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Resumo

Prefix Scan (ou simplesmente scan) é um operador que computa todas as somas parciais
de um vetor. A operação scan retorna um vetor onde cada elemento é a soma de todos os
elementos precedentes até a posição correspondente. Scan é uma operação fundamental
para muitos problemas relevantes, tais como: algoritmos de ordenação, análise léxica,
comparação de cadeias de caracteres, filtragem de imagens, dentre outros. Embora exis-
tam bibliotecas que fornecem versões paralelizadas de scan em CUDA e OpenCL, não
existe uma implementação paralela do operador scan em OpenMP. Este trabalho propõe
uma nova clausula que permite o uso automático do scan paralelo. Ao usar a cláusula pro-
posta, um programador pode reduzir consideravelmente a complexidade dos algoritmos,
permitindo que ele concentre a atenção no problema, e não em aprender novos modelos
de programação paralela ou linguagens de programação. Scan foi projetado em ACLang
(www.aclang.org), um framework de código aberto baseado no compilador LLVM/Clang,
que recentemente implementou o OpenMP 4.X Accelerator Programming Model . AClang
converte regiões do programa de OpenMP 4.X para OpenCL. Experimentos com um con-
junto de algoritmos baseados em Scan foram executados nas GPUs da NVIDIA, Intel
e ARM, e mostraram que o desempenho da clausula proposta é equivalente ao alcan-
çado pela biblioteca de OpenCL, mas com a vantagem de uma menor complexidade para
escrever o código.



Abstract

Prefix Scan (or simply scan) is an operator that computes all the partial sums of a vec-
tor. A scan operation results in a vector where each element is the sum of the preceding
elements in the original vector up to the corresponding position. Scan is a key opera-
tion in many relevant problems like sorting, lexical analysis, string comparison, image
filtering among others. Although there are libraries that provide hand-parallelized im-
plementations of the scan in CUDA and OpenCL, no automatic parallelization solution
exists for this operator in OpenMP. This work proposes a new clause to OpenMP which
enables the automatic synthesis of the parallel scan. By using the proposed clause a
programmer can considerably reduce the complexity of designing scan based algorithms,
thus allowing he/she to focus the attention on the problem and not on learning new paral-
lel programming models or languages. Scan was designed in AClang (www.aclang.org),
an open-source LLVM/Clang compiler framework that implements the recently released
OpenMP 4.X Accelerator Programming Model. AClang automatically converts OpenMP
4.X annotated program regions to OpenCL. Experiments running a set of typical scan
based algorithms on NVIDIA, Intel, and ARM GPUs reveal that the performance of the
proposed OpenMP clause is equivalent to that achieved when using OpenCL library calls,
with the advantage of a simpler programming complexity.
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Chapter 1

Introduction

Parallelizing loops is a well-known research problem that has been extensively studied.

The most common approach to this problem uses DOALL [27] algorithms to parallelize

the iterations of loops which do not have loop-carried dependencies. Although there are

approaches such as DOACROSS [15], DSWP [34] and BDX [16] that can be used to paral-

lelize loop-carried dependent loops, these algorithms can not be directly applied to loops

that are sequential in nature. One example of such loop can found in the implementation

of the scan operation.

Cumulative sum, inclusive scan, or simply scan [9] is a key operation that has as goal

to computing the partial sums of the elements of a vector. The scan operation results in a

new vector where each element is the sum of the preceding elements of the input vector up

to its corresponding position. Scan is a central operation in many relevant problems like

sorting, lexical analysis, string comparison, image filtering, stream compaction, histogram

construction as well as in many data structure transformations [10].

Scan is a very simple operation that can be generalized in two flavors (inclusive and

exclusive) as follows. Given a binary associative operator ⊕ and a vector of n elements x =
[x0, x1, ..., xn−1], an inclusive scan produces the vector y = [x0, x0⊕x1, ..., x0⊕x1⊕...⊕xn−1].

Similarly, the exclusive scan operation results in vector y = [I, x0, x0 ⊕ x1, ..., x0 ⊕ x1 ⊕
...⊕ xn−2], where I is the identity element in the binary associative operator ⊕.

y[0] = 0

y[1] = x[0]

y[2] = x[0] + x[1]

y[3] = x[0] + x[1] + x[2]

. . .

y[i] =
i−1

∑
j=0

x[j] (1.1)

The parallel scan clause proposed in this work is based on the exclusive scan operation

which will be called scan from now on. It is trivial to compute inclusive scan from the

result of its exclusive version. This can be done by: (i) computing the exclusive scan of y;

(ii) shifting the elements of y to the left; and (iii) storing the operation y[n−2]⊕x[n−1]

9
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Listing 1.1: The prefix sum implementation
1 ( a ) Sequent i a l implementation
2

3 y [ 0 ] = 0 ;
4 f o r ( i n t i = 1 ; i < n ; i++)
5 y [ i ] = y [ i −1] + x [ i −1 ] ;
6

7 (b) P a r a l l e l implementation us ing the new c l au s e
8

9 y [ 0 ] = 0 ;
10 #pragma omp p a r a l l e l f o r scan (+: y )
11 f o r ( i n t i = 1 ; i < n ; i++)
12 y [ i ] = y [ i −1] + x [ i −1 ] ;
13

into y[n − 1].
The exclusive scan of a sequence is trivial to compute using an O(n) algorithm that

sequentially applies the recurrence formula y[i] = y[i − 1] ⊕ x[i − 1] to the n elements of

x. For example, when the binary operator ⊕ is the addition (Equation 1.1), the scan

operation stores in y all partial sums of array x, an algorithm named Prefix Sum. As

shown in Listing 1.1a, the loop that implements prefix sum is intrinsically sequential

due to the loop-carried dependence on y which makes the value of y[i] depend on the

value of y[i − 1] from the previous iteration. Hence, the loop body in Listing 1.1a forms

a single strongly connected component in the program control-flow graph [7] and thus

typical DOACROSS based algorithms like [40, 13] cannot be used to parallelize the loop

iterations of prefix sum.

There are many other scan based operations that use various associative binary oper-

ators like the product, maximum, minimum, and logical AND, OR, and XOR to parallelize

some very relevant algorithms [31, 14, 8]. Given the relevance of scan in computing,

library-based parallel implementations of scan have been proposed in the past [19, 9] and

designed as library calls in languages like OpenCL and CUDA [36, 12]. Unfortunately,

most of these implementations are problem specific leaving the programmer with the task

of mastering the complexity of OpenCL and CUDA to handle the design of a scan based

operation to a specific problem.

This work proposes a new OpenMP scan clause that enables the automatic synthesis

of parallel scan. The programmer can use the new clause to design algorithms in OpenMP

C/C++ code thus eliminating the need to deal with the complexity of OpenCL or CUDA.

The new scan clause was integrated into ACLang, an open-source LLVM/Clang compiler

framework (www.aclang.org) that implements the recently released OpenMP 4.X Accel-

erator Programming Model [29]. AClang automatically converts OpenMP 4.X annotated

program regions to OpenCL/SPIR kernels, including those regions containing the new

scan clause.

A careful reader might think that such new scan clause is a trivial extension of the

reduction clause already available in OpenMP. As a matter of fact, the reduction of the

elements of a sequence x can be obtained by computing the scan of x into y as shown

in Listing 1.1b and returning the value of y[n − 1] + x[n − 1]. In other words, reduction

is a simpler version of scan in which the values of all intermediate partial sums are not

exposed, and only the total sum of the elements of x is returned. Reduction can be

performed in O(log n) complexity using a tree-based [6] or a butterfly-based [23] parallel
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algorithm. Moreover, both reduction and scan are operations that handle loop-carried

dependent variables. In the reduction case, a single variable accumulates the value from

the previous iterations, while in scan the accumulation occurs for all elements of y each

depending on elements from the previous iterations. This makes the implementation of

parallel scan much harder than the implementation of reduction.

The rest of the work is organized as follows. Chapter 2 details some concepts of

programming to GPU, and the AClang compiler. Chapter 3 describes the state-of-art of

the scan algorithm used to design and implement the new OpenMP scan clause. Also, this

Chapter gives an outline of the structure of the AClang compiler and describes the details

of the implementation of the OpenMP scan clause into the AClang Compiler. Chapter 4

describes some examples of the use of the scan clause. Chapter 5 discusses related work,

and Chapter 6 provides performance numbers and analyzes the results when programs

are compiled with the new scan clause. Finally, Chapter 7 concludes the work.

The contribution of this work was published in the following conference paper [17].

• M. Gómez, M. Pereira, X. Martorell, and G. Araujo. Automatic scan parallelization

in openmp. In 2017 International Symposium on Computer Architecture and High

Performance Computing Workshops (SBAC-PADW), pages 85–90, Oct 2017.



Chapter 2

Background

2.1 Introduction to GPUs

2.1.1 A Brief History of GPUs

In the early 1990s, users began purchasing 2D display accelerators for their computers.

These display accelerators offered hardware-assisted bitmap operations to assist in the

display and usability of graphical operating systems.

Around the same time, the company Silicon Graphics popularized the use of three-

dimensional graphics. In 1992, Silicon Graphics opened the programming interface for its

hardware, launching the OpenGL library, so that it became a de facto standard.

By the mid-1990s, the demand for applications that were using 3D graphics increases

considerably, growing one stage of development. PC gaming was affected by those devices

creating progressively, more realistic 3D environments. At the same time, companies such

as NVIDIA, ATI Technologies, and 3dfx Interactive, began releasing graphics accelera-

tors that were affordable enough to attract widespread attention. These developments

cemented 3D graphics as a technology that would become prominent for years to come.

In 1999 was created the first GPU GeForce 256 that was marketed as "the world’s first

GPU" or Graphic Processing Unit, enhancing the potential for even more visually exciting

applications. Since transform and lighting were already integral parts of the OpenGL

graphics pipeline, the GeForce 256 marked the beginning of a natural progression where

increasingly more of the graphics pipeline would be implemented directly on the graphics

processor.

In 2001 was introduced the GeForce 3, the first programmable GPU. For the first

time, developers had some control over the exact computations that would be performed

on their GPUs.

2.1.2 GPU Overview

Graphics processor units are designed to handle massive computations, required to render

the graphics that are created and displayed by a computer. Commonly, this requires the

execution of the same operation on a large data set. In addition, this processing should

be done in real time and must be completed as fast as can be done. The GPU was the

12
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answer to this.

GPUs were designed while graphics processing in mind, and this was the main ap-

plication for GPUs for a long time. Later, programmers discovered an opportunity to

explore GPUs to achieve high levels of parallelization for general-purpose application be-

yond the graphics domain. That is how it started what is known as general purpose

graphics processing (or GPGPU) programming. With the steady growth of interest in

GPGPU programming, GPU vendors started building GPU designs that were more flex-

ible and had an open programming model. Hence, modern GPUs began to be designed

consisting of many programmable cores. These cores are capable of executing threads of

computation, where each thread operates on a slice of a large input data set.

Therefore, over time the use of GPUs improved the performance of programs. The

downside to using GPU is the fact that having a partner CPU is necessary to enable GPU

execution. The GPU by itself can not be a standalone unit. To be able to operate on a

GPU, the presence of the CPU is necessary to manage the execution of the program. The

CPU is responsible for determining which portions of the application are completed by

the GPU and defining which parameters will be used in this operation. Also, the CPU

is responsible for the memory management of the data which is delivered and received

from the GPU. Hence, for the operations that need to be performed in the GPU, the data

must be copied from the CPU memory. Similarly, when the GPU finishes its work, it is

necessary to pass the data from the GPU to the CPU. Such data transfer operations are

typically very expensive and often limits the applications that can benefit from the GPU

usage.

In addition to the above discussion, GPUs have several other disadvantages. Similarly

to Digital Signal Processors (DSPs), a GPU has a slower clock rate than the CPU. It

also does not have the same cache sizes. It does not implement branch prediction or any

similar optimizations. For these reasons a GPU cannot keep up with the CPU in serial

execution. Therefore, it is very important to define which portions of the program can

be done serially and executed at the CPU, and which other portions could be parallelized

and executed on the GPU. If the proportion of the code to be executed on the GPU

compensates the disadvantages mentioned above and produces overall faster code than

its serial version, it is worth to use the GPU to accelerate that fragment of the code.

With the goal of enabling general-purpose applications, GPU manufacturers started

offering programming toolkits. In particular, NVIDIA designed a toolkit based on the

CUDA language that allows programmers to create applications that can run on GPUs.

A major advantage of CUDA is its similarity with the C language. This allows the

implementation of many applications as well as the increase in the number of parallel

algorithms that can harness the potential of GPUs. As was mentioned before, GPUs can

execute a program in parallel.

By seeking to have a broader programming model that could span parallel execution

for a range of accelerator devices, and not only CPU to GPUs, a large share of the in-

dustry proposed a new language called OpenCL. The OpenCL standard is the first open,

royalty-free, unified programming model for accelerating algorithms on heterogeneous sys-

tems. OpenCL allows the use of a C-based programming language for developing code

across different platforms, such as CPUs, GPUs, DSPs, and field-programmable gate ar-
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rays (FPGA). OpenCL is a programming model for software engineers and a methodology

for system architects. It is based on standard ANSI C (C99) with extensions to extract

parallelism. OpenCL also includes an application program interface (API) for the host to

communicate, using a kernel code, with the hardware accelerator (mainly GPU), tradi-

tionally over PCI Express. It also allows one kernel to communicate with another without

host interaction. In the OpenCL model, the user schedules kernels to command queues,

of which there is at least one for each device. The OpenCL run-time then breaks the

data-parallel tasks into pieces and sends them to the processing elements in the device.

This is the method for a host to communicate with any hardware accelerator. It is up

to the individual hardware accelerator vendors to abstract away the vendor-specific im-

plementation. Summing up what was said before, OpenCL is a framework that allows

the use of several devices from different vendors. Most developers agree that CUDA has

a better performance than OpenCL in NVIDIA devices. However, not all the users have

NVIDIA cards, and therefore OpenCL is the preferred choice instead of CUDA. Clearly if

NVIDIA card is an option, CUDA will always be chosen. There has been a huge amount

of research work on GPU architectures and code optimization. Chapter 5 discusses the

most relevant research related to this dissertation. Nevertheless, it is important to high-

light the importance of users understanding the process of evaluating if it is worth or not

the usage of a GPU to accelerate a specific fragment of code. As an example, Trancoso et

al. [38] analyzed a very simple application when implemented on a GPU, a low-end CPU,

and a high-end CPU. They discussed the application’s performance on the GPU relative

to the CPU and also looked at several of the different variables that can be changed to

improve the GPU’s performance. They also looked at what factors make a program more

likely to be better suited for a GPU than a CPU. Owens et al. [33] also studied how the

GPU can handle applications that were previously implemented on a CPU. That study

looks at the GPU design and discusses the possible performance improvements offered by

the GPU. Also, they analyzed how the GPU was used for specific applications such as

in-game physics and computational biophysics.

2.1.3 GPU hardware

Before going into the programming of GPUs (see Section 2.1.4), it is important to have

some background on GPU architecture. The GPU programming model exposed by CUDA

very much mirrors the underlying hardware. Some of the details that make GPU pro-

gramming hard are more apparent when looking at the underlying hardware. A CUDA

GPU is built around a single kind of processor (as opposed to the different kinds of pro-

cessors found in earlier GPUs). The processors in the GPU (called MPs, MultiProcessors)

all contain some cores called SPs (Streaming Processors). Each MP also contains local

memory, called shared memory since it can be accessed by all of the SPs in that MP. The

number of MPs varies over the available GPU; cheaper GPUs have as few as one MP, and

as you go up in price the number of MPs increases. Each MP of the GPU can manage

a large number of threads; on today’s GPUs up to 2048 threads can run on a single MP.

The GPU schedules threads in groups of 32, called Warps that are executed in lock-step

(SIMD style execution). Threads are also divided into Blocks; the threads within a block
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Table 2.1: Kind of CUDA functions

Executed
on the:

Only callable
from the:

_device_ int DeviceFunction() device device
_global_ void KernelFunction() host device

_host_ int HostFunction() host host

can communicate using the shared memory. The maximum number of threads per block

is 1024 [5]. Threads within a warp can communicate via the shared memory without

using any synchronization primitive. However, if communication takes place across warps

synchronization is necessary. A barrier synchronization mechanism exists to ensure that

all threads within a block have reached the same position in the code. Blocks are also

grouped into a grid, that is the collection of blocks executing the same program.

2.1.4 Programming for GPUs

The GPGPU programming landscape has rapidly evolved over the past several years.

Nowadays there are several approaches to programming GPUs. For this section, CUDA

language will be taken as a reference.

CUDA is a parallel computing platform and programming model developed by NVIDIA

for GPU computing. CUDA computing system has two parts: The host and device. The

host part is one or many traditional CPU(s) like Intel or AMD CPUs. The device part

consists of one or several GPU(s), which are used as co-processors. Since GPUs can enable

much parallelism, CUDA devices could help to accelerate those applications that have a

lot of data to parallelize. Thus, parallelism is the critical factor in deciding if the use is

appropriate for a CPU-GPU system.

CUDA Function Declaration

As stated above, a complete CUDA Program is a mixed code with both GPU and CPU

parts. Function declaration keywords are designed to support this kind of code mix. As

shown in Table 2.1 functions in CUDA can be declared as global, host or device. A

kernel function is a function that will generate a large number threads and is declared as

global. During the compilation, the NVCC compiler will generate thousands of threads for

the kernel function and map them to the GPU. The keyword device is used to declare

a CUDA device function that can only be executed on GPU. Also, a CUDA device

function can only be called from a kernel function. The last keyword, host, is designed

for declaration for a host function which is run on CPU. The keywords host and device

can be used together to instruct the compiler to generate two versions of the kernel, one

running at the CPU and another on the GPU.
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Figure 2.5: AClang compiler pipeline.
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a number of new clauses aimed at speeding up the task of programming heterogeneous

architectures. This model extends the concept of offloading and enables the programmer

to use dedicated directives to define offloading target regions that control data movement

between host and devices. Although most OpenMP directives used for multicore hosts

can also be used inside the target regions, the new accelerator model easies the tasks of

identifying data-parallel computation.

ACLang is an open source (www.aclang.org) LLVM/Clang based compiler that im-

plements the OpenMP Accelerator Model. It adds a OpenCL runtime library to LLVM/-

CLang that supports OpenMP offloading to accelerator devices like GPUs and FPGAs.

The kernel functions are extracted from the OpenMP region and are dispatched as

OpenCL [2] or SPIR [3] code to be loaded and compiled by OpenCL drivers, before

being executed by the device. This whole process is transparent and does not require any

programmer intervention.

Figure 2.5 shows the AClang execution flow pipeline with emphasis on the Parallel

Scan Optimization pass. The LLVM IR generation phase handles the conversion of the

AST nodes generated by the Semantic phase into LLVM Intermediate Representation1.

In this phase, the annotated loops are extracted from the AST ❶, optimized ❸, and/or

transformed ❷ into OpenCL kernels in source code format ❺ (see Section 3.2 for more

details on the Parallel Scan optimization pass). Kernels can also go through the SPIR

generation pass ❻ to produce kernel bit codes in SPIR format. AClang’s transformation

engine ❹ provides information to the LLVM IR generation phase ❼ to produce intermedi-

ate code that calls AClang runtime library functions. These functions are used to perform

data offloading and kernel dispatch to the OpenCL driver.

1Historically, this was referred to as codegen
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As described in Listing 3.1a at each level (iteration) d of the tree, if the processor k

meets the property of line 5 stores the sum of the neighbors at a distance 2d−1 on his

position. For example, at level d = 1 of Figure 3.1 the processor k = 1 stores the sum of

the neighbors at a distance 21−1 = 1 (elements of 1 and 0) into the element at index k = 1,
at the next level of the tree d = 2. The distance of the neighbors, in this case, is 22−1 = 2
and this continues until the algorithm reaches the last level where the root of the tree

stores the sum of all nodes in the array. The algorithm is computed in O(log n) time,

it traverses log n levels and at each level, it performs operations in parallel in constant

time.

Another algorithm presented by Hillis and Steele [19] was the scan. They noticed that

by modifying only one line, they could get all the partial sums of an array. Looking at

the simple summation algorithm explained above (Listing 3.1a), one can notice that most

of the processors are idle most of the time. Line 5 shows that during iteration j, only

n/2j processors are active, and, indeed, half of the processors are never used. Hence, by

making the idle processors do useful work one could also compute all the partial sums of

the array.

This could be done by means of a variation of the algorithm explained above, and in

the same amount of time taken to compute reduction, i.e, log n. Figure 3.2 shows this

process for an array of 8 elements.

The only difference between this algorithm and the earlier one on reduction is the test

in the if statement on the partial-sums that determines whether a processor will perform

the assignment (line 5 and 14 in Listing 3.1). This algorithm keeps more processors active:

During step j, n−2j processors are in use; after step j, element number k has become ∑k
a

where a =max(0, k − 2j + 1). For example, at level d = 1 of Figure 3.2 the processor k = 1
stores the sum of the neighbors at distance 21−1 = 1 (elements of 1 and 0) into the element

at index k = 1, processor k = 2 stores the sum of the neighbors with the same distance 1

(elements of 2 and 1) into the element at index k = 2 and its son at the next level of the

tree d = 2. The distance of the neighbors become 22−1 = 2 and the processor at k = 2 stores

the sum of the neighbors 2 and 0 into the element at index k = 2 (notice that this element

stores the sum from ∑0

0
to ∑2

1
, that is ∑2

0
). This continues until the algorithm reaches the

last level where all nodes have the sum of all its preceding elements, and thus element k

stores the sum ∑k
0
. The algorithm is computed in O(log n) time and performs O(n log n)

sums, it traverses log n levels and at each level it performs operations in parallel, i.e, in

constant time due to the numbers of processors.

In 1990, Guy E. Blelloch [9] proposed a new method, also based on balanced trees,

to perform the parallel scan algorithm. His idea was to build a balanced binary tree on

the input data and sweep it from the leaves to the root to compute all the partial sums.

A binary tree with n leaves has d = logn levels, and each level d has 2d nodes. If one

addition is performed at each node, the algorithm performs O(n) additions on a single

traversal of the tree.

The key idea in [9] is to build a balanced binary tree on the input data x and sweep it to

and from the root, scanning at each phase half of the elements of the array. The tree is not

an actual data structure, but a concept used to determine what each thread does at each

one of the two phases of the traversal. The tree representation is shown in Figures 3.3a
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Listing 3.2: The parallel scan implementation proposed by Blelloch
1

2 ( a ) Up−sweep phase o f scan p a r a l l e l implementation
3

4 x [ 0 ] = 0 ;
5 f o r (d = n >> 1 ; d > 0 ; d >>= 1) {
6 // We p a r a l l e l i z e t h i s s e c t i o n
7 f o r ( k = 0 ; k < n ; k += (1<<(d+1) ) ) {
8 x [ k + (1<<(d+1) ) − 1 ] = x [ k + (1<<d) −1] +
9 x [ k + (1<<(d+1) ) − 1 ] ;

10 }
11 }
12

13 (b) Down−sweep phase o f scan p a r a l l e l implementation
14

15 x [ n−1] = 0 ;
16 f o r (d = log2 (n) ; d >= 0 ; d−−){
17 // We p a r a l l e l i z e t h i s s e c t i o n
18 f o r ( k = 0 ; k < n ; k += (1<<(d+1) ) ) {
19 t = x [ k + (1<<d) − 1 ] ;
20 x [ k + (1<<d) − 1 ] = x [ k + (1<<(d+1) ) − 1 ] ;
21 x [ k + (1<<(d+1) ) − 1 ] = t + x [ k + (1<<(d+1) ) − 1 ] ;
22 }
23 }
24

In the down-sweep phase Listing 3.2b, the tree is traversed top-down and the partial

sums computed in the previous phase are propagated downward to accumulate with the

entries which did not have their partial sums computed previously in the up-sweep phase.

The phase starts by inserting zero at the root of the tree. Then at each step, each node

at the current tree level will: (i) sum its value to the former value of its left child and

store the result into its right child; and (ii) copy its value to its left child. For example,

consider the node at index 7 level d = 1 of the tree in Figure 3.3a. That node has two

children, a left child at index 5 and a right child at index 7. Hence, during the down-sweep

phase two operations will occur: (i) the value at index 7 is summed to the value at index

5 (left child index 7) and is stored into the right child of index 7 (index 7 itself); and

(ii) the value at index 7 is copied to index 5 to be used in the next level d = 0 (orange

arrow to left child of index 7). The algorithm performs O(n) operations in the first phase

(up-sweep) and for every level of this phase (log n levels) is computed in O(1) (because it

is done in parallel) hence the total time is computed in O(log n), similarly for the second

phase (down-sweep) the total of operations is O(n) between adds (n−1) and swaps (n−1)
moreover the computed time is O(log n). So the total number of operation of parallel

scan is O(n) and computed time is O(log n) time.

In 2005, Horn [21] proposed the first version of scan parallel for GPUs. Their proposal

was based on [19]. Although this implementation is more realistic, it is also limited. As

mentioned before in [19], they even did not worry about the number of processors. They

considered that it is possible to have a number of processors equal to the size of the input

(a not real situation nowadays). So Horn’s proposal was limited by the block size of the

GPU device (today, this size could be up to 2048). Horn proposed this method by using

it as the solution to the problem StreamCompaction. This problem is defined as follow:

given an input vector, and a key value, it is necessary to reorder the input so that elements

with the same key are moved to the end of the vector. On the other hand, the rest of the
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Figure 3.4: Example of scan application

elements are moved towards the beginning, thus keeping the original order between them

(See Figure 3.4). Recall that for this version of scan, the complexity time is O(logn), and

the order of the operation is nlog n.

In 2007 Harris et al. [18] proposed a new implementation of the scan parallel algorithm.

This version was based on the work of Blelloch [9]. In the method proposed by Horn the

number of operations is in order of O(nlog n) meanwhile the simple serial version of

scan performs in order of O(n) operations, as well as Blelloch’s version. That was one of

Harris’s main motivations: the possibility of at least achieving the same order of operations

than the serial version. So, he implemented a method to solve the scan operation based

on the work of Blelloch for GPUs. However, that implementation had the same problem

of Horn’s implementation, the algorithm only works for small arrays, because it is limited

by a thread block. Thereby, the main contribution of Mark Harris was to design a new

algorithm capable of executing on large arrays. His basic idea is simple: the large array is

divided into blocks, each of which can be scanned by a single thread block, and then the

scan operations are computed for the blocks, and the total sum of each block is written

to another array of sums of blocks. Next, the block sums are examined, generating an

array of block increments that are added to all the elements in their respective blocks.

For example (see Figure 3.5), let N be the number of items in the input array, and B

be the number of elements processed in a block. In this case, N/B thread blocks of B/2
threads are allocated. Here, it is assumed that N is a multiple of B, which is dependent

on the architecture of the GPU. The scan algorithm explained before is used to scan each

block i independently, storing the resulting scans into sequential locations of the output

array ①. In this case, one minor modification to the scan algorithm is performed. Before

zeroing the last element of block i (the block of code labeled B in line 15 in Listing 3.2),

the value (the total sum of block i) is stored into an auxiliary array represented by ∑ ②.

Then scan ∑ is done as before, and the result is written into an array represented by σ ③.

Then σ[i] is added to all elements of block i ④. After doing all the previous steps, the

final array of scanned values is obtained.
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Listing 3.3: Pseudocode of Scan Parallel implementation in AClang
1 ( a ) Get in fo rmat ion from omp scan c l au s e
2

3 I = S . c l a u s e s ( ) . begin ( ) , E = S . c l a u s e s ( ) . end ( ) ;
4 OpenMPClauseKind ckind = ((∗ I )−>getClauseKind ( ) ) ;
5 i f ( ckind == OMPC_scan) { //Checking i f the c l au s e ex t rac t ed i s our Scan c l au s e .
6 OMPVarListClause<OMPScanClause> ∗ l i s t = cast<OMPVarListClause>cast<OMPScanClause>(∗ I ) ;
7 f o r ( auto l = l i s t −>var l i s t_beg in ( ) ; l != l i s t −>var l i s t_end ( ) ; l++) {
8 DeclRefExpr ∗ scanVar = cast<DeclRefExpr >(∗ l ) ;
9 const std : : s t r i n g scanVarType = scanVar−>getType ( ) . getAsStr ing ( ) ;

10 OpenMPScanClauseOperator op = cast<OMPScanClause>(∗ I )−>getOperator ( ) ;
11 . . .
12 }
13

14 (b) Prepar ing the scan a lgor i thm parameters and openCL environment
15

16 ThreadBytes = EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_get_threads_blocks ( ) , KArg) ;
17

18 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_create_read_write ( ) , S i z e ) ;
19 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . cl_create_program ( ) , F i l eS t rScan ) ;
20

21 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_create_kerne l ( ) , FunctionKernel_0 ) ;
22 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_create_kerne l ( ) , FunctionKernel_1 ) ;
23 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_create_kerne l ( ) , FunctionKernel_2 ) ;
24

25 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_set_kernel_arg ( ) , Args ) ;
26 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_execute_kerne l ( ) , GroupSize ) ;
27

28 EmitRuntimeCall (CGM. getMPtoGPURuntime ( ) . c l_re l e a s e_bu f f e r ( ) , Aux) ;
29

30 ( c ) Customing the scan genera to r
31

32 CLOS << "#pragma OPENCL EXTENSION cl_khr_fp64 : enable \n\n " ;
33 std : : s t r i n g inc ludeContents = CGM. OpenMPSupport . g e t In c ludeS t r ( ) ;
34 i f ( inc ludeContents != "") {
35 CLOS << inc ludeContents ;
36 }
37 switch ( op ) {
38 case OMPC_SCAN_add:
39 case OMPC_SCAN_sub:
40 i n i t i a l i z e r = "0" ;
41 . . .
42 }
43 i f ( i n i t i a l i z e r == "") {
44 } e l s e {
45 CLOS << "\n#de f i n e _ i n i t i a l i z e r " << i n i t i a l i z e r ;
46 }
47

48 CLOS << "\n#de f i n e _dataType_ " << scanVarType . subs t r (0 , scanVarType . f ind_last_of ( ’ ’ ) )
<< "\n " ;

49 CLOS. c l o s e ( ) ;
50 /∗ Build the ke rne l F i l e ∗/
51
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Listing 3.4: Template to generate the final kernel of scan parallel algorithm
1 ( a ) Header f o r every ke rne l
2 Header_kernel = """
3 __kernel void kernel_0 ( __global _dataType_ ∗ input ,
4 __global _dataType_ ∗S ,
5 const i n t n) {
6 """
7

8 (b) Kind o f Operation
9

10 Oper_0_basic = """ block [ b i ] = block [ b i ] _operation_ block [ a i ] ; """
11 Oper_0_user = """ block [ b i ] = _operation_ ( block [ b i ] , b lock [ a i ] ) ; """
12

13

14 ( c ) Vector r e s u l t
15

16 Tail_input_basic = """ input [ g id ] = input [ g id ] _operation_ S [ bid ] ; """
17 Tail_output_basic = """ output [ g id ] = input [ g id ] _operation_ S [ bid ] ; """
18

19

clause, as detailed in Listing 3.3a. For instance, Lines 3 to 12 get the list of variables and

the kind of operations associated with the scan clause.

AClang provides a series of methods in the CodeGenModule class for calling the run-

time library responsible for interfacing with the OpenCL drivers. Those functions have

the following structure: CGM.operation1.MPtoGPURuntime().operation2. The algo-

rithm retrieves the scan parameters and makes an initial configuration of OpenCL. For

instance, Line 16 computes the number of threads per block and the number of blocks.

That will be used to call the sub-routines of the parallel scan algorithm. This is a very

important step because, as mentioned before, the algorithm only works for input sizes

that are power of 2 (2k). So, when the size is not a power of two, it is impossible to

solve the problem. Hence, to fix it, the algorithm finds two numbers power of two that

its product was minimum and greater equal than the size of the input. Let us represent

the number of blocks as B and the number of threads per block as T . For example, if the

size of the input data is 12, the closest number with the previously mentioned properties

is 16. However, the algorithm produces more than one solution. In the example, the

answers are (B: 1 - T: 16), (B: 2 - T: 8), and (B: 4 - T: 4). This is important because, in

some cases, it is possible to find some results with T greater than the threads provided

by the architecture used. Thus, T must be limited according to the characteristics of the

architecture used; similarly for B.

Therefore, the maximum size to compute the scan algorithm is limited by the resources

provided in the architecture. Later in Chapter 7 it will be shown a proposal to extend

that limit. Line 9 retrieves the type of variable in which the program is performing the

scan operation. The variable can be of type int, double, float, but can also be a new

user-defined type. In this case, it is mandatory for this new type to be defined within the

omp declare target clauses (see example in Listing 4.6).

Line 10 finds the operator that the programmer defined to use in the scan algorithm.

This operator should be a binary associative operator to be used by the scan algorithm;

the most common operators are: (+, ∗, &, ∣∣, max, min). In the case that a new variable

type was defined, it is also mandatory to define an associative operator for this type (See
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Figure 3.6: Algorithm to perform a block sum scan
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Listing 3.5: Pseudocode of Scan Parallel implementation in AClang
1 ( a ) Standard way to wr i t e scan a lgort ihm
2 y [ 0 ] = 0 ;
3 f o r ( i = 1 ; i < n ; i++)
4 y [ i ] = y [ i −1] + x [ i −1 ] ;
5

6

7 (b) A l t e rna t i v e way sav ing memory to wr i t e scan a lgor i thm
8 i n t aux1 = x [ 0 ] , aux2 ;
9 x [ 0 ] = 0 ;

10 f o r ( i = 0 ; i < n ; i++){
11 aux2 = x [ i ] ;
12 x [ i ] = x [ i −1] + aux ;
13 aux = aux2 ;
14 }
15

16

example in Listing 4.6).

Line 18 creates an auxiliary buffer (as shown in Figure 3.6 ❷). Lines 19 to 25 generate

code for the runtime library to call the OpenCL driver to compile the kernels and then

dispatch for execution.

Lines 26 executes the necessary kernels to compute the scan algorithm. First, it

computes the scan for every single block thread independently (as shown in Figure 3.6

❶). Then, it executes the second kernel that is in charge the sum of the additions from

the auxiliary vector (as shown in Figure 3.6 ❸). It then executes the kernel in charge of

distributing the corresponding additions to the positions on the resulting vector (as can

see in Figure 3.6 ❹).

Finally, the runtime library transfers the solution data to the vector specified by the

programmer; notice that, the programmer has two options to receive the resulting vector,

more details in the next section.
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3.2.1 The Template

This section aims to explain how it is built the code of the parallel scan algorithm.

Remember that the algorithm is based on the best algorithm known today [36].

To summarize this section, it can be said that the algorithm has only three parameters,

those parameters could be different according to the applications. The first one is the type

of variable; the second one is the operator defined for the variable used. Finally, the third

one specifies how the programmer wants to use of new types of variables and operators.

Thereby, as was mentioned before, all the information is collected in the compilation phase

to be used for the generation of the kernel that will execute the parallel scan algorithm.

Listing 3.4a defines the header for each kernel. This example shows the header of the

first kernel, which defines variable dataType. As mentioned before, that information was

extracted from the clause scan. As expected, every kernel that uses that variable type

has dataType replaced by the real variable type.

Listing 3.4b defines how the program will perform the calculations between two vari-

ables. In the case that the programmer uses an operation on primitive variables (int,

double, float) such as +, ∗, &, ∣ line 10 will be used.

On the other hand, when the programmer defined a new type of variable, he must also

define its binary associative operator to be able to use the scan algorithm. In this case,

the operation can not be computed simply, the operation has to be defined in the section

"omp declare target" for the programmer. That information is recovered from the scan

clause as a function and the way to use this new operation is specified in line 11.

Finally, the last component of the template Listing 3.4c refers to where the programmer

wants to save the resulting vector. Line 16 does the tasks required when the programmer

needs a new vector to save the result. Line 17 activates when the programmer wants to

save the resulting vector in the input data vector.

Back to Listing 3.3c, Line 32 fills a standard header. Lines 33 to 36 analyze if the

programmer defined a new type of variable with its respective operator. If it is true, that

information is placed immediately after the header mentioned before.

Lines 37 to 46 define the neutral value according to the operation defined by the

programmer. A neutral value is defined by the operation (a = a ⊕ neutralV alue) where

a is any variable and ⊕ an operator that operates any variable with the neutral. For

example, for the sum operation, the neutral value is 0, for the multiplication is 1 and so

on. When scan runs with a basic C/C++ primitive operator, the neutral element is set

by default internally in the compiler. However when the programmer defines a new type

of variable, the OpenMP standard enforces the programmer to define neutral value in the

section "omp declare target". Line 48 defines the keyword _dataType_; it represents the

type of variable used by the programmer. Finally, line 49 − 50 closes the template and

build the kernel file that will perform the scan parallel algorithm. The code describes here

and its discussion is a small glimpse of the final OpenCL code generation process. Our

goal was to show only the main components, in the hope that they could work as a guide

to the understanding of the translation process from the omp clause to OpenCL code.

Much information has been left aside for the sake of simplicity. To see a final version of

the template for one example see Chapter 4.



Chapter 4

Using Scan

4.1 Stream Compaction

Stream compaction is an important primitive in a variety of general-purpose applications,

including collision detection and sparse matrix compression. Also, stream compaction is

the primary method for transforming a heterogeneous vector, with elements of many types,

into homogeneous vectors, in which each item has the same type. This is particularly

useful with vectors that have some elements that are interesting and many elements that

are not interesting. Stream compaction produces a smaller vector with only interesting

elements. With this smaller vector, computation is more efficient, because computation

is performed only on the elements of interest.

Informally, stream compaction is a filtering operation: from an input vector, it selects a

subset of this vector and packs that subset into a dense output vector. Figure 4.1 shows

an example. More formally, stream compaction takes an input vector A and a predicate

p, and outputs only those elements in A for which p(A) is true, preserving the ordering

of the input elements. Stream compaction in parallel could be solved using two steps, a

scan and a scatter.

1. The first step generates a temporary vector where the elements that pass the predi-

cate are set to 1, and the other elements are set to 0. We then scan this temporary

vector. For each element that passes the predicate, the result of the scan now

contains the destination address for that element in the output vector.

2. The second step scatters the input elements to the output vector using the addresses

generated by the scan.

To illustrated technique, see the following example. Consider vector A below and a pred-

icate that is 1 when an element is greater than 10.

A = < 17,4,6,8,11,5,13,19,0,24 > and the desired output is < 17,11,13,19,24 >

As mentioned before, the first step performs a bit-vector operation that produces vec-

tor bits where the i element is 1 if it satisfies the predicate, and 0 otherwise. For the

example, the result of this step is:

31
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Figure 4.1: Stream Compaction Example

Listing 4.1: Fragment of Stream Compaction Benchemark
1

2 i n t main ( ) {
3

4 input = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ∗ N ) ;
5 b i t s = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ∗ N ) ;
6 bitsum = ( in t ∗) mal loc ( s i z e o f ( i n t ) ∗ N ) ;
7 output = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ∗ N ) ;
8

9 f i l l ( input ) ;
10

11 i n t p r ed i c a t e = read_predicate ( ) ;
12

13 f ( input , b i t s , N, p r ed i c a t e ) ; // F i l l b i t s in p a r a l l e l
14

15 bitsum [ 0 ] = 0 ;
16 #pragma omp ta rg e t dev i ce (GPU) map( from : b i t s [ :N] , to : bitssum [ :N] )
17 #pragma omp p a r a l l e l f o r scan (+: bitsum )
18 f o r ( i n t i = 1 ; i < N ; i++)
19 bitsum [ i ] = bitsum [ i −1] + b i t s [ i −1 ] ;
20

21 exc lu s i v e_to_inc lu s i v e ( bitsum , b i t ) ; // In p a r a l l e l t rans form bitsum to i t s
i n c l u s i v e ve r s i on

22

23 g ( output , input , bitsum , b i t ) ; // In p a r a l l e l f i l l the output vec to r
24

25 }
26

input < 17,4,6,8,11,5,13,19,0,24 >
bits < 1,0,0,0,1,0,1,1,0,1 >
The algorithm then scans vector bits into bitsum below:

bitsum < 1,1,1,1,2,2,3,4,4,5 >
In a second step, for every element with value 1 in the vector bits, the value from the

vector input is saved into the address that contains the element i of the vector bitsum.

After that, the final output vector is computed as below:

output < 17,11,13,19,24 >
Listing 4.1 presents a fragment from StreamCompaction. The algorithm is based on
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Listing 4.2: Fragment of Stream Compaction kernel generated
1 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
2

3 #de f i n e _ i n i t i a l i z e r 0
4 #de f i n e _dataType_ in t
5

6 __kernel void kernel_0 ( __global _dataType_ ∗ input ,
7 __global _dataType_ ∗S ,
8 const i n t n) {
9 i n t t i d = get_loca l_id (0 ) ;

10 i n t bid = get_group_id (0 ) ;
11 i n t s i z e = get_loca l_s i z e (0 ) ;
12 i n t o f f s e t = 1 ;
13 /∗ Cache the computat ional window in shared memory ∗/
14 __local _dataType_ block [ 1 0 2 4 ] ;
15

16 block [ t i d ] = input [ t i d + 2∗ s i z e ∗bid ] ;
17 block [ t i d + n/2 ] = input [ t i d + n/2 + 2∗ s i z e ∗bid ] ;
18 /∗ bu i ld the sum in p lace up the t r e e ∗/
19 . . .
20 /∗ c l e a r the l a s t element ∗/
21 ba r r i e r (CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE) ;
22 i f ( t i d == 0) block [ n − 1 ] = _ i n i t i a l i z e r ;
23 /∗ t r av e r s e down the t r e e bu i l d i ng the scan in the p lace ∗/
24 . . .
25 }
26

27 __kernel void kernel_1 ( __global _dataType_ ∗ input ,
28 const i n t n) {
29 . . .
30 }
31

32 __kernel void kernel_2 ( __global _dataType_ ∗output ,
33 __global _dataType_ ∗S) {
34 . . .
35 }
36

the two steps approach mentioned before. Lines 4 to 7 create the necessary vectors in

addition to input and output. Line 13 fills the vector bit in parallel. The target clause

(lines 16–17) defines the portion of the program that will be executed by the accelerator

device (lines 18–19) defined in the line 16. Since this first scan clause only provides an

exclusive version, it is necessary an additional step (Line 21) to pass from the exclusive

to the inclusive version. Finally, Line 23 fills the vector output with the information

generated in the vectors bitsum and bits.

Listing 4.2 presents the kernel generated by AClang. Since this is a basic application

of scan, the kernel generated has a basic structure. Line 3 defines the neutral or also called

identity element. In this case, the operation used was a sum. Thus the neutral value is

0. As it can be seen, each kernel has the type of variable for the vectors; this information

was extracted from the OpenMP clause and replaced as was explained in section 3.2.

Lines 6 to 10 show the kernel that performs steps ❶ and ❷ of Figure 3.6. Lines 12 to

16 show the kernel that computes the step ❸ of Figure 3.6. Finally, lines 18 to 21 show

the kernel that performs the step ❹ of the same figure.
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Listing 4.3: Radix Sort algorithm basic idea
1 1) Elements r ep r e s en t a t i on
2 Element # 1 2 3 4
3 Value : 7 14 4 1
4 Binary : 0111 1110 0100 0001
5

6 2) At f i r s t step , Radix s o r t a lgor i thm rea r range s the e lements by the va lue s o f
7 the b i t ana l i z ed ( b i t 0) :
8 Element # 2 3 1 4
9 Value : 14 4 7 1

10 Binary : 1110 0100 0111 0001
11 b i t 0 : 0 0 1 1
12

13 3) F ina l i z ed the f i r s t step , i t i s neccesary ana l i z e the next b i t ( b i t 1) :
14 Element # 3 4 2 1
15 Value : 4 1 14 7
16 Binary : 0100 0001 1110 0111
17 b i t 1 : 0 0 1 1
18

19 4) And so on ( b i t 2) :
20 Element # 4 3 2 1
21 Value : 1 4 14 7
22 Binary : 0001 0100 1110 0111
23 b i t 2 : 0 1 1 1
24

25 5) And move them again :
26 Element # 4 3 1 2
27 Value : 1 4 7 14
28 Binary : 0001 0100 0111 1110
29 b i t 3 : 0 0 0 1
30

31

4.2 Radix Sort

A sorting algorithm puts elements of a list in certain order. This section presents a Radix

Sort algorithm parallelized using the scan operator. It is well know how a Radix Sort

algorithm works. For this reason, the section focuses only on explaining the parallelized

version.

The basic idea is to considerer each element to be sorted digit by digit, from the least

to the most significant digit. For every digit, the elements will be rearranged. Consider,

for example, a list of four elements having four binary digits each. Listing 4.3 shows a

visual representation of how the algorithm works.

The following steps show how the radix sort could be parallelized.

1. Generate a vector of the input data (bit in the same position, starting from the

least significant bit) where every bit that is 0 in the new vector is 1 (Predicate:

(bit&1==0)) otherwise the element in the vector is 0.

2. Scan the vector, and record the sum of the predicate vector in the process. Notice,

the scan algorithm works for arrays of arbitrary sizes instead of 2n sizes; however as

explained before the scan clause works for any arbitrary size.

3. Flip bits of the predicate, and scan them.

4. Move the values in the vector using the following rule:
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Listing 4.4: Fragment of Radix Sort benchmark
1 i n t main ( ) {
2 . . .
3 predicateTrueScan = ( unsigned i n t ∗ ) mal loc ( numElem ∗ s i z e o f ( unsigned i n t ) ) ;
4 pred i ca t eFa l s eScan = ( unsigned i n t ∗ ) mal loc ( numElem ∗ s i z e o f ( unsigned i n t ) ) ;
5 . . .
6 unsigned i n t max_bits = 31 ; //Unsigned i n t type
7 f o r ( unsigned i n t b i t = 0 ; b i t < max_bits ; b i t++){
8

9 nsb = 1<<b i t ;
10 f o r ( i n t i = 0 ; i < N ; i++){
11 i n t r = ( ( inputVals [ i ] & nsb ) == 0) ;
12 predicateTrueScan [ i ] = r ;
13 pred i ca t eFa l s eScan [ i ] = pr ed i c a t e [ i ] = ! r ;
14 }
15

16

17 #pragma omp ta rg e t dev i ce (GPU) map( tofrom : predicateTrueScan [ :N] )
18 #pragma omp p a r a l l e l f o r scan (+: predicateTrueScan )
19 f o r ( i n t i = 1 ; i < N ; i++)
20 predicateTrueScan [ i ] += predicateTrueScan [ i −1 ] ;
21 . . .
22 #pragma omp ta rg e t dev i ce (GPU) map( tofrom : pred i ca t eFa l s eScan [ :N] )
23 #pragma omp p a r a l l e l f o r scan (+: pred i ca teFa l s eScan )
24 f o r ( i n t i = 1 ; i < N ; i++)
25 pred i ca t eFa l s eScan [ i ] += pred i ca teFa l s eScan [ i −1 ] ;
26

27 f o r ( i n t i = 0 ; i < N ; i++){
28 i f ( p r ed i c a t e [ i ] == 1 )
29 newLoc = pred i ca teFa l s eScan [ i ] + numPredicateTrueElements ;
30 e l s e
31 newLoc = predicateTrueScan [ i ] ;
32 outputVals [ newLoc ] = inputVals [ i ] ;
33 }
34

35 }
36 }
37

(a) For the ith element in the vector:

(b) If the ith predicate (from the vector generated in step 1) is true, move the ith

value to the index in the ith element of the predicate scan.

(c) Else, move the ith value to the index in the ith element of the opposite array

of the Predicate Scan plus the sum of the original Predicate.

5. Move to the next significant bit (NSB).

In the code Listing 4.4, line 7 indicates the traversal of every bit, which, depending on

the type of the variable could be 15, 31 or 63. Line 9 defines an auxiliary variable to help

to work on the current bit. Next lines (10 – 14) generate the vector mentioned above in

step 1, and also generates the opposite vector (see lines 12 – 13). The following lines (17

– 25) compute the scan operator for the vector of line 12. Finally, lines (27 – 32) move

the elements in accordance to the vectors generated in the previous step.

Listing 4.5 presents the OpenCL kernel generated by the AClang compiler. The kernel

has three main components which were detailed before.
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Listing 4.5: Fragment of Radix Sort kernel generated
1 __kernel void kernel_0 ( __global unsigned i n t ∗ input ,
2 __global unsigned i n t ∗S ,
3 const i n t n) {
4 . . .
5 }
6

7 __kernel void kernel_1 ( __global unsigned i n t ∗ input ,
8 const i n t n) {
9 . . .

10 /∗ Cache the computat ional window in shared memory ∗/
11 __local _dataType_ block [ 1 0 2 4 ] ;
12 . . .
13 /∗ c l e a r the l a s t element ∗/
14 ba r r i e r (CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE) ;
15 i f ( t i d == 0) block [ n − 1 ] = _ i n i t i a l i z e r ;
16 /∗ t r av e r s e down the t r e e bu i l d i ng the scan in the p lace ∗/
17 f o r ( i n t d = 1 ; d < n ; d ∗= 2) {
18 o f f s e t >>= 1 ;
19 ba r r i e r (CLK_LOCAL_MEM_FENCE) ;
20 i f ( t i d < d) {
21 i n t a i = o f f s e t ∗ (2 ∗ t i d + 1) − 1 ;
22 i n t b i = o f f s e t ∗ (2 ∗ t i d + 2) − 1 ;
23 _dataType_ t = block [ a i ] ;
24 block [ a i ] = block [ b i ] ;
25 block [ b i ] = block [ b i ] + t ;
26 }
27 }
28 ba r r i e r (CLK_LOCAL_MEM_FENCE) ;
29 input [ t i d + 2∗ s i z e ∗ bid ] = block [ t i d ] ;
30 input [ t i d + n/2 + 2∗ s i z e ∗ bid ] = block [ t i d + n / 2 ] ;
31 }
32

33 __kernel void kernel_2 ( __global unsigned i n t ∗ input ,
34 __global unsigned i n t ∗S) {
35 . . .
36 }
37

4.3 Polynomial Evaluation

Given a Polynomial P with coefficients an, an−1...a0, the polynomial evaluation of P(x) is

an operation that computes P when x takes some specific value. The use of polynomials

appears in settings ranging from basic chemistry and physics to economics and social

science. They are also used in calculus and numerical analysis to approximate functions.

P (x) = anxn + an−1xn−1 + an−2xn−2 + ... + a1x + a0 (4.1)

This section shows how to use a non primitive variable (int, long, float, double,

bool, char) and the AClang scan clause implementation to solving polynomial evalua-

tion. Listing 4.6 presents a fragment of the code to perform the value of the polynomial.

Equation 4.1 is the basic representation of a polynomial.

The trick to solve polynomial evaluation using scan is to replace each element (Coef-

ficient) of the Polynomial to a pair. In this case, element ai becomes the pair (ai, x) thus

resulting in an array of pairs. To perform the scan operation on the new array of pairs,

the ⊕ operator should be defined as follows:

(p, y) ⊕ (q, z) = (pz + q, yz) (4.2)
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It is a little bit difficult to understand this at first, but each such pair is computed

in order to summarize the essential knowledge needed for a segment of the array. The

segment itself represents a polynomial. The first number in the pair is the value of the

segment’s polynomial evaluated for x, while the second is xn, where n is the length of the

represented segment of the polynomial.

To use the scan operator, it is necessary first to confirm that the operator is indeed

associative. Equation 4.3 demonstrates that the operator is associative.

((a, x) ⊕ (b, y)) ⊕ (c, z) = (ay + b, xy) ⊕ (c, z)
((a, x) ⊕ (b, y)) ⊕ (c, z) = ((ay + b)z + c, xyz) = (ayz + bz + c, xyz)
(a, x) ⊕ ((b, y) ⊕ (c, z)) = (a, x) ⊕ (bz + c, yz) = (ayz + bz + c, xyz)

(4.3)

Now let us look at an example to see how it works. Suppose that it is necessary to

evaluate the polynomial x3 + x2 + 1 when x is 2. In this case, the coefficients of the poly-

nomial can be represented using the array < 1,1,0,1 >. The first step of the algorithm is

to convert it into an array of pairs.

< (1,2), (1,2), (0,2), (1,2) >
Now, is possible to apply the ⊕ operator defined above to get the result.

(1,2) ⊕ (1,2) ⊕ (0,2) ⊕ (1,2) = (1 ∗ 2 + 1,2 ∗ 2) ⊕ (0,2) ⊕ (1,2)
(1,2) ⊕ (1,2) ⊕ (0,2) ⊕ (1,2) = (3,4) ⊕ (0,2) ⊕ (1,2)
(1,2) ⊕ (1,2) ⊕ (0,2) ⊕ (1,2) = (3 ∗ 2 + 0,4 ∗ 2) ⊕ (1,2) = (6,8) ⊕ (1,2)
(1,2) ⊕ (1,2) ⊕ (0,2) ⊕ (1,2) = (6 ∗ 2 + 1,8 ∗ 2) = (13,16)

The result of the operation is (13,16), in which the first element of the pair is the

result of evaluating the polynomial for x = 2 as: 23+22+1 = 13. In the computation above,

we proceeded in a left-to-right order as would be done on a single processor. In fact, the

parallel scan algorithm combines the first two elements and last two elements in parallel:

(1,2) ⊕ (1,2) = (1 ∗ 2 + 1,2 ∗ 2) = (3,4)
(0,2) ⊕ (1,2) = (0 ∗ 2 + 1,2 ∗ 2) = (1,4)
And then it would combine these two results to get the final result (3 ∗ 4 + 1,4.4) =

(13,16).
In the code of Listing 4.6, the target clause (lines 27–28) define the part of the code

that will be executed by the device (lines 31–32). The map clauses control the direction of

the data flow between the host and the target device. All definitions of data structures or

functions that can be used by the scan clause, i.e, the Polynomial data structure and the

Operator multiply function (operator∗), must be enclosed within the declare target

directives. This is done in lines 1–13 of Listing 4.6. The reader should notice that in this
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Listing 4.6: Fragment of the Polynomial Evaluation benchmark
1 #pragma omp dec l a r e t a r g e t
2 typede f s t r u c t tag_my_struct {
3 i n t x ;
4 i n t y ;
5 } Pair ;
6

7 Pair op ( Pair A, Pair C) {
8 Pair ans ;
9 ans . x = A. x ∗ C. y + C. x ;

10 ans . y = A. y ∗ C. y ;
11 r e turn ans ;
12 }
13 #pragma omp end de c l a r e t a r g e t
14

15 #pragma omp dec l a r e scan ( op \
16 : Pair \
17 : omp_out = op (omp_out , omp_in) ) \
18 i n i t i a l i z e r ( omp_priv = ( Pair ) {0 , 1})
19

20 i n t main ( ) {
21 Pair ∗h ;
22 Pair ∗ t ;
23

24 t = ( Pair ∗) mal loc (N ∗ s i z e o f ( Pair ) ) ;
25 h = ( Pair ∗) mal loc (N ∗ s i z e o f ( Pair ) ) ;
26 . . .
27 #pragma omp ta rg e t dev i ce (GPU) map( from : t [ :N] ) map( to : h [ :N] )
28 #pragma omp p a r a l l e l f o r scan ( op : t )
29 f o r ( i n t i = 1 ; i < N; i++)
30 t [ i ] = op ( t [ i − 1 ] , h [ i − 1 ] ) ;
31

32

example the use of the operator overloading construct is necessary to solve the problem.

Listing 4.7 shows the header and signatures of the kernel functions generated by the

compiler for the example showed in Listing 4.6 (Polynomial evaluation). As shown in List-

ing 4.7, the first lines (1 – 11) is the information about the structure and operator used.

The lines (15 – 19) kernel_0 represents the first step of the algorithm which applies the

scan operator to the whole problem into blocks, Lines (21 – 24) kernel_1 represent the

second step of the algorithm which applies the scan operator over the vector filled in the

previous step to get the cumulative sums for all the blocks. Lines (26 – 30) kernel_2 is

the final step which fixes cumulative sums for every element to get the final vector.

4.4 Parallelizing Matrix Exponentiation

Given a square matrix A the Matrix Exponentiation Ak is an operation that performs the

iterative multiplication of A k times. Ak is a central operation in many scientific problems

like finding multiple recurrent sequences, solving dynamic programming with fixed linear

transitions, finding strings under constraints, among others [30].

[1 1

1 0
]
n

= [fibn+1 fibn

fibn fibn−1
] (4.4)

Among all problems solved though matrix exponentiation, finding the first n numbers

of the Fibonacci sequence is the most well-known [24]. This section shows, from the
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Listing 4.7: Fragment of Polynomial Evaluation kernel generated
1 s t r u c t Pair {
2 i n t x ;
3 i n t y ;
4 } ;
5

6 Point op ( Pair A, Pair C) {
7 Point ans ;
8 ans . x = A. x ∗ C. y + C. x ;
9 ans . y = A. y ∗ C. y ;

10 r e turn ans ;
11 }
12

13 #de f i n e omp_priv ( Pair ) { 0 , 1 }
14

15 __kernel void kernel_0 ( __global Pair ∗ input ,
16 __global Pair ∗S ,
17 const i n t n) {
18 . . .
19 }
20

21 __kernel void kernel_1 ( __global Pair ∗ input ,
22 const i n t n) {
23 . . .
24 }
25

26 __kernel void kernel_2 ( __global Pair ∗output ,
27 __global Pair ∗ input ,
28 __global Pair ∗S) {
29 . . .
30 }
31

programmer perspective, how AClang works when using the proposed scan clause to

solve this problem. Listing 4.8 presents a fragment from the calculation of the Fibonacci

series using matrix exponentiation1. The algorithm is based on Equation 4.4, which can

be proven by mathematical induction.

The target clause (lines 28–29 in Listing 4.8) defines the portion of the program

that will be executed by the accelerator device (lines 30–32). The map clauses control

the direction of the data flow between the host and the target. All definitions of data

structures or functions that can be used by the scan clause, i.e, the Matrix data structure

and the Matrix multiply function (operator∗), must be enclosed in the declare target

directives. This is done by lines 1–18 in the example. The declare target construct

will result in the extraction of the appropriate code to be stored inside the kernel.

Notice that the implementation of the scan clause proposed in this work is powerful

enough to handle the operator overloading construct already available in OpenMP (lines

20–22). This construct was previously defined in OpenMP for the reduction clause and

was extend in the AClang compiler to enable the usage in the scan clause as well. List-

ing 4.8 shows how a programmer can use the scan clause with the user-defined matrix

multiplication operator (*). This operator and its neutral value (the identity matrix, in

this case) are defined by the declare scan directive (lines 20–22). The AClang transfor-

mation engine (see Figure 2.5 ❹) gathers this piece of information and through pattern

matching techniques builds the kernel that will be dispatched to the target device so as

1Note that in real applications, this is counted in terms of the number of bigint arithmetic operations,
not primitive fixed-width operations.
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Listing 4.8: Fragment of the Fibonacci series benchmark
1 #pragma omp dec l a r e t a r g e t
2 s t r u c t Matrix {
3 long x00 , x01 , x10 , x11 ;
4 // d e f au l t con s t ruc to r :
5 Matrix ( ) { x00 = 1 ; x01 = 1 ; x10 = 1 ; x11 = 0 ; }
6 // con s t ruc to r :
7 Matrix ( long x00_ , long x01_ , long x10_ , long x11_) {
8 x00 = x00_ ; x01 = x01_ ; x10 = x10_ ; x11 = x11_ ;
9 }

10 } ;
11

12 Matrix operator ∗( Matrix A, Matrix C) {
13 r e turn Matrix (A. x00 ∗ C. x00 + A. x01 ∗ C. x10 ,
14 A. x00 ∗ C. x01 + A. x01 ∗ C. x11 ,
15 A. x10 ∗ C. x00 + A. x11 ∗ C. x10 ,
16 A. x10 ∗ C. x01 + A. x11 ∗ C. x11 ) ;
17 } ;
18 #pragma omp end de c l a r e t a r g e t
19

20 #pragma omp dec l a r e scan ( ∗ : Matrix : \
21 omp_out = omp_out ∗ omp_in) \
22 i n i t i a l i z e r ( omp_priv = Matrix (1 , 0 , 0 , 1 ) )
23

24 i n t main ( ) {
25 Matrix ∗x = new Matrix [N ] ;
26 Matrix ∗y = new Matrix [N ] ;
27 . . .
28 #pragma omp ta rg e t dev i ce (GPU) map( tofrom : y [ :N] ) map( to : x [ :N] )
29 #pragma omp p a r a l l e l f o r scan ( ∗ : y )
30 f o r ( i n t i = 1 ; i < N; i++)
31 y [ i ] = y [ i − 1 ] ∗ x [ i − 1 ] ) ;
32 . . .
33 }
34

to perform the scan operation.

Listing 4.9 shows the header and signatures of the kernel functions generated by the

compiler for the example showed at Listing 4.8 (Fibonacci series). Notice that this example

uses the new OpenCL 2.2 for which the kernel language is a static subset of the C++14

standard which includes classes, templates, lambda expressions, function overload, etc.

The OpenCL kernel language of any version older than 2.2 is an extended subset of C99,

which does not feature operator overloading.

As shown in Listing 4.9, the data type and the user-defined functions in Listing 4.8

are passed to the kernel file as is, and the omp_priv variable that represents the identity

matrix in the example (neutral element) is transformed to a #define. The size (N) of

the input matrix x is divided, according to the target device capacity in nt threads and

nb blocks. The kernel_0 function (lines 18–22) is responsible for executing the up-sweep

and down-sweep phases for each block of the input array x, and to store into the auxiliary

matrix sb (scan block) the cumulative user-defined operation (matrix multiply) of each

block. The kernel_1 function (lines 24–27) is responsible for executing the up-sweep

and down-sweep phases of the auxiliary matrix sb that was generated in the kernel_0

function. Finally, kernel_2 (lines 29–33) is responsible for applying the user-defined

operation (matrix multiply) of element i of the scanned block sb (kernel_1) to all values

of the scanned block i+1 of the input array x, thus producing as result the output matrix

y.
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Listing 4.9: Fragment of Fibonacci Series kernel generated
1 s t r u c t Matrix {
2 long x00 , x01 , x10 , x11 ;
3 Matrix ( ) { x00 = 1 ; x01 = 1 ; x10 = 1 ; x11 = 0 ; }
4 Matrix ( long x00_ , long x01_ , long x10_ , long x11_) {
5 x00 = x00_ ; x01 = x01_ ; x10 = x10_ ; x11 = x11_ ;
6 }
7 } ;
8

9 Matrix operator ∗( Matrix A, Matrix C) {
10 r e turn Matrix (A. x00 ∗ C. x00 + A. x01 ∗ C. x10 ,
11 A. x00 ∗ C. x01 + A. x01 ∗ C. x11 ,
12 A. x10 ∗ C. x00 + A. x11 ∗ C. x10 ,
13 A. x10 ∗ C. x01 + A. x11 ∗ C. x11 ) ;
14 } ;
15

16 #de f i n e omp_priv Matrix (1 , 0 , 0 , 1)
17

18 __kernel void kernel_0 ( __global Matrix ∗x ,
19 __global Matrix ∗sb ,
20 const i n t nt ) {
21 . . .
22 }
23

24 __kernel void kernel_1 ( __global Matrix ∗sb ,
25 const i n t nb) {
26 . . .
27 }
28

29 __kernel void kernel_2 ( __global Matrix ∗y ,
30 __global Matrix ∗x ,
31 __global Matrix ∗ sb ) {
32 . . .
33 }
34

The current offloading mechanism in AClang implements the OpenMP 4.X target

data, target and declare target constructs. This is done through the AClang runtime

library which has two main functionalities: (i) it hides the complexity of OpenCL code

from the compiler; and (ii) it provides a mapping from OpenMP directives to the OpenCL

API, thus avoiding the need for device manufacturers to build specific OpenMP drivers

for their accelerator devices.

The AClang compiler generates calls to the AClang runtime library whenever a target

data or target directive is encountered. As shown in the Fibonacci Series example

(Listing 4.8), the declare target construct will result in the extraction of the appropriate

code to be stored inside the kernel. Also, the AClang runtime library is responsible for

initializing the data structures that handle the devices and the context and command

queues for each device. In addition, it creates the necessary data structures to store

the handlers for the kernels and the buffers and to offload data to the accelerator device

memory. In AClang, it is the responsibility of the compiler to generate the code needed to

manage all the phases required by the scan algorithm. Therefore, no changes were made

to the runtime library.
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Related Works

The all-prefix-sums operation has been used around for centuries as the recurrence xi

= ai + xi−1. In 1963, Ofman [32] suggested the use of the scan operation to execute a

parallel circuit for the addition of binary numbers. Later in 1971, Stone [37] suggested

an implementation of parallel scan on a perfect shuffle network to implement polynomial

evaluation. Ladner and Fischer [26] first showed a general method for deriving efficient

parallel solutions to the scan problem (the prefix problem was the term used by them)

on Boolean circuits that simulate finite-state transducers. Brent and Kung [11] in their

discussion about chip complexity of binary arithmetic showed an efficient VLSI layout

for a scan circuit. At software level, parallel scan algorithms can be classified into two

categories: those that assume that the number p of processors is unlimited and those that

assume that p is fixed and p < n.

During the 80’s Hillis and Steele [19] developed approaches to parallelize many serial

algorithms. Although at that time these algorithms seemed to have only sequential so-

lutions, they were able to parallelize them by using the The Connection Machine (CM)

[20] which had many thousands of processors (unlimited processors). One of these al-

gorithms was the sum of the elements of an array, also known as reduction. With a

slight modification of the reduction algorithm, Hillis and Stelle proposed a novel solution

to compute All Partial Sums of an array, which today is known as prefix sum or simply

scan. However, the scan algorithm in [19] has a limitation: it only works when the number

of values in the array is a power of two. Comparing with the serial version that performs

O(n) operations, this proposed algorithm performs O(nlg n) operations.

To reduce the number of additional operations, in 1989, in the work The scan op-

eration and their applications [9] Blelloch discussed extensively the problem and argued

convincingly that the scan operation should be considered a primitive parallel operation

and should be, whenever possible, implemented in hardware. In the Connection Machine

(CM), in which project Blelloch participated, the scan primitive was implemented as mi-

crocode. This scan was implemented using a binary balanced tree as was explained in 3.1

and was demonstrated that the number of operations performed was reduced to O(n).
Scan was then used to parallelize some very relevant algorithms like: Maximum-Flow,

Maximal Independent Set, Minimum Spanning Tree, K-D Tree and Line of Sight, thus

improving their asymptotic reaching a complexity of O(nlog n) to O(log n) for some of

these algorithms.

42
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With the emergence of general purpose GPUs(limited number of processors), Horn [21]

adapted the algorithm proposed in [19] using his GPU prefix sum implementation. The

algorithm was used to solve the problem of extracting the undesired elements of a set.

Scan was used to determine the undesired elements, and this was followed by a search

and gather operation to compact the set. This problem is known as Stream Compaction,

and has a running time of O(log n).
In [18] Mark Harris et al. adapted the algorithm of Blelloch [9] for GPU. That imple-

mentation is better than the solution proposed by Horn [21]. The main difference between

those two approaches is the number of operations executed to solve the problem. In the

case of [21], the total number of operations is in order of O(n.log n), and in the case of

[18] the total number of operations is O(n), the same number as in the serial version.

Also in [18], Harris et al. presented a solution to handle large arrays in GPUs (rem-

bember that in this case the number of processors is limited). Their scan algorithm

overcame the power of two constraint through divide-and-conquer and padding so that

arrays of arbitrary size could be handled. This novel solution was explained in 3.1.

In [35] Sengupta and Harris presented several optimizations for the implementation

proposed in [18]. Those optimizations were designed to deliver maximum performance for

regular execution paths via a Single-Instruction, Multiple-Thread (SIMT) architectures

and regular data access patterns through memory coalescing. That work was the base for

the widely used CUDPP library [1], which presents an easy and efficient, but limited use

of the scan operator.

In [22] Bell and Hoberock designed a library called Thrust. That library resembles the

C++ Standard Template Library (STL). Thrust parallel template library allows to imple-

ment high-performance applications with minimal programming effort. The library offers

an implementation of the scan operator that easies the task of the programmer. Thrust

was used to implement the CUDA version of the benchmarks described in Chapter 6.

Shengen Yan et. al. [41] implemented the scan operator in OpenCL based on [18]. He

improved the performance by reducing the number of memory accesses from 3n to 2n and

eliminating global barrier synchronization completely.

In 2015, Wiefferink [39] implemented other version of the scan operation in OpenCL.

This work improved the branch divergence of the algorithm in [9] [18]. As expected,

this implementation works on NVIDIA and AMD GPU platforms, unlike most previous

versions that just worked on NVIDIA GPUs.
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Experimental Evaluation

This section presents an experimental evaluation using a prototype implementation of the

OpenMP scan clause in the AClang compiler. The experiments in this section use three

heterogeneous CPU-GPU architectures:

1. A desktop with 2.1 GHz 32 cores Intel Xeon CPU E5-2620, NVIDIA Tesla K40c

GPU with 12GB and 2880 CUDA cores running Linux Fedora release 23;

2. A laptop with 2.4 GHz dual-core Intel Core i5 processor integrated with an Intel

Iris GPU containing 40 execution units, and running MacOS Sierra 10.12.4; and

3. A mobile Exynos 8890 Octa-core CPU (4x2.3 GHz Mongoose & 4x1.6 GHz Cortex-

A53) integrated with an ARM Mali-T880 MP12 GPU (12x650 Mhz), and running

Android OS, v6.0 (Marshmallow)

The experiments were carried out by a set of micro-benchmarks shown on Table 6.1

that were specially selected to evaluate the proposed scan clause and to provide significant

insight on the strengths and weaknesses of its implementation in OpenMP. This set of

micro-benchmarks was designed to enable the exploration of the parallel scan algorithms

of representative applications in scientific computing. For each micro-benchmark used in

the evaluation three versions were developed:

1. A CUDA based version, using the Trust C++ template library [4]. Thrust pro-

vides a rich collection of data parallel primitives such as scan, sort, and reduce,

allowing the implementation of high performance parallel applications with min-

imal programming effort through a high-level interface that is fully interoperable

with CUDA C. However, the parallel scan implementation only allows vectors of

primitive data types, i,e. it does not allow the use of structures (compound data

types);

2. An OpenCL version using the same algorithms used in the implementation of the

OpenMP scan clause in AClang; and,

3. a C/C++ version using the proposed OpenMP parallel scan clausA which enables

a higher level of abstraction when compared to the OpenCL and CUDA versions.

44
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Figure 6.1: Analysis of parallel scan using a set of micro-benchmarks

(a) The execution on Intel Xeon CPU E5-2620 with NVIDIA Tesla K40c
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(b) The execution on Intel Core i5 with Intel Iris GPU
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(c) The execution on Exynos 8890 Octa-core with ARM/Mali-T880
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Table 6.1: micro-benchmarks

Index Name Definition Used on
1 Stream Compaction Operation of removing unwanted elements in a col-

lection.
Parallel breadth tree
traversing, ray tracing, etc.

2 Longest Span with same
Sum in two Binary arrays

Given two binary arrays arr1[] and arr2[] of same
size n, find the length of the longest common
span(i, j) where j >= i such that arr1[i]+arr1[i+
1]+. . .+arr1[j] = arr2[i]+arr2[i+1]+. . .+arr2[j].

Programming competitive.

3 Polynomial Evaluation Given an array a of coefficients and a number x,
compute the value of: anxn+an−1xn−1+. . .+a1x1+a0 Calculus, Abstract Algebra

4 Linear Recurrences A recurrence relation is an equation that recur-
sively defines a multidimensional array of values.
Given one or more initial terms, each additional
term of the sequence or matrix is defined as a func-
tion of the preceding terms.

Analisys of algorithms, dig-
ital Signal processing, Fi-
bonacci Numbers.

5 Random Number Generator Given n numbers, each with some frequency of oc-
currence, return a random number with probabil-
ity proportional to its frequency of occurrence.

Statistics, cryptogra-
phy, gaming, gambling,
videogames

6 Upward & Downward Accu-
mulation

Upward/Downward accumulation refers to accu-
mulating on each node information about all dece-
dents/every ancestor.

Solve N-body problem,
solve optimization prob-
lems on trees, such as
Minimum covering set and
Maximal independent set.

7 Adding Big Integers Sum of big integer numbers Public-key cryptography,
mathematical constant
computation such as π

8 Count the number of ways
to divide an array in three
contiguous parts having
equal sum

Given an array of n numbers, find out the number
of ways to divide the array into three contiguous
parts such that the sum of three parts is equal.

Programming competitive.

9 Maximum sum of two non-
overlapping subarrays of
given size

Given an array, find two subarrays with a specific
length K such that sum of these subarrays is max-
imum among all possible choices of subarrays.

Programming competitive,
video games.

10 Maximum Subarray sum
modulo m

Given an array of n elements and an integer m
find the maximum value of the sum of its subarray
modulo m.

Programming competitive.

11 Maximum occurred integer
in n ranges

Given n ranges of the form L and R, the task is
to find the maximum occurred integer in all the
ranges. If more than one such integer exits print
the smallest one.

Programming competitive.

12 Find the prime numbers
which can written as sum of
most consecutive primes

Given an array of limits, for every limit find the
prime number which can be written as the sum of
the most consecutive primes smaller than or equal
to limit.

Cryptography. Program-
ming
Competitive.

The results presented in all experiments of this section are average over ten executions.

Variance is negligible; hence, we will not provide error intervals.

To evaluate the performance of the implementation of the proposed OpenMP scan

clause, three experiments were performed. In first hardware platform (NVIDIA Tesla)

three versions of parallel scan were tested for each benchmark program: (i) CUDA; (ii)

OpenCL; and (iii) OpenMP. The other two hardware platforms (Intel Iris and ARM Mali)

do not support (CUDA) and thus only the OpenCL and OpenMP implementations were

used.

The graphs in Figures 6.1a, 6.1b & 6.1c display the results. The horizontal axis of
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Figure 6.2: Analysis of the performance difference between the OpenCL and OpenMP
implementations
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the graphs denote the number of the benchmark as in Table 6.1 and the vertical axis

the execution time. To provide a minimum fair load for the GPUs and to minimize the

influence of the data offloading latency appropriate data sizes were used for each input

data. In other words, input sizes of 1M elements were used for the NVIDIA platform and

inputs of 512K elements were used for the other two (smaller) hardware platforms (Intel

and ARM) .

The graph in Figure 6.1a do not show the results for the CUDA version of experiments

3 (Polynomial Evaluation), 4 (Linear Recurrences) and 7 (Adding Big Integers) due to

the lack of support to structured inputs in the CUDA Thrust library.

As shown in Figure 6.1a for all programs the CUDA version performed much better

than the OpenCL and OpenMP versions. This is expected, given that the Trust library is

optimized and specialized to NVIDIA devices. On the other hand, the focus of this work is

to enable a generic scan implementation that could run on a broad range of heterogeneous

devices and not only NVIDIA devices. For this reason, our implementation synthesizes

generic OpenCL. Of course this does not preclude us from synthesizing CUDA in the

future.

In order to better compare the performance of the proposed OpenMP scan clause to

the performance of OpenCL code, we measured their percentage difference in all three

hardware platforms. The experiments revealed a maximum 20.3%, an average 6.2%, and

a standard deviation 7.4% difference in performance. This strongly suggests that the

proposed clause can result in a similar performance as when directly programming in

OpenCL with the advantage of a smaller programming complexity.

Although small, the performance difference between the OpenCL code and the new

OpenMP scan clause is puzzling given that they use the exact same algorithm. After

a thorough analysis, we observed that the performance difference was likely due by the

AClang runtime library. To evaluate that, a new set of experiments with profile enabled

was performed. Figure 6.2 shows the total execution time for some micro-benchmarks.
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On the x-axis of the figure are benchmark programs identified by their numbers as listed

in Table 6.1 followed by a label OCL (OpenCL) or OMP (OpenMP) to indicate the

corresponding implementation. On the y-axis are program execution times. Each bar

in the figure is broken down according to the following tasks performed during program

execution: (i) kernel computation (Kernel bar); (ii) kernel data offloading (Offloading bar)

and (iii) runtime tasks like context creation, queue management, kernel objects creation

and GPU dispatch (Managment bar). The analysis reveals that 80% to 90% of the

slowdown over the OpenCL implementation are due to the AClang runtime library, not

the algorithm itself. In fact, the runtime library does not have specific routines to handle

the scan operation data management. This was implemented using existing offload and

dispatch operations in the library. We believe that it is possible to reduce this performance

difference significantly by slightly adapting the runtime library to provide routines specific

to the new scan clause.

When dealing with large inputs, the algorithm computes the scan operator in accor-

dance to the available architectural resources. In other words, the algorithm will divide

the input size in slices according to the total number of threads available in the GPU. For

example if there are 1M threads and the size of the input is 10M, the algorithm will run

a slice of 1M threads 10 times, and then will merge the partials slices to obtain the final

answer.



Chapter 7

Conclusions and Future Works

The scan operation is a simple and powerful parallel primitive with a broad range of

applications. This work presented an efficient implementation of a new scan clause in

OpenMP which exhibts a similar performance as direct programming in OpenCL at a

much smaller design effort. The main findings are:

• It is possible to improve the performance of the scan clause by providing specific

routines to handle scan (and reduction) operations into the AClang runtime library.

• Based on the evaluated benchmarks, and after investigating the reasons for the dif-

ferences in performance between the OpenMP and OpenCL versions, it is concluded

that the use of the scan clause is perfectly acceptable due to the ease of program-

ming given the high level of abstraction of OpenMP when compared to CUDA and

OpenCL.

As a future work, we intend to extend this approach in order to synthesize a CUDA

kernel from an scan annotated OpenMP kernel.
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