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Resumo

Algoritmos de super-resolu¢ao (SR) sdo métodos para obter um aumento da resolugao de
imagens compostas por pixels. Na super-resolucao por multiplas imagens, um conjunto
de imagens de baixa resolucao de uma cena é combinado para construir uma imagem
de resolucao superior. Super-resolucao é uma solucao barata para superar as limitagoes
dos sistemas de aquisicao de imagens, e pode ser 1til em diversos casos em que o dis-
positivo nao pode ser melhorado ou substituido — mas em que é possivel obter diversas
capturas da mesma cena. Neste trabalho, é explorada a super-resolucao por miiltiplas
imagens para imagens digitais, em cenérios nos quais é possivel obter diversas imagens
de uma cena. Sao propostas cinco variagoes de um método que explora propriedades
geométricas de multiplas imagens de baixa resolucao para combiné-las em uma imagem
de resolucao superior; duas variagoes de um método que combina técnicas de inpainting
e super-resolugao; e mais trés variagcoes de um método que utiliza filtros adaptativos e
regularizagao para resolver um problema de minimos quadrados.

Super-resolugao por miiltiplas imagens é possivel quando existe movimento e informa-
¢oes nao redundantes entre as imagens de baixa resolucao. Entretanto, combina-las em
uma imagem de resolucao superior pode nao ser computacionalmente viavel por técnicas
complexas de super-resolu¢ao. A primeira aplicacdo dos métodos propostos é para um
conjunto de imagens capturadas pelos dispositivos modveis mais recentes. Este tipo de
ambiente requer algoritmos eficazes que sejam executados rapidamente e utilizando baixo
consumo de memoria.

A segunda aplicagao é na Ciéncia Forense. Cameras de vigilancia espalhadas pelas
cidades poderiam fornecer dicas importantes para identificar um suspeito, por exemplo,
em uma cena de crime. Entretanto, o reconhecimento dos caracteres de placas veiculares é
especialmente dificil quando a resolugao das imagens é baixa. Por isso, este trabalho tam-
bém propoe um arcabougo que realiza a super-resolucao de placas veiculares em videos
reais de vigilancia, capturados por cameras de baixa qualidade e nao projetadas espe-
cificamente para esta tarefa, ajudando o especialista forense a compreender um evento
de interesse. O arcabouco realiza todas as etapas necessarias para rastrear, alinhar, re-
construir e reconhecer automaticamente os caracteres de uma placa suspeita. O usuario
recebe, como saida, a imagem de alta resolucao reconstruida, mais rica em detalhes, e
também a sequéncia de caracteres reconhecida automaticamente nesta imagem.

Sao apresentadas validacoes quantitativas e qualitativas dos algoritmos propostos e
de suas aplicagoes. Os experimentos mostram, por exemplo, que é possivel aumentar o
nimero de caracteres reconhecidos corretamente, colocando o arcabouco proposto como
uma ferramenta importante para fornecer aos peritos uma solucao para o reconhecimento
de placas veiculares sob condigoes adversas de aquisicao. Por fim, também é sugerido o
nimero minimo de imagens a ser utilizada como entrada em cada aplicagao.



Abstract

Super-resolution (SR) algorithms are methods for achieving high-resolution (HR) enlarge-
ments of pixel-based images. In multi-frame super resolution, a set of low-resolution (LR)
images of a scene are combined to construct an image with higher resolution. Super reso-
lution is an inexpensive solution to overcome the limitations of image acquisition hardware
systems, and can be useful in several cases in which the device cannot be upgraded or
replaced, but multiple frames of the same scene can be obtained. In this work, we explore
SR possibilities for digital images, in scenarios wherein we have multiple frames of a same
scene. We design and develop five variations of an algorithm which rely on exploring
geometric properties in order to combine pixels from LR observations into an HR grid;
two variations of a method that combines inpainting techniques to multi-frame super res-
olution; and three variations of an algorithm that uses adaptive filtering and Tikhonov
regularization to solve a least-square problem.

Multi-frame super resolution is possible when there is motion and non-redundant in-
formation from LR observations. However, combining a large number of frames into a
higher resolution image may not be computationally feasible by complex super-resolution
techniques. The first application of the proposed methods is in consumer-grade photogra-
phy with a setup in which several low-resolution images gathered by recent mobile devices
can be combined to create a much higher resolution image. Such always-on low-power
environment requires effective high-performance algorithms, that run fastly and with a
low-memory footprint.

The second application is in Digital Forensic, with a setup in which low-quality surveil-
lance cameras throughout the cities could provide important cues to identify a suspect
vehicle, for example, in a crime scene. However, license-plate recognition is especially
difficult under poor image resolutions. Hence, we design and develop a novel, free and
open-source framework underpinned by SR and Automatic License-Plate Recognition
(ALPR) techniques to identify license-plate characters in low-quality real-world traffic
videos, captured by cameras not designed for the ALPR task, aiding forensic analysts
in understanding an event of interest. The framework handles the necessary conditions
to identify a target license plate, using a novel methodology to locate, track, align, su-
per resolve, and recognize its alphanumerics. The user receives as outputs the rectified
and super-resolved license-plate, richer in details, and also the sequence of license-plates
characters that have been automatically recognized in the super-resolved image.

We present, quantitative and qualitative validations of the proposed algorithms and its
applications. Our experiments show, for example, that SR can increase the number of cor-
rectly recognized characters posing the framework as an important step toward providing
forensic experts and practitioners with a solution for the license-plate recognition prob-
lem under difficult acquisition conditions. Finally, we also suggest a minimum number of
images to use as input in each application.



List of Symbols

Input and output images for the super resolution

n
I,
Inr

Iq

Isg
M, N

Mk7Nk

Number of images to be used as input for the super-resolution.
Low-resolution images used as input for the super-resolution (1 < k <n).
A high-resolution image that is used as target for the super-resolution.

The target image Iz with a Gaussian blur to avoid the aliasing after the down-
sampling.

An image reconstructed by a super-resolution algorithm.
Dimensions of the image Iyx.

Dimensions of each image /.

Other inputs for the super resolution

T

I

Transformation matrices mapping each image I, onto the HR grid (1 < k <n).
Transformation matrices mapping each I onto I; (2 < k < n).
Standard deviation of the Gaussian distribution.

An integer such that the radius » = d x o defines the kernel size of the super-
resolution.

The regularization parameter. Larger values increase the conditioning of the
problem, reducing the variance of the estimates.

Surveillance videos

F

A video frame that is used as input for the super-resolution.
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Chapter 1

Introduction

1.1 Motivation

The quality of a digital image is directly related to its resolution. In this context, the
word “resolution” is defined not as an image size, but as a measure of the amount of
detail that is visible in an image [42, 120]. The higher the resolution of a digital image,
the more accurate its representation of the real scene. However, as the resolution of the
image generated by a sensor increases, so does the cost of the sensor and hence it may
not be an affordable solution [5, 87].

A digital image stores and represents information of a real scene by a finite number
of samples. Several techniques use interpolation [29, 64, 72, 10| to increase the spatial
resolution of a digital image. However, single-image interpolation cannot recover the
high-frequency components lost or degraded during the sampling process [84]. Limits on
the resolution of the original imaging device can be improved by using signal processing
techniques to obtain a high-resolution (HR) image from observed multiple low-resolution
(LR) images [20, 136, 84]. The fusion of information from various observations of the
same scene is called Multi-Frame Super Resolution, or simply Super Resolution (SR).

The super-resolution image reconstruction is proved to be useful in many practical
cases in which multiple frames of the same scene can be obtained [84], including med-
ical imaging, satellite imaging, target recognition in military applications, license plate
readers, and surveillance videos [38, 109, 59, 80]. The basic premise for a multi-frame
super-resolution algorithm is the availability of multiple images, with small relative mo-
tion, captured from a scene. Subpixel motion provides new details for the super-resolved
image that would not be found using simple interpolation. Although such requirement
does not enable us to use SR in some situations, there are several cases wherein we
can easily capture a sequence of images and subsequently super resolve them. For ex-
ample, it may be very expensive to replace obsolete camera sensors in satellites, but a
super-resolution technique could be an inexpensive solution via software to overcome this
limitation.

The main purpose of this work is to explore the SR possibilities for digital images, in
scenarios wherein we have multiple frames of scene. We design and develop five variations
of an algorithm which rely on exploring geometric properties in order to combine pixels
from LR observations into an HR grid; two variations of a method that leverages inpainting
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methods [114, 7| for multi-frame super resolution; and three variations of an algorithm
that uses Tikhonov regularization [116] to solve a least-square problem.

For a sneak peak showing the potential of the work we present herein, Figure 1.1
compares the result of simple interpolation to an image super resolved by one of our
algorithms, using 35 low-resolution observations of the scene as input®.

Figure 1.1: Super resolution wversus interpolation: (a) piece of an Eiffel Tower’s low-
resolution image; (b) same piece zoomed by a factor of 5 using a simple nearest neighbor
interpolation; (c) the piece super resolved by one of our SR algorithms, using 35 low-
resolution images as input; and (d) equivalent piece in an HR target image.

To validate our algorithms, we first turn our attention to consumer-grade photography
using recent mobile phones, that take dozens of photos per second. Those cameras can
gather a set of images while somebody is holding the camera manually in approximately
the same position, and we use input images with such small camera shake to create a
high-resolution image. In doing so, the user might take multiple photos with a cheap
camera, and then obtain an ultimate super-resolved image (as if the picture was gathered
by a more powerful and expensive camera). It is worth mentioning that the SR algorithms
might be fast and with a low-memory footprint, in order to be executed in this always-on
low-power environment.

!The original picture of the Eiffel Tower was collected from http://www.gratisography.com,/ and is free
of Copyright Restrictions. Anyone can copy, modify, and distribute the work, without asking permission.
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We also design and develop a novel, free and open-source end-to-end framework to
super resolve and recognize license-plate characters in low-quality real-world traffic videos,
aiding forensic analysts in understanding an event of interest. Automatic license-plate
recognition (ALPR) uses optical character recognition (OCR) on images to extract and
recognize the alphanumerics of a vehicle registration plate [32, 3]. It is usually aided
by cameras designed specifically for such task, since the license-plate recognition may be
especially difficult under poor images resolutions (usually when the car is too far away
from the camera, under adverse atmospheric conditions, or due to a low-quality acquisition
camera) [18]. However, there are a number of low-quality surveillance cameras scattered
throughout our cities that could help to identify a suspect, for example, in a crime scene.
Figure 1.2 depicts a situation in which the license-plate characters may not be easily
identified even in a high-resolution video.

Figure 1.2: Surveillance cameras scattered throughout the cities could help to identify a
suspect vehicle, for example, in a crime scene. But even in a high-resolution camera (e.g.,
1920 x 1080 pixels in this frame) it might be difficult to visually recognize license-plate
characters.

Not only OCR systems but also forensic specialists may fail to recognize the alphanu-
merics in such setups, and super-resolution techniques can be an inexpensive path, via
software, to overcome this limitation. Therefore, we leverage super-resolution techniques
to combine information from consecutive frames into a single license-plate image, richer
in details. The framework handles the necessary conditions to identify a target license
plate, using a novel methodology to locate, track, align, super resolve, and recognize its
alphanumerics. We focus on enhancing the details in vehicle license plates that could
help to identify a criminal suspect or activity in a crime scene, super resolving only a
region of interest (ROI) of the video, and discarding less important parts. The experi-
ment shows that it is possible to increase the number of recognized characters using the
proposed super-resolution methods?. The framework involves six core steps to perform

2The framework is currently trained to recognize brazilian license plates



CHAPTER 1. INTRODUCTION 14

the license-plate recognition, showed in Figure 1.3:
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Figure 1.3: Our end-to-end framework pipeline. (1) Initialization: Choosing a start-
ing frame and locating the license-plate region in this frame; (2) Tracking: Finding re-
occurrences of the license plate over the consecutive frames, and aligning the frames with
respect to the plate positions; (3) Registration: Refining the previous alignment with sub-
pixel accuracy; (4) Reconstruction: Combining the sequence of consecutive frames into
a high-resolution grid; (5) Post-processing: Applying image processing operations to the
reconstructed image, to improve the results in the recognition step; and (6) Recognition
of the alphanumerics in the super-resolved license plate.

Reconstruction

Each proposed super-resolution method might be more or less advantageous in each
setup, with different restrictions, limitations and constraints. The method based on
Tikhonov regularization, for example, is the only proposed method designed to recover
the high-frequency components lost during the acquisition process. On the other hand,
such method is expected to run slower than the other methods, and it might not be
computationally attractive for applications that require quick responses and low-memory
footprint. For the application on mobile devices, which requires fast responses, the best
choice is to select the proposed method that explores geometric properties to combine the
LR pixels into an HR grid. On the other hand, the forensic framework reconstructs only a
small area of the frames containing the license-plate image. Therefore, the runtime of the
method based on Tikhonov regularization does not impact the solution as in the mobile
application.

Our first results have already been published in the literature. In [96], we introduce the
five variations of the algorithm which rely on exploring geometric properties to combine
LR pixels into an HR grid, and we validate such method with sequences of images gathered
by a mobile device. In [97], we introduce the forensic framework and the two variations
of a method that leverages inpainting methodsfor multi-frame super resolution. Finally,
we are currently developing an article with the three variations of the algorithm that
uses Tikhonov regularization [116] to solve a least-square problem, and providing a public
virtual machine with the final version of the forensic framework.
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1.2 Hypothesis

The hypothesis that guides this research is that it is possible to explore geometric proper-
ties from multiple low-resolution images in order to combine them into a higher resolution
image. Moreover, in doing so, it is possible to achieve good super-resolution results for
photos gathered by mobile devices and for license plates in low-quality real-world surveil-
lance videos.

1.3 Objective

Our main goal is to design and develop novel multi-frame super-resolution methods. Fur-
thermore, for the sake of completeness, we describe the specific objectives of this research:

1. Explore different possibilities to combine pixels from different low-resolution obser-
vations of a scene into a higher resolution image, richer in details.

2. Provide a super-resolution method that recovers the high-frequency components lost
during the acquisition process of the LR images.

3. Provide methods that are computationally attractive for applications that require
quick responses and low-memory footprint.

4. Apply the proposed methods to super resolve license plates in surveillance videos,
gathered by cameras not designed especially for the recognition task.

5. Super resolve sequences of photos taken by mobile devices, increasing the resolution
provided by the device.

1.4 Contributions

The main contribution of this work is in the Visual Computing and Digital Forensics fields.
First, we design, develop and mathematically describe a super-resolution algorithm that
relies on Tikhonov regularization to solve a system of linear equations using an adaptive
filter. Then, we also propose other simple and effective solutions to super resolve multiple
low-resolution images using their geometric properties, and discuss the best number of
images that should be used as input in our scenarios.

Additionally, we create a free and open-source end-to-end framework that super re-
solves a sequence of frames containing license-plates in low-quality real-world traffic
videos, captured by cameras not designed specifically for the ALPR task, aiding forensic
analysts and practitioners in understanding a given event of interest.

Moreover, we super resolve photos from mobile phones, improving the resolution lim-
itation of the device. For this particular scenario, we design algorithms with low-memory
footprint and smaller execution time, so they can be properly applied to an always-on
low-power environment.

Finally, we provide two new datasets:
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1. The first one is for validation of super-resolution algorithms, containing 100 tar-
get images to be reconstructed, 10,000 low-resolution images (100 for each target
image), the 10, 000 transformation matrices mapping each LR image onto its associ-
ated target image, and the correct alignment among the input images for the super
resolution. We also make available a set of scripts to extend this dataset. There-
fore, anyone can introduce new target images to the dataset and, then, generate
the LR images to be reconstructed, calculate their transformation matrices and also
produce the correct alignment among the low-resolution images.

2. The other dataset is designed to validate super resolution of license-plates. It con-
tains 200 real-world traffic videos, wherein the movement of the vehicles is away
from the camera (one target license plate per video). The dataset also provides the
ground-truth for each target license plate. The videos have been captured in differ-
ent places, with different illumination conditions, different vehicle average speeds,
non-stationary backgrounds, non-predictable routes, and containing trees and road
signs that may cast different shadows over the license plates between consecutive
frames.

1.5 QOutline

This document is organized as follows: Chapter 2 provides background concepts for the
rest of the reading: the resolution increasing problem is covered, as well as its varia-
tions (interpolation, multi-frame SR, and single-image SR), and some related work. In
Chapter 3, we propose novel methods to super resolve multiple frames from a sequence of
images. The proposed super-resolution methods are validated in Chapter 4. Then, Chap-
ter 5 describes the challenges to super resolve license plates in videos, and introduces a
novel framework that super resolves a set of input frames from a video, and automati-
cally recognizes the license-plate characters in the reconstructed image. The framework
is validated in Section 6. In chapter 7, we discuss our contributions, results, final con-
siderations, and future work. Finally, Appendix A shows additional charts of the results,
and Appendix B has implementation details about the framework.
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Chapter 2

Literature review

In this chapter, we present the state of the art for super resolution, including those works
addressing SR for surveillance videos and for mobile devices. We first present the main
concepts about resolution enhancement. Then, we describe the related work and main
differences with respect to our work.

2.1 Resolution increase

A digital image stores and represents information of a real-world scene by a finite number
of samples. Interpolation (or upsampling) [29, 101, 22, 81, 64, 72, 10] is used to increase
the spatial resolution of a digital image, finding out new samples among those that are
already known. Let f(z,y) be an image in a lower resolution, and g(x,y) be the resulting
higher resolution image. Interpolation typically is implemented by convolving the image
f(z,y) with a 2D kernel h(z,y), as expressed in Eq 2.1:

+o00 +o00o

g(x,y) = Y > [l 5)h(x —mi,y —mj), (2.1)

1=—00 j=—00

where m is the upsampling factor (in practice, the spatial extent of the image is finite).
Many popular image interpolation methods are defined in this way, including nearest-
neighbor, bilinear and bicubic interpolation [101, 64, 72, 10]. Interpolation is an ill-posed
problem since there are many HR images that may have the same LR samples. This
ambiguity increases as the intended magnification becomes larger [19, 112].

Although interpolation has been extensively studied since ancient times [72], the qual-
ity of an image magnified from an aliased low-resolution image is inherently limited.
Single-image interpolation cannot recover the high-frequency components lost or degraded
during the sampling process [84]. To achieve further improvements in this field, it is nat-
ural to seek multiple data sets in which additional data from several observations of the
same scene can be used. The information fusion of various observations for magnifying
an image of the same scene is referred to as multi-frame super resolution.
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2.2 Super resolution

Multi-frame super resolution (MFSR), usually defined only as super resolution (SR), is
a process of constructing an HR image using one or more LR images of the same scene.
The basic premise to increase the spatial resolution' in SR techniques is the availabil-
ity of multiple LR images captured from the same scene. Super resolution provides an
inexpensive software solution to overcome the inherent limitations of image acquisition
hardware systems, and has been a very active research topic over the past decades. Super
resolution from multiple frames is possible only when there is some displacement between
two input images (see Figure 2.1).

Figure 2.1: Direction of the subpixel motion between two images.

In some applications, the relative motion from frame to frame is known beforehand
(or at least approximately), but the motion usually must be estimated from the data as
a preprocessing step: each frame must be aligned with respect to some reference (usually,
the first frame) with subpixel accuracy. This preprocessing step is called image registra-
tion [120], as shown in Figure 2.2.

I e

Figure 2.2: Basic idea for super resolution from multiple LR frames. Subpixel mo-
tion provides the complementary information among the LR frames, that makes the SR
reconstruction possible. Original figure in [84].

If there are several LR images available with subpixel displacements, then the high
frequency information of the super-resolution image can be increased. In this case, the new
information contained in each LR image can be exploited to obtain an HR image. Image
registration and super resolution are often treated as distinct processes, to be considered
sequentially, but accurate subpixel motion estimation is a very important factor in the
success of the SR image reconstruction algorithm [106, 107]. Artifacts caused by these
registration errors can be visually more annoying than the blurring effect resulting from

'In this work, resolution is defined as a measure of the amount of detail that is visible in an image [20].
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interpolation of a single image. According to [80], in order to increase the resolution by
a factor of n, image registration must be accurate to within % pixel. Super-resolution
results from misregistered and misaligned frames are visually unsatisfactory.

The second step, after the registration, is the image reconstruction, when the aligned
LR samples are combined to produce an image with more visible details. The main
question in this step is how to combined the LR frames in order to form an HR image.

Multi-frame super resolution has been studied since 1984, when Tsai and Huang [118§]
pioneered the field and introduced an algorithm in the frequency domain using a set of
similar, but globally translated images, of the same area. Those shifts between consecutive
images are taken into account by the shifting property of the Fourier transformation. Most
frequency domain methods have problems with real-world applications, as they accept
only a global displacement between images.

The majority of SR algorithms have since been developed in the spatial domain [77].
Such methods are based on interpolation over LR images. A single image interpolation
does not handle the SR problem well, since it may not produce those high-frequency
components that were lost during the image acquisition process. However, in multi-frame
approaches, each LR observation might provide a small amount of additional information
about the scene [115]. Such methods usually have a registration step, for aligning the LR
images, and a reconstruction step, for producing the higher resolution image. Optionally,
they can also include a deblurring step for enhancing the HR image produced in the
second step.

Iterative Back Projection (IBP) algorithms [45, 46| are among the first methods for
spatial-based SR. In these cases, each HR image pixel is estimated iteratively as a sum of
different projections of the same LR image area, determined by the image blurring and
displacement. IBP is simple, but might not yield a unique solution due to the ill-posed
nature of the SR problem. This can be dealt with by incorporating a priori knowledge
about the solution [77], and then minimizing the error using regularization, as has been
done in [36]. Zomet et al. [138] proposed the Robust Super Resolution, other version of
the IBP algorithm using the median rather than the mean to calculate each new pixel.
Papoulis [83] and Gerchberg [41], independently, demonstrated the method of iterative
signal extrapolation. The classical Papoulis-Gerchberg (PG) method may not deliver good
results in presence of blur and noise in the LR image. Vandewalle et al. [121] extended
upon the traditional PG method to obtain SR images from multiple LR registered images.

Another group of iterative methods are based on the concept of Projection onto Convex
Sets (POCS) [109, 34]. In such methods, it is assumed that each LR image imposes an a
priori knowledge on the final solution. These algorithms define an implicit cost function for
solving the SR problem, do not give a unique solution and suffer from high computational
costs.

In addition, the Maximum a Posteriori (MAP) methods [21] also add some a-priori
knowledge about the desired HR image, and find an estimate for the solution using Bayes’s
rules [77]. As super resolution is often an ill-conditioned problem, the a priori term is
used to prefer a specific solution when the solutions are not unique. A critical issue of
the MAP-based algorithms is the choice of the prior model for the desired solution. Such
methods use regularization to solve the system of linear equations of the SR problem,
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and different approaches can be used to find the best possible value for the regularization
parameter [77].

Another trend in the spatial domain that is currently exploited in the literature com-
prises the Direct Methods [24, 25|. Such methods simply align and scale the LR images
to an HR grid, and then choose a filter to combine the LR pixels. Different filters can
be used, such as mean and median filters [24], Adaboost classifier [104], SVD-based fil-
ters [76], and adaptive normalized averaging [86]. Direct algorithms have been shown to
be faster than the IBP algorithms [77]. All super-resolution methods we propose in this
work fall in this category. The first one recovers the HR pixels as an inverse problem, and
the others are fusion-based (see Chap. 3).

Different from multi-frame super resolution, image hallucination generates an HR
image from a single LR source, with the help of a database of sample images that is used
as a training set. Hallucination, also known as erxample-based, learning-based or single-
image super resolution (SISR), has become a hot research topic since it was first proposed
by Freeman et al. in [38]. These approaches effectively “hallucinate” missing details based
on similarities between the LR image and the examples in the training set [112]. Romano
et al. [92] recently proposed a single-image algorithm that uses machine learning and train
on pairs of images (one low quality, one high quality) to find filters that, when applied
selectively to each pixel of the LR image, will recreate details that are of comparable
quality to the original. In [30, 31|, the authors present a learning-based SR method
that uses deep convolutional neural networks (SRCNN) to learn an end-to-end mapping
between low and high-resolution images. Such method requires large high-resolution and
high-quality images for data training.

Although promising, SISR methods do not take advantage of the multiple information
from the pool of frames that surveillance videos might comprise, justifying the importance
of multi-frame super-resolution methods still today. In 2015, the work in [103] introduced
a MFSR algorithm for shifted and rotated images that calculates the noises that arise in
real-world applications, such as time-of-flight camera depth images, and uses Inpaiting to
correct such noise. In [131], each HR pixel p is projected onto the LR images, and the
authors select LR pixels which fall within the zone of influence of p. The HR image is
recovered after minimizing a Maximum a posteriori Markov Random Field (MAP-MRF)
energy function, by approximating their energy function to make it graph representable,
and minimize it with a graph cut algorithm. The experimental results are good when
using only rigid transformations and no real-world images. In [40], the authors propose
an algorithm for multi-frame SR with two new types of regularization terms, termed as
local weighted anisotropy regularization and successive regularization toward iteration
process, which are characterized by the capability of suppressing noise and preserving
edge information in HR image reconstruction. The multi-frame SR algorithm proposed
in [126] relies on regularization, and the objective functional to be minimized consists of
a fidelity term and a regularization term. The fidelity term is formed by combining L1
norm and L2 norm. The regularization term is proposed to preserve edge and flat regions.

Also in 2015, Maiseli et al. [50] developed a super-resolution framework that integrates
an adaptive diffusion-based regularizer. The regularizing kernel incorporates a shape-
defining parameter that can be automatically updated to ensure convexity and stability of
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the corresponding energy functional. The SR approach proposed in [74] tries to preserve
important image features (sharp edges and corners) while avoiding artifacts, using the
framework proposed in [50]. The work in [44] reformulates the MFSR into a problem
of multi-frame blind deblurring. Unfortunately, in the experiments, they show only the
results for super resolving one synthetic and one real-world image. In [51], the authors
propose an algorithm underpinned by a dictionary based on local self-similarity and the
directional similarity. The method removes the interpolation artifacts using the patch
pairs based on the image degraded model. Only two results are visually compared with
other SR techniques. In [71]|, the authors provide understanding on the relationship
between the restoration error and motion blur, and conclude that more images, even
degraded by blur, could induce better SR results.

In 2016, Kohler et al. [60] proposed an Iteratively Re-Weighted optimization for Ro-
bust Super Resolution (IRW-SR). They use a weighted Gaussian observation model to
consider space variant noise and weighted bilateral total variation to exploit sparsity of
natural images. The algorithm is implemented as iteratively re-weighted minimization,
simultaneously estimating model parameters and the super-resolved image in an iterative
coarse-to-fine scheme. The method in [62] consists of a non-parametric image registration
based on diffusion regularization and a nonlocal Laplace regularizer combined with a bi-
lateral filter in the reconstruction step to remove noise and motion outliers. The diffusion
registration is employed to handle the small deformation between the unregistered images,
while the combination of nonlocal Laplace and BTV is used to increase the robustness
of the restoration step with respect to the blurring effect and to the noise. In 2017, the
work in [55] proposed to solve the registration and reconstruction problems in a unified
framework, but considers only shifts between LR observations.

Finally, we address recent work for super resolution of depth images. The work in [47]
proposes a new multi-frame method to enhance LR dynamic depth videos containing
freely non-rigidly moving objects. The work in [119] extends the SRCNN framework [30]
to enhance the depth image and obtain a high-resolution depth image using deep convolu-
tional neural networks. Depth videos are also the focus of the work in [48]. They enhance
depth videos containing non-rigidly deforming objects, relying on the assumption that
3D motion can be decoupled into lateral motions and radial displacements. This allows
them to perform a simple local per-pixel tracking in which both depth measurements and
deformations are dynamically optimized.

2.3 Original contributions of the proposed SR methods

In Chap. 3, we propose three novel multi-frame super-resolution methods. The first
one relies on Tikhonov regularization [116] and adaptive filtering to solve a least-square
problem. According to [77], regularization has already been used along with different
super-resolution methods, such as iterative methods, direct methods, POCS and MAP
methods. The IBP methods (see Sec. 2.2) aim to minimize the solution of the least-
squares by defining an initial guess for the HR target image, and then iteratively refine
the resultant image. In [137], for example, the authors use conjugate gradient to speedup
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the solution of the IBP method, and combine super resolution to mosaicing. The MAP
approach (see Sec. 2.2) models a priori knowledge to constrain the solution, usually using
Bayesian methods. The work in [67] uses conjugate gradient in a MAP-based method.
According to [133], Tikhonov regularization is the most commonly used method for the
regularization of ill-condition problems. The works in [27] and [16] have also considered
the use of conjugate gradient for solving the SR based on Tikhonov regularization, ac-
celerating the methods based on the system of linear equations. In [79], the authors
added preconditioners for solving the Tikhonov-regularized super-resolution problem by
the conjugate gradient method, using the generalized cross-validation method for auto-
matic calculation of regularization parameters.

Most of these works based on regularization accept only shifted LR images as input,
i.e., there might be only translations among the observations. The regularization-based
model that we present herein works with both rigid and perspective transformations.
We also contribute with two optimizations of the method to create the system of linear
equations faster than the original model, by dividing the grid into imaginary cells, and
discarding less significant information. Moreover, the proposed method uses adaptive
filtering to convolve the HR pixels (our LR observations can belong to different planes,
and the Gaussian weights are distributed along each plane). Even the filter in one of the
optimizations (that does not consider the Gaussian distribution), is space-adaptive (since
the imaginary regions might contain more or less LR pixels according to each plane).

The second proposed method projects the LR pixels separately onto the HR grid, and
then uses inpainting techniques [114, 7] to fill in the unknown grid pixels. Inpainting has
already been used to fill in missing pixels of super-resolved images, as in [73]. However, the
technique is commonly applied to example-based super resolution, which uses only one LR
frame as input and does not take advantage of situations for which we might have multiple
observations of the same scene [19]. In [17], the authors use inpainting to fill in missing
pixels in the observed shifted LR images (i.e., with only translations between the input
images), and then they use Tikhonov regularization to solve the optimization problem.
In [103], the authors introduce a MAP-based algorithm for shifted and rotated images
that calculates the noise artifacts that arise in real-world applications, such as time-of-
flight camera depth images, and uses inpainting to correct such noise. Our approach,
which projects the observations onto the HR grid, and then fills in the unknown pixels
using inpainting techniques, is part of a work that has been recently published [97].

Finally, the third proposed method explores geometric neighborhood, to combine LR
pixels into an HR grid. It is a Direct Method, and its main idea has commonly been
used to describe a multi-frame super resolution. Other fusion-based methods have been
previously proposed. In [24], the pixels are combined with median filter. However, the
images are warped to the reference image (which could cause loss of information) and
there is no quantitative validation. In [134], the authors combine the LR images using
pyramids fusion [14]. According to the authors, their method is a faster alternative to
methods based on solving the linear system, but there is no guarantee that a perfect
reconstruction can be obtained, and some artifacts may appear in the super-resolved
image. The results are only visual, and not very impressive. Our work draws a set of
variations of the method that exploits geometric neighborhood around the desired pixels,
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as simple as possible, to be used in the applications that require high performance and
low-memory footprint. The five variations of the method have been published in [96] as
an original conference paper. In a further development of our work, in [108], the authors
use the method (proposed in [96]) for super resolution of optical coherence tomography.

2.4 Super resolution of license plates in surveillance vi-
deos

Automatic License-Plate Recognition (ALPR), also known as Automatic Number-Plate
Recognition (ANPR), uses Optical Character Recognition (OCR) on images to extract
and recognize the alphanumerics of a vehicle registration plate [32, 3]. An ALPR system
usually follows some steps for identifying a license plate: plate localization (to find and
isolate the plate on the picture); plate orientation (to compensate the skew of the plate and
adjust its dimensions); normalization (to adjust the brightness and contrast of the image);
character segmentation (to find the individual characters on the plate); and the optical
character recognition. Optionally, the system may check the characters and positions
against country-specific rules to produce a more reliable or confident result.

License plate recognition may be especially difficult under poor image resolution (usu-
ally when the car is too far away from the camera, under adverse atmospheric conditions,
or due to a low-quality acquisition camera); blurry images (due to the motion blur) [18];
poor lighting; low contrast (due to overexposure, reflection or shadows); and different
fonts (in some countries). Many ALPR systems that claim good recognition when they
are trained to match license-plates from a single region, fail when trying to recognize
license-plates from other regions due to variations in format, font, color, layout, and other
plate features.

The license-plate capture is usually performed by specialized cameras, designed specif-
ically for such task. However, there are a number of low-quality surveillance cameras
scattered throughout our cities that could help to identify a suspect vehicle, for example,
in a crime scene. In such scenarios with poor quality cameras, super resolution may be
used to help recognizing the characters in the license plate. We focus on super resolving
those images for which the specialists could not visually identify the characters.

Caner et al. [15] seem to have pioneered the alliance of super resolution and automatic
license-plate recognition in 2003. They super resolved a region of interest of surveillance
videos recorded by multiple cameras based on POCS (see Sec. 2.2). Although promising,
the solution needed more than one camera to work. Chang et al. [18] claimed that
most of the techniques until 2004 worked under very restricted conditions, such as fixed
illumination, limited vehicle speed, designated routes, and stationary backgrounds. In
their work, they have favored classification accuracy over efficiency whenever a choice had
to be made between them. However, in their experiments, they only considered images
with readable characters, in which a human could easily identify the alphanumerics on
the plates without the aid of any super-resolution method.

In 2007, Suresh et al. [110] performed SR of moving vehicles in real-world traffic
videos by combining the information derived from multiple, subpixel shifted, and noisy
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LR observations. The image to be super resolved was modeled as a Markov random
field and was estimated from the observations by a graduated non-convex optimization
procedure. However, they have not considered rotations in the license plates between
consecutive frames, and the results were only qualitatively compared.

Yuan et al. [128] presented, in 2008, a MAP-based algorithm to super resolve license
plates and relied upon some license-plate properties as the a priori knowledge for the
regularization. For example, they claim that the license-plate background color and the
colors for the license-plate characters are usually with strong contrast. Hence, when the
image is converted into a grayscale image, there remain only two kinds of intensities:
the dark one and the light one, and they might be easily distinguished by thresholding.
However, from our experience, this claim only holds for ideal or semi-ideal illumination
conditions. Furthermore, the authors presented the reconstruction of only one license
plate in their experiments, and no validation metric was used to compare results. They
only compared the running time of reconstructing two HR images.

Kim and Ko [58] proposed a resolution enhancement method for regions of interest
in surveillance videos using Bernstein interpolation [61] in 2011. They super resolved
images using stochastic data regularization in real-world surveillance videos focusing on
the license plates as ROIs. Yet the reconstructed images were only visually compared to
other methods, and the results were very similar to classic algorithms. Taking a different
path, Yoshida et al. [127] proposed, in 2012, an SR method using free-form deformations
for low-quality surveillance videos focusing on face ROls, including non-rigid deformations
caused by changes of face poses and expressions.

Using an algebraic reconstruction method, Zarei et al. (2013) [130] developed a super
resolution of license-plate images by applying an iterative SR method for license-plate
recognition that fused the information from a set of shifted LR images. The reconstruc-
tion problem was formulated as a system of linear equations that was solved by using
the Simultaneous Algebraic Reconstruction Technique (SIRT) [53]. The input frames in
the dataset were not extracted from real-world videos. They also considered only shifts
between two frames (not rotations).

Employing a learning-based method, Lina and Ying [66] proposed, in 2014, a license-
plate super-resolution algorithm based on manifold learning. Although promising, the
algorithm was not validated using real-world low-resolution images by surveillance cam-
eras as input. Instead, they used only one high-resolution image to generate a set of
downscaled images, and such lower resolution images have been used as input for the
reconstruction step in their experiment.

Finally, in 2015, the work in [57] claims that metropolis worldwide invest huge sums of
money in surveillance camera systems but few are closely observing the benefits, because
the low resolution coupled with poor-quality optics is not enough to identify the subject of
interest in crowded and far-away setups, in bad weather and other limiting factor. They
introduced a multi-frame super-resolution technique that does not require explicit motion
estimation, and that produces evidence that the police might reasonably accept as proof
of someone’s identity. Their algorithm requires a training set from a still surveillance
camera.

According to a recent work of Rajput et al. (2016) [90], few researchers have addressed
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scenarios such as reading plates of fast-moving vehicles. They also claimed that the
existing ALPR approaches assume the text lies in a plane whose angles are normal to the
sensor’s optical axis, which is not the case when license plates are skewed. Their work
is not related to super resolution, but they developed a method to detect license-plate
orientation on tilted plates, and rotate it to a horizontal perspective. Previously, Tang et
al. (2008) [113] and Qing et al. (2007) [89] also addressed the problem of rectification of
license plates to correct their inclined distortion.

2.5 Super resolution for mobile devices

Super resolution for mobile devices was studied by Kanumuri et al. [54] in 2007. They
described an SR reconstruction of mobile videos using warped transforms and adaptive
thresholding. However, for complexity and memory bandwidth reasons, they restrict
themselves to operate on single frames. This way, at the end, they solve just an interpo-
lation problem.

Shen and Xue [99] proposed in 2010 an example-based SR algorithm to enhance videos
from mobile devices. They acquire the first frame of a video at full-resolution and the
other frames at low-resolution, consuming less power of the mobile device. Then, the video
is post-processed, using information from the first frame at full-resolution to enhance the
other frames.

The objective in [26] is more similar to ours: with an algorithm to reconstruct HR
images for mobile devices from a sequence of LR frames. In that work, however, frames
must be acquired in a video with a high frame rate (e.g., 100 fps), so they can estimate
changes in the relative motion between each LR frame during the registration step.

Amanatiadis et al. [2] proposed an SR algorithm for mobile devices based on machine
learning, using only one image as input. Their method needs GPU as a co-processor
to achieve good performance. The results seem visually good, but the LR images in the
experiments are only downscaled versions of HR images. The authors have not considered
real-world low-resolution images in their validation, however.

2.6 Final considerations

Many single-image super-resolution methods have been studied in recent years. In many
cases, applying such methods frame by frame might be better than using multi-frame
super resolution. However, every information added into the super-resolved image by a
single-image SR method comes from the knowledge learned from the training process,
using other images. If a forensic analyst super resolves, for example, the image of a
suspect license plate using a learning-based method, such method might add information
from other sources into the image of interest, and then the evidence might be invalidated
by a court decision. On the other hand, the image super resolved by a multi-frame super-
resolution method might contain only information that appears in the object of interest,
along its moving path in the video. Additionally, in [77], the author highlights that the
state of the art for super-resolution algorithms is highly dependent on the application.
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This is mainly due to different constraints that are imposed on the problem under different
setups. Hence, our intuition is that the multi-frame SR methods can be even more useful

in a forensic setup.
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Chapter 3

Proposed methods for super resolution

In this section, we propose three methods to combine multiple observations of a scene
into a higher resolution image. First, in Sec. 3.1, we introduce a method that relies
on Tikhonov regularization and adaptive filtering to solve a least-square problem. We
refer to this method as Super Resolution using Regularized Least Squares (RLS). Then,
Section 3.2 details the inpainting-based Super Resolution (/SR), a method that projects
the LR pixels separately onto the HR grid, and then uses inpainting techniques to fill
in the unknown grid pixels. In Sec. 3.3, we explain the Geometric k-Nearest Neighbors
Multi-Frame Super-Resolution (G'SR), a method which explores geometric neighborhood,
to combine LR pixels into an HR grid.

In addition, we exploit two optimizations for the RLS model, two different variations
for the inpainting-based methods, and five for GSR, in Secs. 3.1 through 3.3. Fig. 3.1
depicts such variations. In red, we have the group of algorithms using Regularized Least
Squares; in blue, the variations of 1.5 R; in green, five different algorithms based on GSR.

{ RLS | [ ISR ] GSR}'

Figure 3.1: Variations of the proposed super-resolution methods.

The common pipeline for all proposed methods is shown in Fig. 2.2: the input images
are aligned in a registration step, and then each method reconstructs the output super-
resolved image.
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3.1 Super resolution using Tikhonov regularization and
adaptive Gaussian filtering (RLS)

In a multi-frame super resolution, we start by hypothesizing that a set of LR images have
been downsampled from the same HR image. While interpolation can be used to increase
the resolution of an image, decimation (or downsampling) decreases the resolution. As
opposed to the interpolation operation, decimation does entail loss of information. The
decimated image f can be expressed [111] as a function of the original image g¢:

flz,y) = Zg(i,j)h(mx —i,my —7j),

i’j

for each color channel separately, where m € Z is the downsampling factor, and A is a
low-pass filter, typically used prior to downsampling in order to prevent occurrence of
aliasing. Hence, each decimated image is a result of a convolution equation [111] of the
form

hxX = f,

where f and h (the filter applied to the HR image, including possible bluring, downsam-
pling, and other operators) are known vectors, X is the vector to be determined (related
to the entire HR image), and * is the convolution operator. The set of LR input images
then forms a system of linear equations that might be used to determine the target HR
image completely.

Super resolution is then an inverse decimation problem. Since the number of LR
images is usually insufficient to solve the system, we have a linear least-squares problem.
There are a number of techniques to deal with such problems, and most of them have high
computational cost [91]. In addition, when authors address super resolution by solving a
linear least-squares problem, they usually restrict the motion between a pair of LR images
to simple translations. However, even if we also include rotations between the images,
we might still not attend real-world problems, because, commonly, a pair of images of
a scene may differ from each other by a perspective transformation (besides additional
issues with illumination, shadows, etc.).

We consider herein a setup in which we have a sequence of n € Z images [,Vk €
{1,2,...,n}. Each I} is a smaller version of the target image Iy that we are trying to
reconstruct. In Fig. 3.2, the black dots are the pixels of a target HR image, and the red
squares represent three examples of LR images of the same scene. Note that an LR pixel
does not necessarily coincide with HR pixels if we consider a continuous space.

We assume that, during the images acquisition process, there exists a continuous space
of information that might be discretized to represent [, and Izr. We also assume that
each LR pixel was generated as a convolution of the information in its neighborhood, and
that a same low-pass filter has been used to generate all .

We consider we have calculated the transformation matrices 7} mapping each image
I} onto the HR grid that we want to reconstruct. Such matrices can be calculated, for
example, in a registration step, prior to the reconstruction. Therefore, we can calcu-
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Figure 3.2: Three LR images generated from a scene, and the HR grid that we want
to reconstruct. In (a), the HR target pixels. In (b), (c) and (d), the red squares are the
pixels in each LR image [;. The LR images have been aligned with respect to the grid in

(a).

late exactly the alignment of each LR image with respect to the HR grid, as we see in
Figs. 3.2b, 3.2c and 3.2d. If the matrices dimension is 2 x 3, then 7}, € R**3 and we have
rigid transformations (comprising only translations and rotations). Otherwise, matrices
7. € R3*3 define a projective transformation, also known as a perspective transform or
homography. The algorithm we present herein works with both rigid and perspective
transformations. We can use such matrices to calculate exactly the xy position of any
point in [ with respect to the HR grid. For rigid transformations [111], we have

/ / x
Y
where 2,y € R are the new positions of [ transformed with the matrix 7%. For perspec-
tive transformations, we must operate on homogeneous coordinates [111]:

where 7/, 7/, and w € R are the homogeneous coordinates that must be normalized in order
to obtain an inhomogeneous point (2’,y’) by dividing each element by the last element 0,
ie.,

(@7, w) = w2y, 1) =a(,y). (3.2)
Such matrices are calculated in a registration step, prior to the reconstruction, that might
be different for each application of the algorithm. We describe some registration examples
in Chaps. 4 (for working with a mobile application) and 5 (for automatic license-plate
recognition).

As we calculate the xy position of the LR points in each I, with respect to the HR
grid, we might choose a linear filter and write each pixel I (x,y) as a convolution among
the HR pixels in the grid using such filter. We take here a Gaussian function as example
for the linear filtering. The one-dimension Gaussian filter G has an impulse response
given by
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where o € R is the standard deviation of the Gaussian distribution [111]. In two dimen-

G(x;0) =

sions, it is the product of two Gaussians, one per direction:

1 _ ac2+y2
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G(z,y;0)
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where x,y,0 € R, x is the distance from the pixel to the center of the distribution in the
horizontal axis, y is the distance in the vertical axis, and ¢ is the standard deviation of
the Gaussian distribution [111]. The Gaussian function is for x € (—oo,00). Hence, for
every pixel I (x,y) in an LR image, we can write it as:

In(z,y) = ZJHR@, NG —i,y —j,0), (3.3)

where 2/, 3/ € R, (2/,y’) are the positions of I; mapped onto the HR grid with the matrix
T, and o is the standard deviation of the Gaussian distribution. Theoretically, we should
create a linear system using Eq. 3.3 for all the pixels in all the LR images (the Gaussian
function at every point on the image will be non-zero, meaning that the entire image would
need to be included in the calculations for each pixel). In practice, when computing a
discrete approximation of the Gaussian function, pixels at a distance of more than 3¢
are small enough to be considered effectively zero. To illustrate such distance, consider
Figure 3.3. The white square in Fig. 3.3a is an example of a pixel Ix(z,y) in Eq. 3.3,
and it is the center of a Gaussian distribution. The colors in the background represent
the Gaussian values in a continuous space for o = 0.5. In Fig. 3.3b, we define a circular
region with a radius » = 20 around the LR pixel. Only the HR pixels inside such circular
region might be convolved in this example. Finally, each HR pixel in Fig 3.3c receives the
value of the Gaussian weights in its x,y position only if the pixel is within the circular
region.

(a) (b)

Figure 3.3: In (a), the LR pixel in the white square is the center of a Gaussian distribu-
tion. The weights of this distribution might be used to write such LR pixel as a function
of the HR pixels in its neighborhood. In (b), we define a circular region with a radius
r = 20 around the LR pixel. In (c), the grid pixel receives the values of the Gaussian
weights only if the pixel is inside the circular region.

Hence, we rewrite the Gaussian filter as G':
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_a?4p?
oz -e =2 if a2+ <r

0, otherwise.

G'(a,b;o,1) =

It is worth mentioning that this algorithm uses an adaptive filter to convolve the HR
pixels, since we allow 7} to handle homographies. We see, in Fig. 3.4c, an example of
an LR image I in a plane & that is projected onto the HR grid in a plane & by a
perspective transformation. We want to write each LR pixel I(z,y) as a convolution
among the HR pixels using a Gaussian distribution. In Fig. 3.4d, [;(z,y) in the white
square is the center of a Gaussian distribution over the plane &2;,. We see that two HR
points in the plane & with the same distance to such white square will not necessarily
have the same Gaussian weights. Additionally, we see, in Fig. 3.4e, that the Gaussian
weights have a different distribution for another LR pixel I;.(2',y').
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(d)

Figure 3.4: Adaptive distribution of the Gaussian filter. Two different planes & in (a)
and & in (b). In (c), the LR image ) belongs to the plane &7, and the HR grid belongs
to the plane Z. In such example, the yellow dot is a pixel Iyr(z,y) in the grid, the white
square is a pixel /i(x,y) in the LR image, and 77 is a perspective transformation mapping
Iy onto Iyg. In (d), Ix(z,y) in the white square is the center of a Gaussian distribution
over the plane &7,. We see that two HR points with the same distance to I;(z1,y1) in
the plane &2 will not necessarily have the same Gaussian weights. In (e), we see that the
Gaussian weights have a different distribution for another LR pixel I, (2/,y').

Finally, for n LR images I}, and an HR image IR, each equation of the linear system
is given by

. .G/$’—i,y/—j§077"
i,j ’
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for each pixel in each LR image, where 2/, ¢’ € R are the positions of I, mapped onto the
HR grid with the matrix 7}, o is the standard deviation of the Gaussian distribution, 7 is
the radius of a circular region around (x,y), and W (x,y) is the sum of Gaussian weights
for all the points around (x,y) and inside the circular region of radius . We calculate W
to normalize the Gaussian weights that have been convolved with each LR point (z,y),
so the sum of weights is one. W is given by

W(CE,y) = ZG/('II _iay/ —j;O', T)u (35)
2%

For an RGB image, we must solve one linear system in Eq. 3.4 for each color channel
separately. It is worth mentioning that, since we use G’ instead of GG, the linear system
becomes sparser as the images dimensions increase.

After creating our linear system using Eq. 3.4, we might decide how to solve the
system. The algorithm that we describe does not require neither a set of LR images
with exactly the same dimensions, nor a fixed scale factor for all input images, since
the transformation matrices 73 can map them onto the HR grid, no matter if they have
different sizes or scales. However, suppose now without loss of generality, that we have n
low-resolution images, and each one has exactly p pixels. Hence, we create p equations
for each LR image using Eq. 3.4, and we have a linear system with np observations (in
other words, each pixel from each LR image generates one equation of the linear system).
Additionally, assume we super resolve them with a scale factor s in each axis. Therefore,
Iy has s?p pixels, and we have a system with s?p variables. If we write our system as

AT = b,

as in [4], then A € ROW*(*) 7 ¢ RS and b € R". Each unknown x; €  can be seen as
an available degree of freedom in the system, and each equation A; € A introduced into
the system can be viewed as a constraint that restricts one degree of freedom. We might
have a unique solution to the system when the number of equations and the number of
free variables are equal (in our case, when n = s?). For example, we need exactly 5% = 25
LR images to have a linear system with a unique solution if we want a super-resolved
image 5x higher in each axis. If we have fewer equations than unknowns (n < s?), the
system is considered underdetermined. In this case, there are either infinitely many or
no solutions. Otherwise, the system is overdetermined if there are more equations than
unknowns (i.e., n > s?). Usually, overdetermined systems have an infinite number of
solutions. Since we do not want to constraint our system to having exactly n = s?, we
must be able to solve both underdetermined and overdetermined systems.
An ordinary least squares [63] tries to minimize the sum of squared residuals, which
can be written as
min | A7 — 5|2, (3.)

where || - ||2 is the Euclidean norm. Tikhonov regularization [116], also known as ridge
regression, addresses the situation when the system of equation is ill-posed and admits
infinitely many or no solutions, and seeks to determine an approximate solution by re-
placing the minimization problem in Equation 3.6 by a penalized least-squares problem
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Figure 3.5: Pipeline of the proposed super-resolution algorithm using Tikhonov regu-
larization (RLS): First, we have n LR images I, and the matrices 7}, mapping each I}
onto the HR grid. Then, we use a modified Gaussian filter G’ inside a circular region to
write each pixel [(z,y) as a convolution among the HR pixels that we want to recon-

struct. In the third step, the coefficient matrices A, and the vector Ek (created for each
LR image) are concatenated into a system of linear equations. Finally, we use Tikhonov
regularization to calculate an approximation to AZ¥ = b.

of the form

. L o2 .
min ||AZ — bf|; + |ITa]2%, (3.7)

for some suitable regularization matrix I',, [39]. The scalar a > 0 is known as the regu-
larization parameter, and an explicit solution is given by

i=(ATA+TD,T,) AT, (3.8)

where & = V' and V is given by the singular value decomposition A = UXV T [39].
The matrix I, is commonly chosen to be a multiple of the identity matrix (I, = o),
in order to give preference to solutions with smaller norms, and Eq. 3.8 can be solved
by Conjugate Gradient (more advantageous to solve large and sparse systems) [27, 133].
We use a Tikhonov regularization separately for the system in each color channel of the
image in the algorithm that we describe herein. In addition, we also normalize' the
intensity values of the super-resolved image. The regularization finds one among the
many solutions for the linear system. The normalization corrects the spatial variance
of the solution, stretching the resultant intensity values to the same range as the input
sequence.
The algorithm we propose herein is illustrated in Fig. 3.5, and its parameters are:

e The pool of n LR images [j.

e The coordinates of the HR grid that we might reconstruct.

1To normalize the result, we calculate the minimum p,,,;,, and maximum p,,,, intensity values among
all the LR images in the pool. Then, we apply a linear mapping to each color band of the super-resolved
result (using addition and multiplication operators), and we stretch the intensity values to fit within the
dynamic range [Pmin--Pmaz)-
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e The aligning matrices 1}, previously calculated in the registration step, mapping
each I onto the HR grid.

e The standard deviation o of the modified Gaussian filter G, and an integer d such
that the radius r = d x o defines the circular region around each pixel I;(z,y) (i.e.,
the kernel size).

After the pre-alignment in the registration step, we perform the following steps:

1. First, for each LR image I}, we create the matrix A, and the vector by for such image
(respectively, the coefficients and the constant terms of the system of equations).
To calculate the coefficients, we use the modified Gaussian filter G’ with a standard
deviation o, within a circular region of radius r = d x o, and adapted to the plane
in which [ belongs.

2. Then, we concatenate the n coefficient matrices A, into a single matrix A, and the
constant terms b, into a vector b.

3. To calculate an approximation for A7 = l;, we use Tikhonov regularization for each
color band of the images.

4. Finally, we normalize each band separately, creating a super-resolved image using
the same intensity range as in the pool of LR images.

We designed three variations of this algorithm. The first one implements exactly the
original model, illustrated in Fig. 3.5. We refer to this first variation as RLS (Super
Resolution using Regularized Least Squares). The others are optimizations of the model,
and they are intended to run faster, but might impact the quality of the results. We detail
the two optimizations in Secs. 3.1.1 and 3.1.2.

3.1.1 Optimized RLS (RLSO)

In this second variation of RLS, we seek to decrease the execution time for constructing
the matrices Aj. In the original model, when we use Eq. 3.4 to calculate the linear system
for an LR image I, a grid pixel Iyr(z,y) can be used in the equations of more than one
pixel Ii(x,y). Fig. 3.6 illustrates such overlaps.

For each LR pixel I(z,y), we must iterate over all grid pixels Iyr(z,y) to calculate
such Gaussian weights in the original RLS. For n LR images I, each of which containing
pr pixels, and a grid with p pixels to reconstruct, we calculate all these weights in O(n x
pr X p). Even if we perform the inner loop (over the grid pixels) in a smaller region (since
we consider only the kernel weights inside a circular region o radius r = d X ), we still
have these nested loops, because an LR pixel might contribute to more than one pixel in
the grid.

Our target in this first optimization is to eliminate these two nested iterations. To
achieve this, each grid pixel must not appear in more than one equation from the same
LR image I;. Hence, we divide the grid into imaginary regions of interest or cells, in a
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(b)

Figure 3.6: In the original RLS model, there might be some overlap during the cal-
culation of the Gaussian weights. In (a), we want to calculate the weights around the
LR pixel highlighted in white. In (b), each grid pixel may be inside the circular region
around more than one LR pixel, and might appear in more than one equation from the
same image [j.
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Figure 3.7: In (a), we divide the HR grid into imaginary cells, in a way that each grid
pixel is related to its closest neighbor in the LR image. In (b), we project the grid onto
the LR image. The grid pixel (x,y), highlighted in yellow in (a), has a position (z',y’)
with respect to the grid (calculated by Egs. 3.1 and 3.2). The coordinates of the LR pixels
in (b) are (1,1), (2,1), (3,1), (1,2), (2,2), and (3,2), and we may infer by this Figure
that 1.5 < 2/ < 2.5 and 0.5 < ¢y’ < 1.5. We simply round the coordinates (2’,y’) of this
point in yellow to find its closest neighbor in the LR image, i.e., the pixel (2,1). In (c),
the Gaussian distribution is calculated only for the pixels inside each imaginary rectangle.

way that each grid pixel Iy g(z,y) is related to its closest LR pixel in [,. Fig. 3.7a depicts
such divisions.

As we see in Fig. 3.7b, if we project the grid pixels onto the LR image [;, we can easily
find the closest LR pixel to each grid pixel Iyg(z,y). We only need to iterate over the
grid pixels, rounding each of them. Hence, in this same iteration, we can calculate the
distance from Iyg(x,y) to its closest LR pixel, and also the Gaussian weight for this grid
pixel. The complexity for calculating all the Gaussian distributions, and consequently all
the equations of the linear system, decreases from O(n x px X p) in RLS to O(n X p) in
this optimization, where n is the number of LR images, p;. is the number of pixels in each
LR image, and p is the number of pixels in the HR grid.

The matrix Ay is sparse, and each element of Ay is defined by three values: (1) the
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entry of the matrix, (2) the row index of such entry, and (3) its column index. In this
implementation of RLS, the entries of the sparse matrix A, are the non-zero Gaussian
weights that we calculate for each grid pixel. The row index for each entry identifies its
closest LR pixel, and can be easily calculated using the (z,y) coordinates of such closest
LR pixel. The column numbers are simply the grid indices, between 1 and p.

We show in Chap. 4 how such optimization impact both the running time (since we
eliminate the nested loops for each LR image) and the quality of results (since we calculate
now the Gaussian distribution only for the neighbors inside the imaginary rectangles
in Fig. 3.7, instead of the circular regions in Fig. 3.6). The main difference from this
implementation to the original model is that, now, we suppose that each HR pixel has
been used in the convolution of only one LR pixel (see Fig. 3.8). We refer to this algorithm
as RLSO (RLS with Optimization). Unlike the RLS model, this optimization does not
receive the kernel size as parameter.

Figure 3.8: In the optimized RLS, we suppose that each HR pixel has been used in the
convolution of only one LR pixel. In the original RLS implementation, an HR pixel can
be inside the circular regions around more than one LR pixel.

3.1.2 RLS using an Uniform Distribution (RLSU)

The third implementation of RLS is even faster than RLSO. Instead of working with the
Gaussian distribution, we use a simple uniform distribution along the HR pixels inside the
same rectangular region as in RLSO. Therefore, we assume that each LR pixel [ (z,v)
has been convolved as a simple average among all grid pixels to which I(z,y) is the
nearest neighbor in the LR image. In other words, we still use the imaginary cells from
RLSO, but without calculating the Gaussian distribution. Since we do not calculate the
exponentiation and division operations of the Gaussian distribution, we expect a lower
runtime in this algorithm, that we refer to as RLSU (RLS using Uniform distribution).
Unlike the RLSO method, RLSU does not receive the standard deviation ¢ as parameter.

3.2 Projections onto the HR grid and inpainting to fill
in unknown pixels

The main objective of the RLS algorithm, described in Section 3.1, is to combine multiple
low-resolution observations of a scene into a higher resolution image, richer in details.
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However, even with the two optimizations proposed in Secs. 3.1.1 and 3.1.2, such algorithm
might have a high computational cost to construct the coefficient matrices and to perform
the regularization, as we show in our experiments (see Chapter 4). We introduce now
an algorithm that is designed to be simpler and faster than the super resolution using
regularized least squares. The algorithm receives three parameters as input:

e The pool of n LR images Ij.

e The coordinates of the HR grid that we might reconstruct (the grid can be based,
for example, on the coordinates of the first input image and the increasing scale).

e The aligning matrices 1}, previously calculated in the registration step, mapping
each I onto the HR grid.

We start projecting each LR image [, separately, onto the HR grid. Hence, for each
pixel Ii(z,y), we calculate the positions (z/,3’) of the LR image with respect to the grid,
as in Egs. 3.1 and 3.2. The algorithm is illustrated in Fig. 3.9. In Fig. 3.9a, the first LR
image is projected onto the grid. The intensity value of each LR pixel I;(z,y) contributes
only to the grid pixel that is closest to (2/,4’). In Fig. 3.9b, we project a second image
onto the grid, and the red dots are HR pixels that have already been calculated using the
information from the first LR image. Similarly, in Fig. 3.9¢, a third image is projected onto
the grid, which already contains information from the two previous LR images. Finally,
some pixels in the grid might not be filled with the intensity values of any LR image. We
use inpainting [114, 7] techniques to calculate such unknown grid pixels (the gray dots in
Fig. 3.9d).

% ° ° ° ° o o
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Figure 3.9: In (a), the first LR image is projected onto the HR grid. The red circle
highlights an LR pixel Ix(z,y) (the white square), and its closest pixel Iyr(z,y) in the
grid (the yellow dot). The intensity value of I(z,y) contributes only to such closest
grid neighbor, and then this Iy g(z,y) receives the intensity value of I (z,y). In (b), the
grid contains information from the first LR image (the red dots), and another image is
projected onto the grid. Similarly, in (c¢) a third image is projected onto the grid, which
already contains information from the two previous LR images. Finally, the gray dots in
(d) are the missing pixels of the grid, whose values we want to calculate using inpainting
techniques.
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To detail the first steps of this algorithm, we select 35 LR images of a scene (the
first seven images are shown in Fig. 3.10) to be input for the inpainting-based Super
Resolution.
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Figure 3.10: Different LR observations of a scene, that we select to be input for the
inpainting-based Super-Resolution method we propose.

The aligning matrices 7} allow us to map each [, onto the HR grid that we might
reconstruct. Fig. 3.11 illustrates three LR images projected, separately, onto an empty
HR grid. The black pixels represent missing values, onto which no LR pixel has been
projected.

(a) (b) (c)

Figure 3.11: The three LR images are separately mapped onto an empty HR grid. The
black pixels represent missing values, onto which no LR pixel has been projected.

The algorithm iteratively projects the images I onto the grid, which might already
contain information from the previous images [;, 1 < j < k. Fig. 3.12a illustrates the
grid after the projection of the first five LR images from the pool. Then, in Fig. 3.12b, 20
images from the pool have already been projected. Finally, the grid in Fig. 3.12¢ contains
information from all 35 LR images. If more than one LR pixel is projected onto the same
grid pixel, we use only the closest one.

(a) (b)

Figure 3.12: In (a), five LR images have been projected onto the same HR grid. In (b),
20 images from the pool have been projected. Finally, the grid in (¢) contains information
from 35 LR images. Black pixels represent the unknown information that we want to
recover using inpainting techniques.

Now, we must fill in the unknown pixels, onto which no LR pixel has been projected.
To calculate such information, we use a technique for restoration of degraded photos called
“image inpainting” [114, 7]. The basic idea is simple: it fills in parts of an image using
information from surrounding areas, and several algorithms have been designed for this
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purpose [7, 114]. Commonly, an inpainting algorithm starts by selecting the image regions
to be filled in. Then, the known image information is used to fill in the missing areas.
The techniques should attempt to continue the isophotes (lines of equal gray value) as
smoothly as possible inside the reconstructed region, in order to produce a perceptually
plausible reconstruction [114].

We refer to this method as inpainting-based Super Resolution (/.SR). We implemented
two variations of the method, each one using a different inpainting technique. We explain
such variations in Secs. 3.2.1 and 3.2.2. It is worth mentioning that, since this method does
not solve the system of equations, we might not recover the high-frequency components
lost during the blurring process. As we previously discussed in Sec. 3.1, a low-pass filter
is typically used prior to downsampling in order to prevent occurrence of aliasing. Then,
if we assume that an original high-resolution image Iy z has been blurred and generated
the image I/ (using a Gaussian filter, for example), and the LR observations that we are
super resolving (Fig. 3.10) have been downsampled from I, we expect to reconstruct I
instead of Iy k. Unlike the inpaiting-based Super Resolution, the RLS model is designed
to recover such high-frequency components lost during the blurring process, reconstructing
the original /5. On the other hand, the inpainting-based Super Resolution might run
faster than the RLS-based methods.

3.2.1 First inpainting-based variation (ISR1)

Both ISR variations receive as parameters: the pool of LR images [, the dimensions M
and N of the HR grid that we want to reconstruct, and the matrices 7 mapping each I
onto the grid. It is possible to implement ISR storing in memory, basically, three main
information pieces:

1. The HR image that we want to reconstruct. Initially, the grid is empty.
2. The set .7 of grid positions that might be inpainted (initially, all of them).

3. The minimum distance from each grid pixel to its closest neighbor in the LR images.
We suggest storing such distances because, if more than one LR pixel is projected
onto the same grid pixel, only the closest one might be used.

Then, for each LR image I, the method can quickly find the grid pixel that is closest
to each LR pixel I;(x,y) by performing only two steps:

e First, the matrices 7}, are used to map the LR pixels onto the grid. For each I;(z,y),
the position (2, y') of such pixel projected onto the grid can be calculated by Egs. 3.1
and 3.2.

e Then, rounding the positions (2/,y’), as in the RLS algorithm (see Sec. 3.1), it is
possible to find the grid pixel that is closest to Ix(z,y), and then update the grid
and the set .¥.
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Each variation uses a different inpainting method to fill in the grid intensity pixels that
remain in .. It is important to mention that we advise not to apply any transformation
onto the LR images, because it would cause loss of information. Instead, the matrices 7%
can be used to know exactly the position where each I;(x, y) is with respect to the HR grid,
without applying the transformation. Moreover, each input image can be individually
processed, so there should not be more than one LR image in the memory at the same
time.

The first inpainting technique that we use in our method is based on the work of
Bertalmio et al. [7]. We refer to this implementation as /SR;. The main idea of this
approach is to think of the image intensity as a ‘stream function’ for a two-dimensional
incompressible flow. The Laplacian of the image intensity is transported into the region to
be inpainted by a vector field defined by the stream function. The algorithm is designed
to continue the isophotes continuously from the exterior into the region to be inpainted,
while matching gradient vectors at the boundary of the inpainting region. Their method
is directly based on the Navier-Stokes equations for fluid dynamics [37], which has the
immediate advantage of well-developed theoretical and numerical results.

For a sneak peak showing the potential of this algorithm, Figure 3.13 compares a simple
interpolation to an image super resolved by I.SR;. Fig. 3.13a shows the first LR image in
Fig. 3.10 zoomed by a factor of four, using nearest neighbor interpolation. In Fig. 3.13b,
the super-resolved image generated by IS R;, using all the 35 LR images from the pool.
The dimension of the super-resolved image is four times larger than the LR images in
both axis. In Fig. 3.13c, the blurred HR image that generated the LR observations (such
HR image might not be available in real-world applications, but we show it here only for
visual purposes).

(b) (c)

Figure 3.13: In (a), an LR image is zoomed in by a factor of four using Nearest Neighbors
interpolation. In (b), 35 LR images are super resolved by ISR;. In (c), the blurred image
that generated the LR observations in the pool.

Finally, Fig. 3.14 shows that I SR; generates a reconstructed image very similar to
the original HR image if we do not apply the anti-aliasing filter. As in Fig. 3.13c, we do
not expect to have such original HR image in real-world applications. We only present
it here to show the potential of ISR;. Fig. 3.14a shows the first LR image in Fig. 3.10
zoomed by a factor of four, using nearest neighbor interpolation. In Fig. 3.14b, the super-
resolved image generated by I.SR;, using all the 35 LR images from the pool. Finally,
in Fig. 3.14c, the original HR image that generated the LR observations, without the
anti-aliasing filtering.
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(b)

Figure 3.14: In (a), a LR image is zoomed in by a factor of four using Nearest Neighbors
interpolation. In (b), 35 LR images are super resolved by ISR;. In (c), the original image
that generated the LR observations in the pool.

3.2.2 Second inpainting-based variation (ISR2)

We refer to the second implementation of the inpainting-based Super Resolution as IS Rs,
in which we use the inpainting algorithm proposed by Telea in [114]. The algorithm is
based on propagating an image smoothness estimator along the image gradient, similar
to [8]. The image smoothness is estimated as a weighted average over a known image
neighborhood of the pixel to inpaint. The missing regions are treated as level sets, and
the author use the fast marching method (FMM) [98] to propagate the image information.
Such algorithm is supposed to be simple to implement and faster than other inpainting
methods, and to produce similar results as compared to the other methods.

3.3 Geometric k-Nearest Neighbors Multi-Frame Su-
per-Resolution

Finally, we introduce another super-resolution algorithm that is designed to be even faster
than ISR, and that presents low-memory footprint. To fastly reconstruct an HR image
Iyr from a sequence of input images, we focus now on a direct fusion-based method
formulation (see Sec. 2.2). The Figure 3.15 illustrates the basic idea behind our algorithm.

.. ooo.oo. oosoo’ ® o o o o
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Figure 3.15: (a) Two LR images already aligned in the registration step. (b) New
pixels that will appear in the HR image. (c) For each pixel in the HR image, we find
its geometric nearest neighbor among all pixels in the LR input sequence. (d) The HR
image, composed by pixels from both input images.
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Black and red dots in Fig. 3.15a represent pixels from two LR images I; and Is,
already aligned in the registration step. Then, we create a grid containing the HR pixels,
as Fig. 3.15b shows. In this example, blue and black dots compose the grid (blue dots
are new pixels that will appear in the resulting image, and black dots are pixels in the
HR image that coincide with I; pixels). In Fig. 3.15¢, we choose the nearest neighbor for
each Iyp pixel among all pixels in I; and I5. Finally, the final SR image is composed by
pixels from both Iy and I in Figure 3.15d.

There are different possible policies to choose and combine nearest neighbors geomet-
rically. We investigate five simple variations of this algorithm, always aiming at improving
the quality of the super-resolved image in a small runtime and with a low memory foot-
print. Such variations differ from each other in the choice of the best candidates for each
pixel in the HR grid. We refer to basic algorithm as GSR (Geometric k-NN Super Reso-
lution), and we detail the five variations in Secs. 3.3.1 through 3.3.4. All of them receive
as parameters: the pool of LR images I, the dimensions M and N of the HR grid that
we want to reconstruct, and the matrices 7, mapping each I onto the grid.

3.3.1 GSR1: 1-NN

Let p be a pixel in the HR image (the blue dot in Fig. 3.16a) and ¢, be the nearest pixel
to p in each LR image ;. (each black dot in Fig. 3.16a is the nearest pixel ¢, to p in an
LR image I;). In the first algorithm variation, we chose each p in the HR image exactly
as in Figs 3.15 and 3.16b: using its closest neighbor among all possible values of ¢;. In
other words, we use k-nearest neighbors with £ = 1 to find ¢, from all LR images, and
then another 1-NN to find the closest ¢, with respect to p.

(a) (b)

Figure 3.16: In (a), the blue dot is a pixel p in the HR image, and each black dot is the
pixel ¢, in an LR image [} that is closest to p. In (b), the value of p in GSR; is exactly
the same value as its closest g (the red dot).

We refer to this variation as GSR;. It is possible to implement GSR; storing in
memory, basically, three main information pieces:

1. The HR image that we want to reconstruct. Initially, the grid is empty.
2. The (z,y) positions of the grid pixels.

3. The minimum distance from each grid pixel to its closest neighbor among all the
LR images.

Then, for each LR image [;, the method can quickly find the LR pixel that is closest
to each grid pixel Igg(x,y) by performing only two steps:
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e First, the matrices 7} are used to map the grid pixels onto the LR image (unlike
ISR, in which we map the LR pixels onto the grid). Hence, for each pixel Iyr(x,y)
in the grid, the position (2’,73’) of such pixel projected onto [, is calculated by
Egs. 3.1 and 3.2 (but using the inverse transformation).

e Then, rounding the positions (z’,y’), the difference between 2’ and its rounded value
is the distance in the horizontal axis from Iy to its closest neighbor in /i, and the
difference between ¢y’ and its rounded value is the distance in the vertical axis.

As in the Inpaiting-based method, we advise not to apply any transformation to the
LR images, because it would cause loss of information. Instead, the matrices 7} might be
used to know exactly the (z2/,y’) position where each grid pixel Iyg(z,y) is with respect
to the LR image [,. Moreover, each input image can be individually processed, so there
must not be more than one LR image in the memory at the same time. In doing so, the
memory consumption of this method is O(M x N) for an HR image of M x N pixels.

3.3.2 GSR2 and GSR3: k-NN and Weighted k-NN

In GSR;y, we use only the closest neighbor among the LR images to calculate each HR
pixel. In the other variations of GSR, we also consider other pixels in the nearby. In the
second variation (GSRy), we first use 1-NN to find all g, from the input sequence, exactly
as in GSR;. Then, we use a 3-NN to get the three best values of g;. The resulting pixel
p is an average among such three closest neighbors, as we see in Fig. 3.17.

(a) (b)

Figure 3.17: In (a), the blue dot is a pixel p in the HR image, and each black dot is the
pixel ¢, in an LR image I, that is closest to p. In (b), the resulting pixel p is an average
among its three closest neighbors.

Similarly, GSR3 finds the three best values of ¢, but combines them as a weighted
average. We use static weights (60% for the nearest one and 20% for each other), but
could also set them to be an inverse proportion to their distances. In both GSR, and
G SR3, we store three arrays for the HR pixels of the three closest neighbors, and three
arrays for the three minimum distances. Then, we udpate such arrays for each LR image
in the pool using only vectorized operations, as in GSR;.

Both algorithms GS R, and GSR3 can produce bad results if the three closest values
of ¢x do not form a region which includes p. Figure 3.18 illustrates an example of this
situation: it is possible to find a straight line that passes through p such that all the
three nearest points ¢, are on the same side of the line. In this case, the second and
third nearest g, may not add relevant information to p. In [94], the authors purpose a
Delaunay triangulation for all available points and combine the vertices of the triangle to
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which p belongs. According to [23|, the triangulation can be build in O(nlogn), while
the simplest solution using a k-NN search is O(n). We did not implement this option
to avoid increasing the algorithm runtime for now, but we shall investigate it further as
future work (see Chapter 7).

(a) (b) (c) (d)

Figure 3.18: In (a), the blue dot is the target pixel p and each black dot is its nearest
pixel ¢ from an LR image I. In (b), 3-NN chooses the red pixels to be combined, but
they may not be a good choice because they do not form a region to which p belongs. In
(c), a triangulation is calculated among all black pixels. In (d), p belongs to the triangle
formed by the red pixels.

3.3.3 GSR4: Weighted average within a neighborhood

In GSRy, the target HR pixel p is the average among all ¢, (the nearest pixel from p in
each LR image I};), as illustrated in Fig. 3.19.

(a) (b)

Figure 3.19: In (a), the blue dot is a pixel p in the HR image, and each black dot is the
pixel g, in an LR image I that is closest to p. In (b), the resulting pixel p is the average
among all ¢, (the nearest pixel from p in each LR image I}).

If we have 30 input images, for example, g, is the nearest pixel from p in each of the 30
LR images and p is the average among all of them. The GS R, implementation is similar
to GSRy, but even simpler and faster. Now, we do not store the minimum distances,
only the arrays with the reconstructed HR image and the position of its pixels. For each
LR image, we accumulate in an HR pixel the intensity value of its closest LR pixel in [j.
After all input images, we divide the HR pixels by the number of LR images. We only
ignore an LR pixel if ¢ is far from p by more than two pixels (for example, if a region of
the LR image is located outside the borders of the grid).

3.3.4 GSR5: Weighted average within a circular region

Finally, GS R5 sets a maximum radius distance with respect to p. Each target HR pixel is
calculated as the weighted average among all ¢, within this circular region. The weights
are inversely proportional to their distances.
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(a) (b)

Figure 3.20: In (a), the blue dot is a pixel p in the HR image, and each black dot is the
pixel ¢, in an LR image I, that is closest to p. In (b), the resulting pixel p is an average
among its neighbors inside a circular region around p.

In this fifth variation of GSR, we store in memory an array for the the HR image
that we want to reconstruct, and an array for the positions of the HR pixels. Then, for
each LR image [, we map the grid positions onto the LR image, round the positions to
fastly calculate the distance from each HR pixel to its closest pixel in /i, and then create
the weights (inversely proportional to the distances). We use such weights to accumulate
the intensity pixels for all the LR images, and in the end we divide them by the sum of
weights.

It is worth mentioning that there should not be more than one LR image in memory
at the same time in all five implementations of GSR, and the memory consumption can
be O(M x N) for an HR image of M x N pixels.
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Chapter 4

Validation of the super-resolution
methods

For a quantitative validation of a super-resolution algorithm, it is a standard practice in
the literature to choose an HR target image Iz and generate a series of LR versions of it.
Then, those LR images might be super resolved onto an image /g, and Iz can be used
as a ground-truth for /gz. In Figure 4.1, an HR image generates a pool of LR images (1,
Iy, I3 and 1), that might be used as input for the super resolution.

Figure 4.1: For a quantitative validation of a SR method, an HR image (Iyr) generates
a pool of LR images (I, I5, I3 and I). Then, such LR images can be combined and super
resolved onto a higher resolution image Isg.

The most similar, according to a given similarity measure, the super-resolved image is
to the original one, the most accurate the super resolution. This is a fictitious situation,
but allows us to quantitatively compare algorithms. For a qualitative evaluation, as there
is no target image in most applications, the results from one algorithm often are visually
compared to images generated by other techniques. As most works in the literature, we
use both qualitative and quantitative validation forms to evaluate our algorithms. We
divide the validation into three parts:

This chapter is divided into two parts: first, in Section 4.1, we explain the adopted
experimental methodology to validate the SR methods described in Chapter 3, and we
show quantitative results for the proposed methods; then, in Section 4.2, we perform
a qualitative evaluation of the algorithms, applying them to an always-on low-power
environment. We implemented all experiments using Python 2.7 and the OpenCV 3.1
library [12, 49]. To measure the runtimes and memory footprints, we use a single machine
with Intel Core i7 processor, 2.0GHz x4, 8Gb RAM, and 64-bits Ubuntu 16.04.
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4.1 Experiment #1: Quantitative validation of the SR
methods

In this first experiment, we perform a quantitative evaluation of all proposed methods for
multi-frame super resolution (RLS, RLSO, RLSU, ISRy, ISRy, GSR;, GSRy, GSR3,
GSR4, and GSRs5, described in Chapter 3). All of them need an initial step, before
the reconstruction, to align the input images. The general pipeline for our methods is

illustrated in Figure 4.2:

oo

LR images Registration Reconstruction HR image

Figure 4.2: Common pipeline for our super-resolution algorithms. The registration step
calculates the transformation matrices mapping the first LR image onto the others. Then,
in the reconstruction step, our algorithms combine the LR images into an HR grid. The
ultimate result is the super-resolved HR image.

The dataset for this first experiment is presented in Section 4.1.1. We describe the
whole process to generate the pool of LR images, and to calculate the transformation
matrices among them. Then, in Section 4.1.2, we explain the registration methods that
we use in this first experiment. The validation metrics used are detailed in Section 4.1.3.
Finally, in Section 4.1.4, we show the obtained results.

4.1.1 Dataset #1

To create a pool of LR images for the quantitative evaluation, we first collected 100 digital
images to be target for our super-resolution techniques. We separate such images into
two subsets:

1. The subset 2, contains 70 images' with dimensions of 512 x 384 pixels. The target
image in Fig. 3.14c, for example, belongs to this subset.

2. The subset %, contains 30 images? with higher dimensions, up to 6,000 x 4,000
pixels (e.g., the target image in Fig. 1.1).

!The images in %, have been collected from UCID, an uncompressed color image dataset [95].

2The images in %, have been collected from http://www.gratisography.com/. The images are
free of Copyright Restrictions, under “Creative Commons Zero” license, and dedicated to pub-
lic domain. Anyone can copy, modify, and distribute them, without asking permission. See
hitp://creativecommons.org/publicdomain/zero/1.0/ for more details.
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In order to generate n low-resolution versions of each image Iy in 2, and %, we
created n random transformations to be applied to Iyr. The transformation from the
target image to each LR image is composed by a rotation matrix R around the center of
the image, a scaling matrix S, and a translation matrix 7. Before the transformation,
we apply a Gaussian blur on Iy to avoid the occurrence of aliasing after the downscale,
generating an image I. Then, an LR image I,z can be described with respect to I4:

cos  sinf (1 — cosh)-x — sinb-y 10 t, s 00
Itr = | —sinf cosf sinf-x+ (1 —cosf)-y | |0 1 ¢, [ |0 s O] 1c
0 0 1 00 1 0 01
I1r = (RTS)Ig

Additionally, we are able to calculate what should be the “correct alignment” among
the LR generated images. Let Ry, 77 and S;, be the transformation matrices mapping an
HR image I; onto the first LR image ;. We can write /5 with respect to Iy, as:

]1 - (RlTlsl)]Gy
Ig = (R\T)S,) "', (4.1)

Now let Ry, T} and S be the matrix mapping the HR image I onto an arbitrary LR
image I (k € [2,n]):

I, = (R T1.S) I, (4.2)
I = (RT3, S) (R TyS1 ) M. (from Equations 4.1 and 4.2)

Finally, let ¥, be the matrix (R, T},Sy)(RiT1Sy) %
I = U, 1. (4.3)

In Figure 4.3, we see the matrices mapping the HR image I onto all n LR images,
and the matrices ¥, mapping I; onto the other LR images I;.

RiTiS: //, < N

R,T,S,
RQTQSQ \RkaSk \
Il W, ]2 Ik In
%/’
Yy,

Figure 4.3: Correct alignments can be found by calculating the matrices ¥;, mapping
I; onto the other LR images Ij.

From Equation 4.3, we have transformation matrices ¥, to describe any LR image



CHAPTER 4. VALIDATION OF THE SUPER-RESOLUTION METHODS 49

Iy (k € [2,n]) with respect to I;. The matrices ¥, are exactly the transformations that
should be found in the registration step of the super-resolution algorithms. The more
similar a registration matrix is with respect to ¥, the more accurate will be the super-
resolved image. We further refer to ¥} as the “correct alignment” among the LR generated
images.

Each LR image of the pool was then cropped, so there will be no borders or empty
spaces due to the previous transformations (see Figure 4.4 for details).

(a) (b) () () (e)

Figure 4.4: The HR image in (a) is followed by a decreasing scale in (b), and may
contain empty spaces after the rotation and translation in (c). In (d), we see the area to
be cropped, and in (e) the final LR image.

The cropping area is the same for all LR images (we consider the maximum possible
values for rotations and translations from the input file). In Figure 4.5, we see examples
of LR versions of an HR image from the subset %.

Figure 4.5: Two LR versions of an HR image from the subset %,.

Every HR target image generated 100 random LR images (with size 25% of the orig-
inal image). Therefore, we have a dataset with 100 target images, 100 x 100 = 10,000
transformations R, 7),Sk, 99 x 100 = 9,900 matrices ¥, and 100 x 100 = 10,000 LR im-
ages to be reconstructed. It is worth mentioning that two LR images in this first dataset
do not differ from each other by a perspective transformation, since we apply only rota-
tion, scaling, translation and the anti-aliasing filter to the original image. We evaluate if
the proposed SR methods can handle perspective transformations in the Experiments #2
(Sec. 4.2.1) and #3 (Chap. 6).

4.1.2 Registration step

The “correct alignment”, described in Sec. 4.1.1, may not be available in real-world appli-
cations, but it is an important aid for evaluating algorithms. When we have such setup,
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every inaccuracy in the super-resolved image comes from the reconstruction step, and is
not due to an incorrect registration. In this first experiment, since we generate the pool
of LR images from a set of collected HR original images, we have all the matrices ¥, with
the correct mapping from any LR image I;, (k € [2,n]) to I;. Hence, we use such correct
alignment to evaluate the super-resolution algorithms proposed in Chap. 3.

Additionally, we also perform a registration step, prior to the reconstruction, trying
to approximate this experiment to real-world situations. Given a set of n LR images
Iy, I, ...1I,, we find representative keypoints and descriptors in all images and then match
the keypoints in I; to keypoints of I} for each k& € [2,n]. The best matches between I;
and each [, are used to estimate a transformation ®,. Thus, we write I with respect to
1, as follows:

The aim is to find a matrix ®, as similar as possible to the correct matrix ¥,. We
do not design a new registration technique herein. Instead, we evaluate three well-known
and established feature detectors to find the mentioned keypoints and descriptors: Scale-
invariant feature transform (SIFT) [68, 69], Speeded Up Robust Features (SURF) [6] and
Oriented FAST and Rotated BRIEF (ORB, purportedly a fast and efficient alternative
to SIFT) [93]. All of them are provided by the OpenCV library [12, 49]. The points are
matched using k-NN and Flann [75, 43]. To illustrate the mapping between two images,
we use SIFT to find representative keypoints in Figure 4.6. Each line in such figure
represents one match between two input images. The green polygon shows the position
of the first image with respect to the second one.

Figure 4.6: Matches between two LR images using SIFT.
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4.1.3 Validation metrics

There are three standard metrics to evaluate the similarity between two images: Mean
Squared Error (MSE), Peak signal-to-noise ratio (PSNR) and Structural Similarity Index
(SSIM) [124]. We validated the experiment results using these three metrics, but we show
only the SSIM results in this chapter (see Appendix A for results with PSNR and MSE).
The structural similarity is designed to improve on traditional methods like PSNR and
MSE, and its results are more similar to human perception [123|. It attempts to measure
the change in luminance (modelled as pixel intensity), contrast (variance between the
reference and distorted image), and structure (cross-correlation between the two images)
in an image:

(2papty + C1)(200y + Cs)

SSIM —
) = e T ol + ol T Go)

(4.5)

where p, and p, are, respectively, the local sample means of x and y, o, and o, are,
respectively, the local sample standard deviations of x and y, and o,, is the sample
cross-correlation of x and y after removing their means. The items C; and C5 are small
positive constants that stabilize each term, so that near-zero sample means, variances,
or correlations do not lead to numerical instability. The SSIM index is computed locally
within a sliding window that moves pixel-by-pixel across the image, resulting in an SSIM
map. The SSIM score of the entire image is then computed by simply averaging the SSIM
values across the generated map. The maximum value SSIM = 1 happens if and only if
the two images are equal. The higher the SSIM value, the more similar one image to the
other.

4.1.4 Results

The results of this first experiment are divided in seven rounds:

e Round #1: Comparison among different values for the parameters of the RLS
algorithm: o (the standard deviation of the Gaussian distribution); d (an integer
such that the radius » = d x o defines the kernel size); and « (the regularization
parameter). Objective: To find the best parameters for Regularized Least Squares.

e Round #2: Comparison among the three implementations of the RLS algorithm,
using the best combination of parameters found in the previous round. Objective:
To find the most efficient implementation of RLS with the best SSIM values.

e Round #3: Comparison among the two variations of the inpainting-based algo-
rithms. Objective: To find the most efficient implementation of /SR with the
best SSIM values.

e Round #4: Comparison among the five implementations of the Geometric k-Nearest
Neighbors Multi-Frame Super-Resolution. Objective: To find the most efficient
implementation of GSR with the best SSIM values.
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e Round #5: Comparison among the best RLS implementations, the best inpainting-
based algorithm, and the best variation of GSR. Objective: To find the most
efficient reconstruction algorithm with the best SSIM values.

e Round 7/6: Comparison among our best SR algorithms and other reconstruction
techniques available in the literature. Objective: To put the designed solutions in
perspective with respect to existing counterparts in terms of efficiency and effective-
ness.

e Round #7: Comparison among the feature detectors SIFT, SURF, and ORB, and
the correct alignment. Objective: Point out out the most appropriate registration
algorithm for our purposes.

The reconstructed images in this experiment are 4x higher than the LR images in
all rounds, so the dimensions of a super-resolved image gy is always the same as the
target image Iyr. The reconstruction algorithms are always performed using from 2 to
50 random LR images. The results in the charts are showed as a function of the number
of images in the input sequence.

Round #1 - Best parameters for RLS

In order to super resolve a series of LR input observations using the original RL.S model,
described in Chap. 3, we need to specify the parameters o (the standard deviation of the
Gaussian distribution), d (an integer such that the radius r = d x o defines the kernel
size) and « (the regularization parameter). In this first round, we test RLS using different
values for this three parameters.

In Sec. 4.1.1, we discussed that the original images Iz from the dataset have been
blurred before the downsampling, generating the images /;. We applied a Gaussian filter
with o = 0.5 to create such images in this round. Hence, we expect that ¢ = 0.5 might
be the best value for the standard deviation in the equations of the RLS linear system.
We also execute the method using o € {0.3,0.7} to evaluate how the results change as
we increase or decrease such parameter. In addition, we discussed in Chap. 3 that, when
computing a discrete approximation of the Gaussian function, pixels at a distance of more
than 30 are small enough to be considered effectively zero. Hence, we expect d = 3 as a
good choice for the kernel parameter. Similarly to o, we evaluate how d € {1,5} impacts
the results. Finally, in our implementation of the original RLS model, we use the Ridge
regression model from the Scikit-Learn library [85] to solve the Tikhonov regularization.
The default value for the regularization parameter is a = 1.0, and larger values specify
stronger regularization®. We execute the method using the default value for a, and also
with a € {0.1,0.5} (reducing the conditioning of the problem).

We start by finding the best values for o and d (the parameters of the anti-aliasing
filter). First, we use a = 0.1 and different values for o and d, for all images in %,. The
best Gaussian parameters for such « are ¢ = 0.5 and d = 3, on average, but the results
for d = 5 are very similar to d = 3 (the chart including all combinations of o and d is in

3Regularization improves the conditioning of the problem and reduces the variance of the estimates.



CHAPTER 4. VALIDATION OF THE SUPER-RESOLUTION METHODS 53

Appendix A). We then use the pairwise Wilcoxon test [125], with Bonferroni correction [33]
and 95% of confidence, to calculate the statistical difference among all the averages in the
chart. The Wilcoxon test verifies how likely is to the results have occurred by chance,
and the Bonferroni correction adjusts the results of such test to decrease the number
of false-positives when we have multiple comparisons (e.g., the multiple algorithms in
Fig. A.7). The Wilcoxon test indicates there is statistical difference between the two best
combinations for ¢ and d (¢ = 0.5 and d € {3,5}) for any number of input images n > 1.
Such difference might not have occurred by chance, but because of the variation of the
parameters. In addition, for all n > 1, we produce best similarities with (o = 0.5,d = 3)
for the most target images in the pool (e.g., using 50 LR images as input, 87% of the
SSIM results are higher with this combination of values for o and d).

Finally, RLS with ¢ = 0.5, d = 3, and o = 0.1 generated super-resolved images more
similar to the target image [yp than the blurred image I (that generated the input
images for the super resolution) for all n > 30, with statistical difference between them.
Therefore, we can claim that the multi-frame super resolution using Tikhonov regulariza-
tion and the adaptive Gaussian filter could, indeed, recover high-frequency components
lost during the blurring process.

For a better visualization of the results, in Fig. 4.7, we reconstruct one of the images
from the subset 2, using 0 = 0.5, d = 3, @ = 0.1, and 50 LR images as input. Then,
Fig. 4.7b shows an LR image from this subset zoomed in by a factor of four. Fig. 4.7c
shows the blurred image I that generated the input images for the super resolution, and
Fig. 4.7d shows the target image [y that generated I;. The super-resolved image in
Fig. 4.7a not only presents the highest SSIM, but it is also visually more similar to Iy
than /5 and than the interpolated image.

v

(a) RLS (SSIM=0.74) (b) NN Interpolation (SSIM=0.43)

(¢) I (SSIM=0.64) (d) Target HR image Iypr

Figure 4.7: In (a), 50 LR images from the subset %, are super resolved by RLS using
o =05 d=3 a=0.1 In (b), an LR image is zoomed in by a factor of four using
Nearest Neighbors interpolation. In (c¢), the blurred image I that generated the input
sequence. In (d), the target HR image Iy .

Then we find the quality of RLS for a = 0.5. When we use n > 40 images as input,
the best SSIM values are found with (0 = 0.5,d = 3), on average. However, such highest
similarity seems very similar for (¢ = 0.5,d = 5) and (o0 = 0.7,d = 1) (the chart including
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different values of o and d for « = 0.5 is in Appendix A). We then verify the algorithm
that produces the highest similarities for the most target images. Using up to n = 30 LR
images as input, the best SSIMs are found with (0 = 0.7,d = 1). Then, the similarity
becomes higher using (o = 0.5, d = 3). The Wilcoxon test indicates a statistical difference
between (o = 0.5,d = 3) and (0 = 0.7,d = 1) only for n > 50.

Finally, we verify the best parameters of the anti-aliasing filter using v = 1.0. Unlike
a = 0.1 and o = 0.5, the results for a = 1.0 are better using (¢ = 0.7,d = 1) than using
o = 0.5, on average. The combination of parameters (¢ = 0.7,d = 1) also produces the
highest similarities in the most target images for all n > 2. Moreover, RLS with such
values is statistically different from all the other combinations, for all n > 2.

Fig. 4.8 summarizes the best values for o and d using each o € {0.1,0.5,1.0} (see the
individual charts in Appendix A). We can see that the best combination of parameters
for RLS in this experiment is (0 = 0.5,d = 3, = 0.1). According to the Wilcoxon test,
such combination has statistical difference with respect to all others in the chart, for all
1 < n < 50. In addition, for all target images in the dataset, and for any number n of input
LR images, the best SSIMs are found with (o = 0.5,d = 3, = 0.1). This combination is
also the one whose similarities outperform the blurred image I, for n > 30.
Best alpha for the Regularization
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Figure 4.8: Best SSIM values for RLS using o € {0.1,0.5,1.0}.

As we previously discussed, pixels at a distance of more than 3¢ are small enough to
be considered effectively zero in a discrete approximation of the Gaussian filter, so we
expected d = 3 as a good choice for the kernel size. Besides, the aforementioned results
show that the similarity values do not increase for d > 3.

Moreover, it is worth mentioning that we expected o = 0.5 as the best value for the
standard deviation, given that the original HR image Iy has been blurred with o = 0.5.
Hence, the chart in Fig. 4.9 shows RLS results when the original image is blurred with
o = 0.3, instead of 0 = 0.5 as in the previous charts. Although the best SSIM in Fig. 4.9
are found with ¢ = 0.3, we still have good results when we reconstruct the images using
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o = 0.5 (additionally, such results are statistically different than using o = 0.3 for n < 30
LR input images).

RLS (original image is blurred w/ sigma=0.3)
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Number of input images for SR

Figure 4.9: SSIM values for RLS when the original image is blurred with ¢ = 0.3.

Finally, the chart in Fig. 4.10 shows the RLS results when the original image is blurred
with ¢ = 0.7. Unlike the chart in Fig. 4.9, the best SSIM values in Fig. 4.10 are found
with 0 = 0.5. Therefore, we suggest using 0.5 as the parameter ¢ in the RLS algorithm
even when we do not know which ¢ has been used during the formation of the LR images.

05 RLS (original image is blurred w/ sigma=0.7)
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Figure 4.10: SSIM values for RLS when the original image is blurred with o = 0.7.

We now turn our attention to verifying how these three parameters impact the runtime
of the original RLS model. First, we notice in Fig. 4.11, that the first implementation
of RLS runs in linear time as we increase the number of input frames to super resolve.
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Moreover, although the regularization parameter a = 0.1 produces images with the best
SSIMs, its execution time is slightly slower than for a € {0.5,1.0}.

RLS runtime with different values for alpha
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Figure 4.11: RLS runtime using different values for a.

Unlike the regularization parameter, the best value for the Gaussian standard deviation
is not the slowest one. Fig. 4.12 shows that the method runs faster with ¢ = 0.5 than
using o = 0.7. Indeed, a smaller o inserts less constraints to the linear system (since the
kernel size is given by d x o), and, as a consequence, the system is more quickly solved.

RLS runtime with different values for sigma

160 T T T T | |
BHE sigma=0.3 d=3 alpha=0.1
140 H®®.sigma=0.5 d=3 alpha=0.1.| ... ... . g S
9-¢ sigma=0.7 d=3 alpha=0.1
120 | o e S
SR T(0) S R T T B
B SOp e e e
S G0 | i S -
T _— = e
20 iy . e e
0 . . . !

12 5 10 20 30 40 50

Number of input images for SR

Figure 4.12: RLS runtime using different values for o.

Similarly, the higher the value of d, the slower the runtime to solve the system (see
Fig. 4.13). Hence, we suggest using d = 3 instead of d = 5, since the system becomes
slower as we increase d but the quality of the solution does no increase.
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RLS runtime with different values for the kernel size
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Figure 4.13: RLS runtime using different values for the kernel size.

As we previously discussed, in RLSO, we do not specify the parameter d. Instead,
we divide the grid into imaginary cells, and the LR pixels inside each area contributes
only to its closest grid pixel (see Chap. 3 for more details). Hence, we tune the second
implementation selecting only the best values for ¢ and «. The best results for this
optimization, on average, are found with ¢ = 0.7 and a = 0.1 (the complete chart is in
Appendix A).

In addition, for all 1 < n < 50, and for all target images in the pool, the highest SSIM
are also found using RLSO with ¢ = 0.7 and a = 0.1. The results for such combination
is statistically different from the results using all the other values. The chart in Fig. A.10
shows that the best results for this optimization are, on average, only slightly better than
the blurred image. The Wilcoxon test indicates that the similarities produced by RLSO
using such combination of parameters are statistically similar to /5 for 30 < n < 40. Then,
they become statistically different for n > 50, when RLSO outperforms the blurred image
for the the most images of the dataset (as in the chart in Fig. A.10).

The regularization parameter impacts the runtime of RLSO as in the original model.
The chart in Fig. 4.14 shows that the optimized RLS also runs in linear time as we increase
the number of input frames, and that the execution time for a = 0.1 is slower than for
a € {0.5,1.0}. However, Fig. 4.15 shows that ¢ does not affect the RLSO runtime as it
impacts RLS.

In the original model, the kernel size is defined by r = ¢ x d. Hence, we add more
information into the linear system when we increase the standard deviation of the Gaus-
sian distribution. In RLSO, we have a fixed-size kernel, so the execution time does not
have a significant variation as we increase o.

In the RLSU implementation, we must consider only the parameter a. The best
value for such regularization parameter using the uniform distribution, on average, is
a = 0.1 (for the complete chart, see Appendix A). RLSU with a = 0.1 is also statistically
different than using a € {0.5,1.0}. In addition, the images super-resolved by RLSU are
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Figure 4.14: RLSO runtime using different values for a.
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Figure 4.15: RLSO runtime using different values for o.

more similar to the target Iyr than the blurred image I5 for n > 30, with statistical
difference between them.

Finally, we see in Fig. 4.16 that the regularization parameter impacts the execution
time of RLSU exactly as in the other two implementations.

In the light of the foregoing results of this first round, we conclude that the regulariza-
tion parameter o = (.1 produces super-resolved images with the highest SSIMs in all the
three implementations of RLS. In addition, we suggest using ¢ = 0.5 in both RLS and
RLSO, and d = 3 in the original RLS implementation. In Round #2, we check which of
the variations of RLS has the best reconstruction effectiveness.



CHAPTER 4. VALIDATION OF THE SUPER-RESOLUTION METHODS 59

RLSU runtime with different values for alpha

30 T T T T T I
©0 sigma=0.5 d=3 alpha=0.1 q
OO sigma=0.5 d=3 alpha=0.5 . . .
25 H V-V sigma=0.5 d=3 alpha=1.0-} - ---- - R e e .
20 | S SO -
- S e s !
= . . . .
10 S S .
5 5 ﬂ v
o A o S S |
9 @ ?
k2 ¥ | | | |
12 5 10 20 30 40 50

Number of input images for SR

Figure 4.16: RLSU runtime using different values for a.

Round #2 - Best RLS variation

In this round, we summarize the quality of the three variations of RLS, on average, using
the best combination of parameters that we found in the previous round. Each curve of
the chart in Fig. 4.17 is the similarity for all the target images from the subset Z;, on
average. We have three setups to choose the best RLS method:

Best RLS variation

0.55
0.50
0.45
0.40
0.35
0.30
0.25

SSIM

@@ Linear interp.
@@ RLS sigma=0.5 d=3 alpha=0.1

0.20 — """ """"" """""""""" @@ RLSO sigma=0.7 alpha=0:1 - -
: : : : X Q0 RLSU alpha=0.1
0.15 | L l | i
12 5 10 20 30 40 50

Number of input images for SR

Figure 4.17: SSIM values for the three implementations of RLS.

e For n < 30, RLSU outperforms RLSO and the original RLS model, on average (as
we see in Fig. 4.17). RLSU also found the best similarity values for the most target
images in the pool, and it is statistically different from the other implementations
(according to the Wilcoxon test).
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e The RLS and RLSU results are similar for n = 30. Indeed, the Wilcoxon test
identifies there is no statistical difference between such methods for this number of
input images.

e Finally, if we super resolve at least 30 images, RLS not only becomes the best
implementation on average (see Fig. 4.17), but also produces SSIMs higher and
statistically different than RLSO, RLSU, and than the blurred image /.

The original RLS model generates images with higher SSIMs for n > 30, but it is
almost three times slower than the two optimizations. The chart in Fig. 4.18 shows the
execution time for all RLS variations. Hence, RLSU might be a good solution, since its
results are only slightly worse than RLS, and its execution time is significantly slower. It
is worth pointing out that RLSU does not use the Gaussian filtering to create the linear
system, but its results are better than RLSO (even using input images that have been
previously blurred with the Gaussian filter). Hence, the algorithm might be useful even
when we do not know much about the filtering in the downsampling process.
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Figure 4.18: Runtime for each implementation of RLS.

Round #3 - Best ISR variation

Now, we turn our attention to the inpainting-based super-resolution method itself. As
we discussed in Chap. 3, ISR is not designed to recover the high-frequency components
lost during the blurring process. Therefore, we do not expect that the inpainting-based
algorithms to produce SSIMs higher than /5. Fig. 4.19 shows that the quality of the
first variation is higher, on average. When we verify which /.S R implementation produces
higher SSIMs for the most target images in the pool, /SR, is also the best variation in
100% of the target images. Additionally, its results are statistically different from ISR,
for all 1 < n < 50.
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Figure 4.19: SSIM values for the two inpainting-based methods for super resolution.

We see in Fig. 4.20 that the inpainting-based methods do not run in linear time as
we increase the number of input frames to super resolve. If we have 50 LR images to
reconstruct, for example, there may be less unknown pixels to fill in than if we have only
20 input observations. The less missing pixels in the grid, the faster the super resolution
may finish. Moreover, .S Ry not only produces super-resolved images with higher quality
than 1SRy, but is also faster.
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Figure 4.20: Runtime for each implementation of ISR.
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Round #4 - Best GSR variation

Fig. 4.21 shows the quality of the images super resolved by the five variations of the
Geometric k-Nearest Neighbors Multi-Frame Super-Resolution.

Geometric KNN Super-Resolution
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Figure 4.21: SSIM values for the five variations of GSR.

The GSR results are all very similar, on average (except for GSR,, with the worst
results). The similarities found by GSR; and GSR3 in the chart are only slightly higher
than GSRy; and GSRs5 in the chart. However, the Wilcoxon test indicates statistical
differences from GSR; to all the other variations, and this first implementation found
higher SSIMs in the most target images for all 1 < n < 50.

The first variation is also the fastest one, as we see in Fig. 4.22. In addition, similarly
to RLS, the execution time for all the five variations of GSR grows linearly when we
increase the number of input images. The chart in Fig. 4.22 also shows that the all GSR
variations can super resolve up to 50 LR images from the subset &, in at most one second,
on average.

Round #5 - Best reconstruction method

We then plot the execution time for RLS, RLSO, RLSU, ISR, (the best inpainting-
based variations) and GSR; (the best implementation of GSR) altogether in Fig. 4.23.
For this setup, GSR; is two orders of magnitude faster than RLS, on average.

By contrast, RLS outperforms both ISR and GSR when we compare the quality of
the solution in Fig. 4.24 (see Appendix A for the comparison using PSNR and MSE).

We see in Fig. 4.24 that only the algorithms based on the Tikhonov regularization
produce images with higher similarity values than the blurred image I (i.e., only the
three RLS variations can recover high-frequency components of the target image that
have been lost during the blurring process). Comparing all the methods, we have the
following setups for the best super-resolution method:
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Figure 4.23: Runtime for RLS, ISR and GSR.

e For n < 20, GSR; produces super-resolved images more similar to the original
target image Iy than all the other methods, with statistical difference. Therefore,
GSR might be the best choice for super-resolving just a few images.

e For n = 20, RLSU finds the highest similarities.

e The best results for n = 30 are found with RLS and RLSU (there is no statistical
difference between them).

e Finally, if we super resolve more than 30 images, RLS produces the highest SSIM
values (even if we compare it to /), with statistical different. In addition, RLSU
is still very competitive.
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Figure 4.24: Comparison among RLS, ISR and GSR.

The high efficiency of GSR lets us execute the algorithm also using images from the
subset %, as input. It is the only proposed method that is adequate for high-resolution
input images. We see in Fig. 4.25 that all the variations run quickly and linearly even
when we super resolve such input images with higher dimensions. On average, we can
combine 50 observations with dimensions 6,000 x 4,000 pixels into an image Igg of size
24,000 x 16,000 pixels in less than one minute (only 20 seconds if we use GSR;).

Runtime for every GSR variation (target images from the subset D2)
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Figure 4.25: Runtime for each implementation of GSR using only images from the
subset %, from the Dataset #1.

Fig. 4.26 compares the runtime of GSR in logarithmic scale to IS R;. Note that, due
to the higher dimensions of the images from the subset %,, we could calculate the super
resolution only for at least 30 input observations with the inpainting-based method in
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such setup (the more images to super resolve, the faster is the ISR execution time, as we
previously discussed in this section, since we have less missing pixels to inpaint). Only
G SR, among all methods proposed in Chap. 3, has shown to be adequate for input images
with such high dimensions.

Runtime for GSR and ISR (target images from the subset D2)
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Figure 4.26: Runtime for /SR; and each implementation of GSR, using only images
from the subset %, from the Dataset #1.

Moreover, it is important to point out that RLS assumes that the low-resolution
observations undergo a blurring process, prior to the downsampling, to avoid the aliasing.
The goal of such algorithm is to reconstruct the original target image Iy, while ISR
and GSR aim to reconstruct exactly the image that generated the LR images in the pool
(Ig, in all the previous setups in this experiment). Nevertheless, if we do not know details
about the formation of the images (or if we know that the original image has not been
blurred), GSR might be the best solution.

In Fig. 4.27, we reconstruct the same LR images than in the previous chart, but
we measure the similarity between each super-resolved image Isr to the blurred image
Ig. In other words, we forego the anti-aliasing filter, and calculate the quality of the
reconstruction with respect to the image to which we applied the downscaling and the
affine transformations. We can see in Fig. 4.27 the SSIMs produced by GSR; are, on
average, almost 1.0 (the maximum value for this similarity metric). Such method is also
statistically different from the others. Additionally, we note in this chart that, now, the
original RLS model has the worst results among the proposed methods. It happens
because the image RLS is aiming to reconstruct is not the one we are comparing to. For
all those reasons, we emphasize that the best solution to super resolve a set of images
is highly dependent on the application. This is mainly due to the different constraints
imposed on the problem under different setups.

Hence, we perform a last set of experiments in this round:

e First, we select an HR image Iy from the subset %, (the same image as in Fig. 4.6)
to be the target for the super resolution.
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Figure 4.27: Comparison among RLS, ISR and GSR, with respect to the blurred image
that generated the pool of LR images.

e Then we use the affine transformations (rotations, translations and scale), to create
the pool of LR images, without applying the Gaussian blur in the target image. In
this case, there is no image I between Iz and the LR observations.

e We select only the fastest methods (GSR and I.SR) to super resolve the LR images,
since the images in %, have higher dimensions.

We can visualize the results in Fig. 4.28 for super resolving n = 50 LR input images
with GSR; and G'S R3 (the two best results among the G.SR variations), G.S R, (the worst
GGSR variations), and also ISR;. For a better visualization of the reconstructed details,
Figure 4.28 shows only a piece of the HR images. The green rectangle in Fig. 4.28g shows
such piece in one of the LR images. We can see that even our worst result is visually more
accurate than the simple interpolation. In addition, our best results are very similar to
the target image.

Fig. 4.29 shows the memory footprint of the proposed methods. All variations of GSR
require approximately the same memory, so we plot only GSR; in the chart. Likewise, we
plot only the first inpainting-based method, as the memory footprint of /.S Rs is similar to
ISR;. RLSO also requires approximately the same memory as RLSU, then we plot only
RLSU in the chart. We notice in the chart that the memory footprint of GSR and ISR do
not change as we increase the number of input images. In addition, the memory footprint
of the RLS optimizations is two orders of magnitude lower than the original model, but,
even so, such algorithms are not competitive with respect to GSR and ISR in terms of
memory footprint.

Round #86 - Comparison to other methods in the literature

Finally, we compare our algorithms to other reconstruction methods available in the
literature. From all the multi-frame super-resolution methods proposed between 2015
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(g) LR image

Figure 4.28: 50 LR images from the subset %, are super resolved by GSR; (a), GSR;3
(b), GSRy (c), and ISRy (d). In (e), an LR image zoomed in using nearest-neighbor
interpolation. In (f), the target image. In (g), one of the LR images. The green rectangle
highlights the piece of the image that we show from (a) to (f).

and 2017 [103, 131, 40, 126, 50, 74, 44, 51, 71, 60, 62, 55| that we cited in Chap. 2,
only Maiseli et al. [50], Kohler et al. [60] and Kato et al. [55] provided us with their
source codes for our experiment. However, the work in [55] considers only shifts between
LR observations. Therefore, we do not use such algorithm in this experiment, since the
images in our dataset differ from each other by both translations and rotations.

We include four methods of the literature in our comparison (see comparison with
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Figure 4.29: Memory footprint of the proposed methods.

other traditional SR methods in Appendix A):

e The recent work of Kohler et al., an iteratively re-weighted optimization for robust
super resolution [60]. We refer to this method as “Kohler 2016”.

e The SR method proposed by Maiseli et al. [50], that uses an adaptive diffusion-based
regularizer. We refer to such method as “Maiseli 2015”.

e The work of Pham et al. [86] (implemented by Vandewalle et al. in [122]), a Direct
Method that uses a structure-adaptive normalized convolution. Such method was
shown to outperform traditional methods based on IBP [45, 46|, PG [83, 41], Robust
Super Resolution [138], and POCS [109, 34, 136] (see Section 2.2 for more details
about these methods). We refer to this method as “Pham 2006”.

e A traditional MAP-based algorithm implemented by Kdohler et al. [60], that uses
Gaussian filtering to write the system of linear equations (such as our RLS algo-
rithm) and solve the system using Scaled conjugate gradient optimization [9]. We
refer to this method as “MAP-based”.

Only “Pham 2006” produces RGB images. The other three methods work only for
grayscale images. In this setup, we use up to 50 input images as input to reconstruct an
image 4x higher in both axes. The chart, in Fig. 4.30, shows that these four implemen-
tations produce SSIM values lower than RLS, ISR;, and GSR;. The work of Maiseli
et al. [50] does not work correctly for more than 10 input images, with the provided
implementation.

Fig. 4.31 shows the method of Kéhler et al. [60], which produces the best SSIMs among
the literature methods in Fig. 4.30, is also the slowest one (four orders of magnitude slower
than GSR;) in this experimental setup. The running time of the other methods are more
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Figure 4.30: Quality of different reconstruction algorithms as a function of the number
of LR input images.
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Figure 4.31: Quality of different reconstruction algorithms as a function of the number
of LR input images.

similar to our RLS variations. As expected, GSR; is the fastest method of the chart
in 4.31.

In Fig. 4.32, for the sake of completeness, we compare our algorithms to single-frame
interpolations: (1) Nearest neighbor interpolation; (2) Bilinear interpolation; (3) Bicu-
bic interpolation (4 x 4 pixel neighborhood); and (4) Lanczos interpolation (8 x 8 pixel
neighborhood).

Finally, in Fig. 4.33, we visually compare our results (using 30 input images) to “Kohler
2016”7, to “Pham 2006” (both using also 30 LR images) and to a linear interpolation.
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Figure 4.32: Our super-resolution methods versus single-frame interpolations.

(b) RLS, SSIM=0.71 (c) GSRy, SSIM=0.62

(d) Linear Interp., SSIM=0.45 (e) Pham 2016, SSIM=0.42 (f) Kohler 2016, SSIM=0.51

Figure 4.33: Visual comparison among our results (using 30 input images) to “Kohler
2016”, to “Pham 2006” (both using also 30 LR images) and to a linear interpolation.

Round #7 - Registration

We now bring to bear the discussion about the most appropriate registration method
to be used along with the super-resolution methods previously presented and validated.
For a fair comparison among the three feature detectors we present in this work (SIFT,
SURB, and ORB), we choose only one algorithm for the reconstruction step in each chart
of this last round. Hence, different SSIM values in the results are exclusively due to the
registration step. Additionally, in all charts, we also plot the quality using the correct
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alignment, to visualize the best results that the registration methods could achieve. As
we previously discussed, it is worth pointing out that such correct alignment might be
only available in lab conditions, for comparison purposes.

First, Figure 4.34 shows a visual comparison among SIF'T, SURF, ORB and the correct
registration, using 50 LR images and GSR;. The target image here is from the subset
D5, and Iy has not undergone the blurring process (as in Fig. 4.28). We also show the
similarity between each reconstructed image Isi to the original target image Iyg.
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Figure 4.34: 50 LR images from the subset %, are super resolved by GSR; using SIFT
(a), SURF (b), ORB (c) and the correct alignment (d). In (e), an LR image zoomed in
using nearest-neighbor interpolation. In (f), the target HR image.

Fig. 4.35 shows the quality of the super resolution, on average, for all target images
from the subset %, (the target images with the highest dimensions in the Dataset #1),
using GS R, in the reconstruction step. The similarity values found by SIF'T, in the chart,
are very similar to the correct registration, which are, theoretically, the best possible
results of a registration method.

The Wilcoxon test indicates that, indeed, SIF'T produces the highest SSIMs for the
most target images in the pool (100% of the images for n > 10 LR images), and its
results are statistically different from the others for all n > 1. The same happens when
we compare the similarity of the super-resolved image Isr to the blurred image I, or
when we use the other reconstruction methods. In addition, only SIFT could properly
align the images from 2, (with smaller dimensions). However, Fig. 4.36 shows that SIFT
runtime is, on average, significantly higher than the other feature detectors for each pair
of images.

Putting the efficiency and effectiveness of the feature detectors into perspective, the



CHAPTER 4. VALIDATION OF THE SUPER-RESOLUTION METHODS 72

0.50 Best registration method using GSR1 (target images from the subset D2)
oasl —— SR _
046} 57 S OO S, e -
E : : : : : :
%
0. 44 1/ -
[ 1 XO t ali t
[ NN “S;);I"Fcalgnmen
. . . . : OO0 SURS
D ; : : ; 00 ORB
0.40 L | | ! ! 1
12 5 10 20 30 40 50

Number of input images for SR

Figure 4.35: Best registration method using GSR in the reconstruction step and images
in the subset %, from the Dataset #1.
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Figure 4.36: Runtime for the registration methods, using only images in the subset %,
from the Dataset #1.

results show that ORB might be an appropriate solution for our problem. Such SSIM
values are very competitive (if compared to SIFT, which produces the highest values),
and it is the fastest solution.

4.2 Experiment #2: Application on mobile devices

Finally, we apply the proposed super-resolution algorithms to an always-on low-power
environment. In this application, we super resolve a sequence of photos taken by recent
mobile phones, that can capture many images per second while somebody is holding
the camera manually in approximately the same position. The small camera motion
introduces new information between consecutive images, and we use it to reconstruct an
HR image. In doing so, we allow the user to take multiple images with a cheap camera,
and combine them to a higher resolution image (as if the picture was taken with a more
expensive device).

We assume, in this application, that the objects in the scene remain static while cap-
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turing the images. In addition, we super resolve only plain objects, because the proposed
methods are not designed to handle 3D reconstructions. Moreover, the registration step in
this application must find perspective transformations between two input images, as the
user handling the camera may not move her hand with strict rotations and translations.
Such alignment must be calculated with subpixel accuracy.

The solution for this application requires fast responses. A person who takes a dozen
photos in one second in a mobile device may not be willing to wait for minutes until a
high-resolution image is generated. The Timeshift Burst application available for Android
4.2+, for example, can capture up to 30 images in a second, while iPhone 6 and 7 can
gather up to 10 pictures during this time. In addition, the application must have low
memory footprint, because the person may simultaneously receive and make voice calls,
send messages, take, receive and send photos and videos, listen to music and/or play
games while waiting for the reconstructed image. Therefore, we suggest using the GSR
method for this application, due to its fast running time (see Sec. 4.1.4) and low-memory
footprint (Secs. 3.3 and 4.1.4).

4.2.1 Dataset #2

The dataset for this application contains a series of real-world HR images, taken by an
iPhone 6 in burst mode. We captured at least 25 HR observations of each scene, and
we refer to each observation as Hp. Such HR images Hj are combined by the super-
resolution algorithms onto an even higher image. We refer to such final image as a
Super-High-Resolution image Isyr (see Fig. 4.37).

—— e o — —

HR images Tsur

Figure 4.37: The HR images H; are combined onto an even higher image. We refer to
this final image as a Super-High-Resolution image Isyg.

Additionally, we create an LR version for the HR images in the pool. Each Hj is
downsampled, generating an LR image L;. This pool of LR images is depicted in Fig. 4.38.
In doing so, we have a pool of LR images that differ from each other by perspective
transformations, and not only rotations and translations as in the Ezperiment #1.

If we super resolve the LR images L, in Fig. 4.38, any HR image Hj; might be used
as a target for the reconstruction, and then we can visually validate if our algorithms
can handle perspective transformations. Therefore, the Dataset #2 contains two pools of
images that might be input for the super resolution: (1) a set of LR images L, that might
be combined onto a super-resolved image Isi (Figure 4.38); and (2) a set of HR images
H). that might be super resolved onto a Super-High-Resolution image Isyr (Figure 4.37).
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HR images

LR images 1Y

Figure 4.38: Each LR image L; is a downsampled version of the HR image H;. The LR
images differ from each other not only by rotation and translation, but by a perspective
transformation. Every HR image H; might be a target to validate the reconstruction.

4.2.2 Experimental methodology and results

In a first round, we use 25 images H; with the maximum resolution available in the device
(2,448 x 3,264 pixels) to generate 25 LR versions of these images (one per image). The
size of each Ly is 25% of the size of Hy in both axis. Unlike Ezperiment #1 (Sec. 4.1),
now each LR image comes from a different HR image. Hence, any Hj, can be a target for
the reconstruction. We then super resolve the LR images and create a 4x higher image
Isg. Figure 4.39 shows small pieces of the results.

The five GSR variations take up to 50 seconds to super resolve 25 LR images (GS Ry,
the fastest one, spends only 25 seconds). In the registration step, ORB aligns two images
in 1 second, SURF in approximately 6 seconds, and SITFT spends 26 seconds for each
pair of input images. We see in Fig. 4.39 that all the five variations work correctly with
the sequences of real photos. Each image in the first row of Fig. 4.39 is a piece of one of
the target images in this dataset (i.e., an HR image that has been downsampled). Then,
in the second row, we zoom in such LR image zoomed by a factor of four, using NN
interpolation. Finally, the super-resolved image reconstructed by the different variations
of GSR, and different registration methods.

Finally, in a second round, we super resolve the HR original images from the pool,
generating a 2x higher image in both axis (4,896 x 6, 528 pixels). Figure 4.40 depicts small
pieces of a result, using 10 HR images as input. The input sequence has been aligned with
ORB. Here, we do not have a quantitative comparison among the algorithms, because in
this setup we do not have an HR original image and the correct registration among the
input sequence.

We can see in Fig. 4.40 that, using only 10 images as input, the scientific name of
the fish is more readable in the super-resolved image than using a simple interpolation.
Additionally, we strongly suggest the ORB detector when super resolving larger images,
because it is our fastest registration solution.

4.3 Final considerations

In this chapter, we presented qualitative and quantitative validation of the proposed
super-resolution algorithms. The charts in Sec. 4.1.4 show that the best method depends
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Figure 4.39: LR versions of 25 real images taken by a mobile phone generate a 4x
higher image. In the first row, the original target images Hj for different scenes. In the
second row, each L, is zoomed in by a factor of four. In the last row, the super-resolved
image Isr using different variations of GSR, and different registration methods. Unlike
Experiment 7#1, the LR images differ from each other by perspective transformations in
this setup, and not only by rotations and translations.
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Figure 4.40: 35 HR images taken by a mobile phone generate an SHR image 5x higher.

on the application. The RLS method, for example, reconstructs images with the highest
SSIM values, but it is two orders of magnitude slower than GSR. Due to its fast runtime,
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we could also apply GSR to an always-on low-power environment, and the visual results
are promising.

Based on such results, we now discuss which might be an ideal number of input images
to be used by a multi-frame super-resolution reconstruction with quality and efficiency
constraints. Figure 4.41 illustrates an example of pixels in an LR image with respect to
the grid of a 3x higher image (each red pixel may contribute to a region of 3 x 3 pixels
in the HR grid). It means that each region needs 3? information pieces from the input
images to generate the HR one. Therefore, we may intuitively suggest that we need at
least m? LR frames for a super resolved image by m.

Figure 4.41: LR pixels (red dots) distributed throughout an HR grid.

In Ezperiment 71 (Sec. 4.1), we quantitatively evaluated three variations of RLS, two
implementations of the inpainting based-methods, and five variations of G.S R, using up to
50 LR images in order to generate a 4x higher resolution image. The charts show that for
more than 4 LR images, we have a very small improvement in the quality of generated
HR images. Their curves grow quickly until 10 to 20 LR images, and then they become
stable as we increase the number of images. Therefore, increasing the number of images
to be analysed after m? may not compensate the consequential increase in execution time.
For those reasons, m? may be a good value when choosing the number of input images:
any number close to that may generate a good solution with a small response time. But
if a large dataset is available, with more than m? input images, the reconstruction can
still be calculated in an acceptable time by any variation of GSR.
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Chapter 5

Eyes on the Target: Framework for SR
and ALPR

In this chapter, we propose a free and open-source end-to-end framework that com-
bines ALPR and SR techniques to recognize license-plate characters in low-quality real-
world traffic videos, for forensic purposes. The framework super resolves a set of input
frames from a video, and automatically recognizes the license-plate characters in the re-
constructed image. Our main objective is to aid forensic analysts and practitioners in
understanding a given event of interest.

5.1 The proposed framework

Automatic license-plate recognition (ALPR) uses optical character recognition (OCR) on
images to extract and recognize the alphanumerics of a vehicle registration plate [32, 3].
It is usually aided by cameras designed specifically for such task, since the license-plate
recognition may be especially difficult under poor images resolutions (usually when the
car is too far away from the camera, under adverse atmospheric conditions, or due to a
low-quality acquisition camera) [18].

However, there are a number of low-quality surveillance cameras scattered throughout
our cities that could help to identify a suspect, for example, in a crime scene. A sequence
of video frames recording a dynamic scene may contain different information about the
object of interest. Generally, a moving object in the scene can be recursively seen at many
positions along its moving path in the video. Due to these recurrences, many self-similar
appearances between different positions can be found throughout a video sequence.

In this chapter, we design and develop a framework to super resolve and recognize
license-plate characters in low-quality real-world traffic videos, aiding forensic analysts
in understanding an event of interest. The “FEyes on the Target” framework handles the
necessary conditions to identify a target license plate, using a novel methodology to locate,
track, align, super resolve, and recognize its alphanumerics. Consecutive frames in videos
may differ not only by rigid or perspective transformations. Notwithstanding, we do not
aim here at super resolving features such as human faces, for example. Rather, we focus
on enhancing the details in vehicle license plates that could help to identify a criminal
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suspect or activity in a crime scene. In such forensic setup, it is feasible to super resolve
only a region of interest (ROI) of a video, discarding less important parts. The framework
has two main outputs:

e The first one is a rectified and super-resolved image, richer in details. The user can
simply use such image for a better visualization of the alphanumerics, or even as an
improved input for a single-image super-resolution algorithm [102, 31].

e In addition, we apply ALPR to the output image, suggesting a sequence of license-
plates characters for the user.

For a sneak peak showing the potential of the work we present herein, consider Fig-
ure 5.1. First, for Figure 5.1a, we have a single frame of a moving bus in a low-resolution
video, zoomed by a factor of four. Then, in Figure 5.1b, we use SR to combine eight
consecutive LR frames of the same scene. The license-plate alphanumerics and even other
characters over the outer surface of the bus are visually easier to identify in Figure 5.1b

than in Figure 5.1a.

Figure 5.1: Super resolution vs. interpolation: (a) Piece of a low-resolution video frame
(384 x 216 pixels) of a moving bus in a real-world traffic video, zoomed by a factor of
four using a simple nearest-neighbor interpolation; and (b) Super-resolution version of the
same piece, using eight consecutive input frames of a video. Not only the license-plate
alphanumerics, but also other characters over the outer surface of the bus, are visually
easier to identify in (a) than in (b).

To perform the super resolution in the Figure 5.1, we followed the same pipeline as
in the the Experiment 71 (see Chapter 4). A sequence of eight consecutive video frames
was downscaled, aligned and super resolved. This methodology for the registration step
has worked properly for the setup we presented in Chapter 4, but it is not appropriate
for fast-moving vehicles captured by static cameras. Fig. 5.2 depicts and example of
two frames extracted from a real-world traffic video. The red points in the figure are
keypoints detected by SIFT, and each colored line connects a keypoint in the first image
to its correspondent keypoint in the second image. Note that the pairs of keypoints found
by SIFT are not appropriate to calculate a transformation between the license plates in
the two consecutive frames. Most of the keypoints belong to the environment around the
car and do not contribute to map one license plate onto the other. Therefore, we need
another methodology to align the license plates when dealing with videos of fast-moving
vehicles.
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Figure 5.2: Matches between pairs of keypoints found by SIFT.

In addition to the need of dealing with fast-moving vehicles, we still have two key
problems to address in this new setup:

e First, we should not expect a forensic analyst to manually crop the vehicles in each
video frame, every time she needs to identify the characters in a suspect license
plate.

e Moreover, even if we automatically find and crop the target car in each frame, we
still may not have an appropriate homography among the images. An homography
assumes that all the points belong to a planar surface. Nonetheless we cannot
claim that all representative points found in a region of interest will always belong
to a plane. As a matter of fact, most of the aliasing issues that we can visually
identify in super-resolved images occur due to the misalignment between frames,
whose keypoints do not belong to a planar surface. Even if we crop only the region
of the license plate (very similar to a plane), we may not find enough keypoints
to calculate the transformation between the images and this should be taken into
account by any proposed approach.

Besides such issues, there are a number of image-processing methods to improve the
quality of the recognition step, including rotation / deskewing / rectification (making
the lines of the text to be perfectly aligned with respect to the borders of the image),
binarization (converting the image to black and white) and noise removal. Fig. 5.3 depicts
an example of a rectified and binarized image, to improve the results in the recognition

GAT-0B56

Figure 5.3: Example of a rectified and binarized license-plate image.

step.

The “FEyes on the Target” framework is designed to cope with the aforementioned
problems regarding the super resolution of license plates and the automatic recognition
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of their alphanumerics. We investigate a novel methodology to locate, track, align, super
resolve, and recognize the alphanumerics of a license plate in low-quality surveillance
videos, as Fig. 5.4 depicts. The framework performs the super resolution and recognition
of the license-plate characters in six steps:

/ Input Video / »| Initialization »  Tracking

Frames Frames Track frame by frame

F

F2

F3

Fy
Zoom in to locate
the license plate

Fs

Reconstruction |« Registration |«
Super-resolved image Aligned license plates
F2 £3 Fy
» Recognition >/ Characters /
Binarized image Segmentation and identification

TPost—Processing XYZ_01 23 EM@H@@@B XY, Z,0,1,2,3

Figure 5.4: Our end-to-end framework pipeline. (1) Initialization: Choosing a start-
ing frame and locating the license-plate region in such frame; (2) Tracking: Finding
re-occurrences of the license plate over the consecutive frames, and aligning the frames
with respect to the plate positions; (3) Registration: Refining the previous alignment with
subpixel accuracy; (4) Reconstruction: Combining the sequence of consecutive frames into
a high-resolution grid; (5) Post-processing: Applying refining image processing operations
to the reconstructed image, to improve the results in the recognition step; and (6) Recog-
nition of the alphanumerics in the super-resolved license plate.

1. The forensic analyst sets up the initial frame wherein the suspect vehicle appears,
and locate the license plate in such frame (there might be other moving cars in the
scene, and the specialist identifies the target one).

2. Then, we track the license-plate region through the consecutive frames using a series
of combined techniques including optical flow with sparse and dense features as well
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as fast indexing for efficient purposes. In doing so, we align the frames with respect
to the license-plate.

3. After tracking, we refine the alignment with subpixel accuracy using optical flow
once again (but more accurately, as the images are now pre-aligned).

4. We use all variations of the reconstruction algorithms, proposed in Chap. 3, to
combine the frames, producing a super-resolved and rectified license plate within a
fixed-sized grid according to country-specific specifications.

5. We apply post-processing operations to the image (e.g., Otsu’s binarization [82]) to
improve the results of the final step; and

6. Finally, we design an ALPR solution based on Tesseract [105] and OCRopus [13] to
recognize the license-plate characters.

Our experiments compare the quality of the final results by the number of characters
correctly recognized in the last step. The higher the number of correctly recognized
characters in a license plate, the better the result. For validation, we consider a dataset
of real-world traffic videos with moving vehicles and the correct alphanumerics in their
license plates. The dataset is publicly available for researchers upon request.

We now turn our attention to describing each step of the proposed approach in Secs. 5.2
through 5.7. For further implementation details, see Appendix B.

5.2 Initialization

) License plate localization
* Zoomin = @00 o—mmm e 1

Initial frame

Figure 5.5: The initialization step. The user (e.g., a forensic analyst) selects the initial
frame, and the system opens a window with a zoomed in version of the plate. The user
selects four points and creates a bounding box around the characters to be identified.
This step is done only once (for the initial frame).
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The framework starts with a graphical interface playing the traffic video (c.f., Fig. 5.5).
The user (e.g., a forensic analyst) can interact with the system by alternating between
pause and playing mode, forwarding the video frame by frame or by selecting the initial
frame wherein the license plate is fully shown.

To select the initial frame, the user clicks in the middle of the suspect license plate,
and then the system opens a window with a zoomed in version of the region around the
license plate upon which the user can click to select the four corners of the license plate,
creating a bounding box around the characters to be identified. As the user selects the
points, the interface automatically shows the lines of the bounding box (see Fig. 5.6).
After selecting the points, if the region was not correctly created, the user can click again
in the middle of the license plate and reselect the four points.

Figure 5.6: User choosing four points and creating a bounding box around the license
plate of interest.

Figure 5.7: Selected ROI around the characters to be identified.

The interaction with the forensic analyst is required only in this first step. This is
reasonable, since she needs to identify which of the moving vehicles in the video is the
suspect one. The execution of all the additional steps are transparent to the user, who
sees only the super-resolved image and its recognized characters at the end of the process.
If a completely automatic solution is intended, a license-plate detector can be used in this
first step. The system is designed in such a way that integrating a license-plate detector
would be straightforward. We do not include such feature in this work because our focus is
to aid the forensic analyst with specific unresolved cases (in which other simpler solutions
have been unhelpful, and the interaction with the user is desirable). The outputs of this
step are: (1) the identifier of the initial frame, and (2) the points of the ROI around the
plate.
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5.3 Tracking

Fig. 5.8 illustrates the tracking step of the framework. The inputs of this step are: (1) the
initial frame identifier (defined in the previous step), (2) the region of interest around the
license plate (also calculated in the initialization step), and (3) the original video frames.

Only first
license-plate location
is known

Tracking
frame
by frame

Location of all
consecutive license-plates

Figure 5.8: Tracking step: the objective is to find re-occurrences of the license plate
over the consecutive frames.

In this work, we examine five different solutions to track the license plates, as detailed
in Secs. 5.3.1 through 5.3.3.

5.3.1 Pyramidal Lucas-Kanade optical flow (PyrLK)

The first method is based on the Lucas-Kanade optical flow [70]. Given a set of n input
frames Fy, Fy, ... F, (from the initial frame until the end of the video), we first find good
features to track in the license plate of F} using Shi-Tomasi corner detector [100]. Then,
we use the Lucas-Kanade optical flow to track the points from F} to F3, creating an
homography that allows us to find the position of the license-plate in F5. Finally, we
iteratively use optical flow to track the points from Fj, to Fi.; for each k € [2,n).

The Lucas-Kanade method can deal with small pixel displacements between consecu-
tive frames. As we do not want to constrain our framework just to videos with slow-moving
vehicles, we use a pyramidal and iterative implementation of the Lucas-Kanade optical
flow (PyrLK) [11]. When we go up in the pyramid, the images are downscaled, the small
motions are removed, and the large motions become small motions.

The Lucas-Kanade method assumes that the flow is essentially constant in a local
neighborhood of the pixel under consideration, and solves the basic optical flow equations
for all the pixels in that neighborhood. Fig. 5.9 shows a piece of an original frame and
one example of the optical flow calculated by PyrLK (red dots are Shi-Tomasi points, and
green lines represent the motion of the points throughout the frames).

It is worth mentioning that the Shi-Tomasi corner detector might not find enough
points to create an homography between the images in a very small and low-resolution
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Figure 5.9: PyrLK feature tracker to estimate the optical flow.

license plate. To handle this problem, the feature points are found inside a region slightly
larger than the license plate. As we discussed in Sec. 5.1, we need to find points inside a
planar surface in order to create an homography between images. This expanded region
around the license plate might still be similar to a planar surface. Even if it is not entirely
planar, we do not need a precise alignment in the tracking step, but only an estimation of
the license-plate position frame-by-frame. The subpixel accuracy (with the appropriate
refinement) will be further obtained in the registration step.

5.3.2 Pyramidal Farneback’s Dense optical flow (PyrDense)

In the second method, instead of computing the optical flow only for the Shi-Tomasi
corner points, we use the Gunner Farneback’s algorithm [35], also with pyramids, to
compute the grid-based optical flow for the whole frames (PyrDense). We do not create
the homography matrix here, since the algorithm calculates the motion of each pixel in the
image. Therefore, we first track the known position of the license plate in Fj to F3, then
we iteratively track the points from Fj to each Fj;. Fig. 5.10a illustrates an example of
the grid (red dots) and the flow motion (green lines). Fig. 5.10b uses HSV to visualize
the same flow as in Fig. 5.10a (hue shows the flow direction, and value shows the flow

magnitude).

(b)

Figure 5.10: Example of dense optical flow as a result of the Farneback’s algorithm.

In both PyrLK (Sec. 5.3.1) and PyrDense solutions, the tracked points in a frame
F}. are used as previous points in the frame Fj,;. For a robust tracking, we also run a
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backward-check [129] of the optical-flow points to select only good ones, and we verify
if the dimensions of the license plate in Fj.; are proportional to its dimensions in Fj.
Therefore, the last tracked frame may not be the last video frame if the vehicle disappears
before the end of the video.

5.3.3 SIFT, SURF, and ORB detectors

In the third method for tracking, we use SIFT to find keypoints in the initial frame. This is
possible as the user previously annotated the region describing the license plate of interest
in the first step. As in the first tracking solution (PyrLK), we expand the bounding box
to include a region slightly larger than the license plate in F}, but now we match them
with the SIFT points found in the entire F; image (see Fig. 5.11). The points are matched
using k-NN and Fast Library for Approximate Nearest Neighbors (Flann) [75, 43]. The
best matches are used to estimate an homography matrix mapping F} onto F3, and then
we iteratively track the points in the consecutive frames (mapping each F) onto Fj.q).

Figure 5.11: Tracking using SIFT. The white polygon is the region around the license
plate in Fj. Yellow dots are the SIFT keypoints inside the small region in Fj and in
the entire image Fj,;. Green lines are matches between the frames. The red line is an
incorrect match that will not be used.

The white polygon in Fig. 5.11 indicates the region around the license plate® in a frame
Fi. The yellow dots are the keypoints found by SIFT (inside the ROI in F}, and inside
the entire image Fjy1). The green lines show the matches between the frames, and the
red line depicts an incorrect match that will not be used to calculate the homography.

In addition to the SIF'T-based matching solution for tracking, we also exploited the
feature detectors SURF and ORB, instead of SIF'T. Their rationale and operational con-
ditions are the same as the ones described above for SIF'T.

After finding the re-occurrences of license plates, we also align them with respect to
the initial frame’s license plate. The outputs of the tracking step are: (1) the set of aligned
frames in which the license plate was successfully tracked, and (2) the four points of the
license plate’s bounding box in each frame.

INote that the region around the license plate in Fig. 5.11 illustrates the same region in which we
found Shi-Tomasi corner points in the first tracking solution (PyrLK).
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5.4 Registration

To track the license-plate in the previous step, we search its re-occurrences over consec-
utive frames. Since the framework does not limit the vehicle speeds and routes, we use
pyramids and a large enough search window for the optical-flow-based solutions. Larger
values increase the algorithm robustness to fast motion detection, but yield less accu-
racy. Therefore, since the license-plates have already been tracked and the frames have
previously been aligned in the tracking step, we now refine this alignment with subpixel
accuracy. From this point forward, instead of working on the video, the inputs of the
registration step are: (1) the frames in which the license plate was successfully found and
tracked, and (2) the license-plate bounding box in each frame. The images were previ-
ously aligned in the tracking step, and now we need to refine this alignment with subpixel
accuracy. There are three available possibilities for the realignment in our framework:

a) Using Lukas-Kanade Optical Flow, as in the first tracking solution (Sec. 5.3.1),
without pyramids, since the frames were pre-aligned with respect to the license
plate in Fi, and we need to find a subpixel motion of the license plate from F}, to

Fiosr.

b) Using Farneback’s Dense Optical Flow (Dense), also without pyramid decomposi-
tion.

c) In the last possibility, we do not perform the registration, considering that the
tracking step had already performed a good alignment of the frames (we refer to
this possibility as “None”, since we do not use any further refinement method).

Fig. 5.12 illustrates the registration process.

Two license plates aligned Finding new corners to Realigning
in the tracking step the second license plate the license plates

(a) (b) (c)

Figure 5.12: In the tracking step, the initial bounding box is tracked without subpixel
accuracy, but gives us a pre-alignment of the frames. Green dots in (a) are the corners
in the initial frame, and yellow dots are the corners that were tracked in the subsequent
frame. The registration step finds new corners for the consecutive frame, without pyramids
and within a small window size. The red dots in (b) represent the new bounding box found
in the registration step. In (c), we use the new points to realign the second license plate
with respect to the first one.

In both LK and Dense methods, we start with a small window size and increase it
until the registration is successfully performed through a given number of frames. Larger
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window sizes increase the algorithm robustness to image noise and give more chances
for fast motion detection but, at the same time, lead to a more blurred motion field.
The outputs of this step are: (1) the set of realigned frames and (2) the license plate’s
bounding box in each frame.

5.5 Reconstruction

For the super resolution of the license plates, we use all the algorithms proposed in
Chapter 3. In the previous application (super resolution on an always-on low-power
environment), a sequence of n low-resolution images of size (w, h) pixels generates a super-
resolved image of size (s X w, s X h) pixels for a scale factor s. Now, instead of creating a
high-resolution image of (s x w,s x h) pixels, we define a fixed spatial resolution to the
HR grid, which is proportional to country-specific specifications for vehicle registration
plates (e.g., 400 x 130 mm in Mercosur member countries and 12 x 6 inches in U.S.A. and
Canada). The super-resolved image is similar to a rectified license plate (see Fig. 5.3),
and contains only the region inside the license-plate ROI. We fixed the size of the HR
grid because in addition to generating a good visual HR image, we focus on creating HR
images amenable to a better character-recognition task in the super-resolved license plate,
and this rectification may improve the results in the recognition step.

It is important to mention that that we do not apply rectification or any other trans-
formation to the LR input frames because it would cause loss of information. Instead,
we use the matrices calculated in the registration step (that map each Fj onto Fj.1), to
know exactly the zy position where each ¢ is with respect to the HR grid. Additionally,
only the ROI is super resolved, and not the entire image. Therefore, we might be able to
run all the reconstruction algorithms proposed in Chap. 3, and not only the fastest ones.

5.6 Post-processing

As we know the bounding box of the license plate (through the user input for the initial
frame), the super-resolved image could already be rectified with respect to the grid in
the previous step. However, the license plate may have additional information (e.g., the
country and city names) that could mislead or confuse the OCR system. Hence, in the
post-processing step, we first focus on the region which contains the alphanumerics that
we want to recognize discarding the other areas. Then, we use Otsu’s binarization [82] in
the image to facilitate the recognition process. The binarization is performed in addition
to a Gaussian blur, to remove possible noisy artifacts. The ultimate output is a rectified,
binarized and super-resolved image (see Fig. 5.13).

Otsu’s binarization is designed for a bimodal image (i.e., an image whose histogram has
two peaks — in our case, the color of the alphanumerics and the color of the background).
The method might fail when heavy occlusion and shadows are present. Hence, in our
solution, the user can also choose between two possibilities in the post-processing step:
(a) using Otsu’s binarization [82]; or (b) using an adaptive thresholding [42] to binarize
the image. Adaptive thresholding may be good when the image has different lighting
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Figure 5.13: Post-processing step: removing borders and binarizing the rectified and
super-resolved image.

conditions in different areas. It calculates the threshold for small regions of the image,
leading to different values for different regions of the same image (which gives us better
results for images with varying illumination). The output of this step is the rectified and
binarized image containing the license plate of interest.

5.7 Recognition

Finally, with the super-resolved license plates of interest, we rely upon two OCR systems
to identify the license-plate characters: Tesseract and OCRopus. Both are free software,
released under the Apache 2.0 License. However, these solutions cannot be used directly
and require appropriate training. In the following, we describe how we adapt them to the
license plate recognition problem we have in the framework.

Usually, for training traditional OCR systems, we first define the target language
comprising the characters that might occur in the dataset (in our case, all the possible
license-plate alphanumerics). In doing so, we seek to avoid possible unnecessary mistakes
during recognition. For example, the letter “I” might be easily confused with the character
“” in many font types. However, as we do not expect the character “|” in license plates, we
do not add it to the target language. Each OCR system requires several graphical training
examples comprising font styles (such as bold and italic), and frequency of specific words?.
As we do not have enough real-world examples for training the recognition algorithms,
we resort to generating synthetic training examples seeking to mimicry real-world plates.

Given that we use Brazilian license plates in our experiments, we trained the Tesseract
and OCRopus using the fonts Mandatory (the standard font since 2008) and DIM Mit-
tleschrift (most common until 2008). In the Mandatory font, the letters ‘I’ and ‘O’ are
easily confused with the digits ‘1’ and ‘0’, so we divided the license plates in two parts, one
for digits and one for characters as the license plates in Brazil have always three letters
followed by four digits. Therefore, for training the methods, we created synthetic images
with 17,576 combinations of letters (26 x 26 x 26) and 9,999 combinations of digits (the
sequence 0000 is not used in Brazil). It is worth mentioning that such training, including
the separation between digits and letters, is specific for our particular setup.

We also added, purposefully, small rotations and noisy artifacts to the synthetic im-
ages in order to simulate the real-world license plates more accurately. Fig. 5.14 depicts
examples of some training images used in our method considering the Mandatory font.

For an appropriate training process, for each training image, we also annotate the

2Each OCR might define specific rules for the font size and for the number of words per line in an
image
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0007 0000 0005 0003 0008 000S 0004 0002 0006 0001 AAZ AAR AAK AAI AAD AAM AAU AAA
00I6 00IS 0Ol 0OI7 0OIS 00I8 00I0 00I3 00I4 0012 AAB AAQ AAV AAH AAJ AAN AAE AAN
0028 0029 0026 0021 0022 0027 0023 0025 0020 0024 AAS AAY AAD AAG AAL AAC AAT AAX
0033 0035 0034 0031 0037 0033 0038 0036 0030 0032 AAF AAP ABN ABT ABB ABM ABE ABK
0043 0040 0047 0042 0049 0045 0048 0041 0044 0046 ABX ABQ ABF ABI ABD ABP ABA ABJ
0058 0057 0053 0056 0054 0051 0059 0052 0050 0055 ABV ABC ABG ABW ABZ ABL ABO ABY
0065 0067 006! 0063 D068 0066 D069 0062 0060 0064 ABR ABH ABS ABU ACM ACH ACE ACF
0079 0073 0077 0071 0075 0074 0070 0076 0072 0078 ACQ ACR ACI ACJ ACX ACY ACU ACO

(a) (b)

Figure 5.14: Some training images used with Tesseract considering the Mandatory font.
(a) Examples of digits. (b) Examples of letters.

bounding-box coordinates around every character in the image. In Tesseract, for example,
each training example encodes the characters being recognized and the bounding-box co-
ordinates around the character. Fig. 5.15 shows the first lines of the box file for Fig. 5.14b,
comprising the bounding boxes for the two first words in Fig. 5.14b (AAZ and AAR).

A 112 4654 139 4694
A 143 4654 170 4694
Z 174 4653 201 4694

201 4653 222 4694
A 222 4653 249 4693
253 4653 280 4693
R 285 4653 311 4693

=
O O O O O O O

Figure 5.15: The first lines of a box file for training Tesseract. Each line contains: the
character being recognized, the four bounding-box coordinates around the character, and
the page wherein the word occurs (the image file might not fit in only one page).

At the end of the training process, each OCR is custom-tailored to the problem of
license-plate recognition. It is also possible to further extend the training data using
real-world images, in addition to the synthetic computer-generated cases. However, it is
advised to rectify and binarize those images, as well as annotate them properly.

5.8 Final considerations

The framework is part of a work that has been recently accepted [97]. The ultimate
products of the framework are the super-resolved image and the sequence of recognized
characters. However, different inputs and outputs are available to the user while the
framework calculates the final solution, summarized in Fig. 5.16.

If the framework does not find an appropriate solution, the user intervene by:

1. Restarting the video, and re-selecting the license plate bounding box. As the choice
is manually defined, it is possible that a new initialization may facilitate the following
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Figure 5.16: Inputs and outputs of each step of the proposed framework.

steps (especially the tracking step).

2. Alternatively, the user can easily customize the framework and change the tracking
method, registration method, reconstruction algorithm and/or OCR systems.

As previously mentioned, the user can choose from five different tracking methods
(PyrLK, PyrDense, SIFT, SURF and ORB), three registration solutions (LK, Dense and
None), 10 variations of the reconstructed algorithms (RLS, RLSO, RLSU, ISRy, I1SRs,
GSRy, GSRy, GSR3, GSRy and GSR;), two binarization methods, and two different
OCR methods. In addition, there is one default method for each step (as illustrated in
Fig. 5.17), based on the experimental results, as we shall explain in Chapter. 6.

Initialization

| Tracking| |PyrDense|| SIFT

WA

Registration

Reconstruction |GSR; |[GSR2| |GSR3| |GSR4|[GSRs]|

A AEg

Post-Processing

[\

Recognition | Tesseract | | Ocropus |

Figure 5.17: Each leaf of the tree can produce a different result: Five different methods
in the tracking step, three in the registration, five in the reconstruction, two in the post-
processing, and two in the recognition step. The methods highlighted in blue are the
default options, based on the experimental results.
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Chapter 6

Validation of the forensic framework

Finally, in this chapter, we show experiments (namely Experiment #3 of the validation
plan outlines in Chap. 4) for the “Eyes on the Target” framework, described in Chap-
ter 5. In our first experiment (see Chap. 4), we validated the reconstruction algorithms
using target HR images and the correct alignments among the LR images, and we put
the designed solution in perspective with respect to traditional SR methods in terms of
efficiency and effectiveness. Differently from this standard practice, we do not have such
controlled environment herein.

In this present chapter, we focus the evaluation on the number of correctly recognized
characters by the framework in a suspect license plate. The higher the number of hits!,
the better a given result. As we previously discussed in Chap. 2, most ALPR methods
either do not provide quantitative validations in their experiments (depicting only a small
number of output examples to verify the accuracy of their methods) or do not validate
the results with real-world traffic videos.

We execute the framework for all the 200 videos in our dataset (see Sec. 6.1), using
all the the five tracking methods, three registration solutions, 10 variations of the recon-
struction algorithm, two binarization methods, two recognition systems, and from 1 to 10
consecutive frames as input. For each video, we have 5 x 3 x 10 x 2 x 2 x 10 = 6,000
possible results (600 for each number of input frames, and a total of 1,200,000 results
considering all the 200 videos). The dataset is publicly available for researchers upon
request (including all videos, ground-truth files, license-plate annotations, and the OCR
training files).

The experiments also include a qualitative evaluation of the framework. We select
visual examples to illustrate that the super-resolution solution can, indeed, increase the
readability of license plates in real-world traffic videos.

6.1 Dataset

For validation, we collected a dataset comprising 200 real-world traffic videos, in which
the movement of the vehicles is away from the camera (one target license plate per video).
All collected streams are 1080p HD videos @30 fps (video codec H.264, without additional

'We use the term “hit” to refer to the the number of correctly recognized characters in a given video.
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compression). As we have a good resolution of the license plate in the beginning of each
video, we manually annotated the correct characters of its target license plate and created
its ground-truth file. Unlike the beginning of the video, the license-plate alphanumerics
in the last frames are harder to recognize (see Fig. 6.1). We use those LR last frames to
super resolve and recognize the alphanumerics in our experiments, and then we compare
the results to the annotated ground-truths files.

(a) (b)

Figure 6.1: The license-plate alphanumerics are easily readable in the first video
frames (a) but not in the last ones (b). The first frames are used to create the ground-
truth files, and the last frames are used to be reconstructed and recognized. The same
zoom-in factor was applied to the license plates in (a) and (b).

The videos were captured in different places, with different illumination conditions,
different vehicle average speeds, non-stationary backgrounds, non-predictable routes, and
containing trees and road signs that may cast different shadows over the license plates
between consecutive frames.

6.2 Results

We divide the Ezperiment #3 into six parts, since we have six steps in the framework:

1. First, in Sec. 6.2.1, we investigate if our initialization step is appropriate for the
framework.

2. Then, in Sec. 6.2.2, we validate the tracking methods.
3. In Sec. 6.2.3, we choose the best solution for the registration step.

4. In Sec. 6.2.4, the proposed super-resolution methods are now validated with respect
to this environment.

5. In Sec. 6.2.5, we show advantages and disadvantages for each post-processing meth-
ods.

6. Finally, we validate the two recognition methods in Sec. 6.2.6.
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6.2.1 Validation of the initialization step

We start investigating if our decision of manually selecting the ROI around each license
plate (in the initialization step) is appropriate for our framework. First, in Fig. 6.2, we
super resolve only five consecutive frames of four different videos. The reconstructed
images in Fig. 6.2b are more easily readable than the single frames in Fig 6.2a, so the
bounding box selected by the user might be leading to an appropriate reconstruction.

===

Figure 6.2: Output examples of the proposed framework. In (a), single frames with
low-quality resolution. In (b), five consecutive frames are combined into a super-resolved
image, richer in details.

The chart in Fig. 6.3 shows higher recognition rates as we increase the number of input
frames. For each video in the dataset, we calculate the highest results that the framework
could achieve, from 1 to 10 input frames, using all the available methods.

Highest results using all available methods

6.5 T T T Py ® & ki *
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=
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8
g B0 .
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: . : . : : : »%X:0CRopus
4.0 | | ! —
1 2 3 4 5 6 7 8 9 10

Number of input frames for SR

Figure 6.3: Quality of the initialization step as a function of the number of input frames.
The highest the number of hits, the better is the result. Each curve is the average of the
highest number of hits for all videos in the dataset, using all the available methods.

Each curve in Fig. 6.3 is the average of such highest results for each video. The blue
curve shows the recognition rate using Tesseract, and the green curve uses OCRopus.
Since the number of hits is higher in the reconstructed images, we may claim that our
initialization step is providing an appropriate ROI for the super resolution.

Moreover, bad choices for the corners of the license plates would lead to bad track-
ing, registration, reconstruction, and so on. Hence, good results for the other steps
might support our claim that this initialization step is appropriate for the framework. In
Secs. 6.2.2 through 6.2.6, we validate the other framework’s steps, including qualitative
and quantitative results for each step. For the tracking, registration, reconstruction and
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post-processing steps, from now on, we plot only the Tesseract recognition rates (later on
we will show it was the best-performing OCR method with a specific experiment).

6.2.2 Validation of the tracking methods

Now, we turn our attention to investigating the tracking methods. We start with some
tracking issues that the framework should overcome. The first challenge is to keep tracking
the license plates while the camera loses focus on the target license plate, as illustrated
in Fig. 6.4. For these cases, normally PyrDense, SIF'T, SURF and ORB fail to track the
plate, unlike PyrLK. The red dots in the figure depict the bounding boxes tracked by
PyrLK. In Fig. 6.4a, the camera re-focuses on the object after a few frames. In Fig. 6.4b,
the license-plate focus is lost, and not acquired until the end of the video.

f-. -.;/’.’: I .j’ l - - - -
— | - L

Figure 6.4: PyrLK keeps tracking even if the camera momentarily loses focus of the
license plate. In (a), the camera re-focuses on the object after a few frames. In (b), the
camera is not able to re-focus on the license plate even after some time.

Due to the pyramidal implementation of Lucas-Kanade and Farneback’s dense optical
flow, we did not find tracking issues with fast-moving vehicles. In contrast, different
cast shadows over a license plate may mislead or confuse the alignment. Fig. 6.5 depicts
consecutive license plates with varying illumination conditions throughout the route.

Figure 6.5: Cast shadows may impact the tracking step. The red dots show that PyrLK
and PyrDense could track the frames even with a different lighting condition in each
consecutive frame.

The red dots in Fig. 6.5 show that, even in this case, the tracking could be performed.
PyrLK could successfully track the bounding box through seven frames of the example,
and the PyrDense method tracked the license plate through all the 10 input frames. SIFT,
SURF and ORB could not align any consecutive images.

Finally, we select another video to illustrate the tracking performed by each method.
Fig. 6.6 shows the tracked points by each algorithm in the tenth (and last) frame. Note
that the tracked corners by PyrLK seems more accurate than the others.

The chart in Fig. 6.7 depicts that the pyramidal implementation of the Lucas-Kanade
optical flow outperforms the other tracking methods, on average. The blue curve in
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Figure 6.6: Examples of an input video tracked by PyrLK (a), PyrDense (b), SIFT (
SURF (d) and ORB (e).

(b)

(c)

Fig. 6.7 for the Tesseract hits is the same as the blue curve in Fig. 6.3, and shows the
best possible values if we alternate among all available methods for the tracking.

Tesseract recognition rate for the tracking methods
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Figure 6.7: Quality of the tracking step as a function of the number of input frames.
The highest the number of hits, the better is the result. Each curve is the average of the
highest number of hits for all videos in the dataset, using each of the tracking methods
and Tesseract as the recognition rate.
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We also investigate the number of videos in which the framework correctly identified
all the seven license-plate alphanumerics (7 is the maximum number of license-plate char-
acters in our dataset) for a given method. We refer to this accuracy number as Acc;. To
find this number, we verify if the method scored seven hits at least once (using from 1
to 10 input frames), in each video (see Appendix A for the number of videos in which a
method got the highest accuracies). Table 6.1 confirms that PyrLK is the most promising
tracking method, and it is also the fastest solution. PyrLK results are highlighted in the
table, and it is the default tracking method of the framework. It is worth mentioning that
more than one tracking method may recognize the same number of hits in a video.

Tracking method Aceq Time (s)
PyrLK 117 (58.5%) | 0.02
PyrDense 108 (54.0%) 0.9
SIFT 110 (55.0%) 11.2
SURF 109 (54.5%) 5.5
ORB 99 (49.5%) 0.3

Table 6.1: Accuracy and runtime of the framework’s tracking step. In the second row,
the number of videos in which the framework correctly recognized all the seven characters
(for some number of input frames among 1 and 10). Then, the runtime (in seconds) to
track the license plate through a pair of frames.

6.2.3 Validation of the registration methods

In this section, we investigate the best registration solution of the framework. The most
important in this step is to improve the result of a bad tracking. Thus, we select three
input videos as examples to illustrate the quality of each registration. In the first column
of the Fig. 6.8, we see the ROI of the license plate that we manually defined in the
initial frame. Then, in the second column, we see the tracked corners in the last frame.
Our objective, then, is to refine this tracking. In the following columns, we have the
registration results using LK, Dense and None.

We see in Fig. 6.8 that only the Lucas-Kanade method could refine the incorrect
tracking for the three videos. However, there are cases in which the tracked corners are
good enough to align the images. The chart in Fig. 6.9 shows that “None” outperforms
both the Lucas-Kanade optical flow and the Farneback’s dense optical flow, on average.

The Acc; values for the registration methods, in Table 6.2, support the claim that
“None” outperforms the other registration solutions, on average (i.e., keeping the previous
alignment calculated in the tracking step might be better than performing the subpixel
realignment). Using None, the framework correctly recognized all the seven characters in
122 videos (61.0%). The Accy for LK was 56.5% (113 videos), and for Dense it was 46.5%
(93). However, there were videos in which LK performed better than using no method in
the registration step. If we fix PyrLK as the tracking method, we see that LK registration
outperformed “None” in 42 videos (and in 40 videos if we track with PyrDense).
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Figure 6.8: Examples of the registration methods in three input videos. In (a), the ROI
of the license plate that we manually defined in the initial frame. In (b), the tracked
corners in the last frame. In (c¢), (d) and (e), the registration results using LK, Dense and
None.

Tesseract recognition rate for the registration methods
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Figure 6.9: Quality of the registration step as a function of the number of input frames.
The highest the number of hits, the better is the result. Each curve is the average of
the highest number of hits for all videos in the dataset, using each of the registration
solutions.

Using no method for registration achieved better results, on average, that the Lucas-
Kanade optical flow because the LK method cannot overcome a bad tracking (very com-
mon using the ORB tracker solution, for example). We expect only a subpixel adjustment
in the registration step, since we do not work with pyramidal layers. Hence, even if “None”
achieved better results, on average, it may still be useful to provide the forensic analysts
with other methods for the subpixel adjustment. For this reason, we select LK as the
default method for registration in the framework. In addition, the runtime for LK is less
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Registration method Acey Time (s)
LK 113 (56.5%) | <0.01
Dense 93 (46.5%) 0.7
None 122 (61.0%) -

Table 6.2: Accuracy and runtime of the framework’s registration step.

than 0.01 seconds, while Dense’s runtime is 0.7 seconds. Note that the runtime of Lucas-
Kanade and Farneback’s optical flow is lower for registration than for tracking (since we
do not use pyramid layers for the subpixel adjustment).

6.2.4 Validation of the reconstruction methods

For a qualitative evaluation of the reconstruction methods, we also select input videos
containing issues with illumination and shadows, as in Secs. 6.2.2 and 6.2.3. The first row
of Fig. 6.10, shows a zoomed version of the initial frame, without super resolution, for
four input videos.

- INEREFEY " 7 60
~ FENEN3 I ITE ENY 1460

Figure 6.10: Quality of the reconstruction applied to frames with illumination and
shadow issues. In (a), the initial frame without super resolution. Then, the results for
GSRy (b). In (c), a frame with a good resolution of the license plate.

The alphanumerics in Fig. 6.10 are hard to recognize in all the examples. The second
row shows the results for GSR,. The last row shows a frame with good resolution of the
license plate in the beginning of each video. The GSR, characters are not perfectly rec-
ognized, but they are more similar to the characters in the last row (in a good resolution),
than those in the first row (without super resolution).

The chart in Fig. 6.11 shows the results for the seven variations. It is very difficult to
identify the best reconstruction method by the chart (their results are all very similar, on
average). The blue curve depicts that the highest number of hits alternates between one
method and another, so it is worthwhile to provide different methods for the user.

The chart in Fig. 6.11 is not adequate to select a default solution for the reconstruction
step, since the results for each method are very similar. Therefore, we investigate the Acc;
values for super resolution in Table 6.3.

The Acc; values for the reconstruction methods in Table 6.3 are also very similar. We
highlighted the results for G.S R, (the variation of GSR with the highest Acc; values) and



CHAPTER 6. VALIDATION OF THE FORENSIC FRAMEWORK 99

Tesseract recognition rate for the reconstruction methods
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Figure 6.11: Quality of the reconstruction step as a function of the number of input
frames. The highest the number of hits, the better is the result. Each curve is the average
of the highest number of hits for all videos in the dataset, using each variation of GSR.

Method Acer Time (s) || Method Acer Time (s)
GSR, | 93 (46.5%) 0.5 ISR, | 96 (48.0%) 3.0
GSR, 102 (51.0%) 0.6 ISR, 94 (47.0%) 2.6
GSRy | 98 (49.0%) 0.6 RLS | 100 (50.0%) | 7.5
GSR, | 103 (51.5%) | 0.5 || RLSO | 104 (52.0%) 2.0
GSRs | 97 (48.5%) 0.6 | RLSU | 105 (52.5%) | 2.0

Table 6.3: Accuracy of the reconstruction step, and the runtime (on average) to recon-
struct 10 frames.

RLSU (highest Acc; for RLS implementations). Given that both are very similar, we
choose GS R, as the default super-resolution algorithm, due to its runtime is lower in the
table. However, each variation might be more or less advantageous for each case. For
example, the Inpainting-based variations found results higher than GSR, in 24 videos,
and the user can easily change the method when the result is not appropriate.

Fig. 6.12 shows the same results as in Fig. 6.12, but only for GSR,, ISR, and RLS
(the best variation of each method, according to the Acc; in Table 6.3). It is worth
pointing out that GSR,, the algorithm that we choose as the default solution for the
framework, produced the worst similarity values in Experiment #1. Such result supports
our claim that the best solution to super resolve a set of images is highly dependent on
the application.



CHAPTER 6. VALIDATION OF THE FORENSIC FRAMEWORK 100

Tesseract recognition rate for the reconstruction methods
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Figure 6.12: Quality of the reconstruction for the best variation of each proposed
method.

6.2.5 Validation of the post-processing methods

In Fig. 6.5, we showed a license plate with varying illumination conditions throughout the
route. Due to the cast shadows and to the sunlight reflected on such plate, each frame
might have a different character that is not visible through the vehicle route. In Fig. 6.14,
we show the visual difference when we super resolve only two frames of the license-plate in
Fig. 6.5. Tesseract could correctly identify all the characters using Adaptive thresholding
(EYG-9890), but could not recognize any digits when using Otsu’s binarization.

123 En NS EYG 3430
(a) (b) (c)

Figure 6.13: Examples of the post-processing methods using only two consecutive
frames. In (a), the super-resolved image. In (b), the OTSU’s binarization. In (c), the
Adaptive thresholding.

In Sec. 5.6, we have discussed that the Otsu’s binarization is designed for a bimodal
image. Usually, a license-plate histogram has two peaks (one for the alphanumerics color,
and other to the background color). However, frames containing issues with illumination
or shadows, as in the Fig. 6.10, may lead to a bad Otsu’s binarization. Fig. 6.14 depicts
other examples in which the Adaptive thresholding outperforms the Otsu’s binarization
in such cases. Fig. 6.15 summarizes the results for both binarization methods.

Fig. 6.15 shows that the results for both binarization methods are similar, if we use
Tesseract to calculate the recognition rate. To define the default solution for the post-
processing step, we investigate the Acc; values for the binarization methods in Table 6.4.

Table 6.4 shows that The Acc; for Otsu is higher than for the Adaptive thresholding.
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Figure 6.14: Examples of the post-processing methods in four input videos. In (a), the
super-resolved image. In (b), the OTSU’s binarization. In (c), the Adaptive thresholding.
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Figure 6.15: Quality of the post-processing step as a function of the number of input
frames.

Binarization method Acer Time (s)
Otsu’s binarization | 112 (56.0%) | <0.01
Adaptive thresholding | 92 (46.0%) <0.01

Table 6.4: Accuracy and runtime of the post-processing step.

In addition, Otsu’s runtime is 0.1 seconds, faster than Adaptive (4.6s). Based on these
values, we choose the Otsu’s binarization as the default solution for the post-processing
step. However, we strongly recommend the Adaptive thresholding for the scenes with
varying illumination conditions throughout the license-plate’s route.
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6.2.6 Validation of the recognition methods

Finally, we investigate the best OCR system in the last step. First, we select three super-
resolved images using the default methods for the other steps (PyrLK for tracking, LK
for registration, GSR, for reconstruction and Otsu for post-processing). In Fig. 6.16, we
show such images and the recognition rate for each one. Using Tesseract, we obtain higher
number of hits as we increase the number of input frames, for the three examples. Using
OCRopus, the recognition rate seems more stable as we increase the number of frames.

......................

21 [ = Tesserasy |
i+ < OCRopus | o
I I | I I I I ] I I 1 I |

i l ] I I
12345678910 12345678910 123
Number of input frames

| o= Tesserac 7] o= Tesserac
| OCRopus [{  [~i i % OCRopus |
| l l l

I
5678910

Number of hits

I

Figure 6.16: Quality of the recognition methods for three super-resolved images, using
the defaults methods in each step.

As we showed in Figure 6.3, the Tesseract recognition rate also outperforms the OCRo-
pus number of hits, on average, using all the available methods and all the videos in the
dataset. The Acc; shows Tesseract is more effective than OCRopus, almost twice as
effective in a significantly lower runtime (see Table 6.5).

OCR system Accr Time (s)
Tesseract | 131 (65.5%) 0.1
OCRopus 72 (36.0%) 4.6

Table 6.5: Accuracy and runtime of the recognition step.

We see, in Table 6.5, that Tesseract has almost the double of accuracy than OCRopus
in a significantly lower runtime. Due to the results in Fig. 6.3, Fig. 6.16 and in Table 6.5,
we choose Tesseract as the default OCR solution in the framework.

6.3 Final considerations

The charts in Figs. 6.3, 6.7, 6.9, 6.11 and 6.15 depict that, when we increase from 1
to only 2 the number of frames used as input for the SR, we already have a significant
improvement in the quality of the characters recognition. The curves grow, on average,
until five frames and then become stable. Therefore, using more input frames than we
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used in our experiments may not compensate the consequential increase in execution
time. For these reasons, five may be a good number when choosing the length of an input
sequence. Notwithstanding, all the available methods in our framework run in linear time
as we increase the number of input frames to super resolve, including the super-resolution
methods (see Fig. 6.17).

Runtime for the reconstruction methods
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2.0 H## GSR4 €< RLSO
++ GSR5 PP RLSU
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Number of input images for SR

Figure 6.17: Runtime for super resolving the input frames using each reconstruction
method.

Finally, all the datasets and associated transformation matrices are publicly available
for researchers upon request, for reproducibility purposes.
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Chapter 7

Conclusions

The main purpose of this work was to explore SR possibilities for digital images, in
scenarios wherein we have multiple frames of a scene. With this goal in mind, we designed
and developed three methods for super resolution of multiple observations, including
different variations/optimizations of each method.

The first method is the Super Resolution using Regularized Least Squares (RLS),
which relies on Tikhonov regularization and adaptive filtering to solve a sparse least-square
problem. Its first optimization (RLSO) decreases the execution time for constructing the
matrices of the linear system, by dividing the grid into imaginary areas, in a way that
each LR pixel contributes only to equations of its closest grid pixel. The complexity for
calculating all linear system equations decreases from O(n x py X p) in RLS to O(n x p) in
this optimization, where n is the number of LR images, p; is the number of pixels in each
LR image, and p is the number of pixels in the HR grid. The other optimization (RLSU)
uses a simple uniform distribution, instead of the GGaussian one, in the same imaginary
region as in RLSO.

The second method is the inpainting-based Super Resolution (I.SR), that projects the
LR pixels separately onto the HR grid, and then uses inpainting techniques to calculate
the unknown grid pixels. Image inpainting is a technique for restoration of degraded
photos that fills in part of an image using information from surrounding areas, and several
algorithms have been designed for this purpose. We implemented two variations of the
method (ISR, and ISRy), each one using a different inpainting technique.

The third method is the Geometric k-Nearest Neighbors Multi-Frame Super-Resolution
(GSR), a direct method exploring the concept of geometric neighborhood, to combine LR
pixels onto an HR grid. There are five variations of such method (GSR;_5). For each grid
pixel p we want to calculate, the method uses k-NN to find the pixel ¢, in each LR image
I, that is closest to p. Each variation uses a different policy to combine such nearest
pixels ¢; into a single information.

Only the first method (RLS) and its variations was designed to recover the high-
frequency components lost during the blurring process, in which the observations have
been acquired by the camera. On the other hand, RLS is expected to run slower than
the other methods, and it might not be computationally attractive for applications that
require quick responses and low-memory footprint. In addition, in order to execute any of
the proposed methods, we need to perform a registration step, prior to the reconstruction,
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that might be different for each application.
We validated the aforementioned methods in three different setups:

1. Ezperiment #1: First, we created a controlled environment, in which HR images
generated LR observations. Then, such low-resolution images were super resolved,
and the original HR image could be used as a target to validate the reconstruction.

2. Ezperiment 7#/2: Then, we turned our attention to recent mobile phones, that take
dozens of photos per second. Those cameras can gather a set of images while
somebody is holding the camera manually in approximately the same position. It
turns out we can leverage such small camera shake to reconstruct an HR image. In
this setup, the SR algorithms should be fast and with a low-memory footprint, in
order to be executed in this always-on low-power environment.

3. Experiment 7#3: Finally, we designed and developed a novel, free and open-source
end-to-end framework to super resolve and recognize license-plate characters in low-
quality real-world traffic videos, captured by cameras not designed specifically for
the recognition task, aiding forensic analysts in understanding an event of interest.

The experiments showed that, indeed, it is possible to explore geometric properties
from multiple low-resolution images in order to combine them into a higher resolution
image, and to achieve good super-resolution results for photos gathered by mobile devices
and for license plates in low-quality real-world surveillance videos.

7.1 The best of the proposed methods

In the Ezxperiment #1, since we generated the pool of LR images, we could calculate the
“correct alignment” among the input observations. Such information may not be available
in the real-world applications, but it is an important aid for evaluating our algorithms,
because every inaccuracy in the super-resolved image comes only from the reconstruction
step (and not due to an incorrect registration). We use this first setup to point out
the best method among the proposed ones under ideal conditions, but we emphasize that
each method might be more or less advantageous in each setup, with different restrictions,
limitations and constraints.

The two optimizations of the Super Resolution using Regularized Least Squares in-
troduce less information and constraints into the linear system than the original model.
Hence, RLS produced the best similarity values among such variations, in this first exper-
iment. However, RLSU might be a good solution, since its results are only slightly worst
than RLS, and its execution time is significantly slower. It is interesting to mention that
RLSU does not use the Gaussian filtering to create the linear system, but its results are
better than RLSO (even using input images that have been previously blurred with the
Gaussian filter). Hence, the algorithm might be useful even when we do not know much
about the filtering in the downsampling process.

The first inpainting-based variation, based on the work of Bertalmio et al. [7], produced
SSIM values higher than 15 R,. Moreover, the more images we use as input, the faster the
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super resolution may finish. I.SR; not only produces super-resolved images with higher
quality than SR, but is also faster.

For the GSR variations, the Wilcoxon test indicates that GSR; is the most advanta-
geous. In addition, such first implementation is also the fastest among the variations of
all the proposed methods. Comparing the methods altogether, we have RLS and RLSU
producing the highest similarities, and recovering high-frequency components of the tar-
get image that have been lost during the blurring process. However, GSR is two orders
of magnitude faster than RLS, on average. We suggest GSR, among all the methods
proposed in Chap. 3, for super resolving input images with high dimensions.

As another contribution, the dataset of this experiment contains 100 groups of images
to validate SR methods. In each group, we have 100 LR observations of a scene, the correct
alignments among them, and the associated target HR image. We also make available a
set of scripts to extend this dataset. Therefore, anyone can introduce new target images to
the dataset and then, subsequently, generate the LR images to be reconstructed, calculate
their transformation matrices and also produce the correct alignment among the low-
resolution images.

7.2 Results for mobile devices

In the second experiment, we super resolved sequences of photos taken by an iPhone in
burst mode. We assumed, in this application, that the objects in the scene remain static
while capturing the images. In addition, we super resolved only plain objects, because
the proposed methods are not designed to handle 3-d reconstructions.

This application requires fast responses. A person who takes a dozen photos in one
second in a mobile device might not wait for minutes until the HR image is generated.
In addition, the application must have low memory footprint, because the person might
simultaneously receive and make voice calls, send messages, take, receive and send photos
and videos, listen to music and/or play games while waiting for the reconstructed image.
For such reasons, we use only GSR in this setup (due to its fast running time and low-
memory footprint).

The five GSR variations took up to 50 seconds to super resolve 25 LR images into
an HR image with 2,448 x 3,264 pixels (GSR;, the fastest one, spends only 25 seconds).
The visual result of the super-resolved images seems to have more details than the simple
interpolation, even using a few images as input.

7.3 Results for license plates

The last experiment introduces the framework “Fyes on the Target”, that handles the
necessary conditions to identify a target license plate, using a novel methodology to locate,
track, align, super resolve, and recognize its alphanumerics. We focus on enhancing the
details in vehicle license plates that could help to identify a criminal suspect or activity in
a crime scene, super resolving only a region of interest (ROI) of the video, and discarding
less important parts.
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The framework provides a user interface for the forensic analyst to choose the license
plate of interest. The interaction with the user is required only in the initial step (this
is reasonable, since she needs to identify which of the moving vehicles in the video is the
suspect one). The execution of all the additional steps are transparent to the user, who
sees only the super-resolved image and its recognized characters at the end of the process.
If a completely automatic solution is intended, a license-plate detector can be used in this
first step. The system is designed in such a way that integrating a license-plate detector
would be straightforward. We did not include such feature in this work because our
focus is to aid the forensic analyst with specific unresolved cases (in which other simpler
solutions have been unhelpful, and the interaction with the user is desirable). If the user
does not want to use the recognized alphanumerics, she can simply use the reconstructed
image for a better visualization of the alphanumerics, or even as an improved input for a
single-image super-resolution algorithm.

After this initialization, the framework comprises a series of methods for tracking,
registration, super resolve, post-process and recognize the alphanumerics of a detected
license plate. Each method may be more or less advantageous, depending on a number
of situations (e.g., different illumination conditions through the license-plate’s route, high
vehicle speeds, etc). There is one default solution for each step. However, if the framework
does not find an appropriate solution, the user can customize the framework and change
the method for any of the framework steps.

The experiment shows that it is possible to increase the number of recognized char-
acters using our super-resolution methods. Since GGS R, recognized all seven license-plate
characters in more input videos than the other variations, we chose GSR, as the de-
fault method for the reconstructed step (G'SR, results are more blurred than the other
methods, and the recognition task seems to work better using images with less noise).
However, each variation might be more or less advantageous for each case. For example,
the inpainting-based variations found results higher than GSR, in 12% of the videos (and
the results were equal to GSR, in 80% of the dataset), so the user can change the method
when the result is not appropriate.

It is also interesting to point out that GSRy, the algorithm that we choose as the
default solution for the framework, produced the worst similarity values in Fzperiment
#1. Such result supports our claim that the best solution to super resolve a set of images
is highly dependent on the application.

The collected dataset is another contribution of this work. We collected real-world
traffic videos, containing one target license plate per video. Each video has an associated
ground-truth file with the annotated characters of the suspect plate. The videos were
captured in different places, under different illumination conditions, different vehicle av-
erage speeds, non-stationary backgrounds, non-predictable routes, and containing trees
and road signs that may cast different shadows over the license plates between consecutive
frames.
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7.4 The registration problem

Registration plays an important role in a multi-frame SR. In all proposed methods, we
need to know the alignment among the input observations. In the first experiment, since
we generated the LR images, we could calculate and use the correct alignment among
them. We do not expect, however, that such alignment is available in real-world applica-
tions. Therefore, we also perform a registration step, prior to the reconstruction, trying
to approximate this experiment to real-world situations. Given a set of LR images, we
found keypoints and descriptors (using SIFT, SURF and ORB) in all images and then
matched them using k-NN and Flann.

For a fair comparison among the three feature detectors, we have chosen only one
algorithm for the reconstruction step. Hence, different SSIM values in the results were
exclusively due to the alignments produced by each detector. Additionally, we compared
them to the correct alignment, to visualize the best results that the registration meth-
ods could achieve. Such experiment showed that classic feature detectors could, indeed,
perform a good alignment. SIFT outperformed ORB and SURF, but ORB is the best
solution for images with high dimensions, due to its faster runtime. We used this same
methodology for the registration step in the experiment with mobile devices, and the
results were similar.

In the third experiment, for super resolving the license plates, the pairs of keypoints
found by the feature detectors in the two consecutive images were not good enough to
calculate a transformation between such frames. Most of the keypoints found by the
methods belong to the environment around the car, and they might not contribute to
map one license plate onto the other. Therefore, we used a two-steps methodology to
align the license plates when dealing with videos of fast-moving vehicles:

e First, we use the four corners around the license plate (selected by the user) to
track the object of interest between the consecutive frames. Such tracking gives a
pre-alignment between the frames, and the framework has five methods to find the
re-occurrences of the license plates throughout the video:

1. In the first method, we iteratively use the Lucas-Kanade optical flow to track
the points, creating an homography between the frames. The keypoints in the
reference frame are found with Shi-Tomasi corner detector, and only inside
the license-plate region. We chose a pyramidal implementation of such optical
flow, since we do not want to constrain our framework just to videos with slow-
moving vehicles (when we go up in the pyramid, the images are downscaled,
the small motions are removed, and the large motions become small motions).

2. The second method uses a pyramidal implementation of dense optical flow. We
do not create the homography matrix here, since the algorithm calculates the
motion of each pixel in the image.

3. In the third method for tracking, we use SIF'T to find keypoints in the initial
frame. This is possible because the user previously annotated the region de-
scribing the license plate of interest in the first step. We find SIFT keypoints
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only inside the license-plate region (as in the first tracking solution with the
Shi-Tomasi detector), and then we match them with the SIFT points found in
the entire consecutive frame. The points are matched using k-NN and Flann,
and the best matches estimate an homography matrix mapping the images.

4. The other two methods are similar to SIFT. However, they detect the key-
points using, respectively, the feature detectors SURF and ORB. Regardless
the tracking method, the tracked points in a frame F}, are also used as previous
points in the frame Fj.;, and we then align the tracked objects with respect
to the initial frame’s license plate.

e After tracking, we refine the alignment with subpixel accuracy using optical flow
once again (but more accurately, as the images are now pre-aligned). We use Lucas-
Kanade optical flow and dense optical flow without pyramids, and inside a smaller
search window (larger values increase the algorithm robustness to fast motion de-
tection, but yield less accuracy). Optionally, as a third solution, the user can choose
not to perform the refinement, and keep the pre-alignment found in the tracking
step.

The experiment showed that the pyramidal implementation of the Lucas-Kanade opti-
cal flow, combined to Shi-Tomasi corner points, outperformed the pyramidal Farneback’s
dense optical flow and the classic feature detectors SIFT, SURF and ORB in the tracking
step. In addition, due to the pyramid layers, we did not have issues with fast-moving
vehicles with both the LK and Dense tracker, and we could properly keep tracking the
license plates in situations when the camera loses focus on the license plate, and then
re-focuses on the object after a few frames. Dense optical flow, however, outperformed
the other methods when there were cast shadows over the license plate.

The Lucas-Kanade method also outperformed Dense optical flow in the alignment
step, when both are used without pyramid layers. The subpixel adjustment improved the
number of hits in several cases. The Lucas-Kanade’s runtime is also significantly lower
than all the other methods for tracking and registration, so it was chosen as the default
solution for both steps.

7.5 Number of images used as input

In Chap. 4, having the results from the Ezperiment #1, we have discussed that m? may
be a good number of input images when we want to create a super-resolved image mx
higher in both axis, and any number close to that may generate a good solution using all
the proposed methods. However, with the experiment for license-plates in Chap. 6, we
noticed a significant improvement in the quality of the characters recognition even if we
increase the number of super-resolved frames from 1 to only 2 (it seems that the framework
can correct problems with atmospheric/illumination conditions even using only two input
frames). We also suggested that collecting five frames may be a good amount of input
frames in such setup. We found at least two reasons not to use the number m? in the
forensic framework:
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1. In such setup, we do not have a fixed factor m to enhance the dimensions of the plate.
Instead, we combine the frames onto a rectified license plate within a fixed-sized grid
according to country-specific specifications. Hence, in this particular application,
the dimensions of the ultimate super-resolved image does not depend the dimensions
of the license-plate in the input frames.

2. Additionally, in this scenario, the videos usually contain fast-moving vehicles. Then,
the license-plate image after a few number of frames might become very smaller
than in the initial frame, and then it might not add relevant information to the
reconstruction.

7.6 Future work

Due to the small dimensions of the license-plate images in the surveillance videos, the
runtime of the proposed method impacted more the mobile application than the forensic
setup. For future work, we start by highlighting that GSR (the fastest method, which
has been chosen to super resolve the images in an always-on low-power environment)
can become even faster: for now, all the variations have been implemented in Python
(we may achieve faster runtime if using C) and they still have no parallelism. For such
application, we can add parallelism to the method, taking advantage of multiple cores in
recent, mobile phones. It is also possible to study other nearest neighbors approaches in
order to combine the LR pixels in GSR (using triangulation, for example, as we discussed
in Chap. 3), compare the algorithms to a larger number of recent methods in the literature
(putting all of them in this context of limited memory and battery), and adapt the method
to run on a mobile phone (for now, we simulated the results only in Desktop computers
and notebooks). Another interesting idea is to investigate if we can use the accelerometer
and the gyroscope from such devices to calculate (or help to calculate) the motion between
two consecutive images. It could aid the registration step.

For the forensic framework, a possible future direction is to automatically locate the
license plate, substituting the user interaction in the first step. Hence, it might be possible
to create a completely automatic and unsupervised framework, and use it for real-time
applications. In addition, it might be useful to automatically detect and discard blurred
frames that may appear while the camera loses focus, and improve the recognition training
process including real-world license-plate images. Other possibility is to automatically
point out the number of input frames that returns the best result, sorting the results by
the confidence rate that the OCR systems returns for each sequence. Moreover, we have
already acquired videos of real-world unresolved cases from the Brazilian Federal Police.
We did not add such videos in our experiments for ethical reasons, but we might relate
possible good results in future work.

We are also planning to investigate other strategies to calculate the alignment between
the input observations. According to [106], the accuracy of most registration algorithms
is not enough for super resolution, which lead to annoying artifacts. They propose a
strategy that measures the reliability of the estimated shifts and only choose the reliable
frames. Such reliable shits then help to refine the other shifts, finding a refined HR
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image. Similarly, the work in [107] claims that high accuracy image registration is critical
for the success of multi-frame super resolution. However, the high-frequency of LR data
is unreliable due to the aliasing effect of sub-sampling, which will deteriorate the accuracy
of registration. They proposed then to resolve the aliasing by converting the LR images to
high-resolution (HR) domain and then perform registration on the restored HR spectrum.

Finally, another future work is to develop a framework for super resolution of hyper-
spectral imaging [117, 88], adding a contribution to the Microscopy field. A hyperspectral
image provides ample spectral information to identify and distinguish spectrally unique
materials, for more accurate and detailed information extraction. Such images are ac-
quired by an instrument that can simultaneously record spectral and spatial information
of a sample, facilitating the visualization of chemical distribution or chemical composi-
tions. For example, in medical image analysis, full information about the scene radiance
can be used to detect anomalies that are not distinguishable from RGB images alone.
Also, faithful color reproduction is critical for museums to record their artwork [56].
Moreover, the use of hyperspectral imagery has been shown to enhance the performance
of a number of computer vision tasks, including segmentation, tracking, and recogni-
tion [78]|. However, spatial resolution of current hyperspectral imaging systems is severely
limited compared to RGB cameras (therefore, a good application to super resolution).

To validate the framework, we might use a sequence of hyperspectral images generated
by a Near Infrared Spectroscopy (NIRS) [65] as input for our SR algorithm. Despite the
low spatial resolution of the NIRS, we can manually move the objects along its X and
Y axis, creating images with strictly translational displacements (perfect inputs for our
proposed methods). Therefore, the registration step for this application must find only
rigid transformations between two input images. Moreover, hyperspectral images contain
lots of informations (in addition to the RGB channels from the traditional images) that
can facilitate the alignment between the input sequence, improving the SR results. For
example, we can use many of their bands to detect and match keypoints if the amount of
keypoints in one single band is not enough for a good alignment.

A few works have been proposed to super resolve hyperspectral images. In [56], au-
thors generate an HR hyperspectral image using an LR hyperspectral camera and a high-
resolution RGB camera. [135] presents a single-image SR for hyperspectral images with
sparsity based regularization. [132] proposes a multi-frame super resolution that uses mul-
tiple components of the hyperspectral image to improve the accuracy in registration step.
To reconstruct the image, it introduces a MAP-based SR in which PCA is employed
to reduce computational load and remove noise. Finally, [1] models the hyperspectral
image acquisition process and presents a method for applying SR hyperspectral images
using such model. The method fuses information from multiple observations and spectral
bands to improve spatial resolution and reconstruct the spectrum of the observed scene
as a combination of a small number of spectral basis functions.

The most direct solution for hyperspectral image super resolution is to super resolve
every separate spectral band individually. However, this approach has a huge computa-
tional load due to the high dimensionality of the hyperspectral images (both in motion
estimation and in image reconstruction). Furthermore, high correlation exists across the
spectral bands, so considering these bands separately will not fully exploit the correlation
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across them [132]. Usually, a Principal Component Analysis (PCA) is used to reduce the
dimensionality of the hyperspectral image [1, 28, 52|, retaining as much information as
possible. The first few principal components contain the most information of the data,
and such components could be seen as the three bands of an RGB image. Any of the
proposed methods could then be used to create a super-resolved image. However, after
super resolving the three principal components, we could use the same geometric corre-
spondences found by the reconstruction step to transpose the SR to the other bands.

To evaluate this framework, the Institute of Chemistry at Unicamp provided a Near
Infrared Spectroscopy, from which we may capture a set of input images. Such device can
capture 256 different spectral bands, and the material can undergo strictly translational
displacements along the device. Moreover, such NIRS allows us to capture a set of hyper-
spectral images in a lower resolution and then to capture the same material with a pixel
resolution 5x higher than the others. Then, for the quantitative validation, we might
super resolve the LR observations, and compare the result to such image with higher
dimensions. For example, we can calculate the similarity individually for each band, and
the final similarity may be a combination of such similarities. For the qualitative vali-
dation, we might have a more interesting scenario: we are planning to add some small
impurity to the material, in a way that such impurity can be visualized only in the HR
hyperspectral image. So, a good SR technique should be able to detect such detail after
enhancing the set of input images.

In Figure 7.1a we see five examples of low-resolution images of a piece of wood cap-
tured by this NIRS after a PCA transform. A piece of the HR target image is shown in
Figure 7.1b.

.

(a) (b)

Figure 7.1: LR and HR hyperspectral images captured by a NIR device. All images
have been compressed with PCA, to be possible to visualize them in screen.
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Appendix A

Additional charts and results

In this appendix, we show additional results and charts from our experiments that might
contribute to a better understanding about the results. In Secs. A.1 through A.5 we focus
on the Experiment #1. First, in Secs. A.1, we compare the proposed SR methods in
terms of PSNR and MSE. In Sec. A.2, we compare GSR to other traditional methods
in the literature. Then, in Secs. A.3 through A.5, we present charts about the first
round of such experiment, in which we choose the best parameters for the Tikhonov-
based method. Finally, in Sec. A.6, we focus on the Experiment #3, introducing another
accuracy measure to evaluate the steps in the forensic framework.

A.1 Best reconstruction method

Now, we verify which is the best proposed method in terms of PSNR and MSE. In Fig. A.1,
we see that GSR outperforms all the methods in terms of PSNR (the higher the PSNR
value, the more similar one image to the other).

Best variation of each SR algorithm
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Figure A.1: Comparison among RLS, ISR and GSR in terms of PSNR.
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In Fig. A.2, GSR also outperforms the other methods in terms of MSE (the lowest the
MSE value, the more similar one image to the other.
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Figure A.2: Comparison among RLS, ISR and GSR in terms of MSE.

In Fig. A.3, we measure the similarity between each super-resolved image Isr to the
blurred image I, in terms of PSNR. We can see in Fig. A.3 that GSR; has, on average,
the best PSNR values.

Best SR algorithm with respect to the blurred image
!
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35
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Figure A.3: Comparison among RLS, SR and GSR, with respect to the blurred image
that generated the pool of LR images.

Finally, in Fig. A.4, we measure the similarity between each super-resolved image Isp
to the blurred image I, in terms of MSE. We can see in Fig. A.4 the MSEs produced by
GSR; are, on average, almost 0 (the minimum value for this similarity metric).
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Figure A.4: Comparison among RLS, SR and GSR, with respect to the blurred image
that generated the pool of LR images.

A.2 Other methods in the literature

Now, we compare GSR; to other reconstruction algorithms available in the literature,
using the implementations in MATLAB® from [122]: An algorithm inspired in the works
of Papoulis [83] and Gerchberg [41] (PG); Iterated Back Projection (I BP) [45, 46]; Robust
Super-Resolution (RS) [138]; Projection Onto Convex Sets (POC'S) [109, 34, 136]; and
Structure-Adaptive Normalized Convolution (NC') [86] (see Section 2.2 for more details
about these methods). Here, we use only up to 35 input images and six target images
from the dataset, due to the long runtime spent by classic algorithms.

For a fair comparison, we executed all algorithms using the correct alignment in the
registration step. All classic algorithms, except NC, failed to super-resolve more than
two input images. The chart, in Figure A.5, summarizes the comparison among GSR;,
PG, IBP, RS, POCS, and NC.

Quality of reconstruction

1.0 ! ! !
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< o6l ' : 1 POCS|.
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! 0'45 H : 5 f GSR1[]

0.2 . (RRLEERTTRPRIEE JEREEEPREPPRRRE ARECERTEPREPRLE P P e

i T s ;

0.0t * .

2 5 10 15 20 25 30 35

Number of images used in Reconstruction

Figure A.5: Quality of different reconstruction algorithms as a function of the number
of LR input images.
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Figure A.6 shows a comparison between the runtime of the best investigated recon-
struction algorithm (G'SR;) and the best classic one in the experiments (NC'). Although
GSR; and NC present similar SSIM values as we increase the number of input images
(Figure A.5), we can conclude, from Figure A.6, that GSR; is more advantageous due to
its low execution time (two orders of magnitude faster).

4 Reconstruction time

Time (seconds)

Number of images used in Reconstruction

Figure A.6: Reconstruction runtime (logarithmic scale for viewing purposes).

A.3 RLS parameters

The chart in Fig. A.7 shows the quality of RLS using a = 0.1 and different values for o
and d, for all images in Z,. Each curve in Fig. A.7 is the average of the SSIM for all the 70
target images in the pool, using from one to 50 images as input for the super resolution.
The best Gaussian parameters in the chart are ¢ = 0.5 and d = 3, but the results for
d =5 are very similar to d = 3.

The chart in Fig. A.8 shows the quality for « = 0.5, on average. When we use n > 40
images as input, the best SSIM values are found with (o = 0.5,d = 3). However, such
highest similarity seems very similar in the chart for (0 = 0.5,d = 5) and (0 = 0.7,d = 1).

Finally, Fig. A.9 shows the quality of the super resolution using a = 1.0.

Unlike a = 0.1 and o = 0.5, Fig. A.9 shows that SSIM values for a = 1.0 are better
using (0 = 0.7,d = 1) than using o = 0.5, on average.

A.4 RLSO parameters

The chart in Fig. A.10 shows that the best results for RLSO, on average, are found with
0 =0.7and a =0.1.

A.5 RLSU parameters

Fig. A.11 shows that o = 0.1 is the best value for the regularization parameter using the
uniform distribution.
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Figure A.7: SSIM values for RLS using o = 0.1 and different values for ¢ and the kernel
size. Each curve is the average for all the images from the pool in the subset %;.

A.6 Framework accuracy

In Chap. 6, we investigated the number of videos in which the framework correctly iden-
tified all the seven license-plate alphanumerics (7 is the maximum number of license-plate
characters in our dataset) for a given method. We referred to this accuracy number as
Acez. To find this number, we verified if the method scored seven hits at least once (using
from 1 to 10 input frames), in each video. Now, we also calculate the number of videos in
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Figure A.8: SSIM values for RLS using o = 0.5 and different values for ¢ and the kernel
size. Each curve is the average for all the images from the pool in the subset %;.

which a given method = got the highest accuracies (i.e., the number of videos in which no
other method y got more hits than the method ). We refer to such number as Accgpgr.
Table A.1 confirms that PyrLK is also the most promising tracking method using such

accuracy number.

The Accppst values for the registration methods, in Table A.2, support the claim that

“None” outperforms the other registration solutions, on average.

In Table A.3, we investigate the Accgpsr values for super resolution.
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Figure A.9: SSIM values for RLS using o = 1.0 and different values for ¢ and the kernel
size.

We investigate now the accuracy for the binarization methods in Table A.4.
Finally, the Accppsr also shows Tesseract is more effective than OCRopus (see Ta-
ble A.5).
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Figure A.10: SSIM values for RLSO using different values for o and o.
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Figure A.11: SSIM values for RLSU using different values for a.
Tracking method Accy AccpgsT
KLT 174 (87.0%) | 117 (58.5%)
DENSE 167 (83.5%) 108 (54.0%)
SIFT 164 (82.0%) 110 (55.0%)
SURF 156 (78.0%) 109 (54.5%)
ORB 149 (74.5%) 99 (49.5%)
Table A.1: Accuracy of the framework’s tracking step.
Registration method Accy AccpgsT
LK 163 (81.5%) 113 (56.5%)
Dense 142 (71.0%) 93 (46.5%)
None 183 (91.5%) | 122 (61.0%)
Table A.2: Accuracy of the framework’s registration step.
Method ACC7 ACCBEST Method ACC7 ACCBEST
GSR; 134 (67.0%) 93 (46.5%) ISRy 131 (65.5%) 96 (48.0%)
GSR, 140 (70.0%) 102 (51.0%) ISR, 134 (67.0%) 94 (47.0%)
GSR3 142 (71.0%) 98 (49.0%) RLS | 148 (74.0%) | 100 (50.0%)
GSRy | 144 (72.0%) | 103 (51.5%) || RLSO | 146 (73.0%) | 104 (52.0%)
GSRs 140 (70.0%) 97 (48.5%) RLSU | 147 (73.5%) | 105 (52.5%)

Table A.3: Accuracy of the reconstruction step.
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Accpgsr
163 (81.5%) 112 (56.0%)
150 (75.0%) | 92 (46.0%)

Binarization method Accy

Otsu’s binarization

Adaptive thresholding

Table A.4: Accuracy and runtime of the post-processing step.

OCR system Accq Accpgsr
Tesseract | 177 (88.5%) | 131 (65.5%)
OCRopus | 98 (49.0%) | 72 (36.0%)

Table A.5: Accuracy and runtime of the recognition step.
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Appendix B

Implementation details of the
framework

In this appendix, we describe some implementation details for those who want to replicate
the results of our framework. All the source codes are developed in Python 2.7, and most
of the methods use Numpy 1.11 and OpenCV 3.1 [12]. The source-code is freely available
on GitHub.

B.1 Tracking and registration steps

The PyrLK uses at most five pyramid levels'. The search terminates after a maximum
of 10 iterations or when the search window moves by less than ¢ = 0.03. The search
window size is 11 (in both axis). However, if the framework cannot track at least 10
consecutive frames, the search window size is iteratively increased by 10, and the entire
tracking step is performed again. The framework keeps increasing the window search size
until it tracks the license plate through 10 consecutive frames, and stops trying after 10
failed attemps. To define if the tracking was successfully performed between two frames,
we verify if the size of each bounding box side increases/decreases at most 20%. We find
at most 1,000 good features to track, using 0.01 as the quality level, 4 as the minimum
possible Euclidean distance between the corners, and 19 as the size of an average block
for computing a derivative covariation matrix over each pixel neighborhood.

PyrDense uses five pyramid levels, window search size from 11 to 101 (as in PyrLK),
and a maximum of three iterations. The size of the pixel neighborhood used to find
polynomial expansion in each pixel is 5, and the standard deviation of the Gaussian that
is used to smooth derivatives used as a basis for the polynomial expansion is 1.2. In
the registration step, LK and Dense differ from the tracking step only in the number of
pyramid levels (1, instead of 5).

For SIFT, we do not limit the number of features to retain, and use 8 layers in each
octave, 0.01 for the contrast threshold to filter out weak features in low-contrast regions,
10 for the threshold used to filter out edge-like features, and Gaussian ¢ = 1.3. In SURF,

1See OpenCV documentation [49] for more details about the parameters that we describe in this
Section.
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we use 10 as the threshold for the Hessian keypoint detector, 4 pyramid octaves, and 8
layers in each octave. Finally, we limit in 100,000 the number of features to retain in
ORB, the pyramid decimation ratio is 1.2, the number of pyramid levels is 8, the border
size where the features are not detected (edge threshold) is 31, and the patch size used
by the oriented BRIEF descriptor is 31. The keypoints found by SIFT, SURF and ORB
are matched using the Flann’s default parameters.

B.2 Reconstruction step

Both GSR3; and GSR5 rely upon a weighted average to calculate each pixel in the HR
grid. GSR3 combines always the three nearest neighbors. The weight of the nearest one
is 60%, and the weights of others two nearest neighbors are 20%. If we have only two
neighbors (e.g, if there are only two input frames to super-resolve), their weights are 70%
and 30%. For GSRj5, we combine the neighbors inside a circular region of radius » = 0.05
pixels around the desired point p in the grid. The closer an LR pixel g is to p, the greater
must be its weight. Hence, we define w, = r — d(q, p) as the weight between ¢, and p,
where 7 is the radius distance and d(x,y) is the Euclidean distance between two points.
For all the five variations of GSR, the HR grid size is (200 x 75) pixels (proportional to
the Brazilian license-plate size).

B.3 Post-processing step

The Otsu’s binarization is preceded by a Gaussian blur with kernel size (3,3), and the
Adaptive thresholding is preceded by a Gaussian blur with kernel size (7,7). The size of
a pixel neighborhood in Adaptive thresholding is 17, and the constant subtracted from
the mean is 2.

B.4 Recognition step

Finally, we trained the OCR systems using the fonts Mandatory and DIM Mittleschrift.
We created images with 17,576 combinations of letters (26 x 26 x 26) and 9,999 combi-
nations of digits. The training process is described in Sec. 5.7 and followed the documen-
tations of Tesseract and OCRopus.
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