
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Murilo Santos de Lima

Parking Permit and Network Leasing Problems

Problemas de Bilhetes de Estacionamento e

Projeto de Redes com Arrendamento

CAMPINAS

2018

Murilo Santos de Lima

Parking Permit and Network Leasing Problems

Problemas de Bilhetes de Estacionamento e

Projeto de Redes com Arrendamento

Tese apresentada ao Instituto de Computação

da Universidade Estadual de Campinas como

parte dos requisitos para a obtenção do título

de Doutor em Ciência da Computação.

Dissertation presented to the Institute of

Computing of the University of Campinas in

partial fulfillment of the requirements for the

degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Orlando Lee
Co-supervisor/Coorientador: Prof. Dr. Mário César San Felice

Este exemplar corresponde à versão final da

Tese defendida por Murilo Santos de Lima e

orientada pelo Prof. Dr. Orlando Lee.

CAMPINAS

2018

Agência(s) de fomento e nº(s) de processo(s): FAPESP, 2014/18781-1; CNPq,

142161/2014-4; CAPES

ORCID: https://orcid.org/0000-0002-2297-811X

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

 De Lima, Murilo Santos, 1987-

 D379p DeParking permit and network leasing problems / Murilo Santos de Lima. –

Campinas, SP : [s.n.], 2018.

 DeOrientador: Orlando Lee.

 DeCoorientador: Mário César San Felice.

 DeTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 De1. Otimização combinatória. 2. Projeto de redes. 3. Algoritmos de

aproximação. 4. Algoritmos on-line. I. Lee, Orlando, 1969-. II. San Felice, Mário

César, 1985-. III. Universidade Estadual de Campinas. Instituto de

Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Problemas de bilhetes de estacionamento e projeto de redes com

arrendamento

Palavras-chave em inglês:
Combinatorial optimization

Network design

Approximation algorithms

Online algorithms

Área de concentração: Ciência da Computação

Titulação: Doutor em Ciência da Computação

Banca examinadora:
Orlando Lee [Orientador]

Aritanan Borges Garcia Gruber

Marco Serpa Molinaro

Eduardo Candido Xavier

Lehilton Lelis Chaves Pedrosa

Data de defesa: 11-05-2018

Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Murilo Santos de Lima

Parking Permit and Network Leasing Problems

Problemas de Bilhetes de Estacionamento e

Projeto de Redes com Arrendamento

Banca Examinadora:

• Prof. Dr. Orlando Lee (Presidente)
Instituto de Computação – UNICAMP

• Prof. Dr. Aritanan Borges Garcia Gruber
Centro de Matemática, Computação e Cognição – UFABC

• Prof. Dr. Marco Serpa Molinaro
Departamento de Informática – PUC-Rio

• Prof. Dr. Eduardo Candido Xavier
Instituto de Computação – UNICAMP

• Prof. Dr. Lehilton Lelis Chaves Pedrosa
Instituto de Computação – UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 11 de maio de 2018

em memória do meu avô
Euzébio Bispo dos Santos (1924-2017)

All ya can do is do what you must
You do what you must do and ya do it well

(Bob Dylan)

Agradecimentos

Na minha dissertação de mestrado, eu agradeci a minha mãe por ter colocado meus
estudos como prioridade, e a meu avô Euzébio por me ensinar a tocar “Buckets of Rain”
do Dylan durante um sonho. Hoje eu entendo que meu avô me ensinou a tocar violão,
mas também ensinou minha mãe a priorizar os estudos.

Na comunidade rural onde minha mãe nasceu, a escola só ia até a quinta série (atual
sexto ano) do ensino fundamental. Meu avô obrigou minha mãe a repetir a quinta série
várias vezes, pra não deixar de ir à escola. (Por fim ela se mudou pra cidade, concluiu
o ensino médio e hoje tem duas formações técnicas.) Lembro que ele se gabava de, com
apenas seis meses de estudo, ter exercido várias profissões: tropeiro, contador, juiz de
paz e, curiosamente pra mim que sou combinatorista, caixeiro-viajante. Tendo feito tanto
com tão pouco, desejou pra seus filhos o conhecimento que não pôde ter.

Agradeço então a meu avô, que partiu pra outra classe de complexidade em dez de
junho do ano passado (um sábado, como ele tinha planejado), por ter deixado um legado
que chegou até mim. Gostaria que ele tivesse gozado, em vida, o orgulho de um neto
doutor. E agradeço a minha mãe, por ter se empenhado como pôde e como não pôde em
transmitir esse legado.

Agradeço aos demais membros da minha família pelo amor e suporte.
Agradeço a meus tios Elisa e Harry e a Arthur Miranda pelo incentivo a entrar no

doutorado.
Agradeço a meus orientadores Orlando Lee e Mário César San Felice pelo trabalho

conjunto. Em particular, agradeço ao Lee pela compreensão em diversos momentos, e ao
Mário por me tirar da zona de conforto e instigar a busca por demonstrações didáticas e
pela compreensão da intuição por trás dos resultados.

Agradeço aos membros da banca examinadora pela disponibilidade e pelas considera-
ções.

Agradeço aos demais professores que passaram pela minha vida e que me inspiraram
o gosto pelo conhecimento, aos professores que lhes inspiraram, e assim recursivamente.

Agradeço aos amigos que fiz durante este período, em especial Atílio Gomes, André
Silva, Maycon Sambinelli e Yulle Glebbyo. Aos demais amigos que me deram suporte e
companhia neste período, em especial Caio Ravagnani, Paulo Ohana, João Moreira, João
Alexandre Marson e Adriel Visoto. Agradeço a Fábio Leme pelos bons momentos que
passamos juntos, período no qual consegui provar os resultados mais difíceis desta tese.

Agradeço à UNICAMP e ao Instituto de Computação pela oportunidade.
Agradeço ao CNPq (Processo 142161/2014-4) e à FAPESP em conjunto com a CA-

PES (Processo 2014/18781-1) pelo auxílio financeiro.
Agradeço aos dois últimos presidentes eleitos legitimamente no Brasil, pelo esforço em

investir no ensino e na pesquisa. Minha trajetória acadêmica é fruto desse investimento.
E agradeço ao Regente, pelas probabilidades que me favoreceram e pelas que me

trouxeram aprendizado.

Resumo

Em problemas de otimização tradicionais, é comum pensar que soluções são construídas
adquirindo recursos que perduram no tempo. Em contrapartida, no modelo de otimização
com arrendamento se supõe que os recursos podem ser arrendados por diferentes períodos
de tempo e que, devido a uma economia de escala, o custo-benefício em arrendar um
recurso por períodos mais longos é maior. Esse modelo tem recebido alguma atenção
recentemente, por modelar problemas tais como a alocação de recursos na nuvem.

Nesta tese, estudamos o problema dos bilhetes de estacionamento, que é o problema
fundamental de arrendamento, e propomos algumas generalizações. A primeira é o pro-
blema dos múltiplos bilhetes de estacionamento, que é uma generalização com múltiplos
recursos idênticos. Esse problema pode ser resolvido em tempo polinomial. Mostramos
também uma redução preservando aproximação para o problema original, que implica em
um algoritmo online determinístico e outro probabilístico que são assintoticamente ótimos.
A segunda variante proposta é o problema dos bilhetes de estacionamento em grupo, uma
generalização do tipo aluguel-ou-compra, para a qual apresentamos uma 8-aproximação e
um algoritmo online determinístico competitivo. A complexidade desse problema está em
aberto, mas acreditamos que seja fracamente NP-difícil. Por fim, estudamos o problema
dos bilhetes de estacionamento 2D, proposto por Hu, Ludwig, Richa e Schmid (2015). Os
autores apresentaram um algoritmo com fator de aproximação constante e um algoritmo
online determinístico competitivo para a versão hierárquica do problema, mas esses algo-
ritmos consomem tempo pseudopolinomial. Nesta tese, mostramos como transformá-los
em algoritmos de tempo polinomial. Mostramos também que o algoritmo de aproximação
original funciona para a versão geral do problema, a qual provamos ser NP-difícil.

Esses resultados implicam em algoritmos de aproximação e algoritmos online compe-
titivos para variantes com arrendamento dos problemas da rede de Steiner, do aluguel-ou-
compra e do projeto de redes em atacado, através da técnica de aproximação de métricas
finitas por métricas arbóreas. Em particular, conseguimos melhorar o fator de aproxima-
ção para a versão com arrendamento do problema do aluguel-ou-compra com múltiplos
destinos.

Também revisamos algoritmos de aproximação para os problemas da localização de
instalações com penalidades e do arrendamento de instalações, e apresentamos uma 3-
aproximação para o problema do arrendamento de instalações com penalidades.

Por fim, revisamos algoritmos de aproximação e algoritmos online para o problema da
localização de instalações conectadas. Propomos quatro variantes com arredamento desse
problema, e apresentamos algoritmos de aproximação e algoritmos online competitivos
para o caso em que o (menor) fator de escala é 1. Também discutimos por que alguns dos
algoritmos clássicos para o problema da localização de instalações conectadas e as técnicas
de análise disponíveis na literatura não são suficientes para obter bons algoritmos para as
variantes com arrendamento quando o (menor) fator de escala não é uma constante.

Abstract

In traditional optimization problems, we can think that a solution is built by acquiring
resources that persist in time. In contrast, in the leasing optimization model, we assume
that resources may be leased for different lengths of time and that, due to economies of
scale, it is more cost-effective to lease a resource for longer periods. This model has re-
ceived some attention recently, since it models problems such as cloud resource allocation.

In this thesis, we study the parking permit problem, which is the seminal leasing prob-
lem, and we propose some generalizations. The first is the multi parking permit problem,
which is a generalization with multiple identical resources. This problem can be solved in
polynomial time, and we show how to reduce it to the parking permit problem, while los-
ing a constant cost factor. This approximation-preserving reduction yields asymptotically
optimal deterministic and randomized online algorithms. The second variant we propose
is the group parking permit problem, a rent-or-buy generalization for which we give an
8-approximation algorithm and a deterministic competitive online algorithm. The com-
plexity of this problem is open, but we believe it is weakly NP-hard. Finally, we study the
2D parking permit problem, proposed by Hu, Ludwig, Richa and Schmid (2015). They
presented a constant approximation algorithm and a deterministic competitive online
algorithm for the hierarchical version of the problem, but those algorithms have pseudo-
polynomial running time. We show how to turn their algorithms into polynomial time.
We also show that their original pseudo-polynomial offline algorithm works for the general
version of the 2D parking permit problem, which we prove to be NP-hard.

Those results yield approximation and competitive online algorithms for leasing vari-
ants of the Steiner network problem, the rent-or-buy problem, and the buy-at-bulk net-
work design problem, by using the technique of approximating a finite metric by a tree
metric. In particular, we improve the previous best approximation algorithm for the
leasing version of the multi-commodity rent-or-buy-problem.

We also review approximation algorithms for the facility location problem with penal-
ties and the facility leasing problem, and we propose a 3-approximation algorithm for the
facility leasing problem with penalties.

Finally, we review approximation and competitive online algorithms for the connected
facility location problem. Then we propose four leasing variants of this problem, and we
give approximation and competitive online algorithms for each of them when the (smallest)
scale factor is 1. We also discuss why some classical algorithms for the connected facility
location problem and the available analysis techniques in the literature do not suffice to
obtain good algorithms for the leasing variants when the (smallest) scale factor is not a
constant.

List of Figures

6.1 Example of a MPP solution ordered in HTO. 39
6.2 An illustration of the proof of Lemma 6.1. 40
6.3 Lemma 6.1 is no longer valid if we do not assume IM. 40

7.1 An execution of Algorithm 7.1. 44
7.2 An illustration of how we split S ′. 46
7.3 An illustration of the Hanoi tower ordering for GPP. 46
7.4 An illustration of overlapping permits. 47
7.5 An illustration of the proof of Lemma 7.3. 48

8.1 Given an instance I, sub-instance I[k, t̂, r − λ]. 57
8.2 An illustration of the representation of a solution as tuples. 60
8.3 We can split the optimum solution for I[k − 1] into layers of height φk. . . 60
8.4 An illustration of the binary search step. 61

9.1 A graph depicting dependency between parking permit problems. 63

10.1 A graph depicting dependency between the problems we study in Part II. . 73

11.1 Example which shows that the analysis of Algorithm 11.1 is tight. 79

12.1 An illustration of why Algorithm 12.1 produces a feasible solution. 86

A.1 Sequence rk. 129
A.2 Optimum MPP solution for rk. 129

List of Tables

9.1 Summary of known results for parking permit problems. 63

10.1 Summary of known results for network leasing problems. 73

14.1 Summary of our results for connected facility leasing problems. 105

List of Algorithms

5.1 Meyerson’s deterministic online algorithm for PP [59]. 36

7.1 Approximation algorithm for GPP. 44
7.2 A modified version of Algorithm 7.1, which will be useful for our analysis. . 45

8.1 Algorithm for computing the maximum demand in each interval. 58
8.2 Pseudo-polynomial algorithm for 2DPP. 59

10.1 Online algorithm for SLe [59]. 68

11.1 Primal-dual algorithm for FL [46]. 77
11.2 Primal-dual algorithm for FLP [14]. 80

12.1 Primal-dual algorithm for FLe [60]. 86
12.2 Primal-dual algorithm for FLeP. 90

13.1 A first naïve algorithm for CFL. 95
13.2 A simple randomized sample-and-augment algorithm for CFL. 96
13.3 A more sophisticated randomized algorithm for CFL [35]. 97
13.4 Online algorithm for CFL [65]. 100
13.5 Approximation algorithm for MCFL [35]. 102

14.1 Approximation algorithm for CFLe. 106
14.2 A candidate randomized sample-and-augment algorithm for CFLe. 107
14.3 Online algorithm for CFLe. 108
14.4 Online algorithm for LeCFLe. 109
14.5 Approximation algorithm for MCFLe. 111
14.6 Online algorithm for MCFLe. 112

List of Abbreviations and Symbols

[K] {1, . . . , K}

(a)+ max{a, 0}

2DIM 2D interval model

2DPP 2D parking permit problem

AlgMPP optimum offline algorithm for multi parking permit problem

AlgOGPP deterministic online algorithm for group parking permit problem

AlgOPP deterministic online algorithm for parking permit problem

AlgPP exact offline algorithm for parking permit problem

AlgRandOPP randomized online algorithm for parking permit problem

BaBND buy-at-bulk network design problem

CFL connected facility location problem

CFLe connected facility leasing problem

CM change-making problem

cost(S) cost of solution S (implicit instance)

cost(S, I) cost of solution S for instance I

FL facility location problem

FLe facility leasing problem

FLeP facility leasing problem with penalties

FLP facility location problem with penalties

FRT algorithm of Fakcharoephol, Rao and Talwar for approximating a finite
metric by a tree metric [27]

GPP group parking permit problem

H2DPP hierarchical 2D parking permit problem

HLeBaBND hierarchical leasing buy-at-bulk network design problem

HLP hierarchical capacity property

HLP hierarchical length property

HTO Hanoi tower ordering

I[k] see Definition 5.7

I[k, t̂] see Definition 5.8

I[k, t̂, r − λ] see Definition 8.6

IM interval model

LeBaBND leasing buy-at-bulk network design problem

LeCFLe leasing-connected facility leasing problem

LeRoB leasing rent-or-buy problem

mB(b) multiplicity of element b in multiset B

MCFL multi-commodity connected facility location problem

MCFLe multi-commodity connected facility leasing problem

MLeCFLe multi-commodity leasing-connected facility leasing problem

MPP multi parking permit problem

O2DPP orthogonal 2D parking permit problem

OFL online facility location algorithm

OFLe online facility leasing algorithm

OFLeP online algorithm for facility leasing problem with penalties

OLeBaBND orthogonal leasing buy-at-bulk network design problem

opt(I) value of an optimum solution for instance I

OSF online Steiner forest algorithm

OST online Steiner tree problem

PP parking permit problem

RoB rent-or-buy problem

SF Steiner forest problem

SIM simple interval model

SkiRental ski rental problem

S[k, t] see Definition 7.1

SN Steiner network problem

SLe Steiner leasing problem

SNLe Steiner network leasing problem

ST Steiner tree problem

STLe Steiner tree leasing problem

val(S) value of solution S (implicit instance)

val(S, I) value of solution S for instance I

Contents

I Introduction 18

1 Optimization Problems, Approximation Algorithms 19

2 Online Algorithms and Competitive Analysis 21

3 Leasing Optimization 25

4 Outline of the Text and Contributions 28

II Parking Permit Problems 30

5 Ski Rental and Parking Permit 31
5.1 Ski Rental . 31
5.2 Parking Permit . 32

5.2.1 The Interval Model . 33
5.2.2 A Deterministic Online Algorithm 35

6 Multi Parking Permit 38

7 Group Parking Permit 42
7.1 Offline Group Parking Permit . 43
7.2 Online Group Parking Permit . 49

8 2D Parking Permit 54
8.1 A Pseudo-Polynomial Algorithm for Generic 2DPP 56
8.2 Hierarchical 2D Parking Permit . 59
8.3 General Results via the Covering Problem 62

9 Summary and Discussion 63

10 Consequences for Network Leasing Problems 65
10.1 Approximating a Finite Metric by a Tree Metric 65
10.2 Steiner Leasing . 66
10.3 Steiner Network Leasing . 69
10.4 Leasing Rent-or-Buy . 70
10.5 Leasing Buy-at-Bulk Network Design . 71
10.6 Summary . 73

III Facility Leasing Problems 74

11 Facility Location, Sometimes with Penalties 75
11.1 A Simple 3-Approximation Algorithm . 75
11.2 Facility Location with Penalties . 79
11.3 Online Facility Location, with or without Penalties 82

12 Facility Leasing, Sometimes with Penalties 84
12.1 Facility Leasing . 84
12.2 Facility Leasing with Penalties . 88

IV Connected Facility Leasing Problems 93

13 Connected Facility Location 94
13.1 Offline Connected Facility Location . 94

13.1.1 A First Naïve Algorithm . 94
13.1.2 A Simple Sample-and-Augment Algorithm 96
13.1.3 A More Sophisticated Algorithm 96

13.2 Online Connected Facility Location . 99
13.3 Multi-Commodity Connected Facility Location 101

14 Connected Facility Leasing 104
14.1 Connected facility leasing . 105
14.2 Leasing-connected facility leasing . 108
14.3 Multi-commodity connected facility leasing 110

V Final Remarks 114

15 Journey 115

16 List of Results and Publications 118

17 Open Questions and Further Research Directions 120

Bibliography 122

A A Bad Example for a Simple GPP Strategy 128

18

Part I

Introduction

19

Chapter 1

Optimization Problems, Approximation

Algorithms

An optimization problem consists of a set I of instances and, for each instance I in I,
a set Sol(I) of feasible solutions of I, and a function that assigns a value val(S, I) ∈ Q

to each solution S in Sol(I). (We may write val(S) when the instance I is implicit.) An
instance is called feasible if it has some feasible solution. In a minimization prob-

lem, we wish to obtain a feasible solution of minimum value; in maximization prob-

lems, we wish to obtain a feasible solution of maximum value. In both cases, we use
the terms “optimum value”, “optimum solution” and “optimization problem” instead of
minimum (maximum) value, minimum-cost (maximum-cost) solution, and minimization
(maximization) problem. The value of any optimum solution for a feasible instance I is
denoted by opt(I), or simply by opt if instance I is implicit. In this thesis, we consider
only minimization problems, even though the definitions are analogous for maximization
problems. For minimization problems, it is usual to call the value val(S, I) of a solution S

of I as the cost of S, and denote it by cost(S, I), or cost(S) if I is implicit.

Let A be an algorithm which, for a minimization problem P with non-negative solution
costs, returns a feasible solution A(I) for each feasible instance I of P. Given α : I 7→ R

and a real d ≥ 0, we say that A is an asymptotic α-approximation for P if, for every
feasible instance I, we have that

cost(A(I), I) ≤ α(I) · opt(I) + d.

If d = 0, then A is an α-approximation for P. Then, we say that A is an approximation

algorithm for P. The infimum of the numbers α that satisfy this inequality is the
approximation factor of A and, clearly, α ≥ 1.

A randomized algorithm is one which has access to a random bit generator. A
random bit generator is an algorithm which, given a rational number p ∈ [0, 1], returns,
in constant time, 1 with probability p and 0 with probability 1− p. Approximate imple-
mentations of such an algorithm can be found in Knuth [50].

Let A be a randomized algorithm which, for a minimization problem P with non-

20

negative solution costs, returns a feasible solution A(I) for each feasible instance I of P.
Note that, in this case, cost(A(I), I) is a random variable, whose probability space is
defined by the random calls made by A. Given α : I 7→ R and a real d ≥ 0, we say that A
is an asymptotic randomized α-approximation for P if, for every feasible instance I,
we have that

E[cost(A(I), I)] ≤ α(I) · opt(I) + d.

If d = 0, then A is a randomized α-approximation for P. Then, we say that A is a
randomized approximation algorithm for P. The infimum of the numbers α that
satisfy this inequality is the expected approximation factor of A.

Approximation algorithms are of special interest to NP-hard optimization problems,
for which there do not exist polynomial-time algorithms that always obtain an optimum
solution, unless P = NP. For such problems, a polynomial-time approximation algorithm
returns a solution whose cost is bounded by a factor of the optimum value, and this may
be good enough for a practical application.

As an example, consider the Steiner tree problem (ST).

Problem ST(G, d,D): Given a graph G = (V,E), a function d : E 7→ Q+ assigning a

length to each edge, and a subset of the vertices D ⊆ V , find a subset of the edges T ⊆ E

such that there exists a path between each pair of vertices of D in the graph (V, T), and

such that
∑

e∈T d(e) is minimum.

If edge lengths are positive, then obviously G[S] is a tree. This is an NP-hard problem [33],
and currently there is a 1.39-approximation algorithm by Byrka et al. [12].

Theorem 1.1 (Byrka, Grandoni, Rothvoß, and Sanità [12]): There is a 1.39-approxima-

tion algorithm for ST.

Bibliographical notes. Some parts of the text in this chapter were adapted from the
author’s Master’s thesis [17, Sections 2.3 and 2.4], and are based on Chapters 1 and 6 of
de Carvalho et al. [16].

21

Chapter 2

Online Algorithms and Competitive

Analysis

The problems described in the previous chapter are offline problems, in the sense that
the whole input is available to the algorithm at the beginning of the computation, and
the whole structure of the input can be evaluated in order to obtain the best possible
solution. Furthermore, no causality constraints are assumed on the desired output. It is
of practical interest, however, that those results can be extended to models in which the
knowledge about the input is limited and/or causality constraints are imposed on partial
solutions.

One such model about which there is an extensive literature is the online compu-

tation model [10]. Informally, in an online optimization problem, the input is partially
available to the algorithm, which must take a decision without knowing the remaining of
the input, and this decision cannot be revoked in the future. An algorithm for an online
optimization problem is an online algorithm. In contrast, an optimization problem
that does not assume these constraints, such as those defined in Chapter 1, is an offline

problem.

It is not a trivial task to define online optimization problems in a generic manner,
such as we did for offline optimization problems in Chapter 1. In the literature, the usual
approach is to define each problem in particular. In this chapter we give a definition
which is sufficiently generic for the problems we study in this thesis. For a more formal
definition, see Borodin and El-Yaniv [10, Chapter 7].

The input of an online problem consists in the following. Consider an optimization
problem P = (I, Sol, cost) with instance set I, feasible solution set Sol(I) for each I ∈ I,
and a function assigning a value cost(S, I) ∈ Q to each solution S ∈ Sol(I). In the
online version of P, we assume that each instance I ∈ I is a pair I = (X, Y), where
Y = Y0, . . . , YT−1 is a sequence for some T ∈ Z+. We say that X is the offline portion

of the input, and Y0, . . . , YT−1 is the request sequence. We are also given a partial
ordering � on the elements of

⋃

I∈I Sol(I); intuitively, � indicates which solutions can be
built from others. A solution for this instance consists in a sequence S0, . . . , ST−1 such
that, for 0 ≤ t < T , St ∈ Sol(X, Y0, . . . , Yt), and St−1 � St for 0 < t < T . (I.e., solu-
tion St must be built from solution St−1.) We say that S0, . . . , ST−1 is a �-incremental

22

sequence of solutions of (X, Y0, . . . , YT−1). An online algorithm is one that, given an
instance (X, Y0, . . . , YT−1) of the online version of P, returns a �-incremental sequence
S0, . . . , ST−1 of solutions for that instance, with the constraint that St must be built only
with the knowledge of S0, . . . , St−1 and X, Y0, . . . , Yt, for t = 0, . . . , T − 1. In this thesis,
sometimes we abuse notation and only require that the algorithm returns the final solu-
tion ST−1, as long as it is built in an online fashion. We may also abuse terminology and
say that an online algorithm for the online version of P is an online algorithm for P.

As an example, we define the online version of ST, which was defined in Chapter 1.
Informally, at each instant, a new set of terminal vertices arrives, and the algorithm
must buy edges that connect them to the terminal vertices in the previous solution.
The algorithm has no knowledge of the future sets of terminals, and it is not allowed
to remove edges that were bought previously. Thus, the offline portion of the input is
the graph G and edge lengths d, and the request sequence is a sequence of subsets of
vertices D0, . . . , DT−1 ⊆ V . (It is usual to assume that |Dt| = 1 for t = 0, . . . , T − 1.)
An online algorithm begins with an empty set of edges and, given a solution Tt−1 for
(G, d,D0, . . . , Dt−1), chooses a solution Tt for (G, d,D0, . . . , Dt) such that Tt−1 ⊆ Tt. The
following is a formal definition of the online Steiner tree problem (OST).

Problem OST(G, d,D0, . . . , DT−1): Given a graph G = (V,E), a function d : E 7→ Q+

assiging a length to each edge, and a sequence D0, . . . , DT−1 ⊆ V of subsets of vertices,

find a sequence T0, . . . , TT−1 ⊆ E of subsets of edges, with Tt−1 ⊆ Tt for t = 1, . . . , T − 1,

such that there exists a path between each pair of vertices of D0 ∪ . . . ∪Dt in the graph

(V, Tt), and which minimizes
∑

e∈TT−1
d(e). Furthermore, Tt must be calculated only with

the knowledge of T0, . . . , Tt−1 and G, d,D0, . . . , Dt, for t = 0, . . . , T − 1.

The usual way of analyzing the quality of an online algorithm is the competitive

analysis. The goal is to establish a worst-case guarantee, by comparing the cost of the
solution returned by the online algorithm to the offline optimum cost, which is the
cost of a solution returned by a hypothetical algorithm that knows the whole sequence
of requests in advance. This is a rather pessimistic metric; in practice, algorithms with
poor competitive factor sometimes obtain satisfactory solutions for typical inputs1. Then,
another way of analyzing an online algorithm is the average-case analysis, in which a
probability distribution is assumed on the input sequences, and the expected cost for a
solution returned by the algorithm is calculated, given an input chosen according to that
probability distribution. However, for most problems it is not easy to identify a typical
probability distribution. Moreover, competitive analysis gives a theoretical insight on the
hardness the online constraints impose on the problem. In this thesis, we are interested
in competitive analysis, which is formalized in the following paragraph.

Given an instance I of an optimization problem P, denote by opt(I) the offline op-
timum cost of I. Let P be a minimization problem with non-negative solution costs, I
the set of instances of P, and � a partial ordering on

⋃

I∈I Sol(I). Let A be an online
algorithm for (P,�). Given α : I 7→ R and a real d ≥ 0, if, for every feasible instance

1On this topic, see for example the review by Karlin on experiments with online algorithms for the
ski rental problem [48].

23

I = (X, Y0, . . . , YT−1) of P, algorithm A returns a �-incremental sequence of feasible
solutions S0, . . . , ST−1 of this instance, such that

cost(ST−1, I) ≤ α(I) · opt(I) + d,

then we say that A is α-competitive. The infimum of the numbers α that satisfy this
inequality is the competitive factor of A.

For example, the naïve greedy algorithm for OST, in which each new terminal is
connected to the closest previous terminal, is a good online algorithm. Its competitive
factor was proven to be O(lg n) by Imase and Waxman [43] (for a simpler proof, check [72]),

where n :=
∣

∣

∣

⋃T−1
t=0 Dt

∣

∣

∣
is the number of terminals. This is asymptotically optimal since,

for every online algorithm for OST, there is an instance for which the competitive factor
is Ω(lg n) [43].

Theorem 2.1 (Imase and Waxman [43]): The greedy algorithm for OST is O(lg n)-

competitive, and any online algorithm for OST is Ω(lg n)-competitive, where n is the

number of terminals.

Note that the constraint of not knowing the complete instance can lead to a high
competitive ratio. One way of trying to overcome this is by the use of randomization.
In the following paragraph, we formalize the definition of expected competitive ratio of
a randomized online algorithm. For some online problems, it is possible to achieve a
randomized algorithm whose expected competitive ratio is asymptotically better than the
competitive ratio of the best possible deterministic algorithm.

Let A be an online randomized algorithm for a minimization problem (P,�) with
non-negative solution costs and instance set I. Let α : I 7→ R and a real d ≥ 0, if, for
every feasible instance I = (X, Y0, . . . , YT−1) of P, algorithm A returns a �-incremental
sequence of feasible solutions S0, . . . , ST−1 of this instance, such that

E[cost(ST−1, I)] ≤ α(I) · opt(I) + d,

then we say that A is α-competitive2 (in the randomized sense). The infimum of the
numbers α that satisfy this inequality is the expected competitive factor of A.

In the competitive analysis of online algorithms, in contrast to the study of polynomial-
time approximation algorithms, we do not always assume constraints on time and space
consumption; the concern on the computational complexity of the algorithms is secondary.
In general, it is desirable to obtain efficient algorithms, but the main interest is to un-
derstand if the constraints of incrementality and lack-of-knowledge impose a loss in the
guarantee of quality of the returned solutions and, in the affirmative case, to bound such
loss. In particular, sometimes we have a less efficient algorithm which obtains better
solutions, and a more efficient algorithm which obtains solutions of higher cost.

2The randomized online algorithm model we assume corresponds to the oblivious adversary model
described in [10, Section 7.1], in which the adversary knows the code of the algorithm, but does not know
the values returned by the random calls the algorithm does in runtime.

24

Bibliographical notes. Some parts of the text in this chapter were adapted from the
author’s Master’s thesis [17, Section 2.5], and are based on Section 1.1 and Chapter 7 of
Borodin and El-Yaniv [10].

25

Chapter 3

Leasing Optimization

In combinatorial optimization, we usually think of minimization problems as those in
which we must buy certain resources to satisfy some objective, by paying the minimum
cost possible. In network design problems, in particular, those resources are the nodes or
connections in a network infrastructure that must be built to serve user/client requests.
For example, we can think that, in the facility location problem [24], we wish to determine
where to install servers, given the geographical distribution of the clients that wish to be
served.

However, in many scenarios, it is not feasible for a small company, such as a start-
up, to install its own servers, due to a small budget. Also, client requests are usually
clustered in certain intervals of time. A current trend in those cases is to lease a server in
the cloud (from a service such as Amazon AWS, Google App Engine or Microsoft Azure)
for specific lengths of time. This scenario has recently motivated the proposal of a class
of problems known as leasing optimization [1, 4, 59, 60]. In those problems, instead
of acquiring resources that last for an unlimited period, each resource may be leased for
different lengths of time (e.g., a day, a week, a month), after which they expire. In this
context, it is cheaper to lease a resource for a longer amount of time than for smaller
intervals totalizing an equivalent time; this represents economies of scale. This model
may be applied to both offline and online problems.

As an example, we define the leasing version of ST. In this version, we have a fixed
root vertex r, and the sets of terminals are distributed along the time, even in the offline
setting. Edges are no longer permanent, but can be leased for one of K different lengths
of time δ1, . . . , δK ∈ N, after which edge leases expire. Let [K] := {1, . . . , K}. The cost
of leasing edge e for length of time δk is d(e) · γk, where γk is a uniform leasing factor for
leasing type k ∈ [K]. If we lease edge e at instant t̂ for length of time δk, then edge e

is active for the interval of time [t̂, t̂ + δk). The same edge may be leased many times
in different instants of time, and more than one lease may be active for the same edge
at the same instant. We wish that, from each terminal j arriving at instant t, there
is a path from j to r consisting of edges that have an active lease at instant t. The
following is a formal definition of the problem, which we call the Steiner tree leasing

problem (STLe).

26

Problem STLe(G, d, r,K, δ, γ,D0, . . . , DT−1): We are given a graph G = (V,E), a

function d : E 7→ Q+ that assigns a length to each edge, a root vertex r, an integer K

which represents the number of leasing types, a function δ : [K] 7→ N that assigns a length

of time to each leasing type, a function γ : [K] 7→ Q+ that assigns a leasing factor to each

leasing type, and a sequence D0, . . . , DT−1 ⊆ V of sets of terminals. The goal is to find

a set of edge leases E ⊆ E × [K] × Z+ such that, for every terminal j ∈ Dt, there exists

a jr-path P in G such that, for each edge e ∈ P , there is some (e, k, t̂) ∈ E such that

t ∈ [t̂, t̂+ δk), and we wish to minimize
∑

(e,k,t̂)∈E d(e) · γk.

This is an NP-hard problem, since ST reduces to it if we set K = 1, δ1 = ∞, and
γ1 = 1. There is a O(K)-approximation algorithm for this problem by Anthony and
Gupta [4].

In the online version of the problem, we know in advance the graph G, the function d,
the root r, the number of leasing types K, leasing lengths δ and leasing factors γ. At each
instant of time t = 0, . . . , T − 1, we receive a set of terminals Dt that we must connect
to the root using edge leases, but we do not know the future sets of terminals, and we
cannot remove old edge leases. There is a randomized O(lgK lg |V |)-competitive online
algorithm for the problem, which was proposed by Meyerson for the leasing version of the
Steiner forest problem [59]. This algorithm is presented in Section 10.2. More recently,
Bienkowski, Kraska and Schmidt presented a deterministic O(K lg n)-competitive online
algorithm for STLe [9], where n is the number of terminals.

In this thesis we study approximation and online algorithms for a wide range of prob-
lems that arise in the leasing optimization model.

Related Work

The seminal leasing problem is the parking permit problem, proposed by Meyer-
son [59]. This problem corresponds to leasing a single resource (a parking location), and
it is presented at Section 5.2. In the offline setting the problem can be solved in poly-
nomial time, and Meyerson presented a deterministic O(K)-competitive online algorithm
and a randomized O(lgK)-competitive online algorithm, where K is the number of leasing
types. He also showed that this is asymptotically the best possible, by showing that any
deterministic algorithm for this problem has competitive factor Ω(K), and any random-
ized algorithm has competitive factor Ω(lgK). In the same paper, Meyerson presented a
randomized online algorithm for the leasing version of the Steiner forest problem, which
is called the Steiner leasing problem. His algorithm is O(lgK lg |V |)-competitive,
where K is the number of leasing types and |V | is the number of vertices in the graph,
and it is discussed in Section 10.2.

After that, Anthony and Gupta [4] studied the offline leasing version of some NP-hard
network design problems. Specifically, they proved that solving an offline problem with K

leasing types reduces, within a constant cost factor, to solving the K-stage stochastic
version of the same problem. Thus, based on previous K-stage stochastic algorithms, they
obtained O(K)-approximation algorithms for STLe and the facility leasing problem,

27

as well as an 8-approximation for the vertex cover leasing problem, and a O(lg n)-
approximation algorithm for the set cover leasing problem, where n is the size of the
universe set. Moreover, the authors proposed new algorithms for the stochastic version
of the rent-or-buy problem and the buy-at-bulk network design problem, using
the technique of cost sharing [36], thus obtaining O(K)-approximation algorithms for
single-source leasing rent-or-buy and single-source leasing buy-at-bulk network design,
and a O(K lg n)-approximation algorithm for multi-source leasing buy-at-bulk network
design problem, where n is the number of demand points.

Nagarajan and Williamson [60] improved the result for the offline version of the facility
leasing problem, obtaining a 3-approximation which we present in Section 12.1. For the
online version, they obtained a O(K lg n)-competitive algorithm, where n is the number
of client requests and K is the number of leasing types.

Koutris [53] reviewed several results for network leasing problems, and presented a
randomized O(K lg n/ lg lgn)-competitive algorithm for the online facility leasing prob-
lem. Fotakis and Koutris [32] also proposed the online sum-radii clustering problem,
which is related to the parking permit problem.

Abshoff, Kling, Markarian, auf der Heide and Pietrzyk [1] also improved the result
for the online facility leasing problem, this time obtaining a O(δK lg δK)-competitive al-
gorithm, where δK is the highest leasing length. This result removes the temporal depen-
dency on the competitive factor of the algorithm. They also presented an online algorithm
for the leasing set cover problem which is O(lg(Km) lg n)-competitive, where n is the size
of the universe set, m is the number of cover sets and K is the number of leasing types.

San Felice, Cheung, Lee, Williamson and Fernandes [63] gave a O(K lg n)-competitive
algorithm for the online facility leasing problem with penalties.

Bienkowski, Kraska and Schmidt presented a deterministic O(K lgn)-competitive on-
line algorithm for STLe [9].

Hu, Ludwig, Richa and Schmid [41] proposed a bidimensional version of the park-
ing permit problem, and presented an 8-approximation algorithm and a deterministic
O(K)-competitive algorithm, both however with pseudo-polynomial running time. They
conjectured that the problem is NP-hard, which we prove in Chapter 8.

Variants of the parking permit problem and the leasing model have also been proposed.
In [55], Li, Mäcker, Markarian, auf der Heide and Riechers discussed the variant in which
each demand has a time window to be served after its arrival, and also present an online
competitive algorithm for the set cover leasing problem in this model. More recently,
Feldkord, Markarian and auf der Heide studied what happens when leasing prices fluctuate
along time [28].

28

Chapter 4

Outline of the Text and Contributions

In this chapter, we present an outline of the text and what are our contributions.

In Part II, which comprises Chapters 5–10, we study the parking permit problem and
some generalizations.

In Chapter 5, we review the ski rental problem and the parking permit problem, and
we discuss the relationship between them. We also present the interval model, which
is an important concept in the development of algorithms for parking permit problems.
Finally, we present the deterministic online algorithm for the parking permit problem by
Meyerson [59].

In Chapter 6, we propose the multi parking permit problem, which is a generaliza-
tion of the parking permit problem with multiple identical resources. We show that the
problem can be solved in polynomial time, and we present an approximation-preserving
reduction to the parking permit problem, which yields deterministic O(K)-competitive
and randomized O(lgK)-competitive online algorithms. Those results are asympotically
optimal due to the lower bounds for the parking permit problem [59].

In Chapter 7, we propose the group parking permit problem, which is a rent-or-buy
generalization of the multi parking permit problem. The complexity of this problem is
open, but we show that the natural LP relaxation has non-trivial integrality gap. We
present an 8-approximation algorithm and a deterministic O(K)-competitive online al-
gorithm. The online algorithm is asympotically optimal, due to the deterministic lower
bound for the parking permit problem [59]. We consider the results in this chapter
to be the most interesting in this thesis. In particular, the analysis of the approxima-
tion/competitive factor of the algorithms we propose are unorthodox, in the sense that
we do not give a lower bound to the cost of an optimum solution directly, but instead we
bound the cost of our algorithms by a hypothetical algorithm that knows some information
about the optimal solution.

In Chapter 8, we review the 2D parking permit problem, which was proposed by
Hu et al. [41]. They presented an 8-approximation algorithm and a deterministic O(K)-
competitive online algorithm, both however having pseudo-polynomial running time. We
show how to turn their algorithms for this problem into polynomial-time. We also show
that their original pseudo-polynomial approximation algorithm is a 4-approximation for
a less restricted case of the problem, which we prove to be NP-hard. Finally, we discuss

29

the greedy approximation algorithm for the covering problem by Koufogiannakis and
Young [52], which yields a O(K)-approximation and a O(K)-competitive online algorithm
for the general 2D parking permit problem, thus generalizing some of the results we
obtained.

In Chapter 9, we summarize the results obtained in the previous chapters, and we
discuss their relevance. In particular, see Table 9.1 for a list of results, and Figure 9.1 for
a dependency graph between the problems.

Finally, in Chapter 10 we discuss the relationship between those parking permit prob-
lems and some network leasing problems. We review the technique of approximating a
finite metric by tree metrics [7, 27], and we show how Meyerson applied it to the parking
permit problem to obtain approximation and online algorithms for a leasing variant of the
Steiner forest problem. We follow this approach and, using the results in Chapters 6–8,
we obtain approximation and online algorithms for leasing variants of the Steiner net-
work problem, the rent-or-buy problem and the buy-at-bulk network design problem. In
particular, the approximation algorithm for the leasing rent-or-buy problem improves the
previous result by Anthony and Gupta [4]. The results are summarized in Table 10.1,
and in Figure 10.1 we depict the dependency between the problems we study in Part II.

Part of those results were published in [22], and a full paper was submitted to a
journal [23].

In Part III, which comprises Chapters 11 and 12, we discuss facility location and
facility leasing problems. In Chapter 11, we review the facility location problem and
the facility location problem with penalties. We review some primal-dual approximation
algorithms [46, 14], and we discuss the online versions of those problems. In Chapter 12,
we review the primal-dual approximation algorithm for the facility leasing problem by
Nagarajan and Williamson [60], and we show how to extend it to obtain a 3-approximation
algorithm for the facility leasing problem with penalties. (This result was published
in [21].) We also discuss results in the literature for the online versions of those problems.

In Part IV, which comprises Chapters 13 and 14, we discuss connected facility location
and connected facility leasing problems. In Chapter 13, we review some approximation
and online algorithms for connected facility location problems. In Chapter 14, we propose
four leasing variants of the connected facility problem. We present approximation and
online algorithms for a special case of those problems. For the general case, we also
prove that simple techniques that yield good algorithms for the connected facility location
problem perform badly in the leasing model, and we discuss why we could not extend more
sophisticated techniques for the leasing variants. Those results were published in [19, 20].

In Part V, which consists of Chapters 15–17, we conclude the thesis. We present a
brief history of this research in Chapter 15. In Chapter 16, we give a list of results and
publications we obtained. Finally, in Chapter 17, we present a list of open questions and
other future research directions.

30

Part II

Parking Permit Problems

31

Chapter 5

Ski Rental and Parking Permit

In this chapter we review the ski rental problem and the parking permit problem. The
parking permit problem is the seminal leasing problem; it corresponds to leasing a single
resource (a parking location). The ski rental problem is an older problem which is a
particular case of the parking permit problem and is also related to other problems we
study in this thesis.

5.1 Ski Rental

In this section, we present the ski rental problem [10, 49], a simple problem which is
related to the parking permit problem. Although the parking permit problem, which will
be discussed in Section 5.2, captures in a more thorough manner the leasing optimization
model, we believe that to study the ski rental problem helps to obtain a first glimpse of the
structure of these problems. In particular, the ski rental problem has a strong connection
with the generalizations of the parking permit problem we present in Chapters 7 and 8.

Imagine the following scenario. Johnny goes to a ski resort. He has the option of
renting a pair of skis per day, which costs 1, or buying a pair of skis for cost M to use
for the rest of the season. However, Johnny does not know how long the ski season will
last, and if he will be able to ski more than ⌊M⌋ days. Furthermore, since he lives too far
away from the ski resort, it is not feasible to bring the skis home to use them next year.
Every day Johnny receives the local weather forecast; if he can ski for one more day, then
he has to choose whether he rents or buys skis. Obviously, he wants to spend as little
money as possible.

The problem can be formalized in the following manner. Value rt = 1 means that
Johnny can ski at day t, and rt = 0 means that the ski season has ended at or before
day t. Moreover, st = 0 means that Johnny rents a pair of skis at day t, and st = 1 means
that Johnny has bought a pair of skis at some day t′ ≤ t.

Problem SkiRental(M, r0, . . . , rT−1): The input consists of a constant M ∈ Q+ and

a sequence r0, . . . , rT−1 ∈ {0, 1} such that rt−1 ≥ rt for t = 1, . . . , T − 1. The goal is

to find a sequence s0, . . . , sT−1 ∈ {0, 1} such that st ≥ st−1 for t = 1, . . . , T − 1, which

32

minimizes
T−1
∑

t=0

rt(1− st) +M ·max
t

rtst.

Let T̄ := max{t : rt = 1}, i.e., T̄ is the number of days the ski season lasts. The offline
version of the problem is trivial: simply buy a ski if T̄ ≥M , and rent a ski for the first T̄
days otherwise.

In the online version of the problem, T is unknown, the sequence r is revealed one day
at a time, st must be calculated without the knowledge of rt+1, . . . , rT−1, and s0, . . . , st−1

cannot be modified. The problem admits a simple 2-competitive algorithm: while rt = 1

and t < M , rent a pair of skis. If you arrive at day t ≥ M with rt = 1, then buy a
pair of skis. The optimum solution costs min{T̄ ,M}. The online algorithm pays T̄ if
T̄ < M , and pays M + ⌈M⌉ − 1 if T̄ ≥ M , so this is a 2-competitive algorithm. We
will not prove this fact here, but this is the best possible for a deterministic algorithm.
The problem still admits a 2-competitive algorithm even if there are different types of
skis, with different durabilities [5, 59]. Also, there is a randomized algorithm with smaller
competitive factor [10].

5.2 Parking Permit

Imagine the following scenario: Johnny goes to work everyday and, since he lives close to
his job, he may go walking or by car. Since he is aware of global environmental issues,
Johnny always goes walking when it does not rain, and he drives otherwise. When he
drives, he needs a parking permit. The parking lot has different types of permits, each
having a length in days (e.g., daily, weekly, monthly) and a cost. Permits expire even when
they are not used; thus, if Johnny buys a weekly permit on Monday, that permit can only
be used until Sunday. Johnny wishes to decide which permits to buy, in order to always
have a valid permit on a rainy day and to spend as little money as possible. This is the
parking permit problem (PP), which was proposed by Meyerson [59]. We define the
problem formally below. In order to simplify our notation, we write [K] := {1, . . . , K}.

Problem PP(T,K, δ, γ, r): The input consists of a natural number T which represents

the number of days, a natural number K which represents the number of permit types, a

function δ : [K] 7→ N which assigns a length in days to each permit type, a function γ :

[K] 7→ Q+ which assigns a cost to each permit type, and a sequence r = (r0, . . . , rT−1) ∈

{0, 1}T , in which rt = 1 indicates that it rains at day t. The goal is to find a set of permits

S ⊆ [K]× Z+ which covers the rainy days; i.e., there must exist a permit (k, t̂) ∈ S such

that t ∈ [t̂, t̂+ δ(k)) for each day t such that rt = 1. We wish to minimize
∑

(k,t̂)∈S γk.

In the offline setting, the problem can be solved exactly in polynomial time by a
dynamic programming algorithm, which we do not present in this thesis. (This is a nice
dynamic programming exercise for your students.)

In a more realistic online setting, Johnny does not know the future and weather forecast
services are unreliable for long-term predictions. So we assume that T is unknown, and
r0, . . . , rT−1 are revealed one at a time. Johnny begins with an empty set of permits, and

33

at day t he finds out whether it is raining. If it rains and he does not have a valid permit
for day t, he must buy a new permit to cover this day. He does not know rt+1, . . . , rT−1,
and he cannot obtain a refund for permits he had bought previously. In this scenario, the
problem has a deterministic O(K)-competitive algorithm and Ω(K) lower bound, as well
as randomized O(lgK)-competitive algorithm and Ω(lgK) lower bound [59].

Note that SkiRental can be reduced to PP. The difference is that, in SkiRental,
ski days are consecutive and are concentrated at the beginning of the planning horizon.
This subtle difference forces the competitive ratios of the problems to differ by a linear
ratio for deterministic algorithms, and by a logarithmic ratio for randomized algorithms.

In Section 5.2.1 we define the Interval Model, which is an important concept in the
design of algorithms for parking permit problems. In Section 5.2.2 we present the deter-
ministic algorithm for PP by Meyerson [59].

5.2.1 The Interval Model

In order to give more structure to parking permit problems, it is useful to adopt the
following assumptions [4, 59]. Note that the first one is a restriction on the solutions,
while the second one is a hypothesis on the instance.

Hypothesis 5.1 (Simple Interval Model (SIM)): Permits of type k can only begin

at instants c · δk, for c ∈ Z+.

Fact 5.2 : An α-competitive algorithm for PP under SIM is 2α-competitive for PP.

Conversely, if there is an α-competitive algorithm for PP, then there is a 2α-competitive

algorithm for PP under SIM.

Proof: Let I be an instance of PP. Let A be an α-competitive algorithm for PP

under SIM, and let Ŝ be an optimum solution among those that satisfy SIM. We have
that cost(A(I)) ≤ α · cost(Ŝ). Let S∗ be an optimum solution for I when we do not
require SIM, and let S̄ be a solution that replaces a permit (k, t̂) ∈ S∗ with the permits
(k, ⌊t̂/δk⌋·δk) and (k, ⌈t̂/δk⌉·δk) (these permits may be the same). Note that these permits
cover the interval spanned by permit (k, t̂), so S̄ is a feasible solution for I that satisfies
SIM, with cost(S̄) ≤ 2 · cost(S∗). Also, cost(Ŝ) ≤ cost(S̄), since S̄ satisfies SIM. Thus,

cost(A(I)) ≤ α · cost(Ŝ) ≤ α · cost(S̄) ≤ 2α · cost(S∗).

Conversely, let A′ be an α-competitive algorithm for PP not requiring SIM. We can
obtain a solution S ′ that satisfies SIM by replacing each permit (k, t̂) ∈ A′(I) with the
permits (k, ⌊t̂/δk⌋ · δk) and (k, ⌈t̂/δk⌉ · δk) (these permits may be the same). Let S∗ be an
optimum solution for I when we do not require SIM, and let Ŝ be an optimum solution
among those that satisfy SIM. We have that cost(S∗) ≤ cost(Ŝ), since a solution that
satisfies SIM is also a solution for PP not requiring SIM. Thus,

cost(S ′) ≤ 2 · cost(A′(I)) ≤ 2α · cost(S∗) ≤ 2α · cost(Ŝ).

�

34

Hypothesis 5.3 (Hierarchical Length Property (HLP)): For k = 2, . . . , K, it holds

that δk divides δk−1.

Fact 5.4 : If there is an α-competitive algorithm for PP under HLP, then there is a

2α-competitive algorithm for instances that do not satisfy HLP.

Proof: Take an arbitrary instance I = (T,K, δ, γ, r) not necessarily satisfying HLP,
and assume that δ1 ≤ · · · ≤ δK . For k = 2, . . . , K, take δ′k := 2⌊lg δk⌋, i.e., round down each
permit length to the closest power of 2. Note that the resulting instance I ′ = (T,K, δ′, γ, r)

satisfies HLP. Let A be an α-competitive algorithm for PP under HLP; we have that
cost(A(I ′)) ≤ α · opt(I ′). Note that A(I ′) is a feasible solution for I: if A(I ′) uses
permit (k, t̂), since δ′k ≤ δk, this permit has length δk in I, and hence it covers the same
period it covers in I ′ (and maybe more). So we just have to bound opt(I ′) with regard
to opt(I). Let S∗ be an optimum solution for I. Construct a set S̄ of permits of I ′

as follows: for each permit (k, t̂) ∈ S∗, S̄ contains permits (k, t̂) and (k, t̂ + δ′k). Since
δ′k = 2⌊lg δk⌋, we have that δk < 2δ′k, so in I ′ these two permits cover the interval covered
by (k, t̂) in I (and maybe more). Thus, S̄ is feasible for I ′, so opt(I ′) ≤ cost(S̄), and
cost(S̄) = 2 · cost(S∗) = 2 · opt(I). Therefore,

cost(A(I ′)) ≤ α · opt(I ′) ≤ α · cost(S̄) = 2α · cost(S∗) = 2α · opt(I).

(Remark: We can easily modify the proof to only use permit lengths that are powers of
any integer β ≥ 2, obtaining competitive factor αβ.) �

For most results we present here, we adopt the following assumption.

Hypothesis 5.5 (Interval Model (IM)): We assume SIM and HLP.

The following lemma follows from the composition of Facts 5.2 and 5.4.

Lemma 5.6 : If there is an α-competitive algorithm for PP under IM, then there is a

4α-competitive algorithm for arbitrary instances.

The main property of the Interval Model is that there is an optimum solution which is
the union of optimum solutions for the sub-instances defined by the intervals of length δK .
This can be formalized as shown in Lemma 5.9.

Consider an instance I = (T,K, δ, γ, r) of PP. For some forthcoming proofs and algo-
rithms, it is convenient to define restricted instances of I in the following manner.

Definition 5.7 (I[k]): Given a permit type k ∈ [K], let I[k] := (T, k, δ, γ, r) be the

sub-instance of I in which we can only use permits of type 1, . . . , k.

Definition 5.8 (I[k, t̂]): Given a permit type k ∈ [K] and an instant of time t̂ = c · δk
with c ∈ Z+, let I[k, t̂] := (δk, k, δ, γ, (rt̂, . . . , rt̂+δk−1)) be the sub-instance of I[k] restricted

to the interval of length δk beginning at instant t̂.

35

Lemma 5.9 : Let I be an instance of PP and let k ∈ [K] be a permit type. Then,

under IM, we have that

opt(I[k]) =

⌈T/δk⌉−1
∑

c=0

opt(I[k, c · δk]).

Note that ⌈T/δk⌉ is the number of intervals of length δk. So instance I[k] can be seen
as a concatenation of ⌈T/δk⌉ instances, corresponding to each of those intervals. Hence,
the lemma says that solving I[k] is equivalent to solving independently each sub-instance
of length δk and taking the union of the corresponding solutions.

Proof: The proof is by induction in ⌈T/δk⌉. If ⌈T/δk⌉ = 1, then the lemma holds
trivially. So assume the lemma holds for instances in which the number of intervals is
smaller than ⌈T/δk⌉. Let S∗ be an optimum solution for I[k]. Let S ′ be the set of permits
in S∗ that cover days in the last interval of length δk; i.e., a permit (k′, t′) ∈ S∗ is also
in S ′ if there is some t ≥ (⌈T/δk⌉ − 1) · δk such that t ∈ [t′, t′ + δk′). Clearly, S ′ is a
feasible solution for the last interval of length δk and, due to IM, S∗ \ S ′ is a feasible
solution for the first ⌈T/δk⌉− 1 intervals. Note that S ′ and S∗ \S ′ are optimum solutions
for those sub-instances. By induction hypothesis, the cost of S∗ \ S ′ is the cost solving
independently each sub-instance of length δk, so the lemma holds. �

Under IM, we can assume without loss of generality that

1 = δ1 < δ2 < · · · < δK and γk/δk < γk′/δk′ for k > k′; (5.1)

i.e., permit costs are sub-additive and represent economies of scale: longer permits cost
less per day. If δ1 > 1, we can simply divide each δk by δ1 and rescale the instance by
having a rainy day for each interval of length δ1 which contains some rainy day. If two
permit types k and k′ with k > k′ do not satisfy Equation (5.1), we can discard type k by
replacing each permit of type k with δk/δk′ permits of type k′, and the optimum solution
of the new instance is not worse than the original one.

5.2.2 A Deterministic Online Algorithm

In this section we present the online deterministic algorithm for PP by Meyerson [59].
This algorithm is important for understanding the relevance of results we present in other
chapters, and the concepts behind them. The algorithm assumes IM.

A pseudocode is presented in Algorithm 5.1. The offline part of the input are param-
eters K, δ and γ. The algorithm uses as a subroutine an exact algorithm AlgPP for the
offline version of the problem under IM. If rt = 1, the algorithm computes an optimum
offline solution for request sequence r0, . . . , rt, and then uses the same permit as the offline
solution to cover day t. Note that Line 5 allows the algorithm to buy a permit whose
starting time is earlier than t, and thus it may cover previous days with more than one
permit. Note that, in a certain way, the strategy of this algorithm is the same as that
of the online algorithm for SkiRental we described in Section 5.1. If at some point

36

the algorithm realizes that the optimum solution is to buy a longer permit (correspondly,
to buy skis), we buy that permit, no matter what we have bought before. However, al-
though this strategy is 2-competitive for SkiRental, even for K types of skis, it is just
K-competitive for PP, as we show in Theorem 5.10. It is not possible (deterministically)
to do better than this, because any deterministic online algorithm for PP has competitive
factor Ω(K) [59].

Input: (K, δ, γ)
1 S ← ∅;
2 when rt arrives do
3 if rt = 1 then
4 S∗ ← AlgPP(t+ 1, K, δ, γ, (r0, . . . , rt));
5 S ← S ∪ {(k, t̂) ∈ S∗ : t ∈ [t̂, t̂+ δk)};
6 return S;

Algorithm 5.1: Meyerson’s deterministic online algorithm for PP [59].

Theorem 5.10 (Meyerson [59]): Algorithm 5.1 is K-competitive under IM.

Proof: Let I = (T,K, δ, γ, r) be an instance of the problem, and denote by AlgOPP(I)

the solution returned by the algorithm on I. Let k ∈ [K], and consider instance I[k] as
in Definition 5.7. By Lemma 5.9,

opt(I[k]) =

⌈T/δk⌉−1
∑

c=0

opt(I[k, c · δk]).

Since the offline algorithm satisfies IM, the solution returned by the online algorithm is
also independent for each interval of length δk, so

cost(AlgOPP(I[k])) =

⌈T/δk⌉−1
∑

c=0

cost(AlgOPP(I[k, c · δk])).

We prove that, for any k ∈ [K] and t̂ = c · δk for some c ∈ Z+, it holds that

cost(AlgOPP(I[k, t̂])) ≤ k · opt(I[k, t̂]). (5.2)

For k = K, this proves the lemma. The proof is by induction on k. The base case is trivial,
since δ1 = 1: both the online algorithm and the optimum offline solution buy a permit for
each rainy day. So assume Inequality (5.2) holds for k − 1. Note that opt(I[k, t̂]) ≤ γk,
since permit (k, t̂) is a feasible solution of I[k, t̂]. We divide the proof in two cases.

1. If opt(I[k, t̂]) < γk, then the optimum offline solution does not buy (k, t̂), and only
buys permits of types 1, . . . , k− 1. Let d = δk/δk−1 (remember that d is an integer);
then

opt(I[k, c · δk]) =

(c+1)·d−1
∑

a=c·d

opt(I[k − 1, a · δk−1]).

37

Since the online algorithm mimics the behavior of the optimum solution, it also never
buys (k, t̂). Thus,

cost(AlgOPP(I[k, c · δk])) =

(c+1)·d−1
∑

a=c·d

cost(AlgOPP(I[k − 1, a · δk−1])).

By induction hypothesis, for a = c · d, . . . , (c+ 1) · d− 1,

cost(AlgOPP(I[k − 1, a · δk−1])) ≤ (k − 1) · opt(I[k − 1, a · δk−1]).

Thus,

cost(AlgOPP(I[k, c · δk])) =

(c+1)·d−1
∑

a=c·d

cost(AlgOPP(I[k − 1, a · δk−1]))

≤

(c+1)·d−1
∑

a=c·d

(k − 1) · opt(I[k − 1, a · δk−1])

= (k − 1) ·

(c+1)·d−1
∑

a=c·d

opt(I[k − 1, a · δk−1])

= (k − 1) · opt(I[k, c · δk]).

2. If opt(I[k, t̂]) = γk, then the optimum offline solution buys only permit (k, t̂). For
any t ∈ [t̂, t̂ + δk), let It[k, t̂] := (t − t̂ + 1, k, δ, γ, (rt̂, . . . , rt)) be the sub-instance of
I[k, t̂] that considers only days t̂, . . . , t. Then let t be such that opt(It−1[k, t̂]) < γk
but opt(It[k, t̂]) = γk; i.e., t is day in which the online algorithm decides to buy
permit (k, t̂). Note that the online algorithm will not need to buy any permit after t
until the end of this interval, so

cost(AlgOPP(I[k, t̂])) = cost(AlgOPP(It−1[k, t̂])) + γk.

Due to the analysis of the previous case,

cost(AlgOPP(It−1[k, t̂])) ≤ (k − 1) · opt(It−1[k, t̂]) < (k − 1) · γk,

so
cost(AlgOPP(I[k, t̂])) ≤ (k − 1) · γk + γk = k · γk = k · opt(I[k, t̂]).

�

Meyerson [59] also presented a randomized O(lgK)-competitive online algorithm for
PP, which we denote by AlgRandOPP. He also proved that any randomized online
algorithm for PP has competitive factor Ω(lgK). We do not present those results here;
instead, we only use them as black boxes when necessary.

38

Chapter 6

Multi Parking Permit

In this chapter, we propose the following generalization of PP. Imagine that Johnny and
his coworkers decide to share parking permits to save some money. Johnny’s means of
transportation depend on weather, but Linda goes by car when she has tennis lessons,
and so does Ringo when he has to get his kids at school. So, for different days, different
employees need a parking permit, and permits can be exchanged so that a same permit
can be used by different employees on different days.

This is the multi parking permit problem (MPP). For a formal definition, as
in PP, the input of MPP contains K types of permits with lengths δ1, . . . , δK ∈ N and
costs γ1, . . . , γK ∈ Q+. But now a demand greater than one can be given for each instant,
i.e., we receive a sequence r0, . . . , rT−1 ∈ Z+, which means that rt employees need a permit
at day t, for t = 0, . . . , T−1. Moreover, multiple copies of the same permit can be bought,
so a solution is a multiset of permits. Given a multiset B and an element b ∈ B, we denote
by mB(b) the multiplicity of b in B. We wish to find a multiset of permits S ⊆ [K]× Z+

such that
∑

(k,t̂)∈S

t∈[t̂,t̂+δk)

mS(k, t̂) ≥ rt for each t,

which minimizes
∑

(k,t̂)∈S

mS(k, t̂) · γk.

The problem has the following formulation as an integer linear program.

minimize
K
∑

k=1

T−1
∑

t̂=0

xkt̂ · γk

subject to
K
∑

k=1

∑

t̂=0,...,T−1
t∈[t̂,t̂+δk)

xkt̂ ≥ rt ∀t ∈ {0, . . . , T − 1},

xkt̂ ∈ Z+ ∀k ∈ [K], t̂ ∈ {0, . . . , T − 1}.

In this formulation, variable xkt̂ indicates the multiplicity of permit (k, t̂). (To ensure
polynomial size, we may only allow permits that begin at instants t with rt > 0.) The

39

first constraint ensures that each day is covered by enough permits.
Let P := {x ∈ RK×T |A · x ≥ r,x ≥ 0} be the polytope of the relaxation of this

linear program. Note that, for a fixed column in matrix A, ones are consecutive, because
a permit covers a consecutive sequence of days. Such a matrix is totally unimodular [71]
and, since r is integer, if follows that all extreme points of P are integral [66]. Thus, MPP

can be solved in polynomial time.
Now we present another result which helps us to solve MPP in the online setting,

where T is unknown and r0, . . . , rT−1 are revealed one at a time. Note that Lemmas 5.6
and 5.9 are also true for MPP, and that under IM we can assume that permits satisfy
Equation (5.1) without loss of generality.

We define an ordering of the permits in a solution and a unique assignment between
demands and permits, from which our next result follows straightforwardly. Given a
multiset of permits, we sort them in non-increasing order of permit type; permits of same
type are sorted in non-decreasing order of starting time, breaking ties arbitrarily. We call
this the Hanoi tower ordering (HTO), since if we represent permits as rectangles as in
Figure 6.1(a), larger permits are under smaller permits, as in the Hanoi tower problem.
Then, we assign demands of the input to permits in a solution so that each demand is
covered by the earliest possible permit in HTO. Note that this defines a level to each
demand and each permit; see Figure 6.1(b). Due to IM, a demand from instant t is
assigned to a smaller permit only if all larger permits that cover instant t have some other
demand assigned to them.

time

12

3 4

5

6

7

8

9

10

(a)

time

level

1

2

3

(b)

Figure 6.1: (a) Example of a MPP solution ordered in HTO, given an instance with
demand sequence r = (2, 0, 1, 3, 1, 2, 3, 0, 1, 1, 2, 2). (b) Demands of this instance assigned
to those permits.

Thus, under IM and HTO, MPP has the following property: each level of an optimum
solution is an optimum solution of the corresponding PP instance. Let I = (T,K, δ, γ, r)

be an instance of MPP. Let R := maxt=0,...,T−1 rt be the maximum demand and, for
j = 1, . . . , R, let Ij := (T,K, δ, γ, rj) be an instance of PP such that, for t = 0, . . . , T − 1,

40

rjt = 1 if rt ≥ j, and rjt = 0 otherwise. (Ij is the PP instance corresponding to level j.)

Lemma 6.1 : Assume IM. Given an MPP instance I, there exists an optimum solution

of I which is the union of optimum solutions of PP instances I1, I2, . . . , IR.

Proof: Let S∗ be an optimum solution of I and, for each j ∈ [R], let Sj∗ be an
optimum PP solution of Ij . Note that

⋃R
j=1 S

j∗ is a feasible solution for I. Suppose by

contradiction that cost(S∗) <
∑R

j=1 cost(S
j∗). Sort permits in S∗ and assign demands

to permits as in HTO. Demands of instant t must be assigned to levels 1, . . . , rt since,
due to IM, if permits (k, t̂) and (k′, t′) are such that k < k′ and t̂ ∈ [t′, t′ + δk′), then
[t̂, t̂ + δk) ⊆ [t′, t′ + δk′). (See Figure 6.2.) Thus, S∗ can be partitioned into feasible
solutions of I1, . . . , IR, a contradiction to the fact that S1∗, . . . , SR∗ are optimum. �

(a) (b) (c)

Figure 6.2: An illustration of the proof of Lemma 6.1. Consider an instance with T = 6,
K = 3, δ = (1, 3, 6), γ = (1, 5/2, 4) and r = (3, 1, 2, 0, 1, 2). (a) The optimum solution
is {(2, 0), (1, 0), (3, 0), (1, 5)}. (b) Optimum solution after reordering permits. (c) Opti-
mum solution after reassigning demands; permits correspond to optimum solutions for PP

instances.

So under IM, from Lemma 6.1, MPP reduces to solving R instances of PP. Thus,
given an α-competitive online algorithm for PP, we obtain an α-competitive online algo-
rithm for MPP.1 By Lemma 5.6, we have deterministic O(K)-competitive and randomized
O(lgK)-competitive online algorithms for MPP. Note that Lemma 6.1 is valid only if we
assume IM. (See a counterexample if we do not assume IM in Figure 6.3.) However, this
reduction is pseudo-polynomial, since it runs in time Ω(R) and the input size is propor-
tional to O(lgR). We show how to overcome this in the following lemma, which is inspired
on the online algorithm for SN [72].

(a) (b)

Figure 6.3: Lemma 6.1 is no longer valid if we do not assume IM. Consider an instance I
with T = 5, K = 3, δ = (1, 2, 4), γ = (2, 3, 5) and r = (1, 2, 1, 1, 1). (a) The optimum
solution is {(2, 0), (3, 1)}, which costs 8. (b) The union of optimum solutions for PP

instances I1 and I2 is {(1, 0), (3, 1), (1, 1)}, which costs 9.

1Since an online algorithm does not know the value of R in advance, we must run new instances of
the online algorithm for PP as the maximum demand increases.

41

Lemma 6.2 : Assume IM. Given an α-competitive algorithm for PP, there exists a

strictly polynomial-time 2α-competitive algorithm for MPP.

Proof: Let L := ⌊lgR⌋; we define L+1 instances Î0, Î1, . . . , ÎL of PP. For each instant t
and ℓ = 0, . . . , L, the demand of day t in Îℓ is 1 if ℓ ≤ ⌊lg rt⌋, and 0 otherwise. Run the
α-competitive algorithm for PP on each of Î0, . . . , ÎL, and buy 2ℓ copies of the permits
bought by PP on Îℓ. This is feasible since

∑⌊lg rt⌋
ℓ=0 2ℓ = 2⌊lg rt⌋+1 − 1 and rt < 2⌊lg rt⌋+1.

Consider instances I1, . . . , IR as defined before Lemma 6.1. By Lemma 6.1, we have
that opt(I) =

∑R
j=1 opt(I

j). For 1 ≤ j < R, we have that rj+1
t ≤ rjt for every t; thus, an

optimum solution for Ij is feasible for Ij+1, and hence opt(Ij+1) ≤ opt(Ij), for 1 ≤ j < R.

Note that, for ℓ = 0, . . . , L, we have that Îℓ = I2
ℓ

. Let Ŝℓ be the solution obtained by
the α-competitive algorithm for PP on instance Îℓ; we have that cost(Ŝℓ) ≤ α · opt(Îℓ).
Let S be the returned MPP solution. We have that

cost(S) =
L
∑

ℓ=0

2ℓ · cost(Ŝℓ) ≤
L
∑

ℓ=0

2ℓ · α · opt(Îℓ) = α ·

(

opt(I1) + 2 ·
L
∑

ℓ=1

2ℓ−1opt(I2
ℓ

)

)

≤ α ·

opt(I1) + 2 ·
L
∑

ℓ=1

2ℓ
∑

j=2ℓ−1+1

opt(Ij)

 = α ·

opt(I1) + 2 ·
2L
∑

j=2

opt(Ij)

≤ 2α ·
R
∑

j=1

opt(Ij) = 2α · opt(I),

where the second inequality follows because interval [2ℓ−1 + 1, 2ℓ] contains 2ℓ−1 integers,
and opt(Ij+1) ≤ opt(Ij) for 1 ≤ j < R. Thus, the lemma follows. �

Due to the online algorithms for PP by Meyerson [59], we have the following result.

Theorem 6.3 : There are polynomial-time deterministic O(K)-competitive and random-

ized O(lgK)-competitive online algorithms for MPP.

42

Chapter 7

Group Parking Permit

We propose the following generalization of MPP, which we call the group parking

permit problem (GPP). Every day a tourism agency receives a group of guests willing
to visit a museum. The agency has an agreement with the museum, for which the agency
can buy permits (or tickets) that last for different periods (e.g., a day, a week, a month).
Moreover, the agency can buy a special permit of type k ∈ [K] beginning at day t̂ that
costs M ·γk, which can be used by an unlimited number of guests on the period [t̂, t̂+ δk).
We call this a group permit, and a usual permit for a single guest a single permit. The
agency wishes to buy a minimum-cost multiset of single and group permits. More formally,
we have K types of permits with lengths δ1, . . . , δK ∈ N and costs γ1, . . . , γK ∈ Q+, and
we are given a sequence r0, . . . , rT−1 ∈ Z+ and a constant M ≥ 1. We wish to find a
multiset S ⊆ [K]× Z+ of single permits, and a set Q ⊆ [K]× Z+ of group permits, such
that S and Q meet the demand. I.e., for t = 0, . . . , T − 1, either

∑

(k,t̂)∈S

t∈[t̂,t̂+δk)

mS(k, t̂) ≥ rt,

or there is some group permit (k, t̂) ∈ Q such that t ∈ [t̂, t̂+ δk). We wish to minimize

∑

(k,t̂)∈S

mS(k, t̂) · γk +M ·
∑

(k,t̂)∈Q

γk.

In order to simplify our notation, we denote the total cost of a multiset of permits S by
cost(S) :=

∑

(k,t̂)∈S mS(k, t̂)·γk. Thus, the cost of a solution (S,Q) is cost(S)+M ·cost(Q).
This problem reduces to PP if rt ≤ 1 for every day t, to MPP if M = ∞, and to

SkiRental if K = 1 and δ1 =∞.
Note that Lemmas 5.6 and 5.9, regarding IM, are also true for GPP, and that under IM

we can assume that permits satisfy Equation (5.1) without loss of generality.

43

7.1 Offline Group Parking Permit

Consider the following formulation of GPP as an integer linear program.

minimize
K
∑

k=1

T−1
∑

t̂=0

(xkt̂ +M · ykt̂) · γk

subject to
K
∑

k=1

∑

t̂=0,...,T−1
t∈[t̂,t̂+δk)

(xkt̂ + rt · ykt̂) ≥ rt ∀t ∈ {0, . . . , T − 1},

xkt̂ ∈ Z+, ykt̂ ∈ {0, 1} ∀k ∈ [K], t̂ ∈ {0, . . . , T − 1}.

Variable xkt̂ indicates how many copies of single permit (k, t̂) we must buy, and ykt̂
indicates whether we must buy a group permit (k, t̂). The first constraint ensures that each
day is covered by a group permit or by enough single permits. The matrix of this linear
program is no longer totally unimodular, since it is not a 0/1 matrix. It is interesting
to remark that, after running some experiments, we found some random instances for
which the integrality gap is greater than 1, even under IM.1 We believe that GPP is
weakly NP-hard even under IM, but this is an open question. (Otherwise, it is one of
those few interesting problems which are polynomially solvable but have integrality gap.)
Under IM, there exists a pseudo-polynomial exact algorithm for GPP, which we discuss
in Section 8.1.

In this section, we present a polynomial-time 2-approximation algorithm for GPP

under IM. Before we present the algorithm, let us define some notation.

Definition 7.1 (S[k, t̂]): Given a multiset of permits S ⊆ [K] × Z+, a permit type

k ∈ [K] and an instant of time t̂ = c · δk with c ∈ Z+, let

S[k, t̂] := {(k′, t′) ∈ S : k′ ≤ k and t′ ∈ [t̂, t̂+ δk)}

be the submultiset of permits of S of types 1, . . . , k that are contained in the interval of

length δk beginning at instant t̂.

Note that this definition applies both to multisets of single permits and sets of group
permits.

The pseudocode of our algorithm is presented in Algorithm 7.1. Roughly speak-
ing, first we run a polynomial-time algorithm for MPP under IM, which we denote by
AlgMPP, on the corresponding instance (ignoring M); this is the initial solution. Then,
for k = 1, . . . , K, we consider an interval of type k, and we check if we improve the current
solution by replacing permits of types 1, . . . , k chosen so far for this interval with a group
permit of type k.

The intuition behind this algorithm is the following: we collect contributions of permits
in the solution obtained by AlgMPP to decide when to buy a group permit in GPP. Single

1One such simple instance has T = 8, K = 4, M = 10, δ = (1, 2, 4, 8), γ = (20, 39, 77, 152), and
r = (1, 1, 1, 1, 1, 12, 1, 1). While the optimum solution under IM costs 336, the optimum fractional
solution under IM costs 335 + 1/3.

44

Input: (T,K, δ, γ, r,M)
1 S0 ← AlgMPP(T,K, δ, γ, r), Q0 ← ∅;
2 for k ← 1 to K do
3 Sk ← Sk−1, Qk ← Qk−1;
4 for t̂← 0 to T − 1 step δk do
5 if cost(Sk−1[k, t̂]) +M · cost(Qk−1[k, t̂]) ≥M · γk then
6 Sk ← Sk \ Sk−1[k, t̂];
7 Qk ← (Qk \Qk−1[k, t̂]) ∪ {(k, t̂)};
8 return (SK , QK);

Algorithm 7.1: Approximation algorithm for GPP.

permits of types 1, . . . , k contribute to group permits of type k. However, we limit the
contributions of types 1, . . . , k in a single interval of type k to M · γk. This prevents us
from buying a group permit of a larger type when most contributions are clustered in an
interval of smaller type. Note that the algorithm always returns a feasible solution, since
every time we replace a subsolution with a group permit, it covers all demands in that
interval. We illustrate the execution of the algorithm in Figure 7.1.

(a) (b) (c) (d)

Figure 7.1: An execution of Algorithm 7.1 on an instance with T = 4, K = 3, M = 4,
δ = (1, 2, 4), γ = (4, 6, 11), and r = (2, 1, 3, 8). (a) S0 is the optimum solution for the
corresponding MPP instance. (b) In S1 we replace type-1 permits with type-1 group
permits because this improves the solution. (c) In S2 we replace permits of types 1 and 2
in S1 with group permits of type 2 because this improves the solution. (d) In this case
S3 = S2 since cost(S2) = 39 and M · γ3 = 44. Note that cost(S0) = 47, which costs more
than a type-3 group permit, but we can obtain a better solution using intermediary group
permits.

In order to analyze the algorithm, we define a modified version (Algorithm 7.2) in
which we also receive a set of group permits Q ⊆ [K]×Z+, and we only execute Lines 5-7
of Algorithm 7.1 if the considered interval is contained in the interval defined by some
group permit in Q. We present a pseudocode in Algorithm 7.2. Note that Algorithm 7.1
is equivalent to running Algorithm 7.2 with Q = {(K, t) : t = c · δK , c ∈ Z+}.

45

Input: (T,K, δ, γ, r,M,Q)
1 S ′

0 ← AlgMPP(T,K, δ, γ, r), Q0 ← ∅;
2 for k ← 1 to K do
3 S ′

k ← S ′
k−1, Q

′
k ← Q′

k−1;
4 for t̂← 0 to T − 1 step δk do
5 if k ≤ k′ and t̂ ∈ [t′, t′ + δk′) for some (k′, t′) ∈ Q then
6 if cost(S ′

k−1[k, t̂]) +M · cost(Q′
k−1[k, t̂]) ≥M · γk then

7 S ′
k ← S ′

k \ S
′
k−1[k, t̂];

8 Q′
k ← (Q′

k \Q
′
k−1[k, t̂]) ∪ {(k, t̂)};

9 return (S ′
K , Q

′
K);

Algorithm 7.2: A modified version of Algorithm 7.1, which will be useful for our
analysis.

Lemma 7.2 : Given a GPP instance I, for any Q ⊆ [K] × Z+, the cost of the solution

returned by running Algorithm 7.1 on I is at most the cost of the solution returned by

running Algorithm 7.2 on (I, Q).

Proof: Due to IM, if Algorithm 7.1 executes Lines 5-7 for some k and t̂, then it
has executed Lines 5-7 before for each sub-interval. (The same holds for Lines 6-8 of
Algorithm 7.2.) Thus it is easy to prove, by induction on k, that for any pair (k, t̂) for
which both Algorithm 7.1 and Algorithm 7.2 run this step, we have that

cost(Sk[k, t̂]) = cost(S ′
k[k, t̂]) and cost(Qk[k, t̂]) = cost(Q′

k[k, t̂]).

Note that an execution of Lines 5-7 in Algorithm 7.1 never increases the cost of the
returned solution. Since Algorithm 7.1 considers each interval that Algorithm 7.2 does,
the lemma holds. �

Our goal is to prove that Algorithm 7.1 is a 2-approximation for GPP under IM,
which implies that there exists an 8-approximation for arbitrary instances. Let I =

(T,K, δ, γ, r,M) be a GPP instance, and let (S,Q) be the solution returned by Algo-
rithm 7.1 on I. Let (S∗, Q∗) be an optimum solution of I which always utilizes a group
permit whenever possible, and let (S ′, Q′) be the solution returned by Algorithm 7.2 on
(I, Q∗). We claim that

cost(S) +M · cost(Q) ≤ cost(S ′) +M · cost(Q′) ≤ cost(S∗) + 2M · cost(Q∗) ≤ 2 · opt(I).

The first inequality follows from Lemma 7.2, so it suffices to prove the second inequality.
We partition S ′ in two multisets, S ′

≤ and S ′
>. Let S ′

≤ :=
⋃

(k,t̂)∈Q∗ S ′[k, t̂], i.e., S ′
≤ is

the multiset of single permits that are contained in the interval defined by some group
permit in Q∗. Let S ′

> := S ′ \S ′
≤. (See Figure 7.2.) Since Algorithm 7.2 executes Lines 6-8

for each interval defined by a permit (k, t̂) ∈ Q∗, it considers buying group permit (k, t̂).
Moreover, every group permit in Q′ is contained in the interval defined by some group
permit in Q∗. Thus,

cost(S ′
≤) +M · cost(Q′) ≤M · cost(Q∗).

46

It remains to prove that cost(S ′
>) ≤ opt(I) = cost(S∗) + M · cost(Q∗). Before that, we

need some auxiliary definitions and results.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

(a)

S ′
≤

S ′
>

(b)

Figure 7.2: An illustration of how we split S ′. (a) Optimum solution; (b) permits in S ′
≤

are contained in the interval defined by some group permit in the optimum solution.

Due to IM, there is no overlap in group permits in Q∗. In order to simplify our
argument, we extend the Hanoi tower ordering to include group permits and assume that,
in the optimum solution, a group permit never overlaps with a single permit. We can shift
up a group permit so that it does not overlap with single permits, as shown in Figure 7.3.
Note that, due to IM, a group permit can only overlap with single permits of larger length;
otherwise, we could remove the single permit.

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��

(a) (b)

Figure 7.3: An illustration of the Hanoi tower ordering for GPP. (a) A solution of GPP;
(b) Solution (a) reorganized so that group and single permits do not overlap.

We say that a group permit in Q∗ and a permit in S ′
> overlap if, after reorganizing

both solutions in the Hanoi tower ordering, those permits are used to cover some common
demand. See Figure 7.4 for an example.

Lemma 7.3 : At most ⌈M⌉ − 1 permits in S ′
> overlap with each group permit in Q∗.

Proof: We assume that M is an integer; otherwise, it is possible to modify the proof
to cover that case as well, as we explain later.

47

x

y

(a)

a

b

c

d

e

f

(b)

Figure 7.4: An illustration of overlapping permits. (a) Optimum solution; (b) S>. Group
permit x overlaps with permits a, b and c, and y overlaps with d, e and f .

Given a group permit (k, t̂) ∈ Q∗, let λS∗(k, t̂) be the number of permits in S∗ of type
k̃ > k that cover instant t̂; i.e., λS∗(k, t̂) := |{(k̃, t̃) ∈ S∗ : k̃ > k, t̂ ∈ [t̃, t̃ + δk̃)}|. Thus,
given a group permit (k, t̂) ∈ Q∗, we have that (k, t̂) is used to cover levels greater than
λS∗(k, t̂). (See Figure 7.5(a).)

Suppose, by contradiction, that a permit (k, t̂) ∈ Q∗ overlaps with at least M permits
in S ′

>; if there is more than one such permit in Q∗, consider one with smallest λS∗(k, t̂).
Let (k′, t′) be the permit in S ′

> that overlaps with (k, t̂) at level λS∗(k, t̂) + M . (See
Figure 7.5(a).) Note that k′ > k, and that only permits of types smaller than k′ are used,
in the optimum solution, in interval [t′, t′ + δk′) to cover demands at levels greater than
λS∗(k, t̂) (or those permits would overlap with (k, t̂)).

We replace, in the optimum solution, each group permit in Q∗ with M single permits of
the corresponding type. Let Ŝ be the resulting multiset of permits; we have that cost(Ŝ) =
opt(I) (see Figure 7.5(b)). Note that all demands covered by (k′, t′) are covered by single
permits in Ŝ, and thus the total cost of those permits in Ŝ is at least γk′, otherwise S ′

0

would not be an optimum solution for the MPP instance in Line 1 of Algorithm 7.2.
(If M is not an integer, we use a fraction M − ⌊M⌋ of a single permit (k, t̂) for level
λS∗(k, t̂) + ⌈M⌉, and this combined with the other permits in Ŝ that overlap with (k′, t′)

must cost at least (M − ⌊M⌋) · γk′.) Due to the Hanoi tower ordering, for each of the
other M − 1 lower levels, the total cost of the permits in Ŝ at interval [t′, t′ + δk′) must
also be at least γk′. Therefore, we conclude that it is better to buy a group permit of
type k′, which costs M · γk′, to cover this interval, but this contradicts the choice of the
optimum solution, which always buys a group permit whenever possible. �

Lemma 7.4 : cost(S ′
>) ≤ opt(I).

Proof: We replace, in the optimum solution, each group permit in Q∗ with ⌈M⌉ − 1

single permits of the corresponding type; let S̃ be the resulting multiset of permits, and
note that cost(S̃) ≤ opt(I). Since at most ⌈M⌉ − 1 permits in S ′

> overlap some group

48

M

(k, t̂)

λS∗(k, t̂)

(S∗, Q∗)

(k′, t′)

S ′
>

(a)

M

λS∗(k, t̂)

Ŝ

(b)

Figure 7.5: An illustration of the proof of Lemma 7.3. (a) Suppose by contradiction that
(k, t̂) overlaps at least M permits in S ′

>; consider the M lower levels and let (k′, t′) be
the permit that overlaps with (k, t̂) at level λS∗(k, t̂)+M . (b) Replace each group permit
with M single permits of the corresponding type.

permit in Q∗, every demand covered by some permit in S ′
> is covered by some permit

in S̃. Also, note that S ′
> is the optimum solution for the MPP instance defined by the

demands covered by those permits. Indeed, suppose by contradiction that there is a better
solution S∗

>; then S∗
> ∪ (S ′

0 \ S
′
>) costs less than S ′

0, a contradiction since S ′
0 is optimum.

Thus, we must have that cost(S ′
>) ≤ cost(S̃). �

Thus, we obtain the following theorem.

Theorem 7.5 : Algorithm 7.1 is a 2-approximation for GPP under IM.

To conclude this section, we present an instance which shows that Algorithm 7.1
has approximation factor at least 4/3 under IM. Take an arbitrary K, M ≥ 2 integer,
0 < ǫ≪ 1, δk = Mk−1, γk = Mk−1 − (Mk−1 − 1)ǫ and demands such that AlgMPP buys
M − 1 permits (k, 0), for k = 1, . . . , K − 1, plus one permit (K, 0). It is easy to check
that Algorithm 7.1 does not buy any group permit; on the other hand, the optimum buys
a group permit of type K − 1 plus M − 1 single permits of type K − 1. The cost of the

49

solution returned by the algorithm is

K−1
∑

k=1

(M − 1) ·
(

Mk−1 − (Mk−1 − 1)ǫ
)

+MK−1 − (MK−1 − 1)ǫ

= (M − 1) ·
K−1
∑

k=1

Mk−1 +MK−1 −E = 2MK−1 − 1− E,

where E ≪ 1 is a small number. The optimum solution costs

(M +M − 1) ·
(

MK−2 − (MK−2 − 1)ǫ
)

≤ (2M − 1) ·MK−2.

Thus, the approximation factor approaches 4/3 as M approaches 2. An open question is
whether Algorithm 7.1 has approximation factor smaller than 2 under IM. Experiments
on random instances never attained a factor greater than 4/3. Another open question is
whether we can obtain approximation factor better than 8 if we do not assume IM.

7.2 Online Group Parking Permit

In the online version of GPP, we are given K, δ, γ and M in advance, but the val-
ues of T and r are unknown. We begin with an empty multiset of permits and, at
each instant of time t ∈ {0, . . . , T − 1}, we receive rt demands and we must buy some
permits to ensure that a group permit or at least rt single permits cover day t. We
cannot remove any previously bought permits. In order to simplify our argumentation,
given an instance I = (T,K, δ, γ, r,M), we denote by It the instance up to day t, i.e.,
(t+ 1, K, δ, γ, (r0, . . . , rt),M). In this section we denote a solution for It by (St, Qt); note
that this is not the same as Sk and Qk as described in Algorithms 7.1 and 7.2.

One obvious online algorithm, in the spirit of AlgOPP (Section 5.2.2), is the following:
at each instant t, we run a (pseudo-polynomial) offline algorithm that obtains an optimum
solution (S∗

t , Q
∗
t) for It, and based on this we buy enough permits from (S∗

t , Q
∗
t) to cover

day t. However, we do not know how to bound the competitive factor of such algorithm.
Instead, we propose the following algorithm, based on a similar principle.

Algorithm AlgOGPP: for each day t = 0, . . . , T − 1,

Step 1. Run Algorithm 7.1 on It to obtain a solution (St, Qt);

Step 2. If Qt contains some group permit (k, t̂) such that no group permit (k∗, t∗) was
bought until now with k∗ ≥ k and t̂ ∈ [t∗, t∗ + δk∗) (i.e., (k, t̂) is contained in the
interval defined by (k∗, t∗)), then buy group permit (k, t̂);

Step 3. Let κt be the number of demands from day t that are covered by permits bought
until now;

Step 4. Buy permits that, respecting the Hanoi tower ordering, are at levels κt+1, . . . , rt
on day t in (St, Qt).2

2This step can be done in polynomial time by using the techniques we describe in Section 8.2.

50

The main result of this section is the following. We claim that, under IM, for
t = 0, . . . , T − 1,

cost(AlgOGPP(It)) ≤ 4K · opt(It). (7.1)

We actually prove the following stronger result:

cost(AlgOGPP(It)) ≤ 2K · (cost(St) +M · cost(Qt)), (7.2)

where (St, Qt) is the solution obtained by running Algorithm 7.1 on It. Thus, Equa-
tion (7.1) follows from Theorem 7.5 and Equation (7.2).

The following notation will be useful. Assume permits in (St, Qt) are in the Hanoi
tower ordering. We represent a single permit (k, t̂) ∈ St that covers demands of level
λ ∈ Z+ by (k, t̂, λ, SINGLE), and a group permit (k, t̂) ∈ Qt that covers demands of levels
λ, λ + 1, . . . by (k, t̂, λ,GROUP). Thus, we can represent (St, Qt) by a set St of permits
in this format. For each p = (k, t̂, λ, g) ∈ St, we denote its cost by

cost(p) :=

{

γk, if g = SINGLE,
M · γk, if g = GROUP.

In order to simplify notation, given a set of permits S, we write cost(S) :=
∑

p∈S cost(p).
In order to prove Equation (7.2), we share the cost of AlgOGPP(It) among the permits

in St. More precisely, we define an assignment Φt : St 7→ Q+ such that
∑

p∈St
Φt(p) =

cost(AlgOGPP(It)). In order to simplify notation, given a set of permits S and an as-
signment Φ, we write Φ(S) :=

∑

p∈S Φ(p). We are going to define Φt in such a way that
Φt(p) ≤ 2K · cost(p) (Lemma 7.9) for every p ∈ St. This implies that

cost(AlgOGPP(It)) = Φt(St) ≤ 2K · cost(St),

and so Equation (7.2) holds. We define Φt in and inductive manner. For t = 0, take
Φ0(p) := cost(p) for each p ∈ S0; clearly Φ0(S0) = cost(AlgOGPP(I0)). Now suppose
Φt−1 is defined, and consider the solution S ′

t−1 obtained by running Algorithm 7.2 on
(It−1, Qt). Before defining Φt, we define an assignment Φ′

t−1 : S
′
t−1 7→ Q+ which satisfies

Φ′
t−1(S

′
t−1) = Φt−1(St−1). We need a new concept first.

We say that a single permit p′ from a set S ′ is contained in a permit p from a set S,
and we write p′ ⊆ p if, after ordering both S and S ′ in HTO, we have that p covers
every demand p′ covers. Also, we say that a group permit p′ = (k′, t′, λ′,GROUP) from
a set S ′ is contained in a group permit p = (k, t̂, λ,GROUP) from a set S if k′ ≤ k and
t′ ∈ [t̂, t̂ + δk), i.e., if the interval defined by p contains p′. In order to simplify notation,
we denote by S ′(p) := {p′ ∈ S ′ : p′ ⊆ p} the set of permits in S ′ that are contained in p.
Note that, due to HTO, if p ∈ S ′, then S ′(p) = {p}.

Now let us define Φ′
t−1. Note that each permit in St−1 contains some permit in S ′

t−1,
since both S ′

t−1 and St−1 are built from the same MPP solution for It−1, and Algorithm 7.1
executes Lines 5-7 for each pair (k, t̂) for which Algorithm 7.2 executes Lines 6-8. Also,
each permit in S ′

t−1 is contained in a unique permit in St−1, due to HTO. For each p ∈ St−1

51

and each p′ ∈ S ′
t−1(p), let

Φ′
t−1(p

′) := Φt−1(p) ·
cost(p′)

cost(S ′
t−1(p))

.

I.e., we split the cost share of p among the permits it contains in S ′
t−1 in proportion to

their cost. Clearly Φ′
t−1(S

′
t−1) = Φt−1(St−1), and since Φt−1(St−1) = cost(AlgOGPP(It−1))

by induction hypothesis, we have that Φ′
t−1(S

′
t−1) = cost(AlgOGPP(It−1)).

Fact 7.6 : For every p ∈ St−1 and every p′ ∈ S ′
t−1(p), if Φt−1(p) ≤ α · cost(p) for some

α ≥ 0, then we have that Φ′
t−1(p

′) ≤ α · cost(p′).

Proof: We have that cost(p) ≤ cost(S ′
t−1(p)), by a similar argument to the proof of

Lemma 7.2. Thus,

Φ′
t−1(p

′) = Φt−1(p) ·
cost(p′)

cost(S ′
t−1(p))

≤ α · cost(p) ·
cost(p′)

cost(S ′
t−1(p))

≤ α · cost(p′).

�

Now we can relate S ′
t−1 and St.

Fact 7.7 : Every permit in S ′
t−1 is contained in a unique permit in St.

Proof: First note, due to the definition of Algorithm 7.2, that S ′
t−1 cannot have group

permits where St does not. Thus, every group permit in S ′
t−1 is contained in some group

permit in St. If a single permit in S ′
t−1 is not contained in a group permit in St, then it must

be contained in some single permit in St because, due to the optimality of AlgMPP, every
permit in AlgMPP(It−1) is contained in some permit in AlgMPP(It). The uniqueness
simply follows from HTO. �

Now we define Φt. For each p ∈ St,

Φt(p) :=

{

Φt−1(S
′
t−1(p)) + cost(p), if AlgOGPP buys p at instant t,

Φt−1(S
′
t−1(p)), otherwise.

Since Φ′
t−1(S

′
t−1) = cost(AlgOGPP(It−1)), clearly Φt(St) = cost(AlgOGPP(It)).

Fact 7.8 : For every p ∈ St, we have that cost(S ′
t−1(p)) ≤ cost(p).

Proof: If p is a group permit, then Algorithm 7.2 considers buying p, so cost(S ′
t−1(p)) ≤

cost(p). If p is a single permit, then the inequality follows from the optimality of AlgMPP.
�

52

Lemma 7.9 : For each p ∈ St, we have that Φt(p) ≤ 2K · cost(p).

Proof: We actually prove a stronger claim3: for every p = (k, t̂, λ, g) ∈ St,

(i) Φt(p) ≤ 2k∗ · cost(p) for some k∗ ≥ k and, at some instant t̃ ≤ t, AlgOGPP bought
a group permit (k∗, t∗) such that t̂ ∈ [t∗, t∗ + δk∗); i.e., (k∗, t∗) contains p; or

(ii) Φt(p) ≤ (2k − 1) · cost(p) and g = SINGLE.

We prove this claim by induction on t. The claim is trivial for t = 0. So assume that
t > 0 and the claim is valid for t−1. Note that, due to Lemma 7.6 and the fact that each
permit in S ′

t−1 is contained in a unique permit in St−1, the induction hypothesis implies
that, for every p′ = (k′, t′, λ′, g′) ∈ S ′

t−1,

(i’) Φ′
t−1(p

′) ≤ 2k∗ · cost(p′) for some k∗ ≥ k′ and, at some instant t̃ ≤ t− 1, AlgOGPP

bought a group permit (k∗, t∗) such that t′ ∈ [t∗, t∗ + δk∗); or

(ii’) Φ′
t−1(p

′) ≤ (2k′ − 1) · cost(p′) and g′ = SINGLE.

Now consider a permit p = (k, t̂, λ, g) ∈ St, and let us prove that one of (i) or (ii)
holds. We divide the proof in two cases.

1. Suppose there is some p′ = (k′, t′, λ′, g′) ∈ S ′
t−1(p) which satisfies (i’) with one addi-

tional condition: Φ′
t−1(p

′) ≤ 2k∗ · cost(p′) for some k∗ ≥ k′, at some instant t̃ ≤ t− 1

AlgOGPP bought a group permit (k∗, t∗) such that t′ ∈ [t∗, t∗ + δk∗), and k∗ ≥ k.
If there is more than one such permit in S ′

t−1(p), choose one with largest k∗. Note
that AlgOGPP does not buy p at instant t, since group permit (k∗, t∗) contains p.
Furthermore, for any p′ ∈ S ′

t−1(p), we have that Φ′
t−1(p

′) ≤ 2k∗ · cost(p′), since we
chose k∗ as large as possible. Then,

Φt(p) = Φ′
t−1(S

′
t−1(p)) ≤ 2k∗ · cost(S ′

t−1(p)) ≤ 2k∗ · cost(p),

where the equality holds by definition of Φt, and the last inequality follows from
Lemma 7.8. Hence, (i) holds for p since group permit (k∗, t∗) contains p.

2. So assume that each permit in S ′
t−1(p) satisfies (ii’), or satisfies (i’) with k∗ < k. We

have two subcases.

(2a) If g = GROUP, then permits of type k in S ′
t−1(p) satisfy (ii’). Permits of types

1, . . . , k − 1 can satisfy (i’) or (ii’). Either way, for each p′ ∈ S ′
t−1(p), we have

that Φ′
t−1(p

′) ≤ (2k − 1) · cost(p′). Note that, in Step 2, AlgOGPP buys group
permit p. Therefore,

Φt(p) = Φ′
t−1(S

′
t−1(p)) + cost(p) ≤ (2k − 1) · cost(S ′

t−1(p)) + cost(p)

≤ (2k − 1) · cost(p) + cost(p) = 2k · cost(p).

3Although this claim seems too strong, it is necessary because, even though every single permit in
St−1 is contained in some permit in St, that is not true for group permits. A demand that is covered by
a large group permit in St−1 may be covered by a smaller permit in St because AlgMPP(It) decides to
buy longer permits for the lower demands.

53

So p satisfies (i) with (k∗, t∗) = (k, t̂) and t̃ = t.

(2b) If g = SINGLE, we have two more cases.

(2b.1) S ′
t−1(p) = {p}. Then p satisfies (ii’) with k′ = k. AlgOGPP does not buy p

at instant t, since at Step 4 we ensure that we only buy permits for uncovered
demands according to HTO. So, Φt(p) = Φ′

t−1(p) ≤ (2k − 1) · cost(p) and p

satisfies (ii).

(2b.2) S ′
t−1(p) consists of single permits of types 1, . . . , k−1 that satisfy (i’) or (ii’).

Either way, for each p′ ∈ S ′
t−1(p), we have that Φ′

t−1(p
′) ≤ 2(k − 1) · cost(p′).

Thus,

Φt(p) ≤ Φ′
t−1(S

′
t−1(p)) + cost(p) ≤ 2(k − 1) · cost(S ′

t−1(p)) + cost(p)

≤ 2(k − 1) · cost(p) + cost(p) = (2k − 1) · cost(p),

and p satisfies (ii).

�

Theorem 7.10 : Under IM, AlgOGPP is 4K-competitive for GPP.

Therefore, there exists a 16K-competitive online algorithm for arbitrary instances.
This is asymptotically optimal since the Ω(K) deterministic lower bound for PP [59] also
applies to GPP. A 2K-competitive online algorithm for GPP under IM can be obtained
via the greedy algorithm for the covering problem by Koufogiannakis and Young [52],
which we discuss in Section 8.3. We did not know of this result until the thesis defense,
so we obtained Theorem 7.10 independently, and we decided to keep the presentation of
our proof since we believe the analysis technique we developed is interesting.

An open question is whether there exists a randomized o(K)-competitive online algo-
rithm for GPP.

54

Chapter 8

2D Parking Permit

In the 2D parking permit problem (2DPP), as in MPP and GPP, at each instant we
receive a demand. However, in this problem each type of permit has a capacity, besides
the length in time. The objective, as usual, is to cover demands with permits whose total
cost is minimum. Formally, we have K types of permits with lengths δ1, . . . , δK ∈ N,
capacities φ1, . . . , φK ∈ N, and costs γ1, . . . , γK ∈ Q+, respectively, and we are given a
sequence of demands r0, . . . , rT−1 ∈ Z+. The goal is to find a minimum-cost multiset of
permits S ⊆ [K]× Z+ such that

∑

(k,t̂)∈S

t∈[t̂,t̂+δk)

mS(k, t̂) · φk ≥ rt for each t,

where mS(k, t̂) is the multiplicity of (k, t̂) in S.
This problem admits a O(K)-approximation algorithm and a O(K)-competitive online

algorithm, both by Koufogiannakis and Young [52], which we discuss in Section 8.3.
We show that this is an NP-hard problem via a reduction from the change-making

problem (CM) [57], which is a variant of the unbounded integer knapsack problem.1 We
define it below.

Problem CM(K, φ, γ, R): Given K types of coins with values φ1, . . . , φK ∈ Z+ and

weights γ1, . . . , γK ∈ Q+, and a change value R ∈ Z+, find a minimum-weight multiset of

coins, with as many coins of each type as we wish, whose value is at least R.

Note that this is the unbounded knapsack problem with inverted signs. CM reduces
to 2DPP by taking T = 1, r0 = R and δ1 = · · · = δK = 1. CM admits an FPTAS, which
was proposed for the unbounded knapsack problem [42].

An extension of IM can be defined for the 2D case, in order to give more structure
to permits. In addition to IM hypotheses, we assume that there is an ordering of the
permits for which capacities divide each other.

Hypothesis 8.1 (Hierarchical Capacity Property (HCP)): There is a permutation

π : [K] 7→ [K] such that φπ(k) divides φπ(k−1) for k = 2, . . . , K.

12DPP is a leasing variant of BaBND on a single edge, and Awerbuch and Azar [5] pointed that
BaBND on a single edge corresponds to CM.

55

Fact 8.2 : If there is an α-competitive algorithm for 2DPP under HCP, then there is a

2α-competitive algorithm for instances that do not satisfy HCP.

Proof: Take an arbitrary instance I = (T,K, δ, φ, γ, r). Reorder permit types such
that φ1 ≤ · · · ≤ φK . For k = 2, . . . , K, take φ′

k := 2⌊lg φk⌋, i.e., round down each permit
capacity to the closest power of 2. Note that instance I ′ = (T,K, δ, φ′, γ, r) satisfies HCP.
Let A be an α-competitive algorithm for 2DPP under HCP; cost(A(I ′)) ≤ α · opt(I ′).
Note that A(I ′) is a feasible solution for I: if A(I ′) uses permit (k, t̂), since φ′

k ≤ φk, this
permit covers in I more demands than it covers in I ′. So we just have to bound opt(I ′)

with regard to opt(I). Let S∗ be an optimum solution of I. Consider a solution S̄ which,
for each permit (k, t̂) ∈ S∗, contains 2 ·mS∗(k, t̂) copies of (k, t̂). Since φ′

k = 2⌊lg φk⌋, we
have that φk < 2φ′

k, so S̄ covers more demands than S∗. Thus, S̄ is feasible for I ′, so
opt(I ′) ≤ cost(S̄), and cost(S̄) = 2 · cost(S∗) = 2 · opt(I). Therefore,

cost(A(I ′)) ≤ α · opt(I ′) ≤ α · cost(S̄) = 2α · cost(S∗) = 2α · opt(I).

(We can easily modify the proof to only use permit capacities that are powers of any
integer β ≥ 2, obtaining competitive factor αβ.) �

Hypothesis 8.3 (2D Interval Model (2DIM)): We assume IM and HCP.

The following Lemma follows by composing Lemma 5.6 and Fact 8.2.

Lemma 8.4 : If there is an α-competitive algorithm for 2DPP under 2DIM, then there

is an 8α-competitive algorithm for arbitrary instances.

Note that Lemma 5.9 is also true for 2DPP, even if we only assume IM.

Fact 8.5 : CM is polynomially solvable if we assume HCP.

Proof: Consider a greedy algorithm that chooses the largest-value coin which is at
most the remaining change. Suppose by contradiction that there exists some optimum
solution S∗ which does not use a coin of maximum value φk ≤ R. Since HCP requires
that coin values divide each other, we can find a subset of coins S ′ ⊆ S∗ whose value is
exactly φk. Under HCP, we can assume without loss of generality that γk/φk < γk′/φk′

for k > k′ (otherwise, we can replace each coin of type k by φk/φk′ coins of type k′ and
obtain a lighter solution), so γ(S ′) > γk. Thus, (S∗\S ′)∪{k} is a solution which is lighter
than S∗, a contradiction. �

We can also define an extension of the Hanoi tower ordering for 2DPP under IM.
For permits that overlap in time, permits of larger length are under permits of smaller
length. For permits of same length that overlap in time, permits of larger capacity are
under permits of smaller capacity. Again, demands are assigned to permits in the lowest
possible level.

We identify two important particular cases of 2DPP.
The first is what we call the hierarchical 2D parking permit problem (H2DPP),

in which we assume that δ1 ≤ · · · ≤ δK and φ1 ≤ · · · ≤ φK ; i.e., a permit of type k′

always fits into a permit of type k > k′. Note that GPP is not a particular case of this

56

problem, because group permits of smaller length do not fit into single permits of larger
length. Under 2DIM we can assume without loss of generality that

1 = δ1 · φ1 < δ2 · φ2 < · · · < δK · φK and γk/(δk · φk) < γk′/(δk′ · φk′) for k > k′.

This version of the problem was proposed by Hu et al. [41], and they gave a constant-
approximation algorithm and a deterministic O(K)-competitive online algorithm. Their
result in the online setting is asymptotically optimal due to the lower bound of Ω(K)

on the competitive ratio for any deterministic online algorithm for PP [59], which is a
particular case of this problem. However, their algorithms are pseudo-polynomial. In
Section 8.2, we show how to turn their algorithms into polynomial time. We also show, in
Section 8.1, that their offline algorithm is a pseudo-polynomial exact algorithm under IM

for generic 2DPP.
We call the second case the orthogonal 2D parking permit problem (O2DPP).

In this problem, we have K · L types of permits, each defined by a length of time and
a capacity. There are K lengths of time δ1, . . . , δK ∈ N with corresponding time scaling
costs γ1, . . . , γK ∈ Q+, and L capacities φ1, . . . , φL ∈ N with corresponding capacity
scaling costs µ1, . . . , µL ∈ Q+. A permit with length of time δk and capacity φℓ costs
γk · µℓ. Under 2DIM, we can assume without loss of generality that Equation (5.1) holds
and that

1 = φ1 < φ2 < · · · < φL and µℓ/φℓ < µℓ′/φℓ′ for ℓ > ℓ′.

Another form of defining the problem is supposing we are given a sub-additive function
µ′ : N 7→ Q+ which, given an arbitrary integer capacity, returns a capacity scaling cost in
polynomial time. Thus, a permit of length δk and capacity φ ∈ N costs γk · µ

′(φ). This
version of the problem is equivalent up to a constant to the previous definition [70]. There
is a O(K)-approximation algorithm for this problem, which was given for a more general
problem by Anthony and Gupta [4] (we discuss this in Section 10.5). Also, the algorithm
by Koufogiannakis and Young [52] for the covering problem is a O(KL)-competitive online
algorithm for O2DPP.

Note that the reduction from CM proves that both H2DPP and O2DPP are NP-hard,
even if we assume IM but do not assume HCP. We do not know how to reduce H2DPP to
O2DPP (or vice versa) while losing only a constant factor, so we believe the problems are
independent. It turns out that O2DPP generalizes GPP, but H2DPP only generalizes
MPP. Note that, if GPP is proven weakly NP-hard under IM, so is O2DPP even under
2DIM while, in Section 8.2, we present a polynomial-time algorithm for H2DPP which
is exact under 2DIM.

8.1 A Pseudo-Polynomial Algorithm for Generic 2DPP

In this section we show that the pseudo-polynomial offline algorithm that Hu et al. [41]
proposed for H2DPP is indeed exact for generic 2DPP under IM. Moreover, our version
of the algorithm is simpler, we present it in a clearer way, and our implementation is more
efficient. Note that this is also a pseudo-polynomial exact algorithm for GPP under IM.

57

Let I = (T,K, δ, φ, γ, r) be an instance of 2DPP.

Definition 8.6 (I[k, t̂, r − λ]): For k ∈ [K], t̂ = c · δk for some c ∈ Z+, and λ ∈ Z+,

let I[k, t̂, r − λ] := (δk, k, δ, φ, γ, (r
′
t̂
, . . . , r′

t̂+δk−1
)), where r′t = max{rt − λ, 0}, be the

corresponding instance in which only permits of types 1, . . . , k can be used, we only

consider interval [t̂, t̂+ δk) and we remove λ from the demand of each day in this interval.

We illustrate this definition in Figure 8.1.

t̂
δk

λ

I[k, t̂, r − λ]

Figure 8.1: Given an instance I, I[k, t̂, r − λ] is the sub-instance in which we only allow
permits of types 1, . . . , k, we only consider interval [t̂, t̂ + δk), and we remove λ from the
demand of each day in this interval.

Under IM, we claim that 2DPP can be solved via the following recurrence. (Note
that we do not require HCP.) We sort permits in non-decreasing order of length of time,
and permits of same length of time in increasing order of capacity.

Lemma 8.7 :

opt(I[k, t̂, r − λ]) = min

γk + opt(I[k, t̂, r − λ− φk]),
δk/δk−1−1
∑

c=0

opt(I[k − 1, t̂+ c · δk−1, r − λ])

.

I.e., we either buy a permit of type k and combine that with an optimum solution for
the remaining demand, or we use an optimum solution that only uses permits of types
1, . . . , k − 1.

Proof: The proof is by double induction on k and on the total demand of the input,
∑T−1

t=0 rt. The base case with k = 1 is trivial.

Now suppose k > 1 and maxt∈[t̂,t̂+δk)
max{rt − λ, 0} > 0, i.e., the I[k, t̂, r − λ] has

some positive demand. Let S∗ be an optimum solution for I[k, t̂, r − λ]. If S∗ does not
use a permit of type k then, due to Lemma 5.9, it is composed of optimum solutions for
I[k−1, t̂, r−λ], . . . , I[k−1, t̂+δk−δk−1, r−λ], which is the second case of the recurrence.
Otherwise, if S∗ uses a copy of (k, t̂), let S ′ be a solution obtained from S∗ by removing
one copy of (k, t̂). Then, S ′ must be optimum for I[k, t̂, r − λ − φk]; otherwise, if Ŝ is

58

an optimum solution for I[k, t̂, r − λ − φk], then Ŝ ∪ {(k, t̂)} is a feasible solution for
I[k, t̂, r − λ] which costs less than S∗, a contradiction which proves the first case of the
recurrence. �

Now we show how to implement this recurrence efficiently. This is adapted from the
description by Hu et al. [41, Algorithms 2–3]. Their algorithms consume time O(T 2 · R),
where R = maxt=0,...,T−1 rt, while our implementation consumes time O(K ·T ·R), which is
usually better since K = o(T) for typical inputs. We also show that our implementation
consumes time O(T · R) when δ1 < · · · < δK . We assume that δ1 = 1.

First, we run Algorithm 8.1 to compute an auxiliary matrix MAX. For every k ∈ [K]

and every t̂ = c · δk < T for some c ∈ Z+, MAX [k, t̂] indicates the maximum demand in
interval [t̂, t̂+ δk).

Input: (T,K, δ, r)
1 for t̂← 0 to T − 1 do
2 MAX [1, t̂]← rt;
3 for k ← 2 to K do
4 for t̂← 0 to T − 1 step δk do
5 MAX [k, t̂]←MAX [k − 1, t̂];
6 for t← t̂ to min{T − 1, t+ δk − 1} step δk−1 do
7 if MAX [k − 1, t] > MAX [k, t̂] then
8 MAX [k, t̂]←MAX [k − 1, t];

Algorithm 8.1: Algorithm for computing the maximum demand in each interval.

Note that Lines 4–8 consume time O(T/δk−1), since Line 4 is executed O(T/δk) times
and, for each time Line 4 is executed, Line 6 is executed O(δk/δk−1) times. Thus, the
total consumption of the algorithm is O(K · T). If δ1 < · · · < δK , the bound is

O(T) +
K
∑

k=2

O

(

T

δk−1

)

= O(T) ·

(

1 +
1

δ1
+ · · ·+

1

δK−1

)

= O(T),

where the last equality follows since δk strictly divides δk−1 for k = 2, . . . , K.
Then, we run Algorithm 8.2 to fill, in a bottom-up fashion, a table with the value

of opt(I[k, t̂, r − λ]) for every k ∈ [K], every t̂ = c · δk < T with c ∈ Z+, and every
λ ∈ {0, . . . ,MAX [k, t̂]−1}. For k = 1, the algorithm simply buys as many type-1 permits
as necessary; for k > 1, it follows the recurrence. Note that the algorithm computes the
value of an optimum solution; the actual solution can be obtained in a top-down fashion
after the value is computed.

It is easy to check that Algorithm 8.2 consumes time O(K · T · R). From the same
argument above, it consumes time O(T ·R) if δ1 < · · · < δK . Let T̄ be the number of days
with positive demand; the algorithm may be implemented in time O(K · T̄ · R) by using
linked lists. Note that the input can be encoded in O(K · lg(δK · φK · γK) + T̄ · lg(T ·R))

bits, so this algorithm is pseudo-polynomial.
Since this algorithm is exact under IM, then there exists a pseudo-polynomial 4-

approximation for arbitrary instances. Moreover, this algorithm implies that 2DPP is

59

Input: (T,K, δ, φ, γ, r,MAX)
1 for t̂← 0 to T − 1 do
2 for λ← 0 to rt̂ − 1 do
3 opt(I[1, t̂, r − λ])← ⌈(rt̂ − λ)/φ1⌉ · γ1;
4 for k ← 2 to K do
5 for t̂← 0 to T − 1 step δk do
6 for λ← MAX [k, t̂]− 1 downto 0 do

7 opt(I[k, t̂, r − λ])←

δk/δk−1−1
∑

c=0

opt(I[k − 1, t̂+ c · δk−1, r − λ]);

8 if opt(I[k, t̂, r − λ]) > γk + opt(I[k, t̂, r − λ− φk]) then
9 opt(I[k, t̂, r − λ])← γk + opt(I[k, t̂, r − λ− φk]);

Algorithm 8.2: Pseudo-polynomial algorithm for 2DPP.

weakly NP-hard if we assume IM but do not assume HCP.

8.2 Hierarchical 2D Parking Permit

In this section we show how to turn the algorithm of Section 8.1 into an exact polynomial-
time algorithm for H2DPP under 2DIM.

The algorithm represents the output as a set of tuples in the form (t, ℓ, k, q), where t

is a starting time, ℓ is the first demand level covered, k is a permit type and q is a
multiplicity. A tuple (t, ℓ, k, q) means that q copies of permit (k, t) are stacked to supply
the demand of levels [ℓ, ℓ + q · φk). In some sense, (t, ℓ) is the coordinate of the bottom-
left corner of the tuple, and k and q encode their width and height, respectively. (See
Figure 8.2.) This representation of the output is essential to guarantee that the algorithm
runs in polynomial time.

Let I = (T,K, δ, φ, γ, r) be an instance of the problem. We sort permit types in non-
decreasing order of capacity, breaking ties in increasing order of length. For k = 1, . . . , K,
let I[k] be the instance in which only permits of types 1, . . . , k can be used. The algorithm
finds an optimum solution for I[k] in the following manner. For k = 1, we simply buy rt
copies of permit (1, t), represented by a tuple (t, 1, 1, rt), for t = 0, . . . , T .

Now suppose k > 1 and that we have an optimum solution for I[k − 1]. We find the
optimum solution for each interval of length δk of I[k] independently. Note that, due to the
optimal substructure presented in Section 8.1, we can assume that the optimum solution
for I[k] in the considered interval uses permits of type k to supply levels 1, . . . , ℓ, together
with the optimum solution of I[k−1] for levels ℓ+1, . . . , R, for some ℓ ∈ {0, . . . , R} which
is a multiple of φk. So, we just have to find the ℓ which minimizes the cost of the total
solution for the considered interval. Due to 2DIM, we can split the optimum solution
of I[k − 1] in layers of height φk (see Figure 8.3). Due to HTO, demand decreases as
level increases, so we can perform a binary search to find the highest layer for which the
cost of the optimum for I[k− 1] is greater than γk. Also due to HTO, permits of same k

and t are used to serve contiguous levels, so we can ensure that we have at most one tuple
for each (k, t) and each subproblem. Thus, we can perform the following operations in

60

level

time

0

1

1 2

2

3

3

4

4

5

5

6

7

(a)

level

time

0

1

1 2

2

3

3

4

4

5

5

6

7

(b)

Figure 8.2: An illustration of the representation of a solution as tuples. Consider an
instance with δ = (1, 3, 6) and φ = (1, 1, 1). (a) Given a multiset of permits with 5 copies
of (2, 0), 2 copies of (1, 2), 2 copies of (2, 3) and 4 copies of (1, 5), (b) we represent them
as tuples (0, 1, 2, 5), (2, 6, 1, 2), (3, 1, 2, 2) and (5, 3, 1, 4).

φk

φk

δk

Figure 8.3: We can split the optimum solution for I[k − 1] into layers of height φk. We
may split a tuple in two or more parts but, due to 2DIM, we never split a permit.

polynomial time: (i) compute the cost of a given layer of the optimum of I[k− 1], as well
as (ii) separate the solution in two halves by splitting a tuple evenly among the levels it
covers. After we find the correct ℓ, we merge tuples with same (k, t), to guarantee that we
have only one tuple for each (k, t). This can be done in polynomial time since the binary
search splits the problem into O(lgR) subproblems. (See Figure 8.4.)

Thus, we have an algorithm that runs in polynomial time and is optimum under 2DIM,
so there exists an 8-approximation for arbitrary instances. Note that this algorithm is
also a more efficient way to solve MPP exactly if we can assume IM.

The online algorithm by Hu et al. [41] utilizes their offline algorithm as a black box

61

level

time

0

1

1 2

2

3

3

4

4

5

5

6

7

(a)

level

time

0

1

1 2

2

3

3

4

4

5

5

6

7

(b)

level

time

0

1

1 2

3

3

4

4

5

5

6

7

ℓ = 2

(c)

level

time

0

1

1 2

3

3

4

4

5

5

6

7

ℓ = 2

(d)

Figure 8.4: An illustration of the binary search step. Consider an instance with δ =
(1, 3, 6) and φ = (1, 1, 1), and let (a) be an optimum solution for I[2]. In order to
compute the optimum for I[3], we begin by splitting the solution at level 4. (b) We
obtain a solution with tuples (0, 1, 2, 3), (3, 1, 2, 2) and (5, 3, 1, 1) for levels 1–3, tuples
(0, 4, 2, 1) and (5, 4, 1, 1) for level 4, and tuples (0, 5, 2, 1), (2, 6, 1, 2) and (5, 5, 1, 2) for
levels 5–7. (c) Suppose that, at the end of the binary search we find ℓ = 2, so we buy
a tuple (0, 1, 3, 2) for levels 1–2 and the optimum of I[2] for levels 3–7. (d) Finally, we
merge intermediate tuples after the binary search.

and, at each new instant t, it buys the permits bought by the offline solution for sequence
r0, . . . , rt; this is similar to Meyerson’s deterministic algorithm for PP. Under 2DIM,
their algorithm is O(K)-competitive.2 By simply replacing their offline algorithm with
ours, we obtain a polynomial-time algorithm which is also O(K)-competitive. This result
can also be obtained via the algorithm for the covering problem by Koufogiannakis and
Young [52], which we discuss in the next section.

2Indeed, it is K-competitive under 2DIM, so for MPP it has smaller constant hidden factor than the
algorithm obtained via the reduction we presented in Chapter 6.

62

Hu et al. [41] also discuss generalizing H2DPP to more dimensions. Their online
algorithm is still K-competitive for D dimensions under a D-dimension version of IM.
Thus, if D is a constant, then there is a O(K)-competitive algorithm for the problem.
Moreover, the technique we presented in this section can be extended to D dimensions,
and the resulting algorithms run in polynomial time if D is a constant.

8.3 General Results via the Covering Problem

Some general results for 2DPP can be obtained via the greedy algorithm for the covering
problem by Koufogiannakis and Young [52]. We restrict our attention to what they call
the problem of covering linear programs with upper bounds on the variables,
which are problems of the form min{c · x|x ∈ Zn

+,A · x ≥ b,x ≤ u}, where ci, bj
and Aij are non-negative for every i, j. They show that a simple greedy algorithm is a ∆-
approximation, where ∆ is the maximum number of positive coefficients in a constraint.
This greedy algorithm can also be used to solve the online version of the problem, thus it
is a ∆-competitive online algorithm.

Consider the following formulation of 2DPP as an integer linear program.

minimize
K
∑

k=1

T−1
∑

t̂=0

xkt̂ · γk

subject to
K
∑

k=1

∑

t̂=0,...,T−1
t∈[t̂,t̂+δk)

xkt̂ · φk ≥ rt ∀t ∈ {0, . . . , T − 1},

xkt̂ ∈ Z+, xkt̂ ≤ R, ∀k ∈ [K], t̂ ∈ {0, . . . , T − 1}.

Variable xkt̂ indicates how many copies of permit (k, t̂) we must buy. The first con-
straint ensures that each day is covered by enough permits. Note that, if we assume IM,
each constraint contains exactly K positive coefficients, so the algorithm by Koufogian-
nakis and Young [52] yields a O(K)-approximation algorithm and a O(K)-competitive
online algorithm for 2DPP, thus generalizing the online results we obtained for GPP and
H2DPP, and also yielding a O(KL)-competitive online algorithm for O2DPP.

63

Chapter 9

Summary and Discussion

In Table 9.1, we summarize known approximation and competitive online results about
the parking permit problems we study in Chapters 5–8.

problem
offline setting online setting

general case under IM (or 2DIM) general case under IM (or 2DIM)

PP 1 [59]
4K [59] K [59]

randomized O(lgK) [59]

MPP 1 (Chapter 6)
4K K (Sec. 8.2), [52]

randomized O(lgK) (Chapter 6)

GPP 8 2 (Sec. 7.1)
16K 4K (Sec. 7.2)

8K 2K [52]

O2DPP O(K) [4] 4KL KL [52]

H2DPP
pseudo-8 [41] pseudo-1 [41] pseudo-(8K) [41] pseudo-K [41]

8 1 (Sec. 8.2) 4K K (Sec. 8.2), [52]

2DPP
pseudo-4 pseudo-1 (Sec. 8.1)

4K K [52]
4K K [52]

Table 9.1: Summary of known approximation and competitive online results for park-
ing permit problems. A ‘1’ means an exact algorithm. A “pseudo-α” means a pseudo-
polynomial α-approximation (α-competitive) algorithm.

In Figure 9.1, we depict the dependency between those problems.

PP MPP

GPP O2DPP

H2DPP

2DPP

Figure 9.1: A graph depicting dependency between the parking permit problems we study
in Chapters 5–8. An arrow A → B indicates that problem A is a particular case of
problem B.

In Chapters 6–8, we addressed generalizations of PP. In particular, the problems
we study combine time dynamicity, which is central to PP, with the idea of capacity

dynamicity.

64

The capacity dynamicity issue is well-solved for a fixed resource, since it consists in
SkiRental. (Even though SkiRental is usually defined with time as a parameter,
we note that capacity is a better interpretation for it.) As we discussed in Section 5.1,
SkiRental has a trivial exact solution in the offline setting, and a simple 2-competitive
online algorithm. We may interpret GPP as a combination of PP with SkiRental, the
first dealing with time dynamicity, and the second dealing with capacity dynamicity.

Going one step further, SkiRental can be generalized to multiple types of skis, each
lasting for a different amount of time (capacity). In the offline setting, this consists
in CM, which we discussed in Chapter 8 and has an FPTAS algorithm. In the online
setting, the problem has a 2-competitive algorithm [5, 59]. The combination of PP with
this generalization of SkiRental is, then, 2DPP.

Our first guess, when we started this study, was that time dynamicity and capacity
dynamicity were independent issues. This would be true if we obtained a polynomial-time
exact algorithm for GPP, and an FPTAS for O2DPP. Similarly, if this independency
holds, it would be possible to obtain randomized O(lgK)-competitive online algorithms
for GPP and 2DPP, which is an open question that seems to be difficult to answer.

65

Chapter 10

Consequences for Network Leasing

Problems

In this chapter we discuss how results on parking permit problems can be used to solve
leasing variants of classical network design problems, by using the technique of approxi-
mating a finite metric by a tree metric [7, 27].

10.1 Approximating a Finite Metric by a Tree Metric

A metric is a pair (V, d), where V is a set and d is a function d : V × V 7→ Q+ which
satisfies, for all u, v, w ∈ V ,

(i) d(u, v) = 0 if and only if u = v (identity of indiscernibles),

(ii) d(u, v) = d(v, u) (symmetry),

(iii) d(u, v) ≤ d(u, w) + d(w, v) (triangle inequality).

We may also say that d is a metric function. If V is finite, then (V, d) is a finite metric.

Lemma 10.1 : Given a connected graph G = (V,E) and a function c : E 7→ Q∗
+ that

assigns a positive length to each edge, consider the function d : V ×V 7→ Q+ where d(u, v)

is the length of a shortest uv-path for every u, v ∈ V . Then, (V, d) is a metric.

A proof of this fact can be found in [17, Example 3.4]. Conversely, every finite metric
can be represented by a complete graph with positive edge lengths corresponding to the
distances in the metric, which is called a metric graph.

Definition 10.2 : We say that a metric (V ′, d′) dominates a metric (V, d) if V ′ ⊇ V

and d′(u, v) ≥ d(u, v) for any u, v ∈ V .

Definition 10.3 : We say that a metric (V ′, d′) α-approximates a metric (V, d) if

(V ′, d′) dominates (V, d) and, for any u, v ∈ V , d′(u, v) ≤ α · d(u, v).

Definition 10.4 : If D is a probability distribution on a family S of metrics that domi-

nate a metric (V, d), then (S,D) probabilistically α-approximates (V, d) if, for every

u, v ∈ V , it holds that E(V ′,d′)∈DS [d
′(u, v)] ≤ α · d(u, v).

66

We call the factor α the distortion of the metric approximation. Bartal [7] proved the
following result, which states that, if we know how to approximate a metric by a metric
of a particular type with low distortion, then we can reduce some problems in arbitrary
metrics to the problem restricted to that class of metrics by losing some guarantee of
quality.

Lemma 10.5 (Bartal [7]): Given a minimization problem on a finite metric (V, d) whose

objective function is a non-negative linear combination of distances in d, if (V, d) can be

α-approximated by a metric in a class C and there is an β-competitive algorithm for the

special case of metrics in C, then there is a randomized O(αβ)-competitive algorithm for

the general case.

A proof of this fact can be found in [17, Theorem 3.11]. One type of metric of particular
interest for this reduction is the class of tree metrics, which are metrics induced by
shortest paths in a tree. Since it is usually easier to find good algorithms for trees,
approximating a finite metric by a tree metric is a very powerful technique. Unfortunately,
there are some finite metrics for which every deterministic approximation by a tree metric
has distortion Ω(|V |) [61]. However, if we look for a probabilistic approximation, the lower
bound is Ω(lg |V |) [7] and, indeed, there is a randomized algorithm by Fakcharoenphol,
Rao and Talwar [27] that obtains a probabilistic approximation of any finite metric by
tree metrics with expected distortion O(lg |V |).

Theorem 10.6 (Fakcharoenphol, Rao and Talwar [27]): There exists a polynomial-time

randomized algorithm which, given a finite metric (V, d), returns a tree metric (V ′, d′)

which dominates (V, d) and, for every u, v ∈ V , it holds that E[d′(u, v)] ≤ O(lg |V |)·d(u, v).

For nice presentations of this result, see [17, Chapter 4] and [74, Section 8.5].
In this thesis, we are interested in approximating a metric (V, d) by a tree metric

(V ′, d′) with the extra property that V ′ = V . This can be done by losing a constant
extra factor on the distortion [51] (see [74, Theorem 8.19] for a nice presentation). We
denote by FRT the resulting randomized algorithm which, given a finite metric (V, d)

returns a tree T = (V,E) and a function cT : E 7→ Q∗
+, such that (V, dT) probabilistically

O(lg |V |)-approximates (V, d), where dT : V × V 7→ Q+ represents the length of shortest
paths in T with edge lengths according to cT.

10.2 Steiner Leasing

In this section we are interested in a leasing variant of the Steiner forest problem (SF),
which we formally define below.

Problem SF(G, d,D0, . . . , DT−1): Given a graph G = (V,E), a function d : E 7→ Q+

assigning a length to each edge, and a sequence D0, . . . , DT−1 ⊆ V of subsets of the

vertices, find a subset of the edges E ⊆ E such that, for t = 0, . . . , T − 1, there exists a

path between each pair of vertices of Dt in the graph (V, E), and such that
∑

e∈E d(e) is

minimum.

Note that ST reduces to this problem if T = 1, so SF is NP-hard. The best known
algorithm for SF is a 2-approximation, due to Agrawal, Klein and Ravi [2]. In the online

67

version of SF, T is unknown, D0, . . . , DT−1 are given one at a time, and we cannot remove
edges previously bought. The problem admits a O(lg n)-competitive online algorithm by

Berman and Coulston [8], where n :=
∣

∣

∣

⋃T−1
t=0 Dt

∣

∣

∣
. The reduction from ST also shows

that SF has a lower bound of Ω(lg n) on the competitive factor.
It is common to assume that |Dt| = 2 for every t; this case is polynomially equivalent

to the general case. It is also practical to assume that (G, d) is a metric graph; this is
without loss of generality [73].

Lemma 10.7 : SF is equivalent to the case that (G, d) is a metric graph.

Proof: If (G, d) is not a metric graph, assume that d is positive (we can force this by
contracting zero-length edges). Then, consider the metric closure of (G, d), which is a
pair (G′, d′) where G′ = (V,E ′) is a complete graph and d′ : E ′ 7→ Q∗

+ is given by taking
shortest paths in (G, d). For any optimum solution in (G, d), each edge must be a shortest
path between its ends, or instead we could use the edges in the shortest path and obtain
a better solution. Similarly, given a solution for (G′, d′), we obtain a solution of same cost
for (G, d) by replacing each edge by the shortest path between its ends in (G, d). �

Now we define a leasing variant of SF, the Steiner leasing problem (SLe).

Problem SLe(G, d,K, δ, γ, (u0, v0), . . . , (uT−1, vT−1)): We are given a complete graph

G = (V,E), a metric function d : V × V 7→ Q+, an integer K which represents the

number of leasing types, a function δ : [K] 7→ N that assigns a length of time to each

leasing type, a function γ : [K] 7→ Q+ that assigns a leasing factor to each leasing type,

and a sequence (u0, v0), . . . , (uT−1, vT−1) ∈ V × V of pairs of vertices. The goal is to find

a set of edge leases E ⊆ E× [K]×Z+ such that, for every t, there exists a (ut, vt)-path P

in G such that, for each edge e ∈ P , there is some (e, k, t̂) ∈ E such that t ∈ [t̂, t̂ + δk),

and we wish to minimize
∑

(e,k,t̂)∈E d(e) · γk.

This problem was proposed by Meyerson [59]. Clearly SF reduces to SLe if K = 1,
δ1 = ∞ and γ1 = 1, so SLe is NP-hard. Note that PP also reduces to SLe if |V | = 2.
In the online version of SLe, T is unknown, (u0, v0), . . . , (uT−1, vT−1) are revealed one
at a time, and we cannot remove previous edge leases. From the reductions we describe
above, we have that the competitive factor of SLe has lower bound Ω(lgK+lg n′), where
n′ := min{n, δK}.1 Moreover, Lemma 10.7 is also true for SLe, since leasing types are
uniform among the edges.

Meyerson gave a O(lgK lg |V |)-competitive online algorithm for SLe, which we present
in Algorithm 10.1. First, the algorithm obtains, via algorithm FRT, a tree T such that
VT = V , and whose distances probabilistically O(lg |V |)-approximate the distances in G.
Then, for each edge e in T, it maintains an instance of algorithm AlgRandOPP. When a
pair of vertices (ut, vt) arrives, it finds the unique (ut, vt)-path in T, and requires a parking
permit for day t to the instance corresponding to each edge in this path. The algorithm
then leases edge e using the corresponding permit type AlgRandOPP[e] chooses.

1We use n′ instead of n due to Lemma 5.9.

68

Input: (G, d,K, δ, γ)
1 E ← ∅;
2 (T, cT)← FRT(V, d);
3 foreach edge e of T do
4 initialize an instance AlgRandOPP[e] with (K, δ, γ);
5 when (ut, vt) arrives do
6 P ← pathT(ut, vt);
7 foreach edge e ∈ P do
8 send 1 at instant t to AlgRandOPP[e], obtaining a permit (ke, te);
9 E ← E ∪ {(e, ke, te)};

10 return E ;

Algorithm 10.1: Online algorithm for SLe [59].

Theorem 10.8 (Meyerson [59]): Algorithm 10.1 is O(lgK lg |V |)-competitive for SLe.

Proof: Let S be the solution returned Algorithm 10.1, S∗ be an optimal solution,
and S ′ be an optimal solution on T. We have that

E[cost(S)] = E

∑

(e,k,t)∈S

γk · d(e)

= E

∑

e∈T

d(e) ·
∑

(e,k,t)∈S

γk

≤ E

∑

e∈T

dT(e) ·
∑

(e,k,t)∈S

γk

≤ E

∑

e∈T

dT(e) ·O(lgK) ·
∑

(e,k,t)∈S′

γk

= O(lgK) · E[cost(S ′)]

≤ O(lgK) · E

∑

(e,k,t)∈S∗

γk · dT(e)

= O(lgK) ·
∑

(e,k,t)∈S∗

γk · E[dT(e)]

≤ O(lgK) ·
∑

(e,k,t)∈S∗

γk ·O(lg |V |) · d(e)

= O(lgK lg |V |) · cost(S∗).

The second equality follows from the fact that we only lease edges in T. The second
inequality follows from the fact that SLe on T reduces to solve MPP on each edge. The
third inequality follows from the fact that we can build a feasible instance on T from S∗

in the following manner: for each (e, k, t) ∈ S∗ with e = uv, we lease (e′, k, t), for each e′

in the uv-path in T. �

69

The same technique can be used to obtain an offline O(lgn)-approximation algorithm.
Note that we do not need to approximate the entire metric (V, d); instead, we may only
approximate the metric induced by the requested points. The proof of the approximation
guarantee is identical to that of Theorem 10.8. If we restrict the problem to the tree
case, when we have a fixed root vertex r so that vt = r for every t, then there are a
O(K)-approximation algorithm [4] and a O(K lg n)-competitive online algorithm [9].

10.3 Steiner Network Leasing

A simple extension of SF is the Steiner network problem (with edge duplication) (SN),
in which we receive pairs of vertices (u0, v0), . . . , (uT−1, vT−1), and a demand rt ∈ Z+ for
each pair (ut, vt). We wish to find a minimum-cost multiset of the edges, and we are
allowed to use as many copies of each edge as we need, so that ut and vt are connected
by rt edge-disjoint paths in the multigraph induced by the multiset of edges. SF reduces
to SN if rt = 1 for each t, so this is an NP-hard problem. It was proposed by Jain [44],
who gave a 2-approximation algorithm. Lemma 10.7 is also true for this problem.

In the online version of SN, the graph and edge lengths are given in advance, and the
algorithm must maintain a multiset of edges, which is initially empty. At each instant of
time t, we receive a pair (ut, vt) of vertices with a demand rt. Additional edges may be
bought, in order to guarantee that there exist rt edge-disjoint paths between ut and vt.
We cannot remove edges that were bought previously, and we wish to minimize the cost
of the final multiset of edges. Umboh [72] gave a O(lg n)-competitive online algorithm for
this problem, where n is the number of vertices that are in some request pair. From the
reduction from SF, SN has online lower bound of Ω(lg n).

We propose the following leasing variant of SN. The input for the Steiner network

leasing problem (SNLe) consists of a complete graph G = (V,E), a metric distance
function d : V × V 7→ Q+, K leasing types with lengths of time δ1, . . . , δK ∈ N and
scaling costs γ1, . . . , γK ∈ Q+, and a sequence of triples (u0, v0, r0), . . . , (uT−1, vT−1, rT−1)

in which ut, vt ∈ V and rt ∈ Z+ for every t. A solution consists of a multiset of edge leases
S ⊆ E × [K]× Z+ such that, for t = 0, . . . , T − 1, the multigraph induced by multiset
{e ∈ E : (e, k, t̂) ∈ S and t ∈ [t̂, t̂+ δk)} contains rt edge-disjoint (ut, vt)-paths. The goal
is to minimize

∑

(e,k,t̂)∈S mS(e, k, t̂) · de · γk.
If G is a tree, then there is a unique path between each pair of vertices. In this case,

SNLe reduces to solving MPP in each edge, in order to decide how many copies and which
leasing types to use to serve each input triple. Since we have a constant-approximation
algorithm and an online O(lgK)-competitive algorithm for MPP, we obtain a O(lg n)-
approximation algorithm and a O(lgK lg |V |)-competitive online algorithm for SNLe by
using the same technique of Algorithm 10.1 for SLe. The proof of the quality of the
returned solution is identical, so we omit it.

70

10.4 Leasing Rent-or-Buy

Another well-studied generalization of SF is the rent-or-buy problem (RoB), which
was proposed by Karger and Minkoff [47]. In this problem, the input consists of a graph
G = (V,E) with edge lengths d : E 7→ Q+, a scaling factor M ≥ 1 and a sequence
(u0, v0), . . . , (uT−1, vT−1) ∈ V × V of pairs of vertices, which we call the terminals. The
goal is to find a set of edges to buy and, for each pair of terminals, a set of edges to rent,
so that there exists a path between each pair that uses only bought edges or edges that
were rented by the pair. A bought edge e can be used to serve an unlimited number of
requests and costs M · d(e), while a rented edge e costs d(e) for each pair that decides
to rent it. We wish to minimize the total cost of buying and renting edges. Note that
this problem is NP-hard, since SF reduces to it if M = 1. Fleischer et al. [29] gave a
5-approximation algorithm for RoB. A particular case of the problem that has been given
much attention in the literature is the single-source rent-or-buy problem, in which one
of the vertices in each pair is a fixed vertex r, which we call the root. Note that, in this
case, the problem becomes a generalization of ST, and it admits a 3.55-approximation
algorithm, due to Gupta et al. [36]. Lemma 10.7 is also true for RoB.

In the online version of RoB, the graph, edge lengths and the scaling factor M are
known in advance, and the pairs of terminals are given one at a time. The algorithm must
maintain a set of bought edges, which is initially empty and, for each pair of terminals
that arrive, the algorithm must choose some edges to buy and some edges to rent, so that
there exists a path between the pair of terminals composed of bought edges and edges
that are rented for this pair. We wish to minimize the cost of the bought edges, plus
the sum of the cost of the edges that are rented for each pair. O(lg n)-competitive online
algorithms were given for this problem [6, 72], where n is the number of vertices that
are in some request pair. From the reduction from SF, RoB has online lower bound of
Ω(lg n).

In the leasing rent-or-buy problem (LeRoB), we are given a complete graph
G = (V,E) with a metric distance function d : V × V 7→ Q+, K leasing types with
lengths of time δ1, . . . , δK ∈ N and scaling costs γ1, . . . , γK ∈ Q+, a constant M ≥ 1,
and a sequence D0, . . . , DT−1 ⊆ V × V of pairs of vertices. We wish to find a multiset of
single edge leases S ⊆ E × [K] × Z+ and a set of group edge leases Q ⊆ E × [K] × Z+

such that, for each (u, v) ∈ Dt with t ∈ {0, . . . , T − 1}, there exists some (u, v)-path Puvt

in G such that, for every t′ ∈ {0, . . . , T − 1} and every edge e ∈ G, we have that
∑

(e,k,t̂)∈S

t′∈[t̂,t̂+δk)

mS(e, k, t̂) ≥ |{(u, v) ∈ Dt′ : e ∈ Puvt′}|, i.e., we have a different single edge

lease for each path that uses e at instant t′, or we have some group edge lease (e, k, t̂) ∈ Q

with t′ ∈ [t̂, t̂+ δk). We wish to minimize

∑

(e,k,t̂)∈S

mS(e, k, t̂) · ce · γk +M ·
∑

(e,k,t̂)∈Q

ce · γk.

Note that, if |Dt| = 1 for every t, then it is never useful to obtain a group lease, and the
problem reduces to SLe. Also, LeRoB is equivalent to the variant in which a single pair
of vertices and an integer demand are received at each instant of time. Thus, SNLe is a

71

particular case of LeRoB when M =∞, even though online SN is not a particular case
of online RoB: in the former, edges are permanent while, in the latter, rented edges are
temporary.

LeRoB reduces to solve GPP in each edge if the input metric is a tree. Thus,
by approximating the input metric by a tree metric, we obtain a randomized O(lg n)-
approximation algorithm and a randomized O(K lg |V |)-competitive online algorithm.
For the single-source case of LeRoB (in which one of the vertices in every pair is a fixed
vertex r), Anthony and Gupta presented a O(K)-approximation [4], which is usually
better than our result since the approximation factor does not depend on the temporal
dimension. However, for multiple sources, our result improves the previous best algo-
rithm, which was their O(K lg n)-approximation for orthogonal LeBaBND. Orthogonal
LeBaBND generalizes LeRoB, and we discuss it in Section 10.5.

10.5 Leasing Buy-at-Bulk Network Design

A generalization of RoB is the buy-at-bulk network design problem (BaBND).
We are given a graph G = (V,E), with an edge length function d : E 7→ Q+. We
are given a number L of types of cables and, for each type of cable ℓ, we are given a
capacity φℓ ∈ N and a cost per unit of length µℓ ∈ Q+. We are then given a sequence
(u0, v0), . . . , (uT−1, vT−1) ∈ V × V of pair of vertices, and a demand rt ∈ Z+ for each pair
(ut, vt). We wish to find (i) a function λ : E × {1, . . . , L} 7→ Z+ that assigns a number of
cables of each type to each edge of G and, (ii) for each pair (ut, vt), a path P (ut, vt) in G,
such that

∑

(ut,vt):e∈P (ut,vt)

rt ≤
L
∑

ℓ=1

φℓ · λ(e, ℓ)

for each edge e ∈ E. The goal is to minimize the cost of installing the cables, which is
given by

L
∑

ℓ=1

∑

e∈E

µℓ · d(e) · λ(e, ℓ).

Intuitively, the goal is to connect the pairs by paths with sufficient capacity to flow
the demand, while minimizing the cost of the network. Note that the definition of the
problem requires that the flow between each pair goes through a single path. We can
assume without loss of generality that cables with larger capacity have smaller cost per
unit of length, which represents an economy of scale and allows us to take advantage of
the subadditivity property. This problem is NP-hard since RoB reduces to it if K = 2,
φ = (1,∞) and µ = (1,M). BaBND is NP-hard even if the graph is a single edge, in
which case it is equivalent to CM. BaBND was proposed by Awerbuch and Azar [5],
who gave a O(lgn)-approximation algorithm that uses Lemma 10.5 and Theorem 10.6.
The problem does not admit a O(lg

1

4
−ǫ n)-approximation for any constant ǫ > 0, unless

NP ⊆ ZPTIME(npolylog n) [3]. It is usual to assume that one of the vertices in each pair

72

is a fixed root vertex; in this case we call the problem single-source BaBND.2 For this
case, Grandoni and Italiano [34] gave a 24.92-approximation algorithm. Lemma 10.7 is
also true for BaBND.

In the online version of BaBND, the graph, edge lenghts and types of cables are known
in advance, and the pairs of vertices and their demands are given in an online manner.
For each new pair (ut, vt) that arrives, we must define a path connecting (ut, vt), and new
cables must be bought so that there is enough capacity to flow the current total load of
the network. The goal is to minimize the total cost for installing the cables. Awerbuch
and Azar [5] gave a randomized O(lg |V |)-competitive online algorithm for this problem,
which is also based on Lemma 10.5 and Theorem 10.6. Recently, Gupta et al. [37] gave a
deterministic O(lg n)-competitive online algorithm for the single-source case, where n is
the number of vertices that are in some request pair. Due to the reduction from RoB,
BaBND has online lower bound of Ω(lg n).

In the leasing buy-at-bulk network design problem (LeBaBND), we are given
a metric distance function d between the vertices in a complete graph G = (V,E), K
types of cables with lengths of time δ1, . . . , δK ∈ N, capacities φ1, . . . , φK ∈ N and costs
per unit of distance γ1, . . . , γK ∈ Q+, and at every instant t we receive a pair (ut, vt)

of vertices with an associated demand rt. We must lease cables so that there is a path
connecting ut and vt in G whose edges have leased capacity at least rt at instant t. We
wish to minimize the cost of the leased cables, where leasing a cable of type k for edge
e costs γk · de. The problem reduces to solve 2DPP in each edge if the input metric
is a tree metric so, by approximating the input metric by a tree, we have a pseudo-
polynomial O(lg n)-approximation algorithm, and there are a polynomial-time O(K lg n)-
approximation algorithm and a O(K lg |V |)-competitive online algorithm, where n is the
number of requested pairs.

As we did for 2DPP, we can define hierarchical and orthogonal versions of LeBaBND.
In the hierarchical version, we have that δ1 ≤ · · · ≤ δK and φ1 ≤ · · · ≤ φK , and the prob-
lem reduces to solve H2DPP in each edge if the input metric is a tree. Thus, by approxi-
mating the input metric by a tree metric, we obtain a randomized O(lg n)-approximation
algorithm, and a randomized O(K lg |V |)-competitive online algorithm.

In the orthogonal version, we have K · L types of cables, each defined by a length
of time and a capacity. There are K lengths of time δ1, . . . , δK ∈ N with correspond-
ing time scaling costs γ1, . . . , γK ∈ Q+, and L capacities φ1, . . . , φL ∈ N with corre-
sponding capacity scaling costs µ1, . . . , µL ∈ Q+. A cable with length of time δk and
capacity φℓ for edge e costs γk · µℓ · de. This problem was addressed in the offline set-
ting by Anthony and Gupta3 [4], and they gave a O(K)-approximation algorithm for
the case with a single source (if vt = r for a fixed vertex r). For multiple sources, they
gave a O(K)-approximation algorithm for the case in which the input metric is a tree4;
this yields a randomized O(K lgn)-approximation for arbitrary metrics by Lemma 10.5

2In the literature, it is usually known as single-sink BaBND, but we opt for a unified nomenclature
among the problems we study.

3They define the problem in terms of a sub-additive capacity scaling cost function; as we mentioned
in Chapter 8, this is equivalent to our definition up to a constant cost factor.

4Since this problem on a single edge corresponds to O2DPP, this turns out to be a O(K)-
approximation for O2DPP.

73

and Theorem 10.6. By combining the algorithm by Koufogiannakis and Young [52] with
Lemma 10.5 and Theorem 10.6, we obtain a O(KL lg |V |)-competitive online algorithm.

10.6 Summary

In Table 10.1, we summarize known approximation and competitive online results about
the network leasing problems we study in this chapter.

problem
offline setting online setting

single-source multi-source single-source multi-source

SLe O(K) [4] O(lg n) [59]
deterministic randomized
O(K lg n) [9] O(lgK lg |V |) [59]

SNLe O(K) [4] O(lg n) (Sec. 10.3) O(lgK lg |V |) (Sec. 10.3)

LeRoB O(K) [4] O(lg n) (Sec. 10.4) O(K lg |V |) (Sec. 10.4), [27, 52]

OLeBaBND O(K) [4] O(K lg n) [4] O(KL lg |V |) [27, 52]

HLeBaBND O(lg n) (Sec. 10.5) O(K lg |V |) (Sec. 10.5), [27, 52]

LeBaBND
pseudo-O(lg n) (Sec. 10.5)

O(K lg |V |) [27, 52]
O(K lg n) [27, 52]

Table 10.1: Summary of known approximation and competitive online results for net-
work leasing problems. A “pseudo-α” means a pseudo-polynomial α-approximation (α-
competitive) algorithm.

In Figure 10.1, we extend the dependency graph in Figure 9.1 to include the problems
we discuss in this chapter.

PP MPP

GPP O2DPP

H2DPP

2DPP

SLe SNLe

LeRoB OLeBaBND

HLeBaBND

LeBaBND

Figure 10.1: An extension of the dependency graph of Figure 9.1 to include the network
leasing problems we discuss in this chapter. A full arrow A→ B indicates that problem A
is a particular case of problem B. A dashed arrow A 99K B indicates that parking permit
problem A is a particular case of network leasing problem B, and B reduces to solving A
for each edge if the input metric is a tree.

74

Part III

Facility Leasing Problems

75

Chapter 11

Facility Location, Sometimes with

Penalties

In the following chapters, we are interested in variations of the (uncapacitated) facility

location problem (FL), which is formally defined below.

Problem FL(G, d, F, γ,D): The input consists of a complete graph G = (V,E), a

function d : V × V 7→ Q+ that assigns distances between vertices, a set F ⊆ V of

potential facilities, a function γ : F 7→ Q+ that assigns an opening cost to each potential

facility, and a set D ⊆ V of clients. The goal is to obtain a set X ⊆ F of open facilities

and a function a : D 7→ X that assigns each client to an open facility, and we wish to

minimize
∑

f∈X

γf +
∑

j∈D

d(j, a(j)).

This is an NP-hard problem. If no property is assumed on the distance function d,
then there is a O(lg n)-approximation algorithm, where n := |D| is the number of clients,
and this is the best possible unless P = NP, since there is an approximation-preserving
reduction from the set cover problem to FL [40]. However, if (V, d) is a metric, then
the problem can be approximated within a constant factor. Currently there is a 1.488-
approximation algorithm by Li [54], and there is no algorithm with approximation factor
smaller than 1.463, unless P = NP [68]. For the remainder of the text, we assume that d
is metric.

11.1 A Simple 3-Approximation Algorithm

In this section we review a simple 3-approximation algorithm for FL, proposed by Jain
and Vazirani [46]. The algorithm is based on the following formulation of the problem as
an integer linear program.

minimize
∑

f∈F γf · yf +
∑

j∈D

∑

f∈F d(j, f) · xjf

subject to
∑

f∈F xjf ≥ 1 ∀j ∈ D,

xjf ≤ yf ∀j ∈ D, f ∈ F,

xjf , yf ∈ {0, 1} ∀j ∈ D, f ∈ F.

76

In this formulation, the binary variable yf indicates whether facility f is open, and the
binary variable xjf indicates whether client j is served by facility f . The first constraint
ensures that each client is connected to at least one facility, and the second constraint
ensures that clients are connected to open facilities.

The dual of the relaxation of this problem consists in the following.

maximize
∑

j∈D αj

subject to
∑

j∈D βjf ≤ γf ∀f ∈ F,

αj − βjf ≤ d(j, f) ∀j ∈ D, f ∈ F,

αj , βjf ≥ 0 ∀j ∈ D, f ∈ F.

Given a rational number x, let (x)+ := max{x, 0}. The following is an equivalent simpli-
fied formulation of the dual of the relaxation. The equivalence is due to the fact that the
second constraint ensures that αj − d(j, f) ≤ βjf .

maximize
∑

j∈D αj

subject to
∑

j∈D(αj − d(j, f))+ ≤ γf ∀f ∈ F,

αj ≥ 0 ∀j ∈ D.

This linear program has the following economic interpretation: each client j is willing
to pay αj to be connected to some facility. A fraction of this value covers the distance
between the client and the facility; the other portion is a contribution on the cost of
opening the facility.

The algorithm proposed by Jain and Vazirani is inspired in both primal and dual
formulations of the problem; thus, it is called a primal-dual algorithm. Informally, the
algorithm increases uniformly each variable of the dual problem until some dual constraint
is tight, and the primal variable corresponding to that constraint is set to 1. The dual
variables that contribute to the tight constraint stop increasing, and the process continues
for the remaining variables until all dual variables contribute to some tight constraint. At
the end of the process, we obtain feasible primal and dual solutions. Due to weak duality,
the cost of the dual solution is a lower bound on the cost of an optimum primal solution.
For the facility location problem, however, the cost of the primal solution obtained cannot
be bound from the cost of the dual solution. This can be overcome by a simple “clean-up”
phase that removes some of the facilities, and the cost of the solution using the remaining
facilities can be bound by a constant times the cost of the dual solution.

Now we describe the algorithm in more detail. A pseudocode is presented in Algo-
rithm 11.1. The algorithm maintains a dual variable αj for each client j, a set X of
temporarily open facilities, and a set S of the clients whose dual variable still is being
increased, which initially is the whole set of clients D. We say that client j reaches facil-
ity f if αj ≥ d(j, f). Increasing pauses when: (a) a client reaches an already temporarily
open facility, or (b) the sum of the contributions towards a facility pays for its opening
cost. We then add to X the facilities that reach condition (b), and remove from S the
clients that reach some temporarily open facility. We proceed increasing the remaining

77

dual variables until S becomes empty.
After this phase, we build an interference graph GX between the facilities in X.

Graph GX has vertex set X and has an edge between facilities f and f ′ if there is some
client that reaches both f and f ′. Then, we compute greedily a maximal independent
set X ′ in GX ; this will be our final set of open facilities. Each client will be served by the
closest facility in X ′.

Input: (G, d, F, γ,D)
1 X ← ∅, S ← D, αj ← 0 for every j ∈ D;
2 while S 6= ∅ do
3 increase αj uniformly for every j ∈ S until

(a) αj = d(j, f) for some j ∈ S and f ∈ X, or
(b) γf =

∑

j∈D(αj − d(j, f))+ for some f ∈ F \X;
4 X ← X ∪ {f ∈ F \X : f satisfies (b)};
5 S ← S \ {j ∈ S : j reaches some f ∈ X};
6 build the graph GX with

V [GX]← X,
E[GX]← {(f, f

′) : ∃j ∈ D : j reaches both f and f ′};
7 build a maximal independent set X ′ of GX ;
8 foreach j ∈ D do
9 a(j)← argminf ′∈X′{d(j, f ′)};

10 return (X ′, a);

Algorithm 11.1: Primal-dual algorithm for FL [46].

Theorem 11.1 (Jain and Vazirani [46]): Algorithm 11.1 is a 3-approximation to FL.

Proof: First note that, since conditions (a) and (b) correspond to the constraints of
the dual program, we have that α is a feasible dual solution. Therefore, by weak duality,
we have that

∑

j∈D

αj ≤ opt(G, d, F, γ,D).

We show that the cost of the primal solution (X ′, a) returned by the algorithm is at
most 3 times the cost of the dual solution, and thus the algorithm is a 3-approximation
to FL.

For every client j ∈ D, we define numbers αC
j and αF

j , in the following manner:

1. If j reaches some f ∈ X ′, then let

αC
j := d(j, f), αF

j := αj − d(j, f);

2. Else, let
αC
j := αj , αF

j := 0.

Note that, either case, we have that

αj = αC
j + αF

j .

78

First we bound the facility opening cost. Note that, by construction, each client
reaches at most one facility in X ′. Also, by case (b) of the algorithm, the opening cost
of each f ∈ X ′ is totally paid by contributions from clients that reach f . Therefore, we
have that

∑

f∈X′

γf =
∑

j∈D

αF
j .

Now we bound the client connection cost. Let DX′ be the set of clients that reach
some facility in X ′. For each j ∈ DX′ , let f ∈ X ′ be the facility reached by j. Note that j
is connected to the closest facility in X ′, so

d(j, a(j)) ≤ d(j, f) = αC
j .

Now let j be some client that reaches some f ∈ X but does not reach any facility in X ′.
There must be some f ′ ∈ X ′ and some j′ ∈ D that reaches both f and f ′, by construction
of X ′. We must have that αj ≥ αj′ since, when αj′ stopped increasing, j′ had reached
both f and f ′, and j had reached f when αj stopped increasing. Since j′ reaches both f

and f ′, we have that
αj′ ≥ d(j′, f) and αj′ ≥ d(j′, f ′).

Thus, by triangle inequality, we have that

d(j, a(j)) ≤ d(j, f ′) ≤ d(j, f) + d(j′, f) + d(j′, f ′) ≤ αj + αj′ + αj′ ≤ 3 · αj = 3 · αC
j .

Summing up the previous inequalities, we have that

∑

f∈X′

γf +
∑

j∈D

d(j, a(j)) ≤
∑

j∈D

αF
j + 3 ·

∑

j∈D

αC
j ≤ 3 ·

∑

j∈D

αj ≤ 3 · opt(G, d, F, γ,D).

�

There is a family of examples which shows that this bound is tight; i.e., the cost of the
solution returned by the algorithm is close to 3 times the cost of the optimum solution.
The metric is obtained by taking shortest paths in the graph of Figure 11.1. We have
F = {f1, f2}, γ(f1) = ǫ, γ(f2) = (n + 1)ǫ, and D = {c1, c2, c3, . . . , cn}. The optimum
solution opens f2 and connects all the clients to it, for a total cost of n + (n + 1)ǫ. Now
consider the behavior of Algorithm 11.1. The algorithm raises all dual variables up to 1+ǫ,
when c1 reaches f1 and f1 is temporarily open. Then the algorithm raises αc2, . . . , αcn up
to 1 + ǫ + ǫ/n, and temporarily opens f2 too. Note that c1 now reaches both f1 and f2,
which are thus adjacent in GX . We can force the algorithm to choose f1 when building
independent set X ′, obtaining a solution of cost 3(n− 1) + 1 + ǫ.

Note that most of the cost of the solution lies in the client connection cost. There
are other techniques that impose a greater penalty on the facility opening cost, and
thus reduce the client connection cost. One example is the dual-fitting algorithm by
Jain, Mahdian, Markakis, Saberi, and Vazirani [45], which only opens a facility when the
contributions pay a factor greater than 1 of the opening cost, and has approximation

79

c1 c2 c3 cn

f1

f2

· · ·

Figure 11.1: Example which shows that the analysis of Algorithm 11.1 is tight.

factor 1.61. (The algorithm has other details that do not matter to our discussion.)
The current best algorithm for FL is a 1.488-approximation [54]. We do not present

this algorithm here since we do not use any of its techniques in this thesis. Instead, we
use this result as a black box in other sections.

11.2 Facility Location with Penalties

One simple generalization of FL is if we allow a client j not to be connected to any
facility if we pay a penalty πj ∈ Q+. This is called the facility location problem with

penalties (FLP), which we define formally below.

Problem FLP(G, d, F, γ,D, π): The input consists of a complete graph G = (V,E), a

metric distance function d : V × V 7→ Q+ between the vertices, a set F ⊆ V of potential

facilities, a function γ : F 7→ Q+ that assigns an opening cost to each potential facility, a

set D ⊆ V of clients, and a function π : D 7→ Q+ assigning a penalty to each client. The

goal is to obtain a set X ⊆ F of open facilities and a function a : D 7→ X ∪ {null} that

assigns each client to an open facility or to null, and we wish to minimize

∑

f∈X

γf +
∑

j∈D
a(j)6=null

d(j, a(j)) +
∑

j∈D
a(j)=null

πj .

FL reduces to FLP if we set πj =∞ for all j ∈ D, so FLP is also NP-hard.
In this section we present a 3-approximation primal-dual algorithm for FLP, which is

very similar to Algorithm 11.1 for FL. This algorithm was proposed by Charikar, Khuller,
Mount and Narasimhan [14].

The integer linear program formulation is very similar to that of FL.

minimize
∑

f∈F γf · yf +
∑

j∈D

∑

f∈F d(j, f) · xfj +
∑

j∈D πj · zj
subject to

∑

f∈F xjf + zj ≥ 1 ∀j ∈ D,

xjf ≤ yf ∀j ∈ D, f ∈ F,

xjf , yf , zj ∈ {0, 1} ∀j ∈ D, f ∈ F.

The difference is that we have an extra variable zj for each client j, which indicates

80

whether we pay the penalty for this client. In the first constraint, we have an extra
option: not to connect a client to any facility, but to pay for its penalty. The objective
function also includes the penalty cost of those clients. The simplified version of the dual
of the relaxation of this program is the following.

maximize
∑

j∈D αj

subject to
∑

j∈D(αj − d(j, f))+ ≤ γf ∀f ∈ F,

αj ≤ πj ∀j ∈ D,

αj ≥ 0 ∀j ∈ D.

Note that we have an extra constraint, which can be interpreted as that a client will not
pay a value higher than its penalty.

The pseudocode is presented in Algorithm 11.2. The difference is that we stop increas-
ing the dual variable αj for a client j when it exceeds its penalty πj . Also, in Line 10,
we ensure that such clients are not assigned to any facility. Again, we say that client j

reaches facility f if αj ≥ d(j, f).

Input: (G, d, F, γ,D, π)
1 X ← ∅, S ← D, αj ← 0 for every j ∈ D;
2 while S 6= ∅ do
3 increase αj uniformly for every j ∈ S until

(a) αj = d(j, f) for some j ∈ S and f ∈ X, or
(b) γf =

∑

j∈D(αj − d(j, f))+ for some f ∈ F \X, or

(c) αj = πj for some j ∈ S;
4 X ← X ∪ {f ∈ F \X : f satisfies (b)};
5 S ← S \ {j ∈ S : αj ≥ πj or j reaches some f ∈ X};
6 build the graph GX with

V [GX]← X,
E[GX]← {(f, f

′) : ∃j ∈ D : j reaches both f and f ′};
7 build a maximal independent set X ′ of GX ;
8 foreach j ∈ D do
9 if j reaches some f ∈ X then a(j)← argminf ′∈X′{d(j, f ′)};

10 else a(j)← null;
11 return (X ′, a);

Algorithm 11.2: Primal-dual algorithm for FLP [14].

Theorem 11.2 (Charikar, Khuller, Mount and Narasimhan [14]): Algorithm 11.2 is a

3-approximation to FLP.

Proof: First note that, since conditions (a), (b) and (c) correspond to the constraints
of the dual program, we have that α is a feasible dual solution. Therefore, by weak duality,
we have that

∑

j∈D

αj ≤ opt(G, d, F, γ,D, π).

We show that the cost of the primal solution (X ′, a) returned by the algorithm is at

81

most 3 times the cost of the dual solution, and thus the algorithm is a 3-approximation
to FLP.

For every client j ∈ D, we define numbers αC
j , αF

j , and αP
j in the following manner:

1. If j reaches some f ∈ X ′, then let

αC
j := d(j, f), αF

j := αj − d(j, f), αP
j := 0;

2. If j does not reach any facility in X ′ but reaches some f ∈ X, then let

αC
j := αj , αF

j := 0, αP
j := 0;

3. Finally, if j does not reach any facility in X, let

αC
j := 0, αF

j := 0, αP
j := αj.

Note that, either case, we have that

αj = αC
j + αF

j + αP
j .

First we bound the facility opening cost. Note that, by construction, each client
reaches at most one facility in X ′. Also, by case (b) of the algorithm, the opening cost
of each f ∈ X ′ is totally paid by contributions from clients that reach f . Therefore, we
have that

∑

f∈X′

γf =
∑

j∈D

αF
j .

Now we bound the penalty cost. We have that a client j has a(j) set to null if, and
only if, it does not reach any facility in X, in which case αj = αP

j . Also, due to case (c)
of the algorithm, we have that αj = πj. Thus, it is straightforward to conclude that

∑

j∈D
a(j)=null

πj =
∑

j∈D

αP
j .

Finally, we bound the client connection cost. Let DX′ be the set of clients that reach
some facility in X ′. For each j ∈ DX′ , let f ∈ X ′ be the facility reached by j. Note that j
is connected to the closest facility in X ′, so

d(j, a(j)) ≤ d(j, f) = αC
j .

Now let j be some client that reaches some f ∈ X but does not reach any facility in X ′.
There must be some f ′ ∈ X ′ and some j′ ∈ D that reaches both f and f ′, by construction
of X ′. We must have that αj ≥ αj′ since, when αj′ stopped increasing, j′ had reached
both f and f ′, and j had reached f when αj stopped increasing. Since j′ reaches both f

82

and f ′, we have that
αj′ ≥ d(j′, f) and αj′ ≥ d(j′, f ′).

Thus, by triangle inequality, we have that

d(j, a(j)) ≤ d(j, f ′) ≤ d(j, f) + d(j′, f) + d(j′, f ′) ≤ αj + αj′ + αj′ ≤ 3 · αj = 3 · αC
j .

Summing up the previous inequalities, we have that

∑

f∈X′

γf +
∑

j∈D
a(j)6=null

d(j, a(j)) +
∑

j∈D
a(j)=null

πj

≤
∑

j∈D

αF
j + 3 ·

∑

j∈D

αC
j +

∑

j∈D

αP
j

≤ 3 ·
∑

j∈D

αj

≤ 3 · opt(G, d, F, γ,D).

�

The same example from the previous section shows that this analysis is tight.
Currently, the best algorithm for FLP is a 1.5148-approximation, by Li, Du, Xiu, and

Xu [56]. This algorithm is based on an LP-rounding technique, but we do not describe it
here since we do not use any of its techniques in this thesis. The authors also have the
following general result, which we do not prove here.

Theorem 11.3 (Li, Du, Xiu, and Xu [56]): For any covering problem that admits an α-

approximation algorithm, the corresponding problem with submodular penalties admits

a (1− e−1/α)−1-approximation algorithm.

Note that the facility location problem with submodular penalties is more general than
FLP, which the authors call the facility location problem with linear penalties.

11.3 Online Facility Location, with or without Penal-

ties

In the online version of FL, only the set of potential facilities F and opening costs γ are
known in advance. At each instant of time, we receive a client j, along with the distance
between j and each potential facility in F . Then, we must decide if we open some new
facilities, and we must assign an open facility to client j. We cannot close previously open
facilities nor change the assignment of previous clients. The goal is to minimize the cost
of the final FL solution.

This problem admits O(lg n/ lg lg n)-competitive online algorithms [31, 58], and any
online algorithm has competitive factor Ω(lg n/ lg lg n) [31], where n := |D|. We do not
prove these results, but we use them as black boxes.

83

In the online version of FLP, penalties are received in an online fashion as well. I.e.,
we known F and γ in advance, and at each instant we receive a client j along with πj and
the distance between j and each f ∈ F . We cannot close previously open facilities nor
change the assignment of previous clients. The goal is to minimize the cost of the final
FLP solution. This problem admits O(lg n)-competitive online algorithms [26, 62]. The
Ω(lg n/ lg lg n) lower bound for FL also applies to this problem, since FL is a particular
case of FLP. Thus, it is an open question to find a O(lg n/ lg lg n)-competitive online
algorithm or a Ω(lg n) lower bound for FLP.

84

Chapter 12

Facility Leasing, Sometimes with

Penalties

In this chapter we present leasing variants of FL and FLP.

12.1 Facility Leasing

In the facility leasing problem (FLe), clients are distributed along time, and instead of
opening facilities permanently, we may lease each facility for one of K different durations
δ1, . . . , δK . The cost for leasing a facility f for δk units of time is γf

k ∈ Q+; it depends on
the facility position, as in FL, but also on leasing type k. We may assume that leasing
costs respect economies of scale, i.e., it is more cost-effective to lease facilities for longer
periods. We wish to select a set of facility leases that serve the clients and minimizes the
leasing costs plus the sum of the distances from each client to the facility lease that serves
it. We define the problem formally below.

Problem FLe(G, d, F,K, δ, γ,D0, . . . , DT−1): The input consists of a complete graph

G = (V,E), a metric distance function d : V ×V 7→ Q+, a set F ⊆ V of potential facilities,

an integer K > 0 that represents the number of lease types, a function δ : [K] 7→ N

that maps each leasing type to a length of time, a cost γf
k ∈ Q+ for leasing facility

f ∈ F with leasing type k ∈ [K], and a sequence D0, . . . , DT−1 ⊆ V of clients. Let

D := {(j, t) : j ∈ Dt, t ∈ {0, . . . , T − 1}} be the set of client requests. A solution consists

of a set X ⊆ F := F × [K]× Z+ of facility leases, and a function a : D 7→ X that maps

each client request (j, t) to some (f, k, t̂) ∈ X such that t ∈ [t̂, t̂+ δk). The goal is to find

a solution (X, a) which minimizes

∑

(f,k,t̂)∈X

γf
k +

∑

(j,t)∈D

d(j, a(j, t)).

Note that FL reduces to FLe if K = 1 and δ1 =∞, so FLe is also NP-hard. This prob-
lem has a 3-approximation primal-dual algorithm due to Nagarajan and Williamson [60],
which we present in the sequel. It is based on the algorithm presented in Section 11.1.

In this chapter, we use the following notation, which avoids clutter. (The notation

85

above, however, will be used again in Chapter 14 when we discuss connected facility
leasing problems.) We denote a client request by a pair j = (pj , tj), where pj ∈ V is a
vertex and tj ∈ {0, . . . , T − 1} is the instant of time j arrives. We also denote a facility
lease by a triple f = (pf , kf , tf), where pf ∈ F is a potential facility, kf ∈ [K] is a leasing
type, and tf ∈ Z+ is the instant of time the leasing begins. We then write δf instead
of δ(kf), and γf instead of γ

pf
kf

.
We say that a facility lease f covers client request j if tj ∈ [tf , tf + δf). In order to

simplify notation, for f ∈ F and j ∈ D, we define the distance from j to f as

d(j, f) :=

{

d(pj, pf) if tj ∈ [tf , tf + δf),

∞ otherwise.
(12.1)

I.e., the distance is infinite if f does not cover tj .
The problem has the following integer linear program formulation.

minimize
∑

f∈F γf · yf +
∑

j∈D

∑

f∈F d(j, f) · xjf

subject to
∑

f∈F xjf ≥ 1 ∀j ∈ D,

xjf ≤ yf ∀j ∈ D, f ∈ F ,

xjf , yf ∈ {0, 1} ∀j ∈ D, f ∈ F .

Note that this formulation is almost identical to the one of FL, except that Equation (12.1)
forces facility leases to serve only client requests they cover. Again, we consider a simplified
form of the dual of the relaxation of this program.

maximize
∑

j∈D αj

subject to
∑

h∈D(αh − d(j, f))+ ≤ γf ∀f ∈ F ,

αj ≥ 0 ∀j ∈ D.

We present a pseudocode in Algorithm 12.1. We say that client request j ∈ D reaches

facility lease j ∈ F if αj ≥ d(j, f). The first phase of the algorithm is identical to that
of Algorithm 11.1. When we build the independent set X ′ of the interference graph,
however, we prioritize facility leases of larger length of time. This ensures that:

1. Every client request reaches at most one facility lease in X ′;

2. If f and f ′ in X are reached by the same client request j, and if f ′ ∈ X ′, then
δf ≤ δf ′ .

Note that there may be some client request j that reaches some f in X but is not covered
by any facility lease in X ′. However, remember that some f ′ ∈ X ′ shares a reaching client
with f , thus δf ≤ δf ′ and the intervals covered by facility leases f and f ′ overlap. Then,
we buy X̂, which leases pf ′ three times, at instants tf ′ − δf ′ , tf ′ and tf ′ + δf ′ . Thus, the
interval formed by those three facility leases, which is [tf ′ − δf ′ , tf ′ + 2δf ′), is a superset
of interval [tf , tf + δf), and therefore one of the facility leases covers j. This is illustrated
in Figure 12.1.

86

Input: (G, d, F,K, δ, γ, δ,D0, . . . , DT−1)
1 X ← ∅, S ← D, αj ← 0 for every j ∈ D;
2 while S 6= ∅ do
3 increase αj uniformly for every j ∈ S until

(a) αj = d(j, f) for some j ∈ S and f ∈ X, or
(b) γf =

∑

j∈D(αj − d(j, f))+ for some f ∈ F \X;
4 X ← X ∪ {f ∈ F \X : f satisfies (b)};
5 S ← S \ {j ∈ S : j reaches some f ∈ X};
6 build the graph GX with

V [GX]← X, E[GX]← {(f, f
′) : ∃j ∈ D : j reaches both f and f ′};

7 build a maximal independent set X ′ in GX greedily in non-increasing order of δ;

8 X̂ ← {(pf ′, kf ′, tf ′ − δf ′), f ′, (pf ′ , kf ′, tf ′ + δf ′) : f ′ ∈ X ′};
9 foreach j ∈ D do

10 a(j)← argminf ′∈X̂{d(j, f
′)};

11 return (X̂, a);

Algorithm 12.1: Primal-dual algorithm for FLe [60].

j

j′

f

f ′(pf ′ , kf ′, tf ′ − δf ′) (pf ′ , kf ′, tf ′ + δf ′)

tf ′ − δf ′ tf ′ tf ′ + δf ′ tf ′ + 2δf ′

time

Figure 12.1: An illustration of why Algorithm 12.1 produces a feasible solution. (Repro-
duced from [60] with permission.)

Theorem 12.1 (Nagarajan and Williamson [60]): Algorithm 12.1 is a 3-approximation

to FLe.

Proof: First note that, since conditions (a) and (b) correspond to the constraints of
the dual program, we have that α is a feasible dual solution. Therefore, by weak duality,
we have that

∑

j∈D

αj ≤ opt(G, d, F,K, δ, γ, δ,D0, . . . , DT−1).

We show that the cost of the primal solution (X̂, a) returned by the algorithm is at
most 3 times the cost of the dual solution, and thus the algorithm is a 3-approximation
to FLe.

87

For every client request j ∈ D, we define numbers αC
j and αF

j , in the following manner:

1. If j reaches some f ∈ X ′, then let

αC
j := d(j, f), αF

j := αj − d(j, f);

2. Else, let
αC
j := αj , αF

j := 0.

Note that, either case, we have that

αj = αC
j + αF

j .

First we bound the facility leasing cost. Note that, by construction, each client request
reaches at most one facility lease in X ′. Also, by case (b) of the algorithm, the leasing
cost of each f ∈ X ′ is totally paid by contributions from clients that reach it. Therefore,
we have that

∑

f∈X′

γf =
∑

j∈D

αF
j .

Since X̂, which is the set of facility leases actually bought by the algorithm, consists of
three copies of each facility lease in X ′, we have that

∑

f∈X̂

γf ≤ 3 ·
∑

j∈D

αF
j .

Now we bound the client connection cost. Let DX′ be the set of client requests that
reach some facility lease in X ′. For each j ∈ DX′, let f ∈ X ′ be the facility lease reached
by j. Note that j is connected to the closest active facility lease in X̂, so

d(j, a(j)) ≤ d(j, f) = αC
j .

Now let j be some client request that reaches some f ∈ X but does not reach any facility
lease in X ′. There must be some f ′ ∈ X ′ and some j′ ∈ D that reaches both f and f ′,
by construction of X ′. We must have that αj ≥ αj′ since, when αj′ stopped increasing, j′

had reached both f and f ′, and j had reached f when αj stopped increasing. Since j′

reaches both f and f ′, we have that

αj′ ≥ d(j′, f) and αj′ ≥ d(j′, f ′).

Thus, by triangle inequality, we have that

d(j, a(j)) ≤ d(j, f ′) ≤ d(j, f) + d(j′, f) + d(j′, f ′) ≤ αj + αj′ + αj′ ≤ 3 · αj = 3 · αC
j .

88

Summing up the previous inequalities, we have that

∑

f∈X̂

γf +
∑

j∈D

d(j, a(j)) ≤ 3 ·
∑

j∈D

αF
j + 3 ·

∑

j∈D

αC
j

= 3 ·
∑

j∈D

αj

≤ 3 · opt(G, d, F,K, δ, γ, δ,D0, . . . , DT−1).

�

Note that the same example of Figure 11.1 shows that this analysis is tight. Indeed,
this algorithm cannot be improved with the dual-fitting technique, since we have a factor
of 3 both on facility leasing and client connection costs.

For the online version of FLe, we know in advance G, F , K, δ and γ. At each instant of
time t, we receive a set of clients Dt along with the distances between each j ∈ Dt and each
f ∈ F . We must decide if we acquire some new facility leases, and we must assign an active
facility lease to each client request in Dt. We cannot remove previous facility leases nor
change the assignment of previous clients. The goal is to minimize the cost of the final FLe

solution. This problem admits a O(K lg n/ lg lg n)-competitive online algorithm [53], and
a O(δK lg δK)-competitive online algorithm [1], whose competitive factor is independent
of the time dimension. The problem has a lower bound of Ω(lgK + lg n′/ lg lg n′), where
n′ := min{n, δK}, due to the lower bounds for the online versions of PP [59] and FL [31].
Even if it is not the best online algorithm, in this text we use as a black box the algorithm
by Nagarajan and Williamson, which is O(K lg n)-competitive [60]; this is sufficient for
our purposes.

12.2 Facility Leasing with Penalties

In this section, we study the combination of FLP and FLe. As in FLe, instead of opening
facilities that last for the whole planning horizon, we consider K facility leasing types.
Also, as in FLP, we may choose not to connect a client request (j, t) to any facility lease
by paying a penalty πjt. We define the problem formally below, which we call the facility

leasing problem with penalties (FLeP).

Problem FLeP(G, d, F,K, δ, γ,D0, . . . , DT−1, π): We are given a complete graph G =

(V,E), a metric distance function d : V × V 7→ Q+, a set F ⊆ V of potential facilities,

an integer K > 0 that represents the number of lease types, a function δ : [K] 7→ N

that maps each leasing type to a length of time, a cost γf
k ∈ Q+ for leasing facility

f ∈ F with leasing type k ∈ [K], and a sequence D0, . . . , DT−1 ⊆ V of clients. Let

D := {(j, t) : j ∈ Dt, t ∈ {0, . . . , T − 1}} be the set of client requests. We are also given a

function π : D 7→ Q+ that assigns a penalty to each client request. A solution consists of

a set X ⊆ F := F × [K] × Z+ of facility leases, and a function a : D 7→ X ∪ {null} that

maps each client request (j, t) to null or to some (f, k, t̂) ∈ X such that t ∈ [t̂, t̂+ δk). The

89

goal is to find a solution (X, a) which minimizes

∑

(f,k,t̂)∈X

γf
k +

∑

(j,t)∈D
a(j,t)6=null

d(j, a(j, t)) +
∑

(j,t)∈D
a(j,t)=null

πjt.

This is an NP-hard problem since FLe reduces to FLeP if πjt =∞ for all (j, t) ∈ D.
In the following we present a 3-approximation algorithm for FLeP, which is based on
Algorithms 11.2 and 12.1. This result was published in [21].

Again, in order to avoid clutter, we use the following simplified notation in this section,
but the notation above will be used again in Chapter 14. We denote a client request by a
triple j = (pj, tj, πj), where pj ∈ V is a vertex, tj ∈ {0, . . . , T − 1} is the instant of time j

arrives and πj ∈ Q+ is the penalty for not assigning a facility lease to j. We also denote
a facility lease by a triple f = (pf , kf , tf), where pf ∈ F is a potential facility, kf ∈ [K]

is a leasing type, and tf ∈ Z+ is the instant of time the leasing begins. We then write δf
instead of δ(kf), and γf instead of γ

pf
kf

. We also define distances between client requests
and facility leases as in Equation (12.1).

The problem has the following integer linear program formulation.

minimize
∑

f∈F γf · yf +
∑

j∈D

∑

f∈F d(j, f) · xjf +
∑

j∈D πj · zj
subject to

∑

f∈F xjf + zj ≥ 1 ∀j ∈ D,

xjf ≤ yf ∀j ∈ D, f ∈ F ,

xjf , yf , zj ∈ {0, 1} ∀j ∈ D, f ∈ F .

Note that the formulation follows from those of FLP and FLe. The simplified dual of
the relaxation of this program is the following.

maximize
∑

j∈D αj

subject to
∑

j∈D(αj − d(j, f))+ ≤ γf ∀f ∈ F ,

αj ≤ πj ∀j ∈ D,

αj ≥ 0 ∀j ∈ D.

A pseudocode is presented in Algorithm 12.2. The main difference from Algorithm 12.1
is that we stop increasing the dual variable for j when αj = πj . The feasibility of the
returned solution follows from the same arguments for Algorithm 12.1.

Theorem 12.2 : Algorithm 12.2 is a 3-approximation to FLeP.

Proof: First note that, since conditions (a), (b) and (c) correspond to the constraints
of the dual program, we have that α is a feasible dual solution. Therefore, by weak duality,
we have that

∑

j∈D αj ≤ opt(G, d, F,K, δ, γ, δ,D0, . . . , DT−1, π).

We show that the cost of the primal solution (X̂, a) returned by the algorithm is at
most 3 times the cost of the dual solution, and thus the algorithm is a 3-approximation
to FLeP.

90

Input: (G, d, F,K, δ, γ, δ,D0, . . . , DT−1, π)
1 X ← ∅, S ← D, αj ← 0 for every j ∈ D;
2 while S 6= ∅ do
3 increase αj uniformly for every j ∈ S until

(a) αj = d(j, f) for some j ∈ S and f ∈ X, or
(b) γf =

∑

j∈D(αj − d(j, f))+ for some f ∈ F \X, or

(c) αj = πj for some j ∈ S;
4 X ← X ∪ {f ∈ F \X : f satisfies (b)};
5 S ← S \ {j ∈ S : αj ≥ πj or j reaches some f ∈ X};
6 build the graph GX with

V [GX]← X, E[GX]← {(f, f
′) : ∃j ∈ D : j reaches both f and f ′};

7 build a maximal independent set X ′ in GX greedily in non-increasing order of δ;
8 X̂ ← {(pf ′, kf ′, tf ′ − δf ′), f ′, (pf ′ , kf ′, tf ′ + δf ′) : f ′ ∈ X ′};
9 foreach j ∈ D do

10 if j reaches some f ∈ X ′ then a(j)← argminf ′∈X̂{d(j, f
′)};

11 else a(j)← null;

12 return (X̂, a);

Algorithm 12.2: Primal-dual algorithm for FLeP.

For every client request j ∈ D, we define numbers αC
j , αF

j , and αP
j in the following

manner:

1. If j reaches some f ∈ X ′, then let

αC
j := d(j, f), αF

j := αj − d(j, f), αP
j := 0;

2. If j does not reach any facility lease in X ′ but reaches some f ∈ X, then let

αC
j := αj , αF

j := 0, αP
j := 0;

3. Finally, if j does not reach any facility lease in X, let

αC
j := 0, αF

j := 0, αP
j := αj.

Note that, either case, we have that

αj = αC
j + αF

j + αP
j .

First we bound the facility leasing cost. Note that, by construction, each client request
reaches at most one facility lease in X ′. Also, by case (b) of the algorithm, the leasing
cost of each f ∈ X ′ is totally paid by contributions from clients that reach it. Therefore,
we have that

∑

f∈X′

γf =
∑

j∈D

αF
j .

Since X̂, which is the set of facility leases actually bought by the algorithm, consists of

91

three copies of each facility lease in X ′, we have that

∑

f∈X̂

γf ≤ 3 ·
∑

j∈D

αF
j .

Now we bound the penalty cost. We have that a client request j has a(j) set to null if,
and only if, it does not reach any facility lease in X, in which case αj = αP

j . Also, due to
case (c) of the algorithm, we have that αj = πj . Thus, it is straightforward to conclude
that

∑

j∈D
a(j)=null

πj =
∑

j∈D

αP
j .

Finally, we bound the client connection cost. Let DX′ be the set of client requests that
reach some facility lease in X ′. For each j ∈ DX′, let f ∈ X ′ be the facility lease reached
by j. Note that j is connected to the closest active facility lease in X̂, so

d(j, a(j)) ≤ d(j, f) = αC
j .

Now let j be some client request that reaches some f ∈ X but does not reach any facility
lease in X ′. There must be some f ′ ∈ X ′ and some j′ ∈ DX′ that reaches both f and f ′,
by construction of X ′. We must have that αj ≥ αj′ since, when αj′ stopped increasing, j′

had reached both f and f ′, and j had reached f when αj stopped increasing. Since j′

reaches both f and f ′, we have that

αj′ ≥ d(j′, f) and αj′ ≥ d(j′, f ′).

Thus, by triangle inequality, we have that

d(j, a(j)) ≤ d(j, f ′) ≤ d(j, f) + d(j′, f) + d(j′, f ′) ≤ αj + αj′ + αj′ ≤ 3 · αj = 3 · αC
j .

Summing up the previous inequalities, we have that

∑

f∈X̂

γf +
∑

j∈D
a(j)6=null

d(j, a(j)) +
∑

j∈D
a(j)=null

πj

≤ 3 ·
∑

j∈D

αF
j + 3 ·

∑

j∈D

αC
j +

∑

j∈D

αP
j

≤ 3 ·
∑

j∈D

αj

≤ 3 · opt(G, d, F,K, δ, γ, δ,D0, . . . , DT−1, π).

�

Again, this analysis is tight due to the example of Figure 11.1, and this algorithm
cannot benefit from the dual-fitting technique.

If we combine Theorem 11.3 with Algorithm 12.1, we obtain a 3.5277-approximation

92

algorithm for the facility leasing problem with submodular penalties. Note that FLeP is
a particular case of this problem, but our algorithm has smaller approximation ratio.

For the online version of FLeP, we know in advance G, F , K, δ and γ. At each
instant of time t, we receive a set of clients Dt along with the distances between each
j ∈ Dt and each f ∈ F and a new penalty for each j ∈ Dt. We must decide if we acquire
some new facility leases, and we must choose to pay a penalty or assign an active facility
lease to each client request in Dt. We cannot remove previous facility leases nor change
the assignment of previous clients. The goal is to minimize the cost of the final FLeP

solution. This problem admits a O(K lg n)-competitive algorithm [63]. The problem has
the same lower bound as FLe, of Ω(lgK + lg n′/ lg lg n′), where n′ := min{n, δK}.

93

Part IV

Connected Facility Leasing Problems

94

Chapter 13

Connected Facility Location

In this chapter we review some approximation and online algorithms for the connected

facility location problem (CFL), which is a two-layer network design problem in which
we connect clients via facilities connected through a core tree. We give a formal definition
of the problem below.

Problem CFL(G, d, F, γ,M,D): The input consists of a complete graph G = (V,E), a

metric function d : V × V 7→ Q+ that assigns distances between vertices, a set F ⊆ V of

potential facilities, a function γ : F 7→ Q+ that assigns an opening cost to each potential

facility, a rational scaling constant M ≥ 1, and a set D ⊆ V of clients. The goal is to

obtain a set X ⊆ F of open facilities, a function a : D 7→ X that assigns each client to an

open facility, and a set of core edges T ⊆ E which connects X, and we wish to minimize

∑

f∈X

γf +
∑

j∈D

d(j, a(j)) +M ·
∑

e∈T

d(e).

This is an NP-hard problem, since ST reduces to it if we take F = D, γf = 0 for all
f ∈ F and M = 1.

In Sections 13.1 and 13.2 we review some approximation and online algorithms for
CFL, respectively. In Section 13.3, we discuss the multi-commodity version of the prob-
lem.

13.1 Offline Connected Facility Location

In this section, we review some approximation algorithms for CFL, which will be useful
for our discussion in the next chapter.

13.1.1 A First Naïve Algorithm

Let us consider the following algorithm for CFL. The algorithm utilizes as black boxes
approximation algorithms for FL and ST.

A common assumption in CFL algorithms is that a root facility r ∈ F is given at
zero cost. This is without loss of generality since we can run the algorithm |F | times and
return the best solution.

95

The algorithm runs the FL algorithm on the corresponding instance (without M),
then builds a Steiner tree connecting the clients to the root, and finally adds a core edge
between each client and its assigned facility.

Input: (G, d, F, r, γ,M,D)
1 set γr ← 0;
2 (X, a)← FL(G, d, F, γ,D);
3 T ← ST(G, d,D ∪ {r});
4 T ← T ∪ {(j, a(j)) : j ∈ D};
5 return (X, a, T);

Algorithm 13.1: A first naïve algorithm for CFL.

Unfortunately, this algorithm has unbounded approximation factor. Take an instance
with a root r with γr = 0, and another facility f with γf = 0 and d(f, r) = 1. Then take
one client at the same point as f . The algorithm will open f and connect it to the root,
for a total cost of M , while the optimum solution will connect the client to the root by
paying 1. Thus, the approximation factor is Ω(M).

However, we show that this algorithm performs well if M = 1. Indeed, it is a 4.36-
approximation. Let αFL := 1.488 and αST := 1.39 be the current best approximation
factors for FL and ST, respectively.

Theorem 13.1 (Swamy and Kumar [69]): Algorithm 13.1 is a (2·αFL+αST)-approxima-

tion to CFL if M = 1.

Proof: Given a solution returned by the algorithm, let O be the facility opening cost,
C the client connection cost, and S the core tree cost. Similarly, let O∗, C∗ and S∗ be
those costs on an optimum solution.

Let O′ be the facility opening cost and C ′ be the client connection cost of the solution
returned by the FL algorithm. We have that O + C = O′ + C ′ ≤ αFL · optFL. Since
an optimum solution for CFL induces a feasible solution for FL, optFL ≤ O∗ + C∗, so
O + C ≤ αFL · (O

∗ + C∗).

Since M = 1, we bound S by the cost of solving ST on D ∪ {r}, plus the cost of
connecting each client to its assigned facility. Thus S ≤ αST · optST + C. Since the
optimum core tree combined with an edge between each client and its optimum facility
induces a feasible solution for ST on D ∪ {r}, we have that optST ≤ S∗ + C∗.

Combining the previous inequalities, we have that

O + C + S ≤ αFL · (O
∗ + C∗) + αST · (S

∗ + C∗) + C

≤ αFL · (O
∗ + C∗) + αST · (S

∗ + C∗) + αFL · (O
∗ + C∗)

≤ (2 · αFL + αST) · (O
∗ + C∗ + S∗).

�

96

13.1.2 A Simple Sample-and-Augment Algorithm

In this section we present a simple randomized sample-and-augment algorithm for CFL,
which avoids the unbounded approximation factor of the previous algorithm. It is a
variation of the algorithm by Gupta, Srinivasan and Tardos [38].

A pseudocode is presented in Algorithm 13.2. The idea is that, in order to avoid a
few clients to open a facility, which incurs in buying core edges M times more expensive
than an edge connecting clients to already open facilities, we sample each client with
probability 1/M . Then we run the previous algorithm on the sampled clients, and connect
the remaining clients to the closest open facility.

Input: (G, d, F, r, γ,M,D)
1 set γr ← 0, D′ ← ∅;
2 foreach j ∈ D do
3 add j to D′ with probability 1/M ;
4 (X, a)← FL(G, d, F, γ,D′);
5 T ← ST(G, d,D′ ∪ {r});
6 T ← T ∪ {(j, a(j)) : j ∈ D′};
7 foreach j /∈ D′ do
8 a(j)← argminf∈X d(j, f);
9 return (X, a, T);

Algorithm 13.2: A simple randomized sample-and-augment algorithm for CFL.

We do not prove the following theorem, since the analysis is not important to our
discussion. It is a simple modification of the one in [38, Section 6.1].

Theorem 13.2 : Algorithm 13.2 is a 8.94-approximation to CFL.

Eisenbrand, Grandoni, Rothvoß and Schäfer [25] obtained a better result by doing
a simple modification in the previous algorithm. They obtain a FL solution (X, a) on
the whole set of clients D, open a sampled subset X ′ ⊆ X of the facilities, and connect
each client to the closest open facility. Their algorithm is a 4-approximation. We do not
present the analysis of this algorithm here.

13.1.3 A More Sophisticated Algorithm

In this section we present the algorithm for CFL by Grandoni and Rothvoß [35]. This is
the current best approximation algorithm for CFL, and it has a rather simple description.

The algorithm uses a parameter ρ ∈ Q∗
+ whose value is obtained in the analysis,

in order to minimize the approximation factor. The algorithm utilizes as black boxes
an αST-approximation for ST and a bifactor algorithm for FL which is an (αF , αD)-
approximation, i.e., which returns a solution whose cost is at most αF ·

∑

f∈X∗ γf + αD ·
∑

j∈D d(j, a∗(j)), where (X∗, a∗) is an optimum solution.
The algorithm samples each client with probability ρ/M , and builds a Steiner tree

connecting the sampled clients to the root. Then, it runs a modified instance of FL, in
which the cost of opening facility f is the original cost γf plus the distance between f

97

and the terminals of the core tree. Then, the algorithm completes the tree with edges to
open facilities.

Input: (G, d, F, r, γ,M,D, ρ)
1 set γr ← 0, D′ ← ∅;
2 foreach j ∈ D do
3 add j to D′ with probability ρ/M ;
4 T ′ ← ST(G, d,D′ ∪ {r});
5 foreach f ∈ F do
6 let γ′

f := γf +M · d(f,D′ ∪ {r});
7 (X, a)← FL(G, d, F, γ′, D);
8 T ← T ′ ∪ {min-path(f, T ′) : f ∈ X};
9 foreach j /∈ D′ do

10 a(j)← argminf∈X d(j, f);
11 return (X, a, T);

Algorithm 13.3: A more sophisticated randomized algorithm for CFL [35].

The analysis considers αST = 1.39 [12] and the result by Byrka and Aardal [11], which
shows that, for every αF > 1.67, there exists an (αF , 1 + 2e−αF)-approximation for FL.

The analysis also utilizes the following lemma [25], which we do not prove here.

Lemma 13.3 (Eisenbrand et al. [25]): Consider a complete graph G = (V,E) with a

metric distance function d : V ×V 7→ Q+, a set of clients D ⊆ V , a subtree T ′ of G with a

root r, an assignment a : D 7→ V (T ′), and a probability p ∈ (0, 1]. Sample each client in D

independently with probability p, and let D′ be sampled set. Let a(D′) :=
⋃

j∈D′ a(j).

Then

E

[

∑

j∈D

d (j, a(D′) ∪ {r})

]

≤
0.807

p
·
∑

e∈T ′

d(e) +
∑

j∈D

d(j, a(j)).

Let (X∗, a∗, T ∗) be an optimum CFL solution, and let O∗ be the facility opening
cost, C∗ be the client connection cost, and S∗ be the core tree cost in this solution. Let
also O′ :=

∑

f∈X γ′
f =

∑

f∈X(γf + M · d(f,D′ ∪ {r})) be the facility opening cost and
C ′ :=

∑

j∈D d(j, a(j)) be the client connection cost of the solution obtained at Line 7 for
the modified FL problem.

Lemma 13.4 : The cost of the solution returned by Algorithm 13.3 is at most M ·
∑

e∈T ′ d(e) +O′ + C ′.

Proof: The client connection cost is the same in both problems, and the definition
of γ′ pays for the facility opening cost in the CFL instance and for the edges added at
Line 8 of the algorithm. �

Lemma 13.5 :

E

[

M ·
∑

e∈T ′

d(e)

]

≤ αST · (S
∗ + ρ · C∗).

Proof: It is possible to transform T ∗ into a feasible solution to ST on D′ ∪{r} simply

98

by adding an edge between each j ∈ D′ and a∗(j). The expected cost of this solution is

∑

e∈T ∗

d(e) + E

[

∑

j∈D′

d(j, a∗(j)

]

=
∑

e∈T ∗

d(e) +
ρ

M

∑

j∈D

d(j, a∗(j) =
∑

e∈T ∗

d(e) +
ρ

M
· C∗.

From the analysis of the ST algorithm,

E

[

M ·
∑

e∈T ′

d(e)

]

≤ M · αST · E[optST(D
′ ∪ {r})]

≤ M · αST ·

(

∑

e∈T ∗

d(e) +
ρ

M
· C∗

)

= αST · (S
∗ + ρ · C∗).

�

Lemma 13.6 :

E[O′ + C ′] ≤ αF · (O
∗ + ρ · C∗) + αC ·

(

C∗ +
0.807

ρ
· S∗

)

.

Proof: Given an optimum solution (X∗, a∗, T ∗), we can obtain a feasible solution for
FL instance (G, d, F, γ′, D) in the following manner. Open facility set a∗(D′)∪{r}, where
a∗(D′) =

⋃

j∈D′ a∗(j). The expected opening cost of this set is

E

∑

f∈a∗(D′)∪{r}

γ′
f

 = E

∑

f∈a∗(D′)∪{r}

γf

+M · E

∑

f∈a∗(D′)∪{r}

d(f,D′ ∪ {r})

≤ E

[

∑

f∈X∗

γf

]

+M · E

[

∑

j∈D′

d(j, a∗(j))

]

= O∗ +M ·
ρ

M
·
∑

j∈D

d(j, a∗(j)) = O∗ + ρ · C∗.

In order to bound the expected client connection cost in this solution, we apply
Lemma 13.3 with client set D, tree T ∗, assignment a∗, root r and probability ρ/M :

E

[

∑

j∈D

d(j, a∗(D′) ∪ {r})

]

≤
0.807

ρ/M
·
∑

e∈T ∗

d(e) +
∑

j∈D

d(j, a∗(j)) =
0.807

ρ
· S∗ + C∗.

�

In particular, note that the cost of the returned solution is bounded by the cost of
a solution which utilizes only facilities that serve clients in D′ in the optimum solution.
This is important for our discussion in Chapter 14.

99

Theorem 13.7 (Grandoni and Rothvoß [35]): Algorithm 13.3 is a 3.19-approximation

to CFL.

Proof: Take αST = 1.39, ρ = 0.539, αF = 2.294 and αC ≤ 1 + 2e−αF . Combining the
previous lemmas, we have that the expected cost of the solution returned by the algorithm
is at most

αST · (S
∗ + ρ · C∗) + αF · (O

∗ + ρ · C∗) + αC ·

(

C∗ +
0.807

ρ
S∗

)

= αF · O
∗ +

(

αST +
0.807

ρ
· αC

)

· S∗ + (αST · ρ+ αF · ρ+ αC) · C
∗

≤ 2.30 ·O∗ + 3.19 · S∗ + 3.19 · C∗ ≤ 3.19 · opt(G, d, F, r, γ,M,D).

�

13.2 Online Connected Facility Location

In this section we review online algorithms for CFL.
In the online version of CFL, we known in advance G, F , γ and M , as well as root

facility r ∈ F with γr = 0, and at each instant of time t = 0, . . . , T − 1 we receive a set of
clients Dt, along with the distances between each client in Dt and each facility in F .1 We
must decide if we open new facilities, connect them to r, and assign an open facility to
each client in Dt. We cannot close previously open facilities, remove core edges or change
the assignment of previous clients. Due to the reduction from ST to CFL shown at the
beginning of the chapter, we have that CFL has online lower bound of Ω(lg n), where

n :=
∣

∣

∣

⋃T−1
t=0 Dt

∣

∣

∣
.

The problem admits a deterministic O(lgn)-competitive online algorithm, due to Um-
boh [72]. This algorithm, however, is rather complicated and its description does not add
much to our discussion in this thesis. Just to give a glimpse, it is based on the technique
of approximating a metric by a tree metric which we described at Section 10.1. However,
this algorithm does not make a simple use of Lemma 10.5; indeed, the proof in [31] shows
that FL has an online lower bound of Ω(lg n/ lg lg n) even on tree metrics. Actually,
Umboh used the concept of hierarchical decompositions to devise his algorithm, and used
Theorem 10.6 in the analysis of its competitive ratio. He used the same technique to
develop good online algorithms for other problems, such as SN and RoB.

Another O(lg n)-competitive online algorithm for CFL, this time a randomized one,
was given by San Felice, Williamson and Lee [65]. It is based on the primal-dual online
algorithm for FL by Fotakis [30], and on the randomized online algorithm for RoB by
Awerbuch, Azar and Bartal [6], both of which are O(lgn)-competitive. In some sense, it
is similar to Algorithm 13.2.

We present a pseudocode in Algorithm 13.4. We denote the online algorithm of Fo-
takis [30] for FL by OFL, whose offline parameters are G, d, F and γ, and whose request
sequence is a sequence of clients; this algorithm is O(lg n)-competitive. The online algo-

1Note that, in the online version of problem, a root facility r is necessarily assumed.

100

rithm for CFL maintains a set D of client requests, and a set DT of clients which are
connected to the core tree. Each client request that arrives is forwarded to algorithm
OFL, and the corresponding FL virtual solution is updated. Then, the client is added to
the core tree with probability 1/M . If this happens, then the algorithm adds to the core
tree the shortest path between the client and the tree, opens the facility indicated by the
virtual solution, and adds another core tree edge between the client and this new facility.
Otherwise, if the client is not added to the core tree, then it is served by the closest open
facility.

Input: (G, d, F, r, γ,M)
1 X ← ∅, D ← ∅, DT ← ∅, T ← ({r}, ∅);
2 set γr ← 0;
3 initialize OFL with (G, d, F, γ) and let (X ′, a′) be the virtual solution;
4 when Dt arrives do
5 foreach j ∈ Dt do
6 send (j, t) to OFL and update virtual solution (X ′, a′);
7 add j to DT with probability 1/M ;
8 if j ∈ DT then
9 T ← T ∪min-path(j, T);

10 f ← a′(j, t);
11 if f /∈ X then
12 X ← X ∪ {f};
13 T ← T ∪ {(f, j)};
14 let f ∈ X be the closest open facility to j;
15 D ← D ∪ {(j, t)}, a(j, t)← f ;
16 return (X, a, T);

Algorithm 13.4: Online algorithm for CFL [65].

This algorithm has expected competitive ratio O(lg n). However, we only prove this
fact for M = 1, in which case the algorithm becomes deterministic. The proof for generic
M ≥ 1 is a bit complicated and is not necessary to our discussion.

Theorem 13.8 (San Felice, Williamson and Lee [65]): Algorithm 13.4 has competitive

factor O(lgn) if M = 1.

Proof: Given a solution returned by the algorithm, let O be the facility opening cost,
C the client connection cost, and S the core tree cost. Similarly, let O∗, C∗ and S∗ be
those costs on an optimum solution.

Let O′ be the facility opening cost and C ′ be the client connection cost of the virtual
solution produced by OFL. Since M = 1, the algorithm is deterministic and always
mimics the virtual solution; thus we have that O + C = O′ + C ′ = O(lg n) · optFL. Since
an optimum solution for CFL induces a feasible solution for FL, optFL ≤ O∗ + C∗, so
O + C = O(lg n) · (O∗ + C∗).

Let D :=
⋃T−1

t=0 Dt. We bound S by the cost of running the greedy ST online algorithm
on D∪{r}, plus the cost of an edge between each client and its assigned facility, which is
the connection cost for that client since M = 1. Thus, S ≤ O(lgn) · optST +C. Since the

101

optimum core tree combined with an edge between each client and its optimum facility
induces a feasible solution for ST on D ∪ {r}, we have that optST ≤ S∗ + C∗ and the
theorem follows. �

13.3 Multi-Commodity Connected Facility Location

In the multi-commodity version of CFL, instead of connecting clients to the core network
via open facilities, we wish to connect pairs of clients. The pair may be connected directly,
or via facilities connected by core edges. To be more precise, the path between the pair
of clients may be composed of simple edges, which are temporary and charged to this
pair, and of core edges, which cost M times the cost of a simple edge but are permanent
and have infinite capacity. However, the path must enter and leave the core tree through
open facilities. A good analogy for this is a person who wishes to go to her job, and
can walk part of the way, but can also use subway lines to save some time and energy.
Obviously, she can only enter or leave the subway through open stations. We define
the problem formally below, which we call the multi-commodity connected facility

location problem (MCFL).

Problem MCFL(G, d, F, γ,M, P): The input consists of a complete graph G = (V,E),

a metric distance d : V × V 7→ Q+, a set F ⊆ V of potential facilities, a function

γ : F 7→ Q+ that assigns an opening cost to each potential facility, a rational scaling

constant M ≥ 1, and a set P ⊆ V × V of pairs of clients. Let X ⊆ F , T ⊆ E, and

u, v ∈ V ; we denote by dX,T (u, v) the distance between u and v in the graph in which

we add to G edges of cost zero between each pair of facilities in X that are in the same

tree in T . The goal is to find a set X ⊆ F of open facilities and a forest T ⊆ E which

minimize
∑

f∈X

γf +
∑

(u,v)∈P

dX,T (u, v) +M ·
∑

e∈T

d(e).

This problem is NP-hard since it reduces to CFL if one of the vertices in each pair
is some root facility r ∈ F . The problem was proposed by Grandoni and Rothvoß, who
gave a 16.2-approximation [35]. We present this algorithm in this section.

A pseudocode is presented in Algorithm 13.5. It uses as black boxes an αFLP-approxi-
mation algorithm for FLP, and an αSF-approximation for SF. Currently we have αFLP =

1.5148 [56] and αSF = 2 [2]. For each pair (u, v) ∈ P , we assign a penalty of d(u, v)/2
to both u and v, and we run the FLP algorithm on the corresponding set of clients. If
the FLP algorithm does not assign a facility to one of (u, v), then the algorithm will
connect u and v directly. Otherwise, the algorithm includes a set consisting of these two
clients in D′ with probability 1/M . Then the algorithm runs the SF algorithm to find a
forest which connects the pairs in D′, and adds an edge between each client in D′ and
the facility to which it is assigned. The algorithm returns only facilities that serve clients
in D′.

We prove that the algorithm is a 5.03-approximation when M = 1. The proof that it
is a 16.2-approximation for M ≥ 1 is unnecessary to our discussion.

102

Input: (G, d, F, γ,M, P)
1 foreach (u, v) ∈ P do set πu ← πv ← d(u, v)/2;
2 let D ←

⋃

(u,v)∈P {u, v};
3 (X ′, a′)← FLP(G, d, F, γ,D, π);
4 D′ ← ∅;
5 foreach (u, v) ∈ P : a′(u) 6= null and a′(v) 6= null do
6 add terminal set {u, v} to D′ with probability 1/M ;
7 X ← {f ∈ X ′ : ∃u ∈ D′ : a′(u) = f};
8 T ← SF(G, d,D′) ∪ {(u, a′(u)) : u ∈ D′};
9 return (X, T);

Algorithm 13.5: Approximation algorithm for MCFL [35].

Theorem 13.9 : Algorithm 13.5 is a (2 ·αFLP+αST)-approximation to MCFL if M = 1.

Proof: Given a solution returned by the algorithm, let O be the facility opening cost,
C the client connection cost, and S the core tree cost. Similarly, let O∗, C∗ and S∗ be
those costs on an optimum solution.

Let O′ be the facility opening cost, C ′ be the client connection cost, and Π′ be the
penalty cost of the solution returned by the FLP algorithm on D. We have that O′ +

C ′ + Π′ ≤ αFLP · optFLP. Given an optimum solution for MCFL on P , we obtain a
feasible solution for FLP on D by paying the penalties for the clients in the pairs that are
connected directly, and by assigning the other clients to the closest facility in the path
connecting the pair. Thus, optFLP ≤ O∗ + C∗ and O′ + C ′ +Π′ ≤ αFLP · (O

∗ + C∗).

Since Algorithm 13.5 opens a subset of the facilities in X ′, clearly O ≤ O′.

For a pair (u, v) connected directly by Algorithm 13.5, we have that one of u and v

pays for its penalty cost. Suppose w.l.o.g. that it is u; then dX,T (u, v) ≤ 2 · πu. For a
pair (u, v) connected through the core tree, since M = 1 and the algorithms always adds
{u, v} to D′, a whole path between a′(u) and a′(v) is added to the tree, so dX,T (u, v) ≤

d(u, a′(u)) + d(v, a′(v)). Thus C ≤ 2 · Π′ + C ′.

Since M = 1, we bound S by the cost of solving SF on D′, plus the cost of connecting
each client in D′ to its assigned facility. Thus, S ≤ αSF·optSF(D

′)+C ′ ≤ αSF·optSF(P)+C ′.
Since the optimum core tree combined with the optimum client connection edges induces
a feasible solution for SF on P , we have that optSF(P) ≤ S∗ + C∗. Substituting the
previous inequalities, we have that

O + C + S ≤ O′ + 2 · Π′ + C ′ + αSF · (S
∗ + C∗) + C ′

≤ αSF · (S
∗ + C∗) + 2 · (O′ +Π′ + C ′)

≤ αSF · (S
∗ + C∗) + 2 · αFLP · (O

∗ + C∗)

≤ (2 · αFLP + αST) · (O
∗ + C∗ + S∗).

�

103

In the online version of MCFL, the offline part of the input consists of G, F , γ and M ,
and at each instant of time we are given a set of pairs of clients along with their distances
to F . We must decide if we open new facilities and if we buy new core edges, from which
a path between each new pair of clients is fixed. We cannot close previous open facilities
or remove core edges. The problem admits a O(lg2 n)-competitive online algorithm, and
a O(lg n)-competitive online algorithm when M = 1, both by San Felice, Fernandes and
Lintzmayer [64]. The problem has online lower bound of Ω(lg n), due to the reduction
from CFL we discussed above. Those algorithms are similar to Algorithm 13.5, so we do
not present them here.

104

Chapter 14

Connected Facility Leasing

In this chapter we propose leasing variants of CFL and MCFL, and we give approxima-
tion and competitive online algorithms for a special case of these problems. The leasing
variants we propose model the problem of a network service provider, who has to install
cables between routers to serve clients, but resources, such as routers and backbone ca-
bles, have different lifetimes which are not negligible. The results in this chapter were
published in [19, 20].

The first leasing variant of CFL we study is the connected facility leasing prob-

lem (CFLe). The input for CFLe is similar to that for CFL, but we no longer open
facilities for unlimited time. Instead, we lease each facility for one of K different lengths
of time, which we denote by δ1, . . . , δK ∈ N. The cost γf

k of leasing a facility f ∈ F

depends on f , but also on the leasing type k ∈ [K]. There is a special root facility r

which has cost zero for any leasing length. If we lease a facility f with leasing type k at
instant t̂, then we say that facility lease (f, k, t̂) is active during interval [t̂, t̂+ δk). The
goal is to minimize the sum of the costs of the facility leases, plus the sum of the distances
from each client to its assigned facility lease, plus M times the cost of a set of edges con-
necting leased facilities to r. Both FLe and ST reduce to CFLe, so this is an NP-hard
problem. In Section 14.1, we present a 7.39-approximation algorithm for CFLe when
M = 1, which combines Algorithm 12.1, which is a 3-approximation for FLe [60], and the
1.39-approximation algorithm for ST [12]. We also present a O(K lg n)-competitive online
algorithm for CFLe when M = 1. This algorithm combines the O(K lg n)-competitive
online algorithm for FLe [60] with the O(lgn)-competitive online algorithm for ST [43].
We also discuss why we could not obtain good results for M > 1 in Section 14.1.

The second variant we study is the leasing-connected facility leasing problem

(LeCFLe), in which we lease both facilities and edges connecting facilities to the root.
We have KF types of facility leases, and KE types of core edge leases. Facilities and
core edges may have different leasing lengths. Instead of a single scaling factor M , we
have KE scaling factors γE

1 , . . . , γ
E
KE

, one for each core edge leasing length. Thus, to
lease an edge e with leasing type ke costs γE

ke
· d(e). We wish to assign an active facility

lease to each client and, for each instant in which a facility serves a client, there must
exist a path of active edge leases from that facility to the root. We wish to minimize the
cost of leasing facilities, plus the cost of connecting clients to facilities, plus the cost of
leasing core edges. For the case in which the smallest edge leasing scaling factor γE

1 is

105

equal to 1, we give a O(KE)-approximation algorithm and a O(KF lgn + lgKE lg |V |)-
competitive online algorithm. The approach is similar to the one we use for CFLe, but we
change the building block algorithm of the core tree. The offline algorithm uses the O(K)-
approximation algorithm for STLe [4], and the online algorithm uses the O(lgK lg |V |)-
competitive online algorithm for SLe [59]. This problem is addressed in Section 14.2.

We also study two leasing variants of MCFL: the multi-commodity connected

facility leasing problem (MCFLe), in which facilities are leased but core edges are
permanent, and the multi-commodity leasing-connected facility leasing problem

(MLeCFLe), in which both facilities and core edges are leased. For MCFLe with M = 1,
we give an 8-approximation algorithm, which combines the 3-approximation for FLeP we
presented at Section 12.2 with the 2-approximation for SF [2]. For its online version, we
give a O(K lg n)-competitive algorithm, which combines the O(K lg n)-competitive online
algorithm for FLeP [63] with the O(lg n)-competitive online algorithm for SF [8]. Note
that both facility leasing and Steiner problems are different from the ones we use to solve
CFLe. For MLeCFLe with γE

1 = 1, we give a O(lgn)-approximation algorithm and
a O(KF lg n + lgKE lg |V |)-competitive online algorithm. Here the underlying facility
leasing problem is FLeP, as in MCFLe, and the underlying Steiner problem is SLe, as
in LeCFLe. These results are detailed in Section 14.3.

We summarize the approximation/competitive factors we obtain in Table 14.1. Our
technique for solving these problems for the case with M = 1 (γE

1 = 1), both in offline
and online settings, consists in solving the associated facility leasing problem, buying
(leasing) a core network that connects the clients, and then buying (leasing) core edges
between each client and its corresponding facility lease. The guarantee follows from the
analysis of the corresponding building block algorithms, and from reducing the optimal
solution of the connected facility leasing problem to a feasible solution of the building
block problems. This is the approach of Algorithms 13.1, 13.4 and 13.5 for CFL and
MCFL when M = 1; it is a common approach in the literature [64, 65, 69]. The general
cases (M > 1 and γE

1 > 1, respectively) for the four problems we study, both in offline
and online settings, are open.

problem offline algorithm online algorithm

CFLe 7.39 if M = 1 O(K lgn) if M = 1 [19]
LeCFLe O(KE) if γE

1 = 1 O(KF lgn + lgKE lg |V |) if γE
1 = 1

MCFLe 8 if M = 1 O(K lg n) if M = 1
MLeCFLe O(lg n) if γE

1 = 1 O(KF lgn + lgKE lg |V |) if γE
1 = 1

Table 14.1: Summary of our results for connected facility leasing problems.

14.1 Connected facility leasing

In CFLe, we are given a complete graph G = (V,E) with a metric distance between
vertices d : V × V 7→ Q+, a set F ⊆ V of potential facilities, a root facility r ∈ F , K
leasing lengths δ1, . . . , δK ∈ N, a cost γf

k ∈ Q+ for leasing facility f ∈ F with leasing type
k ∈ [K] (ensuring γr

k = 0 for any k), a rational constant M ≥ 1 and, for t = 0, . . . , T−1, a

106

set Dt ⊆ V of clients arriving at instant t. Let D := {(j, t) : j ∈ Dt for t ∈ {0, . . . , T−1}}
be the set of client requests. The goal is to find a set X ⊆ F × [K]×Z+ of facility leases,
a function a : D 7→ X that assigns each client request (j, t) to a facility lease (f, k, t̂) such
that t ∈ [t̂, t̂+ δk), and a set T ⊆ E of edges connecting X to r; and we wish to minimize

∑

(f,k,t̂)∈X

γf
k +

∑

(j,t)∈D

d(j, a(j, t)) +M ·
∑

e∈T

d(e).

Again, in order to simplify notation, for (f, k, t̂) ∈ F × [K] × Z+ and (j, t) ∈ D, we
define the distance from (j, t) to (f, k, t̂) as in Equation (12.1).

Algorithm 14.1 is a 7.39-approximation for CFLe when M = 1. It is similar to
Algorithm 13.1: first, we obtain a solution of FLe on the clients, by using Algorithm 12.1,
which is a 3-approximation [60]. Then we build a tree connecting the clients to the root,
using an approximation algorithm for ST, and finally we add an edge in the tree between
each client and the facility lease that serves it. The approximation factor of our algorithm
can be expressed as 6+αST, where αST ≈ 1.39 is the best approximation factor for ST [12].

Input: (G, d, F, r,K, δ, γ,M,D0, . . . , DT−1)
1 set γr

K ← 0;
2 (X, a)← FLe(G, d, F,K, δ, γ,D0, . . . , DT−1);
3 T ← ST(G, d,D ∪ {r});
4 T ← T ∪ {(j, a(j, t)) : (j, t) ∈ D};
5 return (X, a, T);

Algorithm 14.1: Approximation algorithm for CFLe.

Theorem 14.1 : Algorithm 14.1 is a (6 + αST)-approximation when M = 1.

Proof: Given a solution returned by the algorithm, let L be the facility leasing cost,
C the client connection cost, and S the core tree cost. Similarly, let L∗, C∗ and S∗ be
those costs on an optimum solution.

Let L′ be the facility leasing cost and C ′ be the client connection cost of the solution
returned by the FLe algorithm. We have that L + C = L′ + C ′ ≤ 3 · optFLe. Since an
optimum solution for CFLe induces a feasible solution for FLe, optFLe ≤ L∗ + C∗, so
L+ C ≤ 3 · (L∗ + C∗).

Since M = 1, we bound S by the cost of solving ST on D, plus the cost of connecting
each client to its assigned facility lease. Thus, S ≤ αST · optST + C. Since the optimum
core tree combined with an edge between each client and its optimum facility induces a
feasible solution for ST on D, we have that optST ≤ S∗ +C∗ and the theorem follows. �

This algorithm has approximation factor Ω(M) if M > 1, due to the same example
we presented in Section 13.1.1 to show that Algorithm 13.1 is a Ω(M)-approximation for
CFL if M > 1.

We do not know if there is a constant-approximation algorithm for CFLe if M > 1.
In particular, consider Algorithm 14.2, which is a same sample-and-augment similar to
Algorithm 13.2. There is an example which shows that this algorithm has approximation

107

factor Ω(n) if M > 1: take a single facility f with d(f, r) = 1, then take K = 1,
δ1 = 1, γf

1 = 0, and M = 2. For t = 0, . . . , n−1 with n ≥ 2, take a single client request at
instant t on the same point as f . Note that the optimum solution buys the core edge (f, r)
(cost 2) and always leases facility f (cost zero), paying a total cost of 2. In expectation,
Algorithm 14.2 will sample half of the client requests, buy the core edge, and pay a cost
of 1/2 to serve each client request, since if the client request is not sampled, then it has
to be served by the root. Thus the expected cost is n/2 + 2. A similar modification of
the algorithm by Eisenbrand, Grandoni, Rothvoß and Schäfer [25] also has unbounded
approximation factor.

Input: (G, d, F, r,K, δ, γ,M,D0, . . . , DT−1)
1 set γr

K ← 0, D′ ← ∅;
2 foreach (j, t) ∈ D do
3 add (j, t) to D′ with probability 1/M ;
4 (X, a)← FLe(G, d, F,K, δ, γ,D′);
5 T ← ST(G, d,D′ ∪ {r});
6 T ← T ∪ {(j, a(j, t)) : (j, t) ∈ D′};
7 foreach (j, t) /∈ D′ do
8 a(j, t)← argmin(f,k,t̂)∈X d((j, t), (f, k, t̂));
9 return (X, a, T);

Algorithm 14.2: A candidate randomized sample-and-augment algorithm for CFLe.

Even if we consider more clever sample-and-augment algorithms for CFL, such as Al-
gorithm 13.3, available analysis techniques seem insufficient. Remember from the proof
of Lemma 13.6 that the cost of the returned solution is bound by the cost of a solution
which utilizes only facilities that serve sampled clients in the optimum solution. In some
sense, this bounds the client connection cost via the expected cost of the core tree. In
CFLe, however, these costs are not so tightly related since, while core edges are perma-
nent, facility leases cease after some time. Thus, a client which is close to the tree may
have to be connected to a facility which is further apart. The primal-dual technique is
another candidate for a good algorithm for CFLe, but the primal-dual algorithm for CFL

by Swamy and Kumar [69] also bounds the client connection cost via the core tree cost.

Now we turn our attention to the online version of CFLe. Here, numbers T and
n :=

∑T−1
t=0 |Dt| are unknown. Sets Dt are revealed one at a time, and we cannot remove

edges from T , change facility leases, or modify a(j, t) once it is chosen. The competitive
factor is Ω(lgK+lg n′), where n′ := min{n, δK}, due to the lower bounds on PP [59] and
on ST [43]. We present an online algorithm for CFLe in Algorithm 14.3. It is similar
to Algorithm 13.4: we maintain a virtual solution of the online algorithm for FLe [60],
which we denote by OFLe, and we sample clients as they arrive with probability 1/M .
Sampled clients are connected to the tree in a greedy manner, as in the online algorithm
for ST [43], the corresponding facility lease given by the virtual solution is leased, and it
is connected to the tree via the client. Non-sampled clients are connected to the closest
active facility lease.

The algorithm is O(K lg n)-competitive when M = 1. This result was published in [19];

108

Input: (G, d, F, r,K, δ, γ,M)
1 X ← ∅, D ← ∅, DT ← ∅, T ← ({r}, ∅);
2 set γr

K ← 0;
3 initialize OFLe with (G, d, F,K, δ, γ) and let (X ′, a′) be the virtual solution;
4 when Dt arrives do
5 foreach j ∈ Dt do
6 send (j, t) to OFLe and update virtual solution (X ′, a′);
7 add j to DT with probability 1/M ;
8 if j ∈ DT then
9 T ← T ∪min-path(j, T);

10 (f, k, t̂)← a′(j, t);
11 if (f, k, t̂) /∈ X then
12 X ← X ∪ {(f, k, t̂)};
13 T ← T ∪ {(f, j)};
14 let (f, k, t̂) ∈ X be the closest active facility to j;
15 D ← D ∪ {(j, t)}, a(j, t)← (f, k, t̂);
16 return (X, a, T);

Algorithm 14.3: Online algorithm for CFLe.

we omit the proof since is identical to that of Theorem 14.1. The same example described
above shows that its competitive factor is Ω(n) if M > 1. Also, if we sample clients with
probability 1, the same example of Section 13.1.1 shows that the resulting algorithm has
competitive factor Ω(M) if M > 1.

14.2 Leasing-connected facility leasing

In LeCFLe, we are given a complete graph G = (V,E) with a metric distance between
vertices d : V × V 7→ Q+, a set F ⊆ V of potential facilities, a root facility r ∈ V , and
for t = 0, . . . , T − 1, a set Dt ⊆ V of clients arriving at instant t. However, we may have
different leasing types for facilities and core edges. Thus, we are given KF facility leasing
lengths δF1 , . . . , δ

F
KF ∈ N, and leasing facility f ∈ F with leasing type k ∈ [KF] costs

γf
k ∈ Q+. We also have KE edge leasing lengths δE1 , . . . , δ

E
KE ∈ N, edge leasing factors

γE
1 , . . . , γ

E
KE ≥ 1, and leasing core edge e ∈ E with leasing type ke costs d(e) ·γE

ke. We wish
to find a set X ⊆ F × [KF] × Z+ of facility leases, a function a : D 7→ X that assigns a
facility lease a(j, t) ∈ X which is active at instant t to each client request (j, t) ∈ D, and a
set of edge leases T ⊆ E× [KE]×Z+. For each client request (j, t) with a(j, t) = (f, k, t̂),
there must exist a path P from f to r in G such that each edge e ∈ P has some edge
lease in T which is active at instant t. The goal is to find a solution which minimizes

∑

(f,k,t̂)∈X

γf
k +

∑

(j,t)∈D

d(a(j, t), j) +
∑

(e,ke,t̂e)∈T

γE
ke · d(e).

109

Note that we do not lease edges connecting clients to facilities.1

We propose, in Algorithm 14.4, an online algorithm for LeCFLe, which is O(KF lgn+

lgKE lg |V |)-competitive if γE
1 = 1, where n :=

∑T−1
t=0 |Dt|. The algorithm utilizes as

subroutines (i) OFLe, which is O(K lg n)-competitive for FLe [60], (ii) algorithm FRT,
which, given a metric (V, d), returns a tree metric with expected distortion O(lg |V |)

(see Section 10.1), and (iii) AlgRandOPP, the randomized O(lgK)-competitive online
algorithm for PP by Meyerson [59].

Input: (G, d, F, r,KF , δF , γ,KE, δE, γE)
1 T ← ∅; set γr

KF ← 0;
2 initialize OFLe with (G, d, F,KF , δF , γ) and let (X, a) be the virtual solution;
3 (T, cT)← FRT(V, d);
4 foreach edge e of T do
5 initialize an instance AlgRandOPP[e] with (KE , δE, γE);
6 when Dt arrives do
7 foreach j ∈ Dt do
8 P ← pathT(j, r);
9 foreach edge e ∈ P do

10 send 1 at instant t to AlgRandOPP[e], obtaining a permit (ke, te);
11 T ← T ∪ {(e, ke, te)};
12 send (j, t) to OFLe and update the virtual solution (X, a);
13 let (f, k, t̂)← a(j, t); T ← T ∪ {((f, j), 1, t)};
14 return (X, a, T);

Algorithm 14.4: Online algorithm for LeCFLe.

The algorithm builds, utilizing algorithm FRT, a tree T with VT = V whose distances
O(lg |V |)-approximate the distances in G. Then, for each edge of the tree, the algorithm
maintains an instance of algorithm AlgRandOPP. Besides, similarly to Algorithm 14.3,
the algorithm maintains a virtual solution of algorithm OFLe. Algorithm 14.4, however,
will always follow the decisions of the virtual solution. For each client (j, t) that arrives,
the algorithm leases the edges in the path from j to r in T, using the leasing types
suggested by the corresponding instances of algorithm AlgRandOPP. The algorithm
leases the facility suggested by the virtual solution of algorithm OFLe, and connects the
facility to the tree using an edge lease of type 1 through j.

Theorem 14.2 : Algorithm 14.4 is O(KF lg n+ lgKE lg |V |)-competitive when γE
1 = 1.

Proof: Given a solution returned by the algorithm, let L be the facility leasing cost,
C the client connection cost, and S the core tree cost. Similarly, let L∗, C∗ and S∗ be
those costs on an optimum solution.

Let L′ be the facility leasing cost and C ′ be the client connection cost of the virtual
solution produced by OFLe algorithm. We have that L+C = L′+C ′ = O(K lgn)·optFLe.

1Our definition is more general than if we leased edges between clients and facilities: since those
edges would always be leased with type 1 because they are not reusable, that would be equivalent to
divide all edge leasing costs by γE

1
and have γE

1
= 1. Similarly, in this variant we do not have a scaling

parameter M ; this is equivalent to multiply all edge leasing costs by M , thus our definition of the problem
is more general, since edge leasing costs do not necessarily share a common divisor.

110

Since an optimum solution for CFLe induces a feasible solution for FLe, optFLe ≤ L∗+C∗,
so L+ C = O(K lgn) · (L∗ + C∗).

We bound S by the cost of solving SLe on D, plus the cost of an edge lease of type 1
between each client and its assigned facility lease, which is the connection cost for that
client since γE

1 = 1. Thus, S ≤ O(lgKE lg |V |) · optSLe + C. Since the optimum core
tree combined with an edge lease of type 1 between each client and its optimum facility
induces a feasible solution for SLe on D, we have that optSLe ≤ S∗+C∗ and the theorem
follows. �

We can improve this and obtain a deterministic O((KF +KE) lg n)-competitive algo-
rithm for M = 1 by using the online algorithm by Bienkowski, Kraska and Schmidt for
STLe, which is O(K lg n)-competitive [9]. However, this paper was published soon before
the deadline for the thesis, so we do not present the improved algorithm here. It is quite
similar to Algorithm 14.4, though.

If we replace algorithm ST with the algorithm by Anthony and Gupta for STLe,
which is a O(K)-approximation [4], at Line 3 of Algorithm 14.1, then we obtain an offline
algorithm for LeCFLe which is a O(KE)-approximation. The proof is similar to that of
Theorem 14.1, so we omit it.

14.3 Multi-commodity connected facility leasing

In MCFLe, the input consists of a complete graph G = (V,E), a metric distance d :

V ×V 7→ Q+, a set F ⊆ V of potential facilities, K facility leasing lengths δ1, . . . , δk ∈ N,
a cost γf

k ∈ Q+ for leasing facility f ∈ F with leasing type k ∈ [K], a constant M ≥ 1 and
a sequence P0, . . . , PT−1 ⊆ V ×V of sets of pairs of clients. We denote by F := F×[K]×Z+

the set of possible facility leases. Let X ⊆ F , T ⊆ E, u, v ∈ V and t ∈ Z+; we denote by
dX,T (u, v, t) the distance between u and v in the graph in which we add to G edges of cost
zero between each pair of facility leases in X that are in the same tree in T and that are
active at instant t. We also denote by P := {(u, v, t) : (u, v) ∈ Pt for t ∈ {0, . . . , T − 1}}

the set of client pair requests. The goal is to find a set X ⊆ F of facility leases and a
forest T ⊆ E which minimize

∑

(f,k,t̂)∈X

γf
k +

∑

(u,v,t)∈P

dX,T (u, v, t) +M ·
∑

e∈T

d(e).

In this section we present an offline and an online algorithm for MCFLe, which
are extensions of Algorithms 14.1 and 14.3. Both algorithms use as a subroutine al-
gorithms for FLeP, in which we may choose not to serve a client request (j, t) by paying
a penalty π(j, t).

We present, in Algorithm 14.5, an offline algorithm for MCFLe; it is similar to Algo-
rithm 13.5. The algorithm runs an instance of Algorithm 12.2, which is a 3-approximation
for FLeP. For each pair (u, v) ∈ Pt, we assign a penalty of d(u, v)/2 to both (u, t) and
(v, t). If both client requests are assigned to facility leases in the FLeP solution, then
the algorithm includes a set consisting of these two clients in D′; otherwise, the algorithm

111

will connect u and v directly. Then the algorithm runs the 2-approximation primal-dual
algorithm for SF [2] on the pairs in D′, and adds an edge between each client in D′ and
the facility assigned to the corresponding client request. The algorithm then returns only
facility leases that serve client requests in D′.

Input: (G, d, F,K, δ, γ,M, P0, . . . , PT−1)
1 foreach (u, v) ∈ Pt do set π(u, t)← π(v, t)← d(u, v)/2;
2 let Dt ←

⋃

(u,v)∈Pt
{u, v};

3 (X ′, a′)← FLeP(G, d, F,K, δ, γ,D0, . . . , DT−1, π);
4 D′ ← {{(u, t), (v, t)} : (u, v) ∈ Pt : a

′(u, t) 6= null and a′(v, t) 6= null};
5 X ← {(f, k, t̂) ∈ X ′ : ∃(u, t) ∈ D′ : a′(u, t) = (f, k, t̂)};
6 T ← SF(G, d,D′) ∪ {(u, a′(u, t)) : (u, t) ∈ D′};
7 return (X, T);

Algorithm 14.5: Approximation algorithm for MCFLe.

Theorem 14.3 : Algorithm 14.5 is an 8-approximation if M = 1.

Proof: Given a solution returned by the algorithm, let L be the facility leasing cost,
C the client connection cost, and S the core tree cost. Similarly, let L∗, C∗ and S∗ be
those costs on an optimum solution.

Let L′ be the facility leasing cost, C ′ be the client connection cost, and Π′ be the
penalty cost of the solution returned by the FLeP algorithm on D :=

⋃T−1
t=0 Dt. We have

that L′ +C ′ +Π′ ≤ 3 · optFLeP. Given an optimum solution for MCFLe on P, we obtain
a feasible solution for FLeP on D by paying the penalties for the clients in the pairs that
are connected directly, and by assigning the other clients to the closest facility lease in
the path connecting the pair. Thus, optFLeP ≤ L∗ +C∗ and L′ +C ′ +Π′ ≤ 3 · (L∗ + C∗).

Since Algorithm 14.5 leases a subset of the facility leases in X ′, clearly L ≤ L′.

For a request (u, v, t) connected directly by Algorithm 14.5, we have that one of (u, t)
and (v, t) pays for its penalty cost. Suppose w.l.o.g. that it is (u, t); then dX,T (u, v, t) ≤

2·π(u, t). For a request (u, v, t) connected through the core tree, our algorithm adds to the
tree a whole path between a′(u, t) and a′(v, t), so dX,T (u, v, t) ≤ d(u, a′(u, t))+d(v, a′(v, t)).
Thus C ≤ 2 · Π′ + C ′.

Since M = 1, we bound S by the cost of solving SF on D′, plus the cost of connecting
each client in D′ to its assigned facility lease. Thus, S ≤ 2 ·optSF(D

′)+C ′ ≤ 2 ·optSF(P)+

C ′. Since the optimum core tree combined with the optimum client connection edges
induces a feasible solution for SF on P, we have that optSF(P) ≤ S∗ + C∗. Substituting
the previous inequalities, we have that

L+ C + S ≤ L′ + 2 · Π′ + C ′ + 2 · (S∗ + C∗) + C ′

≤ 2 · (S∗ + C∗) + 2 · (L′ +Π′ + C ′)

≤ 2 · (S∗ + C∗) + 6 · (L∗ + C∗) ≤ 8 · (L∗ + C∗ + S∗) .

�

112

In the online version of MCFLe, numbers T and n :=
∑T−1

t=0 |Dt| are unknown, sets Pt

are revealed one at a time, and we must return sequences of sets X0, . . . , XT−1 ⊆ F

and T0, . . . , TT−1 ⊆ E, where Xt ⊇ Xt−1 and Tt ⊇ Tt−1 for t = 1, . . . , T − 1, and for
t = 0, . . . , T − 1, we must build Xt, Tt only with the information of P0, . . . , Pt, X0, . . . , Xt,
T0, . . . , Tt. Also, the objective function is slightly different: minimize

∑

(f,k,t̂)∈XT−1

γf
k +

∑

(u,v,t)∈P

dXt,Tt(u, v, t) +M ·
∑

e∈TT−1

d(e);

i.e., we can only use facility leases and core edges bought up to instant t to connect clients
arriving at instant t.

We give the following online algorithm for this problem. The algorithm combines
ideas from Algorithms 14.5 and 14.3. We maintain a virtual solution of the O(K lg n)-
competitive online algorithm for FLeP by San Felice et al. [63], which we denote by
OFLeP. We also maintain a virtual solution of the O(lgn)-competitive online algorithm
for SF by Berman and Coulston [8], which we denote by OSF. For each pair of clients
(u, v) that arrives at instant t, we send two requests to algorithm OFLeP: (u, t) and (v, t),
with π(u, t) = π(v, t) = d(u, v)/2. If algorithm OFLeP decides to pay the penalty for at
least one of those requests, then we connect them directly. Otherwise, algorithm OFLeP

leases a facility for each client request: we mimic this behavior and lease both facilities.
Then we buy core edges connecting u and v via algorithm OSF. We also buy the edges
between u, v and their respective facility leases.

Input: (G, d, F,K, δ, γ,M)
1 X1 ← ∅, T1 ← ∅;
2 initialize OFLeP with (G, d, F,K, δ, γ); let (X ′, a′) be the virtual solution;
3 initialize OSF with (G, d) and let T ′ be the virtual solution;
4 when Pt arrives do
5 if t > 0 then Xt ← Xt−1, Tt ← Tt−1;
6 foreach (u, v) ∈ Pt do
7 set π(u, t)← π(v, t)← d(u, v)/2;
8 send (u, t, π(u, t)) and (v, t, π(v, t)) to OFLeP and update the virtual

solution (X ′, a′);
9 if a′(u, t) 6= null and a′(v, t) 6= null then

10 Xt ← Xt ∪ {a
′(u, t), a′(v, t)};

11 send (u, v) to OSF and update the virtual solution T ′;
12 Tt ← Tt ∪ T

′ ∪ {(u, a′(u, t)), (v, a′(v, t))};
13 return (X0, . . . , XT−1, T0, . . . , TT−1);

Algorithm 14.6: Online algorithm for MCFLe.

Theorem 14.4 : Algorithm 14.6 is O(K lg n)-competitive if M = 1.

Proof: Given a solution returned by the algorithm, let L be the facility leasing cost,
C the client connection cost, and S the core tree cost. Similarly, let L∗, C∗ and S∗ be
those costs on an optimum solution.

Denote by D the set of client requests as in Line 8 of the algorithm. Let L′ be the

113

facility leasing cost, C ′ be the client connection cost, and Π′ be the penalty cost of the
virtual solution produced by OFLeP onD. We have that L′+C ′+Π′ = O(K lg n)·optFLeP.
Given an optimum solution for MCFLe on P, we obtain a feasible solution for FLeP

on D by paying the penalties for the clients in the pairs that are connected directly, and
by assigning the other clients to the closest facility lease in the path connecting the pair.
Thus, optFLeP ≤ L∗ + C∗ and L′ + C ′ +Π′ = O(K lg n) · (L∗ + C∗).

Since Algorithm 14.6 leases a subset of the facility leases in X ′, clearly L ≤ L′.

For a request (u, v, t) connected directly by Algorithm 14.6, we have that one of (u, t)
and (v, t) pays for its penalty cost. Suppose w.l.o.g. that it is (u, t); then dXt,Tt(u, v, t) ≤

2 · π(u, t). For a request (u, v, t) connected through the core tree, our algorithm adds
to the tree a whole path between a′(u, t) and a′(v, t), so dXt,Tt(u, v, t) ≤ d(u, a′(u, t)) +

d(v, a′(v, t)). Thus C ≤ 2 · Π′ + C ′.

Let D′ be the set of client requests that are connected through the core tree in Line 12
of Algorithm 14.6. Since M = 1, we bound S by the cost of the virtual solution produced
by OSF on D′, plus the cost of connecting each client in D′ to its assigned facility lease.
Thus, S ≤ O(lg n) · optSF(D

′) + C ′ ≤ O(lg n) · optSF(P) + C ′. Since the optimum core
tree combined with the optimum client connection edges induces a feasible solution for
SF on P, we have that optSF(P) ≤ S∗ + C∗ and the theorem follows. �

We omit the presentation of the offline and online algorithms for MLeCFLe, since
they follow the ideas in the algorithms for LeCFLe and MCFLe. Note, however, that
the algorithm by Anthony and Gupta [4] solves STLe, not SLe. We described a O(lg n)-
approximation algorithm for SLe on Section 10.2, which uses the same approach as the
online algorithm by Meyerson [59]. Replacing this algorithm with algorithm SF on Line 6
of Algorithm 14.5, we obtain a O(lg n)-approximation algorithm for MLeCFLe. The
online algorithm simply combines Algorithm 14.4 and Algorithm 14.6; the proof of the
competitive factor is also similar.

114

Part V

Final Remarks

115

Chapter 15

Journey

In a first moment, the subject of this Ph.D. was incremental network design problems [39,
67]. Hartline [39] showed that, for any minimization covering problem that admits an α-
approximation algorithm, there exists a 4α-competitive incremental algorithm. Our idea
was to use study specific structural properties of network design problems and algorithms,
in order to obtain better results than those yielded by this reduction. However, at that
time, we concluded that this could not be achieved, and that this path was not very
promising for a Ph.D. research. Nowadays, we still have the same opinion.

Then, we moved our research towards the leasing optimization model. In a first
moment we proposed CFLe and LeCFLe. LeRoB, which had already been studied by
Anthony and Gupta [4], inspired us to propose GPP. Our initial focus was only on online
algorithms.

Our first result was Algorithm 14.3 for online CFLe, and the proof that it is O(K lg n)-
competitive when M = 1. We presented this result at ETC’16 [19]. In a first moment
we believed that it was also O(K lg n)-competitive for M > 1, but we could not prove
it. We also tried to modify the online CFL algorithm by Umboh in order to obtain a
good algorithm to CFLe, and eventually we obtained a very sophisticated algorithm that
seemed to be competitive, but we could not analyze it.

At the same time we were working on GPP. Prof. Orlando proposed a simplifica-
tion of the problem, which is MPP. The first result we obtained for those problems
was Lemma 6.2. By that time I did not realize that GPP was not generalized by the
2DPP version studied by Hu et al. [41], so my only hope was to obtain a randomized
O(lgK)-competitive online algorithm for GPP. My idea was that GPP could be solved by
combining contributions from single permits obtained via oracles for MPP. So we started
to study how different GPP strategies worked for an hypothetical optimum oracle for
MPP (since by that time we did not have an exact algorithm, even under IM). I thought
that, if the strategy worked well with the optimum oracle, then it would also work well
with an online oracle. In that direction, we got to rule out a simple strategy in which
only permits of type k contribute to group permits of type k. We present an example
which shows that this strategy has approximation factor Ω(K) in Appendix A. We also
ruled out a strategy in which permits of types 1, . . . , k contribute to group permits of
type k, but which does not limit the contribution in each interval, as Algorithm 7.1 does.
However, in this case I could only see that the strategy would lead to a Ω(K)-competitive

116

online algorithm, even with an optimum oracle, and I could not formalize a generic family
of bad instances.

In the meanwhile, Prof. Mário suggested that we tried to find an approximation al-
gorithm for FLeP, in whose online version he had been working. We obtained then the
3-approximation algorithm of Section 12.2. Since we considered this an incremental result,
we published it as a technical report [18]. Later, we published it at ETC’17 [21].

As the deadline to LAGOS’17 approached, we started to write our results, and we
decided to submit two papers. We figured out that the strategy of combining Steiner and
facility leasing algorithms for online CFLe when M = 1 also worked for the offline setting,
for LeCFLe, and for multi-commodity versions of those problems. We also proved that
the algorithms for CFLe had arbitrarily bad performance for M > 1. We submitted this
first paper to LAGOS but it was rejected; we believe that the short number of pages did
not help us. (Later on, we prepared a longer version to ICTCS’17 and it was accepted [20].)
The other paper contained the results for MPP and SNLe [22]. As we were writing the
papers for LAGOS, I also obtained the algorithm of Section 8.2 for H2DPP. Only after
we submitted the paper I found out that H2DPP and O2DPP were different problems,
and that GPP was not generalized by H2DPP. (Fortunately, we got to remove wrong
sentences in the final version.)

By that time, I already had an intuition that Algorithm 7.1 was a 2-approximation to
GPP under IM, but we could not prove it. In a certain moment, I thought that I had an
example for which the algorithm had an arbitrarily bad approximation factor, until we
could prove Lemma 7.3. Indeed, I believed this lemma to be true for a long time, and we
already had the ideas for the rest of the proof of the approximation factor. The original
proof was a bit more complicated, and involved an induction on the optimal substructure
of the problem. As we began to write the proof, we figured out that one of the cases was
generic enough, which yielded the proof we have now.

To obtain the online O(K)-competitive algorithm for GPP of Section 7.2 was a bit
easier, since I was already familiar with the problem. I also believed that we had a
pseudo-polynomial O(KL)-competitive online algorithm for O2DPP, but I figured out
that it was not true when I found an error in a preliminary proof of the online algorithm
for GPP.

Then we started to try to prove whether MPP, GPP and H2DPP were NP-hard
or could be solved in polynomial time if we do not require IM. While trying to find a
proof of NP-hardness for MPP, I got to prove that 2DPP is NP-hard by reducing CM to
2DPP. Then I remembered that, at the paper by Awerbuch and Azar on BaBND, they
point that BaBND on a single edge “is an integer min-knapsack problem known to be
NP-hard” [5]. If I had payed attention to that before, I could have found this result more
easily, since for me it was already clear that LeBaBND on a single edge corresponds to
2DPP, and that LeBaBND is a generalization of BaBND.

The last result we found was that arbitrary instances of MPP (even not assuming IM)
could be solved in polynomial time. Prof. Mário suggested that we considered primal-dual
algorithms for MPP and GPP, so I decided to write a linear program formulation of those
problems and to run computational experiments on random instances, in order to obtain
more intuition about the problems. It turned out that the solver would always obtain an

117

integral solution for MPP, but for GPP there was an integrality gap even under IM. On
the same day I started to search the Web for integrality gap (I did not remembered the
results, which I had seen 8 years before in my Master’s during Prof. Yoshiko’s classes on
approximation algorithms and combinatorial optimization), until I got to totally unimod-
ular matrices (which I had seen in a Prof. Orlando’s class in the first year of my Ph.D.)
and figured out that MPP had such a matrix. (Indeed, it is a recurrent example of a
simple totally unimodular matrix.)

Our last hope was to prove that GPP is weakly NP-hard under IM, but we could not
do it. The deadline for the thesis was approaching, so we decided to stick with what we
already had, and to submit the results about MPP, GPP and 2DPP to a journal [23].

118

Chapter 16

List of Results and Publications

Regarding parking permit problems, we obtained the following results:

1. We showed that MPP can be solved in polynomial time;

2. We showed an approximation-preserving reduction from MPP to PP, which yields
a deterministic O(K)-competitive online algorithm and a randomized O(lgK)-com-
petitive online algorithm for MPP;

3. We obtained an 8-approximation algorithm and a O(K)-competitive online algo-
rithm for GPP. We also proved that GPP has non-trivial integrality gap. We
consider those to be the most interesting results in our thesis;

4. We showed how to turn the approximation and online algorithms for H2DPP by
Hu et al. [41] into polynomial-time algorithms. We also showed that their original
pseudo-polynomial approximation algorithm works for generic 2DPP;

5. We proved that 2DPP is NP-hard, even if we assume IM but do not assume HCP.

Those results yield the following results for network leasing problems:

6. For SNLe, we obtain a O(lg n)-approximation algorithm and a O(lgK lg |V |)-com-
petitive online algorithm;

7. For LeRoB, we obtain a O(lg n)-approximation algorithm, which improves the pre-
vious best result, and a O(K lg |V |)-competitive online algorithm;

8. For HLeBaBND, we obtain a O(lg n)-approximation algorithm and a O(K lg |V |)-
competitive online algorithm;

9. For LeBaBND, we obtain a pseudo-polynomial O(lg n)-approximation algorithm.

Those results have been submitted to

• M. S. de Lima, M. C. San Felice, and O. Lee. Group parking permit problems.
Discrete Applied Mathematics, 2018 (submitted).

119

Items 2 and 6, and a mention to items 4 and 8 appeared in an earlier conference paper:

• M. S. de Lima, M. C. San Felice, and O. Lee. On generalizations of the parking per-
mit problem and network leasing problems. In F. Bassino, F. Bonomo, L. Pournin,
M. Valencia-Pabon, and J. C. V. Lizcano, editors, LAGOS’17: IX Latin and Amer-

ican Algorithms, Graphs, and Optimization Symposium, volume 62 of Electronic

Notes in Discrete Mathematics, pages 225–230. Elsevier, 2017.

With regard to facility leasing problems, we obtained

10. a 3-approximation algorithm for FLeP,

which was published in

• M. S. de Lima, M. C. San Felice, and O. Lee. Facility leasing with penalties. In
CSBC’17: Anais do XXXVII Congresso da Sociedade Brasileira de Computação,
ETC’17: II Encontro de Teoria da Computação, pages 27–30, 2017.

We also obtained the following results for connected facility leasing problems:

11. A 7.39-approximation algorithm and a O(K lgn)-competitive online algorithm for
CFLe when M = 1;

12. A O(KE)-approximation algorithm and a O(KF lg n+lgKE lg |V |)-competitive on-
line algorithm for LeCFLe when γE

1 = 1;

13. An 8-approximation algorithm and a O(K lg n)-competitive online algorithm for
MCFLe when M = 1;

14. A O(lgn)-approximation algorithm and a O(KF lgn+lgKE lg |V |)-competitive on-
line algorithm for MLeCFLe when γE

1 = 1.

Those results were published in

• M. S. de Lima, M. C. San Felice, and O. Lee. Connected facility leasing problems.
In ICTCS’17: 18th Italian Conference on Theoretical Computer Science, pages 162–
173, 2017.

Also, the online algorithm of item 11 was published in

• M. S. de Lima, M. C. San Felice, and O. Lee. On a leasing variant of the online
connected facility location problem. In CSBC’16: Anais do XXXVI Congresso da

Sociedade Brasileira de Computação, ETC’16: I Encontro de Teoria da Computação,
pages 836–839, 2016.

120

Chapter 17

Open Questions and Further Research

Directions

Regarding parking permit problems, we leave the following questions open:

1. We do not know if, under IM, GPP is weakly NP-hard or can be solved in polynomial
time. If the former is true, then an open question is whether we can obtain an
FPTAS under IM.

2. If GPP is weakly NP-hard under IM, it can still be strongly NP-hard if we do not
assume IM, even though the fact that MPP is polynomial is an evidence that this
is not true. Another question is if we can obtain a better approximation algorithm
than 4(1 + ǫ) if we do not assume IM.

3. We do not know if Algorithm 7.1 has approximation factor better than 2 under IM.
We have a lower bound of 4/3, and experiments on random instances never attained
approximation factor greater than 4/3.

4. Note that, if GPP is weakly NP-hard under IM, then O2DPP is weakly NP-hard
even under 2DIM. NP-hardness and approximability questions analogue to those in
items 1 and 2 apply to this problem.

5. Although H2DPP is weakly NP-hard if we assume IM but do not assume HCP, it
is not clear whether we can obtain a polynomial-time algorithm if we do not assume
IM but assume HCP.

6. It would be very nice if we could extend the ideas we developed for GPP to obtain
a constant-approximation algorithm for O2DPP which runs in polynomial time.
That would also improve the approximation result for OLeBaBND by Anthony
and Gupta [4].

7. We do not know a randomized o(K)-competitive online algorithm for GPP or
H2DPP.

We also do not know if there is an algorithm for FLeP with approximation factor
better than 3, and if there are good approximation and online algorithms for connected
facility location problems when the (smallest) edge scaling factor is not a constant.

121

Other future research directions include:

• To study leasing variants of other facility location problems, such as capacitated fa-
cility location problems [15] and facility location problems with client latencies [13];

• To study generalizations such as GPP and 2DPP to variants of the parking permit
problem, such as such as when a demand has a time window to be served after
its arrival [55], or when leasing prices fluctuate along time [28]. It would be also
interesting to study facility location and connected facility location problems in
those leasing models.

122

Bibliography

[1] S. Abshoff, P. Kling, C. Markarian, F. M. auf der Heide, and P. Pietrzyk. Towards
the price of leasing online. Journal of Combinatorial Optimization, 32(4):1197–1216,
2015.

[2] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm
for the generalized Steiner problem on networks. SIAM Journal on Computing,
24(3):440–456, 1995.

[3] M. Andrews. Hardness of buy-at-bulk network design. In FOCS’04: 45th Annual

IEEE Symposium on Foundations of Computer Science, pages 115–124, 2004.

[4] B. M. Anthony and A. Gupta. Infrastructure leasing problems. In M. Fischetti and
D. P. Williamson, editors, Integer Programming and Combinatorial Optimization,
volume 4513 of Lecture Notes in Computer Science, pages 424–438. Springer Berlin
Heidelberg, 2007.

[5] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In FOCS’97: Proceedings

38th Annual Symposium on Foundations of Computer Science, pages 542–547, 1997.

[6] B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized Steiner problem. Theoret-

ical Computer Science, 324(2):313–324, 2004.

[7] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic appli-
cations. In FOCS’96: Proceedings of 37th Conference on Foundations of Computer

Science, pages 184–193, 1996.

[8] P. Berman and C. Coulston. On-line algorithms for Steiner tree problems (extended
abstract). In STOC’97: Proceedings of the 29th Annual ACM Symposium on Theory

of Computing, pages 344–353, 1997.

[9] M. Bienkowski, A. Kraska, and P. Schmidt. A deterministic algorithm for online
Steiner tree leasing. In F. Ellen, A. Kolokolova, and J.-R. Sack, editors, Algorithms

and Data Structures, volume 10389 of Lecture Notes in Computer Science, pages
169–180. Springer Berlin Heidelberg, 2017.

[10] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

123

[11] J. Byrka and K. Aardal. An optimal bifactor approximation algorithm for the metric
uncapacitated facility location problem. SIAM Journal on Computing, 39(6):2212–
2231, 2010.

[12] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner tree approximation via
iterative randomized rounding. Journal of the ACM, 60(1), 2013.

[13] D. Chakrabarty and C. Swamy. Facility location with client latencies: Linear pro-
gramming based techniques for minimum latency problems. In O. Günlük and G. J.
Woeginger, editors, Integer Programming and Combinatorial Optimization, volume
6655 of Lecture Notes in Computer Science, pages 92–103. Springer Berlin Heidelberg,
2011.

[14] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility
location problems with outliers. In SODA’01: Proceedings of the 12th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 642–651, 2001.

[15] X. Chen and B. Chen. Approximation algorithms for soft-capacitated facility location
in capacitated network design. Algorithmica, 53(3):263–297, 2009.

[16] M. H. de Carvalho, M. R. Cerioli, R. Dahab, P. Feofiloff, C. G. Fernandes, C. E.
Ferreira, K. S. Guimarães, F. K. Miyazawa, J. C. de Pina Jr., J. A. R. Soares, and
Y. Wakabayashi. Uma Introdução Sucinta a Algoritmos de Aproximação. Publicações
Matemáticas do IMPA, 2001.

[17] M. S. de Lima. Aproximação de métricas finitas por métricas arbóreas e aplicações.
Master’s thesis, Universidade de São Paulo, 2011.

[18] M. S. de Lima, M. C. San Felice, and O. Lee. Facility leasing with penalties. arXiv

preprint arXiv:1610.00575, 2016.

[19] M. S. de Lima, M. C. San Felice, and O. Lee. On a leasing variant of the online
connected facility location problem. In CSBC’16: Anais do XXXVI Congresso da

Sociedade Brasileira de Computação, ETC’16: I Encontro de Teoria da Computação,
pages 836–839, 2016.

[20] M. S. de Lima, M. C. San Felice, and O. Lee. Connected facility leasing problems. In
ICTCS’17: 18th Italian Conference on Theoretical Computer Science, pages 162–173,
2017.

[21] M. S. de Lima, M. C. San Felice, and O. Lee. Facility leasing with penalties. In
CSBC’17: Anais do XXXVII Congresso da Sociedade Brasileira de Computação,
ETC’17: II Encontro de Teoria da Computação, pages 27–30, 2017.

[22] M. S. de Lima, M. C. San Felice, and O. Lee. On generalizations of the parking per-
mit problem and network leasing problems. In F. Bassino, F. Bonomo, L. Pournin,
M. Valencia-Pabon, and J. C. V. Lizcano, editors, LAGOS’17: IX Latin and Ameri-

can Algorithms, Graphs, and Optimization Symposium, volume 62 of Electronic Notes

in Discrete Mathematics, pages 225–230. Elsevier, 2017.

124

[23] M. S. de Lima, M. C. San Felice, and O. Lee. Group parking permit problems.
Discrete Applied Mathematics, 2018 (submitted).

[24] Z. Drezner and H. W. Hamacher, editors. Facility Location: Applications and Theory.
Springer, 2002.

[25] F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Connected facility location
via random facility sampling and core detouring. Journal of Computer and System

Sciences, 76(8):709–726, 2010.

[26] A. N. Elmachtoub and R. Levi. From cost sharing mechanisms to online selection
problems. Mathematics of Operations Research, 40(3):542–557, 2015.

[27] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
2004.

[28] B. Feldkord, C. Markarian, and F. M. auf der Heide. Price fluctuation in online leas-
ing. In X. Gao, H. Du, and M. Han, editors, Combinatorial Optimization and Appli-

cations, volume 10628 of Lecture Notes in Computer Science, pages 17–31. Springer
Berlin Heidelberg, 2017.

[29] L. Fleischer, J. Könemann, S. Leonardi, and G. Schäfer. Strict cost sharing schemes
for Steiner forest. SIAM Journal on Computing, 39(8):3616–3632, 2010.

[30] D. Fotakis. A primal-dual algorithm for online non-uniform facility location. Journal

of Discrete Algorithms, 5(1):141–148, 2007.

[31] D. Fotakis. On the competitive ratio for online facility location. Algorithmica,
50(1):1–57, 2008.

[32] D. Fotakis and P. Koutris. Online sum-radii clustering. Theoretical Computer Science,
540–541:27–39, 2014.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory

of NP-Completeness. Freeman, 1979.

[34] F. Grandoni and G. F. Italiano. Improved approximation for single-sink buy-at-bulk.
In T. Asano, editor, Algorithms and Computation, volume 4288 of Lecture Notes in

Computer Science, pages 111–120. Springer Berlin Heidelberg, 2006.

[35] F. Grandoni and T. Rothvoß. Approximation algorithms for single and multi-
commodity connected facility location. In O. Günlük and G. J. Woeginger, editors,
Integer Programming and Combinatoral Optimization, volume 6655 of Lecture Notes

in Computer Science, pages 248–260. Springer Berlin Heidelberg, 2011.

[36] A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approximation via cost sharing:
Simpler and better approximation algorithms for network design. Journal of the

ACM, 54(3), 2007.

125

[37] A. Gupta, R. Ravi, K. Talwar, and S. Umboh. LAST but not least: Online spanners
for buy-at-bulk. In SODA’17: Proceedings of the 28th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 589–599, 2017.

[38] A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network design.
Algorithmica, 50(1):98–119, 2008.

[39] J. R. K. Hartline. Incremental Optimization. PhD thesis, Cornell University, 2008.

[40] D. S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Pro-

gramming, 22(1):148–162, 1982.

[41] X. Hu, A. Ludwig, A. Richa, and S. Schmid. Competitive strategies for online cloud
resource allocation with discounts: The 2-dimensional parking permit problem. In
ICDCS’15: IEEE 35th International Conference on Distributed Computing Systems,
pages 93–102, 2015.

[42] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM, 22(4):463–468, 1975.

[43] M. Imase and B. M. Waxman. Dynamic Steiner tree problem. SIAM Journal on

Discrete Mathematics, 4(3):369–384, 1991.

[44] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica, 21(1):39–60, 2001.

[45] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility
location algorithms analyzed using dual fitting with factor-revealing lp. Journal of

the ACM, 50(6):795–824, 2003.

[46] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-Median problems using the primal-dual schema and Lagrangian relaxation.
Journal of the ACM, 48(2):274–296, 2001.

[47] D. R. Karger and M. Minkoff. Building Steiner trees with incomplete global knowl-
edge. In FOCS’00: Proceedings 41st Annual Symposium on Foundations of Computer

Science, pages 613–623, 2000.

[48] A. R. Karlin. On the performance of competitive algorithms in practice. In A. Fiat
and G. J. Woeginger, editors, Online Algorithms: The State of the Art, volume 1442
of Lecture Notes in Computer Science, pages 373–384. Springer Berlin Heidelberg,
1998.

[49] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy
caching. Algorithmica, 3(1–4):79–119, 1988.

[50] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Program-

ming. Addison-Wesley, 3rd edition, 1998.

126

[51] G. Konjevod, R. Ravi, and F. S. Salman. On approximating planar metrics by tree
metrics. Information Processing Letters, 80(4):213–219, 2001.

[52] C. Koufogiannakis and N. E. Young. Greedy ∆-approximation algorithm for covering
with arbitrary constraints and submodular cost. Algorithmica, 66(1):113–152, 2013.

[53] P. Koutris. Infrastructure leasing problems. Master’s thesis, National & Kapodistrian
University of Athens, 2010.

[54] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location prob-
lem. Information and Computation, 222:45–58, 2013.

[55] S. Li, A. Mäcker, C. Markarian, F. M. auf der Heide, and S. Riechers. Towards
flexible demands in online leasing problems. In D. Xu, D. Du, and D. Du, editors,
Computing and Combinatorics, volume 9198 of Lecture Notes in Computer Science,
pages 277–288. Springer Berlin Heidelberg, 2015.

[56] Y. Li, D. Du, N. Xiu, and D. Xu. Improved approximation algorithms for the facility
location problems with linear/submodular penalties. Algorithmica, 73(2):460–482,
2015.

[57] G. S. Lueker. Two NP-complete problems in nonnegative integer programming. Tech-
nical Report CS-178, Department of Electrical Engineering, Princeton University,
1975.

[58] A. Meyerson. Online facility location. In FOCS’01: Proceedings of the 42nd Sympo-

sium on Foundations of Computer Science, pages 426–431, 2001.

[59] A. Meyerson. The parking permit problem. In FOCS’05: 46th Annual IEEE Sym-

posium on Foundations of Computer Science, pages 274–282, 2005.

[60] C. Nagarajan and D. P. Williamson. Offline and online facility leasing. Discrete

Optimization, 10(4):361–370, 2013.

[61] Y. Rabinovich and R. Raz. Lower bounds on the distortion of embedding finite metric
spaces in graphs. Discrete and Computational Geometry, 19(1):79–94, 1998.

[62] M. C. San Felice, S.-S. Cheung, O. Lee, and D. P. Williamson. The online prize-
collecting facility location problem. In M. Campêlo, R. Corrêa, C. Linhares-Sales,
and R. Sampaio, editors, LAGOS’15: VIII Latin-American Algorithms, Graphs and

Optimization Symposium, volume 50 of Electronic Notes in Discrete Mathematics,
pages 151–156. Elsevier, 2015.

[63] M. C. San Felice, S.-S. Cheung, O. Lee, D. P. Williamson, and C. G. Fernandes. The
online prize-collecting facility leasing problem. (to be published), 2016.

[64] M. C. San Felice, C. G. Fernandes, and C. N. Lintzmayer. The online multicommod-
ity connected facility location problem. In R. Solis-Oba and R. Fleischer, editors,
Approximation and Online Algorithms, volume 10787 of Lecture Notes in Computer

Science, pages 118–131. Springer Berlin Heidelberg, 2018.

127

[65] M. C. San Felice, D. P. Williamson, and O. Lee. A randomized O(log n)-competitive
algorithm for the online connected facility location. Algorithmica, 76(4):1139–1157,
2016.

[66] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[67] A. M. Sharp. Incremental algorithms: solving problems in a changing world. PhD
thesis, Cornell University, 2007.

[68] M. Sviridenko. An improved approximation algorithm for the metric uncapacitated
facility location problem. In W. J. Cook and A. S. Schulz, editors, Integer Program-

ming and Combinatorial Optimization, volume 2337 of Lecture Notes in Computer

Science, pages 240–257. Springer Berlin Heidelberg, 2002.

[69] C. Swamy and A. Kumar. Primal–dual algorithms for connected facility location
problems. Algorithmica, 40(4):245–269, 2004.

[70] K. Talwar. The single-sink buy-at-bulk LP has constant integrality gap. In W. J.
Cook and A. S. Schulz, editors, Integer Programming and Combinatorial Optimiza-

tion, volume 2337 of Lecture Notes in Computer Science, pages 475–486. Springer
Berlin Heidelberg, 2002.

[71] W. T. Tutte. Lectures on matroids. Journal of Research National Bureau of Standards

Section B, 69:1–47, 1965.

[72] S. Umboh. Online network design algorithms via hierarchical decompositions. In
SODA’15: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 1373–1387, 2015.

[73] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[74] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

128

Appendix A

A Bad Example for a Simple GPP

Strategy

Consider an algorithm for GPP which, given an optimum solution to MPP, buys a group
permit of type k if the MPP algorithm buys ⌈M⌉ permits of type k for the same interval.
In principle, this seems like a good strategy, but we a have a family of examples which
shows that this algorithm is a Ω(K)-approximation even under IM.

The example has K types of permits, with arbitrary K ≥ 2. The length of permit
type k is δk = 2k−1, and the cost is γk = 2k−1 − (2k−1 − 1)ǫ, for some 0 < ǫ < 1

K−1
. Note

that, since ǫ < 1, we have that γk > γk−1 and all permits are useful.
Also, note that 2 · γk−1 = 2 ·

(

2k−2 − (2k−2 − 1)ǫ
)

= 2k−1 − (2k−1 − 2)ǫ = γk + ǫ > γk,
so those permits satisfy Equation (5.1).

Besides that, we show that those permits have the following property.

Fact A.1 :
K−1
∑

k=1

γk < γK .

Proof:

K−1
∑

k=1

γk =

K−1
∑

k=1

(

2k−1 − (2k−1 − 1
)

ǫ) =

K−2
∑

k=0

2k − ǫ

K−2
∑

k=0

2k + (K − 1)ǫ

= 2K−1 − 1− ǫ(2K−1 − 1) + (K − 1)ǫ

< 2K−1 − (2K−1 − 1)ǫ− 1 + (K − 1) ·
1

K − 1
= γK .

�

Take M integer such that

M >

(

K+1
2

)

2K−1 + ǫ

2K−1 − 2K−1ǫ−
(

K−1
2

)

ǫ
.

We define, then, for k = 1, . . . , K, a sequence of requests rk, with length 2k−1.
We define rk in and inductive manner. For k = 1, take r10 := M − 1. For k > 1,

129

rkt := M − 1 + rk−1
t for 0 ≤ t < 2K−2, and rtk := rk−1

(t−2K−2)
para 2K−2 ≤ t < 2K−1. In

Figure A.1 we show the sequence of requests for M = 4 and k = 1, . . . , 4.1

(a) (b) (c) (d)

Figure A.1: Sequence rk, with M = 4, for (a) k = 1, (b) k = 2, (c) k = 3, (d) k = 4.

The optimum solution for MPP for rK buys M − 1 permits of type K to serve the
lower M − 1 levels, plus the optimum solution for rK−1 to serve the left subinterval; for
the subinterval in the right, we subdivide it in intervals of type K − 1, and we use the
optimum solution for rK−2 for the left side, and proceed inductively for the right side.
(See Figure A.2.) Note that, since

∑K−1
k=1 γk < γK , MPP does not buy permits of type K

for levels above M − 1. Thus, we have that

optMPP(r
K) = (M − 1) · γK +

K−1
∑

k=1

optMPP(r
k).

(a) (b) (c) (d)

Figure A.2: Optimum MPP solution for rk, (a) k = 1, (b) k = 2, (c) k = 3, (d) k = 4.

1Note that for K = 4 we need M ≥ 5, but we use M = 4 in order to simplify the figures.

130

We prove by induction on K that

optMPP(r
K) = (M − 1) ·

(

γK +
K−1
∑

k=1

2K−1−kγk

)

.

The case with K = 1 is trivial; for K > 1, by induction hypothesis, for k = 1, . . . , K − 1,
we have that

optMPP(r
k) = (M − 1) ·

(

γk +
k−1
∑

ℓ=1

2k−1−ℓγℓ

)

,

so

optMPP(r
K) = (M − 1) · γK +

K−1
∑

k=1

(M − 1) ·

(

γk +

k−1
∑

ℓ=1

2k−1−ℓγℓ

)

= (M − 1) ·

(

γK +

K−1
∑

k=1

γk +

K−1
∑

k=1

k−1
∑

ℓ=1

2k−1−ℓγℓ

)

= (M − 1) ·

(

γK +
K−1
∑

k=1

γk +
K−1
∑

k=1

K−2−k
∑

ℓ=0

2ℓγk

)

(reordering summations)

= (M − 1) ·

(

γK +

K−1
∑

k=1

γk +

K−1
∑

k=1

γk

K−2−k
∑

ℓ=0

2ℓ

)

= (M − 1) ·

(

γK +
K−1
∑

k=1

γk +
K−1
∑

k=1

γk · (2
K−1−k − 1)

)

= (M − 1) ·

(

γK +

K−1
∑

k=1

2K−1−kγk

)

.

Note that the algorithm will never buy a group permit, since each interval of type k

has at most M − 1 permits of type k. The cost of a group permit of type K is

M · γK = M ·
(

2K−1 − (2K−1 − 1)ǫ
)

,

131

while the algorithm pays

(M − 1)

(

2K−1 − (2K−1 − 1)ǫ+
K−1
∑

k=1

2K−1−k
(

2k−1 − (2k−1 − 1)ǫ
)

)

= (M − 1)

(

2K−1 − (2K−1 − 1)ǫ+

K−1
∑

k=1

(

2K−2 − 2K−2ǫ+ ǫ · 2K−1−k
)

)

= (M − 1)

(

2K−1 − (2K−1 − 1)ǫ+ (K − 1)2K−2 − (K − 1)2K−2ǫ+ 2K−1ǫ
K−1
∑

k=1

1

2k

)

≥ (M − 1)

(

2K−1 − (2K−1 − 1)ǫ+
K − 1

2
2K−1 −

K − 1

2
2K−1ǫ

)

= M ·

(

K − 1

2

(

2K−1 − (2K−1 − 1)ǫ
)

+ 2K−1 − (2K−1 − 1)ǫ−
K − 1

2
ǫ

)

−

(

K + 1

2

(

2K−1 − 2K−1ǫ
)

+ ǫ

)

≥ M
K − 1

2

(

2K−1 − (2K−1 − 1)ǫ
)

+M

(

2K−1 − 2K−1ǫ−
K − 1

2
ǫ

)

−

(

K + 1

2
2K−1 + ǫ

)

≥ M
K − 1

2
γK , from the choice of M .

	List of Figures
	List of Tables
	List of Algorithms
	Contents
	I Introduction
	Optimization Problems, Approximation Algorithms
	Online Algorithms and Competitive Analysis
	Leasing Optimization
	Outline of the Text and Contributions

	II Parking Permit Problems
	Ski Rental and Parking Permit
	Ski Rental
	Parking Permit
	The Interval Model
	A Deterministic Online Algorithm

	Multi Parking Permit
	Group Parking Permit
	Offline Group Parking Permit
	Online Group Parking Permit

	2D Parking Permit
	A Pseudo-Polynomial Algorithm for Generic 2DPP
	Hierarchical 2D Parking Permit
	General Results via the Covering Problem

	Summary and Discussion
	Consequences for Network Leasing Problems
	Approximating a Finite Metric by a Tree Metric
	Steiner Leasing
	Steiner Network Leasing
	Leasing Rent-or-Buy
	Leasing Buy-at-Bulk Network Design
	Summary

	III Facility Leasing Problems
	Facility Location, Sometimes with Penalties
	A Simple 3-Approximation Algorithm
	Facility Location with Penalties
	Online Facility Location, with or without Penalties

	Facility Leasing, Sometimes with Penalties
	Facility Leasing
	Facility Leasing with Penalties

	IV Connected Facility Leasing Problems
	Connected Facility Location
	Offline Connected Facility Location
	A First Naïve Algorithm
	A Simple Sample-and-Augment Algorithm
	A More Sophisticated Algorithm

	Online Connected Facility Location
	Multi-Commodity Connected Facility Location

	Connected Facility Leasing
	Connected facility leasing
	Leasing-connected facility leasing
	Multi-commodity connected facility leasing

	V Final Remarks
	Journey
	List of Results and Publications
	Open Questions and Further Research Directions
	Bibliography
	A Bad Example for a Simple GPP Strategy

