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Resumo

A Web está evoluindo de um espaço para publicação/consumo de documentos para um

ambiente para trabalho colaborativo, onde o conteúdo digital pode viajar e ser replicado,

adaptado, decomposto, fundido e transformado. Designamos esta perspectiva por Fluid

Web. Esta visão requer uma reformulação geral da abordagem t́ıpica orientada a docu-

mentos que permeia o gerenciamento de conteúdo na Web. Esta tese apresenta nossa

solução para a Fluid Web, que permite nos deslocarmos de uma perspectiva orientada a

documentos para outra orientada a conteúdo, onde “conteúdo” pode ser qualquer objeto

digital. A solução é baseada em dois eixos: (i) uma unidade auto-descritiva que encap-

sula qualquer tipo de artefato de conteúdo – o Componente de Conteúdo Digital (Digital

Content Component – DCC); e (ii) uma infraestrutura para a Fluid Web que permite o

gerenciamento e distribuição de DCCs na Web, cujo objetivo é dar suporte à colaboração

na Web.

Concebidos para serem reusados e adaptados, os DCCs encapsulam dados e software

usando uma única estrutura, permitindo deste modo composição homogênea e proces-

samento de qualquer conteúdo digital, seja este executável ou não. Estas propriedades

são exploradas pela nossa infraestrutura para a Fluid Web, que engloba mecanismos de

descoberta e de anotação de DCCs em múltiplos ńıveis, gerenciamento de configurações

e controle de versões. Nosso trabalho explora padrões de Web Semântica e ontologias ta-

xonômicas, que servem como uma ponte semântica, unificando vocabulários para gerenci-

amento de DCCs e facilitando as tarefas de descrição/indexação/descoberta de conteúdo.

Os DCCs e sua infraestrura foram implementados e são ilustrados por meio de exemplos

práticos, para aplicações cient́ıficas.

As principais contribuições desta tese são: o modelo de Digital Content Component; o

projeto da infraestrutura para a Fluid Web baseada em DCCs, com suporte para armaze-

namento baseado em repositórios, compartilhamento, controle de versões e gerenciamento

de configurações distribúıdas; um algoritmo para a descoberta de conteúdo digital que

explora a semântica associada aos DCCs; e a validação prática dos principais conceitos

desta pesquisa, com a implementação de protótipos.
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Abstract

The Web is evolving from a space for publication/consumption of documents to an en-

vironment for collaborative work, where digital content can travel and be replicated,

adapted, decomposed, fusioned and transformed. We call this the Fluid Web perspective.

This view requires a thorough revision of the typical document-oriented approach that

permeates content management on the Web. This thesis presents our solution for the

Fluid Web, which allows moving from the document-oriented to a content-oriented pers-

pective, where “content” can be any digital object. The solution is based on two axes:

a self-descriptive unit to encapsulate any kind of content artifact – the Digital Content

Component (DCC); and a Fluid Web infrastructure that provides management and de-

ployment of DCCs through the Web, and whose goal is to support collaboration on the

Web.

Designed to be reused and adapted, DCCs encapsulate data and software using a single

structure, thus allowing homogeneous composition and processing of any digital content,

be it executable or not. These properties are exploited by our Fluid Web infrastructure,

which supports DCC multilevel annotation and discovery mechanisms, configuration ma-

nagement and version control. Our work extensively explores Semantic Web standards and

taxonomic ontologies, which serve as a semantic bridge, unifying DCC management vo-

cabularies and improving DCC description/indexing/discovery. DCCs and infrastructure

have been implemented and are illustrated by means of examples, for scientific applicati-

ons.

The main contributions of this thesis are: the model of Digital Content Component;

the design of the Fluid Web infrastructure based on DCCs, with support for repository-

based storage, distributed sharing, version control and configuration management; an

algorithm for digital content discovery that explores DCC semantics; and a practical

validation of the main concepts in this research through implementation of prototypes.
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1.3 Objetivos, Contribuições e Ligação com outras Pesquisas . . . . . . . . . . 8

1.3.1 Digital Content Component . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Bloco de produção centrado no usuário-autor . . . . . . . . . . . . . 12

1.3.3 Produção e consumo de DCCs . . . . . . . . . . . . . . . . . . . . . 13

1.3.4 Alguns Trabalhos Correlatos . . . . . . . . . . . . . . . . . . . . . . 14

1.3.5 Contribuições . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Organização da Tese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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Caṕıtulo 1

Introdução

1.1 Motivação

O cenário atual de produção, distribuição e consumo de conteúdo digital é caracterizado

por uma forte influência de dois fatores. O primeiro é a ampliação da oportunidade de

compartilhamento e intercâmbio de conteúdo digital, causada principalmente pela Internet

e pela difusão de padrões abertos de representação. O segundo é a crescente participação

dos usuários finais no processo de produção e modificação deste conteúdo digital, como

resultado da criação de ferramentas mais acesśıveis a este tipo de usuário.

A combinação destes dois fatores tem progressivamente impulsionado um novo com-

portamento na produção, consumo e distribuição de conteúdo digital na Web, em que

os usuários têm acesso participativo ao conteúdo, alternando papéis de autor e consumi-

dor. Esta situação contrasta com a visão clássica de publicação/consumo, em que um

restrito grupo ativo de autores publica algo a ser consumido por um vasto grupo passivo

de usuários.

Este novo cenário, para o qual criamos o nome de Fluid Web, motivou o trabalho

desta tese, que se concentra nas diferentes facetas de reuso de artefatos digitais. Reuso,

na tese, é considerado na acepção mais geral do termo, ou seja, envolvendo os conceitos

de consumo, mas também replicação, adaptação, decomposição, fusão e transformação.

Por um lado, surge a necessidade de revisão do modelo clássico da Web de publicação

de conteúdo baseado em documentos, de forma a permitir o novo cenário onde o conteúdo

digital pode ser reusado. Este tipo de demanda requer pesquisa em termos de infra-

estrutura computacional – por exemplo, protocolos de comunicação, modelos de arma-

zenamento, compartilhamento e versionamento, mecanismos de publicação, sistemas de

gerenciamento, proteção e indexação do conteúdo. Por outro lado, inserido neste cenário

está um usuário que progressivamente incorpora funções de autor, o usuário-autor. Neste

novo contexto, atividades de autoria deixam de estar restritos a um grupo especializado

1



1.2. Aspectos de Pesquisa Envolvidos 2

à produção de um tipo espećıfico de conteúdo digital, e passam a ser uma caracteŕıstica

inerente à maioria dos usuários. Tal perspectiva tem impactos em vários tipos de pes-

quisa, como em interfaces humano-computador, modelos de cooperação, ferramentas de

autoria/gerenciamento e padrões de empacotamento de conteúdo. Isto também implica

que práticas e ferramentas anteriormente concebidas para grupos e domı́nios espećıficos

de autores devem ser repensadas para um contexto mais amplo que abrange o universo

dos usuários finais em geral.

Como conseqüência de todas estas constatações, foi necessário abordar pesquisas em

empacotamento/distribuição/reuso de conteúdo, arquitetura e reuso de software, controle

de versões, gerenciamento de configurações e bibliotecas digitais. Ressaltamos que esta

pesquisa, sob muitos aspectos, combina esforços independentes que têm se empenhado

em resolver problemas complementares, tanto em Engenharia de Software quanto em

Engenharia de Conteúdo. Muito embora a motivação seja centrada na Web, os resultados

da nossa pesquisa se aplicam a qualquer cenário de trabalho colaborativo.

A motivação desta tese é resultado de observações realizadas em experiências práticas

com um ambiente de autoria para a construção de aplicações educacionais desenvolvido

por nós desde 1994 – o sistema Casa Mágica [71]. Este sistema tem sido aplicado em

atividades práticas com alunos de ensino médio e fundamental, como também no ensino

superior na cidade de Salvador/BA. Muitos dos exemplos apresentados, principalmente

no Caṕıtulo 3, tomaram como base atividades práticas realizadas.

1.2 Aspectos de Pesquisa Envolvidos

Esta seção caracteriza o cenário onde a pesquisa de tese se insere, citando alguns dos

problemas e soluções existentes, a demanda em aberto e as pesquisas que estão sendo

desenvolvidas para atender esta demanda. Ela traça um perfil do cenário de produção,

distribuição e consumo de conteúdo digital, onde a atividade de reuso de conteúdo cumpre

um papel essencial. Tal cenário é caracterizado segundo três enfoques:

• Papel do Autor: qual o papel atribúıdo ao autor na produção de conteúdo digital

e como este papel tem se modificado, demandando novas soluções.

• Modelo de Compartilhamento/Reuso de Conteúdo Digital: quais são os

modelos adotados para representar as unidades básicas de compartilhamento e reuso

de conteúdo digital, dentro de um modelo de produção onde o reuso é uma prática

fundamental.

• Suporte ao Compartilhamento/Reuso de Conteúdo Digital: quais as tarefas

envolvidas no suporte a um ambiente de produção pautado no compartilhamento e

reuso de conteúdo.
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A tese apresenta soluções integradas – modelos, algoritmos e ferramentas implementados

– para alguns dos desafios constatados nestes três enfoques. As hipóteses básicas por trás

deste trabalho são:

• Abordagens para produção, compartilhamento e reuso de software executável e de

conteúdo são complementares e podem ser combinadas.

• O atual modelo de produção e distribuição da Web, centrado em documentos, não

é suficiente para a Fluid Web e para o reuso.

1.2.1 Papel do Autor

A caracterização do autor tem sido essencial na concepção dos modelos utilizados na

produção, compartilhamento e reuso de artefatos digitais. O perfil do autor nos primórdios

da computação era o de um profissional de Informática cujo foco principal de atuação era

o desenvolvimento de software executável – o que denominamos desenvolvimento centrado

no processo. Gradativamente, o conteúdo digital manipulado pelo software executável foi

adquirindo importância e o perfil do autor se tornou mais diversificado. Surge então a

figura do autor cujo foco de trabalho é o conteúdo – o que denominamos desenvolvimento

centrado no conteúdo.

Como ilustra a Figura 1.1, este usuário pode ser visto como um nó de um grande hiper-

espaço de conteúdo compartilhado (a Internet), consumindo conteúdo (setas de entrada)

e reusando/produzindo conteúdo (setas de sáıda). Alguns dos nós/usuários são apenas

consumidores (nó 1), enquanto outros são autores que produzem algo a partir da estaca

zero (nó 2). O tipo mais comum é o daquele usuário que alterna e combina os papéis de

usuário e autor, o usuário-autor. Este cenário de uso coletivo reflete a realidade de hoje

em que praticamente qualquer usuário é autor de algum artefato digital (textos, planilhas,

apresentações, etc.). À medida que estes artefatos trafegam entre os nós/usuários, eles

sofrem evolução. Este processo de obter um conteúdo e atualizá-lo, adaptá-lo, modificá-lo

e melhorá-lo é a essência do conceito de reuso. Por não serem em sua maioria profissionais

de computação, estes usuários são impulsionados a se tornar “reusuários” na sua tarefa de

produção, dado que não faz sentido produzir um artefato a partir da estaca zero quando

eles têm em mãos material de qualidade e trabalham com limitações de recursos e tempo.

O conceito de usuário-autor se aplica indistintamente aos que criam conteúdo e aos que

produzem software. A principal diferença é que se exige dos últimos sofisticação técnica

enquanto que os primeiros não são necessariamente especialistas na arte de produção. Um

modelo de produção e consumo de conteúdo digital e uma infraestrutura computacional

que dê suporte a este modelo devem portanto estar aptos a atender a este perfil de

usuário-autor, definindo as seguintes caracteŕısticas:
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Figura 1.1: Diagrama ilustrando a nossa perspectiva do usuário nos dias de hoje.

Tabela 1.1: Comparação das noções de componente e composição nas correntes de desen-
volvimento centrada no processo e no conteúdo.

• deve ser acesśıvel a autores não-especialistas em Informática; e

• deve ser calcado na lógica do reuso.

1.2.2 Modelo de Compartilhamento/Reuso de Conteúdo Digital

Um dos elementos fundamentais de uma estratégia de produção pautada no reuso é um

modelo que permita decompor o conteúdo a ser reutilizado em unidades independentes,

apropriadas para distribuição e reuso. Estas unidades são usadas posteriormente para

compor novos produtos. Na tarefa de compor, o componente é a parte constituinte e

a composição é o resultado. Portanto, as noções de componente e composição sempre

estão presentes em estratégias de produção que visam o reuso. Não obstante, estas noções

deram origem a modelos diferentes nas correntes de desenvolvimento centrado no processo

e centrado no conteúdo, como está sintetizado na Tabela 1.1.

No desenvolvimento centrado no processo predomina o modelo de componente de soft-

ware da Engenharia de Software [6]. Os componentes de software têm sido estudados e

aplicados há muito tempo na Engenharia de Software, atingindo por este motivo um alto

ńıvel de maturidade. Ainda que existam muitas divergências no que exatamente define

um componente de software, há caracteŕısticas básicas consensuais [10]. Entre elas, uma

caracteŕıstica fundamental é que os componentes encapsulam módulos de software, es-
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Figura 1.2: Diagrama ilustrando os componentes de software conectados usando a tecno-
logia de serviços Web.

condendo detalhes de implementação e publicando sua funcionalidade através de uma

interface. A composição de componentes de software é baseada em suas interfaces. A

separação entre interface e implementação resultou em um mecanismo genérico para ex-

plicitamente expressar como um componente pode ser conectado a outros componentes,

independente dos detalhes de implementação. Por estas razões, como veremos adiante,

o modelo de componente de software foi adotado como base para o nosso modelo de

componente (DCC).

O advento da Internet consolidou a tecnologia dos componentes de software dis-

tribúıdos e impulsionou avanços na interoperabilidade. No entanto, do ponto de vista

da implementação, existem padrões diferentes e incompat́ıveis para a codificação de com-

ponentes, dependendo de fatores como linguagem de programação e plataforma do sis-

tema. Isto se reflete em protocolos de comunicação incompat́ıveis entre os componentes.

A aliança entre os componentes e os serviços Web representa um avanço promissor em

direção à interoperabilidade e tem sido adotada pelos principais padrões para componentes

distribúıdos [22,52,75]. Os serviços Web compartilham dois aspectos com os componentes

de software: a divisão clara entre implementação e interface, e a habilidade de compor

unidades menores em unidades mais complexas. Como mostra a Figura 1.2, os serviços

Web fornecem um mecanismo padrão para que os componentes distribúıdos se intercomu-

niquem. As interfaces dos componentes e seus protocolos de comunicação são mapeados

em interfaces e protocolos de comunicação dos serviços. Adicionalmente, como ilustrado

na Figura 1.2, existem padrões abertos cujo propósito é a conexão de serviços Web para a

produção de aplicações, tais como o padrão WS-Choreography [38] e a linguagem BPEL

(Business Process Execution Language) [4].

Já no desenvolvimento centrado no conteúdo não existe um modelo amplamente aceito

para as noções de componente e composição. Entretanto, diversas iniciativas relacionadas

a domı́nios espećıficos de aplicação têm proposto padrões para o que denominaremos a

partir de agora objeto digital complexo (ou simplesmente objeto digital), em que a ênfase
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é na construção de conteúdo e não na execução de código. Exemplos são trabalhos em

bibliotecas digitais [15,77], multimı́dia [35] e artefatos relacionados ao desenvolvimento de

software [53]. Uma aplicação imediata desta pesquisa tem sido a Educação [2, 33, 74]. O

termo “objeto digital complexo” tem origem no domı́nio de bibliotecas digitais [7] e será

utilizado na ausência de uma terminologia comum para todos os domı́nios. Um objeto

complexo agrega e encapsula artefatos digitais e representa algumas das relações existen-

tes entre os artefatos encapsulados. Os padrões de representação de objetos complexos

normalmente embutem na estrutura dos objetos um documento denominado manifesto,

cuja função é declarar quais os artefatos encapsulados e as relações existentes entre eles.

O formato do manifesto é especializado no domı́nio da aplicação que define aquele padrão

para objetos complexos. Ao contrário dos componentes de software, não existe a noção

de interface pública. Por este motivo, as estratégias para a composição destes objetos

precisam levar em consideração detalhes da sua representação interna, sendo altamente

dependentes do domı́nio da aplicação e dificilmente generalizáveis.

Algumas vezes temos a intenção de reusar um artefato pronto e modificá-lo/adaptá-lo.

Outras vezes, no entanto, estamos interessados em reusar o design de uma composição,

tal como um padrão de projeto (design pattern) [29] ou uma arquitetura de software.

Krueger [40] analisa estas duas faces do reuso considerando que qualquer abstração de

um software pode ser organizada em dois ńıveis: especificação da abstração e realização

da abstração. Por um lado, através dos componentes, reusamos blocos de conteúdo pron-

tos para uso; neste caso, estamos interessados na “realização da abstração”. Por outro

lado, a especificação da composição, independente dos componentes que ela agrega, pode

ser reusada para capturar o projeto da aplicação e, neste caso, estamos interessados na

“especificação da abstração”. A Engenharia de Software tem pesquisado e utilizado di-

versas técnicas para reuso de design, entre elas: padrões de projeto e linguagens para

descrição de arquiteturas (architecture description languages – ADLs). Já na corrente de

desenvolvimento centrado no conteúdo, apesar de existirem técnicas para reuso de design

– tal como o uso de templates de documentos – elas geralmente são dissociadas do modelo

de objetos digitais complexos.

Como pode ser observado, existe uma divisão de esforços para se resolver problemas

equivalentes, tanto dentro da corrente de desenvolvimento centrado no conteúdo, quanto

naquela de desenvolvimento centrado no processo. A contribuição central da tese, o mo-

delo de Digital Content Component (DCC), ou Componente de Conteúdo Digital, é um

modelo genérico para o compartilhamento e reuso de conteúdo digital, aplicável a qual-

quer corrente e domı́nio. Neste modelo, a noção de interface utilizada nos componentes

de software é aplicada com sucesso também no desenvolvimento centrado no conteúdo.

Deste modo, a estratégia adotada para reuso e composição de conteúdo está baseada em

um formato padrão de declaração de interface, que não depende de detalhes internos do
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conteúdo, que são fortemente dependentes do domı́nio da aplicação. Além disto, o de-

senvolvimento de software atual pode ser visto como uma equação que envolve software

executável e conteúdo, onde cada fator assume um grau de importância a depender do

contexto. Por integrar modelos de produção, compartilhamento e reuso centrados no pro-

cesso e no conteúdo, o modelo de DCCs dá ao autor a liberdade de decidir qual a sua

ênfase no desenvolvimento.

1.2.3 Suporte ao Compartilhamento/Reuso de Conteúdo Digi-

tal

Os modelos distintos de compartilhamento e reuso adotados pelas correntes de desenvolvi-

mento centrado no processo e centrado no conteúdo são refletidos em diferentes concepções

na infraestrutura que dá suporte às atividades relacionadas com produção, gerenciamento

e consumo de artefatos digitais. Estão inclúıdas nesta infraestrutura ferramentas para:

gerenciamento de repositórios de artefatos, busca de artefatos, controle e gerenciamento

de configurações e versões e distribuição de artefatos.

O gerenciamento de repositórios de objetos complexos é freqüentemente pesquisado

no contexto de bibliotecas digitais, destacando-se uma proposta aberta da OAIS – Open

Archival Information System [15]. A indexação e busca de objetos complexos podem

ser baseadas nos metadados que descrevem estes objetos. As iniciativas nesta área têm

se caracterizado por estruturas descritivas de metadados bastante detalhadas e baseadas

em padrões abertos. A noção de repositórios de componentes de software explora sua

interface para buscas baseadas na funcionalidade que ela descreve [55,58,84]. Em ambos

os contextos – busca baseada em metadados e baseada em interfaces – ontologias estão

sendo exploradas para definir a similaridade entre termos [51, 60, 62, 80].

Objetos digitais e software estão sujeitos ao controle de versões e à criação de con-

figurações, tratadas como “contextos de uso”. Versões e configurações são geralmente

representadas como ortogonais, porém seu controle e gerenciamento são interrelaciona-

dos. No caso de objetos digitais, o gerenciamento de configurações lida com a complexa

rede de relacionamentos entre estes objetos, enquanto o controle de versões lida com mu-

danças semanticamente significativas que acontecem ao longo do tempo [37]. Dada a

sua interdependência, as pesquisas relacionadas a controle de versões geralmente estão

associadas ao gerenciamento de configurações.

A área de projetos em Engenharia tem longa experiência no gerenciamento de confi-

gurações de objetos de projeto complexos [37]. Pesquisas neste domı́nio são geralmente

denominadas Product Data Management (PDM) [26] ou Engineering Data Management

(EDM) [83]. Já no domı́nio de desenvolvimento de software existem pesquisas em Software

Configuration Management (SCM) [25].
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Qualquer infraestrutura de reuso deve considerar o empacotamento e distribuição de

artefatos digitais, uma área que tem crescido recentemente como conseqüência da Web.

Por um lado estão as iniciativas para distribuição de objetos complexos, cujos padrões

variam de acordo com a ênfase: educação [74], multimı́dia [13], desenvolvimento de soft-

ware [54], bibliotecas digitais [16]. Por outro lado estão os padrões para distribuição de

componentes de software distribúıdos [28,52,75]. Tanto as iniciativas de objetos comple-

xos quanto a de componentes de software utilizam um formato de pacote com a mesma

estrutura: um contêiner utilizando o formato de empacotamento e compactação ZIP e

um arquivo de manifesto em XML que mantém dados mais detalhados referentes aos ar-

tefatos empacotados e as relações existentes entre eles. Os formatos de empacotamento

são confrontados em mais detalhes no Caṕıtulo 4.

1.3 Objetivos, Contribuições e Ligação com outras

Pesquisas

A seção anterior caracterizou o cenário atual de produção, distribuição e consumo de

conteúdo digital sob três enfoques: papel do autor, modelo de compartilhamento/reuso

de conteúdo e suporte ao compartilhamento/reuso de conteúdo. A apresentação da tese

também está organizada sob estes três enfoques, conforme sintetizado na Figura 1.3.

A parte inferior da figura ilustra nosso modelo de compartilhamento/reuso de conteúdo

digital, o Digital Content Component (DCC), bem como o modelo para a composição

de DCCs. A parte superior da figura ilustra nossa perspectiva do papel do autor no

desenvolvimento baseado em DCCs. O centro representa a Fluid Web como um panorama

que envolve a produção colaborativa e consumo de conteúdo digital na Web através dos

DCCs. Como ilustra a parte central da figura, nosso projeto de Fluid Web está montado

sobre uma infraestrutura para suporte ao compartilhamento/reuso de conteúdo digital.

As subseções a seguir sintetizam os principais objetivos, caracteŕısticas e contribuições

deste trabalho. Cada uma das subseções aborda um dos enfoques do trabalho, utilizando

a Figura 1.3 como pano de fundo. A seção 1.3.4 salienta algumas das pesquisas correlatas

que fundamentaram nosso trabalho; estas são vistas com mais detalhes em cada caṕıtulo.

1.3.1 Digital Content Component

Esta seção apresenta o modelo da nossa unidade de compartilhamento e reuso de conteúdo

digital, o Digital Content Component (DCC), que é o fundamento para todo o restante

do trabalho. O modelo do DCC parte do prinćıpio de que os modelos de componentes

de software e de objetos digitais complexos são perspectivas complementares para um

problema mais amplo de reuso.
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Um DCC é uma unidade de decomposição, compartilhamento, reuso e composição

de conteúdo digital [66]. Este conteúdo pode ser um código executável ou um objeto

digital complexo. Tal como os objetos digitais complexos, um DCC agrega e encapsula

um ou mais artefatos digitais e representa internamente as suas relações. Tal como os

componentes de software, um DCC esconde detalhes internos da sua representação e expõe

uma interface pública. No entanto, como veremos adiante, o modelo de DCC vai muito

além de uma simples combinação destas duas vertentes.

O DCC é definido a partir de um modelo abstrato, que posteriormente é implementado

em diferentes formatos, conforme o que se deseje fazer com o conteúdo digital correspon-

dente: armazenamento, distribuição e execução. O modelo abstrato de um DCC [66] é

composto de quatro subdivisões distintas:

(a) conteúdo digital encapsulado;

(b) declaração de uma estrutura de gerenciamento que define como as partes dentro

de um DCC estão relacionados entre si;

(c) especificação das interfaces;

(d) metadados para descrever versão, funcionalidade, aplicabilidade, restrições de uso,

etc.

Existem dois tipos de DCC: os de processo e os passivos. Os DCCs de processo

encapsulam software executável, que pode ser código binário, mas também pode ser codi-

ficado em representações mais apropriadas para autores não especialistas em Informática,

tal como um “workflow”. Os componentes passivos encapsulam qualquer conteúdo di-

gital não executável e não contêm o software executável responsável por manipular este

conteúdo.

Um DCC em seu formato de distribuição é utilizado no intercâmbio entre os autores e

usuários da “Fluid Web”. Por isso, ele é projetado para interoperabilidade tanto do ponto

de vista sintático quanto semântico, adotando padrões de Web Semântica nas subdivisões

(b), (c) e (d). A subdivisão (b) é em XML, a subdivisão (c) usa versões adaptadas de

WSDL [19] e OWL-S [42] (uma ontologia OWL para serviços Web), e a subdivisão (d) usa

OWL [73]. Os formatos de armazenamento e execução diferem do formato de distribuição

pois são otimizados para seus respectivos contextos. Além disso, não há imposição de

formato para armazenamento e execução, já que eles não impactam a interoperabilidade.

A parte inferior esquerda da Figura 1.3 ilustra parcialmente um DCC passivo em seu

formato de distribuição. Neste exemplo, o DCC está encapsulando uma série temporal de

imagens contendo um ano de dados de pluviosidade no estado de São Paulo. Cada imagem

contém um mapa e representa a média de pluviosidade em um mês. O valor de cada pixel

no mapa está relacionado ao volume de pluviosidade na respectiva região. Internamente,

o DCC é organizado como um objeto complexo que além de agregar e encapsular as doze

imagens, define uma Estrutura XML responsável por identificar, organizar e registrar as
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Figura 1.3: Diagrama ilustrando o processo de produção/consumo de DCCs na Fluid
Web.
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relações entre as imagens.

No topo do DCC está representada a subdivisão de metadados (em OWL) e em torno

da estrutura de organização está a interface (OWL-S). Ambas são apresentadas utilizando-

se uma versão simplificada de um grafo rotulado e direcionado (Directed Labelled Graph

– DLG), em RDF [41].

Os DCCs passivos declaram uma interface com as operações que podem potencial-

mente ser aplicadas ao seu conteúdo (funcionalidade potencial). Por exemplo, o DCC

apresentado na Figura 1.3 declara uma interface com duas operações que podem poten-

cialmente ser aplicadas a seu conteúdo, getQuantity e getMap: getQuantity retorna a

pluviosidade de uma região, dadas as coordenadas e o mês; getMap retorna um mapa,

dado um mês. Cada DCC é classificado dentro de uma ontologia de tipos de DCC cri-

ada como parte desta pesquisa. Esta ontologia é utilizada para relacionar cada tipo de

DCC passivo com um segundo DCC – denominado DCC companheiro (companion DCC)

– capaz de manipular o conteúdo daquele tipo. O DCC companheiro implementa a inter-

face declarada no DCC passivo, transformando em tempo de execução sua funcionalidade

potencial em funcionalidade real. Retornando ao exemplo da figura, o DCC está classifi-

cado como sendo do tipo MapSet (vide subdivisão de metadados). A ontologia de DCCs

indica um DCC companheiro para MapSet, que implementa as operações getQuantity

e getMap. Em tempo de execução, o DCC passivo e seu companheiro são fundidos em

um único DCC que contém o conteúdo e o software para manipulá-lo. A esta estratégia

damos o nome de execução dirigida pelo tipo de conteúdo. O mesmo DCC passivo pode

ser associado a diferentes DCCs companheiros, de acordo com o contexto.

O DCC é uma unidade genérica de decomposição e também de composição. Como está

ilustrado no canto direito inferior da Figura 1.3, os DCCs podem ser interligados através

de suas interfaces. O exemplo apresenta uma aplicação que simula o crescimento de um

tomateiro em uma região espećıfica do estado de São Paulo. Esta aplicação combina

DCCs passivos e de processo. O DCC ilustrado com um botão e o DCC “Simulador de

Crescimento de um Tomateiro” são DCCs de processo que encapsulam classes Java em

formato bytecode, responsáveis pela implementação de seu comportamento. Este último

é o núcleo da simulação. O DCC “Mapas de Pluviosidade de S~ao Paulo” corresponde

ao DCC apresentado em detalhes na esquerda da Figura 1.3, que foi explicado anteri-

ormente. O DCC “Mapas de Radiaç~ao Solar de S~ao Paulo” também tem a mesma

estrutura do anterior, mas contém mapas de radiação solar ao invés de pluviosidade. O

DCC “Conjunto de Imagens do Tomateiro” é um DCC passivo que encapsula imagens

consecutivas do crescimento do tomateiro. Finalmente o DCC “Planilha para Cálculo

da Taxa de Crescimento” contém uma planilha com as fórmulas que calculam o cresci-

mento da planta.

Esta é uma modalidade de composição de DCCs em que eles trabalham cooperativa-
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mente trocando mensagens. Ao ser executada, a aplicação inicia quando o usuário clica no

DCC botão, que envia uma mensagem de ińıcio para o DCC simulador. Este DCC divide

a simulação em ciclos mensais onde, para cada mês, solicita aos DCCs que contém mapas

a pluviosidade e a radiação solar daquele mês, em uma região de São Paulo. O DCC

simulador envia estes dados para o DCC de planilha e requisita que ele calcule o novo

tamanho do tomateiro. Finalmente, o DCC simulador usa estes dados para requisitar ao

DCC com imagens do tomateiro que apresente o tomateiro em seu novo tamanho. Esta

composição pode, por sua vez, ser encapsulada em outro DCC. Detalhes do funcionamento

desta simulação são apresentados nos Caṕıtulos 2 e 4.

A representação de composições também pode ser explorada no sentido de se realizar o

reuso do design, conforme abordado na Seção 1.2.2. Está sendo desenvolvido um trabalho

neste sentido, conforme descrito em [44] e detalhado na Seção 5.3.

Em resumo, em banco de dados, objetos complexos podem ser constrúıdos pela com-

posição de outros objetos; no desenvolvimento de software, um produto de software pode

ser constrúıdo pelo composição de outros componentes de software. Composição de dados

em bancos de dados e combinação de componentes na Engenharia de Software são me-

canismos distintos que foram extensivamente pesquisados. Nosso processo de composição

baseado em DCCs, no entanto, é uma nova noção: usando um único mecanismo, ele

permite construir objetos complexos (no sentido de bancos de dados), construir software

(como em Engenharia de Software) e associar software a dados para construir artefatos

mais complexos via prinćıpio do DCC companheiro. Este mecanismo depende somente

do casamento de interfaces e termos de ontologias, não precisando se preocupar com a

natureza do conteúdo encapsulado.

1.3.2 Bloco de produção centrado no usuário-autor

A parte superior da Figura 1.3 contrasta a abordagem de desenvolvimento baseada em

DCCs com o desenvolvimento centrado no processo e centrado no conteúdo. A Figura ilus-

tra o desenvolvimento e execução de uma aplicação organizada em camadas. A camada de

conteúdo engloba os artefatos de conteúdo usados na aplicação; a camada de software

executável engloba todas as rotinas de software necessárias para manipular este conteúdo;

e a camada de resultado corresponde à combinação em memória das camadas de soft-

ware e conteúdo, sendo necessária à execução da aplicação. Como ilustrado, na abordagem

de desenvolvimento centrada no conteúdo o autor atua na camada de conteúdo; no de-

senvolvimento centrado no processo, por outro lado, o autor atua na camada de software

executável. Em qualquer dos casos, o usuário interage com a camada de resultados.

Como apresentado na seção anterior, os DCCs dispõem de um mecanismo que permite

combinar o conteúdo com o software que o processa de modo transparente ao usuário-
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autor. Deste modo, o autor trabalha tanto com conteúdo quanto com software executável

na perspectiva da camada de resultado.

Além da vantagem do ponto de vista da autoria, o modelo de DCCs tem duas vantagens

adicionais para o usuário-autor. Primeiro, ao contrário dos componentes de software que

usualmente são codificados em uma linguagem de programação, os DCCs permitem o

encapsulamento de outros tipos de especificação de software executável, cuja abordagem

seja mais apropriada para autores não especialistas (por exemplo, uma especificação de

workflow). Segundo, ao lidar com o modelo unificado dos DCCs o autor não precisa se

preocupar com a natureza do que ele está compartilhando ou reusando, pois os detalhes

são resolvidos por detrás dos bastidores automaticamente e de forma transparente para o

usuário-autor.

1.3.3 Produção e consumo de DCCs

Esta seção apresenta a infraestrutura concebida para dar suporte à produção, gerencia-

mento e uso de DCCs. Esta infraestrutura integra contribuições do desenvolvimento cen-

trado no processo e centrado no conteúdo para: distribuição, armazenamento e indexação,

suporte a busca, controle de versões e gerenciamento de configurações. A infraestrutura

não se resume a uma integração, pois articula as diversas tecnologias de produção, geren-

ciamento e distribuição a fim de alcançar a perspectiva da Fluid Web.

A parte central da Figura 1.3 ilustra um cenário t́ıpico de produção e consumo de

conteúdo digital dentro da perspectiva de Fluid Web, utilizando DCCs. Ao contrário do

modelo clássico de Web onde o documento é a peça chave, na Fluid Web o DCC é a

peça chave que transita pela Internet e pode ser decomposto, armazenado, anotado em

múltiplos ńıveis, distribúıdo, reutilizado e composto.

Como ilustra a Figura 1.3, a infraestrutura que dá suporte à Fluid Web se baseia no

prinćıpio de que cada nó da rede possui um repositório local de DCCs (R) e um gerenciador

associado (GR). Isto permite um suporte mais efetivo à indexação dos DCCs para busca

e controle de versões e gerenciamento de configurações. O gerenciador de repositório não

apenas dá suporte às atividades de armazenamento e busca de DCCs, como também é

responsável em converter os DCCs do formato de armazenamento para o de distribuição

e vice-versa.

Ainda seguindo o diagrama da figura, pode-se observar que novos DCCs são produzidos

por ferramentas de desenvolvimento de software (tipicamente DCCs contendo software

executável) – usuário-autor D – ou a partir de ferramentas que geram algum tipo de

conteúdo, tal como uma planilha eletrônica – usuário-autor A. Neste segundo caso, um

módulo chamado empacotador é responsável por encapsular o conteúdo dentro do DCC e

enviá-lo para o gerente de repositório local para armazenamento. Cada usuário-autor faz
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consultas ao gerente de repositório local para buscar DCCs que irá usar. O gerente local

pode se comunicar com outros gerentes distribúıdos na busca de DCCs e, se necessário,

requisitá-los. A transferência de DCCs entre um repositório e outro é feito usando-se o

formato de distribuição. Muitos dados acompanham o DCC neste formato, tais como,

identificação única, origem e versão. DCCs recuperados do repositório podem ser usados

para a construção de composições, por exemplo, no site do usuário-autor B. O resultado

final é executado e pode ser encapsulado dentro de um DCC de ńıvel mais alto, que volta

a ser armazenado no repositório.

O controle de versões estende o modelo banco de dados multiversão proposto por

Cellary e Jomier [17]. A extensão atende duas importantes demandas da Fluid Web:

(i) permite o versionamento e replicação através da Web; e (ii) permite a definição de

configurações que relacionam DCCs em diferentes localizações da Web.

Como observado em [25], uma das fraquezas dos sistemas de SCM (Software Configu-

ration Management) está no fato de que eles têm muito pouco conhecimento do produto

de software que eles gerenciam. Os DCCs são um avanço neste sentido, pois não ape-

nas representam um conjunto mais significativo de dados relacionados com o conteúdo

encapsulado, podendo ser usados para unificar as abordagens de Software Configuration

Management (SCM) e Product Data Management (PDM) / Engineering Data Manage-

ment (EDM).

1.3.4 Alguns Trabalhos Correlatos

A tese combina diferentes vertentes e resultados de pesquisa nas áreas de componentes

de software, objetos digitais complexos, padrões para da Web Semântica e serviços Web.

Esta combinação unifica algumas correntes, ao identificar tratamentos complementares

para um mesmo problema.

O ponto de partida deste trabalho foi a necessidade de empacotamento, distribuição

e reuso de conteúdo. Muitos projetos recentes tratam estas questões seguindo caminhos

paralelos para resolver problemas análogos em domı́nios distintos, como por exemplo:

IMS Content Packaging (IMS CP) [74], em Educação, MPEG-21 [13], em multimı́dia,

Reusable Asset Specification (RAS) [54], para desenvolvimento de software, ou OAIS

XML Formated Data Unit (XFDU) [16], em bibliotecas digitais. Além disso, tecnologias

de componentes de software envolvem questões semelhantes, por exemplo, relacionadas

com empacotamento e distribuição de componentes [28] – e.g., Enterprise Java Beans

(EJB) [75], Microsoft COM+ e CORBA Component Model (CCM) [52]. Todos esses

projetos e padrões definem seus próprios formatos de pacote, para permitir a distribuição

do seu conteúdo; tais padrões seguem a mesma estrutura básica, que é dividida em duas

partes: (1) um contêiner de pacotes, usualmente baseado no formato ZIP; (2) um ar-
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quivo de manifesto em XML, armazenado dentro do pacote. O manifesto complementa

a informação fornecida pelo item (1) – e.g., indicando como o conteúdo empacotado está

organizado, suas dependências ou seus metadados.

DCCs aproveitam em sua estrutura, dentre outros (ver Seção 4.3.2), a estrutura dos

arquivos de manifesto de padrões como RAS, MPEG-21, METS e IMS CP. Ainda que tais

estruturas de manifesto sejam diferentes, elas lidam com o mesmo problema e os mesmos

conceitos básicos. Desta forma, é posśıvel encontrar mapeamentos entre os manifestos,

desde que se descarte as peculiaridades de cada tipo de conteúdo. Tal mapeamento fez

uso dos prinćıpios de Model Driven Architecture (MDA) [45].

Além disso, em contraste com outros padrões de empacotamento de conteúdo da lite-

ratura correlata, o modelo dos DCCs dá um passo além da noção de pacote, utilizando em

seu lugar o conceito de componente. Neste sentido, nosso trabalho se baseia na pesquisa

em componentes de software da Engenharia de Software [32], estendendo tal pesquisa

para tratar qualquer tipo de conteúdo. Tal extensão não se resume em propor um novo

formato de pacote; trata-se, na verdade, de um enfoque inovador para produzir aplicações

ou conteúdo, sendo uma das principais contribuições da nossa pesquisa.

Ainda outras iniciativas que contribúıram para o desenvolvimento deste trabalho in-

cluem o modelo de versões de Cellary e Jomier [17], pesquisas em arcabouços para biblio-

tecas digitais [15] e algoritmos de descoberta de conteúdo digital baseados em ontologias

e casamento de interfaces citeZaremski1997.

Os caṕıtulos subseqüentes deste texto contém mais detalhes sobre esses e outros tra-

balhos correlatos.

1.3.5 Contribuições

Resumindo, as principais contribuições da tese são:

1. O modelo de Componente de Conteúdo Digital – Digital Content Component (DCC)

– capaz de encapsular software executável e outros tipos de conteúdo de modo

uniforme, provendo um modo original para compô-los, eliminando do ponto de vista

de gerenciamento e composição a distinção entre software executável e outros tipos

de conteúdo. O modelo de DCC está aliado à estratégia de “execução dirigida pelo

tipo de conteúdo”, baseada no uso de ontologias, onde estão inclusas as noções de

funcionalidade potencial e Companion Component.

2. Um procedimento de três passos que explora metadados associados a DCCs, combi-

nado com a funcionalidade expressa em suas interfaces, para aprimorar o processo

de busca dos DCCs, facilitando a tarefa do usuário-autor.
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3. A introdução da noção de Fluid Web e a proposta de uma infraestrutura para dar su-

porte à sua efetiva materialização. A infraestrutura é baseada em repositórios locais

interligados, com controle de configurações e versões, levando em conta o compar-

tilhamento distribúıdo dos DCCs. O controle de versões é facilitado e enriquecido

semanticamente pela adoção de uma ontologia taxonômica de relacionamentos entre

versões de componentes, desenvolvida neste trabalho.

4. A validação prática de grande parte desses conceitos por meio da construção de

protótipos.

1.4 Organização da Tese

Este texto reúne os principais artigos resultantes da pesquisa realizada. Cada artigo,

publicado ou submetido para publicação, é apresentado sob a forma de um caṕıtulo, com

pequenas correções e adaptações no texto original (notações, erros de ortografia, etc.) a

fim de tornar o texto resultante homogêneo e consistente. O Caṕıtulo 2 define DCCs e

enfatiza questões de sua especificação, reuso, composição e descoberta semi-automática.

O Caṕıtulo 3 está dirigido ao usuário-autor de artefatos multimı́dia e as particularidades

de uso e autoria colaborativa proporcionados pela infraestrutura DCC. O Caṕıtulo 4

introduz a Fluid Web e descreve a infraestrutura que a implementa a partir de DCCs,

descrevendo, dentre outras, questões de compartilhamento e versionamento.

Em mais detalhes, os caṕıtulos estão relacionados aos 3 aspectos de pesquisa da

Seção 1.2. O Caṕıtulo 2 se concentra no aspecto 2 (modelo de compartilhamento/reuso de

conteúdo digital), apresentando o modelo de Digital Content Component, sua estrutura e

prinćıpios, detalhando como padrões da Web semântica e ontologias são usados na des-

crição de metadados e interface dos DCCs, e como isto é explorado na busca de DCCs. O

Caṕıtulo 3 explora o usuário-autor (aspecto 1), aprofundando as noções de funcionalidade

potencial e execução dirigida pelo tipo de conteúdo, explicando como elas são exploradas

pelos DCCs para criar um ambiente de produção/execução proṕıcio ao usuário-autor. O

Caṕıtulo 4 detalha o aspecto 3 (suporte ao compartilhamento/reuso de conteúdo digital),

apresentando a noção de Fluid Web, bem como a infraestrutura projetada para dar su-

porte a ela baseada em DCCs, com recursos de armazenamento, controle de configurações

e versões. O Caṕıtulo 5 conclui a tese.

1.4.1 Caṕıtulo 2

O Caṕıtulo 2 (Self Describing Components: Searching for Digital Artifacts on the Web)

foi publicado no XX Simpósio Brasileiro de Banco de Dados – SBBD 2005 [68].
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O principal enfoque deste caṕıtulo é o uso de DCCs para apoio ao reuso de conteúdo.

Esta noção considera o fenômeno de usuários cada vez mais atuantes na produção e

modificação de conteúdo digital, inseridos em uma rede onde o conteúdo digital dispońıvel

e circulante é sempre crescente.

O modelo de Digital Content Component, descrito neste caṕıtulo, é apresentado como

uma solução que permite explorar a diversidade dos conteúdos dispońıveis na rede em

tarefas de reuso, mantendo interoperabilidade entre diferentes sistemas. Este caṕıtulo

introduz o modelo dos DCCs e seu uso para decomposição, armazenamento, distribuição

e composição de conteúdo digital. Discute soluções adotadas pelo modelo para permitir

a composição e execução de DCCs independente do tipo de conteúdo, executável ou não.

Tomando a Internet sob a perspectiva de uma grande repositório mundial de conteúdo

digital, o modelo de DCCs é apenas parte do desafio para o efetivo intercâmbio e reuso

de conteúdo digital. Tão importante quanto viabilizar o intercâmbio é criar condições

adequadas para que o usuário encontre o conteúdo desejado. O caṕıtulo apresenta como

a estrutura “auto-descritiva” dos DCCs, montada sobre padrões da Web Semântica, é

usada para facilitar seu processo de descoberta.

A busca pode ser feita a partir da especificação em uma consulta do DCC desejado, ou

pela busca de um DCC Y que possa ser conectado a um DCC X. O caṕıtulo descreve es-

tratégias para a busca de DCCs ordenados de acordo com diferentes graus de similaridade

em relação ao DCC desejado, por meio do uso de ontologias, associadas às descrições dos

DCCs. Estratégias de casamento de interfaces também são usadas, não apenas na busca

de DCCs, como também para verificar o grau de compatibilidade entre dois DCCs.

Este caṕıtulo é ilustrado por um exemplo prático em planejamento agro-ambiental,

que começa pela descrição dos DCCs e vai até sua composição e algoritmos de busca.

Todos os aspectos discutidos neste exemplo foram validados a partir da implementação

de um protótipo.

1.4.2 Caṕıtulo 3

O Caṕıtulo 3 (User-author centered multimedia building blocks) foi aceito para publicação

no Multimedia Systems Journal [70].

O caṕıtulo está centrado na adoção de DCCs para o gerenciamento e construção de

conteúdo e produção multimı́dia e discute a noção de usuário-autor em um ambiente de

consumo e produção de artefatos multimı́dia.

A pesquisa em multimı́dia é um dos domı́nios que possuem maior tradição em lidar

com o problema da diversidade de conteúdo digital e heterogeneidade de representação.

Ao lidar com diversos tipos de mı́dia, a multimı́dia é essencialmente diversa e heterogênea;

porém, ao integrar estas mı́dias surge o desafio de como relacioná-las de forma homogênea.
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Este é portanto um cenário ideal onde se insere o modelo de DCCs.

Além do desafio da heterogeneidade, a área vem direcionando esforços no sentido de

criar modelos e ferramentas que popularizem o acesso à produção de conteúdo multimı́dia.

Como resultado, esta produção se tornou acesśıvel ao usuário final, seja através de fer-

ramentas especializadas, seja inserida em outras ferramentas de produção. Com isto se

dilui a linha divisória entre usuário e autor, dando forma ao usuário-autor.

Como mencionado na Seção 1.3.2, os DCCs combinam facilidade de uso e flexibili-

dade de compartilhamento/reuso. Por este motivo, este caṕıtulo apresenta o modelo de

DCCs como apropriado para o perfil de usuário-autor. O caṕıtulo mostra como o modelo

de DCCs foi implementado dentro de uma versão adaptada de um sistema de autoria

multimı́dia voltado para aplicações educacionais – o sistema Casa Mágica [71]. Através

de exemplos práticos na área educacional, implementados com DCCs no sistema Casa

Mágica, o caṕıtulo ilustra como as caracteŕısticas dos DCCs são exploradas para aproxi-

mar o processo de produção, compartilhamento e reuso do usuário final. O sistema Casa

Mágica explora o modelo de DCCs para possibilitar a produção de aplicações centradas

no conteúdo, centradas no processo ou combinando ambas.

Este caṕıtulo também analisa a noção de execução dirigida pelo tipo de conteúdo em

diversos contextos, como fundamento para a elaboração do modelo utilizado pelos DCCs.

1.4.3 Caṕıtulo 4

O Caṕıtulo 4 (A Component Model and Infrastructure for a Fluid Web) foi submetido ao

IEEE Transactions on Knowledge and Data Engineering [69] havendo obtido parecer de

“aceitação com mudanças pequenas”.

Este caṕıtulo insere os DCCs dentro do contexto da Fluid Web. O modelo tradicional

de publicação/consumo “orientado a documentos” da Web é confrontado com o modelo

“orientado a conteúdo” dos DCCs, que fornecem as bases para a criação de um ambiente

de colaboração – a Fluid Web – onde o conteúdo digital pode viajar e ser replicado,

adaptado, decomposto, fundido e transformado.

A partir do modelo de DCCs, o caṕıtulo parte para uma visão mais ampla que abrange

toda a infraestrutura projetada para dar suporte à nossa perspectiva de Fluid Web. Isto

envolve o detalhamento da malha de repositórios interligados apresentada na Figura 1.3,

que requer uma distinção entre o formato de armazenamento e de distribuição dos DCCs.

Além disto, o caṕıtulo trata de duas outras questões de grande relevância do ponto de

vista do trabalho colaborativo: o controle de configurações e de versões de DCCs.

O controle de configurações tem soluções distintas nas diversas iniciativas que lidam

com conteúdo digital. Tais diferenças são causadas, dentre outros, pelas especificida-

des de cada domı́nio na composição de conteúdo. Uma contribuição apresentada neste
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caṕıtulo é a separação entre aspectos do controle de configuração, que estão relaciona-

dos ao gerenciamento dos componentes (estrutura organizacional), e aqueles tratados por

domı́nios/aplicações espećıficos (estrutura representacional). A estrutura organizacional

pode ser generalizada por representar dados comuns a todos os domı́nios/aplicações.

Outra contribuição está relacionada ao aspecto distribúıdo da Fluid Web. Conside-

rando que DCCs e composições de DCCs são compartilhadas na Web, torna-se necessário

também compartilhar o controle de configurações e versões. O caṕıtulo mostra como isto

é feito através do uso de prinćıpios da Web Semântica, que permitem criar ponteiros entre

objetos distribúıdos na Web e compartilhar a semântica associada às relações definidas

entre DCCs.

O caṕıtulo apresenta um exemplo prático na área de planejamento agro-ambiental,

que é uma extensão do exemplo apresentado no Caṕıtulo 2.

1.4.4 Outras Contribuições

A tese está organizada como uma coletânea de publicações, havendo sido escolhidos os

artigos mais representativos da pesquisa desenvolvida. Outras publicações durante o

doutorado foram:

• Aplicações educacionais na Web – o papel de RDF e Metadados [64]: este minicurso

foi resultado da revisão da literatura envolvendo objetos digitais complexos no con-

texto da educação e padrões de metadados a eles associados. Adicionalmente, é

apresentada uma cŕıtica aos modelos de representação de metadados baseados ex-

clusivamente em XML, e são apresentadas investigações do uso do padrão RDF

(Resource Description Framwork – padrão usado na Web Semântica) para adicionar

interoperabilidade semântica à representação dos metadados.

• Managing Dynamic Repositories for Digital Content Components [66]: este artigo

introduz as primeiras noções dos DCCs, sua estrutura e gerenciamento em repo-

sitórios e a estratégia para composição de DCCs.

• Managing Repositories for Digital Content Components [67]: este artigo consiste

em uma evolução do artigo anterior [66], apresentado no IV Workshop de Teses e

Dissertações em Banco de Dados do SBBD 2005.

• Geographic Digital Content Components [65]: este artigo apresenta uma aplicação

dos DCCs no contexto de Sistemas de Informação Geográficas. Um dos desafios

neste contexto é o compartilhamento de projetos de SIG, que interrelacionam ar-

tefatos digitais em diferentes formatos, que podem ser tratados por diferentes apli-

cativos. O artigo apresenta como estes projetos podem ser representados através
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de composições de DCCs. A proposta é ilustrada através de um exemplo prático,

que apresenta um projeto para calcular regiões que possuem solo adequado para

plantação de café.

• WOODSS and the Web: Annotating and Reusing Scientific Workflows [44]: neste

artigo o enfoque principal é o projeto (WOrkflOw-based spatial Decision Support

System) [56]. O WOODSS é um ambiente extenśıvel que permite a captura, espe-

cificação, reuso e anotação de workflows cient́ıficos. No artigo, é apresentado como

está sendo conduzido um projeto de integração entre os DCCs e o WOODSS, no

qual workflows WOODSS coordenam a execução de DCCs e, por outro lado, estes

workflows podem ser armazenados e distribúıdos dentro de DCCs.



Caṕıtulo 2

Self Describing Components:

Searching for Digital Artifacts on

the Web

2.1 Introduction

The search for efficiency in software development has prompted intensive research in

reuse and documentation practices. The same goals and practices have propagated to the

area of content design and management. The Web has accelerated such initiatives: IT

professionals need new kinds of tools and techniques to retrieve the appropriate digital

artifacts from repositories all over the world. This presents challenges both in specification

and description, as well as in good searching mechanisms.

As a result of these efforts, there is an increase in the interchange of reusable artifacts

(content and software), assembled inside standard “containers” – the packages – and stored

in package libraries [15]. We define a package as a structure that delimitates, organizes

and describes one or more pieces of digital content suitable for reuse. The term digital

content is used from now on to denote any content represented digitally – e.g., pieces of

software but also texts, audio, video, and so forth.

However, while the size of package libraries grows, effective reuse depends on the

ability to discover artifacts for given requirements. Klischewski [39] observed that there is

a variety of resources, like fine-grained information elements, multimedia items, services,

or user related objects, which are meaningful for users. Therefore, they are candidates

for semantic markup using Semantic Web standards, providing a more semantic way to

search and use them. This observation was made in a e-Government context, but can be

extended to the general reuse context.

Semantic Web efforts have addressed two directions: a common syntax and semantic

21
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to exchange data; and a common syntactic and semantic infrastructure to provide intero-

perability between processes. In the former direction, the initial approach was document

oriented, through annotations using RDF and OWL and pointers based on URIs connec-

ted to Web documents. As pointed out in [39], there is a wider universe of “annotatable”

artifacts on the Web, formed by “annotatable” sub-parts whose organization depends on

the artifact’s nature. The challenge is how to associate Semantic Web annotations to

artifacts and their subparts, in spite of their heterogeneity.

A similar challenge is faced by the second direction to describe different kinds of

process entities, meant to inter-operate. In this case, the heterogeneity of process entities

is hidden behind a standard interface. Here, Semantic Web-based standards (WSDL and

OWL-S) are used to describe process functionality and details of its working activities as

a composition of sub-processes.

Another challenge in this scenario is to build new products that properly combine

and reuse pieces, in spite of their diversity. Developers in this new scenario will not be

just computer science experts, thus requiring new models and tools [48]. Moreover, reuse

requires finding the adequate pieces of digital content, and therefore for new means of

describing, storing and retrieving these pieces.

WSDL and OWL-S are meant to describe process entities, and thus indirectly associate

a provided functionality with process entities (e.g., a video player software plays video).

However, one can also envisage the description of the potential functionality associated

with the nature of any other digital content (e.g., a video content can be played). These

functional annotations support finding the appropriate artifacts on the Web.

This paper contributes towards this direction. We propose a unified model to build

reusable digital artifacts. It can be used both for content design (content-centric appro-

ach) or for software development (process-centric approach). In our model, each piece

to be reused is encapsulated inside a unit named Digital Content Component (DCC).

Furthermore, our model expresses both the provided and potential functionalities via an

interface associated to any digital artifact. This functionality-based description provides

a richer semantic way to annotate any kind of digital content, hiding its heterogeneity

behind a standard interface. Semantic Web standards are adopted in many aspects of

DCC specification and Web service standards are adopted for the interface specification.

More specifically, the paper focuses on the technique used to specify DCC interfaces

using OWL and OWL-S respectively. As will be seen, these semantically enriched spe-

cifications enhance the possibility of reusing content. Moreover, they help discovering

DCCs that are suitable for a given product construction in two ways: the functionality

description is used to refine the search procedure, and the descriptions associated with

DCC operations are used to discover useful DCC subproducts “hidden” within a DCC.

For instance, images may provide pixels (e.g., a pixel inside a map) or videos may provide
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a set of frames (e.g., a commercial from a film), and so on. The issues discussed here are

presented by means of a practical example.

The remainder of the text is organized as follows. Section 2.2 details DCCs and their

specification based on OWL and OWL-S. Section 2.3 presents our three step procedure for

DCCs discovery, based on their OWL metadata and interface specifications. Section 2.4

presents how DCCs can be connected and assembled to form an application and the

role played by the interface specification. Section 2.5 considers related work, showing

how DCCs combine and generalize distinct reuse approaches. Section 2.6 presents the

conclusions.

2.2 Specifying DCCs

The specification of DCC considers two issues: clear separation of content and interface

specification, to support reuse; and use of ontologies for semantic annotation, to help find

appropriate DCCs and to match their connections. This section presents DCCs using as

background a real example for agricultural planning. Assume that experts want to forecast

the evolution of a given coffee plantation under certain weather conditions. Given these

as input, together with coffee plant geographic location, the output shows how the plants

will evolve. This result is seen by means of an animation that simulates the growth of a

plant for the input conditions provided.

2.2.1 An overview of DCC

A DCC is specified and stored as a unit composed by four distinct sections: (i) the content

itself, in its original format; (ii) the declaration, in XML, of an organization structure

that defines how components within a DCC relate to each other; (iii) a specification of

the DCC interfaces, using adapted versions of WSDL [19] and OWL-S [42]; (iv) metadata

to describe functionality, applicability, use restrictions, etc., using OWL [73].

We differentiate between two kinds of DCC – process and passive DCCs. A pro-

cess DCC is process-centric: it encapsulates any kind of process description that can be

executed by a computer (e.g., sequences of instructions or plans). A passive DCC is

content-centric (e.g., a text or video file) and its interfaces define how its content can be

accessed.

DCCs are assumed to be stored in repositories on the Web. Interface and metadata

sections are used to help retrieve the appropriate DCCs from the repositories. There is

furthermore a DCC infrastructure that comprises an architecture to assemble DCCs into

a desired product. For more details on DCCs, see [66].

Ontologies play a fundamental part in DCC description and semantic management.
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Figura 2.1: Ontologies used by rainfall map component.

According to [20], there are two main kinds of ontologies: descriptive and taxonomic.

A descriptive ontology resembles database schemas. Its concepts are interconnected by

many kinds of semantic associations, and its purpose is to represent the intended domain

as much as possible. A taxonomic ontology is used as a basis for vocabulary alignment.

Its structure organizes terms into generalization/specialization hierarchies, and semantic

links to express synonymy, composition, and so on.

Taxonomic ontologies are useful in information sharing activities [20]. We adopt them

in DCCs to disambiguate the meaning of DCC metadata and interface specification. More

specifically, we postulate the need for specific ontologies that define valid kinds of DCC

and of terms used in defining DCC interfaces. Fig. 2.1 shows diagrams that represent parts

of two taxonomic ontologies, used by our examples, and whose hierarchical relations will

be explored in DCC semantic relationships and search procedures. White-filled circles

represent classes. Lines with a diamond in one extremity represent subclass relationships,

e.g. Rain is subclass of Precipitation. Dashed lines indicate that some intervening

nodes were ommitted for simplicity.

Our example concerns managing, creating and reusing content for agriculture appli-

cations. DCC discovery and reuse require domain semantics – in this case, the taxonomic

ontology called SWEET – Semantic Web for Earth and Environmental Terminology [61].

Fig. 2.1 shows two fragments of SWEET. The fragment at the center concerns a taxo-

nomic hierarchy about Rain, while the left fragment describes physical measurements.

The right fragment is part of our ontology constructed to classify DCCs according their

functionality. Each class in this ontology corresponds to a DCC type, and each DCC is
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an instance of a class.

2.2.2 The Rainfall Map Content Component – Content Centric

Approach

Our application requires combining rainfall and solar radiation data with coffee plant

growth simulation. We show how this can be done by first creating the DCCs and then

composing them.

Fig. 2.2 shows an example of a partial representation of a passive DCC. This com-

ponent encapsulates a temporal series of images containing one year of rainfall data for

São Paulo state. Each image is visualized in a map and represents the average rainfall

distribution in one month (i.e., each pixel contains the average rainfall value for the cor-

responding region). The internal organization structure of the component, a set of twelve

images (the content), is described in XML.

Both metadata (in OWL on top) and interface (in OWL-S displayed around the orga-

nization structure) are presented using a simplified version of RDF-like Directed Labelled

Graph (DLG). Metadata and interface parameters are associated with ontological terms.

In the metadata section there is a reference to the DCC ontology presented in Fig. 2.1.

It shows that the DCC is an instance of the MapSet class, with three property values:

title, coverage and phenomena. The values of phenomena and coverage are respectively

related to SWEET and to the POESIA spatial ontology [27]. The latter is a spatial

ontology specific to Brazilian spatial unit organization.

The interface section presents operations using OWL-S ServiceModel class hierarchy

[42]. It defines two operations (atomic processes in OWL-S): getQuantity and getMap.

The getQuantity operation returns a value of a pixel inside a map image, given parameters

month and pixel coordinate. The getMap operation returns a map image for a given

month parameter. These atomic processes, which receive one input message (comprising

all input values) and return one output message, correspond to WSDL request-response

operations [42]. To simplify the explanation we will use the same names of OWL-S atomic

processes to refer to WSDL related operations.

These operations illustrate how the descriptions can be connected with taxonomic

ontologies. Following the OWL-S model to describe processes, each process parameter has

a parameterType which specifies the class or datatype for that parameter [42]. Notice

that many ontologies may be needed to properly specify a parameter. For instance,

the coordinate input parameter has a type description associated with SWEET, but its

domain is defined by the coverage property, in POESIA, here denoting that the only

valid coordinates accepted are those from within the state of São Paulo. The output

parameter of the getQuantity operation is an integer value. The additional measures
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Figura 2.2: Rainfall map content component representation.

property of the SWEET ontology defines the nature of measured value. Notice that we

extended the OWL-S schema to enhance parameter description with additional semantics.

OWL-S specifies the need for type characterization (parameterType) which we improved

by adding semantic parameter descriptors (e.g., coverage, measures). The parameters of

the getMap operation work the same way.

This extension to OWL-S to organize components is similar to the faceted method,

borrowed from library science by Prieto-Dı́az [58] to classify software components. In

contrast to the traditional enumerative method adopted by library science, which uses

a classification tree to organize components in categories and sub-categories, the faceted

method describes components by a set of attributes (named facets); each facet is specified

by setting a pertinent term value. We used the RDF/OWL description approach to attach

a set of descriptive property values (facets) to each parameter.

It is important to note that the DCC of Fig. 2.2 is passive – does not embed the
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program code to execute these operations. The focus in this kind of component is in the

content (i.e., the maps themselves), and the operations define how this content can be

accessed. Since the program code for the operations cannot be embedded in a passive

component, interface operations are implemented in a companion component. The associ-

ation between the passive component and the companion is achieved with help of semantic

information given by terms of the DCC ontology. The companion for the MapSet com-

ponent is the MapSetHandler (see Fig. 2.1). MapSet has a property value pointing to

the MapSetHandler.

2.2.3 The Coffee Plant Simulator Process Component – Process

Centric Approach

Fig. 2.3 shows an example of a partial representation of a process component. This is a

software component that graphically simulates the growth of a coffee plant for a given

coffee strain, and specific weather and location conditions. Its internal structure organizes

Java binary code classes, which implement the simulator software, and related files.

To execute its job, the simulator DCC requests services from external DCCs. There are

three processes, declared in the interface, for the requested services: rainfall, solarRadiation

and growthRate. They actuate in two stages, being thus composite processes. First they

request a service by sending a message, containing their output parameters; next they

receive the result of the solicited service in a message, whose content must match their

input parameter. This kind of composite process corresponds to a WSDL solicit-response

operation [42].

The simulator DCC uses rainfall and solarRadiation processes to request weather

data, essential to estimate the coffee plant growthRate. In more detail, rainfall provides

parameters month and coordinate (whose semantics and types are defined ontologically)

and receives back from an appropriate service a value whose meaning and type are likewise

defined. The same applies to the solarRadiation process. Additionally, the simulator

DCC declares the start process, which is atomic and corresponds to a WSDL one-way

operation.

We point out two further characteristics of DCC construction. First, the interface

specifies processes. These may be operations implemented locally, or other components

that have been built (reused) into the simulator. Second, parameter semantics define

process (and component) semantics. Notice that in the rainfall and solarRadiation

operations the coverage of the coordinate output parameter is Campinas: this component

was built to simulate the coffee plant growth under Campinas city weather conditions,

therefore it will only process values in this coverage. These constraints are used in a

discovery process.
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Figura 2.3: Coffee plant simulator process component representation.

2.3 Discovering DCCs

A key aspect of our proposal is how a designer discovers DCCs for reuse. DCCs’ metadata

and interfaces are specified in OWL/OWL-S, which can be used in component indexation

and searching. Domain ontologies can help in this task in three ways: (i) they organize

DCCs in taxonomic trees that can be navigated in the discovering process; (ii) ontology

concepts are used to help query construction, to disambiguate terms and find synonyms;

(iii) ontological relationships are used to rank DCCs based on their similarity with the

searched DCC.

In DCC discovery process the designer can navigate through taxonomic trees to search

for a DCC. The designer may define values of properties to characterize a desired DCC.

Alternatively, the characteristics of DCCs already in a composition guide the search for

the new one.

Let us consider a designer that wants to build a composition to graphically simulate
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a coffee plant growth. He/she starts by the simulator DCC obtained navigating in the

DCC taxonomic ontology and selecting a DCC instance of P lantSimulator class – see

Fig. 2.3.

The next step is to connect the plant simulator instance to a DCC that provides the

rainfall average for a given month and coordinate. Looking at the simulator specification,

the designer will next query the Web looking for a DCC that supports the Campinas

coverage of the POESIA ontology, and the Rain phenomena of SWEET ontology. As

often occurs in this kind of searching process, maybe no DCC exactly matches with the

query. The search engine can take advantage of the ontological semantic relationships to

find other “most similar” DCCs and rank them depending on their similarity.

Our search procedure follows three steps: (i) metadata similarity-based searching and

ranking; (ii) interface searching and ranking via inheritance relationships; (iii) interface

matching-based refinement and ranking. Each of these steps will be detailed in the fol-

lowing three subsections.

2.3.1 Metadata similarity-based searching and ranking

Consider that the designer wants to retrieve a DCC via a query specified using the RDF-

like DLG. The first step looks for metadata similarity selecting DCCs whose metadata

graph is “similar to” the metadata query graph. For each query property, the search

engine verifies if the same property exists in the DCC; if not, it verifies if there is a

property in the DCC that is defined as an OWL subproperty of the query property.

The rank similarity routine – called by the search engine – defines a value between 0

(no similarity) and 1 (equivalent concepts). rank similarity uses ontologies to compare

a DCC property to a query property, acting in three directions to determine: equivalent

concepts, more general concepts and more specific concepts. The priority order in the

ranking is: equivalent, general and specific, and can be inverted depending on the desired

results. The search engine sums the ranked values of all properties.

In this comparison, two values A and B are considered equivalent if they refer to

the same concept in the ontology (equal URIs), or if they point to two concepts related

by OWL equality relationships (equivalentClass or sameAs). Moreover, A is said to

be more general than B if A subsumes B and conversely B is more specific than A.

For instance, if B is OWL subClass of A, or B is related with A through the partOf

property (B partOf A), then A subsumes B. Consider A and B vertices of a graph,

whose edges are properties. The subsumption relationship between A and B is a path

formed by one or more edges. Therefore, the similarity rank value between A and B is

inversely proportional to the number of edges which connect A and B in a subsumption

relationship.
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Let us return to the designer whose query is for DCCs with Campinas coverage of

POESIA and Rain phenomena of SWEET. Assume that two DCCs obtained in the query

response declare the following metadata: (DCC1) the São Paulo rainfall map, presented

in Section 2.2.2; (DCC2) Campinas satellite images for days of acid rainfall, which

declares a Campinas coverage and AcidRain phenomena.

DCC1 satisfies the search because its metadata has a phenomena concept equivalent to

the query parameter on this concept, and because its coverage metadata relates to the S~ao

Paulo concept, that in POESIA ontologically subsumes the query predicate on Campinas:

DCC1 covers a more general spatial surface than the one specified in the query. Thus, it

includes the queried Campinas coverage. DCC2 metadata has an equivalence relationship

on the query for the coverage concept (Campinas) and a subsumption relationship on

the AcidRain concept (since in SWEET Rain is a superclass of DCC2’s AcidRain – see

Fig. 2.1). This means that this DCC produces a kind of rainfall average stricter than the

one specified in the query. This result can be useful if the designer uses a generic concept

to express a set of desired sub-concepts, for instance, if the designer wants to search for

maps of any Brazilian state, he/she queries for Brazil coverage and expects to receive

stricter coverages. For this reason the order of generalization/specialization in similarity

ranking can be inverted and depends on the search context.

2.3.2 Interface searching and ranking via inheritance relationship

The query in the previous section can be refined by specifying, besides metadata, the kind

of output expected from the desired DCC. In this case, this output has to match the input

of the rainfall operation of the simulator DCC: a value with integer parameterType,

whose semantics are defined by SWEET Rainfall. The similarity procedure to find and

rank similar interface specifications is the same of the previous section.

Assume that this refined query returned another DCC – DCC3 – that will be added

to the previous result (DCC1 and DCC2). DCC3 is a software component that provides

access to a remote weather repository for Campinas, and which declares an output with

an integer parameterType and SWEET PhysicalQuantity for the measures property.

DCC3 satisfies the search because its output description has an equivalence relati-

onship on the query for the parameterType concept (integer) and a subsumption rela-

tionship on the PhysicalQuantity concept (since in SWEET Rainfall is a subclass of

DCC3’s PhysicalQuantity – see Fig. 2.1). Notice that this step enhanced the searching

process, finding additional DCCs based in finer-grained criteria.
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2.3.3 Interface matching-based refinement and ranking

The interface specification is again used to further refine the search. For example, it is

necessary to verify if the components selected in the previous queries have operations

which match with the simulator component. The designer refines the ranking, asking

which of the three DCCs have an interface with an operation that matches with the

rainfall operation of the simulator component. Here, interface matching is used to

discard those DCCs whose interface does not match the request. While the previous step

uses interface descriptions to increase the DCC candidates, this step can reduce the set

of candidates.

Let X and Y denote inputs declared in the interface of two DCCs and consider the

meaning “equivalent”, “more generic” and “more specific” of Section 2.3.1. We define

the follows relationships: (i) X eq Y if for each property of X, Y has the same property

with an equivalent value; (ii) X ge Y if for each property common to X and Y , the value

of the X-property cannot be more specific than that of the Y -property, and conversely

Y sp X. Let now Q be the DCC specified in a query, and inQ and outQ the set of all

its inputs and outputs respectively. Let S be a DCC and inS and outS the set of its all

inputs and outputs.

We define four levels of interface matching: exact: If inQ eq inS and outQ eq outS;

plug-in: If inQ sp inS and outQ ge outS; wider: If inQ ge inS and outQ sp outS. fail:

Not classified in the previous degrees.

The plug-in match is a simplification of the one proposed by Zaremski and Wing [84].

This kind of match guarantees that the inS input domain is a superset of the inQ input

domain, hence, the S DCC can deal with any input of the domain specified in inQ. The

outS output domain is subset of outQ output domain, hence, any output generated by

the S DCC is within the expected results. In a nutshell, the S DCC can be plugged in

any system where Q is required, and will not compromise the system functioning with an

unexpected behavior. On the other hand, S is not equivalent to Q.

The wider match is the inverse of the plug-in match. This is the interpretation made

by Paolucci et al [55] to the Zaremski and Wing plug-in match. Here, since the outS

output domain is a superset of outQ output domain, it is expected that the S DCC can

fulfill any output requested by Q. Analogously inQ, which is a superset of inS, can fulfill

all input needs. However, it cannot be guaranteed that the S DCC will work properly if,

for example, inS receives an unexpected input.

Returning to our example, the interface matching procedure will take simulator’s

rainfall operation as a basis to refine and rank the DCCs search. As illustrated in the

first column of Fig. 2.4, to specify the query, to be used in the refining and ranking

process, the inputs are transformed in outputs and vice-versa. The other two columns

of Fig. 2.4 display a clip of the OWL-S descriptions of DCC1 getQuantity operation



2.4. DCC-based Application Construction 32

and DCC3 Weather Repository’s getPhysicalQuantity operation, both retrieved in

previous steps of this search procedure.

Figura 2.4: Clips of OWL-S specifications for a queried interface and DCC1 and DCC3
interfaces.

Using the matching procedure, the DCC1 operation is classified as plug-in. Its out-

put description has an equivalence relationship on the query for both the parameterType

concept (integer) and the measures concept (Rainfall). Its input description has a sub-

sumption relationship on the S~ao Paulo coverage concept (since in POESIA S~ao Paulo

subsumes Campinas – see Fig. 2.1) and an equivalence relationship for the parameterType

concept (GeographicalCoordinates). The DCC3 operation is classified as wider, fol-

lowing the same reasoning.

2.4 DCC-based Application Construction

The previous sections illustrated how to discover DCCs necessary to build a composition.

This section shows the construction of an application that is built by composing these

DCCs. Fig. 2.5 shows the diagram of the application. It was constructed via a composition

of five DCCs, whose purpose is to simulate the growth of a coffee plant in a region of

Campinas. Many aspects are omitted to simplify the example.

Roughly speaking, an application can be constructed using the following steps: (1)

elicit requirements with help of experts and users; (2) determine basic data and processes

needed; (3) search for appropriate process and passive DCCs to be reused using the

semantic annotations provided by DCC description in metadata and interface sections;

(4) construct new DCCs if needed; (5) create the application, which is materialized into
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Figura 2.5: Composition to simulate coffee growth at São Paulo state.

a new DCC, by appropriate composition of reused and new DCCs.

In Fig. 2.5, DCC interfaces show the names of operations defined via OWL-S/WSDL.

The Rainfall and the Solar Radiation maps are instances of the passive DCC of Sec-

tion 2.2.2, and the Coffee plant simulator is an instance of the process DCC of Sec-

tion 2.2.3.

The dashed lines represent the connections between components, whose format is an

adaptation and simplification of WS Choreography [12]. To understand the purpose of

these lines and their labels, we will summarize some key aspects of our model that adapt

WS-Choreography concepts.

A composition is formed by a set of participants. Each participant is defined by a set

of observable behaviors, which together form a role of this participant in the composition.

A relationship is the association of two roles for a purpose. In Fig. 2.5 a dashed line

represents a relationship between participants (DCCs), with a boldface label indicating

its name. Each label in italics represents the role played by the corresponding participant

in the relationship.

A given component may play several roles in a composition. In this example, each
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component plays a single role. Application execution starts when the user presses the

start button (starter component), which sends a message to the simulator component.

The simulator graphically presents the growth of a coffee seedling in Campinas.

Before the execution of the simulation, the user configured the simulator component,

selecting the number of cycles in the simulation. A cycle shows the growth of a coffee plant

in a time period and runs as follows. The simulator sends requests to the map component,

for a period of time and region, receiving the average rainfall and solar radiation for that

period and region (here, Campinas). Next, it requests that the calculator component

computes the plant’s state based in these and other parameters. This response is used to

feed the simulator’s growth rate process, showing the plant’s next stage.

2.5 Comparison to Related Work

This section analyzes related work. We focus on two relevant aspects: our choice for

describing DCC functionality; and the technique to search for DCCs.

2.5.1 Associating functionality to DCCs

Many initiatives identify the importance of representing some kind of relationship between

the reused content and the program code, to: guarantee correct future content interpre-

tation in long term preservation [15], enable active interaction between an educational

environment and units of educational content [43], standardize the way of how multime-

dia content artifacts will be accessed by software units [34], and process the content on

demand to produce new transformed results [76].

More specifically, standards are being proposed in education [33, 43], digital libraries

[15], multimedia [34], software development related artifacts [53], among others. Common

problems to be faced include standards to: store the content, pack and deploy autonomous

reusable units and define metadata standards to describe these reusable units.

Our proposal represents a step beyond, since it provides a standard ontology-based

mechanism to relate units of software and content, and provides a unified reuse pers-

pective, suitable for both software and content, which are reused together. The tight

dependency between them results in a synergetic effect that increases reuse opportunity.

2.5.2 Searching DCCs

There are many kinds of proposals for searching for content on the Web. We follow the

trend that concentrates on using taxonomic ontologies as basis for semantic similarity.
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Strategies include: the use of minimum path length between two concepts in IS-A hie-

rarchies [60], or the maximum value of information content achieved between a concept

that subsumes two compared concepts [62]. When the search is ontology-based, many

ontologies can be involved. The ontologies related to a searched content can be different

from those related to content artifacts in the repository. The issue of ontology mapping

is treated in semantic integration research [51]. If no mappings are available among on-

tologies, concepts related to them cannot be compared and a mapping discovery process

may be needed [21].

Our proposal considers the existence of mappings between compared concepts. It

is based on combining the work of Prieto-Dı́az [58] and Paolucci et al [55], using the

similarity concepts proposed by Zaremski and Wing [84].

Prieto-Dı́az proposes the faceted method, borrowed from library science, to classify

software components [58]. Each facet, used to describe a component, is associated with

a scheme, which defines a list of terms that can be used as facet values. To enhance

component searching he uses a thesaurus to disambiguate terms and find synonyms, and

a conceptual distance graph to rank similar components, based on closeness of related

terms. Our approach is based on the same ideas. However, it uses OWL as a unified

technology for the three tasks: properties are used as facets, taxonomic ontologies are

used as thesauri, and ontological relationships are used to determine component similarity

instead of conceptual distance graphs.

Zaremski and Wing [84] adopt a language called Larch/ML to specify interfaces of

software components and to specify queries to search required components. These spe-

cifications define pre-/postconditions for component execution using first-order predicate

logic. The matching between the required component specified by a query (Q) and the

provided component with interface specification (S) is based on logical relationships, like

equivalence and implication. The matching between S and Q can relate pre and postcon-

ditions as separate entities, or can relate entire specification predicates Spred and Qpred

where, for any specification X, Xpred = Xpre ⇒ Xpost. On one hand, our approach is

capable of exploring the richness of ontological relationships to compare input/output

similarity, instead of logical relations. On the other hand, pre-/postconditions can detail

requirements, which are not possible in our approach.

Our work is likewise related with Paolucci et al [55], which is also based on [84], and

adopts DAML-S for interface matching in Web services discovery process. As mentioned

before, their approach for plug-in match follows a direction distinct from that of [84].

Both approaches are contemplated in the third step of our search procedure, which is not

restricted to finding software components or services, but extends this functionality-based

search technique to any kind of digital content.
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2.6 Concluding Remarks

This paper presented a new approach to structure digital content in order to facilitate

its reuse and discovery using Web standards. Our work combines proposals to use in-

terface specification, taxonomic relationships between concepts and interface matching,

to enhance digital artifacts searching, using Semantic Web-based metadata and interface

specifications in our Digital Content Component model.

One of the main challenges was the specification of the functionality of each reusable

piece, which guides their discovery and combination. DCC diversity requires an expressive

and flexible mechanism, equally suitable for software components, images, texts, videos,

among others.

We can single out two main contributions of our work in this context: first, the

extension of the interface specification to express the “potential functionality” related

to any kind of digital artifact, associated to a mechanism that converts it in a “real

functionality” implemented by a companion component; second, a three step procedure

that explores metadata associated to DCCs, combined with the functionality expressed

in their interfaces, to enhance the DCC searching process.

Traditionally, the relationship between software components and Web services is re-

lated to distributed components. Here, we propose that the same technology be applied

to any kind of DCC (distributed or otherwise). Semantic Web based standards are useful

to promote interoperability via components, even at the local level. Therefore, we adapt

these standards, simplifying them when needed to accommodate the local context. DCC

description is based on an adaption of WSDL and OWL-S to describe the interface at

syntactic and semantic levels respectively. This promotes reusability and facilitates the

discovering of reuse units on the Web. Ongoing work involves implementation of DCC

construction and search mechanisms. We have already developed a few experiments that

show the feasibility of our ideas.
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User-author centered multimedia

building blocks

3.1 Introduction

In the early days, the task of building multimedia applications was closely related to that

of a software development process, being assigned to computing professionals in charge

of writing code. This perspective propelled what we call “process-centric development”.

There was a clear distinction between the author (developer) and the end-user (consu-

mer) of multimedia productions. This scenario progressively changed in many ways: (i)

multimedia tools became easier to use, being accessible to non professional developers;

(ii) the evolution of open standards combined with the Internet fostered the sharing,

reuse and adaptation of productions; (iii) in the multimedia context, as in other domains,

software involves not only executable code, but also the digital content that this code

handles, giving origin to what we call “content-centric development”. The combination

of these factors progressively shaped a new kind of user of multimedia applications – the

user-author – illustrated in Fig. 3.1.

Under this perspective, these users can be seen as nodes of a shared content space,

consuming multimedia artifacts (incoming arrows), and reshaping them through reuse

(outgoing arrows). Node labelled (1) represents a user that is only a consumer; node (2)

represents an author who works from scratch. User-authors alternate and combine their

roles as creators and consumers – node (3). This collective usage scenario reflects today’s

reality, in which almost any user is also an author of some artifact (from simple text to

complex multimedia presentations and software applications). As these artifacts travel

among the nodes/users, they can be updated, adapted, modified, improved and shared

again. This process of getting a content to update, adapt, modify and/or improve it, is

the essence of the reuse concept. Being mainly non computer professionals, these users

37
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Figura 3.1: Diagram illustrating our perspective of today’s user.

are propelled to become “reusers” in their authoring task, since it does not make sense

to build an artifact from scratch when they have good material at hand and work under

time and resources constraints. From now on, we will name this user “author”, for short,

adopting the term “user-author” whenever we want to emphasize these two interlaced

roles.

We point out that, for us, multimedia authoring goes beyond creating productions

using specialized authoring tools (e.g., Flash, Director or Toolbook). From an author’s

perspective, (user-author)ing means producing any digital content involving multimedia

artifacts, taking advantage of tools available in a standard computational environment

(e.g., text editors, presentation editors, spreadsheets, but also multimedia authoring to-

ols). In this sense, the Web can be seen as a virtual collaborative space for multimedia

content production, where communities exchange digital artifacts. Moreover, we stress

the need, in this context, to provide not only a model, but an infrastructure to implement

the model and support its management and user-authoring. Present models and infras-

tructure are limited in aspects such as: (i) tradeoff between ease of use and reusability;

(ii) nature of content; (iii) domain of application.

Tradeoff between ease of use and reusability

There are two perspectives to analyze authors’ reuse practices. In the first perspective,

authors reuse multimedia artifacts “as is”, in the sense that they just take the artifact and

insert it in a production, without modifications. In this case, authors can be portrayed

as composers of multimedia artifacts, assembled from many sources. This kind of sharing

and reuse is well supported by multimedia technologies when the shared/reused artifacts

are basic multimedia files, e.g., an image, a video. In the second perspective, authors can

decompose and adapt the reused production and fuse reused parts into a new production.

This perspective involves the need for complex digital objects [7] to be shared. These

objects can comprise many multimedia items and the relationships among them.

Both desirable factors in fostering user-author practices, “ease of use” and “flexibility

in sharing/reuse”, do not coexist harmoniously. Solutions that support ease of use (e.g., a
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family of interrelated tools) are limited to the formats supported by the tools themselves.

On the other hand, solutions that are geared towards reuse are difficult to use. For

instance, MPEG-21 [13], an initiative in the multimedia domain that is not constrained

to specific tools or application types, and thus conducive to reuse, is difficult to use in

authoring activities.

Our work overcomes this tradeoff between “ease of use” and “freedom to share, adapt

and reuse”. It presents a solution that combines author-friendliness with a model and

infrastructure for sharing and reusing, which is not constrained to specific tools or types

of products.

Content nature and Application domain barriers

Content nature (executable software versus content in general) and solutions driven

by the application domain present limitations to user-authoring: (i) process-centric mo-

dels are mainly focused in professional software developers and program code, and do

not contemplate other kinds of process descriptions accessible to non professionals, e.g.,

workflows, spreadsheets; (ii) content-centric models are designed to be used in speci-

fic application domains; (iii) the process-centric × content-centric division is a barrier

when the author wants to mix executable software and content, or when the artifact to

be shared/reused cannot be classified inside one of these categories (e.g., a spreadsheet

sometimes contains executable routines, sometimes not).

As will be seen, our approach introduces an upgrade from a “digital object” to a

“digital component”. These components – called Digital Content Component - DCCs –

are generic “building blocks” that can be used by authors in their compositions, regardless

of the nature of their content, and are not constrained to a specific family of tools or kinds

of applications. DCCs are self descriptive units, semantically annotated using taxonomic

ontologies. An important strategy of our infrastructure is based in the notion of content-

type driven execution, in which a given artifact “searches for” appropriate software to

execute it, thus helping the consumer and production roles.

The main contributions of this paper are thus: (i) presentation of DCCs as a user-

author centered building block in the multimedia context; (ii) analysis of the notion of

content-type driven execution under different guises; (iii) and presentation of a content-

type driven execution strategy tailored to the context of user-author multimedia develop-

ment.

These contributions arise from our analysis of requirements needed for full-fledged

user-authoring. This analysis is itself a contribution, establishing guidelines against which

other proposals can be evaluated. The DCC model is confronted favorably with complex

digital object approaches, and mainly with the MPEG-21 standard that addresses the

multimedia domain. The paper presents practical examples implemented in a DCC-based

authoring tool, which illustrate the benefits of our solution. These examples come from
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the experience of the first author in developing an authoring environment that is being

used in elementary and high schools in the city of Salvador, Brazil.

Our presentation first lays the foundations of the DCC model and infrastructure,

being followed by the materialization of this model in the tasks of reusing and authoring.

Sec. 3.2 presents an overview of related work. Sec. 3.3 presents the requirements that led

to our user-author multimedia building block. Sec. 3.4 briefly presents our DCC model.

Sec. 3.5 introduces the notions of content-type driven execution and of the companion

DCC as central foundations to relate content resources with content handling software,

and shows how these notions improve multimedia authoring. Sec. 3.6 and 3.7 discuss

retrieval mechanisms and some implementation issues. Sec. 3.8 summarizes how the DCC

model and infrastructure meet the requirements of Sec. 3.3. Finally, Sec. 3.9 presents

conclusions and ongoing efforts.

3.2 Related Work

This section presents the research issues related with the main contributions of this pa-

per. First, since DCCs define a model and infrastructure suitable for process-centric and

content-centric development, the first three subsections analyse the philosophy behind

these two currents, and models adopted by them for sharing/reusing artifacts. Sec. 3.2.4

compiles and classifies a set of strategies used for content-type driven execution.

3.2.1 Process-centric × Content-centric Development

In order to support authors who want to design and develop applications, a key question

must be answered: what is the raw material employed by these authors in their work?

The approach used to build the application will be defined by the raw material: content

(content-centric development) or executable software (process-centric development).

In a typical content-centric development project, authors start from content resources,

and transform, customize and combine them to form a resulting material, which can vary

from a simple presentation to a sophisticated multimedia production. The backbone

of content-centric development is thus formed by interrelating content artifacts. These

artifacts in turn drive demands for software – for example, a video file can require a

video player routine to enable its being shown. Additional software routines can be

inserted inside the content structure, like a Javascript routine inside a Web document,

with the content playing the central role. We can imagine such an application organized in

layers, as illustrated in Fig. 3.2a, where the user-author roles of authoring and consuming

are distinguished. The content layer comprises the main content artifacts used in the

application; the software layer comprises all software routines requested to manipulate
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Figura 3.2: Diagrams illustrating (a) Content-centric and (b) Process-centric approaches

this content; and the result layer corresponds to the in-memory composition of the content

and software layers necessary to execute the application. As shown in the figure, in the

content-centric approach the author deals with the content layer and the user interacts

with the result.

In the process-centric approach, on the other hand, the process description plays the

central role, being used to design or implement an application. Programming languages

are the usual way to implement process-centric applications. There are however higher

level approaches more suitable to the non-expert authors – e.g., composition of software

components, workflow specification. As illustrated in Fig. 3.2b, in the process-centric

approach the authoring role deals with the software layer.

Since in the content-centric approach the raw material is the content, the strategies to

produce, share and reuse content are based on content files or packages. The mechanisms

to combine content pieces are either constrained to the formats supported by a tool
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or family of tools, or limited to a specific kind of product, as explained before. In a

process-centric implementation, on the other hand, the raw material is the executable

software, and the strategies to produce, share and reuse content emphasize executable

units (software components, libraries, frameworks, software templates, etc.), which are

prepared to be adapted and to work together with other software units.

The research and models aimed at sharing, reusing and composing productions are

highly influenced by these two currents. On the one side, there are process-centric initiati-

ves in the software engineering domain, where one of the main focus is on software compo-

nents to encapsulate program code [23]. On the other side, there are many content-centric

initiatives to systematize the packing, deployment, reuse and composition of domain spe-

cific content in areas such as education [2,33,74], digital libraries [15,77], multimedia [35]

and software development related artifacts [53].

3.2.2 Software Components (process-centric approach)

Software components have been the main unit adopted for program code reuse. There

are many definitions for software component [32]. Even if they do not achieve total

agreement, some characteristics are present in all definitions, or can be inferred from

them: (i) a component is an entity meant to be composed; (ii) each component publishes

its functionality through a well-defined and open interface; (iii) components can be nested

into other components.

From a practical point-of-view, software components have additional characteristics,

observed in the widespread component initiatives: (i) components contain some kind of

binary code that implements the functionality declared in their interface; (ii) the compo-

nent interface and implementation are assembled into a standard package for deployment

purposes.

The separation between interface and implementation resulted in a generic mechanism

to explicitly express how a component can be connected to other components, independent

of its implementation details. Software components hide their heterogeneity inside a

homogeneous capsule. For these reasons the software component model has been adopted

as a basis for the DCC model.

3.2.3 Complex Digital Objects (content-centric approach)

In multimedia authoring, the ability of sharing and reusing multimedia artifacts is essen-

tial. In the last years many domain specific initiatives have been concerned with sharing

and reusing digital content. Since each research domain uses its own terminology to refer

to the sharable and reusable entities, we will use a term borrowed from digital libraries:
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complex digital object (or simply digital object) [7], whose concept and model can be

considered a common foundation.

In the multimedia context, there are many standards for different kinds of media and

their applications. Many of these standards overlap each other and produce competitive

solutions to the same needs. The purpose of the MPEG-21 initiative [13] is to bring these

standards together. MPEG-21 [35] is a framework that offers support for multimedia

delivery and consumption, simplifying transactions and ensuring content interoperability.

It defines many content/consumption related issues, like unique identification, rights and

permissions through a specific language (Rights Expression Language) [81], etc. A fun-

damental piece of this framework is the Digital Item, which is a basic unit of reusable

content representation, and is declared in the Digital Item Declaration (DID) [14].

The engine responsible for Digital Item processing (DIP engine [13]) can be considered

as a software framework that is extensible with software plug-ins. MPEG-21 methods

(DIMs) can be attached to Digital Item Descriptions and then can be related to digital

content items, and can be shared inside complex digital objects.

The Open Archival Information System (OAIS) is a reference model whose purpose it

to address preservation of complex digital objects over the long term, admitting impacts

of changing technologies and user community [15]. As time goes by, appropriate tools

to interpret, process and present a specific kind of content may not be available in the

future. To deal with this problem, OAIS defines that each piece of content must be

associated with a representation information, whose purpose is to map the data into

more meaningful concepts. One possible kind of representation information is the access

software, which can access and interpret the content. METS – Metadata Encoding &

Transmission Standard – is a standard related to OAIS that specifies an XML document

format to represent metadata that is necessary for complex digital object management

and exchange [77]. METS specifies a behavior support associated with complex digital

objects. These declarations relate items of content with a Web services API provided by

Fedora [76], a general purpose repository service, which supports complex digital objects.

It defines a special disseminator object that can process other objects, through Web

services requests. This model is well defined for objects inside the repository.

There are many initiatives working around the concept of Learning Objects [33], which

can be conceived as an educational complex digital object. These educational initiatives

have agreed over an architecture to enable the relationship between the educational con-

tent and the Runtime Environment (RTE), which is the software system where this content

will be used. This relationship is useful when the RTE wants to track the interaction of

a student with an educational object – for example, what parts of an HTML tutorial a

student visited, or the number of test questions the student answered correctly. There is

an agreement over a proposal from the Aviation Industry CBT Committee (AICC) [43],
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which is based on the assumption that any educational content will be Web-based. AICC

defined an API that is responsible for specifying what services can be requested from the

RTE and what information can be delivered to it.

3.2.4 Content-type Driven Execution

Many multimedia systems need to dynamically invoke software routines according to the

type of the content to be handled, e.g., a Web browser displaying a document with text,

images and animations; a software to present slides that runs a video, inside a slide,

containing text and graphics. This section analyses a set of strategies adopted by this

kind of system to dynamically associate content with blocks of software specialized in

dealing with that content. Established strategies include software frameworks, active

document components and software plug-ins.

Software frameworks. The more similar two content types are, more closely related are

their potential functionalities. Systems can exploit this aspect defining a set of software

routines to be shared by content types based on their similarity. For example, many

image file formats can have specific routines to decode their content, and share a library

of routines that implement all other image related functionality. This has two benefits:

the same code is applied to many similar content types, and the system deals with the

decoded images in a homogeneous way. These characteristics can be dealt with using

software frameworks. For instance, object-oriented software frameworks usually define

a generic class containing shared routines, and subclasses to implement the singularities

of each content type. A framework example is Mozilla NGLayout [57], responsible for

rendering Web documents inside Mozilla Web products, like browsers and e-mail clients.

If an author wants to reuse a software framework to build a new system, this process will

involve adapting program code. For instance, consider an author who wants to build a

Web page editing tool, and chose the Mozilla NGLayout framework to render the pages.

The author must adapt his/her code to properly embed the framework.

Software plug-ins. Software plug-in architectures enable to pack and deploy a set of

software routines – related to content types – and to use them to dynamically extend

systems to deal with new kinds of content. Some systems, like Web browsers, have

mechanisms to automatically identify a required plug-in for a new content type, and to

find, load and execute it to deal with the content. Software plug-ins are more flexible

reuse-wise than software frameworks. Instead of being deployed along with the host

system, they can be fetched on demand. Therefore, new plug-ins can be developed to deal

with new content types, without need of modification of the host system code. However,

plug-ins are usually designed geared to a specific system, e.g., Mozilla Plug-ins, Eclipse

plug-ins [8], Protégé plug-ins [50]. Like in software frameworks, it is necessary to adapt
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programming code to port (reuse) these plug-ins to a new system.

Active document components. A set of routines that deal with content types can be

encapsulated inside a software component. Active document architectures, like Microsoft

OLE [9] and Apple OpenDoc [5], allow systems to embed pieces whose types they do not

support directly. Whenever the system needs to deal with these content pieces, it forwards

the operation to the appropriate software component. Active document components and

plug-ins operate in a very similar way. However, in the former the same component can be

usually shared by many distinct applications, whereas in the latter a plug-in is designed

for a specific application. On the other hand, active document components are highly

dependent on a specific operating system.

The mechanisms to identify the content type in these three strategies are usually: (i)

file extension – a poor and ambiguous mechanism (many formats have the same extension);

(ii) file header – not a standardized mechanism, since each content type has a distinct

format to define its header; (iii) MIME media type (RFC2046). As will be seen, we solve

these issues through the notion of content-type driven execution, in which a given kind of

media “finds” the appropriate software to run it. Media and software are encapsulated into

our components; the discovery and combination mechanism is based on specific component

interface matching characteristics.

3.3 Requirements for User-author Multimedia Buil-

ding Blocks

This section defines a set of requirements we consider necessary to create building blocks

for user-author multimedia. The author adopts these blocks to produce, adapt, share and

reuse any kind of digital content, regardless of its nature (executable software or not).

At the same time, the conception enables exploring the specific functionality provided by

each kind of digital content.

I. Breaking barriers between content- and process-centric development

As presented in Sec. 3.2.1, strategies to develop computer-based applications are highly

influenced by the raw material employed in the work: content (content-centric develop-

ment) or executable software (process-centric development). In particular, in the mul-

timedia domain, both approaches can be adopted. Authors can follow a content-centric

approach and produce multimedia presentations combining multimedia artifacts, which

are presented following a time-line, or are organized over pages. On the other hand, they

can follow a process-centric approach to build a multimedia application, using software

routines. However, authoring models and mechanisms in process and content-centric cur-

rents follow parallel and distinct approaches to solve closely related problems. There is a
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lack of a unifying model to combine both.

The distinction between content and process-centric approaches is influenced by im-

plementation concerns. In both cases the production is constrained to limits imposed by

the layer where the authors work. Moreover, it is difficult to produce compositions that

combine pieces of content and software, mixing both approaches. Furthermore, in the

content-centric approach it is expected that software development experts will previously

implement the software layer. Authoring is expected to be limited to contents, since it is

not envisaged that authors can contribute in writing and sharing software artifacts.

Here, our proposal is to reduce the distance between user and author. Thus, our first

requirement is that a model must overcome the barriers between content- and process-

centric approaches. The author should be able to combine pieces of content without

needing to be concerned with their nature (software or content).

II. Providing a Unified Abstraction: Potential × Provided Functionality

The content-centric approach works from “static” artifacts, in the sense that they can

be seen as complex data (as opposed to software). Such artifacts may be constructed

out of a variety of content pieces. The type associated with each such piece denotes

which operations can be applied over it (e.g., a video content can be played – however,

in order to be played it requires specific software). Similar to what is found in Internet

media standards – e.g., MIME (RFC2046) – we use the term content type to denote

the content, its internal representation, and associated operations. We call the set of

operations associated with a content type to be its “potential functionality”, in the sense

that their implementation is intrinsically not part of the content (e.g., the video player

software is not part of the video).

In a process-centric approach, instead, we deal with executable instructions, and thus

have a “provided functionality” inherent to any process description module (e.g., a software

component, a workflow specification). In particular, a software component explicitly

declares its provided functionality by means of its public facet – its interface. The software

component model supports the distinction between public and private portions. Through

this distinction, it is possible to control which aspects of a component are published

(accessible to users). Interface specification can be seen as an abstraction of a component’s

functionality, and can be used for component discovery, selection and composition. Such

an abstraction has a tight relationship with reusability [40].

In the content-centric approach, instead of an interface, there appears the notion of

metadata as an abstraction of the content. Interfaces describe what a software “can

do”, whereas metadata describe what a content “is”. There is no standard mechanism,

however, to specify applicable operations, which, depending on the case, must be deduced

from metadata.

Thus, a second requirement for user-authoring is to define a unified abstraction com-
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prising process and content encapsulation, which is used in their reuse, discovery, selection

and composition. Our solution to this unified abstraction is a combination of metadata

and interface specification.

III. Exposing a Homogeneous Interface

The notion of composition appears in both content-centric and process-centric approa-

ches – e.g., a software can be created by interlinking components, or a complex multimedia

data artifact can emerge from the composition of distinct data blocks. Composition com-

plexity dramatically increases with the amount of different blocks created, and the number

of possible combinations grows dramatically. The composition procedure can be simpli-

fied if each piece that participates in it is encapsulated behind a homogeneous interface.

In point II, the interface is used for abstraction, whereas here homogeneity fosters ease in

composition.

The process-centric approach of software components takes advantage of this inter-

face paradigm, which allows distinct software building tools to deal with the same set

of components. A widespread example is the JavaBeans technology, where beans are

homogeneously treated by building tools.

A third requirement is, therefore, using homogeneous interfaces to access content and

software. In the content-centric approach, however, there is no such consensus. Some tools

define their own proprietary format. Initiatives related with content reuse standardization

propose domain specific pre-defined interfaces, which restricts their applicability in other

areas.

IV. Supporting Content-type Driven Execution

The main content-centric reuse initiatives stress the importance of selecting appropri-

ate program code, related to the reused content. In the multimedia context, MPEG-21

points out the need for specifying not only a standard for media exchange, but also a com-

plete framework, including the software dimension [35]. Educational initiatives stress the

necessity of defining standards in which reusable educational content pieces will dynami-

cally interact with educational tools through an API. In the digital libraries context, the

Open Archival Information System (OAIS) defines how to maintain software tools capable

of interpreting specific content formats, which will be preserved in the long term [15].

The standardization efforts discussed partially deal with this issue, as seen in Sec. 3.2.3.

The MPEG-21 methods (DIMs) are expressed as scripts. However, this approach to build

software routines imposes some constraints on the user-author. First, since the methods

have to use specific MPEG-21 libraries (DIBO), their functionality is restricted. Second,

MPEG-21 DIMs work as auxiliary routines, and have no structure appropriate for sharing

and reusing among authors. The Fedora [76] repository service offers a means of attaching

executable functionality to content. However, it lacks a strategy for sharing and reusing

complex digital objects, and their related disseminators. The API defined by AICC within
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the Learning Objects [33] initiative also addresses this execution aspect. Unfortunately,

the AICC standard is highly specialized in specific tasks envisaged in Web activities for

education.

Our fourth requirement is that there must be a mechanism that supports the selection

of an appropriate software routine that handles a content according to its type.

3.4 A Very Brief Overview of DCC

A Digital Content Component (DCC) [66] is a unit of process and/or content reuse. From

a high level point of view, it can be seen as content (data or software) encapsulated into

a semantic description structure. It is comprised of four distinct sections: (i) the content

itself (data or code), in its original format or a DCC composition; (ii) the declaration, in

XML, of an organization structure that defines how components within a DCC relate to

each other; (iii) a specification of DCC interfaces, using adapted versions of WSDL [19]

and OWL-S [42]; (iv) metadata to describe functionality, applicability, use restrictions,

etc., using OWL [73].

DCCs are assumed to be stored in repositories available on the Web. Interface and

metadata sections – respectively (iii) and (iv) – are used to help retrieve the appropriate

DCCs from the repositories and reuse them [68]. There is furthermore a DCC infrastruc-

ture that comprises an architecture to assemble DCCs into a desired product. A DCC

composition is considered to be any digital artifact built combining DCCs, and can vary

from a multimedia document to a software application.

The DCC model was inspired by software engineering’s software component paradigm.

However, unlike software components, DCCs do not need to encapsulate binary program

code to be useful as part of applications. It is possible to encapsulate inside a DCC only

a multimedia artifact, other kinds of software (such as workflows), or both, and use it

directly to compose an application. DCCs are thus more accessible to authors who are

not experts on software development; they are based on an approach where the end-user

is the author, and the components are the “raw material” [48,63].

We differentiate between two kinds of DCC – process and passive DCCs. The former

encapsulates executable instructions, the later encapsulates any other kind of content. In

order to handle operations accepted by a passive DCC, suitable software is needed. In

our model, this role is performed by the so-called companion DCC – see Sec. 3.5.1. Going

back to the video example, a video V can be encapsulated into a passive DCC-V, and video

playing software VP into a process DCC-VP. If VP can play V, then DCC-VP is a companion

to DCC-V. Other characteristics of DCC will be introduced via examples in subsequent

sections. For internal details, not releant to the paper, on DCCs, see [66].
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3.5 Content-type Driven Authoring

A passive DCC is a component that encapsulates content. Its interface declares the

operations that can be performed on this content. However, being passive, it does not

have executable software to implement the operations explicitly declared on its interface.

This raises questions that we will answer in this section. First, since a passive DCC

declares operations and does not implement them, how are these declared operations

associated with their respective code? The answer to this question is based on the notion of

content-type driven execution and on the companion DCC strategy, treated in Sec. 3.5.1.

Second, how can content-type driven execution be explored to create a meaningful author-

friendly authoring environment? This is treated in Sec. 3.5.2. In our implementation,

the subsystem responsible for supporting authoring and execution of any composition

involving DCCs is called execution engine, described in Sec. 3.7.

3.5.1 DCC Content-type Driven Execution

As discussed in Sec. 3.2.4, systems capable of handling more than one content type – e.g.

Web browsers and text processors – have mechanisms to delegate each content type to its

respective content handler. We recall that content types implicitly or explicitly determine

a content’s potential functionality. This section analyses the DCC mechanism that makes

some of potential functionality operations effective.

In the content-centric approach, the content type is used to define the software blocks

appropriate to deal with it. We thus now propose the notion of content-type driven

execution, in contrast to the process driven execution of the process-centric approach.

A well known example of this kind of execution is a Web page, which can be taken as

a combination of content pieces. In this case, for each kind of content piece (HTML

document, image, Flash animation, MPEG video) the Web browser invokes an internal

specialized routine or a software plug-in to deal with it. The content type “drives” the

execution.

A passive DCC is content-centric, and its interface defines how this content can be

accessed. Since the program code for the operations declared in the interface is not

embedded in a passive DCC, interface operations are implemented in a special kind of

process DCC named companion DCC. The companion DCC lends its operations to a

passive DCC in a way that is transparent to composition authors. The choice of the

appropriate companion for a passive DCC is context sensitive, and is determined by the

execution engine, when this passive DCC is used. This allows a homogeneous treatment

of passive and process DCCs from the author’s perspective. Moreover, the focus in the

content is the best option for content-centric composition.

Fig. 3.3 shows an example of content-type driven execution. In the figure, a passive
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Figura 3.3: DCC content-type driven execution diagram.

DCC (a crab image file) is associated with a companion DCC (software that can display

the image) based on its content type. Taxonomic ontologies play a central role in this

matching process. We use the term taxonomic ontology – as defined by [20] – to express

a particular kind of ontology, whose purpose is to provide a referential vocabulary. Its

structure organizes terms into generalization/specialization hierarchies, and semantic links

to express synonymy, composition, and so on.

The taxonomic ontology, illustrated in the center of the figure, organizes and relates

types of DCC, represented in the diagram by white filled circles. Lines with a diamond

in one extremity represent subsumption relationships, e.g. PassiveDCC subsumes Image.

Dashed lines indicate that some intermediate nodes were ommitted for simplicity. Each

arrow represents a property hasCompanion that relates two nodes, which means that a

passive DCC type is processed by the indicated companion DCC type.

As shown in the figure, any DCC has a DCC type, defined in the ontology. Type

specification is carried out through an explicit reference in a DCC’s metadata section,

coded in OWL. Each DCC type represents a kind of process (ProcessDCC) or content

(PassiveDCC), and defines a minimal set of provided operations (process DCC) or poten-

tial operations (passive DCC) in its interface. These operations define the type’s minimal

interface – i.e., for any DCC to be considered as of that type, it must offer at least the

operations of the type’s minimal interface. If a DCC A subsumes a DCC B, then the mi-
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nimal interface of B extends, or is equal to, the minimal interface of A. If a DCC A defines

the property hasCompanion pointing to C, i.e., (A has companion C), then the minimal

interface of C extends, or is equal to, the minimal interface of A. This guarantees that a

companion DCC implements at least the operations declared in the minimal interface of

any related passive DCC.

Fig. 3.3 shows the cycle that associates a companion DCC to a passive DCC, following

the numbers ① to ⑥. Consider the passive DCC that contains an image ①, and defines

in its interface operations of its potential functionality. A subset of these operations

(showImage and getImage) is displayed in the figure. This passive DCC is related to the

Image DCC type in the ontology ②, whose companion is the ImageHandler DCC ③. The

execution engine asks the DCC repository manager for a DCC of this type – see Sec. 3.6.

The selected DCC is loaded ⑤ and connected to the passive DCC, which it will process ⑥.

Notice that the companion DCC declares a provided interface, which defines the same

operations of the passive DCC, and implements them.

More than one companion DCC can be related to the same DCC type and be used

for distinct contexts. In the example, we can have, for instance, three ImageHandler

DCCs: (i) implemented in Java to run in a stand-alone application, (ii) implemented in

Java to run in a Web browser (applet), and (iii) implemented in C to run in a stand-alone

application. Each can have context properties, in the metadata section, whose values are

defined in specific taxonomic ontologies.

3.5.2 Authoring DCC Multimedia Artifacts

We now show how an author produces a multimedia artifact using DCCs. The presen-

tation will use an example implemented in the Magic House environment, which is a

DCC-based multimedia authoring system. Magic House is based on a combination of

the graph-based authoring paradigm of [11] and the software components visual editor

modeling approach of tools such as Bean Builder. The main goal of this example is to

discuss the content-type driven mechanism working behind the scenes, and to show how

this mechanism explores the semantics associated to DCCs, to provide an author-friendly

authoring environment. For simplicity, this example is based on a single DCC, but the

usual Magic House’s production contains many interconnected DCCs.

Fig. 3.4 shows four Magic House screenshots that capture successive steps in a DCC

production process; the result is an animated crab, which moves inside an aquarium. In

the first step, the author requested the system to edit an image DCC retrieved from its

DCC repository. Since a DCC of type image is passive and does not implement software

to handle its content, the environment retrieves the respective companion DCC, based

on type matching from the DCC taxonomic ontology, and context values. The latter are
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Figura 3.4: Steps followed in Magic House authoring system to produce a crab DCC.

configurable parameters that specify work conditions – e.g., language. Following the cycle

described in Sec. 3.5.1, the system finds a companion DCC appropriate to handling an

image DCC. The result is shown in step 1 of Fig. 3.4. The companion DCC opens an

image editing window inside the Magic House environment, where the author can edit the

image which is inside the DCC.

Once editing is finished, the author indicates that this passive DCC is ready for the

moment, and switches the Magic House environment from the editing mode to the exe-

cution mode. Here, the (edit-enabling) companion DCC associated with the crab image

DCC is replaced by another companion DCC, which also handles image DCCs, and whose

context values define it as executable instead of editable. This new DCC is designed to

be used in the execution mode, and only displays the crab image, as shown in the second

step of the figure.

Suppose now the author wants to move the crab through the aquarium, rather than

have a static image. He/she knows that there is a passive DCC type named Aquarium

Being that is capable of moving through the aquarium. The Aquarium Being DCC

encapsulates only the being’s image; its companion DCC implements the program code

to move the image. So, in step labeled 3 in Fig. 3.4, the author requests to the Magic

House environment to redefine the type of the crab image DCC. The system displays a

window with the DCC ontology, from which the author can choose a new DCC type. The

author selects the Aquarium Being DCC type. Once the change is accepted, when the

author runs the application, the crab image moves through the aquarium, as illustrated
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in the fourth step of the figure.

This example shows how the content-type driven mechanisms provide an author-

friendly environment. In steps 1 and 2, different roles (author and user) are supported

by switching context and thus the companions. Step 3 allows type changing and, as a

consequence, new kinds of compositions. Authors are concerned with the content and the

semantics they attribute to the content and, behind the scenes, the DCC infrastructure

transforms the semantic indicators in executable behaviors.

3.6 DCC Retrieval Mechanism

We recall from the Introduction that user-author centered multimedia authoring, in our

context, means: (i) ease of use in sharing, interact with and running a multimedia artifact;

and (ii) the ability to find, reuse and combine pieces of process and passive DCCs in a

given authoring step. This section shows how our DCC retrieval mechanism works, based

on the notions of interfaces, metadata and domain ontologies. A DCC search process is

roughly composed of two steps. First, the user specifies the requirements of a desired

DCC, and the infrastructure returns available DCC types that meet these requirements.

Next, the user chooses the desired type, and the infrastructure will return a DCC that

matches the type. For details on the first step, see [68].

3.6.1 Finding/Retrieving a DCC

Fig. 3.5 illustrates the sequence of actions followed to find and retrieve a DCC given its

DCC type. It shows the basic local infrastructure (a local DCC repository, execution

engine and repository manager), which is replicated at each site where DCC authors exist

(A, B, C). Thin arrows represent data exchange related to the DCC finding process, and

thick arrows represent DCC retrieval, once found.

The process is started whenever a DCC is needed, in execution or authoring activities,

either directly requested or as a companion request. All find/retrieve processes begin by a

local search and proceed to a Web-wide search if no local DCC satisfies the initial request.

First, the Execution Engine requests a DCC from the DCC Repository Manager, infor-

ming its type. The manager searches in the Local Repository for DCCs of the given

type.

If no local DCC satisfies the request, the repository manager queries a UDDI registry

for the DCC type. UDDI [78] – Universal Description, Discovery and Integration – is a

standard for a Web-based registry service, whose primary goal is to describe and disco-

ver Web services [3]. UDDI supports the description of entities other than Web services.

Additionally, more recent versions of UDDI can accommodate and use identification taxo-
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Figura 3.5: Finding and retrieving a DCC based on type matching.

nomies provided by third parties [78]. The DCC repository manager uses UDDI registry

services to specify which repositories have a given DCC type, via the URI (Uniform Re-

source Identifier) of each type. It is important to note that the DCC type ontology works

as a UDDI identification taxonomy, and can be used in DCC discovery.

The local repository manager uses information from the UDDI registry to get the

Internet address of external repositories, which contain DCCs of the required type, and

requests information about these DCCs from these repositories. This information is given

to the execution engine, which will dynamically decide which is the most appropriate

DCC for a given composition (e.g., see example of Sec. 3.5.1). Once the engine selects

the appropriate component configuration, it asks the repository manager to provide it

(either locally or remotely). When a DCC is retrieved from external repositories, the local

repository manager stores a local copy of it to optimize subsequent retrieval requests –

e.g., in the figure, a DCC was retrieved from local B.

3.6.2 Exploiting the DCC type ontology

A specific companion DCC may not be available to an author (e.g., if there is no ImageHandler

DCC for an Image passive DCC). However, it is possible that the author does not want

to take advantage of the full functionality of a companion, but just a subset thereof. In

this case, the author may use a companion of a DCC whose type subsumes the type of

the original DCC. Returning to the ontology in Fig. 3.3, the Image DCC type is subsu-

med by the PassiveDCC type, which has a companion of ResourceHandler type. The

ResourceHandler companion implements an operation that accesses the binary content

of a passive DCC. It treats any passive DCC as a flat binary resource, without considering

any format particularity. Thus, in the absence of an Image handler, the author may be

satisfied with using a ResourceHandler companion.

In other words, in the DCC model, an author can define, during composition, that
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Figura 3.6: Example an arrangement with three machines adopting the Anima architec-
ture.

a passive DCC of type A can be adopted in lieu of DCC type B, when B subsumes A.

We point out two advantages of this mechanism. First, as in the Image example, it

simplifies composition and execution if the author does not need the most specialized

companion DCC to deal with a given content. Second, this feature increases the potential

for composition reusability. It is important to notice that not only DCCs will be reused,

but the compositions too, and that compositions can also become DCCs that are stored

in repositories. Authors can thus reuse a composition total or partially, tailoring it to

their needs.

3.7 Implementation aspects

This section presents the architecture designed to support our framework, which has

evolved from previous projects named Anima and Magic House [71].

Anima is an infrastructure for managing and executing DCCs and their compositions.

This infrastructure determines a communication model for DCCs specifying how they will

interact within a composition. The execution of a composition may have a centralized

coordinator or may be a result of a cooperation among independent DCCs. All commu-

nication among DCCs is performed through a software managed bus. Magic House is

an educational authoring tool built over Anima. Both systems have been used to create

educational tools in schools in the city of Salvador, Brazil. These tools allow authoring

of multimedia products (e.g., animations employed in exploring laws of physics).

In this section we focus on the part of the Anima infrastructure responsible for the

execution of authored products formed by connected DCCs, and which supports the

authoring process. Even though the Anima infrastructure has many other attributions

related to DCC management and to authoring tasks, we stress execution aspects to clarify

the main concepts treated here.

The architecture has been designed to support local and distributed component mana-

gement and execution. It is independent of specific programming languages, supporting
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the interaction of DCCs implemented in different languages. Figure 3.6 shows a possible

configuration of the architecture considering three different machines that run distinct

operating systems, and a UDDI service that offers the publishing/discovering mechanism

for DCCs and Web services.

As pictured in Fig. 3.6, an environment to support DCC execution is a combination of

hardware, operating system and programming language. For each environment, there is

a specialized Bus that is responsible for the communication: (i) among DCCs connected

to the same Bus; (ii) between a DCC in a Bus and a DCC in another one, through an

inter-Bus communication; (iii) between a DCC in the Bus and a Web service.

The minimum infrastructure that must be available to support any execution task is

defined by the Bus and three specialized DCCs (explained further): the Builder, the Re-

pository Manager and the Resolver. The execution of a composition requires the existence

of a primary DCC responsible for starting the process and invoking the execution of the

other DCCs.

When any DCC is first invoked, it is retrieved from a DCC repository, then it is loaded

to memory, and prepared to be executed. We call this procedure DCC instantiation. The

process of DCC instantiation is delegated to a specialized DCC called Builder, which

carries out all the above instantiation steps. It also defines and associates a runtime

URI to each new instantiated DCC. The runtime URI is used to univocally identify an

executing instance of a DCC, and is valid only during that execution of the DCC. Instances

of the same DCC will receive distinct URIs.

When a DCC sends a message to another DCC, it does not know exactly the destina-

tion of the message. This source DCC sends the message through the Bus addressed to

a runtime URI . A specialized DCC, called Resolver, intercepts the message and decides

whether the message should be sent to: (i) a DCC in the same Bus; (ii) a DCC in another

Bus; or (iii) a Web service.

There are three main scopes for message exchanging. First, DCCs within the same

Bus communicate using native programming language schemes. A second form is the

communication between DCCs attached to different Buses (either in a local or remote

machine). The third form involves communication between a DCC and Web services. The

last two forms use SOAP (Simple Object Access Protocol) [47] XML messages. Whenever

a message is meant to leave the Bus, the Resolver converts it from the internal format to

SOAP. This SOAP message is based in a WSDL [19] specification. Since both DCCs and

Web services are described using WSDL, there is no need to make a distinction between

them. If the receiver is a Web service, the message is already adequately formatted.

However, if the receiver is another Bus, the message must be converted back to the

internal format.

The Repository Manager is also a specialized DCC that works as described on Sec. 3.6.1.
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As all DCCs, the Repository Manager uses the Bus for communication with DCCs, inclu-

ding other Repository Managers. As can be seen in Fig. 3.6, the Bus-Python of Machine

A does not have a Repository Manager directly attached to it. It makes use of the

Repository Manager attached to Bus-Java.

The current version of this architecture is fully functional in a local environment, and

is implemented in the Java language. It implements the Bus-based communication, and

can deal with process and passive DCCs. Furthermore, this implemented framework uses

an OWL ontology to match passive DCCs with their companions, fully supporting the

content-type driven execution described in Sec. 3.5.1.

3.8 Meeting the Requirements

This section summarizes how the DCC approach meets the requirements presented in

Sec. 3.3. In Sec. 3.8.2 we show how DCCs bridge the gap between user interaction and

reuse/sharing features. Sec. 3.8.3 shows how the author can participate in constructing

executable software by composing higher-level components. Sec. 3.8.4 shows how DCCs

break barriers between content and executable software.

3.8.1 How DCCs Meet the Requirements

In the diagram illustrated in Fig. 3.2, we showed that authoring tasks concentrate in

the “content layer” for the content-centric approach, and in the “software layer” for the

process-centric approach. The DCC infrastructure, on the other hand, works behind the

scenes and uses DCC semantic annotations to appropriately combine software and content

pieces and present to the author, in a transparent way, a “result layer” perspective.

Moreover, authors’ shareable contributions are not limited to content or to software:

they produce, reuse and share both indistinctly. This meets the first requirement (unify

content- and process-centric models).

DCCs’ functionality also meets the second and third requirements (single abstraction

and homogeneous interface, respectively), providing a single mechanism for consuming

and authoring any multimedia artifact. In the content-centric approaches, complex digital

objects work as content aggregators. They are prepared to be plugged to a client platform,

which will be used to consume the content. The software necessary to handle the content

is concentrated in the client platform. This platform architecture varies according to

domain standards. In MPEG-21, for example, the client platform can be the player that

will run the media inside the complex digital objects. Usually the client platform knows

each type of supported content, and the ways to relate this content with other content

types. For this reason, the combinations among content artifacts are constrained to those
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pre-specified by the client platform. To handle new kinds of content, not supported by

the client platform, some content-centric infrastructures accept software extensions in the

client platform.

In the DCC model, on the other hand, the interface works like an explicit platform-

neutral contract that specifies how DCCs can be connected. The client platform does not

need to know beforehand how a DCC can be connected to another, since it is explicitly

declared. Instead of defining client platform built-in content handlers, the DCC approach

defines a specialized software DCC (companion DCC), whose purpose is to handle the

content of another DCC. In contrast with content-centric approaches, the DCC infras-

tructure is based in a thin client platform, which decentralizes content handling tasks. So,

authors are free to create both content or software expansions inside DCCs; this task does

not need to be delegated to software development specialists that implement the client

platform.

Sec. 3.5.1 already showed how the DCC model and infrastructure meets the fourth

requirement (content-type driven execution). Compared with the approaches to invoke

software routines according to the type of the content to be handled (software frameworks,

active document components and software plug-ins), the use of a taxonomic ontology to

associate a companion with a passive DCC enables to express not only “how the content

is stored”, but also “how the content must be interpreted”. Returning to the example

illustrated in Fig. 3.4, the same content – the drawing of a crab – can be interpreted as

a static image, or as a moving aquatic being.

The IUHM hypermedia model of [49] addresses problems similar to ours. It encap-

sulates executable code and other kinds of content in homogeneous units, meeting the

first requirement. IUHM provides a strategy for content-type driven execution, and thus

meets the fourth requirement, also supporting a notion similar to that of our compa-

nion component. The main distinction between IUHM and DCC lies in the “component”

approach adopted by DCCs, where the interface plays a major role. The IUHM model

does not meet the third requirement, since it does not define an explicit interface. As a

consequence, it meets the second requirement only partially.

3.8.2 Swapping content and program code

This section shows examples of multimedia DCC productions, comparing them with other

approaches in terms of facilitating user interaction × reuse. These examples emphasize

the importance of a homogeneous model in situations where the author can use a content

or a program code to perform equivalent tasks.

Consider the following general context. In our Magic House environment, production

authors are offered a choice of (DCC) blocks to be composed to design animations. These
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Figura 3.7: Magic House animation illustrating a cell movement. (a) Production design,
(b) and (c) – passive DCCs.

blocks are selected and connected by direct manipulation using a visual tool, and customi-

zed by modifying parameters in a property sheet. A directed connection (arrow) between

two DCCs indicates that the first DCC will send a message to the second every time a

selected event occurs in the first DCC. A switch+clock indicates that the animation will

start by pressing the switch, and that the clock will control syncronization. Once the

composition is specified, it can be executed.

Fig. 3.7.a shows the design of a biology production in the Magic House environment,

whose purpose is to deploy an animation that ilustrates how a cell moves. The animation

synchronizes two sequences of images (i.e., DCCs that encapsulate sequences of image

frames): shots taken from an electronic microscope showing cell movement, and diagrams

that depict the movement dynamics. The execution of this production is a movie that

synchronously shows cell movement and corresponding dynamics. During execution, the

clock sends messages (ticks) to both frame sequences at a given rate. Users can interact

with this animation at any given time – for instance, changing tick frequency, editing clock

parameters, congealing frames, etc. Here, a given author (e.g., a scientist or a biology

teacher) can design the production in the environment using the plug and play paradigm.

Another user (e.g., another scientist, or biology students) can not only execute (consume)

the production, but also interact with it and change it by customizing its blocks.

Continuing with this example, suppose that instead of using a video encapsulated

inside a passive DCC, the author wants to show images streamed on-line from the electro-

nic microscope. Here, the author will replace the passive video DCC by a process DCC,

containing software routines to access the microscope and request from it the captured

images.

This example points out three important issues in the DCC model. The first issue

concerns its user-centered nature, where the distinction between multimedia authoring
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and execution/consumption becomes fuzzy. Since people playing the production can

easily interact and change it, the “audience” becomes a partner in the authorship, by

experimenting with the DCC building blocks.

The other two issues concern the unified implementation philosophy behind passive

and process DCCs. First, the absence of a distinction between software reuse (process-

centric) and content reuse (content-centric), gives the author the freedom to combine

software and content in a production, without need to consider the nature of the DCC.

Second, thanks to content-type driven execution, the video and animation DCCs are dy-

namically associated with the respective companion DCCs, which will show their content

in the screen. At a first glance, this may seem similar to the mechanism used by software

plug-ins to display videos and animations inside a Web browser. However, plug-ins work

inside the browser as isolated routines; unlike DCCs, they do not expose explicit interfaces

to be connected with other content objects of a Web document. In some cases, software

development experts can use script routines inside Web pages (e.g., Javascript routines)

to interact with plug-ins, but this procedure involves hard programming and is limited

to the plug-in predefined functionalities. A companion DCC, on the other hand, can be

tailored to each content-type, exposing a specific interface.

This key difference between DCCs and software plug-ins / active document compo-

nents is related to the way they are associated with the content. Fig. 3.8 presents an

example of this distinction. Consider a variation of the application illustrated in Fig. 3.7,

where the author added another button DCC directly connected to the video and anima-

tion DCCs. The role of this button is to request to the video and animation DCCs to

advance just one frame at a time. Now, let us consider that the author wants to imple-

ment the same presentation using two other approaches and tools: (a) an HTML page

referring to the animation and the video files, which will be submitted to a Web browser

containing plug-ins to deal with animation and video; (b) a text document embedding

the animation and the video files, in a text processor that can access active document

components to deal with animation and video.

Fig. 3.8 shows solutions (a) and (b) at execution time. Solution (c) uses a companion

DCC and is divided in design time and execution time. At design time, process DCCs are

directly connected to passive DCCs. At execution time, companion DCCs are dynamically

invoked to access the passive DCCs – i.e., authors do not need to concern themselves with

these execution time details. Dashed arrows show connections that appear at execution

time, based on content-type driven execution.

Software plug-ins and active document components are based on a connection archi-

tecture where the plug-ins/components are attached to a host system. In the companion

DCC approach, each companion can be connected with any other component that has

a compatible interface. As shown in Fig. 3.8, software plug-ins and active document
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Figura 3.8: Diagram confronting connection architectures.

components approaches adopt a star connection architecture, while the companion DCCs

approach uses a network connection architecture. The DCC connection architecture ena-

bles the author to connect, for example, the animation and video handler DCCs with

other DCCs, to provide synchronization. In the architectures of software plug-ins and

active document components, this will require specialized programming from software

development specialists. The DCC connection architecture provides content-type driven

execution support without needing a central module. This is a more flexible solution and

can be explored to create compositions that can be executed in a distributed way.

3.8.3 Composing Higher-level Components

Sect. 3.8.2 gave an example of authoring and interacting with a simple production. This

section discusses how to create productions from composition of others.

Fig. 3.9 shows a physics project, whose purpose is to display how the values resulting

from the kynematics function f(t) = S0+V.t affects the movement of a ball. Fig. 3.9.a

shows a composition that represents the equation 1+40.t that will animate a ball (passive

DCC). The execution of this composition works as follows. Again, a switch DCC starts

the clock. The clock sends regular messages to DCCs labeled by “S0”, “V” and “t”. The
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Figura 3.9: Two versions of a mathematics educational project using specialized compo-
nents.

“t” DCC is a counter, which increments its value and dispatches this value as a message to

the “V.t” DCC. The “V” and “S0” DCCs are constants, and dispatch their values to the

“V.t” and “S0+V.t” DCCs, respectively. The “V.t” DCC multiplies the values received

and dispatches the result to the “S0+V.t” DCC, which sums the received values. Finally,

the values of “S0+V.t” are dispatched to the ball DCC, whose position is defined by the

received value. Authors (here, schoolchildren) can change clock properties, coefficient

values and even operations (e.g., S0-V.t). The net result is to allow the children to see

the different ball movements and experiment with equations.

Fig. 3.9.b shows another version of the same project, where the ball position is calcula-

ted by a component, labeled with “S”, previously built and stored in the DCC repository.

Again, authors can edit this component properties. This “S” component has a property

named function, which contains the mathematical expression used to calculate the com-

ponent’s output value, based on an input value. The expression is displayed at the bottom

of the component (1+40*t). The contrast between these two versions illustrates that fine-

grained components give to the end-user more control in application development than

coarse-grained ones.

We can thus consider two extremes of flexibility: in one, the author combines and

customizes existing components using DCC interfaces; at the other, a developer creates a

component by writing a program code, and the author cannot modify the program code.

Assembling fine-grained components to devise a solution lies somewhere in between [48].

Since this assembly can produce a higher-level component, authors can produce and share

their components without writing program code.

The DCC model enables the creation of higher level components via composition
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Figura 3.10: Animation of a ball: three alternatives.

of lower level components. This example shows that user-author collaboration is not

restricted to non-executable content, but also to software, using a single mechanism and

environment. In contrast, complex digital object initiatives accept some kinds of scripts

attached to content. However, these strategies: (i) do not have suitable mechanisms to

reuse the script code and adapt it to new contexts, since they do not define software reuse

strategies, like those used by software components and DCCs; (ii) have constraints on

script expressiveness, e.g., MPEG-21 DIMs.

3.8.4 Breaking Barriers Between Content and Executable Soft-

ware

Our last example concerns a traditional question in computer graphics animation. When

authors want to move elements in animations they have two possible ways: (i) “manually”

define the element position in each frame; (ii) produce a software routine to calculate the

element position for each frame.

The three compositions shown in Fig. 3.10 illustrate this question. The goal is the

same as the one illustrated in Fig. 3.9 – to animate a ball. The solution at the bottom of

Fig. 3.10.c is the same as the one used in the cell examples (Fig. 3.7). The counter will

prompt the animation, using the frames depicted on the bottom right.
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In the other two solutions – Fig. 3.10.a and Fig. 3.10.b – a spreadsheet DCC, fed by

the counter, will direct the ball’s movement, computing the function 1+40.t. The counter

updates t (cell B4) and the result (cell B5) sends a message to the ball DCC, updating the

ball’s position. In Fig. 3.10.b, the spreadsheet DCC encapsulates a set of (t, x) position

values. Every time the counter updates t (column A), the x-value (column B) indicates

the new position of the ball. From an observer’s point of view, all three animations are

identical, moving the ball to the right.

Compositions 3.10.a and 3.10.b use a spreadsheet, but for different purposes. In the

first case, the spreadsheet is used to compute a function, and thus acts like a process

DCC. In the second case, it contains a list of states (positions) for the ball, and acts like a

passive DCC. Depending on the solution, the same artifact (spreadsheet) can have passive

content as well as executable routines. This kind of situation can be handled neither by

process-centric nor by content-centric approaches. Finally, the composition of Fig. 3.10.c

shows that “passive” digital content can replace program code.

This final example shows that, using the DCC model and infrastructure, authors

do not need to concern themselves with whether they are connecting software pieces or

content pieces. They work in a higher level of abstraction, which is driven by the meaning

conferred to each artifact.

3.9 Concluding Remarks

Our work presented an user-author centered multimedia building block in a scenario where

the gap between the roles of author and end-user is being closed.

It combines the support to users’ ease of use to the author’s need for content adapta-

tion, share and reuse. Our work is based on the notion of DCC (Digital Content Compo-

nent). It involves both content and software reuse, adopting a model that unifies advances

in content-centric and process-centric approaches. On the one side, it takes advantage of

the “interface as functionality abstraction” paradigm of the software component approach

to provide content with functionality description. On the other hand, it brings results

of complex digital object research into the field of software sharing and reuse. This mo-

del is being used to implement content compositions in several domains within our DCC

composition and discovery framework, e.g. geographic data management [65].

The main contributions of this paper are: (i) the discussion and elaboration of the

main characteristics that qualify a DCC as a user-author centered building block in the

multimedia context; (ii) the analysis of the notion of content-type driven execution, under

different guises (e.g., software frameworks, plug-ins and active document components),

thereby unifying their study under a single set of criteria. (iii) the application of content-

type driven execution to multimedia user-authoring, in which a given artifact “searches
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for” appropriate software to execute it, based on a taxonomic ontology.

Besides the strategies presented in the paper, the model is designed to accept other

kinds of composition. In particular, we are working to enable the use of workflows to

describe a process [44].

Ongoing work involves version control support for DCCs and DCC compositions; the

management of distributed update and alignment of the ontologies used by the framework;

and and finally a SOAP-based implementation for distributed DCC management.



Caṕıtulo 4

A Component Model and

Infrastructure for a Fluid Web

4.1 Introduction

The Internet is expanding its frontiers. Tools and services are breaking domain boundaries

and local limits as a consequence of progressive data and protocol interoperability, allied

to an increasing connectivity. For this reason, digital content production, consumption

and management has been attracting increasing attention. Communities are discovering

the benefits of creating broad strategies to promote digital content distribution, reuse and

customization, in order to help spatially distributed groups to work together.

Indeed, the Web is evolving from an environment for publication/consumption of do-

cuments to a distributed environment for collaborative work involving any digital content.

As a consequence, the “document-oriented” approach that impelled the Web must be re-

vised to face the increasing diversity of digital content formats and producers. The Web

infrastructure must be likewise extended to support collaborative work requirements, such

as content semantics, replication and modification, configuration management and version

control.

The Semantic Web has appeared as an answer to these needs. However, today’s Se-

mantic Web model is strongly based on URIs as an identification and reference mechanism

to build vocabularies, and to connect semantic annotations to any Web content. In the

latter case this mechanism works adequately, considering that the annotated content stays

in a single absolute (URL) or relative (URN) Web address. However, content subparts

cannot be annotated unless they are themselves XML or HTML documents. As pointed

out in [39], there is a wider universe of “annotatable” artifacts on the Web, formed by

“annotatable” sub-parts whose organization depends on the artifact’s nature. The chal-

lenge is how to associate Semantic Web annotations to artifacts and their subparts, in

66
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spite of their heterogeneity.

Let us consider the scenario where an annotated content travels through nodes on

the Web. Any node can replicate this content, modify it, cut it into subparts to be

mixed with other contents, and so on. This is a Fluid Web notion, where the Web is

taken as an environment suitable for distributed and collaborative work and where the

partners involved in the collaboration change with time. This notion contrasts with the

traditional Web scenario. It demands an extension of Web mechanisms to reference and

annotate other kinds of digital content beyond Web documents, and to identify and relate

replications and derivations of content objects through the Web.

Our main contribution lies in rethinking the Web to afford effective collaboration,

including content packaging, deployment, identification, multilevel annotation, version

control and configuration management. Our proposal to solve Fluid Web demands starts

from two points: (a) the definition of a generic model based on the notion of Digital

Content Component (DCC); and (b) an infrastructure to provide collaborative work th-

rough DCCs. As will be seen, this gives rise to a new approach to content production,

where the distinctions between data and software management become blurred, thereby

supporting the move from a document-oriented to a content-oriented Web. In particular,

the following questions are tackled by the model and infrastructure:

Transparency: There exist distinct models to share, combine and manage data (passive

content) and software (executable content). How can one unify these models?

Decomposability: Since digital contents can be decomposed and fusioned together, how

to identify, reference and annotate content sub-parts when they are not Web documents?

Versionability: How to trace the evolution and version relationships between content

artifacts through the Web?

Traceability: The Semantic Web URI-based annotation strategy provides a powerful

universal reference mechanism, but the principle is that the annotated content will stay

in a unique place. What happens with the annotations when a content travels through

the Web and it is replicated and adapted? How can identification and annotations follow

each subpart in subsequent decomposition and mixing operations?

Complex Relationships: How to express, represent and manage the diversity of rela-

tionships between digital content artifacts, and the consequences that these relationships

have on the management of these artifacts (e.g., a modification in an artifact that affects

other dependent artifacts)?

The DCC model allows the homogeneous treatment of data and software on the Web,

via components that can be deployed, reused, versioned and fusioned regardless of the

nature of their content. It introduces the notion of companion component, which, for a

given data set, finds the appropriate software to activate it. These characteristics are

supported via a uniform encapsulation and composition mechanism. Model and infras-
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tructure provide a new, unified way of producing and combining software and data that

relies on Semantic Web standards.

The remainder of this text presents our approach to the Fluid Web using as background

a real example on the biological control of Helicoverpa zea. This moth larva is a pest that

destroys tomato crops. A biological solution that enables to control this pest is based

on the wasp of genus Trichogramma. This wasp lays its eggs inside the moth’s eggs. As

the wasp larva grows, it eats the moth’s egg, thus effectively breaking the spread of this

pest. In our example, the growth of tomato plants can be simulated using information

on weather conditions, plant strain, moth infestation level and wasp behavior. We show

how these pieces of information as well as appropriate simulation models can be stored

in DCC Web repositories. A simulation of plant development in different conditions can

be designed and implemented by combining the appropriate DCCs. We illustrate our

solution to the Fluid Web scenario while constructing this simulation.

The rest of the paper is organized as follows. Section 4.2 gives an overview of our

proposed architecture for the Fluid Web. Section 4.3 presents our product model for the

Fluid Web, the Digital Content Component (DCC). Section 4.4 presents content version

control and management, a key aspect in the infrastructure. Section 4.5 analyses the role

played by ontologies to provide a semantic bridge across the infrastructure. Section 4.6

contains an overview of related work, contrasting our approach with other initiatives.

Section 4.7 presents conclusions and ongoing efforts.

4.2 The Fluid Web

Our Fluid Web architecture is based on the notion that digital contents travel and are

managed through the Internet under the guise of basic self contained units called DCC

(Digital Content Components), detailed in Section 4.3. DCCs explore Semantic Web

standards to provide syntactic and semantic interoperability. Fig. 4.1 displays our view of

the Fluid Web: users in many sites exchange, reuse, annotate, compose, replicate, modify,

store and deploy DCCs. DCCs are stored in private or shared repositories, managed by

repository managers.

As will be seen, many tasks within the Fluid Web infrastructure require efficient

ways to index and search for appropriate DCCs. Additionally, some characteristics of

the infrastructure, like version control and configuration management, demand a more

robust and consistent support than a simple file system. Consequently, the architecture is

strongly based on databases: Fluid Web nodes are DCC clients and/or servers, and each

node has a DCC repository and a repository manager.

A challenge in this infrastructure is how to exchange data used locally while at the

same time controlling versions and relationships among DCCs. Our solution is to follow
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Figura 4.1: Fluid Web architecture diagram.

the strategy adopted by OAIS – Open Archival Information System [15]: we establish a

clear distinction between the internal and external representations of DCCs and provide

mechanisms to convert from internal representation to external and vice-versa. OAIS is a

reference model whose purpose it to address preservation of digital information over the

long term, admitting impacts of changing technologies and user community [15].

OAIS analyses important aspects for archiving digital content. It starts from the

assumption that any content stored or retrieved from an archive will take the form of

a package. Additionally, packages have different structures depending on the stage of

their usage. The Submission Information Package (SIP) and Dissemination Information

Package (DIP) have deployment purposes – to submit a content for archival or to receive

a content respectively. The Archival Information Package (AIP) is meant to be stored in

a database. The format of each package is tailored to its purpose.

The diagram in Fig. 4.2 refines the DCC repository manager displayed in Fig. 4.1. It

is based in the OAIS reference model. The storage structure of our repository is divided

in three main sections: (i) DCCs and their index structures; (ii) ontologies shared by the

descriptions of the components; (iii) a history of component usage.

A DCC can assume two formats, illustrated in Fig. 4.2: Deployment DCC, which are

units that flow through the Fluid Web (correspond to the OAIS SIP and DIP) and Storage

DCC, which are internal to the repository (correspond to the OAIS AIP). As shown in

the figure, Producers construct Deployment DCCs, which are converted into Storage

DCCs for archival, and re-constructed into their deployment format for consumption by
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Figura 4.2: Repository management diagram.

Consumers. The Repository contains modules that perform these transformations, with

the help of ontologies and usage history.

In more detail, the Deployment DCC format adopts open standards to represent and

compress DCCs. However, this format is not adequate for storage purposes. The Ingest

module of the repository manager has the task of processing each received Deployment

DCC, and of transforming it into an internal format suitable for storage – the Storage

DCC – which is then dispatched to the Storage module to be stored in the database. To

construct the Storage DCC for subsequent discovery, the Ingest module must access the

ontology repository to check the ontology terms used in the DCC (the role of ontologies

is detailed in Section 4.5).

DCC retrieval works as follows. A Consumer searches for a DCC using queries through

the Access module. This module dispatches the queries to the Search module, which

accesses ontologies and usage history in the searching process, returning the description

of possible candidates to the Consumer. Once the Consumer finds the desired DCCs,

he/she/it requests them to the Acess module, which dispatches the request to the Storage

module. The Storage module sends the appropriate Storage DCCs to the Access module,

which converts them back into Deployment DCCs, sent to the Consumer.

As illustrated in Fig. 4.2, the Version Management module intervenes at all operations

involving the DCCs and ontologies repositories. This will be detailed in Section 4.4.

From now on, in the text, the term “DCC” will be used without a qualifier (deployment
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or storage) when the mention is applicable to both kinds of DCC. We will apply the

“deployment” or “storage” qualification whenever such distinction is needed.

4.3 The Product Model – Digital Content Compo-

nent

4.3.1 From Web Documents to Components

Initial efforts on the Semantic Web to provide a common syntax and semantics to exchange

data were document-oriented. Therefore, XML documents are the basic syntactic support

for data exchange. Annotations in RDF and OWL use pointers based on URIs connected

with Web resources; the latter are not restricted to documents, but can be any resource

referenced by an URI. However, to reference resource sub-parts, Web mechanisms (e.g.,

XPath and XPointer) are based on XML documents.

This document-oriented approach can be an obstacle when we consider the notion

of digital content in a broad sense. To design an appropriate model that considers a

plurality of schemes, formats and sizes, we will first analyse some characteristics of a

“digital content” in its most general acception.

We point out two among the many possible usages of the term “content”. First,

content is something that is contained [1]. In this sense, a content requires a container,

“something that contains”. Second, content refers to the matter treated in some medium,

like a document [1]. In this text we use the term content as a combination of both

interpretations. More specifically, our work deals with digital content, which is the content

represented by a stream of bytes, organized inside a structure, the “container”.

A generic model to represent any digital content needs to consider a hierarchical

containment structure, where content pieces can be used as components in a higher level

content artifact, and so successively. This containment model has two main players: the

component and the composition. Both component and composition are related with the

task of composing, which derives from the Latin word componere that means “to put

together”. The component is a constituent part and the composition is the result of the

composing task. The composition in one layer can be a component of the next layer.

Given these characteristics, we extend the document-oriented approach to a component-

oriented approach. Our DCC is prepared to represent, manage and annotate this hierar-

chical containment structure. The DCC infrastructure is therefore based on two main

players: component and composition. The component captures the necessity to decom-

pose, individualize, pack and deploy digital artifact pieces. The composition captures the

design facet, representing relationships between components and managing the unfolding

of these relationships – e.g., their versioning and so on.
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Two factors must be stressed concerning the originality of our work. From a compo-

nent perspective, a DCC can contain any kind of digital artifact – data or code – in a

transparent way. The composition perspective, on the other hand, allows creating pro-

gressively complex DCCs by composition, regardless of the content’s nature. The two

following subsections detail the component and composition perspectives of a DCC.

4.3.2 The Component Perspective of the DCC Model

A Digital Content Component (DCC) [66] is composed of four distinct subdivisions: (a)

the content itself; (b) the declaration of a management structure that defines how com-

ponents within a DCC relate to each other; (c) a specification of the DCC interfaces; (d)

metadata to describe version, functionality, applicability, use restrictions, etc.

In the Deployment DCC format, subdivision (a) consists on the content in its original

format, whereas the other three subdivisions are represented using Semantic Web stan-

dards. Subdivision (b) is in XML, subdivision (c) uses adapted versions of WSDL [19]

and OWL-S [42] (an OWL Web service ontology), and subdivision (d) uses OWL [73].

A Storage DCC has no imposed format, since it is only seen within the repository, and

thus does not impact interoperability. Therefore, the repository management system can

represent the Storage DCC in any format that enables a reconstruction of a Deployment

DCC. DCC producers and consumers deal only with Deployment DCCs, which are the

Fluid Web face of DCCs. This clear assignment of responsibilities makes the infrastructure

model flexible to be adapted to many contexts. Specialized systems can “export” their

content encapsulating it inside Deployment DCCs on the fly: for example, an image

database can be the source of Deployment DCCs containing images. This strategy can

be compared to the success of Web pages, used as a mechanism by many applications to

“export” their interfaces as dynamically generated pages, which results in an interoperable

interface accessible by any Web client. Deployment DCCs, on the other hand, provide an

interoperable Semantic Web content envelope, instead of an interoperable Web interface.

Both Deployment and Storage DCCs can be of two kinds – process and passive DCCs.

A process DCC encapsulates any kind of process description that can be executed by a

computer (e.g., workflows, sequences of instructions or plans). Non-process DCCs, named

passive DCCs, consist of any other kind of content (e.g., a text or video file) and their

interfaces define how this content can be accessed. Since passive components by definition

cannot embed executable descriptions, these operations belong to a Companion DCC (e.g.,

a piece of music M stored in a passive DCC can be played by attaching M to an appropriate

companion code). The association between a passive DCC and its Companion is achieved

with help of semantic information given by terms related to a taxonomic ontology. Details

of this mechanism are presented in Section 4.5.2.
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Figura 4.3: DCC minimum structure.

Any DCC can encapsulate a content, which is formed by other DCCs or by Atomic

Digital Artifacts (ADAs). An ADA is a piece of digital content that does not have a DCC

structure. It is “atomic” under the DCC model point-of-view, since its content cannot be

divided in reusable and annotatable (DCC) subparts.

To illustrate how a Deployment DCC is built, we will present a construction of a

passive DCC containing a map, which will be subsequently used as part of the inputs to

the wasp/moth biological control simulation. Fig. 4.3 illustrates the three basic elements

to produce a Deployment DCC: ① the encapsulated content; ② two URI identifiers that

support content versioning; ③ a reference to a DCC-type defined by the DCC taxono-

mic ontology. In the figure, the encapsulated content ① is a map containing the average

rainfall distribution in one month in the state of São Paulo, Brazil (i.e., each pixel con-

tains the average rainfall value for the corresponding region). The map is represented in

GeoTIFF – a bitmap format that associates geographic coordinates to pixels. The two

URI identifiers ② are responsible for identifying univocally the DCC through the Web.

The first (Oid) denotes this DCC and the second (PVId) identifies its version. The role

and management of both identifiers are detailed in Section 4.4. As will be seen, DCC

versioning allows managing and controlling content versions in the Fluid Web.

There is a taxonomic ontology used to classify all DCC-types (e.g., ImageDCC, MapDCC

– see Section 4.5.2). Each DCC references a DCC-type ③ defined in this ontology, which

guides the way of how this DCC is treated by the infrastructure. Each DCC-type defined

in the ontology is associated to a minimum interface specification, which is implemented

by any DCC of the respective DCC-type. The DCC interface can be implicitly inferred

through its DCC-type, or can be explicitly declared, if the DCC interface is an extension

of the DCC-type’s minimum interface.

4.3.3 The Composition Perspective of the DCC Model

As mentioned before, DCCs have a hierarchical containment structure. This enables a

DCC to be a composition of ADAs and/or other DCCs. These other DCCs in turn can
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also be a composition of ADAs and/or DCCs, and so on. This containment structure is

controlled by two of the four DCC subdivisions mentioned in Section 4.3.2: subdivision (a)

stores the ADAs and the DCCs contained in the DCC; subdivision (b) records data used

to manage these ADAs and DCCs, e.g., the relationships among them. We proceed with

our running example, using the DCC constructed in subsection 4.3.2 to illustrate the

composition process to build a DCC application.

Roughly speaking, a Fluid Web application is developed by discovery and composition

of deployment DCCs. It can be constructed using the following steps: (i) elicit require-

ments with help of experts and users; (ii) determine basic data and processes needed; (iii)

search for appropriate process and passive DCCs to be reused/adapted using the seman-

tic annotations in DCC metadata and interface subdivisions; (iv) construct new DCCs if

needed; (v) create the application, which is materialized into a new DCC, by appropriate

composition of reused and new DCCs.

Creating a DCC composition

Our biological control simulation is built in three composition layers. The first layer

consists in creating a DCC that encapsulates a time series of (DCC) maps – i.e., this new

DCC will contain a composition of the DCCs of Fig. 4.3. The second layer simulates the

growth of a given tomato plant under certain weather conditions, where the maps of the

first layer provide weather input. The third layer simulates the evolution of a tomato

plantation, under the action of moth larvae and wasps, using the plant growth simulator

of the second layer. Additionally, in this layer the results of simulation are confronted

with ground data collected from a real tomato plantation.

The example illustrated in Figure 4.3 shows a single ADA packed inside a DCC. Now,

let us consider that the user wants to pack twelve maps into a single DCC, each map

representing the rainfall average of a month in a year. There are two ways to do that, as

illustrated in Figure 4.4: (a) twelve GeoTIFF files (ADAs) are directly packed inside a

DCC or; (b) each GeoTIFF file is packed inside a DCC that in turn will be packed inside

a higher level DCC. In the latter case, each sub-DCC can be readily reused and versioned.

These versions can be uniquely identified and controlled through the Web. In fact, each

DCC map may come from a distinct repository. The figure also shows operations allowed

in this new DCC – getQuantity, getMap – defined via OWL-S / WSDL.

The temporal map series DCC corresponds to our first composition layer. It is used as

a part of the second layer, illustrated in Fig. 4.5. This second composition layer estimates

how a tomato plant evolves, given certain weather conditions – defined by rainfall and

solar radiation data – together with tomato plant geographic location. The result is

visualized by means of an animation of the growth of a plant for the input conditions
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Figura 4.4: Two ways for packaging twelve maps inside a DCC.

provided. As can be seen in Fig. 4.5, this simulation was constructed via a composition

of five DCCs. The figure also shows that the same kind of DCC construction (a map

temporal series) can be used to envelop rainfall and solar radiation data. Many aspects

are omitted to simplify the example.

Fig. 4.5 shows DCC interfaces whose operations are defined via OWL-S/WSDL. The

Tomato Plant Growth Simulator DCC is the kernel of the simulation. Its internal structure

organizes Java binary code classes, which implement the simulator software, and related

files. Therefore, it is a process DCC. The Tomato Plant ImageSet DCC encloses a set of

images representing consecutive growth stages of a tomato plant, and is a passive DCC.

The Growth Calculation Spreadsheet contains a spreadsheet with equations to calculate

the plant growth.

In order to configure and connect components, we used an extended version of the

Magic House software [71] developed by us. Magic House is an educational authoring

tool built over a framework named Anima, which is an infrastructure for managing and

executing DCCs and their compositions. This infrastructure determines how DCCs will

interact within a composition. Both systems are being used to support the teaching

of sciences in schools in the city of Salvador, Brazil. In order to fully support DCC

composition and communication, we have extended Magic House authoring capabilities

beyond the educational domain.

We now summarize some key aspects of our model, to help understand our composition

process, and the way we connect components (i.e., what researchers in software engineering

call a software’s architectural style [72]).
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Figura 4.5: Composition to simulate tomato growth in São Paulo state.

In our architectural style, an application is formed from a composition of DCCs

that work cooperatively exchanging messages, as a choreography, creating what we call

choreography-based composition. A composition is formed by a set of participants. Each

participant is defined by a set of observable behaviors, which together form a role of this

participant in the composition. A relationship is the association of two roles for a purpose.

In Fig. 4.5 a dashed line represents a relationship between participants (DCCs), with a

boldface label indicating its name. Each label in italics represents the role played by the

corresponding participant in the relationship. A given component may play several roles

in a composition.In this example, each component plays a single role.

The composition is packed inside a higher level DCC whose interface operations con-

nect with interface operations of its component DCCs. For instance, two operations of

the simulator DCC – timeAdvance and getState – are connected to two operations of

the higher level DCC. This means that, when one of these operations of the higher level

DCC is invoked, the higher level DCC forwards their execution to the simulator DCC.
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Executing a DCC Composition

In the example, application execution starts the first time the operation timeAdvance is

executed. The simulator initializes its internal variables to start the process of calcula-

ting the growth of a tomato seedling in São Paulo state. Time in the simulation is divided

in discrete units defined by cycles. An external application determines the next cycle sen-

ding a message to the timeAdvance operation of the higher level DCC. A cycle determines

the growth of a tomato plant in a time period and runs as follows. The simulator sends

requests to the map component, for a period of time and region, receiving the average

rainfall and solar radiation for that period and region (here, an area within São Paulo

state). Next, it requests that the calculator component computes the plant’s state ba-

sed on these and other parameters. This computation is used to feed the simulator’s

growthRate process. Finally, the simulator sends a request to the Plant image set

DCC to show the image corresponding to the calculated plant age/height/health state.

The composition of Fig. 4.5 corresponds to the second layer and was packed inside

a higher level DCC. It is used as the component labeled ③ inside the third and last

level composition, illustrated in Fig. 4.6. This final composition is a simulation of a

tomato plantation in the São Paulo region, including moth larva attack and wasp biological

control. Roughly speaking, the final result (labeled ⑧) shows a map that compares a map

created from actual collected data on a plantation (labeled ⑥) with a map created by

simulation (②) of tomato (③), moths (④) and wasps (⑤). The geographic space covered

by the maps corresponds to a tomato plantation in São Paulo state.

Our simulators are based on a cellular automaton. A cellular automaton is a kind

of system that is discrete in three dimensions: time, space and state [24]. Often used to

produce simulations, the state of the next cycle is determined by two elements: the state of

the previous cycle and the state of its neighbors. Our simulation adopts a deterministic

cellular automaton model, where the space is divided in a fixed lattice [24], as can be

seen in DCC labelled ②. Each cell in the lattice has an associated state, which in our

simulation can be: an empty ground space, a tomato plant (with a state for each plant

age), a tomato plant with moth eggs, a tomato plant with moth eggs parasitized by wasp

eggs, a wasp or a moth. The behavior of each cell in the automaton ② is defined by an

appropriate DCC, according to the cell’s state. For example, if a cell state represents a

tomato plant, then its behavior is defined by the tomato plant simulator DCC ③. There

is a DCC to simulate the moth behavior ④ at all stages (egg, larva and adult) and another

to simulate wasp behavior ⑤ in all stages. The behavior of a cell can be determined by

a combination of DCCs – for example, the behavior of a cell whose state represents a

tomato plant with moth eggs cell is determined by interaction between two DCCs.

The DCC model can accept different design strategies to build a Fluid Web appli-
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Figura 4.6: Composition to simulate wasp biological control in a tomato crop at São Paulo
state.

cation. The simulation presented in Fig. 4.5 was based on the collaboration of DCCs,

without a central coordinator of the whole process (Magic House architectural style).

The application of Fig. 4.6, on the other hand, uses a style that relies on a workflow ①

to act as a central coordinator. In this case, we assume that the WOODSS system was

used. Developed by the Laboratory of Information Systems (LIS) at UNICAMP, WO-

ODSS enables the capture of activities in agro-environmental planning to be stored as

scientific workflows, which can be later edited, composed and re-executed. WOODSS has

evolved to an extensible environment that supports specification, reuse and annotation of

scientific workflows. These workflows can coordinate DCCs and can also be stored inside

a DCC [44].

Here, the workflow is a part of the DCC that can be executed. Each activity in the

workflow activates a DCC (see dashed lines). This workflow has a loop, where it visits

each cell in ② and requests to the specific DCCs (③, ④ and ⑤) to provide data that will

allow computing the next state of this cell, according to its state and its neighbors’ states.

The new state of the cell is then updated in DCC ②. When the simulation achieves its

final state, the workflow leaves the loop and retrieves a map from a DCC ⑥ that represents

data collected from a real tomato plantation. Each colored area in the map represents an

observed feature in the tomato plantation: tomato plants, presence of moth eggs (infected

or not by wasps eggs) and larvae, wasps and so on. The workflow engine dispatches this
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Figura 4.7: Diagram illustrating organizational/representational structures of three exam-
ple DCCs.

map and the map that resulted from the cellular automaton simulation to a DCC that

compares maps ⑦. The final result is a map that graphically presents the differences

between the simulation and the field collected data.

4.3.4 Organizational × Representational Structure

The examples illustrated in the previous section show three strategies to compose DCCs

to build higher level components and Web applications. In this section we will analyse

how the DCC model deals with the differences between the strategies.

We use two kinds of data in the compositions – organizational and representational

data. The former are related to the management of DCCs inside a composition, and are

represented in the same way for any composition; representational data are related with

specific design and execution tools, like Magic House and WOODSS – see Katz [37], where

the same data distinctions appear. Organizational and representational data structures

are stored inside DCC management subdivision (b), see Section 4.3.2. Fig. 4.7 shows how

these structures are represented in the three example compositions.

The organizational structure is used by DCC management tools, e.g., DCC repository

managers. This structure controls: (1) which ADAs and sub-DCCs compose a DCC;

(2) how each ADA/sub-DCC is stored inside a DCC (e.g., as an internal stored resource

or pointer to an external resource); (3) the relationships among sub-DCCs and ADAs

that are essential to DCC management, such as dependencies. Additionally, ADAs and

DCCs can be organized in a hierarchical structure similar to a file directory structure.

Contextualized metadata can be associated to each ADA and sub-DCC.

The representational structure is used by specialized design and execution tools. The

DCC that comprises twelve maps (left of Fig. 4.7) has only an organizational structure,
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since it does not require specific concerns for design tools and execution environments.

The tomato plant simulator DCC (center of the figure) stores in the representational

structure the choreography-based composition, which is managed by the Magic House

authoring tool. The tomato plantation simulator DCC (right of the figure) stores in the

representational structure the workflow managed by WOODSS.

This model guarantees that the DCC infrastructure can manage any DCC composition,

clearly separating the generic organizational structure from specificities of specialized

design tools. It also supports transparent combinatin of any kind of content to produce

a more complex content structure, that can be a passive or process DCC.

4.3.5 Handling Annotations in a Content-Oriented Approach

Ours is a content-oriented approach, as opposed to the typical Semantic Web document-

oriented approach. For all content artifacts, even for those that are not Web documents,

the DCC content-oriented approach provides: a self describing structure – associating

semantic annotations to the content and transmitting both together through the Web;

and a multilevel annotation mechanism – enabling annotation of digital content subparts.

In the typical Web document model, there are two approaches to associate semantic

annotations to resources. In the first, the annotations are inserted inside the document

(the content). The standard way to do that is restricted to XML and HTML documents.

In the second approach, the annotations are stored in an independent resource and point

to the annotated content. A problem here is how to know which annotations are associated

to a given content, since the content does not point to the annotations. In a Fluid Web

perspective, where the content travels through the Web and is replicated and adapted, it

is essential to have annotations traveling together with the content. This is a principle

of the DCC self describing structure, where annotations are a constituent part of a DCC

(both in storage and deployment states) and always travel with it.

The DCC model defines two strategies to associate annotations to DCCs and ADAs:

individually to a DCC in its metadata subdivision, and to sub-DCCs/ADAs inside a DCC

using contextualized annotations in the organizational structure. We say that the second

strategy is contextualized since the annotations do not pertain to the annotated sub-

DCC/ADA, but are related to it in the context of the DCC in which they are inserted.

These two strategies are part of the DCC multilevel annotation strategy. Compared

to the typical Semantic Web strategy, which requires an XML or HTML document to

reference and annotate its subparts, the DCC strategy enables to encapsulate other kinds

of digital content composed by subparts, and to represent and annotate these subparts.

Additionally, sub-DCC identifications and annotations can follow it throughout Fluid

Web decomposition and mixing operations.
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4.4 Version and Configuration Control and Manage-

ment

Any system that manages a complex set of digital objects that evolves with time needs to

consider two perspectives: version control and configuration management. Version control

is not restricted to registering the evolution of each single object along time. A version

is associated with a significant change that is semantically meaningful to the system [37]

and any version change of an object must be related with version changes of associated

objects. The control and management of configurations deals with the complex network

of relationships among the objects. Versions and configurations are usually represented

using orthogonal structures; however, their control and management are interlaced. In the

following subsections we will first treat version control and then configuration management

within and across DCC repositories.

4.4.1 Version Control: Objects and Configurations

Object versions often evolve together. This means that a new version of an object-A

probably may be better combined with a new version of an object-B that evolved with

it, rather than with the original object-B version. To guarantee the consistency between

object versions, databases that support objects with multiple versions are organized in

virtual sections of the database called contexts, or configurations. A configuration is a

consistent subset of the database formed by one version of each object.

The Multiversion Database Model

Several versioning solutions have been proposed. The DCC version mechanism is based

on the multiversion database model proposed by Cellary and Jomier [17] to manage DCC

versions within and across repositories. A multiversion database manages a set of mul-

tiversion objects. As illustrated in Fig. 4.8, DCC X is a multiversion object with three

versions v1, v1.1 and v1.2. It has an identification (Oid) that is independent of its ver-

sion, as well as its physical version identification (PVid) [30]. Both identifiers are unique

in the database.

The multiversion database can be analysed under two operational levels: logical level

– presented to the client application – and physical level – managed by the DBMS [30].

At the logical level, the database is seen as a set of Database Versions (DBVs). Each

DBV corresponds to a logical, nonversioned, view of the entire database, and is composed

by logical versions of objects. This is illustrated in Fig. 4.9 – at any instant, a client

application will have a single (monoversion) view of the database, corresponding to a given
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Figura 4.8: Example of a multiversion object.

Figura 4.9: Diagram relating a multiversion database and its database versions.

DBV, and DBVs are handled independent from each other. The figure also shows that

two client applications can share the same DBV. In particular, the leftmost application

can alternate between two DBVs. However, at any time it will just handle one DBV

(e.g., by explicitly defining its working database context). In this sense, a DBV can be

considered to be itself a configuration. We adopt this flexible definition of a Database

Version (DBV): it is a monoversion partition of the database, a workspace seen by an

application or a user.

DBVs and versioned objects are managed in the DBMS by means of identifiers. Each

DBV has a unique identifier, a DBVid, and its logical object versions have logical identifiers.

Different from an object’s physical version ID (PVid), the logical version ID (LVid) of an

object is related to a specific DBV. A LVid is identified by the tuple (DBVid, Oid) – i.e.,

an object as “seen” through different monoversion workspaces. Each LVid is related to a

PVid, and many LVids can share the same PVid. Applications work within a monoversion

context and thus within a DBV, and deal with LVids.

Two kinds of update transactions exist: versioning and non-versioning [18, 36]. In a

versioning transaction, object updates create new object versions (and thus new DBVs).
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In a non-versioning transaction, updates do not create DBVs, and objects are updated in

place. Section 4.4.2 has more details on these transactions.

Versions are created by deriving new DBVs from existing ones. To save space and

increase the database management efficiency, even if a DBV is presented to the client

as an independent set of objects (logical level), at the physical level a DBV–1.1, which

derives from a DBV–1, stores only the differences against the original DBV–1. When

DBV–1.1 is created, it is equal to DBV–1, thus all of its contents are implicitly derived

from DBV–1. Each versioning update operation on DBV–1.1 stores only the differences

compared to DBV–1. In other words, whenever an object is versioned in DBV–1.1, a new

physical version is created. All other objects in DBV–1.1 can be retrieved via their PVids

from DBV–1.

The multiversion model of [17] presumes a centralized version control, in a single mul-

tiversion database. The DCC infrastructure, on the other hand, is prepared to control

and manage DCCs that are distributed and replicated through the Fluid Web. In many

cases, it is important to control version information and relationships, even among distinct

databases. To do that, the DCC model extended some aspects of the multiversion data-

base model, adopting Semantic Web strategies, thereby enabling to share DCC version

information through the Web.

Extending DBVs to the Web: ID becomes URI

Each DCC contains three identifiers: PVid, Oid and DBVid. Two DCCs containing the

same PVid value represent exactly the same DCC. The Oid is shared by all versions of a

DCC.

Since a DCC is designed to be transferred and replicated in DCC repositories in the

Web, the Oid and PVid associated to the DCC become URIs. DBVids are also identified

by URIs to enable to share and control context information between databases. URIs

guarantee that the identifier will be unique not only inside a repository, but for all reposi-

tories, allowing to relate DCCs across the Web. The pair (DBVid, Oid) that corresponds

to a logical identifier in a single database thus becomes (DBV-URI, Oid-URI), a logical

identifier for Web repositories.

The identifiers are constructed as follows. A URI ID prefix identifies the address of

the DBMS that created it. For example, a DBMS–db1 accessed through the Web by

the address “http://purl.org/net/dcc/db1” will use this to prefix any URI ID created

inside it. Returning to Fig. 4.8, consider that it illustrates a multiversion object that

represents a DCC X. It was created by DBMS–db1 (see its Oid) and its versions v1

and v1.1 were also created by this DBMS. Version v1.2 is created by a DBMS–dccdb

addressed by the URI “http://lis.ic.unicamp.br/dccdb”. Notice that the goal of
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the URI-prefix mechanism is to guarantee the uniqueness of identifiers through the Web.

Even if it is possible to explore this mechanism to track DCC provenance, this would

imply additional controls that are beyond the scope of this article.

We also point out that the triple (Oid, DBVid, PVid) is maintained in DCC re-

plication operations. This follows the principle that replication occurs for performance

reasons, but should not affect the contents of a DCC, and identifiers are needed for se-

mantic version control. As will be seen in section 4.4.3, this is fundamental to maintain

the consistency of DCC versions across the Web.

Our extension of the multiversion database mechanism meets two important needs of

the Fluid Web: (i) it allows DCC versioning and replication across the Web; and (ii) it

supports construction of configurations across multiple sites, since each DCC is identified

uniquely via its URI, and furthermore it carries within it the information necessary to

organize the configurations. The next subsection expands on these issues.

4.4.2 Configuration Management – Relationships within and

across DCCs

In the DCC model, configurations can be seen as a graph where DCCs/ADAs are vertices

and relationships among them are edges. The relationships are organized in a taxono-

mic ontology, detailed in Section 4.5.2. The following types of relationship are used in

configuration management: Version – relates a DCC to its derived version; Aggregation

– relates an aggregation with its sub-parts; Exclusive aggregation – if an ADA/DCC is

part-of an exclusive aggregation, it cannot be part of other aggregations; Equivalence –

relates two DCCs that represent the same real world object in distinct ways; Abstraction

– defines a DCC as an abstraction of another; Connection – defines that two DCCs are

connected by their interface; Annotation – defines that a DCC annotates another DCC;

Dependent – any other kind of dependency between two DCCs and/or ADAs.

Configurations are managed in the DCC infrastructure in two scopes: inside DCCs

and outside/across DCCs. Configuration management inside DCCs can be seen as an

instance of DCC composition using versions, and was detailed in Section 4.3.3. It al-

lows mixing of DCCs and ADAs, and is controlled in the DCC management subdivision.

Configurations across DCCs relate independent DCCs without encapsulating them in a

higher level composition. They correspond to an auxiliary structure stored in the re-

pository together with the storage DCCs. Some types of relationships are used inside

DCC configurations, others externally, and others in both scopes. Aggregation, Exclusive

aggregation and Connection are used to represent DCC compositions inside a higher level

DCC. Version, Equivalence and Abstraction are used in configuration management across

DCCs. Annotation and Dependent are used in both scopes.
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Equivalence and Abstraction relationships help to control the DCC production cycle

and consecutive modifications. Indeed, the construction of a DCC passes through many

phases before its implementation, such as requirements elicitation and design. Such phases

also can produce digital content artifacts (e.g., diagrams and tables), which can be related

with artifacts in the next phase. For example, a diagram represented inside a DCC can

be an Abstraction of a software component represented inside another (process) DCC, or

of a data file represented inside another (passive) DCC. The Equivalence relationship can

be used in a similar way. For example, a DCC containing a source code of a software

component can be Equivalent to a DCC containing this software in binary format.

The configuration management infrastructure is used to determine actions to be taken

when a DCC version changes. For example, if the user modifies a DCC containing a

diagram that is an abstraction of another DCC, the design application can report to the

user that the related “DCC needs to be updated”. Some actions can be automatically

executed – e.g., a modification in a DCC containing source code triggers its compilation

and production of a new related DCC, containing the corresponding binary code.

4.4.3 Version and Configuration Management in the Fluid Web

This section illustrates, continuing our running example, how DCC version and configura-

tion strategies are explored in a Fluid Web collaborative work. The example uses simple

numbers instead of URIs to represent version ids to simplify the discussion.

This example is developed in two stages. In the first, collaboration occurs only in the

beginning: a scientist starts an experiment by reusing another’s DCCs. Afterwards, they

proceed independently, modifying and versioning their objects through different DBVs.

The second stage concerns a durable collaboration, in which scientists share a workspace.

This requires version synchronization, which is not dealt with in the original DBV model.

In each case, we start by considering a local (one repository) work environment, and

proceed to a multiple repository situation.

Collaboration by version reuse

Suppose that a scientist (John) has launched the DCC application presented in Sec-

tion 4.3.3, illustrated in Fig. 4.5, whose purpose is to simulate the growth of a tomato

plant. Consider now that this DCC is stored in a multiversion DCC repository and has a

single version, associated to a DBV1. Another scientist (Mary) sharing the same multiver-

sion repository wants to create a new version of this application, to examine alternative

scenarios, without affecting the existing DCCs. This is done by a two step operation na-

med versioning transaction, which implies first copying DBV1 into a new DBV2, and then
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Figura 4.10: Two DBVs presenting DCCs of the plant simulator composition.

changing DBV2 (the second DBV is said to be derived from the first).

Fig. 4.10 presents a diagram illustrating the first step, the initial derivation. Many

aspects are ommitted to simplify the example. The figure shows the physical DCC versions

in the middle, with one DBV at each side. Each physical DCC version has a PVid

that is represented by a number prefixed by PV. DBV1 represents logical DCC versions

pointing to the corresponding physical DCC version. Each logical DCC version has an

Oid that is symbolically represented by a number prefixed by O. In DBV2 these references

are represented using dashed lines, to indicate that DBV2 inherits these references from

DBV1.

After creating DBV2, the second step in the versioning transaction is to apply the

modifications in the new DBV. In the example, these modifications will enable to simu-

late a coffee plant growth instead of a tomato plant. To do that, Mary modifies the

calculator spreadsheet DCC adapting the formulae to simulate coffee plant growth and

the plant image set DCC, replacing the tomato plant images by coffee plant images.

These modifications produce new DCC versions derived from the previous ones. Fig. 4.11

illustrates the changes in the database. Two new physical DCC versions of calculator

and plant are created, derived from their previous versions, and two corresponding logical

DCC versions appear in DBV2, pointing to the appropriate physical versions. For these

two DCCs, dashed lines are replaced by continuous lines in DBV2 to indicate that the

implicitly inherited references are replaced by explicit references to new physical versions.

Now, consider that John, who created the original DCC application, also made some

modifications in the simulator DCC, using DBV1. Unlike other versioning models, the

multiversion database model allows updates without forcing versioning – the so-called non-
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Figura 4.11: New calculator and plant DCCs are created in DBV2.

versioning transactions. In this case, however, all other DBVs that share the same physical

version would be aware of this update, and lose the previous state. In order to avoid this

problem, the multiversion database mechanism allows the creation of a new physical

version of the updated entity – in our example, the simulator DCC – independent from

the original physical entity. In other words, DBV2 will not share the modifications in this

DCC, and each DBV will now explicitly point to different independent physical storage

units, as illustrated in Fig. 4.12.

If, instead, John had wanted to do a versioning transaction update to the simulator

DCC, he would have to follow the steps already explained when DBV2 was created. First,

DBV1 would be copied into a new database version DBV3; and next, the appropriate objects

in DBV3 would be updated, with versioning links established when appropriate.

Figures 4.11 and 4.12 informally illustrate the differences between versioning and non-

versioning transactions. In the first case, the version mechanism requires a new DBV to

be created (e.g., DBV2 is a version of DBV1). In the second case, this does not occur – i.e.,

DBV1 is not versioned, but its state has changed.

The example has a single local repository. Consider now a Fluid Web environment,

where a third scientist, George, is located in another site with its own local repository.

George wants to reuse Mary’s DCCs. In this case, he starts exactly as in the standard

multiversion mechanism – i.e., he executes a versioning transaction that creates a new

DBV3 from DBV2. However, instead of being located at site S1, DBV3 is created at site S2 by

copying all DCCs in DBV2; this copy maintains the same physical PVids. The assumption

here is that the advantages of implicit references (savings in storage) disappear when
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Figura 4.12: The simulator DCC is updated in DBV1.

multiple sites are involved and no durable cooperation is intended. George does not want

to share DCCs with Mary, just to start from the same DCC configuration. This scenario

is illustrated in Figure 4.13.a.

There is no need for version synchronization, because the scientists will work indepen-

dently, and the versions are handled exactly as in the single repository scenario, thanks

to the URI properties. We point out that several other alternatives exist – e.g., copying a

DCC only upon its versioning – but full DBV replication is the solution with the smallest

cost in version integrity control.

Durable collaboration via version synchronization

Up to now, we have discussed the first collaboration scenario (by reuse). In the second

collaboration scenario, the scientists will work together, exchanging and comparing ver-

sions. For a local (single) repository, this is very simple: at any time, the scientists just

have to declare which DBV they want to work with. This is in fact the standard collabo-

rative scenario in the multiversion database model (see the two client applications sharing

a DBV in Fig. 4.9).

Let us expand this example to a Fluid Web environment. Consider again Mary and

John at site S1, and George at S2, but now George wants a long term durable cooperation

with Mary. This is achieved by sharing the same DBV (i.e., the same workspace). Mary

and George can each create their own versions, but to cooperate they must explicitly state
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Figura 4.13: Collaboration between two sites.

the DBV they want to maintain in common.

This kind of collaboration implies version sharing. We distinguish two implementation

policies: without any replication or with full replication. In the first case, all DCCs in

DBV2 will remain in the repository at site S1, and no real distribution of DCCs will occur.

George will always need to access Mary’s site to work at DBV2. This scenario is depicted

in Figure 4.13.b.

Full replication, instead, implies that George replicates DBV2 into site S2 for perfor-

mance reasons. However, since this must be the same DBV, it does not create a new

version. Rather, all version identifiers (DBVid and PVid) are copied into site S2. This

means, however, that non-versioning transactions on site S1 must be reflected at S2 and

vice-versa. This is performed via synchronization and is illustrated in Figure 4.13.c.

We consider only one-way synchronizations, where a database B periodically checks

for updates in a database A and downloads the updated DCCs. Since the synchronization

is one-way, database B does not upload its own updates to database A. Our goal is not

to develop a full distributed versioning mechanism. Rather, we are only interested in

providing basic support for versioning of DCCs on the Web. In the future, this can be

extended to more complex protocols.

Synchronization using our one-way protocol occurs as follows. Suppose that George’s
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Figura 4.14: DCCs replicated by George from DBV2, before versioning.

copy of DBV2 is the one right before Mary started creating DCC versions – i.e., the

one depicted in Figure 4.10. Figure 4.14 shows George’s table of the replicated DCCs.

George requests a synchronization operation. His local multiversion manager starts a

message exchange with Mary’s multiversion manager. It sends to the remote manager

a list containing the pairs (DBV2, Oid) identifiers of George’s five DCC logical versions,

and asks for the associated physical version identifiers. The answer will be: simula-

tor({DBV2,O1},{PV20}); rainfall({DBV2,O2},{PV21}); solar({DBV2,O3},{PV22}); calcula-

tor({DBV2,O4},{PV25}); plant({DBV2,O5},{PV26}).

Site S2’s multiversion manager compares the received PVids with the PVids stored in

the local database (i.e., those depicted in Figure 4.14) and verifies that the calculator

and the plant DCCs have been modified. Thus, it requests copies of these two DCCs

and replicates them in the local database.

4.5 The Role of Ontologies

Ontologies can be classified, according to their focus, in two kinds [20]: descriptive and

taxonomic. The former resemble database schemas. The concepts are interconnected

by many kinds of semantic associations, and the purpose is to represent the intended

domain as much as possible. The latter are used as a referential vocabulary. Their

structure organizes terms into generalization/specialization hierarchies, and semantic links

to express synonymy, composition, and so on. In this section we point out the importance

of both kinds of ontology to provide a semantic bridge across the database nodes of the

Fluid Web infrastructure.

4.5.1 Descriptive Ontologies

In the Deployment DCC format, descriptive ontologies work as a standard schema to

define metadata and interfaces. Since these schemas are defined using OWL, they can be
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extended and the semantics of the schemas and their extensions can be shared through

the Web. Even if in OWL there is not a clear distinction of a schema and an instance

that follows the schema, we will use the term OWL schema to refer to the definition of

classes and properties. Classes and properties serve as a schema for DCC metadata and

interface subdivisions, whose descriptions are instances of these classes. The role played

by an OWL schema is the same as that of RDF schema.

Fig. 4.15 shows a partial representation of the passive DCC containing the map time

series, whose construction was illustrated in Fig. 4.4. Both metadata (in OWL, on top)

and interface (in OWL-S, displayed around the organization structure) are presented

using a simplified version of RDF-like Directed Labelled Graph (DLG). Metadata and

interface parameters are associated with ontological terms. There is a standard OWL

schema to define the minimum DCC metadata properties – Oid and PVid – and other

usual properties, like title and description. The OWL schema of the interface is defined

using OWL-S.

The interface subdivision presents operations using the OWL-S ServiceModel class

hierarchy [42]. In the example, the interface defines two operations (atomic processes in

OWL-S): getQuantity and getMap. The getQuantity operation returns the value of a

pixel inside a map image, given parameters month and pixel coordinate. The getMap

operation returns a map image for a given month parameter. These atomic processes,

which receive one input message (comprising all input values) and return one output

message, correspond to WSDL request-response operations [42]. To simplify the expla-

nation we will use the same names of OWL-S atomic processes to refer to WSDL related

operations.

An interface in passive DCCs denotes which operations can be applied over it (e.g.,

a video content can be played). We call the set of operations associated with a passive

content type to be its “potential functionality”, in the sense that their implementation

is not part of the content. In a process DCC, instead, we have a “provided functiona-

lity” inherent to any process description module (e.g., a software component, a workflow

specification) – since a piece of software is by definition executable.

Functionality declaration (potential or provided) in DCCs is used to help find DCCs

that meet specific requirements – e.g., in a composition process [68]. This functionality-

based search complements a metadata-based search in two ways: it can find additional

DCCs – not discovered by the metadata-based search – for a given necessity, and it

produces more consistent search results, since interfaces can be checked to verify DCC

adequacy to given requirements.
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Figura 4.15: Deployment rainfall map content component representation.



4.5. The Role of Ontologies 93

Figura 4.16: Ontologies used by rainfall map component.

4.5.2 Taxonomic Ontologies

DCC Metadata and Interface Specification

Taxonomic ontologies are useful in information sharing activities [20]. We adopt them in

DCCs to disambiguate the meaning of DCC metadata and interface specification. More

specifically, we postulate the need for specific ontologies that define valid kinds of DCC

and of terms used in defining DCC interfaces. Fig. 4.16 shows diagrams that represent

parts of two taxonomic ontologies, used by our examples, and whose hierarchical relations

are explored in DCC semantic relationships and search procedures. White-filled circles

represent classes. Lines with a diamond in one extremity represent subclass relationships,

e.g. Rain is subclass of Precipitation. Dashed lines indicate that some intervening

nodes were ommitted for simplicity.

Our running example concerns managing, creating and reusing content for applicati-

ons that involve geographically related data. DCC discovery and reuse require domain

semantics – in this case, the taxonomic ontology called SWEET – Semantic Web for

Earth and Environmental Terminology [61]. Fig. 4.16 shows two fragments of SWEET.

The fragment at the center concerns a taxonomic hierarchy for the Rain phenomenon,

while the left fragment describes physical measurements. The right fragment is part of

an ontology we constructed to classify DCCs according to their functionality. Each class

in this ontology corresponds to a DCC type, and each DCC is an instance of a class.

The metadata subdivision of the DCC presented in Fig. 4.15 references the DCC
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ontology presented in Fig. 4.16. It shows that the DCC is an instance of the MapSet class,

with five property values: oid, pvid, title, coverage and phenomena. The values of

phenomena and coverage are respectively related to SWEET and to the POESIA spatial

ontology [27]. The latter is a spatial ontology specific to Brazilian territorial organization.

The operations of the rainfall DCC illustrate how the interface descriptions can be

connected with taxonomic ontologies. Let us consider operation getQuantity; the para-

meters of getMap can be analysed the same way. Following the OWL-S model to describe

processes, each process parameter has a parameterType which specifies the class or da-

tatype for that parameter [42]. Notice that many ontologies may be needed to properly

specify a parameter. For instance, the coordinate input parameter has a type descrip-

tion associated with SWEET, but its domain is defined by the coverage property, in

POESIA, here denoting that the only valid coordinates accepted are those from within

the state of São Paulo. The output parameter of the getQuantity operation is an integer

value. The additional measures property of the SWEET ontology defines the nature of

the measured value. Notice that we extended the OWL-S schema to enhance parameter

description with additional semantics. OWL-S specifies the need for type characteri-

zation (parameterType), which we improved by adding semantic parameter descriptors

(e.g., coverage, measures).

The use of ontologies to describe DCC metadata and interface can be explored in

many ways in DCC discovery and composition. Some of the benefits, detailed in [68] are:

(i) they organize DCCs in taxonomic trees that can be navigated in the DCC discovery

process; (ii) ontology concepts are used to help query processing, to disambiguate terms

and find synonyms; (iii) ontological relationships are used to rank DCCs based on their

similarity with the DCC being handled; (iv) they enable a more semantical interface

matching.

Associating Passive DCCs to their Companions

A passive DCC is content-centric, and its interface defines how this content can be acces-

sed. Since the program code for the operations declared in the interface is not embedded

in a passive DCC, interface operations are implemented in a special kind of process DCC

named Companion DCC, already mentioned in Section 4.3.2. The Companion DCC lends

its operations to a passive DCC in a way that is transparent to composition designers.

The choice of the appropriate Companion for a passive DCC is context sensitive, and

is determined by an execution engine, when this passive DCC is used. This allows a

homogeneous treatment of passive and process DCCs from the user’s perspective.

Fig. 4.17 shows an example of a Passive DCC association with a Companion DCC

based on its content type (content-type driven execution). Taxonomic ontologies play a
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Figura 4.17: DCC content-type driven execution diagram.

central role in this matching process. The taxonomic ontology illustrated in the center of

the figure is repeated from Fig. 4.16. As shown in the figure, any DCC is associated with

a DCC type defined in the ontology. The association is carried out through an explicit

reference in a DCC’s metadata subdivision, coded in OWL. Arrows that represent a

property hasCompanion relate two nodes, indicating that a given DCC type is processed

by the indicated Companion DCC.

In order to associate a passive DCC with its companion, an execution engine follows

a cycle indicated by the numbers ① to ⑥, illustrated in Fig. 4.17. Consider the passive

DCC of Fig. 4.15, here reproduced as ① in the figure. It is related to the MapSet DCC

type in the ontology ②; the ontology records that the companion to a MapSet DCC is

a MapSetHandler DCC ③. Suppose that the execution engine asks the DCC repository

manager for a DCC of this type. The selected DCC is retrieved ⑤ and connected to the

passive DCC, which it will process ⑥.

This taxonomic ontology-based execution enables to explore some advantages provided

by the DCC type inheritance hierarchy. In many cases, there is not a Companion DCC

to process a specific Passive DCC type. Then, the engine retrieves the companion that is

most suitable, given encompass relationships.

Classifying Relationships

As presented in Section 4.4.2, some relationships among DCCs are represented outside

the DCCs. The challenge is to represent these relationships in such a way that they are
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Figura 4.18: Diagram of the Relationship Taxonomy.

maintained when DCCs migrate. Since DCCs are identified by URIs, the relationships

persist regardless of which node requested a DCC. We defined a DCC relationship taxo-

nomic ontology, illustrated in Fig. 4.18, to represent the variety of possible relationships

between DCCs in a unified and extensible way, This relationship taxonomy is used for all

relationships within and across DCCs.

In the ontology, white-filled circles represent relationship classes. Lines with a diamond

in one extremity represent subclass relationships. Squares represent properties and arrows

connect properties to their classes. An instance of a relationship class defines a relationship

among two or more ADAs or DCCs. The values of the properties associated to the

class, which are depicted in this figure, are pointers to the DCCs that participate in the

relationship. For example, if a DCC-x aggregates a DCC-y, then there is an instance of

the class Aggregation, whose property has-part points to DCC-y and whose property

part-of points to DCC-x.

The properties in the taxonomy are classified according to four types: (i) non-version

dependent, (ii) any change version dependent, (iii) interface change version dependent and

(iv) maybe version dependent. This classification defines what happens with a DCC-y,

which has a relationship with a DCC-x, when DCC-x changes its version. DCC-y can be

affected in two ways: if any change has been made in the DCC-x (type ii), or if any change

has been made in the DCC-x interface (type iii) – this case does not consider any other

DCC change. The classification (iv) declares that is not possible to determine previously

whether DCC-y is affected. This classification is useful when the DCC management tool

needs to evaluate the impact of a DCC version change in a DBV.
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4.6 Comparison to Related Work

In many aspects our work relates disjoint research efforts aimed to solve complementary

problems, combining them using a Semantic Web “glue”. It addresses research on: content

packing/deployment/reuse, software architecture and reuse, version control, configuration

management and digital libraries.

4.6.1 Content Packing/Deployment/Reuse

Content packaging, deployment and reuse was the start point of this work. Many recent

projects deal with these questions following parallel tracks to solve analogous problems

in different domains, like: IMS Content Packaging (IMS CP) [74], for education, MPEG-

21 [13], for multimedia, Reusable Asset Specification (RAS) [54], for software development,

and OAIS XML Formated Data Unit (XFDU) [16], for digital libraries. Moreover, distri-

buted software component technologies have similar concerns related with packaging and

deployment of software components [28] – e.g., Enterprise Java Beans (EJB) [75], Micro-

soft COM+ and CORBA Component Model (CCM) [52]. All of these projects/standards

define package formats, to deploy their content, following the same basic structure divided

in two parts: (1) a package container, usually based in the popular ZIP compressed file

format; (2) a XML based manifest file stored inside the package, which complements the

information about the packed content with data not provided by the package container

(ZIP) – e.g., related to organization, dependencies or metadata.

Fig. 4.19 graphically synthesizes the basis of each package format. Shaded elements

represent reuse package formats comprising the container and manifest files. Dashed

circles represent formats without a final specification. Arrows from top to bottom repre-

sent schema derivations used in manifest files, and arrows from bottom to top represent

container format derivations.

As can be seen in the figure, all reuse initiatives define a package container based

on ZIP. MPEG21 has not defined its package container yet. RAS accepts an alternative

format based on a CVS directory structure. OAIS XFDU is still under development, but is

analysing the possibility to use other optional formats, a content inserted inside an XML

document (XML inline) and a format based in Multipurpose Internet Mail Extensions

(MIME), a format that enables packing and attaching files to mail. All reuse initiatives

use XML to define their manifest structure. CCM and Microsoft COM+ are derived from

the the Open Software Description Format (OSD) [79] and OAIS XFDU is considering the

Metadata Encoding & Transmission Standard (METS) [77]. MPEG-21 defines a specific

section, the Digital Item Declaration (DID) [14], which works as a manifest structure.

The Deployment DCC format has its conception derived from content package and

reuse standards, since program code reuse proposals are neither concerned with detailed
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Figura 4.19: Diagram tracing basis and derivations of package formats for reuse approa-
ches.
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structure representation, nor with metadata. Each Deployment DCC is stored inside

a ZIP file. The DCC management structure subdivision (ii) (see Section 4.3.2) is a

generalization of the content reuse manifest file structures (RAS, MPEG-21 DID, METS

and IMS CP). Even if the manifest structures are organized in different ways, they deal

with the same problem and the same basic concepts. Therefore, it is possible to map the

main structural elements of one manifest to another, if the particularities of each reused

content are disregarded. The UML model behind each one served to help comparing and

defining this unifying model. RAS and MPEG-21 DID [7] structures are derived from

an UML model, and the Model Driven Architecture (MDA) [45] principles were used to

extract an UML model from METS and IMS CP.

The reused standards manifest structure mix data used to manage content artifacts

with domain specific data, constraining their usage to the original domain. The DCC

management structure is divided in the organizational structure – which maintains ge-

neric data applicable to any content – and representational structure – which represents

domain specific considerations (see Section 4.3.4). The relationship taxonomic ontology

(see Section 4.5.2), used by the DCC management structure, incorporates and classifies

the relationship types found in the manifest structures.

In contrast with the other proposed standards, the DCC model upgrades the “pac-

kage” structure to a “component” structure. In fact, our work takes advantage of the

mature software engineering research on software components, extending it to any kind

of digital content. This upgrade is not just a new package format, but supports a novel

approach to produce applications/content, and is one of the main contributions of this

work. In databases, complex objects can be constructed by composition of other objects;

in software development, software can be constructed by composition of software compo-

nents. Data composition in databases and component combination in software engineering

are separate mechanisms that have been extensively researched. Our DCC composition

process, however, is a new notion: using one single mechanism, it allows constructing

complex objects (in a database sense), constructing software (as in software engineering)

and attaching software to data to construct a more complex artifact via the companion

principle. This mechanism depends only in interface and ontology matching and does not

need to concern itself with the nature of the encapsulated contents. The content, the

software that handles the content and other software routines adopt the same component

model and are combined following a single procedure.

In contrast with the other proposed standards, the DCC model considers interfaces an

essential part of the reusable artifact representation. In the Fluid Web environment, many

kinds of digital content artifacts can go around. DCC interfaces are a key characteristic

to provide to DCCs a self describing structure [68], encapsulating the plurality of digital

content kinds. The interface is a key player that guides DCC usage and composition. It
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is a relevant characteristic considering that developers in this new scenario will not be

just computer science experts [48].

Interfaces are also essential to relate a given type of digital content with a software

component enabled to deal with it. The main digital content reuse initiatives point out

the importance of relating the appropriate program code to the reused content. In the

multimedia context, MPEG-21 stresses the need for specifying not only a standard for

media exchange, but also a complete framework, including the software dimension [35].

Educational initiatives point out the necessity for defining standards in which reusable

educational content pieces will dynamically interact with educational tools through an

API. In the digital libraries context, the Open Archival Information System (OAIS) defines

how to maintain software tools capable of interpreting specific content formats, which will

preserved in the long term [15]. Still related to OAIS, the Fedora repository shows how

service objects (disseminators) can produce multiple (dynamically processed) versions of

the same content, adapted to specific needs [76].

MPEG-21 defines a software framework, extensible with software plug-ins, to deal with

multimedia contents. However, compared to the DCC model, this software framework

has two limitations, from a Fluid Web perspective. There are two kinds of MPEG-21

software modules enabled to deal with specific media types: software plug-ins and methods

attached to media artifacts. A software plug-in has generally a central producer and many

clients. It contrasts with the collaborative work perspective of software components inside

DCCs, which can be replicated, modified/adapted and redeployed. Methods attached to

media artifacts are constrained to deal with specific MPEG-21 libraries (DIBO); their

functionality is restricted. Additionally, MPEG-21 defines a specific model to represent

methods’ functionality, instead of adopting Web standards.

The educational initiatives of content-centric reuse agreed over an architecture to

enable the relationship between the educational content and the Runtime Environment

(RTE), which is the software system where this content will be used. This relationship

is useful when the RTE wants to track, for instance, the interaction of a student with an

educational object, what parts of an HTML tutorial a student visited, or the number of

test questions the student answered correctly. There is an agreement over a proposal of the

Aviation Industry CBT Committee (AICC) [43], which is based on the assumption that

any educational content will be Web-based. AICC defined an API that is responsible for

defining what services can be requested to the RTE and what information can be delivered

to it. Unlike the DCC model, which defines a generic model to encode process DCCs,

the AICC standard is highly specialized in some tasks envisaged in the Web activities for

education.

Fedora [76] is a general purpose repository service, which supports complex content

objects. It defines a special disseminator object that can process other objects, through
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Web services requests. This model is well defined for objects inside the repository. Howe-

ver, unlike the DCC model, there is a lack of a strategy to deploy and reuse such objects,

and their related disseminators outside the repository.

As illustrated in Fig. 4.19, some important content reuse initiatives developed domain

specific XML-based metadata schemas. Compared to the DCC OWL-based metadata

strategy, XML-based metadata strategies have two limitations. First, XML only provides

a standard mechanism to syntactical extensions of the schema, and there is no mechanism

to share semantics associated with these extensions. Second, the XML metadata schema

is isolated from other parallel metadata schemas and vocabularies, since there is not a

standard way to relate XML metadata schemas. For this reason, initiatives like IEEE

Learning Object Metadata (LOM) [33] – used by the IMS CP packaging format – started

to study an RDF approach to represent the metadata.

A natural consequence in the implementation of the content packing/deployment/reuse

standards discussed here is a scenario where people increasingly exchange their produc-

tions. However, none of these standards expanded their view to consider a broader ou-

tlook, which will require much more functionalities to support this content exchange.

Beyond content packaging and deployment, some initiatives address additional require-

ments: OAIS considers the content storage, RAS defines a version id creation policy to

their manifests (but does not address the version control and management infrastructure)

and the MPEG-21 group defines an XML language to express rights and permissions

(Rights Expression Language) that uses terms defined in a Rights Data Dictionary [81],

which is based on the XrML – eXtensible rights Markup Language [82]. Our Fluid Web

approach, on the other hand, expanded the perspective from a content artifact that is

deployed through the Web to a complete infrastructure to support collaborative work.

Our model will include in future extensions rights and permissions management. Howe-

ver, it will use a OWL-based rights model as defined by OREL – Ontology-based Rights

Expression Language [59].

4.6.2 Version Control and Management

The control and management of versions and relationships among software and data ob-

jects is subject of research in many Computer Science domains. Many systems represent

versionable artifacts as generic objects in a database. This approach is convenient for de-

sign systems, specially those related with CAD and CAE systems, which work with design

objects [37]. Design systems represent complex objects using a hierarchical containment

structure, also used in DCCs. The control of versions and configurations are orthogonal.

Object derivations are controlled through explicit links among object versions. Configura-

tions are defined using explicit links to specific object versions. A complex object version
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is composed via referencing specific versions of its component objects. A problem arises

when an object evolves to a new version. This triggers a change propagation procedure,

since the new version of an object X implies in a new version of the complex objects that

have X as a component and cascades can reach very many objects [37]. This procedure

automatically generates a lot of new, often useless, configurations [30].

The multiversion database approach, adopted in the DCC model and infrastructure,

takes a distinct approach that does not produce this side effect on each new object version.

The connections are made among objects in a specific context (a DBV) and they are

linked to the object Oid instead a specific object version (PVid). As a consequence, any

modification in the object automatically repercusses on the entire DBV, without any new

link creation.

Notice that the DBV is the basic unit to control the impact of object changes in the

related objects and consequently is also a unit that represent a consistent view of the

database. The complete process of a new DBV creation and the modifications inside it

is controlled by the user. A user’s awareness and control of the scenario where version

modifications will have an impact is a benefit of the multiversion database approach,

when confronted with traditional approaches whose consistency control mechanism is task

oriented [31]. In a task-oriented approach, a context representing a consistent state of the

database is created by a transaction – which comprises a set of coordinated modifications

on object versions – applied over a previous context.

Version management mechanisms are usually based on a central (local) database.

In distributed environments, they require explicit check-in/check-out operations, usually

with configuration replication (e.g., as discussed in [37]). We extended the multiversion

database mechanism to use URIs to support versioning on the Fluid Web. Moreover, we

consider two kinds of collaboration over versions – by reuse and by sharing DBVs, where

synchronization mechanisms take advantage of DBV identifiers to find the differences

between two copies of the same DBV.

4.6.3 Configuration Management

As mentioned in Section 4.4, version and configuration control/management are often

represented using orthogonal but interlaced structures. Engineering design systems –

usually CAD and CAE systems – manage their complex design objects as configurations

[37]. Research in this domain is often called Product Data Management (PDM) [26]

or Engineering Data Management (EDM) [83]. In parallel, the software development

process also involves the management of a complex set of interrelated pieces, which have

many characteristics in common with design objects, such as the hierarchical containment

structure (a software module can be composed by sub-modules, which in turn can be
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composed by sub-modules) and version control. Research in this domain is called Software

Configuration Management (SCM) [25]. Even when dealing with equivalent problems,

research on PDM/EDM and SCM are often treated as distinct disciplines [26] [83]. The

DCC model can be considered a confluence of both (PDM/EDM and SCM), since it

supports design objects and software artifacts alike.

Software design and development tools deal with a progressive diversity of digital

artifacts, as a consequence of: (i) the expansion of their functionality to automate software

development phases not covered before, and (ii) the diversification of digital artifacts

involved in a software product (e.g., multimedia files, XML documents, etc.). However,

as observed by Estublier [25], a weakness of the SCM tools is to have too little knowledge

of the managed software product. The data model used by many of these tools is similar

to a file system plus a few attributes [25]. Our Fluid Web infrastructure, on the other

hand, is founded on the DCC as its basic product model. The DCC structure combines

a semantically rich representation with a homogeneous model.

4.7 Concluding Remarks

Behind the title Fluid Web we are constructing an extended scenario for Semantic Web

initiatives, to immerse the user in an environment where any digital artifact can be sha-

red, replicated, decomposed, versioned, mixed and adapted. To achieve this goal our

work combines research in databases, digital content and software management/reuse,

version/configuration control and management, Semantic Web and Web Service stan-

dards.

It is based on two contributions: the concept of Digital Content Component (DCC),

an infrastructure to support storage and management of DCCs, both of which imply the

migration from a document-oriented to a component-oriented Web. The infrastructure

supports new annotation and versioning mechanisms, that allow flexibility in digital arti-

fact production and sharing. Digital content components encapsulate software and data

uniformly and provide an original way to compose them, which eliminates the distinction

between processes (active) and data (passive) digital content. An important part of our

solution is the notion of companion component, which, for a given data set, finds the

appropriate software to activate it. Deployment DCCs, the components that can travel

on the Web, can be semantically annotated at any level, by using ontologies, and the

annotations are carried within the component. These characteristics enable the Fluid

Web to be component-oriented, evolving from the present document-oriented paradigm.

Both DCC and infrastructure rely on Semantic Web standards. Semantic Web ontologies

play a central role as a syntactic and semantic bridge, enabling to define interoperable self

describing DCC structures and extensible vocabularies based on taxonomic ontologies.
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Figura 4.20: Tomato plant simulation produced in Magic House environment.

The current implementation extends a stable version of Anima, which is being used

in conjunction with Magic House to build and execute educational digital objects. This

current version is fully functional in a local environment, and is implemented in the Java

language. The implemented framework can deal with process and passive DCCs, and uses

an OWL ontology to match passive DCCs with their Companions, fully supporting the

content-type driven execution described in Section 4.5.2. Fig. 4.20 shows a screenshot of

the example presented in Section 4.3.3, which simulates a single tomato plant growth.

We are now working to transform the Anima file based storage structure in the mul-

tiversion database structure and to connect local environments to exchange DCCs and

related data. Additional ongoing work involves offering more support to design activi-

ties through the integration of the DCC model with the WOODSS model [44]. Among

other benefits, this will enable the reuse of process descriptions (represented as high level

workflow specifications), which can be subsequently refined and implemented through the

specification of the DCCs that will execute the tasks. This will allow interrelating design

DCCs representing different abstraction levels of a process.

Finally, our model can handle DCC versions distributed over different repositories,

synchronizing them at request. However, this is not yet a full-fledged distributed mana-
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gement system, since synchronization is not automatic, works as one-way synchronization,

and requires user intervention. Future work thus includes extending this mechanism to

be automatically supported.



Caṕıtulo 5

Conclusões

5.1 Contribuições

Este trabalho se situa em uma intersecção da Engenharia de Software e da “Engenharia

de Conteúdo”. Da Engenharia de Software herdamos principalmente o modelo de com-

ponente de software e outras tecnologias que giram em torno da produção e reuso de

software, tais como controle de versões e configurações, frameworks de software.

Ainda que não consensual, o que chamamos de “Engenharia de Conteúdo” envolve

diversos domı́nios que englobam gerenciamento de conteúdo, objetos digitais complexos,

controle de configurações e versões. De um certo modo, é um espelho da Engenharia de

Software do ponto de vista do conteúdo.

O desafio deste trabalho foi demonstrar que é posśıvel integrar ambas as abordagens

aproveitando o melhor de cada uma e resolver problemas decorrentes da interdependência

entre software executável e conteúdo. Para atingir este objetivo, o trabalho combina pes-

quisa em bancos de dados, reuso e gerenciamento de conteúdo digital e software, controle

e gerenciamento de configurações/versões, padrões de serviços Web e de Web Semântica.

As principais contribuições foram, desta forma:

1. O modelo de Componente de Conteúdo Digital – Digital Content Component (DCC)

– capaz de encapsular software executável e outros tipos de conteúdo de modo

uniforme, provendo um modo original para compô-los, eliminando do ponto de vista

de gerenciamento e composição a distinção entre software executável e outros tipos

de conteúdo. O modelo de DCC está aliado à estratégia de “execução dirigida pelo

tipo de conteúdo”, baseada no uso de ontologias, onde estão inclusas as noções de

funcionalidade potencial e Companion Component.

2. Um procedimento de três passos que explora metadados associados a DCCs, combi-

nado com a funcionalidade expressa em suas interfaces, para aprimorar o processo

106
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de busca dos DCCs, facilitando a tarefa do usuário-autor.

3. A introdução da noção de Fluid Web e a proposta de uma infraestrutura para dar su-

porte à sua efetiva materialização. A infraestrutura é baseada em repositórios locais

interligados, com controle de configurações e versões, levando em conta o compar-

tilhamento distribúıdo dos DCCs. O controle de versões é facilitado e enriquecido

semanticamente pela adoção de uma ontologia taxonômica de relacionamentos entre

versões de componentes, desenvolvida neste trabalho.

4. A validação prática de grande parte desses conceitos por meio da construção de

protótipos.

Estas contribuições atacam pontos em aberto em 3 frentes – discutidas no Caṕıtulo 1

– apoio ao usuário, modelagem de conteúdo e infraestrutura computacional:

• a necessidade de uma abordagem de produção/consumo de conteúdo adequada ao

novo papel de usuário-autor;

• o modelo de compartilhamento/reuso de conteúdo digital para a Fluid Web;

• a infraestrutura que dá suporte ao compartilhamento/reuso deste conteúdo digital

na Fluid Web.

5.2 Estágio Atual da Implementação

A implementação pode ser discutida sob três aspectos: extensão do sistema Casa Mágica,

que originou esta proposta; framework para suporte a DCCs e Fluid Web; e protótipo do

mecanismo de busca. O estágio atual da implantação de cada um deles é o seguinte:

• Sistema Casa Mágica adaptado para DCCs: o sistema Casa Mágica [71],

desenvolvido a partir de 1994, é ambiente de autoria para a construção de aplicações

educacionais. Diversos aspectos desse sistema foram adaptados para trabalhar com

DCCs. A interface foi adaptada para que o autor possa manipular e combinar DCCs

passivos e de processo indistintamente, sem perceber a diferença entre ambos.

• Framework para suporte a DCCs e Fluid Web: este framework é derivado

de um framework anterior implementado por nós denominado Anima [71], utilizado

como base no sistema Casa Mágica. As seguintes funcionalidades do Anima foram

estendidas:
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– Manipulação e execução de DCCs: Anima visava a manipulação e execução

de componentes de software no sistema Casa Mágica. O framework foi com-

pletamente adaptado para manipular e gerenciar a execução de DCCs. Isto

incluiu a implementação da execução dirigida pelo tipo de conteúdo.

– Biblioteca para “Deployment DCC”: foi inteiramente implementada uma

biblioteca responsável por exportar um DCC de um modelo de objetos em

memória para o formato de distribuição e vice-versa. Este processo envolve a

manipulação das seções do DCC descritas em XML, OWL e OWL-S.

– Repositório: Anima armazenava os componentes de software como arquivos

independentes no sistema de arquivos. A primeira adaptação realizada para

gerenciar DCCs manteve esta abordagem. Uma nova versão do framework está

em processo de desenvolvimento, visando armazenar os DCCs em um banco

de dados relacional. A modelagem e o esquema do banco de dados já estão

prontos. Atualmente o framework está sendo adaptado para interagir com um

SGBD Postgres.

• Mecanismo de busca para DCCs: Foi implementado um mecanismo que im-

plementa as estratégias de busca descritas no Caṕıtulo 2. Este mecanismo funciona

com uma interface Web implementada em Java Server Pages (JSP) e interage com

a versão parcialmente implementada do repositório de DCCs.

5.3 Extensões

Há inúmeras extensões posśıveis ao trabalho da tese, tanto teóricas quanto de imple-

mentação. Algumas delas se enquadram no modelo de DCCs, outras na infraestrutura

para Fluid Web. Dentre elas podem ser citadas:

• Integração entre DCCs e WOODSS: como descrito em [44] e parcialmente

mencionado no Caṕıtulo 4, está sendo desenvolvido um projeto de integração entre

os DCCs e workflows especificados dentro do projeto WOODSS (WOrkflOw-based

spatial Decision Support System) [56]. O WOODSS é um ambiente extenśıvel que

permite a captura, especificação, reuso e anotação de workflows cient́ıficos. Ele vem

sendo desenvolvido no Laboratório de Sistemas de Informação (LIS) da UNICAMP

– onde também está sendo desenvolvido este projeto. No projeto de integração, os

workflows em WOODSS são utilizados para coordenar DCCs e também podem ser

armazenados dentro deles para reuso. Isto exige, dentre outros, estudo de problemas

de especificação, compartilhamento e execução de workflows e acesso a serviços.
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• Reuso de design: no processo de construção de um workflow em WOODSS é

posśıvel se trabalhar em diferentes ńıveis de abstração. Os ńıveis mais abstratos

funcionam como um design do processo e os ńıveis mais concretos especificam deta-

lhes de execução. O modelo WOODSS permite ainda mesclar partes em diferentes

ńıveis de abstração. Como conseqüência da integração dos DCCs com o WOODSS,

surgiu a necessidade de se representar outra categoria de DCC denominada Design

DCC. Este tipo de DCC encapsula especificações abstratas de processos e, em es-

pecial, workflows abstratos [44]. Uma caracteŕıstica distintiva deste tipo de DCC

é a possibilidade de se realizar o reuso não apenas do executável mas também do

projeto de uma aplicação, conforme abordado na Seção 1.2.2. Esta extensão envolve

desafios em reuso de esquemas de software [40,46] e em representação de diferentes

estilos arquiteturais [28].

• Controle de configurações e versões distribúıdo: atualmente o modelo de

controle de versões e configurações permite compartilhar dados de repositórios dis-

tribúıdos e realizar sincronização, tal como foi descrito no Caṕıtulo 4. Este modelo

deve ser estendido para permitir um controle distribúıdo de configurações e versões,

onde sincronizações entre repositórios possam ser realizadas automaticamente. Um

outro aspecto relacionado são as questões de autoria e segurança dos conteúdos.

• Novas estratégias para avaliar similaridade: a descoberta de conteúdo digital

explora ontologias para o ranqueamento de DCCs baseando-se nos relacionamentos

ontológicos de equivalência, generalização e especialização. Outra extensão é usar

outras estratégias para a busca de termos similares via ontologias que vão além da

generalização e especialização, tais como as discutidas em [60, 62]. Estas técnicas

utilizam distância entre termos na ontologia ou técnicas estat́ısticas na árvore para

avaliar a similaridade entre termos.

• Framework para execução distribúıda de composições: conforme descrito

no Caṕıtulo 3, foi projetado um framework que permite que os DCCs distribúıdos

se comuniquem. Um passo subseqüente é a possibilidade de se criar composições

ligando componentes distribúıdos pela rede, que possam ser executadas de forma

distribúıda, sem a necessidade de se carregar todos os componentes de uma mesma

composição para um mesmo computador.

• Avaliação do uso da proposta: vários aspectos da proposta foram validados em

ambientes educacionais, com o uso de Casa Mágica e Anima em escolas secundárias

em Salvador e na UNIFACS, para cursos de Engenharia de Software e Compiladores.

No entanto, é necessário fazer uma avaliação da proposta e implementação de Fluid

Web, inclusive em cooperação à distância. Isto envolve inúmeras frentes de pesquisa
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em Computação, tanto do ponto de vista de projeto e implementação de software

quanto de avaliação por parte do usuário.
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