019: Design Automation Conference. Submission Date: 27/Nov/2018. Submission
Code: 267-VL649.

In addition to the above papers, this work also produced a patent that was deposited
in the National Institute of Intellectual Property (INPI) of Brazil:

1. Secure Architecture for Embedded Systems. Authors: Guido Costa Souza de Araújo,
Mario Lúcio Côrtes, Caio Hoffman. Deposited in Brazil: 14/Jul/2015. Brazilian
Code: BR1020150168314. International Deposit: 19/Jan/2017. Code: WO2017008133.

To refer to the papers we chose the following simplification:

• Computer Security by Hardware-Intrinsic Authentication = “CSHIA Design”.

• Implementing a Secure Architecture for Code and Data Authenticity and Integrity

in Embedded Systems = “CSHIA Implementation”.

• Applying Template Attacks on XOR Arbiter PUFs = “PUF Attack ”.

1.4 Contributions

There are four major contributions of this work. They are, in order of importance:

1. A novel secure architecture for embedded systems that comprises:

• A deep integration with PUFs that takes into account their limitations and
characteristics, such as entropy and instability.

• An additional memory for authentication tags that has a dedicated bus, which
enables designers to choose parameters like bandwidth, clock frequency, among
others.
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• A flexible design that allows designers to consider pros and cons of two different
countermeasure against replay attacks, enabling them to choose the best option
for their system.

• A seamless integration to modern embedded systems’ design flow that avoids
modifications in peripherals, operating systems, compilers, programs, etc.

2. The security engine implementation and integration to the proof-of-concept proto-
type of CSHIA.

3. A new attack on XOR Arbiter PUFs that shows that is possible to circumvent their
uniqueness property.

4. An algorithm that extracts stable cryptography keys from SRAM-PUFs.

Item 1 is presented in “CSHIA Design” and “CSHIA Implementation” papers. The
CSHIA prototype was partially developed and implemented by this work. The proof-of-
concept prototype, which comprises our contribution to Item 2, is presented in “CSHIA

Implementation”. “PUF Attack ” encompasses Item 3 that was result of two periods (total
14 months) of internship as Visiting Graduate Student at the University of Waterloo,
under the supervision of Professor Catherine Helen Gebotys. Finally, Item 4 is presented
in “CSHIA Design”, and additional information about it is found in Appendices A and B.

1.5 Organization

This dissertation is organized as follows: in the following subsections of this chapter, we
provide necessary background information to the topics of this work. Chapter 2 presents
our papers and a reading roadmap. A discussion about the strengths and weaknesses of
the work, the evolution of CSHIA over time, and how the papers are interconnected can
be found in Chapter 3. Chapter 4 finishes this work and sheds light on future research
directions.

1.6 Physical Unclonable Functions

One of the biggest challenges in security for many years has been how to safely store secret
keys. Before Physical Unclonable Functions (PUFs), these keys were kept in off-chip or
on-chip non-volatile memories. Over the time, off-chip memories were shown to weaken
security of systems since attackers could dump the content of these memories with simple
equipment (see Figure 1.1), and thus obtain the secret keys.

On-chip memories, however, have been more difficult to attack because they lie inside
the main chip of the system, which usually is the one that performs cryptographic oper-
ations. Consequently, without being able to forcedly put memory content in the output
pins of the chip, attackers would not have access to what is internally stored. Then again,
an attacker capable of decapsulating chips and capturing photonic emission would easily
get all information stored in these memories through the emissions produced when they
are powered on [49].
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Figure 1.1: Dumping data from an EEPROM of a smart meter using Total Phase Aard-
vark. Photo originally displayed in [59].

Another security flaw one may see in storing secret keys in non-volatile memory re-
gards to key generation. If someone chooses such keys, they can be biased, facilitating
key deduction by attackers. On the other hand, if a vendor/manufacturer is not using a
true random number generator to create keys, an attacker that discovers the underlying
algorithm of key generation can break all systems that this vendor/manufacturer is dis-
tributing. Notice that it is a very common situation in software in which crackers provide
their own generators that produce product keys which softwares accept as authentic.

On pursuing robust solutions for security, Silicon (or Electronic) Physical Unclonable
Functions (PUFs) were proposed as highly integrative cryptographic primitives to com-
puter system design [20]. The concept of PUFs is quite general though. Any physical
system that responds to stimuli can be a candidate to be a PUF. However, systems must
meet two criteria. First, a specific stimulus, which we denominate challenge in PUF
terminology, cannot result in more than one response value. This property is basically
the definition of function. Second, the set of all pairs stimulus-response that defines the
physical system cannot be reproduced, even if we intentionally build another one with
that purpose. Making these systems unclonable. Notice that every physical element that
is a building block of physical systems is imperfect at the molecular or atomic level and,
therefore, leveraging on these imperfections to generate responses to stimuli make these
systems impossible to replicate.

An important aspect one might observe in PUFs is that finding a function (or its
inverse) that maps challenges to responses is not trivial. Mainly because their physical
construction involves a multitude of parameters that hinders the creation of predictive
models of responses, which results in unpredictability. All these features of PUFs are
desirable characteristics in cryptographic primitives for electronic systems, as they can
be employed to create secret keys, uniquely identify chips, generate random numbers,
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among other uses. The myriad of possible applications of PUFs led researchers not only
to propose new electronic circuit designs as PUFs [51], but also to rediscover well-known
circuits, like SRAMs, as interesting PUFs [32].

In the following subsections, we explore three different PUFs design that are extensively
used in this work.

1.6.1 Arbiter PUF

The Arbiter PUF (APUF) is probably the most popular PUF design (see Figure 1.2). To
build an APUF, one uses a flip-flop or latch and multiple pairs of multiplexers. Each pair
of multiplexers is a stage. Each challenge bit is an input for a stage and it is applied to
both multiplexers. The bit chooses which multiplexer output of the previous stage is the
input signal of the current one. Figure 1.2 illustrates a ∆ signal that is applied at the
beginning of the APUF circuit and then divided into upper and lower signals1. At each
stage, a challenge bit 0 keeps the lower and upper signal traveling through the respective
lower and upper multiplexers. However, a challenge bit 1 sends the upper signal to the
lower multiplexer and the lower signal to the upper multiplexer. Due to imperfections of
the fabrication process, multiplexers and interconnection wires introduce delays into the
signals, making them arrive at the flip-flop in different times. If the upper signal arrives
first, the lower signal will lock it, resulting in Q → 1. Otherwise, the lower signal arrives
first and locks the flip-flop, inhibiting the upper signal to be stored, resulting in Q →

0. Therefore, APUF leverages on intrinsic delays of its elements to procedure responses.
Every challenge results in a unique pair of paths that is hard to predict through which one
the signal delta arrives first. For this reason, APUFs are classified as delay-based PUFs.

Surprisingly, APUFs were found to be easy to model using Machine Learning (ML)
[46]. A large set of Challenge-Response Pairs (CRPs) enables learning algorithms to
figure out the intrinsic delays of each APUF stage. Consequently, that allows these
algorithms to predict with very high accuracy2 the final delay of every possible path,
thereby determining responses to any challenge. Searching for PUF architectures resistant
to modeling, researchers focused on developing complex constructions derived from APUF,
such as the XOR Arbiter PUF, which we discuss next.

1.6.2 XOR Arbiter PUF

XOR Arbiter PUFs (XOR-APUFs) are a composition of multiple APUFs, as one can see
in Figure 1.3. In the figure, a challenge is simultaneously applied to all APUFs, and then
their responses are combined into one by a XOR operation. What is notorious about
the XOR-APUF construction is that it only works due to the unclonability property of
PUFs. As it is impossible to build two PUFs with the same set of CRPs, each APUF
will generate unique and independent responses to every challenge. The combination of
all individual responses using XOR results in a non-linear relation between challenge and

1We will use the terms upper and lower for the sake of simplicity.
2Accuracy is define by the sum of true positives and true negatives divided by the number of samples.

For PUFs, that would be the correct prediction of ones and zeros by the total number of challenges used.
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Figure 1.2: A n-bit challenge Arbiter PUF with signal race.

response that hinders modeling. As Rührmair et al. presents in [46], to train a logistic
regression model for a XOR-APUF with five 64-bit challenge APUFs, they used 80000
CRPs and 2:08 hours of computation. However, to model a XOR-APUF with six 64-bit
challenge APUFs they used 200000 CRPs and 31:01 hours of computation. That is a very
significant increment of time complexity. Yet, the work of Becker in [9] convinced many
researchers that XOR-APUFs were broken. Using real implementations of XOR-APUFs
with large number of APUFs (up to 32), Becker achieved high accuracy on predicting
responses of all PUFs evaluated. For instance, he achieved about 90 % of prediction
accuracy in a XOR APUF model with 16 APUF, using over 500000 CRPs and 30 hours
of training.

Then again, a very relevant point the reader should notice in Becker’s attack is the
enormous number of CRPs. In many applications, an attacker will not have access to such
a large amount of information. For instance, a system that uses a very few challenges
to generate PUF-based keys will probably not be threatened for these machine learning
attacks, since responses are unlikely to be available and a small amount of CRPs hinders
model accuracy. Another important point is that every model uniquely corresponds to
a single instance of a PUF circuit. Other circuits will have different CRPs and demand
new training.

1.6.3 SRAM-PUF

Static Random-Access Memory (SRAM) have already been validated in regard to the
fundamental properties that define PUFs [30]. SRAMs are constructed of cells like the
one illustrated in Figure 1.4 in which 6 different transistor, 2 PMOS (P1 and P2) and
4 NMOS (N1, N2, N3, and N4), are interconnected. To understand how a SRAM cell
can be a PUF, we need to understand its write process. A full description of memory
read and write can be found in [61]. Suppose that the inverter formed by P1 and N1 has
output 0, and the inverter formed by P2 and N2 has output 1. So, based on how they
are connected, they are in a stable state. Assume now that the word line (WL) is 1, the
bit line (BL) is pre-charged high and left floating, and the complementary bit line BL is
pulled down (value 0). When N3 and N4 are set to 1, N4 draws the charge of N2P2 through
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Figure 1.3: A n-bit challenge XOR Arbiter PUF, composed of k APUFs.

BL. Simultaneously, that activates P1 and deactivates N1, elevating the tension in the
output of N1P1. Because BL is high, no charge moves through it. The high output of
N1P1 deactivates P2 and activates N2 that will keep N2P2 output low. Now, N3 and N4

can be deactivated since the cell reaches a new equilibrium. Conversely, one can see that
by setting BL high, leaving it to float, and then pulling BL down will revert the process.

Powering up a SRAM can lead to a high word line and both bit lines floating. In such
a situation, the inverters will face a race condition to see which one resists more against
being pulled down. Due to variations in the fabrication process, we can have 3 situations
[41]: P2 is the strongest transistor between P1 and P2 and it draws current faster, raising
the voltage in the output of N2P2, which will deactivate P1; or P1 is the strongest and
that results in high output for N1P1, deactivating P2; and finally there is no significant
difference between them, yielding an unstable situation, in which, on every power-up, a
different transistor can win. Therefore, observing these scenarios we can consider the
SRAM cell power-up as a random event because without reading the bit lines we cannot
previously know which of the three situations have happened.

Hence, a SRAM-PUF (SPUF) consists of SRAM cells after a power-up. SPUF is
the most known PUF of the class called memory-based PUFs. To obtain responses from
SPUFs, we use addresses as challenges. Usually, responses will be memory words formed
by independent and random bits. Because SRAMs are commonly smalls, even if one can
address individual bits, the total number of challenges is significantly smaller than the
one we are likely to have in APUFs, for instance. Next subsection discusses more about
the number of challenges PUFs have.

1.6.4 Weak versus Strong PUFs

Figure 1.2 illustrates an APUF with n stages. Implementations of APUFs having from
n = 64 to n = 512 stages can be found in the literature [47]. As the number of stages are
the same of bits in a challenge, a 64-stage APUF will have 264 possible challenges. Thus,
a 512-stage APUF has 2512 possible challenge values, an enormous number. On the other
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Figure 1.4: A SRAM cell. Figure based on [61].

hand, a 32-MB SRAM has 228 bits, thus, even if we can obtain responses of individual
cells, such a SPUF will be limited to 228 challenges.

In that regard, it is common in the literature to classify APUF, and derived con-
structions of it (like XOR APUF), as Strong PUFs. SPUFs and other PUFs with small
challenge space are called Weak PUFs. The reader should understand that these terms do
not relate to security. For instance, SRAM-PUFs can generate cryptographic keys that
are less biased than APUFs [30]. The “PUF Attack ” paper gives examples of applica-
tions of weak and strong PUFs. Deep analyses regarding strong and weak PUFs can be
found in [45]. Next, we discuss basic mathematical tools to assess PUFs in regard to bias,
randomness, etc.

1.6.5 Assessing PUFs

A key point we did not discuss yet is how to use PUFs as cryptographic key generators,
integrated circuits identifiers, etc. Figures 1.2, 1.3, and 1.4 show PUFs with one-bit
output, thereby to generate n-bit long strings we must replicate a PUF n times. For
SPUFs though, a memory word can be seen as a bit string. However, n can be a number
too large to either be a memory word or enable cost-viable replication of PUFs. Hence, an
assemblage of multiple responses of different challenges is a valid form to generate long bit
strings that cryptographic applications demand. Due to unclonability and unpredictability

of PUFs, we expect those strings to be unique and random. Of course, we do not have
guarantees about that, unless we assess samples of these strings.

Three main metrics have been used in the literature to assess the quality (i.e. ran-
domness and uniqueness) of bit strings generated by PUFs: Hamming Weight (HW),
Hamming Distance (HD), and Entropy. The HW metric is given by Equation 1.1, where
X is a collection of bits {x1, . . . , xn}, xi ∈ {0, 1}. Given a sample of n-bit strings, we
expect that, as result of computing the HW of each bit string, we generate a Gaussian
distribution with expected value of n/2. This value indicates that, on average, the strings
do not have bias towards bits 0 or 1. We want to avoid biased patterns since they reduce
the number of bits an attacker would have to guess to figure out a cryptographic key.
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HW(X) =
n

∑

i=1

xi (1.1)

Equation 1.2 describes the HD metric, in which X and Y are collections of n bits. So,
the HD between two binary string is the sum of bitwise XORs. For a sample of fixed-
length bit strings, we apply Equation 1.2 for all possible distinct pairs we can form with
them. As result, we expect to obtain a Gaussian Distribution with mean n/2. This value
shows us that, on average, half of the bits in two randomly-picked bit strings are equal.
That is the minimum possible information that an attacker can obtain from true random
keys. For instance, if a HD between two keys is n, an attacker knows that one string is
the binary complement of another. Conversely, if a HD value is 0, an attacker knows that
both strings are equal.

HD(X, Y ) =
n

∑

i=1

xi ⊕ yi (1.2)

It is important to notice that HW and HD complement each other information, thus
one analysis does not replace the other. Furthermore, HD is usually computed between
strings generated from different PUF circuits: in order to evaluate if a PUF architecture
actually leverages on the variation of the fabrication process to produce unique responses.
To assess randomness of bit strings created by concatenating responses, Entropy is a better
metric. Given a set X of m bit strings {X(1), X(2), . . . , X(m)}, where |X(j)| = n, ∀ j ∈

[1,m], let us define column(i) =
∑

xi, xi ∈ X(j), ∀ j ∈ [1,m]. That is, column(i) is
the sum of all bits at the same position in all m bit strings. Thus, dividing the result
of column(i) by m, we obtain a probability Pr(xi) = column(i)/m, which informs how
likely is a source to generate 0 or 1. Using Pr(·), we can define Entropy by Equation 1.3.

H(X) = −
n

∑

i=1

Pr(xi) log2
Pr(xi)

1− Pr(xi)
−

n
∑

i=1

log2(1− Pr(xi)) (1.3)

Consider a large set of 128-bit strings generated by 128 APUFs. Assume that, for all
i, Pr(xi) = 0.6. That is, in all sources, an output 1 has 60 % of chance of happening.
Conversely, 0 has 40 % of chance (1 − Pr(xi) = 0.4). Thus, for each possible value of i,
Pr(xi) log2 Pr(xi)/(1−Pr(xi))+ log2(1−Pr(xi)) = 0.6 log2(0.6/0.4)+ log2 0.4 ≈ −0.97. If
we sum that, for all xi, we get approximately 124.3 bits of entropy. However, a theoretical
true random source would have Pr(xi) = 0.5 and that would yield 128 bits when computing
the entropy. Therefore, one could deduce from the result of our example that: almost 4
PUFs have predictable outcomes; or 4 bits carry redundant information of the other 124
bits; or still some sources are biased towards 1. Notice that entropy is crucial information,
if we aim at generating 128-bit cryptographic keys, we definitely would not want those
keys having any deducible information that facilitates the attackers work.
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For this reason, estimating a worst case scenario of randomness in bit strings would
be a better metric for security purposes. To achieve that, we use Minimum Entropy,
which Equation 1.4 defines. Using the example above, assume Pr(xi) = 0.6 again, thus
max{0.6, 0.4} = 0.6 and − log2 0.6 ≈ 0.74. Hence, considering that all 128 APUFs have
the same minimum entropy, the total Hmin would be ≈ 94.33 bits. That is a significant
reduction compared to the previously estimated entropy of 124.3 bits. In practical terms,
both entropy measurements indicate that we should probably compress our 128-bit strings
into smaller ones. For example, entropy says that we should only use 124 bits out of 128.
On the other hand, the minimum entropy value says that we should only use 94 bits out
of 128. From the security point of view, opting to compress and generate 94-bit strings
would approximate our generator of a true random one [7].

In conclusion, to use PUFs in cryptographic applications, system designers should look
for PUFs that allow them to assemble n-bit strings that will averagely present HW and
HD values close to n/2, and minimum entropy close to n. These metrics are the minimum
evaluation one should do in order to consider PUFs in security applications.

Hmin(X) = −
n

∑

i=1

log2

(

max{Pr(xi), 1− Pr(xi)}
)

(1.4)

1.7 Robustness in PUF-based Systems

The properties presented in the last section make PUFs desirable security primitives.
However, they are not perfect functions. That is, due to the effects of temperature and/
or voltage variation, circuit aging, ambient noise [10], among others possible internal and
external physical events, challenges can generate different responses over time, causing a
reliability problem in PUFs. As result, PUF-based key re-extractions are unlikely to work
without a redundancy scheme. Redundancy for PUFs needs to not only provide as much
original information as possible, but also be secured. In other words, exposing redundant
data can help attacker to learn about PUF responses.

Currently, Fuzzy Extractors (FEs) have been employed to produce robust PUF-based
keys with minimum information leakage through its redundant data [8], also called Helper

Data. FEs are secure sketches that comprises a randomized key extraction algorithm
and a key recovery procedure. For the purpose of this work, we call the key extraction
phase of FEs as enrollment and the key recovery phase as regeneration (or reconstruc-

tion). In the following subsections, we define important elements present in most of FE
implementations and detail two FE constructions that we use in this work.

1.7.1 Error Correction Codes

Most of Fuzzy Extractors use Error Correction Codes (ECCs) to enable data recovery. An
ECC encodes data into a string called syndrome, which contains information to recover not
only the data, but also itself. By concatenating data and syndrome we form a codeword.
Given k bits of data, we describe an ECC string by a tuple (n, k, t), where n is the length
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of the codeword and t is the maximum number of bits that can be lost or corrupted.
Any number of errors greater than t does not have any theoretical guarantee of being
recoverable. Notice that a syndrome have length n−k and, for a fixed-size data of length
k, the greater the number of bits we want to correct, the larger n is.

ECCs work in two steps: encoding and decoding. Both steps have some similarities.
For instance, we need to use the same generator polynomial to create a syndrome and to
decode it. For a general understanding of ECCs, it is just required that we know the input
and output of the encoding and decoding steps. An ECC encoder has a data with k bits
as input. If it has less than k bits, we usually pad zeros to the data. The encoder output
is the syndrome. Decoders receive data and syndrome and output the correct data3, if the
sum of errors of both are equal to or less than t. What happens to a decoder output if the
number of errors is greater than t depends on the implementation. That can be source of
unwanted leaking information [8]. Additionally, how decoding is implemented can leaking
information, even if it is done in hardware [29]. We will not detail these attacks, but we
believe that would be important to make the reader aware about them.

1.7.2 Fuzzy Extractors

ECCs are the core part of the Fuzzy Extractors we employ in this work. To design a
FE, it is crucial to use a correct ECC tuple and we explore that in the papers “CSHIA

Design” and “CSHIA Implementation”. In this subsection, however, we will explain key
extraction and recovery procedures of both Code-Offset and Index-Based Syndrome Fuzzy
Extractor.

Code-Offset Fuzzy Extractors

A Code-Offset fuzzy extractor is shown by Figure 1.5. Figure 1.5(a) and Figure 1.5(b)
describe the key extraction and recovery circuits, respectively. In Figure 1.5(a), after
PUFs were challenged, the system extracts a key k and a random binary word r. The
ECC encoder creates a syndrome for r and their concatenation forms c. The codeword
c is a random word, since r is, and thereby its syndrome is as well [18]. Due to that,
a combination of c and k can be seen as a one-time pad operation since every c is only
combined with a unique k, thus yielding an Information-Theoretically Secure (ITS) [40]
bit string: the helper data h. Consequently, h can be externally stored because of the ITS
property, which ensures that critical information will not leak. The key will be maintained
on-chip while the system is operational, inhibiting attacker from collecting information
about it.

Every system power-on will require a regeneration of the key. During the regenera-
tion procedure, a slight different key k′ may be extracted because of the PUF reliability
problem. As Figure 1.5(b) shows, combining k′ with helper data h results in a modified
codeword c′. If this codeword differs at the most t bits from the original c, the ECC de-
coder can recover c, which combined again with h recovers the original key. This version

3Sometimes it is necessary to correct both data and syndrome. However, some implementations of
decoders will recover only data, requiring to use the encoder again to reproduce the correct syndrome.
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Figure 1.5: The Code-Offset Fuzzy Extractor.

of FE that we are describing does not include a post-processing step for the key, because
we assume that the employed PUFs produce random and unpredictable responses with
enough minimum entropy. To post-process a key, we could apply it to a hash function.

Even though, by construction, it is safe to expose the helper data, we have downsides
on doing it. First, an attacker only needs to guess the bit string r to unveil the key.
Once the attacker guesses r, he/she can recreate its syndrome and thus obtain c, which
in combination with the helper data gives k. Notice that r is always smaller than k in
this FE, and therefore being computationally easier to figure it out. That is seen as a
reduction of the entropy of key [4]. In addition, helper data manipulation by attackers
has been shown to enable side channel attacks [35].

Index-based Syndrome Fuzzy Extractors

The Index-Based Syndrome (IBS) Fuzzy Extractor, proposed by Yu and Devadas in [65],
has a core difference from the Code-Offset FE: a key-independent helper data. Figure 1.6
illustrates an adaptation of the IBS-FE in which the indexes only consists of inverting
and non-inverting values, i.e. 1 and 0. After extracting the key k and a bit string r

from PUFs, a syndrome s is generated for the key. The syndrome is combined with r

that becomes the helper data h. So, the helper data is a one-time pad encryption of the
syndrome. If an attacker figures out s, he/she cannot recover the key entirely from it. In
fact, only t bits of information are lost to the attacker that unveils the syndrome because
t is the number of wrong bits the ECC can recover. Thus, an attacker would still need to
figure out k − t bits.

For key regeneration, due to unreliability of PUFs both k and r can differ from their
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Figure 1.6: The Index-based Syndrome Fuzzy Extractor.

original values, so we have k′ and r′. The combination of h and r′ generates a syndrome
s′ that differs from the original s as much as r′ differs from r. Concatenating k′ with s′

gives us c′ that by differing from c in up to t bits enables the ECC decoder recover k.
The strongest feature of IBS is that we don’t have entropy reduction of the key, since

no shortcut to figure out the key happens. Nonetheless, researches believe that this FE
is not side channel attack proof [23] and Karakoyunlu and Sunar in [29] showed that the
syndrome decoding can leak side channel information. Overall, both FEs’ security will
depend on the length of the bit strings used. Larger lengths for k and r will hinder attacks,
but they will extract a heavy toll from either PUF reliability or system cost. Using small
ECC hardware enables correction of only few bits in large strings. Conversely, to correct
a larger number of error in long bit strings, more complex ECC hardware is needed.
Nevertheless, in “CSHIA Implementation”, we present a FE design that tries to deal with
these trade-offs.

1.8 Side Channel Attacks

A side channel attack is the one that uses leaking information of operations, such as
time delay, power consumption patterns, among others, to extract important data of a
system. Attackers usually seek to obtain concealed information of systems, like binary
keys, passwords, etc. On PUFs, some works have been using side channel information to
help machine learning algorithms to model PUFs [33, 47, 31]. On Fuzzy Extractors, Merli
et al. have successfully applied Differential Power Analysis (DPA) and Correlation Power
Analysis (CPA) as attacks on Code-offset FE [35, 36]. In this section, we discuss some
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basic concepts of side channel analysis focusing on attacks on Fuzzy Extractors.

1.8.1 Understanding Power Side Channel Information

A physical implementation of a register is an assemblage of flip-flops. On the logical level,
a register is a collection of 0 and 1, where each logical value draws different charge from
flip-flops’ power sources. Therefore, a binary word will draw power proportionally to its
number of zeros and ones or, in other words, correspondingly to its HW. Knowing that
XOR APUFs are compounded by APUFs, which have flip-flops in their construction, we
can assume that the set of flip-flops in a XOR APUF is like a register.

Measuring power consumption or capturing electromagnetic emission of circuits enable
us to estimate information about logical values of registers. Figure 1.7 shows a collection
of pictures of oscilloscope traces of voltage variation during responses of a XOR APUF
with four 16-bit challenge APUFs. Considering that we have a 4-bit register inside this
XOR APUF, we know that there is five possible HW values. Figures 1.7 (a), (b), (c),
(d), and (e) show, respectively, when the flip-flops had 4 logical zeros, 3 logical zeros, 2
logical zeros, 1 logical zero, and 4 logical ones. Notice that, as the number of logical ones
increases, the power consumption gets higher. This relation is a side channel information
that allows attackers to realize HWs without ever accessing internal values. In particular,
for the XOR APUF, this information is critical since one can infer responses only knowing
the HW of the flip-flops.

Even though we have seen how one can obtain this unwanted leakage of information,
capturing such data is not a easy task. Differently from our example above, real imple-
mentations have multiple PUFs simultaneously generating responses, which hinders to
obtain individual information and, consequently, forces attackers to analyze mixed data
with multiple sources of noise. For this reason, many works have focused on applying
side channel analyses on Fuzzy Extractors since their construction enables these attacks
through helper data manipulation. In the following, we explain two well-known side
channel attacks using their application on Fuzzy Extractors.

1.8.2 Differential Power Analysis

In the Differential Power Analysis (DPA) attack, an attacker wants to collect power traces
from a referential state and a differential state of the system. By differentiating them (e.g.
subtracting them) the attacker will discover the change that happened from one state to
another. In a practical attack, attackers would get a set of thousands of power traces
of a specific state of a register and then obtain another set of thousands of power traces
of a new state of that register. For analysis, each set is averaged to eliminate random
noisiness. From the attack perspective, the best scenario would be when a differential
state only differs one bit from referential state. That allows attackers to deduce if a bit
changes from one to zero or vice-versa by only looking an increment or decrement in power
consumption.

To attack a Code-offset FE using DPA, an attacker needs to be able to modify the
helper data. His/her goal is to modify bits in the helper data (generally one bit per
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(a) A response of HW 0. (b) A response of HW 1.

(c) A response of HW 2. (d) A response of HW 3.

(e) A response of HW 4.

Figure 1.7: Power analysis of responses to challenges of a XOR Arbiter PUF compounded
by four 16-bit challenge APUFs.

attack) and see how that changes the power consumption of the register that stores the
result of c⊕h (Figure 1.5(b)). Assuming that registers power consumption increases when
a bit changes from zero to one, and decreases otherwise, the subtraction of the averaged
attacking traces (differential state) from the averaged referential traces (the original power
consumption of c⊕h) will result in a new trace with either a significant spike (positive or
negative) or nothing but noise. By assumption, a spike indicates a bit-flip and its absence
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indicates that no change has happened. As the attacker knows the previous value of the
bit he/she changed in the helper data, he/she can deduce its value in c. One does not
need to repeat the attack procedure to all bit in c, though, only to |r| bits instead. As we
discussed before, finding r enables to compute c and thus recover k doing c⊕ h.

1.8.3 Correlation Power Analysis

The principle of a Correlation Power Analysis (CPA) attack is similar to the DPA one.
For the sake of understanding, we will keep using Code-Offset FE as target of attacks to
explain the CPA attack. The goal of the attacker is to modify the helper data and collect
traces of the key register (where the result of c ⊕ h is stored). However, he/she does
not need a referential state. Once traces are collected, the idea is to model the relation
between information provided by the traces and the changes in the helper data. In [36],
the authors chose the Hamming Distance (HD) Model.

Assume that an attacker chooses to recover r (used to generate c) byte by byte using
CPA. Consider that r, h and k from Figure 1.5(b) has more than 1 byte, and suppose,
without loss of generality, that the attacker selects the least significant byte Bh

0 of the
helper data as the first to modify. For simplicity, also assume that the attacker incre-
mentally changes Bh

0 from 00000000 to 11111111. For each value of Bh
0 , the attacker has

to collect thousand of power traces and then average them. After all that is done, it is
possible to start the analyses.

One begins by creating hypotheses of possible values of the byte Bc
0 of the codeword.

The attacker assumes Bc
0 is 00000000 and then computes the hamming distance between

it and every value Bh
0 he/she set. As traces are collections of points that consists in a

pair (time, power 4), the attacker picks the first point of each averaged trace of Bh
0 and

computes the correlation between the HD and the power value. Then, he/she passes to
the next point, and so on, until all points have a correlation value. After that, the attacker
makes a hypothesis that Bc

0 is 00000001 and repeat all the calculation again. The final
product of this process is 256 correlation graphs in which the one with the highest peak
has the highest probability of being the correct guess of the byte in c. Repeating all that
for each byte in r, c can be calculated, allowing k to be unveiled.

1.8.4 Countermeasures

A very common side channel countermeasure is to use masks, which are random binary
strings to be combined with a value we want to protect from leaking information. Once
again, for illustration of this countermeasure we will use Code-Offset FE. This counter-
measure was proposed in [36]. As we can see in Figure 1.8, during the regeneration phase
of the FE, a mask m is extracted from PUFs and encoded into a codeword cm, which is
then combined with c′. Because ECC decoders are linear, the combination of c′ and cm
can be processed simultaneously. When c is combined again with h the result is k, but
because the mask is kept, we actually have k ⊕m. Therefore, at all times, attackers will
capture power consumption of registers that have k ⊕ m. As every regeneration a new

4It can also be voltage, current, etc.
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Figure 1.8: Masking countermeasure in the Code Offset Fuzzy Extractor.

mask is used, DPA and CPA will not work because the randomness of m interferes in
the direct relation between data and power consumption. As result, this mask cannot be
removed anytime, since it would make a new spot for attack.

This countermeasure, though, is not suitable for all systems: as a new mask has to be
generated every key reconstruction, all cryptographic operations involving the key have
to be linear to allow posterior discard of the mask after concluding an operation. This
requirement of linearity inhibits the adoption of this countermeasure in CSHIA.

More Powerful Attacks

A class of more powerful attacks that include second order DPA and template attacks have
been already shown to overcome masking [39, 64]. In the so-called high order attacks, an
attacker measures side channel information of two elements or more that are related to the
target of the attack, then he/she differentiates these data seeking concealed information.
For instance, in a second order DPA, the attacker collects power signature from the
mask register and from the one that stores the key combined with the mask. Taking the
difference between these power signatures, the attacker obtains a new power signature that
correspondents to the key. The differentiated data will enable the attacker to perform
DPA/CPA as we discussed before.

Differently, in a template attack, the attacker profiles every possible combination be-
tween keys and masks that can be stored in the target register. Then, during the attack,
he/she tries to figure out the key by matching the register’s power signature with those
that he/she profiled. It obviously is a very time consuming attack, yet a powerful one,
nonetheless.

1.9 Key Features of Security

This section defines what the terms authenticity and integrity means in this work. Also,
it defines how both can be applied together through Pseudo-Random Functions.
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1.9.1 Authenticity

In [57], Varga and Guignon present one possible strong sense of being authentic. One could
simply put it as something of undisputed origin or authorship. Although this definition
comes from a philosophical text, it is possibly the best one we can apply to authenticity
in Cryptography. Hence, whenever we use the term authenticity, we mean that something
is irrefutably linked to a specific entity and no one can fake it or contradict it so.

As we discussed throughout this chapter, PUFs are uniquely defined by their CRPs.
Further, they respond unpredictably to challenges, which makes difficult to impersonate
them. These two properties enable PUFs to be used as cryptographic primitives that
provide undisputed origin or authorship. To do so, we need to tie data to PUFs responses.
Let us define PUF(c) = r as non-invertible surjective function, where r is a bit string
that is an assemblage of PUF responses to the challenge c. Assume that forging PUF(·) is
computationally impossible. Let P be the collection of all possible PUF functions, that
is P = {PUF1(·),PUF2(·), . . . }. Now, let a computationally-hard-to-invert function be
f(d, k) = y, where d, k are bit strings. Assume that x is a randomly-picked data and c is
a randomly-picked challenge. Thus, f(x,PUFi(c)) = yi enables PUFi(c) to authenticate
x through yi, for every i ∈ N. Furthermore, there is no j such that f(x,PUFj(c)) = yi,
if j 6= i.

Therefore, every yi is uniquely linked to PUFi(·), for any given challenge c and data x.
Notice that it can there exist a x′ such as x 6= x′, which and f(x′,PUFi(c)) = yi. Namely,
two different data can be authenticated by the same PUFi(·). Or, different bit string can
be unequivocally identified by the same origin and authorship. However, that does not
break the authenticity that PUFi(·) gives to the sole system i from which it belongs to.
Also, we assumed that f(·) is computationally hard to invert because PUFi(c) should
not be easy to unveil.

1.9.2 Integrity

Menezes et al. in [34] define data integrity as “the property whereby data has not been
altered in an unauthorized manner since the time it was created, transmitted, or stored
by an authorized source”. First, notice that the term data in this section conveys a generic
bit string whose semantic can be code, information, etc.

For this work, given a function g(x) = z, where x is a bit string randomly picked, if
there exists another randomly picked bit string x′, then g(x′) = z, if and only if x = x′.
That is, if x′ has one bit or more that differs from x, then g(x′) = z′. Thus, the input
of the function is uniquely linked to its output. That is, g(·) attests the integrity of x
through z. Notice, though, that the origin of x does not care in this definition.

The reader can see now the difference between Authenticity and Integrity. Authenticity
can be seen as a person’s signature, which can exist in multiple documents. Nonetheless,
it is quite unique for every person and works as anti-impersonation. Integrity otherwise
regards to documents one signs. In that way, we want to have proof that such a document
is not tampered with. For instance, if every document has a unique picture of it, we can
check if a document matches its picture. It does not matter whether it is signed or not,
but rather whether it is the same of the picture.
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1.9.3 Pseudo-Random Function

Previously, we defined two different properties using two different functions. However, in
Cryptography, both properties, authenticity and integrity, are generally undissociated and
they are provided by a special kind of functions: keyed hash functions or Pseudo-Random
Functions (PRFs). For this work, we deploy PRFs and use them to concomitantly give
authenticity and integrity to code and data.

Assume that a PRF is a function h(x,PUFi(C)) = wi, where C is a set of challenges
and x is some data that is in or belongs to a given system i, which has PUFs that works
as a function PUFi(·). Notice that PUFi(C) =

∣

∣

∣

∣

C
PUFi(c), ∀c ∈ C. For any two

data x and x′ that belongs to X, the collection of data of the system, if x 6= x′, then
h(x,PUFi(C)) = wi, h(x′,PUFi(C)) = w′

i, and wi 6= w′

i. Similarly, for any given j, j 6= i,
if h(x,PUFi(C)) = wi, then h(x,PUFj(C)) 6= wi. Therefore, h(·) gives authenticity and
provides a way to verify integrity.

Obviously, everything we defined in this section stands for the theoretical point of view
and real implementations may present slight different behaviors from those stated by the
definitions. However, the security analyses we do throughout this work take into account
these differences in order to enable concrete deployments, such as the CSHIA prototype,
without compromising security.

In conclusion, this section formulated, in a non-strictly formal way, the difference
between authenticity and integrity, which are rarely used or defined separately in the
literature. However, in order to show the importance of using PUFs in CSHIA we believe
that the separated understanding of these properties would help to read this work.

1.10 Summary

Throughout Sections 1.6, 1.7, 1.8, and 1.9, we presented the most important background
contents that we believe one would need to know to understand the rest of this work.
Section 1.6 presents PUFs and their properties that make them desirable cryptographic
primitives. Further, we explained how the Arbiter PUF, the XOR Arbiter PUF, and the
SRAM-PUF work. Section 1.7 discussed reliability issues in PUFs and how we deal with
that employing Fuzzy Extractors. Then, Section 1.8 introduced side channel attacks and
how some of them work. Finally, Section 1.9 discussed how this work uses the concepts
of Authenticity and Integrity.
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Chapter 2

Papers

In this chapter, three academic paper contributions resulting from this work are presented
in their pre-printed versions; they are:

1. Computer Security by Hardware-Intrinsic Authentication [25].

2. Implementing a Secure Architecture for Code and Data Authenticity and Integrity

in Embedded Systems.

3. Applying Template Attacks on XOR Arbiter PUFs.

Roadmap

The first paper introduces the CSHIA architecture and three important concepts: SRAM-
PUFs, Fuzzy Extractors, and replay attacks. It also presents the key extraction algorithm
that is used in SRAM-PUFs and provides a thorough security analysis of the CSHIA
architecture. The reader is invited to priorly read Section 1.6, in particular, Subsections
1.6.3 and 1.6.5. Also, we advise the reader to read Section 1.7 up to Subsection 1.7.2, and
Section 1.9 entirely.

The second paper is the core contribution of this work. It puts together all concepts
developed in the previous work, and further explores the implementation of CSHIA, while
doing an in-depth analysis on attacks to the architecture. The reader is invited to priorly
read Sections 1.6, 1.7, and 1.9 entirely.

Finally, the third paper briefly introduces PUFs, specifically Arbiter PUFs and XOR
Arbiter PUFs, and discusses side channel attacks. Then it delves into the Template Attack
technique and its application to the XOR Arbiter PUF. Here, we invite the reader to pri-
orly read Sections 1.6, 1.7, and 1.8 for better understanding of the paper. Complementary
information about all papers can be found in the appendices.



39

In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of University of Campinas’s products or services. Internal
or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective
works for resale or redistribution, please go to http://www.ieee.org/publications_

standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the
Archives of Canada may supply single copies of the dissertation.



Computer Security by Hardware-Intrinsic Authentication

Caio Hoffman, Mario Cortes, Diego F. Aranha, Guido Araujo
Institute of Computing
University of Campinas

{caio.hoffman, cortes, dfaranha, guido}@ic.unicamp.br

ABSTRACT

The widespread embedding of electronic devices into the
daily-life objects, and their integration in the so called Inter-
net of the Things (IoT), has raised a number of challenges for
the design of Systems-on-Chip (SoCs) devices. Tiny manu-
facturing costs, stringent security, and ultra-low power op-
eration constraints have considerably raised SoC design re-
quirements. More than incremental approaches which try to
re-use current cryptographic mechanisms, the new genera-
tion of IoT devices will require novel solutions which deeply
integrate their hardware-intrinsic features to program ex-
ecution. This paper proposes a low-cost PUF-based au-
thentication architecture aiming to secure code execution
in IoT SoCs. The solution is deeply embedded into the pro-
cessor micro-architecture, so as to minimize re-design costs
and performance penalties. This new architecture model
not only deals with the most common threats against code
and data authenticity and integrity, but also provides an
approach to extract from processor’s caches a stable and
unpredictable key that is used in the code and data authen-
tication process.

1. INTRODUCTION
Standard design techniques to secure code execution in

SoCs are based on known cryptographic mechanisms (prim-
itives like block ciphers and hash functions), and on (mi-
cro) architecture techniques which can be used to encode
bus transactions [8], or isolate secure code into trusted plat-
forms [11], among others. Although such techniques usu-
ally provide good levels of security, most of them are either
slow, considerably impact processor (micro) architecture de-
sign, require extensive changes in the programming tool-
chain [28,30], or are so complex that may create unexpected
security loopholes.

Any solution up to this challenge should be able to al-
low for a seamless integration to the current processor/pro-
gramming paradigms, achieve very high-level security under
low-cost and low-power. More than incremental approaches
which try to re-use current cryptographic mechanisms to fill
in security holes, the new generation of IoT devices will re-
quire novel solutions which deeply integrate the hardware-
intrinsic features to program execution, across the whole
architecture and software stacks.

Physical Unclonable Functions (PUFs) are devices which
exploit the statistical distribution of hardware intrin-
sic physical parameters, to design functions capable of
(uniquely) mapping a set of inputs (challenges) to out-
puts (responses) [23]. Built upon PUFs’ theoretical

models, several constructions of essential cryptographic
primitives have been proposed, mainly to support key ex-
change [5, 18, 32], device authentication [29], intellectual
property protection [12], oblivious transfer [5, 25] and com-
mitment schemes [5]. The myriad of cryptographic primi-
tives which could benefit from PUFs has driven the search
for efficient real-world implementation of these devices.
Although silicon PUFs have gained a lot of attention, they

are still under strong scrutiny, as they can undergo a number
of attacks like: (1) reverse engineering [22], (2) characteri-
zation of the physical parameter [31], (3) modeling [24], and
(4) emulation [13]. Even though there are still many con-
cerns about the overall security of PUFs, their simplicity,
low-power consumption and speed are very attractive de-
sign features [20] for some application domains (e.g. IoT de-
vices). One of the potential applications of PUFs in IoT de-
vices would enable program code and data integrity. Yet
very few works have addressed that using PUFs [30]. Thus
additional research needs to be done in order not only to
improve PUF security, but also to allow its integration into
processor architecture and software stacks.
This paper proposes Computer Security by Hardware-

Intrinsic Authentication (CSHIA), a design of a new secure
program execution model. The approach is a new PUF-
based mechanism which aims at ensuring firmware authen-
ticity and integrity for a given program/processor pair –
while confidentiality is left for future work. Specifically, for
authentication, the system generates an authentication tag
(called PTAG) to every instruction and data cache line at
the very first moment that it runs in the processor. For
integrity, it provides a new architecture that ensures that
program instructions and data are not violated, and that
the program will execute correctly during the lifetime of the
device.
The contributions of this paper are:

• A new (micro) architecture model that ensures code
and data authenticity and integrity.

• A strategy for high hit-rate caching of nodes in an
authentication tree.

• A new method of extracting a stable and unpredictable
key from the processor’s SRAM cache.

This paper is organized as follows. Section 2 discusses
related work. Section 3 describes the proposed (micro) ar-
chitecture and authentication mechanism. Section 4 dis-
cusses how CSHIA addresses typical attacks. Section 5 de-
scribes how CSHIA tackles replay attacks. Section 6 details
CSHIA key extraction. Finally, Section 7 concludes the pa-
per and Section 8 discusses future work.
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2. RELATED WORK
SoC devices have a number of features which differentiate

them from other traditional electronic solutions. In such de-
vices, heterogeneous hardware IP-cores are combined with
processors to perform specialized functions, non-volatile
memories work as secondary storage devices, and programs
are firmware code which perform a number of low-level
operations to enable the cooperation of the various hard-
ware/software modules. Ideally, for the sake of security,
all firmware running on a secure SoC should have their
integrity continuously verified along the device’s lifetime.

Although the dedicated nature of SoCs allows the adop-
tion of more intrusive protection, it also imposes challenging
energy and performance requirements. Unfortunately, tra-
ditional security solutions based on typical cryptographic
mechanisms can have an expensive impact in device cost,
energy efficiency and performance. One way to go around
that is to consider approaches which enable a deep integra-
tion of device hardware-intrinsic mechanisms and program
execution, as those offered by PUFs.

Qualitative analyses of PUFs have already been done in
the literature [16] motivated by several reasons like cryp-
tographic key generation [4, 29] and true random number
generation [14,17]. Unlike those works, which aim at evalu-
ating the quality of a standalone PUF-inspired mechanism,
this paper focus on proposing and analyzing a PUF-based
micro-architecture mechanism to enable secure code execu-
tion.

Most of the preliminary work to secure code execution
aimed at keeping instructions and data secure from scrutiny,
by using mechanisms like bus encryption. In [8] Elbaz et
al. did a comprehensive survey of bus encryption, where
they describe many possible ways of using cryptographic
algorithms in SoC architectures, so as to ensure that no
malicious instruction/data would be executed by the CPU.
From many alternatives, the authors discarded public key
encryption because of its high overhead. The remaining so-
lutions store encrypted data in external memory (or even at
higher level cache memories). Such schemes require on-chip
secret key storage, a major shortcoming since the usage of
non-volatile memories to store keys is susceptible to side-
channel attacks [26].

AEGIS, the proposed secure processor by Suh et al. in [30],
uses PUFs as a cryptography primitive to uniquely authen-
ticate code and data in order to prevent both software and
physical attacks. They present a tool-chain for developing
secure software for their architecture which includes a se-
cure operating system to manage different levels of memory
protection. Although the presented tool-chain does not re-
quire modifications in the processor architecture, it demands
extensive changes in the SoC architecture, in addition to
changes in the compiler and operating system tool-chains.
Even though the described set of tools enables different secu-
rity levels, thus minimizing performance degradation, their
architecture requires 30 % more processor cycles when run-
ning a case study: Sensor Networks. Besides that, perfor-
mance degradation becomes prohibitive for programs with
high cache miss rates. Code and data memory overheads are
considerably low, and stayed below 5 % in the case study.
Nevertheless, AEGIS does not ensure full-time security from
power-on to power-off; i.e. the system runs unprotected un-
til the security kernel loads the system.

One of the most difficult issues against active attacks

on secure processor architectures is to preserve memory in-
tegrity. Memory placed outside of a secure area is exposed
to any kind of manipulation an attacker could perform. De-
spite that, the secure area still needs to verify the integrity of
the memory when communicating with it. Recently, many
solutions came up in the literature proposing different ap-
proaches, costs, and overheads [7, 9, 15]. Section 4 discusses
memory integrity issues in detail.

3. THE CSHIA ARCHITECTURE
CSHIA, Figure 1, is a processor architecture which aims at

providing secure code execution by means of cache line based
PUF authentication. For the scope of this paper, CSHIA is
integrated into a typical SoC IoT device, consisting of a low-
power embedded processor, I/O modules, main memory, a
non-volatile memory, and (if needed) lower levels of storage.
The central idea behind CSHIA is a PUF-Tag (PTAG)

Memory1, which runs in parallel with the system main mem-
ory (Figure 1). Each entry in the PTAG Memory stores an
authentication code of a cache line generated by a PUF-
based device located in the Memory Controller (MCTRL).
The main architectural module affected by the design

of the CSHIA architecture is the Memory Controller
(MCTRL), which is modified to include the PTAG Gener-
ator (PTAG-GEN, Figure 2). Other two new architectural
components are also required to complete CSHIA design,
the PTAG Memory and the PTAG Bus. In a few words,
when Memory Controller (MCTRL) reads/writes the data/
instruction it uses the PTAG-GEN to compute/validate a
PTAG for the cache line. Notice from Figure 1 that the
PTAG bus runs in parallel to the system bus, and that
no program can directly read the PTAG Memory, which is
only accessible by the memory controller during read/write
operations.
This section is divided in two parts. First, Section 3.1 de-

tails the main operations executed by CSHIA, from the gen-
eration of the PTAG to its validation. Second, Section 3.2
describes the mechanism used to extract the key used to
generate the PTAGs and discusses firmware installation and
update.

3.1 PTAG-GEN Operation
The hardware of PTAG-GEN is integrated into the pro-

cessor MCTRL logic. Its operations are divided into three
groups (listed below), based on the bus transactions (Mem-
ory READ, Memory WRITE and I/O).

3.1.1 PTAG Generation (memory write)

During a write operation the MCTRL writes data/instruc-
tion cache lines to memory while the PTAG-GEN computes
the PTAG and stores it into the PTAGMemory. To generate
the PTAG a Pseudorandom Function (PRF) [10] module is
used and takes as input the concatenation (||) of the cache
line bits and the base address of the cache line provided
by the core (see Figure 2). In order to ensure uniqueness,
the PRF is configured using a unique-per-device key. As
Section 3.2 describes, this key is produced by the intrin-
sic hardware features of a SRAM PUF. Such authentication

1During the system operation PTAGs reside in either
volatile or non-volatile memory. However, when using a
volatile memory, a non-volatile storage is required to backup
the PTAGs during turn-on cycles.
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results. This section shows how to determine the number
of assessments needed to extract a stable key for the PRF.
It also shows how the statistical distribution of the possible
keys behaves across different SPUFs.

6.1 SPUF Evaluation
As stated in Section 3, even choosing stable bits for the

key, one cannot ensure that they will not flip and make the
fuzzy extractor recover a wrong value for k. The BCH code
to be used in CSHIA’s fuzzy extractor (Figure 3) must sat-
isfy two properties: (a) codeword length with the same bit-
length as the key k (i.e. 128 bits); (b) syndrome length
such that the random word r is at least as long as the
PTAG length (i.e., |r| ≥ |p| = 64 bits). A (127, 64, 10)
instance of a BCH code has both properties and is able to
detect and correct up to 10 errors. Since that code produces
127-bit codewords, a parity bit is computed over the 127-bit
codeword and concatenated to it, resulting in c (Figure 3).
It is worth noticing that the parity bit value is completely
unknown to an attacker, since both r and the 127-bit code-
word are unknown. Thus, neither a bit of c nor a bit of k
will leak any information through this scheme.

At this point, one has to devise a strategy to extract sta-
ble bits and to measure the probability that these bits would
not exhibit more bit-flips than the maximum allowed by
the BCH-based fuzzy extractor. In a related article [17],
Leest et al. measured the stability of SRAMs. They ran 500
power-up operations on a SRAM with the purpose of ex-
tracting random numbers and concluded that, after the first
100 power-up rounds, the amount of variability (entropy)
of the measured SRAM contents becomes stable. Leest et
al. then used this lower bound of 100 assessments to esti-
mate the minimum entropy of other SRAMs, allowing them
to discover the amount of bits they should extract in order
to obtain random words with the same length. This result
is useful for CSHIA implementation, because it establishes
that stable random bits can be extracted from a SRAM if
their locations are known.

However, even after 100 assessments, there is no guaran-
tee that, after picking 128 bits to compose the key k, the
number of bit-flip errors will not exceed the limit of the
chosen BCH code (10 errors). To estimate the probability
of more than 10 errors in a 128-bit key, an experiment with
SRAMs available in 10 Altera DE1 development kit was con-
ducted. Although each SRAM had 512 KB, a much larger
size than a conventional L1 cache in modern processors, only
the first 64 KB were analyzed.

In the first experiment, each SPUF is subjected to 200
power-up cycles (assessments), in which the first one is con-
sidered the reference assignment. Figure 7 shows the per-
centage amount of bits that present a different value as com-
pared to the reference, at least once. One can notice that
after around 100 assessments the curves start to flatten off,
which reproduces the result by Leest et al.

Now, one has to determine the probability of finding more
than 10 errors with respect to the reference assessment,
when reading 128 bits out of these potentially stable bits.
Recall that finding such a high number of errors would be a
problem because the BCH code in the fuzzy extractor deals
with at most 10 errors. Figure 8 shows the probability of
having more than 10 bit flips when choosing 128 bits at ev-
ery assessment after the 100th round. The measurements
were conducted in the range 100 to 200 rounds of assess-

ments, given that the SRAM behavior is not expected to
change significantly after 200 assessments. In order to de-
cide what is the recommended number of assessments, one
can take the reference probability of one part in a million (1
p.p.m) [19] – shown as a horizontal line in the Figure 8.
One can notice in Figure 8 that, after selecting 128 bits

from those that have not flipped yet after 160 assessments,
it is highly unlikely to obtain unstable keys from any SPUF.
However, this method requires keeping track of the addresses
of 128 bit locations. Each address takes 19 bits in a 64 KB
memory, resulting in an overhead of 128 · 19 bits = 2432
bits – equivalent to 5 cache lines. To reduce this overhead,
one can look for stable memory words, rather than looking
for single bits. The experiments show that picking stable
words reduces not only the address storage overhead, but
also the number of assessments to reach the probability of
10−6. Figure 9 shows the key correction failure probabil-
ity with respect to the number of assessments when picking
16-bit stable words. Unfortunately, it was not possible to
find stable words with more than 16 contiguous bits for any
SPUF.

6.2 Key Extraction
This section presents the key extraction algorithm that

can be automated and used over the previously described
data, and an analysis of the statistical properties of the re-
sulting keys. Figure 9 clearly shows that there is strong cor-
relation between the key correction failure probability and
the number of assessments. Thus, one can run a linear re-
gression model to predict the number of assessments that
produces the expected low failure probability. After con-
ducting such experiment, with 99% confidence at the pre-
diction interval, 149 was found to be a conservative number
of assessments to reach the 10−6 probability.
This analysis is conducted during the learning phase (tech-

nology maturation) over all evaluated SRAM instances, and
results in a single number, the maximum number of assess-
ments. Once this number is determined, the following algo-
rithm can be executed for each SRAM instance, producing
as result a list of reliable and stable memory addresses: (1)
Reset the L1 data cache of the processor. (2) Copy data
cache contents to the instruction cache. (3) Reset (power-
off cycle) the data cache again. (4) If a word in the instruc-
tion cache is set as valid, compare it against the recently
read data-cache word at the same address. If they differ,
set the instruction-cache word as invalid, else, keep it valid.
(5) Repeat the step (3) until reaching the maximum num-
ber of assessments. Now a list of reliable cache addresses is
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Figure 8: The probability of (127, 64, 10) BCH code failure
in correcting a 128-bit key when composing it from single
bits extracted from SPUFs.
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Figure 9: The probability of (127, 64, 10) BCH code failure
in correcting a 128-bit key when compounding it with 16-bit
words picked from SPUFs.

obtained for one specific SRAM instance.
The execution of this algorithm in each SRAM instance

would take at most O(n ·m) operations, for a memory with
n words and running m assessments. However, as the al-
gorithm execution proceeds, the number of valid lines to be
verified decreases. For instance, after 100 assessments, less
than 5% of n words are still valid for a 64-KB SPUF with
16-bit words. Therefore, the algorithm should run faster
than O(n ·m). After running m assessments, one can select
the appropriate set of addresses of SPUF that are valid for
composing the set A of addresses (see Section 3.2). In the
case of 128-bit key and 16-bit words, eight addresses would
be needed to compose the set of addresses A. This informa-
tion is then recorded in a non-volatile memory to be used
every time the system is powered up.

It is also critical to validate whether the keys extracted
as described have adequate statistical properties. In par-
ticular, it is important to analyze how extracted keys differ
across different SRAM instances. The established method
in the literature for measuring this property is the Hamming
Distance. The ideal behavior would be a normal distribu-
tion centered at 64, for a 128-bit long key. The Hamming
Distance of the extracted keys presented in Figure 10 shows
a random distribution centered at 61.11. This is slightly
skewed towards zero, but still close to the ideal distribution.
Finally, one can notice that the same analysis and result
applies to the extraction of r (see Figure 3).
Differently from previous architectures that use PUFs [30],

CSHIA does not need additional PUF circuitry, since
the processor’s SRAMs cache are used as PUFs. Also,

0 64 128

μ: 61.11

σ: 5.83

Figure 10: Hamming Distance distribution of 128-bit keys
extracted from SPUFs.

CSHIA key extraction is deeply integrated to the archi-
tecture and is the first of this kind, to the best of our
knowledge. Nonetheless, comparison with others SPUF key
extraction processes in the literature [19] still needs to be
done. Experimental results presented in this section showed
that good quality keys can be extracted from SRAMs with
relatively straightforward procedures.

7. CONCLUSIONS AND DISCUSSIONS
IoT devices need robust security, which goes beyond the

traditional approaches based on typical cryptographic mech-
anisms proposed so far. Such solutions should work from
system power-on to power-off, should not impact perfor-
mance, and consume very low-power, while avoiding changes
in the compiler and operating system tool-chains. This pa-
per presents a particular way for achieving this goal, em-
ploying a solution deeply integrated to the processor micro-
architecture which relies on intrinsic hardware information
to authenticate program execution. Authentication and in-
tegrity are preserved by computing and verifying a PRF with
key material extracted from the processor’s cache memory.
In addition, a new strategy for caching nodes from an au-
thentication tree allows to efficiently extend security proper-
ties to external memory. The effort consists in an important
step towards realizing this architecture, while several chal-
lenges remain ahead.

8. FUTURE WORK
In the near future, simulation and FPGA implementa-

tion will enable deeper analysis and evaluation of the per-
formance and security of CSHIA. These results will inform
potential changes in CSHIA and validate design decisions
presented in this work. Afterwards, a real silicon prototype
is intended in order to cover all levels of evaluation of the
proposed architecture model.
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Abstract

Computer Security by Hardware-Intrinsic Authentication (CSHIA) was recently proposed as a secure architecture to provide

code and data authenticity and integrity. The architecture of CSHIA allows embedded system designers to adjust many parameters

without compromising its security. In this work, using Gaisler’s Leon3 platform, we implemented an improved version of CSHIA in

FPGA. We not only strengthened its security features, but also introduced new features that give designers choice between two coun-

termeasures against replay attacks: timestamps or Merkle Tree. The performance evaluation showed that CSHIA using timestamps

can have only 2.76 % average performance overhead, while CSHIA using Merkle Tree reaches a 5.77 % average performance

overhead. That, in conjunction with power and area estimates, showed that CSHIA with timestamps can be a very advantageous

option for constructing secure embedded systems.

Keywords: Hardware Security, Security Analyses, Physical Unclonable Functions, Replay Attacks, Merkle Tree, FPGA.

1. Introduction

The demand for code/data integrity and authenticity has

steadily increased. The wide spectrum of known attacks cur-

rently poses a threat to a variety of embedded systems that need

constant protection against tampering. A particular class of em-

bedded systems which must resist many forms of tampering

comprises systems equipped with a large external non-volatile

memory to store software and data, such as voting machines,

smart metering devices and employee attendance control sys-

tems. These systems need to provide integrity and authenticity

guarantees, but usually not secrecy or confidentiality, in order

to be easily audited by government authorities and independent

experts.

Due to the stringent nature of available resources of embed-

ded systems, software solutions for code and data integrity do

not fit best. In addition, software authenticity would involve

a third party certification authority. Therefore, hardware so-

lutions are desirable for such systems. A myriad of hardware

solutions for code and data authenticity and integrity have been

proposed in the literature ([1, 2, 3, 4]), however, some of those

solutions target high-end embedded systems or more power-

ful configurations, requiring at least a two-level cache in the

processor for their performance overhead not to be prohibitive.

Other approaches need modifications on the Instruction Set Ar-

chitecture (ISA) or processor datapath, leading to complete re-

design of code, compilers, operating systems, among others.

Moreover, not all solutions provide integrity and authenticity.

Recently, an architecture aiming at code/data authenticity

and integrity was proposed in [5]. The Computer Security by

∗caio.hoffman@ic.unicamp.br

Hardware-Intrinsic Authentication (CSHIA) provides authen-

ticity by authenticating all memory blocks of the external mem-

ory using a unique key extracted from Physical Unclonable

Functions (PUFs) implemented in each instance. The authenti-

cation tags (called PTAGs) are computed during an enrollment

procedure and later verified or updated on runtime for each

memory block brought to the processor. The main advantages

of CSHIA over the previous hardware solutions are that it does

not require changes in the ISA or datapath, being adaptable to

most of embedded system architectures while providing com-

plete software compatibility, and also using a separate bus for

the tag memory, which gives to designers freedom to match

timing requirements to hide verification overhead.

Basing on Gaisler’s Leon3 [6] FPGA implementation, this

work presents a proof-of-concept of CSHIA. The main goal

of our implementation was to improve the original version of

the architecture and add more flexible design choices. Besides

presenting an in depth description of the integration between

the architecture and a real processor, we evaluated performance

and storage overheads, computed area and power estimates, and

also performed a security analysis. The CSHIA implementa-

tion enables two solutions against replay attacks: timestamps

or Merkle Tree. To the best of our knowledge, it is the first time

that both solutions are evaluated in the same architecture. The

results showed that the CSHIA’s timestamp instance is the best

one, when taking into account performance degradation, area

and energy overhead. It presented only 2.76 % of performance

penalty on average, while the Merkle Tree instance showed an

average 5.77 % reduction on performance. Finally, we discuss

how the CSHIA flexible design is a very attractive solution for

embedded systems when compared to state-of-the-art architec-

tures.

Preprint submitted to MicPro March 5, 2019
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This work is organized as follows. Security issues in embed-

ded system are discussed in Section 2. Section 3 describes the

architecture. Section 4 provides details about the implemen-

tation of CSHIA in the Leon3’s platform. Section 5 discusses

experiments and results. A security analysis of the CSHIA im-

plementation is presented in Section 6. Section 7 discusses re-

lated work and Section 8 concludes this work.

2. Security Issues in Embedded Systems

The integration between different hardware and software

components, protocols, and I/O devices in embedded systems

can make it difficult to protect against attacks due to the com-

plexity that arises from such combinations. In addition, in many

cases, embedded systems will run autonomously and unsuper-

vised, facilitating physical control by an adversary. While deal-

ing with security breaches in all components in an embedded

system can be complex and inefficient, a common threat model

adopted by several works in the literature [1, 2] considers that

the main chip, which has the processor, can be secured and any

other component, like memories, buses, among others, is vul-

nerable to manipulation. In this scenario, most of the threats can

be grouped in three main classes of attacks, which are discussed

next. Afterwards, security features for embedded systems that

can be employed as countermeasures against these attacks are

presented.

2.1. Threat Model

Since all components but the main processor are exposed to

an attacker, external modifications reach the processor by its

buses. Attempts of tampering with these components can then

be reduced to tampering with the buses. Alternatively, because

modern embedded systems use direct memory access, which

makes processors see peripheral hardware as memory, most

threats can be abstracted as attacks against the main memory.

Considering this simplification, there are three distinct attack

scenarios: (i) the attacker arbitrarily inserts/modifies memory

words (spoofing attack); (ii) the attacker swaps content between

different memory locations (splicing or relocation attack); (iii)

the attacker replaces the current content of a memory word

by an older value (replay attack). These attacks against the

main memory are illustrated in Figures 1 and 2. In short, by

tampering with the memory contents, the attacker successfully

changes the instructions/data the processor will receive when

performing read operations.

2.2. Security Properties

In order to counter the attacks discussed above, a system

designer can employ mechanisms implementing three security

properties: authenticity, integrity, and secrecy. Although these

features can be implemented through software, the stringent na-

ture of embedded systems demands solutions that consume few

clock cycles and are not power consuming. In the following,

we discuss hardware implementation of those security features.

ADDRESS MEMORY BLOCK 

0x0060 a0 04 20 01 

0x0064 82 00 60 08 

0x0068 da 00 40 00  ⋮ 
0x100C 80 a3 60 00  

0x1010 02 bf ff fa 

Original State of Memory 

Spoofing attack Splicing (or rellocation) attack 

ADDRESS MEMORY BLOCK 

0x0060 a0 04 20 01 

0x0064 82 00 60 08 

0x0068 da 00 e0 00  ⋮ 
0x100C 80 a3 60 00  

0x1010 02 bf ff fa 

ADDRESS MEMORY BLOCK 

0x0060 da 00 40 00 

0x0064 82 00 60 08 

0x0068 a0 04 20 01 ⋮ 
0x100C 80 a3 60 00  

0x1010 02 bf ff fa 

Code 
Segment 

Data 
Segment 

Figure 1: Spoofing and Splicing (or Relocation) attacks.

Original State of Memory 

Replay attack 

New State of Memory 

ADDRESS MEMORY BLOCK 

0x0060 a0 04 20 01 

0x0064 82 00 60 08 

0x0068 da 00 40 00  ⋮ 
0x100C 80 a3 60 00  

0x1010 02 bf ff fa 

ADDRESS MEMORY BLOCK 

0x0060 a0 04 20 01 

0x0064 82 00 60 08 

0x0068 da 00 40 00  ⋮ 
0x100C 80 a3 60 00  

0x1010 02 00 00 00 

Code 
Segment 

Data 
Segment 

ADDRESS MEMORY BLOCK 

0x0060 a0 04 20 01 

0x0064 82 00 60 08 

0x0068 da 00 40 00  ⋮ 
0x100C 80 a3 60 00  

0x1010 02 bf ff fa 

Figure 2: Replay attack.

2.2.1. Authenticity

Suppose that an attacker wants to add his/her own code for

execution in the embedded system or intends to move the data

from one system instance to another. These attacks can be

avoided by employing authentication mechanisms. In this so-
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lution, a key (or unique set of keys) is determined for each in-

stance. Code and/or data are tagged using these keys during

manufacturing (an enrollment phase). On running time, this

key (or set of keys) is used to regenerate tags. Only a correct

key value will be able to verify what was installed during man-

ufacture. Therefore, an instance will not accept code or data

that was not tagged using its own keys.

Previously the introduction of electronic Physical Unclon-

able Functions (PUFs) [7], these keys had to be inserted into

systems before they were made available to customers. To do

so, keys were stored on chip using non-volatile memories and

the manufacturer/vendor controlled the uniqueness of the keys

in each instance. The main downsides of storing key perma-

nently include: facilitating physical attacks [8], and possibly

increasing costs of production since it may demand integration

of different technologies on the same chip.

Recently, PUFs have been employed to generated secret

keys. PUFs are physical functions created to mimic random

functions. Their inputs, called challenges, and outputs, called

responses, are designed to have a unique relation for every

PUF instance. This is achieved by leveraging on imperfections

resulted from fabricating electronic devices. In regard to au-

thenticity, the main advantage of using PUFs as key generators

is that they can produce keys on running time, on-chip mem-

ories are not needed for key storage, and they are unclonable.

That means that even the manufacturer itself cannot produce

two PUF instances that will have the same the set of Challenge-

Response Pairs (CRPs) [7].

2.2.2. Integrity

Similarly to authentication, integrity is ensured by tagging

code and data with additional information such as memory ad-

dress location and/or timestamps in general. This prevents an

attacker from tampering with a system by, for instance, moving

instructions from their location in memory, setting different ini-

tial values of variables, etc. The level of integrity can be done

for an entire program, or memory pages, or memory blocks.

That depends on the choice of designers.

Integrity can also be considered at the instruction sequence

level, which we refer as Control-Flow Integrity (CFI). Hard-

ware solutions for control-flow integrity usually require deep

integration between hardware and software [9], that can result

not only in changing the Instruction Set Architecture (ISA) and/

or the tool-chain, but also the processor’s data path, as proposed

in [10, 11]. Even though the CFI protection is welcomed, due

to the focused nature of embedded systems, many applications

cannot afford the performance penalties and storage overhead

inherently of this solution. For instance, in applications where

user inputs is limited and I/O involves fixed amounts of data,

an attacker has very little room to employ a buffer overflow or

similar attacks prevented by CFI. However, integrity verifica-

tion regarding blocks of code and data (as mentioned above)

can avoid a variety of situations that go beyond runtime attacks.

For example, if an embedded system is unwatched, an attacker

can upload a malicious code or modify the data in the external

memory even if the system is not running. Integrity verification

can prevent and indicate these violations before they reach the

processor.

2.2.3. Secrecy

An embedded system can also use encryption to prevent ex-

posure of code and/or data stored in the external memory. Con-

sequently, the processor can process these instructions and data

only after decryption. Therefore, the major drawback on us-

ing encryption is the performance overhead that highly depends

on which cryptographic primitive is employed. In addition, se-

crecy only prevents that an attacker obtains the information, if it

is not combined with a unique key or integrity verification, the

system will be vulnerable to execute code of different system

instances and/or to suffer relocation and replay attacks.

2.3. Analysis of Countermeasures

The security properties described above can be used to

counter the attacks presented in the threat model. Next, coun-

termeasures providing these security properties against attacks

on embedded systems are discussed together with their impact

on design.

2.3.1. Preventing Spoofing Attacks

Authentication tags can be computed from memory blocks

using a unique on-chip secret key and robust cryptographic

primitives. By verifying pairs of memory blocks and tags, a sys-

tem can detect arbitrary values inserted by an attacker in mem-

ory or buses. Figure 3 shows how tags can prevent a spoofing

attack, in which an attacker wants to modify instructions. No-

tice that unique secret keys will inhibit an attacker mimicking

tag creation of any device instance, even if he/she has access to

all tags and memory blocks of multiple instances.

Regarding downsides, one important matter about tags is the

size of the block or part of memory that is tagged. Large blocks

result in low storage overhead because the number of tags will

be smaller, but high performance penalties since it takes more

time to generate a tag. This situation is inverted when smaller

blocks are used. Generally, the granularity of cache lines (or

memory blocks) are chosen to provide the best trade-off and it

is the most common choice found in the literature [12, 3, 4, 2].

2.3.2. Preventing Splicing or Relocation Attacks

If tags result only from processing memory blocks, a splic-

ing or relocation attack (see it in Figure 1) can still be applied.

A system can deal with this attack by creating tags that include

not only content but also location in memory. Since for most

of the cryptographic primitives used to generate tags the con-

tent order matters, the initial address of a block is enough. The

prevention of this attack does not add any significant overhead

or complexity to the system, because address length is consid-

erable smaller than blocks and both can even be combined for

fast tagging. Figure 3 shows that an attacker fails in this attack

when he/she tries to swap blocks in memory. Even swapping

tags will not work, due to their generation depending on the

address-block pair.
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Figure 3: Preventing Spoofing and Splicing (or Relocation) attacks.

2.3.3. Preventing Replay Attacks

A final trick an attacker can do to bypass previous solutions

is to replace a block and its tag by an older version. Since old

values may remain consistent, the system will not detect this

modification unless some information about the current state of

the system is available. Figure 2 presents this situation, that

usually targets data since code is not constantly modified in

memory. The information of the current state can be added to

the system in two forms: a tag of all tags (or root tag) or times-

tamps for each block of content. Figure 4 shows how times-

tamps can prevent replay attacks and Figure 5 shows how a root

tag works. The reader should notice that in both cases neither

the timestamps nor the root tag are exposed off-chip. This im-

plies that both solutions need a non-volatile storage on chip.

Hence, while timestamps need an on-chip memory, a root tag

only requires memory element likely to be the size of a register.

It is worth noticing that a root tag can degrade performance

significantly, to a point in which can be impractical. To mini-

mize such impact on performance when using a root tag, a tree

structure can be applied. This tree is known as Merkle Tree.

The literature has proposed a vast number of approaches of how

to implement this tree, and details can be found in [12, 13]. The

tree is constructed by grouping tags in chunks and creating tags

for them. By recursively repeating this procedure until only one

tag is left, we obtain the root tag. Figure 6 illustrates this pro-

cess, in which a chunk is composed of 4 tags of memory blocks,

and the next level of the tree has 4 tags that originated from each

descendant chunk. The root tag results from the chunk created

by the tags in the second level. Notice that all intermediate tags
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Figure 4: Replay attack prevention using Timestamps.
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Figure 5: Replay attack prevention using Merkle Tree.

between the root tag and the leaves may be stored off-chip, with

the root tag as the only one that cannot be exposed.

Even though the tree seems to be an elegant solution to re-

duce performance penalties of the root tag solution, usually it
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is not enough. Because every read and write of memory blocks

will require verification and update of the nodes in the leaf-root

path, an on-chip cache for nodes of the Merkle Tree can be

implemented to avoid constant complete walks from leaves all

the way to the root. More details can be found in [14, 15].

Therefore, the dilemma is: timestamps are likely to provide

lower performance penalties since verification is simple, but

they can require larger non-volatile on-chip memories. On the

other hand, Merkle Tree may only need a non-volatile on-chip

register, but in order to reduce performance slowdown a cache

should be added, which will adversely affect dynamic power

and area. Further details in the downsides of both solutions are

discussed in depth in the next sections.

On-chip (Secure) Off-chip (Insecure) TAG MB-0 

TAG MB-1 

TAG MB-2 

TAG MB-3 

TAG MB-4 

TAG MB-5 

TAG MB-6 

TAG MB-7 

TAG MB-8 

TAG MB-9 

TAG MB-10 

TAG MB-11 

TAG MB-12 

TAG MB-13 

TAG MB-14 

TAG MB-15 

TAG L2-0 

TAG L2-1 

TAG L2-2 

TAG L2-3 

TAG ROOT 

Level  1 Level  2 Level  3 

Figure 6: Merkle Tree structure to 16 memory blocks.

2.4. The Matter of Secrecy

Although secrecy mitigated some attacks by simply conceal-

ing the contents of the memory, many embedded system appli-

cation do not need secrecy. For instance, applications that use

open source programs and/or have data that must be audited at

some point. In general, encryption primitives are slower than

authentication due to their reversible nature. Different secure

architectures that implement secrecy using AES report memory

block encryption latency between 13 [16] to 20 cycles [3] with-

out estimating real impact on area and power. In [17], a 16-byte

block is assumed to be encrypted in 10 cycles using AES with

an estimated area of 25,000 gates. However, a Pseudo-Random

Function (PRF) such as SipHash [18], can be implemented in

7,900 gate-equivalent elements capable of processing 20 bytes

in 5 cycles. Therefore, embedded systems can have authen-

ticity and integrity with very low performance penalties, when

secrecy is not needed. Next, we present the CSHIA architec-

ture, which assuming the threat model and security issues and

solutions discussed in this section, provides authenticity and in-

tegrity for code and data.

3. CSHIA

CSHIA was originally proposed in [5] as an architecture for

IoT. However, we believe that CSHIA fits in a variety of embed-

ded system applications that can benefit from its architectural

design decisions. As we stated before, many embedded system

applications do not need secrecy/confidentiality, but strongly

require code and data authenticity and integrity. Using the

original work as base, we modified some elements to provide

stronger security features, as well as make CSHIA adaptable to

a FPGA implementation. This section focus on presenting our

CSHIA main architectural components and how they work to

provide authenticity and integrity.

3.1. Components of the Architecture

As Section 2 discussed, the main resource to provide in-

tegrity are tags. Since CSHIA uses PUF-based keys to gener-

ate tags, we called them PUF-based Tags, or PTAGs for short.

PTAGs are the core of CSHIA’s design. They will be unique

for each instance of CSHIA due to the unclonability property

of PUFs. That ensures one-to-one relationship between pro-

grams and instances, providing authenticity. To handle PTAGs,

three main components are added to a conventional embedded

system architecture. They are: The PTAG Memory; the Bus

Handler (BUS-HDLR); and the Security Engine (SEC-ENG).

Figure 7 shows this design and how components communicate

between themselves.

PTAG Memory is an external memory and has its own buses.

This architectural decision gives freedom to designers that can

choose bus width, frequency, address space, etc. Because the

processor is not aware of any additional component of CSHIA,

BUS-HDLR intercepts data transfers between processor and

memory in order to provide them to SEC-ENG that generates

tags. BUS-HDLR can also request data in behalf of the proces-

sor to main memory to form complete memory blocks that are

necessary to generate PTAGs.

SEC-ENG has three major subcomponents. The main one

is the PTAG Generator (PTAG-GEN), which uses input data

whose length is equal to a memory block concatenated with its

address to generate PTAGs. The Fuzzy Extractor is only used

when the system loses its secret key. For instance, after a power

cycle. Thus, when the system is powered on, the Fuzzy Ex-

tractor will extract the PUF-based key and provide it to PTAG-

GEN. Finally, we have the PTAG Memory Management Unit

(PMMU). The main functions of the PMMU are to store and

request PTAGs from the PTAG Memory and also decode inter-

nal addresses of PTAGs to physical addresses of PTAG Mem-

ory. In addition to that, PMMU can have two distinct designs.

If a designer chooses to use timestamps as solution for replay

attacks, PMMU will have an internal memory to store and con-

trol timestamps of the memory blocks. However, if the solution

for replay attacks is a Merkle Tree, PMMU will control veri-

fication and update of the tree, as well as it will have a cache

memory, the PTAG Cache, to speed up these tasks.
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(A) The BUS HANDLER (BUS-HDLR) provides memory block concatenated with physical address to the PTAG GENERATOR (PTAG-GEN). 
(B) Fuzzy Extractor serves an extracted PUF-based key to PTAG-GEN. 
(C) The PTAG MEMORY MANAGEMENT UNIT (PMMU) can either provide: 
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  (ii) or a time stamp for PTAG-GEN. 
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(H) PMMU sends and receives PTAGs from the PTAG Memory. 
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Figure 7: The CSHIA architecture.

Here is how CSHIA’s components work together. BUS-

HDLR checks for memory read-write operations of the proces-

sor. When it perceives a memory read it will capture mem-

ory words and/or request memory words to compose a mem-

ory block. Then it sends this memory block and its address

to SEC-ENG. On its turn, SEC-ENG uses PMMU to bring

the corresponding PTAG of that memory block from PTAG

Memory, while PTAG-GEN computes a PTAG using the con-

tent served by BUS-HDLR. After that, the PTAG brought from

PTAG Memory and the one computed are compared. If they

match, SEC-ENG knows that neither the PTAG nor the mem-

ory block were tampered with. Otherwise, SEC-ENG alerts the

handler that can isolate the processor or sends a non-maskable

interrupt to the processor.

For write operations, the process is simpler. Once any

memory block that reached the processor was verified for in-

tegrity and authenticity, BUS-HDLR can serve the cache line to

SEC-ENG that uses PTAG-GEN to compute a new PTAG and

PMMU sends that PTAG to PTAG Memory. We can see

PMMU for now as a black box, until the end of this section,

when we describe its complete functionality. The following

subsections describe the two phases of CSHIA: enrollment and

runtime.

3.2. Enrollment Phase

In order to ensure authenticity and integrity, an initial pro-

cedure has to be conducted by the manufacturer/vendor. This

enrollment procedure will activate the Fuzzy Extractor to ex-

tract the secret key from PUFs. Once that is done, the BUS-

HDLR brings all memory blocks for tag generation. Next, we

detail this procedure.

3.2.1. Key Extraction

PTAG Generator implements a Pseudo-Random Function

(PRF), which is a primitive cryptographic very similar to a hash

function with an important difference: the input processing is

based on a secret key. In order to provide uniqueness to every

CSHIA instance this key has to be unique. As aforementioned,

PUFs cannot be cloned, thus they can provide this uniqueness.

Nevertheless, one big conundrum of using electronic PUFs to

generate keys is that they are inherently unstable. Due to their

nature of leveraging on imperfection of the fabrication process,

external factors such as temperature variation, voltage variation,

etc., can interfere on their responses. Thus, varying responses

to challenges during the lifetime of devices. In order to pro-

vide consistence in PUF responses, Fuzzy Extractor (FE) are

employed. In simple terms, FEs are schemes comprised of an

extraction algorithm and a recovery procedure. Becker provides

a solid review and formal definitions in [19].

There are multiple ways of implementing a Fuzzy Extrac-

tor. Originally, CSHIA was proposed using a Code-offset FE,

which is well-known to reduce entropy of extracted keys [20].

To strengthen the CSHIA design, we now use an adapted ver-

sion of the Index-based Syndrome (IBS) FE proposed by Yu

and Devadas in [21]. Figure 8 (a) illustrates the process of key

extraction of CSHIA’s FE. In general terms, a bit string r is ex-

tracted from PUFs. Then, the FE generates a syndrome s of

r using a (n, k, t) Error Correction Code (ECC). The FE also
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Figure 8: Fuzzy Extractor actions during the enrollment and recovery procedure.
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Figure 9: Key generation on CSHIA.

extracts a bit string w and combines it to the syndrome s to

generate an encoded helper data h. This helper data h can be

externally exposed and will not leak information about r (that

can be used as secret key or derive the key).

To fully explain Figure 8 (a), the chosen parameters are de-

tailed. First, CSHIA incorporates PUFs that produce 64-bit re-

sponses (more details in the next section). These PUFs will be

responsible to generate each string r and w that are 64 bits long.

To match the length of r and w, CSHIA has a (127, 64, 10)-

BCH ECC. As Figure 8 (a) depicts, there are four bit strings ri,

which are compounded two by two and fed to the PRF (Figure

9). Such combinations were specifically designed to match the

PRF chosen for CSHIA, the SipHash [18], which has an output

of 64 bits and uses key of 128 bits. Therefore, the first pair of

bit strings ri is concatenated with a constant and processed by

the PRF using the second pair of bit string ri as key. That gen-

erates a hash K1. Then, inverting their places and concatenating

the second pair with a different constant, a hash K2 is obtained.

Concatenating K1 with K2 results in K which is the secret key

of CSHIA. Notice that C1 and C2 in Figure 9 are replacing ad-

dresses for input of the PTAG-GEN. Further details of security

will be given in the following sections, however, one can no-

tice that assuming that each bit string ri has at least half of their

length of entropy, each part of the key will have full entropy.

Hence, the key has full entropy.

3.2.2. Full Memory Protection

The Enrollment Phase proceeds to tag the memory range the

manufacturer/vendor specified during design. Now that PTAG-

GEN has an unique key, SEC-ENG orders BUS-HDLR to bring

all memory blocks and deliver them to it. SEC-ENG will use

PTAG-GEN to generate PTAGs, however, depending on the so-

lution against replay attacks a designer chooses, PTAG-GEN is

used differently.

Timestamps Generation. When timestamps are the solution

against replay attacks, PMMU will have a timestamp mem-

ory. This timestamp memory has the depth of the number of

data memory blocks the designer chose to cover. Thus, be-

fore BUS-HDLR hands in data memory blocks, PMMU will

clear the entire timestamp memory to avoid uninitialized val-

ues. While SEC-ENG receives code memory blocks, gener-

ated PTAGs are just passed to PMMU that stores them in PTAG

Memory. As BUS-HDLR starts to pass data memory blocks to

SEC-ENG, PMMU increments the timestamp of each memory

block received and passes this value to SEC-ENG, which com-

bines with the address of the memory block. This combination

is then concatenated with the memory block and then finally

hashed into a PTAG. PMMU receives this PTAG and stores it

in PTAG Memory.

Merkle Tree Generation. A Merkle Tree solution is more com-

plex. The first procedure is very straightforward. SEC-

ENG receives memory blocks and their addresses from BUS-

HDLR and uses PTAG-GEN to generate PTAGs. PMMU re-

ceives these PTAGs and sends them to PTAG Memory. After

all memory blocks had their PTAGs generated, PMMU starts to

bring PTAGs of data memory blocks. As soon as a chunk of

PTAGs is formed, a PTAG internal address of the chunk is cal-

culated. PMMU provides this internal address and the chunk to

PTAG-GEN that generates a PTAG. This PTAG is returned to

PMMU that stores it in PTAG Memory. This process will con-

tinuously happen (as we can see in Figure 6) until PMMU iden-

tify that the last PTAG calculated has no siblings. Hence, it is

the root PTAG, which must be stored inside PMMU. It is worth

to clarify that PTAG internal address is an address space that fa-

cilitates computation and identification of descendants and an-

cestors. Each internal address is directly translated to a physical

address by PMMU and this translation has as goal to minimize

unused spaces in PTAG Memory. Moreover, in terms of se-

curity, this internal address mitigates a very specific attack on

the tree, in which an descendant has the same PTAG as one of

its ancestors. In this case, an attacker could try to perform a

relocation attack likewise.
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3.3. Runtime Phase

After the enrollment phase, CSHIA instances are ready for

distribution. During the product lifetime, the device can be re-

booted and turned off and on multiple times. While this will

not affect PTAGs, which are externally stored in PTAG Mem-

ory, the secret key has to be recovered every time the system

comes back from off-line periods. This recovery procedure of

the Fuzzy Extractor is described next.

3.3.1. Key Regeneration

During the enrollment there were 8 challenges selected to

produce four ri and four wi values. These challenges and helper

data can be exposed off-chip and stored in PTAG Memory if

the designer chooses to do so. The recovery process of the se-

cret key can be seen in Figure 8 (b). After using the challenges

and all helper data, the syndromes are recovered. Due to in-

consistent nature of PUFs, the fuzzy extractor actually recovers

bit-flipped versions w′
i

and r′
i
, what leads to the BCH decoder

receive r′ and s′. Once bit flips in ri values are corrected, the

FE uses all ri to regenerate the secret key as Figure 9 shows.

3.3.2. Runtime Protection using Timestamps

After recovering the key, CSHIA is ready to execute any

program. Each instruction or data requested by the processor

will be actually handled by BUS-HDLR. During reads, the pro-

cessor requests a memory word, BUS-HDLR intercepts that

request and informs SEC-ENG. While SEC-ENG then asks

the PMMU to make the corresponding PTAG available, BUS-

HDLR takes control of the buses and request all words that

compound the memory block whose the requested word be-

longs. After buffering this memory block/cache line, BUS-

HDLR sends it to SEC-ENG for verification. Meanwhile,

PMMU made available the corresponding PTAG of that block

and its timestamp (when the memory block is data and is in the

covered region). After combining a timestamp (if necessary)

with the address and concatenating them to the memory block,

a PTAG is created. If this PTAG matches the one PMMU made

available, a signal informs BUS-HDLR that it can serve the pro-

cessor, otherwise the system is stalled from further action. No-

tice that the processor will receive instruction/data only when

all three elements used for PTAG generation, timestamp, ad-

dress, and memory block, match those that were used to pro-

duce the PTAG brought from PTAG Memory.

For writes, the process for serving the processor requisition

can be longer. It will depend on the availability of the inter-

nal buffer of BUS-HDLR. If a write request is intercepted and

it does not match any line in the buffer, this line has to be

brought. But, before that, if the buffer is full, BUS-HDLR will

have to discard a non-dirty line or write it back before releas-

ing the buses to the processor. While BUS-HDLR writes back

all words in a buffer line, it also sends this line to SEC-ENG.

In its turn, SEC-ENG solicits to PMMU an updated timestamp

for that block. After receiving it, a new PTAG is generated and

SEC-ENG passes it to PMMU, which will write it into PTAG

Memory. Once the dirty buffer line was all written back, BUS-

HDLR starts a reading operation to bring the memory block of

the data the processor wants to write. Only after that memory

block is buffered, the buses will be granted to the processor.

Is Code PTAG?

Just Bring it

from Memory

Y

N

Is it in coverage

Region?

N

Is it in PTAG

CACHE?

Y
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Figure 10: Flowchart of the PMMU’s algorithm for verification and update of

the PTAG Cache for the Merkle Tree implementation.

3.3.3. Runtime Protection using Merkle Tree

In CSHIA, the basic difference between using timestamps

and Merkle Tree relies on the work PMMU has to do. For a

solution based on Merkle Tree, PMMU has a small PTAG cache

memory that only caches PTAGs of data memory block and its
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ancestors in the tree. Nonetheless, the process in which the

PMMU makes PTAGs available becomes very complex. For the

sake of simplicity, we provide a flowchart of the PMMU’s work

in Figure 10. The same process described for read and write

in the runtime protection using timestamps is also valid here.

That means that the work of BUS-HDLR during processor’s

read/write requests is the same.

To summarize Figure 10, PMMU has a buffer to solve dead-

locks when replacing dirty chunks of PTAGs in the cache. Most

of those deadlocks happens because right after evicting a chunk,

its ancestor has to be updated and thus the current write or veri-

fication has to be stalled. For intelligibility, we omit further de-

tails of implementation, they will be found in the publication of

our source code and documentation about CSHIA implementa-

tion. Finally, information about caching Merkle Tree nodes can

be found in [14].

After giving an overall look in the CSHIA architecture, all

basic ideas are laid down for implementation. Next, we intro-

duce our CSHIA FPGA implementation.

4. Implementation

We chose the Leon3 platform from Cobham Gaisler [6] to

implement CSHIA. Leon3 is a VHDL implementation of a

SPARC V8 processor with configurable parameters, which to-

gether with some additional IP cores provide a suitable solution

for embedded systems. In addition, Leon3 has a free version for

academic purposes that include sophisticated debugging tools,

and it is available for a variety of FPGA Development kits.

Gaisler keeps an email list for support and constant updates are

provided. All these features are interesting because CSHIA can

be an extension of the platform available to the research com-

munity, and which also has solid design choices since Leon3 is

a product available to the industry.

The implementation is based on Figure 7 in Section 3.

Leon3’s processor (the core) is connected through the main

memory by a AMBA Bus version 2.0. In our modification, the

processor’s I/O master bus connects it to BUS-HDLR, which

then provides a new I/O master bus for the rest of the compo-

nents in the platform. Thus, BUS-HDLR is transparent to all

components of the platform, even the core. One of the compo-

nents that is specific of Leon3’s platform is the Debug Support

Unit (DSU), which allows a designer using a debug host (such

as a computer) to connect to development kits running Leon3.

Through the debugging connection, a program can be loaded to

the FPGA memory, started, paused, among other useful func-

tions.

We implemented CSHIA in an Altera FPGA Development

Kit DE2-115. The parameters of the processor and CSHIA are

in Table 1. The Altera’s kit allows the processor to run

at 50 MHz. The total amount of SDRAM memory dedi-

cated to Leon3 is 128 MB. As convention all programs starts

by its .text segment (code) at the address 0x40000000.

We set .data segment (data) to start at 0x40013000, or at

0x40023000, depending on the size of the code segment. As

described in the previous section, BUS-HDLR has a buffer

that stores memory words. When these words form a memory

Table 1: CSHIA FPGA implementation configuration.

Component Parameter

Leon3 Processor

Frequency 50 MHz

Instruction Cache 16 KB

Data Cache 16 KB

Cache Line Size 256 bits

Memory Word 32 bits

Code and Data Memory Up to 128 MB

Code Start Address 0x40000000

Data Start Address 1 0x40013000

Data Start Address 2 0x40023000

BUS-HDLR Buffer 128 Bytes

Fuzzy Extractor

ECC (127,64,10)-BCH

PUFs 64 × 64-bit Arbiter PUFs

PTAG-GEN

PRF SipHash-2-4

SipHash-2-4 key 128 bits

PTAG generation 10 cycles

PTAG length 64 bits

PTAG Memory 216,064 bytes

Code and Data PTAGs 18816 words of 64 bits

Merkle Tree PTAGs 8192 words of 64 bits

Data coverage 512 KB

Total coverage 588 KB

PMMU

Time Stamp Memory 214 timestamps

Time Stamp Length 16 bits

PTAG Cache 4 KB

PMMU Buffer for Merkle Tree 2 * number of cache lines

block, it is handed to SEC-ENG. We set the size of this buffer

to 4 cache lines, which gives a total of 128 bytes. The 128-bit

SipHash’s key is extracted from 64 Arbiter PUFs (APUFs). Al-

though any PUF could be used, for the sake of design simplicity

we chose the APUF as a proof of concept. Each APUF has a

64-bit challenge input. PTAG generation lasts 10 cycles, be-

tween SEC-ENG request and PTAG-GEN reply. Our SipHash

implementation is an adaption of the VHDL version available

in [22].

Continuing to look at Table 1, the PTAG Memory uses in-

ternal memory of the FPGA. This option arose due to limiting

options available in the kit. Because we wanted to design a

64-bit bus memory, no better option than internal memory was

available. The SRAM of the kit only allowed 16-bit words.

We also could not increase the frequency of the SRAM using

PLLs since its maximum frequency was limited to 125 MHz,

and, to simulate a 64-bit bandwidth, we would need at least a

SRAM operating at 200 MHz. The option for FPGA internal

memory limited our coverage to a maximum of 512 KB of data

memory, which resulted in a memory overhead of 36 % (code,

data, and Merkle Tree). In addition, to reduce unused memory

words in PTAG Memory, we split it into two. This allowed to

create an easy decoder to separate PTAGs of memory blocks

from those of chunks of PTAGs.

Due to the high utilization of internal memory, timestamp

memory became limited to 214 16-bit words to cover the 512

KB of data memory. This represents 5.4% of the total 588 KB

main memory coverage. The PTAG Memory utilization for this

solution was up to 147 KB (code and data), or 25% overhead.
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Table 1 also shows the PTAG cache’s configuration. Since this

cache is an internal memory as well, it was limited to 4 KB.

That limitation did not prevent us of evaluating the cache in

multiple configurations. We evaluated this cache in different

configurations of lines, set associativity, and replacement poli-

cies. Finally, as previously discussed, PMMU requires a buffer

to stall a PTAG cache write or read while an eviction is required.

We calculated that this buffer needs to be at most 2 times the

number of lines in PTAG Cache.

One last information about our FPGA CSHIA implemen-

tation is that it had three modes of operation. In the first

mode, called Leon3 Baseline, the BUS-HDLR is disabled and

all security-specific hardware is bypassed. A second mode, the

CSHIA-TS, activates PMMU for timestamps only. Finally, the

third mode, CSHIA-MT, disables timestamps and activates the

cache in PMMU for supporting the Merkle Tree implementa-

tion. Being able to switch between those modes only using

switch keys of the development key helped us in debugging and

evaluating the performance of the architecture.

5. Experiments and Results

This section describes the experimental setup and results.

First, it describes benchmarks and experiments configuration.

Then, it presents experimental results on performance, area and

power estimates.

5.1. Experimental Setup

The DSU connects the Leon3 platform to a computer

through a debugging program called GRMON. Using GR-

MON, we are able to load programs, measure runtime, in-

sert breakpoints, and set some Leon3 parameters. As bench-

marks, we chose nine programs from the MiBench suite [23]:

basicmath; bitcount; susan; qsort; fft; fft inv; sha;

stringsearch (or just search for short). These benchmarks

were either executable without input files or easily modified to

run without them, since we could not load input file through

GRMON. Thus, for some benchmarks we incorporated input

files in their data segment, and these modifications were evalu-

ated against reference outputs. MiBench usually provides two

types of inputs: small and large. We ran both inputs for most

of the benchmarks, except by basicmath, fft, and fft inv.

The large inputs of these programs did not affect the size of the

data segment and yet most of their run time was dominated by

printing their outputs over GRMON.

As Section 4 discussed, the CSHIA implementation is able

to cover up to 512 KB of data. This was enough for most of

the benchmarks except by the large inputs of qsort and sha,

as Table 2 shows. Only the .data and .bss segments of the

programs were covered. We did not have enough memory to

reach the beginning of the .stack segment and we would only

be able to cover a small portion of .heap segment.

Each benchmark was run in eight different instances of

CSHIA. (1) The first CSHIA instance is the one that BUS-

HDLR is disabled, and bypasses incoming and outgoing bus

transfers from the processor. We called this instance as

Table 2: Coverage of data segment in benchmarks.

Benchmark .data segment size (KB) Cover (%)

qsort small 54.9 100

qsort large 588.6 86.99

bitcount small 3.3 100

bitcount large 3.3 100

sha small 307.2 100

sha large 3174.4 16.13

search small 3.4 100

search large 13.4 100

fft small 2.7 100

fft small inv 2.7 100

dijkstra small 31.1 100

dijkstra large 31.1 100

basicmath small 2.7 100

susan small 23.9 100

susan large 326.7 100

Leon3 Baseline. (2) The second instance of CSHIA uses the

timestamps solution against replay attacks. We defined it as

CSHIA-TS. (3-8) The remaining instances are variations of

CSHIA when a Merkle Tree is used as solution against replay

attacks. As we discussed in the previous section, we evaluated

two cache policies and 3 PTAG cache configurations. The 3

PTAG cache configurations are 16 lines and 8 sets, 32 lines and

4 sets, 64 lines and 2 sets. The cache replacement policies were

a traditional LRU policy and As-Late-as-Possible (ALAP) [15],

in which invalid and discardable chunk of PTAGs are always se-

lected first when available. Therefore, we intuitively named this

instances as (3) CSHIA-MT-16x8-LRU, (4) CSHIA-MT-32x4-

LRU, (5) CSHIA-MT-64x2-LRU, (6) CSHIA-MT-16x8-ALAP,

(7) CSHIA-MT-32x4-ALAP, (8) CSHIA-MT-64x2-ALAP.

5.2. Performance Analysis

Table 3 shows our results. The first conclusion is that

CSHIA-TS performs better than any instance that uses Merkle

Tree. CSHIA-TS worst performance penalty is 8.30 % for

sha small and has an average performance penalty of just

2.76 %. Because CSHIA could not entirely cover sha large,

its performance penalty ended up being smaller than its coun-

terpart. The bitcount and fft benchmarks had inconsis-

tent results in some cases, when comparing all instances to-

gether. Delving into reasons for that, we found out that they

are dependent of random number generation and this was af-

fected by the intervention of CSHIA in the AMBA bus. There-

fore, for those benchmarks, the performance difference between

CSHIA instances should not be considered significant. An-

other observation regards to qsort small and qsort large.

They presented similar behavior of the sha benchmarks, de-

spite CSHIA almost entirely covers the data segment of

qsort large.

The results for CSHIA-MT show that increasing the num-

ber of sets and reducing the number of cache lines seems to

provoke a performance penalty. The average performance of

CSHIA-MT-16x8-ALAP and CSHIA-MT-16x8-LRU are worse

than CSHIA-MT-64x2-ALAP and CSHIA-MT-64x2-LRU, re-

spectively, with 7.05% and 5.99% against 5.99% and 5.77%.

Therefore, cache memory for CSHIA-MT is likely to improve

59



Table 3: Performance overhead in % of the evaluated CSHIA instances in comparison of running times in Leon3 Baseline.

Benchmarks CSHIA-TS(%)
CSHIA-MT instances

16x8-LRU(%) 32x4-LRU(%) 64x2-LRU(%) 16x8-ALAP(%) 32x4-ALAP(%) 64x2-ALAP(%)

qsort small 3.77 9.90 9.90 9.90 11.31 10.38 9.91

qsort large 0.05 0.05 0.05 0.05 0.05 0.05 0.05

bitcount small 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bitcount large 2.43 2.42 2.43 0.00 0.00 0.00 2.43

sha small 8.31 16.61 16.58 16.55 24.85 16.55 16.55

sha large 1.78 4.51 4.63 4.75 5.34 4.99 4.63

search small 0.10 0.10 0.10 0.00 0.10 0.10 0.00

search large 0.00 0.01 0.00 0.01 0.00 0.00 0.01

fft small 0.00 1.07 2.14 1.07 1.07 1.07 1.07

fft small inv 0.92 0.00 0.00 0.00 0.00 0.00 0.00

dijkstra small 6.40 15.37 15.37 14.09 16.65 15.36 15.38

dijkstra large 7.35 16.90 16.91 16.90 18.37 17.64 16.90

basicmath small 1.73 1.73 1.73 1.73 1.73 1.74 1.73

susan small 1.37 2.74 2.74 2.73 4.10 2.73 2.74

susan large 7.23 18.40 19.15 18.72 22.23 19.78 18.41

Average 2.76 5.99 6.12 5.77 7.05 6.03 5.99

performance if a designer chooses to add more cache lines than

sets. For cache replacement policies, we can observe in Table

3 that LRU has better overall performance than ALAP. These

numbers do not invalidate the results of Su et al. in [15], but we

would recommend pure LRU as replacement policy.

Because verification of PTAGs of code memory blocks is

equal in CSHIA-TS and CSHIA-MT, the only way to improve

performance of CSHIA is reducing the number of accesses to

PTAG Memory for data memory blocks. Thus, increasing the

PTAG cache size may lead CSHIA-MT to obtain better perfor-

mance than CSHIA-TS. Obviously, these choices need to take

into account other variables such as area and power, which we

discuss next.

5.3. Area and Power Estimates

Since we did not have access to standard tools from industry

to synthesize VHDL, we used the area and power proportional-

ity relation [24] to compute our estimations. For that, we used

well-known open tools like CACTI 5.3 [25] for cache memo-

ries estimative of power and area, and Ahmed et al.’s work [26]

that presents area and power for a synthesized Leon3 processor

on 65 nm LPLVT (Low Power Low Voltage Threshold) process

using ST Microelectronics libraries.

Ahmed et al. presented their Leon3 design separating area,

static and dynamic power for the core and its cache memory.

We ignore their cache memory values since they differ from

our implementation. Moreover, our main goal is to estimate

area of logic elements. Thus, we will assume a proportional

relation between their core area, 0.191 mm2, and the number of

FPGA logic elements of the Leon3 Baseline implementation,

which is 23,629 in the Altera’s DE2-115 development kit.

By this proportional relation between area and logic ele-

ments, our estimate for the CSHIA-TS and CSHIA-MT, with-

out additional memories, is 0.246 mm2 and 0.264 mm2, re-

spectively. As we said, area and power can be proportional,

and thus we can use similar reasoning to estimate power. From

Ahmed et al.’s work, static and dynamic power (at 100 MHz)

are 85.3 µW and 5.75 mW, respectively. Those numbers result

in static power of 109.48 µW for CSHIA-TS and 117.41 µW for

Table 4: Area and power for CSHIA implementation without considering in-

struction and data cache memories of the processor.

Instance Area (mm2)
Static Dynamic

Power (mW) Power (mW)

Leon3 Baseline

Core 0.191 85.3 × 10−3 5.75

CSHIA-TS

Core 0.246 109.48 × 10−3 7.41

Memory 0.141 72.00 7.15

Total 0.387 72.11 14.56

CSHIA-MT-64x2

Core 0.264 117.41 × 10−3 7.94

Cache 0.274 6.90 100.98

Total 0.538 7.02 108.92

CSHIA-MT-32x4

Core 0.264 117.41 × 10−3 7.94

Cache 0.544 6.45 165.85

Total 0.808 6.57 173.79

CSHIA-MT-16x8

Core 0.264 117.41 × 10−3 7.94

Cache – – –

Total – – –

CSHIA-MT. In terms of dynamic power, we obtained 7.41 mW

for CSHIA-TS and 7.94 mW for CSHIA-MT.

We used CACTI to estimate how the timestamp memory and

PTAG Cache affects the design. From Table 1, the total times-

tamp memory size was 2 bytes × 214 (or 32 KB). Even though

CACTI does not offer an option for non-volatile estimative, a

DRAM like estimation provides an insight of area and power.

For the PTAG Cache, we estimated 4-KB PTAG Cache with 64

lines and 2 sets, 32 lines and 4 sets, and 16 lines and 8 sets. Un-

fortunately, CACTI was not able to perform the computation

for this last configuration. All estimations are summarized in

Table 4.

Even if our estimates are not very accurate, they allow to an-

alyze which solution would provide the best trade-off among

area, power, and performance penalties. Thus, based on our

numbers, the CSHIA-TS would be the best solution. Of course,

that would only apply to this specific memory size we eval-

uated. As we will discuss in the next section, 16-bit times-
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tamps will not provide the same security as our CSHIA-MT in-

stances with PTAGs of 64 bits. In addition, if the coverage of

the data segment needs to be increased, the timestamp mem-

ory can reach prohibitive configurations for power and area. In

such a situation, CSHIA-MT would be capable of offering this

higher coverage without impacting in on-chip power and area.

Nonetheless, higher penalties in performance would happen.

Among all CSHIA-MT instances, we would definitely indicate

CSHIA-MT-64x2-LRU as the best choice due its performance

and smaller area and power overheads.

6. Security Analysis

Security features of a system are limited, sometimes by con-

strained resources, other times when they are surpassed by new

technologies. Therefore, the deeper an analysis goes the better

the deployment a system can have. In this regard, CSHIA was

designed to employ security features to embedded systems

when: (a) hiding memory content is not a requirement; (b)

control-flow attacks will not be a major threat; (c) redesign of

processors, IP components, and tool-chains to insert security

features cannot be done or is prohibitive. Any embedded sys-

tem which fits these three scenarios would probably benefit the

most of using CSHIA’s design. As previous sections showed,

CSHIA is very customizable and can provide good performance

with acceptable area and power overheads.

For our CSHIA FPGA implementation, we assumed the

threat model discussed in Section 2. Nevertheless, we now add

some additional considerations. For instance, once tampered

memory blocks or PTAGs are detected, the system halts; what

is inside of the chip will not be stored back to memories, as

well as the processor will not receive any instruction or data.

CSHIA does not assure any security claim if a resourceful ad-

versary has physical access to the processor chip, because in

this scenario an adversary can extract side-channel information

through a variety of non-invasive, semi-invasive, and invasive

attacks, which demand distinct countermeasures.

In the following subsections, we analyze the security

strengths and weaknesses of the CSHIA design under different

attacking scenarios.

6.1. Brute-force/Forgery Attacks

Scenarios where an attacker tries to bypass CSHIA integrity

verification by inserting manipulated PTAGs have a small prob-

ability of being successful. PTAGs cannot be directly read

by any program and thus, unless the PTAG Memory is exter-

nally inspected and manipulated, or reverse-engineered, an at-

tacker cannot modify its contents. A tampered PTAG Mem-

ory poses the same threat as tampered PTAGs inserted into

the PTAG Buses. Tampered PTAGs will only match tampered

memory blocks if the attacker has the same PUF-based key

of the instance of CSHIA he/she is trying to attack. This can

only happen if he/she guesses the key which has a probability

of 1 in 2128 of happening, or if the attacker guesses correctly

PTAGs for the tampered memory blocks. That has a probabil-

ity of 1 in 264. Although, this value does not match the standard

security level for personal computers, servers, and high perfor-

mance systems (see NIST report in [27]), they can significantly

decrease threats to embedded systems, requiring more resource-

ful attackers and reducing chances of successful attacks.

6.2. Modeling attacks

The seminal work of Rühmair et al. [28] showed that

APUF and its variations are easy to model using machine

learning. One would argue that the FPGA implementation of

CSHIA is weakened due to the usage of APUFs to generate the

PRF’s secret key. However, the key point in which CSHIA re-

lies is that there is no PUF response available to an attacker.

Although the challenges that are used to extract the key and its

syndrome can be made externally available, they do not provide

enough information to create a model of an APUF. As showed

by Rühmair et al.’s work, thousand of challenge-response pairs

are needed to create an accurate model. In addition, modeling

PTAGs generation is not possible because SipHash was evalu-

ated to be indistinguishable from a uniformly random function

[18]. Therefore, such model would have success equivalent to

brute-force attacks.

6.3. Fuzzy Extractor Attacks

Assuming that an attacker would not be granted access to the

system during its enrollment phase, CSHIA’s FE is very secure.

First, exposing the challenges used to extract the key and its

syndrome encoders (bit string w from Figure 8 (a)) does not

give any information to an attacker. Second, our 64-bit chal-

lenge APUFs have enough entropy (about 80 % of minimum

entropy1) to make the pairs r1||r2 and r3||r4 produce k1 and k2

with entropy of about 64 bits and, therefore, resulting in 128

bits of entropy for the secret key K. Third, the attack described

by Becker in [19], in which an attacker changes the helper data

in order to force the BCH decoder to fail and set bits in r, is

unlikely; since the success of it depends on ECC design. In our

BCH implementation, setting up more than 10 bit flips in the

syndrome showed no modification of r. Therefore, this attack

would not be successful. The FPGA CSHIA implementation

uses the VHDL BCH generator available in [29]. A possible

weakness of our FE would happen if an attacker figures out all

syndromes si of the bit strings ri (from which we derive the

key). Once the attacker knows that, he/she can generate all pos-

sible 264 bit strings and compute their syndromes. Then he/she

searches for those that matches the si values. Notice, though,

that to unveil each si the attacker must either know PUFs re-

sponses or apply a side-channel attack like the one Merli et al.

proposed in [30]. Then again, strengthening the FE security

would not be hard, since we could increase the length of r us-

ing a larger BCH encoder/decoder.

6.4. Memory Integrity Attacks

We discussed in Section 2 the three main attacks against main

memory: spoofing, splicing or relocation, and Replay attacks.

1This result came from the APUF implemented in this work but evaluated

in a Xilinx Spartan 3.
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The capability of CSHIA preventing spoofing and splicing at-

tacks depend on the length of PTAGs. An attack is only suc-

cessful if an attacker can guess a PTAG, which has probability

1 in 264 of happening.

For replay attacks, we showed two solutions. The first solu-

tion was the CSHIA-TS instance, which had 16-bit timestamps

for each data memory block. That means that after 216 memory

writes of a specific memory block its timestamp would be re-

set, enabling a replay attack. Recall that our integrity covered

512 KB of data, which demanded a 32-KB timestamp memory.

If we set larger timestamps, as the same length of PTAGs, we

would need 128 KB of internal memory. Yet, notice that 512

KB did not cover all the data memory of some programs. For

instance, the sha large had more than 3 MB of data memory,

to cover this with 64-bit timestamps the non-volatile timestamp

memory size goes over 512 KB.

In case of instances of CSHIA that uses Merkle Tree, the 64-

bit PTAGs results in 232 attack complexity for replay attacks.

This reduction is due to Birthday Paradox [31]. It is known that

for any collision-resistant hash function, an attacker can find a

collision (with a coin toss probability) between two values if he/

she collects at least square root of the total possible outcomes

of the function. Although a PRF should not have this problem

if the key is changed periodically, because CSHIA’s secret key

is fixed for its lifetime, the PRF is reduced to an unknown hash

family. Hence, to find a collision in CSHIA FPGA implemen-

tation with 50% probability, an adversary would need to collect

232 memory blocks of 32 bytes written back to the same mem-

ory address. This means that, in the average case scenario, the

attacker might find a collision after collecting 32 GB of data of

one specific memory address, besides collecting all PTAGs in

the tree that relate to this address as well. And it is crucial to

notice that, in this scenario, the attacker does not choose values,

the 50% probability regards to two random values found in the

32 GB data collected. This attack is unequivocally feasible, but

requires significant resources.

Finally, of course, using 128-bit PTAGs we can increase

CSHIA robustness against replay attacks, but to keep the same

size of PTAG Memory in relation to the main memory, mem-

ory blocks and chunk of PTAGs would have to be 512 bits.

Then again, 128-bit PTAGs would need another PRF since

SipHash does not meet this specification. Additionally, larger

memory blocks would increase the number of cycles to gener-

ate PTAGs, therefore, compromising performance even further

for CSHIA Merkle Tree instances.

7. Related Work

A fine list of works in the literature has influenced this work.

Their weaknesses and strengths, targeted systems, and con-

struction helped us to make design choices to implement a proof

of concept of CSHIA.

In 2003, Yang, Zhang, and Gao [32] proposed an improved

version of XOM, an architecture for digital copyright protec-

tion. The architecture provides authenticity through a pairwise

private/public key. Every instance of a XOM architecture has

a unique private key. Secrecy is provided by encrypting soft-

ware using specific symmetric keys chosen by the software ven-

dor. These keys are encrypted using XOM’s public key and

therefore only the instance that has the correspondent private

key will be able to execute the software. XOM provides in-

tegrity protection by hashing memory blocks, but it only pre-

vents spoofing and splicing. Replay attacks are left uncovered.

The differential of XOM is to isolate programs in compart-

ments, which have their own tags and keys. Due to this isola-

tion, new instructions had to be added to the processor in order

to relax constraints of architecture. For example, to enable shar-

ing data between isolated programs. From the point of view of

targeted market, XOM is suitable for very high end embedded

systems or above since they simulated their architecture using

a processor capable of out-of-order execution and XOM’s per-

formance highly depends on the existence of second-level cache

(L2) and its size. Finally, area overhead is not estimated, imple-

mentation is through simulation, and the averaged performance

slowdown is 16.76% on the tested benchmarks, however, they

were able to reduce this slowdown to 1.28% implementing an

additional cache memory.

The first architecture that proposed to use PUFs for key

generation was AEGIS, the work presented by Suh et al. in

[1]. AEGIS is a tamper-resistant and tamper-evident architec-

ture. Meaning that it hinders tampering threats, but the sys-

tem still indicates if an attacker successfully overpasses the se-

curity features. AEGIS is a complete solution in which not

only new instructions are provided, but also system calls, se-

curity modes, and different divisions of memory into new re-

gions. It can securely run even under an untrusted operating

system. AEGIS provides a Merkle Tree to prevent replay at-

tacks and uses a small cache to store nodes and reduce perfor-

mance penalties. All this security comes with downsides such

as an almost 100% area increase in comparison to the processor

baseline, and the modification of the entire toolchain: compil-

ers, operating systems, and even programs. Due to the complex-

ity of the architecture, targeted systems are preferable high-end

embedded systems or above. Although the authors are not very

clear about overall performance penalties of the architecture,

when they used their full protection mode and an architecture

configuration consisting in 32 KB instruction/data cache and 16

KB Merkle Tree cache, the worst benchmark performance over-

head was 3.3%. However, when the architecture configuration

is 4 KB instruction/data cache and 2 KB Merkle Tree cache, the

same benchmark has a performance overhead of 73.1%.

Rogers, Milenković, and Milenković presented in 2007 a se-

cure architecture [33]. Different from the previous works de-

scribed above, they truly focused on embedded system since

they assume that processors would not have second-level cache

memory (L2), but would present a separated L1 into data and

instruction memories. Their architecture provides integrity and

secrecy for memory blocks of instructions, and data integrity

is not discussed. The architecture uses virtual address to com-

pound encrypted blocks, in order to thwart splicing attacks, they

came up with a interesting solution of encrypting an unique

PUF-generated (or thermal-noise generated) key together with

the program this key authenticates. Thus, when two programs
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present a collision between virtual addresses, an attacker will

not be able to switch programs because their key will be dif-

ferent. Although their architecture was only simulated, they

estimated a power consumption overhead over the baseline sys-

tem. Setting up a simulation of an ARM processor with small

instruction L1 cache of 1 KB resulted in a power consumption

overhead as high as twice the baseline’s value. In terms of per-

formance penalties for the tested benchmarks, the results also

were very detrimental for a small instruction L1, achieving an

overhead of 2 times greater than baseline’s performance, and

becoming negligible for a 8 KB instruction cache in the best

scenario. At last, for a standard memory block of 256 bits, their

storage overhead reached 50% of the main memory, which is

high.

In 2009, Vaslin et al. proposed a security approach for off-

chip memory in embedded microprocessors [2]. Vaslin et

al. used the One-Time-Pad (OTP) scheme to provide integrity

and secrecy. Their architecture encrypts a timestamp, the mem-

ory address, and a padding value using AES. Then, this en-

crypted content is combined with the cache line. Because they

used memory address and timestamp, relocation and replay at-

tacks are thwarted. However, to inhibit spoofing attacks, mem-

ory blocks need tags and Vaslin et al. proposed using CRC32.

One critical point is that their architecture not only needs an

internal timestamp memory but also a CRC32 memory. That

led to an internal memory of at least 18.8% of the size of main

memory. Nonetheless, Vaslin et al.’s architecture was able to

achieve a worst case performance impact of 10% in the tested

benchmarks. However, the area overhead in the FPGA tested

almost tripled.

FEDTIC, the 2010 work of Hong and Guo [3], is an ar-

chitecture for integrity verification and secrecy for embedded

systems. Their main contribution is a unique engine that uses

one AES hardware instance for encryption, decryption, and tag-

ging of cache lines. Stamps are used to prevent replay attacks.

However, instead of a one-time-pad scheme, Hong and Guo

used AES in output feedback mode which allowed them to use

shifted encrypted blocks to compose a tag. In terms of achieve-

ments, for a 512 bit cache lines, their external memory overhead

was less than 7% and for the tested benchmarks a maximum in-

ternal memory for timestamps needed was 5 KB. We should

notice that this internal memory is not a cache and thus will in-

crease with the program size. The average performance penalty

was 7.6% and the maximum 30.72%. Their evaluation used a

combination of simulation and FPGA implementation.

Bobade and Mankar presented in [4] a secure architecture

for embedded system. Their architecture provides integrity and

secrecy through an Elliptic Curve Cryptographic engine. The

main difference regarding the others architectures presented

here is that they use the timestamps as private keys. Thus, cache

lines are encapsulated with their address and time stamp (for in-

tegrity verification purpose), and then encrypted with the pub-

lic key to be stored in external memory. As the timestamps are

stored in an internal memory, the decryption can be done with

reprocessing the pair private/public key and the integrity is en-

sured by the correct decryption of the triad encapsulated: data,

address, and time stamp. Although Bobade and Mankar syn-

thesized their architecture for a FPGA, they only simulated the

architecture and did not use any benchmark. Nonetheless, they

computed the overhead of slices and LUTs over their baseline

processor, which was over 76%. Memory overhead was 25%.

In addition, they estimated power increment over baseline. De-

spite the dynamic power more than doubled in all processor’s

frequency simulated, the static was kept stable.

Recently, Sepulveda, Wilgerodt, and Pehl in [34] has pro-

posed a Multi-Processors System-on-Chip that provides mem-

ory integrity and authenticity through PUFs. The proposed ar-

chitecture innovates by targeting multi-processors. They also

used SipHash to provide integrity tags to memory blocks to

protect against all three major threats we have discussed be-

fore. One key difference on their replay attack solution is that

they use session tokens instead of timestamps. While that is an

innovative way, it may not be sufficient to protect against re-

play attacks, since tokens are updated during idle periods and

booting time. Thus, in a long period of execution, in which

a specific memory block can be written back multiple times

to memory, an attacker might mount a replay attack. One in-

teresting point is that Sepulveda et al.argue that CSHIA needs

Table 5: Summary of Related Works in comparison with CSHIA.

Work Target Architecture Most Positive Feature Downside

XOM High-End embedded systems and above Program isolation Does not provide protection against replay at-

tacks.

AEGIS High-End embedded systems and above A complete solution Integration with standard products can be

difficult due to modification imposed to the

whole toolchain.

[33] Embedded Systems Program Isolation High memory overhead.

[2] Embedded Systems Uses AES in OTP mode combined with

CRC32 to provide integrity with low on-chip

memory overhead.

High area overhead in a FPGA implementa-

tion.

FEDTIC Embedded Systems Uses one AES component to encryption, de-

cryption and authentication

Can impose large on-chip non-volatile mem-

ory.

[4] Embedded Systems Security is based on public-key cryptography. No performance evaluation.

[34] MPSoC First PUF based secure architecture for mul-

tiple cores.

Does not estimate area and power increment

in regard to the baseline system.

CSHIA Embedded Systems Design Flexibility. Does not provide concrete estimative of area

and power.
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deep modifications in SoC and CPU. However, we believed that

this work demonstrates that only minor modification are needed

and they are all transparent to the core and does not affect how

it works. It is also important to notice that the authors used a

similar Code-offset Fuzzy Extractor CSHIA had originally em-

ployed, which, as we discussed in the previous section, is less

secure than the one we currently proposed, since it reduces en-

tropy of the key. Finally, they estimated area and power of the

components of their architecture, and did performance evalua-

tion which, by computing an average degradation, was 5.6% on

the tested benchmarks.

Table 5 presents a summary of most positive feature and

downside of CSHIA and related works. A fair comparison of

performance among the works is quite hard to be performed,

due to a variety of benchmarks, baseline cores, choice of plat-

forms, etc. However, a qualitative analysis over design choices

can still be done. For instance, PUFs have been constantly

claimed to be a better solution for key generation than storing

on-chip key. In that regard, our implementation is more advan-

tageous than those that did not use them. Moreover, we care-

fully analyzed major threats presented in the literature in order

to propose a secure employment of a PUF-based key. Because

embedded system applications can have a very specific nature,

our concern since the beginning was to propose a flexible ar-

chitecture, which is characterized by its additional bus for the

PTAG Memory and the choice between timestamps or Merkle

Tree as replay attack solution. Thus, although we were not able

to precisely estimate power and area, we believe that we pre-

sented a solid solution for the security of embedded systems.

8. Conclusions

The main goal of this work was to present a proof-of-

concept implementation of CSHIA, evaluating performance,

area and power. Throughout the text, we described an in-

depth implementation and evaluation of the architecture. We

achieved a flexible solution for embedded systems that allows

designers to: (1) specify a bus and memory configuration that

provides integrity; (2) select any PUF design that meets se-

curity constraints; (3) choose between two countermeasures

against replay attack. All that being completely transparent

for other components in the chip. In terms of performance,

CSHIA timestamp instance showed an average 2.76% perfor-

mance overhead, while the fastest CSHIA instance with Merkle

Tree showed an average 5.77% performance penalty. Taking

into account our estimative for area and power consumption,

and the comparison against related work, the CSHIA-TS in-

stance seems to be a great option for secure embedded sys-

tems. Finally, we provided an in depth security analyses, as well

as a discussion of relevant works in literature. Soon CSHIA’s

FPGA implementation will be made available for the research

community.
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Applying Template Attacks on XOR Arbiter PUFs

ABSTRACT

One of the fundamental properties of PUFs is uniqueness, which

results from the intrinsic characteristics of each PUF instance. How-

ever, PUF architectures employ elements whose physical character-

istics and behavior may be very similar among different instances,

leaking unwanted information. We explore that with Template At-

tacks in XOR-APUFs, in which challenge-respose pairs (CRPs) are

profiled in one FPGA instance of the PUF to predict responses of

a different FPGA instance, obtaining up to 80% of accuracy. Our

attack only needs few CRPs for profiling (at most 170), but it can be

applied to different instances without training, reducing the attack

time in comparison to approaches based on machine learning.
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1 INTRODUCTION

Physical Unclonable Functions (PUFs) have been under scrutiny for

more than a decade now [5], some of their fundamental security

properties, such as unpredictability and reliability, have been de-

feated in a variety of attacks. Machine learning attacks have under-

mined unpredictability of the main PUF implementations [4, 13, 18].

Other approaches have either amplified PUF reliability issues [11],

or taken advantage from loopholes in the construction of secure

sketches, that add robustness to PUFs, to deploy attacks [3, 7]. Yet

one fundamental property of PUFs have withstood most attacks so

far: uniqueness. It comes from specially designed patterns in PUFs.

Through imperfections originated from the fabrication process,

these patterns give a particular behavior for each PUF instance. It

has been assumed that not even the manufacturer itself would be

able to perfectly create two identical PUF instances.

Although replicating imperfections seems to be unlikely, Helfmeier

et al. showed that a SRAM-PUF could be forcedly cloned using De-

capsulation, Photonic Emission, and Focused Ion Beams [8]. In this

attack, the authors cloned responses (outputs) from a SRAM PUF in-

stance using Decapsulation and Photonic Emission and then forced

a different instance to present the same responses using Focused

Ion Beams. In another example, Becker [2] captured challenges (in-

puts) and responses of a XOR Arbiter PUF and modeled it using a

machine learning algorithm. This algorithm was then implemented
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into an evaluation board with a microcontroller to mimic the PUF.

Despite these examples, to the best of our knowledge, no attack has

yet explored similarities of physical characteristics among different

PUF instances. Even though all elements that compose a PUF archi-

tecture are unique in each instance, some of those elements may

present similar physical behavior, which enables attacks to reveal

information of one PUF instance using another.

Template attacks have been designed to use information learned

from one device instance (for instance, electromagnetic emissions)

to obtain concealed information from another instance. In this work,

we apply a Template Attack to XOR Arbiter PUFs (XOR APUFs),

and we show that, with at most 170 challenge-response pairs (CRPs)

profiled from a FPGA, we were able to reproduce responses with

80% accuracy of another FPGA implementing the same PUF, despite

almost 50% inter-chip CRP variation. XOR APUFs have been widely

explored in the literature and also are deployed in real applications

[2], thus, using them to apply this attack enables us to compare our

results to solid ones from the literature. Moreover, if this attack can

be further applied to different PUFs, it can become an additional

threat that designers will have to take into account in the future

since attackers could circumvent the uniqueness property of PUFs

through architectural elements, and use information leaked by those

elements to predict CRPs from different PUF instances.

This work is organized as follows. Section 2 represents a short

background in PUFs and side-channel attacks against them. Section

3 briefly presents the Template Attack. Section 4 describes the attack

on XOR APUFs and Section 5 discusses results. Afterwards, Section

6 discusses and concludes this work.

2 BACKGROUND

Although Physical Unclonable Functions (PUFs) arewell-established

in the literature, we present a brief and not strictly formal introduc-

tion to them. In particular, this section focuses on the general idea

and functionality of the Arbiter PUF and its most common deriva-

tion, the XOR Arbiter PUF. Then, we discuss recent side-channel

attacks against PUFs.

2.1 PUFs

A PUF is a physical system that behaves similarly to a bijective func-

tion, in which an input is a physical stimulus called challenge and

an output is called response. Every physical instance of a PUF has

a unique set of Challenge-Response Pairs (CRPs). This property

comes from the intrinsic nature of all physical elements that are

imperfect at some level (molecular level, atomic level, etc.). For

instance, in electronic devices, the fabrication process is inexorably

uneven and thus no device instance is equal to another. Hence,

electronic PUFs exploit this inequality to uniquely generate pairs

of binary inputs and outputs.

PUFs have been classified into two categories: Weak and Strong

PUFs [1]. These terms do not necessarily describe a security weak-

ness or strength, but rather they classify whether a PUF construc-

tion has a large number of CRPs. Classical examples of Weak
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PUFs are Ring Oscillators [20] and SRAM PUFs[12]. Generally,

they are good key generators. The most representative Strong

PUFs are the Arbiter PUF (APUF) and its variations, such as the

XOR APUF [2], Feedback-Forward PUF (FFPUF) [11], Lightweight

PUF (LPUF) [14]. These are preferable to be used in applications

such as security protocols, key establishment and device authenti-

cation [11].

The APUF is a good baseline for study, because its design is very

intuitive and easy to explain. Figure 1 presents a 4-bit challenge

APUF. The APUF is a delay-based PUF, thus its response is gener-

ated after evaluating the delay suffered by a signal ∆. ∆ is divided

into two paths at the beginning, each challenge bit affects both

paths in every stage (usually implemented by a multiplexer compo-

nent). When ∆ arrives at the flip-flop at the end, imperfections in

the paths will have made one signal slightly faster than the other.

If it is the superior path, the inferior locks a bit 1 in the flip-flop.

Otherwise, the inferior path locks a 0. Thus, the flip-flop acts as an

arbiter that decides which path is the fastest.

Rührmair et al. in [18] revealed that APUF is very susceptible to

machine learning (ML) attacks. However, a more complex version

of it, the XOR APUF, was shown to be more resilient to such attacks

under certain configurations. Figure 2 illustrates a XOR APUF that

can be compounded by a variable number n of 4-bit challenge

APUFs. For XOR APUFs, a challenge is simultaneously applied

to all APUFs and the individual parallel responses are combined

to produce the final response. In Rührmair et al.’s work, a XOR

APUF with 5 64-bit challenge APUFs took about 2 hours to be

modeled with satisfactory prediction accuracy. However, this time

increased 15 times when the XOR APUF contained 6 APUFs. Thus,

increasing the number of APUFs in XOR APUFs, despite causing

instability, seems to hinder machine learning attacks.

Motivated by overcoming limitations of machine learning at-

tacks, hybrid attacks have recently been proposed. They take ad-

vantage of side-channel attacks to unveil intrinsic or concealed

information that are fed into machine learning algorithms, aiming

at modeling PUF behavior. Next, we take a look at some important

works that explored those attacks.

2.2 Side-Channel Attacks on PUFs

In a simple definition, a side-channel attack uses information leaked

through operations, such as timing delay, power consumption pat-

terns, among others, to extract secret data from a system. An

attacker usually seeks to obtain cryptographic keys, passwords,

personal information, etc. Against PUFs, side-channel attacks are

usually aimed at revealing responses that are not made available.

In [13], Mahmoud et al. presented a machine learning attack on

XORAPUFs and Lightweight PUFs that uses simulated side-channel
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Figure 1: A 4-bit challenge Arbiter PUF.
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Figure 2: A 4-bit challenge n-XOR Arbiter PUF.

information. Their PUF simulation, using SPICE, provided power

consumption of grouped APUFs that compound a single response of

XOR APUFs or LPUFs. At the end of APUFs, group of flip-flops (or

latches) can be seen as a register and, ideally, its Hamming Weight

(HW) is directly correlated to its power consumption. Hence, the

simulations provided power consumption that was translated into

HWs used by the machine learning algorithms to model the PUFs.

Rührmair et al. work in [19] expanded Mahmoud et al.’s, by

adding a timing side-channel attack. This new attack uses PUFs im-

plemented on FPGAs, and deploys a circuit called timing signature

extraction to get the timing side channel information. As the previ-

ous attack, the timing information was fed into machine learning

algorithms to model PUFs.

Using also power side-channel information from simulations,

Becker and Kumar attacked Controlled APUFs in [19]. Controlled

PUFs are more secure PUFs due to the fact that neither challenges

nor responses are available. In short, a challenge is not directly

applied to PUFs, but to a challenge generator instead. Only then,

derived challenges from the generator are used in the PUFs, whose

responses are post-processed through a one-way function. There-

fore, from the machine learning attack perspective, this PUF is

much harder to attack since a ML algorithm would unlikely achieve

a correct model, if a one-way function indistinguishable from a

pseudo-random one is used. Thusly their side-channel attack could

provide intrinsic PUF information to ML algorithms, overcoming

the implementation obstacle.

Finally, in [11], Kumar and Burleson applied a hybrid side-channel

attack on FFPUFs. They used a silicon implementation of FFPUFs and

applied fault injection attacks through voltage and temperature

variation to determine delay difference between APUF paths. This

time difference information was then fed into ML algorithms.

As the reader can notice, most of the works aimed at modeling

one single instance and then predict its unknown CRPs. However,

how larger a threat would it be if one single profiled PUF instance

can reveal CRPs of any other PUF instance? We start to explore this

possibility in the next section that describes the Template Attack

and introduces how it can be applied to PUFs.

3 TEMPLATE ATTACK

The seminal work on Template Attack published by Chari et al. in

[6] is based on detection of signal with Gaussian noise in infor-

mation theory. The key point of this attack is the intrinsic noise

produced by every operation in an electronic device. Once a profile

(template) of the noise is created for a device instance, the same
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operation from another instance can be revealed by matching its

noise with the profile.

In short, one can describe noise as a multivariate Gaussian distri-

bution. Even though every operation on a specific time may have a

unique noise, large samples of noises in different times, in a specific

device instance, will result in a certain noise population distribution

with a mean and variance. Thus, repeating the same operation in

a different instance is likely to produce an intrinsic noise repre-

sented by that population. This feature, if applicable to PUFs, may

be a threat to the uniqueness property since one can circumvent it

through electronic noise of architectural elements, which could be

found in a single statistical population of noise, despite originating

from different PUF instances. Thus, investigating this attack is an

essential evaluation for the security of PUFs.

3.1 Template Construction

An attacker builds the template from traces obtained by an oscillo-

scope. A trace (or frame) is a set of samples (or points), where the

ordinate is generally power, or voltage, or current, and the abscissa

is discrete time. An operation O will be a collection of traces F .

Assuming the ordinate is voltage, a trace F will be a pairwise {T ,V },

where V = (v1,v2, . . . ,vn ) and T = (t1,t2, . . . ,tn ) are arrays. No-

tice that the notion of operation is defined by the attacker. For

instance, the whole process of encryption in AES can be considered

an operation, as well as the substitution of a specific byte during

the SubBytes step within AES. Overall, the more an attacker knows

about the system the more specific the attack will be.

For each targeted operation, an attacker will need to collect a

large number of traces, usually more than thousands per operation.

Commonly, the only desirable change in an operation is a small

variation in the information that is processed. For example, one

would like to solely detect a byte variation in a specific register

during a specific AES round. The consistence in the window of

observation allows us to simplify F = V . For a given operation

Oi from the set of observed operations O = {O1,O2, . . . ,Ok }, and

given its set of traces (or frames) {F i1 ,F
i
2 , . . . ,F

i
m }, a template Ti is

a matrix of covariance1 Σ (Eq. 1) and an average arrayM (Eq. 2)

Σi [x ,y] = cov(F iu [x],F
i
v [y]),∀u,v ∈ [1,m], (1)

Mi [x] =
1

m

m
∑

j=1

F ij [x], (2)

where x and y are in the selection S of points between 0 and n.

This selection has an important role in the whole attack, but we

leave this discussion for later in this section. Notice that size of

Σ is |S |2 and the size of M is |S |. So, once the attacker computed

the template of each operation, he/she can collect traces of the

target. Remembering that the idea is to attack another instance of

the electronic device used to assemble the template. The attacker’s

goal then is to find out which operation happens in the attacked

device (recalling the example above, it would be to find out which

byte is stored in a specific register during a specific AES round).

1In [6], they computed the covariance matrix using noise vectors of the traces, which
can be computed by Eq. 3. However, as one can demonstrate, the result will the same
if we compute the matrix using the traces.

3.2 Attacking

Given a collection F of attack traces {FA1 ,F
A
2 , . . . ,F

A
l
}, the attacker

computes the noise vector N (Eq. 3), and using the probability

density function of a multivariate Gaussian distribution (Eq. 4),

he/she can compute the probability of guessing which operation

was occurring in the target instance, given a trace FAu applied to

Equation 5.

Nu [x] = FAu [x] −M[x],u ∈ [1,l],x ∈ S (3)

pi (Nu ) =
1

√

(2π ) |S | det(Σi )

exp
(

−
1

2
NT
u Σi

−1
Nu

)

(4)

pi (Oi |FAu ) =
pi (FAu |O

i ) · p (Oi )
∑k
j=1 (p (F

A
u |O

j ) · p (O j ))
(5)

The probability p (Oi ) in this work is equal to 1/|O| because all

operations have the same probability of occurring (like in [16]). The

probability of pi (FAu |O
i ) is, in fact, the PDF (Eq. 4) itself. Thus, a

simplified equation for the probability of pi (Oi |FAu ) is Eq. 6. For all

traces F captured by the attacker, he/she computes their average,

F, and uses the Eq. 7 to compute the probability of guessing the

correct operation in the target device. Notice that Nu is the noise

vector for F.

pi (Oi |FAu ) =
pi (Nu )

∑k
j=1 p

j (Nu )
(6)

pi (Oi |F) =
pi (Nu )

∑k
j=1 p

j (Nu )
(7)

3.3 Point Selection

As mentioned previously, an operation can have a variable time

depending on the focus of the attack. A large trace would make

the computation too much time consuming or even infeasible. In

order to reduce the trace to a few points of interest, one can use

some point selection techniques. It is important to notice that this

selection can increase the accuracy of the attack since it is possi-

ble to remove points that are not related or poorly related to the

operation. Common techniques are the sum of differences [9] and

correlation power analysis (CPA), which is the same principle of

the CPA attack [15] but applied to point selection.

Therefore, the set S described above is formed by choosing the

greatest values that those techniques provide. The number of points

can be arbitrary and one can also select the greatest values within a

minimum distance between them. Setting a minimum distance can

avoid that all chosen points belong to a specific peak of the traces,

which sometimes reduces the information available.

4 TEMPLATE ATTACK ON XOR APUFS

As we discussed before, flip-flops of a group of APUFs can be seen

as a register. Consider that each possible HW of this register is an

operation. Without loss of generality, let us assume that an attacker

has as target a XOR APUF with 8 APUFs. For simplicity, let us use

the following notation to refer to XOR APUFs containing n APUFs:
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Xn-APUF. Now consider that the attacker has full control of a sam-

ple instance of a device that contains one X8-APUF. The attacker’s

goal is to figure out a specific operation in another instance of that

device, the target instance. Thus, the attack goes as follows: first the

attacker characterizes all possible HW from the example instance,

and then captures few traces of the target instance for a specific

challenge (or challenges) that he/she wants to unveil its HW.

During profiling, the attacker can choose multiple challenges

for the same HW. That can help classification of traces because in

real scenarios a specific HW can show variable power signatures.

This multiplicity is not a requirement tough. We assume that an

attacker will collectk operations, beingk a multiple of 9 (all possible

HWs for 8 flip-flops). For each operation,m traces from the sample

instance will be captured and then the attacker will profile the

sample instance using Equations 1 and 2.

In the following, the attacker has access to the target instance,

and he/she is able to collect traces of the challenges he/she wants.

For each operation, the attacker collects l traces. Then, after using

a point selection technique, the attacker can use Equations 3 and 4

to compute the probabilities to be applied in Eq. 6, or Eq. 7 if l is

greater than 1. HWs are guessed by identifying the HW related to

the challenge with highest probability. The attacker can directly

convert HW of XOR APUFs into responses, when desired.

5 RESULTS

Using the experimental design discussed in the previous section,

we now present our experiments. First, this section details equip-

ment, setup, experimental flow, etc. Then, we discuss our results

comparing them to those in the literature.

5.1 Experimental Setup

5.1.1 Equipment and Tools. For the experiments, we implemented

a 128-bit challenge X8-APUF andX16-APUF in two FPGAs: SASEBO-

GII (Xilinx Virtex 5) and Mojo V3 (Xilinx Spartan 6, Figure 3). Be-

cause we only had one SASEBO-GII, we changed place and routing

to distinguish between the profiling instance and the attacking

instance. We collected voltage traces using an Agilent Infiniium

DSO90604A oscilloscope connected to SASEBO-GII by an SMA

probe and to Mojo V3 by an EM probe. All implementations had a

trigger signal, which is illustrated by Figure 4. The center region in

Figure 4 shows the moment a challenge is changed, which leads to

a response right after that.

With both FPGAs we had a problem to obtain a clear indication

of response in the oscilloscope. We noticed that, if the signal of

interest was not assigned in the top level entity of the VHDL im-

plementation, we were not able to capture a distinguishable power

signature, even after collecting millions of traces for a single opera-

tion. It might have been our probe that was not sensitive enough

for the experiment. Nonetheless, after multiple tests, we notice

that the Xilinx compiler assigns all top level signals to pins in the

I/O bank, even those that were not explicitly assigned. And, despite

not sending or receiving data, those signals will draw higher cur-

rent from FPGA, which will generate enough voltage variation or

electromagnetic emission to be captured by the oscilloscope. That

also enabled us to directly capture XOR responses.

Mojo 1 

Mojo 2 

EM Probe 

Figure 3: Profiling Mojo (1) and attacking Mojo (2).

Figure 4: An example of captured traces.

5.1.2 Setup. Figure 5 shows the general flow of our experiments

for each PUF attacked. It is worth to point out that we used Linear

Feedback Shift Registers (LFSR) to generate the challenges that were

applied to the PUFs. Furthermore, for SASEBO-GII, we used Xilinx’s

Chipscope not only to download CRPs, but also to set attacking

challenges into the PUF designs. For Mojo V3, we implemented a

serial protocol for the same function.

Once traces are collected from the sample device, it is neces-

sary to select points of interest. We tested multiple point selection

strategies. Because our traces were set to 500 timing samples, we

chose 5, 10, 15, 20, and 40 points of interest that had minimum

distance between them of 0, 5, 10, and 20 points. We applied both

Sum Of Differences and CPA as point selection. We hoped that one

of these configurations would be outstanding. However, despite the

volume of configurations, they turned out to be inconclusive. That

is, no specific configuration had consistently outperformed others

in the experiments. Each attack had a different successful configu-

ration. We believe that factors such as different boards, different

PUF implementations, different days for the experiments may have

contributed to that.

We chose to average the attacking traces (Eq. 7), instead of multi-

plying the probability of each trace [16], because the averaged trace

consistently yielded the highest probabilities. Moreover, choosing

the challenge with the highest probability predominantly had better
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Nonetheless, having trouble in classifying HW number is not new

in the literature [10, 17].

When converting HWs into responses, results were improved

in all attacks and achieved similar numbers. These improvements

come from HWs that produce the same response in the XOR opera-

tion, despite they did not match when we compared them. The

strongest results came from the experiments aiming at the re-

sponses. The prediction accuracy of 82% and 78% when attacking

the same instance that was profiled is not far from some results

obtained by ML algorithms and presented in recent works. For in-

stance, Becker and Kumar in [4] had worst results using more than

20,000 challenges in their simulation with noise. Also, Becker in [2]

present 80% accuracy in a training set for 128-bit X16-APUF using

500,000 CRPs. In addition to that, our prediction accuracy of 80%

and 74% show that attacking different instances by using the profile

of another can be feasible. Finally, another crucial point is attack

efficiency. Once the template is created, to determine a response

(or HW) of a single challenge, an attacker will spend seconds to

minutes. Of course, the profiling phase probably takes longer than

the training phase of ML algorithms, however ML attacks have to

train each PUF instance to be attacked, while our template attack

would not need that.

6 DISCUSSIONS AND CONCLUSIONS

PUFs are expected to provide uniqueness and unpredictability for

each instance, which would result in unique secret keys, electronic

fingerprints, etc. However, elements in PUFs’ architectures can

physically behave in similar ways among different instances, which

leads to unwanted side channel information leakage. This work

exploited this fact by applying Template Attacks on XOR APUFs.

Our attack used real side channel information learned from PUFs

implemented in a FPGA instance and predicted responses from

another FPGA instance, implementing the same PUF, with up to

80 % of accuracy. This attack used a small amount of CRPs (at

most 170) for profiling and its application can be quickly done in

any other instance without any training. While machine learning

attacks would require to train each specific instance to be attacked.

Although our work only examined XORAPUFs, this attackmight

be applicable to different PUFs. In addition, using XOR APUFs

enabled us to compare our results to solid ones reported in the

Table 1: Accuracy results of experiments (A), (B), and (C).

(a) Attacking the same instance of profiling.

128-bit X8-APUF 128-bit X16-APUF

Prediction Type (A) (B) (C) (A) (B) (C)

HW 57 % 50% - 28% 40% -

HW into Responses 73% 70% - 66% 69% -

Responses - - 78% - - 82%

(b) Attacking a different instance.

128-bit X8-APUF 128-bit X16-APUF

Prediction Type (A) (B) (C) (A) (B) (C)

HW 29 % 23% - 16% 19% -

HW into Responses 63% 68% - 67% 61% -

Responses - - 80% - - 74%

literature. Despite several previous works had performed side chan-

nel attacks on PUFs, none of those attacks have used information

learned from one PUF instance to predict responses of a differ-

ent PUF instance, to the best of our knowledge. Besides, further

improvements in attack technique can lead to stronger results.

Our experiments used I/O bank signal amplification, however, it

is likely that a very sensitive EM probe placed over the area of the

PUF responses of a decapped die may reveal similar attack viability.

Countermeasures against the proposed attack are clearly needed,

with particular attention to the leakage of flip-flops of XOR APUFs.

We believe our results are important to broaden the possibilities of

attacking PUFs, contributing to improve their security evaluation.
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Chapter 3

Discussion

Four themes are highlighted in this work: (1) The proposed secure architecture. (2) The
improvement and implementation of the architecture. (3) The Proposed Key Extraction
Algorithm. (4) The new attack on PUFs. In this chapter, we discuss how the papers are
interconnected, what changes needed to be put in place to go from designing CSHIA to
implementing a real prototype of it. Moreover, we also discuss how studying side channel
attacks allowed us to strengthen the architecture security and develop a new attack.

3.1 Architecture Design

The original proposal for CSHIA was to develop an architecture deeply integrated with
PUFs, in such a way that its security strengthens and weaknesses would be related to or
relied upon those present in PUFs. In the “CSHIA Design” paper, which proposed the
CSHIA architecture model, we achieved this goal by presenting how the integration of the
key extraction process would impact the architecture security. The CSHIA security pa-
rameters presented in the paper are intrinsically related to the properties of the proposed
PUF-based key mechanism. The usage in the Fuzzy Extractor of a BCH code instance
that matches a PUF-reliability model is an example of that. In the following, we dive
into an analysis of the overall design of the CSHIA architecture discussing its advantages
and downsides.

3.1.1 Design Analysis

The main feature of CSHIA is to yield authenticity and integrity for code and data. For
authenticity, we designed CSHIA to take advantage of cryptographic keys that are ex-
tracted from SRAM-PUFs (SPUFs). SPUFs have been shown to provide binary outputs
that not only have consistent high entropy values, but also are unique to every SPUF
instance. Although Katzenbeisser et al. [30] have provided evidences that support such
claims on SPUFs, we confirmed these properties on the CSHIA architecture by running a
set of experiments that led to the results presented in Figure 10 of the “CSHIA Design”
paper. The figure shows a distribution of Hamming distance between random keys ex-
tracted from different SRAM-PUFs after taking into account the analyses done in Section
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6 of “CSHIA Design”. Therefore, authenticity in CSHIA comes from each key that is ran-
dom, unique, and has high entropy. By using such keys in the process of digesting memory
blocks into tags, the architecture creates a unique set of pairs memory-block/PTAG for
each CSHIA instance, which, without knowing the secret key, is hard to recreate.

On integrity, CSHIA presented an on-the-fly mechanism to generate and verify tags.
Although performance evaluation was not done in “CSHIA Design”, the concept of a
dedicated bus and memory for integrity tags is an advantageous feature since it allows
the designer to explore different and special design specifications (such as bandwidth,
latency, etc.) with the goal of reducing the performance overhead. But the key point of
CSHIA’s integrity mechanism is its security evaluation presented in Section 4 of “CSHIA

Design”. That section discusses worst case scenarios and security limitations, which are
the most important matter in secure computing systems since the security strength needs
to match the asset value [55].

Despite all data we provided in “CSHIA Design”, some points did not offer an in-depth
analysis, resulting in downsides that we discuss next.

3.1.2 Critical Analysis

The “CSHIA Design” paper had some downsides, and CSHIA, as a model, presented some
features that were difficult to implement. Overall, the main drawbacks are:

(A) It would be very hard to extract keys from SRAM cache memories of the processor.

(B) Lack of evidence that SRAM bits would not change due to wear-out.

(C) Lack of deep analyses against replay attacks.

(D) Lack of performance, area and power estimates.

(E) Lack of evidence that side channel attacks would not work (as claimed in Section 4
of “CSHIA Design”).

The Item (A) is a strong and reasonable concern. Mainly, due to the need of powering
up and down cache memories independently. We recall that such a procedure would be
done only once in order for our proposed extraction algorithm1 to determine stable mem-
ory words. In response to that, we clarify to the reader that non-volatile memories such
as NAND Flash [42], Memristor [44], among others need to use circuitry that is capable
of resetting memory cells. Obviously, this may complicate design and increase cost, but
it enables the usage of SRAM as PUFs which have been already shown as those that gen-
erate the most random cryptographic keys with the highest entropy [30]. Although our
proposed extraction algorithm may not work right away in current processors, we believe
that it can be implemented in future systems.

For Item (B), we must clarify that our experiments were done in multiple weather
situations that include different temperatures, humidity, and days, which, by the way,
were some times consecutive and others largely separated. Therefore, we believe that

1See Appendix B for more details.
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climate may not impact in the reproduction of experiments and analyses. Furthermore,
we are providing in this work the Appendices A and B that contain additional analyses and
data. These Appendices show that the algorithm provides reliability and they also discuss
and propose additional actions towards higher reliability in key extraction. However, in a
large scale production of CSHIA there would be many instances that would stop working
due to unrecoverable changes in SPUFs bits. As we stated in “CSHIA Design”, the
Fuzzy Extractor would be capable to correct up to 10 errors, beyond that the instances
would unequivocally produce different PTAGs from those that were generated during the
enrollment. In such cases, the manufacturer/vendor could offer a secure and authentic
process to re-enroll CSHIA, programming a different key for extraction and regenerating
PTAGs for the current state of the memory.

Item (C) reflects the limited analysis of replay attacks in “CSHIA Design”. Despite
we dedicated an entire section in “CSHIA Design” for replay attacks, we did not include
comparisons to support our cache policy results and did not discuss the impact of the
birthday paradox bound to replay attacks in our architecture. These limitations were
solved in the “CSHIA Implementation”. In this paper, we compared not only different
caching policies for Merkle Tree, but also different countermeasures against replay attacks.
That is a strong contribution, since it allows to determine clear trade-offs between those
countermeasures. Regarding to why we chose the specific caching policies of “CSHIA

Implementation”, it is worth to point out that we did an in-depth analytical evaluation
of different policies that is presented in Appendix C. The analyses in the appendix went
deeper than the one we did in the “CSHIA Design” paper and included additional cache
policies. After the evaluations, we realized that the cache policy in “CSHIA Design” would
probably slowdown performance and would only fit well as a cache policy for a cache
memory outside the security area of the system (the main chip). Thus, after obtaining
the results presented in the appendix, we chose to evaluate in “CSHIA Implementation”
only caching policies with good estimated performance.

Regarding area and power estimates (Item (D)), we were not concerned in presenting
them in “CSHIA Design”. However, we targeted these estimates in “CSHIA Implemen-

tation”. Then again, estimating area and power showed to be harder than we expected.
VHDL tools do not provide any relation between logic elements of FPGA and ASIC
metrics. Thus, the most realistic way to estimate area and power is running tools that
synthesize VHDL into ASIC library cells, which we were not able to do. Due to that, we
chose to estimate area and power by directly correlating FPGA’s logic elements and area
and power of an already synthesized Leon3 implementation, which is shown in “CSHIA

Implementation”. We also could not provide performance estimates in “CSHIA Design”
since at that time we did not have a full-fledge implementation of the architecture. In
“CSHIA Implementation”, however, we measured performance of our prototype in several
benchmarks. Yet, as we discussed in “CSHIA Implementation”, comparison among dif-
ferent works are complicated. Many works use Instructions per Second as performance
measurement, which we could not obtain from the freeware version of Gaisler’s GRMON.
Thus, we used running time as a measurement. Moreover, in those works the selection of
benchmarks and platforms varies. Some works simulated their architectures [26], others
ran in different FPGA soft microprocessors [52, 48]. Therefore, under such a scenario, we
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are confident to state that “CSHIA Implementation” presents enough evidence to support
CSHIA’s viability and capacity as a secure architecture for Embedded Systems.

Finally, Item (E) deals with a misunderstanding that we incurred in “CSHIA Design”.
When analyzing CSHIA’s security (Section 4 in “CSHIA Design”), we stated that by
generating a PTAG for the helper data and by verifying it after recovering the key we
would prevent side channel attacks such as those presented in Merli et al.’s work [35].
Since then we had the opportunity of studying and applying real side channel attacks and
we understood that it would be definitely possible to perform a side channel attack on
CSHIA, as performed by Merli et al., because it is possible to stop verifying the helper
data’s PTAG by resetting the chip after key recovery. In the face of that, we do not claim
any physical security against non-invasive, semi-invasive, and fully-invasive attacks in
“CSHIA Implementation”. Additionally, further studies on side channel attack on Fuzzy
Extractor led us to develop a new attack on PUFs, which is presented in “PUF Attack ”.

Overall, “CSHIA Implementation” addresses most of the drawbacks about CSHIA’s
design. However, some concepts presented in “CSHIA Design” had to be evolved. Next
section discusses CSHIA’s evolution.

3.2 Architecture Evolution

Some design choices done in “CSHIA Design” showed to be infeasible on an FPGA im-
plementation of the architecture. For instance, due to the impossibility of extracting keys
from SPUFs in current FPGAs, we needed to implement different PUFs to extract the
CSHIA PRF key. Another example of change from design to implementation was the
placement of the security components of CSHIA. Next, we provide more details about the
changes that were required to create a path from design to an FPGA implementation.

3.2.1 Key Extraction and Fuzzy Extractor

One of the major changes from CSHIA’s design was to use on-chip APUFs, instead of
extracting keys from on-chip SPUFs as planned during design. There are two main reasons
for that. First, it was not possible to implement our proposed algorithm for key extraction
because we could not manipulate internal SRAMs in the FPGA chip as we needed. Second,
even though it would be possible to use SRAMs from FPGA development kits to extract
keys, they are placed externally to the FPGA chip and, since we expected to apply side
channel attacks in a complete and running CSHIA implementation, the use of external
memories increases power consumption of the FPGA chip and facilitates side channel
attacks. Therefore, external SRAMs would basically allow us to determine memory word
values as they are transfered, undermining the purpose of using the SRAM to extract
secret key.

In conjunction to the key extraction issue, our knowledge about Fuzzy Extractor
matured and the choices we made in “CSHIA Design” were found to be weak in terms of
security. The main concern was the reduction in the key entropy, an intrinsic result of the
chosen Fuzzy Extractor, and which, as stated in “CSHIA Design”, was limited to 64 bits.
In “CSHIA Implementation”, we modified our Code-Offset Fuzzy Extractor [35] to an
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adapted IBS Fuzzy Extractor [65] that does not reduce the entropy of the key. Although
researchers consider side channel attacks to be feasible in the IBS FE [23], to the best
of our knowledge, until now no concrete attack has been shown in the literature. As a
matter of fact, we noticed that in such a Fuzzy Extractor a more effective side channel
attack would be one that targets PUFs themselves rather than the structure of the Fuzzy
Extractor. This is also a reason that led us to investigate side channel attacks on PUFs.

Another important issue about the original CSHIA’s Fuzzy Extractor, that motivated
us to redesign it, was that the known published countermeasure against side channel
attacks [36] did not fit to CSHIA’s mechanism of tag generation. The proposed counter-
measure consists in adding random masks to the key during the error correction phase.
At every recovery a new mask would be used. Therefore, new and different tags would be
produced after every key recovery. Since PRFs are not linear, a mask cannot be removed
if SipHash (CSHIA’s PRF) digests it combined with a memory block. In spite of trying
to come up with a different countermeasure to our original Fuzzy Extractor, we found out
that a better solution was to redesign it.

3.2.2 Security Components

During CSHIA’s design phase, it seemed reasonable to implement its components in the
memory controller since it would be the one to control memory access. However, because
implementation must take into account the construction of the platform, a component
intercepting the bus between processor and main memory was found more convenient to
adapt to the Leon3’s platform. This change resulted from the work of Augusto F. R.
Queiroz, who co-implemented CSHIA. Augusto, who is co-author of “CSHIA Implemen-

tation”, implemented the BUS-HDLR and an initial SEC-ENG. These components were
capable of capturing memory blocks but they did not have any security component.

Therefore, this work herein rebuilt SEC-ENG from scratch to accommodate all security
features we presented in “CSHIA Implementation”, including Merkle Tree management,
timestamps management, PUFs, Fuzzy Extractor enrollment and regeneration. This work
herein also fixed timing issues in BUS-HDLR resulted from the new SEC-ENG. Besides,
the proposal and evaluation of different countermeasures against replay attacks and dif-
ferent cache configurations are contributions of this work herein.

We would like to point out that all benchmark analyses and modifications are part of
this work herein. As stated in “CSHIA Implementation”, these modifications in bench-
marks were made to enable execution over Leon3’s platform that does not have support
to file system. Finally, we also point out that this work herein performed memory attacks
on CSHIA to evaluate its security claims. Theses attacks consisted in tampering with
loaded programs in the development kit’s memory and PTAGs in PTAG Memory that
was instantiated as a FPGA internal memory. In both cases, we used development tools
from Altera and Gaisler to deploy these attacks. Appendix D provides an example of
replay attack and how to perform it in each configuration of our CSHIA prototype.
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3.2.3 Offering Different Replay Attack Countermeasures

Another goal of this work that came along with the implementation (not present in
“CSHIA Design”), was to evaluate different Replay Attack Countermeasures. Most of
research in this area focus on one type of countermeasure. Despite different construc-
tions, these countermeasures will ultimately look like a tree of integrity [17, 27] or a value
representing current state [53]. Thus, the analyses and solutions discussed in “CSHIA

Implementation” can be taken further by modifying the current kind of Merkle Tree
and timestamps implementation. This can help researchers to incorporate future Merkle
Tree-based and timestamp-based approaches to CSHIA, thus enabling the usage of the
architecture for multiple evaluations.

3.2.4 Targeting Embedded Systems

“CSHIA Design” presented CSHIA as an architecture for IoT devices. They are a partic-
ular class of Embedded Systems, which the main feature is the connection to the Internet,
in addition to some specificities [38]. In “CSHIA Implementation”, we chose to abandon
the focus in IoTs because we noticed that our architecture could be employed in multiple
embedded systems in general, but it would not fit in all IoT devices due to the variety
of applications. In particular, we perceived CSHIA as a good architecture to preserve
integrity of a data memory in applications that need to be audited. However, one fun-
damental point for any secure Embedded System, regardless whether they are targeting
an IoT environment, is its cost in terms of area, power, and performance. In “CSHIA

Implementation”, we showed that CSHIA does not significantly slowdown performance,
which is a very important metric for Embedded Systems since they are expected to use
less resourceful processing systems. Despite that, we know that such results are limited
to the suite of benchmarks we evaluated and cannot be generalized to any embedded
application.

Furthermore, another important analyses we provided in “CSHIA Implementation”,
that is fundamental to Embedded Systems, were area and power overheads. But we did
not limit our analyses in estimating increments of power and area only, we delved into
the trade-offs between strengthening security and increasing power and area overheads.
We discussed how a more secure timestamp solution against replay attacks will likely
impose higher power and area overheads in an Embedded System due to a larger internal
memory for timestamps. And, while that can keep good performance, it can compromise
the applicability of the system due to higher energy and production costs. On the other
hand, we argued that Merkle Tree does not yield as good performance as timestamps, but
it can keep constant cost for different Embedded Systems applications. Even though our
estimates for area and power overheads are not very precise, this analysis help designers to
consider pros and cons of each situation. Additionally, the implementation of CSHIA will
offer a possibility of concrete evaluation of those different scenarios, which may facilitate
Embedded Systems design.

Overall, CSHIA can only be used in IoT devices, if it can be applicable to Embedded
Systems in general. What “CSHIA Implementation” tried to do was to show that CSHIA
can offer good performance with clear trades-offs between security and overheads.
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3.2.5 Downsides and Limitations

Some downsides of CSHIA were neither deeply addressed nor addressed at all in both
“CSHIA Design” and “CSHIA Implementation”. I/O data tampering may be an issue in
the architecture. In “CSHIA Design”, we assumed that software countermeasure would
be employed. In “CSHIA Implementation”, we target embedded systems such that I/O
tampering would not be a concern. In reality, I/O tampering can be critical since most
systems will behave according to the input data.

Another issue is when Embedded Systems employ virtual memory. It is complicated
to integrate CSHIA components in architectures that will have both virtual and physical
memory address spaces. For instance, in some ARM processors [3], first level instruction
caches work with virtual addresses, however, first level data caches work with physical
addresses. In addition to that, working with virtual address space needs special care
about repeated addresses to memory blocks that happen when the operating system set
the same virtual address to different processes [43]. Moreover, a large virtual address
space will require PTAGs to be stored in secondary memory, which will require help of
the operating system to manipulate them. Making CSHIA not transparent anymore for
the rest of the Embedded System components. Finally, Merkle Tree for virtual address
space requires additional changes in operating systems in order to avoid unnecessary
allocation of memory [12].

Other feature missing in CSHIA that one may see as a limitation is the fact it does
not provide secrecy. Despite arguing in “CSHIA Implementation” that many Embedded
Systems would not need encryption, adoption of secrecy might do CSHIA a more suitable
choice for IoT devices since data/intellectual property theft can be a concern. However,
as discussed in “CSHIA Implementation”, cryptographic primitives for encryption would
increase area and power and probably slowdown performance of CSHIA as well, thus
reducing its strong points. Finally, one should notice that, if needed, secrecy can be
employed through software in CSHIA. Also, secrecy does not solve the problem of privacy
for the Internet of Things, which is a complicated matter per se [37]. Therefore, even
without secrecy, CSHIA can yield desirable security features to IoT devices.

From the secure computer architecture point of view, we see these downsides and
limitations as future challenges to work on an improved version of the architecture.

3.3 Dealing with Physical Attacks

One of the primary goals of CSHIA was to provide robustness against physical attacks.
From our security model perspective, CSHIA do provide physical security if the main
chip is not under physical access of an adversary. However, such a claim is hardly realistic
for Embedded Systems that will probably run autonomously and unsupervised. Given
all CSHIA components, the Fuzzy Extractor and the PUFs are those that are the most
sensitive with respect to security. We explored countermeasures to attacks to Fuzzy
Extractors, but we did not devise any new strategy to defend them against the current
attacks. And, while exploring side channel attacks on PUFs, fostering countermeasures,
we came up with a new attack that can pose a major threat to one of the fundamental
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strengths in PUFs: their uniqueness.
The results presented in “PUF Attack ” show an attack that has not been explored

in the literature. Aiming at flip-flops, which are structural elements of the XOR Arbiter
PUF’s architecture, we were able to characterize their power consumption and then use
that to predict HW and responses of other physical instances of this PUF. The impor-
tance of revealing such an attack viability is that it increases vulnerability awareness of
system designers and security researchers. In an IoT environment, where devices will
run autonomously and unsupervised, attackers will have physical access and be able to
manipulate these devices. In that regard, they can capture power consumption and use
the attack we proposed to unveil PUFs responses that are probably going to be used for
key generation. Thus, weakening applications of cryptography in IoT devices.

But then again, our experimental setup in “PUF Attack ” is far from a realistic scenario
since we used isolated PUFs and we were able to set and control the trigger time of the
attack. An isolated PUF on a chip is doubtedly to exist since it would generate only one
bit of response. Finding the best time to trigger the capture of side channel information is
a major trouble in real scenarios. However, showing that the concept can be applicable is
the fundamental strength of the work. As stated in “PUF Attack ”, a sensitive and precise
probe placed over a decapsulated chip may be capable of capturing power traces in a more
realistic scenario (with multiple PUFs on chip). Additionally, further improvements on
the technique we presented can show whether our attack is a good alternative to machine
learning attacks. As we described in “PUF Attack ”, we did not achieve the top results
of machine learning algorithms, but we used a significant smaller number of CRPs. This
can make template attacks more viable since we may have scenarios where obtaining a
large number of CRPs is not feasible.

Despite all that, the possibility that different PUF instances can show similar features
should motivate research to seek new countermeasures against side channel attacks, be-
sides looking for the viability of this attack in other PUFs. For small PUFs, the use of
Erasable PUFs [28] can be a solution. Those PUFs limit the number of times a challenge
can be applied, thus limiting the number of traces one can collect for each challenge.
However, for larger PUFs, as used in “PUF Attack ”, such a strategy may not work, since
there is a large number of challenges that can give the same operation result (Hamming
Weight or Response). Therefore, in those cases, we still need new solutions.

3.4 Summary

In this chapter, we discussed the 3 papers that comprise this dissertation. “CSHIA Design”
presented a secure computer architecture that provides code and data authenticity. The
architecture design leverages on Physical Unclonable Functions to provide its security
features. We discussed positives and negatives aspects of the design. Then, we presented
“CSHIA Implementation”, which aimed at implementing the architecture and improving
negative aspects related to design. Finally, we talked about how we tried to improve the
architecture’s robustness against side channel attacks, and how that led us to develop a
new attack on one kind of PUF. This endeavour was presented in “PUF Attack ”.
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Chapter 4

Conclusion

In this work we presented CSHIA, a secure computer architecture for embedded systems
that aims at providing authenticity and integrity for code and data. The work encom-
passed three phases: Design, Implementation, and Security Evaluation. In design, we laid
out the basic ideas behind CSHIA, how integrity and authenticity are employed through
the use of Physical Unclonable Functions (PUFs), and we proposed a key extraction al-
gorithm that would take advantage of processors’ intrinsic memories (e.g. caches). When
we did its implementation, we built CSHIA as a flexible FPGA design with improved
security features. Using the FPGA implementation we then evaluated its performance
and overheads, such as area, energy, and memory size. Finally, as a side effect of the
security evaluation of CSHIA, we delved into studying side channel analyses, which led
us to develop a new side-channel-based attack on a particular type of PUF. That might
push research towards developing new countermeasures.

Based on “PUF Attack ”, “CSHIA Design”, and “CSHIA Implementation”, and the
discussion of Chapter 3, we believe that this work is a strong contribution to the research
community. As result of this work, we have a secure architecture implemented in a
solid platform, the Leon3 processor. Throughout this work, we emphasized the flexible
design of CSHIA, which can now be explored in multiples ways. For instance, different
clock frequencies, bandwidth, latencies can be evaluated for the PTAG memory. Also,
different countermeasures against replay attacks can be evaluated to minimize overheads.
Although some design proposals in “CSHIA Design” were not possible to be done in
“CSHIA Implementation”, we believe that CSHIA should be seen as work in progress since
it can benefit from further improvements. Maybe, in the near future, it would be possible
to apply our proposed algorithm in SRAMs to extract keys for the CSHIA implementation.
Nonetheless, we presented an in-depth analysis of SRAM-PUF’s reliability which may be
applicable to other memory-based PUFs.

In addition to CSHIA, we presented an endeavour towards secure use of PUFs, which
resulted in a new attack on XOR Arbiter PUFs. Despite the favouring conditions of our
attack, and that it does not achieve the same level of prediction accuracy of the best
works in the literature, we believe that it can be seen as a new threat to PUFs. If further
works improve it, there is no doubt that this attack can become one of the most serious
threat to devices that employ PUFs. Furthermore, it also leads to further questions on
which PUFs would be safe against this attack and which countermeasure are needed.
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Future Directions

As discussed in Section 3.2.5, to broaden the adoption of CSHIA, countermeasures against
I/O related attacks, like buffer overflow, must be addressed. Some recent works have tack-
led these issues with integrated hardware-software solutions [15]. That kind of integration
can be advantageous to CSHIA since it already has an integrity verification of memory
blocks, which could be adapted to include control-flow integrity.

Moreover, managing virtual address and operating system awareness must be taken in
consideration to amplify the spectrum of Embedded System applications that can employ
CSHIA since modern micro-architecture design and operating systems use virtual address
spaces. There are many challenges associated to this issue and they will certainly open
up new research paths.

At the last, CSHIA will not be robust enough without technological countermeasures
against physical attacks that circumvent architectural protection. As presented in this
work, PUFs may be not enough to ensure code and data authenticity against resourceful
adversaries. In regard to the upcoming challenges in security, the matter of preserving
authenticity and authentic behavior is crucial for proper work of future embedded systems,
mainly, in an IoT era. Therefore, countermeasures and vulnerability monitoring will need
constant attention for the years to come.
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Appendix A

Modeling SRAM Failure Probability

In this appendix we show how we modeled the Failure Probability presented in Figures 8
and 9 of the paper “CSHIA Design”.

A.1 Assumptions

Herein consider that an assessment is an observation of logical values of SRAM cells after
a power-on. Given a sequence of consecutive power-on/off cycles, let us define nf (t) as
the cumulative number of SRAM cells that, at the time t, have presented at least once a
different value from those they had in their initial assessment. In terms of modeling, we
can assume that each assessment is an event that happens in a discrete time Ti. Given
a function F (t), which describes a discrete state of the cumulative percentage of flipped
bits in any give time, hence:

F (t) =
nf (t)

N
(A.1)

Where N is the total number of bits in the memory. Figure A.1 shows the behavior
of F (t) for 10 SRAMs. Given a random variable X, the probability of finding flipped bits
in a time t is

Pr(X = nf (t)) = F (t) (A.2)

Based on the behavior of the cumulative distribution of Figure A.1, we establish our
main assumption, that is

lim
t→∞

Pr(X = nf (t)) ≈ Pr(X = nf (T200)) (A.3)

A.2 Probability of having a Bit-Flip

Given our assumption, we would like to know the probability of randomly selecting a bit
of a SRAM at the moment t, where t ≤ T200, such that it will not flip at t→∞. Namely,

1− Pr(X = nf (t)|X = nf (T200)) (A.4)
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Figure A.1: The fraction of SPUF bits that have flipped during 200 power-on/off cycles
(assessments).

Now let us describe Equation A.4, given Bayes Rules [16], we have:

Pr(X = nf (t)|X = nf (T200)) =
Pr(X = nf (T200)|X = nf (t)) · Pr(X = nf (t))

Pr(X = nf (T200))
(A.5)

We know that Pr(X = nf (T200)|X = nf (t)) is:

Pr(X = nf (T200) ∩X = nf (t))

Pr(X = nf (t))
(A.6)

For any given time t ≤ T200, nf (T200) ∩ nf (t) = nf (t). Thus, Pr(X = nf (T200) ∩X =

nf (t)) = Pr(X = nf (t)). From all that, we conclude:

1− Pr(X = nf (t)|X = nf (T200)) = 1−
Pr(X = nf (t))

Pr(X = nf (T200))

= 1−
F (t)

F (T200)
(A.7)

Therefore, Equation A.7 is the probability of selecting a bit at t that will not have
flipped in t→∞.

A.3 Modeling Key Extraction

Let us assume that a key K is compounded of n randomly selected bits from a SRAM. Let
us also assume that we have a tolerance of δ bit-flips that can happen at any given time
t. Given an extraction algorithm Extr(·) to obtain K. We want to determine a model for

the probability of this algorithm extracting K with no more than δ bit-flips at all times.
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We have two possible models to go with. First, this algorithm randomly extracts bits
to compound K and they can be chosen more than once for any possible K. In a second
model, each bit is extracted once to compound K and cannot be used again, even for
different values of K. The first model demands that not only the source (SRAM) is a
true random number generator, but also that the bit selector is truly random, which,
in practical terms, is hard to implement. On the other hand, the second model is more
stringent in the number of possible ways to compound K, but it only depends on the
randomness provided by the SRAM.

Statistically, the first model includes replacement, which allows multiple choices of
a same element and can be modeled by cumulative binomial distribution. The second
model is without replacement and can be modeled by the cumulative hypergeometric
distribution. Despite not finding a proof of which model strengthens security more, given
the reasoning above, we chose to model Extr(K) without using replacement.

A.4 Key Failure Probability

Assume that K is a set of m words with length l from a SRAM, such as m · l = n bits. Let
us assume that the algorithm Extr(K) knows at any given time t which words did not
have any bit-flip for all Ti ≤ t. Based on the assumption of Equation A.3, if the algorithm
picks K at the moment t, we can determine the probability that such a selection will not
have more than δ bit-flips in the future, if we know how many words show bit-flips in
t→∞.

In t → ∞, we will find memory words in certain configurations, depending on its
length. For instance, if l = 1, meaning 1-bit word, in t → ∞ we can find words that
have never had a bit-flip and those that did. If l = 2, in t → ∞ we can find words that
have never had a bit-flip, those that had 1 bit-flip, and those that had 2 bit-flips. And,
so on. Therefore, to minimize the selection of words that in concatenation will have had
more than δ bit-flips in t → ∞, we need to compute the probabilities of selecting words
that has no bit-flip at Ti but may show 1, 2, or more bit-flips in t→∞. Given that, we
can establish a threshold probability that enables us to figure out a time in which we can
extract a K that is unlikely to present more than δ bit-flip in t→∞.

Let be qj(t) the cumulative amount of words with j bit-flips at the time t. Given a
time Ti and being T200 = t→∞. Let us define the function:

Qj(Ti) =

{

q0(T200) , j = 0

qj(T200)− qj(Ti) , j 6= 0
(A.8)

The number of all possible ways of choosing m words without bit-flips in Ti is

(

q0(Ti)

m

)

At the time T200, q0(Ti)− q0(T200) will be the number of words that did not have any
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bit-flip at Ti but now has at least one bit-flip. In fact, q0(Ti) = q0(T200) + q1(T200) −

q1(Ti) + · · ·+ ql(T200)− ql(Ti) = Q0(Ti) +Q1(Ti) + · · ·+Ql(Ti).
Now, we want to determine the probability of picking words at the time Ti that will

have no bit-flip in T200. That is given by:

(

Q0(Ti)

m

)

(

q0(Ti)

m

) (A.9)

In other words, Equation A.9 is the probability of choosing m words at the time Ti

that will have no bit-flip in T200, given all possible ways of choosing m words with no
bit-flip at Ti. Because, we have a tolerance of δ bit-flips, we can choose any combination
of words that has no bit-flip at Ti, but they will have at the most δ bit-flips in T200. This
will become:

(

Q0(Ti)
m

)

+
(

Q0(Ti)
m−1

)

·
(

Q1(Ti)
1

)

+
(

Q0(Ti)
m−1

)

·
(

Q2(Ti)
1

)

(

q0(Ti)
m

) + · · ·

+

(

Q0(Ti)
m−1

)

·
(

Qδ(Ti)
1

)

+
(

Q0(Ti)
m−2

)

·
(

Q1(Ti)
1

)

·
(

Q2(Ti)
1

)

(

q0(Ti)
m

) + · · · (A.10)

Equation A.10 takes into account all possible ways to assemble K with words whose
the sum of bit-flips is less than or equal to δ in T200. Notice that this probability is
very stringent because it assumes that the selected words will have simultaneous up to
δ bit-flips. While in reality, the bit-flips might not happen simultaneously. Thus, this
assumption worsens our scenario. Statistically, the result of such a restriction comes from
the fact that we are using the cumulative distribution of bit-flips (from Figure A.1) rather
than the density distribution of bit-flips.

Now, assume that m can be written as the sum in Equation A.11, where mi is the
number of selected words with i bit-flips.

m = m0 +m1 +m2 + · · · (A.11)

Given the following equation:

δ ≥ 0m0 + 1m1 + 2m2 + · · ·+ δmδ (A.12)

We want to determine the set of all possible solutions S of the system formed by
Equations A.11 and A.12. For the sake of exemplification, let us exam these equations.
Assume δ = 10 and suppose that we picked m = 8 words in Ti. Now, in T200, 7 words
present 1 bit-flip and 1 presents 2 bit-flips, i.e. m1 = 7 and m2 = 1. This follows
m = m1 + m2 = 8. From Equation A.12, 10 ≥ 0 · 0 + 1 · 7 + 2 · 1 + · · · + 10 · 0 = 9.
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Hence, those words can generate a stable key, since they do not surpass our limit of 10
cumulative bit-flips. On the other hand, having picked 8 words in Ti that now in T200 are
in the following configuration m0 = 2,m1 = 2,m2 = 2,m3 = 2 does not give us a solution
for Equation A.12. Thus these words cannot form a stable key.

Given all reasoning above, a general Key Failure Probability is:

Pr(Ti) =

∑

s∈S

[

∏

mj∈s

(

Qj(Ti)

mj

)]

(

q0(Ti)

m

) (A.13)

In Equation A.13, subset s is a solution for Equations A.11 and A.12 and S is the
set of all possible solutions of these equations. Thusly, to generate Figures 8 and 9 in
“CSHIA Design” we used Equation A.13 with δ = 10. For Figure 8, we used l = 1 and
thus K was m = 128. That is, m = n = 128 bits. We assumed that an assessment i = Ti.
Therefore, each point in Figure 8 is a pairwise (i,Pr(i)) for 10 SRAMs. After computing
those points we used the linear regression as described in the paper. In Figure 9, l = 16,
and m = 8 words. That gives us n = 128 bits.

Overall, we hope this appendix helps the understanding of Section 6 of “CSHIA De-

sign”.
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Appendix B

Extractor Algorithm

In this appendix we give more details of the key extraction procedure presented in “CSHIA

Design”. We present the extraction algorithm and we evaluate its results. Moreover, we
discuss further improvements to be applied to the algorithm.

B.1 Algorithm Parameters

During production tests and evaluation of memories, bitmaps of the memory cells are
created using techniques like Built-in Self-Test (BIST) [2] to enable fault detection. If
these bitmaps are captured over time, after multiple power on/off cycles, it is possible to
use them to perform the analysis made in Section 6 of “CSHIA Design” whose model we
presented and discussed in Appendix A. Given a set of SPUFs prototypes and assuming
them as samples of a particular fabrication technology. The linear regression with a
confidence interval done in Section 6 of “CSHIA Design” allows us to predict the number
of power on/off cycles that any SPUF of such a technology would need to enable the
selection of memory words that will have a small probability of having more than δ bit-
flips at any given time in the future.

For the purpose of exemplification, let us assume a set of SPUFs prototypes {SPUF04,
SPUF06, SPUF07, SPUF08, SPUF10} from Figure A.1. After collecting bitmaps of those
SPUFs, we modeled their failure probability in extracting 128-bit keys with tolerance of
10 bit-flips. A linear regression of this sample with 99 % confidence in the prediction
interval is shown by Figure B.1. Selecting 128-bit keys after 150 power on/off cycles gives
a probability lower than 10−6 that such keys will present, in the future, more than 10
simultaneous bit-flips.

Although a sample of only 5 individuals of the population may lead to a big margin
of error, even with 99 % confidence, the way the analysis is made would not change for
larger samples. In that regard, determining how many power on/off is needed for a large
population will depend on two key factors: the size of the sample of prototypes and the
number of bitmaps available. Having a large sample and thousands of bitmaps available
of each individual of the sample will make the analysis very robust. Regardless that, the
number of power on/off cycles will continue to be the main result and the input of the
algorithm that determines which words we should use to form a stable key.
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Figure B.1: Probability of more than 10 simultaneous bit-flips occurring when extracting
128-bit keys from SRAMs versus the number of cycles of power off and on.

B.2 SRAM Address Selection

In order to clarify what was proposed in Section 6 of “CSHIA Design”, we introduce
a descriptive algorithm that determines SRAM words that will have low probability of
having bit-flips over their lifetime usage. Given two SPUFs available, for instance, first
level instruction and data cache memories, and also given the number of power on/off,
the algorithm 14 returns a set of address that indicates stable words.

Data: m← number of power ups.
Data: X ← SPUF target.
Data: Y ← SPUF reference.
Result: Addresses of stable words in the X.

1 PowerUp(X);
2 CopyAllWordsFromTo(X, Y );
3 SetValidWord(AllWords(Y ));
4 for i := 1 to m do

5 PowerUp(X);
6 for j := 1 to Length(AllWords(X)) do

7 if ValidWord(Y [j]) then

8 if X[j] 6= Y [j] then

9 SetInvalidWord(Y [j]);
10 end

11 end

12 end

13 end

14 return ValidAddresses(Y );

Algorithm 1: Method to determine the addresses of stable words in SPUFs.

The algorithm works making one SPUF as reference and the other as the target. The
target SPUF is the one we want to determine stable memory words. Function PowerUp(·)
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turns the target SPUF off and on. Function CopyAllWordsFromTo(·) copies the words
of the target to the reference SPUF. After making the words in the reference equal to
the target, the algorithm sets all memory words of the reference as stable ones. For each
PowerUp(·) of the target, its words are compared to the reference. If they do not match,
they are set invalid in the reference by the function SetInvalidWord(·). The worst case
scenario of this algorithm is m · n, where m is the number of power-on/off cycles and n is
the number of words in the SPUFs. At the end of at least m loops, the reference SPUF
has a set of words that had never been different from their initial state, which is the first
power-on of the target SPUF. The algorithm then returns these addresses through the
function ValidAddresses(·). Therefore, the returned addresses are those that, in the target
SPUF, are the most unlike to have bit flips at any future power-on/off cycle.

B.3 Key Reliability Analysis

To simulate a scenario of usage of the algorithm, suppose now that we have Algorithm
14 implemented in ASIC instances of CSHIA. Assume that the algorithm runs with the
following parameter, the target SPUF is the Data Cache Memory, the reference is the
Instruction Cache Memory, and the number of power-on/off is 150, which comes from
simulating SPUF04, SPUF06, SPUF07, SPUF08, and SPUF10 as sample instances during
production and whose analyses is presented by Figure B.1. Given that, we simulated
SPUF01, SPUF02, SPUF03, SPUF05, and SPUF09, from Figure A.1, as first level data
cache memories of final ASIC CSHIA instances. Therefore, the enrollment procedure of
each instance executes Algorithm 14 to determine the set of addresses, from those caches,
in which stable memory words to compose cryptographic keys can be found.

For the sake of evaluation, we used the returned addresses from the simulation of the
enrollment of SPUF01, SPUF02, SPUF03, SPUF05, and SPUF09, to randomly form 1
million different keys of 128 bits for each SPUF. For every key, we simulated a shutdown
and turned-on of each CSHIA instance and we evaluated whether each key have presented
more than 10 bit-flips. Namely, whether these keys overpassed our tolerance. We did this
procedure for 200 times. From SPUF01, SPUF02, SPUF03, SPUF05, and SPUF09, only
SPUF09 presented keys that had more than 10 simultaneous bit-flips. From one million
keys, exactly 3046 presented more than 10 bit-flips in some moment of 200 simulated key
regenerations. That is, only 0.3 % of SPUF09’s keys overpassed our established tolerance.

B.4 Improving Key Reliability

Despite only 0,3 % of keys might fail, it is possible to lower this number for SPUF09 by
using Temporal Majority Voting (TMV) [5]. TMV would consist in extracting the key
and saving it in a temporary register. Powering down and up the SPUF one more time
and extracting the key again and saving it in another register, and so on. Doing that an
odd number of times we can count how many time the same bit value, for each bit in the
key, appeared. The value that scores the most wins.

To evaluate how TMV can reduce the instability in keys, we chose majoring the votes
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by 3. In such a scenario, we evaluate 600 power-on/off cycles of SPUF09, which would
represent 200 key regenerations of an ASIC instance of CSHIA with TMV. The number
of SPUF09’s keys that, in this scenario, presented more than 10 bit-flips went down to
only 11, a reduction of almost three orders of magnitude.

B.5 Algorithm Discussion

To implement Algorithm 14 in a real ASIC instance of CSHIA, the processor needs to pass
by some deep modifications, mainly because it would need to be able to independently
power off and on each cache memory. This seems to be hard to materialize, but it is
possible. It is worth to remember that memories such as Phase-Change Memories, Flash,
Memristors, need a reset circuit to modify memory cells into different states. Thus, such a
circuit capability will incur in higher cost of production of ASICs, but we believe that that
is a good feature to have in processors since it enables extraction of keys from SRAMs.
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Appendix C

Evaluation of Cache Policies for Merkle

Tree

One of the main ways to deal with replay attacks is using Merkle Tree, as presented in
Section 5 of “CSHIA Design”. For the purpose of reducing performance penalties, cache
memory for nodes in the tree are a common solution. In this chapter, we exam four cache
policies to reduce memory access to PTAG Memory.

C.1 Caching Policies

Regarding Merkle Tree, caching policies are strategies to reduce accesses to the memory of
tags. Recall that every data memory block verification or update needs to walk the whole
tree from leaf to the root. If the Merkle Tree is externally stored, that means a significant
number of memory accesses, which is proportional to the height of the tree. Due to the
tree structure, caching policies for Merkle Tree may differ from those of data/instruction
cache memories, mainly because tree addresses may hinder sequential access and increase
misses and evictions.

In the following, we present 4 caching policies for Merkle Tree and we discusses each
one:
• Caching.Path always caches nodes from a leaf-root path, while the tag of a data

memory block is verified/updated. The basic principle of this policy is an untrusted cache
memory, placed outside of the secure zone of a system and which can be under control
of an adversary. Therefore, if a node of the tree is found in cache, it is not necessary to
access the external memory of tags, but verification must go up to the root tag, which
inexorably needs to belong to the secure zone of the system.
• CHTree. This policy was adopted by Gassend et al. in [19]. It consists in stopping

verifying/updating nodes of a leaf-root path at the first node found in cache. This policy
leverages on caches located inside the secure zone of systems and, therefore, cannot be
under the control of an adversary.
• Read.Hit. This policy mixes CHTree and Caching.Path. For verifying a leaf-root

path, this policy adopts CHTree, namely, it stops verifying nodes of the tree at the first
one found in cache. However, a problem in CHTree is possible scenarios of inconsistence.
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If a tree node is found in cache and updated, its ancestors can be left outdated. So,
when those updated nodes need to be evicted their ancestors need to be updated to keep
consistence. If the ancestors are not in the cache, they need to be brought. This can
create another eviction and lead to a long sequence of evictions and updates. If all nodes
in the leaf-root path are always updated, evictions are not necessary.
• SecBus [50] modifies CHTree, which we can refer to as soon as possible (ASAP)

policy replacement, and establishes an as late as possible (ALAP) policy. ALAP delays
eviction of dirty nodes by vacating clean nodes in the cache instead. When all nodes
in cache are dirty, the cache controller should use an eviction policy in order to avoid
deadlock. For the sake of this work, evictions are placed by the least recently used (LRU)
policy.

C.2 Simulating Caching Policies

For evaluation of each cache policy, we simulated them in a PIN Tools cache simulator.
The simulated system had a 64-KB First level Data Cache (FDC) memory with 8-way set
associativity, 128 lines, and blocks of 64 bytes. For the Merkle Tree cache, we established
a 64-KB memory cache with 16-way set associativity, 64 lines, and blocks of 512 bits.
Notice that while a 64-byte memory block represents a cache line, 64-byte tree cache
block represents a chunk of d = 8 tags, considering tags with the same length of a PTAG,
namely, 64 bits. The address space of the simulation is 48 bits, which results in a Merkle
Tree with L = 15 levels. We ran all benchmarks of the SPEC CPU2006.

Figure C.1 shows the miss rate of the Merkle Tree cache for each policy. Caching.Path
shows the lowest rates. However, a deeper analysis in the results showed that the total
number of memory accesses of Caching.Path was too large due to the repeating process of
always verifying/updating all nodes in a leaf-root path, which led to a small percentage
of misses, but the amount of misses itself is significant.

Another measurement we took from our simulation was the ratio between Merkle Tree
cache misses and FDC misses. This gives us the impact of data memory block miss in the
number of accesses to the external memory of tags. The results of this metric for the four
caching policies are presented in Figure C.2. Notice that in the figure Caching.Path does
not seem to be as much exceptional as it was in Figure C.1. For almost all benchmarks
the performance of all policies were sightly similar. Two benchmarks are distinctive:
cactusADM and sjeng. In sjeng, CHTree and SecBus perform worst than the others due
to the high number of evictions these benchmarks present. In the case of cactusADM,
the number of reads overwhelms the number of writes and, because Caching.Path must
always walk all the leaf-root path, that results in a larger number of misses for this policy.

Next, we investigate the occurrence of evictions (external memory writes) in the Merkle
Tree cache compared to FDC misses. This elucidates the impact of a data memory block
miss and the expected number of memory writes in the external memory of tags. Figure
C.3 shows that Caching.Path and Read.Hit have lower numbers of evictions than CHTree
and SecBus in almost all benchmarks.

Overall, from Figure C.2 and Figure C.3, one may conclude that the expected number
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Figure C.1: PTAG Cache miss rate for the SPEC CPU2006 benchmarks.
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Figure C.2: PTAG Cache miss over the L1 data cache miss for the SPEC CPU2006
benchmarks.
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Figure C.3: PTAG Cache eviction over the L1 data cache miss for the SPEC CPU2006
benchmarks.
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of misses and evictions for all policies are pretty similar in the Merkle Tree cache. Being
sjeng the benchmark that presents the worst results, showing at least two misses in the
Merkle Tree cache for every data cache miss and at least one Merkle Tree cache eviction
for every data cache miss.

C.3 Estimating Performance

We used our number of hits, misses, evictions, and accesses from our cache simulations to
estimate performance of CSHIA, in order to verify the impact of caching policies. To do
that, we modeled our system like Figure C.4 describes. Observe in the figure that we are
assuming a simultaneous process of verification/update of PTAGs with data memory block
read/write. From Figure C.4 we obtained an analytical formulation, Equation C.1, that
gives the ratio between main memory access cycles and PTAG verification/update cycles.
This ratio if greater than 1 indicates that processors would be stalled after receiving data
from main memory due to PTAG verification/update.

The statistical parameters of the equation are in Table C.1. Notice that each access
A to PTAG Cache would generate a number of hits H and misses M . Each miss M or
eviction E will generate M+E accesses to PTAG Memory. Finally, each PTAG Cache miss
M or write W needs a PTAG computation. To estimate the cycles in the Equation C.1,
we used CACTI [1] to generate a 64-KB SRAM cache, a 256-MB DRAM main memory,
and a 64-MB DRAM PTAG Memory1 based on the technological parameters from [56].
We normalized all variables by the sequential access time of the cache (parameter c),
which is lowest time value. The PTAG computation cycles s comes from the SipHash
digest, which we set as 10 cycles.

Figure C.5 shows that for almost all benchmarks SecBus and CHTree have the best
performance; the only exception is the benchmark sjeng. Moreover, SecBus and CHTree

Cratio =
[

A · k + (H + M) · c+ (M + E) ·m+ (M + W) · s
]

· (A · n)−1 (C.1)

Main Memory 

PTAG 

Cache 
PTAG Memory 

n cycles 

k cycles m cycles 

PTAG Cache 

Miss/Eviction 

PTAG Verification/Update 

Memory Block Read/Write 

Core 

PTAG Cache 

Read/Write 

L1 Data Cache 

Miss/Writeback 

Figure C.4: A L1 data cache miss or write-back triggering a PTAG cache verification or
update.

1It is the 25 % main memory overhead.
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Table C.1: Variables of Equation C.1.

Variable Description

A Number of accesses to main memory or
PTAG Cache due to FDC miss or eviction.

H PTAG Cache Hits.
M PTAG Cache Misses.
E PTAG Cache Evictions.
W PTAG Cache Updates.

Table C.2: Timing parameters for Equation C.1.

Parameter Description Cycles

c PTAG Cache sequential access 1
k PTAG Cache access 8
m PTAG Memory access 44
n Main Memory access 54
s PTAG computation cycles 10

spent more cycles with PTAG verification/update than main memory access in only seven
benchmarks. Thus, for most of the benchmarks in SPEC, we estimate that CSHIA would
run transparently, as if no integrity verification was provided. Despite L1 Instruction
Cache misses were not taken into account in this evaluation, they would not imply core
stalls, since PTAG Cache is not used for instruction cache lines and main memory access
spends as many cycles as it takes to compute a PTAG and access the PTAG Memory
(from Table C.2, m+ s = n).

However, the result in Figure C.5 goes in a different direction of what Figures C.3,
C.2, and C.1 showed. That is because in those analyses only ratios were taken into
account. For our analytical model, the number of memory operations (accesses, reads,
and writes) is more important and critical than any ratio. Thus, SecBus and CHTree
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Figure C.5: PTAG verification cycles over the main memory access cycles for the SPEC
CPU2006 benchmarks.
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have an estimated performance better than Read.Hit and Caching.Path, despite the last
two presented better ratios regarding misses and evictions. Overall, the analyses provided
in this chapter allowed us to focus on the implementation of SecBus and CHTree in our
CSHIA prototype.



103

Appendix D

Performing Attacks on

CSHIA Prototype

This chapter shows the application of three replay attacks on the prototype of CSHIA.
All attacks have the same purpose: reuse legit initial memory word values to prevent
program output. The first attack is on CSHIA in bypass mode (no security). The second
attack is on CSHIA running timestamp protection (CSHIA-TS instance). And, finally,
the third attack is on CSHIA running Merkle Tree protection (CSHIA-MT instance). All
these experiments were run in Altera’s Development Kit DE2-115. The software used was
GRMON v3.0.14 64-bit eval version and Altera’s Quartus 13.1. DE2-115 was connect to a
desktop computer running Fedora 23 by an Ethernet port. In addition, the target program
is an adapted version of MiBench’s sha in which we incorporated the small input file to
the .data segment of the compiled program. A VHDL source code of CSHIA’s prototype
for DE2-115 will be made available in [24] together with the adapted benchmarks we used
in this work.

D.1 Attacking CSHIA in Bypass Mode

Once we program CSHIA in the FPGA, one needs to set the prototype to bypass mode.
That corresponds to put switch keys SW0 and SW1 to high, as Figure D.1 depicts. After
that we run GRMON to connect to the development kit and then load sha’s binary in
the kit’s DRAM. Figure D.2 shows the command line executed in Fedora 23’s Bash and
Figure D.3 shows GRMON’s terminal output after loading the binary.

Figure D.4 presents the range of memory addresses that will be the target of our
attack. In Figure D.5, we establish a breakpoint at the address 0x40092160, which allows
us to observe bus transactions targeting that address, and we run sha. Then, we examine
the content of the memory after the first break point. To attack, we write zero in two
memory words located at 0x4009216C and 0x4009217C. As Figure D.6 shows, once we
checked that that memory block content was changed, we delete the break point and
finally continue to execute sha. Notice that the program finishes without printing its
output. The correct and expected output for sha’s small input is presented in Figure D.7.

The attack we demonstrated happens in the .data segment of the program that starts
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at 0x40045B00, as one can see in Figure D.3. It can be classified as a replay attack since an
attacker chooses old values that memory addresses 0x4009216C and 0x4009217C possessed
at the beginning of the execution. Our CSHIA prototype currently covers the address
range 0x40000000–0x40092FFF. Therefore, this attack should not succeed if either of the
countermeasures CSHIA provides were activated. In the following sections, we examine
how an attacker proceeds to apply a replay attack against each countermeasure and we
show that the prototype prevents he/she to succeed.

Figure D.1: Configuring CSHIA to bypass mode in Altera’s FPGA DE2-115.

1 > linux/bin64/grmon -u -v -eth -dsudelay 250 -log sha.small.bypass .250

delay.attack.txt"

Figure D.2: Command line to execute GRMON.

1 grmon3 > load sha_small

2 40000000 .text 0B [> ] 0%

3 40000000 .text 57.0kB / 57.0kB [=============== >] 100%

4 40045 B00 .data 0B [> ] 0%

5 40045 B00 .data 307.2kB / 307.2 kB [=============== >] 100%

6 Total size: 364.28 kB (25.95 Mbit/s)

7 Entry point 0x40000000

8 MiBench/security/sha/sha_small loaded

9 1073741824

Figure D.3: Loading sha into the FPGA memory.
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1 grmon3 > mem 0x40092160

2 0x40092160 00000000 00000000 00000000 00000000 ................

3 0x40092170 00000000 00000000 00000000 00000000 ................

4 0x40092180 00000000 00000000 00000000 00000000 ................

5 0x40092190 00000000 00000000 00000000 00000000 ................

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure D.4: Initial memory content at 0x40092160.

1 grmon3 > bp bus 0x40092160

2 Bus watchpoint 1 at 0x40092160

3 1

4 grmon3 > run

5 Unknown watchpoint hit

6 0x400028d4: c0262010 clr [%i0 + 0x10] <std+64>

7 SIGTRAP

8 grmon3 > mem 0x40092160

9 0x40092160 00000000 00000000 00000000 000 a0001 ................

10 0x40092170 00000000 00000000 00000000 40092160 ............@.!‘

11 0x40092180 400048 fc 400048 a4 4000484c 00000000 @.H.@.H.@.HL....

12 0x40092190 00000000 00000000 00000000 00000000 ................

13 0 0 0 655361 0 0 0 1074340192 1073760508 1073760420 1073760332 0 0 0 0 0

Figure D.5: Executing sha with a breakpoint at 0x40092160. After reaching the break-
point, we can visualize the memory block content at 0x40092160.

1 grmon3 > wmem 0x4009216C 0x0

2 grmon3 > wmem 0x4009217C 0x0

3 grmon3 > mem 0x40092160

4 0x40092160 00000000 00000000 00000000 00000000 ................

5 0x40092170 00000000 00000000 00000000 00000000 ................

6 0x40092180 400048 fc 400048 a4 4000484c 00000000 @.H.@.H.@.HL....

7 0x40092190 00000000 00000000 00000000 00000000 ................

8 0 0 0 0 0 0 0 0 1073760508 1073760420 1073760332 0 0 0 0 0

9 grmon3 > bp delete

10 grmon3 > cont

11
12 Program exited normally.

13 SIGTERM

Figure D.6: Forcing null words into the CSHIA memory, when it is in bypass mode. Then,
after deleting the breakpoint, sha is continued and finishes running.

1 320 c22e9 7b1ed440 77 d2e55a bbe2481a 2b24a55b

2
3 Program exited normally.

4 SIGTERM

Figure D.7: The expected output from normally running sha with its small input file.
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D.2 Attacking CSHIA-TS

The CSHIA Timestamp instance (CSHIA-TS ) has internal timestamp and PTAG mem-
ories, as presented in “CSHIA Implementation” in Chapter 2. To instanciate CSHIA-TS,
we need to program the FPGA through Quartus. After running the same commands in
Figure D.2 and D.3, we need to press and release KEY2 and then press and release KEY3 in
this specific order. Figure D.8 shows KEY2 and KEY3 highlighted by orange and lightblue
frames, respectively. Notice that in Figure D.8 both SW0 and SW1 are down, which is
highlighted by a yellow frame. KEY2 is the CSHIA’s Fuzzy Extractor enrollment. KEY3

is a combination of the Fuzzy Extractor regeneration and PTAG Memory enrollment.
Currently, our prototype does not have a reset to kick off the regenation only.

Once the steps aforementioned are concluded, we can examine the current status of
both timestamp and PTAG memories using In-System Memory Content Editor of Quar-
tus (see Figures D.9 and D.10). The timestamp (Figure D.9) and PTAG (Figure D.10)
highlighted by yellow frames correspond to the memory block that starts at 0x40092160.
The next steps are those presented in Figure D.5, which are to establish the breakpoint
and run the program until it stops at the breakpoint1. When that happens, the times-
tamp and PTAG memories have new values that are highlighted in Figures D.11 and
D.12, which respectively show the timestamp and PTAG related to the memory block at
0x40092160.

In our threat model, an attacker does not have access to the timestamp memory, which

Figure D.8: Configuring CSHIA to timestamp mode in Altera’s FPGA DE2-115.

1Sometimes the execution will stop multiple times before reaching the memory values exhibited in
Figure D.5. In those cases, we continue execution until it reaches that status.
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would be an on-chip memory, but he/she does have access to the memory of PTAGs (an
off-chip memory). In this situation, the attacker proceeds writing old values in main
memory, as Figure D.6 shows, and he/she also writes back the inicial value of the PTAG
which corresponds to the memory block he/she has just changed (Figure D.13).

Finally, sure that theses modifications would allow he/she to suceed, the attacker
proceeds with the execution of the program. However, differently from what happened in
Section D.1, the system hangs up because tampered data will not reach the processor. As
Figure D.14 presents, the execution of sha stalls in a call instruction of the _vprintf_r

function. This corraborates that the purpose of the attack is output suppression. Hence,
CSHIA-TS inhibits unauthentic behavior to happen. Notice that, if we manually modify
the timestamp memory and reset the highlighted value in Figure D.11, the program
finishes as shown in Figure D.6.

Figure D.9: Initial values of the timestamp memory before running sha.

Figure D.10: Initial values of PTAG Memory before running sha.

Figure D.11: Timestamp memory status at the breakpoint.
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Figure D.12: PTAG Memory status at the breakpoint.

Figure D.13: Modifying PTAG Memory before continuing to execute sha.

1 grmon3 > bp delete

2 grmon3 > cont

3 Stopped (tt = 0x00 , )

4 0x40005740: 4000069c call 0x400071B0 <_vfprintf_r +2556>

5 SIGHUP

6 grmon3 > mem 0x40092160

7 0x40092160 00000000 00000000 00000000 00000000 ................

8 0x40092170 00000000 00000000 00000000 00000000 ................

9 0x40092180 400048 fc 400048 a4 4000484c 40004830 @.H.@.H.@.HL@.H0

10 0x40092190 00000000 00000000 00000000 00000000 ................

11 0 0 0 0 0 0 0 0 1073760508 1073760420 1073760332 1073760304 0 0 0 0

Figure D.14: Forcing null words into the CSHIA-TS memory. Then, after deleting the
breakpoint, sha is continued and stalls.

D.3 Attacking CSHIA-MT

Attacking the CSHIA Merkle Tree instance (CSHIA-MT ) is significantly more compli-
cated. First, an attacker has to roll back more than one PTAG in order to make the
Merkle Tree consistent in memory. Second, tampering with one memory block has a high
chance of producing an unsuccessful attack because in the tree structure ancestors have
PTAGs that are related not only to the PTAG of the tampered memory block but also to
other memory blocks. Third, PTAG Cache hinders an attack because it may happen that
some PTAGs of the Merkle Tree, which an attacker needs to roll back, are in the cache,
and thus he/she cannot modify their current value. Remembering that our threat model
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considers that PTAG Cache lies in on-chip and so is inaccessible to attackers. Finally,
the root PTAG is not reachable by attackers, thereby he/she will ultimately fail in any
attempt of rolling back a previous memory state because they cannot change the root.

As presented in “CSHIA Implementation” in Chapter 2, we divided PTAG Memory
into two: a PTAG Memory for PTAGs of code and data memory blocks; and a PTAG
Memory for Merkle Tree PTAGs. For the sake of this attack, we reduced the PTAG
Cache to 2 sets of 4 lines. That was needed to increase the number of PTAGs that are
written back to PTAG Memory. Once CSHIA’s is programmed in the FPGA through
Quartus and the commands in Figure D.2 and D.3 are run, we need to press and release
KEY2 and then press and release KEY3 in this specific order. After that, we set SW17

to high. Figure D.15 shows KEY2 and KEY3 highlighted by orange and lightblue frames,
respectively, besides highlighting SW0, SW1, SW17 positions in yellow frames.

Figures D.16, D.17, D.18, D.19, and D.20 exhibit the initial values of the PTAGs
related to the memory block that starts at 0x40092160. Figure D.16 refers to the memory
block PTAG and the other figures exhibits PTAGs of the Merkle Tree. The only PTAG
that is not visible in those figures is the root. After setting the breakpoint and running
sha (Figure D.5), we reach the breakpoint2. Figures D.21, D.22, D.23, D.24, and D.25
present the PTAG Memory status at the breakpoint. We can notice that if one rolls
back the PTAGs highlighted in Figure D.25, he/she will also need to roll back all values
in red in Figures D.24, D.23, and D.22 because they are used during the computation
of the PTAGs displayed by Figure D.25. Consequently, the attacker will need to roll
back all memory blocks related to the PTAGs that are in red in Figure D.21. We tried
to proceed this attack by rolling back all PTAGs and only modifying the memory word
at 0x40092160 (Figure D.6). But that did not work, as expected, and resulted in the
processor hanging up in some non-specific part of the code, as Figure D.26 shows. To
make this attack fail at the verification of the root PTAG, we would need to restore all
memory blocks to their initial value beside rolling back all PTAGs. Since that would
require a huge log to document each step, we chose not to display it.

Figure D.15: Configuring CSHIA to Merkle Tree mode in Altera’s FPGA DE2-115.

2Again, achieving those values in Figure D.5 can take multiple stops at the breakpoint.
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Figure D.16: Initial values of PTAGs of data memory blocks.

Figure D.17: First level of the Merkle Tree in PTAG Memory before running sha.

Figure D.18: Second level of the Merkle Tree in PTAG Memory before running sha.

Figure D.19: Third level of the Merkle Tree in PTAG Memory before running sha.
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Figure D.20: Fourth, fifth, and sixth levels of the Merkle Tree in PTAG Memory before
running sha.
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Figure D.21: Values of PTAGs of data memory block at the breakpoint.

Figure D.22: First level of the Merkle Tree in PTAG Memory at the breakpoint.

Figure D.23: Second level of the Merkle Tree in PTAG Memory at the breakpoint.

Figure D.24: Third level of the Merkle Tree in PTAG Memory at the breakpoint.
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Figure D.25: Fourth, fifth, and sixth levels of the Merkle Tree in PTAG Memory at the
breakpoint.
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1 grmon3 > mem 0x40092160

2 0x40092160 00000000 00000000 00000000 00000000 ................

3 0x40092170 00000000 00000000 00000000 00000000 ................

4 0x40092180 400048 fc 400048 a4 4000484c 40004830 @.H.@.H.@.HL@.H0

5 0x40092190 00000000 00000000 00000000 00000000 ................

6 0 0 0 0 0 0 0 0 1073760508 1073760420 1073760332 1073760304 0 0 0 0

7 grmon3 > cont

8 Stopped (tt = 0x00 , )

9 0x4000c97c: 81 c7e008 ret <___st_pthread_mutex_unlock +36>

10 SIGHUP

Figure D.26: Forcing null words into the CSHIA-MT memory. Then, after deleting the
breakpoint, sha is continued and stalls.

D.4 Summary

This section presented some attacking scenarios to explore CSHIA’s countermeasures
against replay attacks. Our goal was to elucidate the steps one would need to take in
order to apply these attacks in the CSHIA prototype. In addition, we would like to make
clear that these attacks do not prove that the current CSHIA prototype is unbreakable or
may lack vulnerabilities. Those who find loopholes and achieve sucessful attacks are very
welcomed to share with us, helping us to improve CSHIA security.


	List of Symbols and Abbreviations
	Introduction
	General View of This Work
	Work Relevance
	Publications
	Contributions
	Organization
	Physical Unclonable Functions
	Arbiter PUF
	XOR Arbiter PUF
	SRAM-PUF
	Weak versus Strong PUFs
	Assessing PUFs

	Robustness in PUF-based Systems
	Error Correction Codes
	Fuzzy Extractors

	Side Channel Attacks
	Understanding Power Side Channel Information
	Differential Power Analysis
	Correlation Power Analysis
	Countermeasures

	Key Features of Security
	Authenticity
	Integrity
	Pseudo-Random Function

	Summary

	Papers
	Computer Security by Hardware-Intrinsic Authentication
	Implementing a Secure Architecture for Code and Data Authenticity and Integrity in Embedded Systems
	Applying Template Attacks on XOR Arbiter PUFs

	Discussion
	Architecture Design
	Design Analysis
	Critical Analysis

	Architecture Evolution
	Key Extraction and Fuzzy Extractor
	Security Components
	Offering Different Replay Attack Countermeasures
	Targeting Embedded Systems
	Downsides and Limitations

	Dealing with Physical Attacks
	Summary

	Conclusion
	Bibliography
	Modeling SRAM Failure Probability
	Assumptions
	Probability of having a Bit-Flip
	Modeling Key Extraction
	Key Failure Probability

	Extractor Algorithm
	Algorithm Parameters
	SRAM Address Selection
	Key Reliability Analysis
	Improving Key Reliability
	Algorithm Discussion

	Evaluation of Cache Policies for Merkle Tree
	Caching Policies
	Simulating Caching Policies
	Estimating Performance

	Performing Attacks on CSHIA Prototype
	Attacking CSHIA in Bypass Mode
	Attacking CSHIA-TS
	Attacking CSHIA-MT
	Summary


