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Resumo

Neste trabalho de doutorado, propomos a utilização de classificadores e técnicas de aprendizado

de máquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para

solução de alguns problemas em Processamento de Imagens e Visão Computacional.

Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes,

detecção de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens

naturais, autenticação, multi-classificação, entre outros.

Inicialmente, apresentamos uma revisão comparativa e cŕıtica do estado da arte em análise

forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar

as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com

esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em

comum: a seleção de caracteŕısticas e as técnicas de aprendizado a serem utilizadas. Nesse

estudo, também discutimos questões legais associadas à análise forense de imagens como, por

exemplo, o uso de fotografias digitais por criminosos.

Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto

de detecção de mensagens escondidas e de classificação geral de imagens em categorias como

indoors, outdoors, geradas em computador e obras de arte.

Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como re-

solver um problema multi-classe de modo a poder combinar, por exemplo, caracteŕısticas de

classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos

demasiadamente em como normalizar o vetor-comum de caracteŕısticas gerado? Como utili-

zar diversos classificadores diferentes, cada um, especializado e melhor configurado para um

conjunto de caracteŕısticas ou classes em confusão? Nesse sentido, apresentamos, uma técnica

para fusão de classificadores e caracteŕısticas no cenário multi-classe através da combinação de

classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação

automática de frutas e legumes.

Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização

de poderosos classificadores binários no contexto multi-classe mais eficiente e eficaz? Assim,

introduzimos uma técnica para combinação de classificadores binários (chamados classificadores

base) para a resolução de problemas no contexto geral de multi-classificação.
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Abstract

In this work, we propose the use of classifiers and machine learning techniques to extract useful

information from data sets (e.g., images) to solve important problems in Image Processing and

Computer Vision.

We are particularly interested in: two and multi-class image categorization, hidden mes-

sages detection, discrimination among natural and forged images, authentication, and multi-

classification.

To start with, we present a comparative survey of the state-of-the-art in digital image foren-

sics as well as hidden messages detection. Our objective is to show the importance of the existing

solutions and discuss their limitations. In this study, we show that most of these techniques

strive to solve two common problems in Machine Learning: the feature selection and the classi-

fication techniques to be used. Furthermore, we discuss the legal and ethical aspects of image

forensics analysis, such as, the use of digital images by criminals.

We introduce a technique for image forensics analysis in the context of hidden messages

detection and image classification in categories such as indoors, outdoors, computer generated,

and art works.

From this multi-class classification, we found some important questions: how to solve a

multi-class problem in order to combine, for instance, several different features such as color,

texture, shape, and silhouette without worrying about the pre-processing and normalization of

the combined feature vector? How to take advantage of different classifiers, each one custom

tailored to a specific set of classes in confusion? To cope with most of these problems, we present

a feature and classifier fusion technique based on combinations of binary classifiers. We validate

our solution with a real application for automatic produce classification.

Finally, we address another interesting problem: how to combine powerful binary classifiers

in the multi-class scenario more effectively? How to boost their efficiency? In this context,

we present a solution that boosts the efficiency and effectiveness of multi-class from binary

techniques.
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constante.

Quero agradecer ao meu orientador Siome Goldenstein. Suas dicas foram muito importantes
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Caṕıtulo 1

Introdução

Em Processamento de Imagens e Visão Computacional, muitas vezes, a solução de determinados

problemas pode exigir o correto entendimento do contexto da cena analisada ou mesmo das

inter-relações compartilhadas por cenas de um mesmo grupo semântico. No entanto, definir

precisamente as nuanças e caracteŕısticas que gostaŕıamos de selecionar não é uma tarefa fácil.

Nesse contexto, técnicas de aprendizado de máquina e reconhecimento de padrões podem tornar-

se ferramentas valiosas.

A extração de caracteŕısticas representativas de um conjunto de dados (e.g., imagens) é uma

tarefa complexa, e exige modelos sofisticados. Não há uma forma única e sistemática para extrair

caracteŕısticas ou relações métricas entre exemplos. Como passo inicial, podemos utilizar duas

abordagens principais: generativa e discriminativa [146].

Com a abordagem generativa, procuramos resolver um problema dando ênfase no processo

de geração dos dados sob análise. Normalmente, modelamos o sistema como uma distribuição

conjunta de probabilidade (Joint probability function) e, desta forma, podemos criar exemplos

artificiais que podem ser inseridos no sistema. Exemplos de modelos que utilizam a abordagem

generativa são: Classificadores Bayesianos, Markov Random Fields e Gaussian Mixture Mo-

dels [55]. Por outro lado, na abordagem discriminativa, procuramos encontrar as fronteiras que

melhor separam um conjunto de classes do nosso problema. Classificadores como Support Vector

Machines (SVMs) [31] utilizam esta abordagem. Para entender melhor, considere a Figura 1.1.

Nesse problema de classificação, a abordagem generativa objetiva encontrar relações métricas na

classe dos ćırculos (+1) e dos triângulos (−1), de modo a modelar o processo de geração desses

dados. Em contrapartida, a abordagem discriminativa procura modelar a melhor fronteira de

separação das duas classes.

De forma geral, os modelos generativo e discriminativo podem variar de acordo com cada

aplicação. Nesta pesquisa de doutorado, nós avaliamos e aplicamos a melhor abordagem de

acordo com o problema analisado. Em alguns casos, pode ser necessário utilizar uma associação

destas duas abordagens [69] construindo um modelo de extração/classificação de caracteŕısticas

mais robusto.

A associação de informações aprendidas a partir de um conjunto de dados não é uma idéia

1



2 Caṕıtulo 1. Introdução

Figura 1.1: Diferentes abordagens de solução de problemas em Aprendizado de Máquina: gene-
rativa e discriminativa.

nova. Muito se tem pesquisado para descobrir como nós humanos interpretamos uma determi-

nada cena e como podemos extrair informações de nossa interpretação de modo que possamos

associá-las na resolução de certos problemas.

Viola e Jones [182] apresentaram uma abordagem descritiva para detecção de faces através

da codificação de caracteŕısticas que demonstram um domı́nio de conhecimentos ad hoc das

imagens analisadas. Os autores extraem informações das imagens a partir de classificadores

bem simples dispostos em um modelo de cascata. Esta abordagem mostrou-se mais eficiente

que sistemas baseados em informações locais (pixels).

Lyu e Farid [99] apresentaram uma técnica que decompõe uma imagem em um modelo de

posição espacial, orientação e escala capaz de fornecer descritores que podem ser utilizados para

extrair modelos art́ısticos de um determinado conjunto de obras de um certo artista. A partir

do aprendizado dessas informações, pode-se traçar o perfil do artista sendo analisado.

Nesta tese de doutorado, organizada na forma de coletânea de artigos, propomos a utilização

de classificadores e técnicas de aprendizado de máquina para extrair informações relevantes

de um conjunto genérico de dados (e.g., imagens), similaridade entre um certo conjunto de

imagens ou dados, ou mesmo sua percepção semântica, para solução de alguns problemas em

Processamento de Imagens e Visão Computacional.

Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes,

detecção de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens

naturais, autenticação, multi-classificação, entre outros.

Inicialmente, nos Caṕıtulos 2 e 3, apresentamos uma revisão comparativa e cŕıtica do estado

da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso

objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas
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limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam

para dois pontos em comum: a seleção de caracteŕısticas e as técnicas de aprendizado a serem

utilizadas. Nesse estudo, também discutimos questões legais associadas à análise forense de

imagens como, por exemplo, o uso de fotografias digitais por criminosos.

Em seguida, no Caṕıtulo 4, introduzimos uma técnica para análise forense de imagens tes-

tada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em

categorias como indoors, outdoors, geradas em computador e obras de arte.

Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como re-

solver um problema multi-classe de modo a poder combinar, por exemplo, caracteŕısticas de

classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos de-

masiadamente em como normalizar o vetor-comum de caracteŕısticas gerado? Como utilizar

diversos classificadores diferentes, cada um, especializado e melhor configurado para um con-

junto de caracteŕısticas ou classes em confusão? Nesse sentido, no Caṕıtulo 5, apresentamos

uma técnica para fusão de classificadores e caracteŕısticas no cenário multi-classe através da

combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real

para classificação automática de frutas e legumes.

Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização

de poderosos classificadores binários no contexto multi-classe mais eficiente e eficaz? Assim, no

Caṕıtulo 6, introduzimos uma técnica para combinação de classificadores binários (chamados

classificadores base) para a resolução de problemas no contexto geral de multi-classificação.

No restante do Caṕıtulo 1, apresentamos um resumo de nossas contribuições nesse trabalho

de doutorado. Os caṕıtulos posteriores apresentam mais detalhes sobre cada uma das contri-

buições. Antes de cada caṕıtulo, apresentamos um breve resumo, em português, sobre o assunto

a ser tratado e, em seguida, apresentamos o caṕıtulo em inglês. Ao final, apresentamos as

considerações finais de nosso trabalho.

1.1 Detecção de adulterações em imagens digitais

Ao campo de pesquisas relacionado à análise de imagens para verificação de sua autenticidade e

integridade denominamos Análise Forense de Imagens. Com o advento da internet e das câmeras

de alta performance e de baixo custo juntamente com poderosos pacotes de software de edição

de imagens (Photoshop, Adobe Illustrator, Gimp), usuários comuns tornaram-se potenciais es-

pecialistas na criação e manipulação de imagens digitais. Quando estas modificações deixam de

ser inocentes e passam a implicar em questões legais, torna-se necessário o desenvolvimento de

abordagens eficientes e eficazes para sua detecção.

A identificação de imagens que foram digitalmente adulteradas é de fundamental importância

atualmente [43,138,141]. O julgamento de um crime, por exemplo, pode estar sendo baseado em

evidências que foram fabricadas especificamente para enganar e mudar a opinião de um júri. Um

poĺıtico pode ter a opinião pública lançada contra ele por ter aparecido ao lado de um traficante

procurado mesmo sem nunca ter visto este traficante antes.

No Caṕıtulo 2, apresentamos um estudo cŕıtico das principais técnicas existentes na análise
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forense de imagens. No Caṕıtulo 3, mostramos mais especificamente algumas técnicas para o

mascaramento digital de informações e para a detecção de mensagens escondidas em imagens.

Nos dois caṕıtulos, mostramos que boa parte dos problemas relacionados à análise forense de

imagens apontam para dois pontos em comum: a seleção de caracteŕısticas e as técnicas de

aprendizado a serem utilizadas.

Como discutimos nos Caṕıtulos 2 e 3, atualmente, não existem metodologias estabelecidas

para verificar a autenticidade e integridade de imagens digitais de forma automática. Embora

a marcação digital (watermarking) possa ser utilizada em algumas situações, sabemos que a

grande maioria das imagens digitais não possui marcação. Adicionalmente, qualquer solução

baseada em marcação digital implicaria na implementação de tal abordagem diretamente nos

sensores de aquisição das imagens o que tornaria seu uso restritivo. Além disso, possivelmente

haveria perdas na qualidade do conteúdo da imagem devido à inserção das marcações.

De forma geral, as técnicas propostas na literatura para análise forense de imagens são

categorizadas em quatro grandes áreas de acordo com o seu foco principal (c.f., Cap. 2 e 3):

(1) identificação da origem da imagem; (2) distinção entre imagens naturais e imagens sintéticas;

(3) detecção de mensagens escondidas; e (4) detecção de falsificação em imagens.

1. Identificação da origem da imagem. Consiste no conjunto de técnicas para investigar

e identificar as caracteŕısticas do dispositivo de captura de uma imagem (e.g., câmera

digital, scanner, gravadora). Para estas técnicas, normalmente esperamos dois resultados:

(1) a classe ou modelo da fonte utilizada e (2) as caracteŕısticas da fonte espećıfica utilizada.

2. Identificação de imagens sintéticas. Consiste no conjunto de técnicas para investigar e

identificar as caracteŕısticas que possam classificar uma imagem como falsa (não natural).

3. Detecção de mensagens escondidas. Consiste no conjunto de técnicas para a detecção

de mensagens escondidas em imagens digitais. Tipicamente, essas mensagens são inseridas

através da modificação de propriedades das imagens (e.g., pixels).

4. Identificação de adulterações. Consiste na detecção de adulterações em imagens digi-

tais. Tipicamente, uma imagem (ou parte dela) sofre uma ou mais manipulações digitais

tais como: operações afins (e.g., aumento, redução, rotação), compensação de cor e brilho,

supressão de detalhes (e.g., filtragem, adição de rúıdo, compressão).

Resultados obtidos

A análise cŕıtica que apresentamos no Caṕıtulo 2 é uma compilação de nosso trabalho submetido

ao ACM Computing Surveys. O banco de dados de imagens que discutimos nesse caṕıtulo é

resultado de nosso artigo [154] no IEEE Workshop on Vision of the Unseen (WVU). Ambos os

trabalhos foram produzidos com a colaboração dos pesquisadores Walter J. Scheirer e Terrance

E. Boult da Universidade do Colorado em Colorado Springs. Finalmente, o trabalho apresentado

no Caṕıtulo 3 é o resultado de nosso artigo [149] na Revista de Informática Teórica e Aplicada

(RITA).
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1.2 Esteganálise e categorização de imagens

Pequenas perturbações feitas nos canais menos significativos de imagens digitais (e.g., canal LSB)

são impercept́ıveis aos humanos mas são estatisticamente detectáveis no contexto de análise de

imagens [147,188].

Nesse sentido, no Caṕıtulo 4, apresentamos uma abordagem para meta-descrição de imagens

denominada Randomização Progressiva (PR1) para nos auxiliar nos problemas de: (1) Detecção

de mensagens escondidas em imagens digitais; e (2) Categorização de imagens.

1.2.1 Detecção de mensagens escondidas

Neste problema, procuramos aperfeiçoar e dar robustez ao trabalho desenvolvido em meu mes-

trado [35]. Estudamos e desenvolvemos técnicas capazes de permitir a detecção de mensagens

escondidas em imagens digitais.

Grande parte das técnicas de esteganografia, a arte das comunicações escondidas, possuem fa-

lhas e/ou inserem artefatos (padrões) detectáveis nos objetos de cobertura (utilizados para escon-

der uma determinada mensagem). A identificação destes artefatos e sua correta utilização na de-

tecção de mensagens escondidas constituem a arte e a ciência conhecida como esteganálise [149].

O método de randomização progressiva proposto permite a detecção de mensagens escondidas

em imagens com compressão sem perdas (e.g., PNGs). Além disso, o método permite apontar

quais os tipos de imagens são mais senśıveis ao mascaramento de mensagens bem como quais

tipos de imagens são mais proṕıcios a este tipo de operações.

1.2.2 Categorização de imagens – Cenário de duas classes

O conhecimento semântico sobre uma determinada mı́dia nos permite desenvolver técnicas inteli-

gentes de processamento dessas mı́dias baseadas em seu conteúdo. Câmeras digitais ou aplicações

de computador podem corrigir cor e brilho automaticamente levando em consideração propri-

edades da cena analisada. Nesses casos, informações locais das mı́dias podem ser insuficientes

para determinados problemas.

Nesse trabalho de doutorado, procuramos desenvolver uma técnica capaz de associar in-

formações coletadas através de relações encontradas em um grande banco de dados de imagens

para separar imagens naturais de imagens geradas em computador [37, 98, 119], imagens em

ambiente externo (outdoors) de imagens em ambiente interno (indoors) [92,128,162], e imagens

naturais de imagens de obras de arte [34]. Nossa abordagem consiste em capturar propriedades

estat́ısticas das duas classes analisadas de cada vez e buscar diferenças nestas propriedades.

1.2.3 Categorização de imagens – Cenário multi-classe

Denomina-se categorização de imagens ao conjunto de técnicas que distinguem classes de ima-

gens, apontando o tipo de uma imagem. Nesse problema, objetivamos desenvolver uma abor-

1Originalmente, denominamos nosso meta-descritor como Progressive Randomization (PR).
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dagem de categorização de imagens para as classes indoors, outdoors, geradas em computador e

artes. Não consideramos classes espećıficas de objetos tais como carros ou pessoas. Um cenário

t́ıpico para uma aplicação é o agrupamento de fotos em álbuns automaticamente de acordo com

classes. A solução que apresentamos é simples, unificada e relativamente possui baixa dimensi-

onalidade2.

1.2.4 Randomização Progressiva (PR)

PR é um novo meta-descritor que captura as diferenças entre classes gerais de imagens usando

os artefatos estat́ısticos inseridos durante um processo de perturbação sucessiva das imagens

analisadas. Nossos experimentos demonstraram que esta técnica captura bem a separabilidade

de algumas classes de imagens. A observação mais importante é que classes diferentes de imagens

possuem comportamentos distintos quando submetidas a sucessivas perturbações. Por exemplo,

um conjunto de imagens que não possui mensagens escondidas apresenta diferentes artefatos

mediante sucessivas perturbações que um conjunto de imagens que possui mensagens escondidas.

No Algoritmo 1, resumimos os quatro passos principais da Randomização Progressiva apli-

cada à Esteganálise e à Categorização de Imagens. Os quatro passos são: (1) o processo de

randomização; (2) seleção de regiões caracteŕısticas; (3) descrição estat́ıstica; e (4) invariância.

Algorithm 1 Meta-descritor de Randomização Progressiva (PR).

Require: Imagem de entrada I; Porcentagens P = {P1, . . . Pn};
1: Randomização: faça n perturbações nos bits menos significativos de I

{Oi}i=0...n. = {I, T (I, P1), . . . , T (I, Pn)}.

2: Seleção de regiões: selecione r regiões de cada imagem i ∈ {Oi}i=0...n

{Oij} i = 0 . . . n,

j = 1 . . . r.

= {O01, . . . , Onr}.

3: Descrição estat́ıstica: calcule m descritores estat́ısticos para cada região

{dijk} = {dk(Oij)} i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

4: Invariância: normalize os descritores de acordo com seus valores na imagem de entrada I

F = {fe}e=1...n×r×m =

{

dijk

d0jk

}

i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

,

5: Use as caracteŕısticas {dijk} ∈ R
(n+1)×r×m (não-normalizadas) ou {dijk} ∈ R

n×r×m (nor-
malizadas) em seu classificador de padrões favorito.

2Baixa dimensionalidade refere-se a um baixo número de caracteŕısticas no processo de descrição dos elementos
analisados.
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Perturbação dos pixels

Seja x uma variável aleatória com distribuição de Bernoulli com probabilidade

Prob{x = 0}) = Prob({x = 1}) = 1
2 , B uma seqüência de bits composta por ensaios indepen-

dentes de x, p uma porcentagem, e S um conjunto aleatório de pixels em uma imagem de

entrada.

Dada uma imagem de entrada I com |I| pixels, nós definimos uma perturbação T (I, p) no

canal de bits menos significativo (LSB) como o processo de substituição dos LSBs de S de

tamanho p× |I| de acordo com a seqüência de bits B.

Considere um pixel pxi ∈ S e um bit associado bi ∈ B

L(pxi)← bi para todo pxi ∈ S. (1.1)

onde L(pxi) é o LSB do pixel pxi. A Figura 1.2 mostra um exemplo de uma perturbação usando

os bits B = 1110.

135 = 1000 0111

138 = 1000 1010

114 = 0111 0010

46 = 0010 1110

135
138 114

46

135
139

115

46

Figura 1.2: Um exemplo de perturbação LSB usando os bits B = 1110.

O processo de randomização

Dado uma imagem original I como entrada, o processo de randomização consiste na aplicação

sucessiva de perturbações T (I, P1), . . . , T (I, Pn) nos LSBs dos pixels de I. O processo retorna

n imagens que apenas diferem entre si nos canais LSBs usados nas perturbações e são idênticas

ao olho nu.
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As T (I, Pi) transformações são perturbações de diferentes porcentagens (pesos) nos LSBs dis-

pońıveis. Em nosso trabalho base, utilizamos n = 6 onde P = {1%, 5%, 10%, 25%, 50%, 75%},
Pi ∈ P denota os tamanhos relativos dos conjuntos de pixels selecionados S.

Seleção de regiões

Propriedades locais não aparecem diretamente sob uma investigação global [188]. Nós utilizamos

descritores estat́ısticos em regiões locais para capturar as mudanças inseridas pelas perturbações

sucessivas (c.f., Sec. 1.2.4).

Dada uma imagem I, nós usamos r regiões com tamanho l×l pixels para produzir descritores

estat́ısticos localizados. Na Figura 1.3, nós mostramos uma configuração com r = 8 regiões com

sobreposição de informações.

Figura 1.3: Oito regiões de interesse considerando sobreposição de informações.

Descrição estat́ıstica

As perturbações LSB mudam o conteúdo de um conjunto selecionado de pixels e induzem mu-

danças localizadas nas estat́ısticas dos pixels. Um pixel com L bits possui 2L valores posśıveis

e representa 2L−1 classes de invariância se consideramos posśıveis mudanças apenas no canal

LSB (c.f., Sec. 1.2.4). Chamamos estas classes de invariância de pares de valores (PoV3).

Quando perturbamos todos os LSBs dispońıveis em S com uma seqüência B, a distribuição

de valores 0/1 de um PoV será a mesma de B. A análise estat́ıstica compara os valores teóricos

esperados com os observados dos PoVs após o processo de perturbação.

Nós aplicamos os descritores estat́ısticos χ2 (Teste do Chi-quadrado) [191] e UT (Teste Uni-

versal de Ueli Maurer) [102] para analisar estas mudanças.

3Pair of Values.
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Invariância

Em algumas situações, é necessário usar um descritor de caracteŕısticas invariante. Para tal, usa-

mos a taxa de variação de nossos descritores estat́ısticos em relação a cada perturbação sucessiva,

ao invés de seus valores diretos. Nós normalizamos todos os valores de descritores decorrentes

das transformações em relação aos seus valores na imagem de entrada (sem perturbação)

F = {fe}e=1...n×r×m =

{

dijk

d0jk

}

i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

, (1.2)

onde d denota um descritor 1 ≤ k ≤ m de uma região 1 ≤ j ≤ r de uma imagem 0 ≤ i ≤ n e F

é o vetor de caracteŕısticas final gerado para a imagem I.

A necessidade da etapa de invariância depende da aplicação. Por exemplo, ela é necessária

no contexto de detecção de mensagens escondidas uma vez que queremos diferenciar imagens que

contêm mensagens escondidas daquelas que não contêm. A classe das imagens não é relevante.

No contexto de categorização de imagens, os valores em si são mais importantes que a taxa de

variabilidade em perturbações sucessivas.

1.2.5 Resultados obtidos

O Caṕıtulo 4 é uma compilação de nosso trabalho submetido à Elsevier Computer Vision and

Image Understanding (CVIU). Após um estudo que mostrou viabilidade comercial de nossa

técnica, conseguimos o depósito de uma patente nacional4 junto ao INPI5 e sua versão interna-

cional6 junto ao PCT7.

Finalmente, o trabalho de detecção de mensagens nos rendeu a publicação [147] no IEEE

Intl. Workshop on Multimedia and Signal Processing (MMSP). A extensão da técnica para

o cenário multi-classe (indoors, outdoors, geradas em computador, e obras de arte) resultou o

artigo [148] no IEEE Intl. Conference on Computer Vision (ICCV).

1.3 Fusão multi-classe de caracteŕısticas e classificadores

Algumas vezes, problemas de categorização multi-classe são complexos e a fusão de informações

de vários descritores torna-se importante.

Embora a fusão de caracteŕısticas seja bastante eficaz para alguns problemas, ela pode produ-

zir resultados inesperados quando as diferentes caracteŕısticas não estão normalizadas e prepara-

das de forma adequada. Além disso, esse tipo de combinação tem a desvantagem de aumentar o

número de caracteŕısticas do vetor base de descrição o que, por sua vez, pode levar à necessidade

de mais elementos para o treinamento.

4http://www.inovacao.unicamp.br/report/patentes_ano2006-inova.pdf
5Instituto Nacional de Propriedade Industrial.
6http://www.inovacao.unicamp.br/report/inte-allpatentes2007-unicamp071228.pdf
7Patent Cooperation Treaty.
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Além disso, em certas ocasiões, alguns classificadores produzem melhores resultados para

determinados descritores do que para outros. Isto sugere que a combinação de classificadores

em problemas multi-classe, cada um especializado em um caso particular, pode ser interessante.

Embora a combinação de classificadores e caracteŕısticas não seja tão direta no cenário

multi-classe, ela é um problema simples para problemas de classificação binários. Nesse caso, é

posśıvel combinar diferentes classificadores e caracteŕısticas usando regras simples de fusão tais

como and, or, max, sum, ou min [16]. No entanto, para problemas multi-classe, a fusão torna-se

um pouco mais complicada dado que uma caracteŕıstica pode apontar como resultado a classe

Ci, outra caracteŕıstica apontar a classe Cj, e ainda outra poderia produzir o resultado Ck.

Com muitos resultados diferentes para um mesmo exemplo de teste, torna-se dif́ıcil definir uma

poĺıtica consistente para combinar as caracteŕısticas selecionadas.

Uma abordagem muito usada consiste na combinação dos vetores caracteŕısticos em um

grande vetor de descrição. Embora bem eficaz em alguns casos, esta abordagem pode, também,

produzir resultados inesperados quando o vetor não é normalizado e preparado da forma ade-

quada. Em primeiro lugar, para criar o vetor combinado de caracteŕısticas, precisamos lidar

com a natureza diferente de cada vetor caracteŕıstico. Alguns podem ser bem condicionados

possuindo apenas variáveis cont́ınuas e limitadas, outros podem ser mal-condicionados para

essa combinação tais como aqueles que possuem variáveis categóricas. Adicionalmente, algumas

variáveis podem ser cont́ınuas e não limitadas. Em resumo, para unificar todas as caracteŕısticas,

precisamos de um pré-processamento e normalização adequados. Entretanto, algumas vezes esse

pré-processamento é trabalhoso.

Esse tipo de combinação de caracteŕısticas eventualmente pode levar à maldição da dimen-

sionalidade. Dado que temos mais dimensões no vetor caracteŕıstico combinado, precisamos de

mais exemplos de treinamento.

Finalmente, se precisarmos adicionar mais uma caracteŕıstica àquelas existentes, temos que

pré-processar os dados novamente para uma nova normalização.

1.3.1 Solução proposta

No Caṕıtulo 5, nós apresentamos uma abordagem para combinar classificadores e caracteŕısticas

capaz de lidar com a maior parte dos problemas citados anteriormente. Nosso objetivo é combi-

nar um conjunto de caracteŕısticas e os classificadores mais apropriados para cada uma de modo

a melhorar a performance sem comprometer a eficiência.

Nós propomos lidar com um problema multi-classe a partir da combinação de um conjunto de

classificadores binários. Podemos definir a binarização de classes como um mapeamento de um

problema multi-classe para vários problemas binários (dividir para conquistar) e a subsequente

combinação de seus resultados para derivar a predição multi-classe. Nos referimos aos classifica-

dores binários como classificadores base. A binarização de classes têm sido utilizada na literatura

para estender classificadores naturalmente binários tais como SVM para multi-classe [5,38,115].

Entretanto, de acordo com nosso conhecimento, esta abordagem não foi utilizada anteriormente

para a fusão de classificadores e caracteŕısticas.
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Para entender a binarização de classes, considere um problema com três classes. Nesse caso,

uma binarização simples consiste no treinamento de três classificadores binários. Nesse sentido,

nós precisamos O(N2) classificadores base, onde N é o número de classes.

Nós treinamos o ijesimo classificador binário utilizando os padrões da classe i como positivos

e os padrões da classe j como negativos. Para obter o resultado final, calculamos a distância

mı́nima do vetor binário gerado para o padrão binário que representa cada classe.

Considere novamente o exemplo com três classes como mostramos na Figura 1.4. Nesse

exemplo, nós temos as classes: Triângulos △, Cı́rculos ©, e Quadrados ✷. Claramente, uma

primeira caracteŕıstica que podemos usar para categorizar os elementos dessas classes pode ser

baseado na forma. Podemos também utilizar propriedades de cor e textura. Para resolver esse

problema, treinamos alguns classificadores binários diferenciando duas classes por vez, tais como:

△ ×©, △ × ✷, e ©× ✷. Adicionalmente, nós representamos cada uma das classes com um

identificador único (△ = 〈+1, +1, 0〉).

Figura 1.4: Pequeno exemplo para combinação de classificadores e caracteŕısticas.

Ao recebermos um exemplo para classificar, digamos um com a forma de triângulo, como

mostramos na Figura 1.4, primeiro aplicamos nossos classificadores binários para verificar se o

exemplo testado é um triângulo ou um ćırculo baseado na forma, textura e cor. Cada classi-

ficador nos dá uma resposta binária. Por exemplo, digamos que nosso resultado seja os votos

〈+1, +1,−1〉 para o classificador binário △ ×©. Dessa forma, nós podemos usar o voto ma-
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joritário e selecionar uma resposta (+1, neste caso, ou △). Então, repetimos o procedimento

e testamos se o exemplo analisado é um triângulo ou um quadrado para cada uma das carac-

teŕısticas de interesse. Finalmente, depois de efetuar o último teste, temos como resultado um

vetor binário. Basta então calcularmos o mı́nima distância deste vetor aos vetores identificadores

de cada classe. Nesse exemplo, a resposta final é dada pela mı́nima distância de

min dist(〈1, 1,−1〉, {〈1, 1, 0〉, 〈−1, 0, 1〉, 〈0,−1,−1〉}). (1.3)

Um aspecto importante dessa abordagem é que ela requer mais armazenamento dado que

após o treinamento dos classificadores binários nós precisamos armazenar seus parâmetros. Dado

que nós analisamos mais caracteŕısticas, precisamos de mais espaço. Com respeito ao tempo de

execução, tem também um crescimento dado que precisamos testar mais classificadores binários

para obter uma resposta. Entretanto, muitos classificadores em nosso dia-a-dia empregam algum

tipo de binarização de classes (e.g., SVMs). Além disso, como apresentamos no Caṕıtulo 6,

existem soluções efetivas para combinar tais classificadores binários de forma eficiente.

Embora precisemos de mais espaço de armazenamento, a abordagem apresentada tem as

seguintes vantagens:

1. Com a combinação independente de caracteŕısticas, temos mais confiança na resposta

produzida dado que ela é calculada a partir de mais de uma simples caracteŕıstica. Dessa

forma, temos um mecanismo simples de correção de erros que pode resistir à algumas

classificações erradas;

2. Podemos desenvolver classificadores e caracteŕısticas espećıficas para separar classes em

confusão;

3. Podemos selecionar as caracteŕısticas que realmente são importantes na fusão. Esse proce-

dimento não é direto quando temos apenas um grande vetor de caracteŕısticas combinadas.

4. A adição de novas classes requer apenas o treinamento para os novos classificadores binários

relacionados àquelas classes.

5. A adição de novas caracteŕısticas é simples e requer apenas treinamento parcial.

6. Como não aumentamos o tamanho de nenhum vetor de caracteŕısticas, temos menor pro-

babilidade de sofrermos da maldição da dimensionalidade, não necessitando, portanto,

adicionar mais exemplos de treinamento quando combinando mais caracteŕısticas.

Finalmente, nós validamos nossa abordagem de fusão de classificadores e caracteŕısticas

numa aplicação real para categorização automática de frutas e legumes, como apresentamos no

Caṕıtulo 5.
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1.3.2 Resultados obtidos

O Caṕıtulo 5 é uma compilação de nosso trabalho submetido à Elsevier Computers and Electro-

nics in Agriculture (Compag) e do artigo [153] no Brazilian Symposium of Computer Graphics

and Image Processing (Sibgrapi). Esses trabalhos foram produzidos com a colaboração dos

pesquisadores Daniel C. Hauagge e Jacques Wainer do Instituto de Computação da Unicamp.

1.4 Multi-classe a partir de classificadores binários

Muitos problemas reais de reconhecimento e de classificação freqüentemente necessitam ma-

pear várias entradas em uma dentre centenas ou milhares de posśıveis categorias. Muitos pes-

quisadores têm proposto técnicas efetivas para classificação de duas classes nos últimos anos.

No entanto, alguns classificadores poderosos tais como SVMs são dif́ıceis de estender para o

cenário multi-classe. Em tais casos, a abordagem mais comum é a de reduzir a complexidade do

problema multi-classe para pequenos e mais simples problemas binários (dividir para conquis-

tar) [38,82,127,145].

Ao utilizar classificadores binários com algum critério final de combinação (redução de com-

plexidade), muitas abordagens descritas na literatura partem do prinćıpio de que os classificado-

res binários utilizados na classificação são independentes e aplicam um sistema de votação como

poĺıtica final de combinação. Entretanto, a hipótese da independência não é a melhor escolha

em todos os casos.

Nesse trabalho, nós abordamos o problema de classificação multi-classe apresentando uma

forma efetiva de agrupar dicotomias altamente correlacionadas (não supondo independência

entre todas elas). Nós denominamos a técnica de Affine-Bayes (c.f., Sec. 1.4.1).

1.4.1 Affine-Bayes

Apresentamos, a seguir, nossa abordagem generativa Bayesiana para multi-classificação. Um

problema multi-classe t́ıpico resolvido a partir da combinação de classificadores binários possui

três etapas básicas [145]: (1) a criação da matriz de codificação dos classificadores; (2) a escolha

dos classificadores binários base; e (3) a estratégia de decodificação. A solução que propomos

enquadra-se, principalmente, na parte 3.

Considerando a etapa de decodificação, nós introduzimos o conceito de relações afins entre

classificadores binários e apresentamos uma abordagem efetiva para achar grupos de classifi-

cadores binários altamente correlacionados. Finalmente, apresentamos duas novas estratégias:

uma para reduzir o número necessário de dicotomias na classificação multi-classe e a outra para

achar novas dicotomias para substituir aquelas menos discriminativas. Esses dois procedimentos

podem ser utilizados iterativamente para complementar a abordagem básica de Affine-Bayes e

melhorar a performance geral de classificação.

Para classificar uma determinada entrada, nós usamos um time de classificadores binários

base T . Nós chamamos OT uma realização de T . Cada elemento de T é um classificador binário

base (dicotomia) e produz uma sáıda ∈ {−1, +1}.
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Dado uma entrada x para classificar, uma realização de OT contem a informação para

determinar a classe de x. Em outras palavras, P (y = ci|x) = P (y = ci|OT ).

No entanto, não temos a probabilidade P (y = ci|OT ). Pelo teorema de Bayes, temos que

P (y = ci|OT ) =
P (OT |y = ci)P (y = ci)

P (OT )

∝ P (OT |y = ci)P (y = ci) (1.4)

P (OT ) é apenas um fator de normalização e pode ser eliminado.

Abordagens anteriores resolveram o modelo acima considerando independência entre todas

as dicotomias no time T [127]. Se considerarmos independência entre todas as dicotomias, o

modelo na Equação 1.4 se torna

P (y = ci|OT ) ∝
∏

t ∈ T

P (Ot
T |y = ci)P (y = ci), (1.5)

e a classe da entrada x é dada por

cl(x) = arg max
i

∏

t ∈ T

P (Ot
T |y = ci)P (y = ci). (1.6)

Embora a restrição de independência simplifique o modelo, ela impõe várias limitações e não é a

melhor escolha em todos os casos. Em geral, é muito dif́ıcil resolver independência sem utilizar

funções de suavização para tratar instabilidades numéricas quando o número de termos na série

é muito grande. Em tais casos, é necessário achar uma função de densidade apropriada para

descrever os dados, tornando a solução mais complexa.

Em nossa abordagem, nós relaxamos a restrição de independência entre todos os classifica-

dores binários. Para tal, nós achamos grupos de classificadores afins. Dentro de um grupo, há

grande dependência entre os classificadores, enquanto que cada grupo é independente dos outros.

No entanto, como a hipótese de independência é apenas entre os grupos, há menor possibilidade

de incorrer em instabilidade numérica ou utilizar funções de suavização.

Nós utilizamos o conjunto de dados de treinamento para achar as probabilidades conjuntas

das dicotomias dentro de um grupo e construir a respectiva tabela de probabilidade condicional

(CPT) para este grupo de dicotomias afins.

Nós modelamos o problema de classificação multi-classe condicionado a grupos de dicotomias

afins GD. O modelo na Equação 1.4 torna-se

P (y = ci|OT ,GD) ∝ P (OT ,GD|y = ci)P (y = ci). (1.7)

Nós assumimos independência apenas entre os grupos de dicotomias afins gi ∈ GD. Desta forma,
a classe de uma entrada x é dada por

cl(x) = arg max
j

∏

gi ∈ GD

P (Ogi

T
, gi|y = cj)P (y = cj). (1.8)
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Para achar os grupos de classificadores binários afins GD, nós definimos uma matriz de

afinidade A entre os classificadores. Esta matriz indica quão afins (correlacionadas) são duas

dicotomias quando classificando um conjunto de dados de treinamento X. Se as dicotomias

produzem sáıdas todas iguais (diferentes), elas são correlacionadas e tem alta afinidade. Por

outro lado, se seus resultados são metade iguais e metade diferentes, elas são não-correlacionadas

e, portanto, possuem baixa afinidade.

Após o cálculo da matriz de afinidade A, nós utilizamos um algoritmo de clusterização para

achar grupos de classificadores binários afins emA. Os grupos de classificadores afins podem con-

ter classificadores que não contribuem muito para o processo geral de classificação. No processo

de Shrinking, apresentamos um procedimento para identificar as dicotomias menos importan-

tes dentro de um grupo de classificadores binários afins e eliminá-los. Para isso, calculamos a

entropia acumulada de cada grupo testando um elemento do grupo de cada vez. Aqueles que

produzem o menor ganho de informação são marcados como menos importantes.

A eliminação de dicotomias menos importantes nos abre a oportunidade de substitúı-las

por outras mais discriminativas. No processo de Augmenting, encontramos novas dicotomias

candidatas para repor aquelas eliminadas na etapa de Shrinking. Para isso, analisamos a matriz

de confusão calculada durante o treinamento. Em seguida, representamos as classes como um

grafo onde os nós são os identificadores das classes e as arestas o grau de confusão. A partir do

grafo, conseguimos criar uma hierarquia de classes em confusão. Após ordenarmos os grupos de

classes de acordo com a sua confusão, achamos o corte de cada subgrafo que nos permite separar

otimamente os nós. Isso nos dá conjuntos de dicotomias que representam classes em confusão e

podem ser substitutas daquelas eliminadas no processo de Shrinking.

Finalmente, podemos utilizar as etapas de Shrinking e Augmenting iterativamente de modo

a otimizar ainda mais o algoritmo base do Affine-Bayes.

1.4.2 Resultados obtidos

O Caṕıtulo 6 é uma compilação de nosso trabalho submetido à IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) e do artigo [150] no Intl. Conference on Computer

Vision Theory and Applications (VISAPP).



Detecção de Adulterações em

Imagens Digitais

No Caṕıtulo 2, apresentamos um estudo cŕıtico das principais técnicas existentes na análise

forense de imagens. Discutimos que boa parte dos problemas relacionados à análise forense

apontam para dois pontos em comum: a seleção de caracteŕısticas e as técnicas de aprendizado

a serem utilizadas.

Conforme argumentamos, ainda não existem metodologias estabelecidas para verificar a au-

tenticidade e integridade de imagens digitais de forma automática.

A identificação de imagens que foram digitalmente adulteradas é de fundamental importância

atualmente [43,138,141]. O julgamento de um crime, por exemplo, pode estar sendo baseado em

evidências que foram fabricadas especificamente para enganar e mudar a opinião de um júri. Um

poĺıtico pode ter a opinião pública lançada contra ele por ter aparecido ao lado de um traficante

procurado mesmo sem nunca ter visto este traficante antes. Dessa forma, discutimos também

questões legais associadas à análise forense de imagens como, por exemplo, o uso de fotografias

digitais por criminosos.

O trabalho apresentado no Caṕıtulo 2 é uma compilação de nosso artigo submetido ao

ACM Computing Surveys. Os autores desse artigo, em ordem, são: Anderson Rocha, Walter J.

Scheirer, Terrance E. Boult e Siome Goldenstein.

O banco de dados de imagens que discutimos nesse caṕıtulo é resultado de nosso artigo [154]

no IEEE Workshop on Vision of the Unseen (WVU).
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Chapter 2

Current Trends and Challenges in

Digital Image Forensics

Abstract

Digital images are everywhere — from our cell phones to the pages of our newspapers. How

we choose to use digital image processing raises a surprising host of legal and ethical questions

we must address. What are the ramifications of hiding data within an innocent image? Is

this security when used legitimately, or intentional deception? Is tampering with an image

appropriate in cases where the image might affect public behavior? Does an image represent a

crime, or is it simply a representation of a scene that has never existed? Before action can even

be taken on the basis of a questionable image, we must detect something about the image itself.

Investigators from a diverse set of fields require the best possible tools to tackle the challenges

presented by the malicious use of today’s digital image processing techniques.

In this paper, we introduce the emerging field of digital image forensics, including the main

topic areas of source camera identification, forgery detection, and steganalysis. In source camera

identification, we seek to identify the particular model of a camera, or the exact camera, that

produced an image. Forgery detection’s goal is to establish the authenticity of an image, or

to expose any potential tampering the image might have undergone. With steganalysis, the

detection of hidden data within an image is performed, with a possible attempt to recover any

detected data. Each of these components of digital image forensics is described in detail, along

with a critical analysis of the state of the art, and recommendations for the direction of future

research.

2.1 Introduction

With the advent of the Internet and low-price digital cameras, as well as powerful image edition

software tools (Adobe Photoshop and Illustrator, GNU Gimp), normal users have become digital

doctoring specialists. At the same time our understanding of the technological, ethical, and

19
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legal implications associated with image editing falls far behind. When such modifications are

no longer innocent image tinkerings and start implying legal threats to a society, it becomes

paramount to devise and deploy efficient and effective approaches to detect such activities [141].

Digital Image and Video Forensics research aims at uncovering and analyzing the underlying

facts about an image/video. Its main objectives comprise: tampering detection (cloning, healing,

retouching, splicing), hidden data detection/recovery, and source identification with no prior

measurement or registration of the image (the availability of the original reference image or

video).

Image doctoring in order to represent a scene that never happened is as old as the art

of the photograph itself. Shortly after the Frenchman Nicéphore Niepce [29] created the first

photograph in 18141, there were the first indications of doctored photographs. Figure 2.1 depicts

one of the first examples of image forgery. The photograph, an analog composition comprising

30 images2, is known as The Two Ways of Life and was created by Oscar G. Rejland in 1857.

Figure 2.1: Oscar Rejland’s analog composition, 1857.

Though image manipulation is not new, its prevalence in criminal activity has surged over

the past two decades, as the necessary tools have become more readily available, and easier

to use. In the criminal justice arena, we most often find tampered images in connection with

child pornography cases. The 1996 Child Pornography Prevention Act (CPPA) extended the

existing federal criminal laws against child pornography to include certain types of “virtual

porn”. Notwithstanding, in 2002, the United States Supreme Court found that portions of the

CPPA, being excessively broad and restrictive, violated First Amendment rights. The Court

ruled that images containing an actual minor or portions of a minor are not protected, while

computer generated images depicting a fictitious “computer generated” minor are constitution-

ally protected. However, with computer graphics, it is possible to create fake scenes visually

indistinguishable from real ones. In this sense, one can apply sophisticated approaches to give

1Recent studies [101] have pointed out that the photograph was, indeed, invented concurrently by several
researchers such as Nicéphore Niepce, Louis Daguerre, Fox Talbot, and Hercule Florence.

2Available in http://www.bradley.edu/exhibit96/about/twoways.html
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more realism to the created scenes deceiving the casual eye and conveying a criminal activity.

In the United States, a legal burden exists to “a strong showing of the photograph’s competency

and authenticity3” when such evidence is presented in court. In response, tampering detection

and source identification are tools to satisfy this requirement.

Data hidden within digital imagery represents a new opportunity for classic crimes. Most

notably, the investigation of Juan Carlos Ramirez Abadia, a Columbian drug trafficker arrested

in Brazil in 2008, uncovered voice and text messages hidden within images of a popular cartoon

character4 on the suspect’s computer. Similarly, a 2007 study5 performed by Purdue University

found data hiding tools on numerous computers seized in conjunction with child pornography

and financial fraud cases. While a serious hinderance to a criminal investigation, data hiding is

not a crime in itself; crimes can be masked by its use. Thus, an investigator’s goal here is to

identify and recover any hidden evidence within suspect imagery.

In our digital age, images and videos fly to us at remarkable speed and frequency. Unfortu-

nately, there are currently no established methodologies to verify their authenticity and integrity

in an automatic manner. Digital image and video forensics are still emerging research fields with

important implications for ensuring the credibility of digital contents. As a consequence, on a

daily basis we are faced with numerous images and videos — and it is likely that at least a

few have undergone some level of manipulation. The implications of such tampering are only

beginning to be understood.

Beyond crime, the scientific community has also been subject to these forgeries. A recent

case of scientific fraud involving doctored images in a renowned scientific publication has shed

light to a problem believed to be far from the academy. In 2004, the South Korean professor

Hwang Woo-Suk and colleagues published in Science important results regarding advances in

stem cell research. Less than one year later, an investigative panel pointed out that nine out of

eleven customized stem cell colonies that Hwang had claimed to have made involved doctored

photographs of two other, authentic, colonies. Sadly, this is not a detached case. In at least one

journal6 [129], it is estimated that as many as 20% of the accepted manuscripts contain figures

with improper manipulations, and +1% with fraudulent manipulations [45,129].

Photo and video retouching and manipulation are also present in general press media. On

July 10th, 2008, various major daily newspapers published a photograph of four Iranian missiles

streaking heavenward (see Figure 2.2(a)). Surprisingly, shortly after the photo’s publication,

a small blog provided evidence that the photograph had been doctored. Many of those same

newspapers needed to publish a plethora of retractions and apologies [107].

On March 31st, 2003 the Los Angeles Times showed on its front cover an image from pho-

tojournalist Brian Walki, in which a British soldier in Iraq stood trying to control a crowd

of civilians in a passionate manner. The problem was that the moment depicted never hap-

pened (see Figure 2.2(b)). The photograph was a composite of two different photographs merged

3Bergner v. State, 397 N.E.2d 1012, 1016 (Ind. Ct. App. 1979).
4http://afp.google.com/article/ALeqM5ieuIvbrvmfofmOt8o0YfXzbysVuQ
5http://www.darkreading.com/security/encryption/showArticle.jhtml?articleID=208804788
6Journal of Cell Biology.
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to create a more appealing image. The doctoring was discovered and Walski was fired.

In the 2004 presidential campaign, John Kerry’s allies were surprised by a photomontage that

appeared in several newspapers purporting to show Kerry and Jane Fonda standing together at

a podium during a 1970s anti-war rally (see Figure 2.2(c)). As a matter of fact, the photograph

was a fake. Kerry’s picture was taken at an anti-war rally in Mineola, NY., on June 13th, 1971

by photographer Ken Light. Fonda’s picture was taken during a speech at Miami Beach, FL. in

August, 1972 by photographer Owen Franken.

(a) Iranian montage of missiles streaking heav-
enward.

(b) Montage of a British soldier in Iraq trying
to control a crowd of civilians in a passionate
manner. Credits to Brian Walski.

(c) Montage of John Kerry and Jane Fonda standing together at a podium during a 1970s
anti-war rally. Credits to Ken Light (left), AP Photo (middle), and Owen Franken (right).

Figure 2.2: Some common press media photomontages.

It has long been said that an image worth a thousand words. Recently, a study conducted

by Italian Psychologists have investigated how doctored photographs of past public events affect

memory of those events. Their results indicate that doctored photographs of past public events

can influence memory, attitudes and behavioral intentions [158]. That might be one of the

reasons that several dictatorial regimes used to wipe out of their photographic records images

of people who had fallen out of favor with the system [44].

In the following sections, we provide a comprehensive survey of the most relevant works with

respect to this exciting new field of the unseen in digital imagery. We emphasize approaches
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that we believe to be more applicable to forensics. Notwithstanding, most publications in

this emerging field still lack important discussions about resilience to counter-attacks, which

anticipate the existence of forensic techniques [58]. As a result, the question of trustworthiness

of digital forensics arises, for which we try to provide some positive insights.

2.2 Vision techniques for the Unseen

In this section, we survey several state-of-the-art approaches for image and video forgery detec-

tion, pointing out their advantages and limitations.

2.2.1 Image manipulation techniques

In the forensic point of view, it is paramount to distinguish simple image enhancements from

image doctoring. Although there is a thin edge separating both, in the following we try to make

this distinction clear.

On one extreme, we define image enhancements as operations performed in one image with

the intention to improve its visibility. There is no local manipulation or pixel combination. Some

image operations in this category are contrast and brightness adjustments, gamma correction,

scaling, and rotation, among others. On the other extreme, image tampering operations are

those with the intention to deceive the viewer at some level. In these operations, normally one

performs localized image operations such as pixel combinations and tweaks, copy/paste, and

composition with other images. In between these extremes, there are some image operations

that by themselves are not considered forgery creation operations but might be combined for

such objective. Image sharpening, blurring, and compression are some of such operations.

Some common image manipulations with the intention of deceiving a viewer:

1. Composition or splicing. It consists in the composition (merging) of an image Ic using

parts of one or more parts of images I1 . . . Ik. For example, with this approach, a politician

in I1 can be merged beside a person from I2, without even knowing such person.

2. Retouching, healing, cloning. These approaches consist in the alteration of parts of an

image or video using parts or properties of the same image or video. Using such techniques,

one can make a person 10 or 20 years younger (retouching and healing) or even change a

crime scene eliminating a person in a photograph (cloning).

3. Content embedding or Steganography. It consists in the alteration of statistical or

structural properties of images and videos in order to embed hidden contents. Most of the

changes are not visually detectable.

Figure 2.3 depicts some possible image manipulations. From the original image (top left), we

clone several small parts of the same image in order to eliminate some parts of it (for example,

the two people standing in front of the hills). Then we can use a process of smoothing to feather

edges and make the cloning less noticeable. We can use this image as a host for another image
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(bottom left) and then create a composite. After the combination, we can use healing operations

to adjust brightness, contrast, and illumination. This toy example was created in five minutes

using the open-source software Gimp.

Figure 2.3: Toy example of possible image manipulations.

Sometimes the edge between image enhancing and faking is so thin that depending on the

context, only the addition of text to a scene may fool the viewer. Figure 2.4 depicts one

example of two photographs presented by Colin Powell at the United Nations in 2003. The

actual photographs are low-resolution, muddy aerial surveillance photographs of buildings and

vehicles on the ground in Iraq. They were used to justify a war. Note that the text addition in

this case was enough to mislead the United Nations [104].

2.2.2 Important questions

In general, in digital image and video forensics, given an input digital image, for instance, one

wants to answer the following important questions [161]:

• Is this image an original image or has it been created from the composition (splicing) of

other images?

• Does this image represent a real moment in time or has it been tampered with to deceive

the viewer?

• What is the processing history of this image?

• Which part of this image has undergone manipulation and to what extent? What are the

impacts of such modifications?

• Was this image acquired from camera vendor X or Y ?
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Figure 2.4: Photographs presented by Colin Powell at the United Nations in 2003. (U.S. De-
partment of State)

• Was this image originally acquired with camera C as claimed?

• Does this image conceal any hidden content? Which algorithm or software has been used

to perform the hiding? Is it possible to recover the hidden content?

It is worth noting that most of such techniques are blind and passive. The approach is blind

when it does not use the original content for the analysis. The approach is passive when it does

not use any watermarking-based solution for the analysis.

Although digital watermarking can be used in some situations, the vast majority of digital

contents do not have any digital marking. Any watermarking-based solution would require an

implementation directly in the acquisition sensor, making its use restrictive. Furthermore, such

approaches might lead to quality loss due to the markings [118,161].

We break up the image and video forensics approaches proposed in the literature in three

categories:

1. Camera sensor fingerprinting or source identification;

2. Image and video tampering detection;

3. Image and video hidden content detection/recovery.

2.2.3 Source Camera Identification

With Source Camera Identification, we are interested in identifying the data acquisition device

that generated a given image for forensics purposes. Source camera identification may be bro-

ken into two classes: device class identification and specific device identification. In general,
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Figure 2.5: The image acquisition pipeline.

source camera identification relies on the underlying characteristics of the components of digital

cameras. These characteristics may take the form of image artifacts, distortions, and statistical

properties of the underlying data. These characteristics are usually imperceptible to the human

eye, but visible effects can also contribute clues for identification.

In general, we treat digital image acquisition as a pipeline of stages. Figure 2.5 illustrates

the flow of data, with light initially passing through a lens and possibly through a filter (to

remove infrared or ultra-violet light, for example). If the camera supports color, a Color Filter

Array (CFA) is usually placed over the sensor to accommodate different color channels. Popular

CFA configurations include the RGB Bayer Pattern (most common), and the CMYK subtractive

color model (available on some higher end sensors). In a standard consumer grade camera, the

sensor will be a silicon CCD or CMOS. The image processing will take place in logic designed

by individual camera or chipset manufacturers within the camera itself. Each of these pipeline

components induce anomalies in images that can be used to identify a source camera.

Device Class Identification

The goal of device class identification is to identify the model and/or manufacturer of the device

that produced the image in question. For digital cameras, we consider the image acquisition

pipeline, where the lens, size of the sensor, choice of CFA, and demosaicing and color processing

algorithms found in the camera processing logic to provide features. It is important to note

that many manufacturers use the same components, thus, the discriminatory power of some

techniques may be limited. Many of the techniques that we will discuss here treat the underlying

camera characteristics as features for machine learning, which separates images into particular

camera classes. Thus, we can treat device class identification as a traditional classification

problem. Support Vector Machines (SVM), shown in Figure 2.6, is a popular binary classifier

for device class separation. It can also be extended for multi-class classification. In this section,

we will review the relevant techniques used to identify device classes.

From the lens, radial distortions can be introduced immediately into the image acquisition

pipeline. Radial distortion is commonly found with inexpensive cameras/lenses. Choi et al. [27]

introduces a method to extract aberrations from images, which are then treated as features for

classification. As described in [27], radial distortion can be modeled through the second order
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Figure 2.6: An example of binary camera classification with SVM. A feature vector is constructed
out of the calculated features for a given image. Training sets are built out of a collection of
feature vectors for each camera class. The machine learning is used for classification of images
with unknown sources.

for reasonable accuracy:

ru = rd + k1r
3
d + k2r

5
d (2.1)

where k1 and k2 are the first and second degree distortion parameters, and ru and rd are the

undistorted radius and the distorted radius. The radius is simply the radial distance
√

x2 + y2

of some point (x, y) from the center of the distortion (typically the center of the image). k1

and k2 are treated as features for an SVM learning system. These features, however, are not

used in [27] by themselves — they are combined with the 34 image features introduced in [81]

(described below), in a fusion approach. Thus, the utility of this approach may be seen as a

supplement to other, stronger features derived from elsewhere in the acquisition pipeline. The

average accuracy of this technique is reported to be about 91% for experiments performed on

three different cameras from different manufacturers.

Image color features exist as artifacts induced by the CFA and demosaicing algorithm of a

color camera, and represent a rich feature set for machine learning based classification. Kar-

razi et al. [81] defines a set of image color features that are shown to be accurate for device

class identification using SVMs. Average pixel values, RGB pairs correlation, neighbor distri-

bution center of mass, RGB pairs energy ratio, and wavelet domain statistics are all used as

features. Further, image quality features are also used to supplement the color features in [81].

Pixel difference based measures (including mean square error, mean absolute error, and mod-

ified infinity norm), correlation based measures (including normalized cross correlation, and
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the Czekonowksi correlation, described below), and spectral distance based measures (including

spectral phase and magnitude errors) are all used. For binary classification, Kharrazi et al. [81]

reports between 90.74% and 96.08% prediction accuracy. For multi-classification considering

5 cameras, prediction accuracy between 78.71% and 95.24% is reported. These results were

confirmed in [176].

The CFA itself as a provider of features for classification has been studied in [23]. The

motivation for using just the CFA and its associated demosaicing algorithm is that proprietary

demosaicing algorithms leave correlations across adjacent bit planes of the images. Celiktu-

tan et al. [23] defines a set of similarity measures {m1,m2,m3}, with kNN and SVM used for

classification.

The first approach is a binary similarity measure. A stencil function is first defined:

αn
c (k, b) =











1 if xc = 0 xn = 0

2 if xc = 0 xn = 1

3 if xc = 1 xn = 0

1 if xc = 1 xn = 1











(2.2)

where b is a bit plane (image matrix), the subscript c defines some central pixel, and n denotes

one of the four possible neighbor pixels. The function is summed over its four neighbors, as well

as all of the pixels in the bit plane. k indicates one of four agreement scores: 1,2,3,4. αn
c (k, b)

is summed over its four neighbors, and over all MxN pixels. Before feature generation, the

agreement scores are normalized:

pb
k = α(k, b)/

∑

k

(k, b) (2.3)

p is the normalized agreement score in the Kullback-Leibler distance, m1 defined as:

m1 = −
4
∑

n=1

p7
nlog

p7
n

p8
n

(2.4)

The second approach is also a binary similarity measure, but uses a neighborhood weighting

mask as opposed to a stencil function. Each binary image yields a 512-bin histogram computed

using the weighted neighborhood. Each score is computed with the following function:

S =
7
∑

i=0

xi2
i (2.5)

The neighborhood weighting mask applied to a pixel xi by the above function is:

1 2 4

128 256 8

64 32 16
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The final binary similarity is computed based on the absolute difference between the nth his-

togram bin in the 7th bit plane and same of the 8th after normalization:

m2 =
511
∑

n=0

|S7
n − S8

n| (2.6)

Quality measures, as mentioned earlier, make excellent features for classification. The

Czenakowski distance is a popular feature for CFA identification because it is able to com-

pare vectors with non-negative components — exactly what we find in color images. The third

feature of [23] is the Czenakowski distance defined as:

m3 =
1

MN

M−1
∑

i=0

N−1
∑

j=0

(

1− 2
∑3

k=1 min(Ck(i, j), Ĉk(i, j))
∑3

k=1(Ck(i, j) + Ĉk(i, j))

)

(2.7)

Denoising is necessary for calculating this distance metric. Ck(i, j) represents the (i, j)th pixel

of the kth band of a color image, with Ĉk being the denoised version. With these three simi-

larity measures the authors of [23] generate 108 binary similarity features and 10 image quality

similarity features per image. The best reported performance for this technique (using SVM for

classification) is near 100% accuracy for the two camera classification problem, 95% accuracy

for the three camera classification problem, and 62.3% accuracy for a six camera classification

problem.

A major weakness of the approaches described thus far is a lack of rigor in the analysis

of the experimental results reported, compared with other security related vision and pattern

recognition fields such as biometrics and tracking. All report raw classification results for only

a handful of different cameras. Thus, it is often difficult to determine how well these techniques

perform in practice. This is a common problem of this sub-field in general. By varying the SVM

margin after classification, a set of marginal distances can be used to build a Receiver Operator

Characteristic curve. From this curve, a more thorough understanding of the False Reject Rate

(FRR) and False Accept Rate (FAR) can be gained. Also of interest is more comprehensive

testing beyond limited camera classes. For a more accurate picture of the FAR, a statistically

large sampling of images from cameras outside the known camera classes should be submitted

to a system. None of the papers surveyed attempted this experiment. Further, the techniques

introduced thus far are all shown to succeed on images with low levels of JPEG compression.

How well these techniques work with high levels of compression has yet to be shown. Not all

work suffers from a dearth of analysis, however.

The Expectation/Maximization algorithm [138] is a powerful technique for identifying demo-

saicing algorithms, and does not rely on classification techniques directly, but can take advantage

of them in extensions to the base work ( [12] , [13]). The motivating assumption of the E/M

algorithm is that rows and columns of interpolated images are likely to be correlated with their

neighbors. Kernels of a specified size (3 × 3, 4 × 4, and 5 × 5 are popular choices) provide

this neighborhood information to the algorithm. The algorithm itself can be broken into two

steps. In the Expectation step, the probability of each sample belonging to a particular model
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is estimated. In the Maximization step, the specific form of the correlations between samples is

estimated. Both steps are iterated till convergence.

In detail, we can assume that each sample belongs to one of two models. If a sample is

linearly correlated with its neighbors, it belongs to M1. If a sample is not correlated with its

neighbors, it belongs to M2. The linear correlation function is defined as:

f(x, y) =

N
∑

u,v=−N

αu,vf(x + u, y + v) + n(x, y) (2.8)

In this linear model, f(·, ·) is a color channel (R, G, or B) from a demosaiced image, N is

an integer, and n(x, y) represents independent, identically distributed samples drawn from a

Gaussian distribution with zero mean and unknown variance. ~α is a vector of linear coefficients

that express the correlations, with α0,0 = 0.

The expectation step estimates the probability of each sample belonging to M1 using Bayes’

rule:

Pr{f(x, y) ∈M1|f(x, y)} =
Pr{f(x, y)|f(x, y) ∈M1}Pr{f(x, y) ∈M1}

∑2
i=1 Pr{f(x, y)|f(x, y) ∈Mi}Pr{f(x, y) ∈Mi}

(2.9)

Pr{f(x, y) ∈ M1} and Pr{f(x, y) ∈ M2} are prior probabilities assumed to be equal to 1/2. If
we assume a sample f(x, y) is generated by M1, the probability of this is:

Pr{f(x, y)|f(x, y) ∈M1} =
1

σ
√

2π

[

− 1

2σ2

(

f(x, y)−
N
∑

u,v=−N

αu,vf(x + u, y + v)

)2]

. (2.10)

We estimate the variance σ2 in the Maximization step. M2 is assumed to have a uniform

distribution.

The Maximization step computes an estimate of ~α using weighted least squares (in the first

round of the Expectation step, ~α is chosen randomly):

E(~α =
∑

x,y

w(x, y)

(

f(x, y)−
N
∑

u,v=−N

αu,vf(x + u, y + v)

)2

(2.11)

The weights w(x, y) are equivalent to Pr{f(x, y) ∈M1|f(x, y)}. This error function is minimized

via a system of linear equations before yielding its estimate. Both the steps are executed until

a stable ~α results. The final result maximizes the likelihood of observed samples.

Popescu [138] asserts that the probability maps generated by the E/M algorithm can be used

to determine which demosaicing algorithm a particular camera is using. These probabilities tend

to cluster — thus, an external machine learning algorithm for classification is not necessary. For

a test using eight different demosaicing algorithms [138], the E/M algorithm achieves an average

classification accuracy of 97%. In the worst case presented (3 × 3 median filter vs. variable

number of gradients), the algorithm achieves an accuracy of 87%. Several extensions to the

E/M algorithm have been proposed. Bayram et al. [12] applies the E/M algorithm to a camera

identification problem, using SVM to classify the probability maps. Bayram et al. [12] reports
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success as high as 96.43% for the binary classification problem, and 89.28% for the multi-class

problem. Bayram et al. [13] introduces better detection of interpolation artifacts in smooth

images as a feature to fuse with the standard E/M results. For a three camera identification

problem, Bayram et al. [13] achieves results as high as 97.74% classification accuracy. Other

variations include the use of modeling error, instead of interpolation filter coefficients [89], and

the computation of error based on the assumption of CFA patterns in an image [172].

Specific Device Identification

The goal of specific device identification is to identify the exact device that produced the image in

question. For specific device identification, we require more detail beyond what we’ve discussed

so far with source model identification. Features in this case may be derived from:

• hardware and component imperfections, defects, and faults

• effects of manufacturing process, environment, operating conditions

• aberrations produced by a lens, noisy sensor, dust on the lens

It is important to note that these artifacts may be temporal by nature, and thus, not reliable

in certain circumstances.

Early work [76] in imaging sensor imperfections for specific device identification focused on

detecting fixed pattern noise caused by dark current in digital video cameras. Dark current is

the rate that electrons accumulate in each pixel due to thermal action. This thermal energy is

found within inverse pin junctions of the sensor, and is independent of light falling on it. The

work, as presented in [76], provides no quantitative analysis, and thus, the actual utility of dark

currents cannot be assessed.

A more comprehensive use of sensor imperfections is presented in [57], where “hot pixels,”

cold/dead pixels, pixel traps, and cluster defects are used for detection. Hot pixels are individual

pixels on the sensor with higher than normal charge leakage. Cold or dead pixels (figure 2.7) are

pixels where no charge ever registers. Pixel traps are an interference with the charge transfer

process and results in either a partial or whole bad line, that is either all white or all dark. While

these features are compelling for identifying an individual sensor, Geradts et at. [57] also does

not provide a quantitative analysis. Thus, we turn to more extensive work for reliable forensics.

Lukas et al. [91] presents a more formal quantification and analysis of sensor noise for iden-

tification, with work that is the strongest for this type of forensics. Referring to the hierarchy

of sensor noise in Figure 2.8, we see two main types of pattern noise: fixed pattern noise and

photo-response non-uniformity noise. Fixed pattern noise (FPN) is caused by the dark currents

described above, and is not considered in [91]. Photo-response non-uniformity noise (PRNU)

is primarily cause by pixel non-uniformity noise (PNU). PNU is defined as different sensitivity

various pixels have to light caused by the inconsistencies of the sensor manufacturing process.

Low frequency defects are caused by light refraction on particles on or near the camera, optical

surfaces, and zoom settings. Lukas et al. [91] does not consider this type of noise, but [39] does.
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Figure 2.7: Dead pixels (circled in yellow) present in an image from a thermal surveillance
camera.

Figure 2.8: Hierarchy of Pattern Noise.



2.2. Vision techniques for the Unseen 33

The temporal nature of such particle artifacts brings into question their reliability, except when

dealing with short sequences of images from the same period, in most cases.

To use PNU as a characteristic for sensor fingerprinting, the nature of the noise must first be

isolated. An image signal r exhibits properties of a white noise signal with an attenuated high

frequency band. The attenuation is attributed to the low-pass character of the CFA algorithm

(which, in this case, we are not interested in). If a large portion of the image is saturated

(pixel values set to 255), it will not be possible to separate the PNU from the image signal.

In a forensics scenario, we will likely not have a blank reference image that will easily allow

us to gather the PNU characteristics. Thus, the first stage of the PNU camera identification

algorithm is to establish a reference pattern Pc, which is an approximation to the PNU. The

approximation, p̄(k) is built from the average of N different images:

p̄(k) =
1

N

N
∑

i=1

pi (2.12)

The approximation can be optimized to suppress the scene content by applying a de-noising

filter F , and averaging the noise residuals n(k) instead of the original images P (k):

n̄(k) = (p̄(k) − F (p(k)))/N (2.13)

Lukas et al. [91] reports that a wavelet-based denoising filter works the best.

To determine if an image belongs to a particular known camera, a correlation ρc is simply

calculated between the noise residual of the image in question n = p − F (p) and the reference

pattern Pc:

ρc(p) =
(n − n̄) · (Pc − P̄c)

‖n− n̄‖‖Pc − P̄c‖
(2.14)

The results of [91] are expressed in terms of FRR and FAR (proper ROC curves are not provided,

however), with very low FRR (between 5.75× 10−11 and 1.87 × 10−3) reported when a FAR of

10−3 is set for an experiment with images from nine different cameras. Excellent correlations

are shown for all tests, indicating the power this technique has for digital image forensics. An

enhancement to this work has been proposed by [171], with a technique to fuse the demosaicing

characteristics of a camera described earlier with the PNU noise. Performance is enhanced by

as much as 17% in that work over the base PNU classification accuracy.

Counter Forensic Techniques Against Camera Identification

Like any sub-field of digital forensics, camera identification is susceptible to counter forensic

techniques. Gloe et al. [58] introduces two techniques for manipulating the image source iden-

tification of [91]. This work makes the observation that applying the wavelet denoising filter

of [91] is not sufficient for creating a quality image. Thus, a different method, flatfielding, is

applied to estimate the FPN and the PRNU. FPN is a signal independent additive noise source,

while PRNU is a signal dependent multiplicative noise source. For the FPN estimate, a dark
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frame d is created by averaging K images xdark taken in the dark (with the lens cap on, for

instance):

d =
1

K

∑

K

xdark (2.15)

For the PRNU estimate, L images of a homogeneously illuminated scene xlight with d subtracted

are required. To calculate the flatfield frame f , these images are averaged:

f =
1

L

∑

L

(xlight − d) (2.16)

With an estimate of the FPN and PRNU of a camera, a nefarious individual can suppress

the noise characteristics of an image from a particular camera to avoid identification. An image

x̂ with suppressed noise characteristics is simply created by noise minimization:

x̂ =
x− d

f
(2.17)

The authors of [58] note that perfect flatfielding is, of course, not achievable, as an immense

number of parameters (exposure time, shutter speed, and ISO speed) would be needed to gen-

erate d and f . Thus, they fix upon a single parameter set for their experiments. Results for this

technique are reported for RAW and TIFF images. While powerful, flatfielding is not able to

prevent identification in all images it is applied to.

Simply reducing the impact of camera identification by PRNU is not the only thing one can

do with flatfielding. After the above technique has been applied, a noise pattern from a different

camera can be added with inverse flatfielding. An image ŷ with forged noise characteristics is

created from the pre-computed flatfielding information from any desired camera:

ŷ = x̂ · fforge + dforge (2.18)

Experiments for this technique are also presented in [58], where images from a Canon Powershot

S70 are altered to appear to be from a Canon Powershot S45. While most correlation coefficients

mimic the S45, some still remain characteristic of the S70. The counter forensic techniques of [58]

are indeed powerful, but are shown to be too simplistic to fool a detection system absolutely.

Further, such limited testing only hints at the potential of such techniques. As the “arms race”

continues, we expect attacks against camera identification to increase in sophistication, allowing

for more comprehensive parameter coverage and better noise modeling.

2.2.4 Image and video tampering detection

In general, image and video tampering detection approaches rely on analyzing several properties

such as: detection of cloned regions, analysis of features’ variations collected from sets of original

and tampered scenes, inconsistencies in the features, inconsistencies regarding the acquisition

process, or even structural inconsistencies present in targeted attacks. In the following, we

describe each one of such approaches and their limitations.
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Image cloning detection

Cloning is one of the simplest forgeries an image can undergo. It is known as copy/move and

also is present in more sophisticated operations such as healing. Often, the objective of the

cloning operation is to make an object “disappear” from one scene using properties of the

same scene (for example, neighboring pixels with similar properties). Cloning detection is a

problem technically easy to solve using exhaustive search. However, brute-force solutions are

computationally expensive.

Fridrich et al. [53] have proposed a faster and more robust approach for detecting image

duplicated regions in images. The authors use a sliding window over the image and calculate

the discrete cosine transform (DCT) for each region. Each calculated DCT window is stored

row-wise in a matrix A. The authors propose to calculate a quantized DCT in order to be

more robust and perform matchings for non-exact cloned regions. The next step consists of

lexicographically sorting matrix A and searching for similar rows. To reduce the resulting false

positives, the authors proposed a post-processing step in which they only consider two rows as a

clone candidate if more rows share the same condition and are close in the image space to these

two rows. Popescu and Farid [139] proposed a similar approach switching the DCT calculation

to a Karhunen-Loeve Transform and reported comparable results.

As we discussed in Section 2.1, forgeries are also present in the scientific community. Some

authors may use image tampering to improve their results and make them look more attrac-

tive. Farid [45] has framed the detection of some scientific image manipulations as a two-stage

segmentation problem. The proposed solution is suited for grayscale images such as gel DNA

response maps. In the first iteration, the image is grouped, using intensity-based segmentation

into regions corresponding to the bands (gray pixels) and the background. In the second itera-

tion, the background region is further grouped into two regions (black and white pixels) using

the texture-based segmentation. Both segmentations are performed using Normalized cuts [165].

The authors suggest that the healing and cloning operations will result in large segmented cohe-

sive regions in the background that are detectable using a sliding window and ad-hoc thresholds.

This approach seems to work well for naive healing and cloning operations, but only a few images

were tested. It would be interesting to verify if a copied band of another image still would lead

to the same artifacts when spliced in the host image.

Video splicing and cloning detection

Wang and Farid [187] have argued that the two previous approaches are too computationally

inefficient to be used in videos or even for small sequences of frames and proposed an alternative

solution to detect duplicated regions across frames. Given a pair of frames f(x, y, τ1) and

f(x, y, τ2), from a stationary camera, the objective is to estimate a spatial offset (∆x, ∆y)

corresponding to a duplicated region of one frame placed in another frame in a different spatial

location. Towards this objective, the authors use phase correlation estimation [22]. First, the



36 Chapter 2. Current Trends and Challenges in Digital Image Forensics

normalized cross power spectrum is defined:

P (ωx, ωy) =
F (ωx, ωy, τ1)F ∗(ωx, ωy, τ2)

||F (ωx, ωy, τ1)F ∗(ωx, ωy, τ2||
, (2.19)

where F (·) is the Fourier transform of a frame, ∗ is the complex conjugate, and || · || is the

complex magnitude. Phase correlation techniques estimate spatial offsets by extracting peaks

in p(x, y), the inverse Fourier transform of P (ωx, ωy). A peak is expected at origin (0,0) as it is

a stationary camera. Peaks at other positions denote secondary alignments that may represent

a duplication but also simple camera translations (for non-stationary cameras). The spatial

location of a peak corresponds to candidate spatial offsets (∆x, ∆y). For each spatial offset,

the authors calculate the correlation between f(x, y, τ1) and f(x, y, τ2) to determine if an offset

corresponds to a determined duplication. Toward this objective, each frame is tiled into 16× 16

overlapping (1 pixel) blocks and the correlation coefficient between each pair of corresponding

blocks is computed. Blocks whose correlation is above a threshold are flagged as duplications.

The authors also propose an extension for non-stationary cameras. For that, they calculate a

rough measure of the camera motion and compensate the calculation by selecting subsequent

non-overlapping frames. One drawback of this approach is that it assumes that the duplicated

regions are rough operations (do not undergo significant adjustments in the host frame).

Wang and Farid [186] presented an approach for detecting traces of tampering in interlaced

and de-interlaced videos. For de-interlaced videos, the authors use an expectation maximization

algorithm to estimate the parameters of the underlying de-interlacing algorithm. With this

model, the authors can point out the spatial/temporal correlations. Tampering in the video is

likely to leave telltale artifacts that disturb the spatial/temporal correlations. For interlaced

videos, the authors measure the inter-field and inter-frame motion which are often the same

for an authentic video, but may be different for a doctored video. Although effective to some

extent, it is worth discussing some possible limitations. The solution suitable for interlaced

videos is sensitive to compression artifacts hardening the correlations estimation. In addition,

a counter-attack to the de-interlacing approach consists of performing the video tampering and

then generating an interlaced video (splitting the even and odd scan lines), and applying a de-

interlacing algorithm on top of that to generate a new de-interlaced video whose correlations

will be intact.

Variations in image features

Avcibas et al. [11] have framed the image forgery detection problem as a feature and classification

fusion problem. The authors claim that doctoring typically involves multiple steps, which often

demand a sequence of elementary image processing operations such as scaling, rotation, contrast

shift, smoothing, among others. The authors develop single weak “experts” to detect each

such elementary operations. Thereafter, these weak classifiers are fused. The authors have

used features borrowed from the Steganalysis literature (c.f., Sec. 2.2.5) such as image quality

metrics [10], binary similarity measures [8], and high order separable quadrature mirror filters

statistics [97]. The main limitation with such approach is that the elementary operations by
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themselves do not constitute doctoring operations. Hence, this approach needs to be used wisely

to point out localized operations. In this case, abrupt brightness and contrast changes in regions

in the host image may point to forgeries (for example, when splicing different images). However,

local intrinsic changes need to be accounted for in order to reduce the high rate of false positives.

Finally, for criminal forgeries, it is likely that the forger will seek to match the target and host

images in such a way to reduce these subtleties.

Ng and Chang [117] have proposed a feature-based binary classification system using high

order statistics to detect image composition. For that, the authors use bicoherence features mo-

tivated by the effectiveness of the bicoherence features for human-speech splicing detection [116].

Bicoherence is the third order correlation of three harmonically related Fourier frequencies of

a signal X(ω) (normalized bispectrum). The authors report an accuracy of ≈ 71% on the

Columbia Splicing data set. The Columbia data set, however, is composed of small composite

images without any kind of post-processing. Figure 2.9 depicts four images in such a data set.

Finally, it is worth noting that the bicoherence features calculation is a computational intensive

procedure, often O(N4) where N is the number of pixels of an image.

Figure 2.9: Some examples from the Columbia Splicing data set. We emphasize the splicing
boundaries in yellow.

Shi et al. [167] have proposed a natural image model to separate spliced images from natural

images. The model is represented by features extracted from a given set of test images and 2-D

arrays produced by applying multi-size block discrete cosine transform (MBCT) to the given

image. For each 2-D array, the authors calculate a prediction-error 2-D array, its wavelet sub-

bands, and 1-D and 2-D statistical moments. In addition, the authors also calculate Markov

transition probability matrices for the 2-D arrays differences which are taken as additional

features. Although effective for simple image splicing procedures (copying and pasting) such

as the ones in the Columbia Splicing data set [103] with ≈ 92% accuracy, the approach does

not seem to be effective for more sophisticated compositions that deploy adaptive edges and

structural propagation [170]. This is because the transition matrices often are unable to capture

the subtle edge variation upon structural propagation. In addition, such an approach is a

binary-based solution. Up to now, it does not point out possible forgery candidate regions.
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Inconsistencies in image features

When splicing two images to create a composite, one often needs to re-sample an image onto a

new sampling lattice using an interpolation technique (such as bi-cubic). Although impercepti-

ble, the re-sampling contains specific correlations that, when detected, may represent evidence of

tampering. Popescu and Farid [141] have described the form of these correlations, and proposed

an algorithm for detecting them in an image. The authors showed that the specific form of the

correlations can be determined by finding the neighborhood size, N , and the set of coefficients,

~α, that satisfy: ~ai =
∑N

k=−N αk~ai+k in the equation

(

~ai −
N
∑

k=−N

αk~ai+k

)

· ~x = 0, (2.20)

where ~x is the signal, and ~ai is the ith row of the re-sampled matrix. The authors pointed out

that, in practice, neither the samples that are correlated, nor the specific form of the correlations

are known. Therefore, the authors employ an expectation maximization algorithm (EM) similar

to the one in Section 2.2.3 to simultaneously estimate a set of periodic samples correlated to

their neighbors and, an approximation form for these correlations. The authors assume that

each sample belongs to one of two models. The first model M1, corresponds to those samples yi

that are correlated to their neighbors and are generated according to the following model:

M1 : y1 =

−N
∑

k

Nαkyi+k + n(i), (2.21)

where n(i) denote independently, and identically distributed samples drawn from a Gaussian

distribution with zero mean an unknown variance σ2. In the E-step, the probability that each

sample yi belonging to model M1 can be estimated through Bayes rule similarly to the Equa-

tion 2.9, Section 2.2.3, where yi replaces f(x, y). The probability of observing a sample yi know-

ing it was generated by M1 is calculated in the same way as in Equation 2.10, Section 2.2.3,

where yi replaces f(x, y). The authors claim that the generalization of their algorithm to color

images is fairly straightforward. The authors propose to analyze each color channel indepen-

dently. However, the authors do not show experiments for the performance of their algorithm

under such circumstances and to what extent such independence assumption is valid. Given

that demosaiced color images present high pixel correlation, such analysis would be valuable.

It is assumed that the probability of observing samples generated by the outlier model,

Pr{yi|yi ∈ M2}, is uniformly distributed over the range of possible values of yi. Although, it

might seem a strong assumption, the authors do not go into more detail justifying the choice

of the uniform distribution for this particular problem. In the M-step, the specific form of the

correlations between samples is estimated minimizing a quadratic error function. It is important

to note that the re-sampling itself does not constitute tampering. One could just save space by

down-sampling every picture in a collection of pictures. However, when different correlations

are present in one image, there is a strong indication of image composition. The authors have
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reported very good results for high-quality images. As the image is compressed, specially under

JPEG 2000, the re-sampling correlates and hence tampering becomes harder to detect. It is

worth noting that it is also possible to perform a counter attack anticipating the tampering

detection and, therefore, destroying traces of re-sampling. Gloe et al. [58] presented a targeted

attack in which the pixel correlations are destroyed by small controlled geometric distortions.

The authors superimpose a random disturbance vector ~e to each individual pixel’s position. To

deal with possible jitter effects, the strength of distortion is adaptively modulated by the local

image content using simple edge detectors.

When creating a digital composite (for example, two people standing together), it is often dif-

ficult to match the lighting conditions from the individual photographs. Johnson and Farid [70]

have presented a solution that analyzes lighting inconsistencies to reveal traces of digital tamper-

ing. Standard approaches for estimating light source direction begin by making some simplifying

assumptions such as: (1) the surface is Lambertian (it reflects light isotropically); (2) it has a

constant reflectance value; (3) it is illuminated by a point light source infinitely far away; among

others. However, to estimate the lighting direction, standard solutions require knowledge of the

3-D surface normals from, at least, four distinct points on a surface with same reflectance, which

is hard to find from a single image and no objects of known geometry in the scene. The authors

have used a clever solution first proposed by [121] that estimates two components of the light

source direction from a single image. The authors also relax the constant reflectance assumption

by assuming that the reflectance for a local surface patch is constant. This requires the tech-

nique to estimate individual light source directions for each patch along a surface. Figure 2.10(a)

depicts an example where lighting inconsistencies can point out traces of tampering.

More recently, Johnson and Farid [71] have extended this solution to complex lighting en-

vironments by using spherical harmonics. Under the aforementioned simplifying assumptions,

an arbitrary lighting environment can be expressed as a non-negative function on the sphere,

L(~V ), ~V is a unit vector in Cartesian coordinates and the value of L(~V ) is the intensity of the

incident light along direction ~V . If the object being illuminated is convex, the irradiance (light

received) at any point on the surface is due to only lighting environment (no cast shadows or

inter-reflections).

It is worth noting, however, that even if the authors’ assumptions were true for an object,

which is rather limiting, they are virtually never true for a scene of interest given that a collection

of convex objects is no longer convex.

As a result, the irradiance, E( ~N), can be parametrized by the unit length surface normal
~N and written as a convolution of the reflectance function on the surface, R(~V , ~N), with the

lighting environment L(~V ):

E( ~N ) =

∫

Ω
L(~V )R(~V , ~N )dΩ (2.22)

where Ω represents the surface. For a Lambertian surface, the reflectance function is a clamped

cosine:

R(~V , ~N) = max(~V · ~N, 0). (2.23)
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The convolution in Equation 2.22 can be simplified by expressing both the lighting envi-

ronment and the reflectance functions in terms of spherical harmonics. The main drawback of

such an approach is that in order to generate a good estimation of the lighting environment it

is necessary to learn the light behavior on a series of light probe images. A light probe image is

an omnidirectional, high dynamic range image that records the incident illumination conditions

at a particular point in space (see Figure 2.10(b)). Lighting environments can be captured by a

variety of methods such as photographing a mirror sphere or through panoramic photographic

techniques [36]. This is necessary to represent the lighting environment function L(~V ) that is

then integrated to result in the spherical harmonics representing the scene lighting.

(a) Composite example with lighting inconsis-
tencies.

(b) Four light probes from different lighting environments.
Credits to Paul Debevec and Dan Lemmon.

Figure 2.10: Lighting and forgeries.

More recently, Johnson and Farid [72] have also investigated lighting inconsistencies across

specular highlights on the eyes to identify composites of people. The position of a specular

highlight is determined by the relative positions of the light source, the reflective surface and

the viewer (or camera). According to the authors, specular highlights that appear on the eye

are a powerful cue as to the shape, color, and location of the light source(s). Inconsistencies

in these properties of the light can be used as telltales of tampering. It is worth noting that

specular highlights tend to be relatively small on the eye giving room to a more skilled forger

to manipulate them to conceal traces of tampering. To do so, shape, color, and location of the

highlight would have to be constructed so as to be globally consistent with the lighting in other

parts of the image.
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Acquisition inconsistencies

In the same way that we can use camera properties to point out the sensor that captured an

image, we also can use them as a digital X-ray for revealing forgeries [25].

Lin et al. [87] have presented an approach that explores camera response normality and

consistency functions to find tampering footprints. An image is tagged as doctored if the response

functions are abnormal or inconsistent to each other. The camera response function is a mapping

relationship between the pixel irradiance and the pixel value. For instance, suppose a pixel

is on an edge and the scene radiance changes across the edge and is constant on both sides

of the edge (Figure 2.11(a)). Therefore, the irradiance of the pixel on the edge should be a

linear combination of those of the pixels clear off the edges (Figure 2.11(b)). Due to nonlinear

response of the camera, the linear relationship breaks up among the read-out values of these

pixels (Figure 2.11(c)). The authors estimate the original linear relationship when calculating

the inverse camera response function [86]. Although effective in some situations, this approach

(a) (b) (c)

Figure 2.11: Camera Response Function Estimation. (a) R1 and R2 are two regions with
constant radiance. The third column images are a combination of R1 and R2. (b) The irradiances
of pixels in R1 map to the same point I1, in RGB color space. The same happens for pixels
in R2 which maps to I2. However, the colors of the pixels in the third column is the linear
combination of I1 and I2. (c) The camera response function f warps the line segment in (b)
into a curve during read-out.

has several drawbacks. Namely, (1) to estimate the camera response function, the authors must

calculate an inverse camera response function which requires learning a Gaussian Mixture Model

from a database with several known camera response functions (DoRF) [87]. If the analyzed

image is a composite of regions from unknown cameras, the model is unable to point out an

estimation for the camera response function; (2) the approach requires the user to manually select

points on edges believed to be candidates for splicing; (3) the solution requires high contrast
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images to perform accurate edge and camera normality estimations; (4) the approach might fail

if the spliced images are captured by the same camera and not synthesized along the edges of

an object; (5) Finally, it is likely the solution does not work with CMOS adaptive sensors that

dynamically calculate the camera response function to produce more pleasing pictures.

Chen et al. [25] have proposed to use inconsistencies in the photo-response non-uniformity

noise (c.f., Sec. 2.2.3) to detect traces of tampering. The method assumes that either the camera

that took the image or at least some other pristine images taken by the camera are available. The

algorithm starts by sliding a 128 × 128 block across the image and calculating the value of the

test statistics, pB, for each block B. The probability distribution function p(x|H0) of pB under

H0 is estimated by correlating the PRNU noise residuals from other cameras and is modeled as

a generalized Gaussian. For each block, the pdf p(x|H1) is obtained from a block correlation

predictor and is also modeled as a generalized Gaussian. For each block B, the authors perform

a Neyman-Pearson hypothesis testing by fixing the false alarm rate α and decide that B has been

tampered if pB < Th. The threshold Th is determined from the condition α =
∫

Th p(x|H0)dx.

Structural inconsistencies

Some forgery detection approaches are devised specifically for a target. Popescu and Farid [140]

have discussed the effects of double quantization for JPEG images and presented a solution to

detect such effects. Double JPEG compression introduces specific artifacts not present in single

compressed images. The authors also note that evidence of double JPEG compression, however,

does not necessarily prove malicious tampering. For example, it is possible for a user to simply

re-save a high quality JPEG image with a lower quality. Figure 2.2.4 depicts an example of the

double quantization effect over a 1-d toy example signal x[t] normally distributed in the range

[0, 127].

(a) (b)

(c) (d)

Figure 2.12: The top row depicts histograms of single quantized signals with steps 2 (left) and
3 (right). The bottom row depicts histograms of double quantized signals with steps 3 followed
by 2 (left), and 2 followed by 3 (right). Note the periodic artifacts in the histograms of double
quantized signals. Credits to Alin Popescu.
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Inspired by the pioneering work of [140] regarding double quantization effects and their use

in forensics, He et al. [65] have proposed an approach to locate doctored parts in JPEG images

by examining the double quantization effect hidden among DCT coefficients. The idea is that

as long as a JPEG image contains both the doctored part and the pristine part, the discrete

cosine coefficient histograms of the pristine part will still have the double quantization effect

(DQ), because this part of the image is the same as that of the double compressed original

JPEG image. However, the histograms of a doctored part will not have the same DQ effects.

Some possible reasons for these observations are: (1) absence of the first JPEG compression in

the doctored part; (2) mismatch of the DCT grid of the doctored part with that of the pristine

part; or (3) composition of DCT blocks along the boundary may carry traces of the doctored

and pristine parts given that it is not likely that the doctored part exactly consists of 8 × 8

blocks. It is worth noting, however, that this solution will not work in some circumstances. For

instance, if the original image to contribute to the pristine part is not a JPEG image, the double

quantization effect of the pristine part cannot be detected. In addition, the compression levels

also affect the detection. Roughly speaking, the smaller the ratio of the second quantization

step with respect to the first one, the harder the detection of the DQ effects. Finally, if the

forger re-samples the grid of the DCT (shift the image one pixel), it is possible to destroy the

traces of the double quantization and generate a complete new quantization table.

2.2.5 Image and video hidden content detection/recovery

Steganography is the art of secret communication. Its purpose is to hide the presence of com-

munication — a very different goal than Cryptography, which aims to make communication

unintelligible for those that do not possess the correct access rights [6].

Applications of Steganography can include feature location (identification of subcomponents

within a data set), captioning, time-stamping, and tamper-proofing (demonstration that original

contents have not been altered). Unfortunately, not all applications are harmless, and there

are strong indications that Steganography has been used to spread child pornography on the

Internet [64, 113], and as an advanced communication tool for terrorists and drug-dealers [105,

106].

In response to such problems, the forensic analysis of such systems is paramount. We refer

to Forensic Steganalysis as the area related to the detection and recovery of hidden messages. In

this forensic scenario, we want to distinguish non-stego or cover objects, those that do not contain

a hidden message, and stego-objects, those that contain a hidden message with the additional

requirement of recovering its content as a possible proof basis for the court.

Steganography and Steganalysis have received a lot of attention around the world in the

past few years [149]. Some are interested in securing their communications through hiding the

very fact that they are exchanging information. On the other hand, others are interested in

detecting the existence of these communications — possibly because they might be related to

illegal activities. In the aftermath of 9/11 events, some researchers have suggested that Osama

Bin Laden and Al Qaeda used Steganography techniques to coordinate the World Trade Center
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attacks. Almost six years later, nothing was proved [21,83,149,184]. However, since then, there

has been strong evidences that Steganography has been used as a private communication means

for drug-dealers and child pornographers in their illegal activities [64, 105, 106, 113]. Indeed,

according to the High Technology Crimes Annual Report [108,120], Steganography threats can

also appear in conjunction with dozens of other cyber-crimes such as: fraud and theft, terrorism,

computer cracking, online defamation, intellectual property offenses, and online harassment.

In the following sections, we present representative research with respect to the identification

and recovery of hidden messages in digital multimedia. When possible, we emphasize approaches

that can be used as an aid for criminal prosecution in a court of law. The fundamental goal

of Steganalysis is to reliably detect the existence of hidden messages in communications and,

indeed, most of the approaches in the literature have addressed only the detection problem.

However, for forensics purposes, we are interested in the higher level of analysis going one step

further and attempting to recover the hidden content.

We can model the detection of hidden messages in a cover medium as a classification problem.

In Steganalysis, we have two extreme scenarios: (1) Eve has only some level of suspicion that

Alice and Bob are covertly communicating; and (2) Eve may have some additional information

about Alice and Bob’s covert communications such as the algorithm they have used, for instance.

In the first case, we have a difficult forensic scenario where Eve would need to deploy a system

able to detect all forms of Steganography (Blind Steganalysis). In the latter case, Eve might

have additional information reducing her universe of possible hiding algorithms and cover media

(Targeted Steganalysis).

In general, steganographic algorithms rely on the replacement of some component of a digital

object with a pseudo-random secret message [6]. In digital images, common components used to

conceal data are: (1) the least significant bits (LSBs); (2) DCT coefficients in JPEG-compressed

images; and (3) areas with richness in details [32].

Figure 2.13 depicts a typical Steganography and Steganalysis scenario. When embedding

a message in an image, one can take several steps in order to avoid message detection such

as choosing an embedding key, compressing the message, and applying statistical profiling in

the message and the cover media in order to minimize the amount of changes. On the other

hand, in the Steganalysis scenario, we can try to point out the concealment whether making

statistical analysis on the input image, or on the image and on a set of positive and negative

training examples. If we have additional information, we can also use them in order to perform

a targeted attack. In the following, we present some approaches used to detect such activities

using either targeted or blind attacks.

Targeted Steganalysis

Some successful approaches for targeted Steganalysis proposed in the literature can estimate

the embedding ratio or even reveal the secret message with the knowledge of the steganographic

algorithm being very useful for forensics.

Basic LSB embedding can be reliably detected using the histogram attack as proposed



2.2. Vision techniques for the Unseen 45

Figure 2.13: Typical Steganography and Steganalysis scenario.

by [191]. Any possible LSB embedding procedure will change the contents of a selected number

of pixels and therefore will change the pixel value statistics in a local neighborhood.

An L-bit color channel can represent 2L possible values. If we split these values into 2L−1

pairs that only differ in the LSBs, we are considering all possible patterns of neighboring bits

for the LSBs. Each of these pairs are called pair of value (PoV) in the sequence [191].

When we use all the available LSB fields to hide a message in an image, the distribution of

odd and even values of a PoV will be the same as the 0/1 distribution of the message bits. The

idea of the statistical analysis is to compare the theoretically expected frequency distribution

of the PoVs with the real observed ones [191]. However, we do not have the original image and

thus the expected frequency. In the original image, the theoretically expected frequency is the

arithmetical mean of the two frequencies in a PoV. As we know, the embedding function only

affects the LSBs, so it does not affect the PoV’s distribution after an embedding. Therefore the

arithmetical mean remains the same in each PoV, and we can derive the expected frequency

through the arithmetic mean between the two frequencies in each PoV.

As presented in [143,191], we can apply the χ2 (chi squared-test) S over these PoVs to detect

hidden messages

S =

k
∑

i=1

(f obs
i − f exp

i )2

f exp
i

, (2.24)

where k is the number of analyzed PoVs, f obs
i and f exp

i are the observed frequencies and the

expected frequencies respectively. A small value of S points out that the data follows the

expected distribution and we can conclude that the image was tweaked. We can measure the
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statistical significance of S by calculating the p-value, which is the probability that a chi-square

distributed random variable with k − 1 degrees of freedom would attain a value larger than or

equal to S:

p(S) =
1

2
k−1

2 Γ(k−1
2 )

∫ ∞

S
e

−x
2 x

k−1

2
−1dx. (2.25)

If the image does not have a hidden message, S is large and p(S) is small. In practice, we

calculate a threshold value Sth so that p(Sth) = α where α is the chosen significance level. The

main limitation with this approach is that it only detects sequential embeddings. For random

embeddings, we could apply this approach window-wise. However, in this case it is effective

only for large embeddings such as the ones that modify, at least, 50% of the available LSBs. For

small embeddings, there is a simple counter-attack that breaks down this detection technique.

For that, it is possible to learn the basic statistics about the image and to keep such statistics

when embedding the message. For instance, for each bit modified to one, another one is flipped

to zero. Indeed, as we shall show later, Outguess7 is one approach that uses such tricks when

performing embeddings in digital images.

Fridrich et al. [50] have presented RS analysis. It consists of the analysis of the LSB loss-

less embedding capacity in color and gray-scale images. The loss-less capacity reflects the fact

that the LSB plane — even though it looks random — is related to the other bit planes [50].

Modifications in the LSB plane can lead to statistically detectable artifacts in the other bit

planes of the image. The authors have reported good results (detection for message-sizes as

small as ≈ 2 − 5% on a limited set of images for the Steganography tools: Steganos, S-Tools,

Hide4PGP, among others8.

A similar approach was devised by [40] and is known as sample pair analysis. Such an

approach relies on the formation of some subsets of pixels whose cardinalities change with

LSB embedding, and such changes can be precisely quantified under the assumption that the

embedded bits form a random walk on the image. Consider the partitioning of the input image

in vectorized form V into pairs of pixels (u, v). Let P be the set of all pairs. Let us partition P
into three disjoint sets X,Y , and Z, where

X = {(u, v) ∈ P | (v is even and u < v) or (v is odd and u > v) }
Y = {(u, v) ∈ P | (v is even and u > v) or (v is odd and u < v) }
Z = {(u, v) ∈ P | (u = v)} (2.26)

Furthermore, let us partition the subset Y into two subsets, W , and V , where V = Y \W , and

Y = {(u, v) ∈ P | (u = 2k, v = 2k + 1) or (u = 2k + 1, v = 2k)} (2.27)

The sets X,W,V, and Z are called primary sets and P = X ∪W ∪ V ∪ Z. When one embeds

content in an image, the LSB values are altered and therefore the cardinalities of the sets will

change accordingly. As we show in Figure 2.14, we have four possible cases π ∈ {00, 01, 10, 11}.
7http://www.outguess.org/
8http://members.tripod.com/steganography/stego/software.html
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Let p be the relative amount of modified pixels in one image due to embedding. Hence, the

probability of a state change is given by

ρ(00,P) = (1− p/2)2

ρ(01,P) = ρ(10,P) = p/2(1− p/2)2

ρ(11,P) = (p/2)2. (2.28)

and the cardinalities after the changes are

|X ′| = |X|(1 − p/2) + |V |p/2

|V ′| = |V |(1 − p/2) + |X|p/2

|W ′| = |W |(1− p + p2/2) + |Z|p(1− p/2) (2.29)

It follows that

|X ′| − |V ′| = (|X| − |V |)(1 − p). (2.30)

The authors have empirically noted the, on average, for natural images (no hidden content)

|X| = |Y |. Therefore,

|X ′| − |V ′| = |W |(1− p). (2.31)

Observe in Figure 2.14 that the embedding process does not alter W ∪ Z. Hence, we define

γ = |W |+ |Z| = |W ′|+ |Z ′| yielding

|W ′| = (|X ′| − |V ′|)(1 − p)2 + γp(1− p/2). (2.32)

Given that |X ′|+ |V ′|+ |W ′|+ |Z ′| = |P|, we have the estimation of the embedded content size

Figure 2.14: Transitions between primary sets under LSB changing.
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0.5γp2 + (2|X ′| − |P|)p + |Y ′| − |X ′| = 0. (2.33)

This approach has been tested in [32] over three data sets summing up to 5,000 images. The

data sets comprise raw, compressed, and also scanned images. The approach is able to detect

messages as small as 5% of the available space for normal LSB embedding with no statistical

profiling.

Ker [80] has studied the statistical properties of the analysis of pairs and also proposed

an extension using weighted least squares [80]. Recently, Bohme [17] presented an extension

for JPEG covers. Several other approaches have been designed to detect targeted Steganalysis

specifically in the JPEG domain [49,56,133].

Shi et al. [166] have analyzed the gradient energy flipping rate during the embedding process.

The hypothesis is that the gradient energy varies consistently when the image is altered to conceal

data.

For most of the above techniques, the authors do not discuss possible counter-attacks to

their solutions. For instance, the sample pairs solution [40] and the RS analysis [50] rely on the

analysis of groups of modified and non-modified pixels. What happens if someone knows these

detection solutions and compensates for the group distribution for each modified pixel? Do the

solutions still work after such kind of embedding statistical profiling?

Blind Steganalysis

Most of the blind- and semi-blind detection approaches rely on supervised learning techniques.

The classifiers used in existing blind and semi-blind Steganalysis refer to virtually all categories

of classical classification such as regression, multi-variate regression, one class, two class, and

hyper-geometric classifications, among others.

Both in blind and semi-blind scenarios, the classifier is a mapping that depends on one or

more parameters that are determined through training and based on the desired tradeoff between

both type of errors (false alarm and false detection) that the classifier can make. Therefore,

Steganalysis begins with the appropriate choice of features to represent both the stego and

non-stego objects.

In the semi-blind scenario, we select a set of stego algorithms and train a classifier in the hope

that when analyzing an object concealing a message embedded with an unknown algorithm, the

detector will be able to generalize. On the other hand, in the complete blind scenario, we only

train a set of cover objects based on features we believe will be altered during the concealment

of data. In this case, we train one-class classifiers and use the trained model to detect outliers.

Some of the most common features used in the literature to feed classifiers are based on

wavelet image decompositions, image quality metrics, controlled perturbations, moment func-

tions, and histogram characteristic functions.

Lyu and Farid [95,96] have introduced a detection approach based on probability distribution

functions of image sub-bands coefficients. This work has become a basis for several others. The

motivation is that natural images have regularities that can be detected by high-order statistics

through quadrature mirror filter (QMF) decompositions [180].
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The QMF decomposition divides the image into multiple scales and orientations. We denote
the vertical, horizontal, and diagonal sub-bands in a given scale {i = 1 . . . n} as Vi(x, y),
Hi(x, y), Di(x, y), respectively. Figure 2.15 depicts one image decomposition with three scales.
The authors of [95,96] propose to detect hidden messages using two sets of statistics collected

Figure 2.15: Image sub-bands QMF decomposition.

throughout the multiple scales and orientations. The first set of statistics comprises mean,
variance, skewness, and kurtosis. These statistics are unlikely to capture the strong correlations
that exist across space, orientation, scale and color. Therefore, the authors calculate a second
set of statistics based on the errors in a linear predictor of coefficient magnitude. For the sake of
illustration, consider a vertical sub-band of a gray image at scale i, Vi(x, y). A linear predictor
for the magnitude of these coefficients in a subset of all possible spatial, orientation, and scale
neighbors is given by

|Vi(x, y)| = w1|Vi(x − 1, y)|+ w2|Vi(x + 1, y)|+ w3|Vi(x, y − 1)|+ w4|Vi(x, y + 1)|
+ w5
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where | · | represents absolute value and wk are the weights. We can represent this linear

relationship in matrix form as ~V = Q~w, where the column vector ~w = (w1, . . . , w7)T , the

vector ~V contains the coefficient magnitudes of Vi(x, y) strung out into a column vector, and

the columns of the matrix Q contain the neighboring coefficient magnitudes as in Equation 2.34

also strung out into column vectors. The coefficients are determined through the minimization

of the quadratic error function

E(~w) = [~V −Q~w]2. (2.35)

This error is minimized through differentiation with respect to ~w. Setting the result equal to

zero, and solving for ~w, we have

~w = (QTQ)−1QT~V . (2.36)

Finally, the log error in the linear predictor is given by

~E = log2
~V − log2(Q~w). (2.37)
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It is from this error that the additional mean, variance, skewness, and kurtosis statistics are

collected. This process is repeated for each sub-band, and scale. From this set of statistics, the

authors train the detector with images with and without hidden messages.

Lyu and Farid [93, 97] have extended this set of features to color images and proposed an

one-class classifier with hyper-spheres representing cover objects. Outliers of this model are

tagged as stego objects. A similar procedure using Parzen-Windows was devised by [156] to

detect anomalies in stego systems.

Rocha and Goldenstein [147] have presented the Progressive Randomization meta-descriptor

for Steganalysis. The principle is that it captures the difference between image classes (with

and without hidden messages) by analyzing the statistical artifacts inserted during controlled

perturbation processes with increasing randomness.

Avcibas et al. [10] have presented a detection scheme based on image quality metrics (IQMs).

The motivation is that the embedding can be understood as an addition of noise to the image

therefore degrading its quality. They have used multivariate regression analysis. Avcibas et al. [8]

have introduced an approach that explores binary similarity measures within image bit planes.

The basic idea is that the correlation between the bit planes as well as the binary texture

characteristics within the bit planes differ between a stego image and a cover image.

Histogram characteristic functions and statistics of empirical co-occurrence matrices also

have been presented with relative success [26,49,168,193,194].

Despite of all the advances, one major drawback of the previous approaches is that most

of them are only able to point out whether or not a given image contains a hidden message.

Currently, with classifier-based blind or semi-blind approaches it is extremely difficult or even

impossible to identify portions of the image where a message is hidden and perform message

extraction or even only point out possible tools used in the embedding process. A second

drawback in this body of work is the lack of counter-analysis techniques to assess the viability

of the existing research. Outguess9 [142] and F5 [190] are two early examples of such works.

Outguess is a steganographic algorithm that relies on data specific handlers that extract

redundant bits and write them back after modification. For JPEG images, Outguess preserves

statistics based on frequency counts. As a result, statistical tests based on simple frequency

counts are unable to detect the presence of steganographic content [142]. Outguess uses a

generic iterator object to select which bits in the data should be modified. In addition, F5 was

proposed with the goal of providing high steganographic capacity without sacrificing security.

Instead of LSB flipping (traditional embedding approaches), the embedding operation in F5

preserves the shape of the DCT histogram. The embedding is performed according to a pseudo-

random path determined from a user pass-phrase. Later on, Fridrich et al. [52] have provided

a targeted attack that detects embedded messages using F5 algorithm throughout a process

called calibration. We estimate the original cover-object from the suspected stego-object. In

the case of JPEG images, for instance, this is possible because the quantized DCT coefficients

are robust to small distortions (the ones performed by some steganographic algorithms) [32].

9http://www.outguess.org/
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Fridrich et al.’s [52] approach is no longer as effective if we improve F5 with some sort of

statistical profiling preserving not only the DCT histogram shape but also compensating for the

modified coefficients.

Much more work of this sort is essential, given that this scenario looks like an arm’s race in

which Steganographers and Steganalyzers compete to produce better approaches in a techno-

logical escalation.

In the Stegi@Work section, we present a common framework that allows us to combine most

of the state of the art solutions in a compact and efficient way toward the objective of recovering

the hidden content.

Some other flaws related to the classifier-based blind or semi-blind approaches are

• The choice of proper features to train the classifier upon is a key step. There is no

systematic rule for feature selection. It is mostly a heuristic, trial and error method [24].

• Some classifiers have several parameters that have to be chosen (type of kernels, learning

rate, training conditions) making the process a hard task [24].

• To our knowledge, a standard reference set has yet to emerge in the Steganalysis field

to allow fair comparison across different approaches. One step in that direction is the

work of [154] which presents two controlled data sets to test hidden message detection

approaches and the work of [79] which presents a new benchmark for binary steganalysis

methods.

Stegi@Work

What is needed for today’s forensics applications is a scalable framework that is able to process a

large volume of images (the sheer volume of images on sites such as Flickr and Picasa is testament

to this). As we have repeatedly seen throughout this paper, individual techniques for forensic

analysis have been developed for specific tools, image characteristics, and imaging hardware,

with results presented in the limited capacity of each individual work’s focus. If a high capacity

framework for digital image forensics was available, the forensic tools presented in this paper

could be deployed in a common way, allowing the application of many tools against a candidate

image, with the fusion of results giving a high-confidence answer as to whether an image contains

steganographic content, is a forgery, or has been produced by a particular imaging system. In

our own work in the “Vision of the Unseen,” we have focused on the development of a cross-

platform distributed framework specifically for Steganalysis, embodying the above ideas, that

we call Stegi@Work. In this section, we will summarize the overall architecture and capabilities

of the Stegi@Work framework as an example of what a distributed forensics framework should

encompass.

Stegi@Work, at the highest architectural level (details in Figure 2.16), consists of three

entities. A requester client issues jobs for the system to process. Each job consists of a file that

does or does not contain steganographic content. This file is transmitted to the Stegi server,

which in turn, dispatches the job’s processing to the worker clients. Much like other distributed
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computing frameworks such as Seti@home10 and Folding@home11, worker clients can be ordinary

workstations on a network with CPU cycles to spare. The Stegi server collects the results for

each job, and performs fusion over the set of results, to come to a final conclusion about the

status of the file in question. Each network entity may be connected via a LAN, or logically

separated by firewalls in a WAN, facilitating the use of worker clients or requestor clients on

a secure or classified network, while maintaining presence on an insecure network, such as the

Internet. The Stegi server exists as the common point of contact for both.

The specifics of job communication (details in Figure 2.17), include the specific definitions

for each job packet transmitted between network entities. Between the requester client and

the Stegi server, both job request and job results packets are exchanged. In a job request, the

file in question is transmitted to the server, along with optional tool selection and response

requests. If these are not specified, the server can choose them automatically based on the

type of the submitted file, as well as a defined site policy. The server receives a detailed report

packet from each worker client, including the results of all of the tools applied against a file, as

well as additional details about the job, such as execution time. Additional status packets are

transmitted between all network entities, including server status to a worker client, notifying

it that a job (with the file and appropriate tools) is ready, worker client status to the server,

indicating the current state of a job, and server status to a worker client indicating what should

be known about a job that is in the system.

The Stegi@Work architecture provides tool support for each worker client in the form of a

wrapper API around the tool for each native platform. This API defines process handling, pro-

cess status, and control signaling, allowing the Stegi server full control over each process on each

worker client. The current system as implemented supports wrappers written in C/C++, Java,

and Matlab, thus supporting a wide range of tools on multiple platforms. Network communica-

tion between each native tool on the worker client and the Stegi@Work system is defined via a

set of XML messages. We have created wrappers for the popular analysis tools stegdetect12 and

Digital Invisible Ink Toolkit13, as well as a custom tool supporting signature-based detection,

as well as the statistical χ2 test.

In order for high portability, allowing for many worker clients, the Stegi@Work framework

has been implemented in Java, with tool support, as mentioned above, in a variety of different

languages. This is accomplished through the use of Java Native Interface14 (JNI), with Win32

and Linux calls currently supported. The Stegi@Work server is built on top of JBOSS15, with

an Enterprise Java Beans16 (EJB) 3.0 object model for all network entities. GUI level dialogues

are available for system control at each entity throughout the framework.

The actual use cases for a system like Stegi@Work extend beyond large-scale forensics for

10http://setiathome.berkeley.edu/
11http://folding.stanford.edu/
12http://www.outguess.org/detection.php
13http://diit.sourceforge.net/
14http://swik.net/JNI+Tutorial
15http://www.jboss.org/
16http://www.conceptgo.com/gsejb/index.html
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intelligence or law enforcement purposes. Corporate espionage remains a critical threat to

business, with loss estimates as high as $200 billion17. An enterprise can deploy requestor clients

at the outgoing SMTP servers to scan each message attachment for steganographic content. If

such content is detected, the system can quarantine the message, issue alerts, or simply attempt

to destroy [74, 132] any detected content automatically, and send the message back on its way.

This last option is desirable in cases where false positives are more likely, and thus, a problem

for legitimate network users. Likewise, a government agency may choose to deploy the system

in the same manner to prevent the theft of very sensitive data.

Figure 2.16: Stegi@Work overall architecture.

17http://news.bbc.co.uk/2/hi/technology/5313772.stm
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Figure 2.17: Stegi@Work communications architecture.

2.3 Conclusions

A remarkable demand for image-based forensics has emerged in recent years in response to a

growing need for investigative tools for a diverse set of needs. From the law enforcement com-

munity’s perspective, image based analysis is crucial for the investigation of many crimes, most

notably child pornography. Yet, crime that utilizes images is not limited to just pornography,

with entities as diverse as Colombian drug cartels taking advantage of steganography to mask

their activities. From the intelligence community’s perspective, the ability to scan large amounts

of secret and public data for tampering and hidden content is of interest for strategic national

security. As the case of the Iranian missiles has shown, state based actors are just as willing to

abuse image processing as common criminals.

But the obvious crimes are not necessarily the most damaging. The digital world presents

its denizens with a staggering number of images of dubious authenticity. Disinformation via the

media has been prevalent throughout the last century, with doctored images routinely being used

for political propaganda. But now, with the near universal accessibility of digital publishing,

disinformation has spread to commercial advertising, news media, and the work of malicious

pranksters. Is it at all possible to determine whether an image is authentic or not? If we cannot

determine the authenticity, what are we to believe about the information the image represents?

Digital Image and Video Forensics research aims at uncovering and analyzing the underlying

facts about an image/video. Its main objectives comprise: tampering detection (cloning, healing,

retouching, splicing), hidden messages detection/recovery, and source identification with no

prior measurement or registration of the image (the availability of the original reference image

or video). In this paper, we have taken a look at many individual algorithms and techniques

designed for very specific detection goals. However, the specific nature of the entire body of

digital image and video forensics work is its main limitation at this point in time. How is an

investigator able to choose the correct method for an image at hand? Moreover, the shear
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magnitude of images that proliferate throughout the Internet poses a serious challenge for large-

scale hidden content detection or authenticity verification.

In response to this challenge, we make several recommendations. First, work on decision level

and temporal fusion serves as an excellent basis for operational systems. Combining information

from many algorithms and techniques yields more accurate results — especially when we do not

know precisely what we are looking for. Second, the need for large distributed (or clustered)

systems for parallel evaluation fills an important role for national and corporate security. Our

Stegi@Work system is an example of this. Third, the evaluation of existing and new algorithms

must be improved. The analysis of detection results in nearly all papers surveyed lacks the rigor

found in other areas of digital image processing and computer vision, making the assessment of

their utility difficult. More troubling, in our paper, only a few papers on counter-forensics for

image based forensics were found, leading us to question the robustness of much of the work

presented here to a clever manipulator. Finally, for forgery detection and steganalysis, more

powerful algorithms are needed to detect specifics about manipulations found in images, not

just that an image has been tampered with. Despite these shortcoming, the advancement of the

state of the art will continue to improve our Vision of the Unseen.

2.4 Acknowledgments

We would like to thank the financial support of Fapesp (Contracts 05/58103-3 and 07/52015-0),

CNPq (Contracts 309254/2007-8 and 551007/2007-9), and United States Air Force STTR (Con-

tract FA9550-05-C-0172).



Esteganografia e Esteganálise nos

Meios Digitais

No Caṕıtulo 3, discutimos algumas das principais técnicas para o mascaramento digital de

informações e para a detecção de mensagens escondidas em imagens.

Mostramos que uma das áreas que têm recebido muita atenção recentemente é a estegano-

grafia. Esta é a arte de mascarar informações e evitar a sua detecção. Esteganografia deriva

do grego, onde estegano = “esconder, mascarar” e grafia = “escrita”. Logo, esteganografia é a

arte da escrita encoberta.

Aplicações de esteganografia incluem identificação de componentes dentro de um subconjunto

de dados, legendagem (captioning), rastreamento de documentos e certificação digital (time-

stamping) e demonstração de que um conteúdo original não foi alterado (tamper-proofing).

Entretanto, há ind́ıcios recentes de que a esteganografia tem sido utilizada para divulgar imagens

de pornografia infantil na internet [64, 113].

Desta forma, é importante desenvolvermos algoritmos para detectar a existência de mensa-

gens escondidas. Neste contexto, aparece a esteganálise digital, que se refere ao conjunto de

técnicas que são desenvolvidas para distinguir entre objetos que possuem conteúdo escondido

(estego-objetos) daqueles que não o possuem (não-estego).

Finalmente, apresentamos as principais tendências relacionadas à Esteganografia e Este-

ganálise digitais bem como algumas oportunidades de pesquisa.

O trabalho apresentado no Caṕıtulo 3 é o resultado de nosso artigo [149] na Revista de

Informática Teórica e Aplicada (RITA).
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Chapter 3

Steganography and Steganalysis in

Digital Multimedia: Hype or

Hallelujah?

Abstract

In this paper, we introduce the basic theory behind Steganography and Steganalysis, and present

some recent algorithms and developments of these fields. We show how the existing techniques

used nowadays are related to Image Processing and Computer Vision, point out several trendy

applications of Steganography and Steganalysis, and list a few great research opportunities just

waiting to be addressed.

3.1 Introduction

De artificio sine secreti latentis suspicione scribendi!1. (David Kahn)

More than just a science, Steganography is the art of secret communication. Its purpose is

to hide the presence of communication, a very different goal than Cryptography, that aims to

make communication unintelligible for those that do not possess the correct access rights [6].

Applications of Steganography can include feature location (identification of subcomponents

within a data set), captioning, time-stamping, and tamper-proofing (demonstration that original

contents have not been altered). Unfortunately, not all applications are harmless, and there are

strong indications that Steganography has been used to spread child pornography pictures on

the internet [64,113].

In this way, it is important to study and develop algorithms to detect the existence of hidden

messages. Digital Steganalysis is the body of techniques that attempts to distinguish between

1The effort of secret communication without raising suspicions.
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non-stego or cover objects, those that do not contain a hidden message, and stego-objects, those

that contain a hidden message.

Steganography and Steganalysis have received a lot of attention around the world in the

past few years. Some are interested in securing their communications through hiding the very

own fact that they are exchanging information. On the other hand, others are interested in

detecting the existence of these communications — possibly because they might be related to

illegal activities.

In this paper, we introduce the basic theory behind Steganography and Steganalysis, and

present some recent algorithms and developments of these fields. We show how the existing

techniques used nowadays are related to Image Processing and Computer Vision, point out

several trendy applications of Steganography and Steganalysis, and list a few great research

opportunities just waiting to be addressed.

The remainder of this paper is organized as follows. In Section 3.2, we introduce the main

concepts of Steganography and Steganalysis. Then, we present historical remarks and social

impacts in Sections 3.3 and 3.4, respectively. In Section 3.5, we discuss information hiding for

scientific and commercial applications. In Sections 3.6 and 3.7, we point out the main techniques

of Steganography and Steganalysis. In Section 3.8, we present common-available information

hiding tools and software. Finally, in Sections 3.9 and 3.10, we point out open research topics

and conclusions.

3.2 Terminology

According to the general model of Information Hiding : embedded data is the message we want

to send secretly. Often, we hide the embedded data in an innocuous medium, called cover

message. There are many kinds of cover messages such as cover text, when we use text to hide

a message; or cover image, when we use an image to hide a message. The embedding process

produces a stego object which contains the hidden message. We can use a stego key to control

the embedding process, so we can also restrict detection and/or recovery of the embedded data

to other parties with the appropriate permissions to access this data.

Figure 3.1 shows the process of hiding a message in an image. First we choose the data we

want to hide. Further, we use a selected key to hide the message in a previously selected cover

image which produces the stego image.

When designing information hiding techniques, we have to consider three competing aspects:

capacity, security, and robustness [144]. Capacity refers to the amount of information we can

embed in a cover object. Security relates to an eavesdropper’s inability to detect the hidden

information. Robustness refers to the amount of modification the stego-object can withstand

before an adversary can destroy the information [144]. Steganography strives for high security

and capacity. Hence, a successful attack to the Steganography consists of the detection of the

hidden content. On the other hand, in some applications, such as watermarking, there is the

additional requirement of robustness. In these cases, a successful attack consists in the detection

and removal of the copyright marking.
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Message to be hidden

The cover medium

to be used

The produced stego image

Figure 3.1: A data hiding example.

Figure 3.2 presents the Information Hiding hierarchy [135]. Covert channels consist of the

use of a secret and secure channel for communication purposes (e.g., military covert channels).

Steganography is the art, and science, of hiding the information to avoid its detection. It derives

from the Greek steganos ∼ “hide, embed” and graph ∼ “writing”.

We classify Steganography as technical and linguistic. When we use physical means to conceal

the information, such as invisible inks or micro-dots, we are using technical Steganography. On

the other hand, if we use only “linguistic” properties of the cover object, such as changes in

image pixels or letter positions, in a cover text we are using linguistic Steganography.

Information Hiding

Covert channels Steganography

Linguistic Technical

Anonymity Copyright marking

Robust watermarking Fragile watermarking

Fingerprinting Watermarking

Perceptible Imperceptible

Figure 3.2: Information Hiding hierarchy.

Copyright marking refers to the group of techniques devised to identify the ownership of

intellectual property over information. It can be fragile, when any modification on the media

leads to the loss of the marking; or robust, when the marking is robust to some destructive
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attacks.

Robust copyright marking can be of two types: fingerprinting and watermarking. Finger-

printing hides an unique identifier of the customer who originally acquired the information,

recording in the media its ownership. If the copyright owner finds the document in the posses-

sion of an unwanted party, she can use the fingerprint information to identify, and prosecute,

the customer who violated the license agreement.

Unlike fingerprints, watermarks identify the copyright owner of the document, not the iden-

tity of the customer. Furthermore, we can classify watermarking according to its visibility to

the naked eye as perceptible or imperceptible.

In short, fingerprints are used to identify violators of the license agreement, while watermarks

help with prosecuting those who have an illegal copy of a digital document [131,135].

Anonymity is the body of techniques devised to surf the Web secretly. This is done using

sites like Anonymizer2 or remailers (blind e-mailing services).

3.3 Historical remarks

Throughout history, people always have aspired to more privacy and security for their commu-

nications [77, 122]. One of the first documents describing Steganography comes from Histories

by Herodotus, the Father of History. In this work, Herodotus gives us several cases of such

activities. A man named Harpagus killed a hare and hid a message in its belly. Then, he sent

the hare with a messenger who pretended to be a hunter [122].

In order to convince his allies that it was time to begin a revolt against Medes and the

Persians, Histaieus shaved the head of his most trusted slave, tattooed the message on his head

and waited until his hair grew back. After that, he sent him along with the instruction to shave

his head only in the presence of his allies.

Another technique was the use of tablets covered by wax, first used by Demeratus, a Greek

who wanted to report from the Persian court back to his friends in Greece that Xerxes, the Great,

was about to invade them. The normal use of wax tablets consisted in writing the text in the

wax over the wood. Demeratus, however, decided to melt the wax, write the message directly

to the wood, and then put a new layer of wax on the wood in such a way that the message

was not visible anymore. With this ingenious action, the tablets were sent as apparently blank

tablets to Greece. This worked for a while, until a woman named Gorgo guessed that maybe

the wax was hiding something. She removed the wax and became the first woman cryptanalyst

in History.

During the Renaissance, the Harpagus’ hare technique was “improved” by Giovanni Porta,

one of the greatest cryptologists of his time, who proposed feeding a message to a dog and then

killing the dog [77].

Drawings were also used to conceal information. It is a simple matter to hide information

by varying the length of a line, shadings, or other elements of the picture. Nowadays, we have

2www.anonymizer.com
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proof that great artists, such as Leonardo Da Vinci, Michelangelo, and Rafael, have used their

drawings to conceal information [77]. However, we still do not have any means to identify the

real contents, or even intention, of these messages.

Sympathetic inks were a widespread technique. Who has not heard about lemon-based ink

during childhood? With this type of ink, it is possible to write an innocent letter having a very

different message written between its lines.

Science has developed new chemical substances that, combined with other substances, cause

a reaction that makes the result visible. One of them is gallotanic acid, made from gall nuts,

that becomes visible when coming in contact with copper sulfate [137].

With the continuous improvement of lenses, photo cameras, and films, people were able to

reduce the size of a photo down to the size of a printed period [77, 122]. One such example

is micro-dot technology, developed by the Germans during the Second World War, referred to

as the “enemy’s masterpiece of espionage” by the FBI’s director J. Edgar Hoover. Micro-dots

are photographs the size of a printed period that have the clarity of standard-sized typewritten

pages. Generally, micro-dots were not hidden, nor encrypted messages. They were just so

small as to not draw attention to themselves. The micro-dots allowed the transmission of large

amounts of data (e.g., texts, drawings, and photographs) during the war.

There are also other forms of hidden communications, like null ciphers. Using such tech-

niques, the real message is “camouflaged” in an innocuous message. The messages are very hard

to construct and usually look like strange text. This strangeness factor can be reduced if the

constructor has enough space and time. A famous case of a null cipher is the book Hypterono-

machia Poliphili of 1499. A Catholic priest named Colona decided to declare his love to a young

lady named Polya by putting the message “Father Colona Passionately loves Polia” in the first

letter of each chapter of his book.

3.4 Social impacts

Science and technology changed the way we lived in the 20th century. However, this progress

is not without risk. Evolution may have a high social impact, and digital Steganography is no

different.

Over the past few years, Steganography has received a lot of attention. Since September 11th,

2001, some researchers have suggested that Osama Bin Laden and Al Qaeda used Steganography

techniques to coordinate the World Trade Center attacks. Several years later, nothing was

proved [21,83,147,184]. However, since then, Steganography has been a hype.

As a matter of fact, it is important to differentiate what is merely a suspicion from what is

real — the hype or the hallelujah. There are many legal uses for Steganography and Steganaly-

sis, as we show in Section 3.5. For instance, we can employ Steganography to create smart data

structures and robust watermarking to track and authenticate documents, to communicate pri-

vately, to manage digital elections and electronic money, to produce advanced medical imagery,

and to devise modern transit radar systems. Unfortunately, there are also illegal uses of these

techniques. According to the High Technology Crimes Annual Report [108,120], Steganography
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and Steganalysis can be used in conjunction with dozens of other cyber-crimes such as: fraud

and theft, child pornography, terrorism, hacking, online defamation, intellectual property of-

fenses, and online harassment. There are strong indications that Steganography has been used

to spread child pornography pictures on the internet [64,113].

In this work, we present some possible techniques and legal applications of Steganography

and Steganalysis. Of course, the correct use of the information therein is all part of the reader’s

responsibility.

3.5 Scientific and commercial applications

In this section, we show that there are many applications for Information Hiding.

• Advanced data structures. We can devise data structures to conceal unplanned infor-

mation without breaking compatibility with old software. For instance, if we need extra

information about photos, we can put it in the photos themselves. The information will

travel with the photos, but it will not disturb old software that does not know of its exis-

tence. Furthermore, we can devise advanced data structures that enable us to use small

pieces of our hard disks to secretly conceal important information [63,125].

• Medical imagery. Hospitals and clinical doctors can put together patient’s exams, im-

agery, and their information. When a doctor analyzes a radiological exam, the patient’s

information is embedded in the image, reducing the possibility of wrong diagnosis and/or

fraud. Medical-image steganography requires extreme care when embedding additional

data within the medical images: the additional information must not affect the image

quality [85,157].

• Strong watermarks. Creators of digital content are always devising techniques to de-

scribe the restrictions they place on their content. These technique can be as simple as

the message “Copyright 2007 by Someone” [188], as complex as the digital rights man-

agement system (DRM) devised by Apple Inc. in its iTunes store’s contents [175], or the

watermarks in the contents of the Vatican Library [110].

• Military agencies. Militaries’ actions can be based on hidden and protected communica-

tions. Even with crypto-graphed content, the detection of a signal in a modern battlefield

can lead to the rapid identification and attack of the involved parties in the communi-

cation. For this reason, military-grade equipment uses modulation and spread spectrum

techniques in its communications [188].

• Intelligence agencies. Justice and Intelligence agencies are interested in studying these

technologies, and identifying their weaknesses to be able to detect and track hidden mes-

sages [64,109,113].
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• Document tracking tools. We can use hidden information to identify the legitimate

owner of a document. If the document is leaked, or distributed to unauthorized parties,

we can track it back to the rightful owner and perhaps discover which party has broken

the license distribution agreement [188].

• Document authentication. Hidden information bundled into a document can contain

a digital signature that certifies its authenticity [188].

• General communication. People are interested in these techniques to provide more

security in their daily communications [184, 188]. Many governments continue to see the

internet, corporations, and electronic conversations as an opportunity for surveillance [164].

• Digital elections and electronic money. Digital elections and electronic money are

based on secret and anonymous communications techniques [135,188].

• Radar systems. Modern transit radar systems can integrate information collected in a

radar base station, avoiding the need to send separate text and pictures to the receiver’s

base stations.

• Remote sensing. Remote sensing can put together vector maps and digital imagery of a

site, further improving the analysis of cultivated areas, including urban and natural sites,

among others.

3.6 Steganography

In this section, we present some of the most common techniques used to embed messages in

digital images. We choose digital images as cover objects because they are more related to

Computer Vision and Image Processing. However, these techniques can be extended to other

types of digital media as cover objects, such as text, video, and audio files.

In general, steganographic algorithms rely on the replacement of some noise component of

a digital object with a pseudo-random secret message [6]. In digital images, the most common

noise component is the least significant bits (LSBs). To the human eye, changes in the value

of the LSB are imperceptible, thus making it an ideal place for hiding information without any

perceptual change in the cover object.

The original LSB information may have statistical properties, so changing some of them

could result in the loss of those properties. Thus, we have to embed the message mimicking the

characteristics of the cover bits’ [137]. One possibility is to use a selection method in which we

generate a large number of cover messages in the same way, and we choose the one having the

secret embedded in it. However, this method is computationally expensive and only allows small

embeddings. Another possibility is to use a constructive method. In this approach, we build a

mimic function that also simulates characteristics of the cover bits noise.
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Generally, both the sender and the receiver share a secret key and use it with a keystream

generator. The key-stream is used for selecting the positions where the secret bits will be

embedded [137].

Although LSB embedding methods hide data in such a way that humans do not perceive

it, these embeddings often can be easily destroyed. As LSB embedding takes place on noise, it

is likely to be modified, and destroyed, by further compression, filtering, or a less than perfect

format or size conversion. Hence, it is often necessary to employ sophisticated techniques to

improve embedding reliability as we describe in Section 3.6.3. Another possibility is to use tech-

niques that take place on the most significant parts of the digital object used. These techniques

must be very clever in order to not modify the cover object making the alterations imperceptible.

3.6.1 LSB insertion/modification

Among all message embedding techniques, LSB insertion/modification is a difficult one to de-

tect [6,147,188], and it is imperceptible to humans [188]. However, it is easy to destroy [147]. A

typical color image has three channels: red, green and blue (R,G,B); each one offers one possible

bit per pixel to the hiding process.

In Figure 3.3, we show an example of how we can possibly hide information in the LSB fields.

Suppose that we want to embed the bits 1110 in the selected area. In this example, without

loss of generality, we have chosen a gray-scale image, so we have one bit available in each image

pixel for the hiding process. If we want to hide four bits, we need to select four pixels. To

perform the embedding, we tweak the selected LSBs according to the bits we want to hide.

Figure 3.3: The LSB embedding process.
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3.6.2 FFTs and DCTs

A very effective way of hiding data in digital images is to use a Direct Cosine Transform (DCT),

or a Fast Fourier Transform (FFT), to hide the information in the frequency domain. The DCT

algorithm is one of the main components of the JPEG compression technique [60]. In general,

DCT and FFT work as follows:

1. Split the image into 8× 8 blocks.

2. Transform each block via a DCT/FFT. This outputs a multi-dimensional array of 64

coefficients.

3. Use a quantizer to round each of these coefficients. This is essentially the compression

stage and it is where data is lost. Small unimportant coefficients are rounded to 0 while

larger ones lose some of their precision.

4. At this stage you should have an array of streamlined coefficients, which are further com-

pressed via a Huffman encoding scheme or something similar.

5. To decompress, use the inverse DCT/FFT.

The hiding process using a DCT/FFT is useful because anyone that looks at pixel values of

the image would be unaware that anything is different [188].

Least significant coefficients.

It is possible to use LSB of the quantized DCT/FFT coefficients as redundant bits, and embed

the hidden message there. The modification of a single DCT/FFT coefficient affects all 64 image

pixels in the block [144]. Two of the simpler frequency-hiding algorithms are JSteg [179] and

Outguess [142].

JSteg, Algorithm 2, sequentially replaces the least significant bit of DCT, or FFT, coefficients

with the message’s data. The algorithm does not use a shared key, hence, anyone who knows

the algorithm can recover the message’s hidden bits.

On the other hand, Outguess, Algorithm 3, is an improvement over JSteg, because it uses a

pseudo-random number generator (PRNG) and a shared key as the PRNG’s seed to choose the

coefficients to be used.

Block tweaking.

It is possible to hide data during the quantization stage [188]. If we want to encode the bit value

0 in a specific 8× 8 square of pixels, we can do this by making sure that all the coefficients are

even in such a block, for example by tweaking them. In a similar approach, bit value 1 can be

stored by tweaking the coefficients so that they are odd.

With the block tweaking technique, a large image can store some data that is quite difficult

to destroy when compared to the LSB method. Although this is a very simple method and

works well in keeping down distortions, it is vulnerable to noise [6, 188].



68 Chapter 3. Steganography and Steganalysis in Digital Multimedia: Hype or Hallelujah?

Algorithm 2 JSteg general algorithm

Require: message M , cover image I;
1: procedure JSteg(M, I)
2: while M 6= NULL do
3: get next DCT coefficient from I;
4: if DCT 6= 0 and DCT 6= 1 then ⊲ We only change non-0/1 coefficients
5: b ← next bit from M ;
6: replace DCT LSB with message bit b;
7: M ←M − b;
8: end if
9: Insert DCT into stego image S;

10: end while
return S;

11: end procedure

Algorithm 3 Outguess general algorithm

Require: message M , cover image I, shared key k;
1: procedure Outguess(M, I, k)
2: Initialize PRNG with the shared key k
3: while M 6= NULL do
4: get pseudo-random DCT coefficient from I;
5: if DCT 6= 0 and DCT 6= 1 then ⊲ We only change non-0/1 coefficients
6: b ← next bit from M ;
7: replace DCT LSB with message bit b;
8: M ←M − b;
9: end if

10: Insert DCT into stego image S;
11: end while

return S;
12: end procedure
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Coefficient selection.

This technique consists of the selection of the k largest DCT or FFT coefficients {γ1 . . . γk} and

modify them according to a function f that also takes into account a measure α of the required

strength of the embedding process. Larger values of α are more resistant to error, but they also

introduce more distortions.

The selection of the coefficients can be based on visual significance (e.g., given by zigzag

ordering [188]). The factors α and k are user-dependent. The function f(·) can be

f(γ′
i) = γi + αbi, (3.1)

where bi is a bit we want to embed in the coefficient γi.

Wavelets.

DCT/FFT transformations are not so effective at higher-compression levels. In such scenarios,

we can use wavelet transformations instead of DCT/FFTs to improve robustness and reliability.

Wavelet-based techniques work by taking many wavelets to encode a whole image. They

allow images to be compressed by storing the high and low frequency details separately in the

image. We can use the low frequencies to compress the data, and use a quantization step to

compress even more. Information hiding techniques using wavelets are similar to the ones with

DCT/FFT [188].

3.6.3 How to improve security

Robust Steganography systems must observe the Kerckhoffs’ Principle [160] in Cryptography,

which holds that a cryptographic system’s security should rely solely on the key material. Fur-

thermore, to remain undetected, the unmodified cover medium used in the hiding process must

be kept secret or destroyed. If it is exposed, a comparison between the cover and stego media

immediately reveals the changes.

Further procedures to improve security in the hiding process are:

• Cryptography. Steganography supplements Cryptography, it does not replace it. If

a hidden message is encrypted, it must also be decrypted if discovered, which provides

another layer of protection [73].

• Statistical profiling. Data embedding alters statistical properties of the cover medium.

To overcome such alterations, the embedding procedure can learn the statistics about the

cover medium in order to minimize the amount of changes. For instance, for each bit

changed to zero, the embedding procedure changes another bit to one.

• Structural profiling. Mimicking the statistics of a file is just the beginning. We can

use the structure of the cover medium to better hide the information. For instance, if our

cover medium is an image of a person, we can choose regions of this image that are rich in
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details such as the eyes, mouth and nose. These areas are more resilient to compression

and conversion artifacts [60].

• Change of the order. Change the order in which the message is presented. The order

itself can carry the message. For instance, if the message is a list of items, the order of the

items can itself carry another message.

• Split the information. We can split the data into any number of packets and send them

through different routes to their destination. We can apply sophisticated techniques in

order to need only k out of n parts to reconstruct the whole message [188].

• Compaction. Less information to embed means fewer changes in the cover medium,

lowering the probability of detection. We can use compaction to shrink the message and

the amount of needed alterations in the cover medium.

3.7 Steganalysis

With the indications that steganography techniques have been used to spread child pornography

pictures on the internet [64, 113], there is a need to design and evaluate powerful detection

techniques able to avoid or minimize such actions. In this section, we present an overview of

current approaches, attacks, and statistical techniques available in Steganalysis.

Steganalysis refers to the body of techniques devised to detect hidden contents in digital

media. It is an allusion to Cryptanalysis which refers to the body of techniques devised to break

codes and cyphers [160].

In general, it is enough to detect whether a message is hidden in a digital content. For

instance, law enforcement agencies can track access logs of hidden contents to create a network

graph of suspects. Later, using other techniques, such as physical inspection of apprehended

material, they can uncover the actual contents and apprehend the guilty parties [73,147]. There

are three types of Steganalysis attacks: (1) aural; (2) structural; and (3) statistical.

1. Aural attacks. They consist of striping away the significant parts of a digital content in

order to facilitate a human’s visual inspection for anomalies [188]. A common test is to

show the LSBs of an image.

2. Structural attacks. Sometimes, the format of the digital file changes as hidden infor-

mation is embedded. Often, these changes lead to an easily detectable pattern in the

structure of the file format. For instance, it is not advisable to hide messages in images

stored in GIF format. In such a format an image’s visual structure exists to some degree

in all of an image’s bit layers due to the color indexing that represents 224 colors using

only 256 values [191].

3. Statistical attacks. Digital pictures of natural scenes have distinct statistical behavior.

With proper statistical analysis, we can determine whether or not an image has been
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altered, making forgeries mathematically detectable [109]. In this case, the general purpose

of Steganalysis is to collect sufficient statistical evidence about the presence of hidden

messages in images, and use them to classify [16] whether or not a given image contains

a hidden content. In the following section, we present some available statistical-based

techniques for hidden message detection.

3.7.1 χ
2 analysis

Westfeld and Pfitzmann [191] have present χ2 analysis to detect hidden messages. They showed

that an L-bit color channel can represent 2L possible values. If we split these values into 2L−1

pairs which only differ in the LSBs, we are considering all possible patterns of neighboring bits

for the LSBs. Each of these pairs is called a pair of value (PoV) in the sequence [191].

When we use all the available LSB fields to hide a message in an image, the distribution

of odd and even values of a PoV will be the same as the 0/1 distribution of the message bits.

The idea of the χ2 analysis is to compare the theoretically expected frequency distribution of

the PoVs with the real observed ones [191]. However, we do not have the original image and

thus the expected frequency. In the original image, the theoretically expected frequency is the

arithmetical mean of the two frequencies in a PoV. As we know, the embedding function only

affects the LSBs, so it does not affect the PoV’s distribution after an embedding. Given that,

the arithmetical mean remains the same in each PoV, and we can derive the expected frequency

through the arithmetic mean between the two frequencies in each PoV.

Westfeld and Pfitzmann [191] have showed that we can apply the χ2 (chi squared-test) over

these PoVs to detect hidden messages. The χ2 test general formula is

χ2 =
ν+1
∑

i=1

(f obs
i − f exp

i )2

f exp
i

, (3.2)

where ν is the number of analyzed PoVs, f obs
i and f exp

i are the observed frequencies and the

expected frequencies respectively.

The probability of hiding, ph, in a region is given by the complement of the cumulative

distribution

ph = 1−
∫ χ2

0

t(ν−2)/2e−t/2

2ν/2Γ(ν/2)
dt, (3.3)

where Γ(·) is the Euler-Gamma function. We can calculate this probability in different regions

of the image.

This approach can only detect sequential messages hidden in the first available pixels’ LSBs,

as it only considers the descriptors’ value. It does not take into account that, for different

images, the threshold value for detection may be quite distinct [147].

Simply measuring the descriptors constitutes a low-order statistic measurement. This ap-

proach can be defeated by techniques that maintain basic statistical profiles in the hiding pro-

cess [143,147].



72 Chapter 3. Steganography and Steganalysis in Digital Multimedia: Hype or Hallelujah?

Improved techniques such as Progressive Randomization (PR) [147] addresses the low-order

statistics problem by looking at the descriptors’ behavior along selected regions (feature regions).

3.7.2 RS analysis

Fridrich et al. have presented RS analysis [50]. It consists of the analysis of the LSB loss-

less embedding capacity in color and gray-scale images. The loss-less capacity reflects the fact

that the LSB plane — even though it looks random — is related to the other bit planes [50].

Modifications in the LSB plane can lead to statistically detectable artifacts in the other bit

planes of the image.

To measure this behavior, Fridrich and colleagues have proposed simulation of artificial new

embeddings in the analyzed images using some defined functions.

Let I be the image to be analyzed with width W and height H pixels. Each pixel has values

in P . For an 8 bits per pixel image, we have P = {0 . . . 255}. We divide I into G disjoint

groups of n adjacent pixels. For instance, we can choose n = 4 adjacent pixels. We define a

discriminant function f responsible to give a real number f(x1, . . . , xn) ∈ ℜ for each group of

pixels G = (x1, . . . , xn). Our objective using f is to capture the smoothness of G. Let the

discrimination function be

f(x1, . . . , xn) =

n−1
∑

i=1

|xi+1 − xi|. (3.4)

Furthermore, let F1 be a flipping invertible function F1 : 0↔ 1, 2↔ 3, . . . , 254↔ 255, and F−1

be a shifting function F−1 : −1↔ 0, 1 ↔ 2, . . . , 255 ↔ 256 over P . For completeness, let F0 be

the identity function such as F0(x) = x ∀ x ∈ P .

Define a maskM that represents which function to apply to each element of a group G. The

mask M is an n-tuple with values in {−1, 0, 1}. The value -1 stands for the application of the

function F−1; 1 stands for the function F1; and 0 stands for the identity function F0. Similarly,

we define −M as M’s complement.

We apply the discriminant function f with the functions F{−1,0,1} defined through a mask

M over all G groups to classify them into three categories:

• Regular. G ∈ RM ⇔ f(FM(G)) > f(G)

• Singular. G ∈ SM ⇔ f(FM(G)) < f(G)

• Unusable. G ∈ UM ⇔ f(FM(G)) = f(G)

Similarly, we classify the groups R−M, S−M, and U−M for the mask −M. As a matter of

fact, it holds that

RM + SM

T
≤ 1 and

R−M + S−M

T
≤ 1,

where T is the total number of G groups.



3.7. Steganalysis 73

The method’s statistical hypothesis is that, for typical images

RM ≈ R−M and SM ≈ S−M.

What is interesting is that, in an image with a hidden content, the greater the message size, the

greater the R−M and S−M difference, and the lower the difference between RM and SM. This

behavior points out to high-probability chance of embedding in the analyzed image [50].

3.7.3 Gradient-energy flipping rate

Li Shi et al. have presented the Gradient-Energy Flipping Rate (GEFR) technique for Steganal-

ysis. It consists in the analysis of the gradient-energy variation due to the hiding process [166].

Let I(n) be an unidimensional signal. The gradient r(n), before the hiding is

r(n) = I(n)− I(n− 1), (3.5)

and the I(n)’s gradient energy (GE), is

GE =
∑

|I(n)− I(n− 1)|2 =
∑

r(n)2. (3.6)

After the hiding of a signal S(n) in the original signal, I(n) becomes I ′(n) and the gradient

becomes

r(n) = I(n)− I(n− 1)

= (I(n) + S(n))− (I(n− 1) + S(n− 1))

= r(n) + S(n)− S(n − 1). (3.7)

The probability distribution function of S(n) is
{

ρ(S(n)) ≈ 0 = 1
2

ρ(S(n)) ≈ ±1 = 1
4

(3.8)

After any kind of embedding, the new gradient energy GE′ is

GE′ =
∑

|r(n)|2 =
∑

|r(n) + S(n)− S(n− 1)|2

=
∑

|r(n) + ∆(n)|2, where ∆(n) = S(n)− S(n− 1). (3.9)

To perform the detection, it is necessary to define a process of inverting the bits of an

image’s LSB plane. For that, we can use a function F which is similar to the one we described

in Section 3.7.2.

Let I be the cover image with W × H pixels and p ≤ W × H be the size of the hidden

message. The application of the function F results in the properties:

• For p = W×H, there is
W ×H

2
pixels with inverted LSB. That means that the embedding

rate is 50% and the gradient energy is given by GE =

(

W ×H

2

)

.
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• The original image’s gradient energy is given by EG(0). After inverting all available LSBs

using F , the gradient energy becomes GE′ = W ×H.

• For p < W ×H, there is
p

2
pixels with inverted LSB. Let I(

p

2
) be the modified image. The

resulting gradient energy is GE =
p/2

W ×H
= EG(0) + p. If F is applied over I(

p

2
), the

resulting gradient energy is EG =
W ×H − p/2

W ×H
.

With these properties, Li Shi et al. have proposed the following detection procedure:

1. Find the test image’s gradient energy GE

(

p/2

W ×H

)

;

2. Apply F over the test image and calculate GE

(

W ×H − p/2

W ×H

)

;

3. Find GE

(

W ×H

2

)

=

[

EG

(

p/2

W ×H

)

+ GE

(

W ×H − p/2

W ×H

)]

/2;

4. GE(0) is based on GE

(

W ×H

2

)

= GE(0) + W ×H;

5. Finally, the estimated size of the hidden message is given by

p′ = GE

(

p/2

W ×H

)

−GE(0).

3.7.4 High-order statistical analysis

Lyu and Farid [41, 42, 95, 96] have introduced a detection approach based on high-order statis-

tical descriptors. Natural images have regularities that can be detected by high-order statistics

through wavelet decompositions [96]. To decompose the images, Lyu and colleagues have used

quadrature mirror filters (QMFs) [180]. This decomposition divides the image into multiple

scales and orientations resulting in four subbands: vertical, horizontal, diagonal, and low-pass

which can be recursively used to produce subsequent scales.

Let Vi(x, y), Hi(x, y), and Di(x, y) be the vertical, horizontal, and diagonal subbands for a

given scale i ∈ {1 . . . n}. Figure 3.4 depicts this process.

From the QMF decomposition, the authors create a statistical model composed of mean,

variance, skewness, and kurtosis for all subbands and scales. These statistics characterize the

basic coefficients’ distribution. The second set of statistics is based on the errors in an optimal

linear predictor of coefficient magnitude. The subband coefficients are correlated to their spatial,

orientation, and scale neighbors [20]. For illustration purposes, consider first a vertical band,

Vi(x, y), at scale i. A linear predictor for the magnitude of these coefficients in a subset of all

possible neighbors is given by

Vi(x, y) = w1Vi(x− 1, y) + w2Vi(x + 1, y) + w3Vi(x, y − 1) + w4Vi(x, y + 1) +

+w5Vi+1(
x

2
,
y

2
) + w6Di(x, y) + w7Di+1(

x

2
,
y

2
), (3.10)
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ωy

ωx

Figure 3.4: QMF decomposition scheme.

where wk denotes the scalar weighting values. The error coefficients are calculated using

quadratic minimization of the error function

E(w) = [V −Qw]2, (3.11)

where w = (w1, . . . , w7)T , V is a column vector of magnitude coefficients, and Q is the magnitude

neighbors’ coefficients as proposed in Equation 3.10. The error function is minimized through

differentiation with respect to w

dE(w)

dw
= 2QT [V −Qw]. (3.12)

After simplifications, we calculate wk directly with the linear predictor log error

E = log2(V )− log2(|Qw|). (3.13)

With a recursive application of this process to all subbands, scales, and orientation, we have

a total of 12(n− 1) error statistics plus 12(n− 1) basic ones. This amounts to a 24(n− 1)-sized

feature vector. This feature vector feeds a classifier, which is able to output whether or not an

unknown image contains a hidden message. Lyu and colleagues have used Linear Discriminant

Analysis and Support Vector Machines to perform the classification stage [16].

3.7.5 Image quality metrics

Avcibas et al. have presented a detection scheme based on image quality metrics (IQMs) [1,9,10].

Image quality metrics are often used for coding artifact evaluation, performance prediction of

vision algorithms, quality loss due to sensor inadequacy, etc.
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Steganographic schemes, whether by spread-spectrum, quantization modulation, or LSB

insertion/modification, can be represented as a signal addition to the cover image. In this

context, Avcibas and colleagues’ hypothesis is that steganographic schemes leave statistical

evidences that can be exploited for detection with the aid of IQMs and multivariate regression

analysis (ANOVA).

Using ANOVA, the authors have pointed out that the following IQMs are the best feature

generators: mean absolute error, mean square error, Czekznowski correlation, image fidelity,

cross correlation, spectral magnitude distance, normalized mean square, HVS error, angle mean,

median block spectral phase distance, and median block weighted spectral distance.

After measuring the IQMs in a training set of images with and without hidden messages,

the authors propose a multivariate normalized regression to values −1 and 1. In the regression

model, each decision is expressed by yi in a set of n observation images and q available IQMs.

A linear function of the IQMs is given by






















y1 = β1x11 + β2x12 + . . . + βqx1q + ǫ1

y2 = β2x21 + β2x22 + . . . + βqx2q + ǫ2
...

yN = βnxn1 + β2x12 + . . . + βqxnq + ǫn,

(3.14)

where xij is the quality coefficient for the image i ∈ {1 . . . n} and IQM j ∈ {1 . . . q}. Finally, βk

is the regression coefficient, and ǫ is random error.

Once we calculate these coefficients, we can use the resulting coefficient vector to any new

image in order to classify it as stego or non-stego image.

3.7.6 Progressive Randomization (PR)

Rocha and Goldenstein [147] have presented the Progressive Randomization descriptor for Ste-

ganalysis. It is a new image descriptor that captures the difference between image classes (with

and without hidden messages) using the statistical artifacts inserted during a perturbation pro-

cess that increases randomness with each step.

Algorithm 4 summarizes the four stages of PR applied to Steganalysis: the randomization

process (c.f., Sec. 3.7.6); the selection of feature regions (c.f., Sec. 3.7.6); the statistical descriptors

analysis (c.f., Sec. 3.7.6), and invariance (c.f., Sec. 3.7.6).

Pixel perturbation.

Let x be a Bernoulli distributed random variable with Prob{x = 0}) = Prob({x = 1}) = 1/2,

B be a sequence of bits composed by independent trials of x, p be a percentage, and S be a

random set of pixels of an input image.

Given an input image I of |I| pixels, we define the LSB pixel perturbation T (I, p) the process

of substitution of the LSBs of S of size p×|I| according to the bit sequence B. Consider a pixel

pxi ∈ S and an associated bit bi ∈ B

L(pxi)← bi for all pxi ∈ S. (3.15)
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Algorithm 4 The PR descriptor

Require: Input image I; Percentages P = {P1, . . . Pn};
1: Randomization: perform n LSB pixel disturbances of the original image ⊲ Sec. 3.7.6

{Oi}i=0...n. = {I, T (I, P1), . . . , T (I, Pn)}.

2: Region selection: select r feature regions of each image i ∈ {Oi}i=0...n ⊲ Sec. 3.7.6

{Oij} i = 0 . . . n,

j = 1 . . . r.

= {O01, . . . , Onr}.

3: Statistical descriptors: calculate m descriptors for each region ⊲ Sec. 3.7.6

{dijk} = {dk(Oij)} i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

4: Invariance: normalize the descriptors based on I ⊲ Sec. 3.7.6

F = {fe}e=1...n×r×m =

{

dijk

d0jk

}

i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

5: Classification. Use F ∈ ℜn×r×m in your favorite machine learning black box.

where L(pxi) is the LSB of the pixel pxi.

The randomization process.

Given an original image I as input, the randomization process consists of the progressive ap-

plication I, T (I, P1), . . . , T (I, Pn) of LSB pixel disturbances. The process returns n images that

only differ in the LSB from the original image and are identical to the naked eye.

The T (I, Pi) transformations are perturbations of different percentages of the available LSBs.

Here, we use n = 6 where P = {1%, 5%, 10%, 25%, 50%, 75%}, Pi ∈ P denotes the relative sizes

of the set of selected pixels S. The greater the LSB pixel disturbance, the greater the resulting

LSB entropy of the transformation.

Feature region selection.

Local image properties do not show up under a global analysis [188]. The authors use statistical

descriptors of local regions to capture the changing dynamics of the statistical artifacts inserted

during the randomization process (c.f., Sec. 3.7.6).

Given an image I, they use r regions with size l × l pixels to produce localized statistical

descriptors (Figure 3.5).
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Figure 3.5: The PR eight overlapping regions.

Statistical descriptors.

When we disturb all the available LSBs in S with a sequence B, the distribution of 0/1 values

of a PoV (see Section 3.7.1) will be the same as in B. The authors apply the χ2 (chi-squared

test) [191] and UT (Ueli Maurer Universal Test) [102] to analyze the images.

• χ2 test. The χ2 test [48] compares two histograms f obs and f exp. Histogram f obs repre-

sents the observations and f exp represents the expected histogram. The procedure com-

putes the sum of the square differences of f obs and f exp divided by f exp,

χ2 =
∑

i

(f obs
i − f exp

i )2

f exp
i

. (3.16)

• Ueli test. The Ueli test (UT ) [102] is an effective way to evaluate the randomness of a

given sequence of numbers. UT splits an input data S into n blocks. For each block bi, it

analyzes each of the n−1 remaining blocks, looks for the most recent occurrence of bi, and

takes the log of the summed temporal occurrences. Let B(S) = (b1, b2, . . . , bN ) be a set of

n blocks such that ∪∀bi
= S. Let |bi| = L be the block size for each i and |B(S)| = N be

the number of blocks. We define UT : B(S)→ ℜ+ as

UT (B(S)) =
1

K

Q+K
∑

i=Q

ln A(bi), (3.17)

where K is the number of analyzed bits (e.g., K = N), Q is a shift in B(S) (e.g., Q =
K
10 [102]), and

A(bi) =

{

i 6 ∃i′ ∈ N, i′ < i|bi′ = bi,

min{i′ : bi′ = bi} otherwise.
(3.18)

Invariance transformation.

The variation rate of the statistical descriptors is more interesting than their values. The authors

propose the normalization of all descriptors from the transformations with regard to their values
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in the original image I

F = {fe}e=1...n×r×m =

{

dijk

d0jk

}

i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

, (3.19)

where d denotes a descriptor 1 ≤ k ≤ m of a region 1 ≤ j ≤ r of an image 0 ≤ i ≤ n, and F is

the final generated descriptor vector of the image I.

Classification.

The authors use a labeled set of images to learn the behavior of the selected statistical descriptors

and train different classifiers (supervised learning). The goal is to determine whether a new

incoming image contains a hidden message. They have trained and validated the technique

using a series of classifiers such as CTREES, SVMS, LDA and Bagging ensembles [147].

The statistical hypothesis is that the greater the embedded message, the lower the ratio

between subsequent iterations of the progressive randomization operation. Images with no

hidden content have different behavior under PR than images that have suffered some process

of message embedding [147].

3.8 Freely available tools and software

Many Steganography and Steganalysis applications are freely available on the internet for a

great variety of platforms which includes DOS, Windows, Mac OS, Unix, and Linux.

Romana Machado has introduced Ezstego and Stego Online3, two tools designed in Java

language suitable to Steganography in 8-bits indexed images stored in the GIF format [174].

Henry Hastur has presented two other tools: Mandelsteg e Stealth4. Mandelsteg generates

fractal images to hide the messages. Stealth is a software that uses PGP Cryptography [197] in

the embedding process. Two other software tools that incorporate Cryptography in the hiding

process are White Noise Storm5 by Ray Arachelian and S-Tools6.

Colin Maroney has devised Hide and Seek7. This tool is able to hide a list of files in one

image. However, it does not use Cryptography. Derek Upham has presented Jsteg8, which is

able to hide messages using the DCT/FFT transformed space. Niels Provos has introduced

Outguess9 which is an improvement over JSteg-based techniques.

Finally, Anderson Rocha and colleagues have introduced Camaleão10 [151, 152], which uses

cyclic permutations and block cyphering to hide messages in the least significant bits of loss-less

compression images.

3http://www.stego.com
4ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/
5ftp.csua.berkeley.edu/pub/cypherpunks/steganography/wns210.zip
6ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/s-tools4.zip
7ftp://csua.berkeley.edu/pub/cypherpunks/steganography/hdsk41b.zip
8ftp.funet.fi/pub/crypt/steganography
9http://www.outguess.org/

10http://andersonrocha.cjb.net
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3.9 Open research topics

When performing data-hiding in digital images, we have an additional problem: images are

expected to be subjected to many operations, ranging from simple transformations, such as

translations, to nonlinear transformations, such as blurring, filtering, lossy compression, printing,

and rescanning. The hidden messages should survive all attacks that do not degrade the image’s

perceived quality [6].

Steganography’s main problem involves designing robust information-hiding techniques. It

is crucial to derive approaches that are robust to geometrical attacks as well as nonlinear trans-

formations, and to find detail-rich regions in the image that do not lead to artifacts in the hiding

process. The hidden messages should not degrade the perceived quality of the work, implying

the need for good image-quality metrics.

Hiding techniques often rely on private key sharing, which involves previous communication.

It is important to work on algorithms that use asymmetric key schemes.

If multiple messages are inserted in a single object, they should not interfere with each

other [6].

We need new powerful Steganalysis techniques that can detect messages without prior knowl-

edge of the hiding algorithm (blind detection). The detection of very small messages is also a

significant problem. Finally, we need adaptive techniques that do not involve complex training

stages.

3.10 Conclusions

In this paper, we have presented an overview of the past few years of Steganography and Ste-

ganalysis, we have showed some of the most interesting hiding and detection techniques, and we

have discussed a series of applications on both topics.

Terrorism has infiltrated the public’s perception of this technology for a long period. Public

fear created by mainstream press reports, which often featured US intelligence agents claiming

that terrorists were using Steganography, created a mystique around data hiding techniques.

Legislators in several US states have either considered or passed laws prohibiting the use and

dissemination of technology to conceal data [61].

Six years after September 11th, 2001’s tragic incidents, Steganography and Steganalysis

have become mature disciplines, and data hiding approaches have outlived their period of hype.

Public perception should now move beyond the initial notion that these techniques are suitable

only for terrorist-cells’ communications. Steganography and Steganalysis have many legitimate

applications, and represent great research opportunities waiting to be addressed.
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Esteganálise e Categorização de

Imagens

No Caṕıtulo 4, apresentamos uma abordagem para meta-descrição de imagens denominada

Randomização Progressiva (PR) para nos auxiliar nos problemas de: (1) Detecção de mensagens

escondidas em imagens digitais; e (2) Categorização de imagens.

PR é um novo meta-descritor que captura as diferenças entre classes gerais de imagens

usando os artefatos estat́ısticos inseridos durante um processo de perturbação sucessiva das

imagens analisadas.

Nossos experimentos mostram que esta técnica captura bem a separabilidade de algumas

classes de imagens. A observação mais importante é que classes diferentes de imagens possuem

comportamentos distintos quando submetidas a sucessivas perturbações. Por exemplo, um con-

junto de imagens que não possui mensagens escondidas apresenta diferentes artefatos mediante

sucessivas perturbações comparado com um conjunto de imagens que possui mensagens escon-

didas.

Testamos a técnica no contexto da análise forense de imagens para detecção de mensagens

escondidas bem como para a classificação geral de imagens em categorias como indoors, outdoors,

geradas em computador e obras de arte.

O trabalho apresentado no Caṕıtulo 4 é uma compilação de nosso artigo submetido à Elsevier

Computer Vision and Image Understanding (CVIU). Após um estudo que mostrou viabilidade

comercial de nossa técnica, conseguimos o depósito de uma patente nacional junto ao INPI e

sua versão internacional junto ao PCT.

Finalmente, o trabalho de detecção de mensagens nos rendeu a publicação [147] no IEEE

Intl. Workshop on Multimedia and Signal Processing (MMSP). A extensão da técnica para

o cenário multi-classe (indoors, outdoors, geradas em computador, e obras de arte) resultou o

artigo [148] no IEEE Intl. Conference on Computer Vision (ICCV).
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Chapter 4

Progressive Randomization: Seeing

the Unseen

Abstract

In this paper, we introduce the Progressive Randomization (PR): a new image meta-description

approach suitable for different image inference applications such as broad class Image Catego-

rization and Steganalysis. The main difference among PR and the state-of-the-art algorithms is

that it is based on progressive perturbations on pixel values of images. With such perturbations,

PR captures the image class separability allowing us to successfully infer high-level information

about images. Even when only a limited number of training examples are available, the method

still achieves good separability, and its accuracy increases with the size of the training set. We

validate our method using two different inference scenarios and four image databases.

4.1 Introduction

In many real-life applications, we have to make decisions based only on images. In this paper,

we introduce a new image meta-description approach based only on information invisible to the

naked eye. We apply and validate our new technique on two very distinct problems that use

supervised learning: Image Categorization and Digital Steganalysis.

Image Categorization is the body of techniques that distinguish between image classes, point-

ing out the global semantic type of an image. Here, we want to distinguish the class of an image

(e.g., Indoors from Outdoors), or the type of an object in restricted domains (e.g., vegetables in

a supermarket cashier). One possible scenario for a consumer application is to group a photo al-

bum, automatically, according to classes. Another situation can be to automate a supermarket

cashier. Common techniques in content-based image retrieval use color histograms and tex-

ture [60], bag of features [62,68,100], and shape and layout measures [196] to perform queries in

massive image databases. With our solution, we can improve these techniques by automatically

restraining the search to one or more classes.
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Digital Steganalysis is the body of techniques that attempts to distinguish between non-stego

or cover objects, those that do not contain a hidden message, and stego-objects, those that contain

a hidden message. Steganalysis is the opposite of Steganography : the body of techniques devised

to hide the presence of communication. In turn, Steganography is different from Cryptography,

that aims to make communication unintelligible for those that do not possess the correct ac-

cess rights. Recently, Steganography has received a lot of attention around the world mainly

because its possible applications which includes: feature location (identification of subcompo-

nents within a data set), captioning, time-stamping, and tamper-proofing (demonstration that

original contents have not been altered) [149]. Unfortunately, not all applications are harmless,

and there are strong indications that Steganography has been used to spread child pornography

pictures on the internet [64,113]. Hence, robust algorithms to detect the very existence of hidden

messages in digital contents can help further forensic and police work. Discovering the content

of the hidden message is a much more complex problem than Steganalysis, and involves solving

the general problem of breaking a cryptographic code [188].

In this paper, we introduce the Progressive Randomization (PR): a new image meta-

description approach suitable for different image inference applications such as broad class Image

Categorization and Steganalysis. This technique captures statistical properties of the images’

LSB channel, information that are invisible to the naked eye. With such perturbations, PR cap-

tures the image class separability allowing us to successfully infer high-level information about

images.

The PR image meta-description approach has four stages: (1) the randomization process,

that progressively perturbates the LSB value of a selected number of pixels; (2) the selection of

feature regions, that makes global descriptors work locally; (3) the statistical descriptors analysis,

that finds a set of measurements to describe the image; and (4) the invariance transformation,

that allows us to make the descriptor’s behavior image independent.

With enough training examples, PR is able to categorize images as a full self-contained

classification framework. Even when only a limited number of training examples are available,

the method still achieves good separability. The method also provides interesting properties for

association with other image descriptors for scene reasoning purposes.

To validate our image meta-description approach for Image Categorization and Steganal-

ysis, we have created two validation scenarios: (1) Image Categorization; and (2) Hidden

Messages Detection. In the Image Categorization scenario, we have performed four experi-

ments. In the first experiment, we show PR as a complete self-contained multi-class classification

procedure. For that, we have used a 40,000-image database with 12,000 outdoors, 10,000 in-

doors, 13,500 art photographs, and 4,500 computer generated images (CGIs) with two different

classification approaches: All Pairs majority voting of the binary classifier Bagging of Linear

Discriminant Analysis (All-Pairs-BLDA), and SVMs [16]. In addition, we have tested the PR

technique in three other categorization experiments: one to provide another interpretation of the

first experiment, one for 3,354 FreeFoto images categorization into nine classes and finally, one

for categorizaton of 2,950 image of fruits into 15 classes. In the Hidden Messages Dectection

scenario, we have used the 40,000-image database first scenario to detect the very existence of
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hidden messages in digital images. We have used the binary classifiers: Linear Discriminant

Analysis with and without Bagging ensemble, and SVMs [16].

We organize the remainder of this paper as follows. In Section 4.2, we present the Image

Categorization and Steganalysis’ state-of-the-art. In Section 4.3, we introduce the Progressive

Randomization (PR) image meta-description approach. In Section 4.4, we validate our method

for Image Categorization and, in Section 4.5, for Steganalysis, and compare our results with

related work in the literature. In Section 4.6, we give a close study to the reasons of why PR

works. Finally, we present the conclusions and remarks in Section 4.8.

4.2 Related work

In this section, we present recent and important achievements of Image Categorization and

Steganalysis. For Image Categorization we have considered techniques from color, edge and

texture properties to bag-of-features. For Steganalysis, we have considered techniques from

application-specific schemes to blind detection frameworks.

4.2.1 Image Categorization

Recently, there has been a lot of activity in the area of Image Categorization. Previous ap-

proaches have considered patterns in color, edge and texture properties to differentiate pho-

tographs of real scenes from photographs of art [34]; low- and middle-level features integrated

by a Bayesian network to distinguish indoor from outdoor images [92,162]; histogram and DCT

coefficients features to differentiate city images from landscape images [181]; and first- and

higher-order wavelet statistics to distinguish photographs from photorealistic images [94]. Ad-

ditional works to categorize images have considered color and texture information [111], color

histograms and color correlograms [67], and border/interior pixel classification [169]

Also, there are efforts in the use of shape and silhouette [3], and moment invariants [159] to

reduce the ‘semantic gap’ problem: images with high feature similarities may be from different

categories in terms of user perception.

Fei-Fei et al. [46] have used a Bayesian approach to unsupervised one-shot learning of object

categories; Oliva and Torralba [123] have proposed a computational model for scene recognition

using perceptual dimensions, coined Spatial Envelope, such as naturalness, openness, roughness,

expansion and ruggedness. Bosch et al [19]. have presented an unsupervised scene recognition

procedure using probabilistic Latent Semantic Analysis (pLSA). Vogel and Schiele [183] have

presented a semantic typicality measure for natural scene categorization.

Recent developments have used middle- and high-level information to improve the low-level

features. Li et al. [84] have performed architectonics building recognition using color, orientation,

and spatial features of line segments. Raghavan et al. [163] have designed a similarity-preserving

space transformation method of low-level image space into a high-level vector space to improve

retrieval. Some researchers have used bag of features for image categorization [62, 68, 100].
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However, these approaches often require complex learning stages and can not be directly used

for image retrieval tasks.

4.2.2 Digital Steganalysis

Steganography techniques can be used in medical imagery, advanced data structures designing,

strong watermarking, document tracking tools, general communication, modern transit radar

systems, digital elections and electronic money, document authentication, among others [149].

Unfortunately, not all applications are harmless, and there are strong indications that Steganog-

raphy has been used to spread child pornography pictures on the internet [64, 113]. Hence,

robust algorithms to detect the very existence of hidden messages in digital contents can help

further forensic and police work.

In general, steganographic algorithms rely on the replacement of some noise component of a

digital object with a pseudo-random secret message [149]. In digital images, the most common

noise component is the Least Significant Bits (LSBs). To the human eye, changes in the value

of the LSB are imperceptible, thus making it an ideal place for hidding information without any

perceptual change in the cover object. LSB insertion/modification is considered a difficult one

to detect [188].

The original LSB information may have statistical properties, so changing some of them

could result in the loss of those properties. With proper statistical analysis, we can determine

whether or not an image has been altered, making forgeries mathematically detectable [109].

Hence, the general purpose of Steganalysis is to collect sufficient statistical evidence about the

presence of hidden messages in images, and use them to classify whether or not a given image

contains a hidden content.

Westfeld and Pfitzmann [191] have introduced a powerful chi-square steganalytic technique

that can detect images with secret messages that are embedded in consecutive pixels. However,

their technique is not effective for raw high-color images and for messages that are randomly

scattered in the image. Fridrich et al. [54] have developed a detection method based on close

pairs of colors created by the embedding process. However, this approach only works when the

number of colors in the images is less than 30 percent of the number of pixels. Fridrich et al [51]

have analyzed the capacity for lossless data embedding in the least significant bits and how this

capacity is altered when a message is embedded. It is not clear how this approach is sensible to

different images given that no training stage was applied. Ker [80] have introduced a weighted

least-squares steganalysis technique in order to estimate the amount of payload in a stego object.

Notwithstanding, often payload estimators are subject to errors. Furthermore, their magnitude

seem tightly dependent on properties of the analyzed images.

Lyu and Farid [95] have designed a classification technique that decomposes the image into

quadrature mirror filters and analyzes the effect of the embedding process.

Fridrich and Pevny [134] have merged Markov and Discrete Cossine Transform features for

multi-class steganalysis on JPEG images. Their approach is capable of assigning stego images

to six popular steganographic algorithms. Ker [79] has introduced a new benchmark for binary
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steganalysis based on an asymptotic information about the presence of hidden data. The objec-

tive is to provide foundations to improve any detection method. However, there are some issues

in computing benchmarks empirically and no definitive answer emerge. Rodriguez and Peter-

son [155] have presented an investigation of using Expectation Maximization for hidden messages

detection. The contribution of their approach is to use a clustering stage to improve detection

descriptors.

4.3 Progressive Randomization approach (PR)

Small perturbations in the LSB channel are imperceptible to humans [188] but are statisti-

cally detectable for image analysis. Here, we introduce the Progressive Randomization image

meta-description approach for Image Categorization and Steganalysis. It is a new image meta-

description approach that captures the differences between broad-image classes using the statis-

tical artifacts inserted during the perturbation process. Our experiments in Sections 4.4 and 4.5

demonstrate PR captures the image class separability allowing us to successfully infer high-level

information about images.

Algorithm 5 summarizes the four stages of PR applied to Image Categorization and Ste-

ganalysis: (1) the randomization process (c.f., Sec. 4.3.2); (2) the selection of feature re-

gions (c.f. Sec. 4.3.3); (3) the statistical descriptors analysis (c.f. Sec. 4.3.4); and (4) the in-

variance transformation (c.f. Sec. 4.3.5).

In summary, if we use n = 6 controlled transformations, we have to analyze the perturbation

artifacts in seven images (the input plus the perturbed ones). Furthermore, if we analyze r = 8

regions per image and use m = 2 statistical descriptors for each region, we have to assess

r ×m = 16 features for each image. In this context, the final PR description vector amounts

to (n + 1) × r ×m = 112 features. If we perform the last step of invariance (which depends on

the application), we normalize each group of features of one perturbed image with respect to

the feature values in the input image. Therefore, the final description vector after normalization

amounts to n× r ×m = 96 features.

4.3.1 Pixel perturbation

Let x be a Bernoulli distributed random variable with Prob{x = 0}) = Prob({x = 1}) = 1
2 ,

B be a sequence of bits composed by independent trials of x, p be a percentage, and S be a

random set of pixels of an input image.

Given an input image I of |I| pixels, we define the LSB pixel perturbation T (I, p) the process

of substitution of the LSBs of S of size p×|I| according to the bit sequence B. Consider a pixel

pxi ∈ S and an associated bit bi ∈ B

L(pxi)← bi for all pxi ∈ S. (4.2)

where L(pxi) is the LSB of the pixel pxi.

Figure 4.1 shows an example of a perturbation using the bits B = 1110.
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Algorithm 5 The PR image meta-description approach

Require: Input image I; Percentages P = {P1, . . . Pn};
1: Randomization: perform n LSB pixel disturbances of the input image ⊲ Sec. 4.3.2

{Oi}i=0...n. = {I, T (I, P1), . . . , T (I, Pn)}.

2: Region selection: select r feature regions of each image i ∈ {Oi}i=0...n ⊲ Sec. 4.3.3

{Oij} i = 0 . . . n,

j = 1 . . . r.

= {O01, . . . , Onr}.

3: Statistical descriptors: calculate m descriptors for each region ⊲ Sec. 4.3.4

{dijk} = {dk(Oij)} i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

4: Invariance: normalize the descriptors based on their behavior in the input image I
⊲ Sec. 4.3.5

F = {fe}e=1...n×r×m =

{

dijk

d0jk

}

i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

, (4.1)

5: Use {dijk} ∈ R
(n+1)×r×m (non-normalized) or {dijk} ∈ R

n×r×m (normalized) features in
your favorite machine learning black box.

4.3.2 The randomization process

Given an input image I, the randomization process consists in the progressive application

I, T (I, P1), . . . , T (I, Pn) of LSB pixel disturbances. The process returns n images that only

differ in the LSB from the input image, and are identical to the naked eye.

The T (I, Pi) transformations are perturbations of different percentages of the available LSBs.

Here, we use n = 6 where P = {1%, 5%, 10%, 25%, 50%, 75%}, Pi ∈ P denotes the relative sizes

of the set of selected pixels S. The greater the LSB pixel disturbance, the greater the resulting

LSB entropy of the transformation. Figure 4.2 shows that the T (I, Pi) transformations does not

introduce visual changes in the images. The perturbations are performed only over the LSBs

of the input image (Figure 4.3). Hence, the differences between the input image and any other

perturbed image are in the LSB channel only.

4.3.3 Feature region selection

Local image properties do not show up under a global analysis [188]. We use statistical descrip-

tors on local regions to capture the changing dynamics of the statistical artifacts inserted during

the randomization process (c.f., Sec. 4.3.2).

Given an image I, we use r regions with size l × l pixels to produce localized statistical

descriptors. In Figure 4.4, we show the m = 8 overlapping regions we use in this paper.
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Figure 4.1: An example of LSB perturbation using the bits B = 1110.

The curse of dimensionality keeps us from adding too many regions — we have found out,

experimentally, that eight regions are a good tradeoff.

4.3.4 Statistical descriptors

The LSB perturbation procedure changes the contents of a selected number of pixels and induces

local changes of pixel statistics. An L-bit pixel spans 2L possible values, and has 2L−1 classes

of invariance under pixel perturbations (c.f., Sec. 4.3.1). Let’s call these invariant classes pair

of values (PoV).

Figure 4.2: The input image I (leftmost) and its perturbed version T (I, 75%) (middle): differ-
ences are not visible by the naked eye. However, they are present in the LSB channel (rightmost).
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Figure 4.3: The Progressive Randomization behavior over the LSBs. T (I, Pi) represents a PR
perturbation with percentage Pi over the LSBs of the input image I.

When we disturb all the available LSBs in S with a sequence B, the distribution of 0/1 values

of a PoV will be the same as in B. The statistical analysis compares the theoretically expected

frequency distribution of the PoVs with the observed ones after the perturbation process.

We apply the χ2 (chi-squared test) [191] and UT (Ueli Maurer Universal Test) [102] to analyze

the images.

χ2 test

The χ2 test [48] compares two histograms f obs and f exp. Histogram f obs represents the obser-

vations and f exp represents the expected histogram. The procedure computes the sum of the

square differences of f obs and f exp divided by f exp,

χ2 =
∑

i

(f obs
i − f exp

i )2

f exp
i

. (4.3)

Ueli test

The Ueli test (UT ) [102] is an effective way to evaluate the randomness of a given sequence of

numbers. UT splits an input data S into n blocks. For each block bi, it analyzes each of the n−1
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Figure 4.4: The eight overlapping regions used in the experiments.

remaining blocks, looks for the most recent occurrence of bi, and takes the log of the summed

temporal occurrences. Let B(S) = (b1, b2, . . . , bN ) be a set of n blocks such that ∪∀bi
= S.

Let |bi| = L be the block size for each i and |B(S)| = N be the number of blocks. We define

UT : B(S)→ R
+ as a function

UT (B(S)) =
1

K

Q+K
∑

i=Q

ln A(bi), (4.4)

where K is the number of analyzed bits (e.g., K = N), Q is a shift in B(S) (e.g., Q = K
10 [102]),

and

A(bi) =

{

i 6 ∃i′ ∈ N, i′ < i→ bi′ = bi,

min{i′ : bi′ = bi} otherwise.

In practice, if UT is close to 7.1836, we have a high randomness condition. On the other

hand, the lower UT , the more predictable is the condition in S.

4.3.5 Invariance

In some situations, it is necessary to use an image-invariant feature vector. For that, we use

the variation rate of our statistical descriptors with regard to the PR, rather than their values.

We normalize all descriptors from the transformations with regard to their values in the input

image

F = {fe}e=1...n×r×m =

{

dijk

d0jk

}

i = 0 . . . n,

j = 1 . . . r,

k = 1 . . . m.

, (4.5)

where d denotes a descriptor 1 ≤ k ≤ m of a region 1 ≤ j ≤ r of an image 0 ≤ i ≤ n and F is

the final generated descriptor vector of the image I. Figures 4.5(a-b) show the behavior of our

statistical descriptors along the progressive randomization of one selected image I.
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Figure 4.5: Normalized descriptor’s behavior along the progressive randomization. Ti represents
the PR operation T (I, Pi).

The need for invariance depends on the application. For instance, it is necessary for Ste-

ganalysis but harmful for Image Categorization. In Steganalysis, we want to differentiate images

that do not contain hidden messages from those that contain hidden messages, and the image

class is not important. On the other hand, in Image Categorization, the descriptor values are

important to improve the class differentiation. Different classes do have distinct behavior under

Progressive Randomization approach (c.f., Sec. 4.4, 4.5, and 4.6).

4.4 Experiments and results – Image Categorization

In this section, we describe how we train, test and validate PR image meta-description approach

for Image Categorization. We validate the multi-class classification as a complete self-contained

classification procedure in Experiment 1. In that experiment, we use a 40,000-image database

with 12,000 outdoors, 10,000 indoors, 13,500 art photographs, and 4,500 computer generated

images (CGIs) with three different classification approaches.

The images in Experiment 1 come from five main sources: Mark Harden’s Artchive1, the

European Web Gallery of Art2, FreeFoto34, Berkeley CalPhotos5, and from The Internet Ray

Tracing Competition (IRTC)6. Figure 4.6 show some examples of each category.

We also validate the PR image meta-description approach in three other categorization

1http://www.artchive.com
2http://www.wga.hu
3http://www.freefoto.com
4http://www.ic.unicamp.br/~rocha/pub/communications.html
5http://calphotos.berkeley.edu
6http://www.irtc.org
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(a) Outdoors. c©FreeFoto. (b) Indoors. Personal
collection.

(c) Arts. Portrait of Nicolaes Ruts by Rembrandt
van Rijn and A Farmstead Near a Stream by Cor-
nelis Saftleven.

(d) Computer Generated Images. Autoban by
Jaime Vives Piqueres and Glasses by Gilles
Tran.

Figure 4.6: Examples of each analyzed category: Outdoors, Indoors, CGIs, and Arts.

scenarios. In Experiment 2, we provide another interpretation of Experiment 1 using a

second carefully assembled image database. In Experiment 3, we perform a 9-class image

categorization using 3,354 FreeFoto photographs. Finally, Experiment 4, we perform a 15-

class image categorization using 2,950 images of fruits.

4.4.1 Experiment 1

We compare our method to the state of the art two-class separation approaches in the lit-

erature [34, 92, 94, 128, 162] using a simple Bagging ensemble of Linear Discriminant Analysis

(BLDA) [55]. Furthermore, we also perform multi-class image-categorization, separating Out-

door photographs, Art images, Photorealistic Computer Generated Images, and Indoors pho-

tographs. Here, we use the BLDA classifier with 13 iterations and 10-fold cross validation.

Two-class classification

Cutzu et al. [34] have addressed the problem of differentiating photographs of real scenes from

photographs of art works. They validated over a database with 6,000 photographs from FreeFoto

and 6,000 photographs from Mark Harden’s Artchive and from Indiana Image Collection7.

The authors have used color and intensity edges, color variation, saturation, and Gabor

features in a complex classifier. We use a similar image set reported in [34]. We have selected

7http://www.dlib.indiana.edu/collections/dido
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12,000 photographs and 13,500 art photographs totalizing 25,500 images.

Lyu and Farid [94] have used a statistical model based on first- and higher-order wavelet

statistics to reveal significant differences of photographs and photorealistic images. They have

used photographs from FreeFoto and photorealistic images from IRTC and from Raph 3D Artists.

We use almost the same image set reported in [94]. Therefore, we have used only images

from FreeFoto, IRTC and Raph sources, 7,500 photographs and 4,700 photorealistic images,

totalizing 12,200.

Luo and Savakis [92,162] have associated texture and color information about sky and grass

to differentiate indoors and outdoors images. They have used a Kodak image database not

freely available. Payne and Singh [128] have used edge informations to differentiate indoors

from outdoors images in a personal image collection.
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Figure 4.7: Experiment 1. PR description approach used to binary Image Categorization
using 10-fold cross- validation.

PR distinguishes Photographs from Art images with an average accuracy of µ1+µ2

2 = 99.9.%,

photographs from CGI images with an average accuracy of µ1+µ2

2 = 99.9% and Indoors from

Outdoors images with an average accuracy of µ1+µ2

2 = 99.7%.

Multi-class classification

The PR approach creates a single descriptor that works for different image inference applications.

For instance, PR is suitable for multi-class broad image categorization such as the four classes

Indoors, Outdoors, CGIs, and Arts.
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In order to validate the multi-class classification, we have used two different approaches that

are combinations of binary classifiers: All Pairs majority voting of the binary classifier BLDA

(All-Pairs-BLDA); and Support Vector Machines (SVMs). LibSVM uses an internal mechanism

that put together all 1 × 1 combinations of the classes and performs a majority voting in the

final stage. We have used the radial basis function SVM. All-Pairs-BLDA uses sets of binary

classifiers. Note that, any other binary classifier could be used rather than All-Pairs-BLDA.

Tables 4.1 and 4.2 show the resulting classification using All-Pairs-BLDA, and SVMs. The

diagonal represents the classification accuracy. For instance, using All-Pairs-BLDA multi-class

approach 89.4%, of the images that represent an Art scenario are correctly classified, while only

8.17% of them are misclassified as Indoors.

All-Pairs-BLDA Predictions
Arts CGIs Indoors Outdoors

Arts 89.4% ± 1.04% 4.41% ± 0.49% 6.16% ± 0.80% 0.00% ± 0.00%
CGIs 33.66% ± 2.36% 53.3% ± 2.09% 13.0% ± 1.22% 0.00% ± 0.00%

Indoors 8.97% ± 0.54% 5.58% ± 0.34% 85.44% ± 0.62% 0.01% ± 0.03%
Outdoors 0.00% ± 0.00% 0.06% ± 0.07% 0.02% ± 0.05% 99.9% ± 0.11%

Table 4.1: Experiment 1. PR multi-class Image Categorization using All-Pairs-BLDA.

The PR approach is independent of the multi-class technique. Figure 4.8 shows the minimum

accuracy of the two approaches as well as the average accuracy and the geometric average

accuracy.

All-Pairs-BLDA
libSVM

Average Acc Geometric Average AccMinimum Acc
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Figure 4.8: Experiment 1. Multi-class overall accuracy. D is the diagonal of the confusion
matrix.
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SVM Predictions
Arts CGIs Indoors Outdoors

Arts 86.4% ± 1.16% 2.10% ± 0.43% 11.5% ± 0.85% 0.00% ± 0.00%
CGIs 36.2% ± 2.32% 45.3% ± 1.55% 18.2% ± 1.34% 0.20% ± 0.20%

Indoors 17.5% ± 1.28% 4.90% ± 0.41% 77.6% ± 1.47% 0.00% ± 0.00%
Outdoors 0.02% ± 0.03% 0.37% ± 0.18% 0.01% ± 0.03% 99.6% ± 0.21%

Table 4.2: Experiment 1. PR multi-class Image Categorization using SVM.

4.4.2 Experiment 2

Experiment 1 provides good performance in two-class and multi-class categorization. However,

some can argue that the number of training examples is too large and that it might have suffered

from bias due to different compression applied to each category, given that they come from

different sources. It is important to notice that almost all images come from well known image

repositories and most of them are built up from user contributions.

So, we have created a second scenario for multi-class categorization of Indoors, Outdoors,

CGIs and Art photographs. In this experiment, we have manually selected 500 images for each

class totalizing 2,000 images. Each category contains images from at least 75 different internet

sources and there are no more than seven images from the same place. There is no intersection

among the images in this scenario with the scenario presented in Experiment 1. In this

experiment, there are at least 400 different cameras with many different compression scenarios.

Figure 4.9 presents the results using the All-Pairs BLDA multi-class approach with 13 iterations.

We show that the results using PR descriptor are not biased due to possible different com-

pression levels. The results are better than the priors of each class (about 25% per class).

Therefore, the PR descriptor provides good separation among classes. Even with few training

examples, the descriptor still presents a good performance. The more examples we provide in

the training phase, the better the classification performance (Figure 4.9).

4.4.3 Experiment 3

Here, we select 3,354 images from FreeFoto and divide them into nine classes. Figure 4.10 shows

some examples of each category. Sky and Clouds category represents sunny and clear days. Cum-

mulonimbus Clouds comprises images associated with heavy precipitation and thunderstorms.

The other categories are self explanatory.

We do not pre-process any image. All images come from FreeFoto and were originally stored

in JPEG format with 72 DPIs using similar compression levels. Figure 4.11 presents the results

for this experiment using the All-Pairs BLDA multi-class approach with 13 iterations.

The PR meta-description approach generalyzes from the priors (about 1
9 for each category).

The accuracy increases with the number of training examples (left plot of Figure 4.11). The

more images in the training phase, the more accurate the classification. This suggests that

PR technique can be combined with other image descriptors for categorization purposes. The

average standard deviation σ is bellow 5%. For all classes, the classification results are far above
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Figure 4.9: Experiment 2. Out × Ind × CGI × Arts using All-Pairs BLDA(13) .:. 4 classes.
Left plot : average performance for variable training sizes. Right plot : class’ performance for
450-sized training sets.

the expected priors (2σ minimum).

4.4.4 Experiment 4

In this experiment, we perform categorization of images of fruits8 and we want to show that the

PR results are not biased due to camera properties. Here, we have used the same camera and

setup in the capture. The JPEG compression level is the same for all images.

We personally acquired the 2,950 images at our local fruits and vegetables distribution center

(CEASA), using a Canon PowerShot P1 camera, at a resolution of 1, 024× 768 against a white

background. Figure 4.12 depicts the 15 different classes. Even in the same category, there are

many illumination differences (Figure 4.13).

Figure 4.14 presents the results for this experiment using the All-Pairs BLDA multi-class

approach with 13 iterations. Clearly, PR generalyzes from the priors (about 1
15 for each category)

and the accuracy increases with the number of training examples (left plot of Figure 4.14).

4.5 Experiments and results – Steganalysis

In this section, we describe how we train, test and validate the PR image meta-description

approach for Steganalysis. In this scenario, our objective is to detect whether or not a given image

contains an embedded content. Here, we have used the same image database of Experiment 1

in Section 4.4.1.

8http://www.ic.unicamp.br/~rocha/pub/communications.html
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Trees / Forests Ocean Sky and Clouds

Flowers Leaves Sunrise / Sunset

Cummulonimbus Snow Mountains Water Streams

Figure 4.10: Nine FreeFoto categories.

Among all message embedding techniques, the Least Significant Bit (LSB) inser-

tion/modification is considered a difficult one to detect [149, 188]. In general, it is enough

to detect whether a message is hidden in a digital content. For example, law enforcement agen-

cies can track access logs of hidden contents to build a network graph of suspects. Later, using

other techniques, such as physical inspection of apprehended material, they can uncover the

actual contents and apprehend the guilty parties [73,149].

4.5.1 Overall results

We define a stego-image as an image that suffered an LSB pixel disturbance. The amount of

disturbance inserted using the sequence of bits B represents the size of a possible information

(message) that is embedded |M |. We train a classifier with stego and non-stego examples. To

obtain stego examples, we simulate message embeddings perturbing the LSBs of an image subset

of our database. We have created a version of our image database for each one of our selected

content-hiding scenarios (relative size of contents to the embedding capacity of the image).

In Figure 4.15, we present the overall results for the PR technique applied for hidden mes-

sages detection. We obtain the best results when using the Bagging Ensemble with Linear

Discriminant Analysis (BLDA). For instance, for a relative-size message embedding of 10%, PR

yields 78.1% of accuracy. That is almost the same result that the more computationally intensive

procedure of SVM. Furthermore, it worth noting that SVM does not benefit from the Bagging
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Figure 4.11: Experiment 3. FreeFoto categorization using All-Pairs BLDA(13) .:. 9 classes.
Left plot : average performance for variable training sizes. Right plot : class’ performance for
70-sized training sets.

ensemble. That is because SVM uses only the elements close to the margins in the classification

procedure.

PR descriptor scales with the number of examples in the training stage. Overall, the more

examples we provide in the training phase, the greater the detection accuracy regardless the

message size. In Figure 4.16, we present the PR descriptor with different training set sizes.

The detection of very small relative-size contents is very hard, and still an open problem.

Nevertheless, in practical situations, like when pornographers use images to sell their child-porn

images, they usually use a reasonable portion of the LSB channel available space (e.g., 25%). In

this class of problem, PR meta-description approach detects such activities with accuracy just

under 90% which shows that it is an effective approach for embedding content detection.

4.5.2 Class-based Steganalysis

Different classes/categories of images have a very distinct behavior in properties. We explored

their different LSB behavior earlier in this paper for proper image categorization.

In this section, we show how the PR descriptor is still able to perform Steganalysis despite

all these differences, and gives us a strong insight about which types of images are better for

information hiding.

We have found that the detection of hidden content in images with low richness of detail

(e.g., Indoors) is easier. The inserted artifacts of the embedding process in these images are more

obvious than those artifacts inserted in images with more complex details. In these experiment,

we have considered four image classes Outdoors, Indoors, Arts, and CGIs. We have used the

same image database of Experiment 1 in Section 4.4.1.

In each analysis, we train our classifier with examples sampled without replacement from
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Plum Agata Potato Red Potato Cashew Onions

Kiwi OrangeLemmons

Fuji Apple Green Apple Watermelon Melon Nectarine

Williams Pear Peach

Figure 4.12: Fifteen categories of fruits.

Figure 4.13: Illumination differences in the Orange class.

three classes, and test in the fourth class. We repeat the process to test each class. Figure 4.17

shows the resulting classification accuracy for each class of image. We also show the expected

classification value when we train and test over all classes with a proportion of 70% examples

for training and 30% for testing.

Looking at the results, we conclude that the classes Arts and Outdoors are the most difficult

types to detect hidden messages. On the other hand, Indoors images are the easier ones to

detect hidden messages. Finally, as our intuition would expect, the greater the message, the

better the classification accuracy no matter the class.

4.5.3 Comparison

Westfeld and Pfitzmann [191] have devised an approach that only detects sequential hidden

messages embedded from the first available LSB. This approach is not robust to image variability

and it is not able to detect messages altered from some embedding message procedure that

preserves statistics such as mean, and variance about the cover-image. Our framework overcomes

these problems and increases the classification accuracy. We compare the results in Table 4.3.
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Figure 4.14: Experiment 4. Fruits categorization using All-Pairs BLDA(13) .:. 15 classes.
Left plot : average performance for variable training sizes. Right plot : class’ performance for
140-sized training sets.

In this experiment, we have used the SVM binary classifier [16].

Other approaches for Steganalysis include the works of Shi et al. [168],

Pevny and Fridrich [134], and Goljan et al. [59]. However, these approaches have been

designed for embedding techniques based on lossy compression properties such as those present

in JPEG images. In this paper, we present a detection framework designed for lossless

embedding detection.

It is not intended that PR outperforms all the best Steganalysis algorithms in the literature.

It is worth noting that we are not providing a complete Steganalysis framework. Indeed, in this

paper, we present a new image meta-description approach that can be used for Steganalysis.

For this reason, we compare our descriptor with two well-known state-of-the-art solutions. PR

association with other image descriptors is straightforward.

WP PR

µ± σ µ± σ

01% 52.6% ± 0.1% 54.1% ± 0.9%

05% 52.6% ± 0.1% 70.7% ± 0.9%

10% 54.6% ± 4.1% 80.2% ± 0.5%

25% 72.9% ± 1.9% 89.3% ± 0.6%

50% 83.0% ± 0.6% 94.0% ± 0.5%

75% 84.8% ± 0.9% 96.3% ± 0.3%

Table 4.3: Westfeld and Pfitzmann’s detection approach (WP) vs. Progressive Randomiza-
tion (PR). µ and σ from cross-validation.
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Figure 4.15: PR accuracy for different message embeddings scenarios.

Our results are about 26 percentage points better than Westfeld-Pfitzmann’s results for

small relative-size message embeddings (e.g., |M | = 10%) and are about 17 percentage

points better than Westfeld-Pfitzmann’s results for medium relative-size message embeddings

(e.g., |M | = 25%).

Lyu and Farid [95] have designed a technique that decomposes the image into quadrature

mirror filters to analyze the effect of the embedding process. They have used a database of about

40,000 images. The authors tuned their classifiers parameters to have a false positive rate of only

1%. We compare the results in Table 4.4. The accuracy showed there, for comparison, is the

percentage of the stego-images correctly classified. Our Progressive Randomization descriptor

detects small (e.g., |M | = 10%) and medium (e.g., |M | = 50%) relative-size message embed-

dings with an accuracy of about nine percentage points better than Lyu and Farid’s approach.

When we consider large relative-size message embeddings (e.g., |M | = 99%), our descrip-

tor is about 19 percentage points (about 31 standard deviations) better than Lyu and Farid’s

approach.

4.6 Why does PR work?

We initially conceived the Progressive Randomization for Steganalysis of LSB hiding tech-

niques [147]. In this image reasoning scenario, the behavior of the randomization steps is clear:

each step emulates hiding a message with a different size. This process is conceptually simi-

lar to deciding whether the data is already compressed by looking at the statistics of a new

compression operation over this data.

The experiments in Section 4.4 have demonstrated that PR captures the image class sep-

arability allowing us to successfully categorize images. However, the successive-compressions



4.6. Why does PR work? 103

A
cc

u
ra

cy
(%

)
T = 01%

50

52

54

56

58

60

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000

(a) |M | = 1%.

A
cc

u
ra

cy
(%

)

T = 05%

T = 10%

66

68

70

72

74

76

78

80

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000

(b) |M | ∈ {5%, 10%}.

A
cc

u
ra

cy
(%

)

T = 25%

T = 50%

86

88

90

92

94

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000

(c) |M | ∈ {25%, 50%}.

A
cc

u
ra

cy
(%

)

T = 75%

96

98

100

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000

(d) |M | = 75%.

Figure 4.16: PR accuracy for different training set sizes and stego scenarios.

analogy, so intuitive in Steganalysis, is not convincing for this new problem. Our conjecture

is that the distinct class behavior comes from the interaction between different light spectrum

and the sensors during the acquisition process. That supports that fact that Outdoors is easier

to differentiate from the other classes, and that Indoors and Arts are harder to differentiate

amongst each other, as both use artificial illumination.

To show that the separability is not due to different patterns of luminance/color amongst

classes, we have devised an experiment to measure the expected value of the Ueli descriptor

conditioned to the luminance of the region.

We use a local sliding window to calculate local luminance and Ueli, and compute them on all

possible 32× 32-pixel windows in 300 examples of each class to estimate the E[UT |Lum,Class],

the conditional expectation of Ueli for given luminance and class.

We approximate the continuous function using histograms of expected values of UT for each
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Figure 4.17: PR Steganalysis along with different image classes and different relative message
sizes.

class HE
i , i ∈ {Outdoor, Indoor}

HE
i ← E[Ueli|L ∈ 1 . . . 255], (4.6)

where E[.] is the statistical expectation, and L is the luminance such that L = (0.3∗R)+(0.59∗
G) + (0.11 ∗B).

The upper plot of Figure 4.18 displays the Ueli conditional expectation for unmodified Out-

doors and Indoors classes. There is a consistent difference between classes, showing that the

separability of the LSB statistical descriptors is not due to different class patterns of luminance.

We also observe the effect of the limited dynamic range on the statistical descriptor. Lumi-

nance components that are too small are squished to zero, while color components that should

be very high are clamped to the maximum (255 in the 8-bit case). In these extreme cases, there

is no randomness, and the Ueli value goes down to zero. As we calculate the expected values in

sliding windows, the decrease along the borders of the dynamic range demonstrate the decrease

of the randomness as more elements of the window are clamped to an extreme value.

4.7 Limitations

In this paper, we have introduced a new image meta-description approach. Its main difference

with respect to the state-of-the-art techniques is that it is based on controlled perturbations on

least significant properties of images.

PR technique is not intended to be the final word for Image Categorization and Steganalysis

on its own. Of course, there are some limitations with the method. First of all, it is more suitable

for loss-less images or high-quality lossy-compressed images, i.e., if one performs a medium-to-
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LDA SVM-RBF Type

µ σ µ σ

01%
1.3% – 1.9% – LF
3.2% 0.5% 3.6% 1.0% PR

10%
2.8% – 6.2% – LF
7.0% 0.8% 15.8% 1.1% PR

50%
16.8% – 44.7% – LF
24.2% 1.5% 53.1% 1.6% PR

99%
42.3% – 78.0% – LF
95.8% 0.5% 97.0% 0.6% PR

Table 4.4: Lyu and Farid’s detection approach (LF) vs. Progressive Randomization (PR) con-
sidering FPR = 1%. µ and σ from cross-validation. Lyu and Farid’s results from [95].

high-rate lossy compression (e.g., +25% of loss), it is possible that the method will fail. However,

there are a lot of available images in the internet with low-to-medium compression levels.

In the case of Steganalysis, if one destroys the LSB channel information using a pseudo-

random number generator (PRNG), the method potentially will fail. However, in this case, even

the message will be destroyed.

Finally, PR technique probably will fail when used for Image Categorization of images ac-

quired with old cameras with low-quality capturing sensors. In such situations, it is likely

that the LSB channel information is related to noise in the process of acquisition. Hence, the

relationship of the LSB channel with the other bit channels becomes weaker.

4.8 Conclusions and remarks

We have introduced a new image descriptor descriptor that captures the changing dynamics of

the statistical artifacts inserted during a perturbation process in each of the broad-image classes

of our interest.

We have applied and validated the Progressive Randomization descriptor in two real image

inference scenarios: Image Categorization and Steganalysis.

The main difference among PR and the state-of-the-art algorithms is that it is based on

perturbations on the values of the Least Significant Bits of images. With such perturbations,

PR captures the image class separability allowing us to successfully infer high-level information

about images. Our conjecture is that the interaction of different light spectrum with the camera

sensors induces different patterns in the LSB field. PR does not consider semantical information

about scenes.

The most important features in the PR descriptor are its low dimensionality and its unified

approach for different applications (e.g., the class of an image, the class of an object in a restricted
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Figure 4.18: Dynamic ranges of the conditional Ueli descriptor given the luminance variation.
Original image set, and the same image set with perturbations of 10%, 25%, and 50%, respec-
tively. The plots are in different scales.

domain, hidden messages detection) even with different cameras and illumination.

With enough training examples, PR on its own is able to categorize images as a full self-

contained classification framework. However, huge training sets are not always available. When

only a limited number of training examples are available, the method still achieves good sepa-

rability, and its accuracy increases with the size of the training set.

We have demonstrated that PR approach can perform Steganalysis despite differences in the

image classes, giving us a strong insight about which types of images are better for information

hiding. As our intuition would expect, the greater the message, the better the classification

accuracy no matter the class. The detection of very small relative-size contents is very hard,

and still an open problem. Nevertheless, in practical situations, like when pornographers use

images to sell their child-porn images, they usually have to use a reasonable portion of the LSB

channel available space (e.g., 25%). In this class of problem, our approach detects such activities

with accuracy just under 90% which shows its effectiveness to hidden content detection.

PR descriptor presents two interesting properties that indicate that it can be combined with

other image descriptors such as those described earlier in this paper. First, it generalyzes from

the priors even for small training sets. Second, the accuracy increases with the number of
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training examples in all applications we have showed.

Future work include: to select image regions rich in details and analyze how they are affected

using PR descriptor; to investigate other statistical descriptors besides χ2 and UT such as kurtosis

and skewness; and to apply PR descriptor to other image inference scenarios such as image

forgery detection.



Fusão Multi-classe de Caracteŕısticas

e Classificadores

Algumas vezes, problemas de categorização multi-classe são complexos e a fusão de informações

de vários descritores torna-se importante.

Embora a fusão de caracteŕısticas seja bastante eficaz para alguns problemas, ela pode produ-

zir resultados inesperados quando as diferentes caracteŕısticas não estão normalizadas e prepara-

das de forma adequada. Além disso, esse tipo de combinação tem a desvantagem de aumentar o

número de caracteŕısticas do vetor base de descrição o que, por sua vez, pode levar à necessidade

de mais elementos para o treinamento.

No Caṕıtulo 5, nós apresentamos uma abordagem para combinar classificadores e carac-

teŕısticas capaz de lidar com a maior parte dos problemas citados anteriormente. Nosso objetivo

é combinar um conjunto de caracteŕısticas e os classificadores mais apropriados para cada uma

de modo a melhorar a performance sem comprometer a eficiência.

Nós propomos lidar com um problema multi-classe a partir da combinação de um conjunto de

classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação

automática de frutas e legumes.

O trabalho apresentado no Caṕıtulo 5 é uma compilação de nosso artigo submetido à Elsevier

Computers and Electronics in Agriculture (Compag). Os autores desse artigo, em ordem, são:

Anderson Rocha, Daniel C. Hauagge, Jacques Wainer e Siome Goldenstein.

Este trabalho nos rendeu, inicialmente, o artigo [153] no Brazilian Symposium of Computer

Graphics and Image Processing (Sibgrapi).
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Chapter 5

Automatic Fruit and Vegetable

Classification from Images

Abstract

In this paper, we address a multi-class fruit-and-vegetable categorization task in a semi-

controlled environment, such as a distribution center or the supermarket cashier. To solve

such a complex problem using just one feature descriptor is a difficult task and feature fusion

becomes mandatory. Although normal feature fusion is quite effective for some problems, it can

yield unexpected classification results when the different features are not properly normalized

and prepared. Besides it has the drawback of increasing the dimensionality which might require

more training data. To cope with these problems, we propose a unified approach that can com-

bine many features and classifiers, requires less training, and is more adequate to some problems

than a näıve method, where all features are simply concatenated and fed independently to each

classification algorithm. Besides that, the algorithm proposed is amenable to continuous learn-

ing, both when refining a learned model and also when adding new classes to be discriminated.

We validate the system using an image data set we collected at a local produce distribution

center. Since this data set can help further research by the overall scientific community, we also

make it publicly available over the internet.

5.1 Introduction

Recognizing different kinds of vegetables and fruits is a recurrent task in supermarkets, where

the cashier must be able to point out not only the species of a particular fruit (i.e., banana,

apple, pear) but also it’s variety (i.e., Golden Delicious, Jonagold, Fuji), which will determine it’s

price. The use of barcodes has mostly ended this problem for packaged products but given that
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consumers want to pick their produce, they can not be packaged, and thus must be weighted.

A common solution to this problem is issuing codes for each kind of fruit/vegetable; which has

problems given that the memorization is hard, leading to errors in pricing.

As an aid to the cashier, many supermarkets issue a small book with pictures and codes; the

problem with this solution is that flipping over the booklet is time-consuming. In this paper, we

review several image descriptors in order to propose a system to solve the problem by adapting

a camera to the supermarket scale that identifies fruits and vegetables based on color, texture,

and appearance cues.

Formally, we state our problem in the following manner: given an image of fruits or vegetables

of only one variety, in arbitrary position and number, the system must return a list of possible

candidates of the form (species, variety). Sometimes, the object can be inside a plastic bag that

can add specular reflections and hue shifts.

Given that the big variety and the impossibility of predicting which kinds of fruit/vegetables

are sold, training must be done on site by someone with little or no technical knowledge. There-

fore, the system must be able to achieve a high level of precision with only a few training

examples (e.g., up to 30 images). Another desirable characteristic would be continuous learn-

ing. On one hand, more training data would be generated as the system commits mistakes and

the cashier corrects them. On the other hand, in this semi-supervised scenario, eventually the

operator will commit mistakes and the learning algorithm must be robust to noisy training data.

Here, we combine local and global features using different classification procedures. We used

global color histograms, local texture, shape, and correlation descriptors with distinctive fruit

parts.

Our contribution in this paper is twofold. The first is that we evaluate several image de-

scriptors in the literature and point out the best ones to solve our multi-class fruits/vegetables

categorization problem. Important questions about such descriptors are: which ones require

less training? Is it necessary to use complex approaches such as bag-of-features or constellation

models? How do the descriptors perform when increasing the number of training examples?

What combinations and parameters of the descriptors provide better effectiveness? How do the

descriptors behave under the curse-of-dimensionality? In the experiments we show answers for

such questions.

We end up with a unified approach that can combine many features and classifiers that

requires less training and is more adequate to some problems than a näıve method, where all

features are simply concatenated and fed independently to each classification algorithm. Besides

that, the algorithm proposed is amenable to continuous learning, both when refining a learned

model and also when adding new classes to be discriminated.

The second contribution is that we create an image data set collected from our local fruits and

vegetables distribution center and make it public. In general, there are a few well-documented

image data sets freely available for testing algorithm performance in image categorization and

content-based image retrieval tasks. In this context, we provide an image data set with 15

produce categories comprising 2,633 images collected on site with all its creation details. The

images were collected in a period of five months under diverse conditions.
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In Section 5.2, we give a brief overview of previous work in object recognition and image

categorization. In Section 5.3, we present the different kinds of image descriptors we used in

this paper as well as the produce data set. Section 5.4 presents results for diverse background

subtraction approaches and analyzes the one we used in this paper. Section 5.5, reports results

for the image data set we created for each feature and classifier with no fusion. Section 5.6 intro-

duces our solution for feature and classifier fusion, and Section 5.7 presents experimental results.

Section 5.8 draws some considerations about the proposed technique, as well as conclusions and

future directions.

5.2 Literature review

Recently, there has been a lot of activity in the area of Image Categorization. Previous ap-

proaches considered patterns in color, edge and texture properties [126, 169, 178]; low- and

middle-level features to distinguish broad classes of images [34, 98, 148, 162]; In addition, Hei-

demann [66] has presented an approach to establish image categories automatically using his-

tograms, colors and shape descriptors with an unsupervised learning method.

With respect to our problem, VeggieVision [18] was the first attempt of a supermarket

produce recognition system. The system uses color, texture and density (thus requiring extra

information from the scale). However, as this system was presented long time ago, it does not

take advantage of recent developments. The reported accuracy was ≈ 95% in some scenarios

but to achieve such result it uses the top four responses. Our data set is also more demanding in

some respects; while theirs had more classes the image capturing hardware gave a more uniform

color and suppressed specular lights. The dataset we assembled have much greater illumination

and color variation among images, also we take no measure to suppress specularities.

In general, we can view our problem as a special instance of object’s categorization.

Turk and Pentland [177] employed principal component analysis and measured the reconstruc-

tion error of projecting the image to a subspace and returning to the original image space. We

believe this is ill suited for our purpose because it depends heavily on illumination, pose and

shape.

Viola and Jones [182] presented an approach with localization speed and precision in recog-

nition employing a cascade of classifiers composed of simple features and trained with the

Ada-Boost algorithm. The drawback of this method is that its training is very costly, often

requiring thousands of images.

Recently, Agarwal et al. [2] and Jurie and Triggs [75] adopted approaches that break down

the categorization problem to the recognition of specific parts that are characteristic of each

object class. These techniques, generally called bag-of-features [62, 68, 100], showed promising

results even though they do not try to model spatial constraints among features.

Weber [189] takes into account spatial constraints using a generative constellation model.

The algorithm can cope with occlusion in a very elegant manner, albeit very costly (exponential

in the number of parts). A further development made by Fei-Fei et al. [46] introduced prior
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knowledge into the estimation of the distribution, thus reducing the number of training examples

to around 10 images while preserving a good recognition rate. Notwithstanding, even with this

improvement, the problem of exponential growth with the number of parts persists, which makes

it unpractical for our problem, which requires speed for on-line operation.

Another interesting technique was proposed by Malik [15]. In this work, feature points are

found in a gradient image. The points are connected by a joining path and a match is signalized

if the found contour is similar enough to the one in the database. A serious drawback of this

method for our problem is that it requires a nonlinear optimization step to find the best contour;

besides that it relies too heavily on the silhouette cues, which are not a very informative feature

for fruits like oranges, lemons and melons.

5.3 Materials and methods

In general, image categorization relies on combinations of statistical, structural and spectral

approaches. In statistical approaches, we describe the objects using global and local descriptors

such as mean, variance, and entropy. In structural approaches, we represent the object’s ap-

pearance using well-known primitives such as patches of important parts of the object. Finally,

in spectral approaches, we describe the objects using some spectral space representation such as

Fourier spectrum [60]. In this paper, we analyze statistical color and texture descriptors as well

as structural appearance descriptors to categorize fruits and vegetables in a multi-class scenario.

As the best combination of features was not known for our problem, we analyze several state-

of-the-art computer vision features in many different ways, and assemble a system with good

overall accuracy using underpinned cross-validation procedures that allows us to combine the

best features and classifiers in a single and unified approach. Feature description combination

is of particular interest in the literature and has demonstrated important results over the last

years [88, 185]. However, the approach presented in [88] employs EXIF information which are

not relevant for our produce classification system. In addition, the solution presented in [185]

uses relevance feedback which would be a tiresome requirement to the supermarket cashier.

In the following, we present the statistical and structural descriptors we analyzed and used

in this paper, as well as the data set we created for the validation process.

5.3.1 Supermarket Produce data set

The Supermarket Produce data set is one of our contributions in this paper1. In general, there

are a few well-documented image data sets available for image categorization and content-based

image retrieval tasks for testing algorithm performance. ALOI2 and Caltech3 are two examples

of such data sets for general categorization. In this paper, we provide an image data set with

15 produce categories comprising 2,633 images collected on site.

1Freely available from http://www.liv.ic.unicamp.br/~undersun/pub/communications.html
2http://staff.science.uva.nl/~aloi
3http://www.vision.caltech.edu/Image Datasets/
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The Supermarket Produce data set is the result of five months of on site collecting in our

local fruits and vegetables distribution center.

We used a Canon PowerShot P1 camera, at a resolution of 1, 024×768 pixels. For the exper-

iments in this paper we down-sampled the images to 640× 480. For all images, we used a clear

background. Illumination varies greatly among images. We acquired images from 15 different

categories: Plum (264), Agata Potato (201), Asterix Potato (182), Cashew (210), Onion (75),

Orange (103), Taiti Lime (106), Kiwi (171), Fuji Apple (212), Granny-Smith Apple (155), Wa-

termelon (192), Honeydew Melon (145), Nectarine (247), Williams Pear (159), and Diamond

Peach (211); totalizing 2,633 images. Figure 5.1 depicts some of the classes of our image data

set.

(a) Plum (b) Cashew (c) Kiwi (d) Fuji Apple

(e) Melon (f) Nectarine (g) Pear (h) Peach

(i) Watermelon (j) Agata Potato (k) Asterix Potato (l) Granny-Smith Apple

(m) Onion (n) Orange (o) Taiti Lime

Figure 5.1: Supermarket Produce data set.

All the images were stored in RGB color-space at 8 bits per channel. We gathered images

at various times of the day and in different days for the same category. These features increase

the data set variability and represent a more realistic scenario. Figure 5.2 shows an example

of Kiwi and Granny-Smith Apple categories with different lighting. The differences are due to
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illumination, no image pre-processing was done.

(a) Kiwi Category.

(b) Granny-Smith Apple Category.

Figure 5.2: Illumination differences within categories.

The Supermarket Produce data set also comprises differences in pose and in the number of

elements within an image. Figure 5.3 shows examples of the Cashew category. Note that there

are variations in the pose of the Cashew’s plastic repository. In addition, Figure 5.4 shows the

variability in the number of elements within an image.

Figure 5.3: Pose differences. Cashew category.

Figure 5.4: Variability on the number of elements. Plum category.

Sometimes, the elements are inside a plastic bag which adds specular reflections to the

analyzed image. Furthermore, the presence of shadows (e.g., second and third images of Fig-

ure 5.2(a)) and cropping/occlusions (e.g., Figure 5.5) makes the data set more realistic.
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Figure 5.5: Examples of cropping and partial occlusion.

5.3.2 Image descriptors

In this section, we analyze statistical color, texture, and structural appearance descriptors (bag-

of-features) in order to propose a system to solve a multi-class fruits/vegetables categorization

problem.

Global Color Histogram (GCH)

The simplest approach to encode the information present in an image is the Global Color His-

togram (GCH) [60]. A GCH is a set of ordered values, one for each distinct color, representing

the probability of a pixel being of that color. Uniform quantization and normalization are used

to reduce the number of distinct colors and to avoid scaling bias [60]. In this paper, we use a

64-d GCH feature vector.

Unser’s descriptors

Unser [178] has shown that the sum and difference of two random variables with same variances

are de-correlated and define the principal axes of their associated joint probability function.

Hence, the author introduces sum s and difference d histograms as an alternative to the usual

co-occurrence matrices for image texture description.

The non-normalized sum and difference associated with a relative displacement (δ1, δ2 for an

image I, are defined as

sk,l = Ik,l + Ik+δ1,l+δ2 , (5.1)

dk,l = Ik,l − Ik+δ1,l+δ2. (5.2)

The sum and difference histograms over the domain D are defined in a manner similar to

the spatial level co-occurrence or dependence matrix definition:

hs(i; δ1, δ2) = hs(i) = Card{(k, l) ∈ D, sk,l = i}, (5.3)

hd(j; δ1, δ2) = hd(j) = Card{(k, l) ∈ D, dk,l = j}. (5.4)

In addition to the histograms, as we show in Table 5.1, we use some associated global

measures: mean (µ), contrast (Cn), homogeneity (Hg), energy (En), variance (σ2), correlation

(Cr), and entropy (Hn)) over the histograms.
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Mean µ = 1
2

∑

i ihs[i]
Contrast Cn =

∑

j j2hd[j]

Homogeneity Hg = 1
1+j2 hd[j]

Energy En =
∑

i hs[i]
2
∑

j hd[j]2

Variance σ2 = 1
2

(

∑

i (i− 2µ)2hs[i] +
∑

j j2hd[j]
)

Correlation Cr = 1
2

(

∑

i (i− 2µ)2hs[i]−
∑

j j2hd[j]
)

Entropy Hn = −∑i hs[i] log (hs[i]) −
∑

j hd[j] log (hd[j])

Table 5.1: Histogram-associated global measures.

In this paper, we use a 32-d Unser feature vector calculated in the grayscale representation

of the images.

Color Coherence Vectors (CCVs)

Pass et al. [126] presented an approach to compare images based on color coherence vectors.

They define color’s coherence as the degree to which pixels of that color are members of a large

region with homogeneous color. They refer to these significant regions as coherent regions.

Coherent pixels are part of some sizable contiguous region, while incoherent pixels are not.

In order to compute the CCVs, first the method blurs and discretizes the image’s color-space

to eliminate small variations between neighboring pixels. Thereafter, it finds the connected

components in the image aiming to classify the pixels within a given color bucket as either

coherent or incoherent.

After classifying the image pixels, CCV computes two color histograms: one for coherent

pixels and another for incoherent pixels. The two histograms are stored as a single histogram.

In this paper, we use a 64-d CCV feature vector.

Border/Interior (BIC)

Stehling et al. [169] presented the border/interior pixel classification (BIC), a compact approach

to describe images. BIC relies on the RGB color-space uniformly quantized in 4 × 4 × 4 = 64

colors. After the quantization, the image pixels are classified as border or interior. A pixel is

classified as interior if its 4-neighbors (top, bottom, left, and right) have the same quantized

color. Otherwise, it is classified as border.

After the image pixels are classified, two color histograms are computed: one for border

pixels and another for interior pixels. The two histograms are stored as a single histogram with

128 bins.
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Appearance descriptors

To describe local appearance, we use a vocabulary of parts, similar to Agarwal et al. [2] and

Jurie and Triggs [75]. Images are converted to grayscale to locate interest points and patches are

extracted from the gradient magnitude image or the original grayscale image. We use Lowe’s

feature point detector to find the coordinates of interest points, together with orientation and

scale. Once found, we extract a square region around the point. The square side is proportional

to the scale and the orientation follows that of the feature point. Once extracted, all patches

are resized to 13× 13 pixels.

All patches in the training set are clustered using K-means. The cluster centers are used as

our part dictionary. The found centroids can be seen on Figure 5.6.

To compute the feature vector for a given image, we extract patches in the same way that

was done for the training set. The feature vector length is equal to the number of parts in our

dictionary. We tried two schemes for values of the components of the feature vectors. In the

first one the value for each component is equal to the distance between the dictionary part di

and the closest patch pj in the given image, as in the equation

fi = min
∀j

pj · di

‖pj‖‖di‖
. (5.5)

In the second scheme, the value for the component is equal to 1 if this part is the closest one

for some patch of the input image, and 0 otherwise.

fi =







1 if i = arg min
i

pj ·di

‖pj‖‖di‖
for some j

0 otherwise
(5.6)

When convenient, we show the name of the algorithm used and the size of the used feature

vector. For instance, K-Means-98 refers to the use of K-Means algorithm on a code-book (feature

space) of 98 dimensions.

For the vocabulary of parts, we use some images from the Supermarket Produce data set

in the vocabulary creation stage. The images used for the vocabulary generation are excluded

from the data set in the posterior training/testing tasks.

5.3.3 Supervised learning

Supervised learning is a machine learning approach that aims to estimate a classification function

f from a training data set. Such training data set consists of pairs of input values X and its

desired outcomes Y [55]. Observed values in X are denoted by xi, i.e., xi is the ith observation

in X. Often, x is as simple as a sequence of numbers that represent some observed features.

The number of variables or features in each x ∈ X is p. Therefore, X is formed by N input

examples (vectors) and each input example is composed by p features or variables.

The commonest output of the function f is a label (class indicator) of the input object under

analysis. The learning task is to predict the function outcome of any valid input object after



120 Chapter 5. Automatic Fruit and Vegetable Classification from Images

(a) Grayscale. (b) Gradients.

Figure 5.6: Dictionary of parts, clustered using K-means.

having seen a sufficient number of training examples.

In the literature, there are many different approaches for supervised learning such as Linear

Discriminant Analysis, Support Vector Machines, Classification Trees, and Neural Networks.

Linear Discriminant Analysis

Also known as Fisher discriminant, Linear Discriminant Analysis (LDA) consists of selecting

the components that maximize the between-class differences while minimizing the within-class

variability [16].

For the sake of simplicity, consider a two-class classification problem Y (-1 = a | +1 = b).

Let Xa be a set of examples belonging to the class a and Xb be a set of examples belonging to

class b in the training set. Consider the number of elements in Xa to be Na and the number of

elements in Xb to be Nb.

Let’s suppose that both classes a and b have a Gaussian distribution. Therefore, we can

define the within-class means as

µa =
1

Na

∑

xi∈Xa

xi and µb =
1

Nb

∑

xj∈Xb

xj. (5.7)

We define the between-class (a, b) means as

µ =
1

Na + Nb





∑

x∈Xa∪Xb

x



 . (5.8)
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We define the within-class scatter matrix Sw as

Sw = MaM
T
a + MbM

T
b , (5.9)

where the ith column of matrix Ma contains the difference (xa
i − µa). We can apply the same

procedure to Mb. The scatter matrix Sbet between the classes is

Sbet = Na(µa − µ)(µa − µ)T + Nb(µb − µ)(µb − µ)T . (5.10)

In order to maximize the between-class differences and to minimize the within-class variability

in one single dimension (1-D), it is enough to calculate the generalized eigenvalue-eigenvector ~e

of Sbet and Sw

Sbet~e = λSw~e.

With the generalized eigenvalue-eigenvector, we can project the samples to a linear subspace

and use a single threshold to perform the classification.

Support Vector Machine (SVM)

In the SVM model, we are looking for an optimal separating hyper-plane between two classes.

This is done maximizing the margin (minimal distance of an example to the decision surface).

When it is not possible to find a linear separator, we project the data into a higher space

using techniques known as kernels [16]. SVMs can be linear separable, linear non-separable and

non-linear.

In the linear separable SVMs, the points that lie on the hyper-plane satisfy the constraint

wtxi + b = 0, (5.11)

where w is the normal to the hyper-plane, b is the bias of the hyper-plane, |b|/‖w‖ is the

perpendicular distance from the origin to the hyper-plane and ‖.‖ is the Euclidean norm. To

find out w and maximize the margin, we can use Lagrangian multipliers

L(α) =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjx
t
ixjyiyj, (5.12)

where α is the positive Lagrangian multipliers, x are the samples of the X input vector and y

are the expected outputs. A solution to the linear separable classifier, if it exists, yields values

of αi. Using the αi values, we can calculate the normal to the hyperplane w

w =
N
∑

i=1

αixiyi. (5.13)

From w we can calculate the bias b of the separating hyperplane applying the Karush-Kuhn-

Tucker [16] condition

b =
1

N

N
∑

i=1

yi − wtxi. (5.14)
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Sometimes, a linear separable SVM may not find a solution. Such a situation can be handled

introducing slack variables ǫi that relax the constraint in the equation 5.11 [16].

When it is not possible to find a linear hyperplane that optimally separates the data, we can

apply a non-linear SVM. In this model, we map the training examples into a higher-dimensional

Euclidean space in which a linear SVM can be applied. This mapping can be done using a

Kernel K such a polynomial or a radial basis function (RBF).

Denoting by φ = L → H, a mapping from the lower to the higher space and K(xi, xj) =

φ(xi)
tφ(xj) an on-the-fly kernel, we can test a new incoming exemplar z simply solving the

equation

wtφ(z) + b =

N
∑

i=1

(αiK(xi, z)yi + b). (5.15)

Bootstrap Aggregation

In Bagging (Bootstrap aggregation) ensemble, we repeatedly apply an inductive learner (clas-

sifier) to bootstrap samples on the training set. We use the training set to generate bootstrap

samples using random sampling with replacement. Once several hypotheses (i.e., base learners)

have been generated on such bootstraps, we determine the aggregate classifier by majority vot-

ing among the base learners. The final classifier evaluates test samples by querying each of the

base classifiers on the sample and then outputting their majority opinion.

Let X be our input data set, and Zi, i = 1, 2, . . . , B, one sample of X. To perform the

classification in each Zi, we select a weaker classifier (e.g., LDA). Often, we use the same

classifier in all Zi samples4.

Figure 5.7 depicts the training and classification approaches using Bagging ensemble.

We store the coefficients related to each weak classifier used (α) such that when we analyze

an unseen input example, we submit this example to the B classifiers and perform the final

voting to predict the input example’s class.

Clustering

Sometimes, we do not have a complete information about the data set under analysis (e.g.,

the class of all elements). One way to solve this problem consists of partitioning the data set

into subsets (clusters), so that the data in each subset (ideally) share some common character-

istics. The computational task of classifying a data set into k clusters is often referred to as

k-clustering [16,55].

The simplest approach to cluster data into similar groups is K-Means [16]. In this procedure,

we define k centroids, one for each cluster. The better choice is to place the centroids far away

from each other. Next, we take each point belonging to a given data set and associate it to the

closest centroid. After analyzing all data points, we complete the first step and we have a set

of k clusters. At this point, we re-calculate k new centroids as the barycenters of the resulting

4The number of times that we repeat the process is referred to as the number of bagging iterations.
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Figure 5.7: Training and classification using Bagging ensemble.

clusters from the previous step. With the k new centroids, we perform a new binding between

the same data set points and the closest new centroid. We repeat this process until we reach a

stabilization criterion.

5.4 Background subtraction

Background subtraction is a convenient and effective method for detecting foreground objects

in images with stationary background.

This task has been widely studied in the literature. Background subtraction techniques can

be seen as a two-object image segmentation and, often, need to cope with illumination variations

and sensor capturing artifacts such as blur. For our problem we also face specular reflections,

background clutter, shading and shadows.

For a real application in a supermarket, background subtraction needs to be fast, requiring

only fractions of a second to be performed.

In this paper, we tested several background subtraction techniques. After analyzing the cost

effectiveness of each one, we present a solution that gives us good solutions in less than a second.

In the following, we present some results for the different approaches we studied.

For the following experiments, we used a 2.1GHz machine with 2GB of RAM. No other

program was executed in parallel. We discovered that, for our problem, the best channel to per-

form the background subtraction is the S channel of HSV-stored images. This is understandable

given that the S channel is much less sensitive to lighting variations than any of the RGB color

channels [60]. Therefore, for all tests reported, we performed the segmentation in the S channel.

Figure 5.8 depicts results for four different approaches. Otsu background algorithm [124] is
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the fastest tested approach requiring only 0.3 seconds to segment an input image of 640 × 480

pixels. However, as we see, it misses most of the produce under analysis. Meanshift [30] provides

a good image segmentation within 1.5 seconds in average. However, it requires the correct tuning

of parameters for different image classes. The affinity threshold for merging regions, also known

as bandwidth in Meanshift, is different for each image class and sometimes even within the same

class. Although, in general, the Normalized cuts [165] approach provided the best segmentation

results, it has a serious drawback for our problem. Given that the approach needs to calculate

the eigenvectors of the image, even for a reduced image (128×96 pixels), it requires ≈ 5 seconds

to perform the segmentation, not counting the image resizing operation.

Finally, K-Means is the approach that yields good segmentation results within acceptable

computing time. To analyze an image of 640 × 480, it requires 0.8 seconds for the whole

procedure described in Algorithm 6. We also tested Watershed transform [90] followed by some

morphological operations and the results are similar to Otsu’s algorithm.

(a) Original. (b) Otsu. (c) Meanshift. (d) Normalized Cuts.

(e) K-Means.

Figure 5.8: Background subtraction results for four different approaches.

In this sense, we chose the approach based on K-Means to perform the background subtrac-

tion and reduce most of the artifacts due to lighting variation conditions. Algorithm 6 presents

the complete procedure for this task.

Algorithm 6 Background subtraction based on K-Means
Require: Input image I stored in HSV;
1: Idown ← Down-sample the image to 25% of its original size using simple linear interpolation.
2: Get the S channel of Idown and consider it as an 1-d vector V of pixel intensities.
3: Perform Dbin = K-Means(V , k=2) ⊲ Sec. 5.3.3
4: Map M ← Dbin back to image space. For that just do a linear scan of Dbin.
5: Mup ← Up-sample the generated binary map M back to the input image size.
6: Close small holes on Mup using the Closing morphological operator with a disk structuring element

of radius 7 pixels.
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With the generated binary map, in the stage of feature extraction, we limit all the features to

be calculated within the object region of the masks. Figure 5.9 depicts some more background

subtraction results.

It is worth noting that all descriptors are calculated within the segmented object’s mask

discarding the boundaries information. In other words, we do not calculate a descriptor info on

the borders. In addition, it is hard to define a golden standard measure for the effectiveness of the

segmenation regardless the selected procedure. However, we can point out that the segmentation

quality using K-Means on HSV-represented images most likely is above 95% quality for the tested

data set.

(a) Original. (b) K-Means. (c) Original. (d) K-Means.

Figure 5.9: Some K-Means background subtraction results.

5.5 Preliminary results

In this section, we present preliminary results for our problem. In the quest for finding the

best classification procedures and features, first we analyze several appearance-, color-, texture-,

and shape-based image descriptors as well as diverse machine learning techniques such as SVM,

LDA, Trees, K-NN, and Ensembles of Trees and LDA [16].

We select the training images using sampling without replacement from the pool of each

image class. If we are training with 10 images per class, we use the remaining ones for testing.

We repeat this procedure 10 times, and report the average classification accuracy (µ), average

error (ǫ = 1−µ), and standard deviation (σ). We do not use the strictly 10-fold cross-validation,

given that we are interested in different sizes of training sets. In each round, we report the

accuracy for the 15 classes summing the accuracy of each class and dividing by the number of

classes.

Average accuracy rates

In Figure 5.10, we show results for different combinations of features and classifiers. The x-

axis represents the number of images per class in the training set and the y-axis represents the

average accuracy in the testing set.
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(a) Feature: BIC

LDA−GCH
SVM−GCH
Tree−GCH

BLDA−17−GCH
BAGG−17−GCH

KNN−3−GCH

Training examples per class

A
cc

u
ra

cy
(%

)

8 16 24
30

32 40

40

48

50

56

60

64

70

80

90

100

(b) Feature: GCH
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(c) Feature: CCV
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(d) Feature: Unser
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(e) Feature: Appearance Patches

Figure 5.10: Average accuracy per class considering diverse classifiers and features.
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In this experiment, we see that Breiman’s decision Tree does not perform very well. One

possible explanation is that the descriptor data is not suitable for this kind of classifier. For

instance, the Unser descriptor feature vector is continuous and unbounded which naturally makes

decision trees unstable.

In this sense, the ensemble of trees (BAGG), with 17 iterations performs better than simple

decision Trees as far as it is more stable.

We also observe across the plots that LDA accuracy curves practically become flat for more

than 32 examples. When we use an ensemble of LDA (BLDA), we are performing random

sampling across the training data that makes a better use of the provided information in such

a way it can improve the classification. Therefore, as we observe in the plots, the ensemble

of LDA with 17 iterations performs better than straight LDA, Trees, or ensemble of Trees.

Complementing, the simple K-Nearest Neighbors here is as good as ensemble of Trees no matter

the descriptor. K-NN is also not well suited for unbounded and unrestricted data like Unser

descriptor (c.f., Fig. 5.10(d)). In particular, SVM is a classifier that performs well regardless the

used features.

As we can see, for this problem, BIC descriptor performs best yielding an accuracy ≈ 94%

for 32 examples per class in the training under SVM classifier.

Furthermore, a more complex approach such as the appearance descriptor for this particu-

lar problem does not yield a good classification accuracy, as Figure 5.10(e) depicts. We tested

three different approaches for the appearance-based descriptor in Figure 5.10(e). Two interest-

ing observations: (1) the approach based on patches with no gradient orientation is the only

tested feature which does not benefit from more examples in the training; and (2) the approach

based on patches with gradient orientation is the one which benefits more with more training

examples. This suggests us that with enough training it might provide much better results.

Notwithstanding, the training data is limited for the particular problem in this paper.

We believe that the appearance descriptor does not provide a significant classification accu-

racy given that the used patches do not represent well all the images classes we are trying to

classify. Further investigation must be done in this direction to validate the use of appearance

descriptor or any other similar model. However, one observation that pops up is that this model

requires more sophisticated training. Although, previous results in literature argue that it re-

quires less examples for training, we noted that it requires lots of good representative images to

create good appearance patches and accomplish such claims.

We can draw some important general conclusions when analyzing these results. First, it

is hard to solve a multi-class problem using just one feature descriptor. Hence feature fusion

becomes mandatory. Second, we see that the classifier results for different features are quite

different suggesting us that it would be worth also combining the classifiers each one tailored

and best-suited for a particular feature.

In spite of the fact that feature-level combination is not straightforward for multi-class prob-

lems, for binary problems this is a simple task. In this scenario, it is possible to combine different

classifiers and features by using classic rules such as and, or, max, sum, or min [16]. For multi-

class problems, this is more difficult given that one feature might point out to an outcome class
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Ci and another feature might result the outcome class Cj, and even another one could result

Ck. With many different resulting classes for the same input example, it becomes difficult to

define a consistent policy to combine the selected features.

In this context, one approach sometimes used is to combine the feature vectors for different

features into a single and big feature vector. Although quite effective for some problems, this

approach can also yield unexpected classification results when not properly prepared. First,

in order to create the combined feature vector, we need to tackle the different nature of each

feature. Some can be well conditioned such as continuous and bounded variables, others can be

ill-conditioned for this combination such as categorical ones. In addition, some variables can be

continuous and unbounded. To put everything together, we need a well-suited normalization.

However, this normalization is not always possible or, sometimes, it leads to undesirable prop-

erties in the new generated feature vector such as equally weighting all the feature coefficients,

a property that in general we do not want.

When combining feature vectors this way, eventually we would need to cope with the curse

of dimensionality. Given that we add new features, we increase the number of dimensions which

then might require more training data.

Finally, if we want to add a new feature, we might need to redesign the normalization in

order to deal with all the aforementioned problems. In Section 5.6, we present a simple and

effective way to feature and classifier fusion that cope with most of the previously discussed

concerns.

5.6 Feature and classifier fusion

Our objective is to combine a set of features and the most appropriate classifier for each one in

such a way we improve the overall classification accuracy. Given that we do not want to face the

inherent problems of proper normalization and curse of dimensionality, we do not create a big

feature vector combining the selected features. Furthermore, doing that we would only perform

feature fusion and we would still be limited in doing the classifier fusion.

To accomplish our objective, we propose to cope with the multi-class problem as a set of

binary problems. In this context, we define a class binarization as a mapping of a multi-class

problem onto two-class problems (divide-and-conquer) and the subsequent combination of their

outcomes to derive the multi-class prediction. We refer to the binary classifiers as base learners.

Class binarization has been used in the literature to extend naturally binary classifiers to multi-

class and SVM is one example of this [5,38,115]. However, to our knowledge, this approach was

not used before for classifier and feature fusion.

In order to understand the class binarization, consider a problem with 3 classes. In this case,

a simple binarization consists in training three base learners, each one for two classes. In this

sense, we need O(N2) binary classifiers, where N is the number of classes.

We train the ijth binary classifier using the patterns of class i as positive and the patterns

of class j as negative examples. To obtain the final outcome we just calculate the minimum
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distance of the generated vector (binary outcomes) to the binary pattern representing each class.

Consider again a toy example with three classes as we show in Figure 5.11. In this example,

we have the classes: Triangles △, Circles ©, and Squares ✷. Clearly, one first feature we

can use to categorize elements of these classes can be based on shape. As we can see, we can

also use texture and color properties. To solve this problem, we train some binary classifiers

differentiating two classes at a time, such as △×©, △×✷, and ©×✷. Also, we give each one

of our classes a unique identifier (e.g., △ = 〈+1, +1, 0〉).

Figure 5.11: Toy example for feature and classifier fusion.

When we receive an input example to classify, let’s say a triangle-shaped one, as we show

in the picture, we first apply our binary classifiers to verify if the input example is a triangle

or a circle based on shape, texture and color features. Each classifier will give us a binary

response. Let’s say we obtain the votes 〈+1, +1,−1〉 for the binary classifier △×©. Thereafter,

we can use majority voting and select one response (+1 in this case, or △). Then we repeat

the procedure and test if the input example is a triangle or a square, again for each one of the
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considered features. Finally, after performing the last test, we end up with a binary vector.

Then we calculate the minimum distance from this binary vector to each one of the class unique

IDs. In this example, the final answer is given by the minimum distance of

min dist(〈1, 1,−1〉, {〈1, 1, 0〉, 〈−1, 0, 1〉, 〈0,−1,−1〉}. (5.16)

One aspect of this approach is that it requires more storage given that once we train the

binary classifiers we need to store their parameters. Given that we analyze more features we

need more space. With respect to running time, there is also a small increase given that we

need to test more binary classifiers to provide an outcome. However, many classifiers in our

daily-basis employ some sort of class binarization (e.g., SVM) and are considered fast. The

majority voting for each binary classifier and the distance calculation to the unique class IDs

are simple and efficient operations.

Although we require more storage and increase the classification time with respect to a

normal multi-class approach, there are some advantages using this approach:

1. By combining independent features, we have more confidence in a resulting outcome given

that it is calculated from the agreement of more than one single feature. Hence, we have

a simple error correcting mechanism that can withstand some misclassifications;

2. If we find some classes that are in confusion and are driving down our classification results,

we can design special and well-tuned binary classifiers and features to separate them;

3. We can easily point out if one feature is indeed helping the classification or not. This is

not straightforward with normal binding in a big feature vector;

4. The addition of new classes only require training for the new binary classifiers;

5. The addition of new features is simple and also just require partial training;

6. As we do not increase the size of any feature vector, we are less prone to the curse of

dimensionality not requiring more training examples when adding more features.

Finally, there is no requirement to combine the binary classifiers using all combinations of

two classes at a time. We can reduce storage requirements and speed up the classification itself

by selecting classes that are in confusion and designing specific binary classifiers to separate

them. The expectation in this case is that much less binary classifiers would be needed. In fact,

there is room for more research in this direction.

5.7 Fusion results

We have seen in Section 5.5 that it is hard to solve a complex problem such as the one in this

paper using just one feature descriptor. Therefore, we face the need for feature fusion to improve

classification. In addition, we also observed that some classifiers are better for some features
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than others which suggests us that it would be worth also combining the classifiers, each one

tailored and best-suited for a particular feature. We also discussed that common feature fusion

approaches, although effective and powerful in some cases, require careful understanding of the

used features and their proper normalization. Furthermore, this kind of feature combination

increase the dimensionality of the feature vectors and may require more training examples. In

this context, we presented in Section 5.6 an alternative approach that allows us to combine

features and classifiers in a simple way.

In this section, we present results for our approach and show that the combined features

and classifiers indeed improve classification results when compared to the standalone features

and classifiers. In the following experiments, we report results showing the average error in

classification and we seek to minimize this error. Finally, we show that with the top first

responses we have less than 2% error in classification and with the top two we have less than

1%.

5.7.1 General fusion results

Figure 5.13 shows one example of the combination of the BIC, CCV, and Unser descriptors.

This combination is interesting given that, BIC is a descriptor that analyzes color and shape

in the sense that it codifies the object’s border and interior, CCV codifies the color connected

components and Unser accounts for the image’s textures.

In Figure 5.13, we see that the fusion works well regardless the classifier used. Consider

the SVM classifier, with 32 examples per class in the training, the fusion yields an average

error of ǫ = 3, 0% and standard deviation of σ = 0.43%. This is better than the best

standalone feature, BIC, that is ǫ = 4.2% and standard deviation of σ = 0.32%. Although

the absolute difference here seems small, it is about 3 standard deviations which means it is

statistical significant. In general, to reduce one percentual point in the average error when

the baseline accuracy is ≈ 95% is a hard problem. For LDA classifier, the fusion requires at

least 24 examples per class in the training to yield error reduction. Recall that we observed in

Section 5.5 that LDA curves become flat with more than 32 examples per class in the training

and adding more training data does yield better results. On the other hand, when combining

different features, LDA does benefit from more training and indeed results lower error rates

(ǫ = 3%, σ = 0.59%), 9.8 standard deviations better than LDA on the straight BIC feature.

In Figure 5.14, we switch the BIC descriptor to a simpler one with half of the dimensionality

(64-d). As we note, the results are comparable to the ones obtained with the fusion before. But

now, the fusion show even more power.
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5.7.2 Top two responses

Figure 5.12 shows the results when we require the system to show the top 2 responses. In this

case, the system provides the user the two most probable classes for a given input example

considering the different classifiers and features used. Using SVM classifier and fusion of BIC,

GCH, and Unser features, with 32 examples per class in the training, the average error is

ǫ ≤ 1%.

SVM−Fusion (BIC, Unser, CCV) − Top 2
SVM−Fusion (GCH, Unser, CCV) − Top 2
SVM−Fusion (GCH, Unser, CCV) − Top 1
SVM−Fusion (BIC, Unser, CCV) − Top 1
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Figure 5.12: Top one, and two responses for SVM classifier considering fusion.

Average error per class

One important aspect when dealing with classification is the average error, or its counterpart,

average expected accuracy per class. This information, shows which class of our data needs

more attention when solving the confusions. Figure 5.15 shows us the average expected error

for each one of our 15 classes. Clearly, we see that Fuji apple is one class that needs particular

attention. It yields the highest error when compared to the other classes. Another class the has

an interesting error behavior is Onions. After the error decreases when using up to 40 training

examples it becomes higher as the number of training examples increases.

This experiments shows that for some classes, it might be worth performing the training

with less examples. Indeed, this is possible when using our fusion approach, since we analyze

each pair of classes with a separate classifier.

Average time

The average time for the image descriptors feature extraction and classification using any of the

classifiers under our feature and classifier fusion approach still is less than 1 second. However, the

more examples in the training set the more time consuming are the combinations in the training

stage. For instance, to train a multi-class classifier using our approach with SVM classifier, 48
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(a) SVM classifier
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(b) LDA classifier

BLDA−3−Fusion (BIC, Unser, CCV)
BLDA−17−BIC

BLDA−17−Unser
BLDA−17−CCV

Training examples per class

A
ve

ra
ge

E
rr

or
(%

)

0

5

8

10

15

16

20

24

25

30

32

35

40

40

45

48 56 64

(c) BLDA classifier
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(d) Tree classifier

Figure 5.13: Average error results for fusion of BIC, CCV, and Unser features.

training examples per class, and the combination of the features BIC, CCV, and Unser, it is

necessary about one hour in one 2.1GHz machine with 2GB of RAM.

Finally, the use of complex appearance descriptors such as appearance part-based ones can

impact the training set without yielding significant improvements on the overall effectiveness of

the classification system.

5.8 Conclusions and remarks

To solve a complex problem such us the one in this paper using just one feature descriptor is a

difficult task. We discussed that although normal feature fusion is quite effective for some prob-

lems, it can yield unexpected classification results when not properly normalized and prepared.

Besides it has the drawback of increasing the dimensionality which might require more training
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(a) SVM classifier
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(b) LDA classifier

Figure 5.14: Average error results for fusion of GCH, CCV, and Unser features.

data.

Therefore, we proposed to cope with the multi-class problem as a set of binary problems

in such a way we can fuse diverse features and classifier approaches specialized to parts of the

problem. We presented a unified solution that can combine many features and classifiers that

requires less training and performs better if compared with a näıve method, where all features

are simply concatenated and fed independently to each classification algorithm. In addition, the

proposed solution is amenable to continuous learning, both when refining a learned model and

also when adding new classes to be discriminated.

A second contribution of our work is the presentation of a complete and well-documented

fruit/vegetables image data set suitable for content-based image retrieval, object recognition,

and image categorization tasks. We hope this data set will endure beyond this paper as a

common comparison set for researchers working in this space.

Table 5.2 counterpoints the main aspects of our proposed approach with respect to the

näıve binding of features in a big feature vector. We point out advantages and drawbacks of

each approach and leave the decision of using one or another to the designer of a classification

system. The first and foremost aspect of both approaches is that with a certain minimum

number of training examples, when all data can be properly normalized, and if we do not face

the dimensionality problem, their results are comparable.

Another observation is that for both approaches, it seems to be not advisable to combine

weak features with high classification errors and features with low classification errors. In this

case, most likely the system will not take advantage of such combination.

Whether or not more complex approaches such as appearance-based descriptors provide

good results for the classification is still an open problem. It would be unfair to conclude

they do not help in the classification given that, their success is highly based on their patches

representation. Nevertheless, it is fact that such approaches are computational demanding and
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Figure 5.15: Average error per class using fusion of the features BIC, CCV, and Unser, for an
SVM classifier.

perhaps not advisable in some scenarios.

Further work include the improvement of the fruits/vegetables representative patches, and

the analysis of other appearance and texture image descriptors. Furthermore, we are interested

in the incorporation of spatial constraints among the local descriptors. In addition, we want

to create the conditions for a semi-supervised approach that leads us to continuous learning,

taking advantage of misclassified examples. In a semi-supervised scenario, the initial training

stage can be simplified requiring only a few examples for each analyzed class.
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Feature binding fusion Feature and classifier fusion using multi-
class from binary

Short definition. It performs feature fusion
by assembling together (binding) the diverse
feature vectors resulting in a big feature vec-
tor.

Short definition. It performs feature and
classifier fusion by considering the multi-class
problem as a set of binary problems and using
specialized binary classifiers tuned for specific
parts (divide-and-conquer).

Dimensionality problem. It might face the
dimensionality problem when binding many
features and creating a big feature vector.

Dimensionality problem. Less prone to the
dimensionality problem in the feature fusion be-
cause it uses each feature independently.

Selection of best features. Given that all the
features are addressed as just one feature, it is
hard to point out which ones are more effective
in the fusion.

Selection of best features. It is straightfor-
ward to point out which features are effective
in the fusion.

Training. New features and classes usually re-
quire a complete new training.

Training. New features and classes would re-
quire partial training. It only needs to train
new binary classifiers for the new features and
for the new classes compared to the previous
ones.

In some cases, due to the dimensionality prob-
lems, adding new features might require more
training data.

Usually, more features do not require more
training data.

Data normalization. It requires proper nor-
malization of the data. Once new features
are added, a new normalization and retraining
must be performed.

Data normalization. It does not require spe-
cial normalization given that each feature is in-
dependently analyzed.

Testing. If the normalization is possible and
properly handled, the classification is easy.

Testing. The classification requires more stor-
age for the classifier parameters. Furthermore,
the classification itself is more time consuming.

Combining classifiers. The classifier is tied
to the features. It is not straightforward to use
different classifiers for different features.

Combining classifiers. Different classifiers
and features can be combined with no restric-
tions.

Table 5.2: Comparison between feature binding fusion and feature/classifier fusion using multi-
class from binary.



Multi-classe a Partir de

Classificadores Binários

Muitos problemas reais de reconhecimento e de classificação frequentemente necessitam mapear

várias entradas em uma dentre centenas ou milhares de posśıveis categorias.

Muitos pesquisadores têm proposto técnicas efetivas para classificação de duas classes nos

últimos anos. No entanto, alguns classificadores poderosos tais como SVMs são dif́ıceis de

estender para o cenário multi-classe. Em tais casos, a abordagem mais comum é a de reduzir a

complexidade do problema multi-classe para pequenos e mais simples problemas binários (dividir

para conquistar).

Ao utilizar classificadores binários com algum critério final de combinação (redução de com-

plexidade), muitas abordagens descritas na literatura partem do prinćıpio de que os classificado-

res binários utilizados na classificação são independentes e aplicam um sistema de votação como

poĺıtica final de combinação. Entretanto, a hipótese da independência não é a melhor escolha

em todos os casos.

Nesse sentido, nos deparamos com um problema interessante: como tornar a utilização de

poderosos classificadores binários no contexto multi-classe mais eficiente e eficaz?

No Caṕıtulo 6, introduzimos uma técnica para combinação de classificadores binários (chama-

dos classificadores base) para a resolução de problemas no contexto geral de multi-classificação.

Nós denominamos a técnica de Affine-Bayes. Finalmente, mostramos que nossa solução torna

posśıvel resolver problemas complexos tais como de 100 ou 1000 classes a partir da combinação

de poucos, mas poderosos, classificadores binários.

O Caṕıtulo 6 é uma compilação de nosso trabalho submetido à IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) e do artigo [150] no Intl. Conference on Computer

Vision Theory and Applications (VISAPP).
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Chapter 6

From Binary to Multi-class: A

Bayesian Evolution

Abstract

Recently, there has been a lot of success in the development of effective binary classifiers. Al-

though many statistical classification techniques do have natural multi-class extensions, some,

such as the SVMs, do not. Therefore, it is important to know how to map the multi-class

problem into a set of simpler binary classification problems. In this paper, we introduce a new

Bayesian multi-class from binary reduction method: the Affine-Bayes Multi-class. First, we

introduce the concept of affine relations among the binary classifiers (dichotomies), and then we

present a principled way to find groups of highly correlated base learners. With that in hand, we

can learn the proper joint probabilities that allow us to predict the class. Finally, we present two

additional strategies: one to reduce the number of required dichotomies in the multi-class clas-

sification and the other to find new dichotomies in order to replace the less discriminative ones.

We can use these two new procedures iteratively to complement the base Affine-Bayes Multi-

class and boost the overall multi-class classification performance. We validate and compare our

approach to the literature in several open datasets that range from small (10 to 26 classes) to

large multi-class problems (1,000 classes) always using simple reproducible descriptors.

6.1 Introduction

Supervised learning is a Machine Learning strategy to create a prediction function from training

data. The task of the supervised learner is to predict the value of the function for any valid input

object after having seen a number of domain-related training examples [16]. Many supervised

learning techniques are conceived for binary classification [127]. However, a lot of real-world
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recognition and classification problems often require that we map inputs to one out of hundreds

or thousands of possible categories.

Several researchers have proposed effective approaches for binary classification in the last

years. Successful examples of such approaches are margin and linear classifiers, decision trees,

and ensembles. We can easily extend some of those techniques to multi-class problems (e.g.,

decision trees). However, we can not easily extend to multi-class some others powerful and

popular classifiers such as SVMs [31]. In such situations, the usual approach is to reduce the

multi-class problem complexity into multiple simpler binary classification problems. Binary

classifiers are more robust to the curse of dimensionality than multi-class approaches. Hence, it

is worth dealing with a larger number of binary problems.

A class binarization is a mapping of a multi-class problem onto several two-class problems

(divide-and-conquer) and the subsequent combination of their outcomes to derive the multi-class

prediction [130]. We refer to the binary classifiers as base learners or dichotomies.

There are many possible approaches to reduce multi-class to binary classification problems.

We can classify such approaches into three broad groups [145]: (1) One-vs-All (OVA), (2) One-

vs-One (OVO), and (3) Error Correcting Output Codes (ECOC). Also, the multi-class decom-

position into binary problems usually contains three main parts: (1) the ECOC matrix creation;

(2) the choice of the base learner; and (3) the decoding strategy.

Our focus here is on the creation of the ECOC matrix and on the decoding strategy. Although

we shall explain latter, for the creation of the ECOC matrix, it is important to choose a feasible

number of dichotomies to use. In general, the more base learners we use, the more complex is

the overall procedure. For the decoding strategy, it is essential to choose a deterministic strategy

robust to ties and errors in the dichotomies’ prediction.

In this paper, we introduce a brand new way to combine binary classifiers to perform large

multi-class classification. We present a new Bayesian treatment for the decoding strategy, the

Affine-Bayes Multi-class.

We propose a decoding approach based on the conditional probabilities of groups of high-

correlated binary classifiers. For that, we introduce the concept of affine relations among binary

classifiers and present a principled way to find groups of high correlated dichotomies.

Furthermore, we introduce two additional strategies: one to reduce the number of required

dichotomies in the multi-class classification and the other to find new dichotomies in order to

replace the less discriminative ones. These two new procedures are optional and can iteratively

complement the base Affine-Bayes Multi-class to boost the overall multi-class classification

performance.

Contemporary Vision and Pattern Recognition problems such as face recognition, finger-

printing identification, image categorization, and DNA sequencing often have an arbitrarily

large number of classes to cope with. Finding the right descriptor is just the first step to solve

a problem. Here, we show how to use a small number of simple, fast, and weak or strong base

learners to achieve good results, no matter the choice of the descriptor. This is a relevant issue

for large-scale classification problems.

We validate our approach using data sets from the UCI repository, NIST digits, Corel Photo
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Gallery, and the Amsterdam Library of Objects. We show that our approach provides better

results than all comparable approaches in the literature. Furthermore, we also compare our

approach to Passerini et al. [127], who proposed a Bayesian treatment for decoding assuming

independence among all binary classifiers.

We organize this paper as follows. In Section 6.2, we outline the state-of-the-art in multi-class

classification. In Section 6.3, we present our new Bayesian treatment for the decoding strategy:

the Affine-Bayes Multi-class as well as two new strategies to boost performance: the Shrinking

and Augmenting stages. Section 6.4 presents our experiments and results. In Section 6.5, we

draw conclusions and point out some future directions. Finally, in the Appendix, we provide a

table of symbols.

6.2 State-of-the-Art

Most of the existing literature addresses one or more of the three main parts of a multi-class de-

composition problem: (1) the ECOC matrix creation; (2) the dichotomies choice; and (3) the de-

coding.

In the following, let T be the team (set) of used dichotomies D in a multi-class problem, NT

be the size of T , and Nc be the number of classes1.

There are three broad groups for reducing multi-class to binary: One-vs-All, One-vs-One,

and Error Correcting Output Codes based methods [130].

1. One-vs-All (OVA). Here, we use NT = Nc = O(Nc) binary classifiers (dichotomies) [5,

28]. We train the ith classifier using all patterns of class i as positive (+1) examples and

the remaining class patterns as negative (−1) examples. We classify an input example x

to the class with the highest response.

2. One-vs-One (OVO). Here, we use NT =
(Nc

2

)

= O(N2
c ) binary classifiers. We train

the ijth dichotomy using all patterns of class i as positive and all patterns of class j as

negative examples. In this framework, there are many approaches to combine the obtained

outcomes such as voting, and decision directed acyclic graphs (DDAGs) [136].

3. Error Correcting Output Codes (ECOC). Proposed by Dietterich and Bakiri [38],

in this approach, we use a coding matrix M ∈ {−1, 1}Nc×NT to point out which classes to

train as positive and negative examples. Allwein et al. [4] have extended such approach and

proposed to use a coding matrix M ∈ {−1, 0, 1}Nc×NT . In this model, the jth column of

the matrix induces a partition of the classes into two meta-classes. An instance x belonging

to a class i is a positive instance for the jth dichotomy if and only if Mij = +1. If Mij = 0,

then it indicates that the ith class is not part of the training of the jth dichotomy. In this

framework, there are many approaches to combine the obtained outcomes such as voting,

Hamming and Euclidean distances, and loss-based functions [192].

1In the Appendix, we provide a table of symbols.
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When the dichotomies are margin-based learners, Allwein et al. [4] have showed the ad-

vantage and the theoretical bounds of using a loss-based function of the margin. Klau-

tau et al. [82] have extended such bounds to other functions.

It is worth noting that the asymptotic complexity O(Nc) refers to the number of required

dichotomies to perform a classification. It is not the only measure used to calculate the time

required for training and testing.

For training, we need to consider the number of training examples of each dichotomy, the

number of dichotomies used, and the complexity of each binary classifier with respect to the

number of minimum required operations to perform a classification. For testing, we need to

consider the number of dichotomies used and the complexity of each binary classifier.

In the case of OVO, the time complexity refers to the O(N2
c ) dichotomies, each one requiring

positive and negative examples of the two classes being trained each time. For the testing, OVO

requires O(N2
c ) binary classifications for each tested instance.

In the case of OVA, the time complexity refers to the O(Nc) dichotomies, each one requiring

positive examples of the class of interest and the negative examples of all the remaining classes.

For the testing, OVA requires O(Nc) binary classifications for each tested instance.

Pedrajas et al. [130] have proposed to combine the strategies of OVO and OVA. Although

the combination improves the overall multi-class effectiveness, the proposed approach uses

NT =
(

Nc

2

)

+ Nc = O(N2
c ) dichotomies in the training stage. Moreira and Mayoraz [112]

also developed a combination of different classifiers. They have considered the output of each

dichotomy as a probability of the pattern of belonging to a given class. This method requires
Nc(Nc+1)

2 = O(N2
c ) base learners. Athisos et al. [7] have proposed class embeddings to choose

the best dichotomies from a set of trained base learners.

Pujol et al. [145] have presented a heuristic method for learning ECOC matrices based on a

hierarchical partition of the class space that maximizes a discriminative criterion. The proposed

technique finds the potentially best Nc − 1 = O(Nc) dichotomies to the classification.

Crammer and Singer [33] have proven that the problem of finding optimal discrete codes is

NP-complete. Hence, Pujol et al. have used a heuristic solution for finding the best candidate

dichotomies. Even such solution is computationally expensive, and the authors only report

results for Nc ≤ 28.

Takenouchi and Ishii [173] have used the information transmission theory to combine

ECOC dichotomies. The authors use the full coding matrix M for the dichotomies, i.e.,

NT = 3Nc−2Nc+1+1
2 = O(3Nc) dichotomies. The authors only report results for Nc ≤ 7

classes.

Young et al. [195] have used dynamic programming to design an one-class-at-a-time removal

sequence planning method for multi-class decomposition. Although their approach only requires

NT = Nc − 1 dichotomies in the testing phase, the removal policy in the training phase is

expensive. The removal sequence for a problem with Nc classes is formulated as a multi-stage

decision-making problem and requires Nc−2 classification stages. In the first stage, the method

uses Nc dichotomies. In each one of the Nc − 3 remaining stages, the method uses Nc(Nc−1)
2
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dichotomies. Therefore, the total number of required base learners are N3
c −4N2

c +5Nc

2 = O(N3
c ).

Passerini et al. [127] have introduced a decoding function that combines the margins through

an estimation of their class conditional probabilities. The authors have assumed that all base

learners are independent and solved the problem using a Näıve Bayes approach. Their solution

works regardless of the number of selected dichotomies and can be associated with each one of

the previous approaches.

6.3 Affine-Bayes Multi-class

In this section, we present our new Bayesian treatment for the decoding strategy: the Affine-

Bayes Multi-class. We propose a decoding approach based on the conditional probabilities of

groups of affine binary classifiers. For that, we introduce the concept of affine relations among

binary classifiers, and present a principled way to find groups of high correlated dichotomies.

Finally, we present two additional strategies: one to reduce the number of required dichotomies

in the multi-class classification and the other to find new dichotomies in order to replace the less

discriminative ones. We can use these two new procedures iteratively to complement the base

Affine-Bayes Multi-class to boost the overall multi-class classification performance.

To classify an input, we use a team of trained base learners T . We call OT a realization of

T . Each element of T is a binary classifier (dichotomy) and produces an output ∈ {−1, +1}.
Given an input element x to classify, a realization OT contains the information to determine the

class of x. In other words, P (y = ci|x) = P (y = ci|OT ).

However, we do not have the probability P (y = ci | OT ). From Bayes theorem,

P (y = ci|OT ) =
P (OT |y = ci)P (y = ci)

P (OT )

∝ P (OT |y = ci)P (y = ci) (6.1)

P (OT ) is just a normalizing factor and it is suppressed.

Previous approaches have solved the above model by considering the independence of the

dichotomies in the team T [127]. If we consider independence among all dichotomies, the model

in Equation 6.1 becomes

P (y = ci|OT ) ∝
∏

t ∈ T

P (Ot
T |y = ci)P (y = ci), (6.2)

and the class of the input x is given by

cl(x) = arg max
i

∏

t ∈ T

P (Ot
T |y = ci)P (y = ci). (6.3)

Although the independence assumption simplifies the model, it comes with limitations and it

is not the best choice in all cases [114]. In general, it is quite difficult to handle independence

without using smoothing functions to deal with numerical instabilities when the number of terms
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in the series is too large. In such cases, it is necessary to find a suitable density distribution to

describe the data, making the solution more complex.

We relax the assumption of independence among all binary classifiers. When two of these

dichotomies have a lot in common, it would be unwise to threat their results as independent

random variables (RVs). In our approach, we find groups of affine classifiers (high correlated

dichotomies) and represent their outcomes as dependent RVs, using a single conditional proba-

bility table (CPT) as an underlying distribution model. Each group then has its own CPT, and

we combine the groups as if they are independent from each other — to avoid a dimensionality

explosion.

Our technique is a Bayesian-Network-inspired approach for RV estimation. We decide the

RV that represents the class based on the RVs that represent the outcomes of the dichotomies.

We model the multi-class classification problem conditioned to groups of affine dichotomies

GD. The model in Equation 6.1 becomes

P (y = ci|OT ,GD) ∝ P (OT ,GD|y = ci)P (y = ci). (6.4)

We assume independence only among the groups of affine dichotomies gi ∈ GD. Therefore, the

class of an input x is given by

cl(x) = arg max
j

∏

gi ∈ GD

P (Ogi

T , gi|y = cj)P (y = cj). (6.5)

To find the groups of affine classifiers GD, we define an affinity matrix A among the classifiers.

The affinity matrix measures how affine are two dichotomies when classifying a set of training

examples X. In Section 6.3.1, we show how to create the affinity matrix A. After calculating the

affinity matrix A, we use a clustering algorithm to find the groups of correlated binary classifiers

in A. In Section 6.3.2, we show how to find the groups of affine dichotomies from an affinity

matrix A.

The groups of affine classifiers can contain classifiers that do not contribute significantly to

the overall classification. Therefore, we can deploy a procedure to identify the less important

dichotomies within an affine group and eliminate them.

With this shrinking stage, we can have two different objectives. On one hand, we might

want just to reduce the number of required dichotomies to perform the multi-class classification

and hence speed-up the overall process and make robust CPTs estimations. On the other hand,

we might want to eliminate less discriminative classifiers in order to replace them with more

powerful ones.

In Section 6.3.3, we show a consistent approach to eliminate the less important dichotomies

within an affine group. In addition, in Section 6.3.4, we introduce a simple idea to find di-

chotomies to replace the ones tagged as less discriminative in the Shrinking stage.

We can apply the Shrinking and Augmenting procedures iteratively until a convergence

criterion is satisfied. These two procedures are very fast since most of the information they need

is already calculated during the earlier training.
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In Algorithm 7, we present the main steps of our model for multi-class classification. In

line 1, we divide the training data into five parts and use four parts to train the dichotomies and

one part to validate the trained dichotomies and to construct the conditional probability tables2.

In lines 3–6, we train and validate each dichotomy using a selected method. The method can

be any binary classifier such as LDA, or SVM.

Each dichotomy produces an output ∈ {−1, +1} for each input x. In line 8, O contains all

realizations of the available dichotomies for the input data X ′. In lines 10 and 11, we find groups

of affine dichotomies using the realization Oi.

Using the information of groups of affine dichotomies, in line 12, we create a CPT for each

affine group. These CPTs provide the joint probabilities of a realization OT and the affine

groups gi ⊂ GD when testing an unseen input data x.

In line 13, our approach verifies if the user wants to find the less discriminative dichotomies

and replace them with better ones iteratively. If so, in line 14, we perform the shrinking stage

in order to tag the best dichotomies in the multi-class process.

In line 15, we use the error calculated in the training to find new dichotomies. In line 16, we

train the new dichotomies found in line 15. Note that in each iteration there are only a few of

them.

Afterwards, in line 17, we update the affinity matrix A to consider only the best dichotomies

tagged in the shrinking stage and, naturally, the new ones produced by the augmenting pro-

cedure. We also update the realizations Oi and the conditional probabilities accordingly. In

line 18, we perform clustering on the affinity matrix and find the updated groups of representa-

tive dichotomies GD′.

In line 19, we repeat lines 14–18 until a convergence criterion is satisfied. In our case, if

the training error produced by the updated team of classifiers is bigger than the error of the

previous step, we stop the iteration and discard the proposed augmented dichotomies. This is a

simple criterion and, as we show in the experiments, it yields good results.

If the user does not want to iteratively find the dichotomies, she might be interested in

the reduced set of dichotomies. Therefore, line 20 finds the best dichotomies within the affine

groups. This information can be used in the testing phase, for instance, simply to reduce the

number of used dichotomies.

6.3.1 Affinity matrix A

Given a training data set X, we introduce a metric to find the affinity between two dichotomies

realizations Di, Dj whose outputs ∈ {−1, +1}

Ai,j =
1

N

∣

∣

∣

∣

∣

∑

∀ x ∈ X

Di(x)Dj(x)

∣

∣

∣

∣

∣

,∀ Di and Dj ∈ T . (6.6)

2The cross-validation is not a required step to our approach. We perform cross-validation in order to provide
fair results across the data sets.
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Algorithm 7 Affine-Bayes Multi-class.

Require: Training data set X , Testing data Xt, a team of binary classifiers T , toggle parameter
augment ∈ {true, false}

1: Split X into k parts, Xi such that i = 1 . . . k;
2: for each Xi do ⊲ Inner k-fold cross-validation.
3: X ′ ← X \Xi;
4: for each dichotomy d ∈ T do
5: Dtrain ← Train(X ′, d, method);
6: Oi

d ←Test(Xi, d, method, DTrain);
7: end for
8: Oi ← ⋃

(Oi
d);

9: end for
10: Create the affinity matrix A for

⋃

Oi;
11: Perform clustering on A to find the affine groups of dichotomies GD;
12: Create a CPT for each group g ⊂ GD of affine dichotomies using O;
13: if augment = true then ⊲ Shr/Aug desired
14: Perform shrinking. GSD ← Shrink(GD);
15: Perform augmenting. T AD ← Augment(Dtrain);
16: Perform the training in lines 2–7 only for the new dichotomies T AD and store the result in

Daug
train.

17: Update Oi,A and the CPT to consider the representative elements tagged in the shrinking and
the new ones produced in the augmenting.

18: G′D ← clustering of the updated matrix A
19: Repeat lines 14–18 while the convergence is not satisfied.
20: else Perform shrinking. GSD ← Shrink(GD);
21: end if
22: for each x ∈ Xt do
23: Perform the classification of x from the model on Equation 6.5 either using the set of affine

dichotomies GD, the shrinked GSD , or the optimized G′D.
24: end for

According to the affinity model, if two dichotomies have the same output for all elements in

X, their affinity is 1. For instance, this is the case when Di = Dj . If Di 6= Dj in all cases,

their affinity is also 1. On the other hand, if two dichotomies have half outputs different and

half equal, their affinity is 0. Using this model, we can group binary classifiers that produce

similar outputs and, further, eliminate those which do not contribute significantly to the overall

classification procedure.

6.3.2 Clustering

Given an affinity matrix A representing the relationships among all dichotomies in a team T ,

we want to find groups of classifiers that have similar affinities. We strive for finding groups

of dependent classifiers while the groups are independent from one another. A good clustering

approach is important to provide balanced groups of dichotomies. Balancing is interesting

because it leads to simpler conditional probability tables.

As noted by Ben-Hur et al. [14], we often regard clusters as continuous concentration of
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data points. Two points belong to a cluster if they are close to each other, or if they are well

connected by paths of short “hops” over other points. The more we have such paths, the higher

are the chances the points belong to a cluster [47]. In this sense, Fisher and Poland [47], have

introduced a spectral clustering approach which we use in this paper. Instead of considering

two points similar if they are connected by a high-weight edge, the authors propose assign them

a high correlation if the overall graph conductivity between them is high. These considerations

exhibit an analogy to electrical networks: the conductivity between two nodes depends not only

on the conductivity of the direct path between them, but also on other indirect paths.

To find the conductivity for any two points xp and xq, we first solve the system of linear

equations:

Gϕ = η, (6.7)

where G is a matrix constructed from the original affinity matrix A:

G(p, q)=































for p = 1:







1 for q = 1

0 otherwise

otherwise:







∑

k 6=pA(p, q) for p = q

−A(p, q) otherwise

(6.8)

and η is the vector representing points for which the conductivity is computed:

η(k) =











−1 for k = p and p > 1

1 for k = q

0 otherwise

(6.9)

Then the conductivity between xp and xq, p < q, due to the way η is constructed, is given by

C(p, q) =
(

G−1(p, p) + G−1(q, q)−G−1(p, q)−G−1(q, p)
)−1

. (6.10)

Due to symmetry, C(p, q) = C(q, p) and it is necessary to compute G−1 only once.

The conductivity matrix C can be computed in O(N2) time. After building the conductivity

matrix from A, we can perform the clustering using any simple cluster method such as klines as

proposed in [47]. Although Fisher and Poland’s algorithm [47] has provided very good results for

our problem, we also have observed similar results using a simpler, yet effective, approach with

a greedy algorithm for finding the dependent groups of dichotomies from the affinity matrix.

In the greedy clustering approach, first we find the dichotomy with the highest affinity sum

with respect to all its neighbors (row with highest sum inA). After that, we select the neighbors

with affinity greater or equal than a threshold t. Next, we check if each dichotomy in the group

is affine to the others and select those satisfying this requirement. This procedure results the

first affine group. Afterwards, we remove the selected dichotomies from the main team T and

repeat the process until we analyze all available dichotomies. Throughout experiments, we have

found that t = 0.6 is a good threshold.
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6.3.3 Shrinking

Sometimes, when modeling a problem using conditional probabilities, we have to deal with large

conditional probability tables which can lead to over-fitting. One approach to cope with this

problem is to suppose independence among all dichotomies which results in the smallest possible

CPT. However, as we show in this paper, this approach limits the representative power of the

Bayes approach. In the following, we show an alternative approach.

In the shrinking stage, we want to find the dichotomies within a group that are more relevant

for the overall multi-class classification. For that, we find the accumulative entropy of each

classifier within a group from the examples in the training data X. The higher the accumulative

entropy, the more representative is a specific dichotomy. Let hij be the accumulative entropy

for the classifier j within a group of affine dichotomies i. We define hij as

hij =
∑

c∈CL

∑

x∈X

(

px
c log2(p

x
c)+(1− px

c) log2 (1− px
c)
)

(6.11)

where px
c = P (y = c | x, gj

i ,O
g

j
i

x ), gj
i is the jth dichotomy within the affine group gi, O

g
j
i

x is

its realization for the input x, and c ∈ CL the available class labels.

We choose the classifiers with the highest cumulative entropy to select the best classifiers

within an affine group. We have found in the experiments, that selecting 60% of the classifiers

is a good tradeoff between multi-class overall effectiveness and efficiency. One could use another

cutting criterion, such as the maximum CPT size. It is worth noting that this procedure is very

fast once we already have the required probabilities stored in the previously computed CPTs.

Hence, we do not need to scan the data to perform it.

During the training phase, our approach finds the affine groups of binary classifiers and tags

the most relevant dichotomies within each group. On one hand, this information can be used

in association with the Augmenting step (c.f., Sec. 6.3.4) that finds new substitutes for the non-

selected dichotomies. Both procedures, Shrinking and Augmenting can be performed until a

convergence criterion is satisfied. On the other hand, if no optimization for finding replacements

for the dichotomies is intended, the selected group of dichotomies can be used in the testing

phase simply to reduce the number of required classifiers in the multi-class task.

In summary, with our solution, we measure the affinity on the training data to learn the

binary classifiers relationship and decision surface. It is a simple and fast way to estimate the

distribution. Sometimes, a dichotomy may be in the team because it is critical for discriminating

between two particular classes. If so, it is unlikely it will share a group of high-correlated

classifiers because it would require this dichotomy to be high-correlated with all dichotomies in

such group. We have performed some experiments to test that and, in all tested cases, such

dichotomies specific for rare classes are kept in the final pool of dichotomies.

6.3.4 Augmenting

As we showed in Section 6.3.3, we are able to find and tag the dichotomies that are more

relevant for the overall multi-class performance with a simple approach. This leads us to the
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natural consequence of finding new dichotomies to replace the ones that are less discriminative.

For this intent, in the augmenting stage, we want to find new dichotomies (rather than simple

random choice) to replace the less representative ones eliminated in the shrinking stage in order

to improve the overall multi-class performance.

To perform the augmenting, we use the confusion matrix generated in the training stage.

From such confusion matrix, we are able to point out the classes that are in more confusion

with each other. We use such information to build a representation of the confusions through

hierarchical clustering in order to determine the ones that need urgent dichotomies to solve them.

Afterwards, we sort the clusters according to the sum of the number of confusions normalized

by by the number of edges connecting the elements in that cluster excluding the self-references.

For each cluster, in order, we apply normalized cuts [165] to find the cut that maximizes the

separability of the cluster and, therefore, its confusion.

We summarize these procedures in Algorithm 8.

Algorithm 8 Augmenting procedure for Affine-Bayes.
Require: A confusion matrix C already calculated in the training stage, and the number of dichotomies

n to generate
1: Set the diagonal elements of C to zero
2: Cij ← 1− Cij/

∑

i,j Cij ∀Cij ∈ C ⊲ Normalizing C
3: H ← hierarchical clustering of C using, for instance, the simple Agnes [78] algorithm.
4: Sort H according to the sum of the confusions of each group hi ⊆ H normalized by the number of

edges connecting the elements in the group hi excluding the self-references.
5: for each group hi ⊆ H do
6: d← normalized cuts of hi

7: TA ← TA ∪ d
8: end for
9: TAS ← the top n dichotomies ⊆ TA

10: Return TAS

In order to illustrate the augmenting process, let’s consider a step-by-step example. Let

C be a confusion matrix for a multi-class problem with five classes as we show in Table 6.1.

Here, we already set the diagonal of C to zero. This is required because we want to find the

classes that are in confusion and the diagonal represents the correct classifications rather than

the mis-classifications.

C1 C2 C3 C4 C5

C1 0 0 22 13 2
C2 0 0 48 26 2
C3 22 48 0 37 31
C4 13 26 37 0 1
C5 2 2 31 1 0

Table 6.1: An example of a confusion matrix C.
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Figure 6.1: Hierarchical structure of C based on the confusion relationship.

According to the Algorithm 8, in line 2, we perform the normalization of the confusion matrix

C. After the normalization, high values represent low confusion. We shall present the reason of

such normalization shortly. In line 3, we find a hierarchical representation of the confusions using

a simple hierarchical clustering algorithm such as Agnes [78]. We show the resulting hierarchy of

confusions in Figure 6.1. In the figure, we see that classes C2 and C3 are merged at the height

(normalized confusion) of 0.86. This is consistent with the information in confusion matrix C

of Table 6.1, where C2 and C3 have 48 confusions in both directions. The classes C2, C3, and

C4 are also in high confusion as we see in Table 6.1. On the other hand, the classes C1 and C5

has a common cluster with low confusion. Finally, the set {C1 . . . C5} represents a confusion

comprising all the classes.

In line 4 of the algorithm, we sort the sets according to the sum of the confusions normalized

by the number of edges connecting the elements of the set excluding the self-references (e.g., C1

and C1). For instance, the confused set {C2, C3} has sum of 96 = 2× 48. As we have two

entries excluding the self-references, the normalized weight of this set is 48. On the other hand,

the set {C2, C3, C4} has a sum of 222 = 2× 48 + 2× 37 + 2× 26. Given that this sum

has six elements excluding the self-references it results a normalized weight of 37 = 222

6
. In the

same way, {C1 . . . C5} is the third set, in order, given that it has a sum of 364. As this sum has

20 elements excluding the self-references, the normalized weight of this set is 18.2 = 364 / 20.

In order to find the dichotomies representing each set of classes in confusion, we need to find

a minimum cut in the confusion matrix representing this set of classes. This is the reason we

normalized the confusion matrix C in order to have low values representing higher confusions.

Consider the first set {C2, C3}. This is the most trivial case to find the cut given that

it has only two elements. Therefore, the dichotomy that represents this set can be ~dg1 =

[0, 1,−1, 0, 0]T or its complement. However, the set {C2, C3, C4} has more than two elements,

and we need to find a way to partition this set and define its representative dichotomy. For that,

we employ normalized cuts [165] in the sub-matrix representing this set. In this case, we find
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the best cut to be between {C2, C4} and {C3}. Therefore, the dichotomy that represents this

set can be ~dg2 = [0, 1,−1, 1, 0]T or its complement. Recall that such dichotomy means that

we are interested in solving the confusion among classes C2, C3, and C4, designing a binary

classifier specialized in separating elements from the classes C2, and C4 from elements of the

class C3 and disregarding the rest.

6.4 Experiments and Results

In this section, we compare our Affine-Bayes Multi-class approach to: OVO, OVA, and

ECOC approaches based on distances decoding strategies. We also compare our approach to

Passerini et al. [127], who have proposed a Bayesian treatment for decoding assuming indepen-

dence among all binary classifiers. For our Affine-Bayes Multi-class, we present three different

results: one for normal Affine-Bayes (AB), one for Affine-Bayes and one stage of Shrinking

(ABS), and finally, one with the iterative Shrinking-Augmenting (AB-OPT).

We validate our approach using two scenarios. In the first scenario, we use data sets with a

relative small number of classes (Nc < 30). For that, we use several UCI3, and one NIST4 data

sets. In the second scenario, we have considered three large-scale multi-class applications: one

for the Corel Photo Gallery (Corel)5 data set, one for the Australian Sign Language (Auslan)6,

and one for the Amsterdam Library of Objects (ALOI)7. Table 6.2 presents the main properties

of each data set we have used in the validation. Recall that, Nc is the number of classes, Nd if

the number of features, and N is the number of instances.

Data set Source Nc Nd N

Pendigits UCI 10 16 10,992
Mnist digits NIST 10 785 10,000
Vowel UCI 11 10 990
Isolet UCI 26 617 7,797
Letter-2 UCI 26 16 20,000

Auslan Auslan 95 128 2,565
Corel Corel 200 128 20,000
ALOI ALOI 1,000 128 108,000

Table 6.2: Data sets’ summary. For the Auslan data set, we perform a dimensionality reduction
to 128 features.

In the ECOC-based experiments, we have selected 10 random coding matrices. For each

coding matrix, we perform 5-fold cross validation. For each cross-validation fold, we perform a

5-fold cross validation on the training set to estimate the CPTs. In all experiments, we have

3
http://mlearn.ics.uci.edu/MLRepository.html

4
http://yann.lecun.com/exdb/mnist/

5
http://www.corel.com

6
http://mlearn.ics.uci.edu/MLRepository.html

7
http://www.science.uva.nl/~aloi/



152 Chapter 6. From Binary to Multi-class: A Bayesian Evolution

used both Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs) [16] as

base learners (examples of a week and a strong classifiers). For the clustering stage in our

Affine-Bayes Multi-class solution, we report results using Fisher and Poland technique, as we

showed in Section 6.3.2.

6.4.1 Scenario 1 (10 to 26 classes)

In Figures 6.2–6.4, we compare Affine-Bayes (AB) to ECOC based on Hamming decoding

(ECOC), One-vs-One (OVO), One-vs-All (OVA), and Passerini’s approach (PASSERINI) [127].

We show the One-vs-All (OVA) as the baseline and not as a function of the number of used

base-leaners. In this experiment, Affine-Bayes uses three different coding matrices: AB-ECOC

(normal Affine-Bayes), ABS-ECOC (Affine-Bayes with one stage of Shrinking), and AB-ECOC-

OPT (Affine-Bayes with the Shrinking-Augmenting iterations).

The use of conditional probabilities and affine groups on Affine-Bayes to decode the binary

classifications and create a multi-class prediction boosts the performance of ECOC-based ap-

proaches. This is also true for other UCI data sets not shown here such as abalone, covtype, and

yeast.

For multi-class instances with small number of classes (e.g., Nc ≤ 26), weak classifiers (e.g.,

LDA) benefits more from Affine-Bayes than strong ones (e.g., SVMs). This important result

shows us that when we have a problem with many classes, it may be worth using weak classifiers

(e.g., LDA) which often are considerably faster than strong ones (e.g., SVMs).

When possible, all One-vs-One dichotomies (OVO) produce better results. However, this

approach implies in the use of all one-by-one dichotomies in the testing as well.

For the UCI and Nist small data sets, the Affine Bayes results are, in average, one standard

deviation above Passerini’s results when using SVM and, at least, two standard deviations above

when using LDA. However, we have found that Passerini’s assumption on independence for all di-

chotomies is not as robust as Affine-Bayes when the number of dichotomies and classes becomes

larger (c.f., Sec. 6.4.2). This is also true for the all One-vs-One combinations. When the number

of classes becomes larger, we have observed that these solutions becomes less discriminative.

For small data sets, there is no much gain in using anything sophisticated.

This behavior is closely related to the curse of dimensionality, and most papers in the lit-

erature only show the performance going up to 30 classes which is not useful for large-scale

problems. Here, we validate our approach for up to 1,000 classes.

Let’s take a closer look at results in Figure 6.2. Here, Affine-Bayes with Shrinking-

Augmenting option performs considerably well for Mnist and Pendigits data sets. For the SVM

base learner, Affine-Bayes with Shrinking-Augmenting option is slightly better than its main

competitor Passerini’s solution. Clearly, the normal ECOC solution without the improvements

of Affine-Bayes or Passerini is not as powerful. The most interesting lesson here is the cutoff

we can use to obtain the same performance that we would get when using all One-vs-One base

learners. Using 15 base learners in both data sets and both algorithms we already obtain very

good results using Affine-Bayes. The second observation is that the One-vs-One combinations
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are only effective if they have all dichotomies at hand. It is not as powerful when some of them

are missing.

For the experiments in this section, the average number of iterations for Affine-Bayes with

the Shrinking-Augmenting option was 3.5 and the average number of dichotomies effectively

replaced were 10% to 25%.
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(b) Pendigits .:. Base learner = SVM.
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(c) Mnist .:. Base learner = LDA.
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(d) Mnist .:. Base learner = SVM.

Figure 6.2: Affine-Bayes and derivatives (AB*) vs. ECOC vs. OVA vs. OVO vs. Passerini for
Pendigits, and Mnist data sets considering LDA and SVM base learners.

We can draw similar conclusions from the experiments we show in Figure 6.3, for the Vowel

data set. In this case, note how bad is the baseline approach of One-vs-All. Affine-Bayes with

Shrinking-Augmenting option provides good performance as well as its version without such

option. Here, we can use a cutoff of ≈ 20 base learners and still obtain good classification

effectiveness.

In Figure 6.4, we present results for Isolet and Letter-2 data sets. All approaches based

on Affine-Bayes present better performance than the Passerini, ECOC, and the baseline OVA

solutions. Using LDA base learner, Affine-Bayes is, at least, five standard deviations more
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(b) Vowel .:. Base learner = SVM.

Figure 6.3: Affine-Bayes and derivatives (AB*) vs. ECOC vs. OVA vs. OVO vs. Passerini for
Vowel data set considering LDA and SVM base learners.

effective than Passerini’s approch. Using SVM, this difference is about two standard deviations.

In these experiments, we could use a cutoff of 50 base learners and still obtain acceptable results.

6.4.2 Scenario 2 (95 to 1,000 classes)

In this section, we consider three large-scale Vision applications: Auslan (Nc = 95),

Corel (Nc = 200), and ALOI (Nc = 1, 000) categorization. In such applications, OVO

is computationally expensive. For these scenarios, ECOC approaches with a few base learners

seems to be more appropriate. In Figures 6.5–6.6, we show results using Affine-Bayes (AB-

ECOC) vs. ECOC Hamming decoding and Passerini et al. [127] approaches for LDA and SVM

classifiers.

Here, we emphasize the performance for a small number of base learners in comparison

with the number of all possible separation choices. As we increase the number of classifiers, all

approaches fare steadily better. As we show in the experiments, for scenarios with more than

30 classes, the independence restriction plays an important role and does not yield the best

performance.

As the image descriptor is not our focus in this paper, we have used a simple extended color

histogram with 128 dimensions [169] for Corel and ALOI data sets. Corel collection comprises

broad-class images and it is more difficult to classify than the ALOI collection of controlled

objects.
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(a) Isolet .:. Base learner = LDA.
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(b) Isolet .:. Base learner = SVM.
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(c) Letter-2 .:. Base learner = LDA.
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(d) Letter-2 .:. Base learner = SVM.

Figure 6.4: Affine-Bayes and derivatives (AB*) vs. ECOC vs. OVA vs. OVO vs. Passerini for
Isolet and Letter-2 data sets considering LDA and SVM base learners.

Auslan

We show the experiments for Auslan data set in Figure 6.5. In this case, we provide the results

for OVO and OVA as baselines. Auslan data set comprises Nc = 95 classes. Therefore, OVO

approach uses
(

95

2

)

= 4, 465 base learners.

With LDA base learners, OVO with 4,465 dichotomies provides ≈ 80% of accuracy while

for 95 dichotomies, Passerini et al.’s approach results in ≈ 86%, and Affine-Bayes solutions

provide ≈ 90% accuracy. As the maximum standard deviation (SD) across the cross-validation

folds and different executions is ≈ 1%, Affine-Bayes is four SDs more reliable than Passerini’s

solution.

With 400 dichotomies, or approximately 10% of all the One-vs-One combinations, Affine-

Bayes yields ≈ 96% accuracy for LDA base learner while Passerini et al.’s technique results in

≈ 92.4% accuracy. The maximum SD here is ≈ 0.85%.
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With SVM base learners, OVO provides ≈ 90.3% accuracy. With 95 dichotomies,

Passerini’s solution results in ≈ 90% accuracy. On the other hand, Affine-Bayes results

in ≈ 92.2% accuracy. The maximum standard deviation here is 0.98%. Therefore, using

95 dichotomies Affine-Bayes is ≈ 2 SDs above Passerini’s solution and OVO.

With SVM and 400 dichotomies, or approximately 10% of all the One-vs-One combinations,

Affine-Bayes provides≈ 95% accuracy or, at least,≈ 2 SDs more effective than Passerini et al.’s

solution and ≈ 5 SDs than OVO and the other solutions. Just for the sake of comparison, k-

Nearest Neighbor8 (k-NN, k = 1) provides ≈ 77% accuracy on this data set.

Finally, for this data set, Affine-Bayes-OPT is not statistically different than the normal

Affine-Bayes regardless the base learner.
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(b) Auslan .:. Base learner = SVM.

Figure 6.5: Affine-Bayes and derivatives (AB*) vs. ECOC vs. OVA vs. OVO vs. Passerini for
Auslan data set considering LDA and SVM base learners.

Corel and ALOI

In this section, we provide results for Corel and ALOI data sets. In Figure 6.6, we show

results for Corel collection. In this case, Affine-Bayes improves the effectiveness with respect to

Passerini’s and other approaches. For 200 dichotomies and base learner, Affine-Bayes results in

21% accuracy. In spite of the reduction in the number of dichotomies, Affine-Bayes with one

stage of Shrinking still provides good effectiveness with respect to the other solutions. Recall

that Corel data set comprises broad-class images and it is more difficult to classify than the

ALOI collection of controlled objects.

Figure 6.7 shows results for ALOI collection. When we use 200 dichotomies and LDA base

learner in the training for ALOI data set, Affine-Bayes provides an average accuracy of 80%

against 68% accuracy of Passerini’s solution. In addition, for SVM base learner, with the

8Not shown in the plots.
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Figure 6.6: Affine-Bayes and derivatives (AB*) vs. ECOC vs. Passerini for Corel data set
considering LDA base learner.

same 200 dichotomies, Affine-Bayes provides ≈ 88% accuracy against ≈ 80% of Passerini.

The maximum standard deviation across the cross-validation folds and different executions is

≈ 1.2%. Affine-Bayes using 1,000 SVM base learners results in ≈ 93% effectiveness against

Passerini’s ≈ 84%. Note that it was not viable to calculate the all One-vs-One accuracy here.

It would require
(

1,000

2

)

= 499, 500 base learners in the training and testing.
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(b) ALOI .:. Base learner = SVM.

Figure 6.7: Affine-Bayes and derivatives (AB*) vs. ECOC vs. Passerini for ALOI data set
considering LDA and SVM base learners.
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6.5 Conclusions and Remarks

In this paper, we have addressed two key issues of multi-class classification: the choice of the

coding matrix and the decoding strategy. For that, we have presented a new Bayesian treatment

for the decoding strategy: Affine-Bayes multi-class.

We have introduced the concept of affine relations among binary classifiers and presented a

principled way to find groups of high correlated base learners. Furthermore, we have presented

a strategy to reduce the number of required dichotomies in the multi-class process and eliminate

the less discriminative ones. In addition, we devised a strategy to automatically find new

dichotomies and replace the ones tagged as less representatives in the Shrinking stage. We

showed that we can use the two new procedures iteratively to complement the base Affine-

Bayes Multi-class and boost the overall multi-class classification performance.

The advantages of our approach are: (1) it works independent of the number of selected

dichotomies; (2) it can be associated with each one of the previous approaches such as OVO,

OVA, ECOC, and their combinations; (3) it does not rely on the independence restriction among

all dichotomies; (4) its implementation is simple and it uses only basic probability theory; (5)

it is fast and does not impact the multi-class procedure.

Future work include the deployment of better policies to choose the initial coding matrix

rather than random choice and the design of alternative ways to store the conditional probability

tables other than sparse matrices and hashes.

Appendix

Table 6.3 presents some useful symbols we use throughout the text.
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X Data samples.
x An element of X.
Y The class’ labels of X.
y An element of Y .
N Number of elements of X.
Nc Number of classes.
Nd The dimensionality X.
CL The class labels.
c A class such that ci ∈ CL.
Ω All possible dichotomies for C.
T A team of dichotomies such that T ⊂ Ω.
d A dichotomy such that d ∈ T .
NT The number of dichotomies in T .
M A coding matrix
OT A realization of T .
A The affine matrix.
GD The groups of affine dichotomies.
gi Group of affine dichotomies such that gi ⊂ GD.
C A confusion matrix.
H A hierarchical clustering representation of a confusion matrix C.

Table 6.3: List of useful symbols.



Caṕıtulo 7

Conclusões

Nesta tese de doutorado, organizada na forma de coletânea de artigos, utilizamos várias técnicas

de aprendizado de máquina e de classificação para extrair informações relevantes a partir de

conjuntos de dados.

Mostramos que essas informações são valiosas e podem ser utilizadas para resolver diversos

problemas em Processamento de Imagens e Visão Computacional. Particularmente, mostra-

mos interesse em: categorização de imagens em duas ou mais classes, detecção de mensagens

escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação,

multi-classificação, entre outros.

7.1 Detecção de adulterações em imagens digitais

Com relação à análise forense de imagens, apresentamos um estudo comparativo e cŕıtico das

principais técnicas utilizadas atualmente. Mostramos que soluções para detecção de falsificações

e mensagens escondidas em imagens ainda estão em sua infância. Discutimos também que

a maior parte dessas soluções apontam para dois problemas relacionados ao aprendizado de

máquina: a seleção das caracteŕısticas a serem utilizadas no processo de classificação bem como

as técnicas de classificação a serem empregadas.

Nos últimos anos temos visto uma crescente demanda por ferramentas para análise forense

de imagens por diversas razões. Por um lado, segundo a perspectiva legal, essas técnicas podem

ser essenciais para a investigação de muitos crimes, notadamente pornografia infantil. Sabemos

que os crimes que utilizam imagens não se limitam a pornografia, vide o exemplo das atividades

exercidas pelos cartéis colombianos comandados por Juan Carlos Abad́ıa que tiravam vantagem

da esteganografia para mascarar suas atividades ilegais. Por outro lado, segundo a perspectiva

da comunidade de inteligência, a habilidade de analisar uma grande quantidade de dados para

detecção de falsificações e conteúdo escondido é de interesse estratégico e de segurança nacional.

No entanto, os crimes óbvios não são necessariamente os mais perigosos. Diariamente, te-
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mos acesso a uma série de imagens com autenticidade duvidosa. A desinformação via meios de

comunicação prevaleceu no último século, com imagens falsificadas sendo utilizadas constante-

mente como propaganda. Mas agora, com imagens sendo rotineiramente trabalhadas e utilizadas

demagogicamente, é posśıvel determinar sua autenticidade?

Em resposta a este desafio, apresentamos, nos Caṕıtulos 2 e 3, várias considerações. Primei-

ramente, trabalhos a ńıvel de decisão e fusão temporal de informações podem servir como uma

excelente base para sistemas operacionais. A combinação de informação de vários algoritmos

e técnicas pode nos trazer resultados mais confiáveis — especialmente quando não conhecemos

exatamente o que estamos procurando. Segundo, o desenvolvimento de sistemas distribúıdos

com computação paralela pode exercer um importante papel para resolução de problemas rela-

cionados à analise forense.

Finalmente, para a detecção de falsificações e de mensagens escondidas, a lição aprendida é

que a comunidade tem agora um novo desafio: precisamos de algoritmos mais sofisticados para

detectar os detalhes a respeito das manipulações encontradas nas imagens, não apenas o fato de

que uma imagem foi manipulada. A despeito das limitações levantadas, o avanço do estado da

arte nesta área continuará a melhorar nossa visão do desconhecido.

7.2 Randomização Progressiva

No Caṕıtulo 4, apresentamos uma abordagem para meta-descrição de imagens denominada

Randomização Progressiva (PR) para análise forense no contexto de detecção de mensagens

escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em

computador e obras de arte.

Como mostramos, a Randomização Progressiva é baseada em perturbações controladas dos

bits menos significativos das imagens. Com tais perturbações, PR captura a separabilidade de

algumas classes nos permitindo inferir algumas importantes informações a respeito das imagens

analisadas.

A observação mais importante a respeito da Randomização Progressiva é que classes diferen-

tes de imagens possuem comportamentos distintos quando submetidas a sucessivas perturbações.

Por exemplo, um conjunto de imagens que não possui mensagens escondidas apresenta diferen-

tes artefatos mediante sucessivas perturbações comparado a um conjunto de imagens que possui

mensagens escondidas. Podemos fazer uma analogia com a compressão de arquivos. Ao compri-

mirmos um arquivo natural, sem nenhuma compressão prévia, temos um resultado. No entanto,

ao comprimirmos um arquivo que já sofreu alguma compressão, o resultado dessa operação será

diferente e, possivelmente, produzirá um arquivo maior que o arquivo de entrada.

Os bons resultados apresentados com essa técnica sugerem que ela, possivelmente, pode ser

estendida também para outros cenários forenses. A técnica apresentada é capaz de detectar

mensagens escondidas de tamanho médio (e.g., ≈ 25% da capacidade) com qualidade superior

a 90%. Esse valor seria, por exemplo, o mı́nimo de informação que um indiv́ıduo interessado em

distribuir pornografia infantil iria alterar em uma imagem t́ıpica de papel de parede (1280×1024
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pixels) para esconder uma imagem JPEG de tamanho aproximadamente 80 a 100 kilobytes.

7.3 Fusão multi-classe de caracteŕısticas e classificadores

Ao estudarmos o problema de categorização multi-classe com imagens indoors, outdoors, gera-

das em computador e obras de arte, descobrimos que um problema de classificação multi-classe

poderia ser mais bem resolvido a partir da combinação de diferentes caracteŕısticas e classifica-

dores. A principal lição desse caṕıtulo é que a combinação de caracteŕısticas e classificadores

pode ser mais promissora do que o tradicional enfoque na busca de um descritor universal que

resolva todo o problema.

Dado que cada classe tem certas particularidades, encontrar uma única caracteŕıstica geral

que capture todas as propriedades é uma tarefa complexa. Embora a fusão de caracteŕısticas

seja bastante eficaz para alguns problemas, ela pode produzir resultados inesperados quando as

diferentes caracteŕısticas não estão normalizadas e preparadas de forma adequada. De forma

geral, a combinação de várias caracteŕısticas no mesmo vetor de descrição tende a requerer mais

mais elementos para o treinamento devido à maldição da dimensionalidade. Adicionalmente,

em certas ocasiões, alguns classificadores produzem melhores resultados para determinados des-

critores do que para outros, sugerindo que a fusão em ńıvel de classificadores também poderia

trazer bons resultados.

Nesse sentido, no Caṕıtulo 5, nós desenvolvemos uma técnica para fusão de classificadores e

caracteŕısticas no cenário multi-classe através da combinação de classificadores binários. Nós de-

finimos a binarização de classes como um mapeamento de um problema multi-classe para vários

problemas binários (dividir para conquistar) e a subsequente combinação de seus resultados

para derivar a predição multi-classe. Com essa técnica, podemos utilizar as caracteŕısticas mais

descritivas para determinadas configurações do problema bem como classificadores espećıficos

para um conjunto de classes em confusão.

Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas

e legumes. Para essa aplicação, criamos um banco de dados com mais de 2600 imagens coletadas

no centro de abastecimento de frutas e legumes de Campinas (CEASA). Esse banco de dados

está dispońıvel gratuitamente na internet1.

7.4 Multi-classe a partir de classificadores binários

Outra questão importante que encontramos no decorrer desse trabalho diz respeito a como

alguns poderosos classificadores binários (e.g., SVMs) podem ser estendidos para o cenário multi-

classe de forma efetiva e eficaz. Sabemos que, como o SVM, vários outros classificadores foram

originalmente desenvolvidos para classificação de problemas binários.

1http://www.liv.ic.unicamp.br/~undersun/pub/communications.html
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Em tais casos, a abordagem mais comum é a de reduzir a complexidade do problema multi-

classe para pequenos e mais simples problemas binários (dividir para conquistar).

Ao utilizar classificadores binários com algum critério final de combinação, muitas aborda-

gens descritas na literatura partem do prinćıpio de que os classificadores binários utilizados na

classificação são independentes e aplicam um sistema de votação como poĺıtica final de com-

binação. Entretanto, como discutimos no Caṕıtulo 6, a hipótese da independência não é a

melhor escolha em todos os casos.

Nesse sentido, no Caṕıtulo 6, nós abordamos o problema de classificação multi-classe in-

troduzindo o conceito de relações afins entre classificadores binários conhecidos também por

dicotomias ou classificadores base. Denominamos a técnica de Affine-Bayes. A principal lição

desse caṕıtulo é que a combinação de pequenos classificadores pode ser bastante efetiva na

resolução de um problema multi-classe.

Nós apresentamos uma forma efetiva de agrupar dicotomias altamente correlacionadas não

supondo independência entre todas elas. Dentro de um grupo, há grande dependência entre os

classificadores, enquanto que cada grupo é independente dos outros.

Introduzimos também uma estratégia para eliminar as dicotomias menos importantes no

processo de multi-classificação e uma estratégia para desenvolver novas dicotomias para reposição

daquelas menos eficazes. Mostramos também que essas duas estratégias podem ser utilizadas

iterativamente para refinar os resultados do algoritmo base do Affine-Bayes.

Finalmente, nossos experimentos comprovam que a solução apresentada torna posśıvel resol-

ver problemas complexos tais como de 100 ou 1000 classes a partir da combinação de poucos,

mas poderosos, classificadores binários.
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[79] Andrew Ker. The ultimate steganalysis benchmark? In Intl. Conference on Multimedia

& Security (MM&Sec), pages 141–148, Dallas, USA, 2007. ACM.

[80] Andrew D. Ker. Optimally weighted least-squares steganalysis. In Steganography and

Watermarking of Multimedia Contents, San Jose, USA, 2007. SPIE.

[81] Mehdi Kharrazi, Husrev Sencar, and Nasir Memon. Blind source camera identification. In

Intl. Conference on Image Processing (ICIP), Singapore, 2004. IEEE.

[82] A. Klautau, N. Jevtic, and A. Orlitsky. On nearest-neighbor ECOC with application

to all-pairs multiclass support vector machines. Journal of Machine Learning Research

(JMLR), 4(1):1–15, Jan 2004.

[83] Jean Kumagai. Mission impossible? IEEE Spectrum, 40(4):26–31, April 2003.

[84] Yi Li and Linda G. Shapiro. Consistent line clusters for building recognition in cbir. In

Intl. Conference on Pattern Recognition (ICPR), volume 3, pages 30952–30957, 2002.

[85] Yue Li, Chang-Tsun Li, and Chia-Hung Wei. Protection of mammograms using blind

steganography and watermarking. In Intl. Symposium on Information Assurance and

Security, pages 496–500, August 2007.

[86] S. Lin, J. Gu, S. Yamazaki, and H. Y. Shum. Radimetric calibration from a single image.

In Intl. Conference on Computer Vision and Pattern Recognition (CVPR), pages 938–945,

Washington, USA, 2004. IEEE.

[87] Zhouchen Lin, Rongrong Wang, Xiaoou Tang, and Heung-Yeung Shum. Detecting doc-

tored images using camera response normality and consistency. In Intl. Conference on

Computer Vision and Pattern Recognition (CVPR), New York, USA, 2005. IEEE.

[88] Xuezheng Liu, Lei Zhang, Mingjing Lib, Hongjiang Zhang, and Dingxing Wang. Boosting

image classification with lda-based feature combination for digital photograph manage-

ment. Pattern Recognition, 38(6):887–901, June 2005.

[89] Y. Long and Y. Huang. Image based source camera identification using demosaicing. In

Intl. Workshop on Multimedia Signal Processing (MMSP), Victoria, Canada, 2006. IEEE.

[90] Roberto A. Lotufo and Alexandre Falcão. Mathematical Morphology and its Applications

to Image and Signal Processing, volume 18, chapter The ordered queue and the optimality

of the watershed approaches. Kluwer Academic Publishers, 1 edition, June 2001.

[91] J. Lukas, J. Fridrich, and M. Goljan. Digital camera identification from sensor pattern

noise. IEEE Trans. On Inf. Forensics and Security, 1(2):205–214, 2006.

[92] Jiebo Luo and Andreas Savakis. Indoor vs. outdoor classification of consumer photographs

using low-level and semantic features. In Intl. Conference on Image Processing (ICIP),

pages 745–748. IEEE, 2001.
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