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Resumo

O agrupamento de dados é um dos principais desafios em problemas de Ciência de Da-
dos. Apesar do seu progresso científico em quase um século de existência, algoritmos de
agrupamento ainda falham na identificação de grupos (clusters) naturalmente relaciona-
dos com a semântica do problema. Ademais, os avanços das tecnologias de aquisição,
comunicação, e armazenamento de dados acrescentam desafios cruciais com o aumento
considerável de dados, os quais não são tratados pela maioria das técnicas. Essas ques-
tões são endereçadas neste trabalho através da proposta de uma abordagem de divisão
e conquista para uma técnica de agrupamento única em encontrar um grupo por domo
da função de densidade de probabilidade dos dados — o algoritmo de agrupamento por
floresta de caminhos ótimos (OPF - Optimum-Path Forest). Nesta técnica, amostras são
interpretadas como nós de um grafo cujos arcos conectam os k-vizinhos mais próximos no
espaço de características. Os nós são ponderados pela sua densidade de probabilidade e
um mapa de conexidade é maximizado de modo que cada máximo da função densidade de
probabilidade se torna a raiz de uma árvore de caminhos ótimos (grupo). O melhor valor
de k é estimado por otimização em um intervalo de valores dependente da aplicação. O
problema com este método é que um número alto de amostras torna o algoritmo inviável,
devido ao espaço de memória necessário para armazenar o grafo e o tempo computacional
para encontrar o melhor valor de k. Visto que as soluções existentes levam a resultados
ineficazes, este trabalho revisita o problema através da proposta de uma abordagem de
divisão e conquista com dois níveis. No primeiro nível, o conjunto de dados é dividido
em subconjuntos (blocos) menores e as amostras pertencentes a cada bloco são agrupadas
pelo algoritmo OPF. Em seguida, as amostras representativas de cada grupo (mais espe-
cificamente as raízes da floresta de caminhos ótimos) são levadas ao segundo nível, onde
elas são agrupadas novamente. Finalmente, os rótulos de grupo obtidos no segundo nível
são transferidos para todas as amostras do conjunto de dados através de seus representan-
tes do primeiro nível. Nesta abordagem, todas as amostras, ou pelo menos muitas delas,
podem ser usadas no processo de aprendizado não supervisionado, sem afetar a eficácia
do agrupamento e, portanto, o procedimento é menos susceptível a perda de informação
relevante ao agrupamento. Os resultados mostram agrupamentos satisfatórios em dois
cenários, segmentação de imagem e agrupamento de dados arbitrários, tendo como base
a comparação com abordagens populares. No primeiro cenário, a abordagem proposta
atinge os melhores resultados em todas as bases de imagem testadas. No segundo cená-
rio, os resultados são similares aos obtidos por uma versão otimizada do método original
de agrupamento por floresta de caminhos ótimos.

Palavras-chave: agrupamento, floresta de caminhos ótimos, segmentação de ima-
gem, transformada imagem-floresta, paradigma de divisão e conquista, aprendizado de
máquina.



Abstract

Data clustering is one of the main challenges when solving Data Science problems. Despite
its progress over almost one century of research, clustering algorithms still fail in identify-
ing groups naturally related to the semantics of the problem. Moreover, the advances in
data acquisition, communication, and storage technologies add crucial challenges with a
considerable data increase, which are not handled by most techniques. We address these
issues by proposing a divide-and-conquer approach to a clustering technique, which is
unique in finding one group per dome of the probability density function of the data —
the Optimum-Path Forest (OPF) clustering algorithm. In the OPF-clustering technique,
samples are taken as nodes of a graph whose arcs connect the k-nearest neighbors in the
feature space. The nodes are weighted by their probability density values and a con-
nectivity map is maximized such that each maximum of the probability density function
becomes the root of an optimum-path tree (cluster). The best value of k is estimated
by optimization within an application-specific interval of values. The problem with this
method is that a high number of samples makes the algorithm prohibitive, due to the
required memory space to store the graph and the computational time to obtain the
clusters for the best value of k. Since the existing solutions lead to ineffective results,
we decided to revisit the problem by proposing a two-level divide-and-conquer approach.
At the first level, the dataset is divided into smaller subsets (blocks) and the samples
belonging to each block are grouped by the OPF algorithm. Then, the representative
samples (more specifically the roots of the optimum-path forest) are taken to a second
level where they are clustered again. Finally, the group labels obtained in the second
level are transferred to all samples of the dataset through their representatives of the first
level. With this approach, we can use all samples, or at least many samples, in the unsu-
pervised learning process without affecting the grouping performance and, therefore, the
procedure is less likely to lose relevant grouping information. We show that our proposal
can obtain satisfactory results in two scenarios, image segmentation and the general data
clustering problem, in comparison with some popular baselines. In the first scenario, our
technique achieves better results than the others in all tested image databases. In the
second scenario, it obtains outcomes similar to an optimized version of the traditional
OPF-clustering algorithm.

Keywords: clustering, optimum-path forest, image segmentation, image foresting
transform, divide-and-conquer paradigm, machine learning.
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Chapter 1

Introduction

A dataset may consist of samples from a given problem mathematically represented by

a set of measures per sample, usually referred to as feature vector or point in some

n-dimensional feature space. For instance, samples may be images or image elements,

such as pixels, regions, and objects, whose representation can be based on color, texture,

and shape measures depending on the case. The dissimilarity between samples can be

measured by a distance function between their feature vectors.

Data Clustering is the problem of finding meaningful groups of similar samples ac-

cording to the distance function and mathematical representation. It is a well-known

problem with large numbers of contributions and applications [59, 4]. According to [4],

the clustering problem can be thought of as either an exploratory (descriptive) task or a

pre-processing step. In the former, the objectives are discovery and exploitation of hidden

patterns in the data. In the latter, it aims to facilitate another data mining or machine

learning task.

The samples are very often drawn from a set of possible categories (classes) related

to the problem. In this case, the clustering algorithm should be able to learn a grouping

model that can minimize the number of samples from distinct classes in the same cluster,

while keeping the number of groups as small as possible (since the trivial solution is to

consider each sample a distinct group). Given that the design of such grouping model

must be done with no category information about the samples, the problem is referred to

as unsupervised learning. The model should also be able to propagate group labels to new

samples with a minimum mixture of classes per group. Note, however, this is an ill-posed

problem since there is no guarantee that the labeling obtained by a clustering algorithm

is the same as the true-class labeling — i.e., samples from multiple classes may fall in

the same group, or many groups can be associated with the same class. Additional class

information is then required, at least the classes of the representative samples, such that

the remaining samples from the same group can be classified in the same class.

This MSc thesis focus on clustering algorithms based on the Optimum-Path Forest

(OPF) framework [94, 102]. This framework interprets the training set of a dataset as a

graph, whose nodes are the samples and arcs are defined by an adjacency relation between

samples. The intention is to explore the “strength of connectedness” between samples in

the feature space, as defined by a connectivity function (path-value function), for data

clustering and pattern classification. This idea stems from a previous framework, named
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Image Foresting Transform (IFT) [44], for the design of image processing and analysis

operators based on connectivity between image elements, such as pixels, regions, and

pixel vertices. OPF essentially uses the same algorithm to extend the IFT operators

for clustering and classification. In OPF, a grouping model or a pattern classifier is an

optimum-path forest in the input graph. The group/class label assignment to new samples

is performed by finding the root of the forest which would offer an optimum path to the

new sample, as though that sample were part of the training set, and assigning the label

of that root.

The OPF-clustering method [102] can identify natural groups as domes of a probability

density function (PDF) estimated from the training samples (see Figure 1.1). The graph

nodes are these samples and their k-nearest neighbors in the feature space form the arcs.

Such domes of the PDF represent high concentrations of samples at some scale of the

problem. For instance, by assuming an observer at a very far distance, any training set

becomes a single group of points in the feature space. A distinction among groups of

samples appears as the observer gets closer to the training set. The choice of such scale

is obtained by optimization within a finite search space as defined by the degree of the

nodes in the graph (i.e., the value of k). The OPF algorithm finds one representative

sample per maximum of the PDF and outputs an optimum-path forest rooted at those

representatives, such that each cluster is an optimum-path tree. That is, each root defines

a cluster by conquering the “most strongly connected” samples according to the given

path-value function. In this way, the training forest becomes a classifier that can assign

to any new sample the label of its most strongly connected root. This method can handle

plateaus of maximum (by electing a single root per maximum), some overlapping among

clusters, and groups with arbitrary shapes.

1.1 Motivation

The OPF-clustering method can be very effective when using all data to construct the

forest, but it becomes prohibitive (in required memory space and processing time) as

samples and features per sample increase in number. Given that the sizes of the datasets

have grown large very rapidly, due to new technologies, it is crucial to maintain the OPF-

clustering method viable with no loss in effectiveness. For example, imaging devices, such

as digital cameras and tomographic scanners, can acquire images with millions of pixels

for classification (segmentation).

For large datasets, the authors in [102] suggest the use of a small training set composed

of randomly selected samples. Such an unsupervised training set allows a fast construction

of the weighted k-nearest neighbor graph followed by an efficient procedure of group

label propagation to the remaining samples in the dataset. This technique has already

succeeded with training sets of about 400 voxels when classifying gray matter, white

matter, and cerebral spinal fluid in magnetic resonance images of the brain (images with

about 1.5 million voxels) [23]. However, the result of the grouping may be compromised in

some cases where relevant information is lost in the sampling process (when the training

set is formed). In this thesis, we name OPF-Large-Data this variant of the OPF-clustering
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The challenge in the first question is to maintain effectiveness when dividing the

dataset into parts, applying OPF clustering in each part, and combining the groups from

each part into a final clustering result. For the second question, structured data such as

images allow exploiting spatial pixel information, which may lead to different solutions

for image segmentation. We wish to use spatial information without over-segmenting the

image. We are also interested in further improving and exploiting the OPF-Large-Data

approach.

Image segmentation is one of the most fundamental and challenging problems in Image

Processing and Computer Vision. Clustering pixels into relevant objects and background

is extremely hard without the user input (interactive segmentation) or a well-controlled

situation with specific information about the application (automatic segmentation). We

intend to evaluate the proposed approach in this context, separating a given object from

the background in images of different application domains (natural, biological, and med-

ical). In our case, we count with the ground-truth segmentation of those images, so we

can easily validate the results obtained by our technique when comparing them with the

desired outputs. A strategy is to measure the ability of the method to represent the

object as the union of its internal clusters when trying to reduce as much as possible the

number of clusters. We also assess the methods for arbitrary data clustering from other

applications.

1.3 Main contributions

This work proposes a two-level divide-and-conquer OPF-clustering approach suitable for

large datasets. The pipeline of the technique is explained in Figure 1.2. At the first

level, the data (Figure 1.2a) is divided into blocks and the samples of each block are

clustered separately using the OPF algorithm (Figure 1.2b). Then, the representative

samples (one per cluster and, more specifically, the root of each optimum-path tree) are

taken to the second level (Figure 1.2c) to be clustered again using the OPF algorithm

(Figure 1.2d). Finally, the group labels obtained in the second level are transferred to all

samples (the samples that form the first level) through their representatives in the first

level (Figure 1.2e) resulting in the final partition (Figure 1.2f). We name this technique

OPF-Blocks-2 because of its two levels.

The size of the blocks in the first level and the number of samples in the second level

must be neither too large nor too small. As long as each block has a sufficient number

of samples to represent the problem, this should not compromise the performance of the

method. However, we noticed that in the case of 2D and 3D images, or other very large

datasets, a small number of bigger blocks is preferred as long as a suitable sampling

strategy is applied to select one training set per block for clustering followed by group

label propagation — i.e., the optimum-path forest of each training set is extended to the

remaining samples of the block. At this point, our solution for each block is similar to the

OPF-Large-Data approach. The difference is that we use a more effective grid sampling

technique, in the case of image segmentation, to compose the training sets in each block

of the image. We have also improved efficiency in the estimation of the parameter k
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without losing effectiveness. By dividing the image into blocks, we are actually using

a considerably higher number of training samples (the union of the training sets of each

block) than OPF-Large-Data, which avoids loss of relevant data information for clustering.

1.4 Organization of the text

This MSc thesis is organized as follows. Chapter 2 summarizes the main concepts and

techniques related to the clustering task. Chapter 3 presents essential information to

understand the methods in this work, including the image segmentation process and the

OPF-clustering technique. Chapter 4 details the proposed approach, highlighting how

it works in the two tested scenarios, image segmentation and arbitrary data clustering.

Chapter 5 describes the experiments and discusses the obtained results. Finally, Chapter 6

presents the conclusions and provides directions for future work.
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Chapter 2

Clustering Overview

Recall that the main objectives in this master thesis are to extend the OPF-based clus-

tering technique [102] through a divide-and-conquer strategy and to evaluate this new

approach in different scenarios. In this chapter, we introduce the basic notions related to

the clustering task, some common applications of the grouping methods, and a taxonomy

of the clustering algorithms referring to some classical and cutting-edge approaches.

2.1 Cluster analysis

Cluster analysis is the organization of a collection of patterns (samples), usually repre-

sented as a vector of measurements or a point in a d-dimensional space ℜd, into clusters

based on similarity. Intuitively, samples within a valid cluster are more similar to each

other than to those that belong to a different cluster. Figure 2.1 shows an example of the

variety of possible groups in the same dataset. The goal is to develop an automatic algo-

rithm to discover the natural grouping (Figure 2.1b) in the unlabeled data (Figure 2.1a).

Figure 2.1 conveys the idea that clusters can differ in terms of their shape, size, and den-

sity. Furthermore, the detection of natural groups can be even more difficult if the data

contains noise. An ideal cluster can be defined as a set of samples that is compact and

isolated. Actually, a cluster is a subjective entity whose significance and interpretation

requires domain knowledge.

It is important to understand the differences between clustering (unsupervised learn-

ing) and classification (supervised learning) in the context of Pattern Recognition. In

supervised classification, the data is a collection of labeled samples and the problem is

to label a newly encountered, yet unlabeled, sample. With these techniques, the labeled

samples (training samples) can be used to learn a representation and a decision model

for the existing classes, which in turn are used to label a new sample. In the case of

clustering, there is no such pre-annotated data and the problem can be to find the rep-

resentation and group a given collection of unlabeled samples into meaningful clusters.

In this thesis, we assume the sample representation is chosen a priori and focus on the

grouping problem only. The clusters are subjective entities that make sense to a specific

application. In some way, the group labels are associated with classes also, but the group

labels are data-driven — i.e., they are obtained solely from the data. Therefore, one class
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(a) Input data (b) Desired clustering

Figure 2.1: A representation of the variety of possible groups in the same dataset. (a) Some
unlabeled data. (b) Seven different groups (marked by different colors) differ in density, shape,
and size. It is very likely that almost none or none of the available clustering algorithms can
detect all these clusters in the same input data. However, these patterns can be easily discovered
by a human without much effort. This figure was obtained from [59].

may be represented by one or multiple groups.

Many fields of the Sciences and Engineering employ clustering techniques. Image

segmentation, an important problem in Image Processing and Computer Vision, can be

formulated as a clustering problem [111]. Clustering of documents is a common practice

to generate hierarchies of topics for effective information access [104] and retrieval [19].

These unsupervised techniques are also useful to divide customers into different categories

for efficient marketing [11], to study genome data [14], to address the problems of face

recognition and identification [137, 55], to summarize video [88], among other applications.

Summing up, the techniques of data clustering have been used for the following three main

purposes [59].

• Understanding the underlying data structure: to get information about the

data, generate hypotheses, detect anomalies, and identify key features.

• Natural classification: to identify the degree of similarity among different kinds

of documents, objects, and patterns in general. Examples are the determination of

similar snippets of music and similar photographs.

• Compression: to organize the data and summarize it through cluster prototypes.

Data summarization can be helpful in creating compact data representations, which

are easier to process and interpret in a wide variety of applications.

Traditional clustering activity involves the following steps [60]: (1) feature engineering,

(2) definition of a similarity measure between samples, (3) grouping, (4) data abstraction

(if needed), and (5) evaluation of the output (if needed). Figure 2.2 displays the sequence
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known as data abstraction or data summarization. In many cases, this summarized rep-

resentation is very helpful for subsequent automatic analysis by a machine, or an inter-

pretation by a data analyst. In the clustering context, data abstraction refers to derive a

summarized description of each cluster, in terms of cluster prototypes or representatives

— e.g., the centroids of the clusters.

There are many ways in which a clustering result can be evaluated. The analysis

can be done through external knowledge-based supervision, interactive visualization by

a specialist, comparison and combination of multiple solutions to evaluate different pos-

sibilities, among other options. Cluster validation embraces three main tasks [134]:

clustering effectiveness (it assesses the goodness of the clustering according to the needs

of the application), clustering stability (it assesses the sensitivity of the clustering results

to parameter variations, e.g., the number of clusters), and clustering tendency (it assesses

the convenience of applying a clustering solution to a problem, e.g., if the data has any in-

herent grouping structure). Most existing metrics to address these tasks can be classified

into:

External: External validation metrics use some expert-specified knowledge about

the clusters that are not inherent to the data — e.g., the real partition of the data.

Such external information is not available in many real-world applications; however, these

metrics allow to validate grouping methods in some synthetic and classification datasets.

Internal: Internal validation metrics use criteria derived from the data itself. They

utilize notions of intra-cluster similarity (compactness) contrasted with notions of inter-

cluster separation, that usually results in a trade-off between maximizing these two goals.

Relative: Relative validation metrics are used to compare different outcomes of the

same clustering algorithm by different parameter settings — e.g., varying the number of

desired clusters k.

Different approaches to data grouping can be described with the help of the hierarchy

displayed in Figure 2.3, although other taxonomic representations are also possible. This

representation is mainly based on the book [134]. Some clustering techniques can be

associated with more than one category as we shall see. We add a special category

called “Large Datasets” in reference to the methods designed with the main objective of

clustering large datasets. At the top level of the taxonomy, there is a distinction among

the clustering approaches with respect to their strategy (based on cluster representatives,

hierarchy, density, graph, and for large datasets). The next sections explain some relevant

concepts about each category alluding to some widely used algorithms.

2.2 Representative-based clustering

Given a dataset N = {x1, ..., xn} with n samples in a d-dimensional space, the goal of any

clustering technique is to discover the natural grouping C = {C1, C2, ..., Ck} such that

x ∈ Ci, ∀x ∈ N and i ∈ [1, k], ∩ki=1Ci = ∅, and ∪ki=1Ci = N . In representative-based

clustering methods, it is necessary to have a representative (prototype) sample for each

cluster Ci that summarizes the group. A common choice for this prototype is the mean
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The k-Means procedure is an example of a hard assignment clustering technique, where

each sample can belong only to one group. There are other approaches, such as Fuzzy C-

Means [18], that extend this idea to consider a soft assignment result — i.e., each sample

has a degree of membership with each discovered cluster.

Mixture Models [78] have been addressed in many ways to support clustering problems.

The underlying assumption is that the samples are drawn from one of several components

and the problem is how to estimate the parameters of each component that best fit the

data. Recognizing which component generates each sample produces a clustering of the

data. Gaussian Mixture Model (GMM) is the most well-known mixture model, where

each component is a Gaussian distribution. This model has been widely used for cluster-

ing in many applications, such as speaker identification and verification [99, 100], image

segmentation [97], and object tracking [114]. One efficient way of discovering the number

of components in a GMM is using the Bayesian Information Criterion (BIC) [108]. In the-

ory, assuming that data are abundant and actually generated from a mixture of Gaussian

distributions, this criterion recovers the true number of components. The biggest problem

in learning Gaussian Mixture Models from unlabeled data is finding which samples come

from which component. Expectation-Maximization (EM) [32] is a well-founded statistical

algorithm that gets around this difficulty by an iterative process. First, it initializes the

model with random components (or with another heuristic initialization) and computes

the probability that each sample is generated by each of these components. Then, it

tweaks the parameters of the model to maximize the likelihood of the data given those

assignments. Repeating this process, EM always converges to a local optimum.

Representative-based clustering algorithms usually try to discover the natural grouping

in the data by optimizing a specific objective function and gradually improving the result

in an iterative process [4]. They are effective to detect compact spherical-shaped clusters

but can fail with other structures. These methods generally require some user information

as the number of desired groups. A problem is that this information is mostly unknown

and must be estimated.

2.3 Hierarchical clustering

Hierarchical clustering algorithms overcome some of the disadvantages associated with

the representative-based methods. These techniques create a hierarchy of clusters (clus-

ter dendrogram) organizing the data into different levels of granularity. With them, a

specialist can tune up the clustering result by splitting up the dendrogram into different

levels without re-running the algorithm. Figure 2.4 shows an example of a hierarchical

clustering of five labeled points.

Hierarchical clustering can be done in either bottom-up (agglomerative) way or top-

down (divisive) way.

Agglomerative: These clustering techniques start by taking singleton clusters (clus-

ters containing only one sample) at the bottom level and continue merging “the two more

similar clusters” at a time to build a bottom-up hierarchy. A variety of choices are possible

in terms of how to measure this similarity. Some options are single-linkage (nearest neigh-
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Figure 2.4: Dendrogram as a result of a hierarchical clustering of five labeled points: A, B, C,
D, and E.

bor), complete-linkage (diameter), all-pairs linkage (average linkage), centroid-linkage,

and Ward’s criterion (minimum variance). In single-linkage [79], the two clusters with

the shortest distance between any pair of corresponding samples are combined. Because

of its local behavior, single-linkage is capable of effectively perceive groups of samples

with non-elliptical and elongated forms. However, it is sensitive to noise and outliers in

the data. For the complete-linkage [67], the distance to consider between two clusters is

the maximum of all pairwise distances between their samples (the distance between the

most dissimilar samples). As this method takes the cluster structure into consideration,

it generally recovers compact shaped clusters. However, this technique is also sensitive to

outliers as single-linkage. In all-pairs linkage, the dissimilarity between two groups is the

average distance over all pairs of the corresponding samples, whereas, in centroid-linkage,

it is the distance between the two centroids. Ward’s criterion [127] uses the SSE (see

Equation 2.3) to determine the distance between groups, and its objective is to merge the

two clusters that minimize the total within-cluster variance — i.e., the two clusters that

together have the smallest value of SSE.

Divisive: These grouping methods, on the other hand, start from all the samples

in a huge macro-cluster and continuously split a cluster into two, generating a top-down

hierarchy of groups. They can be considered global approaches since they have the com-

plete information before splitting the data. These techniques have the advantage of being

more efficient as compared to the agglomerative ones since there is no need to generate

the entire hierarchy. Divisive partitioning allows greater flexibility in terms of both the

hierarchical structure and balancing level of the different clusters. For example, if the

objective is to maintain a balanced tree at each level of the clustering, then the largest

cluster can be chosen preferably for the division. METIS [64] uses this last idea in order

to create well-balanced clusters in large social networks, where the problem of cluster

imbalance is particularly severe. DIANA [66] is a divisive clustering algorithm, where the

group with the largest diameter is divided at each step. To split the selected cluster, the

algorithm looks first for the most dissimilar sample — i.e., the sample with the greatest
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average dissimilarity with the other samples of the same group —, then creates a new

group with this sample, and finally reassigns the samples that are closer to the new group

than to the old group.

The hierarchical clustering methods are very effective in capturing convexly shaped

groups. The main advantage of having a cluster dendrogram is the possibility of cutting

the hierarchical tree at any level to obtain the corresponding clusters. This peculiarity

allows to execute these techniques without knowing the true number of groups in the data

and even try many solutions easily. Also, this kind of clustering can help to visualize and

summarize the data. Despite their benefits, these methods are not recommended for large

datasets because of their quadratic complexity (k-Means is better in this case), and in

general, they are not flexible in the sense that they cannot undo the mergers or divisions

once they are made. Agglomerative methods, especially single-linkage, tend to suffer

from the chaining problem1 and are ineffective at capturing arbitrarily shaped clusters.

To address the last drawback, techniques such as CURE [53] and CHAMELEON [63] have

been proposed in the literature.

2.4 Density-based and grid-based clustering

The representative-based and hierarchical clustering methods are suitable for finding

ellipsoid-shaped and other convexly shaped clusters. However, these methods have diffi-

culties to discover non-convex clusters, such as those shown in Figure 2.1, because two

samples from different clusters may be closer than two samples in the same cluster. The

density-based methods, on the other hand, are capable of extracting such clusters and are

good at eliminating noise and detecting outliers. They can be considered non-parametric

techniques because they do not make any assumptions about the number of clusters or

their distribution. Density-based groups are dense areas in the data space divided from

each other by sparser areas. Due to their local nature, dense areas in the data can have

an arbitrary shape.

DBSCAN [40] is one of the most popular density-based clustering methods. It esti-

mates the density by counting the number of samples within a fixed-radius ǫ-neighborhood

and considers two samples as connected if they lie within each other’s neighborhood. The

central idea of the method is the classification of the samples as core samples, density-

reachable samples, and outliers. A sample is called a core sample if its neighborhood of

radius ǫ contains at least a minimum number of samples min_samp — i.e., a core sample

is in an area of high density. A sample q is directly density-reachable from a core sample

p if q is within the ǫ-neighborhood of p. Density-reachability is given by the transitive

closure of direct density-reachability. Two samples p and q are called density-connected

if there is a third sample o from which both p and q are density-reachable. A cluster

is a set of nearby core samples and a set of non-core samples that are density-reachable

from a core sample. Any sample that is not a core sample nor a density-reachable sample

from a core sample is considered an outlier by the algorithm. Higher values of min_samp

1The chaining effect is caused by a small number of noisy data joining sets of samples that should
form separate groups.
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(mode) defines an influence zone (cluster) formed by the samples that reach it. Mean-Shift

does not assume any shape on the data clusters and automatically finds the number of

groups. The algorithm only depends on a single parameter called bandwidth (or window

size) which dictates the size of the search region to compute the density. However, the

selection of the window size is not a trivial operation and inappropriate values can produce

unexpected results. Another problem with Mean-Shift is that it can fragment a cluster if

a maximum is represented by some neighboring points with the same density value. And

the reason is that the method does not force a single representative per maximum — i.e.,

two samples, that should be grouped together, can reach two different points in the same

maximum.

Grid-based methods are a specific class of density-based methods designed for mining

large multidimensional datasets. These techniques divide the data space into a finite num-

ber of cells (creating a grid structure) and then try to discover clusters from dense regions

in the cells. Grids were initially proposed in [128], but they only gained popularity after

the methods STING and CLIQUE were introduced. The main advantage of grid-based

clustering is a significant reduction in execution time because the grouping complexity of

these algorithms depends on the pre-defined number of grid cells and not on the number of

samples in the data. Therefore, the greatest challenge of these algorithms is to determine

the best strategy for constructing the grid structure.

STING [126] is a statistical and grid-based index structure that efficiently processes

region queries on databases. It creates a tree structure dividing the data space into

regular cells at different levels of resolution, where each cell points to some cells of the

next lower level. Some statistical information is computed and stored for each cell. A

query is processed from the root until the leaves of the tree according to the likelihood

of their relevance. Only children of relevant cells are recursively explored and the search

ends when the lowest level of the index structure has been searched. The time complexity

of a region query is O(l), where l is the number of leaves of the tree. CLIQUE [5] finds

dense regions (clusters) in lower-dimensional subspaces of numerical datasets as cliques

in a graph.

2.5 Spectral and graph clustering

The history of spectral clustering (or graph clustering) dates back to [37] where the authors

suggested that the underlying partitions in a dataset could be determined with the help

of the eigenvectors of the adjacency matrix. Same as the density-based methods, these

techniques do not make assumptions on the shapes of the clusters allowing them to detect

non-convex clusters, such as spirals or other complex shapes. They have been successfully

applied to image segmentation [111], text mining [33], speech processing [13], and general

purpose methods for data analysis [34, 36].

The spectral clustering techniques represent the samples of a dataset N as nodes

in a graph. The edges connecting the nodes are weighted by their pairwise similarity.

According to [4], the operating mode of these methods can be generalized by the following

three-step algorithm.
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• First step: construct a similarity graph for all the data samples. Three common

similarity graphs are k-nearest neighbor graph, ǫ-neighborhood graph, and fully

connected graph.

• Second step: compute some graph Laplacian matrices and use their eigenvectors

to embed the samples in a lower-dimensional space, where the underlying partitions

are more evident. The main distinction here is whether to use a normalized or

unnormalized graph Laplacian representation.

• Third step: partition the embedding space with a clustering algorithm such as

k-Means.

These methods can also be explained from a simpler perspective, from the viewpoint

of a graph cut. A k-way cut in a graph is the partitioning of the vertex set N into

C = C1, ..., Ck, such that Ci 6= ∅ for all i, Ci ∩Cj = ∅ for all i, j, and N =
⋃

i Ci. The cut

weight is defined as the sum of the weights of the edges across all partitions

weight(C) =
∑

∀(s,t)|s∈Ci,t∈Cj

w(s, t) (2.4)

where w(s, t) is the arc weight between the nodes s and t.

Partitioning by graph cuts usually aims to assign weights with high values for arcs

within the partitions (assuming that the nodes within clusters have high similarity) and

weights with lower values in their interface (assuming that nodes from different clusters

have low similarity). The classic idea is to partition the nodes into two subsets such that

the cut weight is minimized [130]. A problem is that this strategy often results in clusters

of imbalanced sizes. Normalized Cut (NCut) is an efficient technique, with cluster size

constraints, first proposed by [111]. [115] suggests the multi-class version of Normalized

Cut. In [80], a Markov Random Walk view of spectral clustering is presented and the

Modified Normalized Cut (MNCut) technique is proposed to handle an arbitrary number

of groups.

Graph clustering is related to divisive hierarchical clustering as many methods par-

tition the set of nodes using their pairwise similarity matrix to obtain the final groups.

In [133], Zahn introduces an approach that computes a Minimum Spanning Tree (MST)

in a graph and removes successively the edge with the highest inconsistency measure.

One inconsistent edge is one whose weight is much higher than the average weight of the

edges in its neighborhood. The authors in [16] formulate the pairwise clustering problem

by relating clusters to maximal dominant sets, which are a continuous generalization of

cliques in a graph.

The Optimum-Path Forest (OPF) framework (see Section 3.6) defines a graph topology

among the samples to exploit their optimum connectivity in the feature space. In [101],

the authors suggest a data clustering technique2 based on this framework and the Mean-

Shift algorithm (see Section 3.7) which has been successfully tested in some real-world

2This clustering technique can be seen as graph-based, density-based, and representative-based. In
the last case, the representatives are the roots of a forest and the distances are optimum-path values.
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applications [102, 23, 107]. This method is closely related to the present master thesis

because our main goal is to extend it to support large datasets (see Chapter 4).

2.6 Clustering of large datasets

With advances in software and hardware technology, data collection has become easier in

a wide variety of scenarios. A large number of clustering techniques have been developed

to efficiently handle such large-size datasets. According to [59], most of them can be

classified into the following five categories.

• Efficient nearest neighbor search: Sometimes deciding the cluster membership

of each sample requires a nearest neighbor search in high-dimensional feature spaces.

Algorithms that efficiently handle this type of search are either tree-based (e.g., kd-

tree [85]) or random projection based (e.g., Locality Sensitive Hash [21]).

• Data summarization: To improve the grouping performance, these methods first

summarize a large dataset into a relatively smaller one and then partition the re-

duced data. The samples of the original dataset receive the cluster labels that their

corresponding representatives acquired after the partitioning phase. BIRCH [135]

compresses a large dataset into a smaller one via a clustering feature tree (CF-tree).

The nodes of this tree hold all necessary information for clustering, preventing the

need to keep all data in memory. METIS [64] is a multilevel partitioning algorithm

composed by three steps: the coarsening phase (the vertices are successively col-

lapsed until the graph is small enough), the partitioning phase (the small graph is

partitioned into clusters), and the uncoarsening phase (the partitioning from the

second step is projected back to the original graph). In [52], the authors present

a divide-and-conquer technique designed to cluster large datasets under the data

stream model.

• Distributed computing: These methods split a clustering algorithm into a num-

ber of procedures that can be executed independently by a set of machines. Dhillon

et al. [35] suggests a parallel implementation of k-Means based on a message passing

model to cluster large datasets. Google’s Map-Reduce framework [31] provides an

effective method to analyze large amounts of data, especially when computing linear

functions over the elements of the data streams. This framework takes care of parti-

tioning the input data, scheduling the procedure’s execution across a set of machines,

handling failures, and managing all communication among the machines. In [136],

the authors present a k-Means clustering algorithm on the Map-Reduce platform.

BoW [49] is a distributed subspace clustering algorithm that addresses the two ma-

jor bottlenecks of using serial and hard clustering techniques with the Map-Reduce

framework: disk delay and network delay. DBDC [62] and ParMETIS[65] are ex-

amples of a density-based distributed algorithm and a parallel graph partitioning

algorithm, respectively.

• Incremental clustering: These techniques, in contrast to most clustering algo-

rithms, only allow a single pass over the data stream. In [50], Fisher proposes
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a hierarchical clustering algorithm, denominated COWEB, that does a single pass

through the data and arranges them into a classification tree incrementally. Bradley

et al. [20] present a scalable clustering framework based on identifying regions of the

data that are compressible (data that must be maintained in memory) from regions

that are discardable. The streaming scenario is closely related with incremental

clustering when real-time analysis and properly accounted changing patterns are

required. In order to accomplish these goals, almost all streaming methods use a

summarization technique to create intermediate representations of the data. In [3],

the authors suggest a micro-clustering approach that divides the clustering process

into an online component, which periodically stores detailed summary statistics,

and an offline component, which operates only in these summary statistics. These

components are combined with a pyramidal time frame to capture the evolving as-

pects of the underlying data stream. The STREAM framework, which is based on

the k-Medians clustering algorithm, is presented in [89].

• Sampling-based methods: Techniques like CURE [53] perform a clustering over

a reduced sample set of a large dataset and the result is transferred to the original

data. CURE is a hierarchical clustering algorithm that finds groups of non-spherical

shape by using more than one representative sample per cluster. CLARA [66] and

CLARANS [87] are two classic large-scale clustering algorithms based on k-Medoids

that rely on a sampling process to reduce the search space of the data. CLARA first

takes a sample of all data to find the k medoids, and after that, all non-sampled

data are assigned to one of the already discovered k clusters. CLARANS works with

all data, but in each iteration, it checks only a subset of the cluster members to find

the new medoids. Rocha et al. [102] propose a sampling-based clustering extension

of the OPF algorithm to deal with large datasets that we call OPF −Large−Data

(see Section 3.7.1).

.

The divide-and-conquer clustering approach proposed in this work falls into the cate-

gory of data summarization. The idea is (1) to divide a large dataset into smaller blocks,

(2) cluster each block with the OPF algorithm to obtain the corresponding representative

samples (a compressed set of the samples in the block), (3) create a new dataset with

the representative samples of all the blocks, (4) cluster this reduced dataset also with

the OPF algorithm, and finally, (5) propagate the cluster labels obtained in the previous

step to all samples of the original dataset by means of the representative samples. This

method is explained in detail in Chapter 4. However, we recommend reading the next

chapter first, which presents crucial content to comprehend this thesis.
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Chapter 3

Related Concepts and Methods

This chapter introduces the related concepts and methods for this thesis, including the

main approach — the Optimum-Path Forest (OPF) clustering.

3.1 Digital images

A multi-dimensional and multi-parametric image I is a pair (D, ~I), where D ⊂ Zn is

the image domain and ~I(t) = {I1(t), I2(t), ..., Im(t)} is a vectorial function that assigns m

scalars (image properties) to each pixel t ∈ D. For example, {I1(t), I2(t), I3(t)} may be

the red, green, and blue values of t in a color image I.

This thesis is mostly concerned with algorithms that partition an image into “relevant

regions”, called image segmentation techniques.

3.2 Image segmentation

Image segmentation can be defined as the process of identifying and separating “relevant

regions” in an image. This problem represents one of the greatest challenges in Image

Processing and Computer Vision, especially when the relevant regions represent objects

from the real world. In this case, the problem asks for effective and efficient solutions

for object recognition and object delineation. Recognition determines the approximated

object location in the image, while delineation is concerned with precisely defining the

spatial extent of that object. Free of fatigue, humans can outperform computers in object

recognition, but the other way around is true for delineation [47]. The notion of a rele-

vant region is highly dependent on the context and automatic segmentation often fails,

except under well-controlled conditions. This explains why interactive (semi-automatic)

segmentation methods usually combine the superior abilities of humans for recognition

with a more precise object delineation by a computer. Figure 3.1 shows an example of

interactive image segmentation. The user draws colored markers inside and outside of an

object to solve recognition, while the computer delineates the object by optimal marker

competition — i.e., the image is interpreted as a graph, optimum paths are computed from

each marker, each pixel is conquered by the marker that offers to it the minimum-cost

path, and the object is defined by the union of optimum paths from the interior marker.
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(a) (b)

Figure 3.1: (a) The user draws yellow markers inside the object and black markers in the back-
ground. (b) Segmentation result from the hard constraints provided by the user.

The aforementioned example refers to semantic segmentation. Relevant regions, how-

ever, may be represented by small sets of “similar” and connected pixels, named super-

pixels, which can be delineated by clustering techniques. The main challenge here is to

preserve the object borders such that each object of interest can be composed by the

union of superpixels.

3.3 Superpixels

Superpixel segmentation is a convenient way to considerably reduce the number of image

elements from many pixels to some regions for a more efficient image analysis. Semantic

segmentation, in this case, requires the identification of the superpixels that together

compose the object. Pixel similarity for superpixel definition can be measured in numerous

ways, by using differences in intensity, color, texture, and even distances between pixels.

Superpixels have been successfully used in many applications: medical image segmen-

tation [129], sky segmentation [68], motion segmentation [12], multi-class object segmen-

tation [51, 132], object detection [112], spatio-temporal saliency detection [71], target

tracking [131], and depth estimation [138]. Figure 3.2 illustrates a couple of superpixel

segmentation results as obtained by a popular approach called SLIC (Simple Linear Itera-

tive Clustering) [1]. According to [121], the desirable superpixel properties are as follows.

1. Adherence to object boundaries: This is a crucial property to define an object

as the union of its superpixels.

2. Connectedness and hard segmentation: Superpixels should be connected re-

gions without overlapping — for hard segmentation, each pixel should be assigned

to a single superpixel.

3. Compactness: Superpixels should be constrained to have uniform size and shape.
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4. Regularity: Regular superpixels are desirable from a topological standpoint. There-

fore, the number of adjacent superpixels and the size of the boundary with each

adjacent superpixel should be as uniform as possible.

Figure 3.2: Image segmentation by SLIC [1] — with 64, 256, and 1,024 superpixels (approxi-
mately). This figure was obtained from http://ivrl.epfl.ch/research/superpixels.

Clearly, boundary adherence is the most important property in superpixel segmen-

tation. In [1], the authors point out that a regular lattice, like in [111], is desirable

when superpixels are used as nodes of a graph. Connectedness and hard segmentation

are common properties in superpixel methods, even though methods based on clustering

techniques commonly require post-processing to ensure connected regions. In addition to

the above properties, superpixel segmentation methods should be fast, memory efficient,

and simple to use.

Most superpixel segmentation approaches adopt a clustering algorithm and/or a graph-

based algorithm to address the problem in one or multiple iterations of seed estimation.

Several of these methods cannot guarantee connected superpixels: SLIC (Simple Linear

Interactive Clustering) [1], LSC (Linear Spectral Clustering) [24], VCells (Edge-Weighted

Centroidal Voronoi Tessellations) [124], LRW (Lazy Random Walks) [109], ERS (Entropy

Rate Superpixels) [70], and DBSCAN (Density-based Spatial Clustering of Applications

with Noise) [110]. Connected superpixels in these methods are usually obtained by merg-

ing regions, as a post-processing step, which can reduce the number of desired superpixels.

Representative graph-based algorithms include Normalized Cuts [111], an approach

based on minimum spanning tree [48], a method using optimal path via graph cuts [84],

an energy minimization framework [123], and the watershed transform [17, 74]. Normal-

ized Cuts can generate more compact and more regular superpixels; however, as shown

in [1], it performs below average in boundary adherence with respect to other methods.

The problem with the algorithm in [48] is exactly the opposite, the resulting superpixels
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can conform to object boundaries, but they are very irregular in size and shape. The per-

formance of the method described in [84] depends on the pre-computed boundary maps

which are not guaranteed to be the best in all cases. The watershed approaches [17, 73]

can easily generate irregular superpixels with reasonably good boundary recall. More

recently, our group has presented a graph-based framework, named Iterative Spanning

Forest, for superpixel segmentation, which can generate the desired number of connected

superpixels with high boundary adherence [6].

Among the clustering-based algorithms, it is worth mentioning Mean-Shift [29], Quick-

Shift [122], TurboPixels [69], SLIC [1], geometric flow [125], LSC [24], and DBSCAN [110].

The Mean-Shift method produces irregular and loose superpixels whereas the Quick-Shift

algorithm does not allow to set the number of desired superpixels. Turbopixel-based

approaches are slow and fail to provide good boundary recall for complex images. SLIC

is the most commonly used superpixel method, and it was shown to perform better than

many other methods [1]. It relies on a regular grid for seed sampling. Once it is chosen, the

seeds are transferred to the lowest gradient position within a small neighborhood. Finally,

a modified k-Means algorithm is used to cluster the remaining pixels. The k-Means

algorithm searches for pixels within a 2S×2S window around each seed, where S is the grid

interval. For a non-regular seed distribution, some pixels may not be reached by any seed.

Indeed, this might happen from the second iteration on and this labeling inconsistency

problem is only solved by post-processing. In [125], Wang et al. propose a geometric-flow-

based method of superpixel generation. The method has high computational complexity

as it involves computation of the geodesic distance and several iterations. LSC [24] and

DBSCAN [110] are among the most recent approaches. LSC models the segmentation

problem using Normalized Cuts, but it applies an efficient approximate solution using

a weighted k-Means algorithm to generate superpixels. DBSCAN performs fast pixel

grouping based on color similarity with geometric restrictions and then merges small

clusters to ensure connected superpixels.

In this work, we study clustering-based algorithms which are also graph-based ap-

proaches. They can interpret image elements (pixels and superpixels) as graph nodes,

build an adjacency relation between them to form the arcs of the graph and partition

the image into clusters (regions that put together pixels/superpixels). The set of image

pixels/superpixels for clustering is called dataset.

3.4 Datasets

A dataset N is a collection of samples (pixels, superpixels, or other arbitrary entities)

from some specific application. Each sample s ∈ N is represented by a feature vector

~v(s) ∈ ℜm (e.g., a vector ~v(s) = ~I(s) of image properties where s is a pixel/superpixel).

The distance (dissimilarity) between the samples s and t in the feature space ℜm is given

by a function d(s, t) (e.g., d(s, t) = ‖~v(t)− ~v(s)‖).
New data acquisition technologies can provide large datasets from multiple fields,

such as medical imaging, remote sensing, multimedia analysis, among others. Data has

grown large at a very fast pace to support research, education, entertainment, and several
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other activities. Big data is a fashionable concept involving large and complex datasets

that cannot be handled by traditional data processing techniques. Attempts to develop

effective and efficient ways of handling and analyzing big data are becoming increasingly

widespread (see Section 2.6), yet they face a number of practical challenges like data

storage, data analysis, and data visualization.

The graph-based techniques studied in this work are meant to deal with large datasets

and they can be easily applied to find clusters in any type of dataset given some adjacency

relation between samples.

3.5 Adjacency relations and datasets as graphs

An adjacency relation A is a binary relation in N ×N based on sample properties. When

samples are pixels, N ⊆ D, the properties can be color, local texture, and pixel position.

When samples are superpixels, they are usually represented by some seed pixel and the

properties can be the mean color of the superpixel, seed position, color histogram of the

superpixel, etc. We use t ∈ A(s) or (s, t) ∈ A to indicate that t is adjacent to s. Once

A is established, the dataset can be interpreted as a graph (N,A) whose nodes are the

samples, and arcs are the pairs (s, t) ∈ A. Examples of irreflexive adjacency relations are

A1 : {(s, t) ∈ N ×N |s 6= t, d(s, t) ≤ r > 0}, (3.1)

A2 : {(s, t) ∈ N ×N |s 6= t, t is a k-nearest neighbor of s in ℜm, k ≥ 1}, (3.2)

A3 : {(s, t) ∈ N ×N |s 6= t, ‖~v(t)− ~v(s)‖ ≤ r1 > 0, ‖t− s‖ ≤ r2 > 0}. (3.3)

If N = D (i.e., s and t are pixels), d(s, t) = ‖t − s‖, and r = 1, then A1 is a 4-

neighborhood relation and (N,A1) is a grid graph of the image. Similarly, for r =
√
2,

A1 is an 8-neighborhood relation. Figure 3.3 illustrates a few examples of such spatial

adjacency relations in 2D and 3D images.

(a) (b) (c) (d)

Figure 3.3: Examples of spatial adjacency relations. (a) 4-neighborhood in 2D image. (b)
6-neighborhood in 3D image. (c) 8-neighborhood in 2D image. (d) A1 with r =

√
5 in 2D image.

When d(s, t) is defined as a function of ~v(s) and ~v(t), the adjacency relation connects

samples in the corresponding feature space ℜm (e.g., A2 in Equation 3.2). In this case, if
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s and t are pixels/superpixels, then the adjacency relation does not impose a spatial con-

straint. However, one can also combine image domain and feature space in the definition

of an adjacency relation (e.g., A3 in Equation 3.3). The use of A3 for pixel clustering tends

to considerably increase the number of groups as compared to A2, but it makes possible to

process the entire image domain as a dataset. The use of A2, on the other hand, asks for a

subset of samples from the image domain, called training set. Once clusters are computed

in this training set, the cluster labels can be propagated to the remaining samples of the

image domain (named in this case, test set). In any case, we interpret datasets as graphs

and use the Optimum-Path Forest framework to design clustering algorithms.

3.6 Optimum-Path Forest framework

Optimum-Path Forest (OPF) is a graph-based framework that has gained considerable

attention in the last years, mainly because of the promising results obtained by OPF

classifiers [94, 102]. In this framework, once a dataset (training set) is interpreted as

a graph (N,A), a connectivity function f must be provided to compute an optimum

connectivity map V : N → ℜ. The connectivity function assigns a value f(πt) to any

sequence of nodes πt = 〈s1, s2, . . . , sn = t〉 with terminus t, such that si+1 ∈ A(si),

i = 1, 2, . . . , n − 1, including the trivial case n = 1. The connectivity map V may result

from the maximization (minimization)

V (t) = max
∀πt∈Πt

{f(πt)}, (3.4)

where Πt is the set of all possible paths with terminus t in the graph. The connectiv-

ity function must be defined such that prototypes (key samples) are identified from the

maxima (minima) of a trivial connectivity map V0 defined by V0(t) = f(〈t〉). The OPF

algorithm starts from V ← V0 and, at each iteration, a node s, whose value V (s) is

optimum, offers the path extension πs · 〈s, t〉 to its adjacent nodes t ∈ A(s). Whenever

f(πs · 〈s, t〉) > f(πt), in maximization, the algorithm substitutes πt by the extended path

πs ·〈s, t〉, and so V (t)← f(πs ·〈s, t〉). At the end, the final connectivity map V is optimum

and the graph is partitioned into an optimum-path forest P — i.e., an acyclic map that

assigns to each node t ∈ N its predecessor P (t) ∈ N in the optimum path with terminus

t or a marker nil 6∈ N , when t ∈ S is a root of the map. Therefore, the final optimum

path πt = P ∗(t) can be obtained from P . The root set S consists of the prototypes that

represent classes/clusters depending on the machine learning process: supervised, semi-

supervised, or unsupervised. The prototypes may be forced by definition of f or may

derive from some local property of the nodes. Examples of connectivity functions are

f1(〈t〉) =

{

0 for t ∈ S,

+∞ otherwise,

f1(πs · 〈s, t〉) = max{f1(πs), d(s, t)}, (3.5)

f2(〈t〉) = ρ(t)− δ

f2(πs · 〈s, t〉) = min{f2(πs), ρ(t)}, (3.6)
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where δ > 0, ρ is a probability density function (PDF), and S is a set of seed nodes (pro-

totypes). In Equation 3.5, S can be chosen from the closest samples between categories

on a complete graph for supervised learning and the OPF algorithm must minimize a

path-cost map V (t) = min∀πt∈Πt
{f1(πt)} [94]. In Equation 3.6, the root set S will be de-

rived from the maxima of ρ where ρ(s) can be estimated based on the distances between s

and its k-nearest neighbors t ∈ A2(s). In this case, the OPF algorithm must maximize a

connectivity map V (t) = max∀πt∈Πt
{f2(πt)} [102]. In [102], however, the authors propose

changes in the definition of A2 and f2 for unsupervised learning, such that a single root

(i.e., cluster or optimum-path tree) will be identified for each maximum (see next Sec-

tion). As presented in Equation 3.6, all nodes from a same maximum will become roots

in S, over segmenting the dataset (training set).

The presented training process is accomplished by propagating the label L(s) ←
λ(R(s)) for all s ∈ N , where λ(R(s)) is the class (true label) of the root node R(s)

in supervised learning or the cluster label of the root in unsupervised learning. The clas-

sification (class/cluster label) of a new node t /∈ N is performed by extending paths in

P , as P ∗(s) · 〈s, t〉, for all s ∈ N , and propagating the label L(t) ← L(R(s)) of its most

closest (strongest) connected root R(s) ∈ S. Consequently, class/cluster assignment is

based on optimum connectivity with respect to a set S of prototypes rather than based on

local distance decisions, such as in k-Means clustering, k-Nearest Neighbor classification,

and several other techniques. One can derive different pattern classifiers by adapting the

learning technique, the adjacency relation, the way of identifying prototypes, and the

connectivity function.

Essentially, the OPF framework extends a previous approach, the Image Foresting

Transform (IFT), from the image domain to the feature space. The IFT is a general tool

for the design, implementation, and evaluation of image processing operators based on

connectivity functions [44]. The IFT reduces image processing problems to compute an

optimum-path forest in a graph derived from the image. The cost of a path in this graph

is determined by an application-specific function, which usually depends on local image

properties along the path (such as color, gradient, and pixel position). The IFT unifies

and expands many image analysis techniques, that although based on similar underlying

concepts (ordered propagation, graph search, flooding, geodesic dilatation, dynamic pro-

gramming, region growing, among others), are usually presented as independent methods.

Those techniques can all be reduced to a partition of the image into influence zones linked

to a given seed set. The influence region of each seed comprises the pixels that are “more

strongly connected” to that seed than to any other, in some appropriate sense. These

influence zones are the trees of the forest and each seed is the root of its corresponding

tree. This idea has been used to define watershed transforms [74, 73] and to create in-

teractive segmentation methods [98, 41, 113]. The IFT also provides a mathematically

sound framework for many image processing operations that are not obviously related to

image partition, such as morphological reconstruction [42], distance transforms [72], mul-

tiscale skeletons [43], multiscale fractal dimension [118], and shape saliences [119, 9, 117].

Furthermore, the IFT framework has been well succeeded in the development of image

segmentation techniques based on regions [41, 74, 77, 83, 6], borders [47, 46, 45, 82], and

both strategies [113, 27]. For the cases of samples as pixels and superpixels, one can say
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that the OPF classifiers are IFT-based operators.

The OPF classifiers have shown advantages in some scenarios over k-Nearest Neigh-

bors (kNN), Artificial Neural Networks (ANN), and Support Vector Machines (SVM) for

supervised learning [93, 90, 94, 91, 96], and over k-Means, Mean-Shift, and Expectation

Maximization (EM) for unsupervised learning [102]. They have been successfully used in

several applications: rainfall occurrence estimation [95], spoken emotion recognition [58],

vowel recognition [95], brain image segmentation [23, 22], active learning [105, 106], face

recognition [92], petroleum well drilling monitoring [54], diagnosis of parasites [116, 107],

infrared face recognition [26], background segmentation of natural images [76], among

others. The OPF framework has also been extended to semi-supervised learning with

classifiers outperforming many state of the art methods [8, 7]. In this work, we are mostly

concerned with OPF-based data clustering.

3.7 Data clustering by Optimum-Path Forest

As proposed in [102], for a given k-nearest neighbor and arc-weighted graph (N,A2) (see

Equation 3.2 for A2), we wish to estimate the probability density function (PDF) ρ of

the samples s ∈ N from the distances between s and its adjacent nodes t ∈ A2(s). The

clustering we seek must be obtained by the optimum-path trees rooted at the prototype

set S, derived from the maxima of ρ. Indeed, the PDF ρ is a manifold in ℜm+1 that

represents the density of the random field x = ~v(s) as created when random choices of s

lead to observations ~v(s) of the underlying problem. The clusters are the domes of that

manifold. Therefore, one can assign ρ(s)← ρ(x) to all samples s that are mapped to the

position x in ℜm. This also allows to simplify the estimation of ρ(s) as follows,

ρ(s) =
1

√

2πσ2|A2(s)|
∑

∀t∈A2(s)

exp

(−d2(s, t)
2σ2

)

, (3.7)

where |A2(s)| = k and σ = max∀(s,t)∈A2
d(s, t)/3 1. It can be seen that Equation 3.7

defines a Gaussian kernel guaranteeing that only the k-nearest samples of s are used

to compute the PDF value. The traditional method to estimate a PDF is by Parzen

window [38]. Equation 3.7 can provide a Parzen-window estimation when using A1 in

the feature space (see Equation 3.1). Nevertheless, this choice presents problems with

differences in scale and sample concentration. Solutions to this problem lead to adaptive

choices of σ depending on the region of the feature space [28]. By taking into account only

the k-nearest neighbors of a sample, different concentrations are handled and the scale

problem is reduced to the one of finding the best value of k within the interval [1, kmax],

for 1 ≤ kmax << |N |. In [102], the solution considers the value of k that minimizes the

normalized graph cut function

C(k) =
c
∑

i=1

W ′
i

Wi +W ′
i

, (3.8)

1This choice for σ guarantees that all adjacent samples of s in the graph are used for density compu-
tation.
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Wi =
∑

∀(s,t)∈A2|L(s)=L(t)=i

1

d(s, t)
,

W ′
i =

∑

∀(s,t)∈A2|L(s)=i,L(t) 66=i

1

d(s, t)
,

where L(t) is the label of sample t, as assigned by clustering as the label of R(t), W ′
i

considers all arc weights between cluster i and other clusters, and Wi considers all arc

weights within cluster i for i = 1, 2, ..., c. Indeed, the problem of finding the best PDF

is the one of finding the best value of k, and the solution requires the execution of the

OPF algorithm as many times as needed, within the interval k ∈ [1, kmax], to create a

candidate clustering in L and compute its normalized graph cut C(k). Once the best k

is found, the graph can be thought of as being node-weighted (N,A2, ρ) (see Figure 1.1).

Adjacency A2 (see Equation 3.2) is asymmetric and so it cannot guarantee connectivity

between any pair of samples that falls on a same maximum of the PDF. In [102], the

authors solve this problem by redefining the adjacency relation after PDF computation,

for each evaluated value of k, in order to obtain a clustering (separation of the domes of

the PDF at the valleys among them) with a single optimum-path tree (cluster) rooted at

each selected maximum of the PDF. Therefore, the adjacency relation A4 used to execute

the OPF algorithm redefines A2 as follows.

For all s, t ∈ N, s 6= t, do

if t ∈ A2(s) and

s /∈ A2(t) and

ρ(s) = ρ(t), then

A4(t)← A2(t) ∪ {s}

(3.9)

Adjacency A4 guarantees that any node selected on a maximum of the PDF will be

able to reach the remaining nodes of the same maximum by an optimum path. In order

to elect a single root in S per maximum of the PDF, the connectivity function must be

updated as follows.

f3(〈t〉) =
{

ρ(t), if t ∈ S

ρ(t)− δ, otherwise

}

(3.10)

f3(〈πs· 〈s, t〉〉) = min {f3(πs), ρ(t)}
for δ = min∀(s,t)∈A4‖ρ(t) 6=ρ(s)‖ρ(t)− ρ(s)‖. This choice of δ preserves all maxima of the

PDF. Higher values of δ work as a filter, removing clusters formed by small domes. In

fact, the root set S will be represented by one node from each maximum of the optimum

map V . The OPF algorithm starts by setting the trivial map V (t) = V0(t)← ρ(t)− δ to

all nodes. During execution, each node t ∈ N that has not been conquered by any other

path than 〈t〉 (i.e., P (t) = nil) is the first node at a maximum of the PDF. It is then

elected to be in S. The algorithm changes its trivial path value to ρ(t), which makes the

node to conquer the remaining ones on the same maximum and the others on the same
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dome of the PDF.

Algorithm 1 presents the OPF procedure for f3 on the graph (N,A4, ρ). Essentially, it

selects a prototype at each maximum of the PDF and then computes a path to each node

t whose minimum density value along the path is maximum, among all possible paths

with the same terminus t. The result is a maximum connectivity map V , a predecessor

map P with one optimum-path tree (cluster) rooted at each maximum of the PDF, a

root map R, and a map L with the cluster labels representing the domes of the PDF. It

also creates a list O with the nodes of N ordered in a non-increasing way by the resulting

connectivity values. This list is used to propagate the cluster labels to new samples.

Figure 3.4 illustrates the execution of Algorithm 1 in a simple graph.

Algorithm 1 – Algorithm for Clustering by Optimum-Path Forest.

Input: Graph (N,A4, ρ).

Output: Label map L, connectivity map V , predecessor map P , root map R, and list of

nodes O.

Auxiliary: Priority queue Q, variables tmp and l.

1. Set l← 1 and compute δ as described above.

2. For each s ∈ N do

3. Set P (s)← nil, V (s)← ρ(s)− δ, R(s)← nil, insert s in Q.

4. While Q is not empty do

5. Remove from Q a sample s such that V (s) = arg max∀t∈Q{V (t)}.
6. Insert s in O.

7. If P (s) = nil then

8. Set L(s)← l, R(s)← s, V (s)← ρ(s), and l← l + 1.

9. For each t ∈ A4(s) and V (t) < V (s) do

10. Set tmp← min{V (s), ρ(t)}.
11. If tmp > V (t) then

12. Set L(t)← L(s), R(t)← R(s), P (t)← s, V (t)← tmp.

13. Update position of t in Q.

As discussed in [102], Algorithm 1 is more robust than Mean-Shift [25] because it does

not depend on PDF gradients, it is supported by a k-nearest neighbor graph to handle

different concentrations of samples, and it guarantees a single label per maximum of the

PDF. On the other hand, it requires an explicit graph representation which limits the size

of N and the value of k. This leads to the discussion about its extension to large datasets.

3.7.1 Extension to large datasets

Algorithm 1 takes O(k|N | + |N |log|N |) operations when Q is a binary heap. The es-

timation of the best k requires its computation several times — e.g., if an exhaustive

search is done within the interval [1, kmax], Algorithm 1 is executed kmax times. This

method can become unfeasible for a large number of samples like a 2D/3D image with

thousands/millions of pixels/voxels.
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maximizes the connectivity map V (t) (see Equation 3.4). Let the node s′′ ∈ N ′′ be the

one that maximizes V (t). Then, the classification step simply puts t in the same cluster

of s′′ (L(t) ← L(s′′)). The expensive part of this process is the computation of ρ(t) for

all t ∈ N \N ′′, which also requires the computation of the k-nearest neighbors of t in N ′′.

Cappabianco et al. [23] considerably speeded up this classification phase (or propagation

phase) by avoiding the computation of ρ(t) for all non-training samples t. Essentially,

their proposition is to give t the cluster label of the node with the highest path value

that would have had t as a neighbor, if t had been part of the training set. Formally, [23]

chooses the node s′′ that satisfies

V (s′′) = max∀s∈O,d(s,t)≤w(s){V (s)} (3.11)

where O is the list of the graph nodes (N ′′) sorted in a non-increasing way by the computed

path values (V ), and w(s) is the maximum distance between s and its k-nearest neighbors

in the graph (N ′′, A4, ρ). Therefore, this approach favors the nodes with the highest path

values — i.e., the samples with the highest PDF values — that would have t as a k-nearest

neighbor if t were in N ′′. This process is fast because it only needs to go through the list

O until it finds the first node s′′ such that d(s′′, t) ≤ w(s′′).

In spite of both extensions achieved good results in some applications, they have their

limitations. The first one is used in [102] to guide the user’s actions in the interactive

segmentation of natural scenes. A problem is that this extension is restricted to image

segmentation. Also, this technique poses a compromise between the choice of r2 (see

Equation 3.3) and the choice of δ in f3(〈t〉) (see Equation 3.10) to control the number of

clusters. The second extension has already been proven successful for large datasets (with

about 1.5 million of voxels) when classifying gray matter, white matter, and cerebral spinal

in magnetic resonance images of the brain [23]. However, in datasets with a significant

imbalance among classes or datasets with many classes, the clustering result may be

compromised if relevant information is lost after the sampling process that chooses the

training set N ′′.

In this master thesis, we intend to address some of the shortcomings of these OPF-

based extensions that deal with large datasets by proposing a divide-and-conquer ap-

proach. The next chapter explains in details our proposal.
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Chapter 4

Divide-and-Conquer OPF Clustering

In this chapter, we present an OPF-clustering method based on the divide-and-conquer

design paradigm for large datasets. The proposed method divides a dataset into parts and

uses the OPF-clustering algorithm (or its variant for large datasets, OPF -Large-Data) to

group samples in each part as well as to combine the clustering results from each part.

This divide-and-conquer approach is demonstrated for two scenarios of interest: arbitrary

data clustering and image segmentation. In the first scenario, it handles large datasets

from arbitrary applications of data clustering and, in the second scenario, it becomes a

superpixel segmentation method. We also propose improvements in the OPF-clustering

algorithm.

4.1 General algorithm

Let a dataset N with |N | samples, such that |N | >> 10, 000, may be considered a

large dataset irrespective of the number of features. The direct application of the OPF-

clustering algorithm on N is prohibitive in processing time as well as in memory space,

which is required to store a k-nearest neighbor graph with possibly k = 500 (see Sec-

tion 3.7). Our strategy is to divide N into smaller subsets, find groups in these subsets,

and combine the groups from all subsets to obtain the final partition. We are not the first

to suggest this model for data clustering. Indeed, Jain et al [61] propose it as a possible

variant when the entire dataset cannot be accommodated in the main memory.

Algorithm 2 describes our technique. We call it OPF-Blocks-2 in reference to the fact

that it only has two clustering levels. At the first level, the large number of samples in

N is divided into b disjoint blocks (Line 1), so that each segment of the data (block)

consists of approximately N/b samples. This number must be reasonable and sufficient

to represent the natural groups in N . Otherwise, this choice will affect the performance

of the method. This data division can be random or based on some application-specific

strategy. Then, Algorithm 1 is used to group the samples in each block. This phase is

easy to parallelize because the blocks are clustered separately. Let us assume that block

i produces ci clusters, for i = 1, 2, . . . , b, or what is the same, block i can be summarized

by ci prototypes (cluster representatives) 1. Subsequently, all the
∑b

i=1 ci prototypes

1Remember that in OPF clustering the roots of the forest summarize their corresponding trees (clus-
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are taken as samples of a new dataset M (Line 5) to be grouped in the second level

also by Algorithm 1 (Line 6). It is expected that this last result will reveal the natural

number c of groups in the original dataset. Our assumption is that the samples in M

summarize the original data, therefore, a clustering over these samples will represent a

good approximation of the underlying partition of the dataset N . Finally, the group labels

acquired in M are transferred to the original dataset N as follows. Line 8 copies the group

labels of the samples in M to the same samples in N — i.e., the roots of optimum-path

trees in the first level — and then to the samples of their optimum-path trees (Lines 11

and 12). Algorithm 2 returns the label map L, the root map R, and the predecessor map

P (optimum-path forest) from N (Lines 8 and 12).

Algorithm 2 – OPF-Blocks-2

Input: Large dataset N , adjacency relation A4, probability density function ρ, and

number of parts b.

Output: Label map L, predecessor map P , and root map R.

1. Divide N into b disjoint sets N1,...,Nb.

2. Create empty set M .

3. For each i ∈ (1..b) do

4. (Li, Pi, Ri)← Execute Algorithm 1 in (Ni, A4, ρ).

5. Add the representative samples of Ni to M .

6. (Lm, Pm, Rm)← Execute Algorithm 1 in (M,A4, ρ).

7. For each s ∈M do

8. Set L(s)← Lm(s), R(s)← Rm(s), and P (s)← Pm(s).

9. For each i ∈ (1..b) do

10. For each s ∈ Ni \M do

11. Set u← Ri(s).

12. Set L(s)← L(u), R(s)← R(u), P (s)← Pi(s).

The time complexity of Algorithm 1 is O(k|N |+ |N | log |N |), as previously mentioned.

By assuming k ≫ log |N | and Algorithm 1 is executed kmax times to discover the best

value of k, we may conclude that the OPF-clustering technique runs in O(kmax ∗ k ∗ |N |).
Algorithm 2 depends on Algorithm 1 to group samples in each subset of N as well as

to find groups in M . Assuming that M has a similar number of samples to that of the

blocks in the first level (i.e., |N |/b samples), we may conclude that Algorithm 2 executes

in O((b + 1) ∗ k′
max ∗ k′ ∗ |N |/b) = O(k′

max ∗ k′ ∗ |N |) for k′
max < kmax and k′ < k. This

makes the proposed method not only viable for large datasets but also more efficient than

Algorithm 1, especially for smaller values of k′
max and k′, which are obtained as b increases.

Algorithm 2 can be easily extended to a higher number of levels than two, but we

found two levels enough for the datasets used in this work. When the number of samples

in a dataset is considered very large (for instance in an image, where |N | >> 200, 000),

we prefer to partition the data into a smaller number of blocks and use the variant OPF-

Large-Data to cluster each block rather than partition them into a larger number of

ters).
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blocks. In this case, Algorithm 1 is executed in reduced training sets and the resulting

cluster labels are propagated to the remaining samples of the corresponding blocks (see

Section 3.7.1). By that, our algorithm makes possible to use the method of Rocha et

al. [102] with considerably larger training sets. For instance, if OPF-Large-Data can

cluster a very large dataset within a reasonable time by using x training samples, we can

affirm that our technique can cluster the same dataset in comparable time by using xb

training samples, where b is the number of blocks. This flexibility is important for some

large datasets, where reduced numbers of training samples can compromise the clustering

results due to the lack of data information.

We can use Algorithm 2 to cluster any large set of arbitrary data. The dataset needs

to be divided by random sampling in the absence of domain information on the samples.

Ideally, each block should have a good representation of the underlying partition, but

not an excessive number of samples that can compromise the efficiency of the technique.

In fact, this number also depends on the dimensionality of the data. The summarized

dataset in the second level must also have a balanced size. If this dataset is formed by

many samples, it means that the samples were not sufficiently grouped in the first level and

the results of the proposed technique will be quite similar to those of the Algorithm 1 —

i.e., the second level of the proposed method would constitute the only level of Algorithm

1. On the contrary, if this number is small, important grouping information may be lost

and the result may be poor. It is valid to clarify that these are mostly assumptions.

There is no one truth when it comes to obtaining the best parameters (number of blocks,

number of samples per block, size of the summarized dataset) and the technique must be

rigorously tested on each dataset in which it is used. Algorithm 2 is depicted in Figure

1.2 when clustering a toy dataset.

In the next section, we propose improvements in the original OPF-clustering technique,

especially in the processing time to estimate the best value of k.

4.2 Improving the estimation of the k-nn graph

Figure 4.1 illustrates the pipeline of the original OPF-clustering method, which includes

several executions of the OPF algorithm (Algorithm 1) to estimate the best value of k (i.e.,

the most suitable k-nn graph for the problem). For a given value of kmax ≪ |N |, the best

value of k must be estimated within [1, kmax]. In order to avoid the computation of kmax k-

nn graphs, which takes O(|N |2) each, the traditional approach starts by building a kmax-nn

graph with the kmax nearest neighbors (adjacent nodes) of each node sorted, such that the

kmax-nn graph actually includes every k-nn graph for k ∈ [1, kmax]. First, we parallelized

the construction of the kmax-nn graph. The identification of the k-nearest neighbors could

also be based on a k-d tree or other specialized structures, whose complexity time is

O(|N | log |N |), but its difficulty for parallelization is considerably higher.

The authors in [102] find the best value of k by exhaustive search within [1, kmax]. The

normalized cut in the k-nn graph is used as the criterion for minimization, as computed

from the group labels propagated by the OPF algorithm. As drawback, for each candidate

k, the technique must compute the PDF of all nodes (light green component), execute
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sets per block, as obtained by grid sampling in each block. Algorithm 1 is then applied to

the reduced training set of each block and the cluster labels are subsequently propagated

to the remaining samples in the block— i.e., we preferred to use the variant named OPF-

Large-Data. We parallelized this label propagation operation. Afterward, it is possible to

merge adjacent clusters from neighboring blocks by means of a post-processing, a variant

of the algorithm named OPF-Blocks-1, or to continue the process by clustering the roots

from each block in a second level and then propagating the cluster labels through them

to all image pixels (OPF-Blocks-2 ). Algorithm 3 shows this two-level version for image

segmentation.

Algorithm 3 – Image segmentation by OPF-Blocks-2

Input: Dataset corresponding to an image N , adjacency relation A4, probability density

function ρ, and number of blocks b.

Output: Label map L, predecessor map P , and root map R.

1. Divide N into b disjoint and compact blocks N1,...,Nb.

2. Create empty set M .

3. For each i ∈ (1..b) do

4. Select a reduced training set Ti from Ni by grid sampling.

5. (Li, Pi, Ri)← Execute Algorithm 1 in (Ti, A4, ρ).

6. For each s ∈ Ni \ Ti do

7. Set u← the node returned by Equation 3.11.

8. Set Li(s)← Li(u), Ri(s)← Ri(u), and Pi(s)← u.

9. Add the representative samples of Ti to M .

10. (Lm, Pm, Rm)← Execute Algorithm 1 in (M,A4, ρ).

11. For each s ∈M do

12. Set L(s)← Lm(s), R(s)← Rm(s), and P (s)← Pm(s).

13. For each i ∈ (1..b) do

14. For each s ∈ Ni \M do

15. Set u← Ri(s).

16. Set L(s)← L(u), R(s)← R(u), P (s)← Pi(s).

While OPF-Blocks-1 is limited to merge adjacent clusters from neighboring blocks,

OPF-Blocks-2 can merge clusters from blocks in any part of the image. The merging

procedure in OPF-Blocks-1 consists of computing a color histogram for the superpixels

and join adjacent pairs whose the Bhattacharyya coefficient between them is close to 1.

The Bhattacharyya coefficient (BC) is defined as

BC =
∑

x∈X

√

p(x)q(x) (4.1)

where p and q are discrete probability distributions over the same domain X. Figure 4.4

depicts this procedure.

To produce the final segmentation, we need to apply a relabelling on the clustering

result of the methods because the obtained clusters are not restricted to be compacted

while the superpixels are. In fact, this is not the only post-processing that we recommend.
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Chapter 5

Experimental Results

This chapter describes the experiments and results of the proposed algorithms for two

scenarios: image segmentation and arbitrary data clustering. For image segmentation,

the samples are the pixels of a given image (dataset) as represented by their color and

spatial location. For data clustering, the datasets have different numbers of features,

classes, and samples per class, representing distinct applications. For each scenario, we

use common datasets to compare methods according to popular metrics of effectiveness.

A discussion about the experimental results is presented at the end of the chapter.

5.1 Image segmentation

Traditional clustering techniques, or methods based on clustering, have been used to group

pixels based on their color similarity and difference in location on the image. Next, we

compare two clustering techniques derived from our proposal, OPF-Blocks-1 and OPF-

Blocks-2, against some popular superpixel generation methods and other clustering algo-

rithms. To evaluate the methods across different application domains, we select databases

involving natural, biological, and medical images.

5.1.1 Image databases

We use three databases of 2D images with their corresponding ground-truth segmentation

to measure the effectiveness of the methods to adhere to the boundaries of a given object

of interest.

The first database corresponds to 50 natural and colorful images from the GrabCut

database [103]. The image size varies from 339.1 kB (113,032 pixels) to 921.6 kB (307,200

pixels). Some examples of images are shown in Figure 5.1.

The second database is formed by 36 color images of different parasites where some are

connected to impurities. The goal in these images is to isolate the pixels that represent

the parasites. However, impurities may overlap the parasites and/or present similar sizes,

shapes, colors, and textures. The image size varies from 391.9 kB (97,280 pixels) to

2.1 MB (698,880 pixels). Some examples of images of this database can be observed in

Figure 5.2.
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Figure 5.1: Examples of images in the GrabCut database.

Figure 5.2: Examples of images in the Parasites/Impurities database.

The third database contains 29 images obtained from slices of 10 thoracic computed

tomography (CT) studies. The object of interest is the liver in each slice. The images

are gray-scale and their sizes vary from 762 kB to 805.4 kB, all having 262,144 pixels.

Figure 5.3 exhibits some images of this database.

Figure 5.3: Examples of images in the Liver database.

5.1.2 Compared methods

OPF-Blocks-1 and OPF-Blocks-2 are compared to two state-of-the-art superpixel gener-

ation methods (SLIC and Quick-Shift), one method based on the watershed transform,

and two generic clustering algorithms (OPF-Large-Data and k-Means). In particular,

the comparison between OPF-Large-Data (see Section 3.7.1) and the divide-and-conquer

methods is interesting. Currently, OPF-Large-Data is the principal option when trying

to cluster large datasets with the OPF framework, and in this work, we are assuming

that our technique improves or at least obtains similar results to the previously developed

OPF-based extensions. OPF-Large-Data is always executed with 1500 training samples
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when clustering each image or block in the divide-and-conquer extensions. OPF-Blocks-1

and OPF-Blocks-2 divide the images into 4, 9, or 16 blocks at the first level, so in turn

they are using a training set with size between 4 * 1500 and 16 * 1500 samples.

Some superpixel generation methods require a post-processing to ensure that the gen-

erated superpixels are connected, for others, the algorithm itself ensures this connectiv-

ity. SLIC, k-Means, and the OPF-based extensions all require this procedure, while the

watershed-based method does not require it. This is not the only post-processing that

we apply in the experiments. We also remove small superpixels (noise) from the result of

each compared method, and in some cases, we apply image smoothing based on diffusion

filtering 1. We define the descriptor for these databases as explained in Section 5.1.4.

Below we give a brief description of each compared method.

SLIC: SLIC is a linear (in the number of pixels) algorithm, and it is by far the most

commonly used superpixel method. In Section 3.3, there is a short description of this

technique. SLIC allows to specify the number of desired superpixels and to regulate

the compacity of them. The superpixels for our experiments are generated using the

implementation provided in the authors’ webpage2.

Quick-Shift: Quick-shift uses a mode-seeking segmentation scheme [122]. It ini-

tializes the segmentation using a medoid-shift procedure. Then, it moves each point in

the feature space to the nearest neighbor that increases the Parzen density estimate.

Quick-shift is a rather slow algorithm, with a O(dN2) complexity where d is a small con-

stant [122]. Also, it does not provide user control over the size or number of superpixels.

Previous works have used Quick-Shift for object localization [51] and motion segmen-

tation [12]. The superpixels for our experiments are generated using publicly available

source code3.

Watershed: The watershed-based approaches perform a gradient ascent starting from

local minima to produce watershed lines that separate catchment basins. The resulting

superpixels are often highly irregular in size and shape and do not exhibit good boundary

adherence for small numbers of superpixels. We use the algorithm explained in [74] to

generate the superpixels.

k-Means: We utilize a basic implementation of k-Means to cluster the pixels of the

images. The complexity of this algorithm is O(KNI) where K is the desired number of

groups and I the maximum number of iterations until convergence. The initial cluster

centers are chosen with grid sampling.

OPF-Large-Data: We use the OPF clustering technique applied to image segmen-

tation as described in the last extension of Section 3.7.1. The training samples for each

dataset (image) are chosen with grid sampling.

OPF-Blocks-1: This is the approach described in Algorithm 3 but with only one

level. The training set in each block is formed with grid sampling. It uses the suggested

local search to find the adjacency parameter k (see Section 4.2) when clustering each block

and the merging post-processing explained in Section 4.3.

OPF-Blocks-2: This is the proposed technique, described in Algorithm 3, with the

1The diffusion filtering is maintained only if it improves the segmentation result.
2http://ivrl.epfl.ch/supplementary_material/RK_SLICSuperpixels/
3http://www.vlfeat.org/download.html
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two levels. As in OPF-Blocks-1, for each block, the training samples are chosen with grid

sampling and the suggested local search is used to find the adjacency parameter k.

5.1.3 Evaluation metrics

We employ two widely used boundary adherence measures for evaluating the quality of

superpixels. The first one is the boundary recall (BR) which measures the fraction of the

ground-truth boundaries overlapping the segmentation boundaries in an image within a

certain tolerance distance d of pixels. We use d = 2 for our experiments4. The second used

metric is the under-segmentation error (UE) which does not penalize over-segmentation

and indicates how well the superpixels adhere to the object boundaries. There are different

definitions for this metric [1, 86], so we utilize the free parameter definition presented

in [86]. Every ground-truth segment Gi having an overlap with a superpixel Sj divides

it in in and out parts, denoted by Sin
j and Sout

j , respectively. The first part represents

the set of pixels in Sj ∩ Gi, and the last one comprises the set of pixels in Sj that lies

outside Sj ∩Gi. UE represents the smallest error introduced by either adding Sout
j to the

segment or by omitting Sin
j . Let M be the number of ground-truth regions, Is a superpixel

segmentation, and N the number of pixels in the image. UE is defined as

UE(Is) =
1

N

(

M
∑

i=1

(

∑

Sj |Sj∪Gi 6=∅

min(|Sin
j |, |Sout

j |)
))

(5.1)

where |.| denotes the size of a set of pixels.

In addition to computing the boundary recall and the under-segmentation error, we

also measure the mixture between background and object (the object of interest) in the re-

sulting clusters. In OPF-based methods, it is assumed that all samples from an optimum-

path tree have the same label of their root. Therefore, we assign the correct label to

each root of the forest and propagate them to the remaining samples of the corresponding

optimum-path trees. In this way, the purity or accuracy of the clustering is defined as the

percentage of correct classifications obtained by the previous procedure. For the other

methods which are not based on the optimum-path forest but have a clear representative

for each cluster — e.g., in k-Means the representatives are the closest samples to the

centers of the clusters —, we use the same idea to compute the accuracy of the clustering.

We assign the true label to each cluster representative and propagate it to the rest of the

group. We also calculate the F1 score or Dice similarity coefficient (DSC) from the label

propagation result. The Dice coefficient is defined as

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(5.2)

where TP is the number of true positive samples, FP the number of false positive samples,

and FN the number of false negative samples. In the images, we assume that the positive

samples are the samples in the object of interest and the negative ones are the samples

4This tolerance value is usually adopted to cope with human errors when generating ground-truth
segmentations.



60

in the background.

We carry out the label propagation experiments in all three databases for SLIC, k-

Means, and the OPF-based extensions. To compute the Dice metric, we do some post-

processing to the images resulting from the label propagation phase. We apply morpho-

logical open and close operations to reduce noise, and we only remain with the largest

object component because we know that the evaluated images have a single object of

interest.

5.1.4 Defining a simple and effective descriptor for the samples

in the evaluated images

To find a simple and good enough descriptor for the samples in the tested databases, we

help ourselves with the t-Distributed Stochastic Neighbor Embedding (t-SNE) data visu-

alization technique [75]. It is clear that we need the color information for pixel clustering,

but it is not so obvious if we also need the spatial information or color information from

a neighborhood close to the pixel. We choose the CIELAB color space to encode color

information because of its common use in superpixel methods.

Figure 5.4 shows a natural image of the GrabCut database and the 2D projections of

different feature vectors (descriptors) with the t-SNE technique. It is easy to realize that

the spatial information is important for superpixel segmentation (Figure 5.4c) because

pixels of background and object can have similar color in the same image (Figure 5.4a).

Not by choice SLIC [1] defines a distance involving both color and spatial differences.

Also, we can see from Figure 5.4d that adding the color data from a pixel’s neighborhood,

without adding together its spatial information, decreases the spatial information rele-

vance and worsens the separability between object and background in the feature space.

Therefore, we define the descriptor for the samples of colorful images with both, the color

and spatial information of the pixel5.

For the gray-scale images, corresponding to the thoracic computed tomography slices,

we determine a feature vector formed by the brightness value and the spatial information

of the pixel, in addition to the brightness data of the pixels in the 8-neighborhood. This

descriptor results in a clear separation between liver and not liver samples in the t-SNE

projection.

5.1.5 Experimental methodology

All experiments are executed on a server with a processor Intel Core i7-3770K CPU @

3.50GHz x 8 and a memory RAM of 32GB. We randomly divide each database into two

sets: a training set and a test set. The images in the training set are used to tune up

the hyper-parameters of the compared methods6. The best hyper-parameters are found

by grid search. All the results shown below correspond to the execution of the methods

5We could also have tried more complex features as texture descriptors, but the idea was to create a
simple feature vector.

6Do not confuse the training set for a database of images (it is formed by images to tweak the
hyper-parameters of the compared methods) with the training set of a large dataset according to the
OPF-Large-Data clustering technique (it is formed by samples or pixels in this case).





62

Is there any difference between random sampling and grid sampling when

forming the training set of OPF-Large-Data?

Figure 5.5 compares the segmentation results of OPF-Large-Data, according to two differ-

ent strategies used when creating a training set of 1500 samples, in the GrabCut database.

It can be observed that creating the training set with grid sampling is a little better than

forming it with random sampling. This result is easy to understand. A randomly formed

training set with not enough number of samples can omit some components of the image.

With grid sampling, lose relevant information is harder because the training samples are

uniformly distributed in the data space. For example, it can be seen in Figure 5.6a how

some borders of the object are lost (marked with yellow arrows) after clustering the image

by OPF-Large-Data using a training set formed with random sampling. We cannot say

the same for a training set created with grid sampling according to Figure 5.6b.
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Figure 5.5: Comparisons between the segmentation results of OPF-Large-Data, in the Grabcut
database, when different strategies to form the training set of the method are used.

In all the image segmentation experiments shown from now on, the compared tech-

niques that need to do a sampling — e.g., when selecting the k initial centers in k-Means,

when forming the training set in OPF-Large-Data, and when selecting the training sam-

ples in the blocks of OPF-Blocks1 and OPF-Blocks-2 —, perform a grid sampling and

not a random sampling.

Does a larger number of training samples in OPF-Large-Data imply better

results?

Figure 5.7 shows comparisons between the segmentation results obtained by OPF-Large-

Data in the images of the Grabcut database when different training set sizes are used.

It is clear that a small training set with 500 samples has difficulties to capture all the

information of a natural image, so we get poor results with this setting, particularly in

the Dice metric. The results achieved with training sets of 1500 and 3000 samples are not
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Figure 5.7: Comparisons between the segmentation results obtained by OPF-Large-Data, in the
GrabCut database, when training sets of different sizes are used.

(base level), respectively. In these experiments, each block is clustered with 1500 training

samples chosen by grid sampling, therefore, more blocks imply a greater amount of training

samples.

According to Figure 5.9, it does not seem a good idea to run OPF-Blocks-1 with many

blocks unless our objective is to get a lot of superpixels. The more blocks we have, more

superpixels we usually get. As clusters produced in different blocks cannot be merged

directly because of the absence of a second level of clustering, the final result has a great

dependence on the post-processing that tries to merge adjacent superpixels by comparing

their histograms (see Section 4.3). Figure 5.9b shows that the under-segmentation error

up to 130 superpixels is greater for 16 blocks than for both 4 and 9 blocks.

Unlike OPF-Blocks-1, OPF-Blocks-2 allows merging clusters formed in different blocks

because it has two levels. According to Figure 5.10, the more blocks in the first level,

the better the chance of improving the segmentation result. However, a large number
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Figure 5.8: Comparisons between the segmentation results of OPF-Large-Data, in the Grabcut
database, when different strategies to find the adjacency parameter k are used.
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Figure 5.9: Comparisons between the segmentation results of OPF-Blocks-1, in the GrabCut
database, when a different number of blocks for the first level is established.

of blocks in the first level may be unnecessary depending on the size and entropy of the

image. In addition, many blocks usually involve a degradation in the execution time of

the technique.

Comparing the proposed technique with the baseline methods in the GrabCut

database

Figures 5.11, 5.12, and 5.13 compare the segmentation results of the baseline methods

and the two divide-and-conquer extensions in the images of the GrabCut database. It

can be seen that OPF-Blocks-2 significantly outperforms the others techniques, according
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Figure 5.10: Comparisons between the segmentation results of OPF-Blocks-2, in the GrabCut
database, when a different number of blocks for the base level is established.

to the boundary recall and the under-segmentation error. OPF-Blocks-1 has the second

best performance, only surpassed by OPF-Large-Data up to 50 superpixels. OPF-Large-

Data overcomes SLIC, k-Means, Quick-Shift, and Watershed in boundary recall, but

it is surpassed by these methods according to the under-segmentation error from 150

superpixels. Quick-shift has the worst performance up to 80 superpixels but from there, its

result improves. Watershed is the least effective method, especially from 100 superpixels

according to the boundary recall. Considering the run-time efficiency, Watershed and

SLIC are superior to the others. The two methods never reach a second, regardless

of the number of superpixels generated. OPF-Large-Data and the divide-and-conquer

extensions have a similar performance, taking approximately 1.5 seconds to cluster each

image. The performance of k-Means deteriorates as the amount of superpixels increases,

reaching almost 10 seconds to produce about 300 superpixels per image. Instead, the

performance of Quick-Shift improves as the number of superpixels augments (this is due

to the decrease of the search space to estimate the PDF of the samples). These results

(results corresponding to the execution time of the techniques) are equivalent in the three

databases evaluated.

Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20 exhibit segmentation results (with

approximately 100 superpixels) of the compared methods in some images of the GrabCut

database. The yellow arrows indicate leaks between the object and background. It can be

seen that the superpixels generated by k-Means and SLIC are more regular and compact

than those produced by the other methods. Quick-Shift, Watershed, and the OPF-based

extensions create rather irregular superpixels in both size and shape. k-Means and Wa-

tershed are the procedures with worst boundary adherence in the images shown. SLIC,

OPF-Large-Data, and Quick-Shift recover most boundaries of the objects; however, the

divide-and-conquer extensions identify almost all. It can be seen that some superpixels

produced by OPF-Blocks-1 and OPF-Blocks-2 have straight edges. This is a consequence
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Figure 5.11: Comparison between the segmentation results of the methods, according to the
boundary recall metric, in the GrabCut database.
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Figure 5.12: Comparison between the segmentation results of the methods, according to the
under-segmentation error, in the GrabCut database.

of two adjacent clusters, discovered in different blocks of the first level, that do not come

together afterward.

Figures 5.21 and 5.22 reveal comparisons between the clustering methods, according to

the accuracy and Dice metrics, after true label propagation by each cluster representative.

It can be observed that OPF-Large-Data has the best results up to 50 groups, while the

divide-and-conquer extensions exceed all others techniques in both metrics from 60 groups.

SLIC has the lowest performance in the Dice metric; however, it reaches the divide-and-
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Figure 5.13: Comparison between the methods according to the execution time in the GrabCut
database.

conquer extensions in accuracy from 150 groups.

Figures 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, and 5.30 present some label propaga-

tion results, for about 100 clusters, after reducing noise by morphological operations and

remaining with the largest object component. It can be seen that the divide-and-conquer

extensions, especially OPF-Blocks-2, recover an object quite similar to the ground-truth

object in all shown images. The other techniques have some problems to identify the

object in at least two images. k-Means has problems in Figures 5.23, 5.26, 5.27, 5.28,

and 5.29; SLIC gets trouble in Figures 5.24, 5.29, and 5.30; and OPF-Large-Data presents

difficulties in Figures 5.26 and 5.30.

Comparing the proposed technique with the baseline methods in the Para-

sites/Impurities database

Figures 5.31 and 5.32 reveal comparisons between the segmentation results of the tested

methods in the Parasites/Impurities database. It can be observed that OPF-Blocks-2 has

the best performance both in boundary recall and the under-segmentation error. k-Means

and OPF-Blocks-1 also obtain very good results, being the first capable of overcoming

OPF-Blocks-2 in boundary recall from 180 superpixels. OPF-Large-Data and SLIC have

similar behavior in both measures. Watershed is the technique with the worst performance

and only beats Quick-Shift up to 60 superpixels.

Figures 5.33, 5.34, 5.35, 5.36, 5.37, 5.38, and 5.39 present some segmentation results

of the compared methods with approximately 50 superpixels. In these images, the good

boundary adherence of OPF-Blocks-2 to the parasites’ boundaries can be verified. The

other techniques fail in some cases to separate the parasites from the impurities.

Figures 5.40 and 5.41 show comparisons between the clustering methods according to
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Figure 5.21: Comparison between the segmentation results of the methods after true label prop-
agation from the cluster prototypes, according to the accuracy, in the GrabCut database.
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Figure 5.22: Comparison between the segmentation results of the methods after true label prop-
agation from the cluster prototypes, according to the Dice coefficient, in the GrabCut database.

extensions surpass SLIC and OPF, but are exceeded by k-Means from 100 superpixels.

Figures 5.51, 5.52, 5.53, 5.54, 5.55, 5.56, and 5.57 show some segmentation results

(with approximately 30 superpixels) of the compared techniques. It can be seen that the

superpixels generated by Quick-Shift do not respect the boundaries of the liver and the

other organs. k-Means, SLIC, and OPF-Large-Data generate superpixels quite irregular

in both size and shape. In addition, these methods cannot segment the liver in most of the

images. Instead, Watershed, OPF-Blocks-1, and OPF-Blocks-2 generate regular super-
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Figure 5.23: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 6th image of the GrabCut database.
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Figure 5.24: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 10th image of the GrabCut database.
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Figure 5.25: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 15th image of the GrabCut database.
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Figure 5.26: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 17th image of the GrabCut database.

pixels according to the body components of the computed tomography slices. However,

Watershed also has problems to delineate the liver boundaries. The superpixels generated

by OPF-Blocks-1 and OPF-Blocks-2 allow separating the liver from the other organs in
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Figure 5.27: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 19th image of the GrabCut database.
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Figure 5.28: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 21st image of the GrabCut database.
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Figure 5.29: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 26th image of the GrabCut database.
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Figure 5.30: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 45th image of the GrabCut database.

an almost perfect way.

Figures 5.58 and 5.59 present comparisons of the segmentation results of the meth-

ods, after true label propagation from the cluster prototypes, in the images of the same

database. It can be observed that OPF-Blocks-2 has the best performance in both the

Dice coefficient and the accuracy, especially in the first metric. OPF-Blocks-1 has the

second best effectiveness from 50 groups. The results of SLIC are not among the best;

however, this technique is able to overcome the divide-and-conquer extensions in the ac-

curacy metric from 120 superpixels. OPF-Large-Data gets the worst outputs from 75

groups.
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Figure 5.31: Comparison between the segmentation results of the methods, according to the
boundary recall metric, in the Parasites/Impurities database.
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Figure 5.32: Comparison between the segmentation results of the methods, according to the
under-segmentation error, in the Parasites/Impurities database.

Some label propagation results, from 50 to 60 groups, are shown in Figures 5.60, 5.61,

5.62, 5.63, 5.64, 5.65, and 5.66. In these images, it can be observed that k-Means and

SLIC have problems to segment the liver in most cases. The results of OPF-Large-Data

are not so bad, but the method has problems recovering the liver in Figures 5.60, 5.62,

and 5.64. Instead, OPF-Blocks-1 and OPF-Blocks-2 get a good segmentation of the liver

in all the images.
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Figure 5.40: Comparison between the segmentation results of the methods after true label
propagation from the cluster prototypes, according to the accuracy, in the Parasites/Impurities
database.
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Figure 5.41: Comparison between the segmentation results of the methods after true label prop-
agation from the cluster prototypes, according to the Dice coefficient, in the Parasites/Impurities
database.

This image is labeled with seven classes of interest: road (2,048 samples), tree (2,936

samples), shadow (4,702 samples), water (843 samples), building (13,082 samples),

grass (1,021 samples), and bare soil (336 samples). The feature vector used to de-

scribe the superpixels has 1795 attributes and is a combination of four descriptors:

mean color, color histogram, local binary patterns (LBP), and border/interior clas-



81

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.42: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 1st image of the Parasites/Impurities database.
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Figure 5.43: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 3rd image of the Parasites/Impurities database.
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Figure 5.44: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 8th image of the Parasites/Impurities database.
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Figure 5.45: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 9th image of the Parasites/Impurities database.

sification (BIC). For a more detailed description, this dataset is described in [120].

• Skin Segmentation Dataset (SkinSegmentation): This dataset is built over

the RGB color space from face images of various age groups (young, middle, and

old), race groups (white, black, and Asian), and genders. It has 245,057 instances
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Figure 5.46: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 13th image of the Parasites/Impurities database.
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Figure 5.47: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 18th image of the Parasites/Impurities database.
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Figure 5.48: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 24th image of the Parasites/Impurities database.

where 50,859 are skin samples (skin pixels) and 194,198 are non-skin samples (non-

skin pixels). For a more detailed description, it is available at https://archive.

ics.uci.edu/ml/datasets/skin+segmentation.

• Letter Recognition Dataset (LetterRecognition): A dataset consisting of

20,000 black-and-white rectangular images, each corresponding to one of the 26

capital letters of the English alphabet. The descriptor has 16 attributes and the

classes (capital letters) are fairly evenly distributed in the data. For a more de-

tailed description, it is available at https://archive.ics.uci.edu/ml/datasets/

letter+recognition.
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Figure 5.49: Comparison between the segmentation results of the methods, according to the
boundary recall metric, in the Liver database.

50 100 150 200
NB. SUPERPIXELS

0.02

0.04

0.06

0.08

0.10

0.12

UN
DE

R-
SE
GM

EN
TA
TI
ON

 E
RR

OR

Comparison in the LIVER Database (NB. SUPERP./UE)
SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.50: Comparison between the segmentation results of the methods, according to the
under-segmentation error, in the Liver database.

5.2.2 Experimental methodology

OPF-based methods find natural groups in a dataset, but they do not guarantee a desired

number of clusters. With these techniques, the number of clusters is dependent on the

observation scale or kmax parameter. Other clustering methods, such as k-Means, can

produce a specific number of groups. A problem is that, usually, the number of natural

groups in a dataset is unknown.
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Figure 5.58: Comparison of the segmentation results of the methods after true label propagation
from the cluster prototypes, according to the accuracy, in the Liver database.
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Figure 5.59: Comparison of the segmentation results of the methods after true label propagation
from the clluster prototypes, according to the Dice coefficient, in the Liver database.

5.2.3 Results

Below, we present the results of the compared techniques in the tested datasets.

Comparisons in the PenDigits dataset

Table 5.1 shows the experimental results in the PenDigits dataset. As the dataset has 10

classes, we measure the accuracy of the methods for 20 and 30 groups — i.e., considering
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Figure 5.60: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 5th image of the Liver database.
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Figure 5.61: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 6th image of the Liver database.
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Figure 5.62: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 13th image of the Liver database.
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Figure 5.63: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 16th image of the Liver database.
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Figure 5.64: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 20th image of the Liver database.

2 and 3 groups per class. The OPF method achieves the best accuracy for both group

numbers. OPF-Large-Data (with 2000 training samples) and OPF-Blocks-2 (with 6 blocks
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similar performance being the first faster. All methods lose class 6 after the true label

propagation phase for 12 groups. There are only 89 instances of this class in the data,

so finding it is not an easy task. k-Means sometimes loses class 4, too. Only OPF is

able to find class 6 for 18 groups. In addition, we compute the number of clusters that

each method needs to get an accuracy equal to or greater than 0.87 without losing any

class. Again, OPF is the best method only needing 17 clusters, while k-Means is the

worst needing 380 groups. OPF-Blocks-2 requires 15 groups less than OPF-Large-Data

to achieve the accuracy value mentioned above.

Table 5.2: Experimental results in the Protozoans dataset.

Method
Accuracy/Time

(12 Groups)
Accuracy/Time

(18 Groups)

Nb.Groups/
Time

(0.87 Acc.)

OPF 0.874
1/23.8s 0.876/17.3s 17/16.9s

OPF using the local
search to find k

0.874
1/14.6s 0.876/12.3s 17/12.3s

OPF-Large-Data (2000
training samples)

0.829± 0.0321/0.9s 0.835± 0.0271/0.88s 113/1.03s

k-Means 0.841± 0.022/0.48s 0.849±0.0081/0.76s 380/8.33s

OPF-Blocks-2
(8 blocks)

0.826± 0.031/2.1s 0.837± 0.0281/2.07s 98/2.08s

1 The method loses class 6.
2 The method loses class 6 and sometimes class 4.

Comparisons in the Eggs dataset

Table 5.3 reveals the experimental outcomes in the Eggs dataset. We determine the

accuracy of the compared techniques for 9 and 16 groups, assuming almost a cluster per

class and two clusters per class, respectively. Once again, OPF gets the best results and

remains as the slowest method. OPF loses class 4 for 9 groups, while the others fail to

discover classes 2 and 4. Corresponding to 16 groups, only k-Means presents problems to

find all egg species (specifically, class 4). k-Means is the fastest method, but it gets the

lowest accuracy values by a large margin. OPF-Blocks-2 (with 6 blocks in the first level)

and OPF-Large-Data (with 1500 training samples) gets similar results in the experiments.

OPF only needs 17 groups to reach an accuracy value of 0.98 without losing any class,

while k-Means requires 53 groups. The suggested local search, to find the adjacency

parameter k, allows to bring down the OPF execution time from 3.3 to 0.8 seconds for 9

groups.
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Table 5.3: Experimental results in the Eggs dataset.

Method
Accuracy/Time

(9 Groups)
Accuracy/Time

(16 Groups)

Nb.Groups/
Time

(0.98 Acc.)

OPF 0.95
1/3.3s 0.978/1.1s 17/1.06s

OPF using the local
search to find k

0.95
1/0.8s 0.978/0.8s 17/0.9s

OPF-Large-Data (1500
training samples)

0.935± 0.022/0.42s 0.97± 0.007/0.27s 31/0.25s

k-Means 0.887±0.0142/0.05s 0.943±0.011/0.078s 53/0.56s

OPF-Blocks-2
(6 blocks)

0.929± 0.022/0.47s 0.967± 0.008/0.48s 31/0.438s

1 The method loses class 4.
2 The method loses classes 2 and 4.

Comparisons in the RomeSuperpixels dataset

Table 5.4 exhibits the experimental results of the compared clustering methods in the

RomeSuperpixels dataset. We evaluate the accuracy of all the techniques for 21 groups,

assuming 3 groups per class. We compute the number of groups each method needs

to reach an accuracy value of 0.73 without losing any class, too. The OPF technique

requires only 31 clusters to reach the accuracy value mentioned above, however, it takes

273 seconds. OPF-Blocks-2 (with 16 blocks in the first level) achieves the best accuracy

for 21 groups, but it has some problems finding classes 1 and 6. In addition, the proposed

method only requires 60 clusters to avoid losing any class and exceed the accuracy value

of 0.73, obtaining the second best result (OPF-Large-Data needs 239 groups for the same

objective). OPF-Large-Data (with 2000 training samples) is the fastest method, but it

gets the worst accuracy for 21 groups, losing classes 6 and 7 in many iterations. k-Means

needs 350 groups and 147 seconds to find all the classes in the data.

Comparisons in the SkinSegmentation dataset

The experimental results obtained in the SkinSegmentation dataset are displayed in Ta-

ble 5.5. We quantify the accuracy of the compared techniques for 6 groups, assuming 3

groups for class. The original OPF clustering method that executes Algorithm 1 in all

data is not feasible for this very large dataset (the dataset has 245,057 samples), so we

ignore it in the comparisons. As there are a lot of instances in this dataset, we have

two options to run OPF-Blocks-2. The first is to divide the data into approximately 100

blocks and cluster each one by Algorithm 1; and the second one is to divide all the sam-

ples into a smaller number of blocks and cluster each one by OPF-Large-Data. As the

last option is the fastest, we decide on it. We execute OPF-Blocks-2 with 16 blocks in
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Table 5.4: Experimental results in the RomeSuperpixels dataset.

Method
Accuracy/Time

(21 Groups)

Nb.Groups/
Time

(0.73 Acc.)

OPF 0.722/295.6s 31/273.3s

OPF using the local
search to find k

0.722/244.9s 31/240.5s

OPF-Large-Data (2000
training samples)

0.712± 0.052/7.8s 239/11.6s

k-Means 0.731± 0.0212/16.1s 350/147.9s

OPF-Blocks-2
(16 blocks)

0.735±0.015
1/20.5s 60/19.76s

1 The method loses class 6 and sometimes class 1.
2 The method loses classes 6 and 7.

the first level and cluster each one by OPF-Large-Data with 2000 training samples. All

methods achieve a similar accuracy value for 6 groups; however, k-Means is the fastest.

k-Means only needs 12 groups to achieve an accuracy value of 0.95, while OPF-Blocks-2

requires 33. The execution time of OPF-Large-Data is reduced from 3.04 to 1.3 seconds,

for 6 groups, when the local search is used to find the adjacency parameter k.

Table 5.5: Experimental results in the SkinSegmentation dataset.

Method
Accuracy/Time

(6 Groups)

Nb.Groups/
Time

(0.95 Acc.)

OPF-Large-Data (2000
training samples)

0.936± 0.005/3.04s 25/1.19s

OPF-Large-Data using
the local search to find k
(2000 training samples)

0.936± 0.004/1.3s 25/0.9s

k-Means 0.938±0.009/0.15s 12/0.24s

OPF-Blocks-2
(16 blocks with 2000

training samples each)
0.932± 0.009/2.69s 33/1.55s
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Comparisons in the LetterRecognition dataset

Table 5.6 presents the experimental outcomes of the compared methods in the Letter-

Recognition dataset. Once again, OPF is the best method obtaining an accuracy of 0.692

for 156 groups (considering 6 groups for each capital letter). All other methods achieve

similar accuracy values for the number of groups mentioned above, although OPF-Large-

Data and k-Means lose class 8 (letter ’H’) in some iterations. OPF-Large-Data is the

fastest method among all. OPF only needs 164 groups to reach an accuracy value of 0.70,

while OPF-Blocks-2 requires 468 for the same goal.

Table 5.6: Experimental results in the LetterRecognition dataset.

Method
Accuracy/Time
(156 Groups)

Nb.Groups/
Time

(0.70 Acc.)

OPF 0.692/2.7s 164/2.53s

OPF using the local
search to find k

0.692/2.15s 164/2.08s

OPF-Large-Data (2500
training samples)

0.575± 0.012/0.28s 408/0.26s

k-Means 0.58± 0.0081/0.75s 309/1.2s

OPF-Blocks-2
(8 blocks)

0.582± 0.012/0.39s 468/0.57s

1 The method loses class 8 twice in 50 iterations.
2 The method loses class 8 four times in 50 iterations.

5.3 Discussion

In this chapter, we evaluate the proposed technique against some baseline methods in

two scenarios: image segmentation and the general data clustering problem. Regarding

the image segmentation scenario, we compare OPF-Blocks-1 and OPF-Blocks-2 against

SLIC, Quick-Shift, a watershed-based method, OPF-Large-Data, and k-Means in three

databases of images: GrabCut, Parasites/Impurities, and Liver. In the three databases,

the divide-and-conquer extensions get outstanding results. OPF-Blocks-2 outperforms

the other methods in all experiments performed in accordance with the superpixel quality

metrics used: boundary recall and under-segmentation error. Only k-Means is able to

overcome OPF-Blocks-2 in one experiment, according to the boundary recall metric from

100 superpixels in the Liver database. The results of OPF-Blocks-1 are slightly worse

than those of OPF-Blocks-2; however, they always exceed the outcomes of OPF-Large-

Data, Watershed, Quickshift, SLIC, and many times those of k-Means. Corresponding to

the metrics evaluated (accuracy and Dice coefficient) after true label propagation from
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the cluster representatives, the divide-and-conquer extensions also get remarkable results.

OPF-Blocks-2 is only surpassed by OPF-Large-Data up to 45 clusters in the GrabCut

database and by k-Means up to 50 clusters in the Parasites/Impurities database.

We check that grid sampling is a better strategy than random sampling when a reduced

pixel sample of the image is needed. We also confirm the need to form a training set with

a sufficient number of samples when clustering a large dataset with OPF-Large-Data and

that the proposed local search is a good alternative to the exhaustive search when finding

the adjacency parameter k. We verify that the number of blocks to divide an image in

OPF-Blocks-1 and OPF-Blocks-2 must take into consideration the entropy and size of

the image, the consequent execution time of the technique, and the number of desired

superpixels in the final segmentation.

We can say that Watershed and SLIC are the fastest techniques, although the OPF-

based methods also cluster the images in a reasonable time. Indeed, SLIC, Watershed,

OPF-Large-Data, OPF-Blocks-1, and OPF-Blocks-2 are stable methods according to their

execution time — i.e., their performance is not influenced by the number of superpixels

generated. In contrast, the performance of k-Means and Quick-shift depends on this

number.

We present some superpixel segmentations and some binary masks (binary images

generated after the true label propagation from the cluster representatives) produced by

the compared techniques in the tested databases, highlighting the results of the divide-

and-conquer extensions. In most of the images shown, OPF-Blocks-1 and OPF-Blocks-2

(especially, the last) get a good adherence to the objects’ boundaries and recover object

masks similar to the ground-truth masks.

With regard to the arbitrary data clustering problem, we confirm the superiority of

OPF10 over k-Means in all the tested datasets. The main drawback of OPF is its poor

performance (run-time performance) when trying to cluster a large amount of data. The

two OPF extensions that deal with this issue (OPF-Large-Data and OPF-Blocks-2) obtain

similar results in most of the experiments carried out; however, with OPF-Blocks-2 is more

difficult to lose classes in the resulting groups. This must be a consequence of using all

the samples, or at least more samples, to train the technique. There is only one dataset

in which the experimental results obtained by OPF-Large-Data and OPF-Blocks-2 differ

significantly. In the RomeSuperpixels dataset, OPF-Blocks-2 gets an accuracy of 0.735

and needs 60 groups to reach the accuracy value of 0.73 without losing classes, while the

corresponding results of OPF-Large-Data are 0.712 and 239 groups, respectively.

10We refer here to the technique that executes Algorithm 1 on all samples of the dataset.
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Chapter 6

Conclusions

Advances in data acquisition and storage technologies have provided large datasets to sup-

port research, technological development, entertainment, medical diagnosis, among others.

Due to this huge amount of data, automatic labeling has become an indispensable step in

many of these applications. One of the most popular data labeling procedure is cluster-

ing where the samples are organized into “similar” groups, usually without any domain

knowledge. Numerous classes of clustering methods have been proposed in the literature,

such as representative-based methods, hierarchical methods, density-based methods, and

graph-based methods. However, many of them cannot address large datasets.

In this master thesis, the Optimum-Path Forest framework for the development of

pattern recognition techniques is considered. Given an adjacency relation, a path-cost

function, and a procedure to estimate prototypes, the OPF algorithm partitions the fea-

ture space into an optimum-path forest rooted at those prototypes. Different choices of

these parameters lead to clustering and classification approaches, such that a class may

be represented by multiple trees and a cluster is represented by a single tree. A sample

that belongs to a given tree is said more strongly connected to the root of that tree than

to any other root. Therefore, each root propagates its class/cluster label to the samples

of its tree.

In order to address the large dataset problem, we presented an extension of the OPF-

clustering technique that exploits a divide-and-conquer model with two levels. At the first

level, the data is divided into blocks. The samples belonging to each block are clustered

separately by the OPF algorithm. Then, the root of each cluster is promoted to the

second level. Next, the samples in the second level are clustered with the OPF algorithm

again. Finally, the data samples receive the group label of the roots in the second level

through their representatives in the first level. We named this method OPF-Blocks-2.

When the blocks in OPF-Blocks-2 contain too many samples, we use a previous variant

for large datasets inside each block, the OPF-Large-Data algorithm. OPF-Large-Data first

finds groups in a given training set and then propagates the root labels to the remaining

samples by identifying which root would offer an optimum path to it, if the sample were

part of the training set. For improvements, we proposed a heuristic search to find the best

adjacency parameter k within the interval [1, kmax] which does not affect effectiveness. In

the case of image segmentation, we also demonstrated that a reduced training set contains

more relevant samples when it is built by grid sampling rather than random sampling.
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Our approach, OPF-Blocks-2, was evaluated in the image segmentation scenario for

different application domains and it outperformed the compared baselines in all experi-

ments. We also assessed OPF-Blocks-1, a method that only makes use of the first level to

group the pixels and needs a post-processing to merge superpixels generated in different

blocks. The merging procedure consists of comparing the color histograms of adjacent

superpixels by the Bhattacharyya coefficient. OPF-Blocks-1 obtained excellent results,

but it is not competitive with OPF-Blocks-2.

OPF-Block-2 was also evaluated for arbitrary data grouping. It outperformed OPF-

Large-Data in the RomeSuperpixels dataset and obtained equivalent results in the re-

maining datasets. It is important to highlight that OPF-Blocks-2 can retain clusters that

represent real classes much better than OPF-Large-Data. This must be a consequence of

using all samples or at least many samples for training.

Despite the good results achieved by our divide-and-conquer model when clustering

large datasets, this proposal has challenges. As can be seen in the last experiments,

OPF-Blocks-2 could not imitate the results of the original OPF-clustering technique that

creates the optimal forest with all the samples of the dataset, so there is still much room

for improvement. The first issue is the partition of the dataset into blocks in the first level.

Each block should contain enough information to produce a valuable partial clustering.

In practice, different choices of block size may lead to better results in each dataset. It

is also important to explore spatial information when the dataset is an image. A second

problem is that the number of clusters in the first level affects the number of samples for

grouping in the second level. Different choices for kmax in each block may lead to better

results. However, we maintained it fix as though the data entropy in each block were the

same.

Therefore, as future work, an upper limit kmax per block, the block sizes and, in the

case of images, their spatial locations, should take into account the data entropy inside

the blocks in the first level, in order to preserve all natural clusters when grouping samples

in the second level. Higher entropy may require lower values of kmax and reduced block

sizes. The technique can also be explored in several contexts. In [107], for instance,

the authors use OPF-Large-Data for active learning. Initially, the user annotates the

classes of the cluster roots (which should represent all classes in the dataset). Then, a

pattern classifier is trained along the subsequent iterations to select the most informative

samples from each cluster for user supervision. First, the use of OPF-Blocks-2 in this

active learning approach may already lead to improvements, especially when the dataset

is represented by pixels or superpixels. Second, there are many possible variants of this

active learning method. For example, at each iteration, the method selects the same

number of samples per group for user supervision. In our case, we have two levels of

groups for the selection process and groups with a higher number of classes, according

to the classifier, could provide more samples for user supervision. Another application

is visual saliency detection [57]. In [76], OPF-Large-Data was used to group background

pixels near the borders of the image such that the costs of the optimum paths from

the cluster roots to the remaining pixels were explored to segment the foreground as a

visual saliency. OPF-Blocks-2 could be used in the place of OPF-Large-Data for the

same objective. Similarly, we can use our method in the case of brain tissue segmentation
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from magnetic resonance images [23]. Note that, the proposed clustering method can also

be extended to more than two levels and this may be important in some of the above

applications.
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