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Resumo

A solução de problemas onde muitos componentes atuam e interagem simultaneamente
requer modelos de representação nem sempre tratáveis pelos métodos analíticos tradi-
cionais. Embora em muitos caso se possa prever o resultado com excelente precisão
através de algoritmos de aprendizagem de máquina, a interpretação do fenómeno requer
o entendimento de quais são e em que proporção atuam as variáveis mais importantes
do processo. Esta dissertação apresenta a aplicação de um método onde as variáveis
discriminantes são identificadas através de um processo iterativo de ranqueamento ("ran-
king") por eliminação das que menos contribuem para o resultado, avaliando-se em cada
etapa o impacto da redução de características nas métricas de acerto. O algoritmo de
florestas de decisão (Random Forest) é utilizado para a classificação e sua propriedade
de importância das características (Feature Importance) para o ranqueamento. Para a
validação do método, dois trabalhos abordando sistemas complexos de natureza diferente
foram realizados dando origem aos artigos aqui apresentados. O primeiro versa sobre a
análise das relações entre programas maliciosos (malware) e os recursos requisitados pelos
mesmos dentro de um ecossistema de aplicações no sistema operacional Android. Para
realizar esse estudo, foram capturados dados, estruturados segundo uma ontologia definida
no próprio artigo (OntoPermEco), de 4.570 aplicações (2.150 malware, 2.420 benignas). O
modelo complexo produziu um grafo com cerca de 55.000 nós e 120.000 arestas, o qual
foi transformado usando-se a técnica de bolsa de grafos (Bag Of Graphs) em vetores de
características de cada aplicação com 8.950 elementos. Utilizando-se apenas os dados do
manifesto atingiu-se com esse modelo 88% de acurácia e 91% de precisão na previsão
do comportamento malicioso ou não de uma aplicação, e o método proposto foi capaz
de identificar 24 características relevantes na classificação e identificação de famílias de
malwares, correspondendo a 70 nós no grafo do ecosistema. O segundo artigo versa sobre
a identificação de regiões em um documento impresso que contém informações relevantes
na atribuição da impressora laser que o imprimiu. O método de identificação de variáveis
discriminantes foi aplicado sobre vetores obtidos a partir do uso do descritor de texturas
(CTGF-Convolutional Texture Gradient Filter) sobre a imagem scaneada em 600 DPI de
1.200 documentos impressos em 10 impressoras. A acurácia e precisão médias obtidas no
processo de atribuição foram de 95,6% e 93,9% respectivamente. Após a atribuição da
impressora origem a cada documento, 8 das 10 impressoras permitiram a identificação
de variáveis discriminantes associadas univocamente a cada uma delas, podendo-se então
visualizar na imagem do documento as regiões de interesse para uma análise pericial.
Os objetivos propostos foram atingidos mostrando-se a eficácia do método proposto na
análise de dois problemas em áreas diferentes (segurança de aplicações e forense digital)
com modelos complexos e estruturas de representação bastante diferentes, obtendo-se um
modelo reduzido interpretável para ambas as situações.



Abstract

Solving a problem where many components interact and affect results simultaneously
requires models which sometimes are not treatable by traditional analytic methods.
Although in many cases the result is predicted with excellent accuracy through machine
learning algorithms, the interpretation of the phenomenon requires the understanding
of how the most relevant variables contribute to the results. This dissertation presents
an applied method where the discriminant variables are identified through an iterative
ranking process. In each iteration, a classifier is trained and validated discarding variables
that least contribute to the result and evaluating in each stage the impact of this reduction
in the classification metrics. Classification uses the Random Forest algorithm, and the
discarding decision applies using its feature importance property. The method handled two
works approaching complex systems of different nature giving rise to the articles presented
here. The first article deals with the analysis of the relations between malware and the
operating system resources requested by them within an ecosystem of Android applications.
Data structured according to an ontology defined in the article (OntoPermEco) were
captured to carry out this study from 4,570 applications (2,150 malware, 2,420 benign).
The complex model produced a graph of about 55,000 nodes and 120,000 edges, which was
transformed using the Bag of Graphs technique into feature vectors of each application
with 8,950 elements. The work accomplished 88% of accuracy and 91% of precision in
predicting malicious behavior (or not) for an application using only the data available
in the application’s manifest, and the proposed method was able to identify 24 relevant
features corresponding to only 70 nodes of the entire ecosystem graph. The second article
is about to identify regions in a printed document that contains information relevant to the
attribution of the laser printer that printed it. The discriminant variable determination
method achieved average accuracy and precision of 95.6% and 93.9% respectively in the
source printer attribution using a dataset of 1,200 documents printed on ten printers.
Feature vectors were obtained from the scanned image at 600 DPI applying the texture
descriptor Convolutional Texture Gradient Filter (CTGF). After the assignment of the
source printer to each document, eight of the ten printers allowed the identification of
discriminant variables univocally associated to each one of them, and it was possible to
visualize in document’s image the regions of interest for expert analysis. The work in both
articles accomplished the objective of reducing a complex system into an interpretable
streamlined model demonstrating the effectiveness of the proposed method in the analysis
of two problems in different areas (application security and digital forensics) with complex
models and entirely different representation structures.
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Chapter 1

Introduction

This introduction explains the objective of the method applied in both articles "Leveraging
ontologies and machine-learning techniques for malware detection in the Android ecosystem"
and "Connecting the Dots: Toward Accountable Machine-Learning Printer Attribution
Methods" produced by the author during the master’s program work. These articles are
transcribed entirely in Chapter 2. Chapter 3 discusses the methodology, and the results
obtained, proposing future lines of research. Finally, Chapter 4 concludes the work.

The method outlined herein is centered on the problem of streamlining a complex
model to discover the elements which most influence the system behavior, favoring in this
way the interpretability on the study of the observed data.

As depicted in the summary view provided in Figure 1.1 the method consists of three
phases, where the core stage (learning phase) is based in a machine-learning algorithm to
discover the most discriminant features. The start and end phases are two transformations:
first is a vectorization to convert the complex model into the feature vectors to input in
the core phase, and last an inverse transformation to reconstruct a streamlined model
from vectors using only the most discriminant features.

The process starts with a pre-processing stage responsible for converting the symbolic
model (M) describing the phenomena and data observations (O) into a representative
mathematical notation in vector space. Feature vectors in this space represent relationships
within the adopted model and measure the relevance of each feature for the class represented
by the vector. The conversion is done by a transformation (τ ) (Eq. 1.1) responsible for
converting the model structure into the designed feature space.

F = τ (M,O) (1.1)

where τ is the model-to-feature transformation, M is the original model, O represents the
observations (data) structured according to the original model, and F denotes the created
feature vectors in R

n.
After the feature generation step, the objective of the learning phase is to isolate the

most discriminant features to the classes of interest recursively identifying discriminative
features while maximizing an adopted classifier performance criterion (Eq. 1.2).

H = F(I⋆) | I⋆ = argmax
I

f(C(F, I)) (1.2)
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problems addressed in the two articles compiled in Chapter 2.
In Android malware relationships analysis Section 2.1, the features extracted from the

ontology graph uses the Bag of Words technique [30, 29] with a feature definition that
captures the three node-path relationships focusing on the intermediate node and classes
of extreme nodes. The original problem model is an ontology representing an ecosystem of
applications in an Android device. It generates a huge graph with approximately 50,000
nodes and 120,000 edges which is difficult to address to find elements related to the
malware behavior of one application. The method applied to the complex ecosystem model
could identify 24 discriminant features that reversed back into 70 nodes of the original
ecosystem graph. These nodes were associated with most of the malware families resource
requests explaining the results achieved.

In Section 2.2 the problem is to identify what regions on a questioned document contain
image signatures generally produced by mechanisms behavior and electromechanical defects,
which can link the document with the laser printer device that printed it. The initial
model is a scanned image, and the final objective is to pinpoint in that image pixels which
represents the most discriminant textures attached to the specific printer attributed to the
questioned document. The CTGF texture descriptor previously defined in the article [15],
with this dissertation’s author collaboration, was used to capture printing imperfections
locally represented providing the ground information for modeling and back projecting
the discriminant regions of each document attributed to a specific laser printer.

Using 1,200 documents printed on ten printers the method described above achieved
average accuracy of 95.6% and precision of 93.9% in the source printer attribution. Most
discriminant features identified for each of the ten printers allowed in eight of them
to produce maps over the original scanned images pinpointing the regions used by the
algorithm to discriminate the source printer, which is a remarkable achievement for the
use of the classification techniques in digital forensics and reports of technical expertise
for legal purposes.

As previously mentioned, the focus here on problem’s resolution is not only to develop a
machine learning classifier which can successfully predict the system behavior based on the
input data but, more than that, which data structures are involved in that determination.

Looking at this problem, we realized that it is part of a more generic research topic in
machine learning, which is currently called accountability for the classification results.

As far as we know, the CTGFmap article (Section 2.2) is the first work in forensics to
deal with accountable printer attribution.

In the last few years, there has been an increasing concern and interest in accountable
machine learning. New dedicated conferences and workshops such as the ones promoted
by FAT/ML organization [13], ICML – Workshop on Human Interpretability in Machine
Learning (WHI) [33], AAAI-2017 – W11 Workshop Human-Aware Artificial Intelligence [31],
and IJCAI2017 – Workshop on eXplainable Artificial Intelligence (XAI) [1] focus on fairness,
accountability, and transparency concepts for machine learning algorithms and applications.

Governments and non-governmental organizations, just to cite some, European Parlia-
ment (GDPR - General Data Protection Regulation) [17, 27] and Center for Democracy
& Technology (CDT) [8], are issuing policies, directives and best practices concerning
the use of technology, and recently focusing on consequences and human rights related to
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decisions made by algorithms.
Most of the misgivings are due to the misuse and ethics of machine learning applications

and the human rights of data privacy, but also on how to demonstrate decision results
in a way that humans can understand. Most publications in this area address one or
more principles exposed by the authors of the article [10] in "MIT Technology Review in
November/2016: Responsibility, Explainability, Accuracy, Auditability, Fairness".

Explainability is defined in FAT/ML organization Principles for Accountable Algo-
rithms [11] as: "Ensure that algorithmic decisions as well as any data driving those
decisions can be explained to end-users and other stakeholders in non-technical terms.".
W11 workshop at AAAI-17 (Workshop Human-Aware Artificial Intelligence of Thirty-First
AAAI Conference on Artificial Intelligence) explains the objectives of the workshop [31]
as: "In order to address this issue and produce truly human-aware artificial intelligence,
systems must try to solve the interaction issues that accompany each unique application
domain. These interaction issues may broadly be divided into extraction (or interpretation)
challenges, and presentation (or steering) challenges".

Closing the loop a new frontier on machine learning studies is how algorithms and
humans can cooperate systematically complementing each other and work together in a
process to achieve better results. This is one of the topics of the workshop W11 workshop
at AAAI-17 [31]: "The key premise of this workshop is based on the idea that augmented
intelligence – that is, teams and systems that combine the skills of humans and AI
techniques – can achieve better performance than either alone. However, in order to create
such systems with augmented intelligence, humans must be accommodated as first-class
citizens in the decision-making loop of existing AI systems. Far too often, traditional AI
systems have tended to exclude humans (and the problems that accompany interaction with
them) and have instead focused on producing optimal artifacts that stand no significant
chance to working in the real world.".

The concepts and related work sections in both articles compiled in the next chapter
explain in more detail concepts, models, and transformations brought to bear.
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Chapter 2

Articles Published and Submitted

This chapter presents a summary and compilation of the articles produced during the
master’s program with the contribution of the author of this dissertation. Articles Sec-
tion 2.1 and Section 2.2 are presented in reverse order of writing, i.e., most recent article
first.

2.1 Leveraging ontologies and machine-learning tech-

niques for malware detection in the Android ecosys-

tem.

Title: Leveraging Ontologies and Machine-learning Techniques for Malware Analysis into
Android Permissions Ecosystems.
Authors: Luiz C. Navarro, Alexandre K. W. Navarro, André Grégio, Anderson Rocha,
Ricardo Dahab.
Status: Submitted to a journal.



Leveraging Ontologies and Machine-learning
Techniques for Malware Analysis into Android Permissions Ecosystems

Luiz C. Navarroa, Alexandre K. W. Navarrob, André Grégioc, Anderson Rochaa, Ricardo Dahaba

aInstitute of Computing - University of Campinas (Unicamp), Campinas, SP, Brazil
bEngineering Department - University of Cambridge - Cambridge, UK

cDepartment of Informatics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil

Abstract

Smartphones form a complex application ecosystem with a myriad of components, properties, and interfaces

that produce an intricate relationship network. Given the intrinsic complexity of this system, we hereby propose

two main contributions. First, we devise a methodology to systematically determine and analyze the complex

relationship network among components, properties, and interfaces associated with the permission mechanism

in Android ecosystems. Second, we investigate whether it is possible to identify characteristics shared by

malware samples at this high level of abstraction that could be leveraged to unveil their presence. We propose an

ontology-based framework to model the relationships between application and system elements, together with a

machine-learning approach to analyze the complex network that arises therefrom. We represent the ontological

model for the considered Android ecosystem with 4,570 apps through a graph with some 55,000 nodes and

120,000 edges. Experiments have shown that a classifier operating on top of this complex representation can

achieve an accuracy of 88% and precision of 91% and is capable of identifying and determining 24 features that

correspond to 70 important graph nodes related to malware activity, which is a remarkable feat for security.

Keywords: Malware, Android Permissions, Ontology, Bags of Graphs, Machine Learning, Discriminant Features.

1. Introduction

Smartphones have become ubiquitous computing devices worldwide. A recent Ericsson Mobility Report [1]

indicated that smartphones currently represent 55% of all mobile subscriptions globally. The report further

projects the number of unique mobile subscribers to reach 6.1 billion by 2022, covering roughly 75% of the

world’s population. Despite the multitude of different device models and the availability of several different

operating systems for smartphones, the Android operating system currently holds 88% of market share [2].

Mobile devices are increasingly being used for activities that directly impact social, work, and financial envi-

ronments; as such, they have become a primary target for cyber-criminals. A study published by Deloitte [3] con-

cluded that, in the United Kingdom, the top ten usages for smartphones include social networking, emailing, bank-

ing, and shopping with similar patterns across other developed countries. To the eyes of a cyber-criminal, social

Email addresses: luiz.navarro@students.ic.unicamp.br (Luiz C. Navarro), akwn2@cam.ac.uk (Alexandre K. W. Navarro),
gregio@inf.ufpr.br (AndréGrégio), anderson.rocha@ic.unicamp.br (AndersonRocha), rdahab@ic.unicamp.br (RicardoDahab)

Preprint submitted to Elsevier June 18, 2018
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networks can be viewed as a repository of the smartphone user’s personal information; work-related emails are a po-

tential source of sensitive information, and banking apps are the gateway for accessing the user’s finances [4, 5, 6, 7].

As a prophylactic security measure against unauthorized use or access, the Android ecosystem possesses

a permission system for its applications (apps) [8]. The permission system informs the user of which system

resources and information an app uses prior to installation so that the user can make an informed choice on

whether or not to install that app based on the resources used. However, Kelley et al. [9] and Felt et al. [10] have

shown flaws in the use of the permission system as a preventive security measure. In particular, users tend not to

pay attention to permissions, and more worryingly, permission systems sometimes fail to aid users with the task of

properly taking security-related decisions. Furthermore, developers tend to overprivilege applications requesting

more permissions than necessary, anticipating future releases [11, 12]. Moreover, Android documentation also

has flaws in mapping permissions related to system calls, as described in the study from Pscout developers [13],

a software that intercepts system calls and keeps track of which permissions are tested by the operating system,

producing actual documentation about which permissions are verified in each system-call access.

As a matter of fact, malicious apps can control seemingly harmless system resources to exploit a vulnerability

in another app [9] indirectly. Given that the Android ecosystem has over 1.7 million apps and 235 different

permissions [14], the task of mapping and analyzing relationships among permissions, malware, and benign apps

is daunting and, undoubtedly, cannot be manually performed by a human curator. Likewise, any developed

methodology must be extensible, automatic, and dynamic to allow for new characteristics to be taken into

consideration on the fly as apps, malware, and permissions are continuously added or removed from the ecosystem.

Given the above, application testing in Android devices faces important challenges [15] that must be addressed.

Within this context, the present contribution proposes two methods (described in Section Section 4): the first

for mapping relationships in the Android ecosystem using ontologies and the second, a machine-learning-based

solution to analyze malware features from the obtained network of relations and dependencies. We validate the

effectiveness of these methods in Section 4 and show that the proposed methods are able to determine the most

important nodes related to malware activity, representing an important contribution to smartphone security.

2. Concepts and Related Work

Before we move on to the new methods we propose in this paper, we present a brief introduction to Android

security, ontologies, and feature engineering using bags of graphs as well as the random forests classifier, which

are necessary concepts to understand the paper. The expert reader can go directly to Section 3, where the new

methods are introduced.

2.1. Android Security System and Malware Identification

Android elevates the definition of operating systems to a whole new level. Operating systems constitute

the software responsible for managing computer resources (hardware and software) and provide users’ computer

programs with common APIs to facilitate access to available resources and services while hiding technical

details involved in basic operations from end-users. Android, in turn, implements a Java Framework over a

2
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Linux Operating System. This architecture allows the development of smartphone apps, providing users with a

high-level interface for accessing organized data, ranging from user contacts stored in a simple database to GUI

components and phone resources. It also acts as a security measure to isolate apps and facilitate environment

administration with effortless installation and application management.

In the ubiquitous context of smartphones in which Android is inserted, the concept of security based on

the user’s login is not the sole solution. Linux security options based on the user’s privileges for program spaces,

data files, and application-context controls are too complex for an information and technology layman. Instead,

Android relies on an application-based security system, in which each application runs a single and different

user. This design guarantees a completely separate sandbox environment for each application within Linux

at the expense of a duplicate Java Framework being created for each application upon installation.

The access to resources is controlled by wrapped Linux interfaces while system calls are managed by a

separate Android system application. This application receives requests from each app’s Java machine1 through

an internal remote procedure call (RPC) communications mechanism. This mechanism guarantees a security

environment based on permissions [Permissions, 16]. The very same mechanism also implements object-based

inter-app communication referred to as the intents [Intent and Intent Filters, 16].

Apps declare permission requests and can also define permissions to protect interfaces. This declaration

is located in a file named Application Manifest, which contains a high-level definition of the structure of the

application components, interfaces, and permissions. This file is used by the system when installing an app

to grant the app access to permissions according to rules determined in the system.

On Android version 5.0 (Lollipop) and previous ones, to install applications, the smartphone user needs to

accept all permissions requested by the app. Denying any of the requested permissions prevents the application

from being installed. This mechanism transfers the responsibility of authorizing interactions to users who often

do not understand the implications of such actions. Therefore, it is not surprising that permissions represent

one of the most important backdoors exploited by malicious software in those older versions [10].

Android version 6.0 introduced a new permissions control that allows one to enable or disable permissions

individually even after installation. The experiments conducted in this article used an applications ecosystem

of a smartphone with Android version 4.4 (KitKat). After KitKat, several changes were made for version 5.0

(Lollipop) aiming at improving performance and mainly security. The replacement of Dalvik Java runtime

machine by ART and the deployment of SELinux in enforcement mode for all domains are two clear examples.

More details on Android security mechanisms can be found in [17].

Malware in the Android ecosystem typically targets personal data as smartphones have become a preferred

personal interface for banking, electronic payments, online retail stores, and other critical usages. They can

exploit vulnerabilities within the internal Android system code at either the Java Framework or Linux levels. Al-

ternatively, they can simply mislead users to provide access to resources about which they are not even aware [18],

1Dalvik for versions 4.4 KitKat and earlier or Android Runtime ART for versions 5.0 Lollipop and later.
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including repackaging actual benign applications to include malicious code [19]. Most tools for malware detection

directly analyze any piece of available code to determine malicious activities [20], thus requiring known pieces

of code to be used as signatures. Steering away from direct code analyses, machine-learning methods form

powerful tools to identify malicious behavior over logs and information collected from system interface calls.

Sanz et al. [21] pioneered the analysis of app permission requests through a set of machine-learning solutions

to discriminate malware from benign apps. Likewise, Das et al. [22] also adopted a machine-learning approach

to analyze and identify malware behavior in real time with the aid of additional hardware.

Most of the current state of the art malware detection approaches relies on machine learning analysis with

different algorithms as we can see in the survey article [23], but all of them capture information using static

code analysis tools or execution monitoring applications, or both techniques, to devise features for the machine

learning processing. Normally, the deeper the level of analysis, the better the results in the malware detection

rate (Tpr), as we can see in Table 1. To complement existing techniques with a different vantage point, our

work looks at relations at the highest level of information available, and surprisingly yields a classification rate

of 86% in the malware identification.

As we can see in the survey article [23], most current state-of-the-art malware detection approaches rely on

machine learning analysis with different algorithms, but all of them capture information using static code analysis

tools or execution monitoring applications (or both techniques) to devise the features for the machine-learning

processing. The more information and the deeper the level of analysis, the better are the results of the malware

detection rate (Tpr) as we can see in Table 1. Our work looks at relations at the highest level of information

available and, surprisingly, achieves 86% malware identification, using only 36 most discriminant permissions

related features detected in the ranking process.

Table 1: Malware detection state of the art comparison.

Malware detection work Tpr (%) Captured and analyzed data

MADAM[24] 96.9
Multi-level static code analysis and extensive
monitoring of kernel and user activity.

DroidSIFT[25] 93
Static code analysis - API calls dependencies
graph analysis.

APKAuditor[26] 88.3
Static code analysis: permissions, services and
receivers.

Ourwork -most discriminant
features

86
Manifest only data: declared permissions and
interfaces.

2.2. Ontologies

Ontologies provide a framework for modeling concepts and their relationships using formal logic. Based on

the treatments provided by Gruber [27], Guarino et al. [28], and Studer et al. [29], an ontology can be succinctly

defined as the tuple O=(T ,A,L), which consists of a set of classes and properties referred to as a terminology

T , a set of axioms A that relates two instances of the terminology, and a formal logic language L that allows

the description of the axioms and logical inference.
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One of the strengths of this general framework resides in expressing models in an extensible way: new terminol-

ogy elements can be linked back to existing terminology elements through axioms. The embedded formal logic en-

ables the discovery and inference of implicitly defined relationship values for relationships not previously assigned.

As a consequence of their high interpretative power, ontologies have been successfully used in many different

setups. Applications include automatic curation of protein-protein databases [30], management of genomic

sequence databases [31], integration of different biomedical databases [32], document mapping of virtual

organizations [33], and description of sustainable business models [34].

Ontologies and semantic web technologies are growing fast with the standardization of languages, tools, and

applications that can provide integration, interoperability, and reuse of data in multidisciplinary studies [35].

In the forefront of the systems security arena, most current ontologies focus on the taxonomy of threats

and countermeasures [36], as well as security risk assessment [37, 38]]. Nguyen et al. [39] provide an overview

of ontology concepts, tools, and applications in information and security systems. In turn, the authors in [40]

explore the use of ontologies to model software architectural styles using UML-based ontology.

For the purposes intended in this contribution, ontologies will be described as a graph in which axioms are

expressed by an edge between two nodes representing the instances of terminology linked by the property within

each axiom.

2.3. Bags of Graphs

ABag of Graphs (BoG) is a technique used to vectorize a graph representation creating a set of symbols (items

of the BoG), which represent elements or subgraphs included in the graph. This concept was first introduced

by Silva et al. [41, 42].

Given a graph G=(V,E) and a function wi=f(G,i), which extracts a symbol defined as an ordered sequence

wi = (p1,...,pm) of elements pj ∈G, a BoG (Bag of Graphs) can be defined as the set B = {w1,...,wn} of all

symbols extracted from G by f . Subgraphs S⊂G can be described as a set of items W ⊂B.

In this article, we use an ontology representation for the application ecosystem, which produces a large

graph encompassing the relationships among applications. As we are interested in finding common sets of

properties, which appear on malware’ subgraphs, a BoG representation is suitable for our problem. There are

two advantages to adopting BoG modeling in this work. First, the use of logic in the ontology to find malware

properties alleviates the fact that we do not know which properties are common to malware beforehand. Second,

as the ecosystem’s graph grows, so does its complexity, but exponentially. Converting the subgraph of each

application in the ecosystem into BoG vectors enables us to use them with a machine-learning process to identify

the most discriminant features that characterize malware apps in the studied ecosystem.

2.4. Random Forest Feature Importance

In this section, we provide a succinct description of the Random Forest feature importance analysis, a key

concept we rely on in this paper. Originally introduced by Breiman [43], random forests represent a practical

framework for performing classification and regression tasks, having attracted attention both in the academia [44]

5

20



and the industry [45, 46, 47]. In short, random forests combine classification and regression trees (CART) [48]

with a bootstrap aggregation technique, also referred to as bagging [49].

Classification and regression tree models represent mathematical functions by partitioning the space of the

inputs and forming a local function approximation for each partition. Each of the decisions to split the input

space into two can be represented as introducing a node in a binary tree representing the different regions in

the input space. This tessellation of the input space is performed to minimize a classification or regression loss

function that assesses the goodness-of-fit. To avoid over-fitting, a pruning step can be used during the process

of growing the tree to reduce its complexity [48, 50].

CART models are highly dependent on the data used in their training as they often rely on greedy method-

ologies to evaluate the feature space. One approach to alleviating such high dependence is to use the bagging

technique [49]. This technique subsamples the training set to produce K different sets, with which classification

(or regression) tree models can be trained. Then the predictions from each of the K learned models are averaged

to produce a single final estimate. This averaging of different trees reduces the impact of each single data point

in the overall estimation process.

Bagging can also be leveraged to provide an estimate for the generalization error and the probability of a

given node in a tree. Breiman [51] shows that each point (xi,yi) of the original set is only used to train 63%

of the K trees when bagging is applied to CART models. Hence, (xi,yi) can be used in the remaining trees as

a cross-validation measure, allowing us to calculate what is known as out-of-bag (OOB) error. This error can

be used to assess the importance of a given feature in the predictions of a forest by randomly permuting the

values of a given feature [43]. When a feature is correlated with others, additional care should be taken to avoid

overestimating the importance of correlated variables, as described by Strobl et al. [52] and Altmann et al.[53].

3. ProposedMethod

In this work, our primary goal is to analyze which permissions and resources are related to malicious apps

in the Android ecosystem as represented in the Android manifests. We rely solely upon application manifest

XML files as our source of information. The reasoning for this choice is that such files are publicly available

and do not require any reverse engineering, code execution monitoring, or complicated code-level analysis to

detect the presence of malware in a system, as described in [54]. We have adopted the complex ecosystem of

a commercial Android smartphone loaded with its default operating system and apps provided in the factory

software image as well as benign applications downloaded from official app stores and applications known to

be malware from security research repositories.

We are not focused on finding resources and relationships directly involved in an attack itself. Rather, we

aim to understand which structures and relationships are important for malware activities. As an example,

malware samples that steal users’ contact information require network access to send this information to an

agent external to the smartphone. Although network resources may not be directly involved in the attack, it is

clear that they are an important part of the malware structure and how it interacts with the operating system.
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To gather information available in the application manifests, we first need to define how to build a model

capable of establishing the involved entities and their relationships, while still retaining a desirable analysis

foundation to be used later on. While a traditional database appears to be a good choice to store all captured

data while supplying advanced querying capabilities, ontologies are more advantageous in this case, as they

are focused on semantics and standardization of concepts and are easy to evolve with by definition [55, 56, 57].

On the one hand, ontologies provide a good foundation for model building. On the other, the application of

ontology logic through queries over the knowledge base to represent complex phenomena is difficult to determine

experimentally, and even if we can find this relationship, the complex logic queries over large datasets normally

require too much processing. Then, following a different path, our method relies on machine learning concepts

to discover important relationships which explain the phenomena and use that result to streamline the ontology

knowledge base itself.

To process the original model by machine-learning algorithms, the properties and relationships associated

with an entity to be analyzed (class of interest) must be represented by individual measurable elements in vector

form, referred to as features. Then all entities in the ecosystem are represented by features, which feed ML-based

classifiers to determine their predictability performance, and which are the most discriminative ones for the

decision-making process.

As an ontology model can be built and populated with data from application manifests, this model is so

complex that trivial statistical analysis and queries may fail to identify important relationships related to the

behavior of malware apps. To deal with this problem, we devised a way of transforming the relationships for

each application inside the ecosystem into meaningful representative features, aiming at singling out the most

important ones, reducing the model complexity of the malware structure.

The method outlined in Figure 2 is centered on the problem of simplifying an ontology model to map the most

important malware relationships in the Android smartphone ecosystem. This is a particular case of a generalized

approach we call conceptual framework, as illustrated in Figure 1. The purpose of this framework is to simplify

models by transforming a symbolic representation into features, then determining the most discriminative

features through the use of a machine-learning process. Finally, it transforms the selected features into a

refined/simplified description model.

In our proposed conceptual framework, we start with a pre-processing stage responsible for converting the

symbolic model M describing the phenomena and data observations (O) into a representative mathematical

notation in vector space. Feature vectors in this space represent relationships within the adopted model and

measure the relevance of each feature for the class represented by the vector. This is done by a transformation

τ (Eq. 1) responsible for converting the model structure into the designed feature space.

F=τ (M,O) (1)

where τ is the model-to-feature transformation, M is the original model, O represents the observations (data)

structured according to the original model, and F denotes the created feature vectors in R
n.
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The BoG Ω is the set of all items ωt that can be extracted from the graph G.

Ω= {ω1...ωt...ωn} ∀t⊂G

n= number of elements in Ω

The BoG Ω, extracted from the entire ecosystem graph G, is the feature set to be used to describe the

investigated subgraphs — the apps downloaded into the Android device ecosystem. As the feature set is defined

by the ordered elements in Ω, we need to establish a rule to compute each feature value and how to extract the

features corresponding to each application (malware or benign) to be analyzed by the machine learning steps.

Each application is represented by a starting node of the class package, and our apps of interest are particularly

the ones of subclasses AppPartner or AppDownloaded (as seen in Figure 3 which are subclasses of the class

Package. Then we represent each application of interest by its initial node, γ.

Given that the ontology graph is unweighted, i.e., all edges bear the same importance, we can traverse the

graph using a Breadth-First Search (BFS) algorithm from its initial node γ to extract the minimum spanning

tree (MST) to obtain the feature representation of the application. The BFS algorithm stops if any loop is

found, a target node or a node with no outgoing connection is achieved, or if it exceeds a maximum user-defined

depth for searching. During the traversal process, all BoG items (ωt) found for each intermediate node (vi) of

the application’s subgraph is represented by the corresponding feature value (δi), which is defined as the inverse

of its distance (in a number of nodes) to the root of the MST:

Dγ= {δ1,...,δt,...,δn},

∀t | 1≤ t≤n= |Ω|

δt=
1

distance(γ,vi)

where: δt is the value of the feature which represents the BoG item ωt∈Ω containing the intermediate node

vi ∈ Vonto as present in the application subgraph with root node γ ∈ Vonto. Therefore, the vector elements

representing BoG items that are not present in the subgraph are set to 0.

The inverse of the distance from the root node was chosen as the metric of feature relevance for the

application. The closer to the root a node is, the higher the value of the feature, which means that fewer

intermediates and more directly connected structures are present in the model. On the other hand, exploring

nodes far from the root implies relationships that depend on many more elements inside the ecosystem.

The technique described above and exemplified by Figure 4 can be applied to convert any ontology graph into

a set of feature vectors to describe subgraph relationships from nodes that belong to a set of classes. Particularly

on this work, the ecosystem is the environment created with apps downloaded by users and manufacturer

partner’s apps inside an Android smartphone, representing the relationships described by AndroPermEco

ontology, which maps only permissions, resources, and interface types.
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3.3. Learning the Most Discriminant Features

To accelerate the following steps in the process, we eliminate the linearly dependent of the set of Dγ vectors,

leaving only one feature to represent each set of linearly dependent BoGs. In the back modeling, after identifying

the most discriminant features related to malware apps, we expand the BoGs correlated to the selected features.

The resulting vectors after the elimination of dependent columns are feature vectors to input in the machine

learning process.

Fγ={...,δi,...} | δi∈Dγ and

Fi is linearly independent of Fj | ∀Fi∈F, ∀Fj ∈F

For ranking features according to their relevance in the classification, an iterative process is performed to

decrease the length of the vectors. This process also discards less important features and refines the rank for

the remaining ones in the next iteration. On each iteration, a Random Forest classifier is trained, and features

are weighted by their Feature Importance, as described in Section 2.4. Upon sorting the different importance

values in descending order, we end up with a ranking of features.

The performance of the classifier is also measured, identifying how discarded features impacted the classi-

fication effectiveness. Looking at the metrics, it is possible to determine the length and, consequently, the set of

features that produced the best performance. The metrics also provide the threshold point where performance

starts to be more impacted by feature reduction, and a minimum length that supports the acceptance criteria

where the iterations should be stopped. Obviously, if the minimum performance criteria are not violated by

any length, the process will stop when the length of 1 is reached.

Typically, the minimum performance criteria are set to a minimum of 60% for recall (the prediction cor-

rectness for the real positive samples) and a minimum of 60% for precision (the prediction correctness for the

predicted positive samples). This implies a 60% minimum of f1-score metric, which is used to determine the

best performance length, and its estimated derivative is used to determine the threshold point.

At the end of the ranking process, the most discriminant features are determined by the top-ranked ones

for the threshold length.

3.4. Back Modeling — Identifying Malware Features

After determining the most discriminant features, it is now necessary to identify the ones with the highest

probability of having higher values in the malware apps compared to the benign ones. This means that the BoG

represented by a given feature occupies a position nearer to the root in the malware MST graphs, as opposed

to graphs for benign apps. This implies that this particular feature is more representative for the malware

graph nodes. In particular, our method is based upon Rubin’s propensity score[59] for the observational causal

inference setup. This propensity score framework can be informally summarized as computing a score τ based on

the outcomes of applying a treatment to a population (ri,t=1), against the results of not applying the treatment
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to a population (ri,t=0), i.e.,

τ=
N
∑

i=1

ri,t=1−ri,t=0, (5)

where ri denotes the outcomes for individual i of theN individuals in the entire population studied. More generally,

the framework can be used to analyze the counter-factuals between two given classes C0 and C1 for a feature xi, i.e.,

τi=

∫

(

p(xi|C0)−p(xi|C1)
)2

dxi. (6)

In the proposedmethod, we consider the classification output of a classification algorithm as a treatment to the

population of Android apps considered, in terms of their features. By construction, features that are important

for distinguishing malware from benign apps will exhibit a greater difference between their distributions p(xi|C0)

(benign) and p(xi|C1) (malware). To ascertain whether such a difference is significant, we can employ simple

statistical tests such as the two-sample Kolmogorov-Smirnov test (see, e.g., [60], [61]).

Given that the counterfactual distributions are unimodal and share the same support, we can find the transition

point β⋆ for each feature xi through optimization such that a given app is more likely to be benign than malware.

β⋆=argmax
β

∫ β

−∞

(

p(xi|C0)−p(xi|C1)
)2

dxi. (7)

In this way, we call malware features Hm ∈ F the ones that present the highest probability of having

higher values for malware apps over benign apps by meeting the following criteria:

Hm∈F (8)

β⋆>0 and µ
(

p(xm|C1
)

>µ
(

p(xm|C0
)

(9)

Then, once a final classifier is trained and tested using only malware features to guarantee that such features

retain enough information about the malware apps, we can proceed with the analysis. If the metrics are above

80%, we can conclude that malware features are representative of the BoG relationships of malware in the

ecosystem graph.

3.5. Back Modeling — Mapping Malware Features to Ontology Graph Nodes

The next step is to identify BoGs that correspond to malware features. It is important to remember here

that we eliminated the linearly dependent columns of vectors in Dγ . Then, it is time to recover the information

about which BoGs are represented by each malware feature by looking for the elements of Dγ , which are highly

correlated to those. The correlation matrix is calculated as follows:

ρ(Di,Dj)=
1

f−1

f
∑

k=1

Dk,i−µi

σi

Dk,j−µj

σj

, (10)
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where : µi=mean of column i over all f vectors in D

σi=standard deviation of column i over all f vectors in D

µj=mean of column j over all f vectors in D

σj=standard deviation of column j over all f vectors in D

i={1,...,n},j={1,...,n}

R=











1 ... ρ(D1,Dj) ... ρ(D1,Dn)

... ... ... ... ...

ρ(Dn,D1) ... ρ(Dn,Dj) ... 1











(11)

Given that Hm=Dk, we consider that the malware feature Hm represents the BoGs Dj if the correlation

index exceeds a threshold κ, i.e. Rk,j≥κ. Particularly, we used κ=1 in our experimental tests.

As BoGs are identified, it is possible to understand which permissions, interfaces, and resources appear

more frequently on the relationships of malware apps inside the ecosystem. By the analysis of the prevalence

of those features in each malware family, we can correlate the malware behavior and malicious activities with

the resources used, showing that information extracted and filtered from the ecosystem can explain most of

the malware activities.

4. Experiments andResults

In the following sections, we report on the experiments conducted to verify the method proposed in Section 3

with real-world data. In Section 4.1, we describe the metrics used to evaluate the performance of classifiers;

in Section 4.2, we explain the Android ecosystem used on the experiments, which was transformed by the

pre-processing method described in Sections 3.1 and 3.2 onto the features dataset. The full dataset was broken

down into two partitions, one for the fitting process and another to the final test procedure. The fit partition

was randomly divided into 10 subpartitions, which were combined in training and validation on the ratio of

80% to 20% for 10-round experiments. These led to the identification of the most discriminant malware features,

which provided the base for the identification of malware groups, as well as the correlation among them.

All the steps of the method are automatically executed in a batch process. A Python program extracts

manifests and certificates of all apps from a folder that contains the APK files. Then a parsing program, guided by

the terminology description of the ontology and rules expressed in a config file, extracts from the XML manifests

and certificates the ontology axioms, generating the N3 file that contains all ontology ecosystem sentences.

Continuing the process using Python programming (it is easy to manipulate strings than in Matlab), we build

the graph using Python dictionaries to resolve the symbolic (string names), building an indexed adjacency list

of the nodes. The next step extracts the BoG tuples and the extraction of feature vectors for the applications

using the MST traversal algorithm. The remaining processing of machine learning steps, to rank features and

determine BoGs related to malware activity, are made using Matlab scripts.
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4.1. Classifier Performance Metrics

The performance of binary classifiers is evaluated by the statistical metrics derived from a confusion matrix.

The positive class in this article represents malware, while the negative class refers to benign apps. True

Positives (Tp) are correctly classified samples of malware, True Negatives (Tn) are correctly classified samples

of benign apps, False Positives (Fp) are misclassified samples of the positive class, and False Negatives (Fn)

are misclassified examples of the negative class.

Table 2: Metrics used to calculate the performance of the classifiers. Tpr is the acronym for True Positive Rate.

Metric Recall (Rcl) or Tpr Specificity (Spc) Precision (Prc) F1-score (F1s) Accuracy (Acc)

Formula
Tp

Tp+Fn

Tn

Tn+Fp

Tp

Tp+Fp)
2·

Prc·Rcl

Prc+Rcl

(Rcl+Spc)

2

We use the normalized form to compute accuracy (Acc), averaging recall (Rcl), and specificity (Spc) to

avoid miscalculation if the datasets are unbalanced. We tried to keep the datasets as balanced as possible during

the capture of samples, but it is not a requirement for the method.

4.2. Android Ecosystem Used On Experiments

An experimental ecosystem was built with a total of 4,570 apps, corresponding to 2,417 benign and 2,153

malware APKs. A Samsung Galaxy S5 smartphone with default factory installation was used, containing 181

APKs from Android v. 4.4 KitKat system (including the Android kernel app), and 117 partners’ applications,

which are APKs that come with the factory installation but are not signed by the same certificate as the operating

system applications. To complete the benign set, 269 APKs with more than a million downloads were obtained

directly from the [62], and 1,850 were randomly selected from AndroZoo repository [63].

For the malware set, we collected 193 APKs from the [64], from a torrent acquired from VirusShare [65]

and AndroMalShare [66]; and 1,960 were gathered randomly selected from AndroZoo repository [63].

SHA256 hashes of all APK files were submitted to VirusTotal [67] to guarantee that benign apps are found in

the repository with no infection reported; for malware, at least 10 anti-virus-reported detections were required.

The report produced by VirusTotal for the malware apps was submitted to the AVclass labeler program,

publicly available at https://github.com/malicialab/avclass, and described by authors in the article [68].

The program classifies malware in families, according to the anti-virus proprietary codes.

Only malware from these families was included in the ecosystem, ensuring that we did not include apps

classified asPUP (Potentially Unwanted Program). Although PUPs consume device resources by performing un-

ethical tasks or annoy the user by installing toolbars, exhibiting continuous advertisements, and other unsolicited

activities, they do not cause direct damage or incur costs to users, nor do they steal personal information.

The total of 4,570 APK files generated a list of 264,653 lines in N-Triples file format (.n3) [69]; these lines are

divided into 102 for terminology and 264,551 for axioms, which were then transformed into a directed graph with
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Table 4: Malware features and correlated BoG Items.

Feature Feature Correlated BoG item

Rank Index BoG-Id Node Permission Interface Operation Resource

1 16 359 android permission READ PHONE STATE READ PHONE STATE@Signature SysAPI read phone

2 1805 2148 android permission SET WALLPAPER SET WALLPAPER@Normal SysAPI write wallpaper

3 82 425 android permission GET TASKS GET TASKS@Dangerous IntentFilter action tasks

82 426 android permission GET TASKS GET TASKS@Dangerous SysAPI read tasks

5 8159 8502 read phone state sysapi167 read SysAPI read phone

6 34 377 android permission ACCESS WIFI STATE ACCESS WIFI STATE@Normal SysAPI read wifi

34 378 android permission ACCESS WIFI STATE ACCESS WIFI STATE@Normal SysAPI write wifi

3902 4229 android permission SET WALLPAPER HINTS SET WALLPAPER HINTS@Normal SysAPI write wallpaper

7 3902 4245 android permission BIND APPWIDGET BIND APPWIDGET@SignatureOrSystem ExportedTrue action applications

3902 4246 android permission BIND APPWIDGET BIND APPWIDGET@SignatureOrSystem SysAPI write applications

10 1178 1521 data com android launcher2 LauncherProvider Provider read laucher

1178 1522 data com android launcher2 LauncherProvider Provider write laucher

1178 2160 data com android launcher2 LauncherProviderID Provider read laucher

1178 2161 data com android launcher2 LauncherProviderID Provider write laucher

1178 7836 data com android launcher2 LauncherProviderID Provider read laucher

1178 7837 data com android launcher2 LauncherProviderID Provider read laucher

1178 8444 data com android launcher2 LauncherProvider Provider read laucher

1178 8445 data com android launcher2 LauncherProvider Provider read laucher

11 85 428 android permission SYSTEM ALERT WINDOW SYSTEM ALERT WINDOW@Dangerous SysAPI read gui

85 429 android permission SYSTEM ALERT WINDOW SYSTEM ALERT WINDOW@Dangerous SysAPI write gui

12 1187 1530 set wallpaper hints sysapi223 write SysAPI write wallpaper

14 1473 1816 set debug app sysapi20 write SysAPI write applications

16 90 433 android permission RECORD AUDIO RECORD AUDIO@Normal SysAPI write audio

18 17 360 android permission ACCESS COARSE LOCATION ACCESS COARSE LOCATION@Dangerous IntentFilter action location

17 361 android permission ACCESS COARSE LOCATION ACCESS COARSE LOCATION@Dangerous SysAPI read location

17 362 android permission ACCESS COARSE LOCATION ACCESS COARSE LOCATION@Dangerous SysAPI write location

19 7370 7713 bind call service sysapi159 write SysAPI write phone

7370 7714 call phone sysapi160 read SysAPI read phone

7370 7715 call phone sysapi160 write SysAPI write phone

7370 7716 call privileged sysapi161 read SysAPI read phone

7370 7717 call privileged sysapi161 write SysAPI write phone

7370 7718 invoke carrier setup sysapi162 write SysAPI write phone

7370 7719 modify phone state sysapi163 write SysAPI write phone

7370 7720 process outgoing calls sysapi164 read SysAPI read phone

7370 7721 process outgoing calls sysapi164 write SysAPI write phone

7370 7722 read call log sysapi165 read SysAPI read phone

7370 7723 read logs sysapi166 read SysAPI read phone

7370 7724 read phone state sysapi167 read SysAPI read phone

7370 7725 read privileged phone state sysapi168 read SysAPI read phone

7370 7726 write apn settings sysapi169 write SysAPI write settings

7370 7727 write call log sysapi170 write SysAPI write phone

20 889 1232 mount unmount filesystems sysapi89 read SysAPI read filesystems

889 1233 mount unmount filesystems sysapi89 write SysAPI write filesystems

7588 7930 android intent action MAIN ifilt1918 IntentFilter action applications

21 7588 7931 get tasks sysapi209 read SysAPI read tasks

22 4771 5114 get detailed tasks sysapi208 read SysAPI read tasks

4771 5115 get tasks sysapi209 read SysAPI read tasks

4771 5116 remove tasks sysapi210 read SysAPI read tasks

4771 5117 remove tasks sysapi210 write SysAPI write tasks

4771 5118 reorder tasks sysapi211 read SysAPI read tasks

4771 5119 reorder tasks sysapi211 write SysAPI write tasks

25 20 363 android permission SEND SMS SEND SMS@Dangerous IntentFilter action sms mms

26 1778 2121 resource phone SysAPI read phone

1778 2122 resource phone SysAPI read phone

1778 2123 resource phone SysAPI read phone

27 1840 2183 access wifi state sysapi224 read SysAPI read wifi

1840 2184 access wifi state sysapi224 write SysAPI write wifi

28 7735 8078 access wifi state sysapi224 read SysAPI read wifi

30 89 432 android permission WRITE SETTINGS WRITE SETTINGS@Normal SysAPI write settings

31 3353 3696 system alert window sysapi111 read SysAPI read gui

3353 3697 system alert window sysapi111 write SysAPI write gui

32 275 618 resource phone SysAPI write phone

275 619 resource phone SysAPI write phone

275 620 resource phone SysAPI read phone

33 1108 1451 resource location SysAPI read location

1108 1452 resource location SysAPI read location

1108 1453 resource location SysAPI read location

1108 2490 resource location SysAPI write location

1108 2491 resource location SysAPI read location

1108 2492 resource location SysAPI write location

It is important to remember that the selectedmalware features are the most discriminant linearly-independent

features that have higher values for the malware class. In this way, to find the nodes represented by these

malware features in the ecosystem ontology graph (elements of the BoG vectors), we need to identify the

related BoG (Section 3.5), which means to expand the correlated elements of the vector. Then, computing
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the correlation matrix of the BoG vectors and selecting BoG elements with correlation index equal to one, we

expanded the 24 malware features into 70 BoG elements described in Table 4.

Table 5: Classification results for AVclass malware families. T ∗R means TNR (true negative rate) for benign and Tpr(True
Positive Rate) for malware apps. Family names with † indicate that there were less than 10 samples available in the ecosystem.

Number of Features

vector (Samples) All LI MostDiscriminant Malware

Validation Final Test Total Validation Final Test Validation Final Test Validation Final Test

Vector Length 673 36 24

Family Pfit Ptest Pall T ∗R (%) T ∗R (%) T ∗R (%) T ∗R (%) T ∗R (%) T ∗R (%)

benign 1789 447 2236 94.6 94.9 93.3 93.7 91.3 91.5

plankton 184 46 230 76.1 78.3 74.5 76.1 73.4 71.7

mecor 174 44 218 100.0 100.0 100.0 100.0 100.0 100.0

leadbolt 97 24 121 74.2 66.7 76.3 66.7 61.9 54.2

fakeapp 86 21 107 89.5 95.2 90.7 95.2 73.3 76.2

kuguo 82 21 103 97.6 100.0 98.8 95.2 96.3 95.2

umpay 79 20 99 100.0 95.0 98.7 100.0 96.2 100.0

secapk 78 20 98 97.4 100.0 96.2 100.0 94.9 100.0

smsreg 62 15 77 88.7 100.0 88.7 100.0 85.5 93.3

ramnit 58 15 73 50.0 66.7 44.8 66.7 44.8 53.3

smspay 57 14 71 100.0 100.0 100.0 100.0 98.2 100.0

fobus 55 14 69 67.3 57.1 65.5 42.9 40.0 28.6

fakeinst 42 11 53 95.2 90.9 92.9 90.9 92.9 90.9

dowgin 40 10 50 97.5 100.0 97.5 100.0 97.5 100.0

jiagu 39 10 49 92.3 100.0 89.7 100.0 89.7 100.0

tencentprotect 34 9 43 100.0 100.0 100.0 100.0 100.0 100.0

wateh 34 9 43 100.0 100.0 100.0 100.0 100.0 100.0

porno 32 8 40 6.3 37.5 6.3 37.5 6.3 37.5

youmi 31 8 39 93.5 87.5 90.3 100.0 93.5 87.5

viser 27 7 34 63.0 71.4 63.0 71.4 55.6 71.4

smforw 26 6 32 100.0 100.0 96.2 100.0 92.3 100.0

opfake 26 6 32 96.2 100.0 96.2 100.0 96.2 100.0

igexin 26 6 32 96.2 100.0 96.2 100.0 92.3 100.0

torjok 22 6 28 100.0 100.0 100.0 100.0 95.5 100.0

redirector 22 5 27 86.4 100.0 86.4 100.0 86.4 100.0

rootnik 20 5 25 100.0 100.0 100.0 100.0 100.0 100.0

ginmaster 20 5 25 90.0 100.0 90.0 100.0 95.0 80.0

inmobi 16 4 20 81.3 100.0 81.3 100.0 56.3 75.0

gappusin 15 4 19 100.0 100.0 100.0 100.0 100.0 100.0

virut 15 4 19 0.0 0.0 0.0 0.0 0.0 0.0

clickfraud 14 4 18 7.1 25.0 7.1 25.0 7.1 25.0

poogle 14 3 17 100.0 100.0 100.0 100.0 100.0 100.0

drosel 13 3 16 100.0 100.0 100.0 100.0 100.0 100.0

zhui 12 3 15 100.0 100.0 100.0 100.0 100.0 100.0

buzztouch 10 3 13 70.0 100.0 70.0 100.0 40.0 33.3

adcolony 10 3 13 40.0 33.3 40.0 33.3 20.0 33.3

inor 10 3 13 30.0 66.7 30.0 66.7 0.0 0.0

tekwon 10 2 12 100.0 100.0 100.0 100.0 100.0 100.0

wroba 10 2 12 100.0 100.0 100.0 100.0 100.0 100.0

igamo 10 2 12 100.0 100.0 100.0 100.0 90.0 100.0

mulad 9 2 11 88.9 100.0 88.9 50.0 77.8 100.0

finspy 8 2 10 100.0 100.0 100.0 100.0 100.0 100.0

deng 8 2 10 62.5 50.0 75.0 50.0 75.0 50.0

nandrobox† 7 2 9 100.0 100.0 100.0 100.0 100.0 100.0

mobidash† 7 2 9 100.0 50.0 100.0 50.0 57.1 0.0

andup† 6 2 8 100.0 100.0 100.0 100.0 100.0 100.0

dianjin† 6 2 8 100.0 50.0 100.0 50.0 100.0 50.0

anydown† 6 2 8 100.0 0.0 100.0 0.0 83.3 0.0

lotoor† 6 1 7 0.0 0.0 16.7 0.0 16.7 0.0

faketoken† 5 1 6 100.0 100.0 100.0 100.0 100.0 100.0

androrat† 5 1 6 100.0 0.0 100.0 100.0 100.0 100.0

gidix† 4 1 5 100.0 100.0 100.0 100.0 100.0 100.0

smsagent† 4 1 5 100.0 100.0 100.0 100.0 100.0 100.0

marcher† 4 1 5 75.0 100.0 100.0 100.0 100.0 100.0

zitmo† 3 1 4 100.0 100.0 100.0 100.0 100.0 100.0

smsspy† 3 1 4 100.0 100.0 100.0 100.0 66.7 100.0

gepew† 2 1 3 100.0 100.0 100.0 100.0 100.0 100.0

golddream† 2 1 3 100.0 100.0 100.0 100.0 100.0 100.0

samsapo† 2 1 3 100.0 100.0 100.0 100.0 100.0 100.0

recal† 2 1 3 100.0 100.0 100.0 0.0 100.0 100.0

koler† 2 1 3 100.0 100.0 100.0 100.0 0.0 0.0

mobilespy† 2 1 3 50.0 100.0 50.0 100.0 50.0 100.0

basebridge† 2 1 3 50.0 0.0 50.0 0.0 50.0 0.0

Total 3506 883 4389 90.1 90.8 89.3 89.9 86.0 86.4

Total Benign 1789 447 2236 94.6 94.9 93.3 93.7 91.3 91.5

TotalMalware 1717 436 2153 85.4 86.7 85.0 86.0 80.5 81.2
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The identification of BoG elements corresponding to the ranked malware features allows us to identify which

resources, interfaces, and permissions are represented by them, guiding us on the back modeling of those nodes

and relationships into the ecosystem graph. It also allows us to evaluate the relationships between each malware

family (classification of the APKs related to the vectors), according to the AVclass labeler program [68], which

corresponds to the malware behavior and attack goal.

In this way, we first evaluate the Tpr(True Positive Rate or Recall) of each family to assess whether the

family was correctly identified by the classifiers; this is presented in Table 5. As we can see, results are consistent

across all families on the experiments, with all linearly independent (673), most discriminant (36), and malware

features (vector length of 24).

A summary of results in tests with the most discriminant features is as follows: 58% of families achieved

100%; 17% less than 100%, but above 80%; 7% less than 80%, but above 60%; and only 18% below 60%. Malware

features performed at 49%, 19%, 6%, and 25%, respectively. The high number of families with Tpr above 80%,

75% on most discriminant tests, and 68% on malware features tests shows that most families were correctly

identified by the selected features.

Families with poor results in the most discriminant features (marked in red in tables) also show poor results

in other tests, indicating that classifiers could not capture their features in training. This means that the selected

features cannot be used to model their malware behavior. Although most results for families with few samples

(less than 10 in total) are excellent (most are 100% of correctness), we cannot consider those families for further

resources and relationships analysis, as they do not have enough data. We marked them with † after the family

name in Tables 5 and 6.

Benign applications were well recognized by the classifiers in all tests, presenting TNR (True Negative Rate)

above 91% in all tests.

It is important to evaluate the resources filtered in the most discriminant features with known malware

behavior and attack goals in order to validate that the BoG graph retains this information inside relationships.

In this way, Table 6 presents the use of the resources associated with the 24 malware features by the malware

families. A checkmark in Table 6 indicates that vectors of the family inside the Pfit partition have a mean value

above the mean value of benign applications on the resource related most discriminant features, which means

that resource is more requested by the malware family apps than in the benign apps.

Table 6 shows that most malware families access resources such as phone, settings, wifi, applications,

sms mms, filesystems and tasks. Almost 90% of all malware samples, and above 80% of malware families

use phone and settings. Binding another application is also used by 79% of malware samples and families. Wifi,

sms mms, filesystems and tasks controls are used by 71% of families and by the same percentage of samples.

Conversely, eight out of ten malware families marked with poor classification performance have few check-

marks, which indicates that they do not use the selected malware features as much; this is a clear indication of

why they were confused with benign applications by the classifiers. The only exceptions to the previous sentence

are the families mulad and deng , which use almost all of the features but were not detected: this means that
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they do not fit into the combinations selected by the Random Forest rules for malware detection in the ecosystem.

Table 6: AVclass malware family resource usage compared to that of the benign apps. A checkmark (X) indicates that the mean
values of features related to the resource for the malware family vectors are higher than the mean values of the same features
in the benign apps. Family names with † indicate that there were less than 10 samples available in the ecosystem.

Malware Number of Resource

Family Samples phone settings wifi applications sms mms filesystems tasks launcher location wallpaper gui audio

plankton 230 X X X X X X X X X

mecor 218 X X X X X X X

leadbolt 121 X X X X X X

fakeapp 107 X X X X

kuguo 103 X X X X X X X X X

umpay 99 X X X X X X X X X

secapk 98 X X X X X X X X X X

smsreg 77 X X X X X X X X X X X X

ramnit 73 X

smspay 71 X X X X X X X X X X X X

fobus 69 X X X X X

fakeinst 53 X X X X X X X

dowgin 50 X X X X X X X X X X X X

jiagu 49 X X X X X X X X X X X

tencentprotect 43 X X X X X X X X X X X

wateh 43 X X X X X X X X X X X X

porno 40

youmi 39 X X X X X X X X X X X

viser 34 X X X

smforw 32 X X X X X X X X X X X

opfake 32 X X X X X X X X X

igexin 32 X X X X X X X X X X X X

torjok 28 X X X X X X X X X X X X

redirector 27 X X X X

rootnik 25 X X X X X X X X X X X

ginmaster 25 X X X X X X X X X

inmobi 20 X X X

gappusin 19 X X X X X X X X X X

virut 19

clickfraud 18

poogle 17 X X X X X X X X X X X

drosel 16 X X X X X X X X X X X

zhui 15 X X X X X X X X X X

buzztouch 13 X X X X

adcolony 13 X X

inor 13

tekwon 12 X X X X X X X X X X X

wroba 12 X X X X X X X X X

igamo 12 X X X X X X X X

mulad 11 X X X X X X X X X X

finspy 10 X X X X X X X X X X

deng 10 X X X X X X X X

nandrobox† 9 X X X X X X X

mobidash† 9 X X X X X

andup† 8 X X X X X X X X X X X

dianjin† 8 X X X X X X X X X X X

anydown† 8 X X X

lotoor† 7

faketoken† 6 X X X X X X X X X X

androrat† 6 X X X X X X X X X X X

gidix† 5 X X X X X X X X X X X

smsagent† 5 X X X X X X X X X X X

marcher† 5 X X X X X X X X X

zitmo† 4 X X X X X X X X X

smsspy† 4 X X X

gepew† 3 X X X X X X X X X X X

golddream† 3 X X X X X X X X X X X X

samsapo† 3 X X X X X X X X X X

recal† 3 X X X X X X X X X X

koler† 3 X X X X X X

mobilespy† 3 X X X X X X

basebridge† 3 X X X X X

Families usage 62 85.5% 82.3% 71.0% 79.0% 71.0% 71.0% 71.0% 58.1% 45.2% 50.0% 50.0% 51.6%

SamplesUsage 2153 90.4% 90.1% 87.3% 79.8% 71.2% 67.8% 67.8% 57.8% 51.7% 48.9% 41.0% 37.1%
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The non-detected families virut, porno, and clickfraud can easily be explained by the fact that they are

not related to the infected app’s behavior but to the HTML web pages contained or accessed by the application.

For example, virut is a botnet spread through HTML files that are infected with virus code [71].

Another good example that explains why a family is not detected by the malware features is ramnit . This

is not Android malware, but its purpose is to steal banking login data fromWindows operating system users [72].

It is carried inside installed Android app files and started when the Android device connects to a Windows PC

and accesses an infected HTML web page. Then, neither malicious behavior nor access to Android resources

that are different from benign applications is needed.

As we can see from the results in this article, using just a combination of 12 resources (out of 55 in the

ecosystem definition) is enough to detect many malware families in the Android environment. Most of them are

related to phone states and call logs (as we can see from the BoGs list in Table 4), settings access, wifi states,

and SMS messages. Those resources are compatible with most malware and malicious activities that depend

on external communications to send data and use phone calls as well as SMS messages for charged services.

4.6. Computing Performance Metrics

All experiments described herein and time measured in Table 7 were performed using a Samsung NP500R5H-

XD3BR with Intel Core i7-5500CPU, 2.4 GHz, 2 Cores, 4 logical processors, 8 GB of physical memory, and

1 TB HD 5400RPM SATA-III 6GB/s. Programs of steps 1 to 4 were written in Python 2.7.10, which used 97%

of the entire elapsed time. Steps 5 to 9 run in MATLAB R2018a 64-bit version 9.4.0.813654 (23-Feb-2018). All

process steps from manifests and certificates extraction of APK files to the end results took approximately 22.5

hours. The most time-consuming step was the feature vector generation from the ontology graph that took

almost 20 hours, where the BoGs of each application were extracted from the entire ecosystem graph. Machine

learning steps consume 39 minutes, mostly in the 10-round iterations of the number of trees grid search and

the ranking process. The time for training the model with or checking (predict) each application vector using

the most discriminant feature (36 features) is less than a millisecond.

Table 7: Processing time for the experiments described in this article.

Step Process step Total elapsed #of Items Item Time Time

# (hh:mm:ss) processed per item unit

1
Manifest and certificates extration from APK
files

01:11:54 4570 APK file 944 ms

2 CertificateandXMLparsing toontologyN3file 00:01:57 4570 APK file 25.7 ms

3 Build ontology graph fromN3file 00:40:21 264653 N3 line 9.1 ms

4
Build feature vector (ecosystem graph MST
traversal for each app)

19:45:36 4389 Vector 469 sec

5
Data preparation (linear independent features
determination and partitioning)

00:06:31 4389 Vector 89.1 ms

6 Grid search for number of trees 00:18:27 35 Point 31.6 sec

7
Ranking and most discriminant features
determination

00:12:52 46 Iteration 16.8 sec

8
Final Classifier Training (Pfit= 3506 vectors)
and Final Test (Ptest = 883 vectors) - vector
length 36 - 64 trees.

00:00:05 4389 Vector 1.1 ms

Training time (ensemble RF fitting) 0.975 sec 3506 Vector 278 µs

Test time (ensemble RF predict) 0.074 sec 883 Vector 83 µs

9 Feature values distribution analysis 00:00:27 3506 Vector 7.7 ms

End to end process elapsed time 22:18:11 4570 APKfile 7.5 min
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5. Conclusion andFutureWork

In this paper, we have introduced two new methods to address the problem of mapping the relationships

and characteristics of malicious software in smartphones. We provided an extensible framework for mapping

the analyzed elements in the Android system using ontologies, as well as a random forest-based method for

automatically extracting meaningful information from the ontological map obtained from the new mapping

algorithm. Experimental results in the considered Android ecosystem showed that the proposed methodology

was capable of detecting 36 key features, 24 of which are malware-related, corresponding to 70 graph nodes

relative to malware activities, a remarkable result for security. Those nodes represent relationships between

malware and 12 systems resources that are related to their behavior and malicious purpose. Equally important,

all of this was made possible without the need to directly access malware code samples, nor existing signatures.

Everything was analyzed directly by looking at how each app interacts with system permissions.

The proposed method has shown significant potential for modeling relationships between properties of

components in an ecosystem, identifying structural elements that can characterize their behavior. The model

used in the experiments showcases this power by providing good results in the classification of malware and

benign apps. The information used for discrimination was obtained solely from the manifest of apps, which

contains high-level information about the use of permissions and are publicly available.

One of the most important characteristics of our model underpinned by ontologies relies on its incremental

nature, allowing us to improve the ecosystem’s model as more knowledge is acquired and more apps are analyzed,

without the need to start from scratch. If data collected from a new application can be described only by existing

classes through the existing bag of words, the inclusion into the graph and use of the already trained classifier

is trivial. As more samples of malware and benign apps are aggregated to the graph, a new round of training can

be done to refine the prediction and identification of the most important features. This methodology provides

a way to evolve the model as more knowledge is acquired and also to adapt as malware apps change their attack

strategies over time.

This work also opens three novel research avenues. First, it is important to analyze whether other information

that can be easily obtained from the Android system significantly improves the mapping and classification

algorithms derived herein. Second, an empirical study can be conducted to assess how different pairs of mapping

and analysis algorithms perform compared to our study. Finally, the proposed methodology can be applied to

different operating systems and ecosystems, and their investigation would undoubtedly be important future work.
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A. AndroidPermissions EcosystemOntology

In the following, we present the terminology section of AndroPermEco ontology using Turtle/RDF syntax [58].

@prefix :<http://www.semanticweb.org/owl/owlapi/turtle#> .
@prefix owl:<http://www.w3.org/2002/07/owl#> .
@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xml:<http://www.w3.org/XML/1998/namespace> .
@prefix xsd:<http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .
@base <http://www.w3.org/2002/07/owl#> .
[ rdf:type owl:Ontology] .

####################################################

# Classes

####################################################

:APIRead rdf:type owl:Class .

:APIWrite rdf:type owl:Class .

:Android rdf:type owl:Class ;

rdfs:subClassOf owl:Package .

:AppDownloaded rdf:type owl:Class ;

rdfs:subClassOf owl:Package .

AppPartner rdf:type owl:Class ;

rdfs:subClassOf owl:Package .

:AppSystem rdf:type owl:Class ;

rdfs:subClassOf owl:Package .

:Certificate rdf:type owl:Class .

:ContentProviderrdf:type owl:Class ;

rdfs:subClassOf owl:Interface .

:Dangerous rdf:type owl:Class ;

rdfs:subClassOf owl:Permission .

:DataContent rdf:type owl:Class .

:Development rdf:type owl:Class ;

rdfs:subClassOf owl:Permission .

:ExportedTrue rdf:type owl:Class ;

rdfs:subClassOf owl:InterProcessComm .

:IntentFilter rdf:type owl:Class ;

rdfs:subClassOf owl:InterProcessComm .

:InterProcessComm rdf:type owl:Class ;

rdfs:subClassOf owl:Interface .

:Interface rdf:type owl:Class .

:No_Defined_Class rdf:type owl:Class .

:Normal rdf:type owl:Class ;

rdfs:subClassOf owl:Permission .

:Package rdf:type owl:Class .

:PathContent rdf:type owl:Class .

:PathPermRead rdf:type owl:Class ;

rdfs:subClassOf owl:PathPermission .

:PathPermWrite rdf:type owl:Class ;

rdfs:subClassOf owl:PathPermission .

:PathPermission rdf:type owl:Class ;

rdfs:subClassOf owl:ContentProvider .

:Permission rdf:type owl:Class .

:Provider rdf:type owl:Class ;

rdfs:subClassOf owl:ContentProvider .

:ProviderRead rdf:type owl:Class ;

rdfs:subClassOf owl:Provider .

:ProviderWrite rdf:type owl:Class ;

rdfs:subClassOf owl:Provider .

:Resource rdf:type owl:Class .

:Signature rdf:type owl:Class ;

rdfs:subClassOf owl:Permission .

:SignatureOrSystem rdf:type owl:Class ;

rdfs:subClassOf owl:Permission .

:SysAPIRead rdf:type owl:Class ;

rdfs:subClassOf owl:SystemAPI .

:SysAPIWrite rdf:type owl:Class ;

rdfs:subClassOf owl:SystemAPI .

:SystemAPI rdf:type owl:Class ;

rdfs:subClassOf owl:Interface .

:Undefined rdf:type owl:Class ;

rdfs:subClassOf owl:Permission .

####################################################

# Object Properties

####################################################

:controls rdf:type owl:ObjectProperty ;

rdfs:domain :Resource ;

rdfs:range owl:Android .

:exposes rdf:type owl:ObjectProperty ;

rdfs:domain owl:Interface ;

rdfs:range owl:Package .

:isProtectedBy rdf:type owl:ObjectProperty ;

rdfs:domain owl:Interface ;

rdfs:range owl:Permission .

:isSignedBy rdf:type owl:ObjectProperty ;

rdfs:domain owl:Package ;

rdfs:range owl:Certificate .

:managesData rdf:type owl:ObjectProperty ;

rdfs:domain owl:DataContent ;

rdfs:range owl:Package .

:managesPath rdf:type owl:ObjectProperty ;

rdfs:domain owl:PathContent ;

rdfs:range owl:Package .

:readsData rdf:type owl:ObjectProperty ;

rdfs:domain owl:ProviderRead ;

rdfs:range owl:DataContent .

:readsPath rdf:type owl:ObjectProperty ;

rdfs:domain owl:PathPermRead ;

rdfs:range owl:PathContent .

:readsResource rdf:type owl:ObjectProperty ;

rdfs:domain owl:APIRead ;

rdfs:range owl:Resource .

:requestsPermission rdf:type owl:ObjectProperty ;

rdfs:domain owl:Package ;

rdfs:range owl:Permission .

:signsPackage rdf:type owl:ObjectProperty ;

rdfs:domain owl:Certificate ;

rdfs:range owl:Package .

:writesData rdf:type owl:ObjectProperty ;

rdfs:domain owl:ProviderWrite ;

rdfs:range owl:DataContent .

:writesPath rdf:type owl:ObjectProperty ;

rdfs:domain owl:PathPermWrite ;

rdfs:range owl:PathContent .

:writesResource rdf:type owl:ObjectProperty ;

rdfs:domain owl:APIWrite ;

rdfs:range owl:Resource .
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A B S T R A C T

Digital forensics is rapidly evolving as a direct consequence of the adoption of machine-learning methods allied

with ever-growing amounts of data. Despite the fact that these methods yield more consistent and accurate

results, they may face adoption hindrances in practice if their produced results are absent in a human-inter-

pretable form. In this paper, we exemplify how human-interpretable (a.k.a., accountable) extensions can en-

hance existing algorithms to aid human experts, by introducing a new method for the source printer attribution

problem. We leverage the recently proposed Convolutional Texture Gradient Filter (CTGF) algorithm’s ability to

capture local printing imperfections to introduce a new method that maps and highlights important attribution

features directly onto the investigated printed document. Supported by Random Forest classifiers, we isolate and

rank features that are pivotal for differentiating a printer from others, and back-project those features onto the

investigated document, giving analysts further evidence about the attribution process.

1. Introduction & related work

Over the past decade, machine-learning methods have attained

substantial importance in the field of digital forensics. Such techni-

ques have been successfully applied in image and video forgery de-

tection [1], predatory conversation identification in social media [2],

face expression recognition [3], attribution of documents to their

source printers [4], among others. Of particular interest, attributing

printers to documents is a problem of practical relevance to forensic

analysts when connecting printers and available evidence (such as

forged documents, fraudulent reports, and fake bills) apprehended in

search-and-seizure operations. Despite advances in electronic doc-

umenting and digital signature algorithms, integrity enforcement,

authentication and non-repudiation methods, our society continues to

produce printed and physically-signed documents for official pur-

poses, posing a constant need for source attribution techniques of

questioned documents.

Traditional methods for printer attribution often use physical

properties of the paper and ink to determine the association between

printers and printed documents. Techniques may use, for example, an

infra-red spectrometer equipped with a microscope [5], or reactive

dyes, chemical assays, and microscopy [6]. Other works [7] rely on

Fourier transform spectroscopy to perform spectral discrimination and

detect counterfeit documents. The costs involved in these methods are

substantial as they often require expensive made-to-order equipment

and specialized personnel. Moreover, methods such as those involving

chemical analyses can lead to unintended consequences such as da-

maging or destroying apprehended evidence.

An alternative to these approaches is to focus on printer defects of

malfunctioning, as captured on the scanned images of a printed docu-

ment and use image processing techniques to identify the document’s

source. Such methods are based on intrinsic signatures extracted from

the document’s image: texture characterization methods, as described

by Chiang et al. [8,9], and geometric distortions on printed pages, as

investigated by Shang et al. [10].

The banding effect, which encompasses cyclical space variations on

the halftones distance and ink density, has also been the subject of

investigation. Deviations produce such effects due to mechanical tol-

erances and defects of printer components such as axis eccentricity and

motor drift. As such, they result in unique features for attributing a

document to its printer. This technique has also eased cost-related

concerns. Whereas previous experiments [11,12] required high-re-

solution document scanning for precise measurements, ranging from

1200 up to 8000 DPIs, more recent studies [13–15] have used 600-DPI
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documents, which are less costly and easier to find in typical com-

mercial scanners.

Another line of investigation for printer attribution considers geo-

metric distortion methods to measure and correlate linear geometric

distortions between the actual printed image and an expected ideal

image, looking at characters extracted by OCR [16] or using estimated

centroid variations from halftones [17,18].

Due to its power to represent intrinsic details of a printed document,

textures have also been subject to research when attributing documents

to their printers. Texture-based methods rely upon patterns across

neighboring pixels created by imperfections such as toner ink melting

and fixation problems; toner spread around letters and knurled con-

tours. These methods benefit from image processing descriptors and

machine-learning algorithms for the identification of discriminant

patterns, further correlating them to the source printer of a document.

One of the first authors to exploit texture features, Mikkilineni et al.

[19] introduced the use of Gray-Level Co-occurrence Matrices (GLCMs)

image descriptors over images of letters “e” extracted from 2400-DPI

scanned documents allied with a simple KNN classifier for source

printer attribution. The authors further improved their results by using

Support Vector Machines (SVM) classifiers [20].

Ferreira et al. [4] experimented with 600-DPI images of scanned

documents of 10 laser printers and created one of the first public

standardized datasets in the area [21], which we also adopt in this

work. The authors investigated the use of letters “e” extracted from

documents as a whole and also rectangular non-overlapping regions

cropped from documents usually containing several characters at once,

referred to as frames. Various image descriptors including GLCM, Local

Binary Patterns (LBP), and Histogram of Oriented Gradients (HoG) were

investigated. The authors also introduced one description method tai-

lored for the attribution problem and referred to as Convolution Tex-

tures Gradient Filter (CTGF). Tsai et al. [22] extracted microscopy

images using ×300 magnification of characters and applied descriptors

such as LBP and GLCM (among others) in four different alphabets

(English, Arabic, Chinese, and Japanese).

Despite the fact that image-processing and machine-learning tech-

niques outperform traditional chemical-based methods and are more

appropriate in some setups, these algorithms often do not provide clear

explanations as for why and how each document is attributed to a

printer. The lack of human-interpretable evidence is particularly trou-

blesome in forensic science, where decisions made by forensic analysts

inform investigations and therefore may lead to legal implications.

Moreover, the use of machine-learning methods that do not provide

human-interpretable outputs in the forensic analysis may be legally

inadmissible shortly. An example of the emergence of such restrictions,

the European Union has voted in 2016 a resolution to be implemented

by mid-2018 regarding the rights to human-interpretable explanations

when decisions that can significantly affect its citizens are founded on

machine-learning algorithms [23,24]. Other countries may shortly

follow this example, and it hallmarks the need for digital forensics re-

searchers to devise and develop human-interpretable machine-learning

methods and hold the algorithms accountable.

Drawing on these insights, in this paper, we highlight how human-

interpretable machine-learning methods can be derived from non-in-

terpretable ones. We extend upon the Convolutional Texture Gradient

Filter (CTGF) algorithm introduced by Ferreira et al. [4] to analyze,

isolate and produce visible and interpretable features, giving rise to the

CTGF-Map algorithm. The proposed method investigates the source of a

document by finding the most discriminant features for attribution and

by back-projecting those features directly onto the document, showing

analysts the most relevant regions used in the process. Finally, we also

discuss empirical results for this new method, tradeoffs between in-

terpretable and non-interpretable counterparts of CTGF and the use of

these techniques alongside other forensic processes.

2. Background concepts

The following sections present key concepts and methods used in

this paper and discuss some properties of the techniques.

2.1. Accountable machine learning and explainability

In the last few years, there has been increasing concern and interest

in accountable machine learning. There are new dedicated conferences

and workshops on the subject such as the ones promoted by FAT/ML

organization [25], the International Conference on Machine Learning

(ICML) Workshop on Human Interpretability in Machine Learning

(WHI) [26] and the AAAI W11 Workshop on Human-Aware Artificial

Intelligence [27]. These events have been focusing on fairness, ac-

countability, and transparency concepts for machine learning algorithms

and applications. Governments and Non-governmental organizations

are issuing policies, directives and best practices concerning the use of

technology, and recently focusing on consequences and human rights

related to decisions made by algorithms. Some examples include Eur-

opean Parliament recently approved General Data Protection Regula-

tion (GDPR) [24,23] as well as studies from the Center for Democracy &

Technology (CDT) [28]. Most concerns are due to the misuse and ethics

of machine learning applications and the human rights of data privacy,

but also on how to demonstrate decision results in a way that humans

can understand. Most publications in this area address one or more

principles exposed by a recent MIT Technology Review study [29] in

MIT Technology: Responsibility, Explainability, Accuracy, Auditability,

and Fairness. Explainability is defined in FAT/ML organization Princi-

ples for Accountable Algorithms [30] as: “[To] ensure that algorithmic

decisions, as well as any data driving those decisions, can be explained

to end-users and other stakeholders in non-technical terms”.

With this backdrop, the primary objective of our work herein is to

provide forensic analysts with a printer attribution method that fits in

the explainability concept above. Questioned documents source attri-

bution is usually part of proof and evidence presented in court trials by

experts to court members, who are not familiar with machine-learning

methods, but they can more easily understand physical explanations

with visual evidence presentation. Handwriting analysis, for example, is

an old and routine technique to visually present in courts for manually-

written letters, memos, and most common for signatures. In our case,

we aim at providing experts with a machine-learning method, which

can classify questioned documents with high accuracy and precision,

and also can show, visually, which regions on the image were used by

the algorithms to identify the source of the document in the decision-

making process thereof.

2.2. CTGF image descriptor

Convolutional Texture Gradient Filter (CTGF) [4] is a computa-

tional forensics method for describing documents regarding features

that can be used by machine-learning algorithms to attribute a docu-

ment to its source printer. The original presentation for the CTGF

method [4] followed an empirical standpoint. In this section, we review

this method while providing an alternative explanation based on the

underlying physical principles of laser printers as well as a probabilistic

interpretation of the descriptor.

The core physical principles used by laser printers to generate

documents are electrostatics, photonics, and thermal curing.

Electrostatics is used in the first stage of printing a document when

electrical charges ink powder is placed on the printer optical charged

drum (OPC) that will carry out the printing (see the OPC drum and

process steps in Fig. 1). OPC drum is uniformly charged in steps A and

B; then for the printer to differentiate from blank and printed areas, the

OPC drum needs to be anisotropically charged. This anisotropy is
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obtained through the selective discharging of the OPC’s drum by a laser

beam (step C). Ink particles are attracted to the drum by charged areas

in step D and then transferred to the paper by touching the paper with

the drum (step E) and fixated through a thermal unit, which fixes the

ink particles to the paper (step F). The discharging unit removes charges

from paper, waste scrapper removes residual toner, and discharging

light cleans charges from the OPC drum preparing for the next printing

cycle.

As a consequence of the printing process characteristics, variation in

manufacturing and operation of each of the printer’s components, there

are differences among laser printers. These differences might be tex-

tures from ink powder patterns on white regions of the paper, flaws in

letters’ body or smudged patterns at the borders of letters or images.

Drum defects, ink fixation problems, imprecise laser control, motor

position accuracy, and drifts cause these textures. A unique distribution

of textures arises in every printer, even if they come from the same

manufacturer, have the same model or are printing the same document,

as they depend on the individual physical components present in the

printer. While traditional forensics practice identifies the unique printer

footprints through physical assays, such as microscopy, the CTGF al-

gorithm, in turn, attempts to identify attribution fingerprints through a

machine-learning standpoint.

The task of identifying a printer from its unique footprints can be

translated into a generative probabilistic model, in which the ultimate

goal is to establish the probability of a printer, given the textures it

generates on a document, to have created such document, that is

Y xp ( | ). Generative probabilistic models are inherently interpretable as

they allow to formalize the hypothesis that underpins how data are

produced. For the printer attribution problem using printer-associated

textures to identify the source of a given document, a reasonable model

for how textures are included in a document can be described as.

1. Choose a printer from the set of suspect printers.

2. Choose a document or documents to be analyzed from the pool of

possible ones to be used as references for that particular printer.

3. Extract and analyze textures pertinent to the selected printer from

printed training documents.

4. Compare the extracted patterns from training data with patterns

obtained from the investigated document for which we want to find

the source printer.

Steps 1 to 3 above can be translated into a probabilistic generative

model described below, while Step 4 is more related to a decision-

making/learning mechanism to be applied later on:

1. Sample a printer Y from Yp ( ),

2. Sample a document w from wp ( ),

3. Sample textures x from x Y wp ( | , ),

with the classification Step 4 reflecting by computing the posterior

Y wp ( | ). Using the rules of probability, the evaluation of the posterior

can be defined through Bayes rule and by marginalizing the variable x :

∫= ×Y x
x w Y w

x
w Yp

p p

p
p( | )

( | , ) ( )

( )
d ( )

(1)

= ×x Y

x
Y

p

p
p

( | )

( )
( ).

(2)

The CTGF algorithm approximates the integral term by treating the

document as an image and using image processing algorithms to gen-

erate a non-parametric estimate of the texture density. The adoption of

this approach over defining parametric forms for the probability den-

sities sidesteps the difficulty in explicitly determining probability dis-

tributions over documents as well as computing the high-dimensional

and intractable integral in Eq. (1). The machine-learning method that

uses the features produced by CTGF then approximately calculates Eq.

(2) and provides either a probability of a printer given the textures

identified or a point-estimate representing the most likely printer to

have produced such textures.

Next, we examine how the CTGF obtains the printer texture dis-

tribution. The first step in CTGF is to represent a document as a scanned

gray-scale 600-DPI image, that is, documents are represented as ×r c

matrices S with entries ranging from 0 to 255, indicating each pixel

color range from white to black (negative grayscale image). The S

matrix is convolved with J — a matrix of ones, square convolution

window with odd dimension — and then, a filter F is multiplied ele-

ment-wise with the image, resulting in a texture matrix. More formally,

this procedure can be described as forming

∑ ∑= ∗ = + +
=− =−

i j i j i m jC S J S[ , ] ( )[ , ] [ , ℓ]
m δ

δ

δ

δ

ℓr

r

c

c

(3)

where =δ
W

r 2
row and =δ

W
c 2

col , then defining

= ∘i j i jT C F[ , ] ( )[ , ] (4)

where the filter F is defined image gradient, i.e.,

∇ = − − −⩽ ⩽i j i j i a j bS S S[ , ] max | [ , ] [ , ]|
a δ b δ| | , | |r c (5)

and a band filter to generate

Fig. 1. Laser printer components and process. (a)

Charging roller charges drum surface. (b) Drum’s

surface uniformly charged. (c) Controlled laser

beam discharges printing blank areas. (d) Toner

powder fills drum charged surface. (e) Toner grains

transferred to paper by opposite charge attraction.

(f) Toner melted on paper by fuser roller.
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= ⎧⎨⎩
> > > > ⩽ ∇ ⩽

i j
i c j r g i j g

F
S

[ , ]
1 if0 , 0 , [ , ]

0 otherwise.
lb ub

(6)

Each of the entries in the matrix T will contain a number corre-

sponding to a given pattern of pixels in aWrow byWcol window. By de-

sign, this procedure to encode pixel patterns has significant con-

sequences for the learning: the convolution and filtering operations

embed invariance to rotations and translations of the pixel patterns.

This property directly impacts the choice ofWrow andWcol, as largerWrow

and Wcol will consider a large number of patterns to be equivalent. On

the other hand, smallWrow andWcol values increase the size of T and, in

the limit, where = =W W 0col row the convolution is non-informative.

This rationale supports the empirical analysis in [4], which found best

results when = =W W 3col row with the classification performance de-

creasing with larger kernel choices forWcol andWrow.

The last step in the CTGF is to transform the matrix T into a

× ×W W( 255)col row -dimensional count vector b. Each entry of the

vector b represents how many times a texture value appears in the

document. This binning procedure is referred to as creating a histogram

of textures in [4].

Features used in the machine-learning algorithm are obtained ap-

plying a normalization factor to the count vector,
→ = ××x bi r c i

1
. Here,

the normalizer = ×λ r c can be linked to a physical quantity; the

number of pixels on the image (number of elements of S matrix). Then,

each component of the feature vector represents the density of the

correspondent texture in an image. Considering that CTGF textures are

linked to imperfections (in pure black and white printing) the sum of all

elements in the feature vector corresponds to the density of defects per

squared pixel in the image, which can be transformed just multiplying

by the scanning resolution (DPI) in defects/in2,

∑= →
=

× ×
xρ defects pixel( / ).

i

W W

i

0

255
2

col row

(7)

From a probabilistic vantage point, different transformations applied to

the count vector b imply in assuming different distributions for the

incidence of textures. For example, the binning and normalization

procedures used in the CTGF algorithm are analogous to modeling the

frequency of features in Latent Dirichlet Allocation [31] as a Dirichlet-

Categorical distribution.

The low-gradient filter highlights areas with smooth variations. This

mathematical property translates into detecting irregular toner ink

coverage in the letter’s body and residual ink in non-printed regions.

A closer investigation of Fig. 2 shows six regions of interest (ROIs)

captured by the CTGF low-gradient filtering process out of which only

areas 1, 2 and 3 are of interest for attribution.

• Region 1 - ROI 1: Imperfections on the toner fixation and melting

within the letter’s body produces texture gray tones with low-gra-

dient values. In this area, a high CTGF value denotes variations that

are almost invisible inside the body’s letter, while a low value

indicates a cluster with the absence of toner, which is precisely

identified by readers as printing defects.

• Region 2 - ROI 2: Lack of precision on the laser bean, motors var-

iance, non-controlled motion inertia, and poor-printing resolution

create jagged letter’s contour with small portions of toner sliding

around characters.

• Region 3 - ROI 3: Such blank areas should not have any toner, but

due to charge and discharge defects, particles of toner could adhere

to the drum while being transferred to paper. Few toner dots are

almost invisible to human eyes and are represented by CTGF values

near 0. Conversely, high values indicate clusters of toner, which are

seen as a dirty background.

• Regions 4 and 5: Correspond to 0-value gradients, indicating a flat

single color printing, which is expected for the blank region outside

letters (Area 4) and the letters’ internal body (Area 5).

• Region 6: Letter’s borders have high gradient thus printing im-

perfections cannot be detected by this method, then correspondent

textures are eliminated by the filter.

2.3. Random forests classifier

In this section, we provide a succinct introduction to Random Forest

classifiers. For a more comprehensive exposition of the underpinnings

of Random Forests models, the interested reader is referred to refer-

ences [32–34], while an expert on these algorithms may skip this sec-

tion altogether.

Random forests [35] are a machine-learning technique that has

enjoyed great success in academic [36] and commercial contexts, with

applications spanning from social networks [37] to medical imaging

analysis [32] and motion capture [38]. It can be defined as the com-

bination of two pivotal concepts: classification and regression trees

(CART) [39] and bootstrap aggregation (Bagging) [40].

CART models act by fitting a piece-wise function to the data by

growing a binary decision tree. The piece-wise aspect of this model

follows the intuition that the underlying function that generates the

data can be approximated by splitting the input space x into Ω different

regionsRm, with = …m 1, ,Ω and associating to each regionRm a weight

ωm to match the expected value of the data in that region,

R∑≈ = ∈
=

Y x xf ω( ) · { },
m

m m

1

Ω

(8)

where  is the indicator function. The binary tree element in CART

models arises from the recursive structure used in generating the re-

gions. Each region is defined by introducing a boundary function to

split an existing region into two. Each of these separations forms a node

in the binary tree. This boundary is chosen to minimize a classification

or regression loss function that assesses the goodness-of-fit. To avoid

over-fitting, after a full tree is grown, a pruning step is performed to

reduce the tree complexity by selecting the best sub-tree using cross-

Fig. 2. The original fragment of a scanned docu-

ment (left) and the corresponding textures for ob-

tained using the CTGF gradient filter (right). The

right image is colorized using yellow for near-black

textures and blue for near white textures. Callouts

indicate areas discarded and retained by the gra-

dient-filtering process explained in this article and

related to the gradient filter behavior. The picture

on the right is a representation of matrix T com-

puted with =g 1lb and =g 32ub . Regions 4 and 5

correspond to filtering elements < gFi j lb, ; Regions

1, 2 and 3 corresponds to < = < =g gFlb i j ub, ; and

Region 6 is the result of filtering by > gFi j ub, .
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validation. For further details on tree pruning procedures, see [39,33].

As a consequence of the greedy nature of growing a CART model,

they exhibit high dependence on the available training data. Random

forests use the concept of bootstrap aggregation to overcome this lim-

itation, which trains K models on randomly sub-sampled (with reposi-

tion) data from the original dataset. Then, the predictions from each

model xf ( )k are averaged,

∑=
=

x xf
K

f( )
1

( ),
k

K

k
1 (9)

which reduces the impact of a single data point and is guaranteed to

reduce the estimator variance by the Rao-Blackwell theorem [41].

Besides lowering the variance and improving robustness of random

forests, bagging also provides estimates for the generalization error and

the probability of nodes, i.e., that a decision to split the feature space

occurs at a given location. It is possible to show that each point x Y( , )i i

of the original set is only used in the training of 63% of the K trees [42].

Therefore predictions of the remaining trees that were not trained with

the point x Y( , )i i can be aggregated through averaging or majority

voting to yield a cross-validation measure, the Out-of-bag (OOB) error.

The OOB error plays a central role in estimating the importance of a

given feature in the predictions of random forests. One way to assess the

importance of a variable based on OOB error is to evaluate the OOB

error by randomly permuting the values of a given feature [35]. The

rationale behind this procedure relies on the fact that if the predictor f

is independent of a given feature and all remaining ones, then randomly

permuting its values should not affect the OOB error [43]. When a

feature is correlated to others, additional care should be taken to avoid

overestimating their importance [44,45].

3. Proposed method

Our objectives in this work are twofold: we aim at designing and

developing an effective printer attribution method while, at the same

time, being able to directly point out, on the investigated document, the

most important features used in the decision-making process.

The CTGFmap method was designed based on requirements to ad-

dress the explainability concept mentioned previously Section 2.1. The

technique aims at a visual identification of the most important regions

(of the document) used by the classifiers in the source attribution

process that are more present in the target class than on others. In other

words, we are interested not only in finding the source printer of a

document but also in the isolating the features that lead to the con-

clusion that a given printer generated the input document.

To satisfy the explainability requirement, we resorted to employing

a visual mask over the target document. This mask would allow using

the discriminant features to generate regions of interest in the original

image. The visual map created by the mask over the target document

needs the feature space representing image descriptors to be locally-

based, i.e., we can identify in the document the locations that generate

a specific feature component on the vector representation of the

document. The CTGFmap descriptor meets this requirement at the pixel

level, that is, identifying the locations of pixels that lead to specific

features in the CTGF vector space. This process aids the forensic analyst

with a physical meaning that can be precisely interpreted, differently

from existing methods in prior art.

To achieve accountability, the feature should be quantified to re-

present the presence of a visual property. This requirement is essential

to identify characteristics related to the target printer/class in com-

parison with documents produced by other printers. In a document’s

examination process, it is much easier to show elements which are more

present as a consequence of some mechanical or electrical effect on the

printed materials, than by the absence of artifacts that are existent on

other classes, which require an extensive visual comparison. In this

direction, we extended CTGF’s method to represent the texture’s density

in the set of image pixels (by dividing the counting of texture activa-

tions of each CTGF value by the number of pixels in the document or

region of interest). In this way, each feature represents the relative

quantity of a specific texture inside the document fragment represented

by a vector, which allows the selection of components with a higher

probability of denser texture in each class of interest.

By satisfying the previous two requirements, we can identify fea-

tures which are more present and discriminant in the target class,

through statistical testing over each space component determining

which classes have a more prominent probability to be denser, for

which we referred to as ‘positive’ features of the class (see Section 3.1).

Given the positive features of the target class, it is important to

determine which ones are discriminant and more relevant in the classes

separation. Reducing the dimensionality is also a key factor for the

visualization as a visual map with many points will not provide a good

explanation to forensic analysts, neither help examiners to find the most

relevant loci in the investigated documents.

We opted for the Random Forests in the classification step for a

series of reasons including:

• Feature Importance: decision trees classifiers provide information

about the relevance of each feature in the decision trees by evalu-

ating how a change or omission of one variable impacts the classi-

fication results. Importance is a decisive property of the classifica-

tion algorithm to provide the explainability principle of the

proposed method.

• High-classification performance: high effectiveness on printer

attribution using CTGF feature vectors (see Section 4.3), statistically

comparable to the correspondent SVM classification used in pre-

vious CTGF articles.

• Runtime: in our experiments, Random Forests outperformed SVMs

in execution time for training. For some printers, the speed-up was

60×.
• No need of kernel and parametrization adjustments: although

SVMs with linear kernel performed well on CTGF multiclass classi-

fication under the OvO multi-class scheme, our initial tests using

OvA [46] with SVMs were much slower to converge, and also led to

worse performance. More tests could be done with adjustable grid-

search parameters for the RBF kernel, for example, but as Random

Forests already provide us with the essential property of built-in

feature weighing, we opted to prioritize them. OvA scheme was

selected as it facilitates the feature importance determination in a

pairwise fashion (one vs. rest).

The discussed requirements and decisions led to the development of

the CTGFmap algorithm that finally calculates saliency maps of the

most discriminant features over the original documents. CTGFmap ex-

tends upon the original CTGF method [4] to include the explainability

requirement of the source printer attribution process. Therefore its

main novel aspects rely upon the explainability capacity and supervised

dimensionality reduction process.

Based on the objectives explained above, the proposed method en-

compasses four main steps: Preprocessing, Learning, Back-projection,

and Visualization, as Fig. 3 depicts.

The first stage, Preprocessing, consists of characterizing the in-

vestigated document (and possibly additional training ones) with a

printer attribution description method. We split the input documents

(scanned versions) into non-overlapping frames to produce more sam-

ples per analyzed document. Regions that are empty or containing only

a small printed portion are discarded, as they are more susceptible to

misclassification. Each remaining frame is converted into a feature

vector using the CTGF descriptor as Section 2.2 describes.
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Moving on to the learning activity, we learn the classifier re-

sponsible for differentiating documents of each suspect printer using a

training set of documents associated with each one of them. To obtain

the class of the investigated document, its feature vector is generated

according to the same procedures for scanning, framing and description

previously described, and then submitted to the trained classifiers. The

ultimate result of this stage is the most likely class to have printed the

investigated document.

Upon classifying a document, we call its predicted class as the target

class. We then proceed to the next stage, which is the back-projection

step (described in detail in Section 3.2). This stage assesses the relative

importance of positive features — those associated with the class of

interest or target class — and determines the minimum number ne-

cessary for classification. The positive features are identified through

the analysis of the distribution of feature values for the target class

(class of interest) and the remaining classes in the analyzed pool (ne-

gative cases in the training set). By using an iterative random forest

feature importance algorithm, we can select the most discriminant

features and attain the minimum necessary set to perform the attribu-

tion task.

Finally, the Visualization step (described in detail in Section 3.3)

creates a saliency map highlighting the location of the most important

features used in the classification process of the questioned document.

In other words, this step finds in the investigated document, the most

important aspects for attributing it to a particular printer.

3.1. Positive features determination

In this section, we analyze how to identify whether a feature is

discriminant for a class against every other class in a pool through

decision theory and observational causal inference. We refer to such

features as positive features. The determination of which features are

discriminant is paramount for obtaining greater insight on the classi-

fication produced by a machine-learning algorithm. In the particular

case of source printer attribution, determining elements and features

that are essential for classification may direct forensic investigators to

areas within scanned documents that award further investigation.

We seek features which are more discriminant but are also denser in

frames of the target printer when compared the other ones. As the

feature vector measures the texture density, we want to identify the

elements where the probability to find a frame with a higher value in

the target class is higher than on frames of other classes in average. This

analysis can be performed by assessing how different the distributions

of a feature xi are for classes C0 and C1 after training a classifier. To

establish this comparison, we can compute a score to reflect this dif-

ference, since Cxp ( | )i 0 and Cxp ( | )i 1 will share the same support. The

score should reflect that if a feature is important to differentiate be-

tween classes C0 and C1, then C C≠x xp p( | ) ( | )i i0 1 . A simple criterion

that is able to satisfy these requirements is the squared difference at

each point,

C C∫= −x x xτ p p( ( | ) ( | )) d .i i i i0 1
2

(10)

The score of Eq. (10) can be used to generate a ranking of how im-

portant each feature is to segregating the two classes.

Further to ranking which classes are more important, we can ana-

lyze what range of values for each feature is more frequent in each

class. Note that partitioning the space into such areas is a classification

problem in itself. For simplicity and interpretability, we have parti-

tioned the space into only two regions, one where C0 is more pre-

dominant than C1 and another where C1 is more predominant than C0.

To find the point ☆β that provides maximal separation between these

regions, we can compute:

C C∫=☆
−∞ x xβ τ p pargmax ( ( | ), ( | ))

β

β

i i i0 1
(11)

as is illustrated in Fig. 4.

For C classes, the above-defined reasoning holds and the terms

containing Cxp ( | )i 1 should be replaced by C C C…xp ( | , , , )i C1 2 where C

denotes the number of available classes in a pool of printers. Here we

emphasize that the cutting point location ☆β will be generally different

Fig. 3. Four-stage process underpinning the proposed printer attribution method in this paper.
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when multiple pair-wise decisions (one-versus-one) are made from the

case where one class is compared to all others bundled together in a

single comparison (one-versus-all). In particular, the maximum over the

individual cut-points in Fig. 6 in the one-versus-one case will be lower

or equal to the maximum of the one-versus-all cut-point in Fig. 5.

3.2. Backprojection

To obtain an informative visualization of discriminant features on

the original document, only the subset which reflects the most relevant

positive ones should be back-projected, as these features are responsible

for carrying information toward accountability in document attribu-

tion.

The decision of which features to retain can be posed as an opti-

mization problem for which we want to guarantee a minimum perfor-

mance criterion for the classifier while keeping only the most dis-

criminant positive ones. If we denote the set of most significant features

as I , this problem can be cast as

I

∑
= ∈ = …

⩾
=

x

Y x e

e

e i N

f ε

minimize ,

subject to { }, 1, ,

( , , ) ,

i

N

i

i i

1

(12)

where ei indicates whether the positive feature is in the discriminant

feature set, f represents the performance criterion for Random Forest

classifier using only features in I , and ε is the minimum acceptable

performance metric, which can be set by a forensic analyst, for instance.

The optimization problem in Eq. (12) is both discrete and NP-

complete, and an algorithm to obtain approximate solutions is needed

to efficiently find a local optimum considering the large number of

features in the CTGF description method. Therefore, this paper proposes

an iterative greedy algorithm to achieve this goal.

The algorithm introduced here is based on a recursive refinement of

the important variable set. This refinement is performed by assessing

how discriminant each feature is, regarding the final classifier metrics

on a training set. Initially, the algorithm considers all positive features

Fig. 4. Example of the distribution of two classes regarding their maximum cumulative probability difference.

Fig. 5. ☆β cutoff point determination for features X1 and X2020.

Fig. 6. Distribution comparison of features for one printer versus every other printer in a pool. Here, we show the positive feature X2020 of printer 9 (OKI Data model

C330DN). See that the ☆β cutoff point is beyond the maximum CDFs difference of class 9 versus all others, and it is the ☆β determined as One versus One shown in

Fig. 5.
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to belong to the discriminant feature setI . Then, at each iteration, the

algorithm removes the least relevant positive variables according to the

out-of-bag criterion and trains a new Random Forest classifier. The

newly trained Random Forest classifier is scored using the multi-class

from binary (OvA) approach [46]. The procedure is stopped when ei-

ther a minimum number of user-defined features is reached or if the

classifiers performance metrics drop below the minimum acceptable

value. The choice of the number of elements to remove in each step can

be parametrized by a shrinkage parameter <δ 1, where the number of

features to drop is the ceiling of δ times the number of elements of I .

3.3. Visualization

After finding the most discriminant features, these features need to

be back-projected onto the original document to allow experts to vi-

sualize which regions are relevant for further screening.

To visualize the discriminant variables in the original document, we

propose an algorithm to overlay the original scanned image with a color

scale representing the ranked features in I using the out-of-bag as-

sessment of the final classifier producing wgat we refer to as a saliency

map. The color corresponding to the selected variable is applied to all

locations in the convoluted image that match the features texture value.

The related textures are colored from the least discriminant feature to

the most important one, to avoid pixels belonging to the most dis-

criminants to be overwritten by least significant ones.

For visualization purposes, the number of selected positive features

must be kept low, and the color scale should be chosen for maximum

contrast between adjacent textures. If the minimum number of positive

features needed to achieve the minimum classification criteria is high,

then the generated saliency map by the back-projection procedure

would not be as informative to a human analyst.

4. Experiments and results

In this section, we present the performed experiments to validate

the proposed methods as well as to compare them with methods in the

literature.

4.1. Data preparation

For the experiments, we adopted the freely-available dataset in-

troduced in [21,4], which comprises a total of 1,184 scanned images of

documents printed in 10 printers (Table 1). Each image was split into

eight rows by six columns of frames with the same number of pixels,

after deleting six percent of pixels in each border of the raw image to

eliminate external light noise during the scanning process. On average,

out of 48 frames ( ×6 8) per document, some 40 are selected as Table 2

shows. Empty frames and those with a small portion of printed material

are not considered for classification, then a total of 1173 images remain

from the original dataset. Those frames include text and pictures on the

printed documents. Separated tests with frames containing only text

and only figures are described in Section 4.7. A critical concern in the

experiments is to avoid classifier overfitting. For this purpose, we

randomly divided the documents (not the frames) of each printer into

five partitions of approximately the same size (Table 2). One partition is

then separated and isolated to participate only in the final tests. The

remaining four partitions are used in four experiments each of which

considering three partitions combined for the training process and the

remaining one for validation (Table 3). The classifiers’ performance is

evaluated with the metrics presented in Section 4.2.

According to the definitions in Section 2.2, a CTGF feature vector is

generated for each captured frame using a ×3 3 one’s matrix as the

convolution kernel with gradient range from =g 1lb to =g 32ub .

Therefore, the possible obtained texture values vary from 0 to

× × =3 3 255 2295, and the final feature vector dimensionality for each

frame is 2296. However, as we will discuss in Section 4.3, many of these

features are not informative and, on average, we end up with less than

500 features for the actual learning and classification stages.

4.2. Performance metrics

For assessing the performance of the different methods discussed

herein, we rely upon metrics associated with true positives (Tp), true

negatives (Tn), false positives (Fp) and false negative (Fn), as described

in Table 4. A true positive denotes a document correctly attributed to its

actual printer P while a true negative is a document correctly negated

as not belonging to P if another printer actually printed it. Com-

plementarily, a false positive refers to a document incorrectly attributed

Table 1

Printers used in the experiments.

Class Printer Brand Model

1 B4070 Brother HL-4070CDW

2 C1150 Canon D1150

3 C3240 Canon MF3240

4 C4370 Canon MF4370DN

5 H1518 HP CP1518

6 H225A HP CP2025A

7 H225B HP CP2025B

8 LE260 Lexmark E260DN

9 OC330 OKI Data C330DN

10 SC315 Samsung CLP315

Table 2

Documents and frames distribution on the dataset partitions for the experiments.

Partitions

Class Total 1 2 3 4 5

Doc Frm Doc Frm D/F Doc Frm D/F Doc Frm D/F Doc Frm D/F Doc Frm D/F

1 119 4,752 24 950 39.6 23 921 40.0 24 948 39.5 24 961 40.0 24 972 40.5

2 114 4,558 24 972 40.5 23 957 41.6 23 888 38.6 23 933 40.6 21 808 38.5

3 119 4,640 23 911 39.6 24 938 39.1 24 943 39.3 24 986 41.1 24 862 35.9

4 119 4,638 23 880 38.3 24 964 40.2 24 928 38.7 24 967 40.3 24 899 37.5

5 119 4,804 24 954 39.8 24 998 41.6 23 930 40.4 24 947 39.5 24 975 40.6

6 118 4,695 24 946 39.4 24 886 36.9 24 1,026 42.8 23 887 38.6 23 950 41.3

7 109 4,337 20 813 40.7 22 897 40.8 24 999 41.6 21 733 34.9 22 895 40.7

8 118 4,619 24 980 40.8 24 928 38.7 23 908 39.5 24 908 37.8 23 895 38.9

9 119 4,742 24 912 38.0 24 974 40.6 23 940 40.9 24 972 40.5 24 944 39.3

10 119 4,646 23 877 38.1 24 946 39.4 24 975 40.6 24 927 38.6 24 921 38.4

Total 1173 46,431 233 9195 39.5 236 9409 39.9 236 9485 40.2 235 9221 39.2 233 9121 39.1
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to a printer P, which was not its actual printer. Finally, a false negative

refers to a document from a printer P that is incorrectly attributed to

any other printer.

In our case, in addition to traditional roles of performance metrics,

they are also used to establish minimum criteria to consider the results

acceptable in the process of ranking and reducing vector dimension-

ality. Establishing criteria based on the performance metrics allows us

to iterate reducing the vector length until any of these acceptance cri-

teria is broken, indicating that features eliminated in the process are

essential to keep results acceptable.

4.3. Class determination for target document

Table 5 shows obtained results for the validation partitions, while

Table 6 shows final classification results with the separated test parti-

tion using Random Forests in an OvA fashion.

Upon experimenting with these documents and printers, one of the

first findings is that many characteristics are not significant for all

printers. Such variables were identified either as the ones whose max-

imum density in the vectors of all printers is less than × −1 10 4 (which

means a maximum of less than 0.01% of the frame area), or whose

frequency is equal in all frames (particularly for features with value 0

for all vectors). Upon discarding those non-significant out of the 2296

features, only 547 remained to be used in the next steps. Fig. 7 shows

the location and the maximum ☆β of each significant feature.

A statistical comparison of CTGF_3x3_F SVM [4] with the CTGFmap

Random Forest method presented here shows they are equivalent.

Looking beyond raw classification numbers, this is a compelling

result as Random Forests provide us with a robust feature importance

estimation method that can be used in the back-projection step later on.

Recall our objective in this paper is to design and develop a robust

printer attribution method, while at the same time being able to hold it

accountable for its choices, i.e., to point out the main features under-

pinning the decision-making process and “visualize” them in the in-

vestigated document directly.

4.4. Target class positive features determination

At this stage, we already have the attribution done, and now we

need to analyze the most important features used for decision making.

The following steps should be applied to the class of the target docu-

ment, determined in the previous phase. However, in this experimental

procedure, we are interested in exploring samples from all printers and

seeing the behavior of the most important features for each one. For

this, we applied the frequency distribution analysis for all possible

classes using concepts and procedures presented in Section 3.1. Table 7

exhibits the features classification in positive, similar and negative ac-

cording to the rules in Section 3.1 for the comparison of a target

printer/class ☆T β( ( )f to other printers ☆O β( ( ))f .

As we can see in Table 7, Class 5, which corresponds to the HP

Table 3

Partitions distribution of experiments for training, validation and final test. Partition 5 does not participate in training and validation, keeping separated for final test

only on all experiments.

Experiment Training Validation Final Test

Partitions Docs Vectors Partition Docs Vectors Partition Docs Vectors

1 1,2,3 705 28,089 4 235 9221 5 233 9121

2 1,2,4 704 27,825 3 236 9485 5 233 9121

3 1,3,4 704 27,901 2 236 9409 5 233 9121

4 2,3,4 707 28,115 1 233 9195 5 233 9121

Table 4

Metrics used to calculate the performance of classifiers.

Metric Recall (RCL) Specificity (SPC) Precision (PRC) F1-score (F1S) Accuracy (ACC)

Formula
+
Tp

Tp Fn +
Tn

Tn Fp +
Tp

Tp Fp) +2·
Prc Rcl

Prc Rcl

· +Rcl Spc( )

2

Table 5

Average results of OvA Random Forest classifiers on the four validation experiments devised in this work with feature vector dimensionality equal to 547.

Class Vector True False True False Acc Rcl Spc Prc F1s

Length Pos Pos Neg Neg % % % % %

1 547 91 4 841 4 97.66 95.79 99.53 95.79 95.79

2 547 88 6 841 5 96.96 94.62 99.29 93.62 94.12

3 547 85 7 838 10 94.32 89.47 99.17 92.39 90.91

4 547 87 3 842 8 95.61 91.58 99.64 96.67 94.05

5 547 87 0 845 8 95.79 91.58 100.0 100.0 95.6

6 547 77 12 833 18 89.82 81.05 98.58 86.52 83.7

7 547 83 16 837 4 96.76 95.4 98.12 83.84 89.25

8 547 93 6 839 2 98.59 97.89 99.29 93.94 95.88

9 547 95 1 844 0 99.94 100.0 99.88 98.96 99.48

10 547 95 3 842 0 99.82 100.0 99.64 96.94 98.45

Mean 96.53 93.74 99.32 93.87 93.72

σ 2.97 5.69 0.58 5.18 4.67
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model CP1518, has a remarkably low density of textures captured (ρ )

representing approximately 4% of the frames area. This fact indicates a

clean printing process and can be easily verified by mapping onto the

investigated document all CTGF features of any fragment of a document

printed with it, as Fig. 8 shows. As the CTGF saliency map of this printer

is significantly different from others, it is indeed easy to verify a

document attributed to this printer visually.

Other printers have ρ figures from 13% to 19% of textures, but we

cannot conclude anything about their printing quality as we need to

analyze the type of textures and their location to be more conclusive.

Class 6, which represents HP model CP2025 (one of the two of the same

model in the adopted dataset), has only four positive features, much

less than other printers. It indicates that most of its features are

common and less frequent than others, as it has ρ equivalent to the ones

of other printers and a high number of negative features.

4.5. Ranking positive features of target classes

We obtained the results reported in Table 8 by applying the algo-

rithm described in Section 3.2, using =ε 0.6 and =δ 0.1 for each class

of interest. Minimum discriminant length is highlighted, and the best

F1Score achieved with positive features is also presented. Fig. 9 ex-

emplifies the trajectory of metrics down to the performance criteria for

two classes in the experiments.

We can see that by using only a few positive features, most of the

classifiers already lead to good discrimination among printers — see

that classification accuracy, recall, precision and f1score metrics are

consistently over 80%, and most of them over 90%. The exceptions are

classes 6 and 7 (both HP model CP2025) when using positive features.

Class 3 (Canon model MF3240) has a minimum of 7 most discriminant

positive features, which is almost on the limit of the easily distin-

guishable colors on the mapping scale.

Table 6

Results considering OvA Random Forest classifiers trained with the four training partitions and tested with the final separated test partition. The feature vector

dimensionality is 547.

Class Vector True False True False Acc Rcl Spc Prc F1s

Length Pos Pos Neg Neg % % % % %

1 547 92 5 831 4 97.62 95.83 99.4 94.85 95.34

2 547 80 13 835 4 96.85 95.24 98.47 86.02 90.4

3 547 88 9 827 8 95.3 91.67 98.92 90.72 91.19

4 547 80 2 834 16 91.55 83.33 99.76 97.56 89.89

5 547 80 0 836 16 91.67 83.33 100.0 100.0 90.91

6 547 74 17 823 18 89.21 80.43 97.98 81.32 80.87

7 547 80 20 824 8 94.27 90.91 97.63 80 85.11

8 547 92 8 832 0 99.52 100.0 99.05 92 95.83

9 547 96 0 836 0 100.0 100.0 100.0 100.0 100.0

10 547 96 0 836 0 100.0 100.0 100.0 100.0 100.0

Mean 95.6 92.07 99.12 92.25 91.95

σ 3.86 7.47 0.87 7.64 6.09

Fig. 7. Features’ cutting point ( ☆β ) over all frames, showing that 547 out of the

2296 possible ones are significant.

Table 7

Result of distribution analysis for the 547 significant features. Textures density

ρ is expressed in textures per squared dots.

Class Pos. Sim. Neg ρ ρ

feat. feat. feat. mean std

1 154 212 181 0.162 0.054

2 87 294 166 0.189 0.057

3 21 296 230 0.149 0.051

4 300 109 138 0.185 0.063

5 125 23 399 0.044 0.039

6 4 263 280 0.142 0.052

7 79 314 154 0.149 0.053

8 74 72 401 0.138 0.048

9 166 53 328 0.153 0.05

10 247 91 209 0.133 0.058

Fig. 8. CTGF captured textures on fragments of the same document printed on printer 5 (HP model CP1518), left, and on printer 8 (Lexmark model E260DN), right.

The difference of printer 5 with respect to the others is clearly seen when compared to others just using this map.
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All remaining printers have less than four positive features as a

minimum, which makes it easy to display the connected textures on a

saliency map. Except for printers 6 and 7, all other printers exhibit

excellent best results of accuracy, recall, precision and f1score using

only positive features correlating the printer discriminative information

content on the related texture areas.

4.6. Back-projecting visualization and analysis of the three most

discriminant features

Finally, visualization maps (Figs. 10 and 11) are created using the

back-projection process previously described using fragments of docu-

ments of each printer and the algorithm described in Section 3.3,

looking for how the most discriminant textures are distributed and lo-

cated inside or outside letters. This information is also meaningful to

understand the types of failure in the printing process that are produ-

cing them.

To complete the evaluation of the experiments conducted in this

work, Table 9 lists the three most discriminant positive features for

each printer of interest with their relative location to letter’s body.

Those features are the ones used in the back-projection and produced

the maps exhibited in Fig. 10 for fragments of documents printed on all

printers. For each of those fragments, the same digit “9” and a letter “e”

are extracted and shown in Fig. 11, allowing a more detailed ex-

amination against the original grayscale scanned image of same char-

acters. Most differences are almost imperceptible for human eye

screening, but they are the textures used by the CTGF Random Forest

classifiers to differentiate classes.

Patterns in documents printed in Canon D1150 (class 2 in Figs. 10

and 11) quickly identify the printer. They are almost white features

(practically unseen texture patterns for readers) spread in a consider-

able quantity around letters and white areas. HP CP1518 (class 5 in

Figs. 10 and 11) is also easy to classify as previously mentioned (see

Fig. 8) by using just a few textures, consequently with a cleaner CTGF

map than others.

Canon MF4370DN (class 4 in Figs. 10 and 11) has also toner spar-

sely spread on white areas, which are not visible by human eyes at the

typical reading distance, but differently from class 2 already analyzed

above, it has determinant textures in black areas within letters.

Samsung CLP315 (class 10 in Figs. 10 and 11) has an unusual pat-

tern as it is the only one with textures in the range of 150 to 160

(grayscale mean about 16) of the CTGF description. These patterns

appear on the border of letters indicating toner slide on their contour.

There are just a few of these as the referenced figures depict, but en-

ough to be discriminant as they are almost not present on other prin-

ters. This printer also has discriminant textures near black within let-

ters.

By looking at Figs. 10 and 11 we also find that Printers 1, 3, 8, and 9

have their most discriminant features within letters, varying their pat-

terns and density on the maps. However, Lexmark E260DN (class 8) is

much more consistent with a small variation pattern aligned within

Table 8

Number of features of the resulting feature vectors containing the selected

positive features. Blue font denotes best f1score achieve for each class, and red

font indicates a metric that does not meet the criterion.

Class len vec Acc Rcl Spc Prc F1s

len % % % % %

1 min 3 95.21 95.74 94.68 67.33 78.96

1 best 40 97.43 96.88 97.99 84.97 90.28

1 max 154 97.38 96.88 97.88 84.35 89.86

2 min 2 84.36 72.15 96.58 71.80 70.87

2 best 40 88.53 78.49 98.58 86.68 82.23

2 max 87 85.38 72.06 98.70 85.97 78.37

3 min 7 81.21 63.13 99.29 90.99 74.51

3 best 14 85.24 70.61 99.88 98.75 81.96

3 max 21 83.98 68.43 99.53 94.14 79.05

4 min 3 84.04 70.56 97.52 76.14 73.16

4 best 300 96.44 93.70 99.17 92.74 93.15

4 max 300 96.44 93.70 99.17 92.74 93.15

5 min 1 93.68 89.49 97.87 83.83 86.30

5 best 6 95.67 91.58 99.76 97.78 94.54

5 max 125 94.97 90.53 99.41 94.96 92.50

6 max 4 57.29 14.81 99.76 90.83 24.92

7 max 79 90.97 88.74 93.20 57.48 69.47

8 min 3 91.81 90.49 93.13 60.03 72.07

8 best 66 98.25 97.92 98.58 89.16 93.10

8 max 74 97.21 95.83 98.58 89.04 92.04

9 min 1 88.33 82.11 94.56 63.46 71.20

9 best 7 99.29 100.0 98.58 88.82 94.06

9 max 166 99.11 100.0 98.23 86.74 92.78

10 min 1 91.54 85.33 97.75 81.12 82.99

10 best 12 99.82 100.0 99.64 97.00 98.45

10 max 247 99.41 100.0 98.81 90.90 95.09

Fig. 9. Examples of most discriminant positive features search for class 4 (Canon MF4370DN) and class 8 (Lexmark E260DN).
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letters’ body, and Brother HL-4070CDW (class 1) has features in a range

which points to more toner defects.

Pointing out the locus of each discriminant feature allows more

precise examination of those patterns at subsequent evaluations. For

instance, the consistent location of such patterns for some letters in a

document might add extra information to the forensic analysis. This

behavior has an analogy to consistent saturated pixels and pixel traps in

a digital camera, which can be used for camera attribution [1]. Also, at

microscopy level, such features (and their loci) could be used in mi-

croscopy to study the defects that are producing them.

4.7. Text and figures analyses

Experiments carried out in previous sections used frames containing

text and figures as explained in Section 4.1. From the total of 1184

documents scanned, 595 (50.3%) are text-only frames, 578 (48.8%)

includes figures which cover approximately 20% of the documents area,

and remaining 11 (0.9%) are almost blank documents. Half of the

documents is in English and half in Portuguese, but as all documents

use alphabetic characters, this is irrelevant on the classification ex-

periments. Most of all 56,304 frames are text-only (41,367 or 73.5%).

Fig. 10. Texture location maps for fragments of documents printed on each of the 10 printers. At least 3 or the minimum number of most discriminant features to

achieve the minimum classification criterion (see Table 8) are mapped. Class 6 (HP model CP2025) has only two significant positive features but shows a very

distinctive printing pattern.

Fig. 11. Digit “9” and letter “e” extracted from each fragment in Fig. 10 magnified and juxtaposed side by side with the original grayscale scanned image.
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There are 4,838 (8.6%) frames with only figures (small pictures within

documents), and 225 (0.4%) contain a mix of text and figures. Blank

frames (9874 or 17.5%) inside documents are discarded as they do not

contain printed areas (ink) and cannot be classified. By performing the

experiments described in Section 4.3 using frames with only text and

frames containing only figures, we obtained the final test results sum-

marized in Table 10.

Then we statistically compared the results of recall, precision, and

f1score in the three scenarios: all vectors (Table 6), text frames only and

figure frames only (Table 10). As we can see, frames containing only

figures account for the worst case of those experiments, but we should

notice that the number of samples is much lower than in the other

scenarios (about 12% of other experiments). Note, however, that

documents in this dataset are mostly biographies, which generally in-

clude small portrait photos.

Despite needing to perform more tests with figure frames to better

conclude what the classification performance with pictures is, we can

conclude that if figures are not a significant part of the documents (in

our case only about 20%), they are not significant (in our experiments

results were slightly improved). However, classification with figures

only should be more explored in future work.

4.8. Color and different types of paper sheet analysis

Testing questioned documents with conditions that are not included

in the test set goes beyond the scope of the current work. It means, for

instance, training a classifier with papers of one color and testing it with

different colors. It is an open-set setup, a subject of increasing attention

in the literature lately [47–51]. However, it is essential to understand

the limits of current solutions to set grounds for additional research in

this area. Therefore in this section, we present an initial study to discuss

the impacts of this open-set formulation when considering different

color paper sheets in an investigation and come up with some re-

commendations while further research is carried out.

We present a summary of tests using different color paper sheets

because it is important to identify and establish requirements for the

method’s application and to guarantee that if the paper color changes,

but representatives of that same color are included in the training set,

then the technique would still work. Depending on the color of the

paper, however, a gray background tone may be included in the

scanned images distorting the feature values distribution.

For this purpose, we printed 19 documents using six different color

paper sheets (white, beige, blue, green, rose, and yellow). Four of the

previous printers available were used (class 1 Brother model HL-

4070CDW, class 8 Lexmark model E260DN, class 9 OKI model C330DN

and class 10 Samsung model CLP315). The same scanner Plustek model

PL2546 scanned all documents. F1score results in Table 11 show that if

the same paper color of tested documents (questioned ones) are in-

cluded in the training set, then the results are comparable to those

obtained on the first experiments using white paper.

4.9. Execution time analysis

All processing and performance measurements in this paper were

done using a notebook Samsung 500R5H-XD3BR, Intel Core i7-

5500CPU @ 2.40 GHz, 2 Cores, 4 Logical processors, 8 GB of physical

memory, 1 TB HD 5400RPM SATA-III 6 GB/s. Programs were written in

Table 9

Three most discriminant features of each printer and their location. The two

samples KS_test of all those features rejected the null hypothesis with p values

equal to 1.

Inside Outside body

Class Rank Feature ☆β ☆D β( ) % body Near Far from

ROI 1 border ROI

2

border ROI

3

1 1 X2229 7.74e−05 8.7 Few No No

1 2 X2179 2.98e−04 29.8 Yes No No

1 3 X2189 2.51e−04 27.3 Yes No No

2 1 X3 1.53e−02 28.2 No Many Yes

2 2 X5 9.37e−03 30.8 No Many Yes

2 3 X7 6.42e−03 31.4 No Many Yes

3 1 X2048 3.38e−04 5.8 Yes No No

3 2 X2090 5.05e−04 5.0 Yes No No

3 3 X2076 5.20e−04 7.8 Yes No No

4 1 X1 3.26e−02 19.7 No Many Many

4 2 X2096 5.29e−04 6.7 Yes No No

4 3 X2184 3.55e−04 12.8 Yes No No

5 1 X1916 3.68e−05 30.2 Yes No No

5 2 X2012 1.41e−04 6.1 Yes No No

5 3 X2011 1.14e−04 35.5 Yes No No

6 1 X2093 2.45e−04 6.0 Yes No No

6 2 X2085 2.18e−04 5.9 Yes No No

6 3 X2091 2.33e−04 7.3 Yes No No

7 1 X2062 4.28e−04 5.7 Yes No No

7 2 X2060 3.88e−04 9.7 Yes No No

7 3 X1967 5.02e−05 6.5 Yes No No

8 1 X2099 3.29e−04 7.3 Yes No No

8 2 X2098 5.24e−04 26.7 Yes No No

8 3 X2100 5.14e−04 27.3 Yes No No

9 1 X1917 4.64e−05 9.8 Few No No

9 2 X2024 1.70e−04 44.1 Yes No No

9 3 X1925 2.14e−05 48.5 Few No No

10 1 X150 2.73e−05 49.8 No Few No

10 2 X2263 1.55e−05 63.9 Yes No No

10 3 X152 2.53e−05 51.6 No Few No

Table 10

Final test performance metrics frames containing text only text and only figures.

Vector Acc Rcl Spc Prc F1s

Length % % % % %

Text Only Frames

Mean 456 95.41 91.73 99.08 91.88 91.64

σ 4.05 7.71 0.88 7.65 6.57

Figure Only Frames

Mean 965 79.19 61.19 97.18 69.82 64.17

σ 13.6 26 2.53 28.07 25.49

Table 11

F1score metrics for experiments employing documents printed with different

color paper sheets. “All” means a mix of documents with all paper colors. Bold

numbers highlight that the training set includes documents with the same color

as in the testing set. “NOK” denotes the test did not meet the minimum of 60%

F1score while “NoTest” means the test was not performed.

Training paper color

White Beige Blue Green Rose Yellow All

Tests

paper

color

White 100.0 88.15 89.58 NOK NOK NOK 100.0

Beige 98.75 100.0 NoTest NoTest NOK NoTest 100.0

Blue 98.75 NoTest 100.0 NoTest NOK NOK 100.0

Green 82.69 NoTest NoTest 100.0 NOK NoTest 88.52

Rose NOK NOK NOK NOK 94.44 NOK 94.44

Yellow NOK NoTest NOK NoTest NOK 100.0 100.0

All 82.91 75.80 74.41 61.59 NOK 60.75 97.25
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Matlab script language and ran on Matlab R2017a 64-bit version

9.2.0.538062. During the computational time measurements, network

interfaces were off, and no other program than Matlab was using user

interfaces.

The total training time producing the model for classification and

back-projecting feature selection takes about 14.5 h, including all steps

described in Table 12. Note, however, this time is for the WHOLE

training procedure for all documents and all printers under investiga-

tion. The source attribution and CTGF maps for a questioned document

takes only 41 s according to steps in Table 13, where the most im-

portant ones are the source attribution, which takes 5 s, and the back

projection and saliency map generation, with 3.5 s.

It is relevant to note that the Step 5 (Iterative Ranking) should be

applied only to the classes of the questioned documents, not for all

classes. The training time could be significantly improved with paral-

lelization (cores and GPUs), but we did not focus on this aspect in this

work as the accountability aspect is more significant and demanded a

complete solution — the literature lacks attribution methods in this

regard.

Just to compare the performance of the Random Forest classifier

with SVMs in the same conditions, we replaced Random Forest by SVMs

in Step 3 in Table 12 (the full-length vector training, validation, and

testing). Step 3 running with SVM over the same dataset takes more

than 30 h just for that step (in comparison, Random Forest takes about

1 h and 37min), and for some classes more than 60 times the corre-

spondent Random Forest classifier’s training time.

5. Conclusions and future work

Explainability is the most novel and significant achievement of the

method we present in this paper (CTGFmap). We believe this is the first

work in digital forensics to target the area of human-interpretable

methods. Another novel aspect is the use of a Random Forest classifier

to rank and select features. It can be utilized on other machine-learning

problems whereby features selection focuses on marginal variables re-

lated to the target classes, i.e., a supervised dimensionality reduction

method is required, as in those cases a non-supervised algorithm (e.g.,

PCA) will not be effective. Finally, the theoretical treatment we present

for CTGF map is worth mentioning as another contribution of our work

herein. Furthermore, we showed how this framework could be used to

extend existing algorithms and be used to enhance other traditional

forensic investigation analyses through the proposed CTGFmap algo-

rithm.

Driven by the objective of mapping features, and looking for the

requirements to achieve it, many aspects of printer attribution could be

explored in this research, and many lessons were learned. The char-

acteristics used for the classification should describe measurements that

can be pointed back on the document. It requires a transformation that

keeps the local information and an inverse one that recovers it.

However, this requirement cannot always be attended.

Starting with the feature engineering part, it is worth noting how a

simple image descriptor such as CTGF can capture discriminative laser

printing properties. Although at this point it seems evident that printing

imperfections or defects are relevant proxies for printer discrimination,

to obtain such patterns using only 600-DPI documents is a remarkable

Table 12

Summary of model training and certification processing times.

Total

Step Process Step Description Elapsed Time

hh:mm:ss

1 Framing: Get TIFF file for 1,184 scanned documents and split them into 48 frames (6x8) computing pixels metrics and CTGF descriptor for each frame. 01:32:29

2 Feature vectors generation: For the 56,832 frames produced on the previous step, eliminate blank frames and vector columns which has the same value in

all vectors. Separate document vectors in partitions according the experiments plan.

00:03:16

3 Training with full length vectors (547 features), validation and final test using 4 experiments with partitions according to Table 3. Each classifiers has one

instance per class (10 classes) of a OvA Random Forest classifier

01:36:47

Training time per vector per OvA Random Forest classifier in µs: min= 337, mean=482, max=716, σ=89

Validation or Final Test time per vector per OvA Random Forest classifier in µs: min=44, mean=53, max=85, σ=11

I/O operations: mean= 25.92ms

4 Compute features cut point ( ☆β ) and classify features into Positive, Non-relevant or Negative. 00:40:25

5 Iterative Ranking: 35 iterations of 4 experiments including training and validation, reducing the vector length by a factor of 0.9 of positive features of each

class in each iteration. Each iteration computes remaining features rank by sorting the feature importance over trained classifiers, and stops when all classes

break the minimum performance criteria.

10:04:06

6 Final 4 experiments with training, validation and final test for each class using the best length of positive features determined in previous step. 00:32:17

Total Process Time. 14:29:20

Table 13

Summary of document attribution and back-projecting maps processing time.

Total

Step Process description Elapsed Time

(sec.)

1 Feature vectors generation for the questioned document: Get TIFF file of scanned document and split into 48 frames (6x8) computing CTGF descriptor for

each frame. Eliminate blank frames and discard columns which does not belong to the full vectors length (”547 features) included in the classifiers trained

in step 3 of Table 12.

4.85

2 Source printer attribution for the questioned document using the full length vectors (547 features) classifiers trained in step 3 of Table 12. 4.90

3 Generate a visualization of the frames grid in the original document, as included in the appendix analysis report. 18.70

4 Back-projecting visualization of charts for one document frame: Gray Scale, CTGF map, CTGF most discriminant features, as included in the appendix

analysis report.

3.50

5 Distribution charts for the 3 most discriminant features on the frame processed at previous step, as included in the appendix analysis report. 9.30

Total Process Time (seconds) 41.26
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feat. Normalization is also crucial for facilitating the separation work of

classifiers and also to express the relationship between classes correctly.

An inadequate normalization can make classifiers work well, but de-

stroy the local information needed for the physical characterization of

mapping.

As expected, the identification of the mappable discriminant fea-

tures is a challenge. Classification is usually a complicated process

whereby variables are analyzed in conjunction. If the identification of

positive features is easy and can be done looking at features in-

dividually, then the classification algorithm can be replaced by this

analysis, and the mapping becomes a trivial task. That became apparent

when we defined a substantial restriction to determine positive features

just looking at the values distribution. The variables importance metric

produced by the random forest algorithm evaluates how a feature af-

fects the final classification result, and then allows us to rank the fea-

ture according to their relative relevance. The combination of the dis-

tribution analysis with feature ranking by the classifier enables the

identification of features to map back into the document.

The entire method also follows a sequence of techniques and algo-

rithms that together form a consistent and verifiable process, from the

captured printers datasets generation to the investigated documents

analysis report. The experiments conducted in this work show the

proposed method produces good source attribution results for all

printers, and most of them can have a saliency map of their most dis-

criminant features applied. Some of them cannot lead to high dis-

crimination as they have only a few positive features or the most fre-

quent features are weak in the class separation process and,

consequently, too many of them would be necessary to produce a

minimum acceptable classification result. However, even in those cases

the visualization of such features when back-projected onto the docu-

ment is revealing and useful to a forensic analyst as Figs. 10 and 11

show.

We provide as supplemental material an example of an expert

analysis report of an investigated document, which shows all concepts

presented herein, including the attribution metrics, statistics and dis-

tribution charts of the most discriminant positive features mapping

them onto the questioned document. We also publish the source-code

and intermediate files of all experiments described in this work at

(https://github.com/lcngit/CTGFmap.git).

Finally, the closed set of printers in the experiments could be ex-

tended to consider documents printed possibly by printers outside the

investigated pool of printers, or papers with different characteristics

such as paper colors not used in the training set. However, in this case,

more analyses about the feature boundaries should be carried out. We

regard this analysis as future work, and we believe the values dis-

tribution, feature importance, and also the mapping of decisions in

trained trees can help on the task of defining boundaries for each

printer on the set of interest and yield a probability evaluation of a

document being printed by a printer outside the set of suspected ones.

The work presented in this paper spawns various future research

avenues in the interaction between interpretable machine-learning

methods and forensic science. Also, the framework prompts for gen-

erative modeling of forensic data. In this setting, one specifies a prob-

abilistic model based on the knowledge of the underlying physical

phenomena for a piece of evidence. In the printer attribution problem,

the generation of an image can be distilled from the effect of the printer

components in the final document. Finally, the procedure to determine

which features are significant for the classifier can be used as a starting

point in future work to analyze discriminant variables for other com-

plex image classifiers such as convolutional neural networks..

Acknowledgment

We thank the financial support of Intel Strategic Research Alliance

(Grant #440850/2013-4), the National Council for Scientific and

Technological Development – CNPq (Grants #302224/2015-7 and

#304472/2015-8), the São Paulo Research Foundation – Fapesp

(DéjàVu Grant #2017/12646-3), and the Coordination for the

Improvement of Higher Education Personnel – Capes (DeepEyes grant),

as well as Cambridge Trusts-CAPES grant BEX 9407-11-1.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the

online version, at http://dx.doi.org/10.1016/j.jvcir.2018.04.002.

References

[1] A. Rocha, W. Scheirer, T. Boult, S. Goldenstein, Vision of the unseen: current trends

and challenges in digital image and video forensics, ACM Comput. Surv. 43 (4)

(2011) 26:1–26:42, http://dx.doi.org/10.1145/1978802.1978805.

[2] M. Ebrahimi, C.Y. Suen, O. Ormandjieva, Detecting predatory conversations in

social media by deep Convolutional Neural Networks, Dig. Invest. 18 (2016) 33–49,

http://dx.doi.org/10.1016/j.diin.2016.07.001.

[3] A. Uçar, Y. Demir, C. Güzeliş, A new facial expression recognition based on curvelet

transform and online sequential extreme learning machine initialized with spherical

clustering, Neural Comput. Appl. 27 (1) (2016) 131–142, http://dx.doi.org/10.

1007/s00521-014-1569-1.

[4] A. Ferreira, L.C. Navarro, G. Pinheiro, J.A. dos Santos, A. Rocha, Laser printer at-

tribution: exploring new features and beyond, Forensic Sci. Int. 247 (2016)

105–125, http://dx.doi.org/10.1016/j.forsciint.2014.11.030.

[5] T. Gal, J. Sandor, A. Karoly, Application note an#409 determining the sequence of

crossed lines by ft-ir-atr-microscopy. <https://tinyurl.com/y9m9smyk> (ac-

cessed: 18.10.2017).

[6] G.M. LaPorte, Chemical Analysis for the Scientific Examination of Questioned

Documents, Wiley-Blackwell, 2015, <http://www.wiley.com/WileyCDA/

WileyTitle/productCd-1118897722.html>.

[7] E.B. Brauns, R.B. Dyer, Fourier transform hyperspectral visible imaging and the

nondestructive analysis of potentially fraudulent documents, Appl. Spectrosc. 60 (8)

(2006) 833–840, http://dx.doi.org/10.1366/000370206778062093 pMID:

16925917.

[8] P.-J. Chiang, N. Khanna, A.K. Mikkilineni, M.V.O. Segovia, S. Suh, J.P. Allebach,

G.T.C. Chiu, E.J. Delp, Printer and scanner forensics, IEEE Signal Process. Mag. 26

(2) (2009) 72–83, http://dx.doi.org/10.1109/MSP.2008.931082.

[9] P.-J. Chiang, N. Khanna, A.K. Mikkilineni, M.V.O. Segovia, J.P. Allebach,

G.T.C. Chiu, E.J. Delp, Printer and Scanner Forensics: Models and Methods, Berlin,

Heidelberg, Berlin, Heidelberg, 2010, http://dx.doi.org/10.1007/978-3-642-

11756-5_7.

[10] S. Shang, X. Kong, Printer and Scanner Forensics, John Wiley & Sons, Ltd, 2015.

[11] G.N. Ali, A.K. Mikkilineni, J.P. Allebach, E.J. Delp, P.-J. Chiang, G.T. Chiu, Intrinsic

and extrinsic signatures for information hiding and secure printing with electro-

photographic devices, in: NIP and Digital Fabrication Conference, vol. 2003, Society

for Imaging Science and Technology, 2003, pp. 511–515. <http://www.

ingentaconnect.com/content/ist/nipdf/2003/00002003/00000002/art00015>

[12] A.K. Mikkilineni, G.N. Ali, P.-J. Chiang, G.T.C. Chiu, J.P. Allebach, E.J. Delp,

Signature-embedding in printed documents for security and forensic applications,

in: Proc. SPIE, vol. 5306, 2004, pp. 455–466. doi:http://dx.doi.org/10.1117/12.

531944.

[13] K.-Y. Lee, Y. Bang, H.-K. Choh, New measurement method of banding using spatial

features for laser printers, in: Proc. SPIE, vol. 7529, 2010, pp. 75290H–75290H–7.

doi:http://dx.doi.org/10.1117/12.840480.

[14] J. Zhang, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Shaw, J.P. Allebach,

Assessment of presence of isolated periodic and aperiodic bands in laser electro-

photographic printer output, in: Proc. SPIE, Vol. 8653, 2013, pp.

86530N–86530N–7. doi:http://dx.doi.org/10.1117/12.2008818.

[15] J. Zhang, J.P. Allebach, Estimation of repetitive interval of periodic bands in laser

electrophotographic printer output, in: Proc. SPIE, vol. 9396, 2015, pp.

93960J–93960J–9. doi:http://dx.doi.org/10.1117/12.2083547.

[16] Y. Wu, X. Kong, X. You, Y. Guo, Printer forensics based on page document’s geo-

metric distortion, in: 2009 16th IEEE International Conference on Image Processing

(ICIP), 2009, pp. 2909–2912. doi:http://dx.doi.org/10.1109/ICIP.2009.5413420.

[17] O. Bulan, J. Mao, G. Sharma, Geometric distortion signatures for printer identifi-

cation, Proceedings of the 2009 IEEE International Conference on Acoustics, Speech

and Signal Processing, ICASSP ’09, IEEE Computer Society, Washington, DC, USA,

2009, pp. 1401–1404, , http://dx.doi.org/10.1109/ICASSP.2009.4959855.

[18] Y. Ju, D. Saxena, T. Kashti, D. Kella, D. Shaked, M. Fischer, R. Ulichney, J.P.

Allebach, Modeling large-area influence in digital halftoning for electrophoto-

graphic printers, in: Proc. SPIE, Vol. 8292, 2012, pp. 82920X–82920X–9.

doi:http://dx.doi.org/10.1117/12.912769.

[19] A.K. Mikkilineni, P.-J. Chiang, G.N. Ali, G.T.C. Chiu, J.P. Allebach, E.J.D. III, Printer

identification based on graylevel co-occurrence features for security and forensic

applications, in: Proc. SPIE, Vol. 5681, 2005, pp. 430–440. doi:http://dx.doi.org/

10.1117/12.593796.

[20] A.K. Mikkilineni, N. Khanna, E.J. Delp, Forensic printer detection using intrinsic

signatures, in: Proc. SPIE, Vol. 7880, 2011, pp. 78800R–78800R–11. doi:http://dx.

doi.org/10.1117/12.876742.

[21] A. Ferreira, L.C. Navarro, G. Pinheiro, J.A. dos Santos, A. Rocha, Laser printer at-

tribution: Exploring new features and beyond - datasets. <http://www.recod.ic.

L.C. Navarro et al. Journal of Visual Communication and Image Representation 53 (2018) 257–272

271

61



unicamp.br/anselmo/printer_forensics_dataset/>.

[22] M.J. Tsai, I. Yuadi, Printed source identification by microscopic images, in: 2016

IEEE International Conference on Image Processing (ICIP), 2016, pp. 3927–3931.

doi:http://dx.doi.org/10.1109/ICIP.2016.7533096.

[23] Parliament and Council of the European Union, General data protection regulation.

<http://www.eugdpr.org/>

[24] B. Goodman, S. Flaxman, European union regulations on algorithmic decision-

making and a “right to explanation”, in: K.R.V. Been Kim, Dmitry M. Malioutov (Ed.

), Proceedings of the 2016 ICML Workshop on Human Interpretability in Machine

Learning (WHI 2016), 2016, pp. 26–30. Available from:< https://arxiv.org/abs/

1606.08813> .

[25] FAT/ML, Fairness, accountability, and transparency in machine learning. <http://

www.fatml.org/>.

[26] K. Varshney, A. Weller, B. Kim, D. Malioutovx, Workshop on human interpretability

in machine learning (whi) (August 2017). <https://sites.google.com/view/

whi2017/home>.

[27] K. Talamadupula, S. Sohrabi, L. Michael, B. Srivastava, W11 - human-aware arti-

ficial intelligence (February 2017). <http://www.aaai.org/Workshops/

ws17workshops.php#ws11>.

[28] CDT, Digital decisions, Tech. rep., Center for Democracy & Technology, 2017.

<https://cdt.org/issue/privacy-data/digital-decisions/>.

[29] N. Diakopoulos, S. Friedler, How to hold algorithms accountable, MIT Technology

Review. <https://www.technologyreview.com/s/602933/how-to-hold-

algorithms-accountable/>

[30] N. Diakopoulos, S. Friedler, M. Arenas, S. Barocas, M. Hay, B. Howe, H.V. Jagadish,

K. Unsworth, A. Sahuguet, S. Venkatasubramanian, C. Wilson, C. Yu, B.

Zevenbergen, Principles for accountable algorithms and a social impact statement

for algorithms, Tech. rep., FAT/ML Organization, 2017. <http://www.fatml.org/

resources/principles-for-accountable-algorithms>.

[31] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res. 3

(2003) 993–1022 <http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf>.

[32] A. Criminisi, J. Shotton, E. Konukoglu, Decision forests: a unified framework for

classification, regression, density estimation, manifold learning and semi-su-

pervised learning, Found. Trends®Comput. Graph. Vis. 7 (2-3) (2012) 81–227,

http://dx.doi.org/10.1561/0600000035.

[33] G. James, D. Witten, T. Hastier, R. Tibshirani, An Introduction to Statistical

Learning: With Applications in R, Springer Publishing Company, Incorporated,

2014. doi:http://dx.doi.org/10.1007/978-1-4614-7138-7.

[34] K.P. Murphy, Adaptive basis function models, Adaptive computation and machine

learning, The MIT Press, 2012, Ch. 16, pp. 543–587.

[35] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32, http://dx.doi.org/

10.1023/A:1010933404324.

[36] R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning

algorithms, Proceedings of the 23rd International Conference on Machine Learning,

ICML ’06, ACM, New York, NY, USA, 2006, pp. 161–168, , http://dx.doi.org/10.

1145/1143844.1143865.

[37] A. Narayanan, E. Shi, B.I.P. Rubinstein, Link prediction by de-anonymization: how

we won the kaggle social network challenge, in: The 2011 International Joint

Conference on Neural Networks, 2011, pp. 1825–1834. doi:http://dx.doi.org/10.

1109/IJCNN.2011.6033446.

[38] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,

R. Moore, Real-time human pose recognition in parts from single depth images,

Commun. ACM 56 (1) (2013) 116–124, http://dx.doi.org/10.1145/2398356.

2398381.

[39] L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, Classification and Regression

Trees, The Wadsworth and Brooks-Cole Statistics-probability Series, Taylor &

Francis, 1984, <https://books.google.com.br/books?id=JwQx-WOmSyQC>.

[40] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140, http://dx.doi.

org/10.1023/A:1018054314350.

[41] D. Blackwell, Conditional expectation and unbiased sequential estimation, Ann.

Math. Stat. 18 (1) (1947) 105–110, http://dx.doi.org/10.1214/aoms/1177730497.

[42] L. Breiman, Out-of-bag estimation, Tech. rep., Statistics Department, University of

California, 1996. <https://www.stat.berkeley.edu/breiman/OOBestimation.pdf>.

[43] G. Louppe, L. Wehenkel, A. Sutera, P. Geurts, Understanding variable importances

in forests of randomized trees, in: C.J.C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, K.Q. Weinberger (Eds.), Advances in Neural Information Processing

Systems 26, Curran Associates, Inc., 2013, pp. 431–439 <https://tinyurl.com/

ycrpfng9>.

[44] C. Strobl, A.-L. Boulesteix, A. Zeileis, T. Hothorn, Bias in random forest variable

importance measures: illustrations, sources and a solution, BMC Bioinformat. 8 (1)

(2007) 1–21, http://dx.doi.org/10.1186/1471-2105-8-25.

[45] A. Altmann, L. Tolosi, O. Sander, T. Lengauer, Permutation importance: a corrected

feature importance measure, Bioinformatics 26 (10) (2010) 1340–1347, http://dx.

doi.org/10.1093/bioinformatics/btq134.

[46] A. Rocha, S.K. Goldenstein, Multiclass from binary: expanding one-versus-all, one-

versus-one and ecoc-based approaches, IEEE Trans. Neural Netw. Learn. Syst. 25 (2)

(2014) 289–302, http://dx.doi.org/10.1109/TNNLS.2013.2274735.

[47] F.O. Costa, E. Silva, M. Eckmann, W.J. Scheirer, A. Rocha, Open set source camera

attribution and device linking, Pattern Recogn. Lett. 39 (Supplement C) (2014)

92–101, http://dx.doi.org/10.1016/j.patrec.2013.09.006 advances in Pattern

Recognition and Computer Vision.

[48] W.J. Scheirer, A. de Rezende Rocha, A. Sapkota, T.E. Boult, Towards open set re-

cognition, IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 35 (2013) 1757–1772,

http://dx.doi.org/10.1109/TPAMI.2012.256.

[49] L.P. Jain, W.J. Scheirer, T.E. Boult, Multi-class open set recognition using prob-

ability of inclusion, in: D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Computer

Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-

12, 2014, Proceedings, Part III, Springer International Publishing, 2014, pp.

393–409, , http://dx.doi.org/10.1007/978-3-319-10578-926.

[50] W.J. Scheirer, L.P. Jain, T.E. Boult, Probability models for open set recognition,

IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 36 (11) (2014) 2317–2324, http://

dx.doi.org/10.1109/TPAMI.2014.2321392.

[51] A. Rattani, W.J. Scheirer, A. Ross, Open set fingerprint spoof detection across novel

fabrication materials, IEEE Trans. Inf. Forensics Secur. 10 (11) (2015) 2447–2460,

http://dx.doi.org/10.1109/TIFS.2015.2464772.

L.C. Navarro et al. Journal of Visual Communication and Image Representation 53 (2018) 257–272

272

62



63

Chapter 3

Discussion

It is evident in the cases analyzed in Chapter 2 that the translation of original problems
into machine learning vector space took into account physical or logical properties which
are the object of screening on the target solution. In the printer attribution problem, the
CTGF texture [15] descriptor captures imperfections in the laser printing process which
are typical and device dependent. In Android malware relationship analysis, the features
extracted from the ontology graph uses the Bag of Words technique [30, 29] and expertise
acquired on Android manifests analysis in the article [16]. Those are examples of the feature
engineering techniques that are required to start the transformation from the complex
model of the original problem into the features space required by the machine-learning
algorithms.

An essential step in the proposed method is the supervised technique for finding
discriminant features. The method allows for identifying the most relevant characteristics
of the target class without changing the semantics of the original vector space. Usually,
dimensionality reduction methods compound variables to favor classifier performance
mixing into one variable semantics of different objects in the original model. That is the
reason because interpretability becomes difficult and tricky.

Just as an example, Principal Component Analysis (PCA) when applied to the problems
of articles of Chapter 2 destroyed the information which are the characteristic of the target
classes, and that effect was observed during the research work to produce these articles.

Some of those reduction methods are difficult to reverse and to determine the original
features which are relevant to the prediction algorithm. For example, Partial least squares

Discriminant Analysis (PLS-DA) that uses the dependent variable information on the
features reduction composition, and consequently preserves information associated to the
predicted class, mix semantics of the original features into the new ones, therefore making
more difficult to interpret features in the new vector space.

Fortunately the Random Forest algorithm [6], based on decision trees [9], [7] with a
probabilistic interpretation of its principles in [22], provides the information about the
gain of information in each decision step of the algorithm, consequently computing the
importance of the feature tested in the tree node to discriminate the predicted class. This
Random Forest Variable Importance or Feature Importance, as mentioned below, is crucial
for the reduction method which preserves the semantics of the features during the reduction
process. Although it seems costly to iterate the training of a classifier and measuring
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prediction results, the work done in two different areas with complex models to analyze
in Chapter 2 shown reasonable computing time on the problem solution, and mainly in
the model interpretability. The bagging of decision trees machine learning algorithm has
the following advantages when processing the data we have at hand:

• High-classification performance: Random Forest is one of the best classifiers for
different problems [14].

• No need of kernel and parametrization adjustments: Random Forest is known as a
non-parametrized method, which means it does not require an elaborate search of
parameters, kernel transformation, neither it is sensitive to normalization of input
data. Only two parameters are subject of tuning: the number of trees in the forest
which is typically set between 64 to 128 for most of the cases [26], and the number
of random features selected in each tree building cycle that is generally set to the
square root of the vector length.

• Execution performance: A trained random forest classifier is a set of binary trees,
which can be seen as a sequence of “if then else” statements being extremely fast at
prediction time.

• Feature importance: Decision tree classifiers provide information about the relevance
of each feature in the decision trees by evaluating how a change or omission of
one feature impacts classification results. This is referred to as out of bag (OOB)
evaluation concept [5], [2], [20]. Importance assessment is a crucial property of
the classification algorithm to provide explainability and accountability of results
achieved by the classifier.

In many practical problems, the only objective is to have a classifier that can predict
a class based on the characteristics of the input data. In the case studies of the articles
included in this dissertation, the process does not end when a high-performance classifier
is produced. It is necessary to go beyond, identifying which of the original input variables
are responsible for the high performance of the classifier, meaning that they are the crucial
ones for the interpretability of the results achieved.

Accountability [10, 13, 33, 31, 1], as previously mentioned, is a demanding priority
in artificial intelligence, due machine learning algorithms are involved more and more in
decisions and activities which affect human life, individually or collectively. Interpretability
directly involves the discriminant features determination, which is a crucial process also in
research for identifying elements that entangle a complex physical or biological phenomenon.

With this as a backdrop, the primary objective of the CTGFmap article in Section 2.2 is
to provide forensic analysts with a printer attribution method that fits in the explainability
concept. Questioned documents’ source attribution is usually part of proof and evidence
presented in court trials by experts to court members, which are not familiar with machine
learning methods, but they can more easily understand physical explanations with visual
evidence presentation. Handwriting analysis, for example, is an old and routine technique
visually presented in courts for manually-written letters, memos, and most common for
signatures.
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The CTGFmap method was designed based on requirements to address the explainabil-
ity/accountability principle of accountable machine learning as defined in [11, 10, 33, 31]
above cited. The method aims a visual identification of the regions which classifiers used
in the source attribution process and are more present in the attributed class than on
other documents produced by other printers. In other words, the focus of the article is
not only in finding the printer source of a document, with high accuracy and precision,
but also which features/parts in the investigated document lead to that conclusion of
the classifier. This aspect is the most novel and significant achievement of CTGFmap in
printer-source attribution methods.

The Android research started with a broad objective to create a model for the operating
system vulnerabilities based on its structural components and resources. Although the
work done in this dissertation addressed only a small part of the fundamental vulnerability
question, the promising starting point was attained using ontologies and machine learning
techniques together. Results showed that ontologies and machine learning could leverage
solutions to a problem solution. The significant constraint for addressing the big picture
was the availability of structured information about the "modus operandi" of the attacks,
and the organization of available information that can be attached to the application
samples. It means that there is an excellent opportunity for the semantic formalization
and systematic organization of malware according to characteristics; to cite some: attack
objectives, attack operation, main and derived code, resources involved, damage caused.

Ontology is a powerful concept for organizing information and providing tools for
manipulating and extracting value. Machine learning is a very effective tool for analyzing
and discovering hidden relationships inside data. Together, they form a robust combination
of exploration and discovery. However, the present lack of standardized concepts and
structured information (most of the descriptions are in natural language) on malware code
analysis for ontology definition were strong constraints faced during the work.

Maybe one of the reasons for the difficulty in structuring information is the nature
of security problems, where malicious methods have to change regularly for attacks to
succeed; but we should also consider that many known attacks continue to create havoc,
as they are introduced in different applications and used with different strategies.

Although Software Engineering and its software development methodologies evolved a
lot during the last decades, software architecture and design methodologies did not produce
consistent and shareable documentation which could be analyzed with automated methods
such as proposed in this work. This lack of formalization in the software development
industry is a challenge for the future and depends on industry standards, and mainly
in the development of reverse modeling techniques and tools to capture information on
systems already developed.

Considering that the malware detection article addressed part of the entire initial
problem, we now propose some future work to extend the scope coverage.

The Android permissions model can be expanded to include information already
available in the documentation about System APIs protected by each permission, and also
results of static code analysis or execution monitoring using tools available for Android
malware scanning. The number of malware and benign applications in the repository
is high and much more work will be necessary. However, the captured data will give
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more information on the relationships and attacks, and as it is organized and stored as
ontologies, the model can grow and evolve without the effort of data structures redesign.

Coming from another front, ontologies, and taxonomies which classify malware by their
behavior, type of attack and code metamorphosis can be easily linked with the enhanced
ontology proposed in the previous paragraph. In this way, malware applications will
be described with more precise semantic linking the behavior information (e.g., attack
objectives and methods) with their implementation (e.g., malicious code, resources usage).
That project is not only an academic exercise but a current security market need, as the
vulnerability databases like CVE [4] are focused on affected products, impacted versions,
and versions to resolve. The detailed technical description is always superficially touched.

As a concrete example, the AndroPermEco ontology proposed in Section 2.1 can be
extended to include all information from manifests, and also captured by tools, e.g., those
in articles [12, 3, 34, 35, 32, 28], and others surveyed in [23]. Then, merge the ontology
with taxonomies and ontologies developed by the authors of articles [19, 18], and also
with other ontologies [25] proposed for linking with official vulnerabilities, attacks and
countermeasures databases [4].

A simple conclusion about the nature of the above projects shows a need in the Android
Security arena for a more structured approach using ontologies to store and process data
from malware information. It should include not only a way to detect them, but also to
understand their heritage, evolution and mainly providing structured information which
can be used to identify potential security failures at early stages of application development.

Security is a challenging subject, as the attacks change as countermeasures evolve.
However, there are unstructured knowledge and much data already available which can
leverage the knowledge of the cybersecurity community if they are organized to be shared
in a more effective way. Ontology provides the structured and expansible way to organize
the sparse and not integrated information about malware. Machine learning algorithms
can extract information hidden in the data. Then a multidisciplinary and joined effort of
the cybersecurity community is needed to use the tools already in place.

Last but not least, the method described here was successfully applied to the problem
of identifying molecules in the human blood serum arising from Zika virus (ZIKV) infection.
The article [21] recently published in Frontiers Bioengineering and Biotechnology Journal,
with the collaboration of the author of this dissertation, describes the use the method
described herein to produce a faster and lower cost screening test for Zika virus detection.
Beyond the high accuracy and precision of the diagnosis classifier in detecting the infection,
based on high-resolution mass-spectra data, the method interprets which lines of the
spectrum are related to patients infected by Zika virus, allowing biochemistry researchers
to identify molecules which are biomarkers for the disease. It is an outstanding and
promising achievement that proves the generality and applicability of the method in very
different areas.
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Chapter 4

Conclusion

Results achieved in the article in Section 2.1 grant the conclusion that even data captured
from applications’ manifests, which are human readable and public available as part of
the installation package, contain enough information that a machine learning classifier can
decode to predict most common malware families. From another point of view, the method
shows that permissions requested by malware are related to their malicious purposes. Thus,
an analysis of the permissions used by the applications made available in their manifests
was enough to identify several families of malware with accuracy in the average of 88%.

The most common malware families exploit vulnerabilities related to user behavior,
such as phishing and social engineering techniques. In those cases, malware does not
need to exploit system failures at deeper levels, such as code failures, but only to obtain
the user’s permission to access sensitive data and data transmission mechanisms, such as
phone calls and SMS messages, to succeed in their undertaking. That is the reason for the
surprising success to identify most of malware families modeling only the relationships
defined by the requested permissions.

Malware that exploits flaws in the lower layers of the system, such as the Linux
embedded in Android and infrastructure codes such as OpenSSL, are more difficult to
identify by the method presented here because reverse engineering of their code is necessary
in such cases. However, the modeling using ontologies can be extended to incorporate
other information needed for more extended malware coverage.

As the model for structuring the captured data is based on ontologies, it can evolve to
aggregate more in-depth information easily, without restructuring the model and, more
importantly, without changing the analysis framework which converts the ontology graph
into a machine learning process for determining the most critical structures in the original
ontology model.

On the other hand, the article in Section 2.2 approached the accountability needed to
use the printer source attribution into forensics reports. That achievement is significant
nowadays when machine learning algorithms are escalating on the use of decisions that
impact people’s lives.

Creating a visual map of the investigated document, highlighting discriminant regions
that attach the document to the source printer is a vital support tool for explaining
the technical decision to court members. It is a practical and required solution for the
immediate application.
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More research is needed to improve the detection of some printers which are not able to
be identified by their positive features. It is also needed to deal with the open-set problem
which addresses the situation when the printer of the investigated document is not in the
available pool. However, all these enhancements are subject to future work, and they will
also benefit from the methods herein developed.

Finally, both articles have demonstrated the power of the conceptual framework,
reducing complex models to a level for which it is possible to create visual representations
or individual variable analysis of the problem. Android security and laser printer forensics
are completely different arenas, but the conceptual framework was able to approach them
in the same way, connecting different computer science tools and techniques, as proven
by the last work done in the article of the Zika virus detection from high-resolution
mass-spectra[21].

All the work from problem identification, technique research, solution design and
conceptual generalization was a tremendous opportunity for learning and applying knowl-
edge acquired during the master’s program. Concepts and algorithms of large areas of
knowledge such as Ontologies, Graph Theory, Machine Learning, Image Descriptors, to
mention some, were studied and applied to the work done. More than the results achieved,
the use of these techniques in practice provided the ground where the author could sow
the seeds of lessons learned in classes and the literature, and witness this knowledge grow
and evolve in the experiments while facing the difficulties of real-world problems. It was a
very productive environment for discussions and discoveries.
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