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Resumo

Esta tese aborda o problema de disseminação de pacotes em roteamento ponto-multiponto
(do Inglês, broadcast) em redes sem fio do tipo ad hoc com múltiplos saltos. Aborda-se, es-
pecificamente, na tese, protocolos ponto-multiponto nos quais os nós transmissores tomam
decisões sobre o encaminhamento dos pacotes de forma probabiĺıstica. O uso desses pro-
tocolos leva à economia de energia e de banda passante, bem como promove a alternância
do papel de retransmissores de pacotes entre nós de um mesmo grupo, com o mı́nimo de
overhead posśıvel.

Grande parte da literatura especializada aborda a estimativa dos valores das prob-
abilidades de encaminhamento de pacote (pf ) com o objetivo de reduzir o tamanho do
conjunto de nós retransmissores de pacotes bem como promover o maior alcance posśıvel
do repasse desses pacotes. Esta tese introduz uma análise que inclui novos parâmetros,
tais como a geometria do posicionamento dos nós e a distribuição dos atrasos randômicos
nos protocolos ponto-multiponto, que influenciam, também, no tamanho desses conjuntos
e na alcançabilidade.

Define-se uma métrica que engloba o valor da razão sinal rúıdo para cada nó receptor.
Para tal, definem-se camadas de grupos de nós vizinhos a um nó transmissor. Calcula-se
um valor médio da razão sinal rúıdo para cada nó e para cada camada de nós, assumindo-se
um cenário de interferência máxima. Uma vez que existe correlação entre o valor teórico da
razão sinal rúıdo e o sucesso da recepção de pacotes, demonstrada através de experimentos
de simulação e de medições, adota-se a razão sinal rúıdo como um preditor eficiente do
sucesso da recepção de pacotes.

O valor da razão sinal rúıdo é empregada para se avaliar o impacto da geometria da
posição dos nós na alcançabilidade das transmissões ponto-multiponto. Resultados deriva-
dos na presente tese evidenciam os limites da alcançabilidade das transmissões ponto-
multiponto, bem como evidenciam a importância da geometria da posição dos nós em
comparação com a posição absoluta dos nós. Demonstra-se que redes compostas por
nós posicionados randomicamente promovem valores quase ótimos de alcançabilidade, en-
quanto que transmissões em redes compostas de nós posicionados em malha são senśıveis
às colisões de pacotes e à interferência.
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Esta tese introduz, também, um arcabouço anaĺıtico para quantificar o impacto da
variabilidade dos valores dos parâmetros de atrasos randômicos na alcançabilidade, bem
como em suas distribuições. Propõe-se uma nova estratégia que utiliza a distribuição ex-
ponencial truncada ao invés da distribuição uniforme, que é comumente empregada para
redução dos atrasos fim-a-fim em transmissões ponto-multiponto.

Propõe-se uma nova forma de computação da distribuição da latência fim-a-fim que
considera a distribuição dos atrasos aleatórios e a geometria do posicionamento dos nós.
Determina-se, primeiramente, a função densidade dos números de passos necessários de
uma transmissão ponto-multiponto. Obtém-se uma formula para computação do número
de passos que é utilizada conjuntamente com a função randômica de atrasos aleatórios
para se derivar a distribuição da latência fim-a-fim, o que permite a avaliação das latências
em transmissões ponto-multiponto sem utilizar a hipótese de atrasos probabiĺısticos dis-
tribúıdos de forma uniforme. A computação proposta é facilmente generalizável par outras
distribuições.
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Abstract

This thesis addresses the problem of disseminating broadcast packets in a multi-hop wire-
less ad hoc network. Specifically, it focuses on broadcasting protocols in which nodes make
probabilistic decisions to forward packets. In connected multi-hop ad hoc networks, this
type of protocol produces a broadcasting process that saves energy and bandwidth while
offering a natural rotation of the subset of forwarders over time, yet it entails minimum
overhead.

Most of the literature addresses the challenge of estimating the values of the forwarding
probability of nodes (pf ) that reduce the size of the subset of forwarders (saved rebroad-
cast) and maintain broadcast packets reaching most nodes (reachability). This thesis
provides an analysis of new factors, other than the estimation of pf , that also influence
the reachability and saved rebroadcast of probabilistic protocols, namely the layout of
nodes (i.e. the geometry of node position) and the parameters of the random delays used
in the broadcast protocols.

A Signal to Interference metric (probabilistic S/I) is defined for each receiving node
by grouping subsets of nodes into tiers around the broadcasting source. An average value
of S/I is obtained for each node and then for each tier assuming a worst-case scenario of
maximum interference. The theoretical results of S/I exhibit excellent correlation with the
probability of successful packet reception obtained from simulations and measured-based
experiments, which indicates that such analysis of S/I can be used to predict the average
percentage of nodes receiving broadcast packets in every broadcasting event.

The S/I analysis is used to evaluate the impact of the geometry of the position of nodes
on reachability. The results show the limitations in reachability of transmitted messages
in probabilistic broadcasting schemes as well as the influence on the reachability of the
node geometry in comparison to the impact of the position of the source node. It is also
shown that networks with randomly-placed nodes exhibit near-ideal levels of reachability,
whereas the grid layouts are extremely sensitive to the collisions and interference.

Moreover, the thesis introduces an analytical framework to quantify the impact of
changing the parameters of random delays on reachability (e.g. a change in the distribu-
tion or a change in the interval of random delays). The thesis introduces a new strategy
to reduce end-to-end latency in a multi-hop broadcasting scenario by using the truncated
exponential distribution for random delays instead of the wide-spread uniform distribution.
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A novel model to compute the probability distribution function of broadcast end-to-
end latency is presented. The model considers both the distribution of random delays and
the geometry of node layouts. First, probability mass functions are derived to describe
the distribution of the number of hops taken by broadcast packets. Since these functions
depend on the geometry of the position of nodes, different models apply to grids (regular
geometries) and random node layouts (random geometries). The formulas to compute the
probability mass function of the number of hops are then combined with the distribution
function of random delays (a per-hop random variable) in a single model to find the
probability density function of probabilistic broadcasting end-to-end latency. This allows
the evaluation of broadcast latency considering random-delay distributions different from
the Uniform distribution and it facilitates the creation of latency models for several node-
position geometries different from the random Uniform.

Key Words
Ad hoc networks, probabilistic broadcast, signal to interference, MAC layer, random

delays, spatial point processes, grids, random geometric graphs.
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Resumen

Esta tesis aborda el problema de diseminación de paquetes de difusión en una red inalámbrica
sin infraestructura (red inalámbrica ad hoc). De manera espećıfica, la tesis estudia los
protocolos de difusión que utilizan variables aleatorias al momento de retransmitir los pa-
quetes durante el proceso de difusión (difusión probabiĺıstica). El uso de estos protocolos
en redes ad hoc con enlaces multi-salto reduce el consumo de enerǵıa y la ocupación del
canal mientras que se obtiene una rotación natural del subconjunto de nodos responsables
por las retransmisiones del proceso de difusión. Estos beneficios tienen un costo muy bajo
en la complejidad de implementación de los protocolos.

La mayoŕıa de los estudios se enfocan en estimar el valor de la probabilidad de retrans-
misión de los paquetes (valor de pf ), por parte de los nodos, de modo tal que se reduzca el
tamaño del subconjunto de retransmisores (ahorro en retransmisiones) y se mantenga el
número promedio de nodos que reciben los mensajes de difusión (alcance de los paquetes
de difusión). Esta tesis aporta un análisis de nuevos factores, diferentes del valor estimado
de pf , que tienen una influencia en el alcance y el ahorro en retransmisiones provisto por
los protocolos de difusión probabiĺıstica. De forma espećıfica, se analizan factores como la
geometŕıa de la posición de los nodos y la configuración de los retrasos aleatorios utilizados
en el proceso de difusión.

Se define una métrica basada en la relación Señal a Interferencia (S/I probabiĺıstica)
para todos los nodos de la red al momento de recibir los paquetes de difusión. Dicha
métrica se calcula agrupando los nodos en anillos al rededor del nodo que emitió el pa-
quete original (nodo fuente). El valor promedio de S/I probabiĺıstica se obtiene en cada
nodo para el caso de máxima interferencia (peor caso). Los resultados teóricos de S/I mues-
tran una correlación alta con respecto a la probabilidad de recibir un paquete sin errores;
probabilidades tomadas de estudios basados en mediciones de transmisiones inalámbricas
punto a punto. Los resultados indican que el análisis teórico de S/I puede ser utilizado
para predecir el alcance promedio de los paquetes de difusión.

El análisis de S/I se utiliza para evaluar el impacto de la geometŕıa de la posición de los
nodos en el alcance de los paquetes de difusión. Los resulados muestran las limitaciones
de los esquemas de difusión probabiĺıstica en términos del alcance. También se muestra
la influencia que tiene la geometŕıa de la posición de los nodos en comparación con el
impacto de la posición del nodo fuente. El análisis de los resultados permite establecer
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que una distribución aleatoria de las posiciones de los nodos (geometŕıa aleatoria) produce
un alcance promedio casi ideal, mientras que las geometŕıas regulares (nodos ubicados de
acuerdo a alguna ret́ıcula) hacen que la red sea muy susceptible a los efectos de la inter-
ferencia y las colisiones entre paquetes.

Adicionalmente, la tesis introduce un marco anaĺıtico para cuantificar el impacto de los
retrasos aleatorios sobre el alcance de los paquetes de difusión; impacto que se produce al
modificar los parámetros de dichos retrasos, espećıficamente cuando se cambia la función
de distribución de probabilidad o el intervalo donde se define el retraso. La tesis introduce
una estrategia nueva que reduce la latencia de extremo a extremo, en redes multi-salto,
mediante el uso de la distribución exponencial truncada como alternativa ante el uso gen-
eralizado de la distribución uniforme en los retrasos aleatorios.

Se propone además un modelo inovador para calcular la función de distribución de
probabilidad de la latencia extremo a extremo. El modelo considera tanto la distribucón
de los retrasos aleatorios como la geometŕıa de la posición de los nodos. Primero se
deducen funciones de masa de probabilidad para describir el comportamiento del número
de saltos de los paquetes de difusión. Como las funciones de masa de probabilidad están
asociadas a la geometŕıa de la red, se aplican diferentes modelos a las ret́ıculas (nodos
con posiciones en geometŕıa regular) y a las redes con geometŕıa aleatoria. Las funciones
de masa de probabilidad obtenidas se combinan con las funciones de distribución de los
retrasos aleatorios (funciones de densidad de probabilidad) en un solo modelo de donde se
obtiene finalmente la función de densidad de probabilidad de la latencia extremo a extremo
de los paquetes de difusión. Este modelo permite evaluar la latencia de los protocolos de
difusión basados en probabilidad considerando diferentes tipos de distribución para los
retrasos aleatorios (diferentes de la distribución uniforme) y a su vez facilita la creación
de modelos de latencia que consideran varias geometŕıas para la posición de los nodos
(diferentes ret́ıculas y posiciones aleatorias).
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Chapter

ONE

Introduction

This thesis addresses the problem of disseminating broadcast packets in a multi-hop wire-
less ad hoc network (e.g. MANET, VANET or WSN). Specifically, the thesis focuses
on the study of broadcasting protocols in which nodes make probabilistic decisions to
forward packets. Unlike broadcasting by flooding (i.e. allowing every node to forward
broadcast packets), probabilistic protocols enable each node to draw a random variable
to decide whether or not a packet should be forwarded. In connected multi-hop ad hoc
networks, this type of protocol produces a broadcasting process that saves energy and
bandwidth while offering a natural rotation of the subset of forwarders over time, yet it
entails minimum overhead.

Most of the literature addresses the challenge of estimating the values of the forwarding
probability of nodes (pf ) that reduce the size of the subset of forwarders (Saved Rebroad-
cast) and maintain broadcast packets reaching most nodes (Reachability). This thesis
provides an analysis of new factors, other than the estimation of pf , that also influence
the Reachability and Saved Rebroadcast of probabilistic protocols, namely the layout of
nodes (i.e. the geometry of node position) and the parameters of the random delays used
in protocols.

This thesis begins by describing the concepts of packet dissemination in multi-hop,
ad-hoc networks at a basic, formal, and technical level (Chapter 2). Chapter 3 offers a
comparative survey of the mainstream of proposals. Studies are classified according to
one fundamental characterisitic in the operation of protocols, namely the use of Hello
packets. This characteristic is strongly connected to a well-known division of probabilistic
broadcasting schemes into neighbor-based schemes and area-based schemes. These two
groups of probabilistic broadcasting protocols are compared by analyzing their results
in scenarios with static nodes placed according to the random uniform distribution in a
square region or mobile nodes following the Random Way Point and Random Direction
models. Subsequently, families of probability functions, used by authors to estimate the
forwarding probability (pf ) of nodes are also classified. Finally, the resulting values of pf
as a function of node density are compared with the protocol parameters suggested by
authors.

The evidence gathered in Chapter 3 shows a convergence of the values of pf obtained
with different proposals as a function of node density. Figure 1.1 shows a map of the
context of probabilistic broadcasting studies that summarizes the collection of results
analyzed in Chapter 3.
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In Figure 1.1, the two most sensible variables in probabilistic broadcast studies, namely
reachability (y-axis) and saved rebroadcast (SRB in the top x-axis) are related to influ-
ential aspects of network topology and protocol parameters, such as node degree (bottom
x-axis), the geometry of node position, and the role of random delays. The gray strips
represent the regions of performance of probabilistic broadcasting protocols, flooding (the
default ad hoc broadcast scheme), and the analytical models found in the literature, in
which an ideal MAC layer is commonly assumed. For example, the performance region
associated to analytical models indicates that reachability above 95% is obtained for any
value of node degree, continuously reducing the rebroadcast rate as node density increases.

Regarding the other performance regions of Figure 1.1, the graceful drop in the shaded
region of flooding means that savings in message retransmissions (i.e. an increase in SRB)
only occur when the broadcast process stops at an early stage due to an excess of collision
events near the broadcast source, leading to failure of the dissemination process (ending
in the red region of reachability). The shaded region of probabilistic broadcast indicates
that a poor calibration of broadcast protocols can lead to very limited reachability (there
is an example with reachability ending up in the yellow region). However, with proper
protocol calibration, probabilistic broadcasting schemes continue to reduce unnecessary
resource waste (higher SRB) and reach over 90% of the nodes as node density increases
(reachability going from the green to the blue region as node density increases). Finally,
the lower-left corner of the diagram indicates that, in random networks, average node
degrees lower than 6 produce disconnected networks, which becomes the subject of study
for Delay Tolerant Network (DTN) protocols.

The ideas in Figure 1.1 are derived for the two most frequent network scenarios, namely
static networks with nodes placed according to a two-dimensional random uniform dis-
tribution, and mobile nodes following the Random Way Point (RWP) model or Random
Direction Model.

The content of Chapters 4–6 focuses on modelling and evaluating the impact of node
layout geometries and random delays on probabilistic broadcast performance. As indicated
by the small arrows in Figure 1.1, the geometrical conditions of node layouts can reduce
the expected performance of broadcast schemes (i.e. lower reachability values for the
same rebroadcast rate). Conversely, the use of random delays makes broadcast schemes
approach their ideally modeled behavior. These two aspects constitute the core of the
present work.

Chapter 4 provides an analysis of the Signal to Interference ratio seen by nodes during
the propagation of a broadcast packet. The analysis illustrates how critical the geometry of
node layouts can be to allow broadcast packets to reach most nodes in each dissemination
event (i.e. the impact of geometry on reachability). The use of Signal to Interference anal-
ysis considers realistic channel conditions of wireless networks, which is seldom a concern
in the evaluation of probabilistic broadcast proposals. In this context, the contributions
of Chapter 3 are as follows:

❼ The incorporation of realistic assumptions to analyze the causes of the limitations
in reachability of transmitted messages in probabilistic broadcasting schemes.

❼ The analysis of the impact of the geometry of network layouts on the reachability of
probabilistic broadcasting protocols and the stronger influence of the node geometry
when compared to the impact of the position of the source node.
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Chapter 5 provides an analytical approach to assess the change in the probability distri-
bution function of random delays, which are a common feature of probabilistic broadcast
schemes. The analysis shows that, by changing the probability distribution of random
delays, a significant reduction in average broadcast latency is achieved. The contributions
of Chapter 5 are as follows:

❼ A strategy to reduce broadcast end-to-end latency that can be applied to any prob-
abilistic broadcast protocol.

❼ A proposition to prove the negligible impact of exponentially distributed random
delays on collision events at the MAC layer.

In Chapter 6, a set of discrete probability distribution functions that describe the
number of hops traversed by packets in an ad hoc network is derived for various scenarios,
considering the geometry of node layout. This set of discrete distributions is combined
with the distribution of random delays to compute the probability density function (pdf)
of broadcast latency (a known parameter of protocols). The contributions of Chapter 6
are as follows:

❼ Computation of probability density functions (pdf) of broadcast latency.

❼ Evaluation of broadcast latency considering random-delay distributions different
from the Uniform distribution.

❼ Latency models that consider node-position geometries different from random Uni-
form.

The content of Chapter 4 has already been published in the Ad Hoc Networks journal
and can be cited as:

Forero F., Peña N. M., da Fonseca Nelson L.S., Geometric aspects of prob-
abilistic broadcasting in ad hoc networks. Ad Hoc Networks, vol. 87, pp.
146–156, 2019. DOI: 10.1016/j.adhoc.2018.11.014.

The content of Chapter 5 has been accepted for publication in the IEEE Wireless
Communications Letters journal and can be cited as:

Forero F., Peña N. M., da Fonseca Nelson L. S., Latency Reduction in Proba-
bilistic Broadcast Protocols for Ad Hoc Networks. IEEE Wireless Communica-
tions Letters, vol. 8, pp. 1268–1271, Aug. 2019. DOI: 10.1109/LWC.2019.2915077.

The content of Chapter 6 constitutes original material for future publications.

20



Chapter

TWO

Concept Framework

This chapter introduces the fundamental ideas of percolation, which constitute the theo-
retical grounding of probabilistic broadcasting schemes. First, a basic description of the
process of dissemination of packets over a multi-hop ad-hoc network is presented. This
description familiarizes readers with the most frequent concepts that appear throughout
the development of this thesis, namely the concept of reachability and the use of tiers to
characterize the propagation of broadcast packets away from a source node.

Then, a formal description of the problem is presented by providing references to semi-
nal work in the literature as well as by giving examples of the type of percolation principles
applied by the authors of probabilistic broadcasting protocols. Finally, a technical descrip-
tion of the problem completes the framework by incorporating the elements of existing
wireless technology (i.e. network, data-link and physical layer considerations) into the
context of multi-hop ad hoc broadcasting protocols.

2.1 Basic Description

The process of disseminating a packet in a multi-hop environment begins with an arbitrary
source node transmitting a new broadcast packet to its neighbors. Figure 2.1a shows a
situation in which the transmission radius (r) of the source is just enough to reach 5 nodes
around it. Since the packet is intended for dissemination, some of the 5 nodes (2 nodes
in red in Figure 2.1b) that received a copy of the packet directly from the source should
forward it so that copies of the packet propagate away from the source. Figure 2.1b shows
how 4 aditional nodes receive a copy of the original broadcast packet. In Figure 2.1a, the
5 receivers can be considered as a first tier that forms around the source, whereas the
4 additional receivers in Figure 2.1b form a second tier. The concept of tier formation
assumes that all copies of the packet are received sucessfully; then, the tier of a given node,
with respect to a source, represents the minimum number of hops necessary for packets
to travel from the source to the intended node. Thus, under ideal conditions (no packet
errors, collisions, or packet losses), a node in Tier 2 should receive a copy of the broadcast
packet from a node in Tier 1 and, in general, nodes at any distance from the source should
receive packets from other nodes in the previous tier.
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Let the set Xλ ∈ Rd be a Poisson Point Process with density λ. Consider the graph
G(Xλ; r), then the percolation probability θ(λ) is the probability that the node at the
origin is connected to infinitely many nodes of the graph G(Xλ; r). Again r is the trans-
mission radius of nodes.

Percolation in RGGs is a phase transition phenomenon that depends on a node density
threshold, that is, below a critical value of density no percolation occurs; formally:

The percolation threshold density is λc = inf{λ > 0 : θ(λ) > 0}. With φ denoting the
node degree (the number of neigbors), then the relation φ = λπr2 makes G(Xλ; r) = G(φ).
Therefore, percolation is determined by a critical average node degree φc = λcπr

2 with
percolation probability θ(φ). It is important to notice that θ(φ) > 0 only for φ > φc.
Moreover, above φc, θ(φ) is an increasing funtion of φ.

Figure 2.12, taken from [1], shows an example of θ(φ). Although infinite networks
are unfeasible in practice, the curves in Figure 2.12 were obtained for different types of
large networks. For a random network contained in a squared area of side length L, a
size parameter α is defined such that αr = L. Then, for an average degree (neighbor
density) of 3 ≤ φ ≤ 8, α = 20 yields networks of 400–1000 nodes; α = 40 yields networks
of 1500–4000 nodes; and α = 80 yields networks of 6000–16000 nodes.

Figure 2.12: Sample curves of percolation probability, θ(φ), obtained from simulation in [1].
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As expected from the theory of percolation (i.e. infinite networks), larger networks
exhibit a faster transition for θ(φ) from θ(φ) → 0 to θ(φ) → 1. The value of φ at which
such a transition occurs is then φc.

Percolation also occurs in regular geometric graphs, that is, in grids. Since grids
have a constant node degree (number of neighbors), percolation is not associated to a
critical node degree but to a critical probability of edges/nodes existing in the resulting
graph. Specifically, when edges (bonds) appear in a graph with probability p, the process
of forming a large connected component (connected graph) over the grid is called bond
percolation; instead, when nodes (sites) appear in a graph with probability p, the process
is called site percolation.

Formal definitions of percolation in regular graphs are provided in [4,5]. For example,
bond percolation is defined as follows:

Let Z be the set of all integers and Z
d the set of all vectors x = (x1, x2, . . . , xd). Then,

Z
d can be turned into a graph (d-dimensional cubic lattice), by adding edges between all

pairs of points (x, y) ∈ Z
d with δ(x, y) = 1, where δ(x, y) =

∑d
k=1 |xk − yk|.

The lattice (graph) is defined with vertex and edge sets as L
d = (Zd,Ed). Each edge

of Ld will be open with probability p and closed otherwise. Percolation probability θ(p)
is the probability that a given vertex belongs to an infinite open cluster. There exists a
critical value pc = pc(d) of p such that:

θ(p)

{

= 0, if p < pc,

> 0, if p > pc;

pc is called the critical probability and is defined formally by pc(d) = sup{p : θ(p) = 0}.

As mentioned above, in grids, the value of pc plays the role of φc in RGGs. A theoretical
representation of θ(p), which is equivalent to the empirical representation of Figure 2.12,
can be seen in Figure 2.13 (taken from [4]). As in the case of RGGs, the function θ(p)
is also increasing and shows a phase transition at a critical value (a sudden change from
θ(p) → 0 to θ(p) → 1 at pc).

Figure 2.13: Hypothetical function θ(p) proposed in [4].
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The most representative examples of bond and site percolation applied to ad hoc
broadcasting schemes appear in [6, 7]. In these studies, percolation is applied to ad hoc
broadcasting schemes to show that redundancy and energy consumption can be reduced by
allowing nodes to forward packets with a value of probabily p (probabilistic forwarding).
In [7], directional antennas are simulated in nodes so that the probabilistic forwarding of
packets can be mapped to the bond percolation model, whereas omnidirectional antennas
are mapped to the site percolation model.

Figure 2.14, taken from [7], is equivalent to Figure 2.12 for the case of percolation in
RGGs. In this case, the percolation probability is a function of p, and the various values
of pc for the two-dimensional case can be observed for different grids and different models.
The curves obtained with grids of degree 3, 4, 6, and 8 are labelled using the initials OMN
(omnidiectional, site model) and DIR (directional, bond model).

Figure 2.14: Sample curves of percolation probability in grids; grids of degree 3, 4, 6, and 8; taken

from [7].

Figures 2.15–2.17 show examples of the resulting graphs in small regions of 50×50 grids
with different node degrees. All graphs were obtained from networks with omnidirectional
antennas with site percolation probabilities above their corresponding critical values. It
can be seen that the graphs are highly connected, leaving only a few nodes out of the large
component.

In summary, the theory of percolation provides solid grounding for ad hoc broadcasting
schemes to make use of a random selection of the forwarding set (forwarding probability)
and still disseminate broadcast packets onto a large fraction of the network (a fraction
near unity, associated to a large connected component). In the case of RGGs, nodes
may randomly decide to forward broadcast packets as long as the resulting average node
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Figure 2.15: Example of a square grid with p = 0.65 using site percolation (omnidirectional antennas),

pc = 0.593.
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Figure 2.16: Example of a hexagonal grid with p = 0.8 using site percolation (omnidirectional antennas),

pc = 0.696.
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Figure 2.17: Example of a triangular grid with p = 0.65, using site percolation (omnidirectional anten-

nas), pc = 0.5.

degree, namely the degree of the subgraph formed by forwarders only, is higher than the
critical degree φc. In the case of grids, it suffices with having a forwarding probability
value greater than the value of pc.

In principle, by allowing nodes to forward broadcast packets independently with prob-
ability p, it is possible to have an effective dissemination process (i.e. high reachability)
that is based on a lightweight, fully distributed broadcasting scheme.

2.3 Technical Description

This section introduces technological aspects that need to be considered in the development
of any packet dissemination protocol intended for wireless multi-hop ad-hoc scenarios. The
ideas summarized in this section are taken from the description of the Broadcast Storm
Problem first introduced in [8]. However, this section focuses exclusively on the role of the
data link layer (Medium Access Control–MAC) and the physical layer (Wireless medium)
of current technology (IEEE 802.11 protocol suite) leading to essential problems such as
redundancy, contention and packet collisions.

The characteristics of an ad-hoc broadcasting process define the needs that protocols
should meet. Since ad hoc broadcast relies on a wireless channel employing the Carrier
Sensing Multiple Access with Collision Avoidance mechanism (CSMA/CA in IEEE 802.11
standard [9]), the following features have guided the desing of protocols [10].
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Figure 2.19: Curve of Expected Additional Coverage area (EAC) as a function of the number of for-

warders; taken from [8].

nodes to forward every broadcast packet, flooding leads to many unnecessary forwarding
transmissions.

During a broadcasting process, contention for the wireless media occurs when the
same copy of a broadcast packet is received by several nodes and some of the receivers
are located close enough so that they can detect each other’s forwarding transmissions.
In Figure 2.20, when node B receives a packet from node A, three sets of nodes can be
established, namely the nodes that are neighbors of A and B (nodes in A∩B), neighbors
of A only (nodes in the area A − A ∩ B), and neighbors of B only (nodes in the area
B−A∩B). Contention occurs for the nodes in A∩B since these nodes received the same
copy of the broadcast packet from A and will surely detect the transmission of B. Based
on this observation, simulations were conducted in [8] to estimate the probability of having
k, out of n, receivers of A free of contention (a contention-free function cf(n, k)). Figure
2.21 shows that the probability of having zero contention-free receivers (i.e. contention)
is always higher than 0.5. Indeed, when A has more than 5 neighbors the probability of
contention (i.e. zero contention-free neighbors) remains above 0.8. Considering that the
critical average number of neighbors is larger than 5 for percolation in finite networks,
contention can be considered a certain event.

Given that contention is unavoidable, packet collisions are very likely to occur during
the propagation of broadcast packets. Considering again the description of Figures 2.20
and 2.21, and the fact that nodes have no previous knowledge of their local topology, if all
contending nodes run the same carrier sensing algorithm (e.g. 802.11 MAC), they should
start their forwarding transmissions almost simultaneously. Since carrier sensing is not
immediate, several packets will collide with no collision detection mechanism to recover
from the loss of packets. Such a collision event results in several nodes not receiving broad-
cast packets (corrupted/interfered packets), which significantly reduces the reachability of
the dissemination process.
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2.4 Framework Summary

Table 2.1 gathers the most relevant ideas of the three types of description provided in the
present chapter. These ideas are used in the rest of the thesis to make assumptions for
modeling and also to asess the performance of probabilistic broadcasting schemes.

Basic concepts Formal concepts Technical concepts

Multi-hop communication. Percolation. CSMA/CA technology.

Most (not all) nodes reached. Random Geometric Graphs. Synchronized transmissions un-

feasible.

Not all nodes need to forward

packets.

Critical average degree φ. No global information avail-

able.

Reachability. Regular graphs (grids). Flooding.

Hop distance from source. Critical bond/site probability

(p).

Redundancy.

Tier formation. Trees are NP problems. Contention.

Practical networks are finite,

but large.

Packet collisions.

Table 2.1: Concept framework summary

In summary, the problem of disseminating a packet over a multi-hop ad-hoc network
reduces to finding a subset of forwarders to deliver broadcast packets to most nodes while
avoiding the redundancy of flooding, which in turn reduces contention and packet colli-
sions in the wireless media. Figure 2.22 further illustrates this idea and offers a compari-
son between deterministic and probabilistic solutions that justifies the use of probabilistic
schemes. Specifically, although deterministic solutions (e.g. broadcast trees) produce opti-
mal subsets of forwarders, probabilistic solutions do not require a pre-established backbone
topology to be built before the beginning of the dissemination process. At its simplest,
if every node forwards broadcast packets independently according to a random variable
locally computed, the properties of percolation will apply and dissemination will take
place. Probabilistic broadcasting schemes do not require pre-established topologies based
on global knowledge and provide an implicit rotation of the subset of forwarders in every
broadcasting event, which leads to an even distribution of workload and energy consump-
tion. Let us toss the coin!
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Chapter

THREE

Literature Review

The purpose of this chapter is to present the mainstream of probabilistic broadcast solu-
tions proposed over a 15-year period before the beginning of this thesis, and then show
current research trends, including the contributions made in subsequent chapters. This
chapter begins by classifying the fundamental principles that have motivated the existence
and evolution of particular groups of probabilistic broadcast schemes. For each group, the
studies that provide analytical foundations are prioritized and discussed. In each section,
other studies that have explored the impact of adding heuristic complements are pre-
sented according to their specific target applications (e.g. MANET, WSN or VANET).
This chapter should provide readers with a structured framework to conveniently address
the fundamental issues of probabilistic broadcast, or else, to quickly find the group of
techniques that suits a particular need.

Figure 3.1 corresponds to the broad-classification groups (sections) contained in the
present chapter. The figure suggests that the two fundamental ideas motivating most
probabilistic broadcast studies lie in the topological (neighbor-based) and positioning (area-
based) features of ad hoc networks. Only a few proposals address probabilistic broadcast
solutions with alternative principles. However, regardless of the solution, several trade-
offs prevail when looking at the performance of probabilistic broadcast schemes in the
literature. It is worth mentioning that some authors have combined their solutions in
order to achieve more robust and reliable performance, but in every study, the main idea
effortlessly stands out from the subsidiary (complementary) ideas. Therefore, the broad
classification of Figure 3.1 still applies.

Both the intuitive and analytical aspects of neighbor-based and area-based solutions
are presented in subsequent sections, followed by a small collection of alternative proba-
bilistic broadcast solutions. The chapter unfolds by explaining the causes and implications
associated to the trade-offs pointed out in Figure 3.1. Some issues identified as common
to all of the studies presented herein are discussed at the end of the chapter.

3.1 Neighbor-based probabilistic broadcast

The use of neighbors information to estimate the best possible probabilistic broadcast
scheme can be classified according to two principles. First, there is an intuitive belief (well

39



Figure 3.1: Broad classification of probabilistic broadcats schemes, including a list of trade-offs that are

common to all schemes. In the figure, Rt stands for Route and A.I. stands for Artificial Intelligence.

supported by theoretical grounding) in which nodes in populated regions of a network
should forward broadcast packets with low probability, whereas nodes in sparse regions
should forward packets with higher probability. Second, when considering information of
the two-hop neighborhood centered at the forwarding node, it seems that the opposite
principle holds, namely a node with more neighbors than the other nodes nearby should
be given higher priority (i.e. a higher forwarding probability and a shorter forwarding
delay). Figure 3.2 includes two representative studies for each of the allegedly conflicting
principles, namely the Controlled Gossip and Rapid schemes represent the more intuitive
principle whereas the LPR and NCPR schemes support the ideas of the less-intuitive
apporach.

These two principles, and their detailed characteristics, some of which are explicitly
stated in Figure 3.2, are explained in the following two sections in greater detail. For
the moment, the figure suffices to illustrate that the ideas behind probabilistic broadcast
schemes using information about the one-hop and two-hop neighborhood can be very
different.

3.1.1 One-hop neighborhood

Neighbor information has been used to allow nodes to calculate their forwarding probabil-
ity in different ways. However, the most widely accepted, intuitive idea states that nodes
in a highly populated area of the network (i.e. nodes with many neighbors), should for-
ward broadcast packets with low probability, while nodes with very few neighbors should
forward the packets with high probability. The theoretical support for this idea can be
found in [1] (a paper called Controlled Gossip), in which the authors build upon the theory
of Random Plane Graphs [2] to prove that, in a network with nodes placed according to a
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Figure 3.2: Two fundamental ideas behind neighbor-based probabilistic broadcast schemes.

two-dimensional Random Uniform distribution, the forwarding probability at every node
can be set to the inverse of the node’s number of neighbors, namely pi = β/ni, where pi
and ni are the forwarding probability (pf ) and number of one-hop neighbors (i.e. degree)
of the i-th node, respectively, and β is a constant that determines the coverage level (i.e.
the average fraction of nodes receiving each broadcast packet: the term coined reachabil-
ity). The work in [1] provides theoretical and simulation-based evidence supporting the
aforementioned intuitive idea. What may be argued about the analysis in [1] is whether
a universal value for β can be found. The authors acknowledge that there is no known
analytical expression for β as a function of the coverage level, and therefore, since the the-
ory applies to an asymptotic behavior where the number of nodes in the network tends to
infinity, a simulation-based estimation of the behavior of β is necessary for finite networks
of interest. At this point, it is necessary to mention that all nodes are assumed to have
the same transmission range, and, according to the theory, the value of β is the minimum
average degree (i.e. number of nodes within such homogeneous transmission range) that
yields the expected coverage level (reachability). In other words, the theoretical ground-
ing of the simple relation pi = β/ni suggests that β exists as a function of the expected
coverage level, as shown by simulation.

Also theoretically supporting the ideas of Controlled Gossip, the work in [11], [12]
contains an analytical boundary on the probability of broadcast packets failing to reach any
arbitrary node. Since nodes receive and forward packets independently, the probability of
not reaching any node can be associated to the fraction of the network that is not reached
by broadcast packets, using pi = β/ni as the forwarding probability. The analytical
boundary in [11], [12] suggests that if β is the amount of one-hop neighbors allowed to
forward broadcast packets, a computation of worst-case reachability (maximum lack of
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reachability) is immediate. In this regard, the function derived for the upper bound on
broadcast failure plays the role of the unknown analytical expression for β (mentioned
in [1]) as a function of the so called coverage level (i.e. reachability). This is to say that β
(called reliability factor in [11], [12]) is equivalent to the constant that produces a specific
coverage level in [1].

Perhaps the best coincidence of the analyses in [1] and [11], [12] is that the use of a
broadcast probability inverse to the number of one-hop neighbors scales well with the num-
ber of nodes and depends mainly on the size of the area where nodes reside. Specifically,
the theory proves that for networks of a fixed area, the expected number of transmissions,
in the case of a successful broadcast process, does not depend on the number of net-
work nodes, but rather on the network area (i.e. the number of transmissions is constant
regardless of the number of nodes and node density).

A topological interpretation of this mapping between the analyses from [11], [12],
and [1] can be seen in Figure 3.3. In the figure, the nodes that decided to forward the
broadcast packet according to pi = β/ni are represented by dots, whereas the remaining
fraction of nodes (not forwarding the packet) are represented by little crosses. In the figure,
as long as the dot-nodes form a connected component that includes a specific fraction of the
dot-node set (i.e. a particular coverage level or reachability), the whole network (dot-nodes
and cross-nodes) will receive the broadcast packet with the same coverage level. What
is more important is that the average number of forwarding transmissions (i.e. number
of dot-nodes) should remain constant even if the number of cross nodes grows arbitrarily
within the same area (see Figure 3.3b. The previous observation further supports the
claims in [12] suggesting that this scheme easily overcomes node failure and/or selfish
behavior of some nodes, as long as the percentage of selfish/failing nodes does not affect
the connectivity of dot-nodes. Notice that Figure 3.3 shows a single realization of the
random variables that selected the dot-nodes. However, from theory and simulations, it
has been shown that this behavior holds for a fraction of realizations at least equal to
the coverage level (reachability) of successful broadcast. Therefore, with different random
sets of dot-nodes, a high percentage of broadcast packets reaches most of the network
nodes, and only occasionally a broadcast packet reaches only a few nodes. This behavior
is also called bi-modal and is associated to the theory of percolation and phase transition
phenomena [4], [2].

Another positive coincidence in the analytical studies with forwarding probability pi =
β/ni is that the different authors seem to be well aware of the connectivity conditions for
their simulation settings (the Critical Transmission Range presented in [3]) and so, based
on their analyses, it should be possible to calculate some minimum feasibility conditions
that must be met to successfully implement the formula pi = β/ni as a valid probabilistic
broadcasting technique.

Other studies working on exactly the same idea, although without the rigor of theo-
retical analysis, used simulations to establish the value of β when computing pi = β/ni at
every node. For example, in [13], simulation results show that a value of β around 9 offers
good performance, namely reducing the amount of forwarding events (Saved Rebroadcast)
while reaching almost all nodes (Reachability) in a variety of network settings.

Continuing with the same idea of adjusting the forwarding probability to the inverse of
the number of one-hop neigbors, several authors have proposed different heuristic functions
to calculate pi. The exact functions to obtain the value of pi range from threshold functions
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Figure 3.3: Topological view of the agreement between the ideas in [1] and [11], [12]; β corresponds

either to the fraction of nodes that are dot-nodes or to the minimum degree that guarantees a particular

reachability in a graph made of dot-nodes only. (a) sparse network leads to a higher value of pf ; (b) denser

network leads to a much lower value of pf keeping the average number of dot-nodes constant.

on the number of neighbors, to the use of the geometric series [14] and even to the adoption
of an infection rate metric from other problem domains [15]. To focus on the comparative
aspects of the proposals, rather than on the heuristic details that motivated the choices
of every author, Figure 3.4 summarizes the behavior of probability as a function of the
number of one-hop neighbors (i.e. node density).

Figure 3.4: Comparison of the value of probability as a function of the number of one-hop neighbors in

Gossip2 [16], BNR mode2 [13], Hyper Gossip [15], Adjusted Flooding [17], Rapid [12], Dynamic Probability

[14], 2P and 3P [18], AP algorithm [19].

The values of thresholds and/or constants involved in the curves depicted in Figure
3.4 are those identified by each author to give the best performance. In this regard, the
curves provide a fair comparison by selecting the probability functions that provided the
best results in each case.
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From Figure 3.4, it is easy to identify which proposals were based on thresholds since
their functions simply fall showing a staircase shape. A salient feature of the figure is
that, for most schemes, whenever a node has more than 10 one-hop neighbors, forwarding
probabilities fall below 0.5, as if the value of 10 neighbors could be generalized to represent
the case of a dense neighborhood. Another interesting coincidence in the figure is that
the curve for the BNR mode2 scheme follows very closely the trend of the Hyper Gossip
curve, even though these two curves have very different heuristic motivations behind their
calculations. Overall, despite the common trends observed in Figure 3.4, it can be stated
that no definite consensus about the function pi(ni) ∝ 1/ni has been achieved. However,
the curves suggest there may be a unifying criteria to find the best probability function,
perhaps based on network connectivity theory and not in extensive simulation studies.

3.1.2 Two-hop neighborhood

As mentioned above, when considering the two-hop neighborhood of nodes, the literature
suggests that nodes with more neighbors should be given higher priority, namely a higher
forwarding probability and shorter transmission delays. As shown in Figure 3.2, schemes
like LPR [20] and NCPR [21] support this idea. In LPR, only analytical results are
provided to indicate that the nodes of an ad hoc network can be easily organized into four
groups (levels), and so the nodes in each group should forward broadcast packets with
a predefined probability. By exchanging Hello packets, every node decides which group
it belongs to by comparing its number of neighbors with the number of neighbors of the
other nodes nearby. If a node has more neigbors than all other nodes in its neighborhood,
it forwards broadcast packets with the highest probability (the highest level with pf = 1,
referred to as definitely forwarding nodes); conversely, if a node has less neighbors than all
of the others in the one-hop neighborhood, it belongs to the lowest level (level four with
pf = 0, referred to as silent nodes). Nodes in the second level must have more neighbors
than half their nearby nodes (called forwarding nodes with high probability). Finally, the
third level includes the remaining nodes (called forwarding nodes with low probability).
Based on the analytical curves, the authors show that nodes in the highest and lowest
levels are very infrequent, and also that nodes in the second and third levels are evenly
distributed. Consequently, this organization of nodes is expected to form a spontaneous
backbone structure, similar to the backbone structures of the deterministic approaches,
but with a much simpler formation algorithm based on probability. One of the main
advantages of implementing this scheme is that the information required in Hello packets
only includes the number of nodes (not their identity, or their neighbors list) and so Hello
packets can be kept short, which is convenient in mobile scenarios due to the reduced
overhead.

In the NCPR scheme, broadcast packets must include a neighbor list so that a receiving
node knows which of its neighbors have not been covered. Then the proportion of uncov-
ered neighbors and the number of one-hop neighbors determine the value of forwarding
probability. Higer priority is given to nodes with more neighbors in common by assigning
lower delays to their transmissions. Although it can be stated that redundancy increases
because this scheme appears to be delivering more copies to the same nodes (i.e. nodes
in common), the authors argue that, in this way, more nodes can exploit the neighbor
knowledge to adjust their Uncovered Neighbor Sets. Considering the previous argument,
it would be interesting to have an analytical perspective of this idea, as in [20].
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Other studies that have considered two-hop information to compute the forwarding
probability of nodes have used the ratio between the number of one-hop neighbors and
the number of two-hop neighbors. For example, denoting ni(2h) as the number of two-hop
neighbors and ni as the number of one-hop neighbors of node i, simulation results are
shown in [22] using different formulas for the values of the forwarding probability (pf ):
either pi = ni/(ni + ni(2h)) or pi = ni(2h)/(ni + ni(2h)). In [23], the forwarding probability
values (pf ) vary by adding or subtracting a fraction of probability determined by the hop-
by-hop variations of a so called Expansion Metric (EM), which is equal to EM = ni(2h)/ni.
It is interesting to see that in [24] the value of pf is computed as the average of the different
estimations of pf found in [22]. This average is simply applied in the context of VANETs
and it produces good results even though there is no analytical rationale to support the
success of this approach.

On the other hand, proposals that require neighbors identities (e.g. nodes IDs such as
a list of IP or MAC addressess) can be further divided into schemes that simply compare
nodes IDs to verify the set of uncovered nodes and schemes that establish more elaborate
relations among neighbor nodes. Examples of ID verification for uncovered nodes include
[25] and [26] (scheme NCPF only). The more elaborate schemes found in [27] and [28]
establish very precise relations among nodes in which forwarding probabilities depend even
on the ID of the source node and the expected reliability associated to application-layer
requirements. In these studies, the interactions between the nodes and their two-hop
neighbors are tailored to suit the needs of WSN applications and therefore performance
may be affected when applying the same principles in other contexts. Such is the case of
Smart Gossip [28], which seems to perform very well in WSN, with limited mobility and
a reduced number of broadcast sources, but, when tested in a VANET scenario [29], [30],
major adjustments have to be incorporated to obtain acceptable performance.

In summary, the schemes that gather nodes IDs and perform more complex compar-
ison processes exhibit longer delays and can be significantly affected by mobility. From
the experience gathered in the work with two-hop neighbor information, it appears that
more analytical work is necessary to have a better insight into the proper use of two-hop
neighborhood information, especially to find the simplest scheme that will surely adapt to
a wider range of ad hoc scenarios.

3.1.3 Timeline of neighbor-based schemes

Figure 3.5 shows all neighbor-based studies (schemes) reported in [10] published in the
period 2001–2013. The studies at the bottom of the figure use the relation f(n) to ref-
fer to the schemes that used one-hop neighbors information to compute the forwarding
probability. The studies at the top of the figure use the relation f(2n) to represent the pro-
posal in which the forwarding probability was computed using information about two-hop
neighbors.

Some of the schemes compute the forwarding probability as a function of two variables.
In the case of one-hop schemes, the relation f(n, c) means that the one-hop neighbor
information is complemented by counting the number of copies of the same packet received
by the nodes. Specifically, nodes should always forward packets if there is no reception
of an additional copy, even if the probabilistic decision had initially prevented the node
from forwarding. In the case of two-hop neighbor-based schemes, the second variable, N ,
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depicts a simple case in which 10 nodes lie in the white area (as neighbors of the node in
the center of the white circle) and 6 nodes lie in the additional coverage area (gray area
also related to a central node). By simply dividing the number of nodes in the additional
coverage area into the number of nodes in the white area, a good approximation of the
0.61 fraction (discussed above) woud be possible. In this last case, it is very important to
notice how crucial a uniform distribution of the nodes is, otherwise the estimation of the
additional coverage area can be very inaccurate.

Figure 3.6: Fundamental principle of area-based probabilistic broadcast. Probability is proportional to

the additional coverage area (gray area), and such an area is known to be at most 0.61 the area of the

original circle, and 0.41 on average. Three common types of additional converage area estimation are

depicted.

What is common to all the studies categorized in this section is the use of a function
that relates the forwarding probability to the decision metrics (either the estimated dis-
tance or area). Regardless of the scheme, the values for maximum distance and maximum
additional area are known, namely r (the transmission range) and 0.61πr2. Hence, every
function used by the authors of area-based schemes to calculate the forwarding probability
of nodes spans the domain [0, 1], which represents the fraction of maximum uncovered area
or maximum distance from the source. Additionally, different authors [26], [13] agree on
using an exponent to shape the functions that yield pf and thus tailor their approaches to
suit particular needs. Figure 3.7 shows four examples of functions that yield a higher value
of probability when the expected additional area or distance from the source is larger. The
three monotone increasing functions represent the crucial role of the aforementioned ex-
ponent. Specifically, assuming k as an arbitrary exponent of any forwarding probability
function (i.e. pf as a function of additional area), it is easy to see that, for k > 1, signifi-
cantly higher probabilities should be assigned to the nodes located near the border of the
transmission range (r), i.e. nodes expected to cover more additional area. This positive
exponential shape is suggested by most authors to increase the coverage area on each hop,
finding shorter routes and reducing latency. However, authors also warn that, if k is too
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large, the strategy fails because almost all nodes forward with very low probability and
the small fraction of nodes right at the border, forwarding with high probability, are not
enough to maintain connectivity in the network.

In Figure 3.7, the decreasing curve represents the case in which probability is a function
of the number of packet copies received by an arbitrary node. This curve is equivalent to
the others because, as shown in [8] (also explained below), the expected additional area
shrinks as the number of packet copies grows, therefore the decreasing curve in 3.7 can be
seen as equivalent to the curve for k > 1 but with the x axis inverted.

Figure 3.7: Four functions that assign higher probability to higher values of the estimated area/distance.

The decreasing function represents the proposals where the area is estimated by the number of copies of

the same broadcast packet that nodes receive.

After describing the concepts that underpin the mainstream of area-based probabilistic
broadcast schemes, the following sub-sections are intended to classify specific studies ac-
cording to their central metric for area estimation (e.g. by estimating Euclidean distances,
the number of nodes in the transmission area, or the number of packet copies).

3.2.1 Area Estimation by Number of Nodes

The number of neighbors to estimate the additional coverage area was used in [13] (mode3
and mode4 ) exactly as depicted in Figure 3.6, namely pf was estimated as the ratio
between the number of nodes in the new coverage area and the number of nodes in the
source transmission area. Additionally, an exponent is applied to the calculated ratio,
like the exponent k presented above (called coefficinet of convexity by the authors). The
results in [13] are particularly valuable because the authors compare this strategy with a
neighbor-based strategy and also with a hybrid improvement to the area-based solution
that includes counting packet copies as a back-up mechanism to guarantee high reachability
of every broadcast packet.

An interesting approach that also uses estimation of the additional coverage area based
on the number of neighbors can be found in [31], where an upper bound on the uncovered
area is taken as the metric to decide the expected number of retrasnmissions within the
range of the transmitting node. Figure 3.8 shows the upper bound for the case of four
expected retransmissions (forwarding events). With such an estimation, the forwarding
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probability value (pf ) corresponds to the ratio between the number of expected retrans-
missions and the actual number of neighbors. Something peculiar in this approach is that
the forwarding probability is designated by the source and not decided by the forwarding
nodes, that is, in Figure 3.8, the node in the center decides the forwarding probability
of the receivers. Then, the forwarding probability value is carried in the header of the
broadcast packet and is computed by the preceeding node, not by the actual forwarding
node. This subtle difference with most schemes can also be observed in [16] (Gossip2 )
and it is not very common. It might be interesting to find out whether a designated prob-
ability is better than a self-decided probability to adapt the ad hoc broadcast process to
the varations in node density found in realistic ad hoc networks.

Figure 3.8: Proposed geometrical upperbound to determine the number of retransmissions and thus the

forwarding probability of nodes according to [31]. In this ideal example, the transmitting node (in the

center) determines that four nodes (on average) should forward the broadcast packet.

A more recent contribution to the estimation of uncovered areas based on the number
of nodes is presented in [32], in which a metric of similarity that is used in the statistical
analysis of data clustering and linear regressions, namely the Jaccard Distance between
two data vectors, was shown to be correlated to the Euclidean distance among nodes in
an ad hoc network. This idea fits perfectly with the proposals in [13] and represents
a motivation to use the Jaccard Distance in situations in which no location service is
available to estimate Euclidean distances.

3.2.2 Area Estimation by Distance Estimation

The studies that use estimations of the Euclidean distance to determine forwarding prob-
abilities can be further classified as traditional and routing-oriented. The traditional pro-
posals are those that follow the principles of area estimation presented in Figure 3.6. In
these proposals, authors also include exponential shape factors to compute the values of
pf , as explained in Figure 3.7. For example, in [26] and [33], exponential functions of the
form p = ek(d/r) are used to compute the value of pf as a function of distance, where
d/r corresponds to the fraction of the maximum distance (or maximum coverage area)
associated with consecutive forwarders. What makes these schemes different is the com-
plementary strategies added by authors to fulfill the concerns of each study. For example,
in [26], the probabilistic scheme is complemented by verification of covered nodes (as in the
neighbor-based schemes), whereas in [33] the scheme is complemented by using a different
function to compute pf depending on whether the forwarding decision is prompted by a
packet received for the first time or not. Also in [33], the authors use a deterministic delay
that prioritizes the transmissions of nodes separated by larger relative distances.
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Other more traditional proposals make use of a simple linear function to compute
pf as a function of distance (area) [34], [35]. In [34], the main contribution is to show
that cross-layer capabilities make it possible for probabilistic broadcast schemes to use
the received signal power information from the MAC layer to estimate relative distances
between nodes and to avoid the use of location services. In [35], the main contribution lies
in showing how serious the broadcast storm problem is in VANETs by using a case study
of a four-lane highway scenario. In the VANET case study, programmed delays also play
an important role (as in [33]).

The less traditional, routing-oriented schemes take advantage of the relative distances
between nodes to produce a directed broadcast wave that propagates in the direction of a
particular destination node. In [36], a location service is assumed (e.g. a GPS service) to
provide nodes with their coordinates. Nodes use distance information to decide whether
or not to participate in the broadcast process. Nodes will forward broadcast packets only
if they belong to the ellipse whose foci are the coordinates of the source and destination
nodes. Based on properties of ellipse construction, a node that receives routing packets
towards a particular destination checks its distance to both the source and destination
nodes, and if the sum of the distances is less than the ellipse factor, the node forwards
the packet with a high probability value (typically p = 0.7); otherwise, the node discards
the packet. This scheme keeps the broadcast process concentrated in an ellipsoidal region
between source and destination, saving additional efforts (in processing and forwarding)
for the nodes far away from the line between sender and receiver. Although the assumption
of nodes knowing the location of the destination is the most difficult to satisfy, the authors
argue that this scheme can be used in a WSN collecting data, a procedure in which the
destination node is often fixed. In this context, the main concern is the communication
between pairs of nodes, rather than network-wide dissemination.

Another routing-oriented probabilistic broadcast scheme that uses distance estimations
to make forwarding decisions can be found in [37], [38]. In these studies, the authors
take advantage of a metric called the hint of a node [39]. Such hints capture historical
information about the connectivity of nodes, which can be interpreted as a very good
estimation of how far from a point a particular node is. Specifically, all nodes use a
periodic beacon (i.e. short Hello packets) so that nearby nodes can record the presence
of each other wherever they go. Therefore, after a while, mobile nodes can estimate their
relative distance to a specific node using the records on the last time they heard a beacon
from that node as well as on the length of the last connectivity event. These records
(hints) are like an indicator of how quickly a node left certain area, and therefore serve
to estimate which nodes are farther away from a sender than other nodes. However, the
most appealing feature of the work in [37], [38] is not the use of hints per se, but the way
authors take advantage of the error rate of hint-based estimations to achieve a directional
broadcast wave towards the destination (as in [36]). The main idea is that nodes should
forward a routing packet only if they estimate that they are closer to the destination than
the sender. However, if the estimation is wrong (e.g. with probability q = 1 − p), this is
equivalent to having a probabilistic broadcast scheme forwarding packets with probability
p only in the direction of the receiver. Hence, if p is large enough, successful probabilistic
(and directed) broadcast will dominate the route finding process in the network. What is
interesting of this solution is that it poses the forwarding probability as an implicit feature
of the system (the error rate of distance estimations) and at the same time reduces the
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amount of packets that are unnecessarily propagated away from route paths without the
need for location systems in mobile scenarios.

In summary, distance estimation schemes are mostly dependent on location services
(with very few exceptions). This trend is justified by the lower delays in the overall
performance of broadcast, which is very useful in the context of VANETs. However, more
analytical studies might be convenient to reduce the excessive calibration efforts necessary
to adapt schemes to the specific application scenarios (e.g. WSN vs. VANET).

3.2.3 Area Estimation by counting copies

Counting the number of copies of broadcast packets has been the technique to prevent
broadcast propagation from dying out early due to an unlucky realization of the random
variables that drive forwarding decisions. Similar to the case of distance estimation, it
has been shown that the additional coverage area of a forwarding event is drastically
reduced as the number of packet copies heard by the forwarding node increases. Figure
3.9 shows a topological representation of the simulation results first introduced in [8], in
which the expected additional area covered by a potential transmitter (the gray node in
the figure) drops from 0.41%, when hearing one packet copy, to less than 5% (on average)
after receiving four copies of the broadcast packet.

Figure 3.9: Drastic reduction of the average additional coverage (avAC, shaded regions) when forwarding

a packet as a function of the number of listenable nodes from which copies of the same broadcast packet

can be received (black nodes): (a) receiving one copy, (b) receiving two copies (c) receiving three copies

(d) receiving four copies.

The seminal work in [16] (Gossip3 ) provided the basic counting scheme in which the
nodes that refrain from forwarding (due to a first realization of the random variable deter-
mined by pf ) should wait for a random period of time (known in the literature as Random
Assessment Delay or simply RAD). Upon expiration of RAD, the packet is forwarded
deterministically if no additional copies are received. A slightly different idea is proposed
in [40] (PCBR scheme), but unlike Gossip3, forwarding events are always delayed. This
subtle difference may lead to a better-informed forwarding decision but at the cost of
longer delays.

3.2.4 Timeline of Area-based schemes

Figure 3.10 shows a chronological diagram including the proposals that compute the for-
warding probability of nodes from area estimations published in the period 2002–2014
(proposals described in [10]). Mainly, the schemes focus on the estimations of the distance
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between nodes, d, to find the forwarding probability of nodes, that is p = f(d). The
notation f(·), showing d as the first variable (i.e. f(d,A, . . . )), indicates that the scheme
estimates the areas using an estimation of the distance. Conversely, the notation in which
A appears as the first variable (i.e. f(A, d, . . . )) denotes studies which attempt to estimate
areas using the coordinates of the nodes; so these schemes use estimation of the distances
based on coordinates (obtained from location services) in order to compute estimations of
the additional coverage area for finding the forwarding probability value.

Figure 3.10: Chronological diagram of the schemes that use estimations of the distance between nodes

and the additional coverage area of transmissions to find the forwarding probability.

Other variables used by area-based schemes include the Global Positioning Systems
(GPS) value, the distance estimated using the Received Signal Strength (RSS) indicator
of the data-link layer, the use of probability functions of distance between nodes (proDist
in the diagram), additional control packets (CtrPack) and Angle-of-Arrival (AoA) esti-
mations. Other additional variables to determine the forwarding probability values in
area-based schemes include the number of copies (c), two-hop (2n) and one-hop (n) neigh-
bor information as well as the total number of nodes in the network (N).

It is important to notice that the schemes at the top of Figure 3.10 use several variables
(hybrid schemes) to come up with the value of the forwarding probability, and most of these
schemes assume a GPS service. These are the schemes intended for vehicular networks
(VANETs). In vehicular networks, the battery of mobile nodes is not an issue and vehicles
are commonly assited by road infrastructure; hence, the proposals in this category tend
to use a lot of resources to provide robust broadcasting schemes at the cost of protocol
complexity. The schemes at the bottom of Figure 3.10 are a lot simpler and can be applied
to mobile and sensor networks.

Figure 3.11 shows the time diagram of the studies that focused on the copy-counting
principle only. Since these shcemes rely heavily on random delays, they have been asso-
ciated to larger values of end-to-end broadcast latency and so authors prefer not to use
them for vehicular networks. The notation f(c) means that the number of copies of a
broadcast packet is the only variable necessary for computing the forwarding probability.
The variable called Colors indicates that the concept of colors, from graph theory, was
used to produce communication graphs with different properties; meanwhile, the notation
noRAD represents a study in which there is no use of Random Assessment Delays despite
being a copy-counting scheme.
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Figure 3.11: Chronological diagram of area-based schemes that rely only on the number of packet copies

received by nodes.

As can be seen in Figures 3.10 and 3.11, area-based schemes based on distance esti-
mations constitute most of the proposals, mainly applied to vehicular networks.

3.3 Alternative probabilistic broadcast schemes

A small set of studies can be highlighted for their unusual, yet innovative way of ap-
proaching the problem of finding the value of the forwarding probability (pf ) for nodes
during the ad hoc broadcast process. As pointed out in Figure 3.1, alternative proposals
bring ideas from Game Theory, Artificial Intelligence optimization, energy conservation,
the use of Directional Antennas, and broadcast restarting processes (i.e. retrasnmissions)
to solve the problems of redundancy and acceptable reachability levels that pertain to ad
hoc probabilistic broadcast.

In [41], Game Theory is used to derive the function that yields pf . In this work the au-
thors combine the concept of Nash Equilibrium with a recommended value of the minimum
node degree that guarantees network connectivity in order to derive the optimal values for
the Gain Factor of a game (a game played among the neighbors of a broadcast transmit-
ter/forwarder upon receiving a broadcast packet). In this regard, the problem translates
from finding the optimal value of pf to finding the optimal Gain Factor. Nonetheless,
the most interesting contribution of this paper is that, by using a completely different
paradigm (Game Theory on its own), the authors produce very flexible functions to com-
pute pf that resemble the functions depicted in Figure 3.4 (i.e. pf is the inverse to the
number of one-hop neigbors), yet with an asymptotic behavior that preserves connectiv-
ity. However, the paper focuses only on the routing capabilities of the Game Theoretical
scheme and not as much on the resulting broadcast performance per se. Of course, great
advantages are observed for very dense networks (as in the other schemes), hence it would
be interesting to study this proposal in more detail and look at its broadcasting properties
alone, perhaps in sparser networks or including node mobility.

In [42] and [43], Genetic Algorithms are applied to specific ad hoc scenarios. The idea is
to monitor the output of the simulation environment (many times) to obtain its statistical
behavior. The output of each set of simulation replications is mapped to objective functions
for optimization. Objective functions must be maximized/minimized according to the
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need of the specific target application. For example, in [42], three conflicting objectives,
namely the Number of Collisions, the Propagation Time and the Number of Transmissions
during the simulation are optimized by adjusting input variables such as the forwarding
probability of nodes (pf ), the number of times each node retransmits a packet, the delay
between two successive retransmissions, and the TTL of broadcast packets. In this work,
the target scenarios correspond to five VANET situations ranging from cars traveling in
a very sparse rural road to dense urban traffic. The work in [43] is an equivalent version
of [42], but using different evoutionary algorithms and applied to a completely different
scenario, namely a disaster zone divided into specific context-based areas. The three
conflicting objectives for optimization in this work are very similar to those in [42], but
the variables adjusted to produce optimal behavior are different, namely a dissimilarity
metric (the Jaccard Distance discussed in Section 3.2.1), the exponent on the function
that yields pf (as explained in Section 3.2), and a coefficient that controls the impact
of the dissimilarity metric on the Random Assessment Delay of broadcast packets. The
most remarkable contribution of these studies is that the authors offer a methodology for
decision makers to conveniently obtain a tailored performance of an ad hoc network in
very specific target scenarios based on optimal broadcast performance.

Another alternative approach to probabilistic broadcast can be found in [7], where the
authors provide a very accurate mapping of the broadcast process with onmidirectional
and directional antennas to the site and bond percolation models [4], respectively. What is
unique about this work is that there is a clear motivation to reduce the number of duplicate
packets received (not only sent) by nodes, while achieving the same broadcast coverage
(Reachability). This work offers a wide range of experiments on how the forwarding prob-
ability value changes according to the specific geometrical features of node placement (e.g.
Square, Triangular and Hexagonal grids are compared to their theoretically expected be-
havior and experiments are extended to scenarios with random node placement). The
authors combine directional antennas with counter-based, neighbor-based and hybrid ap-
proaches and agree that their directional-antenna schemes may not work with mobile
nodes.

More alternative work on probabilistic broadcast has included the level of remain-
ing energy in nodes to adjust their forwarding probability [44]. The scheme is basically
a distance-based scheme aided by a counter-based mechanism to prevent network par-
titioning (see Section 3.2.3). Although in this work the authors explicitly integrate the
conditions under which a node refrains from forwarding based on its remaining energy
and a local estimation of the average remaining energy in its neighborhood, the idea of
including energy constraints in computing pf is not exclusive of this study. For example,
the authors in [26] had already pointed out that the exponent of the functions for com-
puting pf (shape factor in Section 3.2) could be modified by a constant (called passivity
parameter) so that, as part of the broadcast protocol, nodes with lower levels of energy
could self-adjust their functions to yield lower forwarding probability values and preserve
their remaining energy. However, the proposal in [44] is valuable to extend the lifetime of
WSNs.

Finally, the authors in [45] offer an analysis of the impact of retransmitting the same
broadcast packet several times (broadcast restart) as an alternative to overcome the un-
desirable, but accepted, reachability limitations of probabilistic broadcast (i.e. unfeasible
100% reachability level). The study focuses on adjusting the retransmission timeout to
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3.4 Recent Studies

Since probabilistic broadcasting is an active research area, several studies have been pub-
lished in the period 2014 – 2019. Recent publications address topics such as congestion in
the wireless channel, routing, energy conservation, evaluation in VANET scenarios, and
analytical modeling. This section summarizes the details of every proposal.

3.4.1 Congestion Awareness in Studies

In this set of studies, authors show how the conditions of the wireless channel (e.g. noise
and co-channel interference) affect the performance of probabilistic broadcasting schemes.

In [46], authors combine a neighbor-based scheme and a copy-counting scheme. Three
values of the forwarding probability are used by nodes depending on the number of heigh-
bors (as in [18]). Additionally, nodes use RAD (Random Assessment Delay) to count
packet copies. If the number of copies is less than a threshold, a packet must be forwarded
regardless of the probabilistic forwarding decision. Congestion is considered by adapting
the duration of RAD as a function of the average number of packets received per second
at each node. Although authors claim that the counting threshold depends on the number
of neighbors, the relation between these two variables is not clearly stated.

A study dedicated to the analysis of the effects of congestion is presented in [47, 48].
The authors propose the use of mediation analysis, a technique used in social sciences,
to evaluate the effects of congestion (the mediator variable) in the relationship between
a dependent variable (such as reachability or the packet delivery ratio on the application
layer) and an independent variable (the forwarding probability, pf ). The results indicate
that the values of pf that increase rechability have a negative impact on application
layer metrics. Therefore, reductions in reachability result in better performance on the
application layer as congestion increases.

The number of one-hop neighbors and the resulting channel conditions, such as ther-
mal noise and co-channel interference, are considered in [49] to determine the forwarding
probablity of nodes. Based on previous information about the Packet Error Rate (PER),
nodes that receive a broadcast packet with no error under harsh conditions should for-
ward the packet with high probability since it is likely that other forwarders received a
corrupted packet. Likewise, when noise and interference are low, forwarding probability
values should decrease given that many forwarders received the packet successfully and
are ready to forward it. This scheme has been evaluated [50] in the context of Low Rate
WSN (LR-WSN) for static nodes using the Zigbee protocol suite. The analysis of thermal
noise and co-channel interference is also used in [51] to show that noise and interference
act as natural limiters of channel congestion. When the value of pf increases arbitrarily,
the total number of broadcast packets in the network does not increase as much since the
resulting increase in interference leads to higher rates of packet loss.

Packet Error Rate (PER) is also considered in [52] to compute the forwarding proba-
bility of broadcast packets. In this study, the value of PER is associated to the distance
between nodes on a per-hop basis. To avoid congestion of the wireless channel in the
network, the forwarding probability decreases with the number of hops. This scheme is
justified for VANET scenarios since the importance of traffic information for vehicles is
dependent on how far the recipient is from the source.
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A co-channel interference analysis is provided in [53] to show that the geometry of
node layout has a considerable impact on reachability. The analysis indicates that nodes
placed at random facilitate the propagation of packets by providing more stable values of
average Signal to Interference Ratio, which results in higher reachability levels than those
obtained with node layouts that resemble grids.

3.4.2 Routing-oriented Studies

The studies considered in this section focus on the route-finding functionality of broadcast
and relax reachability requirements. These studies stem from the idea that a route to
a destination of a data packet can be found with no need for perfect dissemination of
route request packets. What is important is the choice of stable routes once they are
found. Most of these proposals take the two-hop neighbor-based scheme proposed in [21]
as benchmark.

In [54], the forwarding probability is computed as the product of a link stability metric
(the ratio between the estimated connection time and the residual time if a link) and the
expected neighbor coverage. The analysis is based on finding the subset of neighbors
with probability of communicating higher than a threshold, a subset called Predictable
Rendezvous Nodes (PRN). The links established between a node and its PRN set are
considered as stable links, resulting in routes that last longer and require less broadcasting
of route request messages.

Routing is improved in [55] by applying Particle Swarm Optimization (PSO). As the
scheme proposed in [21] (NCPR scheme) is being used to disseminate route request packets,
an iterative process based on PSO selects optimal routes. The results show a reduction in
routing overhead and end-to-end delay .

A combination of the Load Balanced Routing (LBR) protocol (an existing AODV-
based protocol) and NCPR [21] is used in [56] to reduce routing overhead. Using a metric
called Cumulative Active Path Count (CAPC – average number of active routes per node
in the path), which is piggy-backed in route request packets, destination nodes take the
decision about which path is to be selected for data transmission (the path with lowest
CAPC). The routing overhead of this proposal is almost 30% lower than that of the original
NCPR.

A cross-layer scheme is proposed in [57] to choose stable routes based on the values of
the RSS indicator of the MAC layer. The forwarding probability is proportional to the
RSS values. The authors consider that interference is not necessary for the analysis since
its effects are implicitly reduced by selecting the links that offer better signal strength.

Similar to [52], the study in [58] proposes to reduce the forwarding probability as the
distance (in hops) from the broadcast source increases. The routing-wise motivation of
this scheme is the following: as route request packets propagate farther from the source,
covering a larger fraction of the network, it is more likely that the destination was already
found; then, route-finding packets become less necessary with distance. Inspired in wave
equations for signal strength attenuation, the computation of the forwarding probability
also considers the local density of neighbors on a per-hop basis, avoiding the propagation
of packets from dying out early.
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3.4.3 Studies on Energy Conservation

Studies that include energy conservation in their probabilistic broadcasting schemes use
hybrid schemes (e.g. neighbor-based schemes combined with counter-based schemes). In
these proposals the remaining energy in nodes affects the values of the forwarding proba-
bility.

Simulation tests are conducted in [59] to evaluate the energy savings in MANET when
using different values of the forwarding probability. Nodes use AODV as their routing
protocol and move according to the Random Way Point model. Energy consumption is
evaluated as a function of the forwarding probability and the speed of nodes.

In [60], energy constraints are added to the NCPR scheme [21]. Apart from the for-
warding probability, two conditions must be met to forward a broadcast packet: there
must be sufficient energy (battery lifetime) in the node, and node density around the for-
warded must exceed a specific threshold. This scheme is also evaluated using AODV as
the routing protocol and the Random Way Point moblity model.

The hybrid scheme porposed in [61] combines the pure-probabilistic with the distance-
based and counter-based schemes (integrated in AODV). Probabilistic broadcast is applied
when a node receives the packet from a forwarder located closer than a distance threshold
(otherwise pf = 1). The objective is to prioritize the transmissions of nodes with larger
inter-node distance. The number of packet copies is used as the exponent of the forwarding
probability value obtain from the distance estimation. Therfore, the forwarding probability
decreases rapidly with the number of packet copies.

The copy-counting technique is used in [62] to extend network lifetime. Nodes will drop
packets when the number of copies is equal to their counting threshold. Nodes with more
energy are called Dependable Nodes (DN) and use larger values on their copy-counting
threshold. When the copy counter is less than the threshold, pf is high, otherwise pf is low.
The energy level that determines the increase in the counting threshold of nodes is given by
the average energy of the path form by previous forwarders. The energy level of a path is an
average energy value computed by piggy-backing the values of the energy of nodes in route
request packets. This scheme is modified in [63] to assign short delays with low counting
thresholds to Dependable Nodes. In the new version of the broadcasting scheme, the values
of pf are recomputed during the delay using pf = p/C, where C is the number of packet
copies and p is the value of probability assigned to Dependable Nodes. Alternatively, the
same authors proposed an energy-aware probabilistic broadcasting scheme that employs
a Fuzzy Logic algorithm to compute pf [64]. The membership functions and the set of
rules are obtained from the number of 1-hop neighbors, the bandwidth available and the
remaining energy at each node.

Probabilistic broadcast has also been integrated into a reactive routing protocol called
DSR (Dynamic Source Routing) to balance the energy consumption of nodes [65]. In
the route discovery process, intermediate nodes receive reply packets from neighbors with
information about energy so that routes are established using the nodes that meet specific
energy criteria, namely the nodes with an energy level near the mean remaining energy of
their neighbors. The probabilistic scheme chosen for this study was NCPR [21].
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3.4.4 Schemes applied to VANETs

In the context of VANETs, probabilistic broadcasting has been evaluated mainly in sce-
narios that resemble a highway. Most studies compare their proposals to distance-based
schemes such as weighted p-persistent [35], nth-powered probabilistic broadcast [66] and
Irresponsible Forwarding [67–69]. Only ocasionally, scenarios based on city roads are used.
The main idea is to assess the effectiveness of probabilistic broadcasting to disseminate
emergency messages within a target area. As in most proposals for VANETs, the following
schemes assumed that Hello packets and beaconing messages maintain updated neighbor
information, such as the ID, the locations, the speed of nodes and other data necessary
for computing the forwarding probability.

By considering the maximum speed of vehicles in a highway, the forwarding probablity
in [70] is computed as the ratio of the node’s speed and the maximum speed (i.e. pf =
V/V max). This scheme was evaluated assuming an error-free wireless channel with no
initial contention phase, and the scenario corresponds to a 3-line highway. The forwarding
probability is proportional to the speed of vehicles since speed is proportional to inter-
vehicle distance.

The studies in [71, 72] also use the speed of vehicles to compute the forwarding prob-
ability. By identifying node density as the factor that determines the critical value of
the forwarding probability [1, 6], the study presents a linear regression model that relates
the varying vehicle density in highways (in Los Angeles) with the speed of vehicles. As a
result, the forwarding probability of vehicles is pf = 0.22v + 0.042.

A hybrid scheme for VANETs is introduced in [73], combining the distance-based and
neighbor-based approach. Two values of the forwarding probability (i.e. pf = phigh and
pf = plow) are assigned to the vehicles that meet specific conditions. To forward packets
with pf = plow, vehicles must be close to the previous forwarder and they must have more
neighbors than the average degree of the network. Vehicles at a distance larger than half
the transmission range, and with less neighbors than the average degree, should forward
packets with probability pf = phigh. Vehicles that do not meet these conditions must drop
the broadcast packets.

Several existing distance-based schemes [35,66,67] are adapted in [74] so that the use
of Euclidean distances is avoided. Stemming from [32], it is shown that the similarity
in the set of neighbors of two nodes is correlated to their Euclidean distance. Then, the
use of similarity metrics between pairs of nodes can substitute the use of estimations
of Euclidean distances, which can be misleading. Existinng similarity metrics such as
Jaccard, Dice, Kulczynsky, Folwkes-Mallows and Sokal-Sneath are used in the study. The
use of similarity metrics is extended in [75] to produce new metrics obtained by applying
genetic programming (GP). The new metric has a higher correlation with the Euclidean
distance than the existing similarity metrics. The adapted schemes in [75] were evaluated
using realistic VANET scenarios based on real city maps, whereas the evaluation of the
schemes in [74] was conducted using the Manhattan mobility model.

The scheme proposed in [67–69] is evaluated in three urban scenarios [76], namely
scenarios that resemble pedestrian mobility, pedestrian–vehicular mobility, and vehicular
mobility. The evaluation is conducted from a routing perspective (focus on delay and
throughput) by integrating the broadcasting scheme into the AODV protocol.
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Two porposals for VANET have combined probabilistic broadcasting schemes with
clustering [77,78]. In [77], intermediate nodes use probabilistic broadcasting when requir-
ing more than one hop to reach a cluster head. Nodes that are within the transmission
range of cluster heads do not forward packets. The metric proposed to choose cluster
heads is the product of the probability of successful transmission and the expected link
connection time. In this scheme the traveling direction of vehicles is considered to increase
link stablity so that links are formed between cluster heads traveling in the same direction.
The forwarding probability is set to the inverse of the square of the number of packet copies
(c): pf = 2/c2; a counter-based scheme. Conversely, in [78], cluster heads use probabilis-
tic broadcasting. Cluster heads receiving the same transmission of a broadcast packet are
numbered depending on their distance from the transmitter. The forwarding probability
is computed based on the numbers assigned to cluster heads so that the farthest cluster
head is always assigned the highest probability value regardless of its actual Euclidean
distance. This makes the scheme robust against variability in node density and channel
conditions. In both schemes [77,78] there is a concern about using stable links and cluster
heads re-transmit packets several times to ensure reliability.

Similar to [41], a probabilistic broadcasting scheme based on Game Theory is proposed
in [79] to determine the forwarding probability of nodes in VANETs. Unlike [41], this study
uses the distance between nodes (instead of the number of neighbors and connectivity
reasoning) to determine the cost and gain functions in the payoff matrix of the game.
The results of the study focus on reducing redundancy (saved rebroadcast) and delay; no
attention is devoted to reachability results.

3.4.5 Studies with Analytical Models

As ponted out in [10], analytical models for probabilistic broadcasting schemes are scarce in
the literature. Therefore, the following studies are valuable to gain a better understanding
of both previous and future proposals in the field.

The neighbor-based, self-pruning scheme in [21] is mathematically analyzed in [80,81]
to quantify the forwarding probability (pf ) of a node located at a certain distance from
its previous forwarder. The theoretical expression found for pf requires nodes to know
the distance to the previous forwarder, the average node density of the network and the
transmission range. This computation of pf is evaluated by simulation. Therefore, by using
mathemaical modeling, the original neighbor-based scheme in [21] can be implemented as
a distance-based scheme. Simulations are conducted in C/C++ assuming an ideal MAC
layer. The authors continue working on the analysis of their proposal to include a MAC
layer such as the IEEE 802.11.

A remarkable proposal to improve the reachability of probabilistic broadcasting schemes
makes use of multiple transmissions and coding-based redundancy [82]. Redundancy is
introduced in the form of coded packets; that is, the source node has k broadcast packets
to disseminate, which are encoded into n ≥ k coded packets, such that any k of these
coded packets are sufficient to recover the original k data packets. The authors show
the benefit in terms of a reduction in the overall number of transmissions needed for a
successful dissemination of the original k packets. Although pf can always decrease as n
increases (reducing the set of forwarders per packet), arbitrarily large values of n counter-
balance the benefit of coding by requiring more packets to be transmitted. Therefore,
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there is an optimal value of n that reduces the total number of packets transmitted in the
network over time. Furthermore, the study points out that the success of packet coding
in probabilistic broadcasting depends on the underlying network topology. With highly
connected topologies (grids and random networks), multi-path diversity allows succesful
dissemination. This idea is supported by analysing and simulating a network with a tree
topology, in which the proposal failed.

3.4.6 Other Studies

The counter-based scheme is improved in [83] by comparing the inter-arrival time of packet
copies with the interval in which Random Assessment Delays (RAD) are defined. A
counter keeps track of the number of inter-arrival time values that are larger and smaller
than RAD/2. At the end of RAD, a node that recorded more time values smaller than
RAD/2 infers that it is in a dense area and chooses pf randomly in the interval [0, 0.5].
Otherwise, the node infers that it is in a sparse area and pf takes a random value in
[0.5, 1]. Although this scheme relies on random delays, the actual value of RAD used in
the simulations is not reported.

Another improvement to counter-based schemes is proposed in [84]. The scheme called
GOSSIP 3 [6] is studied and its parameters are modified based on curve fitting techniques.
Specifically, the value of the forwarding probability, which was constant in the original
scheme, is now computed using a weibull function that was fitted from node-density data
obtained after extensive simulation. Also, the counting threshold of GOSSIP 3 is modified
according to node-density. It is worth mentioning that the authors use a technique based
on the packet reception rate, seen by a node from its different neighbors, to estimate node
density so that the node-density information required by the proposal does not imply the
use of hello messages.

Regarding neighbor-based schemes, recent schemes continue to explore different func-
tions to establish a relation between node density and the forwarding probability. The
principle is still the same, namely assigning lower values of pf to nodes in dense areas
and increase the values of pf for nodes in sparse areas. In [85], an exponential function
of the form pf = 1 − ec is used, where c is the fraction of uncovered neighbours (i.e.
neighbors of the current forwarder that are not in the list of neighbors of the previous
forwarder). In [86], however, a non-linear, square-root function is used to establish the
relation between the number of neighbors and the forwarding probability. The authors
define a metric called drop factor (DF) wich is inversely proportional to the forwarding
probability. The results show that the function defined for DF (i.e. an indirect calculation
of pf ) reduces routing overhead, delay, and increases the data packet delivery ratio when
comparing these metrics to the original version of AODV and a modified version of AODV
based on NCPR [21] in dense networks.

As in [74, 75] for VANETs, in [87], similarity metrics are incorporated into existing
schemes [13, 35, 67]. However, the adapted schemes are now evaluated in a testbed with
more than 50 static nodes. In this study, the p-persistence scheme [35] based on similarity
metrics showed the best results, (i.e. high reachability and reduced number of redundant
packets).
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Finally, probabilistic broadcasting has been applied to Autonomous Underwater Ve-
hicle (AUV) networks [88]. Although probabilistic broadcasting performs well under the
conditions of the underwater acoustic channel (low data rate, limited bandwidth, and
large propagation delay), recent studies have shown that simple heuristics outperform
probabilistic schemes when considering sparse AUV networks with non-isotropic wave
propagation patterns [89].

3.5 Tradeoffs and Issues
This chapter ends by elaborating on the tradeoffs presented in Figure 3.1. Thus, a sum-
mary of the challenges that have been identified as common issues in the field, regardless
of the scheme, is provided.

⋆ Reachability vs. Savings Most results sections in the literature measure the saved
rebroadcast and reachability of probabilistic broadcast schemes by increasing node
density. Moreover, teoretical analysis, with the assumption of ideal packet delivery,
indicates that pf should decrease monotonically as node density increases. However,
studies rarely evaluate reachability in sparse networks, and when simulating models
with realistic assumptions (e.g. 802.11 MAC layer), reachabilty is maintained with
pf showing a lower-bound at which no further savings are possible despite increasing
node density. More studies are needed to evaluate the limits of saved rebroadcast
with sustained reachability, especially in sparse networks with realistic wireless chan-
nel assumptions.

⋆ Overhead vs. Savings Most proposals have proved to be very effective at reducing the
number of forwarded packets compared to flooding. However, from the assumptions
made by the proposed schemes (e.g. ideal MAC layer, neighbor information avail-
ability, location services in nodes), it is difficult to know how much true overhead
would be generated in a real implementation. In this regard, it is possible that the
overhead of some schemes is comparable with the reduction in forwarded packets.
Quantifying the true overhead of probabilistic broadcast protocols would constitute
an interesting research endeavour, especially for neighbor-based schemes.

⋆ Information quality vs. Overhead It is necessary to devote specific efforts to specific
target scenarios (e.g. WSN, VANET, MANET). The evidence suggests that the
scenarios demanding higher quality information are those found in VANETs while
in WSN energy is a priority. In VANETs, for example, high quality information
(e.g. broadcast packets carrying the location of nodes or a list of neighbors IDs) is
worth a reduction in latency. In WSN, latency is not as important as reducing the
overhead of protocols. Therefore, each setting (e.g. WSN, VANET, MANET) can
have its own overhead limits.

⋆ Route Length vs. Route Stability Aiming at covering the network area with a re-
duced number of forwarding events, area-based schemes prioritize the transmissions
of nodes with the largest inter-node distance (i.e. higher values of pf and shorter
delays). However, relying on the most distant nodes to forward packets at every hop
may result in short-lived or unstable propagation paths, especially when considering
node mobility or realistic wireless channels. Since broadcast is the mechanism that
provides routing protocols with forwarding paths, the routes relying on distant nodes
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Chapter

FOUR

Geometric Aspects of Probabilistic Broadcasting in Ad Hoc
Networks

This chapter studies pure probabilistic broadcast in ad hoc networks under a variety of
topological scenarios, offering a comparison of the performance of broadcast in lattice-like
geometric node layouts (e.g. nodes arranged in triangular, square and hexagonal grids)
with that in randomly placed nodes. Results suggest that the geometry of the position of
nodes has an impact on the success of probabilistic broadcast techniques. Specifically, net-
works with randomly-placed nodes exhibit a near-ideal (collision-free) behavior, whereas
the grid layouts are extremely sensitive to the impact of collisions and interference. To ac-
count for the unreliable behavior of broadcast under certain node-distribution geometries,
this chapter provides an analysis of Signal to Interference ratio for ad hoc networks.

4.1 Introduction

In wireless ad hoc networks, nodes have no knowledge about the network topology, which
makes broadcasting a fundamental building block for topology discovery and other network
functions. Existing standards for broadcasting in ad hoc networks rely on a broadcast
technique called Flooding [9]. In Flooding, every node receiving a broadcast message for
the first time simply retransmits a copy of the message; under reliable (or almost ideal)
channel conditions, this guarantees that messages reach all nodes in the network (i.e.
100% reachability). However, it has been shown that, in realistic wireless channels (i.e.
when interference, delays, transmission errors, noise and radio-wave propagation features
are considered), Flooding may not perform well [8], allowing the transmission of many
redundant messages, leading to energy waste and channel contention.

To discuss the feasibility of using other protocols instead of Flooding, various broadcast-
ing techniques, based on deterministic and probabilistic principles, have been assessed [90].
Despite producing minimum redundancy of broadcast messages, deterministic techniques
depend on collecting topological information (i.e. transmitting additional control mes-
sages) and they increase the complexity of the broadcast process, which can be more
expensive than Flooding in dynamic topologies [91] and large-scale networks [92]. Recent
studies [10] have illustrated the advantages of forwarding broadcast messages at random
to reduce redundancy and produce low overhead. This is known as probabilistic broadcast-
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ing and consists of assigning probability threshold values (i.e. the so called forwarding
probability) to individual nodes to decide whether a copy of the message received should
be forwarded or not.

Performance evaluations of the simplest probabilistic protocols, conducted in test-
beds [45,93–95], confirm the advantages of probabilistic broadcasting. However, the results
suggest limitations in the average reachability of transmitted messages, as well as the
dependence of the reachability of transmitted messages on the position of the broadcasting
source; these issues are not anticipated by existing models of probabilistic broadcasting.

Most probabilistic broadcasting models assume an ideal wireless channel [1, 96–98],
and only a few models consider a given value for the probability of unsuccessful message
reception [12,45]; little attention has yet been given to the incorporation of the causes of
unsuccessful reception (as in [99]) in these probabilistic broadcasting models.

Moreover, in most studies (both in test-beds or based on simulation) [10], the limitation
in reachability of transmitted messages and the efficiency of probabilistic broadcasting
protocols under realistic conditions are associated with the calculation of the forwarding
probability value (i.e. the strategy used to avoid the redundancy of Flooding). Performance
limitations are rarely associated with other factors, such as the position of nodes in the
network.

The present study was designed to help understand the causes of the limitations in the
reachability of transmitted messages, especially the impact of the position of nodes, while
taking into consideration realistic assumptions about channel conditions.

In line with this, Signal to Interference Ratio (S/I), which has been successfully applied
to the design of Cellular Networks [100], has been employed in this chapter to help analyze
the impact of the geometry of node distribution on the protocol performance. Similar
to [101] for improving network lifetime in large-scale sensor networks, the geometrical
features of network layouts are identified here as a factor that significantly affects the
success of probabilistic broadcasting protocols in static networks with a few thousand
nodes. Simulation results indicate that networks with randomly-placed nodes exhibit a
near-optimum (near collision-free) behavior, while grid layouts are extremely sensitive to
the impact of node interference.

The contribution of this chapter is twofold:

❼ The incorporation of realistic assumptions (i.e. S/I model) in the analysis of the
causes of the limitations in reachability of transmitted messages in probabilistic
broadcasting schemes.

❼ An analysis of the impact of the geometry of network layouts on the reachability of
probabilistic broadcasting protocols, as well as the greater strength of the influence
of the node geometry in comparison to the impact of the position of the source node.

The present analysis is important for an understanding of applications involving hun-
dreds of static nodes in which the geometry of network layout is a key factor in network
performance. Results are relevant for grid-like geometries [102–105], for random geome-
tries [106–108], and, in general, for terrestrial static sensor networks and environmental
applications [109,110].

The rest of this chapter is organized as follows. Section 4.3 summarizes previous
evaluations of existing probabilistic broadcasting techniques. Section 4.4 introduces a
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Signal to Interference analysis that illustrates the significant impact of node placement
distributions on the reachability of ad hoc broadcasting. Section 4.5 presents two sets of
simulation results, and finally, Section 4.6 concludes the chapter presenting a summary of
the most relevant findings of the study.

4.2 Table of Chapter Variables

Table 4.1 summarizes and describes the variables used in this chapter.

Variable Description

r: Transmission radius of nodes. It is assumed to be equal for all nodes.

S/I: Signal to Interference ratio.

d: Euclidean distance. Regardless of the subscript (e.g. d1), this variable always

refers to an Euclidean distance between nodes

Pr: Power of the signal received by nodes (in Watts).

Pt: Power of the signal transmitted by nodes (in Watts).

Gt: Transmitting antenna gain.

Gr: Receiving antenna gain.

hr: Height of the receiving antenna above ground level.

ht: Height of the transmitting antenna above ground level.

I{X<p}: Indicator function with parameter p; I = 1 when X < p, X = 0 otherwise.

n: Number of nodes in the previous tier.

k: Number of hops for which a packet is forwarded with probability p = 1

regadless of the broadcasting scheme; k = 4 in this chapter.

Table 4.1: Variables used in Chapter 4.

4.3 Related Work

The purpose of the present chapter is to discuss some previously unexplored causes for
failure of models proposed for probabilistic broadcasting protocols which assume the ex-
istence of an ideal channel. This section focuses on a set of studies that have already
assessed the performance of probabilistic ad hoc broadcasting schemes and have observed
existing models lacking precision under realistic settings using both simulation and exper-
imentation in testbeds.

One of the first studies addressing the success of probabilistic broadcasting [111] identi-
fied that the network size and node degree impact on the avoidance of the phase transition
phenomenon (i.e. a sudden transition from reaching less than 20% of the nodes to over 90%
of the nodes with a small change in the forwarding probability). However, the collision-
prone conditions were only implemented for randomly placed nodes. Grid scenarios were
employed primarily to show the absence of the phase transition. Despite the inclusion of a
moderate number of nodes in the random-placement scenarios, the authors clearly showed
that, under realistic MAC-layer conditions, forwarding probability values should be care-
fully chosen so as to obtain the most from the pure-probabilistic broadcasting principle.
Specifically, it was shown that, in more realistic, collision-prone environments, there is a
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maximum broadcasting success ratio when the probability of forwarding a message is as
low as p = 0.1. As the probability increases, a larger number of collisions occur and, as a
consequence, very few nodes can receive broadcast messages. The experiments designed
to assess the effects of packet collisions in [111] were conducted using various simultane-
ous broadcasting sources, which makes it difficult to identify whether or not most of the
collisions occurred as a consequence of self-interference of a message with its own copies
or as a consequence of random collision of different messages.

More recent studies [45] introduced a retry-based scheme to improve reachability of
the broadcast messages. By using both testbeds and simulation, the authors corroborated
that interference and collisions must be included in probabilistic broadcasting models
to allow for accurate predictions. The authors even proposed mapping between a more
elaborate percolation model [112] and their retry-based scheme that could be used in future
work to capture the behavior of the experiments adequately. Again, the conditions for
inducing a high-interference environment were oriented by the use of many simultaneous
broadcast sources. The interference caused by this large number of simultaneous sources
was only tackled experimentally by adjusting the frequency of retries and little attention
was devoted to the possibility of a broadcast message interfering with its own copies. Since
the diameter of the network allowed good reachability with just a few hops, the number
of nodes causing interference with the same copy of a broadcast message decreased very
rapidly with the distance (in hops) from the broadcasting source.

The same authors of [45] have also reported empirical results suggesting that special
attention should be given to the effects of channel interference on the expected behavior
of probabilistic broadcasting [95], especially when multiple broadcasting sources trans-
mit simultaneously. Evidence from the test-bed experiments indicated that probabilistic
broadcasting techniques do not avoid the collision of broadcast messages and excessive
overhead. This observation was supported by the fact that certain reachability limits
could not be surpassed during the evaluation in the test-bed. These findings are consis-
tent with more recent studies [113], in which the performance of a completely different
family of probabilistic broadcasting schemes (based on dissimilarity metrics and Euclidean
distances) also evinced the reachability limits associated with the same test-bed.

What is common to all of the studies described here is that the limited reachability and
efficiency of probabilistic broadcasting protocols under realistic conditions are associated to
the way the calculation of the forwarding probability is carried out (i.e. the strategy used to
avoid the redundancy of Flooding); and performance limitations are rarely associated with
the geometrical properties of node placement in the network. Since little attention has been
devoted to addressing the impact of the positions of nodes and the incorporation of realistic
channel conditions in models, the following sections discuss the advantages of integrating
the expected geometrical properties of network-wide node placement distributions into the
assessment of probabilistic broadcasting techniques.
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4.4 Impact of Geometrical Node Distribution on Probabilis-
tic Broadcast

The analysis in this section shows that the geometrical distribution of nodes is crucial for
the success of the delivery of messages in ad hoc networks with static nodes employing a
probabilistic broadcasting protocol. It also shows the difference in broadcasting conditions
existing in grid layouts and those in a random layout. The assumption of nodes being static
makes possible the evaluation of the impact of the geometry of nodes on broadcasting,
while excluding potential effects due to node mobility. Moreover, the present analysis can
be considered as a first step towards the understanding of the impact of node geometry
resulting from mobility on broadcasting, since the random layout used in this chapter
captures the asymptotic behavior of some mobility models (an example can be found
in [114]; the interested reader can also refer to [115] for details on mobility models that
converge to asymptotic node spatial distributions).

The same principles in [100] for the analysis of co-channel interference in Cellular Tele-
phone Systems are employed for the study of variation in the Signal to Interference Ratio
(S/I) as a function of the position of nodes with respect to the broadcasting source. The
calculations of S/I serve to evaluate the impact of self-interference of a broadcast message
with its own copies in a single broadcasting wave, which is independent of collisions caused
by high-rate traffic patterns. Specifically, the values of S/I in two scenarios are calculated
and compared, the first scenario corresponding to a regular node layout of degree 4 (i.e.
square grid), and the second to a layout where nodes are placed at random.

Figure 4.1 illustrates a broadcasting source node located to the left of a square grid
where the transmission range of the nodes (r) can cover four neighbors (i.e. a regular
geometric graph of degree four). Diagonal dashed lines show groups of nodes associated
with the same hop distance from the broadcasting source (i.e. the 3 nodes at a one-hop
distance from the source are Tier 1, and the 5 nodes at a two-hop distance are Tier 2).
The figure also shows three double arrows explicitly indicating the Euclidean distance
of one node in Tier 2 (the receiving node) with respect to the three nodes in Tier 1.
This situation corresponds to a worst-case scenario in which all the nodes in the previous
tier (i.e. Tier 1 of the figure) transmit at exactly the same time, causing maximum
interference. In any situation, the Collision Avoidance procedure in the medium access
protocol (CSMA/CA in Layer 2) reduces such interference. Indeed, the inclusion of such
a worst-condition assumption leads to a lower-bound model of the impact of network
geometry on broadcasting without needing to consider a detailed time-dependent analysis.

In the traditional analysis of collision events, only the two nearest nodes (nodes at
distances d1 and ds) would be considered to determine the probability of successful message
delivery, but the analysis carried out here considers the calculation of S/I at the receiving
node, including the interference of all nodes located in the previous tier. This makes
possible the inclusion of the impact of node distribution in the analysis.

Without loss of generality (as in Chapter 3 of [100]), the S/I calculation assumes a
two-ray pathloss model, in which the power of the signal received at a distance d from the
transmitter can be estimated using the transmitted power Pt together with the gain and
height of both the transmitting (Gt, ht) and the receiving antennas (Gr, ht) as follows:
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Figure 4.1: S/I for a receiving node in the second tier, where interference comes from two of the three nodes in

the first tier.

Pr = PtGtGr
ht

2hr
2

d4
(4.1)

Consequently, for the receiving node in the second tier of Figure 4.1, the value of S/I
corresponds to:

S

I
=

PtGtGrht
2hr

2 1

ds
4

PtGtGrht
2hr

2

(

1

d1
4 +

1

d2
4

) (4.2)

where ds is the distance between the expected transmitter from the previous tier and
the receiving node, and d1 and d2 are the distances from the receiver to the other two
transmitters from the previous tier (i.e. Tier 1). Assuming homogeneous characteristics
of all nodes in the network (i.e. similar antenna heights, antenna gains and transmission
power), the previous expresion reduces to:
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By considering again Figure 4.1, and the forwarding probability p in the analysis,
equation (4.3) becomes:
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Figure 4.2: A zoom-out representation of Figure 4.1 for 10 rows and 13 columns of a square grid with the source

node on the left (row 5 column 1 of the grid). Solid lines indicate the shape of the expected tiers (angle-shaped

tiers) propagating the message from left to right. The minimum number of hops to reach the node in the top-right

corner is 16 (i.e. Tier 16).

where I{Xi<p} is the indicator function, and Xi is a random value drawn at the i-th
node (i.e. X ∼ U([0, 1])), such that I = 1 when Xi < p, otherwise I = 0. This includes, in
Equation (4.3), the Bernoulli variables that indicate whether or not nodes in the previous
tier forward a broadcast message. Notice that the numerator has no indicator function
because the intention is to calculate the average signal quality (S/I) only when broadcast
messages are received, i.e. the calculation of probabilistic interference given that nodes
receive messages from their expected previous-tier transmitter. The value of p, thus,
dictates the reduction in interference as p decreases.

Finally, for an arbitrary receiver with n interferers (i.e. n nodes associated with the
previous tier, excluding the expected transmitter), the calculation of probabilistic S/I
corresponds to:

S

I
=

1

ds
4

n
∑

i=1
I{Xi<p}

1

di
4

(4.5)

where ds is the distance between the receiver and the expected transmitter whereas di
is the distance between the receiver and the i-th interferer.

Indeed, Equation (4.5) is a ratio of distances, for a single interferer S/I = (ds/d1)
−4.

Therefore, what matters is the positions of the nodes relative to each other, and not the
absolute distances (in meters). This highlights even more the fact that the geometry of
nodes is a key issue in the S/I analysis.

Equation (4.5) is used in the remainder of this section to calculate the S/I values for all
nodes in the network. Notice that this calculation does not depend on the network layout
(i.e. it is not restricted to the example in Figure 4.1) and can be used to estimate the
values of probabilistic S/I in any network as long as tiers can be established with respect
to a broacasting source. Besides that, other models of propagation different from the two-
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ray pathloss model would result in a similar equation. For example, for a more general
propagation model such as the log-distance path loss model with log normal shadowing the
only change in Equation 4.5 would be the power of the Euclidean distances (known as the
path-loss exponent), which would not be 4. Moreover, measurement studies [100] have
reported that for urban environments (path-loss exponent between 3 and 5) as well as
for indoor environments with obstacles (path-loss exponent between 4 and 6) the value 4
for the path-loss exponent can be used. A good example can be found in [116], using a
path-loss exponent value of 4.2. Thus, results obtained using Equation 4.5 are still general
enough for the use of a more elaborate propagation model.

Suppose now that the square grid topology in Figure 4.1 is part of a larger square-grid
network (i.e. regular layout of degree 4). Figure 4.2 illustrates a larger-scale view of the
way tiers are created as a function of the position of the source. This 10-row, 13-column
square grid illustrates how tiers take an angular shape, resembling two plane wavefronts
that propagate away from the source (up to tiers 16 and 17 for nodes in the right-hand
corners of the rectangular region). If this pattern is maintained for a 20× 50 square grid,
the farthest node would be seen in Tier 60. Figure 4.3 illustrates the calculation of the
probabilistic S/I values averaged for the 60 tiers of such a 20 × 50 grid with a source
positioned in row 10 column 1. The x-axis indicates the tier, i.e. the hop-distance from
the broadcasting source. The values of probabilistic S/I were calculated 100 times and
the average per node was calculated. Finally, each point in Figure 4.3 shows the average of
probabilistic S/I values per tier. For example, for Tier 2, one value of S/I is obtained from
5 nodes; for Tier 3, the result is obtained from 7 nodes, and so on. The main idea here
is to observe how the average value of S/I varies as the broadcast message propagates
away from the source. Figure 4.3, thus, represents the variation in the quality of the
received wireless signal as the distance, in hops, to the source node increases, that is, as
the message propagates from left to right throughout the 20× 50 grid. The values of the
first two tiers were not included in the figure because the nodes in Tiers 1 and 2 produced
very few interferers and several values of S/I were infinity.

Indeed, the S/I calculation gives the average quality of the signal for a worst-case
broadcasting scenario in which transmitters are totally synchronized, leading to a maxi-
mum number of closest interferers (i.e. all interferers from the previous tier). Unlike some
deterministic broadcasting algorithms [117], synchronized nodes are not essential for the
operation of the protocol, but make a worst-case assumption. For any other scenario, in
which heterogeneous delays in nodes imply transmitters desynchronization, the Collision
Avoidance procedure of nodes reduces interference, and as a consequence, the S/I values
are expected to be higher than those in Figure 4.3. Thus, the curves in the figures in this
section represent lower bounds for the S/I values.

Higher values of S/I imply greater chances of successfully propagating broadcast mes-
sages over additional tiers. Moreover, nodes near the farthest corners of the region would
have a low rate of successfully received messages, since these nodes lack neighbors, rather
than because of the low values of S/I. Such reachability in the last tiers is independent
of the geometry, as shown in Section 4.5.

The role of the geometry of nodes can be better emphasized when comparing the S/I
values in Figure 4.3 with those presented in the measurement-based studies in [118]. For
example, in the first 10 tiers, an S/I value around 10dB would result in nearly 100%
of successfully received messages at low rates of 1Mbp, which is a standard broadcast
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rate [9], while for nodes located at more than 10 tiers from the source, with S/I values
between 2dB and 6dB, the percentage of successful transmissions would not exceed 50%.
Moreover, regardless of the forwarding probability, the curves in Figure 4.3 clearly reveal
three network segments, namely Tiers ≤ 10 (receiving the highest S/I values), 11 ≤ Tiers
≤ 49 and 50 ≤ Tiers. These three segments are the points at which the propagation of
broadcast messages reaches the edges of the rectangular area. This may indicate that the
relation between the geometry of node position (grid of degree 4) and the shape of the
area where the nodes reside (a rectangle) also has an impact on the average quality of the
channel to receive broadcast messages. This impact is as significant as the impact of the
forwarding probability value, since the difference between the curves for p = 1 to p = 0.65
is similar to that between S/I values in tiers 1-10 and tiers 10-50 for all the three curves.

It is worth mentioning that the values of p chosen for the S/I curves in Figure 4.3
are well supported by the literature on probabilistic broadcasting [10]. In general, values
between 0.6 and 0.75 are of great interest since they lead to minimum levels of redun-
dancy (i.e. maximum Saved Rebroadcast, SRB in the literature) while maintaining the
reachability of transmitted messages at over 90%. In the majority of investigations on
probabilistic broadcast the optimal value of p is around 0.7, except for studies in which
the average node density is over 10 nodes within the transmission range, for which the
optimal values of p are far lower than 0.7.

Figure 4.3: S/I profile for nodes in the 20 × 50 grid of degree 4 as a function of the tier (i.e. hop distance to

the broadcasting source). Three curves corresponding to three values of probability. Notice that lower probability

leads to less interference, that is, better average S/I.

Figure 4.4: S/I profile for random node placement as a function of the hop distance from the source. Lower

probability yields higher S/I values. This profile is more stable than that for the grid.

Now the calculation of probabilistic S/I in Equation 4.5 is applied to another rectangu-
lar region, also containing 1000 nodes, but with these nodes located at random according
to a uniform distribution (see Figure 4.5). The transmission range of the nodes (r) was
set at 250m and the dimensions of the rectangle at 7500m × 3000m. As in [16], this set-
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ting leads to a high probability of having a connected network [2, 3]. This means that, if
there is a smaller value of r, fewer nodes, or a larger region, a considerable proportion of
random layouts would result in disconnected networks, which impacts the performance of
broadcast. Additionally, this setting has the same ratio of height to width for the sides
of the rectangular area (i.e. 2 : 5 ratio as the 20 × 50 square grid). To make a fair
comparison with the results of the grid, 100 different random layouts were derived. For
each random layout, tiers were established with respect to the nodes located closest to the
point (0, 1500) (left center nodes) so that left-to-right propagation of broadcast messages
was maintained. Results for random placement are shown in Figure 4.4.

Figure 4.5: Large-scale view of the positions of 1000 nodes for a) the random scenario and b) the 20× 50 square

grid in two rectangular regions with equivalent height-width ratio.

Results in Figures 4.3 and 4.4 indicate that the random setting exhibits higher values
of S/I and far more stable conditions for broadcast messages to propagate from the source
node towards the end of the network. For example, in the square grid, with the lowest
interference conditions (p = 0.65), the S/I remained below 8dB from tier 10 onwards.
Meanwhile, with the random layout and the highest interference (p = 1), S/I was always
above 7dB. Based on the results, it is important to point out that interference has a
stronger impact on the grid, where nodes have fewer neighbors, than on the random
layouts, in which nodes have an average of eight neighbors. This is equivalent to saying
that nodes with fewer neighbors suffered more interference because they are distributed
in a grid, whereas nodes with a higher number of neighbors (on average) experience less
interference due to the randomness of their relative positions.

The analysis in this section yields three important observations. First, there are aspects
specific to the geometry of ad hoc networks (namely, the distribution of node placement)
that may significantly affect the performance of probabilistic broadcasting techniques.
Second, it seems that random settings offer more stable conditions for the propagation
of broadcast messages. Finally, by integrating the Euclidean distance in the analysis,
the S/I calculation can be used to predict the expected success of ad hoc probabilistic
broadcasting messages as a function of the network-wide node distribution.
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4.5 Simulation Experiments

4.5.1 Random and Regular Placement of Nodes

The previous section showed that, for realistic wireless channels, ad hoc networks with
random layouts facilitate the propagation of broadcast messages more than do grid layouts.
To further verify this conclusion, the present section shows results about the performance
of probabilistic broadcast derived via simulation. The simulator used was QualNet➤v7.3
[119]. Table 4.2 displays the values of the simulation parameters. The two network
scenarios correspond to the square grid and the network with random placement of nodes
described in the previous section. Nodes in the first four tiers forward broadcast messages
with a probability of p = 1. This difference in scenarios was adopted for comparison with
the results in [6], which used a technique called GOSSIP1(p,k). The work in [6] was taken
as benchmark because the authors offered a good comparison of probabilistic broadcasting
performance employing both grids and random node layouts. The parameters of GOSSIP1
are p for the forwarding probability, and k for the number of tiers where nodes use p = 1
(i.e. the simulations were run with GOSSIP1(p,4)). The results in [6] were derived with
the assumption of an ideal MAC layer, so the following comparison illustrates the impact
of realistic conditions on the performance of probabilistic broadcast, which reinforces the
observations in Section 4.4. The values of p in the present study are the same as those
used in [6], since values for p around 0.7 provide maximum reachability with the minimum
number of message copies, especially for the scenarios considered in this section. Values
higher than 0.75 would lead to a higher probability of collisions and waste of energy and
bandwidth, whereas values lower than 0.6 would result in a considerable reduction in
reachability (reachability near 20%) [93,111].

Parameter Value

Number of nodes 1000

Area of Uniform Random 7500m× 3000m

Area of 20× 50 grid 12500m× 5000m

Transmission Range 250m approximately

Path-loss model Two-ray

Mobility none

Mac Layer 802.11

Technique GOSSIP1(p,4)

Source Position left-center

Runs 120 replications

Table 4.2: Simulation settings

Figures 4.6 and 4.7 show the impact on probabilistic broadcasting performance when
employing realistic channels instead of ideal ones. These figures measure the percentage
of nodes reached by broadcast messages as a function of the node distance, in hops,
from the broadcast source (i.e. percentage of nodes of the same tier). When realistic
conditions affect the performance, the most noticeable difference is for the case of the
square grid with forwarding probability p = 0.72 (Fig. 4.6), in which reachability decreases
by more than 15% after 30 hops. As the probability decreases in the grid scenario, the
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Figure 4.6: Comparison of probabilistic broadcasting success as a function of node distance to the broadcasting

source, for three values of p. Collision-less, ideal conditions vs. realistic conditions for the 20× 50 grid.

gap between results for the ideal and realistic channels also decreases, since an emptier
channel resembles an ideal channel.

The realistic curves for p = 0.72 and p = 0.65 in the square grid (Figure 4.6) show a
sudden drop after Tier 10, as predicted by the decrease in the average S/I values shown
in Figure 4.3. Such a drop can be associated with the interplay between the rectangular
shape of the area containing the nodes and the position of the source node; indeed, for
the left-hand centered position of the source in the 20 × 50 grid, the propagation of the
message meets the first border of the network at hop 10.

In [6], a slightly higher probability value (0.75 > 0.72) for the random scenario was
employed to achieve a reachability similar to that of the grid scenario. When realistic
conditions are considered, however, the curves for p = 0.65 show that the random scenario
does not require a higher probability value in order to match (or even outperform) the
reachability of grid scenarios, as confirmed in Section 4.5.2.

What is common for all the probability values evaluated in Figure 4.6 is that reacha-
bility values in the ideal curves show a smoother decrease than their realistic counterparts.
In fact, the realistic curves oscillate more, reaching more nodes than do the ideal curves in
some of the tiers (as is the case of p = 0.65 between hop-distance 12 and 30). Oscillating
curves may arise when many nodes of one tier successfully receive a broadcast message, so
that transmission to the next tier has to tolerate maximum interference. However, when
only a few nodes receive the message, their transmissions to the next tier will produce
low values of interference, increasing the chances of successful broadcast propagation in
subsequent tiers.

Figure 4.7 shows that the percentage of nodes receiving the message in different tiers
(hop-distance) is almost the same for both the ideal and realistic scenarios. In fact,
for p = 0.65, the curves after hop 22 are almost identical, whereas before hop 22, the
realistic curve reached a higher fraction of nodes. Such a trend is consistent with the S/I
analysis in Section 4.4, shown in Figure 4.4. The broadcasting propagation offered by the
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Figure 4.7: Comparison of broadcast reachability under ideal conditions vs. more realistic conditions for Uniform

Random Node Distribution with p = 0.75 and p = 0.65.

randomly-placed node layouts is stable, even for the worst-case scenario of the interference
analysis.

These results reinforce the need for analyzing the impact of the geometry of ad hoc
networks on the performance of probabilistic broadcasting, as described in Section 4.4,
especially when observing that:

❼ Random network-wide node distributions promote the success of probabilistic broad-
casting transmissions in realistic scenarios more than do grid layouts.

❼ The geometry of node distribution should be considered in the performance of ad
hoc probabilistic broadcasting.

In order to draw more general conclusions, the following section explores the consis-
tency of these findings. By changing the position of the source node, different patterns
of broadcast transmission should be seen. The following section also shows the impact of
using other geometries such as a triangular grid, a larger square grid, and hexagonal grid,
as well as variations in random distributions (e.g. Uniform, Normal, Poisson).

4.5.2 Other Grid Geometries and Node Distributions

This section provides a broader view of the relation between probabilistic broadcasting
and node placement by exploring more general scenarios that involve various different grid
layouts, as well as random node distributions. The following simulation results also extend
the discussion about the impact of the position of the broadcasting source on broadcasting
reachability, motivated by previous work [93, 94] in a test bed, which showed that results
are strongly dependent on the position of the source node.
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The simulation parameters are those in Table 4.2. However, in this section, the number
of nodes and the shape of the area vary. The following results were obtained with 2500
nodes within a square region (e.g. a 7000 × 7000 square region for the random settings).
For the random settings employing the Normal and the Poisson distributions, the number
of nodes is on average 2500 since the number of nodes is also a random variable. Every
single replication of the simulation was run using a different set of random numbers for
both the forwarding decisions and the random node positions. Therefore, the results
capture the average behavior of node distributions and avoid the potential bias of using a
single geometrical realization for all replications. Having such a variety of scenarios (120
for each random distribution) using a test bed would be prohibitive, but it is feasible using
simulations, as has been done here. Moreover, the different random positions of nodes in
each replication can be seen as snapshots of a mobile network; since the density functions
of the random variables that determine the positions of nodes at different times converge
to a unique density function in the long run (cf. [114]). A mobility model with such a
property is said to be stationary [115].

Figure 4.8: Comparison of the shape of tiers for the Hex-grid and Tri-grid for sources in the bottom left corner.

The Tri-grid covers more nodes in each tier. Consequently, for grids of the same dimensions the Tri-grid results in

less tiers than both the Hex-grid and the Sq-grid.

As in the previous sections, the figures show the reachability profile of probabilistic
broadcast, namely the fraction of nodes that sucessfully receive broadcast messages as
a function of the node distance, in hops, from the source (i.e. the tier). Moreover, the
figures are organized to illustrate the impact of changing the position of the source node,
which in turn changes the conditions for the propagation of messages.

Figures 4.9 to 4.11 show the behavior of probabilistic broadcasting in 50 × 50 grids
in which nodes (except the nodes forming the sides of the grid) have three, four, or six
neighbors. Hereinafter the prefix Tri will corespond to the regular grid of degree six (i.e.
triangular grid), the prefix Sq to the grid of degree four (i.e. square grid), and the prefix
Hex to the grid of degree three (i.e. hexagonal grid or honeycomb grid). Figure 4.9 focuses
on all scenarios with broadcasting sources located in one of the four corners of the square
region. Figures 4.10 and 4.11 show the curves for scenarios with broadcasting sources
on one side and at the center of the grids, respectively. In the figures, the curve length
depends on the grid. The Tri-grid curves are always the shortest. In these figures, the
longest curves always correspond to the grid of degree three (i.e. Hex-Grid), which has
123 tiers for the corner source, more than 110 tiers for sources on the side of the grid,
and 63 tiers when the source lies at the center of the grid. Figure 4.8 shows how the
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topology of an Hex-grid leads to fewer nodes per tier than does its Tri-grid counterpart.
As a consequence, the Tri-grid needs less tiers to cover the same number of nodes. This
figure can be compared to Figure 4.2 to further illustrate how the number of tiers (x-axes
in the figures) was obtained for each simulation scenario.

Figure 4.9: Reachability when the source node is located in one corner of the grid. The x-axis shows the hop

distance from the source while the y-axis indicates the average percentage of nodes that received the message at

particular distances (i.e. on average, the percentage of the tier that received broadcast messages).

For geometrically regular node placement, the Tri-grid is consistently the most favor-
able setting for the success of probabilistic broadcasting. For example, with the source
located in the corner, for p = 0.6, the broadcast messages reached slightly fewer than 80%
of the nodes from tier 15 to 55, while for p = 0.65 and p = 0.72, messages reached over
90% of the nodes. This occured because the triangular grid has more collision-free nodes
receiving messages in every tier than the other grids. For example, when the source is at
the center of the grid, in the worst case scenario in which all nodes from the same tier
transmit at the same time, the triangular grid still guarantees that at least six nodes can
propagate the message in all directions with no risk of collision. For a source node at the
center, the square grid offers only four collision-free receivers per tier and the hexagonal
grid only three collision-free nodes per tier. Similar geometrical limitations can be shown
for sources on the side and in the corner of grids. However, for the hexagonal grid, colli-
sions due to time-correlated propagation of broadcast messages occur only every two tiers.
This lack of redundancy means that, for every collision-free tier, the use of probabilistic
broadcasting simply reduces reachability, similar to the propagation of broadcast for nodes
lying in a straight line. This explains the negative-exponential shape of the curves (curves
of the Hex-grid), almost resembling the graph of a geometric sequence for the value of p
(recall that 0 < p < 1).

Moving the source to one side, and then to the center, always improves reachability. In
the first tiers, a sudden decrease in reachability occurs, even before the fourth tier. This
is somewhat unexpected since we know that broadcast packets are forwarded with p = 1
for the first four tiers. This early drop in the curves is more accentuated when the source
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Figure 4.10: Reachability when the source node is located on one side of the grid (geometrically regular node

placement scenarios only).

is in the corner (Fig. 4.9). As the message propagates over the tiers, either the same
reachability is kept until the end of the network or reachability increases, suggesting that,
under realistic collision-prone conditions, the unreliable delivery of the MAC layer occurs
mostly in the first tiers, due to the highly correlated times when forwarding messages from
the same source. After the first collisions occur and the message propagates farther from
the source, forwarding times gradually lose correlation and facilitate the operation of the
CSMA/CA mechanism, which explains the shape of the curves.

The number of collision-free nodes per tier is extremely important in providing ro-
bustness. Namely, for the triangular grid, the curves for p = 0.72 show almost the same
performance as the curves for p = 0.65, which represents a 10% reduction in the number
of messages forwarded, but the reachability is still the same. Moreover, the curves for the
same probabilities differ significantly in other grids.

The impact of having a finite network is noticeable in Figure 4.9. Specifically, for
sources in the corner, there is a consistent tweak at around tier 50 for all curves, which is
the tier where the sides of the network end. This tweak is even more noticeable with the
broadcasting source on the side (Fig. 4.10), where a marked change can be observed in
all curves at around tier 25 (the tier at which the broadcast propagation wave encounters
the firts borders of the square region). In these two figures, there is always a segment
of the curves, which corresponds to the transmission encountering the border, when the
broadcasting process simply recovers, reaching a larger percentage of the nodes than in
previous tiers. Conversely, when the source is at the center of the grid (Fig. 4.11), the
curves always decrease, although some slight changes can also be observed at tier 25, where
the number of nodes per tier begins to drop. These patterns can be explained by the way
the number of nodes changes on a tier as the message propagates. For example, the square
grid with the source on the side has 3 nodes in Tier 1, 5 nodes in Tier 2, 7 nodes in Tier
3, and so on, until tier 25. As the size of the tier increases, the number of nodes in the
border of the square region represents a smaller percentage of the tier. At hop 25, the
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Figure 4.11: Reachability when the source node is located at the center of the grid (geometrically regular node

placement scenarios only).

size of the tier and the proportion of its border nodes stabilizes (remaining 51 nodes with
two nodes on the border of the region) until hop 49, where the size of the tier decreases
continuously to the edge of the network. It can be affirmed that a stable behavior of the
probabilistic broadcasting phenomenon can only be seen for 25 tiers (from tier 25 until
tier 49). After this, the shape of the curves will be closely related to the proportion of
border nodes per tier.

For the three random network scenarios (Figures 4.12 - 4.14), the overall performance
is more stable than that of grids, as suggested by the analysis in Section 4.4. Even with the
lowest probability, when the broadcasting source is in the corner (Fig. 4.12 with probability
p = 0.6), the fraction of nodes reached by broadcast messages was always over 80%. As
the source moved to the side (Fig. 4.13), and then to the center of networks (Fig. 4.14),
reachability always improved. It is important to mention that all random scenarios were set
using the theoretical Critical Transmitting Range for Connectivity, which is defined as the
minimum value of r (i.e. the transmission range) such that the resulting communication
graph is connected. It is important to recall that a graph is connected if and only if
there exists at least one path connecting any two nodes in the graph. For the particular
case of the random Normal distribution, a detailed view of the first values of the graph
was necessary (see the right side of Figures 4.12 - 4.14), since these networks had a very
small diameter. This situation results from maintaining connectivity when employing
the Normal distribution, since for this distribution the Critical Transmitting Range for
Connectivity [120] is greater than those for the Uniform and Poisson [3] distributions.
Despite the reduced number of observable tiers for the Normally distributed node layouts,
reachability was even greater than in the scenarios with Uniform and Poisson distributions.

What is common in these figures is the impact of the position of the source node on
broadcast reachability. Regardless of the situation (whether grids or random placement),
it is clear that when the source is in the corner, the lowest reachability is obtained in all
scenarios. In fact, results for sources located in a corner can be taken as a lower bound
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Figure 4.12: Reachability for Geometric random networks as a function of hop distance from the source (source

node located in one corner of the network). These Figures include a plot zoom on the right so that the curves for

the Normal distribution can be observed in the same scale as the other six curves.

for performance, which is important for design purposes (cf. test-bed results in [93, 94]).
Indeed, results confirm that any other position for the source node, other than the corner
of the region, would result in greater reachability. Meanwhile, when the source is on the
side, the wave of broadcast seems to pass through segments of recovery where reachability
is greater than for previous tiers. The figures also show that centered sources always result
in the greatest reachability, despite showing monotone decreasing reachability values (i.e.
no segments of recovery or stability).

Finally, the random layouts reduce the highly-correlated forwarding times that degrade
the performance of probabilistic broadcasting in geometrically regular layouts, facilitating
the operation of the CSMA/CA mechanism to avoid collisions, especially in the first tiers
of a single-message broadcast propagation event. This property provides random layouts
with robustness against the effects of collisions when applying probabilistic broadcasting
in ad hoc networks.

4.6 Chapter Summary and Future Work

The present chapter has highlighted the impact of node placement on the success of prob-
abilistic broadcasting in large-scale static ad hoc networks when realistic wireless channels
are considered. The calculation of S/I levels revealed that random placement of nodes
facilitates propagation of broadcast messages, while nodes arranged in grids face reach-
ability limitations. S/I analysis (borrowed from the co-channel interference analysis of
cellular networks) has made possible the integration of the Euclidean geometry of node
position with the benefits of probabilistic broadcasting, and this should be considered for
future development of ad hoc probabilistic broadcasting protocols.

The observations obtained in the analysis have been further confirmed by running
a comprehensive set of complementary simulations that included more and larger grids
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Figure 4.13: Reachability for Geometric random networks as a function of hop distance from the source (source

node located on one side of the network). Notice the zooming on the right for visualization of the curves associated

with the Normal distribution.

with different geometries, as well as more geometrically random scenarios. The evidence
clearly indicates that grid layouts render ad hoc networks extremely sensitive to the impact
of realistic conditions. Conversely, when nodes are placed at random, the behavior of
probabilistic broadcasting appears to reflect more ideal conditions.

The results also reveal that the use of tiers to characterize the propagation of broad-
cast messages facilitates the analysis of broadcast reachability profiles, providing detailed
information about the broadcasting process e.g. the interplay between the shape of the
area surrounding the network and the position of the source node. Furthermore, realistic
reachability profiles show an oscillating pattern as a function of the distance in hops from
the broadcast source, with tiers receiving a large percentage of broadcast messages being
followed by tiers with low reachability, and vice versa. This suggests that, after a series
of collision events, there will be a series of successful broadcast events as a consequence
of the previous reduction in potential broadcast interferers. Under ideal conditions, these
collisions would not occur and the oscilating pattern is not observed.

The benefits of studying non-conventional causes of pure-probabilistic broadcast failure
(e.g. geometrical features rather than node density or broadcasting rates) under non-ideal
wireless conditions are two-fold. First, the simplicity of pure-probabilistic broadcasting
leads to faster broadcasting waves, which is convenient for overcoming the effects of node
mobility and should have a positive impact on higher-level network functions, such as
Admission Control when applied to different routing protocols [121]. Second, for scenarios
where grids are relevant [102–105], simple, yet effective, countermeasures can be adopted
to avoid poor performance of their ad hoc broadcast protocols.

Future work should include the study of latency and mobility under various geometri-
cal conditions. Simulations of large-scale networks like the one in [102] should be analyzed
in order to assess the feasibility of real probabilistic-broadcasting implementations. The
analysis in this chapter, including the ideas in [111], about changes in the behavior of
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Figure 4.14: Reachability for Geometric random networks as a function of hop distance from the source (source

node located at the center of the network).

broadcast reachability depending on network size and node degree, should be conducted
in order to evaluate the impact of geometry on small networks. Also, probabilistic broad-
casting and the impact of geometry can be integrated in the performance evaluation of
MAC layer protocols in a multi-hop context [122].

4.7 Table with Related Work

Table 4.3 shows a comparison of the studies that have focused on the assessment of reach-
ability using probabilistic broadcasting schemes (related work). The columns of the table
compare the network size, the geometry, and the average node degree of the networks in
which the protocols were tested.

Network size ranges from some tens of nodes (i.e. ≤ 102) to a few thousand nodes
(≥ 103). In simulation studies, both grids and random networks of different sizes were
used whereas in test-bed studies the size of the network appears explicitly (105 or 107
nodes).

Some of the results were reported for grids or random networks while assuming ideal
conditions of the wireless channel (no packet loss or interference, that is, no packet collision
events). Scenarios using a realistic MAC layer are indicated using the acronym MAC.

The average node degree has three possible ranges. The range 5 − 8 is the minimum
range for percolation to occur (recall Chapter 2). The ranges 8 − 15 and > 15 appear in
most of the literature as dense networks [10].
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Size (N) Geometry Av. degree

≤ 102 10
2
-10

3 ≥ 103 Grid Rnd T.bed 5-8 8-15 > 15

Sasson [111],

Multi-source

grid,

rand.

grid grid ideal MAC X X

Blywis [45],

Multi-source

107 X X

Blywis [95],

Multi-source

105 X X

Haas [6],

Single-source

grid,

rand.

grid,

rand.

ideal ideal,

MAC

X X

Lysiuk [1],

Single-source

rand. rand. ideal X X

Forero [53],

Single-source

grid,

rand.

ideal,

MAC

ideal,

MAC

X

Table 4.3: A comparison of studies about reachability and percolation-property evaluation in the litera-

ture.
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Chapter

FIVE

Latency Reduction in Probabilistic Broadcast Protocols for
Ad Hoc Networks

Broadcasting protocols in ad hoc networks usually employ uniform random delays on a
per-node basis, which increases end-to-end latencies but helps reduce collisions at the
MAC layer. Reducing random delays in these cases can reduce broadcast reachability.
This chapter proposes the employment of the truncated-exponential distribution instead
of the uniform distribution, which has been proved to reduce significantly the broadcast
latency and yet maintain broadcast reachability.

5.1 Introduction

In ad hoc networks employing probabilistic broadcast protocols, nodes forward broadcast
packets after an interval of random duration starting at the time of the packet arrival at
the node [10].

Probabilistic broadcast protocols are designed to decrease the forwarding probability
(pf ) as node density increases. Protocols estimate node density from neighboring nodes
either by collecting copies of the already-transmitted broadcast packet or by receiving
special control packets sent periodically for that purpose (i.e. Hello packets) [10]. A
random uniformly distributed delay (defined in an interval [0, T ]) is employed in these
two types of protocols. In the former, it defines an interval for nodes to receive copies of
transmitted packets. In the latter, waiting before transmission, decreases the probability
of nearby nodes forwarding broadcast packets simultaneously.

After waiting a random delay, the broadcast protocol passes the broadcast packet from
the network layer to the MAC (data link) layer. This contributes to reduce the collisions
at MAC layers employing Carrier Sensing (CS) access mechanisms since packets are more
sparsed in time. Reducing collisions is of paramount importance in ad hoc networks since
collisions can lead to disconnected network segments, which affects the percentage of nodes
covered by packet propagation (reachability).

However, the use of random delays results in slow packet dissemination. Therefore,
there is a tradeoff between reducing collisions or reducing random delays, which impacts
on the end-to-end latency [27] (latency for short). Since most of the protocols employ
uniform distribution, changing the domain range of the uniform distribution has been
considered the way to reduce latency, but at the expense of reducing reachability [37] [12].
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This chapter shows that changing the distribution of random delays, from uniform to
truncated-exponential, reduces the latency in probabilistic broadcast protocols without
compromising reachability. Actually, for the same interval [0, T ], the mean of random
delays is reduced by using a truncated-exponential distribution when compared to using a
uniform random delay. Given a multi-hop transmission in which succesive random delays
(one at each hop) occur along an end-to-end path, employing a distribution with a smaller
mean results in lower latencies (i.e. the time elapsed between transmission and the packet
reaching the last node). The effect of not compromising reachability is a consequence of
the higher coefficients of variation (CV) of truncated-exponential random delays, which
reduce the synchronization of transmissions at the MAC layer [123], avoiding collisions.

Reducing latency is essential to delay-sensitive applications [121]. Moreover, fast
broadcasting of information compensates the uncertainty resulting from topological changes
in the analysis of Vehicular Ad Hoc Networks (VANETs), which allows making the as-
sumption that VANETs have a static random distribution of nodes [124].

This chapter is organized as follows. Related work is summarized in Section 5.3.
Section 5.4 introduces an analytical framework to calculate the probability of collision
events and assess the effects of using the proposed distribution. Finally, simulation results
show that reductions in latency are achieved and yet reachability is maintained.

5.2 Table of Chapter Variables

Table 5.1 provides detailed description of the variables and functions that are used in the
present analysis of collision events.

Variable Description

T : Upper limit of the interval in which a random variable is defined; in this chapter either

uniform or truncated exponential variables are defined in [0, T ].

pf : Forwarding probability.

V : Length of the backoff window (in seconds) in the IEEE 802.11b standard.

[Vi−1, Vi]: An interval of time of length V .

F (t): Cumulative Distribution Function (cdf) of random delays; defined in [0, T ] in this chapter.

I: Number of intervals [Vi−1, Vi] in [0, T ]; in this chapter T is always larger than V .

pi: Probability that the random variable with cdf F (t) (defined in [0, T ]) lies in [Vi−1, Vi].

R1: An event of the birthday paradox problem in which there are k distinct outcomes, and the

first repeat occurs exactly in the k + 1 outcome.

f(t): Probability density function (pdf) of random delays; defined in [0, T ] in this chapter; fe(t)

for truncated-exponential and fu(t) for uniform.

g(t): Probability density function (pdf) of random delays conditioned on [Vi−1, Vi]; ge(t) for

truncated-exponential and gu(t) for uniform..

PC : Probability of two transmissions begining in the same slot, on the MAC layer, given that two

random delays ended in the same interval [Vi−1, Vi].

µe: The mean of a truncated exponential random variable defined in [0, T ].

µu: The mean of a uniform random variable defined in [0, T ].

α: The ratio between µe and µu, namely α = µe/µu.

Table 5.1: Variables used in Chapter 5.
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5.3 Related Work

In [12], a hybrid scheme (requiring Hello packets and collecting copies of broadcast packets)
is proposed to avoid low reachability by using two uniform random delays with different
ranges. In [27], the upperbound value of the interval (T ) is different for each node and is
defined as a function of the number of expected simultaneous forwarding nodes at each
hop. The hybrid scheme in [125] uses a sequence of three random delays and increases
the forwarding probability (pf ) as a function of the waiting time to receive a copy of a
packet. However, these techniques rely on hello messages and are not applicable to other
protocols.

Another strategy associates the duration of random delays to the inverse of the for-
warding probability [126]. This strategy produces almost the same delay for nodes located
in a neighborhood, allowing the use of strong assumptions about information availability,
such as the Euclidean distance between nodes or the exchange of packets that contain the
IDs of two-hop neighbors.

Overall, most of the strategies based on the use of uniform random delays are too
specific to certain protocols, making them unsuitable to other broadcast protocols. Addi-
tionally, changes in the type of distribution of random delays have never been proposed
in the literature [10].

5.4 Impact of the employment of exponentially distributed
random delays on collision events

This section analyzes the effect of employing truncated-exponential random delays on
packet collision events. It will be shown that the reduction of the mean of random delays
leads to small variability in the probability of collision events.

One type of collision event that reduces reachability occurs when broadcast packets
reach regions of the network which have not received any copy of this packet (unseen
packet) and several nodes receive copies of this packet caused by the same wireless trans-
mission [8]. The probability of collisions of nodes receiving the same unseen packet, vir-
tually at the same time, can be computed considering two simultaneous events: i) the
probability of having random delays at the network layer on two nodes ending with a time
difference smaller than the duration of the backoff window at the MAC layer (overlapping
backoff periods); and ii) the probability of two backoff timers at the MAC layer expiring
in the same transmission slot.

For the analysis in this chapter, we use the IEEE 802.11b Distributed Coordination
Function (DCF) MAC Layer [10]. Thus, we assume a minimum backoff window size of
32 slots. No acknowledgement mechanism is assumed [8]. Therefore, no retry counter
exists to increment the size of backoff windows. We also use a value of T = 10ms, chosen
for intervals of random delays (network layer) since it is the most frequent value used in
various studies [10, 127], which helps the comparison of our results to other studies.
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and exp05µ indicate that pi was obtained from truncated-exponential distributions. These
distributions reduce the mean of random delays to 70% and 50% when compared to the
mean delay given by the uniform distribution.

Figure 5.2: P (R1 ≤ k) uniform vs. truncated exponential random delays

Figure 5.2 shows two aspects about the probability of having overlapping backoff pe-
riods. First, the cummulative probability distribution, P (R1 ≤ k), reaches almost 1 with
less than 10 forwarders. This means that overlapping backoff periods is almost a certain
event in ad hoc broadcast since the average number of neighbors that leads to a connected
network (99% of the times) is > 7.5 for nodes placed uniformly at random [1]. Second, as
the number of forwarders grows, the relative increase in P (R1 ≤ k) is reduced compared
to the use of uniform random delays. For example, with 2 forwarders and exp05µ, the
probability of overlapping backoff periods almost doubles (an increase of 89%) whereas the
increase is only 20% with 8 forwarders. With a higher number of forwarders, such increase
tends to vanish, leading to a 50% reduction in the mean of random delays. Moreover, for
exp07µ the impact is even smaller (less than 6% increase for 8 forwarders).

When using the uniform distribution, the reduction in the mean of random delays yields
higher values of P (R1 ≤ k) compared to the use of the truncated-exponential distribution,
i.e. the truncated-exponential pi always produces a smaller increase on the number of
collision events for the same reductions in the mean of random delays.

It is possible to extend this analysis to consider two or more V-intervals [128] (e.g.
multiple pairs of random delays ending with time differences smaller than V ). However,
P (R1 ≤ k) is suficient to assess the impact of the truncated-exponential distribution since
we are interested in the relative increase of collision events compared to uniform random
delays. Moreover, the extended analysis including multiple overlapping V-intervals leads
to the same conclusions.

5.4.2 Probability of two transmissions beginning in the same slot

We focus on the arrival of two packets in the same V-interval (Figure 5.1). In this sec-
tion, the backoff timer assigned to packets by the MAC protocol is added to the arrival
time of packets at the MAC Layer to determine the slot in which the transmission of a
packet begins. As pointed out in [124], backoff timers should be non-persistent in ad hoc
broadcast, therefore our analysis adds a backoff timer to every packet.

In an interval [Vi−1, Vi], the probability density function (pdf) of the arrival time of
packets at the MAC Layer is f(t | Vi−1 < t ≤ Vi), where f(t) is the pdf of random delays
in [0, T ]. Denoting gu(t) = f(t | Vi−1 < t ≤ Vi) for uniform random delays, and ge(t) for
truncated exponential random delays, we have:
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gu(t) =
I

T
, 0 < t ≤ T/I, ∀i (5.2)

ge(t) =
λe−λt

1− e−λ(T/I)
, 0 < t ≤ T/I, ∀i (5.3)

Notice that, for any i, ge(t) is the same since a truncated exponential distribution
conditioned on equal-length subsets yields the same distribution for all subsets.

Since the MAC layer uses time slots of fixed duration s, ge(t) can be expressed as a
truncated geometric distribution ge(s = sa), i.e. the probability mass function (pmf) of a
broadcast packet arriving at the MAC layer at Vi−1 + sa is:

ge(s = sa) =
p(1− p)sa−1

1− (1− p)S
, sa = 1, 2, · · · , S (5.4)

where S = 32, p = 1− e−λs, and s = V/32 is the length of a slot. For uniform random
delays, the equivalent pmf is gu(s = sa) = 1/32.

Upon arrival at slot sa, the packet receives a random backoff timer of sb slots, uniformly
distributed on the backoff window. Then, the probability of two transmissions beginning
in the same transmission slot (collision event) is the probability of having the same result
sa + sb for packets with overlapping backoff intervals (Section 5.4.1). This collision event
is illustrated in Figure 5.1 at the MAC Layer for the packets of forwarders FW1 and FW2.

Denoting h(s = sb) as the uniform pmf of backoff timers, the convolution ws = g(s)⊛
h(s) yields the pmf of the sum sa + sb; g(s) being either ge or gu.

Finally, collision events have probability PC =
∑

sw
2
s , which considers all the cases

the sum sa + sb is the same for the two forwarders.

For T = 10ms and exp05µ at the network layer, the value of PC (at the MAC layer)
is PC = 0.0209. This value of PC is only 0.084% higher than the value of PC obtained
considering uniform random delays. The following proposition explains this small increase
in the value of PC considering reductions of up to 50% in the mean of random delays. The
proposition leads to the conclusion that the impact of the change in the distribution can
be estimated directly from P (R1 ≤ k), defined in section 5.4.1, since collision probability
values at the MAC layer remain virtually unaffected.

Proposition 1 : Let fe(t) and fu(t) be the truncated-exponential and the uniform prob-
ability distribution functions, respectively, both defined in [0, T ], with mean µe and µu. If
µe = αµu for 0.5 ≤ α < 1, and I ≫ 4 (I is the number of V-intervals in T ), then, for (5.2)
and (5.3), ge(t) → gu(t).

Proof. From αµu = µe, we have:

α

2
=

1

λT
− e−λT

1− e−λT
, (5.5)
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which is a function of the product λT . As λT increases, e−λT /(1 − e−λT ) decreases
much faster than 1/λT in (5.5), hence α/2 < 1/λT . Then, for 0.5 ≤ α, λT < 4. Using the
series expansion of the exponential function, and considering I ≫ 4, (5.3) becomes:

ge(t) =
λ[1− λt+ 1

2!(λt)
2 − · · · ]

λT
I [1− 1

2!
λT
I + 1

3!(
λT
I )2 − · · · ]

(5.6)

≈ I

T
= gu(t), 0<t≤T/I

Since ge(t) → gu(t), more-detailed analysis about increasing collision events at the
MAC layer would be redundant (recall the collisions caused by random delays ending in
adjacent V-intervals).

5.5 Simulation Results

Figure 5.3 shows simulation results, derived by using the QualNet➤v.7.3 simulator to
illustrate our claims. The network scenarios for comparison were taken from [6], which
specifies: i) a square grid compared to nodes placed uniformly at random. Since a packet
is first received from one of the neighbors, the square grid would have at most 3 forwarders,
whereas the random scenario has 8 neighbors on average (number of forwarders); ii) the
forwarding probability (pf ) values chosen produced sustained reachability (above 95%) to
most nodes in the two scenarios (good reachability); iii) packets require at least 59 hops
and more than 40 hops to reach the farthest nodes in the grid and random scenarios. With
a higher number of hops, the impact of the reduction in the mean of random delays is
more noticeable (multi-hop); iv) results in [6] assume no collision events. Our results are
compared to an upper-bound of reachability (ideal conditions).

Figure 5.3: Reachability for different random-delay distributions. (a) Scenario with for-
warders ≤ 3. (b) Scenario with 8 forwarders on average.

The simulation scenarios in [6] were used to assess the performance of probabilis-
tic broadcast scheme GOSSIP 1, with forwarding probability pf = 0.72 for a grid, and
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Table 5.2: Latency in two multi-hop scenarios, uniform vs. truncated-exponential random
delays

grid pf = 0.72 random pf = 0.75

Rn. delay latency (in ms) Rn. delay latency (in ms)
distribution with 95% CI distribution with 95% CI

uniform 402.9± 8.4 uniform 265.6± 5.1
exp0.7µ 307.9± 8.0 exp0.6µ 182.0± 4.3

pf = 0.75 for a random network. These fixed values of pf guarantee that our results are
compared involving the same average number of forwarders in each broadcast event (same
rebroadcast).

This confirms that the mean of random delays can be reduced significantly with min-
imum impact on reachability by using truncated exponential random delays. In Figure
5.3a, the mean was sucessfully reduced to 70% when compared to the mean given by the
uniform distribution, whereas in Figure 5.3b the mean was reduced to 60%, yet main-
taining reachability. These results were not achieved using uniform random delays. The
random scenario (Fig. 5.3b) leads to a greater reduction in the mean of random delays
since the relative impact on reachability decreases as the number of forwarders increases,
as explained in Section 5.4. [0, T ] The case of exp0.5µ shows the extent to which reach-
ability is compromised when the mean of random delays is reduced to 50%. However, if
the reachability obtained with exp0.5µ were tolerable, our proposal would be effectively
applied by decreasing the value of T and using truncated exponential delays to maintain
reachability, reducing broadcast latency even further.

Table 5.2 shows the average time elapsed until reaching the last node (latency) in sim-
ulation runs with reachability over 0.85. The table compares uniform vs. the truncated-
exponential random delays that maintained the same reachability level in Figure 5.3. The
reductions in latency were smaller than the expected (23.6% instead of 30%, and 31.5%
instead of 40%). This indicates that, when reducing the mean by using truncated expo-
nential random delays, the Carrier Sensing (CS) function of the MAC layer deffers more
transmissions due to detection of a busy medium. Indeed, a higher number of successful
detections of a busy medium contribute to sustained reachability, as was anticipated in
Section 5.1.

5.6 Chapter Summary and Future Work

The present work showed a way to reduce latency when using probabilistic broadcast
protocols. Results show that latency was reduced and reachability maintained for the same
rebroadcast, which is not possible by using the wide-spread uniform distribution. Such
reduction was achieved by decreasing the mean of random delays by using the truncated-
exponential distribution. Moreover, such distribution can be applied to any probabilistic
broadcast protocol for ad hoc networks, including VANETs. Future work should focus
on testing the use of truncated exponential random delays in a different probabilistic
broadcasting schemes.
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5.7 Table with Related Work

Table 5.3 summarizes the studies which have explicitly mentioned the reachability-latency
tradeoff and which have proposed a strategy to circumvent the low reachability when
random delays are defined in intervals of few milliseconds.

The table shows the schemes that use Hello packets, that is, schemes based on neigh-
bor information (neighbor-based). These schemes employ random delays to avoid packet
collisions, increasing reachability.

Also, the table indicates the studies in which broadcasting schemes heavily rely on
the target application. For example, in [126], the forwarding probability is obtained from
estimations of the distance between nodes that assume location services as well as the ex-
change of node-state information. These assumptions are justified specifically for vehicular
networks and would not be applicable to other types of ad hoc networks.

Hello

Pkt.

Specific

App.

Strategy

Drabkin [12] Yes No Two Uniform rnd. delays

Hyocheol [27] Yes WSN Variable interval [0, T ] with number of neigh.

Nourazar [125] Yes WSN A sequence of 3 random delays

Mostafa [126] No VANET Variable interval [0, T ] as the inverse of pf

Forero [129] No No Truncated exponential random delays in [0, T ]

Table 5.3: A comparison of studies adressing the reachability-latency tradeoff in the literature.
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Chapter

SIX

Distribution of Latency in Ad Hoc Probabilistic Broadcast

This chapter computes the probability density function of broadcast latency in probabilis-
tic broadcast schemes. The probability density functions of latency are obtained from the
random delays used in protocols and the geometry of the position of nodes. The resulting
probability density functions are compared to simulation results to test the accuracy of
the analysis.

6.1 Introduction

Broadcasting packets in an ad hoc network is a challenging task due to the absence of a
central control in the shared wireless media. The simplest approach to ad hoc broadcasting
consists in allowing nodes to forward every received packet once. This technique, known
as flooding, successfully delivers broadcast packets in small networks, where the number
of forwarded copies of a single broadcast packet is not enough to saturate the wireless
channel. However, in large, multi-hop, ad hoc networks, flooding leads to inadequate
redundancy [8], increasing packet collision events and compromising packet dissemination.

One way to avoid the redundancy of flooding is to use a probabilistic approach to reduce
the set of forwarders; that is, nodes should forward broadcast packets according to a ran-
dom variable drawn on a per-packet basis [10]. Unlike deterministic techniques [130–132],
probabilistic broadcast schemes yield intrinsic rotation of the subset of forwarders at every
broadcasting event, evenly distributing the workload of packet dissemination. Further-
more, probabilistic protocols demand low overhead and yet produce a fully distributed,
dynamic selection of the set of forwarders.

Probabilistic broadcast protocols are designed to decrese the probability of forwarding
a packet (pf ) as node density increases; therefore, node density around forwarders must be
estimated. Forwarders estimate node density either by waiting to hear copies of broadcast
packets from neighbors [6, 40] or by using periodic control (Hello) packets [1, 12]. Wait-
based probabilistic protocols introduce a random delay after receiving a broadcast packet
so that contending forwarders can hear each other properly [96]. In protocols that use
Hello packets, nodes maintain updated information from neighbors so that probabilistic
forwarding can happen immediately; however, these protocols also use random delays
before transmissions to avoid collisions due to synchronized forwarding [12].
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The main tradeoff in probabilistic broadcast lies in using the values of pf that minimize
the subset of forwarders (rebroadcast) and maximize the number of nodes receiving every
broadcast packet (reachability). Thus, most of the literature explores different ways in
which node-density estimations can be used to compute pf [10]. However, only few studies
have focused on providing analytical models that capture the relation between protocol
parameters and broadcast metrics.

Existing analytical models for probabilistic ad hoc broadcast protocols include esti-
mation of the value of pf for both wait-based schemes [96] and schemes based on hello
packets [1,12]; closed-form expressions to compute the reachability, saved rebroadcast and
average latency of wait-based protocols [97,98]; and estimations of reachability as a func-
tion of broadcast rates [99]. These models have revealed the impact of protocol parameters
on the reachability-rebroadcast tradeoff as well as on the convergence of the values of pf as
a function of node density. However, most studies have focused on finding average values.
Only in [1], a discussion about random geometric graphs [2] is provided to point out that
the probability distribution function of broadcast reachability for probabilistic protocols
can follow a bi-modal pattern [6] in which either most nodes or very few nodes are reached
at every broadcast event (i.e. probability accumulates near 0% and near 100%, but not in
the middle of the reachability range).

The present chapter provides analytical expressions to compute the probability density
function (pdf) of broadcast latency for probabilistic broadcast protocols. The resulting
models permit observation of the way broadcast latency distributions change as a function
of pf , network geometry and different types of random delays. Two types of geometries are
considered, grids and static nodes placed at random; then, the results are mostly relevant
for terrestrial static sensor networks [102, 103] and environmental applications [109, 110].
However, since probabilistic broadcast can be much faster than the speed of nodes [124],
the analysis on random networks can be used to estimate the distribution of broadcast
latency in mobile scenarios [115]. Also, the analysis allows computing the pdf of latency for
any distance between the source and the farthest node, which is equivalent to computing
latency for networks of different size.

The probability density function of broadcast latency provides the necessary informa-
tion to predict the level of service that an ad hoc network can meet, especially considering
that time constraints on route discovery are fundamental in ad hoc networks to meet
the demands of applications [133]. Furthermore, computation of the broadcast-latency
distribution at an arbitrary distance from the source can be used to callibrate routing-
parameter values such as time-outs and TTL, e.g. in the evaluation of reactive ad hoc
routing protocols supporting delay-sensitive services [121].

The present chapter is organized as follows. Related work on analytical models of
probabilistic broadcast is summarized in Section 6.3. Section 6.4 is concerned with deriving
and validating the probability distribution of the path length of broadcast packets. Section
6.5 uses the results in Section 6.4 to yield the pdf of probabilistic-broadcast latency.
Percentiles obtained from the models are compared to simulation results in Section 6.6
and conclusions are drawn in Section 6.7.
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6.2 Table of Chapter Variables

Table 6.1 provides detail description of the variables that appear in this chapter. Some of
the variables may have a continuous and discrete interpretation. For example, x represents
discrete distance (in hops) and continuous (Euclidean) distance. Readers should notice
that variables with discrete and continuous interpretation correspond to the analysis of
grids and random networks, respectively.

Variable Description

pf : Forwarding probability.

T : Upper limit of the interval in which a random variable is defined; in this chapter either uniform or

truncated exponential variables are defined in [0, T ].

x: Represents distance. For the discrete model (grids) it is the minimum distance in hops from a

roadcast source; it is equivalent to the value of a state in the random-walk model. In the continuous

model x represents Euclidean distance.

p: Probability of packets moving one tier forward. It is equivalent to the probability of a step forward

in a one-dimensional random walk model.

q: 1− p in the one-dimensional random-walk model.

y: Number of hops taken by a broadcast packet to reach a distance x = x0 from the source. It is

equivalent to the index of the random walk (random process).

k: Number of steps forward in a one-dimensional random walk model for a given index (y) of the random

process.

N : Total number of nodes in an ad hoc network (network size).

r: Transmission radius of nodes. All nodes are assumed to have the same value of r.

nr: Average number of nodes in the transmission radius of a node.

l: Euclidean distance between the broadcast source and distant nodes (i.e. nodes reached by multi-hop

communication.

hav: Average number of hops between nodes at Euclidean distance l.

h: Regardless of the subscript, h represents the number of hops.

n: Any discrete random variable with probability mass function (pmf) f(n). The random variable for

the distribution of the number of hops in the random sum computation.

Table 6.1: Variables used in Chapter 6.

6.3 Related Work

An analytical model to find the value of pf in wait-based schemes was proposed in [96].
The authors showed the way pf decreases as the number of nodes increases in a given area.
The formulas to solve for the forwarding probability (pf ) were of the form pf = f(pf , N),
where N is the number of nodes in the network; thus a computer package was necessary
to obtain the values of pf .

Also for wait-based schemes, in [97,98], the authors provide expressions for the expected
values of performance metrics such as reachability, saved rebroadcast and average broacast
delay (i.e. latency) as a function of protocol parameters (e.g. the number of packet copies
that should be heard to refrain from forwarding).
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Analytical models were presented in [99] to predict the reachability of flooding and a
scheme with a fixed value of pf . The study analyzes probabilistic broadcast considering
the effects of the carrier sensing (CSMA) mechanism of the 802.11 wireless standard [9]
and the traffic rate. The probability of a broadcast source releasing packets into the
wireless channel is calculated. The study shows the limits of traffic-driven probability of
transmission of packets; above these limits, the excess of traffic reduces reachability to
arbitrarily low levels either using flooding or probabilistic broadcasting.

For schemes relying on Hello messages, in [1], the theory of Random Plane Graphs [2]
and Continuum Percolation [134] is used to prove that, in a network with nodes placed
according to a two-dimensional Random Uniform distribution, the forwarding probability
at every node can be set to the inverse of the node’s number of neighbors, namely pf = β/n,
where n is the number of one-hop neighbors, and β is simply a constant (called coverage
level) that is proportional to the expected reachability. Since the theory applies to networks
in which the number of nodes tends to infinity, a simulation-based estimation of the
behavior of β was necessary to model finite networks.

The work in [12] presents an analytical bound on the probability of messages failing to
reach any arbitrary node in the network. In line with the ideas in [1] (i.e. pf = β/n), the
analytical bound suggests that if β is the average number of one-hop neighbors allowed to
repeat broadcast messages, a calculation of worst-case reachability is immediate, and this
constant determines the expected value of reachability, as in [1].

Besides providing average values of broadcast metrics, common assumptions in the
studies above include nodes placed at random according to the Uniform distribution, and
random delays Uniformly distributed in an interval [0, T ]. In this regard, the contribution
of the present work is threefold:

❼ Computation of probability density functions.

❼ Evaluation of broadcast latency considering random-delay distributions different
from the Uniform distribution in [0, T ].

❼ Latency models for node-position geometries different from random Uniform.

The following section derives probability mass functions (pmf) of the path length of
broadcast packets for different geometrical scenarios (grids and nodes placed at random).
The results are used in Section 6.5 to compute the probability density functions of broad-
cast latency including different types of random delays.

6.4 Path Length According to Node Layout

The purpose of this section is to derive the probability mass function (pmf) of the path
length that is traversed by a broadcast packet. The resulting distribution depends on the
geometrical features of node layout as well as on the forwarding probability (pf ). First,
path-length probability mass functions are derived for regular geometries, and then for
random node layouts.
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Figure 6.1: In grids, the random process that determines the path length of broadcast packets is the same

regardless of the direction of packet propagation.

6.4.1 Regular Geometries (Grids)

6.4.1.1 Path-length Model

Let x be an integer variable that represents the graph distance between the broadcast
source and any other node in a grid. Then, regardless of the position of the source, sets of
nodes sharing the same value of x will form tiers that expand away from the source until
reaching the farthest nodes.

Ideally, the path length of broadcast packets should be equal to the graph distance
However, the present model considers the non-ideal path length produced by the random-
ness of probabilistic broadcast schemes. For the model, the ideal graph distance between
nodes and the broadcast source becomes the minimum number of hops and indicates the
tier of each node.

In grids, the transition of a broadcast packet from one tier to the next occurs under the
same topological conditions regardles of the value of x and the direction of propagation.
In this context, we propose to model the distribution of the path length of a broadcast
packet as a one-dimensional (1D) random process conditioned on a specific value of x;
formally, a random variable Y = y conditioned on x = x0. Figure 6.1 summarizes this
idea.

In Figure 6.1, tiers are separated by dashed lines, shown as concentric circles arround
the source, and the same random process is shown to occur in three different directions
for x0 taking integer values i, j and k. The area of the grid is a square. To the right of the
square region, a diagram presents tiers separated by straight dashed lines, emphasizing
that the 1D random process depends mainly on the probability of packets going forward
in one tier (with probability p); the random variables X and Y are mapped onto the tier
of interest and the number of hops (arrows), respectively.

Given the discrete nature of tier formation and the 1D consideration, the distribution
of Y will depend mostly on the probability (p) of moving forward one tier. Due to the
regularity of grids, the value of p will be assumed constant and can be estimated from the
local topology of nodes (i.e. a single tier-transition pattern to determine the value of p).
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Based on the previous description, we map the variables x, y and p to a one-dimensional
random walk [135,136] with discrete state space (range of X) and discrete index (value of
Y ).

The state of the random walk is described by X =
∑y

i=1 Zi, with P (Zi = 1) = p and
P (Zi = −1) = 1−p = q, and Zi independent and identically distributed random variables
(i.i.d. r.v.). Given an index Y = y, the distribution of X is obtained from [135,136]:

P (X = x | y) =
(

y

k

)

pkqy−k, y ≥ x0 (6.1)

where k is the number of times Zi = 1, leading to x = k − (y − k) = 2k − y; hence
k = 1/2(y + x) in (6.1). In this model, P (X = x | y) exists for even values of x when y
is even, and the same relation holds for odd values of y. In our mapping (Figure 6.1), at
tier x, the path length corresponds to the value of y, then the pmf of the path length can
be obtained from:

P (Y = y | x) = P (X = x | y)P (y)
∑

y≥x P (X = x | y)P (y)
(6.2)

In (6.2), P (y) = 1 for any value of y assuming that broadcast is never stopped by time,
or by a limitted number of hops, i.e. as long as there are nodes receiving packets, packets
continue propagating and the index of the radom walk shall increase.

The following sub-sections analyze the local topology of various grids to determine the
corresponding value of p and validate the use of (6.2) to estimate the distribution of the
path length of broadcast packets in grids.

6.4.1.2 Square Grid

Figure 6.2 shows the topological tier-transition pattern for packets to move forward in a
square grid. Figure 6.2a shows the case in which all wireless links (arrows) occurred from
left to right i.e. all nodes forward the broadcast packet. Figure 6.2b shows the situation in
which nodeA does not receive any copy of the packet because its two expected transmitters
in tier i refrained from forwarding due to pf . Figure 6.2c shows what may happen if node
A receives the packet from one of the nodes one tier ahead, a packet hops back from Tier
i+ 2 to Tier i+ 1, resulting in a path that can go back and forth between tiers.

Considering probabilistic decisions as the only cause of packets hopping back to the
previous tier, the value of p in (6.1) corresponds to p = 1 − (1 − pf )

2. Notice that in a
square grid each node has only two expected transmitters in the previous tier; then, for
a collision event, the two colliding packets should have the same effect shown in Figures
6.2b and 6.2c. Hence, collisions can be included in the model by decreasing the value of p
with an estimation of the probability of collisions.

Packets going back two (or more) tiers would be restricted in realistic scenarios due to
the sequence numbers of broadcast protocols, namely in Figure 6.2c the two nodes that
refrained from forwarding in tier i will not repeat the packet forwarded by A because
they recognize it as previously seen. However, since pf > 0.7 for good reachability in
square grids [6], consecutive occurrences of Zi = −1 in the model would introduce a small
distorsion.
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Figure 6.2: Topological pattern of the propagation of a broadcast packet over a square grid regardless of the

position of the source. a) Ideal pattern with all links going forward one tier. b) Node A in Tier i + 1 does not

receive the packet due to probabilistic decisions in tier i. c) A path that goes back one tier is formed.

Figure 6.3: Histogram vs. pmf of path length at Tier 10 in a square grid.

Figures 6.3–6.5 show the results of using (6.2) for different values of x (different tiers)
in a 50 × 50 square grid. The results are compared to the histograms obtained from
simulations using QualNet➤v.7.3. [119]. Simulation settings appear in Table 6.2. Each
graph shows the value of pf and the sample size (SmplSz ) of the histogram. For 120
simulation runs, histograms combined the data from two nodes in the same tier with
symmetric positions so that sample sizes could grow up to 240 samples.

The values of x in Figures 6.3–6.5 were chosen to illustrate that the model can be
applied to networks of different sizes. Since the source was placed on one of the sides (first
column, center row), a value of x = 10 is equivalent to having a network with 121 nodes;
similarly, x = 30 involves 925 nodes and x = 50 involves 1924 nodes. Notice that both
the histogram and the pmf exist for even values of the path length, given that x is even,
which supports the assumptions of the model.

Figures 6.3–6.5 show a good fit of the analytical model with the simualtion results.
The qualitative behavior of the path-length pmf as a function of pf was properly captured
by the model. When pf is low, longer paths occur, shifting the probability mass function
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Figure 6.4: Histogram vs. pmf of path length at Tier 30 in a square grid.

Figure 6.5: Histogram vs. pmf of path length at Tier 50 in a square grid.
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Parameter Value

Grids 50×50 square, hexag-

onal and triangular

Broadcast Scheme GOSSIP1(p,4) [6]

Transmission Range 250m approximately

Transmission Rate 2Mbps

Path-loss model Two-ray

Transmission Rate 2Mbps

Mac Layer 802.11b

Source Position row 25 column 1

Runs 120 replications

Table 6.2: Simulation settings.

Square Grid pmf GoF

pf Tier 50 Tier 30 Tier 10

P-value Bins P-value Bins P-value Bins

0.77 0.63 6 0.11 4 0.02 3

0.72 0.67 6 0.01 4 0.10 2

0.67 0.35 8 – 4 0.06 3

Table 6.3: Chi-square goodness of fit (GoF) test; pmf of path length in 50× 50 square grid.

(pmf) to the right and also producing a longer tail. Also, the model captures the changes
in the pmf of path length for nodes at different tiers (or networks of different sizes).

Since the graph distance is a discrete random variable, the Chi-square goodness-of-fit
(GoF) test was applied to validate the analytical model. The results for different values of
pf and x (tier), appear in Table 6.3. According to the P-values of the test, the analytical
pmf represents the data collected from the simulation experiments. Considering a 0.01
significance level, the tests fail to reject the proposed model [137].

Table 6.3 also shows the number of bins in the GoF test for each case. Since GoF tests
must have a minimum number of expected observations in each bin [137], the number of
bins is reduced for the cases of tiers near the source as both the pmf and the histogram
accumulate most of the probability in a shorter range (e.g. number of bins in Figure 6.3).

The results reported in Table 6.3 were sensible to small changes in the value of p.
For x = 50, decreasing the value of p by less than 0.01 produced a better fit, yielding
a pmf with longer tail. Conversely, for x = 30, x = 10, increasing p by adding values
between 0.002 and 0.02, increased the P-value of the GoF tests. These small variations
around p can be explained by considering the effects of packet collisions at the MAC layer
(decreasing p far from the source) and the specific probabilistic protocol employed in the
simulations (Table 6.2), in which probabilistic broadcast is avoided in the first 4 hops.

The difference between the model and the histograms in the first bins is more noticeable
for x = 30 (Figure 6.4). Only in the case x = 30 with pf = 0.67 the first bin caused the
GoF test to fail. The P-value without the observations of the histogram at y = 30 was
0.29, showing an excellent fit of the tail. Overall, the model represents the behavior of
probabilistic broadcast in square grids.
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Figure 6.6: Topological pattern of the propagation of a broadcast packet over a hexagonal grid. a) Ideal pattern

with all links going forward one tier. b) node A receives the the packet from tier i+ 3 (path with two hops back),

a path blocked by the sequence numbers of packets; node B receives the packet from tier i+ 2 without blocking.

6.4.1.3 Hexagonal Grid

Figure 6.6 shows the topological tier-transition pattern of broadcast propagation for the
case of a hexagonal grid (or honeycomb). Similar to the analysis of the square grid, Figure
6.6a shows the case in which all links occur from left to right. The pattern for nodes at the
top of the figure is totally symmetric to the pattern at the bottom. These two equivalent
patterns correspond to the propagation of broadcast packets towards different ends of the
grid, which occurs as long as the broadcast source is not in one of the corners of the grid.
When the source is in a corner, only one of the patterns would emerge. However, due
to symmetry, the following analysis would be the same regardless of the possition of the
source. In all cases, for any arbitrary tier, a node with one expected transmitter from its
previous tier is followed by two expected receivers in the following tier (see the two nodes
at the botom of Tier i + 1). This pattern is always followed by nodes with two expected
transmitters and only one receiver (the two nodes at the botom of Tier i + 2). The two
patterns always occur one after the other until the last reachable tier.

Figure 6.6b illustrates two cases that match the two patterns above. First, the two
expected transmitters of node A decided not to forward the packet due to pf . Since high
reachability is assumed, node A may receive the message from a path that has hopped
back two tiers, from Tier i+ 3 to Tier i+ 2, to node A in Tier i+ 1. However, this path
must end at node A because its three neighbors already received one copy of the message,
so the sequence number of the packets will block the path completely.

In the second case of Figure 6.6b, the single expected transmitter of node B decided
not to forward the broadcast packet due to pf , and node B receives the packet from a
node in the following tier (from Tier i+2). Unlike node A, node B can easily continue to
propagate the message forward since node B is the only one expected transmitter of the
following node in Tier i+ 2. In this case, the path only goes back and forth by one hop,
as in the case of the square grid (Section 6.4.1.2).

The two cases in Figure 6.6b indicate that, for any given path, only in half the tiers
can we expect packets to go back and forth one hop. In general, half the nodes (nodes with
the local topology of node B) contribute to the formation of long paths in a hexagonal
grid. Hence, the probability distribution of the path length for the hexagonal grid can
be obtained from equation 6.2 with the following considerations; firts, the value of x
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Hexagonal Grid pmf GoF

pf Tier 64 Tier 32 Tier 16

P-value Bins P-value Bins P-value Bins

0.85 0.46 13 0.03 7 0.12 6

0.8 0.04 13 0.21 8 0.07 7

0.75 0.12 8 0.57 8 0.19 6

Table 6.4: Chi-square goodness of fit (GoF) test; pmf of path length in 50× 50 hexagonal grid.

corresponds to half the number of tiers, so the other half of the tiers are included only
by shifting the resulting pmf to the right; second, the value of p is now pf since only one
forwarder is involved in allowing paths to hop back.

Figures 6.7 – 6.9 show the histograms obtained from simulations of a 50×50 hexagonal
grid compared to the pmf from equation 6.2 with the considerations above. As in the case
of the square grid, the pmf succeeds in describing the behaviour of the path length for
different values of pf and tiers (or network sizes). As in the case of the square grid,
the values of pf were chosen around a critical value in which reachability can suddenly
drop from over 90% to 20%. Consequently, the sample sizes (SmplSz) of histograms with
pf ≥ 0.8 indicate that nodes were reached in almost all runs, whereas the sample sizes for
pf = 0.75 reveal that nodes were reached only 30% of the times, confirming that there is
a critical value of pf for reachability in grids [7].

GoF results for the hexagonal grid are shown in Table 6.4. Again, the tests fail to
reject the proposed model at a 0.01 significance level.

Unlike the square grid, significant probability values in the hexagonal grid spread over
a wider range of y (the path length), which allows more bins in GoF tests. Also, in terms
of the sensitivity of parameter p, better fits can be obtained increasing p by 0.01–0.02.
Only in the case of pf = 0.75, Tier 64, better fits were obtained decreasing the value of
p. This trend indicates that the model predicts longer paths for all tiers, i.e. the model
is conservative for hexagonal grids. However, the lack of fit between the pmf and the
histograms in the first bins never caused GoF tests to fail. Indeed, the P-values in Table
6.4 indicate that the model is more accurate for the hexagonal grid than for the square
grid for nodes near the source (or smaller networks).

Again, the assumptions of the model are well supported by the histograms since only
even values of y appear in histograms, following the fact that x is even (i.e. Tiers 16, 32,
64).

6.4.1.4 Triangular Grid

Figure 6.10 shows the topological tier-transition pattern of a triangular grid. As in the
case of the hexagonal grid, the figure shows a section of the network where packets can
propagate towards two different ends of the network area. Figure 6.10a shows how the
nodes at the top and bottom share the same pattern, namely two expected transmitters
from the previous tier, two expected receivers in the following tier and two expected
receivers in the same tier. Figure 6.10b illustrates two events that may occur when the
two expected transmitters of a node decide not to forward the broadcast packet due to
pf . First, node A receives the packet from a node in its own tier, describing a path that
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Figure 6.7: Path length in hexagonal grid, pmf vs. histogram, Tier 16.

Figure 6.8: Path length in hexagonal grid, pmf vs. histogram, Tier 32.
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Figure 6.9: Path length in hexagonal grid, pmf vs. histogram, Tier 64.

Figure 6.10: Topological pattern of the propagation of a broadcast packet over a triangular grid. a) Ideal pattern

with links going forward one tier and also links between pairs of nodes in the same tier. b) Node A receives and

sends the packet within the same tier, leading, a path that stays in the same tier two additional hops; the path

through node B only stays in the same tier one hop.

remains in the same tier after an additional hop (see Tier i+1). Then the path continues
in the same tier when node A transmits the packet to its neighbor below, so that the path
stays in the same tier after two hops.

In Figure 6.10b the situation of node B is slightly different. The path that goes
through node B only stays in the same tier for one additional hop because the node above
B received the packet from its other neighbor in tier i + 3 and not from B. To evaluate
the model, we assume that the situation of node A (i.e. two hops in the same tier) is very
unlikely because it implies that the node below A did not receive the message from at
least other two neighbors (i.e. neigbors from below in Figure 6.10b). Then, the situation
of node B should dominate the formation of paths in triangular grids.

According to the previous considerations, the pmf for the path length in a triangular
grid should be calculated based on a random walk model in which P (Zi = 1) = p and
P (Zi = 0) = 1 − p = q. By including this modification, now y − x0 = j, where j is the
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Figure 6.11: pmf vs. histograms of path length in a triangular grid, Tier 10.

Triangular Grid pmf GoF

pf Tier 50 Tier 30 Tier 10

P-value Bins P-value Bins P-value Bins

0.72 0.33 7 0.41 10 0.24 4

0.65 0.18 5 0.23 8 0.02 3

0.6 0.20 7 0.97 5 0.11 3

Table 6.5: Chi-square goodness of fit (GoF) test, path length in 50× 50 triangular grid.

number of times the random walk stayed in the same state (i.e. the number of times Zi = 0
occurred). Notice that now x and y can be even or odd independently, meaning that the
histograms may show non-zero values (observations) in all possible values of y (even or
odd) regardless of the value of x. As in the case of the square grid, p = 1− (1− pf )

2 (i.e.
two nodes must decide not to forward a packet to make the path stay in the same tier).

The pmf for a 50 × 50 triangular grid is compared to the histograms obtained from
simulations in Figures 6.11–6.11. Once again, the values for pf were chosen around a
critical value of reachability [7], which can be confirmed by the sample sizes.

The corresponding GoF tests are shown in Table 6.5. The trend for a better fit of the
model was to reduce the value of p by 0.06–0.12 in all cases. This can be explained by the
intra-tier paths that may form independent from probabilistic broadcast and the increase
in collision events caused by a larger number of neighbors (a denser grid).

As in the case of the square grid, for nodes near the source (i.e. the case of Tier 10 in
Figure 6.11), histograms show a larger-than-expected number of observations exactly in
y = 10, which can be attributed to the non-probabilistic forwarding decisions in the first
four tiers.

Overall, equation 6.2 produces probability mass functions that fit the data from sim-
ulations for different values of pf , different distances from the source (network sizes), and
different grids.
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Figure 6.12: pmf vs. histograms of path length in a triangular grid, Tier 30.

Figure 6.13: pmf vs. histograms of path length in a triangular grid, Tier 50.
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Figure 6.14: A path from the two more distant nodes in a network compared to the Euclidean distance between

the nodes.

6.4.2 Random Geometries

Similar results to those in Section 6.4.1 can be obtained for networks with nodes placed
at random. Specifically, this section focuses on the path length pmf for nodes arranged
according to a homogeneous Poisson process (also called Poisson Point Process). The
results in this section can be used for the case of N nodes independently and uniformly
distributed in the same region due to its theoretical equivalence with the homogeneous
Poisson process [138].

The pmf of path length is derived from two ideas. First, the authors in [139] proved
that the graph distance (i.e. distance in hops) for nodes in a Poisson process is only
a constant factor larger than their Euclidean distance, as long as nodes are suficiently
distant. Second, for the same Poisson process, the results gathered in [138], show that the
Euclidean distance to the n-th neighbor follows an Erlang distribution. Since the graph
distance is a linear function of the Euclidean distance [139], the pmf of the path length
should belong to the same family of probability density functions (pdf) that describe the
Euclidean distance between to nodes (i.e. and Erlang-based pmf), only modified a constant
scale factor.

6.4.2.1 Estimating the Constant

A first step to finding a constant that relates the Euclidean distance to the graph distance
is to estimate the number of hops that cover such a distance. Given a node, the positions
of its neighbors in a Poisson Point Process are equivalent to having neighbors Uniformly
distributed [138]; then, assuming that the transmission area is a circle of radius r, neighbors
can be found at a distance x from the transmitting node, in any arbitarry direction, with
the following pdf [8] :

f(x) =
2πx

πr2
, 0 < x < r (6.3)

According to equation 6.3, the expected value of the distance between the transmitter
and any of its neighbors (i.e. only nodes within r) is E[X] = 2r/3. This means that,
if a series of nodes were arraged in a straight line of length l, the average number of
hops (hav) from a source, placed at the beginning of the line, to the farthest node would
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Figure 6.15: Expected angular area (sector), for a single neighbor, regardless of the distance to the center. a)

single node appearing, on average, at half the arc of the expected sector. b) two contiguous sectors (dashed lines)

with their nodes at their average angular positions. Either above or below the horizontal line neighbors will appear,

on average, at θ/2.

be hav = 3l/2r (which coincides with the number of transmitters in a one-dimensional
network using the counter based scheme in [98]).

Although the assumption of a pseudo-straight path closely following the line of the
Euclidean distance (between suficiently distant nodes in an m-dimensional random net-
work) is not intuitive, the proof of Theorem 3 in [139] shows that the detours from an ideal
path only increase the graph distance by a constant factor. Figure 6.14 shows a graphical
representation of this idea in two dimensions. The figure shows one realization of a Poisson
process in the square [0, 1]2 where the average number of nodes is 2500. The most distant
nodes are near the corners of the square, so the length of the black line joining them is
nearly

√
2. A gray thick line shows the path (graph distance) between the two nodes. As

predicted, the detours of the path from the straight line are moderate. Additionally, the
path deviates to both sides of the straight line equally, either crossing the line or getting
very close to it repeatedly.

With this idea in mind, the constant can be obtained by projecting the Euclidean
distances associated to each hop over the ideal straight line. Here, the projection angles
will depend on node density; therefore, different constants can be found as a function of
the parameter pf of probabilistic broadcast schemes (i.e. the lower pf the lower the node
density that produces the path).

A more intuitive explanation is shown in Figure 6.15. Suppose the average number
of nodes in a circle of radius r is nr. Then, around a node in the center of the circle,
on average, one neighbor should appear every θ = 2π/(nr − 1) radians. This means
that, within a given sector of the circle, with arc-length θ, the average angular position
of a neighbor is θ/2. The position of node A in Figure 6.15a corresponds to this average
angular position within a shaded sector. Figure 6.15b shows how a deviation of node A, in
more than θ/2 from the horizontal line, implies that another node (node B) is very likely
to appear at around 2π − θ/2. Notice that both nodes, A and B, continue appearing at
their own average angular position for two contiguous sectors (sectors shown with dashed
lines). If node A deviates by more than θ/2, the expected location of node B would be
closer to the horizontal line and vice versa. Therefore, a multi-hop path that reaches the
farthest node of a network will fluctuate around the ideal trajectory with an average angle
deviation of θ/2. Therefore, the role of probabilistic broadcast is to reduce the average
number of neighbors from nr−1 to nrpf−1; then, as pf decreases, the arc-length of sectors
increases, resulting in larger average angular deviations of the path from the straight line,
i.e. θ = 2π/(nrpf − 1).

113



Figure 6.16: Projection of the distance in hops over the Euclidean distance (horizontal line). After four hops,

the arrows indicate the progress over the Euclidean distance, which corresponds to the distance between nodes

multiplied by cosθ.

In summary, the average number of hops to reach the farthest nodes of a network,
using probabilistic broadcast, can be calculated from the Euclidean distance to the source
(l) as:

hav =
3l

2r cos(θ/2)
, (6.4)

where the cos θ/2 factor represents the projections of the path over the the Euclidean
distance, and depends on pf . Figure 6.16 shows a magnified segment of the path shown in
Figure 6.14. The arrows indicate the projection of each hop over the Euclidean distance
between the two more distant nodes, while solid lines represent the actual path traversed
by a broadcast packet after four hops.

6.4.2.2 Finding the pmf

The previous analysis is used now to find an Erlang-based distribution that describes
the pmf of the path length of broadcast packets when nodes are placed according to a
homogeneous Poisson process. From equation 6.4, the minimum value for the average
number of hops (hmin), given a distance (l) is obtained with θ = 0 (i.e. a path with no
deviation from a straight line). Then, for different values of pf an average expected value
hav is calculated. Since the Erlang probability density function is of the form:

f(x; k, λ) =
λkxk−1e−λx

(k − 1)!
, x, λ ≥ 0 (6.5)

with expected value k
λ , where k must be an integer, a pmf can be fitted from hmin and

hav by inspection on integer values of k. Specifically, the Erlang-based pmf to describe
the path length is obtained from the differences between integer values of the Erlang’s
cumulative distribution function (cdf), that is:

f(n; k, λ) =

k−1
∑

m=0

1

m!

(

[λn]me−λn − [λ(n+ 1)]me−λ(n+1)
)

(6.6)

where n = h− hmin, and λ = k/(hav − hmin +1), with h ≥ hmin taking integer values.
Figures 6.17 – 6.19 show the pmf obtained using Equations 6.4, 6.6 for different values

of pf and the histograms obtained from the network simulator (QualNet➤v.7.3). The
simulated scenario had 2500 on average in an area of 7000 × 7000m2 with transmission

114



Figure 6.17: pmf and histogram of path length in a random network, nodes following a Poisson Point Process;

maximum Euclidean distance between the source and the farthest node.

range of 250m. All other simulation parameters correspond to those presented in Table
6.2. In each of the 120 replications a different realization of the Poisson process was used
so as to eliminate any possible geometrical bias.

The results in Figures 6.17 – 6.19 illustrate the behavior of path length as a function of
the Euclidean distance and pf . As in the case of grids, the values of pf were chosen around
the critical value that yields acceptable reachability for nodes placed at random [1,96].

Figures 6.17 – 6.19 indicate that path length distributions concentrate more probability
at the beginning of the range of h for nodes near the source. As the Euclidean distance
increases, probability is distributed over a longer range. A similar effect is caused by
reducing the value of pf . Therefore, the effect of pf reducing node density and leading to
larger deviations from a straight-line path is confirmed.

For the results in Figure 6.17, the maximum Euclidean distance was taken from the
average distance between the two more distant nodes in every replication (i.e. nodes in
opposite corners of the network area). However, since Equation 6.4 is linear in l, an
upperbound on the distribution of path length can be obtained by using l = 7000

√
2. The

same is true for Figures 6.18 and 6.19, since 0.8 of the maximum distance was obtained
between a broadcast source near the point (0, 3500) and the farthest reachable nodes in
the opposite corners of the square, and 0.5 of the maximum distance represents the case
with the broadcast source near the center of the square region.

To test the validity of the results, the P-values from the Chi-square goodness of fit
(GoF) test are shown in Table 6.6. Similar results were obtained for the case of 2500
nodes Uniformly distributed in the same region (see Table 6.7). All P-values reported
were obtained with k = 4 in Equation 6.6. Higher P-values were obtained when testing
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Figure 6.18: pmf and histogram of path length, nodes following a Poisson Point Process; 0.8 maximum Euclidean

distance.

Figure 6.19: pmf and histogram of path length, nodes following a Poisson Point Process, 0.5 maximum Euclidean

distance.
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pmf GoF Poisson-distributed nodes

pf max dist. 0.8max dist. 0.5max dist.

P-value Bins P-value Bins P-value Bins

0.75 0.02 12 0.04 11 0.19 8

0.65 0.17 13 0.60 12 0.61 8

0.6 − 9 0.89 10 0.05 9

Table 6.6: Chi-square goodness of fit (GoF), pmf of path length; Poisson Point Process; P-values reported

with k = 4 in Equation 6.5.

pmf GoF Uniformly-distributed nodes

pf max dist. 0.8max dist. 0.5max dist.

P-value Bins P-value Bins P-value Bins

0.75 0.07 12 − 12 0.34 8

0.65 0.11 12 0.97 12 0.03 9

0.6 0.01 10 0.49 9 0.45 9

Table 6.7: Chi-square goodness of fit (GoF) test for the pmf of path length, nodes uniformly distributed;

P-values reported with k = 4 in Equation 6.5.

the maximum Euclidean distance with k = 5; also, for 0.5 of the maximum distance,
higher P-values were obtained with k = 3. This observation coincides with the analysis
in [138], in which higher values of k are associated to neighbors that are farher away from
the reference node.

For the case of pf = 0.6 with maximum Euclidean distance, in Table 6.6, the GoF test
failed with a P-value of 0.0046. However, as observed in Figure 6.17, the lack of fit was
caused by a reduced number of obsevations in the tail of the distribution. This means
that the tail predicted by the model is conservative for long Euclidean distances.

Regarding the lack of fit in Table 6.7 (pf = 0.75 and 0.8 of max. Euclidean distance),
a P-value of 0.13 was obtained by increasing hav in one hop. This suggests good stability
of the expected values obtained from equation 6.4 since only in one case (out of 18) was it
necessary to modify the value calculated for hav. It is worth mentioning that hmin is also
a stable average. Indeed, there are only occasional observations below hmin, especially for
0.5max Euclidean distance, e.g. the bins before h = 29 in Figure 6.19 correspond to only
one observation from the samples.

Overall, the Erlang-based pmf obtained from hmin and hav, with k = 4, can be con-
fidently used to estimate the distribution of the path length of broadcast packets in ad
hoc networks with nodes placed according to a homogeneous Poisson Point Process or
according to the Uniform distribution. More accurate results can be obtained with k = 3
when nodes are closer to the source, and k = 5 can be used for longer Euclidean distances.
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6.5 pdf of Random Sums

Having the probability mass function (pmf) of the path length, broadcast latency will
be computed from the sum of random delays. Specifically, for a sum of independent and
identically distributed continuous random variablesXi, when the number of these variables
is itself a random variable with discrete probability distribution f(n) = P [N = n], the pdf
of the sum Y =

∑N
i=1Xi has Laplace transform [140]:

Y ∗(s) =

∞
∑

n=0

P [N = n][X∗(s)]n, (6.7)

where X∗(s) is the Laplace transform of the common pdf of the set of continuous
variables Xi. This model of random sums suits probabilistic broadcast schemes since the
random delays of protocols are independent and identically distributed.

In this section the sequence P [N = n] corresponds to the pmf of path length, obtained
from (6.2) for grids or from (6.6) for random networks, and X∗(s) is the Laplace transform
of the pdf of random delays.

6.5.1 Latency pdf for uniform random delays

A continuous uniform random variable defined in [0, T ] has Laplace transform:

X∗(s) =
1− e−Ts

Ts
(6.8)

Then, the Laplace transform of the random sum of uniform random delays corresponds
to:

Y ∗(s) =
∞
∑

n=0

P [N = n]

Tn

(

1− e−Ts

s

)n

(6.9)

Let us denote Y ∗
n (s) as one of the terms of the sum in (6.9). Then, by using the

binomial identity, the inverse transform of each Y ∗
n (s) follows from:

Y ∗
n (s) =

P [N = n]

Tn

(

1− e−Ts

s

)n

=
P [N = n]

Tn

n
∑

k=0

(

n

k

)

(−e−Ts)k

sn

yn(t) = an

n
∑

k=0

(

n

k

)

(−1)k

(n− 1)!

(

t− kT

T

)n−1

ukT , (6.10)

where an = P [N = n]/T , ukT represents the unit step function shifted by kT , and
yn(t) is the inverse Laplace transform of each term Y ∗

n (s). Threfore, the pmf of latency
corresponds to:

L−1{Y ∗(s)} =
∞
∑

n=0

yn(t) (6.11)
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Before closing this section, we derive an equivalent expression of (6.10) for the case
of truncated exponential random delays. This allows a more comprehensive evaluation of
the models by using different distributions of random delays. The truncated exponential
distribution was chosen since it involves no additional computational burden to be imple-
mented in protocols (i.e. no additional random numbers using direct inverse method) and
it always produces a smaller mean compared to a uniform distribution defined in the same
range. Therefore, the model can be evaluated with a different distribution and a reduced
mean of random delays at the same time.

Following the same procedure shown in (6.8) and (6.9), the inverse transform of each
Y ∗
n (s) when using truncated exponential random delays follows from:

Y ∗
n (s) = P [N = n]

[

λ(1− e−(s+λ)T )

(1− e−λT )(s+ λ)

]n

=
λnP [N = n]

(1− e−λT )n

n
∑

k=0

(

n

k

)

(−e−(s+λ)T )k

(s+ λ)n

yn(t) = bn

n
∑

k=0

(

n

k

)

(−1)ke−λt

(n− 1)!

(

λ(t− kT )

1− e−λT

)n−1

ukT , (6.12)

where bn = λP [N = n]/(1− e−λT ).

6.6 Validation of Latency Models

To avoid biased validation, the simulation scenarios used in Section 6.4 were modified. In
this section, the simulation area is a rectangle with height-width ratio of 2:5 and broadcast
sources are placed on one of the shorter sides of the area (i.e. broadcast packets propagate
along a narrow corridor). These scenarios correspond to 20 × 50 grids and a rectagle of
7500 × 3000m2 for random scenarios with 1000 nodes on average. Also, the model was
tested for different values of pf , different distances from the source and different types of
random delays. All other simulation parameters remain as in Table 6.2.

Since the pdf of latency can be used to estimate the service level that a broadcast
scheme provides for dissemination services such as route discovery, the accuracy of the
models is tested by comparing simulation results to the percentiles 95 and 99 computed
using equation 6.11.

Results are shown for: i) two values of the forwarding probability pf , one value around
the minimum value of pf reported for reachability above 90% [6,7], and a higher value to
see the effects of redundancy. ii) four types of random delays, two instances of uniform
random delay and two of truncated-exponentially distributed random delays [129]. One of
the uniform instances uses T = 10ms since it is the most common value used in different
studies [10,127], and the other uses T = 100ms to consider the studies in which delays are
long enough to resemble a scenario with no packet collisions [39, 93]. The exponentially
distributed instances correspond to truncated-exponential distributions defined with T =
20ms with mean 5ms and 7ms. This permits comparing the results with uniform random
delays for the same mean (5ms), and observing the accuracy of the model with a variety
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of random delay distributions. iii) different distances from the source. For grids, the
distances from the source are associated to the Tiers presented in Section 6.4.1, whereas
Euclidean distances are associated with nodes placed at random. Different distances can be
interpreted as networks of different sizes since broadcast messages are forwarded regardless
of the direction of propagation of packets and so the error introduced by packets hopping
back to the tier that represents the end of the network is small (recall the probability of
having more than one hop back in Section 6.4.1.2).

6.6.1 Validation of Latency Model for Grids

Tables 6.8–6.13 show the average percentage of broadcast packets with latency higher
than the percentiles 95 and 99 obtained from the pdf of latency for grids. The pdf was
computed using 40 probability mass points in (6.2), i.e. 40 terms in (6.11).

The average values in Tables 6.8–6.13 were obtained considering all the nodes in the
same tier and are presented with 95% confidence intervals.

6.6.1.1 Validation for the Square Grid

In Tables 6.8 and 6.9, the parameter p in (6.1) was adjusted in −0.05 to consider collisions
increasing the length of the paths only in some instances of pf = 0.72 (as explained in
Section 6.4.1.2). The results obtained with pf = 0.8 have no adjustment. This indicates
that the redundant packets caused by using pf = 0.8 compensate the effects of packet loss
due to collisions.

rn.dl.Un.T = 10 rn.dl.Un.T = 100

pf Tier p95 p99 p95 p99

20 9.0±1.3 3.8±1.2 5.6±0.9 3.1±0.5

0.72 35 9.6±2.8 3.9±1.3 2.6±0.7 0.3±0.2

50 12±2.5 1.3±0.7 2.1±0.7 0.1±0.2

20 11±5.6 4.1±2.3 2.0±1.0 0.8±0.6

0.8 35 20±7.2 6.7±2.3 0.9±0.7 0

50 19±7.9 5.1±2.4 0.5±0.4 .04±.09

Table 6.8: Square grid, percentage of packets with delay above percentiles 95 and 99, broadcast protocol

using Uniform random delays.

In Table 6.8, the largest deviation from the prediction of the model occurred for uniform
random delays with T = 10ms. In this case, larger errors always exhibit larger confidence
intervals, and this pattern is more noticeable with pf = 0.8. This indicates that more
contention (higher values of pf and reduced T ) prompt the broadcast wave into non-
uniform propagation patterns in which nodes in certain areas receive broadcast packets
considerably later than the other nodes. Indeed, in this set of results, nodes located
towards the borders followed the predictions of the model a lot more closer than nodes
located towards the center of the rectangular area. For example, at Tier 20 considering
14 nodes (7 nodes closest to each side) the percentage of packets with latency higher than
p95 is 4.3± 2.0 and for p99 the result is 1.3± 0.7. This pattern was observed at all tiers,
but it was less evident for pf = 0.72.
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In Table 6.8, the case of T = 100 shows a slight over estimation of the model. In
this case, no adjustments to the value of p in (6.1) were used at all, confirming that large
values of T resemble an ideal broadcast event with no collisions. For studies that use large
values of T to avoid collisions completely, the model offers a tight upperbound.

dl.Ex T =20 µ=5 dl.Ex T =20 µ=7

pf Tier p95 p99 p95 p99

20 8.5±1.7 3.1±1.2 6.9±1.0 1.9±0.7

0.72 35 8.3±2.5 2.7±0.7 5.1±1.9 0.9±0.5

50 6.6±2.2 1.4±0.5 3.4±0.9 0.2±0.2

20 5.1±1.9 1.4±0.4 5.1±1.3 1.9±0.8

0.8 35 1.8±0.9 0.2±0.2 3.0±1.4 0.6±0.4

50 0.8±0.4 .04±.09 0.4±0.4 0

Table 6.9: Square grid, percentage of packets with delay above percentiles 95 and 99, broadcast protocol

using Truncated Exponential random delays.

Table 6.9 shows that the use of truncated-exponential random delays reduces the error
of the model. Specifically for pf = 0.8, which has no adjustment to consider collisions,
the predictions of the model improved significantly. Considering that uniform random
delays with T = 10 have also a mean of µ = 5ms, the results in Table 6.9 suggest that
exponentialy distributed random delays avoid the effects of excessive contention better
than uniform delays. The results in Table 6.9 show an excellent fit of the model, with
slight overestimations only for Tier 50.

6.6.1.2 Validation for the Hexagonal Grid

Given the results in Section 6.4.1.3 (no influence of collisions on path length), the results
in Tables 6.10 and 6.11 were obtained with no adjustment on the value of p in (6.1).

rn.dl.Un.T = 10 rn.dl.Un.T = 100

pf Tier p95 p99 p95 p99

30 7.1±2.4 2.0±2.0 1.3±1.2 0

0.8 60 1.7±2.6 0 0.2±0.4 0

90 0 0 0 0

30 9.0±2.0 2.8±1.1 0.8±0.5 0.2±0.3

0.9 60 7.7±1.4 2.3±0.8 0 0

90 11±2.3 3.5±1.1 0 0

Table 6.10: Hexagonal grid (Honeycomb), percentage of packets with delay above percentiles 95 and 99,

broadcast protocol using Uniform random delays.

As in the case of the square grid, the maximum error occured when using uniform
random delays with T = 10 and pf = 0.9. This confirms that the combined effect of
reducing T and increasing pf causes non-homogeneous propagation of packets, increasing
the error and the width of confidence intervals (as explained for square grids).
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dl.Ex05µ T = 20 dl.Ex07µ T = 20

pf Tier p95 p99 p95 p99

30 5.6±2.7 3.1±1.9 6.7±3.6 1.0±1.2

0.8 60 2.6±2.0 1.6±1.8 8.1±5.8 3.8±3.9

90 0 0 0 0

30 6.6±2.0 1.9±1.3 3.6±1.5 0.7±0.4

0.9 60 2.4±1.1 0.1±0.2 0.3±0.3 0

90 0 0 0 0

Table 6.11: Hexagonal grid (Honeycomb), percentage of packets with delay above percentiles 95 and 99,

broadcast protocol using Truncated Exponential random delays.

For the Hexagonal grid, the model overestimates latency for distant nodes more quickly
than in the case of the square grid. In ideal conditions (i.e. T = 100), Table 6.10 shows that
the model is an upper-bound even for nodes in Tier30. Moreover, despite the reduced error
of the model with exponentially distributed delays (Table 6.11), no packets were registered
arriving at Tier90 after p95.

6.6.1.3 Validation for the Triangular Grid

Unlike the square and hexagonal grids, the triangular grid shows stable results for reduced
T and increased pf (Table 6.12, uniform delay with T = 10 and pf = 0.75). This indi-
cates that, despite the increased contention, a higher number of neighbors produces more
homogeneous broadcast propagation, leading to more precise predictions of the model for
uniform delays and T = 10.

rn.dl.Un.T = 10 rn.dl.Un.T = 100

pf Tier p95 p99 p95 p99

20 7.2±1.4 2.8±0.9 4.6±1.3 2.2±1.1

0.65 35 8.0±2.1 3.1±1.3 0.8±0.5 0

50 3.8±1.4 0.5±0.5 0 0

20 8.9±2.3 3.4±1.0 0.3±0.3 .04±.09

0.75 35 7.8±2.2 1.9±1.0 0 0

50 2.5±1.4 0.4±0.2 0 0

Table 6.12: Triangular grid, percentage of packets with delay above percentiles 95 and 99, broadcast

protocol using Uniform random delays.

For T = 100 in Table 6.12, the model shows the same trends of the predictions for the
hexagonal grid. This indicates that the model can be improved to make more accurate
predictions for distant nodes.

Regarding the use of exponentially distributed random delays, the results in Table 6.13
are closer to the predictions of the model. However, the trend of overestimation for more
distant nodes remains.
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dl.Ex05µ T = 20 dl.Ex07µ T = 20

pf Tier p95 p99 p95 p99

20 3.9±1.1 1.9±0.7 2.7±0.8 1.1±0.4

0.65 35 2.8±0.7 0.4±0.3 2.1±0.7 0.9±0.3

50 0.4±0.3 0 0.3±0.2 0

20 1.8±0.7 0.8±0.6 1.1±0.8 0.2±0.2

0.75 35 0.6±0.5 0.2±0.2 0.4±0.3 0

50 .05±0.1 0 0 0

Table 6.13: Triangular grid, percentage of packets with delay above percentiles 95 and 99, broadcast

protocol using Truncated Exponential random delays.

6.6.2 Trends of the Model for Grids

In all grids, two trends are identified: i) Higher values of pf produce shorter latency; ii)
the model predicts longer latency for more distant nodes.

These two trends can be explained from the assumptions about path formation in
Sections 6.4.1.2 6.4.1.3 and 6.4.1.4. In the assumption, paths that go back and forth,
propagating in parallel, reach nodes in specific tiers with the same probability. However,
when simulating a real network, parallel paths influence each other. As distance increases,
paths with less back-hopping will reach the farthest nodes first.

6.6.3 Validation of Latency Model for Random Networks

Since broadcast latency in random networks was modelled according to Euclidean dis-
tances, instead of tiers, the average number of packets exceeding the latency from the
model (p95 and p99) is computed from the traces of 20 nodes with euclidean distance
closest to the target distance. In all cases the deviation from the target distance was
smaller than 150m (60% of the transmission range of nodes).

Interestingly, for random networks following a Poisson Point Process, the model shows
accurate results without any adjustment to consider the effects of collisions. In particular,
for uniform random delays using T = 10 (Table 6.14), results show stability regardless of
the value of pf . In the case of T = 100, the model certainly becomes an upper-bound of
latency.

rn.dl.Un.T = 10 rn.dl.Un.T = 100

pf Km p95 p99 p95 p99

2.3 7.4±1.3 4.0±0.8 2.1±0.6 1.2±0.4

0.7 4.6 5.0±0.6 1.6±0.4 0.3±0.2 0

7 0.5±0.1 0.1±0.2 0 0

2.3 7.4±0.7 3.6±0.6 0.2±0.2 0.1±0.1

0.8 4.6 1.7±0.6 0.9±0.3 0 0

7 .04±.09 0 0 0

Table 6.14: Poisson Point Process, percentage of packets with delay above percentiles 95 and 99, broad-

cast protocol using Uniform random delays.
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When using exponentially distributed delays, the model precisely predicts latency at
2.3Km from the source. However, at 7Km from the source no packets exceeded the values
of latency at p95.

dl.Ex05µ T = 10 dl.Ex07µ T = 20

pf Km p95 p99 p95 p99

2.3 5.4±1.0 3.3±0.7 4.5±0.9 2.2±0.7

0.7 4.6 1.5±0.5 0.3±0.2 1.3±0.6 0.3±0.2

7 0 0 0 0

2.3 3.1±0.6 1.5±0.3 1.8±0.4 0.7±0.3

0.8 4.6 0.8±0.3 .04±.09 0 0

7 0 0 0 0

Table 6.15: Poisson Point Process, percentage of packets with delay above percentiles 95 and 99, broad-

cast protocol using Truncated Exponential random delays.

Equivalent results for nodes placed uniformly at random are shown in Tables 6.16 and
6.17. These tables show a slight, but consistent, increase in latency when the assumptions
of the Poisson Point Process are relaxed by having a fixed number of nodes. However, this
new scenario causes the model to be a tighter upper-bound for the most distant nodes.

rn.dl.Un.T = 10 rn.dl.Un.T = 100

pf Km p95 p99 p95 p99

2.3 9.6±1.0 7.2±1.0 3.5±0.8 1.8±0.4

0.7 4.6 6.3±1.2 3.5±0.8 0.9±0.4 0.1±0.2

7 .05±0.1 0 0 0

2.3 6.9±1.0 4.1±0.7 0.6±0.2 0.4±0.2

0.8 4.6 3.1±0.7 1.3±0.5 0 0

7 0.3±0.2 0 0 0

Table 6.16: Random Uniform layout, percentage of packets with delay above percentiles 95 and 99,

broadcast protocol using Uniform random delays.

The largest error of the model in random scenarios occurs for uniform random delays
with T = 10 and 2.3Km, regardless of the value of pf (Tables 6.16 and 6.14). Two factors
may introduce such error. First, the model is not adusted to consider collisions, and
the reduced value of T increases the probability of collision events. Second, in [139], the
relation between graph distance (path-length) and Euclidean distance is maintained for
sufficiently distant nodes, indicating that for closer nodes, the same relation may not hold,
producing longer paths.

Again, the use of exponentially distributed random delays reduced the error, espe-
cially for nodes closer to the broadcast source. Overall, the results with nodes uniformly
distributed show the same trends as the results obtained with nodes following a Poisson
Point Process. Then the model can be used for comparison purposes with studies that
consider a fixed number of nodes uniformly distributed in the network area.
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dl.Ex05µ T = 20 dl.Ex07µ T = 20

pf Km p95 p99 p95 p99

2.3 7.6±1.4 3.4±0.7 5.7±0.7 3.5±0.7

0.7 4.6 2.2±0.4 1.3±0.5 1.6±0.5 0.7±0.4

7 0.5±0.3 0 0 0

2.3 3.2±0.8 1.9±0.5 1.7±0.5 0.7±0.3

0.8 4.6 0.3±0.3 .05±0.1 0.2±0.2 0

7 0 0 0 0

Table 6.17: Random Uniform layout, percentage of packets with delay above percentiles 95 and 99,

broadcast protocol using Truncated Exponential random delays.

6.7 Chapter Summary and Future Work

A way to compute the probability density function (pdf) of broadcast latency in ad hoc
networks using probabilistic broadcast protocols was proposed. Broadcast latency was
modelled in two stages. First, two models for the probability mass function (pmf) of the
path length traversed by broadcast packets were presented; one model for grids and the
other for random networks. Second, the distribution of random sums was used to combine
the pmf of the path length with the parameters of random delays employed in probabilistic
broadcast protocols.

All models were validated using simulation. The resulting pdf of latency was com-
pared to simulation results using different values of forwarding probability (pf ), different
distances from the broadcast source and different types of random delays.

Results show that the model lacks precision for uniform random delays with a mean
of 5ms. However, for the same mean, precision improves when introducing exponentially
distributed random delays. Precision increases as the mean of random delay increases.
The model becomes an upper-bound of broadcast latency for distant nodes.

The model allows quantifying the reductions in latency caused by reducing the in-
terval in which random delays are defined or by increasing the value of pf . However,
when the interval of uniform random delays is equal or smaller than T = 10, there is a
counter-productive effect (excessive contention leads packets to take longer paths, increas-
ing latency).

The model and the validation reveal that allowing some redundancy in probabilistic
broadcast schemes (pf larger than the minimum value required for a target reachability)
produces faster broadcast, especially as network size increases (i.e. for the farthest nodes
in a large network).

Future work is aimed at improving the precision and the simplicity of the model for
distant nodes. An approximation of the formulas for random sums should allow a closed
expression for the pdf of broadcast latency, facilitating adjustments to consider a decrease
in latency estimation for more distant nodes. Moreover, theoretical background on other
random distributions different from the Poisson Point Porcess can be explored to estimate
latency in other types of random scenarios.
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6.8 Table with Related Work

Table 6.18 compares the type of variables for which analytical models have been proposed
in the literature. The variables of interest when assessing probabilistic broadcastig schemes
as a packet dissemination technique include the forwarding probability (pf ), reachability
(Re), the amount of Saved Rebroadcast (SBR) and the end-to-end latency (Late.) of
packets propagating from the source to the last reachable node.

The columns that refer to the expression provided by authors use the convention E[X]
to refer to the expected value (or average value) of the variable of interest, whereas the con-
vention f(X) suggests that authors computed (or simulated) the probability distribution
function of the variables.

Metric of interest Expression

pf Re SBR Late. E[X] f(X)

Williams [96] X

Zhang [97,98] X X X X

Viswanath [99] X X

Lysiuk [1], Haas [6] X X

Drabkin [12] X X

This Chapter X X

Table 6.18: A comparison of studies that provide analytical models to compute probabilistic broadcasting

variables of interest.
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Chapter

SEVEN

Conclusions and Recommendations

The problem of disseminating packets in ad hoc networks has been addressed in this
thesis from a probabilistic perspective. A comprehensive survey of the literature has been
provided with special emphasis on the fundamental ideas that support most proposals. The
two main categories of probabilistic broadcasting schemes are based on the estimation of
node density by using information from neighbor nodes (neighbor-based schemes) or by
computing the additional area that should be covered when forwarding a packet (area-
based schemes). Schemes that fall in these two categories have a distinguishing feature:
the use of periodic Hello packets. Common tradeoffs to all schemes were identified at the
end of the survey.

This thesis was oriented towards studying factors that can impact the reachability of
probabilistic broadcasting schemes in general. As a result, the studies herein were aimed at
analyzing the impact of variables that affect the reachability of probabilistic broadcasting
regardless of the scheme (e.g. the impact of node layout and the calibration of random
delays).

The first study (Chapter 4) presented an analysis that made use of the Signal to
Interference ratio of nodes when receiving broadcast packets. Such an analysis evinced the
impact of the geometry of node distribution on the successful propagation of broadcast
packets away from the source. By exploring a variety of geometrical node layouts the
study revealed that networks with randomly-placed nodes exhibit a near-optimum (near
collision-free) behavior, while grid layouts are extremely sensitive to the impact of node
interference. The study was successful in incorporating realistic assumptions (i.e. S/I
model) in the analysis of the causes of the limitations in the reachability of packets in
probabilistic broadcasting schemes.

The second study (Chapter 5) focused on the random delays that have been widely
used in ad hoc broadcasting schemes. Specifically, a change in the distribution of random
delays was proposed to reduce the end-to-end latency of probabilistic schemes. Changing
the distribution of random delays, from uniform to truncated-exponential, reduced latency
without compromising reachability. Reducing latency is essential to delay-sensitive appli-
cations running over ad hoc networks. Fast broadcasting of information is also important
to compensate the uncertainty resulting from topological changes in the analysis of Vehic-
ular Ad Hoc Networks (VANETs). The most important aspect of this study is that the
change in the distribution of random delays can be applied to any existing scheme.
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The last study (Chapter 6) employed the topologies studied in Chapter 4 and the
parameters of random delays to provide an analytical model for the latency in probabilistic
broadcasting schemes. Analytical expressions to compute the probability density function
(pdf) of broadcast latency were provided and validated using simulation. The resulting
models show the way broadcast latency distributions change as a function of the forwarding
probability (pf ), the network geometry and the different types of random delays.

Future work about the impact of topology and node layouts in the performance of
probabilistic broadcasting schemes should focus on evaluating probabilistic broadcasting
schemes with static node distributions different from the random uniform distribution.
Likewise, for mobile networks, evaluation studies should be conducted using mobility mod-
els different from the random way point model. All these future studies should consider
in their analysis the effects of the wireless channel so that the results reported are related
to realistic conditions.

Further work is necessary on the proper use of random delays. Finding the optimal
length of the interval in which random delays are defined to increase reachability with
minimum latency is still an open issue, and the suggested analysis should consider the way
protocols ocupy the wireless channel (adding Hello packets or longer headers to broadcast
packets). Moreover, additional studies should be conducted to compare the impact of
truncated exponential random delays on the reachability of different schemes, especially
counter-based schemes, which rely entirely on random delays.

As pointed out in [10], analytical models are scarce in the literature. Given that proba-
bilistic broadcasting schemes have been proposed for several protocols, theoretical analysis
in the field will continue to be an area for future development.

Recommendations:

The present work has shown that theoretically expected results (e.g. predicted by
percolation models) can be achieved by observing the conditions of an ad hoc network that
prompts a near-ideal behavior of probabilistic broadcasting schemes (e.g. geometry and
random delays). The community is encouraged to continue looking for network variables
and conditions that affect the performance of protocols, providing explanatory analysis.

Broadcast should be lightweight, avoiding the dependence on previously collected state
information. Neighbor-based schemes require the use of a Hello protocol, using additional
energy and bandwidth, which has been a problem in test-bed studies. It is recommended
that the proposals in this work be used towards the success of copy-counting schemes.
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