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Resumo

O Problema da Árvore de Steiner de Custo Mínimo é um problema de otimização clássico
em que, dado um grafo e subconjunto de vértices, chamados terminais, procura-se obter um
subgrafo conexo com todos os terminais de forma que a soma dos pesos das arestas seja mínima.
Consideramos a variante em que o grafo é completo e a função de peso sobre as arestas é uma
métrica e, além disso, existe uma função de pesos não negativos sobre os vértices. O objetivo é
encontrar uma árvore que contém todos os terminais e que minimiza o peso total de vértices e
arestas. Nesta dissertação, observamos que o problema geral admite uma 2-aproximação. Para
o caso particular em que o peso de um vértice é no máximo q vezes o peso da aresta mais leve,
para uma constante q, obtemos um algoritmo aleatorizado baseado em arredondamento de PL
com fator de aproximação 1,62 e um algoritmo guloso com fator de aproximação 1,55.



Abstract

The Minimum Cost Steiner Tree is a classical optimization problem where, given a graph and
a subset of vertices called terminals, one is asked to find a connected subgraph spanning the set
of terminals and whose edge weight is minimum. We consider the variant where the graph is
complete and the edge weight function is a metric and there is a non-negative weight function
on the vertices. The objective is to find a tree spanning the terminals such that the sum of edge
and vertex weights is minimum. In this thesis, we observe that the general problem admits
a 2-approximation. For the special case where the weight of a vertex is at most q times the
weight of lightest edge, for a constant q, we obtain a randomized LP-rounding algorithm with
approximation factor 1.62 and a greedy algorithm with approximation factor 1.55.
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Chapter 1

Introduction

1.1 Motivation and Thesis Overview

Suppose we own a telecommunications company and we are given the task to run cables and
deploy routers throughout the city in order to connect a given set of buildings into a single
network. The simplest of the solutions might be connecting cables from a building to the next
one, saving the money spent with the deployment of costly routers and relying purely on the
cables. If every building is aligned as in a straight line, this would turn into a really good solution
(and perhaps even the cheapest one!). Unfortunately such a scenario is very unlikely as building
are usually scattered all across the city. In this situation, deploying routers to connect smaller
sets of buildings and interconnecting the routers might be a good idea. However, the cost of
installing too many machines might overweight the budget reserved for the task. Actually, it is
very hard to tell precisely which solution minimizes the total expense, and tackling problems
like this is the main goal of combinatorial optimization.

Broadly speaking, combinatorial optimization is a topic whose studied problems may be
described as in the following: given an instance of a problem, find the “best” solution among
all the feasible solutions. This topic is widely studied by researchers from Applied Mathe-
matics and Theoretical Computing Science. The simplest strategy is brute-force: enumerating
all solutions and selecting the best one. Unfortunately, such exhaustive search (brute force) is
unpractical, as for many problems, one can show mathematically that, with current computer
power, the time necessary to solve some of these problems might be longer than the planet’s
lifespan, even for relatively small instances. It turns out that the telecommunication problem
described is one of the many variants of the famous Steiner Tree Problem, named after Jakob
Steiner, a Swiss mathematician who contributed to the field of Geometry.

Deciding whether an optimal solution of an instance of the Steiner Tree problem costs at
most a value k is NP-hard. This means that we do not expect to find efficient algorithms for
this decision problem, and, furthermore, we do not expect that there is an efficient algorithm
to find an optimal solution for the same instance. For problems in the NP-hard class, it is
usual to look after alternative approaches. This includes the use of heuristics to help speed
up the running time and to improve solutions, or even the use artificial intelligence. In this
thesis, we focus on approximation algorithms. These algorithms can efficiently find feasible
solutions of optimization problems, but concedes not finding the best solution. Instead, these

8
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algorithms produce solutions whose costs are within a mathematically provable margin of error.
This margin is formalized as the approximation factor of the approximation algorithm.

The most common version of a Steiner problem consists of a set of objects and connections
between them. One is asked to interconnect a special subset of objects, called terminals, into
a single structure we refer as the Steiner tree. The objective is to minimize the cost of used
connections between terminal and, possibly, nonterminals. This problem is called the Steiner

Tree Problem (STP), thoroughly studied in the last century [20]. Yet, only in the last two
decades significant improvements have been derived on the scope of approximation algorithms,
where it has been shown that one can compute efficiently a solution whose cost is within a
small constant factor from the optimum [3, 5, 6]. The importance of STP comes from its
many practical applications in network design, optimization of VLSI circuitry and logistics.
Moreover, solving STP is also a subproblem to many other complex and important tasks.

In the practical telecommunication scenario we described earlier, the routers are not free.
This variation of the problem is known as the Node-Weighted Steiner Tree Problem (NSTP) [12].
Unfortunately, we do not expect to find an approximation algorithm with constant factor for it,
because achieving this would imply the existence of efficient algorithms for other NP-hard
problems. Despite this fact, it is natural to assume that the connection costs satisfy certain
properties. For example, in practical situations, it is natural to assume that the cost to connect
two objects is proportional to the distance, and thus the connection cost satisfies the triangle
inequality. We call this version the Metric Node-Weighted Steiner Tree Problem (MNSTP). In
this thesis, we show that a 2-approximation for this problem can be readily obtained. Moreover,
we study the special case which we call the q-Metric Node-Weighted Steiner Tree Problem

(q-MNSTP), where the ratio between the cost of a router and the cost of a connection is bounded
by the constant q. For this variant, we show that the factor can be further improved, and describe
an LP-rounding and a greedy algorithm, with approximation factors 1.62 and 1.55, respectively.

In Chapter 2, we give the preliminary definitions, and concepts used through the thesis,
as well as some basic results. In this chapter, we formally define approximation algorithms,
linear programming, we introduce some motivation and concepts on probabilistic theory and
graph theory. Also, we define the Steiner Tree Problem and considered variants, and finish
describing a few related works in the field. In Chapter 3, we present a simple approximation
for MNSTP, and show that to obtain an approximation for q-MNSTP, one can consider only
solutions in a restricted form; this result is important, as it allows the use of techniques from the
classical STP, thus leading to the approximation algorithms. In Chapter 4, we present an LP-
rounding algorithm, and show that it obtains a solution with expected cost at most 1.62 times
the optimal. Finally, in Chapter 5, we present a greedy approximation algorithm, and show that
it has approximation factor of 1.55.



Chapter 2

Preliminaries and Related Works

This chapter contains a summary of definitions and basic concepts used throughout the thesis.
We define approximation algorithms, and introduce basic notions of graph theory, probabilistic
theory and linear programming. Some of the more detailed and specific concepts are given as
we prove our results in the following chapters.

2.1 Probabilistic Theory

A randomized algorithm is an algorithm that makes choices depending on an auxiliary input
sequence of random bits. The study of such algorithms is a well established area, and there are
many techniques of analysis [17]. This section gives only an introductory grasp of probability
that will be used in the analysis of the probabilistic algorithm given in Chapter 4.

A probabilistic space is a tuple with three components: a sample space Ω, which contains
every possible outcome of a random process; a family F of subsets of Ω, called events, which
represents the allowed outcomes; and a probability function Pr : F → [0,1] such that Pr(Ω) = 1
and Pr(

⋃

i≥1 Ei) = ∑i≥1 Pr(Ei) for any set of pairwise disjoint events {E1,E2, . . .}.
For example, consider the random process of rolling a fair six-sided die. We define the

sample space Ω with every number in the die, which is Ω = {1,2,3,4,5,6}. The set of events
is F = {E ⊆ Ω}, and, since the die is fair, the probability of getting any number is 1/6, and
thus Pr({i}) = 1/6, for 1≤ i≤ 6. Also, for 1≤ i < j ≤ 6, events {i} and { j} are disjoint, and
thus Pr({i, j}) = Pr({i})+Pr({ j}) = 2/6, and so on.

If one roll a four-sided die twice, and sum the drawn numbers, the probability space Ω for
this situation is the set of pairs of numbers. The sum of these numbers is now a random variable
X that relates each outcome of Ω to a number. One may also consider the probability that
variable X assumes a desired number. Formally, a random variable is a function X : Ω→R. The
probability of the event, in which X assumes value n is denoted by Pr(X = n), the probability
that X ≤ n as Pr(X ≤ n) and so on. In the example, the probabilistic space is defined as follows.
Let di represent the number given by the i-th die roll, then Ω = {1,2,3,4}2, F = {E : E ⊆Ω},
and the random variable is X((d1,d2)) = d1+d2. For example, Pr(X = 3) = 1/8, because there
are exactly two possibilities out of sixteen outcome possibilities in which the sum gives the value
3, namely (1,2) and (2,1); also Pr(X = 9) = 0, because no outcome sums up to 9; Pr(X ≤ 4) =
Pr(X = 2∪X = 3∪X = 4) = Pr(X = 2)+Pr(X = 3)+Pr(X = 4) = (1+2+3)/16 = 3/8,

10
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because the events of which X = i and X = j are disjoint when i 6= j.
To model the situation that an event E is influenced by another event F , one might measure

the probability of event E happening, given that F occurred previously. If Pr(F) is not zero,
then the conditional probability of E, given F , is as Pr(E | F) = Pr(E ∩F)/Pr(F). Intuitively,
this measures the probability of the event E ∩F within the set of events defined by F .

A useful property of a random variable is its expectation. Informally, the expectation E[X ]

of a random variable X is the weighted average of the value it assumes. If the image of X

is countable, then the expected value is defined as E[X ] := ∑i i ·Pr(X = i). For example, the
expected value of the number obtained by rolling a single six-sided die is

E[X ] = 1 ·Pr(X = 1)+2 ·Pr(X = 2)+ · · ·+6 ·Pr(X = 6)

= 1 · 1
6
+2 · 1

6
+3 · 1

6
+4 · 1

6
+5 · 1

6
+6 · 1

6

= (1+2+3+4+5+6)
1
6

= 3.5.

Notice that the expectation E[X ] need not be a value in the image of X . Consider now the
situation where one rolls a four-sided die twice and sum the obtained numbers. The expected
value of the sum in the experiment is

E[X ] = 2 ·Pr(X = 2)+2 ·Pr(X = 3)+ · · ·+8 ·Pr(X = 8)

= 2 · 1
16

+3 · 2
16

+4 · 3
16

+5 · 4
16

+6 · 3
16

+7 · 2
16

+8 · 1
16

= 5.

A useful property of the expectation is its linearity. Let X and Y be random variables, and
c be a constant. It is easy to verify that E[X + cY ] = E[X ] + c ·E[Y ]. This equality aids in
the computation of more complex random variables. For example, the expected value of the
sum of numbers given by rolling a four-sided die twice is easily calculated by considering the
expectation of each roll individually as X = X1 +X2, where Xi is the value obtained in the i-th
time.

E[X ] = E[X1 +X2] = E[X1]+E[X2] =
4

∑
i=1

i · 1
4
+

4

∑
i=1

i · 1
4
= 2 · 1

4

4

∑
i=1

i = 5.

Similarly to conditional probability, one can define the notion of conditional expectation as
the expectation of a random value X given that an event F has occurred, E[X | F ]. Formally,
E[X | F ] = ∑x x ·Pr(X = x | F), where the summation is over all x in the image of X . For
example, the expectation of the sum of numbers given by rolling a four-sided die twice, given
that the first drawn number is a 2, is calculated as

E[X | X1 = 2] =
8

∑
i=2

i ·Pr(X = i | X1 = 2) =
6

∑
i=3

i · 1
4
= 4.5.

Notice that the second expression is simplified by observing that the sum cannot be 2,7 nor 8,
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i.e., Pr(X = j | X1 = 2) = 0 for j = 2,7,8.
It is also possible to partition the random space for a random variable X by considering

every possible outcome of another random variable Y . This gives rise to an important identity
on the expectation of X that is given by the following lemma.

Lemma 1. For any random variables X and Y ,

E[X ] = ∑
y

Pr(Y = y) ·E[X | Y = y],

where the sum is over all values in the image of Y .

Proof. Let Xx denote the event where X = x and Yy the event where Y = y. Because the events
Xx ∩Yy, y ∈ R, are disjoint and cover the entire sample space such that X = j, it follows that
Pr(Xx) = ∑y Pr(Xx ∩ Yy).

∑
y

Pr(Y = y) ·E[X | Y = y] = ∑
y

Pr(Yy) ·E[X | Yy]

= ∑
y

Pr(Yy) ·∑
x

x ·Pr(Xx | Yy)

= ∑
x

x ·∑
y

Pr(Xx | Yy) ·Pr(Yy)

= ∑
x

x ·∑
y

Pr(Xx ∩ Yy)

= ∑
x

x ·Pr(Xx)

= ∑
x

x ·Pr(X = x)

= E[X ].

2.2 Graph Theory

A graph is an abstract structure useful to model relations between objects. In this thesis a
(simple) graph G is denoted as an ordered pair (V,E), where the set of objects is denoted by
V and its elements are called vertices, and we represent the relation between two vertices by a
set E of 2-element subsets of V , i.e., E ⊆

(

V
2

)

, and its elements are called edges [4]. If e = {u,v}
is an edge, then we say that vertices u,v are incident to e, and that e is incident to u, and that u

and v are adjacent. For a graph G, we denote the set of vertices and edges of a graph G by V (G)

and E(G) whenever needed to avoid ambiguity. A directed graph G is an ordered pair (V,A),
where V is the set of vertices, and A is a set of ordered pairs of vertices of G called arcs. If
a = (u,v) is an arc, then we say that u is the tail of a and v is the head of a. Figure 2.1 illustrates
a graph and a directed graph.

A multigraph is a generalization of a (simple) graph in which we allow parallel edges and
loops. Two edges are said to be parallel if they are incident to the same vertices. An edge is a
loop if it has only one incident vertex. Formally a multigraph M = (V,E) is an ordered pair of
a set of vertices V and a multiset E, where each element of E is associated to a subset of V with
either one or two elements each.
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a

bc

d

e f

(a) A graph G = (V,E) with vertex
set V = {a,b,c,d,e, f} and edge set
E = {{a,b},{a,c},{a,d},{b,c},{c,e}}.

a

bc

d

e f

(b) A directed graph G with vertex
set V = {a,b,c,d,e, f} and arc set
A = {(a,b),(b,a),(c,b),(c,d),(c, f ),(d,d)}.

Figure 2.1: Example of a graph and one of its subgraphs.

a

bc

d

e f

Figure 2.2: Example of a multigraph M = (V,E), where V = {a,b,c,d,e, f} and E =
{{a,b},{a,b},{b,c},{c,d},{c, f},{d}}, which resembles the directed graph from Figure 2.1b.

We say that a graph H is a subgraph of G, denoting by H ⊆G, if V (H)⊆V (G) and E(H)⊆
E(G), i.e., the vertices of H is a subset of vertices of G and the edges of H is a subset of the
edges of G. Given a graph G and a subset of its vertices R ⊆ V , we say a subgraph H spans R

if R ⊆ V (H). We say that a graph G is complete if its edge set E(G) contains every possible
edge in

(

V
2

)

. The degree of a vertex v ∈ V , denoted d(v) is the number of edges incident to v.
Figure 2.3 gives examples of a subgraph and a complete graph.

In a simple graph G = (V,E), a walk W = (v0,{v0,v1},v1,{v1,v2}, ...,{vm−1,vm},vm), of
length |W | = m, is an alternating sequence of vertices and edges which starts and ends with
vertices and we also call W a closed walk if v0 = vm. A trail T is a walk in which all the
edges in the sequence are distinct and we say that T is a circuit if v0 = vm. A path P is a trail
in which all the vertices are distinct, except possibly the first and the last vertices, and when
they are not, we say that P is a cycle. We say that a graph is connected if G contains a path
that connects every pair of u,v ∈ V , and we say that a maximal connected subgraph of G is a
connected component. In this thesis, we say that a graph is Eulerian if every vertex in the graph
has even degree and is connected. It is well-known that if a graph G is Eulerian, then there is a
circuit which contains every edge of G (known as Eulerian circuit) [4]. We refer to Figure 2.4
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a

bc

d

e

(a) A representation of a graph H, subgraph
of the graph G from Figure 2.1a, where V =
{a,b,c,d,e} and E = {{a,c},{a,d},{b,c}}.
Note that d(a) = d(c) = 2,d(b) = d(d) = 1,
and d(e) = 0.

a

bc

d

e f

(b) A representation of a complete graph H ′,
where V = {a,b,c,d,e, f} and E =

(

V
2

)

. Note
that both the graph H and the graph G from
Figure 2.1a are subgraphs of H ′. The degree of
every vertex is |V |−1.

Figure 2.3: Examples of a subgraph and complete graph.

as examples for some of these concepts.

e f g h

a b c d

Figure 2.4: An example of an Eulerian graph G. In this graph, the sequence
of vertices and edges (a,{a,b},b,{b, f}, f ,{ f ,e},e,{ f ,e}, f ) is an example of a
walk with length 4; the sequence (a,{a,b},b,{b,c},c,{c, f}, f ,{ f ,g},g,{g,h},h)
is an example of path (drawn in thick magenta) with length 5, and the sequence
(a,{a,b},b,{b,c},c,{c,d},d,{d,h},h,{h,g},g,{g,b},b,{b, f}, f ,{ f ,c},c,{c,g},g,{g, f}, f ,
{ f ,e},e,{e,a},a) is an example of an Eulerian circuit with length 12.

Let G = (V,E) be a graph and U ⊆ V . The vertex-induced subgraph G[U ] is the subgraph
of G with vertex set U , and whose edge set contains every edge of E(G) which has incident
vertices in U . Now let F ⊆ E, then the edge-induced subgraph G[F ] is the subgraph of G which
has edge set F and every vertex incident to some edge of F , and no more. We will refer to these
subgraphs as induced subgraphs. Figure 2.5 exemplifies the two definitions. If V ′ ⊆V (G) and
E ′ ⊆ E, then we also adopt the notation that G\V ′ = G[V\V ′] and G\E ′ = G[E\E ′].

A tree T is a graph which is connected, and has no cycles on it. Equivalently, a tree can be
defined as a graph which is connected, and has exactly |V |− 1 edges or as a graph which has
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f h

b c

(a) Induced subgraph G[U ], where U =
{b,c, f ,h}.

e f g

a b c

(b) Induced subgraph G[F ], where F =
{{a,b},{b, f},{c,g},{ f ,e}}.

Figure 2.5: Examples induced subgraphs of the graph G from Figure 2.4. In both cases we have
a graph with two connected components.

exactly |V |−1 edges and has no cycles [4]. A subgraph of a tree, that is also a tree, is called a
subtree. A vertex of a tree with degree one is a leaf and all the others are internal vertices. A
rooted tree is a pair (T,r), where T is a tree and r ∈V (T ) is the root. If the root r is fixed, then
we might say just tree T . We say that T has height h if the largest path starting at the root has
length h. Also, we say that a vertex v is in the i-level, denoting by level(v) = i, if the length of
the unique path from r to v has length i−1 (the unicity of the path comes from the fact that T is
a tree). A vertex u ∈V , in the i-th level is said to be a descendant of a vertex v ∈V (and that v is
an ancestor of u), if there is a path (v = v0,{v,v1},v1, ...,{vl−1,vl},vl = u) from v to u such that
level(vi)< level(vi+1), 0≤ i < l. For practicality we also say that the immediate descendant of
a vertex is its child and its immediate ancestor is its father. We say a tree T is a binary tree if
the degree of every vertex is at most 3. Also, a binary tree is regular if every non-root internal
vertex has degree 3. Figure 2.6 gives some example of trees.

bc

d

e f

(a) A representation of a tree T which spans
{b,c,d,e, f} and is a subgraph of the complete
graph H ′ from Figure 2.3b. If we choose b,d
or f to be the root, then T has height 3, but if c

or e is chosen, then T has height 2.

r

a

c

g h

m n

d

i j

b

e f

k l

(b) A representation of a regular binary tree T

with root r and height 4. In this example, every
vertex besides r is a descendant of r and, in
special, a,b are its children, a,c are ancestors
of h,m,n, and b is the father of e, f .

Figure 2.6: Example graphs which are trees.

Let G and H be graphs. We denote the union of graphs as G∪H = (V (G)∪V (H),E(G)∪
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V (H)). We define the addition of a vertex as G+ v = (V (G)∪{v},E(G)) and subtraction as
G− v = G[V\{v}]. Similarly, if u,v ∈ V (G), we denote addition and subtraction of edges as
G+{u,v}= (V (G),E(G)∪{u,v}) and G−{u,v}= (V (G),E(G)\{u,v}).

In this thesis, we also need the contraction operation. The idea is to contract a connected
subgraph into one of its vertex maintaining edges that connected vertices in the subgraph to
other vertices outside it. Consider a graph G = (V,E). Then the contraction of a connected
subgraph H of G into a vertex s ∈ V (H) results in a new graph G′ = (V ′,E ′), where V ′ =
{s}∪ (V (G)\V (H)), and E ′ is the set of edges of E(G) that were not incident to any vertex of
V (H), plus a new edge {s,x} for each vertex x ∈ V (G)\V (H) such that there exists an edge
incident to x and to a vertex of V (H) (we add only one edge {s,x} for each x). If the graph G

has an associated edge weight function we : E(G)→Q>0, then in the case where multiple edges
connect to the same outer vertex, we keep the lightest edge after each contraction operation, i.e.,
the new edge weight function for G′ is defined as w′e : E ′→Q>0 is given by

w′e({a,b}) =
{

minv∈V (H){we({v,b})} if s = a,

we({a,b}) otherwise.

One can think that the new edges inherited the weight of the lightest edge among the edges
that generated it. Also, note that we can trivially associate every new added edge to an edge
that was deleted with the same weight in a one-to-one fashion. Even if we perform successive
contraction operations, we can still map each edge to an edge of the original graph with the
same weight.

2.3 Approximation Algorithms

Consider a minimization problem P. The decision version of P is the problem where, given an
instance I of P and a number k, one wants to decide whether there exists a solution for I with
value at most k. If the decision version of P is NP-hard, then one cannot expect expect to find an
exact algorithms with polynomial-time complexity for it, unless P = NP. One could design an
algorithm that obtains an optimal solution, but whose worse case can run in superpolynomial-
time. One alternative is to find a polynomial-time algorithm that does not find an exact solution,
but whose value is within a given ratio. The algorithms of the latter are known as approximation

algorithms [20].
Let I be an instance for a minimization problem. Given an algorithm A, with polynomial-

time complexity, denote by A(I) the value of the solution computed by A when it is given
instance I, by Opt(I) the value of an optimal solution for I. An algorithm has an approximation

factor of α if A(I)/Opt(I)≤ α for every instance I. In this case, A is an α-approximation. If A

is a randomized algorithm, and E[A(I)]/Opt(I)≤ α , where E[A(I)] is the expected value of the
solution derived by the algorithm A over all random choices taken by A, the A is a randomized

α-approximation. As an example, consider the following problem:

Problem 2. (Minimum Vertex Cover Problem (MVCP)) Given a simple graph G = (V,E), the

objective is to find the smallest subset C⊆V such that every e∈ E has at least one of its incident

vertices in C.
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Now consider the following approximation algorithm for MVCP:

VCALG:
1) C = /0.

2) While there is an edge e = {u,v} such that neither u /∈ S, nor v /∈ S:

a) Add u and v in S.

3) Return C.

Lemma 3. VCALG is a 2-approximation algorithm for the MVCP.

Proof. It is easy to verify that the VCALG gives a feasible solution C and that it runs in time
O(|E|). Consider a maximum set of pairwise disjoint edges M, and notice that any feasible
solution must have at least one of the incident vertices from each edge in M because of the
disjointness, thus |Opt| ≥ |M|. Because the edges considered by the algorithm are also pairwise
disjoint, the number of these edges is at most |M|, thus the algorithm includes at most 2 · |M|
vertices in the solution C. Therefore

|C| ≤ 2 · |M| ≤ 2 ·Opt.

Many sophisticated strategies for the development of approximation algorithms have been
studied in the last decades. Some of the techniques include: rouding of solutions via linear pro-

gramming, duality of linear programming and the primal-dual method, probabilistic algorithms

and derandomization, Lagrangian relaxation, iterative randomized rounding (which we use in
Chapter 4), and many others.

2.4 The q-Metric Node-Weighted Steiner Tree Problem

The Minimum Spanning Tree problem is a classical optimization problem and there are many
polynomial-time algorithms, e.g. Prim’s algorithm [8]. We define the problem in the following.

Problem 4. (Minimum Spanning Tree) Given a simple graph G = (V,E) and an edge weight

function we : E→Q>0, we are asked to find a tree T which spans V and has minimum total

edge weight we(T ) := ∑e∈E(T )we(e). See Figure 2.7.

In this thesis, we denote one fixed minimum spanning tree of a graph G by MST(G). A very
useful lemma is the following:

Lemma 5. (Cycle property) Let G be a simple graph and we : E → Q>0. If C is a cycle of G,

and there exists an edge e of C such that we(e)> we( f ) for any other edge f of C, then e does

not belong to the any minimum spanning tree of G.

Proof. Assume, for a contradiction, that there exists a minimum spanning tree T that contains e.
By removing e from T , one obtains two distinct trees T1 and T2. Because T spans V (G), T1∪
T2∪C is connected. But since C is a cycle, there is at least one edge f , different from e, that
connects vertices of T1 and T2. Thus T ′ = (T1∪T2)+ f is a tree whose weight is lesser than that
of T . This is a contradiction, since T is minimum.
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Figure 2.7: An example of a graph G with edge weights. The tree MST(G) is colored in thick
orange and has total weight we(MST(G)) = 16.

A slightly different variant, which considers the possibility that certain vertices are not span-
ned, is the Steiner Tree Problem (STP). Contrary to MST, even finding a solution for STP with
weight smaller than 96

95 times the weight of an optimal solution NP-hard [7]. STP is relevant in
many areas of science and we describe it as follows.

Problem 6. (Steiner Tree Problem (STP)) Given a simple graph G = (V,E), a subset R⊆V

of vertices called terminals (the vertices in V \R are referred to as Steiner vertices) and an

edge weight function we : E→Q>0, a Steiner tree is a tree, in G, that spans R. The problem’s

objective is to find a Steiner tree S with minimum edge weight we(S) := ∑e∈E(S)we(e).

Figure 2.8 gives an example of a Steiner tree.
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Figure 2.8: An instance of STP with the corresponding edge weights. Black vertices are termi-
nals and white ones are Steiner vertices. An optimal Steiner tree S is given in thick cyan and
has edge weight of we(S) = 13.

One important variant of the STP is the restriction to metric spaces. Given a complete
graph G = (V,E) with edge weight function we : E → Q>0, we say that we is a metric if
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we({u,v}) ≤ we({u,w}) +we({w,v}) for every u,v,w ∈ V . A complete graph G associated
to a metric function is called metric. The particular case of STP restricted to metric graphs is
called the Metric Steiner Tree Problem (MSTP).

It is also well-known that there is an approximation-preserving polynomial-time from the
general STP to the MSTP, i.e., if there is an α-approximation algorithm for the MSTP then
there is also an α-approximation algorithm for the STP [20].

We now define a variant of STP in which, in addition to the edge weight, there is a cost
associated with each vertex.

Problem 7. (Metric Node-Weighted Steiner Tree Problem (MNSTP)) Given a simple complete

graph G = (V,E), a subset R⊆V of vertices called terminals, a metric edge weight function

we : E→Q>0, and a vertex weight function wv : V →Q≥0, we are asked to find a tree T , in G,

spanning R with minimum total weight w(T ) := we(T )+wv(T ), where we(T ) := ∑e∈E(T )we(e)

and wv(T ) := ∑v∈V (T )wv(v).

If no restriction is given upon the edge weights, then the problem is called Node-Weighted

Steiner Tree Problem (NSTP), which does not accept an approximation algorithm with constant
approximation factor unless P = NP [10, 12]. This gives relevance for the consideration of
metric graphs in the hypothesis. Also, since terminals are always included in a solution, we
may assume without loss of generality that wv(v) = 0 for each v ∈ R. Figure 2.9 gives an
example of an instance for this problem and a corresponding optimal solution.
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(a) A representation of a complete graph G

where edges are drawn between two vertices
whenever its weight is 1 and an edge is not
drawn if its weight is 2. The weight of the ver-
tices are explicitly written.
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(b) An example of optimal solution S, denoted
in thick green, to G. Note that wv(S) = 1 and
we(S) = 6, thus its total weight w(S) = 7.

Figure 2.9: An example of an instance of MNSTP and its optimal solution. Terminals are drawn
as black circles and Steiner vertices are in white.

We also consider a particular case when the vertex weight function is restricted in such a
way that the cost of a vertex is bounded by a constant q times the weight of the lightest edge.
We call this variant q-Metric Node-Weighted Steiner Tree Problem.
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Problem 8. (q-Metric Node-Weighted Steiner Tree Problem (q-MNSTP)) Given a complete

graph G = (V,E), a subset R⊆V of vertices called terminals, a metric edge weight function

we : E→Q>0, and a vertex weight function wv : V →Q≥0 such that wv(v) ≤ q ·mine∈E we(e),

we are asked to find a tree T , in G, spanning R with minimum total weight w(T ) := we(T )+

wv(T ), where we(T ) := ∑e∈E(T )we(e) and wv(T ) := ∑v∈V (T )wv(v).

In Figure 2.9, the example is an instance of q-MNSTP for q = 3. The restrictions considered
in the q-MNSTP generalizes the STP, thus there cannot be an approximation algorithm with
approximation factor smaller than 96

95 for the q-MNSTP, unless P = NP [7].
The best known approximation algorithms for STP use the notion of k-restricted Steiner

trees and full components (or just component, for short). A k-full component is a Steiner tree on
k terminals and whose leaves are terminals and internal nodes are Steiner vertices. For k ≥ 2,
we denote the set of full components with at most k terminals and at most k−2 Steiner vertices
by Ck (note that Ck ⊆ Ck+1). Figure 2.10 shows some full components of the sets C2 and C4.
The total weight of a full component K is defined as the sum of the weight of its edges and
vertices, i.e., w(K) = ∑e∈E(K)we(e)+∑v∈V (K)wv(v).
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(a) Representation of some components of C2,
in thick cyan.
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(b) Representation of some components of C4,
in thick orange.

Figure 2.10: Examples of full components of Ck when k ∈ {2,4} for the instance from Fi-
gure 2.9a. Dashed lines are used to explicitly identify the edges with weight 2 in the compo-
nents.

Let G be a metric graph and r ∈ R be one of its terminals, then a subset Sk ⊆ Ck is said to be
a k-restricted Steiner tree of G if for every U ⊆ R\{r},U 6= /0, there is a component K ∈ Sk with
terminals u,v∈V (K)∩R, such that u∈U and v /∈U . We define two variants, which correspond
to MSTP and q-MNSTP.

Problem 9. (k-restricted MSTP) Given an instance of MSTP, the goal is find a k-restricted

Steiner tree Sk of minimum total weight w(Sk) := ∑K∈Sk
w(K).

Borchers and Du [5] proved that the cost of a minimum Steiner tree whose full components
are restricted to Ck is not much larger than the cost of an optimal Steiner tree as k grows. This
will be further discussed in Chapter 3.
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Problem 10. (k-restricted q-MNSTP) Given an instance of q-MNSTP in which wv(v) = 0 for

all terminals v ∈ R, we are asked to find a k-restricted Steiner tree Sk of minimum total weight

w(Sk) := ∑K∈Sk
w(K).

Notice that, in the k-restricted variant, a solution may repeat edges and vertices and it may
contain only a subset of components of the non k-restricted problem. As is the case for k-
restricted MSTP, for constant q, the cost of an optimal solution of k-restricted q-MNSTP is not
much larger than the cost of an optimal solution of q-MNSTP for the same instance. Indeed, we
show this fact in the Chapter 3, by extending the ideas of Borchers and Du [5]. In the example
given in Figure 2.11 optimal solutions for the 2-restricted and 3-restricted q-MNSTP are given
for the same instance of the graph given in Figure 2.9. Note that the optimal solution given in
Figure 2.9b coincides with an optimal 5-restricted solution.
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(a) An optimal 2-restricted solution S of weight
w(S) = we(S) = 10. A 2-restricted solution ne-
ver contains Steiner vertices.
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(b) An optimal 3-restricted solution S with
we(S) = 7, wv(S) = 2, and w(S) = 9. Note that
an Steiner vertex of weight 1 is used twice in
the solution as well as one of its incident ed-
ges.

Figure 2.11: Examples of k-restricted optimal solutions to the instance from Figure 2.9a. Das-
hed lines are used to explicitly identify the edges with weight 2 and the chosen components are
thick-color coordinated.

2.5 Linear Programming

Linear programming (LP) is the problem of optimizing a real linear function, called objective

function, subject to linear inequality constraints. We give a simple example below with two
variables and four constraints.
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maximize 5x1 +6x2

subject to x1 +3x2 ≤ 7;
−x1 +3x2 ≤ 1;
2x1− x2 ≤ 4;
x1,x2 ≥ 0.

(Primal)

A solution for the problem with n variables is an n-dimensional vector. If the vector satisfies
every constraint it is called a feasible solution, and if there is a feasible solution that optimizes
the objective function, then it is called an optimal solution. For example, in the problem above,
x1 = 0 and x2 = 0 is a feasible solution, but not optimal, and x1 = 2.6 and x2 = 1.2, which gives
a value of 20.2 for the objective function, is an optimal solution. Linear programming can be
solved by polynomial-time algorithms [8].

Theorem 11. (Grotschel et at. 1981 [11]) Given an unfeasible solution x of an LP, if a violated

constraint can be found in polynomial-time, then an optimum solution for the LP can also be

found in polynomial-time.

The variant of the problem in which variables are restricted to integer values is called integer

linear programming (ILP) In the following we show that we can express STP using integer
linear programming, and, therefore, ILP is NP-hard.

Let P be an ILP. A natural way to obtain bounds of the cost of an optimal solution may
be done by relaxing the variables from P by allowing fractional values. This new LP, Pr, is
called the relaxation of P. Another way to obtain lower bounds is by computing the dual

program P′ of the primal program P. If the primal program is of maximization, then the dual
problem of minimization, and if the primal is of minimization, then the dual program is of
maximization [20]. Below is an example of the relaxed dual program of the LP example given
before.

minimize 7y1 + y2 +4y3

subject to y1− y2 +2y2 ≥ 5;
3y1 +3y2− y3 ≥ 6;
y1,y2,y3 ≥ 0.

(Dual)

The LP-duality has interesting properties. For example, if x and y are an optimal solutions
for the primal and dual programs, then the objective function of both yields the same value.
Indeed, in the examples given, an optimal solution to the Dual LP is y1 = 0, y2 = 3.4, and
y3 = 4.2, which obtains a value of 20.2 in the objective function, the same obtained by an
optimal solution in the Primal LP.

For a directed graph G, and U ⊆ V (G), denote by δ+(U) the set of arcs with the tail in U

and head in V\U . Let us exchange every edge of an instance of STP with two directed arcs
(u,v) and (v,u) with of same weight each, and let us fix a terminal vertex as a root r. The ILP
below models an instance of STP. This problem is known as the bidirectional cut formulation
for STP.
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minimize ∑a∈A we(a)xa

subject to ∑a∈δ+(U) xa ≥ 1, ∀U ⊆V\{r},U ∩R 6= /0;
xa ∈ {0,1}, ∀a ∈ A.

(BC)

Each variable xa corresponds to an arcs a, so that a is selected if xa = 1, and is not selected
otherwise. Note that the objective function aims to minimize the total weight of selected edge
set of a solution. The first set of constraints, together with the objective function, guarantees
that the selected edges induce a feasible solution of STP. Conversely, every Steiner tree induces
a vector x that is a feasible for BC.

Recall that the particular case of STP when R = V is the Minimum Spanning Tree. The
relaxation of BC gives important insight on the structure of the original problem. For the BC
LP, we have the following result.

Theorem 12. (Edmonds 1967 [9]) Given an instance of STP with R = V , then the value of an

integral optimal solution for BC equals the value of an optimal solution of the relaxation.

Although the LP of BC has exponential size in regards to the number of vertices, the cor-
responding separation problem can be solved in polynomial-time, and thus there is an optimal
solution can be obtained in polynomial-time (in the size of STP instance). The proof for this
claim is very similar to the one given for Lemma 20 in Chapter 4.

2.6 Related Works

STP is a classical NP-hard problem. Indeed, even fiding a solution that costs at most 96
95 times

the optimum is NP-hard [7]. Therefore, we do not expect to design an approximation algo-
rithm with factor smaller than 96

95 . It is also well known that STP can be reduced to a metric
instance preserving any approximation factor [20]. Because a minimum cost tree spanning only
the terminals costs at most twice as the cheapest one, and finding such tree can be done in
polynomial-time (e.g. Prim’s algorithm [8]), we conclude that there exists an approximation
algorithm with factor 2 for STP [20]. In the variant where the STP instance considered is ge-
ometric, i.e., the set of terminals is a finite subset of Rd , Steiner vertices can be selected as
any point of Rd , for constant d, and the metric is defined by the Euclidean norm, there exists a
(1+ ε)-approximation, where ε is an arbitrarily small positive constant [2].

It was a long standing open problem to obtain an approximation with factor smaller than 2
for STP. A sequence of improved approximation algorithms appeared after Borchers and Du,
in 1997, showed that, to obtain a good approximation for MSTP (thus also for STP), it was suf-
ficient to focus on the k-restricted MSTP [5]. For a constant k, we can compute in polynomial-
time the whole set Ck, and, while the best solution for the restricted problem might be more
expensive than an optimal solution for MSTP, Borchers and Du found that this difference could
only rise by a very small factor dependent only on k, which decreases as k grows. In the
literature, many approximation algorithms improved the running time, or improved the approx-
imation factor for the STP and they are mostly based on the idea of full components [6, 19, 22].
Zelikovsky gave an 11

6 -approximation which greedly contracts cheap full components with 3
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terminals [22]. Later, an 1.55-approximation algorithm, given by Robins and Zelikovsky, itera-
tively chooses full components that maximizes the improvement of a partial solution but com-
mits to the full component just partially, this allows possibly “conflicting” full components to
be accepted later [19]. Currently, the best known approximation algorithm for STP was given
by Byrka et al. and has approximation factor of 1.39 [6]. This last algorithm is an LP based
probabilistic algorithm and uses a novel technique named as iterative randomized rounding.

An also considered variant is the Prize-Collecting Steiner Tree Problem (PCSTP). In this
problem, there is no distinction between terminals and Steiner vertices, but, besides a non-
negative cost associated to each edge, a non-negative penalty cost π(v) has to be paid if vertex v

is not included the solution. Any tree is a feasible solution, but an optimal one has to balance
the cost of included edges and the penalty of neglected vertices. As in the case of STP, it was
a long stading open question to obtain an approximation strictly better than 2. The current
best approximation for this problem runs Byrka et al.’s algorithm as a black box and has an
approximation factor of 1.97. This factor goes down to 17

9 if STP could be solved optimally [1].
Although PCSTP is similar to MNSTP, the restriction that penalty costs must be non-negative
prevents a direct reduction between the two problems.

Many variants of the STP consider specific kind of trees as feasible solutions. For example,
the Partial-Terminal Steiner Tree Problem (PTSTP) is the particular case of MSTP where every
vertex of a distinguished subset of the terminals R′ ⊆ R must be a leaf in the solution, which
admits an algorithm with approximation factor of 2.13 [13]. This approximation algorithm runs
the algorithm from Byrka et al. as black box. Another particular case is the “inverse” of PTSTP,
the Selected-Internal Steiner Tree Problem (SISTP), where every terminal from a given subset
R′ of R may not be a leaf in the solution. The best approximation for this problem is 2.39 (when
considering the additional constraint that |R\R′| ≥ 2) [15] and the restricted case where R′ = R,
known as the Internal Steiner Tree Problem (ISTP) has an approximation of 3.78 [14]. Both
PTSTP and SISTP are equivalent to STP when R′ = /0.

An important special case of MSTP is the case where the edges of considered graphs have
weight either 1, or 2, and is known as the Steiner Tree Problem with Metric 1 and 2 (STP(1,2)).
The best known approximation is 1.25 [3], and uses a greedy strategy with a non-trivial analy-
sis based on the distributed potential of budget. Moreover, there are improved approximation
factors for special cases of ISTP(1,2), PTSTP(1,2), and TSTP(1,2) with approximation factors
of 9

7 , 5
3 , and 1.42, respectively [14, 16, 21].

A problem that is closely related to MNSTP is the Node-Weighted Steiner Tree (NSTP).
Differently from the MNSTP, this problem has no restrictions on the set of edges nor on the edge
weight function. Assuming P 6= NP, NSTP is strictly more general than MNSTP, since there
is no approximation-preserving reduction from NSTP to MNSTP, unless there is a constant ap-
proximation the Set Cover problem, which is NP-hard to approximate within (1−δ ) · ln(|U |),
for any δ > 0 where U is the set of elements [10]. In fact, the best currently known approxima-
tion has a factor of 1.35 · ln(|R|), where R is the terminal set [12]. This inapproximability result
for NSTP shows that assuming that the graph is metric has significant impact on the complexity
of MNSTP. However, to our knowledge, there are no approximation algorithms in the literature
for this specific variant.



Chapter 3

Results on MNSTP and on q-MNSTP

In this chapter we give an approximation algorithm for q-MNSTP and then we prove an impor-
tant relation between q-MNSTP and its k-restricted variant. Throughout the thesis we denote
by Opt, Optq and Optqk optimal solutions of MNSTP, q-MNSTP and k-restricted q-MNSTP,
respectively. Because every full components composed by exactly two terminals and a single
edge connecting them are always included in Ck, for any k ≥ 2, we abuse notation considering
spanning trees on G[R] also as a valid k-restricted Steiner tree.

3.1 An approximation for MNSTP

Consider the ratio α := wv(Opt)/w(Opt) and, similarly, let αk := wv(Optqk)/w(Optqk).

Theorem 13. If T is a minimum cost tree spanning only the terminals in G[R], then we(T ) ≤
2(1−α)w(Opt). Also, we(T )≤ 2(1−αk)w(Optqk), for every constant k.

Proof. In a metric graph G, given edges {u,w} and {w,v}, we refer to “shortcut” a vertex w as
the procedure of replacing edges {u,w} and {w,v} by {u,v} in a subgraph H of G.

Consider an optimal solution Opt for MNSTP, and let T be a minimum spanning tree in
G[R]. Recall that wv(T ) = 0, then, by duplicating the edges of Opt, we obtain a connected
multigraph M where each vertex has an even degree (an Eulerian multigraph) and whose edges
weight exactly 2we(Opt). Consider an Eulerian circuit C on M, and shortcut each Steiner vertex,
obtaining a cycle C′ on R. Clearly we(T )≤ we(C

′)≤ we(M) = 2we(Opt).
Now let α := wv(Opt)/w(Opt). We get

we(T )≤ 2we(Opt) = 2(w(Opt)−wv(Opt)) = 2(1−α)w(Opt).

Since T is also a feasible solution to the k-restricted q-MNSTP, we also have that

we(T )≤ 2(1−αk)w(Optqk),

where αk := wv(Optqk)/w(Optqk).

Corollary 14. There is a polynomial-time algorithm for MNSTP with approximation factor 2.

25
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Proof. Theorem 13 proves that the minimum spanning tree in G[R] has weight cost of at most 2
times the cost of an optimal solution, thus any algorithm that computes a minimum spanning
tree on a graph is a 2-approximation algorithm for q-MNSTP. Example of such algorithms are
the Prim’s algorithm and Kruskal’s algorithm [8].

While straightforward, this theorem gives insights on an optimal solution. In particular, for
any optimal solution, the total vertex weight cannot exceed the total edge weight, i.e., 0≤α ≤ 1

2 .

Corollary 15. For any optimal solution Opt for an instance of MNSTP and any optimal so-

lution Optqk for an instance of the k-restricted q-MNSTP, wv(Opt) ≤ we(Opt) and wv(Optqk) ≤
we(Optqk).

Proof. Because a minimum spanning tree T on R is a feasible solution for MNSTP, by Theo-
rem 13, we have

w(Opt)≤ we(T )
T hm 13
≤ 2(1−α)w(Opt) = 2(w(Opt)−wv(Opt)) = 2we(Opt),

which implies that wv(Opt)≤ we(Opt). Similarly, we can prove the result to Optqk .

3.2 Reduction of q-MNSTP to k-restricted q-MNSTP

Borchers and Du [5] showed that the optimal value for k-restricted MSTP is not much larger
than the optimal value for MSTP as k increases. To prove a similar result for q-MNSTP, we
need to prepare a few lemmas beforehand.

Lemma 16. (Borchers and Du 1997 [5]) For any regular binary tree B, there exists a one-to-one

function f from internal vertices to leaves, such that:

(A) for any internal vertex u, f (u) is a descendant of u;

(B) the set of paths p(u) from u to f (u) are edge disjoint; and

(C) there is a leaf v such that the path from the root to v is edge disjoint from every other path

p(u).

Proof. We prove by induction on the height of the tree. If the height is 0, all three statements
are trivially true.

Let B be a regular binary tree of height h ≥ 1 rooted at d. Since B has two smaller regular
binary subtrees B1 and B2, each rooted at one of the children of d, of height strictly lesser than
h, by induction hypothesis there is a function f1 and f2 on the internal vertices of B1 and B2,
respectively, that satisfy statements (A) and (B) and leaves v1 and v2 that satisfy statement (C)
on each of the subtrees. Define a function f on the internal vertices of B as

f (u) =















f1(u), if u ∈ B1,

f2(u), if u ∈ B2,

v1, if u is the root of B.

Since f satisfies (A) and (B) and v2 satisfies (C), we concluded the proof.
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Consider k-restricted q-MNSTP for some constant k≥ 2, and let r,s ∈ Z≥0, with 0≤ s < 2r,
such that k = 2r + s, and let T be a regular binary tree. We define the following labeling process
using labels from the set {1,2, ...,r2r + s}. Starting at the first level, the level of the root, we
label the root with the set {1,2, ...,2r}. Then we label the two vertices on the second level with
the sets {2r +1,2r +2, ...,2r +2r}. Up to the r-th level we label every vertex on the i-th level,
1≤ i≤ r with the set {(i−1)2r +1,(i−1)2r +2, ...,(i−1)2r +2r}.

To label the remaining vertices, we follow up with an inductive labeling: assuming that the
first i levels have already been labeled, i≥ r, and that the disjointness property is held up to the
i-th level, we label the vertices in the (i+1)-th level by doing:

(R1) Let v be a vertex at level i+ 1− r with label set Sv = {l1, l2, ..., l2r}. Label the j-th des-
cendant of v on level i+1 with the set S j = {l j, l j+1, ..., l j+2r−s−1}, where each subscript
is reduced by (mod 2r) to maintain the subscripts between 1 and 2r.

(R2) For a vertex at level i+ 1, add to its label set the s labels that are not in the label sets of
any of its immediate r ancestors.

Figure 3.1 exemplifies this labeling rules. This labeling has some interesting properties, from
which the main one is the following lemma.

Lemma 17. (Borchers and Du 1997 [5]) Let T be a regular binary tree, then each vertex

v receives exactly 2r distinct labels by the labeleing process and the label sets of any r− 1
immediate ancestors of v, and the label set of v, are disjoint.

Proof. It is clear that the disjointness property is preserved up to the r-th level. For the inductive
part of the process, note that before we apply Rule (R2), since a vertex v, at level i+1− r, has
at most 2r descendants on level i+1, we have that at most S1,S2, ...,S2r label sets are created by
Rule (R1) on that level, where each label set S j has exactly 2r− s elements and each label from
the set Sv appears in at most 2r− s of these sets (at this level). By our inductive hypothesis,
the disjointness property is valid up to the i-th level, so the r immediate ancestors of a vertex at
level i+1 are labeled by r disjoint sets of size 2r, thus there are exactly s unused numbers from
the set {1,2, ...,r2r + s}, which are then added by Rule (R2). As the labels added by Rule (R2)
are also different from the ones added by Rule (R1), each vertex at level i+1 are given exactly
2r labels by the two rules.

Next, we finally extend the result by Borchers and Du [5], which is the core result to obtain
the approximation factors from Chapter 4 and 5. The idea is to, given a fixed optimal solution
Optq(I) of an instance I of q-MNSTP, transform Optq(I) into a regular binary tree T and apply
the inductive labeling process, which induces r2r + s distinct choices of k-restricted Steiner
trees, one tree per label. We then show that at least one of these trees does not weight much
more than Optq(I), which also implies that an optimal k-restricted Steiner tree Optqk(I) also does

not weight much more than Optq(I). Define the (k,q)-Steiner ratio as ρ
q
k := supI

{

w(Optq

k(I))

w(Optq
(I))

}

for every instance I of q-MNSTP, then we have the following.

Theorem 18. ρ
q
k ≤ 1+δ (k,q), where δ (k,q) := (q+1)/⌊log2k⌋.
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d

1234

5678 5678

(a) We first label every vertex in the i-
th level, 1≤ i≤ r, with the label set
{(i−1)2r +1,(i−1)2r +2, ...,(i−1)2r +2r}.

d

1234

5678

123 234

5678

341 412

(b) Then we apply Rule (R1) on the third level.

d

1234

5678

1239 2349

5678

3419 4129

(c) Then we apply Rule (R2) on the third level.

d

1234

5678

1239

567 678

2349

785 856

5678

3419 4129

567 678

(d) Then we apply Rule (R1) on the forth level.

d

1234

5678

1239

5674 6784

2349

7851 8561

5678

3419 4129

5673 6783

(e) Then we apply Rule (R2) on the forth level.

d

1234

5678

1239

5674 6784

1235 2395

2349

7851 8561

5678

3419 4129

5673 6783

(f) Then we apply Rules (R1) and (R2) on the fifth
level.

Figure 3.1: Example of the labeling of a regular binary tree when k = 5 = 22 +1, so r = 2 and
s = 1, where d is the root, as described in the proof of Lemma 17 on the regular binary tree
from Figure 2.6b.
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Proof. Recall that k = 2r + s, r,s ∈ Z≥0, with 0≤ s < 2r. We prove that, for any k ≥ 2 and any
instance I of q-MNSTP, the following holds through induction on |R|:

w(Optk(I))
w(Opt(I))

≤ 1+
2r(q+1)
r2r + s

.

If k≥ |R| the inequality holds trivially, since for every maximal subgraph tree T ′ of Optq(I),
which leaves coincides with terminals, we have that T ′ ∈ Ck. Thus Optq(I) = Optqk(I).

If k < |R|, fix an optimal solution Optq(I). If Optq(I) has a terminal vertex v with degree
d(v)≥ 1, we split Optq(I) on v into two Steiner trees, each with fewer terminals than |R|. Denote
the terminal set on each of these trees by R1 and R2 and denote by opt(Ri) and optk(Ri) the total
weight of an optimal solution and the minimum weight k-restricted Steiner tree respectively.
Then w(Optq(I)) = opt(R1)+opt(R2) and w(Optqk(I))≤ optk(R1)+optk(R2). Then, under the
hypothesis that the claim is valid when the number of terminals is smaller than |R|, it follows
that:

w(Optqk)

w(Optq)
≤ optk(R1)+optk(R2)

opt(R1)+opt(R2)
≤ max

{

optk(R1)

opt(R1)
,
optk(R2)

opt(R2)

}

I.H.
≤ 1+

2r(q+1)
r2r + s

.

Thus we may consider only the case which every terminal vertex of Optq is a leaf.
We turn Optq into a regular binary tree T by adding weighted copies of vertices and dummy

edges of weight zero such that the root is a dummy vertex of weight zero: for every non-leaf
terminal v, append a dummy vertex v′ of weight zero to v with a zero weight dummy edge and
replace v with v′ in the set of terminals; for any non-terminal vertex u with degree d(u) ≥ 4,
replace u, with a path (u1,{u1,u2},u2,{u2,u3},u3...,{ud−1,ud−2},ud(u)−2) where each ui is a
weighted copy of u but every edge {ui,ui+1} in this path has weight zero, then take u1 and
ud(u)−2 to inherit two edges of u each, and every other vertex in the path to inherit one edge of
u; finally shortcut any vertex with degree 2 and split an arbitrary edge with a dummy vertex of
weight zero to become the root (one of the edges incident to the root inherits the weight of the
split edge and the other weights zero). Figure 3.2 shows an example of this process. Without
loss of generality, we assume that the weight of the lightest edge from the original graph weights
exactly 1. This simplify the calculations for it implies that the weight of any vertex in the graph
cannot exceed q.

Note that now T has a nice structure: T is a regular binary tree, each vertex of T is a terminal
if it is a leaf, and it is a Steiner vertex otherwise. Lemma 17 states that we can label the vertices
of T , using {1,2, ...,r2r + s} labels, in such a way that each vertex v receives exactly 2r distinct
labels and the label sets of any r−1 immediate ancestors of v, and the label set of v, are disjoint.
We then proceed to construct r2r + s k-restricted Steiner trees where each label l generates a
k-restricted Steiner tree Tl .

First, select the root of T and each Steiner vertex v labeled with l. Each such vertex become
the root of a new subtree that will correspond to a full component in Tl , and thus they are called
component roots. Each component root v is connected to every descendant u that is also labeled
with l, and whose path from v to u in T has no other vertex label with l. These vertices u are
called the intermediate leaves. Moreover, v is also connected to a leaf u if the path from v to u

in T contains no vertex labeled l. The set of paths for each component root v induce a partial
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(a) Steiner tree S.
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(b) Terminals that are internal
vertices become leaves.
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(c) Vertices with degree greater
than 3 are replaced by paths.
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B2A 0
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c
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in

j k

m 0

0

h 0

(d) Splitting an arbitrary edge with a root vertex of weight 0 yields a regular binary tree. Note that the
regular binary tree has the same edge weight of the original Steiner tree but the vertex weight increased
as now there are two vertices with the weight of B.

Figure 3.2: An example of transformation of a Steiner tree S into a regular binary tree T . Steiner
vertices are white and terminals black, and the weight of each edge is indicated on the edge.

subtree. Notice that intermediate leaves are Steiner vertices.
To complete the description of each subtree, and obtain a full component, we connect each

intermediate leaf, that is a Steiner vertex, to a distinct terminal. Let f be a function as described
in Lemma 16. Connect each intermediate leaf u to f (u) using the path p(u) in T . The union
of all subtrees constructed so far form an intermediary tree T ′l . Figures 3.3a, 3.3b, and 3.3c
illustrate graphically the construction of T ′l .

Now we prove that T ′l spans the terminal set R and that each subtree has at most k terminals.
First we prove that each tree T ′l spans the terminal set. Let v be a component root and Dv the
set of descendants of v in T . We show by induction on the height of v that T ′l [Dv] spans the
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(a) We first label the vertices as described in the proof of Lemma 17. Each internal vertex (and the root)
with label 1 becomes a component root. In this example we have five component roots and each is drawn
with a different color and pattern.

01

12

02

13

B1

23

B2

21

A

12

03

31

C

23

H

32

G

13

N

23

I

13

M

32

L

12

J

21

K

31

g c

b0
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j k

m 0

0a

h 0

(b) Then each component root extends to each first occurrence of a descendant with label 1 (intermediate
leaves) or a leaf (terminal) descendant.

terminals in T [Dv]. If the height is 0, then the claim is trivially true, so suppose the height
is at least 1. Let Cv be the subtree corresponding to v and consider the subtrees rooted at the
intermediate leaves u1,u2, ...,un of Cr. By induction, T ′l [Dui

] spans every terminal in T [Dui
].

Since Cv connects each of these subtrees, we conclude T ′l [Dv] spans T [Dv]. This completes the
induction. By making v the root of T , we conclude that T ′l spans R.

To show that each subtree has at most k terminals, consider a component in T ′l that has



CHAPTER 3. RESULTS ON MNSTP AND ON Q-MNSTP 32

01

02 B1

B2A 03

C

H

G N I M L

J K

g c

b0

in

j k

m 0

0a

h 0

a+g

n 0

c+k

(c) Each intermediate leaf u extends, through paths on T , to f (u) where f has the properties of Lemma
16 and, in this example, f (02) = G, f (A) = K, f (B2) = N, f (03) = L. This completes the tree T ′1 . Each
subtree of T ′l is drawn with a distinct color and pattern.
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A BA
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G N I M
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a+g+h

n

b
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g c in
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(d) The k-restricted Steiner tree T1 obtained by removing copied vertices within each subtree and short-
cutting vertices of degree 2 from T ′1 . Here, the weight of the edges are an upper bound to the actual edge
weights. Each component is drawn with a different color and pattern.

Figure 3.3: An example of a the tree T1 generated by a the label 1, where k = 3 = 21 + 1,
i.e., r = 1 and s = 1, on the regular binary tree from Figure 3.2d. Do note that the
tree T1 weights more than T , specifically, 0 ≤ we(T1) − we(T ) ≤ a + g + c + k + n and
wv(T1)−wv(T ) = wv(A)+wv(B).

a component root v. Without loss of generality, we do not consider subtrees which reach a
terminal (leaf of T ), as their size may only be smaller. We consider two cases for the subtrees
separately.

In the first case, suppose v is not labeled by l. This implies that v is the root of T and thus
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l ≥ 2r + 1. By our labeling process, the labels 2r + 1,2r + 2, ...,r2r all appear in the first r− 1
levels below the root and by Rule (R2) every remaining s labels are then placed on the r-th level.
Because T is a regular binary tree, we conclude that the subtree with v as component root has
at most 2r ≤ k intermediate leaves, and thus it has at most 2r ≤ k terminals.

In the second case, consider that v is labeled by l. Then by the Rule (R1) of the labeling
process, we know that exactly s vertices, r levels below v, are not labeled by l, and that all the
other remaining 2r− s descendants of v, at the same level, are indeed labeled with l. Consider,
then, a vertex w that is among these vertices that is not labeled by l. Since l labels v, by the
disjointness property, no vertex between w and v is in the unique path Pvw between the two is
labeled by l. Because length(Puv) = r+ 1 and v is the only vertex labeled by l among all the
vertices in this path, by Rule (R2) of the labeling process, the children of w are, for sure, labeled
with l. So the subtree with component root v has exactly 2s descendants intermediate leaves at
r+ 1 levels below and v and 2r− s intermediate leaves r levels below, adding up to 2r + s = k

intermediate leaves. Thus this subtree spans exactly k terminals.
We now describe how the final k-restricted Steiner tree Tl is created. Each subtree of T ′l

has its own set of vertices and edges, and will determine a full component. First, replace each
path p(u), from an intermediate leaf u to leaf f (u), by an edge between u and f (u); then,
contract each set of vertices connected by zero-weight edges into a new vertex whose weight is
the weight of the heaviest vertex (notice that the vertices in such a set are either copies of the
same vertex, or dummy vertices of weight 0). By applying these two operations, we ensure that
each component incurs the cost of only a single copy of each vertex in the component. Finally,
we shortcut any vertex with degree of 2. Because each full component is a tree where leaves
coincide with terminals and because we shortcut vertices of degree 2 in the end, the number of
Steiner nodes, i.e., the number of internal leaves, does not exceed k−2 (see Figure 3.3d).

The cost of each k-restricted Steiner tree Tl is upper bounded by the total cost of the original
tree Optq(I) plus the edges and vertices added in the process. The additional edges are due the
paths p(u) from each intermediate leaf u to f (u). The additional vertices correspond to copies
of vertices that appear in different full components of Tl (see Figure 3.3c). For a fixed label l,
let Ll denote the total length of paths p(u) from intermediate leaves u to the tree leaves. Also,
let Vl denote total weight of intermediate leaves of T ′l . Notice that vertices that are repeated in
different components of Tl must correspond to intermediate leaves.

Now, we consider the full set of labels. Since each internal vertex v in T is an interme-
diate leaf in exactly 2r of the trees T ′l , each path p(u) is counted exactly 2r times in the sum
L1 +L2 + ...+Lr2r+s. Also, because the set of paths p(u) are disjoint, this sum will be at most
2r times the total edge weight of T . Formally,

r2r+s

∑
i=1

Li ≤ 2rwe(T ).

Recall that any regular binary tree with |R| leaves has at most |R|−1 inner vertices, and any
tree spanning the terminal set R has at least |R|−1 edges. Also, recall that each edge has weight
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at least 1. We obtain

r2r+s

∑
i=1

Vi = 2rwv(T
′

l )≤ 2r max
v∈V (Optq

)
{wv(v)}(|R|−1)≤ 2rq(|R|−1)≤ 2rq ·we(T ).

And since we(T ) = we(Optq(I)):

r2r+s

∑
i=1

(Li +Vi)≤ 2r(q+1)we(T ) = 2r(q+1)we(Optq(I)).

Thus, there is a d ∈ {1,2, ...,r2r + s} such that

(r2r + s)(Ld +Vd)≤ 2r(q+1)we(Optq(I))≤ 2r(q+1)w(Optq(I)).

Then the total cost of the k-restricted Steiner tree Td is upper bounded by

w(Td)≤ Ld +Vd +w(Optq(I))≤
(

1+
2r(q+1)
r2r + s

)

w(Optq(I)),

which implies that

w(Optqk(I))

w(Optq(I))
≤ w(Td)

w(Optq(I))
≤ 1+

2r(q+1)
r2r + s

≤ 1+δ (k,q),

where δ (k,q) := q+1
⌊log2k⌋ . Since ρ

q
k := supI{w(Optqk(I))/w(Optq(I))}we have proved the desired

result.

From the perspective of approximation algorithms this result implies that one can reduce the
q-MNSTP to its k-restricted variant preserving the approximation, i.e., there is an (α +δ (q,k))-
approximation for q-MNSTP if there exists an α-approximation for the k-restricted q-MNSTP.



Chapter 4

A Probabilistic 1.62-Approximation to
q-MNSTP

In this chapter we show how one could adapt the iterative randomized rounding technique intro-
duced by Byrka et al. [6] to the k-restricted q-MNSTP. At each iteration, the algorithm solves
a relaxed LP, with respect to the current instance, and contracts a full component chosen rand-
omly over a distribution determined by LP solution. When there are no more components to
be chosen, the algorithm returns the graph induced by the edges of full components that were
contracted throughout its execution. The expected cost of the returned solution is the sum of
expected costs of each sampled full component, and the cost of a full component corresponds
to the sum of vertex and edge weights. Recall that in the k-restricted Steiner tree problems
multiple full components may contain a common vertex, and thus the total cost of a solution
accounts the cost of a vertex multiple times, once for each full component that contains it.

4.1 Linear Programming Modeling

In this section we introduce two LP models. The first LP models q-MNSTP and it is a variation
of a very well-studied LP known as bidirect cut relaxation (BCR) [6]. Given an instance of
q-MNSTP, let G = (V,E) be the instance graph and fix an arbitrary terminal r ∈ R as the root.
Next, we build a directed graph G′ = (V (G),A) by taking the vertex set of G and replacing
every edge {u,v} of G by two arcs (u,v) and (v,u) with weight we({u,v}). For a given subset
U ⊆V , we define δ+(U) = {(u,v) ∈ A : u ∈U,v /∈U} to be the set of arcs leaving U . The LP
is

minimize ∑a∈A we(a)xa +∑v∈V wv(v)yv

subject to ∑a∈δ+(U) xa ≥ 1, ∀U ⊆V\{r},U ∩R 6= /0;
yv ≥ xa, ∀a ∈ A,a = (u,v);
yu ≥ xa, ∀a ∈ A,a = (u,v);
xa ≥ 0, ∀a ∈ A;
yv ≥ 0, ∀v ∈V.

(BCR)

We can think of the value xa as the capacity of an installed arc a and yv as the capacity of
an installed vertex v. Thus, the LP may be seen as computing the minimum-cost capacities that

35
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support a flow of 1 from each terminal to the root. It is clear that when the vertex weight of
every vertex of the input graph is zero, BCR reduces to a model that solves STP. In q-MNSTP,
because terminals have zero weight, i.e., wv(v) = 0 for v ∈ R, whenever R = V , Theorem 12
(that states the this LP is integral when all vertices are terminals) also applies.

Corollary 19. Given an instance of q-MNSTP, if R =V , the polyhedron of BCR is integral.

The algorithm we present starts with the set of full components Ck and creates a set Dk of
directed trees (directed components) by making a copy D of every C ∈ Ck for each choice of
terminal v in C, and directing all edges of D towards v; in such a case, v is identified by sink(D)

and the set of the other terminals in V (D) is denoted by source(D), and we also say that C is the
non-directed full component of D. Note that, if k is constant, this takes polynomial-time. Let
δ+

k (U) denote the set of directed components with sink(D j) not in U and at least one terminal
from source(D j) in U , then, we solve the LP below, for an arbitrarily chosen terminal root r,
where xi is the indicating variable of component Di. The algorithm runs iteratively, by choosing
at each iteration a component Di with probability xi/∑D j∈Dk

x j.

minimize ∑D j∈Dk
w(C j)x j

subject to ∑D j∈δ+
k
(U) x j ≥ 1 ∀U ⊆ R\{r},U 6= /0,

x j ≥ 0 ∀D j ∈Dk,

(k-DCR)

Lemma 20. (Byrka et al. 2013 [6]) k-DCR can be solved in polynomial-time if k is constant.

Proof. By Theorem 11, it suffices to show that, for any unfeasible solution, we can find a
constraint that is violated, in polynomial-time.

An s-r cut is a subset U ⊆ V ′ such that s ∈U and r /∈U . Construct a directed graph G′ =
(V ′,A), with vertex set V ′ = R∪{v j : j = 1, ..., |Dk|}, and, for every directed component D j,
insert an arc (u,v j) for each u∈ source(D j), and an arc a j = (v j,sink(D j)). Setting the capacity
of each arcs a j to c(a j) = x j and c(a) = ∞ for all the other arcs, we have that for any terminal
s ∈ R\{r}, there is an s-r cut U ⊆ V ′ of minimum capacity ∑a∈δ+(U) c(a), consisting only of
arcs a j (for every u ∈U ∩R, it suffices that every (u,v j) ∈ A is also in U , see Figure 4.0). In
particular, given a non-empty subset R′ ⊆ R\{r}, there is a cut U such that

∑
a∈δ+(U)

c(a) = ∑
a j:D j∈δ+

k
(R′)

c(a j) = ∑
D j∈δ+

k
(R′)

x j,

i.e., the capacity of a minimum-cut from G′ identifies a constraint with the minimum value with
respect to a subset of vertices containing s. Since finding an s-r minimum-cut in G′ can be done
in polynomial-time, e.g., using Edmonds-Karp algorithm [8], we can find a violated constraint
if there is any by solving at most |R| − 1 maximum flow instances, once for each choice of
source s ∈ R.

4.2 The Probabilistic Algorithm

The 1.62-approximation probabilistic algorithm is described in the following. The algorithm
receives as input the original instant I1 and parameter k.
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Figure 4.0: An example of a s-r cut U = {s,v1,v2,v5} in a directed graph G′ with capacity
x1 + x2 + x4 on the set of edges in δ+(U). In this graph we search whether there is a cut which
prevents s from sending a flow of 1 to r.

ITERATIVEROUNDINGk(I
1,k):

1) For each t = 1,2, . . .:

a) Compute set D t
k for It .

b) Solve k-DCR with respect to It , and obtain solution xt .

c) Choose Di independently with probability xt
i/∑D j∈D t

k
xt

j, and let Ct be the non-
directed full component of Di.

d) Contract Ct into a single terminal of Ct , and let It+1 be the new instance.

e) If It+1 has only a single terminal, return G[
⋃t

j=1 f j(E(C
j))].

In the algorithm, for each sampled full component C j, function f j maps each edge e of the
full component C j to the corresponding edge in the original instance I1.

In the algorithm, the value of ∑Dt
j∈D t

k
xt

j varies depending on the iteration. To bound the
expected cost of returned solution, we will analyze an equivalent algorithm in which, for each
iteration t, a dummy component Dr, consisting solely of terminal r, is added to D t

k, and con-
straint xr = M−∑D j∈D t

k
x j is added to k-DCR, for some fixed M ≥ |Dk|. The expected cost

obtained with the alternative algorithm is the same, as sampling component Dr does not change
the current instance and adds zero cost to the solution. Therefore, assume that M = ∑D j∈D t

k
xt

j

in each iteration t ≥ 1.
Let T be a subgraph of G that is also a tree, and H be a subgraph of G. We denote by T ❏H❑

a minimum-cost subgraph of T ∪H which contains H and connects the vertices of T . The set of
edges of T not in T ❏H❑ are called the bridges of T with respect to H and is denoted by BrT (H).
See Figure 4.1. If H is a tree, then a bridge is a heavy edge of a cycle created by extending H

with edges of T .
If one starts with a terminal spanning tree T and contracts some terminals connected by H,

then some edges of T might become unnecessary. This set corresponds to the bridges of T . The
core idea in the analysis of the algorithm is to maintain a tree T that provides an upper bound
on the cost of an optimal solution of current instance It . Whenever the algorithm samples
a component, this component is included in the solution, and thus the corresponding bridges



CHAPTER 4. A PROBABILISTIC 1.62-APPROXIMATION TO Q-MNSTP 38

1

3

3

2

4

1

2

1

4

3

2

4

3
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(c) The edges of BrT (H).

Figure 4.1: An example of T ❏H❑⊆ G. Each edge has its weight written on it respectively.

become unnecessary. Therefore, the upper bound on the value of an optimal solution of next
instance It+1 decreases by at least the average weight of bridges. The next lemma formalizes
this.

Lemma 21. (Byrka et al. 2013 [6]) [Bridge Lemma] Let T be a terminal spanning tree, Ci

be the non-directed full component of Di, and x be a solution to k-DCR. If Di is drawn with

probability xi

M
, then E[we(BrT (Ci))]≥ we(T )

M
.

Proof. First, we define a bridge tree from a full component D j. Consider a (directed) full
component D j and the corresponding non-directed full component C j. Create a subgraph C′j
from T by removing the set of bridges BrT (C j), i.e., take V (C′j) :=V (C j) and E(C′j) := E(T )\
BrT (C j). From the definition of the bridge set, one may show that C′j is such that: each of its
connected components has exactly one terminal of C j; and each bridge connects exactly two
connected components. Let R(C) denote the terminals of the full component C. The bridge

tree Yj of D j is the tree whose vertex set is R(C j) and which contains edge {u,v} if, and only
if, there is a bridge b between the connected components of u and v in C′j. The weight of edge
an edge {u,v} is w′e(u,v) := we(b). Finally, we direct every edge of Yj towards sink(D j) (see
Figure 4.2).

Now, for every component D j, construct the bridge tree Yj as described above. From the de-
finition of the bridge set, we know w′e(Yj) = we(BrT (C j)). Define a function y : R×R→Q≥0

by setting y(u,v) := ∑Y j∋(u,v) x j, i.e., y(u,v) is the sum of x j for every bridge tree that con-
tains (u,v).

We interpret the values of y(u,v) as the flow capacity of an edge (u,v). The following pro-
perties of the flow network are obtained. First, each bridge tree Yj supports a flow x j from
each of its sources in source(D j) to its sink sink(D j). As a consequence, from the constraints
of k-DCR, each cut that separates a non-root terminal to the root has capacity at least one,
and thus function y supports one unit flow from each terminal to the root. Therefore, y in-
duces a feasible solution to problem BCR whose underlying graph is the complete graph on
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Figure 4.2: An example of a full component C j of a directed component D j with sink(D j) = s.
BrE0(C j)(C j) is drawn in thick green and the bridge tree Yj, of D j, is drawn in dashed blue. The
respective edge weight is explicitly written on the edges and arcs.

R, and whose weight function is w′e. Using Corollary 19, we obtain an optimal integral solu-
tion that corresponds to a terminal spanning tree F . Since y is feasible to BCR, we know that
w′e(F)≤ ∑{u,v}∈R×R w′e(u,v)y(u,v).

Notice that, from the definition of the bridge set, w′e(u,v) is the weight of the heaviest
edge of the unique cycle in T + {u,v}. It follows from the cycle property (Lemma 5) that
w′e(F)≥ we(T ). This results in

∑
D j∈D

x jwe(BrT (C j)) = ∑
D j∈D

x jw
′
e(Y j) = ∑

{u,v}∈R×R

w′e(u,v)y(u,v)≥ w′e(F)≥ we(T ).

Dividing by M yields

we(T )

M
≤ ∑

D j∈D

x j

M
we(BrT (C j)) = E[we(BrT (Ci))].

In the following, t ≥ 1 denotes the iteration number of the algorithm: It is the residual
instance of the problem in the beginning of the iteration; T t is a minimum cost tree spanning the
remaining terminals in It ; Ct is full component drawn at the iteration; Optq,tk, f denotes an optimal

fractional solution for It ; and Optq,tk denotes an optimal integral solution for It (in particular,

Optq,1k = Optqk).
Lemma 22 below gives an upper bound on the expected weight of T t . Lemma 24 is analo-

gous, but bounds the expected weight of Optq,tk .

Lemma 22. (Byrka et al. 2013 [6]) E[we(T
t)]≤

(

1− 1
M

)t−1
we(T

1).

Proof. Since after iteration t, full component Ct is included in the solution, the residual instance
will contain one terminal that corresponds to the contraction of Ct . Thus, the decrease in the
weight of T t−1 when compared to T t is at least we(BrT t−1(Ct)). Let F t be the set of all possible
sequences of sampled components up to the t-th iteration, and let F ∈ F t denote the event
where one such sequence is sampled. We compute:

E[we(T
t)]

Lem 1
= ∑

F∈F t−1

Pr(F) ·E[we(T
t) | F ]

≤ ∑
F∈F t−1

Pr(F) ·E[we(T
t−1)−we(BrT t−1(Ct)) | F ]
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= ∑
F∈F t−1

Pr(F) ·E
[

we(T
t−1)−

∑D j∈D t
k
xt

j

M
·we(BrT t−1(C j))

∣

∣

∣

∣

∣

F

]

Lem 21
≤ ∑

F∈F t−1

Pr(F) ·E
[(

1− 1
M

)

we(T
t−1)

∣

∣

∣

∣

F

]

Lem 21
≤

(

1− 1
M

)

we(T
t−1) · ∑

F∈F t−1

Pr(F) ·E [1 | F ]

Lem 1
=

(

1− 1
M

)

we(T
t−1),

where C j denotes the non-directed full component of D j.
By induction we get the desired result

E[we(T
t)]≤

(

1− 1
M

)t−1

we(T
1).

Corollary 23. Let α := wv(Optq)/w(Optq), then

E[w(Optq,t)]≤
(

1− 1
M

)t−1

2(1−α)w(Optq)

Proof. This follows as an optimal solution cannot be worse than a minimum spanning tree, thus
w(Optq,t)≤ we(T

t) and, from Theorem 13, we have we(T
1)≤ 2(1−α)w(Optq).

Lemma 24. E [w(Optq,t)]≤
(

1− 1
4M

)t−1
w(Optq).

Proof. First, turn Optq,t−1 into a regular binary tree S, by adding dummy edges and dummy
vertices of zero weight, such that the leaves of S coincides with terminals. Now, for each inner
vertex v, select the lightest edge between the edges to its two children. It follows that the set of

selected edges form a set B whose weights is at most we(S)
2 =

we(Optq,t−1
)

2 . Notice that the set
B connects every inner vertex of S to exactly one terminal leaf, and each maximal path in S[B]

corresponds to a connected component B′. Consider the terminal spanning tree Y that emerges
from S when we contract each connected component B′ of S[B] into the unique terminal in B′.
Let f : E(Y )→ E(S) be the function which maps each edge e of Y to the corresponding edge of
S before the contraction operation, and whose weight e has inherited.

Let Gt and Rt be the graph and the terminal set of instance It , respectively. Also, let
α t := wv(Optq,t)/w(Optq,t). Consider a set of edges E ′ ⊆ E(Y ). If Gt [(E(Y )\E ′)∪E(Ct)]

connects Rt , then Gt [(E(S)\ f (E ′))∪E(Ct)] also connects Rt . This implies that

we(BrOptq,t−1(Ct)) = we(BrS(C
t))≥ we(BrY (C

t)).

Let F t denote the set of all possible sequence of sampled components up to the t-th itera-
tion. We get

E

[

we(BrOptq,t (Ct)) | F
]

= E

[

we(BrOptq,t (Ct)) | F
]

≥ E
[

we(BrY (C
t)) | F

]
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= E

[

we(Optq,t−1)−we(B)

M

∣

∣

∣

∣

F

]

≥ E

[

we(Optq,t−1)

2M

∣

∣

∣

∣

F

]

=
we(Optq,t−1)

2M
E [1 | F ]

Cor 15,Lem 1
≥ 1

4M
w(Optq,t−1).

It then follows:

E
[

w(Optq,t)
]Lem 1

= ∑
F∈F t−1

Pr(F) ·E
[

w(Optq,t)
∣

∣ F
]

≤ ∑
F∈F t−1

Pr(F) ·E
[

w(Optq,t−1)−we(BrOptq,t (Ct))
∣

∣

∣
F
]

= ∑
F∈F t−1

Pr(F) ·
(

w(Optq,t−1)−E

[

we(BrOptq,t (Ct))
∣

∣

∣
F
])

≤ ∑
F∈F t−1

Pr(F) ·
(

1− 1
4M

)

w(Optq,t−1)

=

(

1− 1
4M

)

w(Optq,t−1) · ∑
F∈F t−1

Pr(F)

=

(

1− 1
4M

)

w(Optq,t−1).

Thus, by induction:

E
[

w(Optq,t)
]

≤
(

1− 1
4M

)t−1

w(Optq).

Recall that Optq denotes an optimal solution to an instance I of q-MNSTP and that α :=
wv(Optq)/w(Optq). We prove that the algorithm’s expected approximation factor converges to
1.61889 as k grows.

Theorem 25. For any δ > 0, there is a constant k such that ITERATIVEROUNDINGk runs in

polynomial time and has an expected approximation factor at most 4− 3
3√2−2α

+δ < 1.62.

Proof. Firstly notice that after each iteration the number of terminals is reduced in at least one,
because each component that may be sampled and contracted has at least two terminals, so the
loop is executed at most |V | times. Also, because the set Dk can be constructed in O(|V |k),
each the contraction of a sampled component and each instance of k-DCR can be solved in
polynomial time (Lemma 20), it follows that the total running time of ITERATIVEROUNDINGk

is polynomial.
The approximation factor is obtained by direct calculation, but is technical. Without loss of

generality, assume that the value M · ln
(

[2−2α]4/3
)

is integer and at least 1. Also, let S denote

the solution given by the algorithm and let k be a constant such that k > 4(1+q)/δ . Therefore,
using Theorem 18, we obtain that w(Optq,tk )≤ (1+ δ

2 )w(Optq,t).
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Now we bound the approximation factor:

E

[

w(S)

w(Optq)

]

= E

[

∑t≥1 w(Ct)

w(Optq)

]

= ∑
t≥1

E

[

∑D j∈D t
k
xt

j

M ·w(Optq)
w(Ct)

]

= ∑
t≥1

1
M
E

[

w(Optq,tk, f )

w(Optq)

]

≤ 1
M

∑
t≥1

E

[

w(Optq,tk )

w(Optq)

]

T hm 18
≤ 1+δ/2

M
∑
t≥1

E

[

w(Optq,t)
w(Optq)

]

Cor23,Lem 24
≤ 1+δ/2

M
∑
t≥1

min

{

1,2(1−α)

(

1− 1
M

)t−1

,

(

1− 1
4M

)t−1
}

.

The above summation is minimized by considering the
(

1− 1
4M

)t−1
bound for the first

µ = M · ln
(

[2−2α]4/3
)

iterations and then considering the
(

1− 1
M

)t−1
2(1−α) bound for all

iterations thereafter. Thus

E

[

w(S)

w(Optq)

]

≤ 1+δ/2
M

∑
t≥1

min

{

1,2(1−α)

(

1− 1
M

)t−1

,

(

1− 1
4M

)t−1
}

≤ 1+δ/2
M

(

µ

∑
t=1

(

1− 1
4M

)t−1

+ ∑
t>µ

2(1−α)

(

1− 1
M

)t−1
)

≤
(

1+
δ

2

)(

4−4

(

1− 1
4M

)µ

+2(1−α)

(

1− 1
M

)µ)

,

where we used the formula ∑
n
j=1 x j−1 = 1−xn

1−x
on the last inequality. Because the function

(1−α)(1−1/M)M ln([2−2α]4/3)−2(1−1/(4M))M ln([2−2α]4/3) is monotonically increasing for

M · ln
(

[2−2α]4/3
)

> 1 when α ∈ [0, 1
2 ], we take the upper bound given when M tends to

infinity, which, by the the identity limx→∞

(

1+ 1
x

)x
= e, yields

E

[

w(S)

w(Optq)

]

≤
(

1+
δ

2

)(

4−4

(

1− 1
4M

)µ

+2(1−α)

(

1− 1
M

)µ)

≤
(

1+
δ

2

)

(

4−4e−
µ

4M +2(1−α)e−
µ
M

)

=

(

1+
δ

2

)

(

4−4e−
1
4 ln([2−2α]4/3) +2(1−α)e− ln([2−2α]4/3)

)

=

(

1+
δ

2

)(

4− 4

(2−2α)1/3
+

2(1−α)

(2−2α)4/3

)

=

(

1+
δ

2

)(

4− 3
3
√

2−2α

)
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< 4− 3
3
√

2−2α
+δ .



Chapter 5

A Greedy 1.55-Approximation to
q-MNSTP

The next algorithm is based on a greedy strategy to select full components. It maintains a
feasible solution S, which begins as a minimum terminal spanning tree. The solution S is
improved at each iteration by adding a full component C and removing redundant edges. The
greedy criterion is to select the full component which maximizes the ratio between the weight
of redundant edges in S∪C (that correspond to the so called bridge edges) and the total weight
of a certain part of C.

This algorithm is based on the algorithm by Robins and Zelikovsky [19]. The main idea is
that, when the algorithm selects a new full component, only part of the component is accounted
in the cost of final solution. Such part is called the commit of the component. This allows edges
of selected components, but which are not “committed”, to be discarded in future iterations.
This happens because uncommitted edges may form cycles as new components are selected.

5.1 Preliminaries

Before presenting the algorithm, we give some important concepts. We highlight that, also
in this chapter, each full component has its own copy of edges and Steiner vertices. Let
G be the graph of an instance of q-MNSTP, H be a subgraph of G, and T be a terminal
spanning tree. Recall that T ❏H❑ denotes the minimum-cost subgraph of T ∪H which con-
tains H and connects the vertices of T , then the gain of H with respect to T is defined as
gainT (H) := we(T )−w(T ❏H❑) and expresses how much a solution T improves if H replaces
some edges of T . Notice that the weight of T ❏H❑ is not smaller than w(MST(T ∪H)), thus
gainT (H) ≤ we(T )−w(MST(T ∪H)). Also, if H is a Steiner tree, then w(T ❏H❑) is w(H),
because T ❏H❑ must contain every edge of H.

Let H be a subgraph, then we denote by E0(H) the complete graph on the set of terminals
of H, and whose edge and vertex weights are all zero. The following observation follows from
the definition of gain and of the bridge set.

Lemma 26. Let T be a terminal only spanning tree, then gainT (H) = we(T )−we(MST(T ∪
E0(H)))−w(H) = we(BrT (H))−w(H).

44
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Now, denote by E0 an arbitrary set of zero weight edges between terminals and let C be a
full component, then we have the following simple result.

Lemma 27. Let T be a terminal only spanning tree, then gainMST(T∪E0)
(C)≤ gainT (C).

This fact follows because a full component C cannot improve MST(T ∪E0) better than it
can improve T . Although simple, this leads to the following general property.

Lemma 28. (Robins and Zelikovsky 2005 [19]) Let T be a terminal spanning tree and

C1,C2, . . . ,Cn be a set of full components. Then gainT (
⋃n

i=1Ci)≤ ∑
n
i=1 gainT (Ci).

Proof. The result follows from the fact that bridges may be repeated on the right-hand side
of the equation, whilst no bridge is repeated in the left-hand side. Note that, since each full
component has its own copy of edges and Steiner vertices, the weight of

⋃n
i=1Ci is ∑

n
i=1 w(Ci).

We calculate:

n

∑
i=1

gainT (Ci)
Lem 27
≥

n

∑
i=1

gainMST(T∪E0(C1)∪E0(C2)∪···∪E0(Ci−1))
(Ci)

Lem 26
=

n

∑
i=1

[we(MST(T ∪E0(C1)∪·· ·∪E0(Ci−1)))

−we(MST(T ∪E0(C1)∪·· ·∪E0(Ci)))−w(Ci)]

= we(T )−we(MST(T ∪E0(C1)∪·· ·∪E0(Cn)))−
n

∑
i=1

w(Cn)

Lem 27
= gainT (C1∪·· ·∪Cn)

where the second equality is obtained by canceling the terms.

Another concept we introduce is the commit of a component. The commit of a component
C is a lightest forest, denoted by Commit(C), that spans every vertex of V (C) such that each
connected component has exactly one terminal vertex, and we denote by com(C) the sum of
the weights of vertices and edges of Commit(C). We also define the weight of the commit of
a union of full components as the sum of the weights of their individual commits. It is easy
to compute the commit of a full component C, for that we just need to compute a minimum
spanning tree of C∪E0(C).

Lemma 29. (Robins and Zelikovsky 2005 [19]) For any full component C, Commit(C) =

MST(C∪E0(C))−E0(C).

Proof. Consider the forest F = MST(C∪E0(C))−E0(C). Notice that F connects every Steiner
vertex of C to terminals of C and has total weight equals to w(MST(C∪E0(C))). Since every
edge of E0(C) has weight zero and Commit(C)∪E0(C) spans every vertex of C, it follows that
w(Commit(C)∪ E0(C)) ≤ w(MST(C ∪ E0(C))) and Commit(C) = MST(C∪E0(C))−E0(C),
because E(E0(C))∩E(C) = /0.

We also define the commit-contracted component ¢(C) of a full component C as the tree
obtained after contracting each connected component of the commit of C into its terminal. Thus,
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the commit-contracted component ¢(C) is the set of edges between terminals that correspond
to edges originally connecting different connected components of Commit(C). The weight of
¢(C) is thus w(¢(C)) = w(C)− com(C). Similarly, if H is a k-restricted Steiner tree, then ¢(H)

is the terminal spanning tree in which the commit of every full component is contracted (see
Figure 5.1).
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(a) A full component C with
edge and vertex weights.
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(b) The (forest) Commit(C) of
C drawn in dashed magenta
where com(C) = 11.
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(c) The resulting tree ¢(C) after
contracting the connected com-
ponents of the commit of C.

Figure 5.1: An example of Commit(C) and ¢(C) of a full component C. White circles denotes
Steiner vertices and black ones are terminals.

5.2 The Greedy Algorithm

We now present the algorithm and its analysis. The algorithm is the following:

GREEDYALGk(I,k):
1) Construct set of full components Ck.

2) T0←MST (G[R]), H← G[R].

3) For each t = 1,2, . . .:

a) Find Ct ∈ Ck with maximum r := gainTt−1
(Ct)/com(Ct).

b) If r ≤ 0, stop and return S←MST (H).

c) Tt ←MST (Tt−1∪¢(Ct)), H← H ∪Ct .

Let C1, . . . ,Clast be the components selected by the algorithm during its execution, where
last is the number of iterations. At each iteration t, a new full component Ct is selected. Only
the commit of Ct will actually be included in the solution, and the union of the commits of
the full components selected so far form a set of connected components, each with exactly one
terminal. These connected components are connected by the current terminal spanning tree.
After full component Ct is selected, the commit-contracted component of Ct is joined to the
terminal spanning tree from the previous iteration, and an improved terminal spanning tree Tt
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is built. One can think of this process as if at each iteration the algorithm is only paying for the
commit of each selected full component. Thus, the objective is to maximize the gain of a full
component per unit of the commit cost.

At each iteration t, MST (H) is a feasible solution for the original problem. This solution
may be equivalently obtained by joining Tt with the commits of full components selected until
the t-th iteration. Because the cost of such solution can only decrease, we can upper bound the
cost of returned solution S by the sum we(Tt)+ com(C1)+ com(C2)+ · · ·+ com(Ct), for any
t ≥ 1.

To bound Tt we use the following lemma.

Lemma 30. (Robins and Zelikovsky 2005 [19]) Let H be a Steiner tree, if gain¢(H)(C)≤ 0 for

every C ∈ Ck, then

w(¢(H)) = w(H)− com(H)≤ w(Optqk).

Proof. Recall that because Optqk is an optimal k-restricted Steiner tree. For a terminal spanning
tree T , we have T ❏Optqk❑= Optqk , because Optqk already contains every terminal, and thus exten-
ding it with edges of T can only make it heavier. Now, let C1, . . . ,Cp be the full components of
Optqk , then

we(¢(H))−w(Optqk) = we(¢(H))−w(¢(H)❏Optqk❑)

= gain¢(H)(Optqk)

= gain¢(H)(C1∪C2∪·· ·Cp)

Lem 28
≤ gain¢(H)(C1)+ · · ·+gain¢(H)(Cp)

≤ 0.

Then the claim follows because w(¢(H)) = w(H)− com(H).

The algorithm stops when no full component can improve the current terminal spanning
tree Tlast. Since we(Tlast) = w(¢(H)) by the construction of Tlast, this lemma implies that
we(Tlast) is upper bounded by w(Optqk).

Corollary 31. we(Tlast)≤ w(Optqk).

Next auxiliary lemmas will be used to bound the commit weight of selected full components.

Lemma 32. (Robins and Zelikovsky 2005 [19]) Let i ≤ last, then gainTi−1
(Ci) = we(Ti−1)−

w(MST(Ti−1∪Ci)).

Proof. Recall that gainTi−1
(Ci) = we(Ti−1)−w(Ti−1❏Ci❑), so it suffices to show w(Ti−1❏Ci❑) =

w(MST(Ti−1∪Ci)).
Let W be the set of edges which are in both Ci and MST (Ti−1∪Ci), i.e., consider the set

W := E(Ci)∩E(MST (Ti−1∪Ci)). Also, let F := (V (Ci),W ) be the graph on the vertices of
Ci with edge set W . If F = Ci, then w(Ti−1❏Ci❑) = w(MST(Ti−1 ∪Ci)), and we are done. So
assume there is an edge e of Ci which is not in F . It follows that F contains at least two
distinct connected components A′ and B′, each containing a terminal. Let A,B ∈ Ck be two full
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component such that A⊆ A′ and B⊆ B′. These sets exist as either A′,B′ are full components, or
one can remove non-terminal leaves.

Notice that Ti−1❏F❑ and MST(Ti−1 ∪Ci) contain the same set of vertices. Since F ⊆
MST(Ti−1 ∪Ci), we have w(Ti−1❏F❑) = w(MST(Ti−1 ∪Ci)). Suppose, for the sake of con-
tradiction, that w(MST(Ti−1∪Ci))< w(Ti−1❏Ci❑). We obtain

gainTi−1
(Ci) = we(Ti−1)−w(Ti−1❏Ci❑)

< we(Ti−1)−w(MST(Ti−1∪Ci)))

= we(Ti−1)−w(Ti−1❏F❑)

≤ we(Ti−1)−w(Ti−1❏A∪B❑)

= gainTi−1(A∪B)

Lem 28
≤ gainTi−1(A)+gainTi−1(B).

Without loss of generality, if com(A) is zero, i.e., A just a terminal, then gain(B) = gain(Ci)

but has lighter commit, which contradicts the choice of Ct by the algorithm, since A and B are
also full components. Otherwise, assume com(A),com(B)> 0. Moreover, note that com(Ci)≥
com(A)+ com(B). It follows

gainTi−1
(Ci)

com(Ci)
<

gainTi−1
(A)+gainTi−1

(B)

com(A)+ com(B)
≤max

{

gainTi−1
(A)

com(A)
,
gainTi−1

(B)

com(B)

}

,

which, again, contradicts the choice of Ci.

The true gain of a graph H, with respect to a Steiner tree T , is defined as tgT (H) :=
gainT (H)+ com(H). Using Lemma 32, the true gain of component Ci, with respect to Ti−1,
may be written as

tgTi−1
(Ci) = gainTi−1

(Ci)+ com(Ci)

= gainTi−1
(Ci)+ com(Ti−1∪Ci)

= gainTi−1
(Ci)+w(MST(Ti−1∪Ci))−w(MST(Ti−1∪¢(Ci)))

= gainTi−1
(Ci)+w(MST(Ti−1∪Ci))−we(Ti)

Lem 32
= we(Ti−1)−w(MST(Ti−1∪Ci))+w(MST(Ti−1∪Ci))−we(Ti)

= we(Ti−1)−we(Ti).

Observe that the true gain of component Ci represents by how much the weight of terminal
spanning tree Ti−1 decreases if we select Ci. Analogously, we define Gi := tgTi

(Optqk). This
value is the difference between the weight of Ti and the weight of the commit-contracted optimal
Steiner tree ¢(Optqk). Indeed,

Gi = tgTi
(Optqk)

= gainTi
(Optqk)+ com(Optqk)

= we(Ti)−w(Optqk)+w(Optqk)−we(¢(Optqk))



CHAPTER 5. A GREEDY 1.55-APPROXIMATION TO Q-MNSTP 49

= we(Ti)−we(¢(Optqk)).

Notice that Gi is not necessarily positive, as the weight of Ti decreases between successive
iterations.

The next lemma considers the ratio between the commit weight of selected full components
and the commit weight of the optimal solution Optqk .

Lemma 33. (Robins and Zelikovsky 2005 [19]) If Gt is positive, we have ln
(

G0
Gt

)

≥ ∑
t
i=1 com(Ci)

com(Optq

k)
.

Proof. Let X j ∈ Optqk represent a full component Optqk , then

G0

com(Optqk)
=

tgT0
(
⋃

X j∈Optq

k
X j)

∑X j∈Optq

k
com(X j)

Lem 28
≤

∑X j∈Optq

k
tgT0

(X j)

∑X j∈Optq

k
com(X j)

=
∑X j∈Optq

k
(gainT0

(X j)+ com(X j))

∑X j∈Optq

k
com(X j)

≤ 1+ max
X j∈Optq

k

{

gainT0
(X j)

com(X j)

}

≤ 1+
gainT0

(C1)

com(C1)

=
tgT0

(C1)

com(C1)
.

By induction on i, one can show that Gi−1
com(Ci)

com(Optq

k)
≤ tgTi−1

(Ci), for i = 1,2, . . . , t.

When GREEDYALGk selects a component Ci, it decreases the cost of Ti by tgTi−1
(Ci). Thus,

the true gain of Optqk also decreases by this same value, because Gi−1−Gi =we(Ti−1)−we(Ti)=

tgTi−1
(Ci). It follows that

Gi = Gi−1− tgTi−1
(Ci)≤ Gi−1

(

1− com(Ci)

com(Optqk)

)

,

for i = 1,2, . . . , t. Because Gt > 0 and Gi is decreasing in i, we have that every Gi, i = 0, . . . , t,
is positive, and thus:

Gt

G0
≤ Gt−1

G0

(

1− com(Ct)

com(Optqk)

)

≤ ·· · ≤
t

∏
i=1

(

1− com(Ci)

com(Optqk)

)

.

Then, by applying the natural logarithm on both sides, we get:

ln

(

Gt

G0

)

≤ ln

(

t

∏
i=1

(

1− com(Ci)

com(Optqk)

)

)

=
t

∑
i=1

ln

(

1− com(Ci)

com(Optqk)

)
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≤
t

∑
i=1
− com(Ci)

com(Optqk)

The last inequality used ln(1− x) ≤ −x for x < 1, and the fact that com(Ci)

com(Optq

k)
< 1. Now,

multiplying both sides by −1 yields the desired result.

Recall that the cost of returned solution is given by the cost of Tlast plus the sum of commit
weights for all selected full components, ∑

last
i=1 com(Ci). To bound the cost of Tlast, we use

Corollary 31, which gives we(Tlast) ≤ w(Optqk). To bound ∑
last
i=1 com(Ci), one might try to use

Lemma 33. However, it requires that Gi be positive, and thus this lemma cannot be applied
directly. To bound the cost of the solution returned by GREEDYALGk, we consider an alternative
algorithm, GREEDYALG

η+1
k , which only iterates η +1 times. We choose η as the unique index

such that we(Tη+1)< w(Optqk)≤ we(Tη). Since the cost of a partial solution only gets cheaper
after each iteration, the cost of the solution returned by this alternative algorithm is an upper
bound on the cost of the solution returned by GREEDYALGk.

The general strategy to bound the solution cost is as follows. Since Gη+1 is not positive,
we cannot use Lemma 33, and thus we will derive an analogous of this lemma. First we write
com(Cη+1) as the sum of two terms, c1

η+1, c2
η+1, i.e.,

com(Cη+1) = c1
η+1 + c2

η+1.

Second, the value of tgTη
(Cη+1) is also split in the sum of two terms, g1

η+1, g2
η+1 as

tgTη
(Cη+1) = g1

η+1 +g2
η+1.

Recall that the costs of Tη+1 and Tη differ by exactly tgTη
(Cη+1). Since we want to bound

we(Tη+1) by w(Optqk), we need to decrease we(Tη) just as much as needed to obtain equality,
thus we define

g1
η+1 := we(Tη)−w(Optqk),

Informally, one can think of this split as if iteration η +1 is performed only “partially”. Thus,
the first part of com(Cη+1) is defined by the same proportion of g1

η+1, i.e., define

c1
η+1 :=

g1
η+1

tgTη
(Cη+1)

com(Cη+1).

From the definitions above, one can readily observe that

c2
η+1 =

g2
η+1

tgTη
(Cη+1)

com(Cη+1).

Finally, we define G1
η+1 := Gη − g1

η+1. The value G1
η+1 corresponds to the cost of the

commit of an optimal solution. Indeed,

G1
η+1 = Gη −g1

η+1
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= (gainTη
(Optqk)+ com(Optqk))− (we(Tη)−w(Optqk))

= (we(Tη)−we(Tη❏Optqk❑)+ com(Optqk))− (we(Tη)−w(Optqk))

= (we(Tη)−w(Optqk)+ com(Optqk))− (we(Tη)−w(Optqk))

= com(Optqk).

If com(Optqk) = 0, then a terminal spanning tree is an optimal solution, and the algorithm
returns an optimal solution. Thus, assume that com(Optqk)> 0. It follows that G1

η+1 is positive.
This leads to the following lemma, whose proof is similar to the proof of Lemma 33.

Lemma 34. ln

(

G0
G1

η+1

)

≥ c1
η+1+∑

η
i=1 com(Ki)

com(Optq

k)
.

Proof. In the proof of Lemma 33, we showed that Gi−1
com(Ci)

com(Optq

k)
≤ tgTi−1

(Ci), for i= 1,2, . . . ,η .

As a special case, we may also show

Gη

c1
η+1

com(Optqk)
≤ g1

η+1.

Now, repeating the same arguments as of the proof of Lemma 33, the result follows.

Recall that α = wv(Optq)/w(Optq), then we have the following lemma.

Lemma 35. Let H be a Steiner tree, then com(H)≤wv(H)+we(H)/2. Moreover, com(Optq)≤
(1+α)

2 w(Optq).

Proof. Denote by comv(H) and come(H) the vertex weight and edge weight of the commit a
Steiner tree H. By adding dummy vertices and edges of zero weight, we may turn H into a
regular binary tree H ′ where the root is a dummy vertex and the set of leaves correspond to set
of terminals. For every inner vertex v of H ′, chose the lightest edge between the two edges to
children of v, and denote the set selected edges by B. Note that we(B)≤ we(H

′)/2 = we(H)/2.
Also, note that B induces a forest which spans every vertex of H ′ such that each connected com-
ponent of contains exactly one terminal. Therefore, we(B)≥ come(H

′) = come(H). Combining
the previous inequalities, we obtain come(H) ≤ we(H)/2. Since every inner vertex of H is in
the commit of H, we have that comv(H) = wv(H). Therefore

com(H) = come(H)+ comv(H)≤ we(H)

2
+wv(H).

In particular, if H = Optq, we have

com(Optq)≤ we(Optq)
2

+wv(Optq) =
w(Optq)+wv(Optq)

2
=

(1+α)w(Optq)
2

.

Now we are ready to bound the cost of returned solution. Recall that Optq denotes an optimal
solution to an instance I of q-MNSTP and that α := wv(Optq)/w(Optq). The approximation
factor depends on α; in the worst case, α = 0, and the factor converges to 1.54931 as k grows.

Theorem 36. For any δ > 0, there is a constant k such that GREEDYALGk runs in polynomial

time and has approximation factor at most 1+ 1+α
2 · ln

(

31−α
1+α

)

+δ < 1.55.
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Proof. We first verify that, for constant k, GREEDYALGk runs in polynomial time. Constructing
set Ck takes polynomial time, since |Ck| ∈ O(|V |k). Also, the gain of an already selected full
component is not positive, thus each full component is selected at most once, and the loop is
executed at most |Ck| times. Finally, observe that the gain of a full component C can be compu-
ted by executing a minimum spanning tree algorithm, and the commit cost of C can be computed
in constant time, because C has constant size. Therefore one can select the full component C

which maximizes gainTt−1
(C)/com(C) efficiently, and each iteration takes polynomial time.

Let S be the solution returned by algorithm GREEDYALGk and Sη+1 be the solution returned
by GREEDYALG

η+1
k . Since w(S) ≤ w(Sη+1), to analyze the approximation factor, we bound

w(Sη+1). We obtain

w(Sη+1) = w(MST(T0∪C1∪C2∪·· ·∪Cη+1))

≤ w(MST(MST(T0∪C1)∪C2∪·· ·∪Cη+1))

≤ com(C1)+w(MST(T1∪C2∪·· ·∪Cη+1))

≤ . . .

≤
η

∑
i=1

com(Ci)+w(MST(Tη ∪Cη+1))

≤
η

∑
i=1

com(Ci)+ com(Cη+1)+we(Tη+1).

The first inequality holds as MST((T0∪C1)∪C2∪·· ·∪Cη+1) is a spanning subgraph of T0∪C1∪
C2∪ ·· ·∪Cη+1. The second inequality holds because T1 = MST (T0∪¢(C1)). The inequalities
that follow are similar.

By using the identity tgTη
(Cη+1) = we(Tη)−we(Tη+1), and replacing tgTη

(Cη+1) = g1
η+1+

g2
η+1 and com(Cη+1) = c1

η+1 + c2
η+1 in the expression above, we get

w(Sη+1)≤
η

∑
i=1

com(Ci)+(c1
η+1 + c2

η+1)+we(Tη)− (g1
η+1 +g2

η+1).

Since, from the definition, tgTη
(Cη+1) = gainTη

(Cη+1) + com(Cη+1) ≥ com(Cη+1), we

obtain c2
η+1 =

g2
η+1

tgTη
(Cη+1)

com(Cη+1)≤ g2
η+1. Replacing in the last inequality, it follows that

w(Sη+1)≤
η

∑
i=1

com(Ci)+ c1
η+1 +we(Tη)−g1

η+1.

By using g1
η+1 = we(Tη)−w(Optqk), we get

w(Sη+1)≤
η

∑
i=1

com(Ci)+ c1
η+1 +w(Optqk).
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Now, use Lemma 34 to obtain

w(Sη+1)≤ ln

(

G0

G1
η+1

)

com(Optqk)+w(Optqk)

= ln

(

we(T0)−w(Optqk)+ com(Optqk)

com(Optqk)

)

com(Optqk)+w(Optqk)

= ln

(

1+
we(T0)−w(Optqk)

com(Optqk)

)

com(Optqk)+w(Optqk).

The first equality comes from G1
η+1 = com(Optqk), and from the definition of G0.

To rewrite this bound in terms of w(Optqk), we use Lemma 35, which implies com(Optqk)≤
(1+α)

2 w(Optqk), and Theorem 13, which implies that we(T )≤ 2(1−αk)w(Optqk).

w(Sη+1)
Lem 35
≤ ln

(

1+
we(T0)−w(Optqk)

(1+α)
2 w(Optqk)

)

(1+α)

2
w(Optqk)+w(Optqk)

T hm 13
≤ ln

(

1+
2(1−α)w(Optqk)−w(Optqk)

(1+α)
2 w(Optqk)

)

(1+α)

2
w(Optqk)+w(Optqk)

=

[

ln

(

3
1−α

1+α

)

(1+α)

2
+1

]

w(Optqk).

In the first inequality we used the fact that function ln

(

1+
we(T0)−w(Optq

k)

com(Optq

k)

)

com(Optqk) is in-

creasing with respect to com(Optqk).
To complete the proof, notice that from Theorem 18, for any δ > 0, there exists (a suffi-

ciently large value) k such that w(Optqk)≤ (1+δ )w(Optq).



Chapter 6

Final Remarks

There is a plentiful set of practical and important problems related to the Steiner Tree problem,
and many of them are NP-hard. A natural generalization of the classical STP is the variant in
which both node and edge sets have associated weight functions. In this work, we considered
this problem from the perspective of approximation algorithms. Unlike STP, for which the
metric and non-metric versions are equivalent, when considering the node weighted version,
the restriction that the input graph is metric is central to obtain a constant-factor approximation;
indeed, the non-metric version encodes the Set Cover Problem, and it has no approximation
factor smaller than O(logn) unless P = NP [18].

For the metric version, we showed that even a terminal minimum spanning tree is a 2-
approximation. Breaking the barrier of factor 2, however, seems as challenging as it was for the
for the STP. Unfortunately, many of the ideas and techniques used in the STP case cannot be
applied to the MNSTP. When we consider the particular – yet relevant – case in which the ratio
between vertices and edges weights is bounded (the q-MNSTP), we can extend the algorithms
and techniques from STP to MNSTP, and obtain improved factors, even matching the factor for
one algorithm for the standard STP.

Recall that α := wv(Optq)/w(Optq) is the ratio of vertex weight over the total weight of an
optimal solution. The described results for MNSTP and q-MNSTP are summarized as follows.

• A minimum terminal spanning tree is (2−α)-approximation for MNSTP.

• The optimal value of the k-restricted version of q-MNSTP is not much larger then the
optimal value of q-MNSTP. This does not hold in the MNSTP case, and thus enumerating
all the full components does not seem to be a viable option to improve the factor for
MNSTP.

• The iterative randomized rounding technique in [6] can be extended for the q-MNSTP
to obtain an expected approximation factor of 4− 3

3√2−2α
+δ (q,k)< 1.62. Interestingly,

the analysis in [6] which leads to a 1.39-approximation for STP cannot be extended to
q-MNSTP.

• The greedy algorithm by [19] can be generalized to solve instances of q-MNSTP, and
we show that this adapted algorithm has approximation factor of 1+ 1+α

2 · ln
(

31−α
1+α

)

+

δ (q,k)< 1.55. This matches the algorithm’s factor for STP.
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