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Abstract

Mobile devices, such as smartphones and tablets, had their popularity and affordabil-
ity greatly increased in recent years. As a consequence of their ubiquity, these devices
now carry all sorts of personal data (e.g., photos, text conversations, GPS coordinates,
banking information) that should be accessed only by the device owner. Even though
knowledge-based procedures, such as entering a PIN or drawing a pattern, are still the
main methods to secure the owner’s identity, recently biometric traits have been employed
for a more secure and effortless authentication. Among them, face recognition has gained
more attention in past years due to recent improvements in image-capturing devices and
the availability of images in social networks. In addition to that, the increase in compu-
tational resources, with multiple CPUs and GPUs, enabled the design of more complex
and robust models, such as deep neural networks. Although the capabilities of mobile
devices have been growing in past years, most recent face recognition techniques are still
not designed considering the mobile environment’s characteristics, such as limited pro-
cessing power, unstable connectivity and battery consumption. In this work, we propose
a facial verification method optimized to the mobile environment. It consists of a two-
tiered procedure that combines hand-crafted features (histogram of oriented gradients and
local region principal component analysis) and a convolutional neural network to verify
if the person depicted in a picture corresponds to the device owner. We also propose
Hybrid-Fire Convolutional Neural Network, an architecture tweaked for mobile devices
that process encoded information of a pair of face images. Finally, we expose a technique
to adapt our method’s acceptance thresholds to images with different characteristics than
those present during training, by using the device owner’s enrolled gallery. The proposed
solution performs a par to the state-of-the-art face recognition methods, while having a
model 16 times smaller and 4 times faster when processing an image in recent smartphone
models. Finally, we have collected a new dataset of selfie pictures comprising 2873 im-
ages from 56 identities with varied capture conditions, that hopefully will support future
researches in this scenario.



Resumo

Dispositivos móveis, como smartphones e tablets, se tornaram mais populares e acessíveis
nos últimos anos. Como consequência de sua ubiquidade, esses aparelhos guardam di-
versos tipos de informações pessoais (fotos, conversas de texto, coordenadas GPS, dados
bancários, entre outros) que só devem ser acessadas pelo dono do dispositivo. Apesar
de métodos baseados em conhecimento, como senhas numéricas ou padrões, ainda esta-
rem entre as principais formas de assegurar a identidade do usuário, traços biométricos
têm sido utilizados para garantir uma autenticação mais segura e prática. Entre eles,
reconhecimento facial ganhou atenção nos últimos anos devido aos recentes avanços nos
dispositivos de captura de imagens e na crescente disponibilidade de fotos em redes soci-
ais. Aliado a isso, o aumento de recursos computacionais, com múltiplas CPUs e GPUs,
permitiu o desenvolvimento de modelos mais complexos e robustos, como redes neurais
profundas. Porém, apesar da evolução das capacidades de dispositivos móveis, os métodos
de reconhecimento facial atuais ainda não são desenvolvidos considerando as característi-
cas do ambiente móvel, como processamento limitado, conectividade instável e consumo
de bateria. Neste trabalho, apresenta-se um método de verificação facial otimizado para o
ambiente móvel. Ele consiste em um procedimento em dois níveis que combina engenharia
de características (histograma de gradientes orientados e análise de componentes princi-
pais por regiões) e uma rede neural convolucional para verificar se o indivíduo presente
em uma imagem corresponde ao dono do dispositivo. Também propõe-se a Hybrid-Fire
Convolutional Neural Network, uma arquitetura ajustada para dispositivos móveis que
processa informação de pares de imagens. Finalmente, é apresentada uma técnica para
adaptar o limiar de aceitação do método proposto para imagens com características di-
ferentes daquelas presentes no treinamento, utilizando a galeria de imagens do dono do
dispositivo. A solução proposta se compara em acurácia aos métodos de reconhecimento
facial do estado da arte, além de possuir um modelo 16 vezes menor e 4 vezes mais rá-
pido ao processar uma imagem em smartphones modernos. Por último, foi organizada
uma base de dados composta por 2873 selfies de 56 identidades capturadas em condições
diversas, a qual esperamos que ajude pesquisas futuras realizadas neste cenário.
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Chapter 1

Introduction

The need to secure one’s identity is present in a variety of everyday activities [42, 91],

such as allowing or denying access to a requested service, a place, or sensitive information.

Examples of these include ensuring the identity of a voter during an election, access-control

to work environments and bank accounts. Traditional methods, including the ones based

on knowledge (e.g., keywords, secret question) or based on tokens (e.g., smart cards),

might be ineffective as they can be shared, lost, stolen or manipulated with ease.

In this sense, several systems use biometric traits to secure the identity of an indi-

vidual [42]. These traits can be any human biological and/or behavioral characteristic

capable of uniquely identifying a person [43, 59, 90]. Examples of these include face

traces, voice, fingerprints, ear shape, hand geometry, iris, gait, keystroke, and infrared

veins thermogram of hand or face [21].

Biometric systems work in one of two different tasks: verification and identifica-

tion [42]. Verification, or authentication, is to verify a person’s claimed identity, i.e.,

the authentication of a person is performed by reading and comparing the input biomet-

ric identifier captured by an acquisition sensor (query) with the biometric identifier of

the same person previously stored in a database (template). The comparison between

the query and the template is performed by a matching algorithm, which produces a

similarity score used to decide whether or not the access should be granted to the user.

Identification is concerned with identifying a person by comparing the input biometric

identifier with a database of previously known identifiers and their respective owners.

Considering the importance of the information or service in question, a practical bio-

metric system is designed to be fast, accurate, easy to use, acceptable by the intended

population, and robust to attacks and fraudulent methods [41, 43]. They also have to

deal with a variety of problems [21], such as:

• Noisy captured data: either resulted by an external factor (voice altered by cold or

eyes covered by sunglasses, for example) or a defective sensor;

• Intra-class variations: variations caused by an interaction with a sensor or due to

external conditions for the same user;

• Inter-class similarities: similarities in the features used to represent a biometric trait

between a large range of different users;

12
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• Non-universality: it may be difficult to extract a particular biometric trait from a

user. For example, people with irregular ridges using a fingerprint-based system.

Among the different biometric modalities, face recognition is a very important one [51].

During the past years, it has gained more attention with improvements regarding quality,

affordability and ubiquity of image-capturing devices (surveillance cameras, mobile phone

cameras), the many possible commercial uses, not only in security (e.g., to authenticate the

smartphone owner in payments [25, 61, 62, 65]), but in other areas such as entertainment

(e.g., video games and human-computer interaction) [96] and the huge amount of images

available in social networks. Boosted by this large volume of images, powerful statistical

models that otherwise struggled with the lack of data have not only become viable, but

also were able to improve the robustness of visual systems to noise and variation, such

as illumination, pose and occlusion [82]. In this work, we build upon one of such models:

deep neural network, which has already been applied in the face recognition pipeline for

tasks like face detection [63], alignment [78] and verification [16, 38].

With mobile and wearable devices becoming cheaper and more popular [6, 60], face

recognition systems are being integrated into them in a wide range of tasks. A growing

number of applications uses face recognition to analyze and interpret the user’s actions,

intentions and/or behaviors, acting according to some person’s preferences or state of

mind [67]. For example, through facial expressions, it is possible to identify if the user is

confused, happy or impatient and take that into account when presenting information on

the screen.

Although the capabilities of mobile devices have been growing in past years, it is

necessary to bear in mind their limitations when designing applications for them [14].

They have limited processing power that may not be sufficient to run many complex

vision and pattern recognition algorithms, as well as a small memory space that may not

be suitable to store several face features of high dimensionality. Despite all these resource

limitations, we still desire to have a fast and accurate face recognition system, that does

not consume too much energy, since these devices run in low-powered batteries [14].

Nonetheless, research and design aimed at the mobile environment are not only about

limitations and drawbacks; it also has some unique characteristics that can be explored

when implementing such a system. For example, unlike some technologies, mobile devices

are usually single-user which means that, even though usage behavior depends on the

owner profile [24], in most cases we can approach face recognition as a verification task,

rather than identification. We could also leverage from this by collecting new face pictures

from its user regularly, improving the system’s ability to recognize the device owner.

In this work, we design a set of techniques for verification on mobile devices that uses

selfie images to authenticate, i.e., self-portrait pictures usually taken with a smartphone

camera that have become very popular in past years. Fig. 1.1 shows examples of selfies

and possible variations in illumination, pose and occlusion present in them. Alongside

with a deep learning approach, we use traditional techniques as complementary tools, and

also as a way to extract specific information of the device owner.
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IV. Since mobile devices are usually single-user, would user-specific information improve

our solution?

(i) If so, how should we incorporate it to our method?

1.2 Contributions

This master’s thesis introduces a number of contributions to different aspects of facial

recognition and deep learning targeted to the mobile environment:

• We propose a facial authentication method that combines hand-crafted and deep

learning features. The process consists of a two-tier solution based on a set of user-

specific classifiers trained locally in the mobile device and on a group of pre-trained

classifiers to determine if two face pictures belong to the same person or not.

• We present a mobile-tweaked Convolutional Neural Network (CNN) architecture,

adapted from VGG network [64], resulting in a model up to 16 times smaller and

4 times faster than VGG. Besides the architectural details, we also discuss the

decisions taken during its design to aid reproducibility.

• As a way to better adapt our method to images with different characteristics that

those present during training, we propose a technique to automatically learn the

acceptance threshold of a classifier of our solution based on the face images provided

by the user.

• A public dataset composed of selfie pictures with different acquisition conditions

regarding illumination and head pose. The dataset comprises 56 identities and 2873

images, and is one of the first in literature to focus on selfies for authentication.

1.3 Thesis Organization

The face recognition problem has been extensively addressed in different perspectives and

approaches and is one of the most active topics of interest in computer vision [12]. How-

ever only recently there has been an effort to propose techniques that take into account the

mobile environment’s characteristics. Therefore, in order to better contextualize this the-

sis, in Chapter 2 we present a summary about the methods and techniques that we based

this work on, while also discussing previous researches, pointing out their characteristics

and relevance to the proposed system.

We describe in Chapter 3 the dataset proposed for this research, comparing them to

others available in the literature, and also how we evaluated our results. In Chapter 4, we

go in depth with each key aspect of the proposed solution. We discuss in Chapter 5 the

experimental results and the impact of each component presented in Chapter 4. We also

compare the solution with state-of-the-art methods and analyze their performance on the

proposed dataset. Finally, we compile the contributions and experimental findings of this

thesis in Chapter 6, outlining new directions to guide this work in the future.



Chapter 2

Background

Several psychophysics and neuroscience studies have been trying to answer questions

related to face recognition [96], such as “Is face recognition a dedicated process?”, or “Is

face perception the result of holistic or region-based analysis?”. This kind of question

is important when studying and proposing computational methods for face detection

and recognition. In fact, hints to answer them can be observed in the literature by the

study of holistic, region-based, and hybrid approaches. Before diving into the proposed

method, it is important to explore the concepts upon which we built our solution. In this

chapter, we begin by presenting a general authentication pipeline, as well as some of the

traditional techniques based on hand-crafted features applied to this task. We follow with

a discussion about state-of-the-art researches using CNNs to tackle this problem and the

efforts to integrate these solutions into the mobile environment.

2.1 Authentication pipeline

To perform face authentication in mobile devices, besides taking into consideration re-

source limitations, it is necessary to consider two tasks: face detection, which consists of

localizing a face in an image; and face verification, which is, given an image containing a

face, determining if they belong to the device owner.

A face verification pipeline consists of two main modules: enrollment, which is the

acquisition of biometric features (in this case, images of the face) of a user; and the

authentication itself, which compares the current acquired biometric trait with the ones

previously acquired, and determines if they belong to the same person.

In the enrollment process (Fig. 2.1a), the user acquire one or more images with the

mobile camera, then the system detects the face in each image, and extracts and stores

features of each face. In the authentication process (Fig. 2.1b), the user, who wants to

have access to the mobile phone, uses the mobile camera to acquire one image of one’s

face, then the system detects the face in the image, extracts the same type of features

of the face, and performs a matching algorithm to compare the incoming feature vector

with the ones previously stored, granting access if the person is the owner.

Automatic face detection is the foundation of all applications revolving around facial

image analysis. The literature on face detection is rich and dates back 50 years. Nowadays,

16
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subspaces are concatenated into a feature vector of size 192, that is further whitened by

scaling each dimension to have a sample standard deviation of one on the training set.

2.3 Deep visual representations

Deep visual methods differs from feature engineered ones by introducing hierarchically

learned representations, i.e., the ability to build complex concepts out of simpler ones,

without depending completely on hand-crafted features. They are inspired by the biology

of the mammal brain, organized in a deep architecture [3], where each level of abstraction

corresponds to a different area of the cortex. The brain uses multiple hierarchical stages,

specially in the visual system, to process perceptive information [75]. Fig. 2.5 shows how a

deep learning model can build the concept of an image of a person, using simple concepts

like edges and contours, learned directly from the raw pixels. Because of it, these deep

visual representations are also called data-driven representations.

The architectures used in recent researches [17, 40, 48, 64] are composed of stacked

layers, where each one of them receives information from the layer below, process it,

and passes new stimulus to the layer directly above. The biologically-inspired intuition

is that, as information flows through the network, each layer is able to come up with

more complex concepts. Usually layers perform a sequence of operations: (a) linear

filtering followed by nonlinear activation, modeling the simple cell behavior, (b) local

pooling, modeling the complex cell behavior, and (c) local normalization, representing

the competitive interactions among neurons. A number of parameters is necessary to

determine the architecture of the network. They are called hyperparameters and are

essential to achieve good performance. Some of them are: which filters should be used

and in what order; the number of layers and how they are connected, etc.

Another important step in a deep architecture is the training procedure of the network,

usually performed with back-propagation [72]. The technique determines the weights of

the connections in the network by iteratively forward-propagating an input and comparing

the actual output to the desired one. Trying to minimize the difference between the two

outputs, this value is, then, propagated backwards and the weights are adjusted accord-

ingly. Until the early 2000s, it was believed to be too difficult to train deep multi-layer

neural networks [4]. Empirically, deep networks were outperformed by neural networks

with a couple of hidden layers [84], possibly because gradient-based optimization initial-

ized with random parameters got stuck near poor solutions [4]. However, in 2006, Hinton

et al. [34] presented a greedy layer-wise unsupervised learning algorithm, using restricted

Boltzmann machines, capable of speeding up the training of deep networks and achieving

good results in handwritten digit recognition. Following the same line of research, other

works [4, 37] explored variations of Hinton’s method and its limitations.

Despite the advances in training, early 2000s face recognition datasets [10, 69, 57]

were small and their images were captured in constrained conditions, with little varia-

tion in lightning, head pose, facial expression and occlusion. As a result of that, deep

architectures still struggled with the lack of data, limiting their depth and number of

parameters.
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were designed to simplify, reduce and/or speed up existing architectures and techniques.

A fairly popular research line is referred as model compression, where a CNN model

is compressed in a lossy process, decreasing model size while trying to maintain accuracy.

Methods that fall in this line date to 1989, when LeCun et al. [49] proposed Optimal Brain

Damage, an approach to remove weights from a neural network with the least impact in

accuracy, determined by the second derivative of the objective function regarding each

weight.

Inspired by [22], Denton et al. [23] argued that lower convolutional layers of deep CNNs

are over-parametrized, i.e., they have a lot of redundancy that can be eliminated with

almost no accuracy loss. Using single value decomposition they were able to transform

weights matrices into a more computation and storage efficient representation.

Han et al. [31] proposed Network Pruning, replacing weights below a certain threshold

with zeroes to form a sparse CNN, reducing the number of parameters of AlexNet by a

factor of 9x and VGGNet by 13x, with no significant accuracy loss in both models. Deep

Compression [30], an extension of the previous work, combined the last approach with

quantization and Huffman encoding, decreasing the storage requirements of AlexNet by

35x and VGGNet by 49x.

Although model pruning and compression achieves interesting results, working with

sparse CNN, quantization and encoding is not often supported by CNN libraries, such as

Caffe [44], or may even require specialized hardware [30]. Considering this, Li et al. [50]

proposed to prune filters instead of weights, indicating that it is a more structured way to

prune, does not induce sparsity and is directly related to speed ups, since smaller feature

maps means less matrix multiplications. For a given set of 2D filters of a convolutional

layer, the selected filter to be pruned is the one that minimizes the sum of its absolute

weights. This value gives an expectation of the magnitude of the output feature map, so

a filter with a low sum contributes less to the overall performance of the network than

the others from the same layer.

Other researches go in the line of designing compact and efficient network architectures,

already tweaked to the limitations of low-powered devices. Bondi et al. [5] analyzed the

resources used during the inner steps of the L3+ architecture [18] and were able to propose

optimizations, bearing in mind the ratio between accuracy and consumed energy. The

authors reduced by 94% the average energy consumption, while maintaining an accuracy

rate of 86.73% with 1.06 seconds of processing time per image. Although in this research

we used a deeper and more complex architecture than L3+, many of the insights from

Bondi et al. were relevant in our designing process.

An architecture specially relevant to this work is SqueezeNet [40], which uses the

concept of a repeatable block of layers from [80]. To constrain the number of parameters

in the CNN, the authors propose to replace most of 3×3 filters with 1×1 — since the latter

have 9x less parameters — and, in case of a layer with 3×3 filters, decrease the number of

channels of the input map — which is directly related to the total parameters in that layer.

Besides that, they argue that higher accuracy can be achieved by delaying downsampling

(commonly performed with pooling or convolutions with stride > 1) to a late stage in the

network. This last decision is also reinforced by work of He and Sun [32] that compared

different CNN architectures and design choices under a time constraint. Considering these
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hyperparameters α and ρ that limit the width and spatial resolution of each layer. While

the former determines the number of output channels of each layer, by altering the number

of convolutional filters; the latter limits the spatial resolution of the input images and,

consequently, each layer’s input. The authors analyze how these hyperparameters affect

accuracy, number of parameters and performed operations, and they apply diverse network

setups in different image recognition problems, comparing to state-of-the-art and pointing

out the accuracy-performance trade-off. In the architecture proposed in our work, we

apply a similar strategy of reducing the spatial resolution of each layer, by forwarding

a smaller image to the network, in order to greatly decrease the number of operations

performed by each layer.



Chapter 3

Datasets and Evaluation Protocol

Naturally, for a complex problem such as the one we tackl in this work, training data

is pivotal for the success of the research. Training complex deep neural networks often

requires huge quantity of data [74, 80, 82], representing a great number of identities

in diverse capture conditions, such as illumination, hairstyle, occlusion, facial pose and

expression. Although there are many publicly available datasets [39, 46, 68, 93], none

of them is focused on selfie images. In this work, we have used four datasets: RECOD

Selfie Dataset, Motorola Selfie Dataset, Unicamp Video-Based Attack Database, Oulu-

NPU database. Examples of each dataset are presented in Fig. 3.1 and Fig. 3.2 and each

image had its face detected and normalized as described in Section 2.1.

3.1 RECOD Selfie Dataset

The RECOD Selfie Dataset (RCD) is a public dataset1, created during this research. It

is formed by videos of 56 identities, filmed by themselves by pointing the frontal camera

of a mobile device to their faces and recording videos of approximately 30 seconds. The

videos were captured in outdoor and indoor environments, with different illumination

conditions, as well as varying head pose and facial expression. The dataset was collected

at University of Campinas (Unicamp), with the participation of members of its commu-

nity. Because capturing biometric data and making it available involve ethical aspects,

the project was sent to Unicamp’s Institutional Review Board, being approved under pro-

tocol CAAE 53035216.6.0000.5404. From these videos, we extract one frame per second,

totalizing 2, 873 images, where most of them have 1080x1920 resolution, while a minority

has 480x640.

3.2 Motorola Selfie Dataset

The Motorola Selfie Dataset (MOT) is a private dataset, created in cooperation with

Motorola company. It consists of videos from 49 identities, captured in the same setup of

RCD. From these videos, we extract one frame per second, totalizing 4, 900 images.

1dx.doi.org/10.6084/m9.figshare.5427142
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for training, validation and test with no identity overlap.

In this research, we used the real access videos from OULU’s Training and Develop-

ment sets, totaling 35 identities and 630 videos, from which we extracted around 4 frames

per second of each video.

3.5 Datasets summary

In this work, combining all datasets, we have worked with 564 identities, totaling 27, 817

images in a wide range of illumination, background, hairstyle, facial pose and expression.

Table 3.1 presents a summary of the four datasets used in this research.

Table 3.1: Datasets summary.

Dataset Identities Images Pairs
Sessions
per User Capture Device

RCD 56 2, 873 262, 164 2 Smartphones
MOT 49 4, 900 917, 216 13 Smartphones

UVAD [70] 404 7, 871 146, 326 2 Digital Cameras
OULU [8]2 35 12, 173 4, 222, 188 3 Smartphones

Total 564 27, 817 5, 547, 894

As will be explained in Section 4.2, we have also built pairs with pictures pertaining

to the same identity (positive pairs) and the same number of randomly selected pairs of

images from distinct identities (negative pairs). We further organize the datasets into

identity-disjoint train, validation and test sets. In order to verify generalization of the

proposed method, the datasets were split in a way that allows cross-dataset experiments,

as presented in Table 3.2.

Table 3.2: Train, validation and test sets.

Dataset Set Identities Images Pairs
MOT Train 49 4, 900 917, 216

UVAD [70] Train 404 7, 871 146, 326
OULU [8] Train 20 6, 965 2, 419, 628

RCD Validation 14 575 34, 382
RCD Test 42 2, 298 227, 782

OULU [8] Test 15 5, 206 209, 226 3

3.6 Evaluation protocol and metrics

Seven metrics that emphasize different aspects of a desirable solution were used for evalu-

ation. We have specific objectives for three of them that we aim to achieve while designing

our solution:
2We have only used Oulu-NPU’s Training and Development (referred here as OULU-Test) sets.
3Due to time restrictions, only a randomly selected subset of pairs generated from OULU-Test set was

used in our experiments.
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• True Positive Rate (TPR) indicates how well a method is in authenticating the

device owner. A true positive (TP ) occurs when an owner’s image is rightly classi-

fied. We aim for a TPR above 90%, which means the owner will have his or

her access to the device wrongly denied once for each 10 attempts. This metric is

given by Equation 3.1, where |TP | is the number of true positives and Nowner is the

number of verification attempts made with an owner’s picture.

TPR =
|TP |

Nowner

(3.1)

• True Negative Rate (TNR) indicates how well a method is in denying access to

an intruder. A true negative (TN) happens when an intruder’s picture is rightly

classified as not being from the device owner. We aim for a TNR above 99%,

which means an intruder would be allowed access once for each 100 attempts. This

metric is calculated by Equation 3.2, where |TN | is the number of true negatives

and Nintruder is the number of verification attempts made with an intruder’s picture.

TNR =
|TN |

Nintruder

(3.2)

• Authentication time in mobile device is also crucial to assess a good solution.

For this metric evaluation, we used two smartphones: Motorola X Force, with 3GB

RAM and Android 6.0.1 (Smartphone A) and Motorola Moto Z, with 3GB RAM

and Android 7.1.1 (Smartphone B); and aimed for our method to take around

1 second to authenticate or deny a face image on them.

The following four metrics are used as comparative measures between two methods or

CNN architectures, serving as secondary evaluation metrics in this work:

• Accuracy (ACC) indicates the overall performance of a method regarding true

positives and true negatives. It is given by Equation 3.3, with |TP | being the

number of true positives, |TN | being the number of true negatives and N is the

number of verification attempts.

ACC =
|TP |+ |TN |

N
(3.3)

• Number of multiplication and addition operations in a CNN layer is related

to its input and output sizes as well as the nature of the operation it performs. A

comparison between the total amount of multiply-add operations of two architec-

tures is a hardware-independent manner to estimate which one is faster.

• Number of parameters in model is related to the memory consumption during

training and testing of a CNN. The more parameters it has, the bigger its model

and the activation maps will be.

• Model size in memory is also important since mobile devices have limited memory

space available.



Chapter 4

Methods

We propose a facial recognition method that consists of a two-tier solution tailored for

the mobile environment, whose outline is illustrated by Fig. 4.1. Firstly, we use a set of

user-specific classifiers tweaked to identify the owner’s face pictures with a high confidence

level. These classifiers are trained using two hand-crafted features — HOG and LRPCA

— extracted from input face pictures. Since both features are fast to extract and the

classifiers are trained with user-provided images, we seek high true positive rate without

consuming too much time.

The second step consists of a group of classifiers trained to assess if a pair of faces

belongs to the same identity or not. Each pair consists of the image being verified and

one belonging to that user’s gallery. We use two classifiers trained on HOG and LRPCA

features separately and also a CNN trained on a combination of both images from each

pair, that we called hybrid image. Based on the score and an acceptance threshold of each

classifier, the user is authenticated or not.

We constantly check our phones for new messages and notifications [53], implicating

that most authentication attempts are made by the device owner. Considering this,

the proposed method must be fast and accurate for these frequent cases, however it is

acceptable to take more processing time to deny an intruder in case he or she tries to

authenticate.

We translated these ideas by having a fast 1st tier, whose confidence score is tested

against two thresholds, one higher than the other. In case its score surpasses the high-

est threshold, the user is automatically authenticated; if the score is in between both

thresholds, our method is not fully confident that the image belongs to the user, so we

follow to the 2nd tier; whereas if the score is below the lowest threshold, access to the

device is denied. In the 2nd tier, although more accurate, the fusion of hand-crafted and

data-driven methods takes more time to process an input, so it is desirable to avoid this

tier when possible.

Recent researches regarding CNNs have aimed to improve accuracy usually by making

the network deeper and more complex [76, 79, 81]. However, this means bigger and more

expensive models unfeasible to be used inside a smartphone. In this thesis, we propose

a new CNN architecture, called Hybrid Fire Convolutional Neural Network (HFCNN),

suitable for the mobile environment.

Also, as a way to better adapt the method to each user’s unique face characteristics,
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— we wish to capture, using mostly the same features, different but complementary

characteristics that together with the 1st tier improve overall recognition.

For this step, we have created pairs of images from the datasets. Each positive pair

is composed by selecting two distinct images from the same identity, while a negative

pair consists of two images from distinct identities. In order to have a balanced training,

we randomly select among the negatives pairs — since their quantity is substantially

greater — the same number of pairs as the positives. Within each pair, the first image is

considered to be the probe, while the second is the reference. If instead of one reference

we need to simulate a gallery with n images, then n photos are randomly selected among

the ones depicting the reference’s identity to compose the gallery tuple.

Since the training process of both hand-crafted and data-driven classifiers does not

use device owner’s pictures, it is done outside the mobile device. This allows us to use

more complex and powerful models in this tier, that would not be possible if we resorted

to in-device training.

4.2.1 Multiview hand-crafted classifiers

Once the enrollment is completed, the device owner will have a gallery of selfies in dif-

ferent views, i.e., similar photos with small variations in head pose, facial expression and

illumination conditions. During the authentication we leverage from multiple views by

comparing a probe to as many gallery images as possible, in what we refer as a multiview

comparison. As the gallery increases in size and diversity, the method will have more

information to authenticate or reject a new picture. Considering this, we build pairs of

images, consisting of the probe and each image from the gallery.

To construct a feature vector Fpair for a pair of face images, feature vectors F1 and

F2 are first extracted for each image of the pair. Then, the module of the difference and

element-wise product of F1 and F2 are concatenated:

Fpair = [|F1 − F2|, F1 ◦ F2]. (4.1)

During training, considering a dataset of face images D = {I1, . . . , In}, we compute a

set of pair feature vectors Strain = {Fxy|Ix, Iy ∈ D, x 6= y}. Note that if Ix and Iy depict

the same person, then Fxy is labeled as positive, and negative otherwise.

The set Strain of pair feature vectors is used as input to a Logistic Regression classifier

(LogReg), in order to learn a model able to make a prediction as to the probability of the

input being positive.

The logistic regression is defined as

y = w0 + w1x1 + w2x2 + . . .+ wnxn, (4.2)

where w1, . . ., wn are the coefficients to be optimized, w0 is the bias, and x1, . . . , xn are the

components of one training sample Fxy. The output y is transformed into a probability

using the logistic function:

p = 1/(1 + e−y). (4.3)
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4.2.2 Hybrid image and data-driven classifier

In literature, face recognition is usually approached as a multi-class problem, where a face

image is assigned to one of many classes, each representing an identity. Thus, if we wanted

to use a CNN for a pair of images, we would use the network as a feature extractor and

feed it each image of the pair, construct the feature vector for the pair, and then train a

classifier on top of it. The idea behind this is that, besides capturing patterns regarding

each identity, the network’s features also have information on how to separate general

identities.

On the other hand, face verification is a binary problem, seeking to answer if two

pictures depict the same person or not. A common data-driven approach in literature is

to use CNNs with siamese networks [9], where each image of a pair is fed to the network

that outputs feature vectors in a projection space where distances relate to identity simi-

larity [36, 74, 80]. Besides learning the structural characteristics relative to faces, during

training the network is optimized taking into account how the feature vectors are posi-

tioned in the projection space, i.e., trying to approximate vectors from the same identity

and distancing the ones from different individuals.

However, in a resource-limited environment such as the mobile device, we want to limit

the number of forward passes in a network without sacrificing accuracy. In this sense, we

cannot use the multiview comparison from Section 4.2.1, since it implies multiple passes

through the network.

Therefore, as a way to limit the amount of processing done by the network, but also

to leverage from the user’s gallery, we propose hybrid images. We combine in a single

image the information regarding the probe and the gallery, as illustrated in Fig. 4.4. For

a probe Iprobe and a gallery of n face images G = {Igal1 , . . . , Igaln}, the input of the CNN

is constructed as:

• Transform Iprobe and each image of G to grayscale: I ′probe and G′ = {I ′gal1 , . . . , I
′

galn
};

• Create the average image I ′AV G for the grayscale gallery G′, where:

I ′AV G =
n∑

i=1

I ′gali
n

. (4.6)

• Create a single-channel image IZ filled with zeroes with the same dimensions of

I ′probe and I ′AV G;

• Stack three channels (I ′probe, I
′

AV G, IZ) to form the input.

Hybrid images are used as inputs to train the CNN whose architecture and training

are discussed in Section 4.3. A softmax layer at the CNN’s end outputs the probability

pHFCNN of a hybrid image representing the same identity.
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Table 4.1: VGG-Face Architecture.

Layer Input Size
Filters

(number / size)
Million

Multiply-Add
Thousand

Parameters
conv1_1 3×224×224 64 / 3×3 86.7 1.73
conv1_2 64×224×224 64 / 3×3 1, 850 36.86
conv2_1 64×112×112 128 / 3×3 924.84 73.73
conv2_2 128×112×112 128 / 3×3 1, 850 147.46
conv3_1 128×56×56 256 / 3×3 924.84 294.91
conv3_2 256×56×56 256 / 3×3 1, 850 589.82
conv3_3 256×56×56 256 / 3×3 1, 850 589.82
conv4_1 256×28×28 512 / 3×3 924.84 1, 180
conv4_2 512×28×28 512 / 3×3 1, 850 2, 360
conv4_3 512×28×28 512 / 3×3 1, 850 2, 360
conv5_1 512×14×14 512 / 3×3 462.42 2, 360
conv5_2 512×14×14 512 / 3×3 462.42 2, 360
conv5_3 512×14×14 512 / 3×3 462.42 2, 360

fc6 512×7×7 40962 102.76 102, 760
fc7 4096×1×1 40962 16.78 16, 780
fc8 4096×1×1 26222 10.74 10, 740

Total 15, 478.76 144, 994.33

Training a neural network from scratch requires a huge amount of images and time,

therefore it is a common practice to fine-tune a model initialized with weights trained in

a similar domain [95]. Since early layers learn low-level features, such as edges and color

blobs, that usually are common to most image processing tasks, the fine-tune process can

skip directly into optimizing the weights of deeper layers for more specialized concepts.

This is also done by setting smaller learning rates for layers at the beginning of the

network, that are increased at the final layers or the ones being trained from scratch.

This research’s initial explorations with a data-driven method were done with VG-

GFace network [64], whose architecture is depicted in Fig. 2.7. Considering its impressive

results in facial recognition, we used the model’s weights as initialization for our architec-

ture. As a starting point, we altered the last fully-connected layer to reflect the binary

verification problem and we measured1 the number of parameters and multiply-add op-

erations for each convolutional and fully-connected layers. These statistics, exposed in

Table 4.1, gave us information about the resource consumption of each layer and pointed

us to possible layers that could be removed or altered in order to achieve a lighter network.

We opted to modify the layers at the network’s end instead of the ones at the beginning,

in order to preserve most of VGGFace initialization weights as possible. An alteration,

for example, in the number of filters of conv4_1 layer would require to train from scratch

all subsequent layers (conv4_2 to fc8).

1The number of multiply-add operations and parameters was measured using Netscope [29].
2 Fully-connected layers are a special case of convolutional layers, where the size of the filters matches

the size of the input data.
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Table 4.2: Fire module hyperparameters for an image of size 224×224.

Layer Type
Input
Size

Filters
(number/size)

Output
Size

Thousand
Parameters

Million
Multiply-Add

squeeze1x1 Conv 512x14x14 64 / 1×1 64x14x14 32, 768 6.42
relu_squeeze1x1 ReLU 64x14x14 - 64x14x14 - -

expand1x1 Conv 64x14x14 256 / 1×1 256x14x14 16, 384 3.21
relu_expand1x1 ReLU 256x14x14 - 256x14x14 - -

expand3×3 Conv 64x14x14 256 / 3×3 256x14x14 147, 456 28.90
relu_expand3×3 ReLU 256x14x14 - 256x14x14 - -

concat Concat 2x256x14x14 - 512x14x14 - -
Total 196, 608 38.53

With this in mind, the first set of modifications was to remove fully-connected layers.

Although responsible for only 0.8% of multiply-add operations, they account for 90% of the

model’s total parameters. Instead of fully-connected operations, recent architectures [52,

40] make use of global average pooling. Besides acting as a regularizer, which makes the

network less prone to overfitting, it impels correspondence between previous convolutional

layer’s feature maps and each category.

As we move deeper in the architecture, the number of parameters in the convolutional

layers increases, due to the increase in the number of filters being learned. Once the

fc8, fc7 and fc6 are removed, all three conv5 layers account for 48% and 9% of the

remaining parameters and multiply-add operations respectively. Besides that, they are

responsible for learning most high-level concepts related to identities of VGGFace target

domain, which are not appropriate to differentiate identities present in hybrid images.

We removed conv5 layers replacing them with Fire modules from SqueezeNet [40]. The

addition of these modules serves not only to compensate the huge quantity of removed

parameters that would naturally decrease model accuracy, but also to add depth to the

network without greatly increasing the parameter count. We present in Table 4.2 the

Fire module hyperparameters used in our work, while Fig. 4.5 depicts how each layer is

organized inside a module.

In order to reduce the number of operations performed by the network, we follow a

similar strategy to MobileNets [36]. Rather than directly altering hyperparameters, we

feed smaller hybrid images to the network. By reducing each dimension of the network’s

input image by half, the internal maps also shrink by same ratio, thus decreasing the

amount of performed multiply-add operations. When the HFCNN is fed with a 224×224

image, the Fire’s internal activation maps are of size 14x14, decreasing to 7×7 when a

112×112 input image is used. Consequently, the number of multiply-add operations falls

from 38.53 million to 9.63 million (Table 4.4).

A simplified outline of Hybrid-Fire Convolutional Neural Network architecture is il-

lustrated in Fig. 4.6, whereas Tables 4.3 and 4.4 expose respectively each layer setup and

number of multiply-add operations for inputs of size 224×224 and 112×112.

Besides the proposed alterations, other details related to the architecture, training and

testing procedure, and deep learning framework also are fundamental in our approach:

• Dropout [77] with rate of 50% was applied on fire6, fire7 and fire8 layers for better

regularization;
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Table 4.3: HFCNN architecture, with correspondent internal maps for input images of
size 224×224 and 112×112.

Image Size
224×224 112×112

Layer
Filters

(number/size/stride/padding)
Input
Size

Output
Size

Input
Size

Output
Size

conv1_1 64 / 3×3 / - / 1 3x224×224 64x224×224 3x112×112 64x112×112
relu1_1 -

64x224×224 64x224×224 64x112×112 64x112×112conv1_2 64 / 3×3 / - / 1
relu1_2 -

maxpool1 - / 2x2 / 2 / - 64x224×224 64x112×112 64x112×112 64x56x56
conv2_1 128 / 3×3 / - / 1 64x112×112 128x112×112 64x56x56 128x56x56
relu2_1 -

128x112×112 128x112×112 128x56x56 128x56x56conv2_2 128 / 3×3 / - / 1
relu2_2 -

maxpool2 - / 2x2 / 2 / - 128x112×112 128x56x56 128x56x56 128x28x28
conv3_1 256 / 3×3 / - / 1 128x56x56 256x56x56 128x28x28 256x28x28
relu3_1 -

256x56x56 256x56x56 256x28x28 256x28x28
conv3_2 256 / 3×3 / - / 1
relu3_2 -
conv3_3 256 / 3×3 / - / 1
relu3_3 -

maxpool3 - / 2x2 / 2 / - 256x56x56 256x28x28 256x28x28 256x14x14
conv4_1 512 / 3×3 / - / 1 256x28x28 512x28x28 256x14x14 512x14x14
relu4_1 -

512x28x28 512x28x28 512x14x14 512x14x14
conv4_2 512 / 3×3 / - / 1
relu4_2 -
conv4_3 512 / 3×3 / - / 1
relu4_3 -

maxpool4 - / 2x2 / 2 / - 512x28x28 512x14x14 512x14x14 512x7x7
fire1 -

512x14x14 512x14x14 512x7x7 512x7x7

fire2 -
fire3 -
fire4 -
fire5 -
fire6 -
fire7 -
fire8 -
conv5 2 / 1×1 / - / - 512x14x14 2x14x14 512x7x7 2x7x7

relu_conv5 - 2x14x14 2x14x14 2x7x7 2x7x7
globalAVG_pool - 2x14x14 2x1x1 2x7x7 2x1x1

softmax - 2x1x1 2x1x1 2x1x1 2x1x1
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Table 4.4: HFCNN parameters and operations for input images of size 224×224 and
112×112.

Million Multiply-Add
Layer Thousand Parameters 224×224 112×112

conv1_1 1.73 86.7 21.68
conv1_2 36.86 1, 850 464.42
conv2_1 73.73 924.84 231.21
conv2_2 147.46 1, 850 462.42
conv3_1 294.91 924.84 231.21
conv3_2 589.82 1, 850 462.42
conv3_3 589.82 1, 850 462.42
conv4_1 1, 180 924.84 231.21
conv4_2 2, 360 1, 850 462.42
conv4_3 2, 360 1, 850 462.42

fire1

196.63 38.53 9.63

fire2
fire3
fire4
fire5
fire6
fire7
fire8
conv5 1.02 0.2 0.05
Total 9, 208.23 14, 270 3, 570
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• During training, layers from conv1 up to conv4 were initialized with VGGFace

weights, whereas Xavier initialization [27] was applied for Fire modules and conv5.

By inspecting the size of the network input, Xavier produces initial weights that

guarantee a signal will remain in a reasonable range of values while being forwarded

in the network;

• Adam [47] method was used to optimize the network. Similar to stochastic gradient

descent (SGD), Adam is a gradient-based optimization method that computes adap-

tive learning rates for each parameter from estimates of first and second moments

of the gradients. As suggested by the authors, we use β1 = 0.9, β2 = 0.999 and

ǫ = 10−8 for its internal parameters that approximate moments.

• We used mini-batches of 256 hybrid images balanced for both classes, shuffling the

training set after each epoch.

• Although the use of pair of images instead of single ones greatly increases the amount

of training pictures, we also used data augmentation to further improve the method’s

robustness to small variations. After normalization, both images of a pair are re-

shaped to 256x256 or 128x128 — depending on desired network configuration —

before hybrid construction. The following augmentations are applied to the resul-

tant hybrid image:

– Crop: during training, each time the optimization visits a hybrid image, a

random position crop of 224×224 (for 256×256 input images) or 112×112 (for

128×128 input images) is performed and fed to the network. However, during

test, the crop is always done in the center of the image.

– Mirror: each training image has a 0.5 probability of being horizontally flipped

before being processed by HFCNN.

• Loss in training and validation sets was registered during optimization. Training was

performed until convergence in validation set or validation loss started to increase

(early stopping).

• The deep learning framework Caffe [44] was used for network definition, training and

experiments. It was selected for its simplicity, the numerous available pre-trained

architectures [87] and for having a stable version ported for Android platform [71];

• All training and experiments were performed in a NVIDIA GeForce TITAN X (Pas-

cal) GPU with 12GB of memory.

4.4 User-specific threshold learning

Defining a probability threshold above which a probe is authenticated is not a trivial

task. Usually choosing a threshold requires balancing the trade-off between TPR and

TNR; a lower threshold means most attempts will be authenticated, increasing TPR at

the cost of lowering TNR, allowing access to intruders. On the other hand, a solution
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with a higher threshold is more rigorous on which images will be authenticated, requiring

a higher confidence that the probe depicts the device owner. Consequently, this reflects in

a TPR decrease — some user’s images will be mistakenly negated — although it reduces

the probability an intruder will gain access to the device, i.e., higher TNR.

All methods implemented in the 2nd tier of our solution analyze pairs of face pictures

and determine if they belong to the same identity and, in contrast to the 1st tier, this

is done without using any information related to the device owner identity. Instead of a

unique threshold for the average of the three probabilities pHOG, pLRPCA and pHFCNN ,

we define a particular threshold associated to each method, in a way to better adjust how

strict or tolerant the final solution is to their individual decisions.

Given the wide range of facial attributes, there might be pairs of identities that are

easier to differentiate and, not only that, as complementary techniques with intrinsic weak

and strong points, a pair may be classified with more confidence by a method than by

other. Additionally, with a limited-sized training, the proposed solution may be deployed

to a device whose owner’s face has completely different characteristics than those present

in training, in which case, a pre-determined set of thresholds may hinder the method’s

performance.

Considering this, we propose a flexible technique to automatically choose the accep-

tance threshold of the 2nd tier classifiers using images from the gallery, balancing both

desired TPR and TNR. This user-specific threshold learning can be performed inside the

mobile device in an offline manner, i.e., when the device is idle, in order to avoid impact

in user experience.

Given the user’s gallery of n face images G = {Igal1 , . . . , Igaln} and a negative gallery

of m face images belonging to different identities O = {Ineg1 , . . . , Inegm}:

• For each Igali ∈ G, construct m sets Si,j using l randomly sampled images from

G− {Igali}, with l < n, i ∈ [1, n] and j ∈ [1,m];

• The positive set P consists of the tuples:

P = {(Igal1 , S1,1), . . . , (Igal1 , S1,m), . . . , (Igaln , Sn,m)}; (4.8)

• Construct n sets Si, where Si consists of all images from G− {Igali}, for i ∈ [1, n] ;

• The negative set N consists of the tuples:

N = {(Ineg1 , S1), . . . , (Ineg1 , Sn), . . . , (Inegn , Sn)}; (4.9)

• Run each tuple of P and N for each 2nd tier method (HOG, LRPCA and HFCNN)

and register their probability;

• For each method, perform a line search for the threshold, maximizing a desired

metric (e.g. accuracy or F-score).
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Results

The complete solution designed in this research is the result of the combination of a series

of smaller, simpler and complementary techniques. In this chapter, we assess the impact

of these individual components, not only to evaluate the whole system’s performance,

but also as a way to examine the possibility of integrating them into other methods or

applying them to other problems.

For most experiments discussed in this chapter, MOT, UVAD and OULU-Train datasets

were used as training sets, while RCD-Test and OULU-Test were test sets (Table 3.2).

We also used RCD-Validation to select the best models when fine-tuning CNNs. The

only experiments that had different data setup were related to the user-specific threshold

learning (Section 5.5). Besides that, within each set, identity pairs and galleries were

constructed following the steps from Section 4.2.

As face detection was not the focus of this work, for experimental purposes, we use

a popular online API1 or a C++ library2, which returns, for a face image, the location

of each eye center. This information is subsequently used for the normalization purposes

exposed in Chapter 2. For the mobile implementation, it is crucial to use a fast local

method to detect faces and, for this reason, we opted for using the already available

Android APIs3.

5.1 Multiview and hybrid images

The multiview approach leverages from the existence of a user’s gallery to improve verifi-

cation. By comparing a probe to all gallery images and averaging the individual results,

it is possible to achieve a better accuracy at the cost of an increased processing time.

In Table 5.1 we explore different multiview setups, varying feature type and number

of gallery images used. For these experiments, we extracted features from each image of

the pair using HOG, LRPCA or VGGFace’s fc8 layer and constructed the final feature

vector by concatenating the absolute difference with the element-wise multiplication of the

individual feature vectors, as explained in Section 4.2.1. We trained a Logistic Regression

classifier with python library scikit-learn [66] on the feature vectors from training pairs,

1http://www.faceplusplus.com/demo-detect/, as of January 2017.
2http://dlib.net/, as of June 2017.
3http://developers.google.com/vision, as of August 2017.

48



CHAPTER 5. RESULTS 49

Table 5.1: Multiview exploration for HOG, LRPCA and VGGFace. Accuracy, TPR and
TNR increase as more gallery images are used for authentication.

RCD-Test OULU-Test

Feature
Size of
Gallery

Accuracy
(%)

TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

HOG

- 81.60 74.30 88.90 81.85 77.27 86.42
3 87.21 81.55 92.88 85.08 80.59 89.57
5 88.70 83.60 93.79 85.43 81.09 89.76
7 89.47 84.73 94.21 85.63 81.24 90.02
10 90.05 85.58 94.52 85.83 81.50 90.15

LRPCA

- 83.05 85.79 80.31 89.23 96.01 82.45
3 89.14 92.37 85.90 92.57 99.00 86.14
5 90.71 94.01 87.40 93.37 99.60 87.14
7 91.50 94.73 88.28 93.70 99.86 87.54
10 92.19 95.37 89.00 93.92 99.96 87.89

VGGFace

- 96.40 94.57 98.23 88.90 83.19 94.61
3 98.07 97.25 98.89 90.06 85.10 95.02
5 98.46 97.92 99.00 90.51 85.90 95.12
7 98.56 98.08 99.05 91.01 86.83 95.18
10 98.69 98.29 99.09 91.57 87.95 95.20

using 10-fold cross-validation to find the best hyperparameter setup. Finally, each testing

pair had its feature vector constructed and classified.

For all three methods, the use of multiple images during testing significantly improves

the performance. However, it also means that for each authentication attempt we will

process a pair for each gallery image used in multiview. This may not be an issue with

HOG and LRPCA since they are considerably faster (in the order of milliseconds), however

processing multiple pairs with data-driven methods may not be possible in a real-time ap-

plication. To avoid this, instead of storing the gallery images, it is preferable to store their

extracted features and, when authenticating, only the probe is processed before building

the multiview feature vectors. However, this may still pose an obstacle in applications

where the gallery needs to be frequently updated.

Considering this, hybrid images offer an advantage and a disadvantage in relation to

multiview. They directly halve the number of forward passes of a network by combining

probe and gallery images into one, saving a lot of processing time for a gallery with several

images. Nevertheless, since they encode pair information, it is not possible to store the

features related to the gallery beforehand and only process the probe at testing time. This

last point has a negative impact on multiview’s efficiency and, in order to circumvent this,

we proposed the hybrid image setup from Section 4.2.2, using the probe and the average

image of the whole gallery. In our experiments, we have explored several hybrid image

formulations, obtaining the most promising results with two of them:

• (Probe, Gallery Image, 0): we stack the probe as the first channel, a gallery

image as the second and an image where every pixel has zero value as the third.
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Table 5.2: Hybrid-image exploration for fine-tuned VGGFace and both versions of
HFCNN. The hybrid formulation built with the gallery average image achieves a better
result in most cases while also decreasing the number of forward passes in the networks.

RCD-Test OULU-Test

Architecture
Hybrid

Formulation
Size of
Gallery

Accuracy
(%)

TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

VGGFace
Fine-tuned

(Probe, Gal, 0)
1 84.37 73.22 95.52 86.01 73.88 98.14
10 91.53 83.89 99.17 92.61 85.51 99.71

(Probe, Avg Gal, 0) 10 92.80 87.66 97.94 94.83 91.74 97.93

HFCNN
224×224

(Probe, Gal, 0)
1 88.22 87.58 88.87 87.38 84.46 90.29
10 96.08 95.73 96.42 95.81 97.43 94.20

(Probe, Avg Gal, 0) 10 93.82 90.89 96.76 97.69 96.72 98.65

HFCNN
112×112

(Probe, Gal, 0)
1 85.23 79.53 90.93 86.23 82.31 90.14
10 93.53 90.31 96.76 91.38 88.32 94.44

(Probe, Avg Gal, 0) 10 93.67 89.22 98.11 94.79 92.54 97.05

Since this formulation can be used with the multiview approach, besides reporting

results for a single image, we also experiment with a gallery of 10 images.

• (Probe, Gallery Average Image, 0): as a way to avoid processing multiview’s

multiple pairs, we build the hybrid image by averaging 10 gallery images. This

formulation is the same as the one explained in Section 4.2.2.

We have fine-tuned VGGFace and HFCNN architectures with these types of hybrid

images, using the same setups of dropout, data augmentation and optimization algorithm

explained in Section 4.3. We experimented with HFCNN with both 224×224 and 112×112

input sizes, however HFCNN 112×112 versions had its weights pre-initialized from the

correspondent HFCNN 224×224 model before fine-tuning. We tested the pairs from

RCD-Test and OULU-Test datasets and present the results in Table 5.2.

These experiments reinforce the importance of comparing the probe to more than one

gallery image. Similar to the multiview experiments, the accuracy is improved as more

images are used, either by averaging the scores of 10 hybrid images as well as processing a

single hybrid image built from the average image of the gallery. This is due mostly because

when multiple images are taken into account the influence of intra-class variations — such

as illumination, occlusion, imperfections on face alignment, make-up or facial expression

— are lessened, allowing the method to focus on the characteristics that differentiate two

identities.

Both hybrid formulations have similar performances, with the second setup achieving

a slightly better accuracy in most cases. More importantly, since it average all gallery

images, this formulation allows a single network forward pass despite the gallery’s size,

which is important to reduce processing time.
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5.2 Fusion of hand-crafted and data-driven features for

the 2nd Tier

In Table 5.3, we explore different combinations of the methods employed in the 2nd tier in

order to assess their overall importance to the solution. The fusion result is the majority

vote of the decision of each individual method (using a default threshold of 0.5) that a

probe belongs to the identity depicted in the gallery. For efficiency purposes, we have

selected HFCNNs versions trained with hybrid images constructed with the average of

a gallery of 10 images, while multiview approach with the same amount of pictures was

used for HOG and LRPCA. We expose in Table 5.4 a time estimate to process a single

image for each individual method.

Table 5.3: Fusion of hand-crafted and data-driven methods. As each feature capture
different facial attributes, their fusion achieves better results than each one separately.

RCD-Test OULU-Test

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

HOG (I) 90.05 85.58 94.52 85.83 81.50 90.15
LRPCA (II) 92.19 95.37 89.00 93.92 99.96 87.89

HFCNN 224×224 (III) 93.82 90.89 96.76 97.69 96.72 98.65
HFCNN 112×112 (IV) 93.67 89.22 98.11 94.79 92.54 97.05

I + II 94.44 92.52 96.36 95.84 97.81 93.88

I + III 94.69 91.25 98.13 97.83 96.74 98.93
II + III 94.73 92.07 97.38 98.37 97.91 98.84

I + II + III 95.49 92.55 98.43 98.28 97.69 98.87

I + IV 94.23 89.78 98.67 94.80 92.41 97.20
II + IV 94.30 90.32 98.27 95.32 93.47 97.17

I + II + IV 95.12 91.44 98.80 95.38 93.52 97.24

Table 5.4: Time analysis for 2nd tier methods for a single image. HOG and LRPCA feature
extraction have the advantage of being very fast, allowing them to process multiple images
per authentication attempt without impacting device usability. Whereas, HFCNN offers
an overall better accuracy, at the cost of a longer processing time.

Processing Time (ms)
Method Smartphone A Smartphone B

HOG 0.34 0.44
LRPCA 0.67 0.98

HFCNN 224×224 4, 567.00 2, 429.10
HFCNN 112×112 1, 153.80 798.40

Besides outperforming pairwise combinations, the fusion of HOG, LRPCA and HFCNN

almost achieves the aimed TPR and TNR (90% and 99%, respectively). Regarding both

HFCNN architectures, it is important to notice, by concomitantly examining Table 5.3
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and 5.4, the trade-off between a better accuracy (fusion with HFCNN 224 × 224) and a

smaller processing time (combining with HFCNN 112×112). However, both architectures

are considerably slower when compared with HOG and LRPCA.

In this sense, to further decrease the processing time of an authentication, it was nec-

essary to either speed up HFCNN or to limit the frequency an image would be processed

by the neural network. In view of the difficulty to make HFCNN faster without compro-

mising accuracy, this motivated us to introduce the user-specific tier, as a preliminary

step to filter the most common authentication cases in practice — i.e., the owner trying

to access his or her device — using only hand-crafted features for efficiency.

5.3 User-specific verification for the 1st tier

Training or fine-tuning a CNN inside a mobile device is a costly and time-consuming task,

besides strongly dependent on the framework or library being used and, because of that,

it is preferable to embed an already-trained CNN to the mobile instead. However this also

implicates that it is not straightforward to adapt the model with specific facial features of

the device owner. Differently, HOG and LRPCA can be used to train a classifier inside the

device, since they are features that are quickly extracted and have low memory footprint.

As a preliminary step to filter which images will be analyzed by the 2nd tier, we

explored inside-device training of classifiers with hand-crafted features. Instead of tackling

the pairwise "same identity or not" task, we use the owner’s gallery built during the

enrollment to train a user-specific single-image classifier; i.e., to determine if a probe

depicts the device owner or not. Aside from the enrollment gallery, referred as the positive

gallery, a negative gallery consisting of face images from different people was embedded

into the mobile device to be used in training.

It is important to note that, in order to forward as few images as possible to the 2nd

tier, this step must be able to correctly classify the most common authentication scenario;

which, in a single-user mobile device, would be the owner trying to access his or her own

device. Therefore, we want this step to have a high TPR.

For this experiments, we randomly sampled a negative gallery from the images of MOT,

UVAD and OULU-Train. For each pair of RCD-Test and OULU-Test, we considered its

gallery as positive images and trained a linear SVM. Once trained, the probe of the

pair was classified. Every experiment was performed 20 times — each one with a new

negative images — and the annotated accuracy, TPR and TNR is the average among

them. These steps were repeated using pairs from RCD-Validation in order to find the

best hyperparameters for the SVM.

In Fig. 5.1, we explore how the size of the gallery affects the performance of the

classifiers, varying from 3 to 10 images per gallery. We chose to limit to a 10-image

gallery, since it is the amount of images being captured during enrollment. Similar to

the multiview experiments (Table 5.1), as the gallery size increases, both methods, and

consequently their fusion, perform better.

Since the setup with 10 images in each gallery achieved the highest TPR, we fixed the

positive gallery size and, in Fig. 5.2, we explored how the user-specific classifiers behaved
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Table 5.5: Results for the complete 2-tiered method. We also report separate performances
for each tier and each method within it.

RCD-Test OULU-Test

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

US-HOG 96.73 96.07 97.39 90.26 99.83 80.69
US-LRPCA 94.18 93.43 94.93 91.19 99.78 82.59

1st Tier only 97.04 96.14 97.94 91.14 99.82 82.46

HOG 90.05 85.58 94.52 85.83 81.50 90.14
LRPCA 92.19 95.37 89.00 93.92 99.96 87.89

HFCNN - 112×112 93.67 89.22 98.11 94.79 92.54 97.05
HFCNN - 224×224 93.82 90.89 96.76 97.69 96.72 98.65

2nd Tier only
112×112 95.12 91.44 98.80 95.38 93.52 97.24

2nd Tier only
224×224 95.49 92.55 98.43 98.28 97.69 98.87

2-Tiered Method
112×112 96.51 93.39 99.63 98.26 99.65 96.86

2-Tiered Method
224×224 96.73 93.88 99.58 98.48 99.67 97.29

for bigger negative galleries. As the training involves more negative samples, the SVM

decision boundary is moved to better separate the negative class, however allowing some

positives to be incorrectly classified.

Considering we aim at the highest TPR possible in this step, we select the balanced

setup with 10 images in both galleries to compose the 1st tier step.

5.4 2-Tiered method

The components explored in previous sections are combined to form the complete 2-

tiered method. We use the late fusion of user-specific HOG and LRPCA as the 1st tier’s

probability and the majority vote of HOG, LRPCA and HFCNN is used as the 2nd tier’s

decision.

Since the 1st tier (user-specific) acts as a filter step, it is important to define when a

probe should be authenticated or denied by that tier’s classifiers, or it should proceed to

the 2nd tier. This is done by comparing the 1st tier score to two thresholds. If a score falls

above the higher threshold, access to the smartphone is allowed, while if it falls below the

lower threshold, access is denied; finally, if the score is between both thresholds, then the

image is processed by the 2nd tier.

In Table 5.5, we present a summary of the results from the methods that constitute

each tier and the complete 2-tiered method. For these experiments, we have selected a

higher threshold of 0.7 and a lower threshold of 0.5.

Although the 2-tiered method may not improve accuracy, TPR and TNR so much
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when compared to each tier separately, it is important to note the impact of each tier

in the complete method. The 1st tier offers an expressive speed-up, since extracting and

classifying a probe takes in the order of milliseconds, in comparison to the 0.8 second taken

by HFCNN. On the other hand, to achieve a high TPR in this step we have selected the

training set proportions between negative and positive images and have strictly limited

the amount of images used in training. Naturally, just a few samples from each class are

not enough to capture the whole range of facial characteristics from identities distinct

from the device owner, nor to be robust to different capture conditions and alterations

like illumination, head pose or occlusion.

This strongly reinforces the need of a gallery captured in most distinct capture condi-

tions as possible. While RCD and MOT are diverse datasets, OULU-NPU has very little

variation in illumination and head pose, which reflects into homogeneous galleries. Since

we selected MOT images to compose the negative spectrum when training the user-specific

classifier, most samples from OULU’s identities that are different from the classifier’s tar-

get individual present conditions that approximate them to the positive spectrum. This

reflects to a lower TNR for OULU-Test, that is later fixed by the 2nd Tier.

Another important aspect of the 2-tiered method is the higher and lower threshold

selection. They provide a simple way to balance the trade-off between speed, TPR and

TNR. For example, by increasing the higher threshold it is possible to be stricter when

the 1st tier authenticates a probe. This increase false rejections (by lowering TPR), but

decrease false acceptances (by increasing TNR).

Besides security, there is also an efficiency aspect related to threshold selection. They

also control how many images follow to the 2nd tier and how many are automatically

authenticated or denied by the previous step, which directly relates to the overall speed

of the solution. Ultimately, we wish most attempts to be dealt with by the 1st tier, while

the next step only process those near the 1st tier’s decision frontier, where the classifiers

have low confidence. Different setup of both thresholds can be offered as an option to the

device owner, controlling the trade-off between speed and security. In Fig. 5.3, we expose

some threshold setups, the corespondent results for RCD-Test and HFCNN 112×112, and

the percentage of samples processed by each tier. A more complete exploration can be

found in Appendix A for both RCD-Test and OULU-Test.

5.5 User-specific threshold learning for the 2nd tier

The user-specific threshold learning was proposed as a way to adapt the methods to

images with different characteristics than the ones present during training, while also

incorporating information about the device owner into the 2nd tier.

We trained the 2-tiered method with MOT and UVAD datasets, keeping OULU-Train

outside training in order to emulate images with unseen characteristics when testing in

OULU-Test. With the threshold learning setup proposed in Section 4.4, 200 hybrid images

are processed for each testing sample per 2nd tier method, which is very time-consuming

for datasets as big as RCD-Test and OULU-Test. In this sense, we tested with 20% of

each dataset’s samples, randomly selected and balanced for positive and negative classes.
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Table 5.6: User-specific threshold learning. The top block of rows presents information
regarding the 1st tier, that is not affected by threshold learning; the performance of the
2nd tier with and without threshold learning is shown in the middle and bottom blocks
respectively. By learning the 2nd tier acceptance thresholds we manage to adapt individual
methods to the image’s characteristics from OULU-NPU that were not present during
training.

RCD-Test (20%) OULU-Test (20%)

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

US-HOG 96.75 95.90 97.59 90.82 99.88 81.76
US-LRPCA 94.15 93.37 94.93 90.84 99.78 81.90
1st Tier 97.01 96.02 98.00 92.36 99.88 84.85

Without
Threshold
Learning

HOG 90.51 84.47 96.55 77.94 93.64 62.25
LRPCA 92.42 95.94 88.90 63.74 100.0 27.48

HFCNN 112×112 93.44 89.18 97.70 89.74 97.03 82.45
2nd Tier 95.59 93.05 98.14 90.00 98.10 63.89

2-Tiered Method 96.59 93.70 99.48 93.66 99.76 87.57

With
Threshold
Learning

HOG 90.25 86.82 93.68 94.99 98.69 91.29
LRPCA 91.45 88.45 94.45 93.63 99.26 87.99

HFCNN 112×112 88.27 76.75 99.78 93.15 94.41 91.89
2nd Tier 93.50 88.18 98.81 96.86 99.32 94.40

2-Tiered Method 95.55 91.64 99.46 97.67 99.77 95.57

Under these circumstances, we expose in Table 5.6 each tier’s components separately

and their fusion to achieve the tier performance. Furthermore, both tiers are combined

into the final 2-tiered method, that is tested with standard thresholds — a lower threshold

of 0.5 and a higher threshold of 0.7. Since the 1st tier (top block of Table 5.6) is not altered

by threshold learning, it is shared by both versions of the 2nd tier (middle block of Table 5.6

without learned thresholds — using an acceptance threshold of 0.5 for all three 2nd tier

methods — and bottom block with learned thresholds).

When not trained with OULU images, HOG and LRPCA are considerably affected.

However, threshold learning is able to adapt the 2nd tier methods, improving the complete

solution for OULU-Test dataset. For RCD dataset, the threshold learning has negatively

impacted individual methods — in most cases decreasing TPR and slightly increasing

TNR due to how the threshold is selected — but this was lessened by the fusion all

components and the combination with the 1st tier.

5.6 Comparison with existing methods

Many methods in the literature have approached the facial recognition task either in

verification or in identification scenarios. However, only few were focused in the mobile

environment, where it is necessary to ponder other factors besides accuracy. For this

comparison, we have considered:

• 2-Tiered Method: both versions of the proposed method, with HFCNN’s inputs

of size 224×224 and 112×112.
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Table 5.7: Comparison of the proposed 2-tiered method with existing methods proposed
for face recognition in the literature.

RCD-Test OULU-Test

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

2-Tiered Method
112×112 96.51 93.39 99.63 98.26 99.65 96.86

2-Tiered Method
224×224 96.73 93.88 99.58 98.48 99.67 97.29
VGGFace 96.40 94.57 98.23 88.90 83.19 94.61

VGGFace Fine-tuned
(Probe, Avg Gal, 0) 92.80 87.66 97.94 94.83 91.74 97.93

ResFace101 92.76 93.84 91.67 91.30 93.77 88.84

Table 5.8: Time and memory analysis for CNNs

Forward Pass Duration (s)

Architecture
Million of

Multiply-add Smartphone A Smartphone B
Thousand of
Parameters

Model
Size (MB)

HFCNN 224×224 14, 270 4.57 2.43 9, 208 35
HFCNN 112×112 3, 570 1.15 0.80 9, 208 35

VGGFace 15, 468 10.27 3.03 134, 263 553
ResFace101 7, 610 4.31 2.35 64, 060 257
MobileNet 574 1.08 0.34 4, 230 16
SqueezeNet 388 0.23 0.21 1, 230 5
GoogLeNet 1, 600 0.97 0.89 6, 990 51

• VGGFace: we used the network’s fc7 layer as feature extractor. The feature

vector of a pair of images consists of the absolute difference and element-wise mul-

tiplication of the feature vectors of individual images. A linear SVM trained with

it determined the verification outcome. This corresponds to the method presented

in the experiments from Table 5.1 without multiview approach.

• Fine-tuned VGGFace: the network fine-tuned with hybrid images proposed in

Section 4.2.2. This corresponds to the method presented in the experiments from

Table 5.2 with hybrid image consisting of the probe and the gallery average image,

trained with the same protocol as HFCNN.

• ResFace101: a version of the ResNet-101 network, a residual network [33] with

101 layers, fine-tuned for face recognition with CASIA [94] images following the

data augmentation described in [58]. For the verification task, we have followed the

same steps performed with VGGFace, using the network as a feature extractor and

training a SVM with pair’s feature vectors.

In Table 5.7, we present the results for the considered methods for RCD-Test and

OULU-Test images. The method proposed in this work outperforms, or compares to, the

other solutions for both datasets.

We have also chosen state-of-the-art CNNs to compare with the architecture proposed

in this work. We present in Table 5.8 the analysis regarding number of operations, pa-
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rameters, and also time and memory consumption. Although MobileNet, SqueezeNet and

GoogLeNet were designed budgeting number of parameters and operations, they were not

trained for the face recognition scenario. Because of that, we did not included them in

the comparison presented in Table 5.7.

In comparison to VGGFace, the baseline architecture for this research, we have greatly

reduced the number of parameters and performed operations, however HFCNN still need

to be further modified to outperform architectures tweaked for efficiency, such as Mo-

bileNet and SqueezeNet. A step to improve our network would be to exchange the initial

convolutions before the Fire modules to depthwise separable convolutions from Xception

architecture [15], further reducing the number of parameters and operations performed,

but requiring all layers to be trained from scratch.

5.7 Answering research questions

With the proposed methods and the results exposed in this chapter, we are now able to

answer the research questions posed in Section 1.1:

I. Considering the mobile environment’s resource limitations and the com-

putational cost of running a deep network in it, is deep learning a neces-

sary approach for this kind of application?

Although the deep networks explored in this work are less efficient than methods

based on hand-crafted features, as exposed in Tables 5.8 and 5.4, data-driven models

are known to be powerful and robust, capable of overcoming several limitations of

feature engineered representations. Despite the gap in efficiency, in our experiments,

CNNs have achieved better results than HOG and LRPCA classifiers.

II. Is it possible to design a deep learning solution for the face verification

problem bearing in mind the mobile environment’s resource limitations?

Yes, the 2-tiered method proposed in this research performs up to par with VG-

GFace, one of the state-of-the-art methods for face recognition, while greatly reduc-

ing processing time and memory footprint. When compared to other CNNs tweaked

for efficiency, such as MobileNet or SqueezeNet (networks that were not trained for

facial verification), HFCNN is still up to four times slower and its model twice bigger.

However it is definitely a viable architecture for mobile real-time applications.

III. Would a fusion of deep and hand-crafted approaches lead to better ac-

curacy than the methods separately?

Yes, our experiments showed that hand-crafted and data-driven techniques can com-

plement each other and their fusion performs better than those methods separately

for the task at hand.

IV. How many images should a user’s gallery have and in what resolution

should they be?
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Our experiments showed a performance improvement as more images were used,

however it may also imply in increasing processing time (e.g., if we need to process

each multiview pair every time). We used images in 224×224 and 112×112 resolu-

tions and both HFCNN setups had similar performances, although 112×112 version

is 3 times faster.

V. Is it possible to adapt multi-class networks for the binary verification

scenario, without a significant increase in memory and processing time?

Yes, by using hybrid images we were able to encode information of the probe and

gallery images into a single one without increasing time and memory usage. With

this approach, no architectural modification is necessary to adapt a network for the

verification task.

VI. Would user-specific information improve our solution? If so, how should

it be incorporated?

Not only it improved accuracy, but by adding a user-specific classification with

fast-extraction features we were able to manage the method’s bottleneck regard-

ing processing time. In addition to that, learning a user-specific threshold for a

user-independent task, such as "same identity or not" verification, also improved

performance.



Chapter 6

Conclusion and Future Work

In this research, we have proposed a method for facial verification optimized for the mobile

environment. A real-time application in this scenario needs to take into account factors

such as memory usage, unstable connectivity, battery consumption and limited processing

power in order to impact neither its own performance nor the system as a whole.

The designed method consists of a 2-tiered procedure that combine hand-crafted and

data-driven features to verify if the person present in a picture corresponds to the device

owner. The 1st tier employs the fusion of two user-specific linear SVMs trained on HOG

and LRPCA features extracted directly from the user’s gallery images. This training

is done inside the device once the enrollment process is concluded and is focused on

authenticating with a high TPR. Whereas the 2nd tier fuses the results of a CNN and

two logistic regression classifiers trained on HOG and LRPCA features. Contrary to the

previous tier, this step’s techniques aim to check if two images depict the same identity,

without considering information about the device owner. Lastly, we adjust the acceptance

threshold of the 2nd tier’s classifiers with pairs of images constructed with the owner’s

gallery in order to better adjust this last step to his or her characteristics.

One of the main contributions of this work, the Hybrid-Fire CNN architecture was

inspired on VGGFace [64] and SqueezeNet [40] and was able to perform a par with VG-

GFace, but with a model 16 times smaller and 4 times faster. Besides architectural adjusts

thought directly for the mobile environment, HFCNN uses hybrid images that combine

the information of multiple face pictures into one, as a way to limit the necessity of

multiple forward passes. Hybrid images can also be viewed as a simple way to adapt a

multi-class formulation, in our case face identification in a domain with multiple identi-

ties, to a binary verification formulation, identifying if two pictures belong to the same

identity.

In addition to these contributions, we have also collected a new dataset focused on selfie

pictures1. The RECOD Selfie Dataset comprises 2873 images from 56 individuals with

varied capture conditions regarding illumination, head pose, partial occlusion, background

and facial expression.

Many research paths related to what have been done in this work can be explored in

future works. The proposed 2-tiered solution can be extended to the identification task,

1dx.doi.org/10.6084/m9.figshare.5427142
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where we need to relate a probe to a single identity among all present in a database. In

this scenario, it is not viable to compare a probe to the gallery of all possible identities

for a real-time application. In this case, an alternative to decrease processing time would

be to compare the probe with its cohorts, i.e., groups of identities that have similar

characteristics.

Additionally, we would like to further lighten HFCNN architecture by exploring a more

extensive use of depthwise separable convolutions [15], as a mean to decrease the number

of operations performed and consequently speed up the network. Although our model is

considerably small, deep compression and network pruning methods could still be used to

reduce it even more.

Regarding the hybrid image formulation, we believe that it is possible to improve

recognition by adding relevant information to its third channel. Besides that, this formu-

lation can also be applied to other tasks and problems, e.g., composing the hybrid image

with a channel for each of two consecutive frames and information related to their changes

for a video task.

Finally, we would like to explore different ways to compose the gallery, in order to

select — during enrollment or update of the gallery — the most discriminative images

among the full set and discard those that are not useful to the verification.



Bibliography

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary pat-

terns: Application to face recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 28(12):2037–2041, 2006.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces:

Recognition using class specific linear projection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19(7):711–720, 1997.

[3] Y. Bengio. Learning deep architectures for AI. Foundations and trends R© in Machine

Learning, 2(1):1–127, 2009.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy layer-

wise training of deep networks. Advances in neural information processing systems,

19:153, 2007.

[5] Luca Bondi, Luca Baroffio, Matteo Cesana, Marco Tagliasacchi, G Chiachia, and

Anderson Rocha. Rate-energy-accuracy optimization of convolutional architectures

for face recognition. Journal of Visual Communication and Image Representation,

36:142–148, 2016.

[6] Danyl Bosomworth. Mobile marketing statistics 2015. Leeds: Smart Insights (Mar-

keting Intelligence) Ltd, 2015.

[7] Z. Boulkenafet, J. Komulainen, Z. Akhtar, A. Benlamoudi, S. Bekhouche, A. Ouafi,

F. Dornaika, A. Taleb-Ahmed, L. Qin, F. Peng, L.B. Zhang, M. Long, S. Bhilare,

V. Kanhangad, A. Costa-Pazo, E. Vazquez-Fernandez, D. Perez-Cabo, J. J. Moreira-

Perez, D. Gonzalez-Jimenez, A. Mohammadi, S. Bhattacharjee, S. Marcel, S. Volkova,

Y. Tang, N. Abe, L. Li, X. Feng, Z. Xia, X. Jiang, S. Liu, R. Shao, P. C. Yuen,

W. Almeida, F. Andalo, R. Padilha, G. Bertocco, W. Dias, J. Wainer, R. Torres,

A. Rocha, M. A. Angeloni, G. Folego, A. Godoy, and A. Hadid. A competition on

generalized software-based face presentation attack detection in mobile scenarios. In

IEEE International Joint Conference on Biometrics, To appear.

[8] Z. Boulkenafet, J. Komulainen, Lei. Li, X. Feng, and A. Hadid. OULU-NPU: A

mobile face presentation attack database with real-world variations. In IEEE Inter-

national Conference on Automatic Face and Gesture Recognition, 2017.

64



BIBLIOGRAPHY 65

[9] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.

Signature verification using a ’siamese’ time delay neural network. In Advances in

neural information processing systems, pages 737–744, 1994.

[10] AT&T Laboratories Cambridge. The Database of Faces . http://www.cl.cam.ac.

uk/research/dtg/attarchive/facedatabase.html, May, 2017.

[11] Pierluigi Carcagnì, Marco Del Coco, Pier Luigi Mazzeo, Andrea Testa, and Cosimo

Distante. Features descriptors for demographic estimation: a comparative study. In

International Workshop on Video Analytics for Audience Measurement in Retail and

Digital Signage, pages 66–85, 2014.

[12] Rama Chellappa, Pawan Sinha, and P Jonathon Phillips. Face recognition by com-

puters and humans. IEEE Computer, 43(2), 2010.

[13] Giovani Chiachia. Learning person-specific face representations. PhD thesis, State

University of Campinas, 2013.

[14] Kwontaeg Choi, Kar-Ann Toh, and Hyeran Byun. Realtime training on mobile de-

vices for face recognition applications. Pattern Recognition, 44(2):386–400, 2011.

[15] François Chollet. Xception: Deep learning with depthwise separable convolutions.

arXiv preprint arXiv:1610.02357, 2016.

[16] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrim-

inatively, with application to face verification. In IEEE Conference on Computer

Vision and Pattern Recognition, volume 1, pages 539–546, 2005.

[17] D. Cox and N. Pinto. Beyond simple features: A large-scale feature search approach

to unconstrained face recognition. In IEEE International Conference on Automatic

Face and Gesture Recognition, pages 8–15, 2011.

[18] David Cox and Nicolas Pinto. Beyond simple features: A large-scale feature search

approach to unconstrained face recognition. In IEEE International Conference on

Automatic Face and Gesture Recognition, pages 8–15, 2011.

[19] Zhen Cui, Wen Li, Dong Xu, Shiguang Shan, and Xilin Chen. Fusing robust face

region descriptors via multiple metric learning for face recognition in the wild. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 3554–3561,

2013.

[20] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 886–893, 2005.

[21] Kresimir Delac and Mislav Grgic. A survey of biometric recognition methods. In

IEEE International Symposium on Electronics in Marine, pages 184–193, 2004.

[22] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting

parameters in deep learning. In Advances in neural information processing systems,

pages 2148–2156, 2013.



BIBLIOGRAPHY 66

[23] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.

Exploiting linear structure within convolutional networks for efficient evaluation. In

Advances in neural information processing systems, pages 1269–1277, 2014.

[24] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,

Ramesh Govindan, and Deborah Estrin. Diversity in smartphone usage. In ACM In-

ternational Conference on Mobile Systems, Applications and Services, pages 179–194,

2010.

[25] TechCrunch Fitz Tepper. MasterCard launches its ‘selfie pay’ biomet-

ric authentication app in Europe. https://techcrunch.com/2017/09/12/

face-id-is-replacing-touch-id-on-the-new-iphone-x/, September, 2017.

[26] William T Freeman and Michal Roth. Orientation histograms for hand gesture recog-

nition. In International Workshop on Automatic Face and Gesture Recognition, vol-

ume 12, pages 296–301, 1995.

[27] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In International Conference on Artificial Intelligence

and Statistics, pages 249–256, 2010.

[28] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[29] David Gschwend. Netscope CNN Analyzer . http://dgschwend.github.io/

netscope/quickstart.html, June, 2017.

[30] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015.

[31] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and

connections for efficient neural network. In Advances in neural information processing

systems, pages 1135–1143, 2015.

[32] Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 5353–5360,

2015.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 770–778, 2016.

[34] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. MIT Neural Computation, 18(7):1527–1554, 2006.

[35] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580, 2012.



BIBLIOGRAPHY 67

[36] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[37] Fu Jie Huang, Y-Lan Boureau, Yann LeCun, et al. Unsupervised learning of invariant

feature hierarchies with applications to object recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8, 2007.

[38] Gary B Huang, Honglak Lee, and Erik Learned-Miller. Learning hierarchical rep-

resentations for face verification with convolutional deep belief networks. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 2518–2525, 2012.

[39] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces

in the wild: A database for studying face recognition in unconstrained environments.

Technical report, University of Massachusetts, Amherst, 2007.

[40] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer.

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model

size. arXiv preprint arXiv:1602.07360, 2016.

[41] A. Jain, L. Hong, and S. Pankanti. Biometric identification. Communications of the

ACM, 43(2):90–98, 2000.

[42] A. K. Jain, R. Bolle, and S. Pankanti. Biometrics: personal identification in net-

worked society. Springer US, 2006.

[43] A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition.

IEEE Transactions on Circuits and Systems for Video Technology, 14(1):4–20, 2004.

[44] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[45] T. Kanade. Picture processing system by computer complex and recognition of human

faces. PhD thesis, Kyoto University, 1973.

[46] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard. The

megaface benchmark: 1 million faces for recognition at scale. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 4873–4882, 2016.

[47] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.



BIBLIOGRAPHY 68

[49] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D

Jackel. Optimal brain damage. In Advances in neural information processing systems,

volume 2, pages 598–605, 1989.

[50] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning

filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[51] S. Z. Li and A. K. Jain. Handbook of face recognition. Springer-Verlag London, 2

edition, 2011.

[52] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint

arXiv:1312.4400, 2013.

[53] TIME Lisa Eadicicco. Americans Check Their Phones 8 Billion Times a Day . http:

//time.com/4147614/smartphone-usage-us-2015/, June, 2017.

[54] Chengjun Liu and Harry Wechsler. A shape-and texture-based enhanced fisher clas-

sifier for face recognition. IEEE Transactions on Image Processing, 10(4):598–608,

2001.

[55] David G Lowe. Distinctive image features from scale-invariant keypoints. Internatinal

Journal of Computer Vision, 60(2):91–110, 2004.

[56] J. Lu, V. E. Liong, X. Zhou, and J. Zhou. Learning compact binary face descriptor for

face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

37(10):2041–2056, 2015.

[57] Aleix M Martinez. The AR face database. CVC Technical Report, 24, 1998.

[58] Iacopo Masi, Anh Tran, Tal Hassner, Jatuporn Toy Leksut, and Gérard Medioni.

Do We Really Need to Collect Millions of Faces for Effective Face Recognition? In

European Conference on Computer Vision, 2016.

[59] B Miller. Everything you need to know about biometric identification. personal

identification news 1988 biometric industry directory. washington dc: Warfel & miller.

Inc., Washington DC, 1988.

[60] Cisco Mobile. Cisco Visual Networking Index: Global Mobile Data

Traffic Forecast Update, 2016–2021 . http://www.cisco.com/c/en/us/

solutions/collateral/service-provider/visual-networking-index-vni/

mobile-white-paper-c11-520862.html, June, 2017.

[61] TechCrunch Natasha Lomas. MasterCard launches its ‘selfie pay’ biomet-

ric authentication app in Europe. https://techcrunch.com/2016/10/04/

mastercard-launches-its-selfie-pay-biometric-authentication-app-in-europe/,

September, 2017.

[62] Engadget Nick Summers. Mastercard’s ’selfie pay’ comes to Europe. https://www.

engadget.com/2016/10/04/mastercard-online-selfie-pay-europe/, Septem-

ber, 2017.



BIBLIOGRAPHY 69

[63] Margarita Osadchy, Yann Le Cun, and Matthew L Miller. Synergistic face detec-

tion and pose estimation with energy-based models. Journal of Machine Learning

Research, 8(May):1197–1215, 2007.

[64] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition.

In British Machine Vision Conference, volume 1, page 6, 2015.

[65] Saffe Payments. Saffe, your money, your face. http://www.saffe.com.br/, Septem-

ber, 2017.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[67] Alex Pentland and Tanzeem Choudhury. Face recognition for smart environments.

IEEE Computer, 33(2):50–55, 2000.

[68] P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J. O’Toole, D. S. Bolme,

J. Dunlop, Y. M. Lui, H. Sahibzada, and S. Weimer. An introduction to the good, the

bad, & the ugly face recognition challenge problem. In IEEE International Conference

on Automatic Face and Gesture Recognition, pages 346–353, 2011.

[69] P Jonathon Phillips, Hyeonjoon Moon, Syed A Rizvi, and Patrick J Rauss. The

FERET evaluation methodology for face-recognition algorithms. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

[70] A. Pinto, W. R. Schwartz, H. Pedrini, and A. Rocha. Using visual rhythms for detect-

ing video-based facial spoof attacks. IEEE Transactions on Information Forensics

and Security, 10(5):1025–1038, 2015.

[71] GitHub repository. Porting Caffe to Android platform. https://github.com/

sh1r0/caffe-android-lib, June, 2017.

[72] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[73] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet

large scale visual recognition challenge. Internatinal Journal of Computer Vision,

115(3):211–252, 2015.

[74] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified em-

bedding for face recognition and clustering. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 815–823, 2015.

[75] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio. A quantita-

tive theory of immediate visual recognition. Progress in Brain Research, 165:33–56,

2007.



BIBLIOGRAPHY 70

[76] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[77] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[78] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade

for facial point detection. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3476–3483, 2013.

[79] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4,

inception-resnet and the impact of residual connections on learning. arXiv preprint

arXiv:1602.07261, 2016.

[80] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–9, 2015.

[81] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-

jna. Rethinking the inception architecture for computer vision. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[82] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing

the gap to human-level performance in face verification. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 1701–1708, 2014.

[83] Xiaoyang Tan and Bill Triggs. Enhanced local texture feature sets for face recog-

nition under difficult lighting conditions. IEEE Transactions on Image Processing,

19(6):1635–1650, 2010.

[84] Gerald Tesauro. Practical issues in temporal difference learning. Machine learning,

8(3-4):257–277, 1992.

[85] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-

science, 3(1):71–86, 1991.

[86] Berkeley Vision and Learning Center. AlexNet Caffe Model . https://github.com/

BVLC/caffe/tree/master/models/bvlc_alexnet, May, 2017.

[87] Berkeley Vision and Learning Center. Caffe Model Zoo. https://github.com/BVLC/

caffe/wiki/Model-Zoo, May, 2017.

[88] Berkeley Vision and Learning Center. GoogLeNet Caffe Model . https://github.

com/BVLC/caffe/tree/master/models/bvlc_googlenet, May, 2017.

[89] University of Oxford Visual Geometry Group. VGGFace Caffe Model . http://www.

robots.ox.ac.uk/~vgg/software/vgg_face/, May, 2017.



BIBLIOGRAPHY 71

[90] J Wayman. A definition of biometrics. National Biometric Test Center Collected

Works, 1:21–23, 2000.

[91] J. Wayman, A. K. Jain, D. Maltoni, and D. Maio. An introduction to biometric

authentication systems. Biometric Systems, pages 1–20, 2005.

[92] L. Wiskott, J.-M. Fellous, N. Kuiger, and C. Von Der Malsburg. Face recognition by

elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(7):775–779, 1997.

[93] Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in unconstrained videos

with matched background similarity. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 529–534, 2011.

[94] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from

scratch. arXiv preprint arXiv:1411.7923, 2014.

[95] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

[96] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosenfeld. Face

recognition: A literature survey. ACM Computing Surveys, 35(4):399–458, 2003.



Appendix A

Higher and Lower Thresholds

Exploration

As seen in Section 5.4, two thresholds determine when a probe analyzed by the 1st tier

should be authenticated, denied or processed by the following tier. Since the 2nd tier is

computationally more expensive, we want most probes to be processed and filtered by the

initial tier; therefore the threshold selection also controls the equilibrium between TPR,

TNR and the overall speed of the complete method.

Although a strategy similar to the user-specific threshold learning (Section 4.4) could

be devised to automatically determine both thresholds, we believe that an optimal trade-

off between efficiency and security is personal to each user and depends on how the device

is used. A user might prefer a faster authentication; other might value security more,

while a third may choose an in-between option. Because of that, we suggest that multiple

scenarios (threshold setups) should be offered to the users, allowing them to choose the

one that better fits their needs.

In this chapter, we explore different setups and how they affect TPR, TNR and the

percentage of images that are analyzed by 2nd tier. We present this exploration for RCD-

Test in Table A.1 and for OULU-Test in Table A.2, considering the 2-tiered method with

112×112 input size for HFCNN. We remark that part of Table A.1 was already presented

in Fig. 5.3.

It is important to point out some characteristics that are related to the process of

selecting the thresholds:

• The method speed is controlled by the difference between higher and

lower thresholds. A small gap between them means most authentication attempts

are only analyzed by the 1st tier, whereas, when this gap increases, more probes are

forwarded to the method’s second tier.

• The higher threshold determines how rigorous or tolerant the 1st tier is

to authenticate a probe. A smaller value requires a less confident prediction that

a probe depicts the device owner, increasing TPR and lowering TNR. A threshold

near 1.0 enforces a higher confidence, causing the opposite behavior on TPR and

TNR.
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• The lower threshold, on the other hand, establishes the 1st tier’s behavior

to deny a probe. A lower value (near 0.0) requires a strong confidence that a probe

does not belong to the device owner to be automatically denied in this tier. This

means more images will be forwarded to the 2nd tier. Whereas a value near 0.5

tends to deny more images, increasing TNR but decreasing TPR.

Table A.1: Higher and lower thresholds exploration for RCD-Test with HFCNN 112×112.

Higher
Threshold

Lower
Threshold

ACC
(%)

TPR
(%)

TNR
(%)

% of examples
in 1st tier

% of examples

in 2nd tier

0.6

0.2 97.38 96.19 98.57 80.80 19.20
0.3 97.43 96.06 98.80 89.95 10.05
0.4 97.38 95.71 99.05 94.78 5.22
0.5 97.06 94.88 99.25 97.60 2.40
0.6 96.11 92.81 99.42 100.00 0.00

0.7

0.2 96.82 94.70 98.95 77.51 22.49
0.3 96.88 94.57 99.19 86.66 13.34
0.4 96.83 94.22 99.43 91.49 8.51
0.5 96.51 93.39 99.63 94.30 5.70
0.6 95.56 91.32 99.80 96.71 3.29

0.8

0.2 96.03 93.05 99.01 71.54 28.46
0.3 96.09 92.92 99.25 80.69 19.31
0.4 96.04 92.58 99.49 85.52 14.48
0.5 95.72 91.74 99.69 88.33 11.67
0.6 94.77 89.67 99.86 90.74 9.26

0.9

0.2 95.40 91.78 99.01 56.80 43.20
0.3 95.45 91.65 99.25 65.95 34.05
0.4 95.40 91.31 99.50 70.78 29.22
0.5 95.08 90.47 99.69 73.59 26.41
0.6 94.13 88.40 99.86 76.00 24.00
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Table A.2: Higher and lower thresholds exploration for OULU-Test with HFCNN
112×112.

Higher
Threshold

Lower
Threshold

ACC
(%)

TPR
(%)

TNR
(%)

% of examples
in 1st tier

% of examples

in 2nd tier

0.6

0.2 95.53 99.78 91.27 68.18 31.82
0.3 95.58 99.78 91.39 81.21 18.79
0.4 95.80 99.78 91.82 89.95 10.05
0.5 96.09 99.78 92.41 96.00 4.00
0.6 96.47 99.76 93.18 100.00 0.00

0.7

0.2 97.69 99.66 95.72 65.45 34.55
0.3 97.75 99.66 95.84 78.48 21.52
0.4 97.96 99.66 96.27 87.21 12.79
0.5 98.26 99.65 96.86 93.26 6.74
0.6 98.63 99.63 97.63 97.26 2.74

0.8

0.2 98.30 99.49 97.11 63.80 36.20
0.3 98.36 99.49 97.23 76.83 23.17
0.4 98.57 99.49 97.66 85.57 14.43
0.5 98.87 99.49 98.25 91.62 8.38
0.6 99.24 99.47 99.02 95.62 4.38

0.9

0.2 97.26 97.27 97.24 54.85 45.15
0.3 97.31 97.27 97.35 67.88 32.12
0.4 97.53 97.27 97.78 76.62 23.38
0.5 97.82 97.27 98.38 82.67 17.33
0.6 98.20 97.25 99.15 86.67 13.33
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