N
»

Universidade Estadual de Campinas &
. . i~
.\’ Instituto de Computacao
- INSTITUTO DE
UNICAMP COMPUTACAO

0

Jaudete Daltio

Views over Graph Databases: A Multifocus Approach
for Heterogeneous Data

Visoes em Bancos de Dados de Grafos: Uma
Abordagem Multifoco para Dados Heterogéneos

CAMPINAS
2017

Jaudete Daltio

Views over Graph Databases: A Multifocus Approach for
Heterogeneous Data

Visoes em Bancos de Dados de Grafos: Uma Abordagem
Multifoco para Dados Heterogéneos

Tese apresentada ao Instituto de Computagao
da Universidade Estadual de Campinas como
parte dos requisitos para a obtencao do titulo
de Doutora em Ciéncia da Computacao.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientadora: Profa. Dra. Claudia Maria Bauzer Medeiros

Este exemplar corresponde a versao final da
Tese defendida por Jaudete Daltio e
orientada pela Profa. Dra. Claudia Maria
Bauzer Medeiros.

CAMPINAS
2017

Agéncia(s) de fomento e n°(s) de processo(s): N&o se aplica.

Ficha catalogréfica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Daltio, Jaudete, 1983-
D17v Views over graph databases : a multifocus approach for heterogeneous
data / Jaudete Daltio. — Campinas, SP : [s.n.], 2017.

Orientador: Claudia Maria Bauzer Medeiros.
Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Banco de dados. 2. Grafo (Sistema de computador). 3. Modelagem de
dados. 4. Gerenciamento da informacdo. I. Medeiros, Claudia Maria
Bauzer,1954-. Il. Universidade Estadual de Campinas. Instituto de
Computacao. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Visdes em bancos de dados de grafos : uma abordagem multifoco
para dados heterogéneos

Palavras-chave em inglés:

Databases

Graph (Computer system)

Data modeling

Information management

Area de concentrag&o: Ciéncia da Computagio
Titulacdo: Doutora em Ciéncia da Computagéo

Banca examinadora:

Claudia Maria Bauzer Medeiros [Orientador]

Ana Carolina Brandao Salgado

Ricardo Rodrigues Ciferri

André Santanche

Guilherme Pimentel Telles

Data de defesa: 04-09-2017

Programa de Pé6s-Graduacao: Ciéncia da Computacao

N

)
',A Universidade Estadual de Campinas
(]

L W 4 Instituto de Computacao
'.'\ P ¢ INSTITUTO DE
UNICAMP COMPUTACAO

Jaudete Daltio

Views over Graph Databases: A Multifocus Approach for
Heterogeneous Data

Visoes em Bancos de Dados de Grafos: Uma Abordagem
Multifoco para Dados Heterogéneos

Banca Examinadora:

e Profa. Dra. Claudia Maria Bauzer Medeiros
Instituto de Computagao/ Universidade Estadual de Campinas

e Profa. Dra. Ana Carolina Brandao Salgado
Centro de Informatica/ Universidade Federal de Pernambuco

e Prof. Dr. Ricardo Rodrigues Ciferri
Departamento de Computagao/ Universidade Federal de Sao Carlos

e Prof. Dr. André Santanché
Instituto de Computagao/ Universidade Estadual de Campinas

e Prof. Dr. Guilherme Pimentel Telles
Instituto de Computagao/ Universidade Estadual de Campinas

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida académica do aluno.

Campinas, 04 de setembro de 2017

Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the difference.

(The Road Not Taken, Robert Frost)

Agradecimentos

A professora Claudia, por ter sido tudo o que eu precisei ao longo desse processo. Muito
mais do que uma professora. Muito mais do que uma orientadora. Por acreditar que eu
era capaz. Pela confianca, pela atencdo, pela paciéncia e pelas criticas. E um grande
previlégio té-la em minha vida.

Ao Cristiano, por sempre estar ao lado. Pelo incentivo e pela compreensao. Infinita
compreensao. Por me ajudar a enfrentar todos os desafios, principalmente aqueles que
achei que nao seria capaz de superar. Por fazer de mim uma pessoa melhor a cada dia.

A minha familia, pelo apoio e pela confianca. Aos meus queridos irmaos, pela constante
preocupacao. Aos meus pais, Hermes e Bernadete, lembrados com muito carinho e sempre
presentes em meu coragao. & Dante e Fernanda, meus pequenos amores, pelos grandes
SOTITiS0S.

Aos amigos que estiveram sempre comigo ao longo dessa jornada. E uma dadiva ter
tantas pessoas maravilhosas em minha vida com quem compartilhar minhas conquistas.
Em especial aos amigos do Laboratorio de Sistemas de Informacao — LIS, pelas opnides,
discussoes e contribuicoes neste trabalho.

Ao especialista em geoprocessamento da Agéncia Nacional de Aguas (ANA), Alexandre
de Amorim Teixeira, pelo auxilio no acesso e na interpretacao dos dados utilizados na
pesquisa.

Aos membros da banca, pelas sugestoes e contribuicoes no trabalho.

A Empresa Brasileira de Pesquisa Agropecuéria (EMBRAPA) e as agéncias de fomento
CAPES, CNPq e projetos, FAPESP/CEPID in Computational Engineering and Sciences
(2013/08293-7), INCT in Web Science pelo apoio direto ou indireto na realizagido deste
trabalho.

Resumo

A pesquisa cientifica tornou-se cada vez mais dependente de dados. Esse novo paradigma
de pesquisa demanda técnicas e tecnologias computacionais sofisticadas para apoiar tanto
o ciclo de vida dos dados cientificos como a colaboracao entre cientistas de diferentes areas.
Uma demanda recorrente em equipes multidisciplinares é a construcao de miltiplas pers-
pectivas sobre um mesmo conjunto de dados. Solugoes atuais cobrem varios aspectos,
desde o projeto de padroes de interoperabilidade ao uso de sistemas de gerenciamento
de bancos de dados nao-relacionais. Entretanto, nenhum desses esforcos atende de forma
adequada a necessidade de miltiplas perspectivas, denominadas focos nesta tese. Em
termos gerais, um foco é projetado e construido para atender um determinado grupo de
pesquisa (mesmo no escopo de um tinico projeto) que necessita manipular um subconjunto
de dados de interesse em multiplos niveis de agregacio/generaliza¢do. A defini¢ao e cria-
cao de um foco sao tarefas complexas que demandam mecanismos capazes de manipular
multiplas representacoes de um mesmo fenomeno do mundo real.

O objetivo desta tese é prover multiplos focos sobre dados heterogéneos. Para atingir
esse objetivo, esta pesquisa se concentrou em quatro principais problemas. Os problemas
inicialmente abordados foram: (1) escolher um paradigma de gerenciamento de dados
adequado e (2) elencar os principais requisitos de pesquisas multifoco. Nossos resulta-
dos nos direcionaram para a adocao de bancos de dados de grafos como solugao para o
problema (1) e a utilizacao do conceito de visdes, de bancos de dados relacionais, para
o problema (2). Entretanto, ndo ha consenso sobre um modelo de dados para bancos de
dados de grafos e o conceito de visoes é pouco explorado nesse contexto. Com isso, 0s
demais problemas tratados por esta pesquisa sdo: (3) a especificacio de um modelo de
dados de grafos e (4) a definicao de um framework para manipular visoes em bancos de
dados de grafos. Nossa pesquisa nesses quatro problemas resultaram nas contribuicoes
principais desta tese: (i) apontar o uso de bancos de dados de grafos como camada de
persisténcia em pesquisas multifoco — um tipo de banco de dados de esquema flexivel e
orientado a relacionamentos que prové uma ampla compreensao sobre as relagoes entre os
dados; (ii) definir visoes para bancos de dados de grafos como mecanismo para manipular
multiplos focos, considerando operacoes de manipulacao de dados em grafos, travessias e
algoritmos de grafos; (iii) propor um modelo de dados para grafos — baseado em grafos de
propriedade — para lidar com a auséncia de um modelo de dados pleno para grafos; (iv)
especificar e implementar um framework, denominado Graph-Kaleidoscope, para prover o
uso de visoes em bancos de dados de grafos e (v) validar nosso framework com dados reais
em aplicagoes distintas — em biodiversidade e em recursos naturais — dois tipicos exemplos
de pesquisas multidisciplinares que envolvem a anélise de interacoes de feno6menos a partir
de dados heterogéneos.

Abstract

Scientific research has become data-intensive and data-dependent. This new research
paradigm requires sophisticated computer science techniques and technologies to support
the life cycle of scientific data and collaboration among scientists from distinct areas. A
major requirement is that researchers working in data-intensive interdisciplinary teams
demand construction of multiple perspectives of the world, built over the same datasets.
Present solutions cover a wide range of aspects, from the design of interoperability stan-
dards to the use of non-relational database management systems. None of these efforts,
however, adequately meet the needs of multiple perspectives, which are called foci in the
thesis. Basically, a focus is designed/built to cater to a research group (even within a
single project) that needs to deal with a subset of data of interest, under multiple ag-
gregation /generalization levels. The definition and creation of a focus are complex tasks
that require mechanisms and engines to manipulate multiple representations of the same
real world phenomenon.

This PhD research aims to provide multiple foci over heterogeneous data. To meet
this challenge, we deal with four research problems. The first two were (1) choosing an
appropriate data management paradigm; and (2) eliciting multifocus requirements. Our
work towards solving these problems made us choose graph databases to answer (1) and
the concept of views in relational databases for (2). However, there is no consensual
data model for graph databases and views are seldom discussed in this context. Thus,
research problems (3) and (4) are: (3) specifying an adequate graph data model and
(4) defining a framework to handle views on graph databases. Our research in these
problems results in the main contributions of this thesis: (i) to present the case for
the use of graph databases in multifocus research as persistence layer — a schemaless and
relationship driven type of database that provides a full understanding of data connections;
(ii) to define views for graph databases to support the need for multiple foci, considering
graph data manipulation, graph algorithms and traversal tasks; (iii) to propose a property
graph data model (PGDM) to fill the gap of absence of a full-fledged data model for
graphs; (iv) to specify and implement a framework, named Graph-Kaleidoscope, that
supports views over graph databases and (v) to validate our framework for real world
applications in two domains — biodiversity and environmental resources — typical examples
of multidisciplinary research that involve the analysis of interactions of phenomena using
heterogeneous data.

List of Figures

[LT Overview of the Research Problems 17
2.1 Overview of the Focus Generation Processl 24
[2.2 Partial Metadata Graph Database of FNJV Observations - G 25
[2.3 Focus: (a) location and number of distinct species and (b) Partial Biome |
| Graph Database - Gyl - - -« o o . o 26
2.4 (a) Query View Focus: Observation Locations and Biomes (b) Central |
| Concept Focus: species closest to Tinamus tao| 27
[3.1 Kinds of Points in Drainage Network| 31
(3.2 Different Drainage Stretch Scales in Drainage Network| 32
[3.3 (a) Rivers: continuous drainage stretches with the same hydronym and (b) |
[HCA: drainage stretches and their hydrographic catchment area] 33
[3.4 Otto Ptatstetter methodologyl 34
[3.5 PgHydro Database Conceptual Model|. 35
B-6 Gpuyaro: Brazilian Drammage Network as a Graph Databasel 36
B.7 _TOAD CSV commandsl 37
[4.1 PgHydro Database Conceptual Modelf 43
[4.2 Coexisting stretch scales in the drainage network, extracted from [32] . . . 44
[4.3 Overview of Graph Data Management - a multitude of models, operators |
| and query languages | Lo Lo L 45
4.4 An example of the RDF graph extracted from [............. 46
4.5 An example of a property graph, extracted from [83] 47
4.6 Different purposes of Views — adapted from [14] (dimensions of heterogeneity)| 48
4.7 Gpyaro graph database schema Gg (a) and state Gg (b)[. 52
4.8 Example of the Restriction Operator] o6
[4.9 Example of Projection Operator{ o7
[4.10 Example of Rename Operator| 58
[4.11 Example of Edge Creation Operator|. 60
[4.12 Example of Group Operator| 61
[4.13 Example of Attribute Creation Operator| 63
[4.14 Example of Conditional Iraversal Operator|. 64
[4.15 View Requirements and Operators| 66
[4.16 Graph-Kaleidoscope Architecture| 67
[4.17 Ottocoded Watersheds - The code itself follows Ptfatstetter methodology|. . 70
[4.18 Rivers View of Drainage Network| 71
4.19 GVgiyer graph view schema (a) and state (b)| 72
[4.20 HCA: drainage stretches and their hydrographic catchment areal 73
.21 GViyatershea graph view schema (a) and state (b)[. 74

[4.22 Related Work — Comparative Table]

List of Tables

4.1 Elementary Unary Operators|
1.2 Elementary Binary Operators|

Contents

1__Introduction| 14
[T Motivation|. 14
(L.2__Problem Statement and Research Problems|. 15
(L3 Contributions e 18
(1.4 'Thesis Organization|. 19

2 Handling Multiple Foci in Graph Databases| 21
2.1 Tntroduction and Motivationl oL 21
2.2 Theoretical Foundations and Related Workl 22

[2.2.1 Graph Databases| L. 22
.................................. 22
2.2.3 Multifocus Researchl oo 23
2.3 A Framework to Generate Focll 0L 23
2.4 Running kixample| oo 24
[2.4.1 Example Focus 1: Location and Biomes| 25
[2.4.2 Example Focus 2: Species “Closely Related” to Tinamus tao| . . . 26
[2.5 Conclusions and Ongoing Work| 27

[3 Hydrograph: Exploring Geographic Data In Graph Databases| 29
B.1 Introduction and Motivation| oL 29
3.2 Research Scenario and Theaoretical Foundations| 30

(3.2.1 Brazilian Water Resources Databasel 30
[3.2.2 Graph Data Management Paradigm|. 34
[3.3 Implementation| oo 35
[3.3.1 Original Relational Database: pgHydrol 35
[3.3.2 Proposal Graph Database: HydroGraph| 36
[3.3.3 PgHydro Functions| 0. 37
[3.4 Research Challenges| 38
B.5 Conclusions| e 39

[4 Graph-Kaleidoscope: A Framework to Handle Multiple Perspectives in |

[Graph Databases| 40
4.1 Introductionl 40
4.2 Motivation Scenario - Brazilian Water Resources Databasel 42
4.3 Theoretical Foundations 43

[4.3.1 'T'he Graph Data Management Paradigm| 43
[4.3.2 Extending Database Views 48
[4.4 PGDM: The Data Model of the Graph-Kaleidoscope Framework| 49
441 PGDM - Data Structurel o oo 49

[4.4.2 PGDM - Integrity Constraints|
[4.4.3 PGDM - Elementary Operators|
[4.5 Graph-Kaleidoscope Framework - Architecture and Prototypel

[4.6 Case Study: Providing Perspectives of the Water Resources Database for

| Environmental Resource Applications|

4.6.1 View G'Viydroas4: Determining the Longer Drainage Stretch of Wa-

[tershed 454o 69
[4.6.2 View GVgjer: Determining the Most Connected River| 71

[4.6.3 View GViyatersnea: Determining the Most Influential Sub-watershed |

[of a Giiven Watershedl. Lo 72
4.7 Related Workl 74
[4.8 Research Challenges and Lessons Learned| 76
[4.9 Conclusions and Ongoing Work| 7
b__Conclusions and Extensions| 79
D1 Overviewl. e e 79
[H.2 Main Contributions 79
b.3 Extensionsl 80
[Bibliography| 83

Chapter 1

Introduction

1.1 Motivation

Increasingly, the world of science is being changed, induced by the advances of infor-
mation technology. Scientific data is being produced and collected at an unprecedented
scale and outpaces the speed with which it can be analyzed and understood [41]. Com-
puter science has become a key element in scientific research in many areas [24], such
as bioinformatics [28|, social computing [82] and health [6I]. Data-intensive science is a
new paradigm for scientific exploration [5I] and involves the capture, curation and anal-
ysis of large amounts of data. It requires sophisticated computer science techniques and
technologies to support all steps in these activities.

Data-intensive science is usually multidisciplinary and demands collaboration among
scientists from distinct areas. It is also characterized by the use of large amounts of data,
captured by instruments or generated by simulations that are produced at all scales with
different quality levels. The main computer science challenges are targeted by manage-
ment and analysis mechanisms. The volume of these datasets brings a high complexity
to interpretation, compounded by the large quantities of variables available. Standard
database systems have limitations to deal with such datasets, in which data are unstruc-
tured and often come from networks with complex relationships between their entities [36].
Most data management tools are designed with retrieval efficiency in mind, highly depen-
dent on the data model used, leaving data exploration as a secondary role [40].

A particular issue involves letting researchers work with the data subset of interest,
under a specific aggregation/generalization level, a given perspective and a specific vo-
cabulary. This problem is addressed by [74], which defines a focus as a perspective of the
study of a given problem, where data can be restricted to one specific scale /representation,
zooming in and out, e.g., hiding or revealing details. Additionally, a focus can put together
objects from distinct perspectives.

Given the same set of data, distinct foci will also arise when the data are analyzed
under different models, processed using focus-specific algorithms, or even visualized with
particular means. The definition and creation of a focus are complex tasks that require
mechanisms and engines to manipulate multiple representations of the same real world
phenomenon.

14

Chapter 1. Introduction 15

1.2 Problem Statement and Research Problems

This thesis aims at answering the following research question: “How can we provide mul-
tiple foci over heterogeneous data collections ?” There are two issues involved: (i) how to
deal with heterogeneous data and (ii) how to provide multiple foci. Due to the complexity
involving both subjects, we start our research exploring two research problems: (1) elicit-
ing multifocus requirements; (2) choosing an appropriate data management paradigm for
handle heterogeneous data.

Problem 1: Eliciting Multifocus Requirements

The basic idea of multifocus work is to support construction of arbitrary perspectives
of a given dataset. In some cases, a simple operation is enough — just to restrict a subset
of the variables available or to restrict to data having some property. The challenge arises
when there is need for data transformation —e.g., in terms of aggregating or disaggregating
parts of the data or combining data from different perspectives. Data transformation
may also require rearrangement of data according to the semantic relations among data.
Whether using simple or complex operations, the result is a representation of the same
real world phenomena under different perspectives.

In geographic data research, scale studies are often considered as (geographic) scale
transformations, but the ideas can be extrapolated. They usually apply abstraction lev-
els to describe the original data [76], generalization algorithms [85] and identify, from
the underlying dataset, which elements are relevant to a given perspective [67]. Related
work about semantic transformations usually applies ontologies (i.e., abstract model of
terms [45]) as a central role to provide a perspective of the data [46]. The use of on-
tologies helps to solve interoperability issues in knowledge representation [52], allowing
to effectively share data in research communities [7, 9, 21]. A different approach appears
in [60], which treated each perspective as a version of the dataset.

In this thesis, two different real world datasets used in interdisciplinary research were
analyzed to gather the essential data transformations of multifocus research. The first one
concerns biodiversity data — a dataset of recordings of animal sounds [29]. The dataset
includes all observation metadata (54 attributes), such as information about the species
(taxonomy, gender), the place where the sound was recorded (geographic coordinates,
biome), the recording and digitalization devices, data and time of the observation, and
so on. In this dataset, a focus might concern, for instance, geographical location, a set of
natural conditions (biome), a group of species or a period of time [35].

The second dataset involved environmental data — a water resources database covering
the Brazilian waterways. The dataset includes all elements of the drainage network —
a set of drainage points and stretches — and attributes about the rivers, hydrographic
catchment areas, watersheds and main watercourses. A focus might concern, for instance,
the connectivity of rivers, the influence of drainage stretches or watersheds [33].

The results of this problem led us to choose views as an appropriate means to con-
struct a focus.

Chapter 1. Introduction 16

Problem 2: Choosing an Appropriate Data Management Paradigm

The continued growth of data and its heterogeneity led to the emergence of new
database models and technologies — the NoSQL databases. These databases do not have all
properties of traditional relational databases and are generally not queried with SQL [50].
Related work classifies NoSQL databases in four categories, according to their data model:
(i) key value stores, in which a piece of data is addressed by a unique key and it is
isolated from remaining data [78]; (ii) document stores, in which data is stored in an
interoperable document (JSON, for instance) addressed by a unique key [4]; (iii) column
oriented stores, which create a sparse sorted map in which rows store an arbitrary number
of key-value pairs [23| [37]; and (iv) graph stores, in which data are stored as nodes, edges
and properties [83].

Each NoSQL data model attempts to solve a particular data management issue and
the diversity of these models shows that there is no data model or database able to deal
with all challenges [72]. However, with few exceptions, graph stores are the only capable of
handling relations among data [50]. Indeed, the interpretation of complex datasets usually
requires understanding data connections, interactions with other data and topological
properties about data organization. Besides, graph stores are schemaless, in the sense
that it is not necessary to first create a schema and then insert data - schema and data
are inserted together. Nevertheless, it is possible to add properties to each individual
vertex or edge at any time, an important requirement to deal with heterogeneous data.

Given these considerations, we chose graphs as our data management paradigm.

Research Overview

Figure [1.1] provides an overview of our research, presenting how the research problems
are correlated under the graph data management paradigm. Each research problem is
highlighted in the figure (indicated by its number).

Raw data are represented in the bottom. The left side of the figure shows the user
perception of the graph data management paradigm: data in the database are understood
to be organized in a graph, in the simplest form G = (V, E). Each application has to
build its own “stack of standards”, shown in the right side of the figure, to deal with graph
database system issues. Since there is no consensus on a formal graph data model or even
for a graph data structure, there are many possible “stacks of standards” available in the
literature to meet this architecture. Applications and users needs of multifocus research
are represented on the top of both logical and physical perceptions.

Research problem (1) concerns applications and user needs in multifocus research.
Problem (2) involves the data management paradigm and the datasets explored. To
achieve our goal, two additional research problems needed to be explored: (3) adopting
an adequate graph data model and (4) defining a framework to handle views on graph
databases. Research problem (3) concerns about physical issues of graph data manage-
ment, in terms of graph data model. Research problem (4) concerns about how to provide
the user perception of views over graphs.

Chapter 1. Introduction 17

- e VGl e - el s anguges
r/\/\' — G e s

CREATE (answer)-[:ANSWERS] ->(question)

®:.. Data Schema

\. AN T T T /
\. - 4/

101C1010101010101010101010101C101C1010101010101010101010101C
01
101C1010101010101010101010101C101C1010101010101010101010101C
01
1100110011001100110011001100110011001100110011001111001100110011001100110011110011001100110011001100111100110011001100110011001111001100110011001100110011

Heterogeneous Data Collections

Figure 1.1: Overview of the Research Problems

Problem 3: Adopting an Adequate Graph Data Model

While graph stores are being increasingly adopted in cases where relationships among
data elements are first-class citizens, graph database systems are at the same overall level
of maturity as object-oriented database systems were in the early to mid-90’s. The term
“eraph database systems” refers to systems that are both graph stores and DBMS in terms
of being ACID compliance systems.

To explain our point of view, we explicitly paraphrased two sentences of the classical
“Object-Oriented Manifesto” [8], concerning the state of the art of OO databases in 1989,
when that paper first appeared, and which we repeat here.“Three points characterize the
field at this stage: (i) the lack of a common data model, (ii) the lack of formal foundations
and (iii) strong experimental activity. Whereas Codd’s original paper [25] gave a clear
specification of a relational database system (data model and query language), no such
specification exists for object-oriented database systems” (Manifesto page 2). If we now
replace the term “object-oriented” by “graph”, the entire sentence holds.

Related work about (i), lack of data model, involves at least three different data
structures: RDF[62] [30], property graphs [I, [72] [71] and hypergraphs [58, [70, 57]. A
discussion about graph query languages can be found in [27, 39, 19 20, 10, 62], 84] 59].
As far as we know, no related work deeply discusses integrity rules. The middle physical
layer, represented in Figure (3) as Operators, is almost unexplored by related work.

In this scenario, the lack of formal foundations (item (ii)) can be observed. There are
plenty of research about graphs as data structure. In fact, graphs are widely studied in
computer science, with a very strong formal foundation and algorithms. The gap that
we refer to here concerns the formal foundations of the use of graphs as data model
for a database, as opposed to formal foundations of relational databases. The strong
experimental activity mentioned in (iii) can be easily observed in the site DB-Engines

Chapter 1. Introduction 18

Ranking [that presents monthly rankings of over 300 DBMS. There, graph DBMS is an
independent category of database management systems and currently ranks 26 software
solutions.

Due to this lack of consensus in formalization, one of the challenges addressed by our
research was to formalize the graph data model that underpins our research in terms of
Codd’s principles [25]. That means that we had to determine a graph data structure,
integrity rules and the elementary operations [75]. This resulted in our Property Graph
Data Model (PGDM), presented in the thesis. As will be seen in Chapter [4] these opera-
tions are used to generate ours views on graph databases.

Problem 4: Defining a Framework to Handle Views

The first proposal for views over graphs appeared in the 80’s, together with the first
graph data models [56]. With the arrival of graph stores, some view mechanisms have
started to appear since 2014.

The major weakness of all related work about views on graphs is the limited kind
of data transformation allowed. Few approaches adopt the classical idea, borrowed from
relational databases, of performing queries in graphs to extract views [6I]. This idea,
though intuitive, is itself a challenge, since a graph query answer may not be a graph.
The more broad approach is to use graph patterns to extract views, which are nevertheless
only capable of performing simple data restrictions [38] [11].

Given this scenario, we propose the formalization of views in graph databases. We
specify a framework to handle multiple views over graph databases. This resulted in
Graph-Kaleidoscope, presented in the thesis. Though the notion of views as perspectives
(foci) does not depend on the underlying system, view mechanisms are strongly dependent
on the underlying model. For this reason, our framework is based on our PGDM Data
Model.

1.3 Contributions

This PhD research resulted in five main contributions, summarized as follows:

e To present the case for the use of graph databases in multifocus research. From a
survey of data management requirements, we justify the use of graph databases as a
suitable persistence layer to meet these requirements and to store/analyze datasets
of highly connected data. This contribution is a result of the research problems 1
and 2 and it is presented in Chapter 2}

e To propose a property graph data model (PGDM) with a set of operators to ma-
nipulate and retrieve graph data. Ours is a flexible approach, to be incorporated in
any graph data structure and query language. This is the main contribution of our
thesis, motivated by research problem 3 and proposed to fill the gap of the absence

!db-engines.com /en/ranking/graph+dbms

Chapter 1. Introduction 19

of a full-fledged data model for graph databases. Results are presented in Chapter
B

e To define views for graph databases to support the need for multiple perspectives,
motivated by research problems 1 and 4. Views are specified through view generat-
ing functions, considering graph data manipulation, classical graph algorithms and
traversal tasks. This is introduced in Chapter [2] and formalized in Chapter [4}

e To analyze real life examples of interdisciplinary research, showing how they can
benefit from our proposal. We present how biodiversity and environmental resource
datasets can be modeled and explored by experts using graph databases and mul-
tiple perspectives, pointing out the advantages of this approach. This contribution
converged from all the research problems explored, and is presented in Chapters [2]

B] and [}

e The specification and implementation of a prototype of the Graph-Kaleidoscope
framework to support views over graph databases in a graph software engine. This
contribution is a result of research problem 4 and is presented in Chapter [4]

1.4 Thesis Organization

This chapter presented the motivation, goal, research problems and main contributions
of this PhD research. The remainder of this text is organized as a collection of papers, as
follows.

Chapter [2| corresponds to the paper “Handling Multiple Foci in Graph Databases”,
published in the Proceedings of the 10th International Conference on Data Integration
in Life Science [35]. This chapter discusses the requirements of the multifocus research
(research problem 1) targeted to the biodiversity domain (research problem 2). It also
presents the first version of our framework (research problem 4) considering two main
approaches to building views on graphs: general queries and exploration around a central
concept. These two approaches were subsequently aggregated in our graph operators.
This chapter also presents how biodiversity studies of animal observations can be benefit
from our research.

Chapter [3| corresponds to the paper “Hydrograph: FExploring Geographic Data In
Graph Databases”, published in the Brazilian Journal of Cartography [33]. This chapter
presents our progress in the requirements of multifocus research (research problem 1)
by exploring another interdisciplinary domain — environmental research on hydrography.
This progress confirmed our solution to the research problem 2 and the choice of graphs
as data management paradigm. This chapter presents our software technology choice for
our framework, Neo4j E], and presents all steps for data migration from relational to graph
database while maintaining application semantics. We also present a set of important
analysis operations recurrently performed in this dataset and how they can benefit from
the graph paradigm and the idea of views.

2www.neodj.com

Chapter 1. Introduction 20

Chapter 4| corresponds to the paper “Graph-Kaleidoscope: A Framework to Han-
dle Multiple Perspectives in Graph Databases”, submitted to the International Journal
of Data Science and Analytics [34]. This paper, currently under review, describes our
definition of a graph data model (research problem 3), PGDM, based on the property
graph data structure. The most important part of our definition are operators, a middle
layer between graph data structures and query languages. Our operators are defined in
a generic way and they can be implemented in different stack of standards of physical
graph representations. This chapter also presents the specification and the prototype of
Graph-Kaleidoscope (research problem 4). This is an improved version of the framework
presented in Chapter [2| and adopts our operators to define the view generating function.
Some challenges faced and lessons learned are presented at the end of this chapter.

Chapter [5] contains conclusions and some directions for future work.

Besides the papers in Chapters and [, others were also published in the course of
this thesis, directly related to this research. There follows a list of publications, including
the ones that compose the thesis.

e J. Daltio and C. B. Medeiros. Handling multiple foci in graph databases. In Pro-
ceedings of 10th International Conference on Data Integration in the Life Sciences,
volume 8574, pages 58-65, Lisboa, Portugal, 2014.

e J. Daltio and C. B. Medeiros. HydroGraph: Exploring Geographic Data in Graph
Databases. In Proceedings X VI Brazilian Symposium on Geoinformatics - Geolnfo,
Brazil, 2015.

e J. Daltio and C. B. Medeiros. HydroGraph: Exploring Geographic data in Graph
Databases (extended version of the 2015 Geolnfo). In Brazilian Journal of Cartog-
raphy, volume 68, number 6, 2016.

e J. Daltio and C. B. Medeiros. A view handler for semantic graphs. In Proceedings
of the IEEE 10th International Conference on Semantic Computing, pages 1-5, Los
Angeles, 2016.

e J. Daltio and C. B. Medeiros. Graph-Kaleidoscope: A Framework to Handle Multi-
ple Perspectives in Graph Databases. In International Journal of Data Science and
Analytics, 2017 (under review).

Chapter 2

Handling Multiple Foci in Graph
Databases

2.1 Introduction and Motivation

eScience, sometimes used as a synonym for data-intensive science [51], is characterized
by joint research in computer science and other fields to support the whole research cycle
— from data collection, mining, and visualization to data sharing. Biodiversity research
— our target domain — is a good example of eScience. It is a multidisciplinary field that
requires associating data about living beings and their habitats, constructing models to
describe species’ interactions and correlating different information sources. Such data
includes information on environmental and ecological factors, as well as on species, and
includes images, text, video and sound recordings [29], in multiple spatial and temporal
scales.

Sharing and reuse of data are hampered by the heterogeneity of data and user require-
ments inherent to such domains. Each community applies different data extraction and
processing methodologies and has distinct research perspectives and vocabularies. Sev-
eral researchers have adopted graph representations (and graph database systems) as a
computational means to deal with such integration challenges [68|, especially in situations
where relations among data and the data itself are at the same importance level [6].

However, graph database systems present limitations when it comes to creating and
processing multiple perspectives of the underlying data. This paper presents our approach
to these issues, which consists of a conceptual framework that allows experts to specify
and construct arbitrary perspectives on top of graph databases. This framework, under
construction, takes advantage of some of our previous implementation work, in particular
concerning ontology management [31]. Informally, the idea is to support a notion similar
to that of database views, constructed on top of graph databases. However, our constructs
go beyond standard database views.

Here, we follow the terminology we introduced in [74], and use the term focus for such
views. Intuitively, a focus is a perspective of study of a given problem, where data can be
restricted to one specific scale /representation, or put together objects from distinct scales.
Moreover, given the same set of data, distinct foci will arise when the data is analyzed

21

Chapter 2. Handling Multiple Foci in Graph Databases 22

under different models, processed using focus-specific algorithms, or even visualized with
particular means.

This paper has two main contributions. The first is to explore the notion of views
on graph database systems, which is not yet supported in such systems. This requires
extending the traditional specification of views, while at the same time maintaining the
same principles. The second contribution is to show, via the running example, how to
model and create multiple foci, for biodiversity research, thereby allowing experts to
manage and analyze the same underlying datasets under arbitrary perspectives.

2.2 Theoretical Foundations and Related Work

2.2.1 Graph Databases

Graph databases allow to represent information about the connectivity of unstructured
data — a recurrent scenario in scientific research. The interpretation of scientific data
usually requires the understanding about linked data, interactions with other data and
topological properties about data organization.

The formal foundation of all graph data structures is based on the mathematical
definition of graphs and, on top of this basic layer, several graph data structures were
proposed [6, [7T], including features such as directed or undirected edges, labeled or un-
labeled edges and hypernodes. One of the most popular structures supported by many
graph database systems is the property graph. It tries to arrange all the features that
these graph types express in a single and flexible structure through key-value pairs to
describe vertex and edge characteristics, such as type, label or direction.

To manipulate these data, graph query languages can be used to [84]: (i) find vertices
that satisfy a pattern; (ii) find pairs (x,y) of vertices such that there is a path from x
to y whose sequence of edge labels matches some pattern; (iii) express relations among
paths; (iv) compute aggregate functions based on graph properties; and (v) create new
elements. Each query language has its own syntax and considers its own data structure
to represent a graph.

2.2.2 Views

In the context of relational databases, a view can be regarded as a temporary relation
against which database requests may be issued [42]. Views are widely used to restrict,
protect or reorganize relational data. Views are built by a combination of operations
applied on the underlying relations, creating alternative or composite representations of
existing database objects. The sequence of operations that creates a particular view is
called view generating function.

The concept of view is used in many data management contexts. A wview of an on-
tology is a subset of the original ontology, built by the extraction of some relevant parts
thereof. Tools and languages for ontologies usually take advantage of their graph struc-
ture; vertices represent classes and instances and edges represent properties, relations and
class hierarchies. There are different approaches to create ontology views [65]. Some are

Chapter 2. Handling Multiple Foci in Graph Databases 23

based on query languages and others are based on guidelines to navigate through ontology
concepts, using the notion of central concept — a class around which the view is built and
that defines which elements must be part of a view. Different from databases in which
a query always results in an instance set, a query on an ontology can result in a partial
schema (classes, relations), an instance set or a combination of both [31].

2.2.3 Multifocus Research

The notion of focus (a perspective of study of a given problem) appears naturally in
eScience. The idea behind a focus is similar to the idea of an application — each application
has its own perception of the world, goal, complexity and specific requirements. For the
same underlying datasets, each focus represents a perception of the data, how it can be
analyzed, visualized and interpreted.

A focus allows to restrict data, manage spatial and temporal scales thereof (multiple
representations) and create distinct scenarios, including the vocabulary, constraints, pro-
cess and rules that should be applied to the dataset [74, 85]. The same data item can
be interpreted in distinct ways — a species observation, for example, could represent an
organism to be analyzed in a small level of detail or, in a macro perspective, a feature of
a biome.

One important problem in focus-related research is how to improve data semantics,
increasing its understanding and removing ambiguity. The use of ontologies has been
pointed out as a means to deal with some of these issues and used to drive data manage-
ment. This notion, known as “ontology-driven information systems” [46], uses ontologies
as a central role with impact on the main components of the system and providing multiple
perspectives of the data.

2.3 A Framework to Generate Foci

The goal of our research is to specify and implement a framework to build and explore
arbitrary foci. To achieve this purpose, we extend the traditional definition of views to
represent a focus, providing a reorganization of the original data or part thereof. The
framework uses graph databases as the basis of data management, taking advantage of
their ability to deal with highly connected datasets, a common scenario in eScience. Since
graph databases do not implement the view concept, the framework introduces extensions
to existing systems.

Figure gives a general overview of the framework. The interface receives a fo-
cus specification as input and provides the focus as output. Both focus and underlying
databases are represented as graphs (a focus may be built combining one or more graphs).
The focus specification is a text file whose content and format are still under definition,
using existing graph query languages (e.g. Cypher, SPARQL [71]) and the parameters
of graph algorithms. Following the figure, step (1) decomposes the focus specification
to define the focus generation strategies, operators and parameters. Next, the focus is
created using either a query view mechanism (2); a central concept view mechanism (3);
or a combination of both.

Chapter 2. Handling Multiple Foci in Graph Databases 24

4‘ Interface }7

g ‘ Decompose Specification ? i
-g ‘ ” e
Focus E \ \ o - LVE

Specification g Query View Central Concept {Graph (V,E)}
s View
3 Process Operators -
o7 Process Graph =)

Build New Elements Algorithms
Focus (V,E) {Focus (V,E)}

Figure 2.1: Overview of the Focus Generation Process

The query view approach (2) adopts concepts from relational databases. Here we have
two tasks: processing the operators that compose the query and creating new elements
that do not belong to the original graph. Part of the focus specification is used to create
the “view generator function”, the sequence of operators to be applied to the database.
The traditional operators are adapted by the framework: (i) selection: to filter parts of the
graph applying predicates; (ii) projection: to restrict parts of the original graph; (iii) join:
to combine two or more graph databases via join conditions; (iv) aggregate functions: to
provide graph summarizations, extracting vertex and edge properties.

The central concept view approach (3) is inspired by approaches to construct views
on ontologies. Here, just one task is executed: processing of graph algorithms, starting
from a central concept, namely a vertex defined in the focus specification. This graph
algorithm can provide, for instance, the neighborhood, the shortest path to another ver-
tex, the maximum clique, and so on [I6]. The combination of these approaches allows
expressiveness higher than graph query languages alone, usually untyped [26], based on
triple patterns [71] and without native graph algorithms. Besides that, graph languages
have limitations to create temporary elements without altering the original database and
the result of a query is not necessarily a graph.

Graph databases and the foci created on the top of them are stored in a persistence
layer, so that a focus can be reused. Moreover, since a focus is represented as a sub-graph,
it can be used to construct other foci. We also keep the specification that originates a
focus for provenance information — e.g., to describe the perspective materialized in the
focus and to allow to update a focus when the graph databases used to generate it are
updated.

2.4 Running Example

Our running example concerns biodiversity studies of animal species, concentrating on
observation metadata. In particular, we deal with observations of animal vocalizations,
motivated by the challenges faced by the Fonoteca Neotropical Jacques Vielliard (FNJV)
at the University of Campinas (UNICAMP) [[] FNJV has a large collection of animal sound

Thttp://proj.lis.ic.unicamp.br /fnjv

Chapter 2. Handling Multiple Foci in Graph Databases 25

recordings (about 30 thousand observations), whose metadata is stored in a relational
database [29]. Observation metadata include information about the species, the place
where the sound was recorded, the recording devices, date and time of the observation,
and so on.

Although the metadata is, currently, structured as a relational database, it can be
directly converted to a property graph database [71], applying straight formal approaches,
e.g. [121 [68]. Each row of each table can be modeled as a vertex, using the column names
as attributes, and each foreign key can be modeled as an edge. Altogether, an observation
has 54 metadata attributes, which can be combined in different ways to determine the
edges of the graph database. Figure shows one possible graph database denoted by
Gops- In the figure, vertices 1 through 6 represent the taxonomic hierarchy of the observed
species, and vertices 8 through 11 characterize an observation, represented by vertex 7.

type=Phylum a type=Observer o type=Vocalization
value=Chordata name=Jacques Vielliard kind=canto

hasPhylum

type=Class hasObserver
value=Aves e

hasClass

type=Order
value=Passeriformes hasgVocalizationType

e type=Family a
value=Tyrannidae useDevice
type=Genus
value=Pitangus

o hasOrder hasSpégcies inDate ‘
type=Observation

e hasFamily id=9992

individuals=um m
location=Cachoeira _
hasGenus e type=Species Porteira/PA tyE)e—Date
value=sulphuratus value=19/04/1988

Figure 2.2: Partial Metadata Graph Database of FNJV Observations - G,

type=RecorderDevice
value=Nagra E

Gops can be integrated with many additional information sources, such as biological
and environmental variables to describe the context in which vocalizations were recorded.
Distinct pieces of information can be used to produce specific analyses and to build foci.
A focus may concern, for example, a geographical scale or a group of species of interest.
The following examples describe some use scenarios of foci for this graph database.

2.4.1 Example Focus 1: Location and Biomes
An example of focus which changes the perspective of analysis is defined as:
“Set of all locations in which observations were made, summarizing the number of

distinct species observed at each localion, and connecting the locations that belong to the
same biome”.

This kind of focus can be helpful to analyze the biological and environmental char-
acteristics of locations that were targets of study. To process this focus, it is necessary

Chapter 2. Handling Multiple Foci in Graph Databases 26

to aggregate the observation data to generate new information (here, the number of dis-
tinct species) and to link the original data with biome information (graph external to our
database).

Let us first consider just the first part of the focus: “Set of all locations in which
observations were made, summarizing the number of distinct species observed at each
location”. This kind of focus can also be processed by the query view approach (2) of the
framework, combining: (i) “build new element” operator, to create the set of vertices with
type Location from the attribute location of vertices of type Observation in Gy;,; (ii)
“aggregate function” operator, to count the number of distinct species observed in each
Location and store the value in numberOfSpecies attribute; (iii) “projection” operator, to
filter the vertex and edge types that should be part of the focus (in this case, Location).

type=Species type=Observation type=State
value=tinamus id=5437 value=SP
location=Campinas/SP.
hasSpgci
assperies type=Observation
a id=6842
° location=Campinas/SP
hasSpefies
9 type=Observation
h . id=9992
W location=Campinas/SP.

type=Biome ‘
value=Mata Atlantica

type=Species
value=sulphuratus

(a)

type=Location
value=Campinas/SP
numberOfSpecies=2

type=Vegetation -
value=Floresta type=Country
value=Brasil

(b)

Figure 2.3: Focus: (a) location and number of distinct species and (b) Partial Biome
Graph Database - Gy,

Figure (a) presents a portion of G, and explains these steps, with the creation
of vertex 6 Campinas SP of type Location and numberOfSpecies (here, set to value 2).
To connect the locations of the same biome, it is necessary to add biome information not
available in Gs. Figure (b) shows a partial biome graph database (here shortened
to Ghio), which is used to integrate this information, using the join operator. In this
case, the focus specification combines: (i) “join” operator, to link each vertex with type
Location in G, with the corresponding vertex of type Biome in Gy;,, creating an edge
(hasBiome) between Location and Biome; (ii) “build new element” operator, to create
the set of edges with type sameBiome beetween the Locations connected to the same
Biome; (iii) “projection” operator, to filter the vertex and edge types that should be part
of the focus (vertices of types Location and Biome). A partial view of the result focus

is shown in Figure (a).

2.4.2 Example Focus 2: Species “Closely Related” to Tinamus
tao

Another possible scenario builds the focus from a central concept. Here, an example

would be:

Chapter 2. Handling Multiple Foci in Graph Databases 27

type=Location type=Location type=Phylum a type=Class
value=Campinas/SP value=Campos do value=Chordata hasPhylum value=Aves
numberOfSpecies=137 Jordao/SP e
numberOfSpecies=81 type=Order
value=Passeriformes| | : J-hasClass
sameBiome

hasOrder

type=Family
value=Tyrannidae

type=Genus
value=Pitangus

. hasBiome
type=Biome

value=Mata Atlantica

type=Species
(a) value=sulphuratus

Figure 2.4: (a) Query View Focus: Observation Locations and Biomes (b) Central Concept
Focus: species closest to Tinamus tao

“Which are the species closest in the taxonomy to the species Tinamus tao”.

This kind of focus can be helpful to analyze the diversity of the species observed
according to the “closeness” to other species within a taxonomic level (e.g. genus, family
or order). This focus can be processed by the central concept view approach (3) of the
framework, starting from species Tinamus tao in Gys. The graph for this focus is built
considering only edges related with taxonomic classification levels. The notion of closeness
here is defined considering the distance between the vertices in Gp,: closest mean shortest
paths.

The generating function combines: (i) “projection” operator, to filter from G the
set of vertex and edge types that should be part of the focus (in this case, vertex types
related to taxonomic level); (ii) “central concept”, in this case, the vertex of type Species
that represents the species Tinamus tao; (iii) the graph algorithm to be applied, in this
case, shortest path. The focus result contains all species vertices in the graph for which
the paths to species Tinamus tao are minimal. A partial result focus is shown in Figure
(b).

This focus can be further restricted to “Species closest in taxonomy to Tinamus tao,
observed in the same locations”. This can be helpful to understand the similarity among
environments where “closely related” species are observed. In this case, specification of
focus 2 should be extended, including a “selection” operator to filter only species observed
in the same locations. This focus demands a combination of all functionalities available
in the focus generation module.

2.5 Conclusions and Ongoing Work

This paper presented the specification of a framework to build and explore arbitrary foci
in scientific databases, using graph databases as the basis of data management. The
approach extends the traditional definition of views in relational databases to represent
a focus, combining graph query languages with graph algorithms to build customized
foci. The internals of the framework were explained via examples in biodiversity data
management, pointing out some of challenges to be faced. The implementation of the
framework will take advantage of previous work of ours in ontology management [31].

Chapter 2. Handling Multiple Foci in Graph Databases 28

The first challenge involves extending the concept of view of relational databases to
graph databases. Another challenge is related to the specification of a focus. At the
moment, we assume that a focus is specified by indicating a suite of operations to be
applied to the underling graph databases. This, however, will need to be improved once
we formalize focus construction operators.

Chapter 3

Hydrograph: Exploring Geographic
Data In Graph Databases

3.1 Introduction and Motivation

During the last decade, the volumes of data that are being stored have increased massively.
This has been called the “industrial revolution of data”, and directly affected the world
of science. Nowadays, the available data volume easily outpaces the speed with which it
can be analyzed and understood [41]. Computer science has thus become a key element
in scientific research.

This phenomenon, known as eScience, is characterized by conducting joint research in
computer science and other fields to support the whole research cycle, from collection and
mining of data to visual representation and data sharing. It encompasses techniques and
technologies for data-intensive science, the new paradigm for scientific exploration [51].

Besides the huge volume, the so-called “big data” carries many heterogeneity levels —
including provenance, quality, structure and semantics. To try to deal with these require-
ments, new database models and technologies emerge aiming at scalability, availability
and flexibility. The term NoSQ)L was coined to describe a broad class of databases charac-
terized by non-adherence to properties of traditional relational databases [50]. Tt encom-
passes different attempts to propose data models to solve a particular data management
issue.

Geospatial big data (i.e., big data with a geographic location component) faces even
more challenges — it requires specific storage, retrieval, processing and analysis mecha-
nisms [2]. In addition, it demands improved tools to handle knowledge discovery tasks.

The more widely accepted kinds of NoSQL databases include key-value, document,
column-family and graph models. Of these, graph databases are the most suitable choice
to handle geospatial big data [3]. Indeed, graphs are the only data structure that natively
deals with highly connected data, without extra index structures or joins. No index
lookups are needed for traversing data, since every node has links to its neighbors. Besides,
in GIS, topological relationships play an important role. These relationships can be
naturally modeled with graphs, providing flexibility in traversing geospatial data based
on diverse aspects.

29

Chapter 3. Exploring Geographic Data In Graph Databases 30

Geospatial data about water resources fits these graph connectivity criteria — e.g.,
watersheds or drainage networks. Owing to the shortage of drinking water, reliable in-
formation about volume and quality in each watershed is important for management and
proper planning of their use. A watershed is usually represented as drainage network, with
confluences, start and end points connected by drainage stretches (the network edges).

This paper presents an ongoing work that explores geospatial watershed data taking
advantage of graph databases. The goal is to show that this scenario provides addi-
tional opportunities for knowledge discovery tasks through classical graph algorithms.
The Brazilian Watershed database is used as a case study. The mapping between geospa-
tial and graph models is based on the natural network that emerges from the topological
relationships among geographic entities.

The rest of this paper is organized as follows. Section contains a brief description
of the main concepts involved and gives an overview of the Brazilian Watershed relational
database. Section presents the process of loading watersheds to a graph database
and presents results of important and recurrent queries over watersheds. Some research
challenges involved are presented in section [3.4] Finally, section presents conclusions
and ongoing work.

3.2 Research Scenario and Theoretical Foundations

3.2.1 Brazilian Water Resources Database

Brazil is a privileged country in the water-shortage scenario: it holds 12% of the world
total and the largest reserve of fresh water on Earth [18]. Its distribution, however, is
uneven across the country. Amazonas, for instance, is the state with the largest watershed
and one of the less populous in Brazil. Furthermore, some rivers are being contaminated
by waste of illegal mining activities (such as mercury), agricultural pesticides, domestic
and industrial sewage leak and garbage.

Reliable information about volume and quality in water resources is extremely impor-
tant to management and proper planning of their use. To this end, the Brazilian Federal
Government approved in 1997 the National Water Law [I7] aiming to adopt modern prin-
ciples of management of water resources and created in 2000 the National Water Agency
(ANA), legally responsible for accomplishing this goal and ensuring the sustainable use
of fresh water.

To organize the required data and support management tasks, ANA adopts the water-
shed classification proposed by Otto Pfafstetter [69], constructing a database that covers
the entire country, named Brazilian Ottocoded Watershed. This database represents the
hydrography as a drainage network: a set of drainage points and stretches. This network
is represented as a binary tree-graph, connected and acyclic, whose edges — the drainage
stretches — go from the leaves to the root, i.e., upstream to downstream.

The Brazilian drainage network is composed by 620.280 drainage points (vertices, in
graph terms) and 620.279 drainage stretches (edges). Drainage points represent diverse
geographic entities:

Chapter 3. Exploring Geographic Data In Graph Databases 31

(i) a watercourse start point, usually a spring or water source;

)
(ii) a watercourse end point, usually a river mouth;
(iii) a stream mouth point, which flows into the sea; and
)

(iv) the shoreline start or end point, two reference points in the coast (one of each)
that delimit the shoreline line, being the integrating elements of the entire drainage
system.

The first three kinds of drainage points can be seen in Figure 3.1} The degree of a
drainage point represents its valence, value 1 represents start or end points and value 3
represents confluences.

i 1 =
f 5 (o«
k_ i }
S _.\l\ // \ (watercouse /
N = “‘\I A starting point /
== - \ i :

J//
a _/___\

—~ 4 \\I
I' & BAHIA rJl
i —

7
/
i
(
b} b —
\ D Pl

i [/
. _?ﬁ-\“‘b--‘/
N,

Y watercourse
~, ending point

Vi

Figure 3.1: Kinds of Points in Drainage Network

The drainage stretches, on the other hand, represent only one geographic entity: the
connection between two drainage points. Each stretch has two important attributes:
(i) the hydronym, i.e., the name of the water body to which it belongs; and (ii) the
hydrographic catchment area, which represents its importance in the drainage network —
higher values indicate critical stretches with large areas of water catchment.

Cartographic Aspects

The scale of the Brazilian drainage network varies according to the cartographic mapping
used as base in each geographic region, as shown in Figure 3.2l The Brazilian official
cartography, projected in the WGS84 Spatial Reference[[]is the start point of the mapping
process. The steps of the hydrographic vectorization comprise the representation of each

spatialreference.org/ref /epsg/4326

Chapter 3. Exploring Geographic Data In Graph Databases 32

watercourse as a one-line entity, and identification of their crossing areas as start, end or
confluence points. Digital elevation models (such as SRTM - Shuttle Radar Topography
Mission E[) are usually applied in the process of layout refine.

Research on specific watersheds is funded according to their strategic or economic
importance, thus generating more detailed data in some regions. Figure shows part of
the drainage stretches in three scales: 1:1.000.000 (the majority of Brazilian watersheds),
1:250.000 (river Paraiba do Sul) and 1:50.000 (basin of rivers Piracicaba, Capivari and
Jundiai) H The latter, for instance, supplies one of Brazil’s most populated regions
and is the target of several studies, headed by the “PCJ Consortium”. This consortium
is composed by a group of cities and companies concerned about planning and financial
support actions towards the recovery of water sources and raising societal awareness about
the importance of watersource issues.

P J\ —))
Scale 1:1.000.000
L/\ o \/_\\\ %}ﬁ‘ \ é
P APUPSS
XS, XY / i L L

Figure 3.2: Different Drainage Stretch Scales in Drainage Network

The cartographic representation of the drainage network provides an important input
to territorial analyses, i.e., when it is necessary to overlay the hydrographic data with other
layers (using the geospatial information as the integrating component), in an attempt to
understand some spatial phenomenon.

Logical Elements

There are at least four important logical elements in the Brazilian water resources database:
hydronyms, hydrographic catchment areas, watersheds and main watercourses. The hy-

2www2.jpl.nasa.gov /srtm
3Metadata available in: http://metadados.ana.gov.br/geonetwork /srv/pt/main.home?uuid=7bb15389-

1016-4d5b-9480-5f1acdadd0f5

Chapter 3. Exploring Geographic Data In Graph Databases 33

dronym is an immutable attribute associated with each drainage stretch that indicates the
logical element commonly known as “river”. A river is composed by all drainage stretches
that are connected and have the same hydronym. Figure (a) partially shows the
drainage network under this perspective.

Stz
< &

FA 2

Vil

(b) HCA

Figure 3.3: (a) Rivers: continuous drainage stretches with the same hydronym and (b)
HCA: drainage stretches and their hydrographic catchment area

The other three elements are computed. FEvery time that the drainage network is
updated these elements have to be recalculated. Updates occur for instance during some
cartographic refinement process (more accurate scales) or to reflect human actions (e.g.,
by river transposition or construction of artificial channels). Updates do not occur very
often. Thus, if the algorithms that construct the network are well defined, it is possible
to materialize network elements, and update them whenever necessary.

The hydrographic catchment area (HCA) is a drainage stretch attribute, represented
as a polygon, that delimits the water catchment area of the stretch. This delimitation
is highly influenced by relief, given its influence in the water flow. Although HCA is a
geospatial attribute, as shown in Figure (b), only its area is relevant in most analyzes.

Watersheds and watercourses are two correlated elements — one is used to determine
the other in a recursive way. A watershed is the logical element that delimits a drainage
system channel. It is the official territorial unit for the management of water resources
adopted by ANA. Unlike a basin — that refers only to where the water passes through
— a watershed comprises the entire area that separates different water flowing. Every
watershed has a main watercourse.

ANA adopts the Otto Pfafstetter Coding System [69](ottocode) to define the water-
shed division process and watercourse identification. Each digit in the ottocode embeds
a context about the stream (the main river or inter-basin, for instance). The main wa-
tercourse of a watershed is a set of connected drainage stretches selected by a traversal in
the sub drainage network. It is constructed by selecting, in every confluence, the stretch
with the largest hydrographic catchment accumulated area upstream (from the mouth
to the spring). Following the watercourse layout, the watershed can be split in a set of
sub-watersheds and the ottocode allows retrieving their hierarchical relations. A n—level
watershed has a code with n digits. Figure illustrates one step of this methodology:
(a) shows the drainage network of the watershed Rio Trombetas and its main water-
course, which has the ottocode 454 (level 3). Figure (a) shows the 9 new watersheds

Chapter 3. Exploring Geographic Data In Graph Databases 34

created (level 4) by applying recursively the same methodology. The original code 454 is
held as prefix to new watershed codes. More details about this methodology can be found
in [69)].

i
’ 44 (}.
“’rb i ‘A
d‘&%ﬁ =g
(@) e (b)

Figure 3.4: Otto Pfafstetter methodology

As can be seen, there are many studies that can take advantage of the network struc-
ture of this database and its logical preprocessed elements, even without considering
geospatial aspects. Graph algorithms can be used, for instance, to ensure the network
consistency or even to determine the main watercourse in a watershed; the latter can be

found through a traversal algorithm in a subset of the drainage network, using higher
HCA values as the navigation criterion.

3.2.2 Graph Data Management Paradigm

The graph data management paradigm is characterized by using graphs (or their gen-
eralizations) as data models and graph-based operations to express data manipulation.
It is relationship driven, as opposed to the relational data model which requires the use
of foreign keys and joins to infer connections between data items. Graph databases are
usually adopted to represent data sets where relations among data and the data itself are
at the same importance level [6]. Graph data models appeared in the 90’s; nevertheless,
only in the past few years they have been applied to information management systems,
propelled by the rise of social networks such as Facebook and Twitter.

The formal foundation of all graph data models is based on variations on the mathe-
matical definition of a graph. In its simplest form, a graph G is a data structure composed
by a pair (V, E'), where V is a finite non empty set of vertices and E is a finite set of edges
connecting pairs of vertices. On top of this basic layer, several graph data structures
were proposed by the database community, attempting to improve expressiveness, repre-
senting data in a better (and less ambiguous) way, such as property graph (or attributed

graph) [72] [71], hypernode [57] and RDF graph [13].

Chapter 3. Exploring Geographic Data In Graph Databases 35

Considering the edges, a graph can be directed (i.e., there is a tail and head to each
edge); single relational or multi-relational (i.e., multiple relationships can exist between
two vertices). The connection structure affects the traversal. An edge can have different
meanings, such as attributes, hierarchies or neighborhood relations. Despite their flexibil-
ity and efficient management of heavily linked data, there is no consensual data structure
and query language for graph databases.

One of the most popular graph structures is the property graph (or attributed graph) |72,
71]. It tries to arrange vertex and edge features in a flexible structure through key-value
pairs (e.g., type, label or direction).

3.3 Implementation

3.3.1 Original Relational Database: pgHydro

The pgHydro project [— developed by ANA and started in 2012 — aims to implement a
spatial relational database to manage the hydrographic objects that compose the Brazilian
Water Resources database [79]. It encompasses tables, constraints and views, and a set
of stored procedures to ensure data consistency and to process routine calculations. The
conceptual model of pgHydro is illustrated in Figure [3.5]

:| Watershed

e ——1
INFTOUCHICRDSS | |
I

Drainage_Point

|
.
T s | [F [e | (] e | [e | [F]

Figure 3.5: PgHydro Database Conceptual Model

PgHydro was implemented in PostGIS /PostgreSQL and a Python interface. PgHydro
is a free and open source project and is available for companies and organizations with

4pghydro.org

Chapter 3. Exploring Geographic Data In Graph Databases 36

an interest in management and decision making in water resources. More spatial analysis
can be done using GIS, such as ArcGIS H or QuantumGIS ﬂ

3.3.2 Proposal Graph Database: HydroGraph

We have transformed ANA relational database (the drainage network) into a graph
database, here denoted by Gpyaro (partially illustrated in Figure , keeping the same
basic structure of vertices (the drainage points) and edges (the drainage stretches). This
data model makes easier to understand the drainage network as it really is: a binary
tree-graph, connected and acyclic, whose edges go from the leaves to the root.

wf’ %%
~ ~
@
» g g -~
/ g
‘63' ’\oq a‘é'f \q .

@ @ @ @
A

< e} -
f Y 2'!

&
5

$

@ :
;N @ '
/ “‘m% e

Figure 3.6: G gyaro: Brazilian Drainage Network as a Graph Database

« DrainageStretch «

The graph database chosen was Neodj [| - a labeled property multigraph [71]. Every
edge must have a relationship type, and there is no restrictions about the number of edges
between two nodes. Both vertices and edges can have properties (key-value pairs) and
index mechanism. Neo4j implements a native disk-based storage manager for graphs, a
framework for graph traversals and an object-oriented API for Java. It is an open source
project and it is nowadays the most popular graph database [ﬂ

The creation and population of Ggyq4r, Were done through LOAD CSV command —
a load engine provided by Neo4j. The input could be a local or a remote classical CSV

5
6
7

Www.arcgis.com
WWW.qgis.org
neodj.com
8According to DB-Engines Ranking of Graph DBMS (accessed on September, 2015) [db-
engines.com/en /ranking/graph-+dbms]|

Chapter 3. Exploring Geographic Data In Graph Databases 37

file — containing a header and a set of lines in which each line represents a record, and
the line is a set of fields separated by comma. The CSV files were extracted from the
PostgreSQL database using the COPY command E] Figure shows some of the LOAD
CSV commands that giving rise to Gpyaro (commands (i) to drainage points and (iii) to
drainage stretches). Commands (ii) and (iv) ensure the integrity constraint of unique
values for all the identifiers.

0]
oInt(line.id), valence:toInt(line.valence), geom:line.geom})
(it)
EAT M (point:DrainagePoint) ASSERT point.id IS UNIQUE

LG (TH E > FRI 1le 1 i S - = 5 |I

(ri int { id: toInt(line.drs drp_pk sourcenode)}),

(targe int { id: toInt(line.dr

[:DrainageStretch { id: toInt{line.drs j
(iii) (line.drs_drs_pk_upstreamstretch), downs

¢ rs_pk_downstreamstretch), dis

dis

hdr:

1-5(
(v)

CREATE CONSTRAINT ON (stretch:DrainageStretch) ASSERT stretch.id IS UNIQUE

Figure 3.7: LOAD CSV commands

The LOAD CSV command is based on Cypher syntax, the graph query language
available on Neodj [7I]. Cypher is a pattern oriented, declarative query language. It
has two kinds of query structures: a read and a write query structure. The pattern
representation is inspired by traditional graph representation of circles and arrows. Vertex
patterns are represented in parenthesis; and edge patterns in brackets between hyphens,
one of which with a right angle bracket to indicate the edge direction. For example, the
expression (a)-[r:RELATED]->(b) is interpreted as two vertex patterns a and b and
one edge pattern r, type RELATED, that starts on vertex a and ends in vertex b.

3.3.3 PgHydro Functions
The most important functions of pgHydro are:
1. To validate drainage network consistent;
2. To define the direction of water flow;
3. To apply Otto Pfafstetter’s watershed coding system;
4. To select the set of upstream/downstream stretches;

5. To calculate the upstream hydrographic/downstream catchment area.

Ywww.postgresql.org/docs/9.2/static/sql-copy.html

Chapter 3. Exploring Geographic Data In Graph Databases 38

As can be readily seen, most of these functions can be solved applying to graph
algorithms on Gpyaro. Execute these tasks over relational databases would require many
join operations — one of the most computationally expensive processes in SQL databases.
Another possibility would be to build an in-memory network representation on top of the
relational storage model and to use APIs and programming languages. Graph databases
exempt the need of intermediate models from storage to application logic layer.

Consistency tests over the drainage network concern mainly two aspects: connectiv-
ity of all stretches and the binary tree structure. In graph terms — considering G gydro
implementation — we can apply the connected component analysis solution. A connected
component in a graph G is a subgraph H of G in which, for each pair of vertices u and
v, there is a path connecting v and v. If more than one connected component is found
in G yaro, the database is inconsistent. The binary tree structure, on the other hand, is
checked selecting all vertices whose degree value are different from 1 (start or end points)
or 3 (confluences).

The selection of the upstream stretches can be done applying to Depth-First Search,
starting on the stretch of interest and ending on the watershed root. To calculate the
upstream hydrographic catchment area, we sum the HCA from each drainage stretch
returned in the previous selection. The same approach can be applied to downstream
stretches, using the opposite navigation direction and aggregating all subtrees.

The calculation of the Otto Pfafstetter watershed coding is a more complex task, but
it is still a graph traversal. The base task is to define the main watercourse. Here, unlike
the previous computations we need to establish graph traversal criteria on each node:
selecting, at every confluence, the stretch with the largest HCA accumulated upstream.

Among all these functions, only the definition of water flow direction is actually a
GIS task and depends on the geospacial information. This calculation involves solving
equations that examine the relationship among several variables such as stream length,
water depth, resistance of the surface and relief.

3.4 Research Challenges

There are at least three important challenges involved in our approach. The first is
related to the incompleteness of graph data models. According to the classical definition, a
complete data model should be composed by three main elements: (i) data structure types,
(ii) operators to retrieve or derive data and (iii) integrity rules to define consistent the
database states [25]. Related work on graph data models shows that they are incomplete
concerning on least one of these aspects. Most of them concern only data structures —
hypergraphs, RDF or property graphs. Others describe only query languages or APIs
to manipulate or retrieve data. There are few attempts to discuss consistency or ACID
properties over graph data models. This scenario hampers the formalizing of a complete
graph data model. Besides, most implementations of graph databases do not adhere to
the theoretical models.

Second, traditional Relational Database Management Systems (RDBMS) are the most
mature solution to data persistence and usually the best option when strong consistency

Chapter 3. Exploring Geographic Data In Graph Databases 39

is required. Besides, there are many spatial extensions over RDBMS current used as foun-
dation to geospatial systems and services. Therefore, in some cases there is need for the
coexistence of both models — relational and graph — dividing tasks of management and
analysis according to their specialties. This requires the development of hybrid architec-
ture to enable the integration of relational and graph databases, as proposed by [22].

Finally, the task of network-driven analysis is not completely solved once the graph
database is available. The graph data design (i.e., which data is represented as vertices,
which is represented as edges and what kind of properties they have) can streamline or
even render non-viably the extraction of topological or graph properties. There is no
simple way to crossing through different designs in graph databases. This challenge is
also goal of our research, as described in [35]. The idea is to specify and implement an
extension of the concept of view (from relational databases) to graph database, thereby
allowing managing and analyze a graph database under arbitrary perspectives. Consider
this specific database, it would be possible to explore not only the drainage network, but
also the network among the logical elements — rivers, watersheds and watercourses.

3.5 Conclusions

This paper presented our ongoing work to construct a graph database infrastructure to
support analysis operations on the Brazilian Water Resources database. Our research
shows the importance of graph driven analysis over the drainage network, rather than the
computationally expensive process of relational databases for such analysis. It presented
G rydro — @ version of the original relational database implemented on Neo4j, composed
by 620.280 drainage points (vertices) and 620.279 drainage stretches (edges).

Our research takes advantage of graph structures to model and navigate through
relationships across the network and its logical elements — watersheds and watercourses.
This helps analysts’ work in analysis and forecast. However, given the complexity of
geospatial data — mainly on big data proportions — there is still no single solution to solve
all persistence, management and analysis issues. Hybrid architecture approaches seem to
be the most flexible and complete choice.

Chapter 4

Graph-Kaleidoscope: A Framework to
Handle Multiple Perspectives in Graph
Databases

4.1 Introduction

Increasingly, the world of science is being changed. Data is being produced and collected
at an unprecedented scale and outpaces the speed with which it can be analyzed and
understood [41]. Data - intensive science emerged as a new paradigm for scientific explo-
ration [51, 53]. Computer science has become a key element in scientific research in many
areas, such as bioinformatics [28], social network sciences [15] and health [61].

One important requirement of data-intensive science is to support multiple perspec-
tives on large and complex datasets. Many research scenarios require dealing with a
subset of data of interest, under multiple aggregation / generalization levels, for given
perspectives and a specific vocabulary. This problem is addressed by [73], who define a
focus as a perspective of study of a given problem, in which data can be restricted to one
specific scale or representation, or where objects from distinct scales can be put together.

Environmental research, which relies heavily on geographic data, is a prime example
of multi-focus work in which experts from multiple domains must collaborate at distinct
spatial and temporal scales. Besides demanding tools to handle knowledge discovery
tasks [2], geographic data deal with wide coverage area datasets, in multiple geographic
scales and composed by many geographic logical entities that interpret the same data in
different ways. Typically, experts need to build “what-if” scenarios, in which a wide variety
of factors interact through many kinds of relationships. Though many data management
mechanisms have been proposed to deal with such requirements, appropriate handling of
perspectives and relationships is still an open problem.

Our research is motivated by this scenario, for environmental research concerned with
water resources. This provides a data-rich, problem-rich scenario, in which distinct groups
need to investigate problems such as pollution, health or erosion, to name but a few ex-
amples of projects that are based on the same set of (water) data, which is analyzed and
combined with other specific data sources. These applications have a few requirements in

40

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 41

common. First, they need to provide “multiple perspectives” of the water resource net-
work, for any given project, or even across projects, so that experts can perform distinct
analyses. Second, despite the additional semantics provided by geospatial information,
a large number of such analyses rely on the underlying network structure, which is sub-
sequently used to create new (logical) geographic entities. Third, water resources are
naturally structured and represented through a drainage network, which can be naturally
modelled using graphs, thereby supporting many kinds of analyses via graph algorithms
— e.g, to find out connectivity between rivers (and thus identify a focus of pollutant flow).

Given these characteristics, we have designed and partially implemented a computing
framework that allows environmental applications that involve water resource manage-
ment to build multiple perspectives, and correlate these perspectives and resources using
graphs as the main underlying representation. This framework, called Graph - Kaleido-
scope II], allows users to build multiple perspectives over graph databases. Perspectives are
defined through an adaptation of the concept of views in relational databases —i.e., each
perspective is handled as a view in the graph database. As such, Graph-Kaleidoscope
extends the concept of view from relational databases to graph databases — for which, so
far, little has been done in terms of views (either as a needed feature, or definition).

While graph systems are being increasingly adopted in cases where relationships among
data elements are first-class citizens, graph database systems are at the same overall level
of maturity as object-oriented database systems were in the early to mid-90’s. To that
effect, we explicitly paraphrased two sentences of the classical “Object-Oriented Mani-
festo” [8], concerning the state of the art of OO databases in 1989, when that paper first
appeared, and which we repeat here.“Three points characterize the field at this stage: (i)
the lack of a common data model, (ii) the lack of formal foundations and (iii) strong
experimental activity. Whereas Codd’s original paper [23] gave a clear specification of a
relational database system (data model and query language), no such specification exists
for object-oriented database systems” (Manifesto page 2). If we now replace the term
“object-oriented” by “graph”, the entire sentence holds.

The first challenge addressed by our research was to formalize the operators for graph
data that underpins our framework. As a result, we define PGDM - a property graph data
model — together with its operators. Though geared towards environmental applications,
Graph-Kaleidoscope has been specified in a generic way, so that it can be extended and
adopted by other kinds of application domains with similar analysis requirements. Our
second contribution lies in the definition of the framework itself, based on the use of
PGDM, and for which we have developed a first prototype, also described in this paper.

The rest of this paper is organized as follows. Section [4.2]contains a brief description of
our motivation scenario. Theoretical foundations are described in section4.3l Sections [4.4]
and respectively present the specification of Graph-Kaleidoscope — our property graph
data model (PGDM) and the framework architecture. A real case study for analysis of
environmental water resource data is presented in section [4.6] Related work is described
in section and section commenting on research challenges and lessons learned.
Finally, section concludes the paper, presenting ongoing work.

!Thus named because a Kaleidoscope allows to merge parts of an underlying structure to provide a
distinct perspective of the parts.

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 42

4.2 Motivation Scenario - Brazilian Water Resources
Database

Reliable information about volume and quality in water resources is extremely important
for management and proper planning of their use. To this end, the Brazilian Federal
Government created in 2000 the National Water Agency (ANA), legally responsible for
accomplishing this goal and ensuring the sustainable use of fresh water. With droughts
brought about by global warming, this has become even more critical — even though Brazil
is considered to be the country with the largest supply of fresh water resources.

To organize the required data and support management tasks, ANA constructed a
relational database to support the effective management of Brazilian water resources,
representing the hydrography as a drainage network, i.e., a set of drainage points and
stretches. The Brazilian drainage network is currently composed by 620.280 drainage
points and 620.279 drainage stretches. Drainage points represent diverse geographic en-
tities, such as a watercourse start/end point or a stream mouth point. The drainage
stretches represent the connection between two drainage points.

This relational database, called ngydmﬂ encompasses tables, constraints, views and
a set of stored procedures to ensure data consistency and to process routine calculations.
An excerpt of the conceptual model of pgHydro is illustrated in Figure [4.1] extracted from
ﬂ Attributes were omitted for legibility. The database is public domain and available
via ANA official website [Figure shows part of the current drainage stretches.
It comprises three different cartographic scales: 1:1.000.000 (available for the majority
of Brazilian watersheds), 1:250.000 (river Paraiba do Sul) and 1:50.000 (basin of rivers
Piracicaba, Capivari and Jundiai).

While the core storage element is the stretch, the official territorial unit for the manage-
ment of water resources adopted by ANA is a watershed. A watershed delimits a drainage
system channel and comprises a set of drainage stretches and points. The drainage net-
work can be repeatedly split, giving rise to watershed and sub-watersheds. Another
element in this database is riwers — connected drainage stretches that have the same
waterbody name.

Rivers and watersheds are only examples of the many useful elements that need to be
derived from pgHydro and which are not supported by the database. These elements are
calculated based on drainage network attributes. Network data is constantly updated, e.g.,
reflecting natural or anthropogenic interventions. This further complicates data analysis,
given the mismatch between analysis requirements and the underling data model.

Many routine calculations adopted by ANA to retrieve information (e.g. watersheds,
drainage network) depend on “reachability”. Such calculations repeatedly check if two el-
ements are connected and how. However, since the data is stored in a relational database,
such calculations are computationally costly, performed using several recursive join op-
erators. These queries are extremely complex, unreadable, and with a high maintenance

2pghydro.org

3http://pghydro.org/downloads

4Available in: metadados.ana.gov.br/geonetwork/srv/pt/ main.home?uuid=7bb15389-1016-4d5b-
9480-5f1acdadd0fs

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 43

— |
INFTOUCH/CRDSS | |

Drainage_Point

L
|
{z_ Wateroourse_Starting_Point H{\\;‘ Watarcourse_Ending_Point ‘ 7:?| Shoraling_Starting_Point ‘ |§ﬁr‘ Shoraline_Ending_Puint h’;;‘ Stieain Moulh

Figure 4.1: PgHydro Database Conceptual Model

cost. More complex queries that require graph traversal demand the construction of in-
memory graphs on top of the relational database, sometimes reaching hardware limits.
In this data scenario, the use of graph databases can bring huge advantages. As will be
seen, applying views over graph databases can help end-users construct their multiple
perspectives.

4.3 Theoretical Foundations

The goal of Graph-Kaleidoscope is to support domain experts in their needs to build and
explore arbitrary perspectives. A perspective is constructed using the notion of database
view and data are stored in graph databases. This section concentrates on associated
issues, namely graph data management and views.

4.3.1 The Graph Data Management Paradigm

For decades, relational databases and Codd’s relational algebra have been the primary
storage mechanism and query formalism for datasets. The continuous growth of data and
associated heterogeneity led to the emergence of new database models and technologies,
aiming at scalability and flexibility. The term NoS@QL was coined to describe the class of
databases that do not have all properties of relational databases and that are generally not
queried with SQL [50]. NoSQL data models vary widely. A data model is composed of a
data structure, operators to retrieve or derive data and integrity rules to define consistent
database states [25].

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 44

S
J

1
y

e
", "
\ ?Scale 1:1.000.000 \
L

}
T\

A AT 7. ’%.vl \ \ }
7ar 5 y P \ 7 3 \\ o Scale 1:250.000
.Bi;‘;&{ \ ‘il‘)PAULO ",{HN \/é ~ = =

‘C\ -/ Scale 1:50.000 _

o
ok 3 P\/\

;;%“7\?(\f“‘?\

Figure 4.2: Coexisting stretch scales in the drainage network, extracted from [32]

Comparing Relational and Graph Databases

The graph data management paradigm is defined by the use of graphs as data models
and the use of graph-based operators to express data manipulation [6]. The graph data
model is relationship driven, as opposed to the relational data model that requires the
use of foreign keys and joins to infer connections between data items. Graph databases
are usually adopted to represent data sets where relations among data and the data itself
are at the same importance level [44]. In this model, queries are performed through graph
traversals, graph pattern matching or graph algorithms.

Relational database systems rely on one data model, one query language, a single set
of basic operators, and one data structure. Though slight variations exist (e.g., object-
relational systems), they still preserve the [model, language, operators, structure| princi-
ples. There is no such consensus for graph database systems.

The formal foundation of graph data models is based on variations on the mathematical
definition of a graph. In its simplest form, a graph G is a data structure composed of
a pair (V, F), where V is a finite nonempty set of vertices and E is a finite set of edges
connecting pairs of vertices. On top of this basic layer, several graph data structures were
proposed by the database community, including features such as directed or undirected
edges, labeled or unlabeled edges and vertices and hypernodes. These features attempt
to improve expressiveness, representing data in a better (and less ambiguous) way. Each
graph data structure has its own data manipulation commands, which can be only invoked
at the application level, such as via an API, or at a user-friendly level, such as via a query
language. In other words, unlike the relational model, there does not exist a single graph
data model.

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 45

Applications and User Needs

TN
select 2s,?v,2d,?1
WHERE { P : (w i) i
25 ns:descri ion “CO Emission” .. ! i | MATCH (answer:Answer)<-[:PROVIDED]-(user:User),
5 j b= © b H : (answer)-[:ANSWERS]->(question) : Query
i i : user.display_name = "Michael Hunger" :
Logical o . eee e vestlae s el mnee | anguages
\\\ : : 21 ns: e “Karlsruhe” % i :
3 3 . L
= 2y
o Operators
S e 10 CREATE (question-question (rinie:)’ | | Data
; H CREATE (answer:Answer {text: "..."})
e ;! CREATE (user)-[:PROVIDED]->(answer) ; Structure
CREATE (answer)-[:ANSWERS]->(question) :
G _S

101C1010101010101010101010101C1010101010101010101010101C1010101010101010101010101C1010101010101010101010101C
01
101£1010101010101010101010101€1010101010101010101010101C1010101010101010101010101C1010101010101010101010101C
01
1100110011001100110011001100110011001100110011001111001100110011001100110011110011001100110011001100111100110011001100110011001111001100110011001100110011
101C1010101010101010101010101C1010101010101010101010101C1010101010101010101010101C1010101010101010101010101C
01
101€1010101010101010101010101C1010101010101010101010101€1010101010101010101010101C1010101010101010101010101C
01
1100110011001100110011001100110011001100110011001111001100110011001100110011110011001100110011001100111100110011001100110011001111001100110011001100110011

Data

Figure 4.3: Overview of Graph Data Management - a multitude of models, operators and
query languages

Figure presents an overview of this idea. The left side of the picture shows the user
perception of the graph data management paradigm: data in the database are understood
to be organized in a graph, in the simplest form G = (V, E). Each application has to
build its own “stack of standards” to deal with graph database system issues. Since there
is no consensus on a formal graph data model or even for a graph data structure, there are
many possible “stacks of standards” available in the literature to meet this architecture.

Each “stack”, repeated as a dotted rectangle at the right of the picture, is based on
at least one physical data structure and one query language. For instance, the leftmost
“stack” shows an example of the SPARQL query language, which is applicable to data
structured as RDF.

The gray layer in the middle of the stack of standards remains relatively unexplored
in related work: the operators layer. The idea behind this layer is to formally define how
to manipulate data regardless of implementation details. Graph query languages should
be based upon a set of data manipulation operators, just as SQL is based on relational
algebra. Omnce these operators are defined, it becomes possible not only to compare
different “stack of standards”, but also to swap between “stacks” writing equivalent queries.

The first contribution of this research is to propose this set of operators. To better
understand the requirements of the graph data management paradigm, two stacks of
standards are presented in the next two sections.

Stack: RDF - SPARQL

RDF (Resource Description Framework) is a framework to describe resources based on
unique web identifiers URIs (Uniform Resource Identifier [30]). It is the standard model

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 46

for data interchange on the web of W3C (World Wide Web Consortium). RDF spec-
ification is based on statements about resources following an atomic pattern of triples:
subject — predicate — object. The subject denotes the resource, the predicate denotes
a property of the resource and the object denotes the value of the property. RDF has
several serialization formats, such as N3, XML and JSON.

A collection of RDF statements intrinsically represents a labeled, directed multi-graph.
Under this perspective, resources and objects are modeled as vertices and the properties
are modeled as edges, used to associate these elements. An example of this approach is
shown in Figure As can be seen, the attributes of a node are themselves represented
as nodes, such as the name Mary and city Central City attributes of the node a1
person.

O
+<ya

Figure 4.4: An example of the RDF graph extracted from [62]

v
~

The standard query language for RDF is SPARQL [48]. Tt is an SQL-like language
whose predicates are defined as triple patterns. A query is processed by selecting which
triples satisfy the predicates of the where clause defined in terms of SELECT and
WHERE commands. In addition, SPARQL provides property path patterns, allows
to route through a graph between two graph nodes. It is a generalization of a triple
pattern to include a property path expression in the property position.

Despite the appealing graph nature of the triple syntax, RDF specification falls short
of a definition of a graph in a mathematical sensd’} There is no clear definition about the
set of vertices and the set of edges, as pointing out by [49]. This can be ever more complex
since RDF allows swapping between roles in different statements: a given property can
be a subject in another statement. For this reason, although RDF/SPARQL is a possible
“stack of standards”, it is a more complex one. Besides, RDF stores and graph databases
are two different categories of DBMS. RDF data are usually stored in document-store
database or XML database. There are no RDF store systems that are also native graph
databases.

Swww.w3.org/TR/2014/REC-rdf11-concepts-20140225

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 47

Stack: Property Graph - Cypher

Unlike the RDF standard, there are different definitions of a property graph [I, [72]. The
definition adopted by us characterizes a property graph as a heterogeneous network in
which the vertex and edge features are arranged through key-value pairs in a flexible
structure [71]. Both vertices and edges can have any number of properties associated
with them. This data structure represents a multi-relation graph, since two given vertices
can be connected via many edges, each of which represents a distinct relationship between
the vertices. This flexibility is one of the advantages of property graphs as opposed to
other graph structures (e.g., RDF).

Figure shows an example of a property graph. In the figure, the nodes have
an attribute to identify the node type (article, person or university) and the edge
attends has a start and an end year. This graph data structure is supported by the
Neodj DBMS [83], which, as will be seen, was our implementation choice, due to its
widespread adoption.

name=Construct... name=Graph...
type=article type=article

name=alberto
type=person read —»@ @

friend wrote wrote wrote
name=marko name=peter
name=rpi type=person type=person
type=university

friend collaborator .
\ l friend
T— attends 4@

Staré:_ilolf name=josh
end= type=person

friend

Figure 4.5: An example of a property graph, extracted from [83]

Cypher is the declarative query language defined by Neo4j DBMS for property graphs.
Cypher contains a variety of clauses that allow to express traversal queries in a relatively
simple way. The MATCH clause is used for describing the structure of the pattern
searched for, primarily based on relationships. The WHERE clause is used to add
additional constraints to patterns. The result of the query is defined by the RETURN
clause.

The Cypher syntax is inspired by the traditional graph representation of circles and ar-
rows. Vertex patterns are represented between parentheses; and edge patterns as brackets
between hyphens, where a right angle bracket indicates the edge direction. For example,
the expression:

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 48

(a)-[r:is_related]—(b)

is interpreted as a pattern that is composed of two vertices a and b, and an edge r of
type is_related, that starts on vertex a and ends in vertex b.

4.3.2 Extending Database Views

As emphasized in [73], though a database view was originally defined to be the result of
a query, its definition has evolved with time to designate a portion of the data that is
of interest to a specific group of users. Under this premise, views are no longer “mere”
queries, but an adequate means to support multiple, interdisciplinary perspectives of a
given database. Thus, the concept of views adopted in our research extends views in
relational databases, where [42] defines a view as a temporary relation against which
database requests may be issued. Each view may expose the same database in a different
way.

For us, a view can be used to achieve different purposes: (i) restriction: to simplify
the use of data — to hide unnecessary details or to provide data protection, blocking the
access to sensitive data; (ii) scale: to create virtual units derived from aggregations of
database objects; or (ili) restructure: to create virtual units derived from rearrangements
of database objects. Figure presents this idea.

. ENLRN .
View A \ View C £
4
. “\ \
\ 1 \ T
“ ;
\ ' SRR
RN \
- 3 View B
.) View
g 7
4 = View A
& e
eeS SEnd

7

Data Q Data Q Data

(1) Restriction (ii) Scale (iii) Restructuring
Figure 4.6: Different purposes of Views — adapted from [14] (dimensions of heterogeneity)

Research on relational views ranges from view specification and construction - mate-
rialization to mapping updates; views are also involved in query optimization strategies,
and in security concerns — e.g., [42] 64, 47, [66]. Relational views are built from queries.
Formally, they are specified using language operators (e.g., those of relational algebra).
In relational theory, these operators are those used to construct queries, e.g., projection,
cartesian product. The sequence of operators that creates a particular view is called
view generating function, which is a composition of operators applied on the underlying
relations.

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 49

The concept of view also appears outside the relational database context, using data-
specific operators to specify the view generating function. In the field of knowledge repre-
sentation, for instance, an ontology [45] can be too complex for a given application need,;
hence, an ontology view can be built by the extraction of relevant parts of the original
one [31]. In this case, the view generating function can be based on guidelines to navi-
gate through ontology concepts starting from a central concept [65] or based on a query
language [81]. Although the latter approach is closer to the original definition of views,
it faces a huge challenge to ensure that an ontology view is also a valid ontology.

Views and their implementation are consolidated aspects of relational systems. The

same does not occur in graph databases, mostly due to the absence of a consensual model
and multitude of “stacks” — see section

4.4 PGDM: The Data Model of the Graph-Kaleidoscope
Framework

There is no consensus on a formal definition of operators for graph data or even a graph
data structure. Thus, the first challenge addressed by our research is to formalize the
graph data model that underpins our framework in terms of Codd’s principles [25]. That
means that we have to determine a graph data structure, integrity constraints and the
elementary operations that can be combined/composed in the view generating function.
This resulted in our PGDM Data Model.

In proposing these operators, we do not intend to provide a mathematical formalism
for graph data models. The idea here is only to provide the basic constructors, in a
non-ambiguous way, capable of explaining operator behavior using a high-level definition.
These operators can be implemented in any stack for graph data models, thereby helping
interoperability across models.

The second challenge addressed by our research is the definition of the framework itself
— even after the graph operators are defined, there is still much to done to deal with views
on graphs.

This section deals with the first challenge - the definition of the data model - whereas
the next section will describe the architecture of the framework. Our model - PGDM -
explicitly defines a data model’s elements: data structure, constraints and operators to
retrieve data. Our definition of a property graph data model is inspired by the preliminary
early definition found in [56]’s thesis, in which the notion of views is briefly explored.

4.4.1 PGDM - Data Structure

PGDM is based on the graph data structure presented in section [£.3.1] - property graphs.
For us, property graphs are a flexible data structure approach to accommodate different
features of vertices and edges in a generic way, such as label or weight. Besides, they
preserve semantics, allowing many attributes in a given entity, which is not possible in
RDF model, for example.

Although graph databases have no explicit schema — actually, being schemaless is one

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 50

of the strongest points of the graph paradigm — we stress that there is, indeed, an implicit
schema which receives different names in the literature such as reference graph [11] or
metamodel [54]. It is important to distinguish between the claims that graph databases
have no structure and that they are schemaless. Graph databases are schemaless in the
sense that it is not necessary to first create a schema and then insert data — schema and
data are inserted together and it is possible to add properties to each individual vertex
or edge at any time (whereas in relational databases, which have schemas, one must first
create a table, and then insert data).

For us, the “schema” of a graph data model is defined by the data design process,
which describes the semantic organization of all modeled information — i.e., specifying
entities, which relations are valid for each entity, or what kinds of attributes are relevant.
Based on this idea, we start the definition of PGDM defining a graph schema denoted by
Gs. Gg is a logical description of a graph database and consists of a non empty set of
vertex types, Vs, and a set of edge types, Eg:

Gs = (Vs, Es)

Let V; be a vertex type (V; € Vs). A vertex type represents an abstraction of some
aspect of the real world — a thing with independent existence that can be uniquely iden-
tified. A vertex type has label, denoted by [, and a set of attributes {A4;,..., A,}. Each
attribute A; has a name and a domain for its values. Let a; denote a value of A;. The
vertex type V; and its occurrence v; are expressed as:

Vi=({A1,...,A.}) and v; = (I, {ay,...,a,})
An example of a vertex type DrainagePoint and an occurrence is:

Vpp = (DrainagePoint, {id: integer, type: string})
vy, (DrainagePoint, {id: 287383, type: confluence})

Let E; be an edge type (E; € Eg). An edge type represents how entities, represented
as vertices, are related to one another. The initial vertex type is denoted by V; and the
terminal vertex type V;. An edge type has also a label, denoted by [, and a set of attributes
{Bi,...,B,}. Each attribute By has a name and a domain for its values. Let by denote
a value of By. The edge type E; and it occurrence e; are expressed as:

E; = (,V;,Vi{B,...,B,}) and
€j = (Z,Ui, Ut, {bl, e ,bn})

An example of a edge type is_connected and an occurrence is:

Eic = (is_ connected, DrainagePoint, DrainagePoint,
{stretch: integer, length: float, ottocode: integer, waterbody: string})

e;c (is__connected, DrainagePoint{id: 287383}, DrainagePoint{id: 288571},
{stretch:78991, length:1.05, ottocode:78666279, waterbody: Corrego Vargem Grande})

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases ol

From now on, we will omit the attribute domain for legibility. A state of a given graph
schema Gg, denoted by Gg, is determined by occurrences of vertex types and edge types
at a given time, expressed as:

Gs = (V,E)

where V = {v|v is an occurrence of a vertex type V; € Vs} and E = {e|e is an occurrence
of an edge type E; € Eg}. A graph G is expressed as:

G = (Gs,Gyg)

where G g is G schema and Gg is G state. Figure[4.7|shows an example of a graph database
we have named Gpyaro. It corresponds to the migration of the pgHydro relational data
(see section into a graph database. Details about this transformation process can
be found in [32]. Gpyaro Was created using in the same geographic scale of the original
database: the drainage points were modeled as vertices and the drainage stretches as
edges. All the original attributes were preserved in the migration process.

Figure (a) presents partially the schema Gg of Gpyaro composed by one vertex
type (DrainagePoint, {id, type}) and one edge type (is connected, DrainagePoint,
DrainagePoint, {stretch, length, waterbody, ottocode}). Figure (b) presents part of
the state Gg with, here, eight instances of the vertex type DrainagePoint and seven
instances of the edge type is _connected.

4.4.2 PGDM - Integrity Constraints

A graph integrity constraint defines a restriction on its possible states. The goal of a graph
integrity constraint is to ensure data integrity and consistency over a graph’s life-cycle.
A constraint is checked only when an operation that changes the state Gg is performed,
i.e. creation/update/delete of vertices or edges. PGDM has three types of integrity
constraints:

e Entity Integrity: adapts the concept of a “primary key”, where entities are vertices
and edges. Every entities in PGDM - vertex or edge — must have an unambiguous
access key. The primary key of a vertex type V; is denoted by V; and defined as V;
= (I, K,), where [is a vertex label and K, is a subset of attributes {A;,..., A,}
of the vertex type. The primary key of an edge Ej; is denoted by E; and defined
as I/, = (1,V;, Vi, K3), where [is the edge label, V; is the primary k(;of the initial
VGI‘EX, Vi is the primary key of the terminal vertex, and K is a subset of attributes
{By,...,B,} of the edge type. An entity key should be unique and not null.

e Referential Integrity: adapts the concept of a “foreign key” of relational theory.
Every edge in PGDM must have an initial vertex and a terminal vertex. Both
vertices are referenced by their primary keys. Once one of the vertices that is part
of an edge is deleted, the edge must be deleted too.

e Domain Integrity: specifies that all attributes must be declared on a defined
domain. A domain is a set of values of the same type.

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 52

is_connected

stretch
length
waterbod)
:DrainagePoint 4
id
type

id:288571

:DrainagePoint type: confluence

stretch: 177595
length: 0.63

:DrainagePoint id: 288788
type: confluence

stretch: 79072
length: 0.53

‘ .:DrainagePoint
:DrainagePoint id: 289286
& id: 288952 type: start
0l type: confluence
&
&
.{q/

stretch: 78991
length: 1.05
waterbody: Cérrego
Vargem Grande

:DrainagePoint
id: 287383
type: confluence

stretch: 290556
length: 0.04
waterbody: Cérrego
Candeia Mansa

stretch: 79250
length: 0.36

waterbody: Corrego
Vargem Grande

:DrainagePoint :DrainagePoint
id: 287314 id: 287265 stretch:173574
length: 0.46
type: confluence type: confluence

id: 289014
type: start

:DrainagePoint

(b)

Figure 4.7: G gyaro graph database schema Gg (a) and state Gg (b)

In Grydro, shown in figure , there are two entity integrity constraints:

Vpp = (DrainagePoint, {id})
Ejc = (is__connected, (DrainagePoint, {id}), (DrainagePoint, {id}),
{stretch}))

where Vpp denotes the access key of vertex type DrainagePoint and K, = {id} and E;¢
denotes the access key of the edge type is connected and K; = {stretch}.

4.4.3 PGDM - Elementary Operators

The manipulation of property graphs is based on elementary operators. To simplify the
formalization of operators, we define an intermediate property graph path. Property graph
paths are an intermediate construct on top of which operators are applied. Next, we de-
fine a predicate before describing the operators in details.

Property Graph Path

A property graph path GP is a temporary structure created over the graph database
to evaluate an operator or to specify the output graph schema of an operator. A GP is

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 53

the representation of a linear path connecting vertices and the edges involved in these
connections. The GP schema is composed by vertex and edge types of G. Analogously,
the graph schema of a GP is also composed by vertex and edge types of Gg. In other
words, a G P schema is indicating that a graph path cuts across a certain set of vertices
and edges, defining the types of interest. A state of a GP, denoted by gp is determined
by occurrences of these elements in the graph data.

Two vertices can only be neighbours in a GP in one of two cases:

1. There is a connection between them (an edge). In this case, GP schema is a path
in Gg, starting and ending in vertices, defined as: GP = (Vi, E;j, V;, Ejk, ..., Vi)
where V;, V;, V;, are vertex types in Vg and Ejj,

is the occurrences of this path in the graph Gg. An example of a simple GP in

Figureis: {DrainagePoint, is connected, DrainagePoint}.

Eji, are edge types in Eg. GP state

2. They have the same vertex type. In this case, there is no path to consider and GP
schema is defined as: GP = (V;,V;) where V; is a vertex type in Vs. GP state is
the cartesian product of all occurrences of this vertex type in Gg. An example in
Figure [4.7is: {DrainagePoint, DrainagePoint}.

Predicate

Many of our elementary operators apply predicates to retrieve subsets of the original
graph data. A predicate is a statement that may be TRUFE or FALSE depending on
the values of its variables. In PGDM, a predicate is used to evaluate attributes of the
occurrences of vertex/edge types.

Predicate p(z) is written as {z|p(x)}, defined as collection of all the instances for

which ¢(x) is TRUE. A predicate can be atomic or composite. An atomic predicate is
defined as:

x (op) literal or x (op) y

where (op) is a standard binary operator =, #, <, <,> and >. Composite predicates
combine atoms by logical operators A (and), V (or) and — (negation).

Table presents an overview of the elementary operators of PGDM. As can be seen,
PGDM has seven unary operators and three binary operators. These operators can be
progressively composed to create complex operators. Except for rename and conditional
traversal operators, all operators require the creation of a property graph path GP to
support predicate evaluation and define the graph schema of the result. The table shows
the output of each operator in two ways: the output graph schema and the output graph
occurrences. The notation of the operators are:

(symbol) ({ parameters)) (input)

Notation G.G P indicates a GP created on top of original graph G. To help under-
standing and clarify the details of the operators, we illustrate them using our mapping
G Hydro Of the Brazilian water network database.

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 54
Output
Name Goal Input | Parameters | GP Notation
Schema Occurrences
Select a subset Subset of G in
Restriction of data that . ap arP xvhose O (¢)
. . G o: predicate Yes graph vertex/edge
(0) satisfy a given . ' . G.GP
redicate schema attributes satisfy
p the predicate
Projection Create a new I: label The new Subset of T (1, {A})
(H) vertex type G Yes vertex vertex/edge e ’ ap
(1,{A}) {A}: set of type attributes of Gg '
attributes in GP
Vi vertex P
Alter an type or Ej: (Vi, A;,C)
Rename attribute name G edge type No Gg G G
(p) in a vertex/edge : changed s P
type Ail Bi: (E;, B;,C)
attribute G
name
. C: new
z attribute
5 name
Edge Connect vertices Ej: edge type GPh Gs plust* new edge c (B
Creation that satisfy a G Yes grap rstances (£, ¢))
©) predicate schema connecting the G.GP
©: predicate and the vertices whose
to connect new edge | attributes satisfy
vertices type the predicate
Create a new The new
Group vertex type by G l: label Yes vertex Subset of distinct | Y (1, 4;)
() exposing a] - o values of a; in Gg G.GP
common A;: attrlb.ute type
attribute value for grouping
V;: vertex GP o
Attribute Alter a ty(}l)e or YEJ" graph Vi, G, f)
Creation vertex/edge a edge type Yeg | Schema | Gg and the new G.GP
(a) type by adding] B and new attribute values (0}
a new attribute C: attribute attribute (E;.C.)
name C G.GP
f: function or
literal
v;: initial
vertex
Conditional | Select a subset .
Traversal of data visited G Ej: edge type | No Subset of Subs.et. of Gs T
(1) in a traversal Gs visited (vi, Ej, ., 56
@: predicate
sc: stop
condition
Table 4.1: Elementary Unary Operators

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 55
Output
Name Goal Input | Parameters | GP Notation
Schema | Occurrences
. Select all
L(n&())n data of both Cél’ None Yes GSCIT, plus Gs1 plus Ggo a GPUG ap
inputs 2 52 1.6 1, G
B Select a) . .
-g Difference disjoint G, c{olril Z(gb(ii Yes G Islzl) S(‘:GS:H?E \ ({1})
as) (\) subset of Go P ’ . sl prese G1.GP,G4,.GP
data attributes Gs2
Select a
mesion | comnn | G, | el | sG] g
(N) subset of Gy b : S1 G1.GP,G5.GP
data attributes Ggo

Table 4.2: Elementary Binary Operators

Restriction Operator

Restriction creates a new graph with the schema G P, selecting a subset of data that
satisfy a given predicate. The restriction operator is defined as:

O (¢) G.GP : {gp; : gpi € gp N o(gps)}

where ¢ is a predicate for the restriction, gp is the state of GP and gp; is the ¢ occurrence
in gp. To illustrate the operator, consider the example: Create a view where drainage
stretches have length larger than 1 kilometer. This example is defined as:

O (is_connected.length > 1) G.(DrainagePoint,is connected, Drainage Point)

The example is partially shown in Figure 4.8| and has:

e Input: G shown in Figure 4.7

e GP: {DrainagePoint, is connected, DrainagePoint}. The predicate ¢ =
1s__connected.length > 1 selects only the first line, highlighted in Figure 4.8

e Output: Graph containing schema G P and the subset of occurrences of Gg that sat-
isfy ¢ in GP, here composed by (DrainagePoint, {id: 287383}), (DrainagePoint,

{id: 288571}) and (is_ connected, (DrainagePoint, {id: 287383}), (DrainagePoint,

{id: 288571}), {stretch:78991}) (that has length 1.05 kilometer).

Projection Operator

Projection creates a new graph whose schema contains only a single vertex type with a
set of attributes. The projection operator is defined as:

I1 (1, {A}) G.GP: {gpi.A; : gpi € gp A gpiA; € {A}}

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 56

id:288571

:DrainagePoint type: confluence

stretch: 78991
length: 1.05
waterbody: Corrego
Vargem Grande

:DrainagePoint
id: 287383
type: confluence

stretch: 290556
length: 0.04
waterbody: Corrego

:DrainagePoint id: 288788
type: confluence

stretch: 79072
length: 0.53

stretch: 79250
length: 0.36
waterbody: Corrego

Candeia Mansa Vargem Grande Input
' ' ':DrainagePoint
:DrainagePoint id: 289286
:DrainagePoint :DrainagePoint . .
- 4 stretch:173574) /& id: 288952 Ly pe: start
id: 287314 id: 287265 length: 0.46 g type: confluence
type: confluence type: confluence — ‘9°
o’
id: 289014 :DrainagePoint
type: start /
:DrainagePoint is_connected :DrainagePoint
id type stretch length waterbody id type
287383 | confluence | 789191 1.05 Cérrego Vargem Grande | 288571 confluence
288788 | confluence | 177595 0.63 288571 confluence
287314 | confluence | 290556 0.04 Coérrego Candeia Mansa | 287383 confluence GP

287265 | confluence 79250 0.36 Cérrego Vargem Grande | 287383 confluence

288952 | confluence | 280443 0.48 288788 confluence

289286 start 79072 0.53 288788 confluence

289014 start 173574 0.46 288952 confluence /
e‘:‘eA N

:DrainagePoint

stretch: 78991 id:288571 Output
length: 1.05 type: confluence
waterbody: Corrego

Vargem Grande

:DrainagePoint

id: 287383
type: confluence

Figure 4.8: Example of the Restriction Operator

where [denotes the label of the new vertex type and {A} a set of attributes in GP that
compose the new vertex type. To illustrate the operator, consider the example: Create a
view in which vertices represent the drainage stretches. This example is defined as:

I1 (DrainageStretch, {ic.stretch,ic.length, A.id, B.id})
G.(DrainagePoint as A,is_connected as ic, DrainagePoint as B)

The example is partially shown in Figure 4.9 and has:

e Input: G shown in Figure 4.7

e GP: {DrainagePoint, is connected, DrainagePoint}. All occurrences of the
attribute (is_connected.stretch) are selected to compose the output, as high-
lighted in Figure 4.9

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases o7

id:288571

:DrainagePoint type: confluence

stretch: 78991
:DrainagePoint length: 1.05
id: 287383 waterbody: Corrego)
X Vargem Grande . . . id: 288788
type: confluence :DrainagePoint type: confluence
stretch: 290556 i
length: 0.04 stretch: 79250 stretch: 79072
, length: 0.36
waterbody: Corrego waterbody: Correqo length: 0.53
Candeia Mansa v g Input
Vargem Grande
‘ ‘ ‘:DrainagePoint
:DrainagePoint id: 289286
:DrainagePoint :DrainagePoint > . type: start
;) stretch:173574 & id: 288952 ype: star
id: 287314 id: 287265 length: 0.46 & type: confluence
type: confluence type: confluence S
K/
id: 289014 :DrainagePoint
type: start /
:DrainagePoint is_connected :DrainagePoint \
id type stretch length waterbody id type
287383 | confluence | 789191 1.05 Cérrego Vargem Grande | 288571 confluence
288788 | confluence | 177595 0.63 288571 confluence
287314 | confluence | 290556 0.04 Cérrego Candeia Mansa | 287383 confluence GP
287265 | confluence 79250 0.36 Corrego Vargem Grande | 287383 confluence
288952 | confluence | 280443 0.48 288788 confluence
289286 start 79072 0.53 288788 confluence
289014 start 173574 0.46 288952 confluence
:DrainageStretch :DrainageStretch :DrainageStretch :DrainageStretch <
stretch: 78991 stretch: 17795 stretch: 290556 stretch: 79250
length: 1.05 length: 0.63 length: 0.04 length: 0.36
idA: 287383 idA: 288788 idA: 287314 idA: 287265 Output
idB: 288571 idB: 288571 idB: 287383 idB: 287383
:DrainageStretch :DrainageStretch :DrainageStretch
stretch: 280443 stretch: 79072 stretch: 173574
/_ength: 0.48 l_ength: 0.53 length: 0.46 —
idA: 288952 idA: 289286 idA: 289014
idB: 288788 idB: 288788 idB: 288952

Figure 4.9: Example of Projection Operator

e Output: Graph whose schema is new vertex type (DrainageStretch, {stretch,
length, idA, idB}), where idA is the initial DrainagePoint.id and idB is the termi-
nal DrainagePoint.id. The output has 7 occurrences as shown in Figure [4.9 e.g.,
(DrainageStretch, {stretch: 79072, length: 0.53, idA: 289286, idB: 288788}).

Rename Operator

Rename creates a new graph where the schema of G is altered by changing the attribute
name of a vertex/edge type. The rename operator is defined as:

p (Vi,A;,C) G: {V,.C'| (Vi.A; € V})} or

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases

p (Ej,BZ',O) GZ {EJC ‘ (E]Bz S EJ)}

o8

where V; denotes the vertex type and A; is the old attribute name or E; denotes the edge

type and B; is the old attribute name. C'is the new attribute name. To illustrate the oper-
ator, consider the example: Create a view in which attribute type of the DrainagePoint

18 renamed to status. This example is defined as:
P (DrainagePoint, type, status) G

The example id partially shown in Figure [£.10] and has:

id:288571

:DrainagePoint type: confluence

stretch: 78991
length: 1.05
waterbody: Corrego
Vargem Grande

:DrainagePoint
id: 287383
type: confluence

stretch: 290556
length: 0.04
waterbody: Corrego
Candeia Mansa

:DrainagePoint | ' 285788
type: confluence

stretch: 79072
length: 0.53

stretch: 79250
length: 0.36

waterbody: Cérrego
Vargem Grande

‘ . ‘:DrainagePoint
:DrainagePoint id: 289286
:DrainagePoint :DrainagePoint id: 288952 type: start
type: confluence

id: 287314 id: 287265 stretch:173574
length: 0.46
type: confluence type: confluence

type: start

id: 289014 :DrainagePoint /

id:288571

:DrainagePoint status: confluence

stretch: 78991
length: 1.05
waterbody: Corrego
Vargem Grande

:DrainagePoint
id: 28738.
status: confluenc

stretch: 290556
length: 0.04
waterbody: Corrego
Candeia Mansa

. . |id: 288788
:DrainagePoint status: confluence

stretch: 79072
length: 0.53

stretch: 79250
length: 0.36

waterbody: Cérrego
Vargem Grande

:DrainagePoint
:DrainagePoint - 289286
:DrainagePoint :DrainagePoint &b id: 288952 tatus: start
(\é‘ status: confluence
&
[
/

. stretch:173574
id: 28731 id: 28726 length: 0.46
status: confluenc status: confluenc

status: start|

id: 289014 :DrainagePoint /

Figure 4.10: Example of Rename Operator

Input

Output

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 59

e Input: G shown in Figure 4.7

e Output: Graph in which attribute type of DrainagePoint has been renamed to
status, e.g., (DrainagePoint, {id: 287383, status: confluence}).

Edge Creation Operator

Edge creation creates a new graph whose schema contains the same schema of GP plus a
new edge type, by connecting two vertex types that satisfy a predicate. It is defined as:

€ (B,) G.GP: {e; : (vi,v € gpi) A (gpi € gp) N @(gpi)}

where FE;; is a edge type and ¢ is a predicate to connect vertices defined over GP. If
condition ¢ is omitted, each occurrence of the initial vertex type of Ej; is connected to
all occurrences of terminal vertex type of Ej.

To illustrate the operator, consider the example: Create a view connecting the neigh-
bour drainage points that have the same type. This example is defined as:

€ (has sameType (DrainagePoint, DrainagePoint), (DPI.type = DPT.type))
G.(DrainagePoint as DPIis _connected, DrainagePoint as DPT)

The example is partially shown in Figure and has:
e Input: G shown in the view of Figure 4.7

e GP: {DrainagePoint, is connected, DrainagePoint}. The predicate
(DPI.type = DPT type) selects the lines highlighted in Figure [£.11]

e Output: Graph containing the same schema of GP plus new edge type
(has sameType, DrainagePoint, DrainagePoint) created and the occurrences that
satisfy selected ¢ in G'P, e.g.,(has sameType, (DrainagePoint,{id:287314}),
(DrainagePoint,{id:287383})).

Group Operator

Group creates a new graph whose schema contains only a single vertex type. Unlike the
projection operator, group exposes an attribute value common to a subset of occurrences.
The new vertex type will have only one attribute. The operator is defined as:

V(Z;Az) G.GP: {azalEgp/\alﬂD:@}

where [denotes the label of the new vertex type, A; denotes the attribute of a vertex/edge
type in GP to be grouped, a; is the value of the attribute A; and D is the set of distinct
values of A;. The attribute name in the new vertex type is also A;. To illustrate the
operator, consider the example: Create a view in which all waterbodies of stretches appears
as vertices. This example is defined as:

Y (WaterBody, is_ connected.waterbody)
G.(DrainagePoint,is _connected, DrainagePoint)

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 60

id:288571

:DrainagePoint type: confluence

stretch: 78991
length: 1.05
waterbody: Corrego
Vargem Grande

:DrainagePoint
id: 287383
type: confluence

stretch: 290556
length: 0.04

:DrainagePoint | ‘% 258788
type: confluence

stretch: 79250
length: 0.36

stretch: 79072

>
<
waterbody: Corrego q,é' . . length: 0.53
Candeia Mansa °¢° ’% \\A//aterbody : Corrego Input
§ T ‘argem Grande
o’ [V} .
4
' .:DrainagePoint
:DrainagePoint id: 289286
:DrainagePoint :DrainagePoint ctroteh 173574 > id: 288952 type: start
id: 287314 id: 287265) & type: confluence
length: 0.46 &
type: confluence type: confluence @°
.{_,/
id- 289014 :DrainagePoint
type: start /
:DrainagePoint is_connected :DrainagePoint
id type stretch length waterbody id type
287383 | confluence | 789191 1.05 Corrego Vargem Grande | 288571 confluence
288788 | confluence | 177595 0.63 288571 confluence
287314 | confluence | 290556 0.04 Cérrego Candeia Mansa | 287383 confluence GP

287265 | confluence 79250 0.36 Cérrego Vargem Grande | 287383 | confluence

288952 | confluence | 280443 0.48 288788 confluence
289286 start 79072 0.53 288788 confluence
289014 start 173574 0.46 288952 confluence

stretch: 78991
length: 1.05
waterbody: Corrego
Vargem Grande

stretch: 79250
length: 0.36 stretch: 280443
waterbody: Cérrego length: 0.48 g

Vargem Grande

:DrainagePoint

id: 287383
type: confluence

:DrainagePoint id: 288788
type: confluence

stretch: 79072
length: 0.53

. :DrainagePoint . id: 289286
:DrainagePoint :DrainagePoint . .
nag 8 stretch:173574| /& id: 288952 type: start
id: 287314 id: 287265 length: 0.46 Qé’ type: confluence
type: confluence type: confluence <9°
/

stretch: 290556
length: 0.04
waterbody: Cérrego
Candeia Mansa | -

:DrainagePoint

id: :DrainagePoint
:,pffg,l,f ainagePoin /
Figure 4.11: Example of Edge Creation Operator

The example is partially shown in Figure and has:

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 61

id:288571

:DrainagePoint type: confluence

stretch: 78991
:DrainagePoint length: 1.05
id: 287383 waterbody: Corrego .
type: confluence Vargem Grande :DrainagePoint g/'pffgiﬁuence
stretch: 290556 i
length: 0.04 > % 7"8 t:: : 07 3250 stretch: 79072
waterbody: Cérrego & ‘o, ;Z?erl;ot'i . Corrego length: 0.53
Candeia Mansa f %o V V: 9 Input
< (9 ‘argem Grande
o/ 00 o
’ . .:DrainagePoint
:DrainagePoint id: 289286
:DrallnagePomt :DraeragePomt ctreteh 173574 &b id- 288952 type: start
id: 287314 id: 287265 | . & type: confluence
ength: 0.46 $
type: confluence type: confluence "o°
.{q/
id- 289014 :DrainagePoint
type: start /
:DrainagePoint is_connected :DrainagePoint
id type stretch length waterbody id type

287383 | confluence | 789191 1.05 Corrego Vargem Grande | 288571 confluence
288788 | confluence | 177595 0.63 288571 confluence
287314 | confluence | 290556 0.04 Cérrego Candeia Mansa | 287383 confluence GP
287265 | confluence 79250 0.36 Corrego Vargem Grande | 287383 confluence
288952 | confluence | 280443 0.48 288788 | confluence
289286 start 79072 0.53 288788 confluence
289014 start 173574 0.46 288952 confluence /

:WaterBody
:WaterBody ’ . waterbody: Corrego Vargem Grande
waterbody:Cérrego Candeia Mansa Output

Figure 4.12: Example of Group Operator

e Input: G shown in Figure 4.7
e GP: {DrainagePoint, is connected, DrainagePoint}.

e Output: Graph containing as schema the newly created vertex type (WaterBody,
{waterbody}) and composed by 2 occurrences (WaterBody, {waterbody: Cor-
rego Vargem Grande}) and (WaterBody, {waterbody: Corrego Candeia Mansa}).
Notice that even though Gg has three instances of waterbodies (Corrego Vargem
Grande, Corrego Candeia Mansa and Corrego Vargem Grande highlighted), they
will be grouped and give rise to only two vertices, as shown in Figure [4.12

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 62

Attribute Creation Operator

Attribute creation creates a new graph whose schema is the schema of GP, altered by
changing a vertex/edge type by adding a new attribute. The values of this new attribute
are defined via a literal (e.g, new static data) or the result of a function on GP (e.g.,
computed data). Attribute creation operator is defined as:

a (Vi,C, f) G.GP: {Vi.Cl|(gp: € gp) AN(Vi.C = f(gp:) VVi.C = (f))}
Q (E;,C, f) G.GP: {E;.C|(gp; € gp) N(E;.C = f(gp:) V E;.C =(f))}

where V; denotes the altered vertex type or E; the altered edge type, C the new attribute
and f is the value or the function that will assign values to C. To illustrate the operator,
consider the example: Create a view in which each stretch has an attribute containing how
many stretches have the same waterbody name. This example is defined as:

& (is_connected, number _stretches, count(equals(is_connected.waterbody))
G.(DrainagePoint,is_connected, DrainagePoint)

The function count counts the number of occurrences and the function equal builds
a equality predicate with the parameter. The example is partially shown in Figure [4.13
and has:

e Input: G shown in Figure 4.7

e GP: {DrainagePoint, is connected, DrainagePoint}, highlighting the water-
body values to be considered Corrego Candeia Mansa, Corrego Vargem Grande

e Output: Graph containing the same schema of GP altered by changing the edge
type (is_connected, DrainagePoint, DrainagePoint, {stretch, length, water-
body, number _stretches}) and the calculated values.

Conditional Traversal Operator

Conditional traversal creates a new graph that contains the selection of a subset of graph
data that satisfy given traversal predicates. It differs from the restriction operator in
the way in which the predicates and parameters are defined and evaluated. Traversal
conditions are defined in terms of reachability — the predicates do not consider which
vertex types are involved in the path or in which order. Its output is a new graph
containing the subset of the input whose vertices and edges were visited in the traversal.
The operator is defined as:

7- (Ui7 Ej7 ¥, SC)

where v; is an initial vertex — an occurrence of a vertex type V; in Gg, £} is an edge type,
p is the traversal predicate and sc is the stop condition. A stop condition can be a target
vertex v; or the number of visited vertices n.

Only v; is mandatory in the conditional traversal operator. The predicate ¢ is evalu-
ated whenever more than one option is available to continue path traversal. When Ej; is

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases

id:288571

:DrainagePoint type: confluence

stretch: 78991
length: 1.05
waterbody: Corrego
Vargem Grande

:DrainagePoint
id: 287383
type: confluence

stretch: 290556
length: 0.04
waterbody: Corrego
Candeia Mansa

:DrainagePoint id: 285788
type: confluence

stretch: 79072
length: 0.53

stretch: 79250
length: 0.36

waterbody: Corrego
Vargem Grande

. ‘:DrainagePoint
:DrainagePoint id: 289286
:DrainagePoint :DrainagePoint . type: start
) stretch:173574 id: 288952 ype: star
id: 287314 id: 287265 length: 0.46 type: confluence
type: confluence type: confluence —

id: 289014 :DrainagePoint
_type: start |

:DrainagePoint is_connected :DrainagePoint

A

id type stretch length waterbody id type

287383 | confluence | 789191 1.05 Corrego Vargem Grande | 288571 confluence

288788 | confluence | 177595 0.63 288571 confluence
287314 | confluence | 290556 0.04 Coérrego Candeia Mansa | 287383 confluence
287265 | confluence 79250 0.36 Corrego Vargem Grande | 287383 confluence
288952 | confluence | 280443 0.48 288788 confluence
289286 start 79072 0.53 288788 confluence
289014 start 173574 0.46 288952 confluence

id:288571
type: confluence

AN

:DrainagePoint

stretch: 177595
length: 0.63

. . id: 288788
:DrainagePoint
type: confluence

stretch: 79072
length: 0.53

stretch: 78991
length: 1.05
waterbody: Corrego
Vargem Grande
number_stretches: 2

:DrainagePoint

id: 287383
type: confluence

stretch: 290556
length: 0.04
waterbody: Corrego
Candeia Mansa
number_stretches: 1

stretch: 79250
length: 0.36
waterbody: Cérrego
Vargem Grande
number_stretches: 2

Figure 4.13: Example of Attribute Creation Operator

63

Input

GP

Output

omitted, all edge types will be considered in the traversal and, in the case of more than

one possible path, a random one is chosen. When the stop condition sc is omitted, the

operator will traverse the graph until the entire input is explored and there are no more

possible vertices to visit.

To illustrate the operator, consider the example: Create a view with all the drainage

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 64

points which are reachable from the drainage point 28901/. In case of water contamination,
for instance, it is important to know what areas will be affected. This example is defined
as:

T ((DrainagePoint : {id = 289014}, is_connected)

The traversal has no predicate or stop condition. The example is partially shown in
Figure and has:

e Input: G shown in Figure 4.7

e Output: New graph with the same schema of G.

:DrainagePoint
stretch: 177595
id:288571 ‘ - length: 0.63
type: confluence
:DrainagePoint

id: 288788
type: confluence

:DrainagePoint .
id: 288952
type: confluence :DrainagePoint
id: 289014
type: start

Figure 4.14: Example of Conditional Traversal Operator

Set Operators

Set operators correspond to a category of operators from set theory: union (U), difference
(\), intersection (N). In our model, these operators follow the conventional definition;
therefore, we do not discuss them in detail.

An important issue is the idea of compatibility, i.e., these operators can only be ap-
plied to compatible graph schemas Gg; and Ggo. Our set operators are defined in terms of
property graph paths Gg1.GP and Ggo.GP. A set of attributes {/} is defined as a param-
eter; these attributes are used to verify the compatibility between the graph schemas. For
obvious reasons, the number of attributes and their domains should be also compatible.

Intersection
Intersection selects a subset of data common to both inputs. It can only be performed
in compatible graphs, and defined as:

(N (G1,Go,{I}) G1.GP,Gy.GP: {gp; : gp;-{I} C G1.GPA gp;{I} C G5.GP}

where {I} is set of attributes used to assess compatibility. The output is a graph with
the schema Gg; and all occurrences of Gg; whose values of the attributes in the set {I}

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 65

was also present in Ggps.

Difference
Difference selects a subset of data from the first input not present in the second. It
can only be performed in compatible graphs, and is defined as:

\ (G1,G9,{I}) G1.GP,Gy.GP: {gp; : gpi.{I} C G1.GPA gp;{I} ¢ Go.GP}

where {I} is set of attributes used to assess compatibility. The output is a graph with
schema Gg; and all occurrences of Gg; whose values of the attributes in the set {I} was
not found in Ggs.

Union

Union selects all data in Gg; and Gg2. Unlike the other set operators, no compatibility
is required in this case — the operator does not compare attributes between source graphs.
The union operator is defined as:

U (Gl,Gg) G1.GP,G5.GP: {I xeGi V€ GQ}

and the output is a disconnected graph whose schema is the union of both schemas of
Gg1 and G g and all occurrences of Gg; and Ggs.

The standard (database-oriented) union operator requires that inputs have to be com-
patible. This can be achieved by combining our intersection and difference operators,
namely:

U (G1,Ga): {N (G1,G2{1}) U { \ (G2, G1A1}) }U{\ (G1,G2.{1}) }

where the result of the intersection of G; and (G, the result of the difference of G; and
(G5 and the result of the difference of G5 and GG3 are combined using our union operator.

Revisiting our view construction requirements, Figure 4.6 we point out that related
work (e.g., [38, 11],[61]) only proposes “Restriction” operators. On the other hand, PGDM
contemplates the three kinds of requirements, as show in Figure [4.15] The Figure shows
which operators can be used for each demand.

4.5 Graph-Kaleidoscope Framework - Architecture and
Prototype

This section presents the architecture of Graph-Kaleidoscope and its first prototype. As
mentioned before, the idea is to adapt and extend the concept of views in relational
databases to graph databases. To this effect, we define a graph view to be a temporary
(non-materialized) perspective defined and extracted from a graph database. Our graph
view definition embeds a recursive idea: graph views can be built on the top of other
graph views.

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 66

View B

View A =

AT

= !‘-.‘ View A

Data Q Data O Data

(i) Restriction (ii) Scale (iii) Restructuring
o (0) G.GP Y (. A) G.GP I {Ay) cap 7y (1L,A) GGP
T (v, E;. ¢, sc) a (Vi..C. f) G.GP a (V.o fYGGP p(Vi.ALC) G
E(Ey, v) G.GP E(Ey.) G.GP

Figure 4.15: View Requirements and Operators

A core idea is to separate view definition (namely, the specification of the view gen-
erating function) from actual view creation (namely, the execution of the function). Fig-
ure gives an outline of this concept, in which these two main functionalities are
respectively called “View Builder” and “View Factory”. The interface, at the top of this
figure, receives requests from users. We point out that views are not materialized, only
their definition.

Users can either define a view (i.e., specifying the view generating function) or con-
struct a view (computing the view generating function). The persistence layer of the
framework is composed of a graph database management system; it provides management
mechanisms to store graph data and view generating functions. Views can eventually be
materialized, thereby becoming part of the graph database.

The View Builder receives a view generating function defined as a combination of
the graph operators described in Section [4.4.3] and forwards this function to be stored in
the view catalog of the graph DBMS. Storing this definition ensures that it can be invoked
in the construction of other views. The View Builder delegates to the View Factory all
necessary steps to compute the graph view. This is presented in the architecture by the
black engine connected to the View Factory.

The heart of the architecture is the View Factory. It is responsible for computing a
graph view, i.e, it transforms a view generating function into a graph. It is composed by
four modules, executed in the order (i) to (iv):

(i) Parse: parses the view generating function and builds an intermediary data struc-
ture composed by the required operators, their parameters and the property graph path
necessary to process each operator.

(ii) Process: accesses the underlying graph database to process the operators. Each
operator request is translated to a graph query in the underlying DBMS query language.
The results are used to build the elements of the view defined by the operator.

(iii) Check: verifies if the resulting view is a valid graph, checking the integrity rules

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 67

%\%‘% W 2

fow 3 *
vow 35

Graph V|ew

o))

Graph DBMS

Figure 4.16: Graph-Kaleidoscope Architecture

of the graph resulting from executing the function.

(iv) Create: stores this computed graph as a temporary graph.

Our framework was designed to deal with data that, besides being heterogeneous and
massive, requires ACID-compliant transactional properties. Its architecture is generic
to accommodate several “stack of standards” of graph data management, as long as the
operators are implemented on the DBMS structure [5]. The only specific part of our ar-
chitecture is the module Process of View Factory. The implementation of this module
requires a middleware to map each operator and its parameters into a valid command to
manipulate the graph data.

Site DB-Engine tabulates over 300 DBMS, 9 of which are open source and use graphs
as data model and thus natural candidates for implementing our framework] e.g., Neodj,
TITAN [] and JanusGraph] We chose the Neo4j open source graph database [| — a
labeled property multigraph [71]. Neo4j implements a native disk-based storage manager
for graphs and it is nowadays the most popular graph database system (according to DB-
Engines Ranking) [55]. In Neodj, every edge must have a relationship type and there are
no restrictions on the number of edges between two nodes. Both vertices and edges can
have properties (key-value pairs). Neodj offers programming tools, drivers and libraries,
including an object-oriented API for Java, currently used in our implementation. Our
operators are being mapped to Cypher commands, according to read and write query

DB-Engines ~ Ranking of Graph =~ DBMS (accessed on may, 2017) [db-
engines.com/en /ranking/graph-+dbms]

Ttitan.thinkaurelius.com

8janusgraph.org

9neo4j.com

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 68

structures.

To allow the temporary creation of user-specified perspectives (i.e., views), we in-
troduce the notion of session. This allows the construction of several what-if scenarios,
without the need to permanently store them, so that experts can explore alternatives. A
session is an interactive information interchange between users and our framework. It is
initiated upon request at a certain point in time, and then closed at some later point.
Our framework identifies each session by a session id created by the framework at session
begin. Sessions allow users to interact independently with their own views.

To illustrate view generation in the prototype, the next section presents a real envi-
ronmental management case study based on analysis of water resources, in which user
demands are translated into different views.

4.6 Case Study: Providing Perspectives of the Water
Resources Database for Environmental Resource
Applications

We return to our motivating scenario, of environmental analysis centered on management
of water resources. This section discusses some of the computational analyses required
by ANA experts, many of which have proved to be hard to develop on top of the existing
(relational) database pgHydro (see Figure [.1), and explains how such analyses can be
easily represented in Gryaro (see Figure or through views over G gygro-

Once our prototype was implemented in Neo4j, the queries presented in this section
are expressed in Cypher — the native graph query language of Neo4j. The goal is not
to compare performance, but to emphasize the “reachability” issue intrinsic to these rou-
tines, explicitness and readability of queries and low maintenance cost. There are many
repeated efforts in literature that compare the performance between graph and relational
databases 80, 63].

First of all, it is important to deal with data consistency. The water resources database
is organized according to Otto Pfafstetter methodology [69]. That organization implies
that the drainage network must be represented as a binary tree-graph, connected and
acyclic, whose edges go from the leaves to the root. Hence, to execute data consistency
tests over G yaro, there are at least two important features to check: connectivity of all
stretches and the binary tree-graph structure. The first feature can be ensured verifying if
there are unconnected vertices. To check that, we perform the Cypher query, that returns
the unconnected vertices:

START n = node(¥)
MATCH n-[r?]-()
WHERE r IS NULL
RETURN n

If at least one vertex is found, the database is inconsistent. The second constraint,
the binary tree structure, is checked selecting all vertices whose degree value is different

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 69

from 1 (start or end points) or 3 (river confluences), provided there are no cycles (since
the real world problem assumes mapping to trees). If at least one such vertex is found,
the database is inconsistent. To check that, we perform the Cypher query:

START n = node(*)
MATCH n-[r]-()

WITH count(r) as ¢
WHERE ¢ () 1 AND ¢ () 3
RETURN n, ¢

Next, we present some computational analyses that require to build views over Ggyaro
and how to solve them using Graph-Kaleidoscope.

All examples that follow are based on requirements by ANA experts. In the relational
database implementation of ANA, they either require queries with many recursive self
joins or long stored procedure code. Since the DBMS query system did not support
the computation of our examples, instead, are based on two steps. Step (1) consists in
constructing a view that rearranges the underlying graph into a new graph. Step (2)
poses a Cypher query on this new graph.

Moreover, we selected situations in our case study in which we can illustrate views as
depicted in Cypher. Example [4.6.1|shows graph views in a restriction role. Example [4.6.2
illustrate how our views can be used to restructure data. Finally, portrays the role
of views in support multiscale analysis.

4.6.1 View GVyygross4: Determining the Longer Drainage Stretch
of Watershed 454

The official territorial unit for the management of water resources adopted by ANA is a
watershed. A watershed is composed by a set of drainage points and stretches. It delimits
a drainage system channel and comprises the entire area that separates different water
flows. Every watershed has one main watercourse; following its layout, the watershed can
be split into a set of sub-watersheds and the process is applied recursively, as shown in
Figure {4.17

Each watershed receives a numeric ottocodd™ and the sub-watersheds have the same
ottocode as prefix (e.g., as shown in Figure , watershed 454 has 9 sub-watersheds
ottocoded as 4542, 4543,..., 4549). More details about this methodology can be found
in [69).

Two steps are needed to determine the longer drainage stretch of the watershed with
ottocode 454 in G'pyaro by constructing a view that restrict data. The view corresponding
to step (1), here called GViyydgroasa, creates a graph which is a subset of G gyaro, contain-
ing vertex type DrainagePoint and edge type is connected and only the occurrences
of is _connected whose attribute ottocode starts with the value 454. This can be con-
structed using the operator restriction, defined as:

19Thus called because of the Otto Pfafstetter methodology adopted

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 70

i

Figure 4.17: Ottocoded Watersheds - The code itself follows Pfafstetter methodology

O (substring(is__connected.ottocode, 1, 3) = 454) G yy4ro.(DrainagePoint,
is_connected, DrainagePoint)

where the restrict predicate checks for stretches with prefix 454 (substring is an auxiliary
function defined as substring (original string, start position, length). The resulting view
G'Viydroasa has the same schema that G4 and has 3.233 drainage stretches.

Step (2) performs a query over GViyaroasa, to retrieve the drainage stretch having the
longest length. This query can be expressed in Cypher as:

MATCH ()-[r:is_connected]-()
WITH max(r.length) as max

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 71

RETURN r

The result of this query is the occurrence of the is _connected edge type: (is_connected,
(DrainagePoint, {id:101961}), (DrainagePoint, {id:102102}), {stretch: 436742, length:
47.94, ottocode: 4544665}) whose length is 47.94 km.

4.6.2 View GVpgjper: Determining the Most Connected River

A river is a logical element of the water resources database. It is composed by all drainage
stretches that are connected and have the same hydronym (i.e., river name) - an immutable
attribute, which we associate with each stretch (named waterbody in our graph database).
Figure partially shows the drainage network under this perspective, that must be
constructed using a view. Here, besides length and average discharge, an important river
will be highly connected with other rivers and this is the feature that this query is looking
for.

~u9U Glargpy %, e . ~ w
0

Rig. ru
Rb@ﬂf
40,059, .
Rmeuau do Tamandud

%e,%

“Rio Ttarirl |

{

Prelado ou Comprido

\
Xuna do

Figure 4.18: Rivers View of Drainage Network

Two steps are necessary to determine the most connected river in Gpygr, by con-
structing a view that restructures data. The view corresponding to step (1) here called
GVRiver, Ccreates a graph in which each vertex, labelled as River, represents an entire river
and edges, labelled as is _connected, represent connections between rivers. This can be
constructed using operators group, attribute creation, rename and edge creation, defined
as:

GVp1 = 7Y (River, ic;.waterbody) Q¢ (River, neighbours, {icy.waterbody})
G.(DrainagePoint, is connected as ic;, DrainagePoint,is connected as ic,,
DrainagePoint)

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 72

GVpy = P (River, waterbody, name) GVp,

GVgiver = € ((is__connected, River, River), (R,.name € R,.neighbours))
GVpy.(River as R,, River as R,)

View G'Vp; was created by composing operators group and attribute creation. This
view is a graph having the vertex type River with two attributes: waterbody, the name of
the river, and neighbours, a set of the river names that share a drainage point with that
waterbody. GVpy is the input for the rename operator, which in turn creates the view
GVpy. GVps is next used by the edge creation operator to create GVgjer, which connects
two rivers R, and R, if the name of R, is on the list of neighbours of R,. The resulting
view GVgiver is partially shown in Figure G Hydro has 54.267 rivers.

River

is_connected
river:string
=

is_connected

is_connected

River

river: Rio Doce

' River
River

i . . river: Rio Piranga
river: Rio Santo Antonio

(b)
Figure 4.19: GVRjyer graph view schema (a) and state (b)

Step (2) performs a query over GVgiye, to retrieve the vertex with most connections
(higher degree). This query can be expressed in Cypher as:

START n = node(*)
MATCH n-[r]-()
RETURN n, count(r) as ¢
ORDER BY c desc
LIMIT 1

The result of this query is “Rio Sao Francisco”, the fourth longest river in Brazil that
crosses b states. Our query shows that “Rio Sao Francisco” is connected with 303 other
rivers.

4.6.3 View GVivaershed: Determining the Most Influential Sub-
watershed of a Given Watershed

As shown in Figure [4.17] every watershed has one main watercourse that divides it into a
set of sub-watersheds, building a watershed hierarchy. Each drainage stretch, part of the

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 73

watershed, has a hydrographic catchment area (HCA). An HCA, partially exemplified in
Figure [4.20] is an extent or an area of land where all surface water from rain converges
to a single point at a lower elevation, usually the exit of the basin, where the waters join
another body of water. An HCA is represented by a polygon and its area.

Figure 4.20: HCA: drainage stretches and their hydrographic catchment area

The influence of a watershed can be measured by the accumulated HCA of all drainage
stretches that are part of the watershed. This influence is the feature that this query is
looking for.

Let us take the watershed 454, illustrated in Figure [4.17] as an example. Two steps
are necessary to identify the most influential sub-watershed of watershed 454 in G gydro.
This is an example of multiple scales view — each ottocode level can be interpreted as a
watershed scale.

The view corresponding to step (1) here called GViyatershed, Creates a graph in which
each vertex, labelled Watershed, represent an watershed and edges, labelled part of,
represent the connections between watersheds. To reduce the data to be processed, this
view will be created on the top of GViyaresss instead of GVirygro. This can be constructed
using operators group, attribute creation, union, and edge creation, in the following syn-
tax:

GVp1 = 7Y (Watershed, substring(is _connected.ottocode,1,3))
(v (Watershed, hca, sum(is_connected.hca)) GViygrosss.(DrainagePoint,
is_connected, DrainagePoint)

GVpy = 7Y (Watershed, substring(is __connected.ottocode,1,4))
(v (Watershed, hca, sum(is_ connected.hca)) GViygrosss.(DrainagePoint,
is_connected, DrainagePoint)

GVps = U (GVp1,GVpo)

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 74

GVwatershea = € ((part __of, Watershed, Watershed), (substring(W¥,.ottocode, 1, 3) =
Wy.ottocode) GVps.(Watershed as W,, Watershed as 1},)

The first group operator creates GVp; with the watersheds level 3 (ottocodes with
length 3) and the second creates GVps with the watersheds level 4 (ottocodes with length
4). In both cases, the attribute creator operator to give rise to HCA sum needs to be
performed in the same G P than the group operator — the reason why both are performed
together.

Both outputs are inputs to the union operator, that creates GVps3, finally used by the
edge creation operator to create G'Viyuiershed, that connects two watersheds W, and W,
if the prefix of the ottocode of W, is equal to the ottocode of W;. The resulting view
GV atershea 18 partially shown is Figure 4.21] resulting in 10 vertices.

Watershed

part_of)
ottocode:string
4 hca:float

art_of
part_. Watershed

ottocode:454

‘ Watershed
Watershed
) ottocode:4543
ottocode:4541 hea: 6410.61
(b) hca: 3960.60
Figure 4.21: GViyiershea graph view schema (a) and state (b)

Step (2) performs a query over GViyatershea t0 retrieve the sub-watershed with highest
HCA of GVivatershed- This query can be expressed in Cypher as:

START n = node:nodes(ottocode = '454")
MATCH n-[]-(m)

WITH max(m.hca) as max

RETURN m

The result of this query is sub-watershed (Watershed, {ottocode: 4542, hca: 41.360,68}),
with HCA 41.360,68 km?.

4.7 Related Work

Some parts of the related work has already appeared throughout this text, in particular in
Section [4.3] and will not be repeated here. The first proposal for views in graphs appeared

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 75

in the 80’s, together with the first graph data models. Kunii’s research [56] very briefly
approaches graph views in her thesis, proposing a view definition composed by a list of
vertex type definitions and list of link type definitions. Each definition consists of two
elements: a specification of its structure and a specification of mappings that describe
how they are derived from a schema. The main limitation of this proposal was to assume
that only select expressions (with filters) are enough to create graph views. This work was
not followed by others, and as far as we know views on graphs were not further exploited
as such in related work.

With the arrival of graph database management systems, some view mechanisms have
started to appear in the last 3 years. An example of construction of views in graph
databases appears in [38]. The research concerns the development of efficient algorithms
to answer graph queries using a set of graph views. Here, a graph view is a graph pattern
query, i.e., a subgraph with a set of pattern nodes and a set of pattern edges. This was
proposed to support handling data in large and distributed databases.

Another example is found in |11, for optimization of view maintenance over graph
databases; this concentrates on efficiency issues, for deductive graph databases. A view
definition specifies the graph patterns used to derive views. For each match of the graph
pattern, an annotation is created to mark the match. A view graph consists of a set of
annotations that references all nodes that participate in a certain match. This approach
allows to deal with multiple graphs in a single view.

Similar to us, [43] proposes a graph data model. The authors define a graph data
structure, integrity rules and a set operators to deal with graph data based on property
graphs and hypernodes. The main difference from our approach is in the set of opera-
tors and the kind of graph restructuring allowed. The operators of [43] are based on
GrathIE-] and UML builders, separating the vertex on classes and instances and classi-
fying the edges as generalization, aggregation or composition. There is the idea of bind
graph patterns with graph templates, however it does not properly define or formalize the
operators.

Last but not least, the notion of graph views is also proposed for domains in which
relationships are analyzed under the so-called complex networks, which are sometimes
materialized in graph databases (e.g., [61]). The analysis of complex networks, however, is
not geared towards database-related issues; rather, the focus is on extracting and mining
relationships and patterns of connections across data elements. In this context, view-
like mechanisms are proposed to extract a portion of a network for analysis, but the
construction of such views is based on invoking queries using the database language.

Figure[4.22|presents a comparative table of these proposals and our framework in terms
of the different purposes of views presented in Figure [{.6] As can be seen, the general
idea of views in graphs is present in all approaches — they all deal with graph data and
adopt some kind of view definition mechanism/paradigm to describe how to derive graph
data from other data graphs. The main difference is the approach adopted: many employ
graph patterns to formulate graph queries. We, instead, define generic operators that can
be used to construct views over generic graph databases. Our operators allow to achieve
all purposes of a view presented in Figure mainly aggregation and restructuring not

Horaphql.org

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 76

cover by other works. Therefore, a view definition is also considered as graph query over
a set of base graphs and/or view graphs for deriving new view graphs.

Goal
Graph Data Approach
Structure Restrict | Aggregate | Restructuring
Kunii, 1083 Records and Yes No No Conditional S'elect
Links and Mapping
Fan, 2014 Directed Labeled Yes No No Graph Pattern
Graph
Directed Graph
Beyhl, 2015 | with Attributes Yes No No Graph Pattern
on Nodes
P ty Graph
Ghrab, 2015 roperty arap Yes No No Graph Operators
+ Hypernode
Lysenko, 2016 | Property Graph Yes No No Graph Query
Graph-
P Y Yi
Kaleidoscope roperty Graph Yes es es Graph Operators

Figure 4.22: Related Work — Comparative Table

4.8 Research Challenges and Lessons Learned

The notion of view as a particular perspective built on the underlying data is independent
from the database model. View mechanisms, however, are strongly dependent on the
underlying model. Graphs were chosen by us as the database model, since they are
appropriate to represent highly connected data, in which the connectivity information is
as important as the connected entities themselves (again, a requirement in environmental
applications). Graph models support explicit representation of relationships, as opposed
to the more traditional database (relational) models, which require costly computations
to derive such relationships — e.g. via foreign keys and joins.

This choice, though appropriate to solve expert requirements, posed many theoret-
ical and implementation challenges. First, there is no consensual graph data model
(namely, neither consensual data structure nor query language), and thus we had to
propose PGDM, discussed in this paper, to support all required operations. Second, once
a graph database is created according to certain user needs, it is almost impossible to
“turn the data over” to support alternative perspectives. Our views provide this restruc-
turing possibility, without the need to create a new database. Third, as also stressed by
[11], graph databases do not yet support views (in the sense that the view concept is
not fully supported by such databases, as opposed to relational or object-oriented views).
Therefore, we had to define the appropriate theoretical infrastructure.

Though seemingly simple, supporting views in graph databases involves many chal-
lenges that we had to face. The first is how to specify and compute a view. In rela-

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 77

tional databases, views are defined through database queries, using SQL. Unlike these
databases, there is no consensual query language for graph databases. Thus, to specify
Graph-Kaleidoscope, we had to analyze and compare several graph representations. As
a result, we concluded that we could not choose “the most adequate” model, given that
each proposal is geared towards distinct goals.

Another important issue, still connected with view generation, is the type of the
result returned. Queries in relational databases return tables (or values, in specific cases)
- and thus a view is always a table. Most graph query languages, however, can return
graphs, tables, or values. Since for us views have to be graphs, this posed the challenge
of defining appropriate operators, so that the result would always be a graph. All these
problems related to view generating functions were solved by us through the definition of
our elementary operators, all of which receive a graph as input, and produce a graph as
output. Their implementation in graph query languages is still an open problem, since
this will depend on each language.

We also had to choose between materializing views, or maintaining them as temporary
structures. Each of these options has pros and cons, discussed in relational database view
literature. We solved this through the definition of “sessions”, thereby allowing temporary
views, and at the same time supporting materialization when needed. A discussion of the
advantages and disadvantages of these options is outside the scope of our work, since it
involves, among others, performance issues, which we are not concerned with.

Last but not least, the choice of the framework persistence layers was a research chal-
lenge. NOSQL databases are a field in which there is much debate — e.g., are they really
database solutions or just products that are being developed to meet performance needs
that cannot be satisfied by relational databases ? To this end, which kind of features are
being disregard [77]7 Related work shows that graph databases bring flexibility to many
applications, being moreover inspired by a robust mathematical model, and centuries of
algorithms that have been thoroughly studied. Many real world problems can be directly
mapped to graphs. However, from an implementation point of view, there is still much
to be done before graph databases can be directly compared with relational databases.

4.9 Conclusions and Ongoing Work

This paper presented Graph-Kaleidoscope, a computational framework that supports
management of views in graph databases. Views, here, are provided to let experts exploit
multiple perspectives from the underlying data. This research was motivated by the needs
from researchers that deal with environmental, geographic data, characterized by a wide
heterogeneity of data that are highly related across multiple spatial and temporal scales.
This paper contributes therefore towards solving problems of multi-perspective research
in applications that are characterized by inter-disciplinarity (and thus multiple ways of
analyzing a problem). Graph-Kaleidoscope is characterized by: (1) use of graph databases
to store and analyze datasets of highly connected data; (2) adapting the concept of views
from relational databases to represent the idea of focus; and (3) specification and imple-
mentation of a graph view framework to support views over graph databases — views that

Chapter 4. A Framework to Handle Multiple Perspectives in Graph Databases 78

are themselves graphs.

Though we take advantage of work published on relational databases, our work dis-
tinguishes itself in at least two points. First, though view mechanisms are recognized
as useful, no such mechanisms exist in graph databases, for lack of a consensual model.
Second, unlike other proposals, our graph view operators allow creation of graphs with a
topology that is completely different from that of the underlying data, to accommodate
distinct semantic needs on top of stored data.

This notwithstanding, our specification is general enough so that Graph-Kaleidoscope
can be used in other research contexts, in which data present the same kind of charac-
teristics (e.g., for domains that deal with complex multi-scale networks, such as health
or biodiversity). Our paper also presents a preliminary prototype of our framework, used
to solve needs of researchers in water resource management, for a real life case study,
covering Brazil’s entire water network resources. The database used is public domain and
it is available in the official website of the Brazil National Water Agency.

Ongoing work covers both theoretical and implementation issues. Implementation
efforts require improvement in the framework’s code, in particular considering the under-
lying data catalogue, and generating function storage and indexing. Another direction
involves designing and developing a user-friendly interactive interface, to help users de-
fine and explore views. Still another issue is to try to (re)implement the framework using
another “stack” of graph representation and technology, e.g., RDF-SPARQL. From a the-
oretical point of view, we might think of considering other operators, e.g., defined as a
combination of our elementary operators, and to explore geographic features of data.

Chapter 5

Conclusions and Extensions

5.1 Overview

The research presented in this thesis concerns challenges in data-intensive science, in
particular to overcome the problem of supporting multiple perspectives on heterogeneous
datasets. Our motivation came from interdisciplinary and multifocus research, where each
stakeholder has a particular perspective on a given problem, e.g. dealing with a subset of
data, adopting specific vocabularies or considering objects from distinct domains together.
This scenario usually requires complex data transformation processes to create multiple
representations of the same real work phenomena.

The main tenet verified of this PhD research is that graph databases are a suitable
approach for handling a wide range of demands for managing heterogeneous data. More-
over, the concept of views, from relational databases, can be applied to provide multiple
perspectives, as proposed by [73].

The unstructured nature of data and the high level of importance of data connections
led the research to adopt the graph data management paradigm, a schemaless relationship-
driven NoSQL solution. Our definition of views is based on view generating functions, for
us a composition of graph operators. These operators are part of our PGDM model, the
property graph data model defined in this research. Based on this approach, we specify
and implement a prototype of a framework to handle views over graph databases, named
Graph-Kaleidoscope. The specification of our operators and framework are as generic as
possible and they can be implemented in different graph database engines.

Two different real world datasets — in biodiversity and in environmental resources —
were analyzed to gather the requirements of view mechanisms and to validate our research.
Both case studies can clearly benefit from our framework to perform complex queries. We
also believe that our solution can be extended and adopted by other kinds of application
domains with similar management and analysis requirements.

5.2 Main Contributions

Our first contribution, presented in Chapter [2| was to present the case for the use of graph
databases in multifocus research. From a study of data management requirements, we

79

Chapter 5. Conclusions and Extensions 80

justify the use of graph databases as a suitable persistence layer to meet these requirements
and to store/analyze datasets of highly connected data.

The second contribution of this thesis, presented in Chapter[d] is to propose a property
graph data model (PGDM) with a set of operators to manipulate and retrieve graph data.
Ours is a flexible approach, to be incorporated in any graph data structure and query
language. This is the main contribution of our thesis, proposed to fill the gap of the
absence of a full-fledged data model for graph databases.

The third contribution, introduced in Chapter [2] and formalized in Chapter [is to
define views for graph databases to support the need for multiple perspectives in inter-
disciplinary research. Views are specified through view generating functions, considering
graph data manipulation, classical algorithms and traversal tasks.

Our fourth contribution, presented in Chapters and [} is to analyze real life exam-
ples of interdisciplinary research and how they can benefit from our proposal. We present
how biodiversity and environmental resource datasets can be modeled and explored by
experts using graph databases and multiple perspectives, pointing out the advantages of
this approach.

The last contribution is presented in Chapter [d} the specification and implementation
of a prototype of Graph-Kaleidoscope to support views over graph databases using a
graph database engine.

5.3 Extensions

This research can be extended to different practical/implementation and theoretical as-
pects. Some possibilities are listed below.

e Document the prototype source code and make it available in a software repository.
This action will help disseminate our ideas and results outside the academic field to
the graph database community and start a practical discussion about how they can
bring new benefits to users and applications.

e Investigate performance issues to perform adaptations in our framework to improve
performance, i.e., to use less computational resources and to reduce execution time.
Index structures are usually adopted in conventional relational databases to improve
performance in data manipulation.

e Develop a graphical user interface to our prototype. The graph data structure
is often better understood in a visual way. Analogously, to provide a graphical
interface for view definition and exploration would improve our prototype, make it
more interesting to stakeholders.

e Include graph database configurations in our prototype to allow other graph database
management systems besides Neodj. DB-Engine Ranking]l| indicates the existence
of 26 graph databases engines, of which 9 are open source native graph database
systems and strong candidates to be used as persistence layer of our prototype.

! db-engines.com /en/ranking /graph+dbms

Chapter 5. Conclusions and Extensions 81

e Implement a new prototype using another stack of standards of graphs. As presented
in the thesis, RDF is a possible option, but a more complex one. The graph nature
of RDF triple syntax (subject-predicate-object) is indeed appealing, but the RDF
speciﬁcationﬂ falls short of a definition of a graph in a mathematical sense — e.g., the
definition of the set of vertices and edges, as pointed out by [49]. Consider a RDF
structure in which some resource p occurs as a predicate of some statements and as
the subject of others - should p be considered a vertex or an edge? Work with RDF
as a graph model will demand additional formalisms to mapping RDF statements
in graphs to base our framework. On the other hand, our framework would benefit
from the well established SPARQL query language to implement our operators.

e Gather new requirements of multifocus research. Due to the complexity involving
heterogeneous datasets, our thesis delimits a scope and a list of research problems to
deal with. Indeed, many other requirements can arise outside this initial scope, for
example, the need to dis aggregate a data record in smaller pieces of data. In Graph-
Kaleidoscope, this requirement may result in a new operator capable of splitting a
vertex or to create multiple edges between two vertices with a different meaning,
for instance.

e Design adaptations in our framework to explore semantic aspects of data. Connec-
tivity of data can refer to some semantic relation and it is possible to formalize the
context of a dataset through ontologies [45]. An initial approach is the edge creation
operator, which could consider as a possible predicate the existence of a semantic
relation between two attribute values, for instance.

e Design adaptations in our framework to explore geographic aspects of data. As
shown by our environmental resources case study, connectivity can also express
some kind of spatial correlation about data records. Thus, to consider geographic
coordinates in vertices, for instance, could be helpful in aggregation tasks or even
to restrict or project data based on topological relations. Another related extension
would be to include temporal predicates, e.g., temporal algebra.

e Design adaptations in our framework to accommodate classical graph algorithms.
Many analyses can be done finding a minimum spanning tree or a clique. Some cases
are mappable to our traversal operator, while other would be better performed with
specific algorithms. The proposal is centered on the adapting relational operators
to graph databases. Other graph analytical operators could also be examined.

e Analyze other multidisciplinary domains and datasets to validate the appropriate-
ness and flexibility of our solution. The health care domain, for instance, is com-
posed of many unstructured and highly connected data and requires interpretations
in many complexity levels, such as patients, drug, diseases, medical treatment pro-
tocols.

www.w3.org/ TR /2014/REC-rdf11-concepts-20140225

Chapter 5. Conclusions and Extensions 82

e Improve the integrity rules of PGDM. By definition schemaless, graph databases
and data models usually do not support constraints and integrity rules. The fact
that is not necessary to first create a graph schema and then use it leads to integrity
being frequently forgotten. Investigate this topic would bring more reliability to our
data model and therefore to our framework, e.g., adding business rules.

e Investigate issues motivated with view materialization, e.g., for performance issues.
This would also require conducting research on update propagation, view updata-
biliting and refresh mechanisms.

Bibliography

[1]

2]

131

4]

[5]

[6]

7]

18]

19]

S. Amer-Yahia, L. V. S. Lakshmanan, and C. Yu. Socialscope: Enabling information
discovery on social content sites. CoRR, abs/0909.2058, 2009.

P. Amirian, A. Basiri, and A. Winstanley. Efficient online sharing of geospatial big
data using nosql xml databases. In Proceedings of the 2013 Fourth International
Conference on Computing for Geospatial Research and Application, COMGEQO 13,
pages 152— Washington, DC, USA, 2013. IEEE Computer Society.

P. Amirian, A. Basiri, and A. Winstanley. Evaluation of data management systems
for geospatial big data. In Computational Science and Its Applications - ICCSA
2014, volume 8583 of Lecture Notes in Computer Science, pages 678—690. Springer
International Publishing, 2014.

J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The Definitive Guide Time
to Relaz. O’Reilly Media, Inc., 1st edition, 2010.

R. Angles. A comparison of current graph database models. In Proceedings of the
2012 IEEE 28th International Conference on Data Engineering Workshops, ICDEW
'12, pages 171-177, Washington, DC, USA, 2012. IEEE Computer Society.

R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput. Surv.,
40(1):1:1-1:39, February 2008.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver,
A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin,
and G. Sherlock. Gene ontology: tool for the unification of biology. the gene ontology
consortium. Nature Genetics, 25(1):25-29, May 2000.

M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, and S. Zdonik. The
object-oriented database system manifesto. In Francois Bancilhon, Claude Delobel,
and Paris Kanellakis, editors, Building an Object-oriented Database System, pages
1-20. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. TAMBIS—
Transparent Access to Multiple Bioinformatics Information Sources. In Int Conf
Intelligent Systems for Molecular Biology, volume 6, pages 25-34, Montreal, Canada,
June 1998.

83

BIBLIOGRAPHY 84

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

22]

P. Barcelo, C. Hurtado, L. Libkin, and P. Wood. Expressive languages for path
queries over graph-structured data. In Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, PODS
'10, pages 3—-14, New York, NY, USA, 2010. ACM.

T. Beyhl and H. Giese. Efficient and Scalable Graph View Maintenance for De-
ductive Graph Databases based on Generalized Discrimination Networks. Technical
Report 99, Hasso Plattner Institute at the University of Potsdam, 2015. Technical
Report No. 99.

C. Bizer. D2rq - treating non-rdf databases as virtual rdf graphs. In In Proceedings
of the 3rd International Semantic Web Conference, 2004.

V. Bonstrom, A. Hinze, and H. Schweppe. Storing rdf as a graph. In Web Congress,
2008. Proceedings. First Latin American, pages 27-36, Nov 2003.

P. Bouquet, M. Ehrig, J. Euzenat, E. Franconi, P. Hitzler, M. Kr6tzsch, L. Serafini,
G. Stamou, Y. Sure, and S. Tessaris. Specification of a common framework for char-

acterizing alignment. Knowledge Web Deliverable 2.2.1v2, University of Karlsruhe,
DEC 2004.

D. M. Boyd and N. B. Ellison. Social network sites: Definition, history, and scholar-
ship. Journal of Computer-Mediated Communication, 13(1):210-230, 2007.

U. Brandes and T. Erlebach. Network Analysis: Methodological Foundations (LNCS).
Springer-Verlag New York, Inc., Secaucus, USA, 2005.

Brazil. Lei federal de recursos hidricos (9.433). Diario Oficial [da] Republica Fed-
erativa do Brasil, Poder Executivo, Brasilia, 9 jan. 1997. Secao 1, p. 470, january
1997.

C.A. Brebbia and V. Popov. Water Resources Management VI. WIT transactions
on ecology and the environment. WIT Press, 2011.

D. Calvanese, G. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of conjunc-
tive regular path queries with inverse. In Anthony G. Cohn, Fausto Giunchiglia, and
Bart Selman, editors, KR, pages 176-185. Morgan Kaufmann, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of regular
expressions and regular path queries. Journal of Computer and System Sciences,
64(3):443 — 465, 2002.

C. Caracciolo, A. Stellato, A. Morshed, G. Johannsen, S. Rajbhandari, Y. Jaques,
and J. Keizer. The agrovoc linked dataset. Semantic Web, 4(3):341-348, 2013.

P. Cavoto and A. Santanche. Fishgraph: A network-driven data analysis. In Pro-
ceedings of the 11th IEEE International Conference on eScience, pages 1-10, Munich,
Germany, 2015.

BIBLIOGRAPHY 85

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for struc-
tured data. ACM Trans. Comput. Syst., 26(2):4:1-4:26, June 2008.

C.L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges,
techniques and technologies: A survey on big data. Information Sciences, 275:314 —
347, 2014.

E. F. Codd. Data models in database management. SIGMOD Rec., 11(2):112-114,
June 1980.

D. Colazzo and C. Sartiani. Typing query languages for data graphs. I. W. on Graph
Data Management: Techniques and Applications, 2014.

M. P. Consens and A. O. Mendelzon. Low complexity aggregation in graphlog and
datalog. In Proceedings of the third international conference on database theory on
Database theory, ICDT 90, pages 379-394, New York, NY, USA, 1990. Springer-
Verlag New York, Inc.

The International Genome Sequencing Consortium. Initial sequencing and analysis
of the human genome. Nature, 409(6822):860-921, February 2001.

D. C. Cugler, C. B. Medeiros, and L. F. Toledo. An architecture for retrieval of
animal sound recordings based on context variables. Concurrency and Computation:
Practice and Experience, pages 1-17, 2011.

R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 concepts and abstract syntax.
W3C recommendation, W3C, February 2014. http://www.w3.org/TR/2014/REC-
rdfl11-concepts-20140225/.

J. Daltio and C. B. Medeiros. Aondé: An ontology web service for interoperability
across biodiversity applications. Information Systems, 33(7-8):724-753, 2008.

J. Daltio and C. B. Medeiros. HydroGraph: Exploring Geographic Data in Graph
Databases. In Proc X VI Brazilian Symposium on Geoinformatics, pages 44-55, 2015.

J. Daltio and C. B. Medeiros. Hydrograph: Exploring geographic data in graph
databases (extended version). Brazilian Journal of Cartography, 68(6):1181-1189,
2016.

J. Daltio and C. B. Medeiros. Graph-kaleidoscope: A framework to handle mul-
tiple perspectives in graph databases). International Journal of data Science and
Analytics, 2017.

J. Daltio and C. Ba. Medeiros. Handling multiple foci in graph databases. In Springer
International Publishing Switzerland, editor, Lecture Notes in Bioinformatics (LNBI)
- Proceedings of 10th International Conference on Data Integration in the Life Sci-
ences, volume 8574, pages 5865, Lisboa, Portugal, 2014.

BIBLIOGRAPHY 86

[36]

137]

[38]

[39]

[40]

[41]

42]

43

|44]

[45]

[46]

[47]

48]

[49)]

[50]

V. Dhar. Data science and prediction. Commun. ACM, 56(12):64-73, December
2013.

N. Dimiduk and A. Khurana. HBase in action. Manning Publications, 1st edition,
2012.

W. Fan, W. Wang, and Y. Wu. Answering Graph Pattern Queries Using Views. In
Proc. 30th International Conference Data Engineering - ICDE, pages 167-176, 2014.

D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive queries with
regular expressions. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, PODS 98, pages 139-148,
New York, NY, USA, 1998. ACM.

P. Fox and J. Hendler. Changing the equation on scientific data visualization. Science
(New York, N.Y.), 331(6018):705-708, February 2011.

B. J. Fry. Computational Information Design. PhD thesis, Massachusetts Institute
of Technology, 2004. AAT0806331.

A. Furtado, K. Sevcik, and C. Santos. Permitting updates through views of databases.
Informations Systems, 4:269-283, 1979.

A. Ghrab, O. Romero, S. Skhiri, A. A. Vaisman, and E. Zimanyi. Grad: On graph
database modeling. CoRR, abs/1602.00503, 2015.

T. Goodwin and S. M. Harabagiu. Automatic generation of a qualified medical
knowledge graph and its usage for retrieving patient cohorts from electronic medical
records. In Semantic Computing (ICSC), 2013 IEEE Seventh International Confer-
ence on, pages 363-370, 2013.

T. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human-Computer Studies, 43(5-6):907-928, 1995.

N. Guarino. Formal ontology and information systems. In Proceedings of Formal
Ontology in Information System, pages 3-15. 10S Press, 1998.

A. Halevy. Answering Queries using Views: a Survey. The VLDB Journal, 10:270—
294, 2001.

S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321//.

J. Hayes and C. Gutierrez. Bipartite Graphs as Intermediate Model for RDF, pages
47-61. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

R. Hecht and S. Jablonski. Nosql evaluation: A use case oriented survey. In Cloud
and Service Computing (CSC), 2011 International Conference on, pages 336-341,
2011.

BIBLIOGRAPHY 87

[51]

52

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

[63]

T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, Redmond, Washington, 2009.

I. Horrocks. Ontologies and the semantic web. Commun. ACM, 51(12):58-67, 2008.

H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ra-
makrishnan, and C. Shahabi. Big data and its technical challenges. Commun. ACM,
57(7):86-94, July 2014.

F. Jouault and J. Bézivin. KM3: A DSL for Metamodel Specification, pages 171-185.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

P. Kivikangas and M. Ishizuka. Improving semantic queries by utilizing unl ontology
and a graph database. In Semantic Computing (ICSC), 2012 IEEE Sizth Interna-
tional Conference on, pages 83-86, Sept 2012.

H. Kunii. Graph data language : a high level access-path oriented language. PhD
thesis, University of Texas at Austin, 1983.

M. Levene and G. Loizou. A graph-based data model and its ramifications. IEEE
Trans. Knowl. Data Eng., 7(5):809-823, 1995.

M. Levene and A. Poulovassilis. The hypernode model and its associated query
language. In Proceedings of the fifth Jerusalem conference on Information technology,
JCIT, pages 520-530, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

L. Libkin and D. Vrgo¢. Regular path queries on graphs with data. In Proceedings of
the 15th International Conference on Database Theory, ICDT ’12, pages 74-85, New
York, NY, USA, 2012. ACM.

J. S. C. Longo and C. B. Medeiros. Providing multi-scale consistency for multi-scale
geospatial data. In Proceedings of the 25th International Conference on Scientific
and Statistical Database Management, SSDBM, pages 8:1-8:12, New York, NY, USA,
2013. ACM.

A. Lysenko, I. A. RoznovaTl, M. Saqi, A. Mazein, C. J. Rawlings, and C. Auffray.
Representing and querying disease networks using graph databases. BioData Mining,
9(1):23, 2016.

M. S. Martin, C. Gutierrez, and P. T. Wood. Snql: A social networks query and
transformation language. In Pablo Barcel6 and Val Tannen, editors, AMW, volume
749 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A. Bader. A performance
evaluation of open source graph databases. In Proceedings of the First Workshop on

Parallel Programmaing for Analytics Applications, PPAA ’14, pages 11-18, New York,
NY, USA, 2014. ACM.

BIBLIOGRAPHY 38

[64]

|65]

[66]

67]

68

[69]

[70]

71

72]

73]

[74]

[75]

[76]

7]

C. B. Medeiros, M. J. Bellosta, and G. Jomier. Multiversion Views: Constructing
Views in a Multiversion Database. Data & Knowledge Engineering, 33:277-306, 2000.

N. F. Noy and M. A. Musen. Specifying ontology views by traversal. In International
Semantic Web Conference, volume 3298 of LNCS, pages 713-725, 2004.

B. Olivier, S. Cohen-Boulakia, S. Davidson, and C. Hara. Querying and Manag-
ing Provenance through User Views in Scientific Workflows. In Proc. International
Conference Data Engineering - ICDE. IEEE, 2008.

C. Parent, S. Spaccapietra, and E. Zimanyi. Conceptual Modeling for Traditional
and Spatio- Temporal Applications: The MADS Approach. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

Y. Park, M. Shankar, B. Park, and J. Ghosh. Graph databases for large-scale health-
care systems: A framework for efficient data management and data services. 1. W.
on Graph Data Management: Techniques and Applications, 2014.

O. Pfafstetter. Classificacao de bacias hidrograficas: metodologia de codificacao.
Departamento Nacional de Obras de Saneamento (DNOS). Rio de Janeiro, RJ, 1989.

A. Poulovassilis and M. Levene. A nested-graph model for the representation and
manipulation of complex objects. ACM Trans. Inf. Syst., 12(1):35-68, January 1994.

I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media, Incorpo-
rated, 2013.

M. A. Rodriguez and P. Neubauer. Constructions from dots and lines. Bulletin of
the American Society for Information Science and Technology, 36(6):35-41, 8 2010.

A. Santanche, J. Longo, G. Jomier, M. Zam, and C. B. Medeiros. Multi-focus research
and geospatial data - Anthropocentric concerns. JIDM, 5(2):146-160, 2014.

A. Santanche, C. B. Medeiros, J. Jomier, and M. Zam. Challenges of the Anthro-
pocene epoch - Supporting multi-focus research. In Proc XIIT Brazilian Symposium
on Geoinformatics, 2012.

A. Silberschatz, H. F. Korth, and S. Sudarshan. Data models. ACM Computing
Surveys, 28(1):105-108, March 1996.

S. Spaccapietra, C. Parent, and C. Vangenot. Gis databases: From multiscale to
multirepresentation. In Proceedings of the 4th International Symposium on Abstrac-
tion, Reformulation, and Approzimation, SARA 02, pages 5770, London, UK, UK,
2000. Springer-Verlag.

M. Stonebraker. Sql databases v. nosql databases. Commun. ACM, 53(4):10-11,
April 2010.

BIBLIOGRAPHY 89

78

[79]

[80]

[81]

82|

83

[84]

[85]

R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah. Serving
large-scale batch computed data with project voldemort. In Proceedings of the 10th
USENIX conference on File and Storage Technologies, FAST’12, pages 18-18, Berke-
ley, CA, USA, 2012. USENIX Association.

A. A. Teixeira, A. M. Silva, G. S. F. Molleri, F. V. Ferreira, and A. J. Borelli. Pghydro
- hydrographic objects in geographical database (in portugueses). In Proceedings of
the 2013 Brazilian Symposium on Water Resources, pages 1-8, 2013.

C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A comparison
of a graph database and a relational database: A data provenance perspective. In
Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 10, pages
42:1-42:6, New York, NY, USA, 2010. ACM.

R. Volz, D. Oberle, and R. Studer. Implementing Views for Light-Weight Web
Ontologies. In Proc. of Int. Database Engineering and Application Symposium -
IDEAS, Hong Kong, China, 07 2003.

F. Y. Wang, K. M. Carley, D. Zeng, and W. Mao. Social computing: From social
informatics to social intelligence. IEEFE Intelligent Systems, 22(2):79-83, March 2007.

J. Webber. A programmatic introduction to neodj. In Proceedings of the 3rd an-

nual conference on Systems, programming, and applications: software for humanity,
SPLASH ’12, pages 217-218, New York, NY, USA, 2012. ACM.

P. T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50-60, April
2012.

S. Zhou and C. B. Jones. A multi-representation spatial data model. In I. S. on
Advances in Spatial and Temporal DBs, volume 2750 of LNCS, pages 394-411, 2003.

	Introduction
	Motivation
	Problem Statement and Research Problems
	Contributions
	Thesis Organization

	Handling Multiple Foci in Graph Databases
	Introduction and Motivation
	Theoretical Foundations and Related Work
	Graph Databases
	Views
	Multifocus Research

	A Framework to Generate Foci
	Running Example
	Example Focus 1: Location and Biomes
	Example Focus 2: Species ``Closely Related'' to Tinamus tao

	Conclusions and Ongoing Work

	Hydrograph: Exploring Geographic Data In Graph Databases
	Introduction and Motivation
	Research Scenario and Theoretical Foundations
	Brazilian Water Resources Database
	Graph Data Management Paradigm

	Implementation
	Original Relational Database: pgHydro
	Proposal Graph Database: HydroGraph
	PgHydro Functions

	Research Challenges
	Conclusions

	Graph-Kaleidoscope: A Framework to Handle Multiple Perspectives in Graph Databases
	Introduction
	Motivation Scenario - Brazilian Water Resources Database
	Theoretical Foundations
	The Graph Data Management Paradigm
	Extending Database Views

	PGDM: The Data Model of the Graph-Kaleidoscope Framework
	PGDM - Data Structure
	PGDM - Integrity Constraints
	PGDM - Elementary Operators

	Graph-Kaleidoscope Framework - Architecture and Prototype
	Case Study: Providing Perspectives of the Water Resources Database for Environmental Resource Applications
	View GVHydro 454: Determining the Longer Drainage Stretch of Watershed 454
	View GVRiver: Determining the Most Connected River
	View GVWatershed: Determining the Most Influential Sub-watershed of a Given Watershed

	Related Work
	Research Challenges and Lessons Learned
	Conclusions and Ongoing Work

	Conclusions and Extensions
	Overview
	Main Contributions
	Extensions

	Bibliography

