N
»

Universidade Estadual de Campinas
." Instituto de Computagao /

() INSTITUTO DE
UNICAMP COMPUTACAO

0

Lais Vasconcellos Minchillo

Towards better tools and methodologies to teach
computational thinking to children

Na direcao de melhores ferramentas e metodologias
para o ensino de pensamento computacional para
criancas

CAMPINAS
2018

Lais Vasconcellos Minchillo

Towards better tools and methodologies to teach computational
thinking to children

Na direcao de melhores ferramentas e metodologias para o ensino
de pensamento computacional para criancgas

Dissertacao apresentada ao Instituto de
Computacao da Universidade Estadual de
Campinas como parte dos requisitos para a
obtencao do titulo de Mestre em Ciéncia da
Computagao.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor /Orientadora: Profa. Dra. Juliana Freitag Borin
Co-supervisor/Coorientador: Prof. Dr. Edson Borin

Este exemplar corresponde & versao final da
Dissertacao defendida por Lais Vasconcellos
Minchillo e orientada pela Profa. Dra.
Juliana Freitag Borin.

CAMPINAS
2018

Agéncia(s) de fomento e n%(s) de processo(s): Nao se aplica.

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Minchillo, Lais Vasconcellos, 1992-
M661t Towards better tools and methodologies to teach computational thinking to
children / Lais Vasconcellos Minchillo. — Campinas, SP : [s.n.], 2018.

Orientador: Juliana Freitag Borin.

Coorientador: Edson Borin.

Dissertacao (mestrado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Pensamento computacional - Metodologia. 2. Computadores e criangas.
3. Tecnologia educacional. I. Borin, Juliana Freitag, 1978-. Il. Borin, Edson,
1979-. lll. Universidade Estadual de Campinas. Instituto de Computacao. IV.
Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Na direcao de melhores ferramentas e metodologias para o ensino
de pensamento computacional para criangas
Palavras-chave em inglés:

Computational thinking - Methodology

Computers and children

Educational technology

Area de concentracio: Ciéncia da Computagéo
Titulacao: Mestra em Ciéncia da Computagao

Banca examinadora:

Juliana Freitag Borin [Orientador]

Ricardo de Oliveira Anido

Joice Lee Otsuka

Data de defesa: 13-06-2018

Programa de Pés-Graduacéao: Ciéncia da Computacdo

®
g

Universidade Estadual de Campinas
." Instituto de Computagao /

() INSTITUTO DE
UNICAMP COMPUTACAO

0

Lais Vasconcellos Minchillo

Towards better tools and methodologies to teach computational
thinking to children

Na direcao de melhores ferramentas e metodologias para o ensino
de pensamento computacional para criancgas

Banca Examinadora:

e Profa. Dra. Juliana Freitag Borin

UNICAMP

e Prof. Dr. Ricardo de Oliveira Anido
UNICAMP

e Profa. Dra. Joice Lee Otsuka
UFSCAR

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida académica do aluno.

Campinas, 13 de junho de 2018

Acknowledgements

I would like to thank professor Juliana Freitag Borin for her support and guidance that
were fundamental in allowing me to complete this work. Thanks to professor Edson Borin
for all the insights, suggestions and feedback.

I would also like to express my gratitude and thanks to my parents, family, friends,
professors, colleagues and everyone who in any way helped me achieve my goals.

This gratitude is extended to the teachers and other members of Prodecad, where all
of our experiments took place. Thanks to the financial support from TecSinapse.

Resumo

Pensamento computacional é uma ferramenta para resolver problemas que se aplica a
todas as areas de conhecimento. Diferente de Matemaética e outras ciéncias, o ensino de
Computacao, especialmente para criancas, ainda é bastante recente. Ha iniciativas ao
redor do mundo para ensinar pensamento computacional e programagao para criangas,
entretanto, ainda nao h& um consenso em como fazé-lo. Nosso objetivo é contribuir na
direcao de melhores metodologias de ensino de pensamento computacional para criancas.
Para isso, realizamos um levantamento dos conceitos de pensamento computacional mais
citados por importantes fontes e suas propostas de modulos de ensino. Levantamos tam-
bém recursos e ferramentas que foram desenvolvidas nos tltimos anos para dar suporte ao
ensino de pensamento computacional. Com base nesse estudo, desenvolvemos uma série
de experimentos com um protétipo de ferramenta educacional em uma escola publica que
nos permitiram observar e coletar dados sobre a forma de interacao das criancas com a
ferramenta e com o conhecimento que estava sendo apresentado. A partir da analise des-
ses resultados derivamos hipoteses que poderao fomentar e/ou direcionar novas pesquisas
na area.

Abstract

Computational thinking is a tool to solve problems that applies to all areas of knowledge.
Unlike Mathematics and other sciences, teaching Computing, especially to children, is a
very recent field. Efforts around the world aim to teach children computational thinking
and programming, however, there is still no consensus on how to do it. Our goal is to
contribute towards better methodologies to teach computational thinking to children. To
accomplish this, we made a survey on the most cited computational thinking concepts
by key sources and their proposals for teaching modules. We also reviewed resources
and tools that were developed in the last few years to support computational thinking
teaching. Based on this study, we developed a series of experiments with an educational
tool prototype in a public school that allowed us to observe and collect data on how
children interact with the tool and the knowledge being presented. From the analysis of
these results we derived hypothesis that can promote and/or direct new research in the
field.

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5

Scratch environment L0 Lo 19
Code.org environment 20
Cubetto: robot, board and map L. 20
Wonder Workshop CleverBots 21
Sphero robots 22
Main application screeno 26
Free toplaysetup 26
Icons displaying the connection status 27
Worlds in the application 27
Levels in the application 28
One of the challenges in the application 28
Robot used in our experiments 29
A tutorial in the applicationo 0oL 29
A quiz in the application Lo 30
Structure of the JSON configuration file 32
The experiment’s environment 35
Grade in programming tasks versus count of wrong answers in quizzes . . . 37
Grade in programming tasks versus percentage of tutorial pages read . . . 38
Count of wrong answers in quizzes versus percentage of tutorial pages read 39

Average grade for all groups by concept, 40

List of Tables

2.1
2.2

3.1
3.2
3.3

4.1

Computational thinking concepts by author 15
Computational thinking concepts by school level, SBC 16
Proposed levels and conceptso oL 25
Programming blockso 30
Application logs 31
Questions and answers in the feedback form 41

Contents

B O aQ W »

Introduction

Basic concepts and related work

2.1 Computational thinking
2.2 Related work
2.3 Tools and resources
2.4 Discussion

CT educational game

3.1 Interface
3.2 Bluetooth interface
3.3 Activities
3.4 Logs
3.5 Configuration file
Experimental setup, methodology and results
4.1 A change of paradigm
4.2 Experimental setup and methodology
43 Results.
4.3.1 Observations,
4.3.2 Loganalysis
4.3.3 Children’s feedback
4.4 Discussion

Conclusions and future work
List of application activities
Feedback form

Consent form

Assent form

Ethics committee

11

14
14
16
18
23

25
26
28
29
31
31

34
34
34
36
36
37
40
41

42

46

57

59

63

66

11

Chapter 1

Introduction

Knowledge transmission is as old as humanity itself. Without our ability to communicate,
not only would society be impossible, but we would not be here talking about our own
philosophies and what they mean to our very existence. Since we began to accumulate
knowledge about Biology, Mathematics, Chemistry, Physics etc, we also got aware we
should be teaching future generations all we knew so they could build upon our past
observations and experiences.

For centuries that has been the case, and as time passed on, newfound subjects were
added to the curricula, others were merged, and education evolved as much as we did.
We now find ourselves at such a point in time where we have this new science we’ve been
exploring for the last 50 years or so about Computers and, better still, about Computation.
We have been teaching this at graduate and undergraduate level for a few decades, but
teaching Computation to children is still uncharted territory.

In this scenario, computational thinking (CT) emerged, a tool to solve problems that
applies to all areas of knowledge and should be taught to every child. The challenge is
we don’t know what is the best way to do it. The teaching of more traditional subjects
has been mastered and perfected along centuries, but thinking algorithmically and strictly
logically is as fresh as it can be. Finding ways to have children understand and accept this
subject as much as to use it like a part of their own cognition is a matter most important
in our time.

Computational thinking must not be seen as a technical skill, but rather as a way to
organize thoughts and solve problems, and it is natural to consider teaching it in school,
either as a separate course, or as a new tool to existing disciplines [1, 2, 3, 4, 5, 6, 7, 8, 9].
The term was made popular by Wing in 2006 [1], and she defined it as solving problems,
designing systems and understanding human behaviour through concepts fundamental to
computer science (CS). In many countries this skill is already part of the basic curriculum
[10, 11], and it is expected that new generations have a better understanding of technology
and its different applications.

Teaching computational thinking to children is not a recent idea - Seymour Papert
published a paper on the subject in 1972 [12|. According to him, children learn by doing
and by thinking about what they do, and innovation in teaching must bring better things
to do and better ways to think. At that time, the author also claimed that computing
was by far the richest innovation area for teaching. He said:

12

The purpose of this essay is to present a grander vision of an educational
system in which technology is used not in the form of machines for processing
children but as something the child himself will learn to manipulate, to extend,
to apply to projects, thereby gaining a greater and more articulate mastery
of the world, a sense of the power of applied knowledge and a self-confidently
realistic image of himself as an intellectual agent.

Papert was one of the creators of Logo, a programming language designed to provide a
fun environment for children to study and learn mathematics and programming concepts
[13], as well as author of the book Mindstorms: Children, Computers and Powerful Ideas,
in which he defends the benefits of teaching computer literacy [14].

Several countries have included computational thinking in their school curricula, as
well as programming and CS concepts and other related subjects (such as logical think-
ing, problem solving, abstraction, planning, among others). The United Kingdom’s gov-
ernment has included CT and CS concepts in their national curriculum, stating that a
high-quality computing education equips pupils to use computational thinking and cre-
ativity to understand and change the world [10]. In the United States, ex president
Obama launched an initiative to include Computer Science in the K-12! curriculum [11].
In Brazil, the Brazilian Computing Society (SBC) is working to include Computer Science
in the national curriculum [15].

Over the past decade several authors have described what CT and CS concepts to
teach and how to teach them, however, there is still no consensus on how to teach CT
and how to include it in the schools. Our main goal was to contribute towards better
methodologies to teach computational thinking. To do that, we divided the work in three
different parts. For the first part, we made a survey on CT concepts, efforts in teaching,
related work and existing tools. With insights derived from this research, we had a few
ideas on how to include CT teaching in the classroom, so for the second part of the work,
we developed a mobile application that paired with a robot allowed us to test such ideas.
The third part consisted of a series of experiments bringing the application and robot
to a school and observing the way the children interacted with them. The results of the
experiments were a series of observations and a set of hypothesis.

The main contributions of this dissertation are:

e a survey on computational thinking including a list of concepts accepted by key
sources, recent papers with related work, existing tools;

e a mobile educational game that enables teachers and developers the ability to create
different sets of activities and programming challenges;

e a report of an experiment bringing an educational game into the classroom:;

e a set of hypothesis that should be tested in order to guide the development of an
effective methodology to teach computational thinking to children.

1K-12 is the school curriculum for children aged up to 12 years old.

13

Part of this dissertation produced the paper by the same name that was published
and presented at the 26th Workshop on Education in Computer Science (WEI) - held in
conjunction with Conference of the Brazilian Computing Society (CSBC).

The rest of this document is organized as follows: Chapter 2 presents the compu-
tational thinking concepts that are frequently discussed by key sources, existing tools
developed over the last few years and national initiatives towards including CT in the
Brazilian curriculum. Chapter 3 shows the educational game we developed to be paired
with a physical robot in our experiments. Chapter 4 discusses the new paradigm we
tested, our experimental setup and methodology, as well as our observations, experimen-
tal results and a new set of hypothesis. Finally, Chapter 6 brings our conclusions and
suggestions for future work.

14

Chapter 2

Basic concepts and related work

This chapter presents our survey on existing work on teaching Computational Thinking,
especially to children. In Section 2.1 we discuss what important sources cite as CT
concepts. Section 2.2 brings a discussion of related work. In Section 2.3 we present
existing tools that are related to this work and available resources to help teach CT.
Finally, Section 2.4 brings a discussion on these topics.

2.1 Computational thinking

Computational thinking is not the same as programming, but rather a skill programmers
use in order to solve different problems. As a consequence, using programming as a way
to teach CT is common in the literature [6, 8, 9]. In this section we enumerate the main
CT concepts cited by key sources: the Computer Science Teachers Association (CSTA), a
membership organization that supports and promotes the teaching of computer science;
Code.org, a non-profit organization dedicated to expand access to computer science in
schools and increase participation by women and underrepresented minorities. They or-
ganize the annual Hour of Code campaign and provide a curriculum for K-12 computer
science and they are supported by several companies including Amazon, Facebook, Google
and Microsoft; SBC, Brazilian Computing Society, a non-profit organization whose goal
is to encourage research and teaching in computing. We also chose three of the most cited
papers in the CT topic - Barr and Stephenson [4], Grover and Pea [16] and Brennan, K.
and Resnick, M. [17] - as well as one paper well cited in Brazil - Franca and Amaral [5] -
one of the first works in the country to discuss teaching CT in schools.
The most cited concepts are:

e Sequence: a series of individual steps.

Algorithm: a sequence of instructions to solve a task.

Loop: the execution of the same sequence multiple times.

e Event: an external action that triggers a command sequence.

Conditional: making decisions based on predefined conditions.

15

Debugging and testing: executing an algorithm to find errors or to validate the
proposed solution.

Problem decomposition and modularization: divide a problem in smaller ones that
can be solved more easily.

Function: a sequence of instructions one can use with a given input to execute a
task, possibly generating an output and modifying the original input to better suit
it’s purposes.

Nested loop and conditional: a loop within a loop, or a conditional with another
condition.

Recursion: a function that calls itself.

Parallelism: executing more than one instruction at a time, or execute more than a
sequence of instructions at a time. Parallel tasks can be independent or not.

Table 2.1 shows the list of sources and concepts discussed by them.

Table 2.1: Computational thinking concepts by author

§ g 5
& & &
N id > 5
&] > A%
S S s >
Lo e/ & & >
S S <, ‘b’
< : S 0 IN J
O O & Q <) &
Sequence ° ° ° ° ° °
Algorithm ° ° ° ° °
Loop ° ° ° ° °
Event ° ° ° ° °
Conditional ° ° ° ° ° °
Debugging ° ° ° ° ° ° °
Test ° ° ° ° ° ° °
Decomposition,
functions, ° ° ° ° ° ° °
modularization
Nested for,
nested if * *
Parallelism ° ° ° °
Recursion ° ° ° ° °

16

2.2 Related work

In Brazil, SBC [15] has started to define how computing should be included (or modified)
in the national curriculum. There are three main categories:

e Computational thinking: understand and use models and representation to describe
information, processes and techniques to build algorithmic solutions; describe so-
lutions though algorithms that can be executed in parts or in total by machines,
as well as build computational models for complex systems; analyze problems and
solutions to not only find automated solutions, but to be able to evaluate their
efficiency and correctness.

e Digital world: understand how information can be described and stored; understand
how information is processed by computers and the relation between hardware and
software; understand how digital devices communicate with each other, how the
data is transmitted and how the integrity and safety of information is guaranteed.

e Digital culture: understand the impact of the digital revolution and advances in
the digital world on humanity; utilize in an efficient and critical manner tools to
obtain, analyze, synthesize and communicate information of different formats and
with different purposes; analyze ethical and moral questions of the digital world.

Table 2.2 shows how SBC is grouping computational thinking concepts by school level.

Table 2.2: Computational thinking concepts by school level, SBC

Level Concepts
Preschool Understand a problem and identify a sequence of steps to solve
Ages 3 t0 5 it. Represent these steps in an organized manner. Create steps to

solve problems related to body movement and spatial trajectories.

Abstraction to describe data such as lists and graphs. Identify the
Elementary school | abstractions needed to build steps and to define algorithms that

Ages 6 to 10 involve daily situations around the children. Use a visual language
to represent algorithms. Understand problem decomposition.

Use visual and native languages to represent data and processes.
Middle school Formalize the concepts of data structures. Use recursion to solve
Ages 11 to 14 problems. Build new solutions by reusing solutions to problems of
different context. Relate an algorithm in visual language to code
in a programming language.

Work in groups designing solutions to problems integrated in other
areas of the curriculum using computers, phones and other com-

High school puting machines. Compare problems and reuse solutions. Analyze
Ages 15 to 17 algorithm’s cost and efficiency and justify if a solution is feasible
and adequate. Argue about algorithm’s correctness. Understand
the limits of computing to differentiate what can or can not be
automated.

17

Fields et al. [18] discuss the need for more empirical work in classroom environments
in order to learn the best way for teachers to integrate CT into their classroom activ-
ities. They show observations on the implementation of a 6-8 week electronic textiles
unit within two high school classrooms situated within the Exploring Computer Science
curriculum!. They report the ways in which teachers brought out computational thinking
though students’ interactions and projects, with the most prominent aspects being: 1)
strategic problem solving, 2) iteration, and 3) interfacing between abstract and tangible
computation.

Buitrago Florez et al. [8] contend that CT should be taught in elementary schools and
included in every university’s educational curriculum. With a focus on the development of
CT skills at a young age, they analyze and discuss findings from several studies measuring
the impact of teaching programming, analytical thinking and CT.

Weintrop et al. [19] face the challenge of defining computational thinking and provid-
ing a theoretical grounding for what form it should take in school science and mathematics
classrooms, following the decision to include CT as a core scientific practice by the Next
Generation Science Standards?. They propose a definition of computational thinking for
mathematics and science in the form of a taxonomy consisting of four main categories:
data practices, modeling and simulation practices, computational problem practices, and
systems thinking practices.

Rees et al. [20] make a literature review on the teaching of coding and computational
thinking to primary aged children. In their research, in addition to published peer refer-
enced journal articles, they also included blog posts and opinions on social media. They
try to answer why we are teaching coding (and whether we should be teaching it to young
children at all), how we should teach it and how to best use tangible user interfaces. They
also discuss if there are still gender issues to overcome. Additionally, there are further
discussions on what CT is, its concepts and how to introduce it in the classroom. Some
tools and programming environments are discussed as well.

Eloy et al. [9] described an experience training teachers with the goal of promoting the
practice of programming and development of CT in Brazilian public schools. In their pilot
project they worked on four main areas: implementation in schools, curriculum design,
teacher training and monitoring and evaluation. Their first guiding material to build the
curriculum was the online platform Programaé®. Teachers were included in improving this
curriculum through discussion sessions and questionnaires. They had over 500 students
participating in the activities, and the sessions taking place in 2016 had an average of
80% student retention.

Godinho et al. [21] present a project to introduce CT and encourage children to become
technology creators. The project was recognized by SBC in 2016 for bringing computing

!The Exploring Computer Science (ECS) initiative comprises a one-year introductory computer science
curriculum with a two-year professional development sequence. The curriculum consists of six units:
Human-Computer Interaction, Problem-Solving, Web Design, Introduction to Programming (Scratch),
Computing and Data Analysis, and Robotics (Lego Mindstorms).

2The Next Generation Science Standards is a multi-state effort within the United States to create
new education standards that are rich in content and practice, arranged in a coherent manner accross
disciplines and grades to provide all students an internationally benchmarked science education

3http://programae.org.br/

18

to children, teenagers and people who otherwise had little contact with the area. Their
encounters included mini-courses, unplugged activities or tasks in Code.org’s Hour of
Code, Scratch, CodeMonkey?, Monster Coding® or App Inventor®. Almost 300 students
participated in their activities and through feedback questionnaires approximately 90%
rated the experience as excellent or great.

Aono et al. [22] use Scratch allied with an expository methodology to teach CT to
elementary school students with ages 10 and 11. The children applied the concepts they
learned into a project: building a "Flappy Bird" game. Every student that participated
was able to build the game successfully, but all of them needed some help from the
supervisors to implement the hardest parts, like the use of variables and counters.

Silva Junior and Franca [23] discuss the use of existing tools in the classroom in
Brazil - and their effectiveness. Nine tools were analyzed for their interaction, platform,
programming language and other characteristics. The tool found to be most adequate
was Portugol Studio’, for being available in Portuguese, appropriate for beginners and
featuring a user friendly interface. It also offers features to help teachers use it in classes.

2.3 Tools and resources

This section presents some existing tools and resources that support CT teaching.

2.3.1 CSTA

CSTA, or Computer Science Teachers Organization, is an organization that supports and
promotes the teaching of Computer Science. Their K-12 Computer Science Standards®
delineate a core set of learning objectives designed to provide the foundation for a com-
plete computer science curriculum and its implementation at the K-12 level. The CSTA
Standards:

e Introduce the fundamental concepts of computer science to all students, beginning
at the elementary school level.

e Present computer science at the secondary school level in a way that can fulfill a
computer science, mathematics, or science graduation credit.

e Encourage schools to offer additional secondary-level computer science courses that
will allow interested students to study facets of computer science in more depth and
prepare them for entry into the work force or college.

e Increase the availability of rigorous computer science for all students, especially
those who are members of underrepresented groups.

‘https://www.playcodemonkey.com/
Shttp://monstercoding.com/
Shttp://appinventor.mit.edu/
"http://lite.acad.univali.br/portugol/
Shttps://sites.google.com/site/cstastandards/standards

19

2.3.2 Scratch

Scratch? is a free programming language and online community developed and maintained
by the MIT. It is designed especially for ages 8 to 16, but it is used by people of all ages
in more than 150 different countries. It is available in over 40 languages.

The ability to code computer programs is an important part of literacy in today’s
society. When people learn to code in Scratch, they learn important strategies for solving
problems, designing projects, and communicating ideas. Figure 2.1 shows its environment.

Students are learning with Scratch at all levels (from elementary school to college)
and across disciplines (such as mathematics, computer science, language arts, social stud-
ies). Educators share stories, exchange resources, ask questions, and find people on the
ScratchEd website!®. The MIT Scratch Team and collaborators are researching how peo-
ple use and learn with Scratch!!.

—

1)(@)(®

Figure 2.1: Scratch environment

2.3.3 Code.org

Code.org, as cited in the previous Section, is a nonprofit organization dedicated to ex-
panding access to computer science in schools. They organize the Hour of Code campaign:
a global movement reaching tens of millions of students in over 180 countries. In 2017
Brazil had more than 150 thousand Hour of Code events.

They also provide courses in their website for all ages, including undergraduate level,
and offer block based programming, JavaScript, CSS, HTML and more. Figure 2.2 shows
the environment of one activity.

Yhttps://scratch.mit.edu/
Onttp://scratched.gse.harvard.edu/
Uhttp://web.media.mit.edu/ mres/papers/Scratch-CACM-final.pdf

20

Lesson 13: Events in Play Lab
Saved less than a minute ago

English v Privacy Policy | Copyright | More «

Figure 2.2: Code.org environment

2.3.4 Cubetto

Cubetto is a robot developed by Primo'? that provides screenless coding for girls and
boys aged 3 to 6. It is programmed using a board in which you can put command blocks
(Figure 2.3a). They also have several different maps to be placed on a table or on the floor
that show different narratives to stimulate play (Figure 2.3b shows one of such maps).
The toy introduces programming concepts, including algorithms, sequence, debugging,
recursion. In their website, Primo has a bank of activities, lesson plans and other resources

to help owners discover new ways to play and learn®3.

(4 S .\

o

(a) Robot and board (b) Map

Figure 2.3: Cubetto: robot, board and map

2.3.5 Wonder Workshop CleverBots

Wonder Workshop offers three robots: each one is developed for a target age range and
features different capabilities.

2https://www.primotoys.com/
Bhttps://www.primotoys.com/playroom/

21

(b) Dash (¢) Cue

Figure 2.4: Wonder Workshop CleverBots

Dot

Dot (Figure 2.4a) is designed for children starting at age 6. It is the simplest of the
three, featuring a gyroscope, voice recording and playback. Robot is programmed via
block-based coding, and also has an app for pre-readers. It’s creativity kit also comes
with playing cards, stickers and other materials. It has hundreds of self-guided coding
challenges.

Dash

Dash (Figure 2.4b) is designed to engage children of ages 6 and up. It features voice
recording and playback, detects voice direction and other CleverBots, has precise motion
control, has object detection and a gyroscope. It can be programmed via block-based cod-
ing, has apps for pre-readers and also has compatibility with Apple Swift Playgrounds'4.
It also has some optional accessories, like a xylo.

Yhttps://www.apple.com/swift/playgrounds/

22

Cue

Cue (Figure 2.4c) is the newest Cleverbot, and is designed for children of ages 11 and
up. It has a customizable personality, and offers all of Dash’s functionality and more:
chatting, an accelerometer, light and volume control, faster sensors, reactive behaviors.
It can also be programmed using JavaScript.

Curriculum

Wonder Workshop also provides a K-5 Curriculum to teach coding. Designed in alignment
with CSTA and ISTE standards, as well as Code.org’s fundamentals, their Curriculum

Pack includes several lesson plans, challenges and their solutions®®.

2.3.6 Sphero

Sphero'® has a number of different robots to play with, but here we focus on the Sphero
Mini (Figure 2.5a) and the SPRK+ (Figure 2.5b): they are both designed to inspire and
can be used as a tool to learn to code. Sphero also offers resources for educators to use

their products in the classroom!”.

(a) Sphero Mini (b) SPRK+

Figure 2.5: Sphero robots

Sphero Mini

The Sphero Mini packs a huge experience into a tiny color-changing robot. It features
motor encoders, gyroscope and accelerometer sensors, Bluetooth LE and is compatible
with Sphero Edu (i0S, Android, Kindle, Chrome) and Sphero Mini (iOS, Android) ap-
plications, that feature block-based programming.

5https://education.makewonder.com/curriculum
https://www.sphero.com/
"https://www.sphero.com/education

23

SPRK+

This is Sphero Mini’s big brother: larger, more durable and waterproof. It’s designed
to inspire curiosity, creativity and invention through connected play and coding. This
robot offers all the features Sphero Mini does, and it is also compatible with Apple Swift
Playgrounds.

2.3.7 CS Unplugged

CS Unplugged!® is a collection of free teaching material that teaches Computer Science
through engaging games and puzzles that use cards, string, crayons and lots of running
around. The website contains activities on 5 different topics: binary numbers, error
detection and correction, kidbots, searching algorithms and sorting networks. There is
also a list on curriculum integrations, relating activities to curriculum areas, such as arts,
mathematics, literacy and science.

2.3.8 Exploring Computational Thinking

Exploring Computational Thinking (ECT), part of Google for Education, is a curated
collection of lesson plans, videos, and other resources on computational thinking (CT).
The site was created to provide a better understanding of CT for educators and adminis-
trators, and to support those who want to integrate CT into their own classroom content,
teaching practice, and learning.

2.3.9 Taccle 3 Coding

Taccle 3 Coding?® is a project that supports Primary School and teachers who want
to teach computing. They provide knowledge and materials in a website of ideas and
resources, as well as training and other development events.

2.4 Discussion

This survey on existing work was fundamental for our research. Several authors have
described which CT and CS concepts to teach and how to teach them, and as we dis-
cussed in the previous sections, in some countries this has already been included in the
national school curriculum offering every child the opportunity to learn and benefit from
computational thinking.

By looking at how several important sources define computational thinking and their
concepts, as well as how they were divided in teaching modules, we were able to derive
our own set of concepts and decide the ones to be included in our experiments.

Moreover, we were also able to see that many countries have already started working
on a way to include these concepts in their school curriculum, not as a separate subject,

Bhttps://csunplugged.org/
Yhttps://edu.google.com/resources/programs/exploring-computational-thinking/
Onttp://www.taccle3.eu/

24

but as an integrated part of the already existing ones. Not only is teaching computational
thinking a growing concern, it is also an unresolved task. The fact that there is no
consensus on how to teach C'T and how to include it in the schools, especially in Brazil,
has been part of our motivation for this work.

Back in 2015 when this work started, none of the tools discussed in Section 2.3 was
so robust as today. Existing robots such as the ones mentioned in this Chapter were
costly and lacked a proper integration with teaching. They were therefore, very expensive
toys that didn’t add much. But just as we saw an opportunity to bring these physical
devices to the classroom, so did these companies: today they all offer lesson plans, guided
activities or even their own curriculum.

We aimed to have a low cost physical device as a motivating factor, paired with a free
mobile application and a methodology to use it to teach CT concepts to children.

25

Chapter 3

CT educational game

We designed and implemented an Android application and a physical low cost robot to
support our experiments'. The application communicates with the robot via Bluetooth
and provides a visual block-based programming interface through Google’s Blockly li-
brary?.

Our application is a prototype of an educational game that has six levels, each one
introducing new concepts and having multiple activities within it. Table 3.1 presents the
levels and the CT concepts used in each one of them. The CT concepts were selected
based on the age of the children and the amount of time we would have with them.

Table 3.1: Proposed levels and concepts

Levels

Concepts

Move the robot

Sequence

Have the robot make a path of a certain
shape (e.g. square)

Sequence, algorithm

Find mistakes in given algorithms

Sequence, algorithm, testing, debugging

Have the robot repeat the same tasks mul-
tiple times

Sequence, algorithm, loop, problem de-
composition

Have the robot decide on what action to
take based on external conditions

Sequence, algorithm, conditional

Combine repetition and conditional sce-
narios

Sequence, algorithm, conditional, loop

!The robot was developed by another student in this research group.

’https://developers.google.com/blockly/

26

3.1 Interface

The application was designed to look like a regular game. The first screen has three
main action buttons, as shown in Figure 3.1. The first button (play) takes the user to the
activities. The second button (free) takes the user to a sandbox mode where all commands
are available and there is no predefined task. It is shown in Figure 3.2. Finally, the third
button (configuration) takes the user to the settings screen.

© @

LIVRE CONFIGURACOES

Figure 3.1: Main application screen

quando comegar p
— quando comegar

("dar um passo
(girar a direita

(girar a esquerda

reipita [10 QRS
faga

repita

(o] se
faga

=1 ®

Figure 3.2: Free to play setup

In every application screen there is an icon in the lower right corner indicating the
connection status with the robot: there are three different icon for the states disconnected,
connecting and connected. This is shown in Figure 3.3.

27

(a) Disconnected (b) Connecting (c) Connected

Figure 3.3: Icons displaying the connection status

Figures 3.4 and 3.5 show the level selection screens. Every world has multiple activi-
ties in it, and earlier activities must be completed in order to unlock the following ones.
Completed activities have a blue background icon and have a tick mark next to it. Avail-
able activities have a blue background, and unavailable activities are grayed out. This is
a common feature in games, to stimulate the user to complete activities if he wants to
move on to more advanced levels.

Selecione o Mundo

*
(.
1 \al,
*

*

® ‘®

ALGORITMOS MOVIMENTACAO SEQUEN(

Figure 3.4: Worlds in the application

Figure 3.6 shows the interface of a programming activity. The title and subtitle display
the current activity name, number and the task to be completed. In the lower left corner
there is a back button to go to the previous screen. In the lower right corner there are
two buttons: a check mark you must tap when you completed the activity (you will be
prompted to confirm this action) and a robot icon labeled send, to send the current blocks
in the workspace for the robot to execute. To the right there are two buttons: a hint
button (represented by a lamp) that will give the user some help in completing the current
activity and a reset button that will reset the workspace to the starting one. The canvas
provided by Blockly is divived in two sections: to the left are the available blocks and to
the right the workspace.

28

Figure 3.5: Levels in the application

Movimentacao - Nivel 1

Crie um algoritmo para seu rob6 dar um passo a frente @
r} ’
_/ Comandos Area de trabalho

quando comegar

quando comegar
dar um passo

girar a direita

girar a esquerda

®

Figure 3.6: One of the challenges in the application

3.2 Bluetooth interface

The application communicates with the robot (see Figure 3.7) via Bluetooth. When
someone taps play or free mode in the main screen, the application prompts them to
connect to a robot. After the pairing is done, the application regularly pings the robot to
make sure the connection was not lost.

When the user hits the send button, Blockly translates the blocks to a binary code.
The code is then divided in 20 byte blocks and finally these blocks are sent to the robot
in sequence.

29

Figure 3.7: Robot used in our experiments. The robot has two motor encoders, a Blue-
tooth adapter, an ultrasonic sensor, two LEDs and a button. It also has a hole children
can put a pen in to use the robot for drawing.

3.3 Activities

There were three types of activities available: tutorials (Figure 3.8) that explained what
concepts the following activities would involve, and hints of how the user could solve the
problems that would be presented next; quizzes (Figure 3.9) to test the user knowl-
edge, each one comprised by a question and three possible answers - of which only one
was correct; programming challenges (Figure 3.6) that involved either creating a new
algorithm to solve a problem or to fix an existing algorithm.

Sequéncia

Para fazer o seu robd dar dois passos,

< >

encaixe dois blocos "dar um passo’
dentro do bloco "quando comecar”.

Figure 3.8: A tutorial in the application

In the later activity type, the user is required to solve a problem by programming
the robot using a block-based visual programming language. Blockly provides a canvas
in which the users can drag programming blocks and connect them to compose their
program (see Figure 3.6). Blocks are shaped so that only connections that make sense are
allowed. For example, the user may add a "Step forward" and a "Turn right" block and

30

Qual dos algoritmos faz com que o rob6é dé um passo a frente?

®

Figure 3.9: A quiz in the application

quando comegar (?l’lll_)

quando comegar | girar direita

connect them to express a sequence of commands, however, a "Number" block may not
be connected to a "Step forward" block. This feature minimizes issues associated with

programming syntax, which are common in text based programming languages. Table
3.2 lists the programming blocks available in the application. See Appendix A for a list
of all the activities.

Table 3.2: Programming blocks

Step

T T 1ot
forward
Turn right girar a direita Number E
Repeat a repita [[1) vezes
Repeat number of
) faca
times
Number Distance in
unbe T front of the
comparison
robot
If If else

31

3.4 Logs

In order to help our evaluation we had the application log some of the actions, as listed
in Table 3.3, as well as the timestamps and the current activity identification number.
From these logs we were able to extract information such as how many attempts each
pair had in each quiz activity or the algorithms that were marked as correct for a specific
coding activity. This data, along with our notes and observations, allowed us to reach the

conclusions presented in Chapter 4.3.

Table 3.3: Application logs

TUTORIAL-OPENED User opened the tutorial
TUTORIAL-NEXT Next tutorial page
TUTORIAL-PREV Previous tutorial page
TUTORIAL-CLOSE User closed the tutorial

QUIZ-0PEN User opened the quiz
QUIZ-CORRECT Correct quiz answer
QUIZ-INCORRECT Incorrect quiz answer
QUIZ-CLOSE User closed the quiz
ACTIVITY-OPEN User opened the (programming) activity
ACTIVITY-HINT User clicked hint
ACTIVITY-SEND User sent the algorithm to the robot

ACTIVITY-CORRECT User marked the current solution as

correct

ACTIVITY-CLOSE User closed the activity

3.5 Configuration file

All of the levels in the application are generated automatically from a JSON file. The
reason behind this is to have the content of the tasks be completely separate from the
application itself. The structure of the JSON is as follows (see Figure 3.10): the two
main objects are version, an integer showed in Line 2, and levels, an array of arrays
showed in Line 3. The objects in these arrays are the descriptions of the activities. Every
activity must have an id number, showed in Lines 6, 15 and 30. Every activity must have
a type that must be one of tutorial, coding or quiz. Every activity must also have a
prerequisites array, an array of integers representing the activities that must have been
completed for it to be available.

32

"version": 1,
"levels": [

[

"id": 0,
"type": "tutorial",
"title": "Some Lesson",
"text": [

"Textl", "Text2"

© o N O O R W N =
-~

=
o

1,

"prerequisites": []

R e e
SO UR CR
-~

-

=
ot

"id": 1,
"type": "quiz",
"title": "Quiz name",
"text": "Question",
"image": "image_0",
"answers": [
"image_1", "image_2", "image_3"

NN R R R e
= O © W N O

1,
"correct": "image_ 2",
"prerequisites": [0]

NOONONNNN
N O Ok WN
'_|I_I
.
[

N
®©
-~

"id": 2,

"type": "coding",

"title": "Title",

"text": "Do something",

"hint": "Hint",

"blocks": "'event_onstart','step_forward', 'turn_right', 'turn_left'",
"workspace": "",

"prerequisites": [1]

W W W Ww W W w W w o w N
© 0 N O ke W N = O ©
—_
| —
-

'
o
-

Figure 3.10: Structure of the JSON configuration file

Tutorial activities must also have these attributes: a string title, with its title and
an array text, with strings representing the content of the tutorial.

Quiz activities must also have the following attributes: a string title, with its title;
a string text, with the question being asked in this quiz; a string image, with the image
name or empty if this question has no associated image; a string array answers, with the
names of the images to be each of the answers; a string correct, with the correct image
name.

Coding activities must also have these attributes: a string title, with its title; a
string text, with the task that should be completed; a string blocks, containing the
names of the blocks available for this activity or empty for all blocks, a string workspace,

33

containing a string representation of the blocks that must be in the canvas when the
activity starts (or empty for no blocks).

Although for our experiments we used a single JSON file with a single set of activities,
different files can be used in order to present different tutorials, quizzes or challenges. This
can be better explored by modifying the application to let the user choose which one he
wants to open. In schools, the application could be programmed to open a specific set of
activities depending on the schedule of classes, so different teachers could have activities
more suited to the current content. A web application or similar can be developed to help
create these JSON files - what is now a very long and dull task.

34

Chapter 4

Experimental setup, methodology and
results

4.1 A change of paradigm

The usual teaching paradigm follows a very strict scheme: the teacher will first introduce
a new subject, explaining it’s importance, it’s content and so on. After that, some sort
of assessment will take place to make sure the students learned what they were supposed
to. This can be in form of a test, an essay, a group project, among others. And last but
certainly not least, the students then receive some kind of feedback that will tell them
if they are on the right track. This is the classic teaching method, created hundreds of
years ago and still the most used today.

In this work we tried to teach CT thinking to the participants through a different
paradigm: the experiment was not to be seen by the children as a regular class environ-
ment, but rather as a time they would be playing instead of studying. No teacher would
interfere and the children themselves would be able to set their own pace as they passed
through the application’s activities. This by itself is not a big change, but the lack of
feedback is: not having a teacher determine the rhythm also meant they would have to
decide whether or not the algorithms they developed in the application were correct. The
main reason for using this teaching method was that the experiments took place in the
student’s free period - and not part of the regular classes at school.

4.2 Experimental setup and methodology

We designed experiments with students from a local public school. In total there were
twenty five children aged 9 to 11. The children were asked to solve problems by controlling
a physical robot using a block-based visual programming language. The problems and
the tools were designed to motivate the children to learn computational thinking skills.

Figure 4.1 shows a picture of the experiment’s environment, including the robot and
a tablet running the application.

In total we had three sets of experiments - the first one with fourteen students, the
second one with six students, and the final, and third one, with five students. In total

35

Figure 4.1: The experiment’s environment, including both the robot and the application

there were ten girls and fifteen boys. One of our ideas was that children should work in
pairs so that one could help the other. In the first experiment the children were divided
in pairs by their teachers. This proved to be a poor strategy since some of the children
were very uncomfortable with the person they were paired to. For this reason, in the next
two experiments children were allowed to choose their pair and generally this proved to
be a better approach.

For each experiment we had around seven encounters, one for introduction and the
others for the actual activities. In the last session of each experiment we also asked the
participants to answer a short feedback form (see Appendix B) - twenty two students
filled this form out.

In the introduction session we provided a brief explanation of the research and inter-
ested students received a consent form (see Appendix C) to be signed by their parents or
legal tutors as well as an assent form (see Appendix D) to be signed by them. Also, as
part of the introduction, each group was asked to name its robot.

After the children split in pairs and we handed over the robots and tablets, they were
free to explore the application. The application itself is not capable of evaluating the
user’s solutions to programming challenges - there are several solutions to each of the
proposed challenges, so simply having one correct algorithm and testing that it matches
user’s input would not suffice. To evaluate user’s algorithms we would have needed a
much more sophisticated setup so the application could have the robot’s step-by-step
information to only then determine if the desired solution was reached. We decided to let
the students evaluate their own solutions by watching the robot to see if it behaved the
way it was expected to. By doing so we could also observe whether the students had the
ability to decide if their solution was correct.

We aimed at creating a playful and spontaneous environment, having as few evalua-
tions and interventions as possible throughout the experiment, hoping it would encourage
the children to want to play, rather than make them feel they had to. We could observe
from the very beginning that competition was a much stronger motivating factor than

36

collaboration. For that reason, in some occasions we proposed having the robots compete
in a race with obstacles or an arena where the last robot standing would be the winner.
The rules of the arena were simple: the robots had to keep moving and if the robot hit a
wall or another robot, it was out for the round. Our goal was to combine the concepts of
conditional (only move forward if there is no obstacle detected by the ultrasonic distance
sensor, otherwise turn left or right) and repetition (never stop moving). In these compe-
tition environments it was clear that the students tried several solutions, reaching for the
best one possible.

4.3 Results

4.3.1 Observations

During the introduction session we learned that most children were familiar with the
use of smartphones, tablets and computers. They seemed very excited to work with the
robots - particularly the boys. Asking each group to name its robot worked even better
than anticipated because they developed a personal connection with it throughout the
experiment.

We also aimed to intervene as little as possible while also being available to clear any
doubts or to help if the children got stuck in any task. We observed that a very loose
environment compromises their ability to focus on the proposed activities; however, it
had a very positive effect on their will. This was confirmed by the teachers, who stated
that the children were very excited to be participating in the experiments, especially
considering it took place in their free period, when they could choose the activity they
liked best.

One thing that stood out in their behavior was that they clearly preferred competi-
tion to collaboration. The pairs that were supposed to be working together divided the
activities in a round robin fashion, and instead of helping each other they rushed their
colleague so they could get to play with the robot faster. However, when an environment
of team competition occurred - like the robot races - they would collaborate with their
teammate to reach a better solution and try to win. In the regular activities, the pairs
were not so motivated to keep trying different solutions when the first one didn’t work,
and would often lose attention in the current task and go see what other children were
doing. Because of this behavior we expect that the children would reach their best when
working individually or in a competition setting.

Another thing that stood out was that boys and girls showed a very distinct behavior:
boys wanted to grab both the robot and the tablet straight away and go play with it -
although not necessarily play within the scope of the proposed activities. Rather than
that, most boys wanted to complete the tasks as fast as they could to either reach other
groups that were in more advanced stages or to be the first to get to those stages. Girls
on the other hand showed a much higher interest in reading the tutorials and completing
the activities successfully. The children, in general, were very interested in discovering
what the parts of the robot could do - like the "eyes" (an ultrasonic sensor) - and how to
make it move or turn on the LEDs.

37

4.3.2 Log analysis

As stated previously, the application was unable to evaluate the user’s solution, and
therefore it was expected that the children themselves would figure out whether they had
successfully completed the given task or not. In many cases, they marked an activity as
done even when they didn’t program the robot as expected. There are some factors to
consider:

e First, they could have thought that their solution was correct even if it wasn’t, so
it was an honest mistake.

e Being very familiar with other games and applications that can evaluate the solu-
tions, they thought the application would only let them mark an activity as done if
their solution was correct, so that’s also an honest mistake.

e The third (and possibly worse) case is when the children mark the activity as done,
when they knew it wasn’t, so they could pass on to the next levels - to either reach
their colleagues or to be the first to get to the next levels.

e There is also another extreme case: when the solution is correct but they aren’t
sure it is, so they keep trying to alter the code in order to see a better result in the
robot.

Perhaps all of these issues can be solved by having a teacher or tutor check the child’s
solution before they can move on, and this certainly looks like a good solution to handle
the aforementioned problems. However, this could potentially make the application lose
the fun appeal and discourage children to play with it.

10

Average grade in programming activities
[]
[]

o T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Average count of wrong quiz answers

Figure 4.2: Grade in programming tasks versus count of wrong answers in quizzes

38

We analyzed the application’s logs in order to look for some correlations in the statis-
tics. All graphs presented in this section have thirteen points of data - since we had twenty
five students, there were a total of twelve pairs and one child working individually. In total
there were eleven tutorial activities, twelve quiz activities and twenty six programming
activities.

e For the tutorial activities we calculated the average percentage of tutorial read per
pair: each tutorial had a certain number of pages, and we checked the number of
open pages and time spent in each page. Some children only opened the first page
and already quit - meaning they never read the following pages.

e For the quiz activities we calculated the average number of incorrect answers, also
per pair. We counted the wrong answers because the children had to complete the
quiz in order to move forward, therefore a statistic to know how well they performed
on these activities was to see how many mistakes they made.

e Finally, we graded the programming tasks using the following scale: 10 - completed
the activity, 5 - partially completed the activity, and 0 - didn’t complete the activity.
For every pair we calculated the average grade across all programming activities.

We then compared these statistic two by two. The first result is presented in Figure 4.2,
comparing average grade in programming activities versus average count of wrong quiz
answers. The graph contains a red line showing a linear fit of the data. Notice that this
line suggests that there is a negative correlation between these two metrics, i.e., the better
the students scored in programming activities the less they select wrong quiz answers.

10

Average grade in programming activities
L]
L]

0 T T T T
0 20 40 60 80 100

Average percentage of tutorial pages read

Figure 4.3: Grade in programming tasks versus percentage of tutorial pages read

Prior to the experiments, we anticipated that the children who read the tutorials
would have a better performance in the quizzes and programming activities. As Figure

39

4.3 indicates, there seems to be a positive correlation between reading the tutorial pages
and scoring higher on programming activities.

Even though the linear regression indicates that there is a positive correlation between
grades in programming activities and number of tutorial pages read, we noticed that dif-
ferent groups with very similar grades had read different amounts of tutorials pages. One
of the possible reasons this happened is due to the different children’s backgrounds. Some
of them could already have more knowledge of similar games and activities, and therefore
even not reading the tutorials - or reading less of them - had a better comprehension of
the activities and how to solve them.

2.00

= =
w ~
o w
*

=
¥}
w

e e
w ~
o w

[

Average count of wrong quiz answers
o [
ra o
Ln o
L]

e
o
o

20 40 60 80 100
Average percentage of tutorial pages read

o

Figure 4.4: Count of wrong answers in quizzes versus percentage of tutorial pages read

Figure 4.4 shows the average count of wrong quiz answers against the percentage of
tutorial pages read. Again, as indicated by the linear regression, there seems to be an
negative correlation between the percentage of tutorial pages read by the students and
the amount of incorrect quiz answers. In general, these results indicate that children who
read more tutorials achieve higher grades in programming tasks and select fewer incorrect
answers in quiz activities.

We also evaluated how well the children understood each concept by looking at the
average grade that was obtained for the programming tasks involving that concept. Figure
4.5 shows a graph of average grades per concept. Activities involving the first concepts
- movement, sequence and debugging - were completed with success by most groups,
indicating that the students either learned the concepts or had previous knowledge of
them. The activities that involved the loop concept were only completed partially, with
a much lower grade than the previous ones. Finally, no child was able to achieve the
expected results for the conditional concept. It is still unclear whether children at that
age can’t understand this concept well or if the way it was presented in our experiment
was too complicated.

40

10 1

Movement Sequence Debugging Loop Conditional

Figure 4.5: Average grade for all groups by concept

4.3.3 Children’s feedback

Table 4.1 shows the answers to the feedback form - twenty two of the twenty five par-
ticipants filled this form. Each question had three possible answers: yes, partially, and
no. Overall, the feedback provided by the children was very positive - we only had 5.5%
of negative answers across all questions, against 25.5% neutral and 69% positive. The
only question that did not have a significant positive outcome was "Is the application
easy to use?", indicating that we need to evaluate what’s the best way to present the
programming interface. The teachers also gave us very positive feedback, stating that the
students were very excited to be participating and that they felt this was an excellent way
to keep their attention.

The form also included space for comments and suggestions. Many of the children
wrote that they would like to see other types of robots and other features: "My suggestion
is to create other types of robot and present it to other schools.", "I wish it [the robot]
could talk and that it had a laser.", "My suggestions are that the robot should have arms
and legs like other toys and be able to speak.", " A suggestion is to make the robot faster.".

About working in pairs, the children were conflicted: some liked it ("I liked working
in pairs. It’s fun that every level is different and has a tutorial.") and other did not ("I
liked the idea of working in pairs but I didn’t like my pair.").

Finally, many of the feedback was related to having more activities and levels: "I think
it would be cool if you made more activities and different things to do.", "I wish there were
more worlds.", " More levels. It would be fun and come back next year so more people can
enjoy this project.".

Table 4.1: Questions and answers in the feedback form

41

. Positive Neutral Negative

Question
answers answers answers

Would you use the application and 16 (72.7%) 5 (22.7%) 1 (4.5%)
robot again?
Would you recommend the application
and robot to a friend? 17 (77.3%) 4 (18.2%) 1 (4.5%)
Is the application easy to use? 7 (31.8%) 14 (63.6%) 1 (4.5%)
Is the‘ application content fun and in- 19 (86.4%) 2 (9.1%) 1 (4.5%)
teresting?
Did you like working in pairs? 17 (77.3%) 3 (13.6%) 2 (9.1%)
Average 15.2 (69%) | 5.6 (25.5%) | 1.2 (5.5%)

4.4 Discussion

These experiments were made in order to support the development of a methodology to
teach CT to children through programming. The interaction with the children helped us

design the following hypothesis:

having a physical instrument to interact with is a motivating factor, whether it is a
robot, a board, a set of command pieces, etc;

evaluation in the form of tests or exams can have a negative impact on the way
children see the CT education project;

leaving the children free to use the application and play with the robot make them
more comfortable, but it does not necessarily mean a positive impact on their learn-
ing;

having one robot per child or projects that require collaboration between the children
to be completed improves learning experience and children’s engagement in the
activities;

competition improves children’s engagement in the activities;

have teachers suggest activities that complement the regular disciplines may improve
learning and engagement in the classroom.

Future experiments with a higher number of children and for a longer period are needed

in order to test these hypothesis. We believe that such a study would greatly contribute
to the development of methodologies to teach CT and CS to children.

42

Chapter 5

Conclusions and future work

Computing is still a relatively young science, especially when compared to Mathematics
and Physics, both hundreds (if not thousands) of years old. However, it has developed so
rapidly that education was not able to keep up. Teachers are unable to prepare children
to see computers for their full potential. It is imperative today that everyone is able to
think logically and algorithmically, and so computational thinking is more necessary than
ever. Over the past decade several authors discussed the importance of and methods to
teach CT and CS concepts to children, nonetheless, there is still no consensus on the best
teaching methodology.

We expected the children to be engaged and to use their critical thinking in order to
judge their own work. Our expectations were only half met: the children were indeed
excited, but failed in deciding if their solutions were good enough to move on. Without
this feedback going on to more advanced lessons means nothing: it’s like trying to learn
how to multiply before you know how to add.

In the previous Chapters we described our experiments teaching computational think-
ing concepts to children between 9 and 11 years old using a robot and application we
developed. We now share our insights on how to support the development of effective
tools and methodologies to teach CT to children. Our results indicate that:

e children were very excited to interact with the robot;

e by giving a name to the robot, children established a personal connection with it
improving their engagement in the experiment;

e competition is a motivating factor and encourages teamwork;

e the children did not enjoy working in pairs when a task was too trivial, therefore
we think they should either have their own robot or more complex tasks should be
given;

e most of the children did not have any difficulty with building sequences or debugging,
however, they had a hard time applying loop and conditional concepts;

e the children were unable to assess their solutions by themselves.

There are many possible extensions to this dissertation. Some of them are:

43

the most obvious suggestion is to design a new set of experiments with a larger
number of participants and for a longer period to test the hypothesis stated in
Section 4.4 as well as observe long term effects of learning computational thinking;

the application was built to generate the levels automatically from a JSON file, as
discussed in Chapter 3. This could be better explored in the future, for example
in building a web application where teachers can create or modify tasks and deploy
them to the whole classroom;

the application could be modified to generate reports of the usage and deliver this
data to the teachers or parents;

new challenges can be developed to take advantage of all the available hardware in
the robot, like the button and the LEDs;

the robot itself can be improved for better speed, better accuracy in its movement,
capability to turn in other angles than 90 degrees. Other entirely new sensors could
be installed, like motion sensors, microphones, etc;

both the robot and application could be improved to allow an automatic evaluation
of the proposed tasks;

teachers could be invited to participate in a session of the experiments so they could
provide valuable feedback on how to improve and what new features to develop;

teachers could be invited to collaborate in creating new tasks to complement the
current content being taught in the classroom as defined by the national curriculum;

work is also needed in training today’s teachers to be able to teach these concepts
they are not familiar with.

44

Bibliography

1]

2l

3]

4]

[5]

[6]

17l

18]

19]

[10]

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philo-
sophical transactions of the royal society of London A: mathematical, physical and
engineering sciences, 366(1881), 3717-3725.

Barcelos, T. S. & Silveira, I. F. (2012). Pensamento computacional e educagao
matematica: Relacoes para o ensino de computacao na educagao basica. In XX
Workshop sobre Educagdo em Computagao, Curitiba. Anais do XXXII CSBC (Vol.
2, p. 23).

Barr, V. & Stephenson, C. (2011) Bringing computational thinking to K-12: what is
Involved and what is the role of the computer science education community?. Acm
Inroads, 2(1), 48-54.

Franga, R. S. de, & Amaral, H. J. C. do. (2013) Proposta Metodologica de Ensino
e Avaliacao para o Desenvolvimento do Pensamento Computacional com o Uso do
Scratch. In Anais do Workshop de Informética na Escola (Vol. 1, No. 1, p. 179).

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-127. Computers in Human
Behavior, 41, 51-61.

CSTA. (2017) CSTA K-12 Computer Science Standards, Revised 2017, https://
sites.google.com/site/cstastandards/standards.

Buitrago Florez, F., Casallas, R., Hernandez, M., Reyes, A., Restrepo, S., & Danies,
G. (2017). Changing a Generation’s Way of Thinking: Teaching Computational
Thinking Through Programming. Review of Educational Research, 87(4), 834-860.

Eloy, A. A. D. S., Martins, A. R. Q., Pazinato, A. M., Lukjanenko, M. D. F. S. P,
& Lopes, R. D. D. (2017, June). Programming Literacy: Computational Thinking
in Brazilian Public Schools. In Proceedings of the 2017 Conference on Interaction
Design and Children (pp. 439-444). ACM.

UK Department for Education. (2013) National curriculum in England: com-
puting programmes of study, https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-programmes-of-study.

45

[11] Smith, Megan. (2016) Computer Science For All, The White House, https://www.
whitehouse.gov/blog/2016/01/30/computer-science-all.

[12] Papert, Seymour. (1972) Teaching Children Thinking, Programmed Learning and
Educational Technology, 9(5), 245-255.

[13] Logo Foundation. (1991) Logo, http://el.media.mit.edu/logo-foundation/.

[14] Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

[15] Sociedade Brasileira de Computagao. (2017) Referenciais de Formagao em Com-
putacao: Educagao Basica, http://www.sbc.org.br/noticias/10-slideshow-noticias/
1996-referenciais-de-formacao-em-computacao-educacao-basica.

[16] Grover, S. and Pea, R. (2013). Computational thinking in K-12: A review of the
state of the field. Educational Researcher, 42(1), 38-43.

[17] Brennan, K. & Resnick, M. (2012) New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting
of the American Educational Research Association, Vancouver, Canada (pp. 1-25).

[18] Fields, D. A., Lui, D., & Kafai, Y. B. (2017). Teaching computational thinking
with electronic textiles: High school teachers’ contextualizing strategies in Explor-
ing Computer Science. In Conference Proceedings of International Conference on
Computational Thinking Education (pp. 67-72).

[19] Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky,
U. (2016). Defining computational thinking for mathematics and science classrooms.
Journal of Science Education and Technology, 25(1), 127-147.

[20] Rees, A., Garcia-Penalvo, F. J., Jormanainen, I., Tuul, M., & Reimann, D. (2016).
An overview of the most relevant literature on coding and computational thinking
with emphasis on the relevant issues for teachers.

[21] Godinho, J., Torres, K., Batista, G., Andrade, E., & Gomide, J. (2017) Projeto
Aprenda a Programar Jogando: Divulgando a Programacao de Computadores para

Criancas e Jovens. XXV Workshop sobre Educacao em Computagao, Anais do
XXXVII CSBC (p. 2140).

[22] Aono, A. H., Rody, H. V. S., Musa, D. L., Pereira, V. A., & Almeida, J. (2017) A
Utilizacao do Scratch como Ferramenta no Ensino de Pensamento Computacional

para Criancas. XXV Workshop sobre Educacao em Computagao, Anais do XXXVII
CSBC (p. 2169).

[23] Silva Junior, S. M. da, & Franga, S. V. A. (2017) Programacao para todos: Anélise
Comparativa de Ferramentas Utilizadas no Ensino de Programacao. XXV Workshop
sobre Educac¢ao em Computagao, Anais do XXXVII CSBC (p. 2199).

46

Appendix A

List of application activities

A.1 Introduction to algorithms

A.1.1 Tutorial

An algorithm is a sequence of commands. An example of a common algorithm is a cake
recipe: it has a series of steps to be followed in order to make a cake. These are some of
the commands in a recipe:

e Preheat the oven

e Mix the ingredients until smooth

Our robot can also follow commands to do a task. The available commands are:
e Step forward
e Turn left

e Turn right

A.1.2 Quiz

1. Preheat the oven to 188C.

2. Beat together the eggs, flour, caster sugar, butter, baking powder and cocoa
until smooth in a large mixing bowl.

3. Turn into the prepared tins and bake in the preheated oven for 25 mins.

4. Leave to cool in the tin, then turn on to a serving plate.

What'’s the first step to make a chocolate cake according to this recipe?

Beat together the eggs, flour, caster sugar,
butter, baking powder and cocoa until smooth Turn into the prepared tins and bake in the
Preheat the oven to 186C. in a large mixing bowl. preheated oven for 25 mins.

(a) Correct answer (b) Incorrect answer (c) Incorrect answer

47

A.1.3 Quiz

1. Preheat the oven to 186C.

2. Beat together the eggs, flour, caster sugar, butter, baking powder and cocoa
until smooth in a large mixing bowl.

3. Turn into the prepared tins and bake in the preheated oven for 25 mins.

4. Leave to cool in the tin, then turn on to a serving plate.

What'’s the first step to make a chocolate cake according to this recipe?

Turn into the prepared tins and bake in the Leave to cool in the tin, then turn on to a
preheated oven for 25 mins. Preheat the oven to 186C. serving plate.
(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.2 Introduction to movement

A.2.1 Tutorial

A command can be sent to your robot so that it can perform a task. We saw that the
available commands are:

e Step forward
e Turn left

e Turn right

To send a command, we need the block on start (quando comegar). The robot will execute
the command that is inside this block. To make your robot step forward, simply drag the
block step forward (dar um passo) to fit inside the on start block, then hit send.

Blocks available after this activity:

A.2.2 Programming activity

Objective: Design an algorithm to make your robot step forward.
Hint: Fit the movement block inside the on start block and hit send.

A.2.3 Programming activity

Objective: Design an algorithm to make your robot turn left.
Hint: Fit the movement block inside the on start block and hit send.

48

A.2.4 Programming activity

Objective: Design an algorithm to make your robot turn right.
Hint: Fit the movement block inside the on start block and hit send.

A.2.5 Quiz

Which algorithm makes the robot step forward?

(da (girar 3 i
quando comegar gdmunpamo dar um quando comecar gga'atieita

(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.2.6 Quiz

Which algorithm makes the robot turn left?

— — o

(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

'

A.2.7 Quiz

Which algorithm makes the robot turn right?

quando comegar L_gxa(iﬂla S 3 direi quando comecar ‘_daunpasso

(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.3 Sequence

A.3.1 Tutorial

In the previous activities, we learned how to send the robot a command. But is the robot
capable of following more than one command? The answer is yes. To create a sequence
of commands, drag more blocks inside the on start block. To make your robot take two
steps forward, use two step forward blocks. Let’s do it!

A.3.2 Programming activity

Objective: Design an algorithm to make your robot take two steps forward.
Hint: Put more than one movement block in the on start block and hit send.

49

A.3.3 Programming activity

Objective: Design an algorithm to make your robot turn left twice.
Hint: Put more than one movement block in the on start block and hit send.

A.3.4 Programming activity

Objective: Design an algorithm to make your robot turn right twice.
Hint: Put more than one movement block in the on start block and hit send.

A.3.5 Programming activity

Objective: Design an algorithm to make your robot take five steps forward.
Hint: Put more than one movement block in the on start block and hit send.

A.3.6 Tutorial

We already know how to create a sequence so the robot follows a command more than once.
We can also make the robot follow different types of commands in the same sequence.
You just have to put different commands inside the on start block. You can put as many
commands as you want, and the robot will execute them one at a time in the given order.

A.3.7 Programming activity

Objective: Design an algorithm for your robot to make an L shaped path.
Hint: Put different movement blocks in the on start block in the order you want them to
be executed.

A.3.8 Programming activity

Objective: Design an algorithm for your robot to make a U shaped path.
Hint: Put different movement blocks in the on start block in the order you want them to
be executed.

A.3.9 Programming activity

Objective: Design an algorithm for your robot to make a square shaped path.
Hint: Put different movement blocks in the on start block in the order you want them to
be executed.

A.3.10 Programming activity

Objective: Design an algorithm for your robot to dodge an obstacle.
Hint: Put different movement blocks in the on start block in the order you want them to
be executed.

A.3.11 Quiz

50

Which of the algorithms makes the robot walk in a rectangle shaped path?

quando comecar | dar um passo
girar a direita quando comecar | dar um passo
dar um passo girar a direita
dar um passo dar um passo
girar a direita dar um passo
dar um passo girar a direita

girar a direita dar um passo
dar um passo girar a direita
Jar um passo éar um passo

(a) Correct answer (b) Incorrect answer

A.4 Debugging

A.4.1 Tutorial

quando comecar | dar um passo
girar a direita

dar um passo
dar um passo
girar a esquerda
dar um passo
girar a direita

dar um passo
hdar um passo

(¢) Incorrect answer

It’s very common for an algorithm to have an error. How can we find the error and fix
it? This is what debugging is about - trying to find which step is incorrect. A lot of the
times the algorithm is on the right track, but incomplete. This means we have to add

more commands in order to have it do what we expect. Let’s practice this now.

A.4.2 Programming activity

Objective: Complete the algorithm for the robot to take 4 steps forward.

quando comecar | dar um passo

dar um passo

dar um passo
g pa

Hint: Add one or more blocks to the current algorithm.

A.4.3 Quiz

quando comecar | dar um passo

dar um passo
‘iiar um passo

What blocks should we add to this algorithm to make the robot take 5 steps forward?

51

dar um passo
dar um passo dar um passo
dar um passo dar um passo
(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.4.4 Programming activity
Objective: Complete the algorithm for the robot to make a squared shaped path.

quando comecar | dar um passo

| girar a direita

dar um passo
| girar a direita
dar um passo

Hint: Add one or more blocks to the current algorithm.

A.4.5 Quiz

quando comecar | dar um passo
girar a direita
dar um passo

girar a direita
-

What blocks should we add to this algorithm for the robot to make a squared shaped
path?

dar um passo dar um passo dar um passo
girar a direita girar a direita dar um passo
dar um passo girar a direita girar a direita
(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.4.6 Tutorial

We already learned how to fix an incomplete algorithm: add commands to make it behave
as expected. What if our algorithm has too many commands? In that case we need to
remove one or more blocks. We are practicing this in the next activities.

A.4.7 Programming activity

Objective: Remove one or more blocks from the current algorithm to make the robot take

4 steps forward.

52

quando comecar | dar um passo

_ dar um passo
dar um passo
_ dar um passo

dar um passo
| pa

Hint: Remove one or more blocks from the current algorithm.

A.4.8 Quiz

quando comecar | dar um passo

dar um passo
dar um passo

dar um passo
dar um passo
‘_dar um passo

Which blocks should we remove to make the robot take 3 steps forward?

dar um passo
i e
(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.4.9 Programming activity

Objective: Remove one or more blocks from the current algorithm for the robot to make
an L shaped path.

quando comecar | dar um passo
girar a esquerda
| girar a esquerda

dar um passo
| £ pa

Hint: Remove one or more blocks from the current algorithm.

93

A.4.10 Quiz

quando comecar | dar um passo

dar um passo
dar um passo

dar um passo

_dar um passo

Which blocks should we remove for the robot to make a squared shaped path?

dar um passo
R
(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.4.11 Tutorial

We have already learned to add missing blocks or to remove extra blocks to fix an algo-
rithm. Knowing this we can identify errors on many algorithms and fix them. But what
if we have a command that was supposed to be another one? In that case we need two
steps to fix the error: removing the incorrect block and replacing it with the correct one.
Let’s try it.

A.4.12 Programming activity

Objective: Replace one of the blocks for the robot to make an L shaped path.

quando comecar | dar um passo

_ dar um passo
‘hdarumpasso

Hint: Replace a block with a different command.

A.4.13 Programming activity

Objective: Replace one or more of the blocks for the robot to make a square shaped path.

54

quando comecar | dar um passo

girar a direita
. dar um passo
' girar a esquerda
. dar um passo
| girar & direita

dar um passo
£ pa

Hint: Replace one or more blocks with different commands.

A.4.14 Quiz

Which block should we replace for the robot to make a rectangle shaped path?

quando comecar | dar um passo quando comecar | dar um passo quando comecar | dar um passo
girar a esquerda
dar um passo dar um passo dar um passo
girar a esquerda girar a esquerda
girar a esquerda girar a esquerda

girar a esquerda girar a esquerda girar a esquerda

(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.5 Loop

A.5.1 Tutorial

We already know how to create a sequence of commands. What if we need the robot
to execute the same sequence multiple times? Is the best way to do that just copy the
blocks again? Not really: we can use the repeat block to avoid having to duplicate all the
comands. To repeat a sequence ten times, use the repeat N times block (repita N vezes),
write 10 as your number and put your sequence inside it.

New block available after this activity:

repita = ([E[1) | vezes

faca

A.5.2 Programming activity

Objective: Design an algorithm for your robot to walk around an obstacle.
Hint: Use the movement blocks in a sequence.

%)

A.5.3 Programming activity

Objective: Design an algorithm for your robot to walk around an obstacle twice.
Hint: Put the algorithm for the robot to walk around an obstacle inside the repeat 2
times block.

A.5.4 Programming activity

Objective: Design an algorithm for your robot to walk around an obstacle five times.
Hint: Put the algorithm for the robot to walk around an obstacle inside the repeat 5
times block.

A.5.5 Quiz
Which algorithm should be repeated for the robot to make a square shaped path three
times?

(a) Correct answer (b) Incorrect answer (¢) Incorrect answer

A.5.6 Tutorial

We already know how to make the robot repeat a task for a number of times. What
if we need the robot to execute an algorithm forever? You should use the repeat block
(repita) for that. The robot will continue executing the algorithm inside this block until
it is turned off.

New block available after this activity:

A.5.7 Programming activity

Objective: Design an algorithm for your robot to step forward (nonstop).
Hint: Put movement blocks inside the repeat block.

A.5.8 Programming activity

Objective: Design an algorithm for your robot to zig zag (nonstop).
Hint: Put movement blocks inside the repeat block.

o6

A.5.9 Programming activity

Objective: Design an algorithm for your robot to walk around an obstacle (nonstop).
Hint: Put movement blocks inside the repeat block.

A6 If

A.6.1 Tutorial

We already know how to make your robot execute a sequence once or many times. Can
we ask the robot to make a decision? We can use the if block (se) to do that. If the
condition following the block is true, the robot will execute the commands inside it.
New blocks available after this activity:

[

| distancialida €3 0

A.6.2 Programming activity

Objective: Design an algorithm for your robot to step forward if the distance ahead of it
is greater than 20.

Hint: Use the if block and put the step forward block inside it. As a condition, use
distance > 20.

A.6.3 Tutorial

We know how to make the robot execute a command if the condition is true. What it if
it’s false? In that case, use the else block (sendo). If the condition is false, the robot will
execute these commands instead.

A.6.4 Programming activity

Objective: Design an algorithm for your robot to step forward if the distance ahead of it
is greater than 20, if not then turn right.

Hint: Use the if block and put the step forward block inside it. As a condition, use
distance > 20. Put a turn right block in the else block.

A.6.5 Programming activity

Objective: Design an algorithm for your robot to walk around without hitting any obsta-
cles.
Hint: Use the repeat block with a if else block inside it.

57

Appendix B

Feedback form

This was the final feedback form given to the children that participated in the experi-

ments.

Qual a sua opinido sobre o aplicativo e rob6?

Para cada uma das perguntas, selecione uma resposta.

Vocé usaria o aplicativo e robé novamente?

Talvez Nao

|2
3

Vocé recomendaria o aplicativo e robd para um amigo?

2]
3
AQ
o8
<
@
N

192
3
Z@
an
(o]

O aplicativo traz desafios divertidos e interessantes?

2]

3
£0%)
an

o

Um pouco

Vocé gostou de ter trabalhado em dupla?

192
3
Z@
an
(o]

Um pouco

Vocé tem algum outro comentario ou sugestao?

Appendix C

Consent form

29

Termo de Consentimento Livre e Esclarecido

Oficina de aprendizagem de conceitos de computagao
com um robd controlado por um aplicativo

Pesquisadora: Lais Vasconcellos Minchillo
Orientadora: Dra. Juliana Freitag Borin

Vocé ou o menor de idade sob sua responsabilidade legal esta sendo convidado a participar
como voluntario de um estudo. Este documento, chamado Termo de Consentimento Livre e
Esclarecido (TCLE), visa assegurar os direitos e deveres de cada participante e é elaborado em
duas vias, uma que devera ficar com vocé e outra com o pesquisador.

Por favor, leia com atengdo e calma, aproveitando para esclarecer suas duvidas. Se houver
perguntas antes ou mesmo depois de assina-lo, vocé podera esclarecé-las com o pesquisador. Se
preferir, pode levar para casa e consultar seus familiares ou outras pessoas antes de decidir
participar. Se vocé ou o menor de idade sob sua responsabilidade legal ndo quiser participar ou
deseja retirar sua autorizagdo a qualquer momento, ndo havera nenhum tipo de penalizagdo ou
prejuizo.

Justificativa e objetivos:

Pensamento computacional € uma habilidade util para resolugdo de problemas em todas as
areas de conhecimento. Iniciativas no mundo todo tém como objetivo o ensino desta habilidade para
criangas, e em alguns paises isto ja é parte do curriculo escolar basico. Nos Estados Unidos, o
presidente Obama langou no inicio do ano uma iniciativa para o ensino de Ciéncia da Computacéo
no curriculo escolar. No Brasil, a SBC (Sociedade Brasileira de Computagdo) também esta
trabalhando para incluir o ensino de Computagao no curriculo escolar brasileiro.

Este trabalho propde o uso da programagdo como ferramenta de ensino do pensamento
computacional, contando com um robd fisico de baixo custo, controlado por um aplicativo para
tablets ou smartphones, que traz um ambiente ludico e motivador para as criangas. Nosso objetivo &
que os alunos exercitem conceitos de programagao enquanto brincam com o robd e também avaliar
os conhecimentos adquiridos por eles.

Procedimentos:

Vocé estd sendo convidado para participar de uma série de oficinas (com duragao
aproximada de duas horas cada). Nessas oficinas serdo oferecidas atividades para a programacéo
de um robd, que é controlado por um aplicativo em um tablet. Os alunos serdo divididos em grupos
de dois ou trés membros, e cada grupo vai explorar as licdes disponiveis de forma independente.
Nosso objetivo € observar o tempo gasto em cada atividade, o nimero de tentativas e se ela foi
concluida com sucesso.

Desconfortos e riscos:
N&o ha riscos previsiveis para os participantes do estudo, uma vez que serdo utilizados

dispositivos nao invasivos com os quais os participantes ja estdo familiarizados, tais como tablets e

Péagina 1 de 3

60

smartphones. Os robds também foram construidos de forma a nédo oferecer riscos como cortes ou
choques.

Beneficios:
O possivel beneficio direto para as criangas é adquirir conhecimentos em légica, matematica,
resolugao de problemas e conceitos de programacéo.

Acompanhamento e assisténcia:

Durante as oficinas, os pesquisadores estardo disponiveis para ajudar a responder perguntas
na utilizagdo ou desenvolvimento de qualquer atividade. Nao ha necessidade de assisténcia fora das
oficinas.

Sigilo e privacidade:

Vocé tem a garantia de que sua identidade, ou a do menor de idade sob sua
responsabilidade legal, sera mantida em sigilo e nenhuma informagao sera dada a outras pessoas
que nao fagam parte da equipe de pesquisadores. Na divulgagéo dos resultados desse estudo, seu
nome ndo sera citado. A gravagdo das oficinas é apenas para garantir que nenhum detalhe,
importante ou nao, seja omitido.

Ressarcimento:
Os pesquisadores se deslocarao até a escola para a realizagdo das oficinas, durante a rotina
dos alunos. Por este motivo, ndo havera valor de ressarcimento.

Indenizagao:

Os participantes da pesquisa que vierem a sofrer qualquer tipo de dano resultante de sua
participagdo na pesquisa, previsto ou nao neste termo, tém direito a indenizagéo, por parte do
pesquisador, patrocinador e das instituigbes envolvidas.

Contato:
Em caso de duvidas sobre o estudo, vocé podera entrar em contato com:

Lais Vasconcellos Minchillo Juliana Freitag Borin

Instituto de Computacédo, UNICAMP Instituto de Computacédo, UNICAMP
Av. Albert Einstein, 1251 - Cidade Av. Albert Einstein, 1251 - Cidade
Universitaria, CEP 13083-852, Universitaria, CEP 13083-852,
Campinas/SP Brasil Campinas/SP Brasil

Em caso de denuncias ou reclamagdes sobre sua participagdo no estudo, vocé pode entrar
em contato com a secretaria do Comité de Etica em Pesquisa (CEP): Rua: Tessdlia Vieira de
Camargo, 126; CEP 13083-887 Campinas/SP; telefone (19) 3521-8936; fax (19) 3521-7187; e-mail:
cep@fcm.unicamp.br

Péagina 2 de 3

61

62

Consentimento livre e esclarecido:

Apos ter sido esclarecido sobre a natureza da pesquisa, seus objetivos, métodos, beneficios
previstos, potenciais riscos e o incObmodo que esta possa acarretar, aceito participar, ou concordo
com a participagéo do menor de idade sob minha responsabilidade legal.

Nome do(a) participante:

Data: / /

(Assinatura do participante ou nome e assinatura do responsavel)

Responsabilidade do Pesquisador:

Asseguro ter cumprido as exigéncias da resolucéo 466/2012 CNS/MS e complementares na
elaboragdo do protocolo e na obtengdo deste Termo de Consentimento Livre e Esclarecido.
Asseguro, também, ter explicado e fornecido uma copia deste documento ao participante. Informo
que o estudo foi aprovado pelo CEP perante o qual o projeto foi apresentado. Comprometo-me a
utilizar o material e os dados obtidos nesta pesquisa exclusivamente para as finalidades previstas
neste documento ou conforme o consentimento dado pelo participante.

Data: / /

(Assinatura do pesquisador)

Péagina 3 de 3

Appendix D

Assent form

63

Termo de Assentimento Livre e Esclarecido

Oficina de aprendizagem de conceitos de computagao
com um robd controlado por um aplicativo

Pesquisadora: Lais Vasconcellos Minchillo
Orientadora: Dra. Juliana Freitag Borin

Vocé esta sendo convidado a participar como voluntario da pesquisa "Oficina de
aprendizagem de conceitos de computagao com um robd controlado por um aplicativo”.

O motivo que nos leva a estudar esse assunto é: pensamento computacional é uma
habilidade util para resolugéo de problemas, e seu ensino ja é parte do curriculo escolar basico em
muitos paises. Neste trabalho propomos o ensino de pensamento computacional através da
programacao de um robb fisico.

Adotaremos os seguintes procedimentos: durante cada uma das sessbes (com duragdo
aproximada de duas horas), os voluntarios serdo divididos em grupos de dois ou trés integrantes,
cada grupo recebera um robd e um tablet que é responsavel por sua programagéo. Cada grupo vai
explorar os desafios propostos de forma independente. Durante as oficinas, os pesquisadores
estardo disponiveis para ajudar a responder perguntas na utilizagdo ou desenvolvimento de
qualquer atividade.

A sua participagéo é voluntaria e a recusa em participar ndo acarretara qualquer penalidade
ou modificagdo na forma em que é atendido. Para vocé participar desta pesquisa, seu responsavel
legal devera autorizar sua participagdo e assinar um Termo de Consentimento. Vocé sera
esclarecido em qualquer aspecto que desejar e estara livre para participar ou recusar-se. O seu
responsavel legal podera retirar o consentimento ou interromper a sua participagcdo a qualquer
momento.

Vocé nao tera nenhum custo, nem recebera qualquer vantagem financeira. Caso sejam
identificados e comprovados danos provenientes dessa pesquisa, vocé tem direito a indenizagao.

N&o héa riscos previsiveis na participagcdo da pesquisa, uma vez que serdo utilizados
dispositivos ndo invasivos com os quais os participantes ja estao familiarizados, tais como tablets e
smartphones. Os robds também foram construidos de forma a nao oferecer riscos como cortes ou
choques.

A pesquisa podera contribuir para vocé adquirir conhecimentos em logica, matematica,
resolucdo de problemas e conceitos de programacao.

Vocé tem a garantia de que sua identidade sera mantida em sigilo e nenhuma informagao
sera dada a outras pessoas que nao fagam parte da equipe de pesquisadores. Na divulgacdo dos
resultados desse estudo, seu nome ndo sera citado. Os resultados estardo a sua disposigdo
quando finalizada.

Este termo de consentimento encontra-se impresso em duas vias originais: sendo que uma
sera arquivada pelo pesquisador responsavel, e a outra sera fornecida a voceé.

Pagina 1 de 2

64

65

Em caso de duvidas sobre o estudo, vocé podera entrar em contato com:

Lais Vasconcellos Minchillo Juliana Freitag Borin

Instituto de Computagéo, UNICAMP Instituto de Computagao, UNICAMP
Av. Albert Einstein, 1251 - Cidade Av. Albert Einstein, 1251 - Cidade
Universitaria, CEP 13083-852, Universitaria, CEP 13083-852,
Campinas/SP Brasil Campinas/SP Brasil

Em caso de denuncias ou reclamagdes sobre sua participagdo no estudo, vocé pode entrar
em contato com a secretaria do Comité de Etica em Pesquisa (CEP): Rua: Tessalia Vieira de
Camargo, 126; CEP 13083-887 Campinas/SP; telefone (19) 3521-8936; fax (19) 3521-7187; e-mail:
cep@fcm.unicamp.br

Assentimento livre e esclarecido:
Aceito participar desta pesquisa apos ter sido esclarecido sobre sua natureza, seus

objetivos, métodos, beneficios previstos, potenciais riscos e o incOmodo que esta possa acarretar.

Nome do(a) participante:

Data: / /

(Assinatura do participante)

Responsabilidade do Pesquisador:

Asseguro ter cumprido as exigéncias da resolugédo 466/2012 CNS/MS e complementares na
elaboragdo do protocolo e na obtengdo deste Termo de Consentimento Livre e Esclarecido.
Asseguro, também, ter explicado e fornecido uma cépia deste documento ao participante. Informo
que o estudo foi aprovado pelo CEP perante o qual o projeto foi apresentado. Comprometo-me a
utilizar o material e os dados obtidos nesta pesquisa exclusivamente para as finalidades previstas
neste documento ou conforme o consentimento dado pelo participante.

Data: / /

(Assinatura do pesquisador)

Pagina 2 de 2

66

Appendix E

Ethics committee

This project has been approved by the Universidade Estadual de Campinas (UNICAMP)
Ethics Committee (Comité de Etica em Pesquisa - CEP).

67

UNICAMP - FACULDADE DE
Ny CIENCIAS MEDICAS DA <CGETaForme
cemuncame UNIVERSIDADE DE CAMPINAS

PARECER CONSUBSTANCIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Titulo da Pesquisa: Programagao como ferramenta de ensino de pensamento computacional
Pesquisador: LAIS VASCONCELLOS MINCHILLO

Area Tematica:

Versado: 3

CAAE: 61934616.8.0000.5404

Instituicdo Proponente: Instituto de Computacéao

Patrocinador Principal: TECSINAPSE TECNOLOGIA DA INFORMACAO LTDA.

DADOS DO PARECER

Numero do Parecer: 1.890.508

Apresentacgao do Projeto:

Pensamento computacional € uma habilidade Util para resolu¢do de problemas em todas as areas de
conhecimento. Iniciativas no mundo todo tém como objetivo o ensino desta habilidade para criangas, e em
alguns paises isto ja é parte do curriculo escolar basico. Propomos o uso da programagdo como ferramenta
de ensino de pensamento computacional, com o desenvolvimento de um aplicativo para plataformas méveis.
Esta tarefa traz diversos desafios: definicdo de conceitos de programagao a ensinar, métodos de ensino,
escolha da faixa etaria alvo, criagdo de uma metodologia de testes e avaliagéo final. Esperamos constatar
ao final deste trabalho que o ensino de programacéao de fato traz o aprendizado de pensamento
computacional.

Obijetivo da Pesquisa:

Objetivo Priméario:

Testar 0 uso de um aplicativo que exercita conceitos de programagéo.Avaliar se os usuarios adquiriram
conhecimento apdés o uso do aplicativo.

Objetivo Secundario:

Verificar se o rob6 é um agente motivador para o uso do aplicativo.

Avaliacao dos Riscos e Beneficios:
Riscos:

Endereco: Rua Tessélia Vieira de Camargo, 126

Bairro: Barao Geraldo CEP: 13.083-887

UF: SP Municipio: CAMPINAS

Telefone: (19)3521-8936 Fax: (19)3521-7187 E-mail: cep@fcm.unicamp.br

Péagina 01 de 06

o2, UNICAMP - FACULDADE DE
Ny CIENCIAS MEDICAS DA <CGETaForme

cepunicam= UNIVERSIDADE DE CAMPINAS

Continuagéo do Parecer: 1.890.508

Os robds que serao utilizados nas oficinas foram construidos de forma a evitar qualquer perigo durante seu
uso, como cortes ou choques. Os tablets também oferecem pouco risco.

Beneficios:

Os usuarios possivelmente vao adquirir conhecimentos em Idgica, matematica, resolugao de problemas e
conceitos de programagao.

Comentarios e Consideracoes sobre a Pesquisa:

Trata-se de um projeto de mestrado do IC-UNICAMP que propde a utilizagdo de um robd programado por
um tablete no ensino de programagdo em uma escola (DEdIC). O projeto esta dividido em 5 fases e na
sesséo 5 serd aplicado um questionario (n=30).

A pesquisa é pertinente e embasada na literatura. Nao ha riscos previsiveis e o possivel beneficio direto aos
participantes da pesquisa sera adquirir conhecimentos em légica, matematica, resolugdo de problemas e
conceitos de programagao.

Consideracoes sobre os Termos de apresentacéo obrigatéria:

Todos os documentos foram apresentados:

1) Folha de rosto, devidamente assinada pelo diretor associado da FT-UNICAMP.

2) Projeto de Pesquisa gerado pela Plataforma Brasil, com o cronograma e orgamento adequados.
3) Projeto de pesquisa detalhado e questionario, devidamente escritos e referenciados.

4) TCLE e termo de assentimento devidamente redigidos.

Recomendacoées:

Conclus6es ou Pendéncias e Lista de Inadequacoes:
Uma vez que todas as pendéncias foram atendidas e o projeto é pertinente e embasado na literatura,
recomento a aprovagéo.

Pendéncias e respostas da segunda andlise:

1) Em pesquisas cujos convidados sejam adolescentes, é necessario a anuéncia do participante da
pesquisa através do termo de assentimento livre esclarecido, sem prejuizo do consentimento de seus
responsaveis legais. Tais participantes devem ser esclarecidos sobre a natureza da pesquisa,

Endereco: Rua Tessélia Vieira de Camargo, 126

Bairro: Barao Geraldo CEP: 13.083-887

UF: SP Municipio: CAMPINAS

Telefone: (19)3521-8936 Fax: (19)3521-7187 E-mail: cep@fcm.unicamp.br

Péagina 02 de 06

68

o2, UNICAMP - FACULDADE DE
Ny CIENCIAS MEDICAS DA <CGETaForme

cepunicam= UNIVERSIDADE DE CAMPINAS

Continuagéo do Parecer: 1.890.508

seus objetivos, métodos, beneficios previstos, potenciais riscos e o incémodo que esta possa lhes acarretar,
na medida de sua compreenséo e respeitados em suas singularidades.

Resposta: O publico alvo da pesquisa sdo criangas entre 10 e 12 anos. Explicaremos a natureza da
pesquisa, assim como seus objetivos, métodos, beneficios previstos e riscos potenciais. Os alunos que
desejarem participar deverdo assinar um Termo de Assentimento, e serd solicitada a assinatura do Termo
de Consentimento por um responsavel legal.

Situagédo: O termo de assentimento foi incluso.

Conclusao: Pendéncia atendida.

Pendéncias e respostas da primeira analise:

Uma vez que a carta resposta esta no formato de imagem néo foi possivel transcrevé-la.

1) TCLE:

1.1) Numerar as péaginas de forma a saber a quantidade total de paginas em cada péagina, por exemplo, 1/2
e 2/2. Readequar.

Situagao: O TCLE foi modificado.

Conclusao: Pendéncia atendida.

1.2) O texto como foi descrito no TCLE néo garante indenizagdo por danos decorrentes da pesquisa. A
Resolugao 466/12 (item 1V.3) define que "os participantes da pesquisa que vierem a sofrer qualquer tipo de
dano resultante de sua participagéo na pesquisa, previsto ou ndo no TCLE, tém direito a indenizagéo, por
parte do pesquisador, patrocinador e das instituigdes envolvidas". Cabe enfatizar que a questédo da
indenizagéo nao é prerrogativa da Resolugdo 466/12, estando prevista no codigo civil. Portanto, solicitamos
que seja assegurado, de forma clara e afirmativa, que o participante de pesquisa tem direito a indenizagéo
em casos de danos decorrentes da pesquisa. Readequar.

Situagdo: O TCLE foi modificado.

Conclusao: Pendéncia atendida.

1.3) Colocar o beneficio como um possivel beneficio. Readequar.

Situagdo: O TCLE foi modificado.

Conclusao: Pendéncia atendida.

2) Em pesquisas cujos convidados sejam adolescentes, é necessario a anuéncia do participante da
pesquisa através do termo de assentimento livre esclarecido, sem prejuizo do consentimento de seus
responsaveis legais. Tais participantes devem ser esclarecidos sobre a natureza da pesquisa, seus
objetivos, métodos, beneficios previstos, potenciais riscos e o incobmodo que esta possa lhes acarretar, na
medida de sua compreensao e respeitados em suas singularidades.

Endereco: Rua Tessélia Vieira de Camargo, 126

Bairro: Barao Geraldo CEP: 13.083-887
UF: SP Municipio: CAMPINAS
Telefone: (19)3521-8936 Fax: (19)3521-7187 E-mail: cep@fcm.unicamp.br

Péagina 03 de 06

69

o2, UNICAMP - FACULDADE DE
Ny CIENCIAS MEDICAS DA <CGETaForme

cepurucane UNIVERSIDADE DE CAMPINAS

Continuagéo do Parecer: 1.890.508

Situagao: O assentimento ndo foi incluido. Apesar dos pesquisadores dizerem, na carta resposta, que
falardo sobre a natureza do projeto aos adolescentes.
Conclusao: Pendéncia néo atendida.

Consideragodes Finais a critério do CEP:
- O sujeito de pesquisa deve receber uma via do Termo de Consentimento Livre e Esclarecido, na integra,
por ele assinado (quando aplicavel).

- O sujeito da pesquisa tem a liberdade de recusar-se a participar ou de retirar seu consentimento em
qualquer fase da pesquisa, sem penalizagao alguma e sem prejuizo ao seu cuidado (quando aplicavel).

- O pesquisador deve desenvolver a pesquisa conforme delineada no protocolo aprovado. Se o pesquisador
considerar a descontinuagao do estudo, esta deve ser justificada e somente ser realizada apés andlise das
razdes da descontinuidade pelo CEP que o aprovou. O pesquisador deve aguardar o parecer do CEP
quanto a descontinuacao, exceto quando perceber risco ou dano néo previsto ao sujeito participante ou
quando constatar a superioridade de uma estratégia diagnostica ou terapéutica oferecida a um dos grupos
da pesquisa, isto €, somente em caso de necessidade de agédo imediata com intuito de proteger os
participantes.

- O CEP deve ser informado de todos os efeitos adversos ou fatos relevantes que alterem o curso normal do
estudo. E papel do pesquisador assegurar medidas imediatas adequadas frente a evento adverso grave
ocorrido (mesmo que tenha sido em outro centro) e enviar notificacdo ao CEP e a Agéncia Nacional de
Vigilancia Sanitaria — ANVISA — junto com seu posicionamento.

- Eventuais modificagées ou emendas ao protocolo devem ser apresentadas ao CEP de forma clara e
sucinta, identificando a parte do protocolo a ser modificada e suas justificativas e aguardando a aprovagao
do CEP para continuidade da pesquisa. Em caso de projetos do Grupo | ou Il apresentados anteriormente a
ANVISA, o pesquisador ou patrocinador deve envia-las também a mesma, junto com o parecer aprovatério
do CEP, para serem juntadas ao protocolo inicial.

Endereco: Rua Tessélia Vieira de Camargo, 126

Bairro: Barao Geraldo CEP: 13.083-887

UF: SP Municipio: CAMPINAS

Telefone: (19)3521-8936 Fax: (19)3521-7187 E-mail: cep@fcm.unicamp.br

Péagina 04 de 06

70

71

-0 UNICAMP - FACULDADE DE
STy CIENCIAS MEDICAS DA

\q%ﬂaﬂ
UNIVERSIDADE DE CAMPINAS

cEPUNICANME

Continuagéo do Parecer: 1.890.508

- Relatérios parciais e final devem ser apresentados ao CEP, inicialmente seis meses apés a data deste
parecer de aprovacéo e ao término do estudo.

-Lembramos que segundo a Resolugao 466/2012 , item XI.2 letra e, “cabe ao pesquisador apresentar dados
solicitados pelo CEP ou pela CONEP a qualquer momento”.

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situagao
Informacdes Béasicas| PB_INFORMACOES_BASICAS_DO_P | 19/12/2016 Aceito
do Projeto ROJETO 821298.pdf 18:06:23
Outros CartaResposta2.pdf 19/12/2016 |LAIS Aceito

18:06:03 |VASCONCELLOS
MINCHILLO
TCLE / Termos de | TermodeAssentimentoLivreeEsclarecido| 19/12/2016 [LAIS Aceito
Assentimento / .pdf 18:05:44 |VASCONCELLOS
Justificativa de MINCHILLO
Auséncia
Outros carta_resposta_pendencias.pdf 04/12/2016 |LAIS Aceito
20:07:47 |VASCONCELLOS
MINCHILLO
TCLE / Termos de | TCLE_v2.pdf 04/12/2016 |LAIS Aceito
Assentimento / 20:06:47 |VASCONCELLOS
Justificativa de MINCHILLO
Auséncia
Projeto Detalhado / |projeto_completo.pdf 10/11/2016 |LAIS Aceito
Brochura 17:17:43 |VASCONCELLOS
| Investigador MINCHILLO
Outros questionario_avaliacao.pdf 10/11/2016 |LAIS Aceito
12:59:46 |VASCONCELLOS
MINCHILLO
Declaragao de declaracao_instituicao_dedic_unicamp.p| 09/11/2016 |LAIS Aceito
Instituicéo e df 21:09:56 |VASCONCELLOS
Infraestrutura MINCHILLO
Folha de Rosto folha_de_rosto_assinada.pdf 09/11/2016 [LAIS Aceito
21:09:31 |VASCONCELLOS
MINCHILLO

Situagao do Parecer:
Aprovado

Endereco: Rua Tessélia Vieira de Camargo, 126

Bairro: Barao Geraldo CEP: 13.083-887

UF: SP Municipio: CAMPINAS

Telefone: (19)3521-8936 Fax: (19)3521-7187 E-mail: cep@fcm.unicamp.br

Péagina 05 de 06

O UNICAMP - FACULDADE DE
- CIENCIAS MEDICAS DA

cesunicane UNIVERSIDADE DE CAMPINAS

Continuagéo do Parecer: 1.890.508

Necessita Apreciagdo da CONEP:
Nao

CAMPINAS, 13 de Janeiro de 2017

Qe

Assinado por:
Renata Maria dos Santos Celeghini

(Coordenador)
Endereco: Rua Tessélia Vieira de Camargo, 126
Bairro: Baréo Geraldo CEP: 13.083-887
UF: SP Municipio: CAMPINAS
Telefone: (19)3521-8936 Fax: (19)3521-7187 E-mail: cep@fcm.unicamp.br

Péagina 06 de 06

72

	Introduction
	Basic concepts and related work
	Computational thinking
	Related work
	Tools and resources
	CSTA
	Scratch
	Code.org
	Cubetto
	Wonder Workshop CleverBots
	Sphero
	CS Unplugged
	Exploring Computational Thinking
	Taccle 3 Coding

	Discussion

	CT educational game
	Interface
	Bluetooth interface
	Activities
	Logs
	Configuration file

	Experimental setup, methodology and results
	A change of paradigm
	Experimental setup and methodology
	Results
	Observations
	Log analysis
	Children's feedback

	Discussion

	Conclusions and future work
	List of application activities
	Introduction to algorithms
	Tutorial
	Quiz
	Quiz

	Introduction to movement
	Tutorial
	Programming activity
	Programming activity
	Programming activity
	Quiz
	Quiz
	Quiz

	Sequence
	Tutorial
	Programming activity
	Programming activity
	Programming activity
	Programming activity
	Tutorial
	Programming activity
	Programming activity
	Programming activity
	Programming activity
	Quiz

	Debugging
	Tutorial
	Programming activity
	Quiz
	Programming activity
	Quiz
	Tutorial
	Programming activity
	Quiz
	Programming activity
	Quiz
	Tutorial
	Programming activity
	Programming activity
	Quiz

	Loop
	Tutorial
	Programming activity
	Programming activity
	Programming activity
	Quiz
	Tutorial
	Programming activity
	Programming activity
	Programming activity

	If
	Tutorial
	Programming activity
	Tutorial
	Programming activity
	Programming activity

	Feedback form
	Consent form
	Assent form
	Ethics committee

