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Resumo

Devido à atual tendência mundial de urbanização, a sociedade moderna enfrenta, cada vez mais,

sérios problemas de mobilidade urbana. Além disso, com o aumento constante do fluxo de trá-

fego veicular, as atuais soluções existentes para gerenciamento de tráfego se tornaram ineficien-

tes. Com isso, para atender às crescentes necessidades dos sistemas de transporte, é necessário

sistemas de transporte inteligentes (ITS). O desenvolvimento de ITS sustentável requer integra-

ção e interoperabilidade contínuas com tecnologias emergentes, tais como as redes veiculares

(VANETs). As VANETs são consideradas uma tecnologia promissora que provê aplicações crí-

ticas de segurança e serviços de entretenimento, consequentemente melhorando a experiência

de viagem do motorista e dos passageiros.

Esta tese propõe um sistema de gerenciamento de tráfego de veículos sem a necessidade de

uma infraestrutura de apoio. Para alcançar o sistema desejado foi necessário propor soluções

intermediárias que contribuíram nesta tese. A primeira contribuição reside em uma solução

que emprega conhecimento histórico dos padrões de mobilidade dos motoristas para obter uma

visão global da situação da rede viária. Diferentemente de outras abordagens que precisam de

troca constante de informações entre os veículos e o servidor central, nossa solução utiliza in-

formações espaciais e temporais sobre padrões de mobilidade, além das informações específicas

da infraestrutura viária, a fim de identificar congestionamentos no tráfego, permitindo, assim, o

planejamento de roteamento de veículos. Como segunda contribuição, foi proposta uma solução

distribuída para calcular a intermediação egocêntrica nas VANETs. Por meio da métrica ego-

cêntrica foi proposto um mecanismo inovador de ranqueamento de veículos em redes altamente

dinâmicas. As principais vantagens desse mecanismo para aplicações de VANETs são: (i) a re-

dução do consumo de largura de banda e (ii) a superação do problema de topologias altamente

dinâmicas. A terceira contribuição é uma solução de planejamento colaborativo das rotas com

intuito de melhorar o gerenciamento do tráfego de veículos em cenários urbanos. Como última

contribuição, esta tese integra as soluções descritas acima, propondo um sistema eficiente de

gerenciamento de tráfego de veículos.

As soluções propostas foram amplamente comparadas com outras soluções da literatura

em diferentes métricas de avaliação de desempenho. Os resultados mostram que o sistema de

gerenciamento de tráfego de veículos proposto é eficiente e escalável, no qual pode ser uma boa

alternativa para mitigar os problemas de mobilidade urbana.



Abstract

Due to the current global trend of urbanization, modern society is facing severe urban mobility

problems. In addition, considering the constant increase in vehicular traffic on roads, existing

traffic management solutions have become inefficient. In order to assist the increasing needs of

transport systems today, there is a need for intelligent transportation systems (ITS). Developing

a sustainable ITS requires seamless integration and interoperability with emerging technolo-

gies such as vehicular ad-hoc networks (VANETs). VANETs are considered to be a promising

technology providing access to critical life-safety applications and infotainment services, con-

sequently improving drivers’ and passengers’ on-road experiences.

This thesis proposes an infrastructure-less vehicular traffic management system. To achieve

such a system, intermediate solutions that contributed to this thesis were proposed. The first

contribution lies in a solution that employs historical knowledge of driver mobility patterns to

gain an overall view of the road network situation. Unlike other approaches that need con-

stant information exchange between vehicles and the central server, our solution uses space

and temporal information about mobility patterns, as well as road infrastructure information,

in order to identify traffic congestion, thus allowing for vehicle routing planning. Secondly, a

distributed solution to calculate egocentric betweenness in VANETs was proposed. Through the

egocentric metric, an innovative vehicle ranking mechanism in highly dynamic networks was

proposed. The main advantages of this mechanism for VANETs applications are (i) reduced

bandwidth consumption and (ii) overcoming the problem of highly dynamic topologies. The

third contribution is a collaborative route planning solution designed to improve vehicle traf-

fic management in urban settings. As the last contribution, this thesis integrates the solutions

described above, proposing an efficient vehicle traffic management system.

The proposed solutions were widely compared with other literature solutions on different

performance evaluation metrics. The evaluation results show that the proposed vehicle traffic

management system is efficient, scalable, and cost-effective, which may be a good alternative

to mitigate urban mobility problems.
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Chapter 1

Introduction

This chapter presents the motivation, objectives, and main contributions of the thesis, as well as

the thesis outline.

1.1 Motivation

Urbanization is a worldwide phenomenon describing a movement of the countryside’s popula-

tion into urban areas. According to the United Nations’ report [132], for the first time in human

history, in 2007, more than half of the world’s population was living in urban areas, as can be

seen in Figure 1.1. Besides, the report also forecasts that two-thirds of the world’s population

will be living in urban areas by the year 2050.

Figure 1.1: Urban and rural populations of the world [132].

Figure 1.2 shows the microscopic view of the world’s urbanization. According to a study

carried out by the United Nations, only fourteen countries still have low levels of urbanization,

i.e., less than 20% of their population living in urban areas [132].

Rapid urbanization has greatly accelerated the economic and social development of citizens.

On the other hand, it has also created serious challenges in urban administration for public
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Figure 1.2: Urban agglomerations and urban percentage with over 500,000 inhabitants in

2018 [132].

authorities, for example, those related to vehicle traffic management.

A global leader of connected car services and mobility analytics, INRIX1, published the

2018 Global Traffic Scorecard that identified and ranked vehicular traffic congestion and mo-

bility trends in more than 200 cities, across 38 countries [74]. Figure 1.3 presents the top 25

most congested cities in the world. The figure shows that Moscow, Istanbul, Bogota, Mexico

City, and Sao Paulo represent the top 5 in the Global Congestion Impact ranking2.

According to research firm INRIX, in 2018, Americans lost an average of 97 hours a

year due to congestion, costing them nearly $87 billion, reaching an average of $1,348 per

driver [74]. For a microscopic view of this scenario, Figure 1.4 presents the top 25 most con-

gested cities in the U.S. As can be seen, Boston and Washington D.C. are the top two most

congested cities, and drivers in each city waste up to 164 and 155 hours in congestion, respec-

tively. Drivers from these two cities spend more than 15 hours per year compared to the next two

worst cities in terms of total hours: Chicago (138 hours) and Seattle (138 hours). This lost time

has an annual cost of $2,291, $2,161, $1,920, and $1,859, for drivers in Boston, Washington

D.C., Chicago, and Seattle, respectively.

A straightforward way to alleviate vehicular traffic congestion is to decrease the absolute

number of vehicles in circulation. To this end, a public policy well known as end-number

license plate policy was elaborated and implemented in most large cities. In this policy, all

registered vehicles are classified into five groups according to the last digit of the plate number.

Thus, each group of vehicles is prohibited from being driven in a particular region of the city

during the rush-hour of a certain business day. The work of Li and Guo [87] has demonstrated a

reduction in almost 40% of the daily emission and nearly 20% of traffic volume on public roads

after implementing the traffic restriction policy in Beijing city. The other typical policy is road

1http://inrix.com/
2Impact rank is a calculated commute based upon a city’s population and the delay attributable to conges-

tion [74]
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Figure 1.3: Top 25 most congested cities in the world [74].

pricing, which requires each driver to contribute to the costs of roads according to their level

of use. Rather than prohibiting, as the plate policy does, road pricing charges drivers who are

driving into the congested area during the business days [104].

Another way to minimize vehicular traffic congestion is by using information and communi-

cation technologies (ICT) through advanced traffic management systems (ATMS). SCOOT [72]

and SCATS [127] were two of the first systems that employed ICT for traffic management. The

SCOOT and SCATS systems need a traffic operation center (TOC) that manages all traffic lights

and optimizes the traffic light timings. Such systems, basically, during fixed time intervals, col-

lect the real-time traffic information by induction loops that are installed underground of major

urban roads. Using such information, the system can identify the vehicle flow on the induction

loop area, thus adjusting the time cycle of traffic lights. To optimize the traffic light timings and

control vehicles queuing in front of junctions, both systems need a TOC that manages all traffic

lights. Another ICT service commonly used for congestion control is the vehicle navigation

system. This type of system collects traffic information through the user’s mobile devices, and
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Figure 1.4: Top 25 most congested cities in the U.S. [74].

the best known are Google Maps3, TomTom4, and Waze5. Thus, the users of these systems can

monitor the current traffic conditions easily to plan their travel routes.

The current vehicles are equipped increasingly with a variety of computational resources,

for example, sensors, cameras, and wireless communication devices to facilitate the utmost

travel comfort and safety of drivers and passengers. Through the advancement of wireless

communication technology, a new paradigm of wireless networks, known as vehicular ad-hoc

networks (VANETs) [10, 40, 65, 68], is emerging. Thus, VANETs can collect, process and

share sensed data supporting various intelligent transportation systems (ITS) applications such

as ATMS and urban environment sensing. Thus, we firmly believe that VANETs can help

deal with urban mobility problems. Due to the current global trend of urbanization, modern

society is facing serious urban mobility problems, higher fuel prices, and an increase in CO2

emissions. In addition to that, with the constant increase in vehicular traffic on roads, existing

traffic management solutions have become inefficient. In order to serve the increasing needs

of transport systems, there is a need for ITS. Developing a sustainable ITS requires seamless

integration and interoperability with emerging technologies such as VANETs.

3https://maps.google.com
4https://www.tomtom.com
5https://www.waze.com
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1.2 Objective

The main objective of this thesis is to design, implement, and evaluate a collaborative and

infrastructure-less system for vehicular traffic management. To achieve this goal, we need to

answer the following questions:

• Many VANET-based traffic management systems [21, 48, 100, 109, 137] were proposed

to generate a global view of the road network, allowing the detection of all possible

road traffic congestions. These systems need constant information exchange between the

vehicle and the central server in order to obtain a global view of road traffic conditions.

In this regard, it is known that if this information exchange is not well managed, it can

lead to network overload.

Research Question 1: How can we obtain a global view of road network topology with-

out exchanging data between vehicles and the central server for traffic management pur-

poses?

• High mobility of nodes is the main characteristic of VANETs. Therefore, identifying

and selecting the best-located vehicles available at the right time and place for a given

application task through inter-vehicle communications is a very challenging task. The

best-located vehicle is defined as the importance of the car concerning the information

flows that passes through it. On the other hand, once it is identified, it can be beneficial

for a large number of services, such as those that spread the information flow through the

network.

Research Question 2: How can we dynamically identify the best-located vehicle among

the candidate ones, in a distributed manner, to perform a given application task?

• It is known that the primary goal of the vehicle rerouting algorithm is to move vehicular

traffic away from the congestion point. To this end, two main requirements for this type

of algorithm in VANETs are expected: (i) to calculate alternative routes for each vehicle

that can improve the vehicle’s path and also maximize the global network efficacy; and

(ii) to alert vehicles quickly so that they have enough time to compute a new route. To do

this, collaborative route planning was proposed to answer the question below. It is worth

mentioning that this type of planning takes into account the surrounding vehicles’ routes

to compute an alternative route.

Research Question 3: Can collaborative route planning help effectively minimize traffic

congestions without compromising scalability?

• Several systems have been proposed to deal with issues related to vehicular traffic man-

agement. Usually, their solutions include the integration of computational technologies

such as vehicular networks, central servers, and roadside units. Most of them apply a

hybrid approach, which means they still need a central entity (central server or roadside

unit) and Internet connection to achieve their objectives. It is known that integrating dif-

ferent types of technologies increases the cost of developing systems and often making

the implementation unfeasible.
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Research Question 4: Can infrastructure-less vehicular traffic management systems be

as efficient as infrastructure approaches and also scalable and cost-effective?

1.3 Main Contributions

The main contributions of this thesis are a people-centric approach for vehicular traffic manage-

ment, a comparative study on the egocentric and sociocentric betweenness measure in VANETs,

a distributed system for information management and knowledge distribution, and collaborative

and infrastructure-less vehicular traffic management. In summary, we have:

1. Routing Protocol using Mobility Pattern

This contribution concerns the proposal of a vehicle routing protocol. It is currently

known that there are anonymized datasets concerning the mobility patterns of the drivers6,7,8

in the urban center. Based on that, we proposed a protocol that uses historical knowledge

of mobility patterns of the drivers to obtain a global view of the road network situations.

Our approach has two different stages: (i) - Offline, in which the historical data process-

ing of the global view of the road network is performed in order to generate the mobility

patterns; and (ii) - Online, in which vehicles in the route to congested roads are re-routed.

The proposed protocol acts as a traffic monitoring system, having an overview of road

networks without needing to periodically exchange information status between the cen-

tral server and the vehicles. Simulation results (presented in Section 3.4) have shown that

such an approach could be a suitable alternative for traffic management. This protocol is

fully explained in Chapter 3.

2. Vehicle Ranking Mechanism

This contribution concerns the proposal of an innovative vehicle ranking mechanism

called Vrank. It is known that Google’s PageRank [108] algorithm ranks the importance

of webpages based on the number of web-links directed towards it. The general idea of

PageRank relies on a graph where nodes are webpages and edges depict the links between

them. Thereby, PageRank uses the link structure as an indicator of an individual page’s

importance in the structure of the World Wide Web relative to other pages. In general, the

higher the number of links, the greater the importance of the webpage. The idea of Vrank

is to use the link structure of VANETs to compute the vehicle’s score. To do this, we used

the Egocentric Betweenness Metric [4, 7]. Betweenness is a measure of how often a node

is located on the geodesic distance (shortest path) between other nodes in the network. It

thus measures the importance to which the node can function as a point of control in the

communication [107]. Intuitively, the betweenness metric measures the control a node

has over communication in the network. High betweenness value, thus implying that a

node can reach other nodes on relatively short path or that a node lies on a considerable

fraction of shortest paths connecting pairs of other nodes. Simulation results (presented in

6http://kolntrace.project.citi-lab.fr/
7http://www.vehicularlab.uni.lu/lust-scenario/
8https://crawdad.org/epfl/mobility/20090224/
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Section 5.4) have demonstrated that by using the Vrank, it is possible to make the system

scalable. This mechanism is fully explained in Chapter 5.

3. Collaborative Route Planning

This contribution consists of proposing, designing, and evaluating collaborative route

planning to improve vehicular traffic management on urban road scenarios. Generally

speaking, vehicles traveling in the congestion region collaborate by exchanging informa-

tion about their alternate routes chosen that bypass the congestion. The idea here is that

each vehicle plans its available alternative routes to the destination taking into account

the alternative route information received from surrounding vehicles [8]. Through this

collaboration, each vehicle can create an awareness to which roads vehicles are being

moved to, thus planning the most suitable alternative route and avoiding potential future

congestion. Simulation results (presented in Section 6.4.4) have shown that collabora-

tive decision making is more efficient than selfish decision making in alternative routes

planning. This mechanism is fully explained in Section 6.3.4.

4. Infrastructure-less Vehicular Traffic Management System

This contribution consists of proposing, implementing, and evaluating a collaborative

and infrastructure-less vehicular traffic management system in the urban scenario. It is

worth mentioning that such a system takes into account the contributions presented in

Items 2 and 3 previously presented to achieve its goal. Simulation results (presented

in Section 6.4) have demonstrated that the proposed solution tends to be more scalable

than infrastructure ones, and the collaborative routing strategy is more suitable in urban

mobility management. This system is fully explained in Chapter 6.

1.4 Thesis Outline

The structure of this thesis is outlined in chapters as follows:

• Chapter 2 presents an overview of the current taxonomy of ITS applications and also the

concept and challenges of using VANETs;

• Chapter 3 proposes and assesses a vehicular traffic routing that employs historical knowl-

edge of mobility patterns of the drivers to obtain a global view of the road network, called

APOLO. Such an approach does not require constantly exchanging information among

the vehicles and the central server in order to obtain a global view of road traffic condi-

tions;

• Chapter 4 depicts a thorough study by implementing and evaluating how well egocentric

betweenness performs compared to the sociocentric measure in VANETs. The main ad-

vantage of egocentric measures is to use only locally available knowledge of the topology

to evaluate the importance of a node. In this study, using the egocentric betweenness mea-

sure in highly dynamic topologies has demonstrated a high degree of similarity compared

to the sociocentric approach;
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• Chapter 5 proposes a system for information management and knowledge distribution

called TRUSTed. The proposed system applies the egocentric betweenness measure, in-

troduced in the previous chapter, to select the most relevant vehicle to carry out the tasks

of information aggregation and knowledge generation;

• Chapter 6 proposes and assesses a distributed system of urban mobility management

based on a collaborative approach in vehicular social networks (VSNs), called SOPHIA.

The VSN paradigm has emerged from integrating mobile communication devices and

their social relationships in the vehicular environment. Therefore, social network analysis

and social network concepts are two approaches explored in VSNs. Our proposed solution

adopts both social network analysis and social network concept approaches for alternative

route-planning;

• Chapter 7 concludes this thesis with a summary, directions for future work to ensure

continuous improvement in the current and related field of study and the publications

produced from this thesis.
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Chapter 2

Intelligent Transportation Systems

In the 20th century, the ITS concept was proposed by the United States (US); however, it has

become a topic of research and development worldwide, particularly in the European Union

(EU), Japan, and the US [17]. Although ITS may refer to all forms of transport, the EU has

limited its applications in the field of road transport [53]. This chapter introduces an overview

of ITS, as well as the background of VANETs on which this thesis is based.

2.1 Introduction

The increasing need for mobility in large urban centers has brought about important changes in

transportation infrastructures. Moreover, it is well-known that such urban centers are increas-

ingly overcrowded with vehicles, and the direct consequence of this is the population facing

unpleasant situations in daily life such as growing vehicular traffic congestions, as well as un-

predicted emergencies and accidents. The lack of mobility in urban areas has shown the need

to develop more efficient and safer transportation systems. To this end, traffic management

systems have applied information and communication technologies, emerging the so-called in-

telligent transportation systems [12, 65, 94]. ITS consist of different telecommunications and

computer technologies designed and developed to improve the management, monitoring, con-

trol, and safety of vehicular traffic.

ITS usually consist of multi-subsystems that combine tasks of data gathering, storage, pro-

cessing, and management tasks (Figure 2.1). Thus, real-time data sensing may be processed to

compute the communication network state, to plan a route, to dynamically manage traffic flows

in a particular area, and to report data from a logistics operator [45, 146]. In addition to that,

such subsystems need to work synchronously to meet the global objective of the whole sys-

tem [146]. In other words, ITS are made up of subsystems where each one has a well-defined

task to provide useful information to the end-user. Summing up, when ITS solutions are de-

signed, all the synergies among subsystems and the interests of all the stakeholders, such as

end-users, companies, and governments, must be specified. Thus, the system provides a com-

mon goal, designed based on the user requirements and the scope for the planning of a smart

transport system.

Public and private institutions play a vital role in promoting policies that help and support

the development of systems that improve the efficiency of current ITS. A typical example of this
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Figure 2.1: The key tasks of intelligent transportation systems.

is Horizon 2020’s project1 from the EU. This project includes a work-oriented towards Smart,

green and integrated transport2, which encourages projects and ideas related to ’Mobility for

Growth’ or ’Green Vehicles’.

In recent years, a large number of innovations, projects, and research have focused on issues

involving intelligent transport systems that will be detailed in Section 2.2.

2.2 Taxonomy of ITS Applications

ITS applications are often classified into five main categories according to their functionali-

ties: Environment, Assistance, Safety, User, and Traffic Management. Figure 2.2 provides a

taxonomy of this classification. The following is a brief explanation of each of them.

Environment category - The environment category focuses on providing detailed informa-

tion about the road environment situations, for example, weather prediction systems are based

on surveillance, monitoring, weather forecasts, and roadway conditions to perform the proper

management actions in order to improve the driving experience and alleviate the impacts of

unfavorable conditions. Road weather systems can be used to help make decisions concerning

strategies, route planning, and driver advisories. This type of system generally uses physical-

sensing devices (weather stations, such as humidity sensors, and temperature sensors) usually

deployed on roads to determine precipitation, air temperatures, smoke, fog, as well as other

external factors which directly increase the risk situations for vehicle occupants or affect road

maintenance decisions.

Assistance category - Assistance category aims to provide information, advice, and warnings

that assist or intervene in vehicle control, besides avoiding dangerous driving situations. For

example, parking spot locator systems indicate available parking places such as public roads,

garages, or parking lots. In this type of system, the radio-frequency identification technology

and GPS are commonly used to collect information from different parking spots, thus offering

drivers ample opportunities to park their vehicles. Tourism and event systems are developed

to attend the needs of travelers in unknown regions, indicating hotels, restaurants, concerts, or

1https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-green-and-integrated-transport
2https://trimis.ec.europa.eu/programme/horizon-2020-smart-green-and-integrated-transport
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Figure 2.2: Taxonomy of ITS applications.

sports events according to traveler preference.

Safety category - This category focuses on improving the safety of drivers and passengers by

reducing the number of accidents, injuries, and fatalities during the journey. A well-known

application from the security category is the lane-keeping system which helps keep a vehicle

within its lane. This system monitors road lane markings and recognizes any drifts outside

of this lane using onboard vehicular cameras [43]. Another example of this category is the

adaptive cruise control system which uses distance, speed, and radar sensors to manage the

speed and keep a secure distance away from the vehicles in front [126]. Blindspot information

is a system to alert the driver when a vehicle is detected to be approaching or entering the blind

spot area [27, 81]. Intersection collision warning systems use speed and position information

of vehicles to compute the likelihood of a collision. Every time the probability of collision is

higher than some established security range, a warning signal is transmitted.
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User category - The user category focuses on monitoring the drivers’ behavior such as fatigue,

alcohol levels, and emotional state disorders, which is essential for traffic safety and reducing

accidents. Drowsy driving warning systems aim to prevent accidents by analyzing facial ex-

pressions, including eye closure duration, eyelid movement, and eye blink times [136, 142].

In addition to that, radar sensors are employed to monitor the car’s movements and detect any

abnormality. Driver’s health monitoring systems are increasingly using low-cost, non-contact

technologies to measure physiological information [26, 31]. Usually, drivers’ physiological

monitoring parameters are captured by on-board camera images [26]. One of the advantages of

using camera images is that there is no electrical contact between the person and the equipment.

Therefore, when the system identifies that there is something wrong with the driver’s health, an

emergency vehicle can be called automatically. A driver’s emotion recognition system focuses

on identifying signs of irritation or fatigue that impair driving performance. Such systems use

electromyogram, respiration, and electrodermal activity signals combined with sophisticated

algorithms such as support vector machines and adaptive neuro-fuzzy interference systems to

classify and recognize these emotions [13].

Traffic Management category - The traffic management category has aimed to improve vehic-

ular traffic flow efficiency. Surveillance systems can be classified into two categories: the first

one, fixed surveillance systems that use cameras and sensors placed on the roads to monitor

traffic conditions. The second one, vehicular onboard-surveillance systems use cameras and

sensors embedded into support surveillance [33, 97]. Traditional traffic lights are increasingly

being replaced by intersection management systems for intersection control. In these systems,

vehicular and road infrastructure technologies and traffic control centers operate in an integrated

fashion to coordinate traffic efficiently [32]. Lane management systems aim to manage the avail-

able road capacity in special circumstances such as incidents, high-risk weather, or emergency

evacuations. This system utilizes cameras and different kinds of sensors (for example, infrared

and radar) to identify occupancy, velocity, and the direction of vehicles [58]. Traffic manage-

ment systems are becoming increasingly necessary in large urban centers, and the vehicular

ad-hoc network is a promising paradigm to help such systems [21, 48, 100, 109, 137].

2.3 Vehicular Ad-hoc Networks

In recent decades, sensors have become increasingly ubiquitous in our daily environment due

to their low production cost. Furthermore, we can observe sensors deployed in many areas such

as agriculture [19, 105], forestry [46, 99], healthcare [11, 117], and vehicle [88, 98] monitoring.

In the vehicular scenario, vehicle manufacturers are increasingly deploying sensors aiming to

provide services to end-users and also increase their satisfaction levels. Figure 2.3 depicts

an illustrative example of a set of sensors commonly found on current vehicles. Nowadays,

the estimated number of sensors in a modern vehicle is nearby 100, and as vehicles become

“smarter”, this number might rise up to 200 sensors per vehicle [65].

In addition to advances in sensor technology, there have also been advances in information

technology and communication. It is known that such advances allowed the emergence of a new

network paradigm well-known as VANETs. VANETs are a particular case of Mobile Ad-hoc

Networks (MANETs), whose nodes are made up of vehicles, and the orientation of public road
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Figure 2.3: Different types of in-car sensors.

limit node movements. In this kind of network, vehicles have wireless communication, pro-

cessing, and storage capabilities through onboard units, thus enabling to build communication

networks on the go spontaneously. In the VANET, each vehicle works as a host and also as a

router by forwarding packets to other vehicles inside the transmission range [93].

VANET support is of vital importance for near-future ITS applications [38, 52]. It is cur-

rently known that most vehicle manufacturers are supplying vehicles with onboard computa-

tional resources, wireless communication devices, and in-car sensors, in order to deploy large-

scale vehicular networks. By using different sensors together (RADAR, infrared, and ultra-

sonic), cameras, computational resources, and wireless communication, vehicles can gather

and process the data and return useful information or recommendations to help the driver to

make a decision [88, 98]. In the remaining sections of this chapter, we discuss some aspects of

VANETs that are necessary to understand the contributions made in this thesis.

2.3.1 VANET Characteristics

Figure 2.4 portrays a classification of VANET communications. It is well-known that communi-

cation can take place between nearby vehicles and between vehicles and roadside units (RSUs),

thus leading to the three communication possibilities, as explained below:

• Vehicle-to-vehicle communication - (V2V): The V2V provides direct communication be-

tween vehicles without relying on the support of static infrastructure. In this case, the
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vehicles themselves are responsible for data dissemination on the network by other ve-

hicles through multiple hops. It is noteworthy that the V2V communication link directly

depends on the density;

• Vehicle-to-infrastructure communication - (V2I): The V2I enables vehicles to establish

a communication link with a communication infrastructure, known as RSUs. RSUs can

serve as intermediate communication nodes or gateways, besides centralizing network

traffic. The advantage of the V2I is to increase connectivity and the ability to communi-

cate with other networks, such as the Internet. However, this benefit is only achievable

by installing numerous RSUs at the roadside and/or highways, increasing the cost of im-

plementation;

• Hybrid communication: It combines the benefits of V2V and V2I communications. In

this case, the infrastructure is utilized to increase network connectivity, i.e., a vehicle

can communicate with a fixed infrastructure in a single hop or multiple hops with other

vehicles according to the node’s location on the network.

(a) Vehicle-to-Vehicle (b) Vehicle-to-Infrastructure (c) Hybrid

Figure 2.4: VANET communications - Adapted from [40].

A VANET has some unique characteristics, listed below, which make it different from

MANET and also has some similar characteristics, such as omnidirectional broadcast, short

transmission range, and low bandwidth:

• Highly dynamic topology: The topology of vehicular networks keeps on changing because

of the high-speed movement of the vehicle. Vehicles usually travel at a relative velocity in

the order of 50 km/h in urban scenarios and over 100 km/h on highways [38]. In addition

to that, vehicles can quickly join or leave networks, in very short time periods, because

they may move in different directions;

• Frequent disconnections: The high dynamic mobility of vehicles leads to the reduction

of communication link stability. Consequently, the communication link between vehicles

can quickly disappear during data transmission;

• No power limitation: Unlike MANET nodes, nodes in VANET have minimal energy

dependency. They have a reliable power supply (vehicle battery) and this allows the

vehicle to have high computational power;
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• Constrained mobility: It is known that VANETs display highly dynamic topology; how-

ever, vehicles are constrained by roads, streets, and highways layouts, traffic laws and

regulations, and drivers’ driving behaviors. Given the mobility restrictions, it is possible

to predict the future position of the vehicle [38];

• Variable network densities: Network density can range from sparse, with few or no vehi-

cles within the transmission range, to dense, with many vehicles, as vehicles move. For

example, the density can be small as in rural areas or large as during rush hour in urban

centers;

• Variable signal propagation models: VANET applications are usually designed to operate

in one of these environments: urban, highway, and rural - or the combination of some of

them. Typically, on a highway, the propagation model, as free-space, can be considered,

but it is worth mentioning that this model can still experience interference by the reflection

from objects located around the roads. Due to the presence of buildings, trees, and several

other objects around in the urban scenario, the signal propagation in this environment

experiences shadowing, multi-path, and fading effects. In a rural environment, the local

topology should take into consideration (for example fields, dense forests, hills) in the

signal propagation, because such a topology can interfere in the wireless communication.

All characteristics listed above pose huge challenges to the design and implementation of

VANETs’ applications. It should be mentioned that the spatial-temporal constraints, different

types of vehicles, and drivers are factors that should be considered in the development of proto-

cols and algorithms in this type of network. Furthermore, due to these intrinsic characteristics

of VANETs, solutions developed for traditional ad-hoc networks, such as MANETs, typically

experience severe performance degradation when applied to VANETs [92].

2.3.2 Protocol Stack

The protocol stack for VANETs has to deal with communication between vehicles and between

vehicles and fixed roadside infrastructures. In the following sections, we present protocols for

VANETs according to each layer of the network architecture.

Physical Layer

Due to the unique characteristics of VANETs such as high mobility of nodes, short connec-

tion time, and frequent network partitioning, the specification of the inter-vehicle communi-

cation (IVC) standard was required. To meet this goal, both the U.S. Federal Communication

Commission (FCC) [36] and the European Telecommunications Standards Institute (ETSI) [55]

reserve the 5.85 GHz frequency for the spectrum allocation, as shown in Figure 2.5. The spec-

trum is divided into seven channels of 10 MHz for the American spectrum, and five channels for

the European spectrum. As depicted by the figure, both have four service channels (SCHs) for

safety and non-safety data exchange and one control channel (CCH). The difference between

them is that the American standard has expanded to include two more channels at both ends for

special uses [78, 28]. In the European spectrum, on the other hand, the 20 MHz (ITS-G5B band)

are allocated for the general-purpose of ITS and the 30 MHz (ITS-G5A band) for road safety
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services [55]. The main purpose is to enable vehicle-to-vehicle and vehicle-to-infrastructure

communications, besides enabling public safety applications. Private applications are also al-

lowed in order to lower costs and to promote DSRC development and adoption [28]. Further-

more, the DSRC supports a vehicle speed up to 200 km/h, the transmission range of 300 m (up

to 1000 m), and the default data rate of 6 Mbps (up to 27 Mbps) [79].
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Figure 2.5: Frequency allocation of FCC (top) and ETSI (bottom).

DSRC radio technology is also known as IEEE 802.11p WAVE (Wireless Access in Ve-

hicular Environments), a standard designed to support wireless access in VANETs. The IEEE

802.11p standard is meant to (i) describe functions and services that coordinate the operation in

a rapidly varying environment and exchange the message without having to join a Basic Service

Set (BSS), as in the traditional IEEE 802.11 use case; (ii) IEEE 802.11p also defines techniques

and interface functions that are controlled by the IEEE 802.11 MAC layer. Therefore, it is lim-

ited by the scope of the IEEE 802.11 standard, which means that the physical and MAC layers

work within a single logical channel [38].

MAC Layer

The intrinsic characteristics of VANETs, listed in Section 2.3.1, make their qualitative and quan-

titative analysis particularly critical, mainly when designing medium access control (MAC)

layer protocols. In addition to that, the MAC protocol design should take into consideration

different types of messages (event-driven messages, periodic messages, and informational mes-

sages) traveling on the network. Each type of message has different priorities and goals - for

example, event-driven messages are alert messages broadcasted to other vehicles about unsafe

situations that have been identified. Such messages have a very high priority [150]. This type

of message is essential to the operation of VANET applications. The big challenge for appli-

cations using such a message is to make sure that all vehicles intended to benefit from this

message receive it correctly and quickly [150]. Periodic messages are disseminated to notify

nearby vehicles about the vehicle’s current status (speed, position, and direction [122]). Usu-

ally, the data of this message is useful to all vehicles around the sender. Informational messages
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are non-safety messages, with a focus on infotainment applications in order to make driving

more convenient and comfortable. Unlike Event-driven messages, this type does not need high

priority but may require a high transmission rate.

Here, we have made a brief and concise classification of protocols dealing with MAC issues.

MAC protocols can be divided into two top-level categories: contention-free and contention-

based, as referred to in Figure 2.6. Contention-free MAC protocols are based on sharing

the channel efficiently at high uniform load [14]. Time-Division Multiple Access (TDMA),

Frequency-Division Multiple Access (FDMA), and Code-Division Multiple Access (CDMA)

are some examples. Pure contention-free MAC protocols are more appropriate for static net-

works and/or networks with centralized control [131].

Figure 2.6: Classification of ad-hoc MAC protocols [131].

Contention-based MAC protocols, on the other hand, are based on competition for shared

wireless channel access among attending nodes. Competition-based protocols are classified into

random access and dynamic reservation/collision resolution protocols. In random access proto-

cols, such as ALOHA, a node may access the channel whenever it is available. A modification

of ALOHA, namely Slotted ALOHA, includes synchronized transmission time-slots alike to

TDMA protocol. In this case, nodes can transmit only at the beginning of a time-slot leading to

doubled synchronization [141]. The Carrier Sense Multiple Access (CSMA) is another random

access protocol that decreases the possibility of packet collisions and improves the throughput

due to carrier sensing mechanisms. The main advantage of random access protocols is that they

are not susceptible to mobility and topology changes. Therefore, vehicle movements do not im-

pose any reconfiguration overhead due to the network topology changes. In order to deal with

the hidden and exposed terminal station problems, researchers have designed several proto-

cols utilizing dynamic reservation and/or collision resolution such as Multiple Access Collision

Avoidance (MACA) and MACA for Wireless LANs (MACAW). Both protocols apply Request-

To-Send/Clear-To-Send (RTS/CTS) control packets to prevent collisions. Besides them, there

are others that combine both carrier sensing methods and control packets such as Floor Acqui-

sition Multiple Access (FAMA), Sensor-MAC (SMAC), and IEEE 802.11 CSMA/CA [131].
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Network Layer

In VANETs, routing protocol strategies must be designed and implemented to provide reliable

communication and minimum interruption probability. Vehicular networks can support differ-

ent communication approaches, such as:

• Unicast communication: The main purpose is to perform data transportation through the

ad-hoc network from a source node to a certain destination (the other vehicle or RSU).

The communication may consist of just a single-hop to route the message or over multiple

hops toward the destination node. For multihop routing, a number of routing protocols

for ad-hoc networks can be considered proper. The destination node may be at either a

known location or an estimated location inside a specified range. There are two ways to

implement unicast routing such as uni- or bidirectional. The latter is the case for appli-

cations that require connection-oriented communication as opposed to several warning

applications, for which widespread unidirectional distribution is essential [123]. The

goal is to use the vehicular network for transporting messages, not the distribution of

messages [123];

• Geocast communication: The main purpose is the immediate distribution of information

in a geographic area, for example, to alert approaching vehicles about an unexpected situ-

ation or unusual road condition that requires attention by drivers. In the geocast mode, the

sender of the message defines a target region for the message to be sent and attaches such

a region to the message. After that, the message is transmitted to all immediate neighbors

within the transmission range. Each receiver located inside the specified destination re-

gion sends the message in a broadcast fashion. It is worth mentioning that in a situation

of high vehicle density, the forwarding protocol may be optimized to reduce redundancy

and improve scalability;

• Broadcast communication: Just like the geocast communication, broadcast communica-

tion has as the main purpose of the omnidirectional distribution of information. That is,

the neighboring nodes that received the message simply forward it to all other neighbors

in order to reach the maximum number of nodes. Here it is also necessary to imple-

ment some broadcast suppression mechanism to avoid communication overhead. The

broadcast communication strategy is also applied at the discovery phase of some unicast

routing protocols in order to determine an efficient route from the source vehicle to the

target vehicle [59, 84].

Transport Layer

The traditional transport layer is responsible for delivering data to the application process be-

tween host computers. The Transport Control Protocol (TCP) is a well-known transport layer

protocol that provides reliable end-to-end communication among application processes. To this

end, it incorporates different mechanisms such as flow rate control, error recovery, and con-

gestion avoidance. In traditional wired networks, the packet losses or transmission errors are

considered to be a consequence of network congestion, since the problems due to route dis-

connection are minimal [76]. When network channel congestion is detected, the TCP sender
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often reduces the sending rate, and also adjusts the congestion window size to decrease the sys-

tem load. Another well-known transport layer protocol is the User Datagram Protocol (UDP).

Unlike TPC, UDP provides no guarantee of package delivery between the application process.

It is well-known that TCP and UDP, end-to-end control protocols, were initially designed

for the wired network and they do not perform well on wireless networks [135]. In a VANET

environment, the frequent communication disruptions, caused by vehicle movement or natural

obstacles (trees, buildings, and others), are one of the main problems for the transport protocol.

Furthermore, in a VANET, packet loss and end-to-end delay can be caused by the high channel

contention, channel interference, or frequent connection breakage. Thus, it is essential for the

transport layer to have awareness about the channel quality condition. Through awareness,

VANET applications can work adaptively according to the situation.

A VANET transport layer has to deal with multi-hop and broadcast communication, as well

as considering routing protocols. The routing protocol design should be taken into consideration

to minimize the end-to-end delay during broadcasting messages. During the design, one should

also implement a control mechanism to avoid broadcasting storm problems because such a

problem occurs whenever the wireless channel is accessed simultaneously by all vehicles inside

the transmission range. In addition to avoiding the broadcast storm problem, network under-

utilization of bandwidth and unnecessary retransmission can also be avoided by the mechanism.

In order to accomplish multi-hop data dissemination and to restrict excessive retransmission of

messages, VANET applications need to pick up an optimal next hop vehicle as the forwarder

to continue data dissemination. Several strategies have been applied for picking up a proper

forwarder. Most of the proposed multi-hop broadcast protocols pick up the farthest vehicle in

the transmission range as the forwarder [6, 10, 106]. Depending on the wireless channel condi-

tions, the farthest vehicle will not always be the best one to forward the message. Thus, the best

link quality is another strategy applied, i.e., the vehicle with the best channel condition will be

picked up as the next forwarder [114, 119, 144]. Probability-based forwarding is another well-

known strategy. In this strategy, the vehicles will forward the message with a certain probability

attributed to them, thus the number of rebroadcasted messages will be reduced as only a few

vehicles will participate in the forwarding process. Usually, these protocols dynamically assign

value according to vehicle location and density of the network [89, 121, 147].

2.4 Final Remarks

The vehicular network is an essential paradigm for near future ITS applications, smart vehicles,

and smart infrastructure. VANETs comprise vehicles equipped with the capability to establish

wireless communications and self-organize into a collaborative network. Through this kind of

network, countless applications can be proposed and implemented, making travel safer, more

efficient, and more pleasant to end-users. In fact, VANETs are likely to become the most impor-

tant achievement of MANETs. This chapter has brought discussions on the main characteristics

of vehicular ad-hoc networks, architecture details, constraints of layers, and protocols, also

including a discussion about intelligent transportation systems.
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Chapter 3

A Mobility Pattern Analysis Approach to

Improve Urban Mobility

3.1 Introduction

Every year, the number of vehicles in urban areas increases exponentially, which is not fol-

lowed by road infrastructure expansion. This scenario leads to road traffic congestion, which is

a significant problem in modern societies, resulting in millions of gallons of fuel consumed and

time wasted in traffic. Consequently, the performance of many sectors in urban services (such

as health, economy, environment, and daily routine activities) is compromised [21]. Addition-

ally, this existing scenario generates high financial losses. For example, A&M Transportation

Institute and INRIX calculates that in 2018, the US lost [74]: (i) $87 billion dollars due to traffic

congestion; (ii) 6.9 billion hours of delayed person-hours; and, (iii) 3.1 billion gallons of wasted

fuel.

Therefore, over the last years, many researchers from both industry and academia are con-

centrating their efforts to deploy ATMS into urban centers. Such systems aim to explore dif-

ferent technologies, such as sensing and wireless communication, in order to improve urban

traffic management [47]. In recent years, ATMS solutions based on VANETs were proposed to

generate a global view of the road network, allowing the detection of all possible road traffic

congestions [21, 48, 100, 109, 137]. These solutions apply real-time processing of information

about the route to be traversed by all vehicles. This kind of approach has two problems: (i)

the data computing to assign new alternative route for each vehicle is very intensive, i.e., if the

processing time is too long, then vehicles can be already on congested roads; (ii) the intensive

communication among the vehicles and between vehicle and central server results in a network

overload.

In order to overcome these problems, we proposed APOLO (context-Aware and PeOple-

centric vehicuLar traffic rerOuting), a people-centric (driver’s information) approach based on

VANET technologies to improve urban mobility. Our approach has two distinct stages: (i) -

Offline, in which the historical data processing of global view of road network is performed

in order to generate the mobility patterns; and (ii) - Online, in which vehicles in the route to

congested roads are re-routed.

APOLO acts as a centralized traffic monitoring system, having an overview of road networks
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without the need for periodical information about the vehicles to perform real-time processing

that information. Furthermore, APOLO pro-actively classifies, in advance, traffic levels on the

road network based on historical knowledge of mobility patterns of drivers. Since the human

movement has a high degree of spatio-temporal regularity [64], APOLO uses space and tem-

poral information about mobility patterns, as well as information about the road map, in order

to identify traffic congestion, allowing the rerouting planning of vehicles. Employing these two

parameters, we can bring awareness and enhance the intelligence of systems by analyzing the

spatio-temporal data. The purpose of using historical mobility is twofold: (i) to obtain a global

view of the road network; and (ii) to avoid the constant data exchange between the vehicle and

the central server.

The chapter organization is the following. The next section discusses realistic mobility

traces available and analysis of the driver’s mobility patterns according to the chosen dataset.

Section 3.3 presents the proposed solution for vehicular traffic rerouting based on mobility pat-

terns of drivers. Performance evaluation and results are discussed in Section 3.4 and Section 3.5

concludes the chapter.

3.2 Realistic Mobility Traces

Although the movement behavior of humans has a significant degree of variation, human mo-

bility can generate structural movement patterns [35, 64, 149]. This fact occurs because the

displacement of people is constrained by a distance that they can travel during a period of time.

Thus, mobility patterns can be shaped by social relationships once we may be more likely to

visit favorite places, friend’s houses, and workplaces.

Therefore, a better understanding of human mobility can bring benefits to many urban ser-

vices, mainly the ones related to the user’s location. For example, location-based recommen-

dation, content-based delivery networks, and traffic management [57]. Next, we describe situa-

tions where this kind of information can improve urban services.

3.2.1 Trace of Luxembourg

A trace usually describes the movement of objects by a temporal sequence of spatial points

with their timestamps. It has information about people and dynamic cities, such as vehicular

mobility, human activity, and social events.

Vehicular traces are a kind of dataset that contains information about the movement of ve-

hicles within a specific area. In this way, these traces can present the behavior of drivers in a

particular scenario. The vehicular mobility traces are created through the merge of the map and

vehicular traffic information with a vehicular mobility simulator. Several vehicular mobility

traces of real cities can be found in the literature, such as San Francisco1, Shanghai2, Cologne3,

and Luxembourg4. However, only the Luxembourg trace includes a realistic trace with public

1http://crawdad.org/epfl/mobility/20090224/
2http://wirelesslab.sjtu.edu.cn/taxi-trace-data.html
3http://kolntrace.project.citi-lab.fr/
4http://www.vehicularlab.uni.lu/lust-scenario/
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(a) Morning rush hours peak.
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Figure 3.3: Cumulative distribution function.
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3.3 APOLO: Context-Aware and People-Centric Vehicular

Traffic Rerouting

This thesis presents the context-Aware and PeOple-centric vehicuLar traffic rerOuting (APOLO)

approach to avoid road congestion caused by an expected event (traffic jam). APOLO makes

use of the extensive knowledge of the vehicular traffic behavior of the city to achieve the desired

goal.

3.3.1 Road Network Representation and Estimation

APOLO builds a set of weighted graphs using the road map information and mobility patterns

of drivers (based on spatial and temporal analysis). Before explaining how the weight was

calculated, a definition of the road network structure is necessary.

Definition 1 We consider a road network as a graph G = (V,E), where intersections or dead

ends correspond to set of vertices V = {v1, v2, ..., vr}, while road segments correspond to set of

edges E = {e1, e2, ..., es}, and an edge k is represented as ek = (vi, vj) ∈ E and i 6= j. Let pi
be the route of a vehicle i from two points (origin and destination), i.e., set of ordered edges. Let

N = {n1, n2, ..., nt} be a set of nodes (vehicles) and P = {p1, p2, ..., pt} a set of path (routes)

for each ni that can be defined in G. Then, the route of a particular vehicle k can be defined as

follows pk = {e′1, e′2, ..., e′u}, where e′i represents the ith edge and u represents the total number

of path to be covered.

Furthermore, the weight of each edge (ei) denotes the road traffic density and it is repre-

sented by W = {w1, w2, ..., wi}. The weight equation was modeled to be inversely proportional

to the vehicular traffic condition, i.e., congested roads have greater weight than free-flow roads,

as shown in Equation 3.1. In this case, edges with low utilization rate are associated with lower

weight, where wi ∈ (0, 1].

wi = 1− vavgi

vlimi × di
| di > 0 (3.1)

where vavgi , vlimi , and di represent the average speed, maximum road speed, and density, respec-

tively, of ei.

3.3.2 Traffic Condition Classification

In this thesis, K-Nearest Neighbor (KNN) [85] algorithm is used to perform traffic condition

classification, since it often achieves near-optimal results with low complexity in many domains

[42].

Next, the KNN algorithm is explained, where the following notation is applied. Assuming

the need to classify M entities into N classes, let C = {c1, c2, ..., cN} be a set of classes,

while training dataset corresponds to T = {(x1, c1), (x2, c2), ..., (xs, ct)} of M entities xs (s =

1, 2, ...,M) and their corresponding class label ct (t = 1, 2, ..., N) in C. According to KNN

algorithm, an unclassified example, xi, is attributed to a class that represents the class majority

of its k-nearest neighbor in T .
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Overall, the KNN algorithm needs a sample database to be trained. To this end, we built a

synthetic dataset according to the Highway Capacity Manual (HCM) [95]. This manual includes

guidelines, concepts, and methods for measuring the quality of service, based on speed, vehicle

length, road capacity, and density of vehicles. Such a dataset was developed based on the

Level-Of-Services (LOS) from the manual. HCM employs six different LOS (A to F) to define

the traffic conditions on each road segment. A denotes the best quality of service (free-flow

conditions - 0) and F denotes the worst (severe traffic congestion - 1).

From the training dataset, it is possible to identify all levels of service on the road, where

each one of them is based on traffic density proposed by HCM. Thus, traffic condition classifi-

cation was used to generate the set of weighted graphs. Furthermore, to avoid false positives,

the road density was combined with the average road speed to define the traffic condition. It

is worth mentioning that the density is given by the percentage of vehicles on the road by the

maximum capacity. Therefore, the traffic congestion classification is defined such as free-flow

= 0, slight congestion = 1/3, moderate congestion = 2/3 and intense congestion = 1 [21], as

shown in Table 3.1. This classification is constantly made at a predefined interval t, where t is

defined by the application.

Table 3.1: Traffic Condition Classification.

Density

Low Medium High Very High

S
p
ee

d

Fast Free-flow Free-flow Free-flow Light

Medium Free-flow Free-flow Slight Moderate

Slow Free-flow Free-flow Moderate Moderate

Very Slow Slight Moderate Moderate Intense

3.3.3 Congestion Identification and Rerouting Strategy

Periodically, APOLO checks, in advance, the level of network density in the set of weighted

graphs to detect signs of road traffic congestion (Moderate and Intense). Thus, APOLO identi-

fies a sign of road congestion, it plans the rerouting just the vehicles that will move toward the

congested road, and their final destination is not on it.

Our rerouting strategy uses a globally optimal approach for all vehicles in the road network.

Unlike traditional strategies, where optimal routes are selected individually for each vehicle

(it may cause switch traffic congestion to another spot), APOLO applies a global strategy. The

global strategy can maintain high traffic flow, and for that, some vehicles may have an additional

travel distance in their route.

The rerouting strategy was implemented as a greedy search algorithm based on the weight

of each edge, i.e., the next road is selected according to the lowest weight. Moreover, after

selecting the next road, APOLO updates the edge weights, based on new vehicle routes, and the

mechanism continues until establishing a complete route. Every time a new route is built to a

particular vehicle, APOLO sends the updated route information directly to the defined recipient.
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Algorithm 1 presents the main process of our approach. It has as input the set of vehicles

(represented as N ), road network (represented as R), and set of historical data of mobility

patterns of drivers (represented as I). The output represents a new alternative route of each

vehicle that will move toward the congested road. Algorithm 1 has two phases: (i) - Offline -

historical data processing to generate a set of weighted graphs; and (ii) - Online - the selection

of vehicles to be rerouted, when traffic congestion is identified.

Algorithm 1: Congestion avoidance and control

inputs : N set of vehicles; R road network; I set of historical data of mobility patterns of

drivers

output: New alternative path

Offline: Generation of a set of weighted graphs:

setGraph = setWeightedGraph(R, I)

Online: Selection of vehicles to be rerouted, when traffic congestion is identified

1 foreach period of time do

2 congestedRoads = congestionIdentification(setGraph,N);
3 if #congestedRoads > 0 then

4 foreach road ∈ congestedRoads do

5 vehicles = selectedvehicles(roads)

6 foreach veh ∈ vehicles do

7 if vehDest 6= congestedRoad then

8 newRoute = getNewRoute(veh, setGraph);
9 setGraph = updateSetGraph(newRoute);

10 sendMessage(veh, newRoute)

APOLO periodically checks possible road traffic congestion (Lines 1 and 2 in Algorithm 1).

Whenever a possible congestion is identified (Line 3), APOLO reroutes just the vehicles that

will move toward it and their final destination is not the congested road (Lines 4 to 8). After

updating the graphs (Line 9) a message is sent to the vehicle to deploy the new path (Line 10).

3.4 Performance Evaluation and Results

It is worth mentioning that no selfish nodes were considered (i.e., all vehicles travel by the

recommended path from APOLO). Additionally, CO2 emission and fuel consumption were

calculated from the model implemented in SUMO (HBEFA-v3.1-based5 - Handbook Emission

Factors for Road Transport) functionality to evaluate emissions. Finally, the results are pre-

sented with a confidence interval of 95 %.

During the performance evaluation, the value of the K (number of neighbors of the K-NN

classifier algorithm) was experimentally chosen to be 5. In order to evaluate the performance

of the APOLO, six metrics were used and are described in detail below:

• Travel distance: Average distance traveled by all vehicles;

5https://sumo.dlr.de/docs/Models/Emissions.html
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Chapter 4

Egocentric and Sociocentric Betweenness

Measure in VANETs: A Comparative

Study

4.1 Introduction

Centrality is a concept widely employed in social network analysis (SNA) to classify nodes as

central or, more important, in the network [23, 139]. Several approaches have been developed to

compute node centrality [23]; however, the three most commonly used approaches in SNA are

degree centrality, closeness centrality and betweenness centrality [61, 102]. Although there are

different centrality metrics in the literature, most of them fit into two categories such as radial

and medial measures [23]. Radial measures assess information flow that originates from or ends

at, a given node. It includes degree and closeness centrality. On the other hand, medial measures

assess the geodesic distance that crosses a given node [23], which includes all variations of the

betweenness centrality.

The calculation of centrality measures requires global knowledge of the network topol-

ogy [96], but very often, this knowledge is not available. Besides, it is usually difficult to obtain

this information in large-scale or highly dynamic networks. Taking this into consideration,

the concept of the ego-network has attracted great attention in the scientific community. This

stems from the fact that its topological analysis can be carried out locally by individual nodes

without the need for global knowledge of the network [56, 86, 96]. Another advantage of the

ego-network is the simple structure to collect data compared to collecting data from the entire

network. By definition, the ego-network is a subnetwork centred on a single node, called the

ego, whereas one-hop nodes are called alters [86, 96]. In an ego-network, only the nodes that

are directly connected to the ego belong to the subnetwork [86, 96].

It is known that the message delivery in VANETs is a difficult task due to the highly dynamic

topology [9, 10]. Therefore, a key challenge, in this type of network, is to find a path among

the nodes that can provide good information flow. A good alternative is to apply centrality mea-

sures. However, some centrality measures may not be appropriate enough in the information

flow in the network. For example, degree measure is not suitable for that [4, 7, 41]. On the other

hand, the betweenness centrality is more suitable to deal with flow information through the net-
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work [39, 41, 133]. Based on the idea of ego-networks and the betweenness centrality measure,

another perspective in SNA has emerged, named egocentric betweenness [96]. The egocentric

betweenness measure has been adapted for several types of networks such as wireless sen-

sor networks [39], delay-tolerant networks [41] and wireless mesh networks [133]. However,

this measure has not been systematically investigated in vehicular ad hoc networks (VANETs),

which have unique characteristics such as high mobility of nodes, short connection time, and

frequent network partitioning.

The development of services over VANETs has attracted researchers from both academia

and industry due to the wide diversity of applications. They can range from vehicle traffic mon-

itoring, system-aided navigation, and cooperative collision warning, to infotainment [15, 67,

68, 128]. Many of these services need to be aware of the local situation [67, 68]. To reach

this awareness, one can take advantage of either cooperative awareness message (CAM) [54]

(European standard) or the basic safety message (BSM) [75] (American standard). In both

standards, the messages contain information regarding vehicle status such as position, speed,

direction, location coordinates, and other vehicle information [122]. The process of acquiring

local awareness is usually performed by broadcasting one-hop messages. As a result, each vehi-

cle will be aware of its neighbor vehicles within its transmission range. The periodic exchange

of one-hop messages is known as beaconing [122].

Due to the instabilities in the communication links induced by the highly dynamic topology,

calculating the betweenness centrality scores in a VANET is a challenging task. On the other

hand, once having identified the highest-betweenness centrality node in the network, it can be

used as a facilitator node to spread the information flow [41]. This measure has been frequently

applied in the design of efficient data forwarding algorithms, for instance, in wireless sensor

networks [39].

A distributed approach to calculate the egocentric betweenness score was implemented and

evaluated with the sociocentric metric in order to prove the feasibility of the egocentric be-

tweenness measure in VANETs. To this end, we use a beaconing mechanism to broadcast

one-hop messages about its local information. Once local information is received, each vehicle

can compute its egocentric betweenness score. The main goal is to present the similarity of

betweenness centrality considering two approaches: local knowledge-based (egocentric) and

global knowledge-based (sociocentric).

The remainder of this chapter features the egocentric betweenness measure applied in differ-

ent areas (Section 4.2). This is followed by the calculation of centrality in sociocentric and ego-

centric networks in Section 4.3. Section 4.4 presents how the egocentric betweenness measure

was computed in VANETs. Simulation experiments and results are presented in Section 4.5. In

the end, Section 4.6 gives the final remarks.

4.2 Egocentric Betweenness Measure in Different Areas

In this section, we survey the works that use the egocentric betweenness measure in different

areas, such as wireless sensor networks [39], mobile ad hoc networks [41] and wireless mesh

networks [133]. Each distinct area has had to deal with several critical issues related to their

own characteristics.
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Cuzzocrea et al. [39] investigated the problem of the quality of service (QoS)-based topol-

ogy control over wireless sensor networks. To this end, a weighted, bidirectional topology-

control algorithm named edge-betweenness centrality (EBC) was proposed. EBC selects the

suitable set of neighbours in which input QoS requirements may be satisfied. The idea here

is to select from the target network appropriate logical neighbours of the former nodes, i.e.,

a subset of neighbours that can be employed to perform application-specific procedures (for

instance, message delivery) without the need to include all nodes of the network. The authors

have demonstrated that this approach allows achieving a high QoS in wireless sensor networks

using evaluating the relationships between entities of the network (i.e., edges). This provides

the capability of controlling the information flow, the message delivery, the latency, and the

energy dissipation among nodes.

The authors of SimBet routing [41] proposed an algorithm for forwarding data packets in

disconnected delay-tolerant MANETs based on social network analysis techniques. For this

purpose, they designed and implemented the routing protocol, which used two components:

(i) betweenness utility, which exploits the exchange of pre-estimated egocentric betweenness

centrality scores; and (ii) similarity utility, which selects the node that provides the maximum

utility for carrying the message. Based on these components, SimBet chooses which node

provides the maximum utility for carrying the message. Simulation results have shown that it

achieves good performance comparable to epidemic routing, with low network overhead. Addi-

tionally, the authors have illustrated that the employment of the egocentric betweenness metric

may prove useful in any distributed systems, where global topology knowledge is inaccessible

and, especially, where the underlying networks present small-world characteristics.

Vazquez-Rodas et al. [133] proposed a protocol for topology control in wireless mesh net-

works to improve energy efficiency and the battery lifetime. The proposed mechanisms choose

which devices must act as routers, forwarding the data packets received from other hand-held

devices to it. In order to select the devices, centrality metrics are applied, from social net-

work analysis, to build a topology control mechanism based on a connected dominating set.

The mechanism’s implementation and evaluation have been carried out in two modes, i.e., cen-

tralized and distributed. In the centralized mode, the three most common centrality measures

(degree, closeness, and betweenness) were employed. In the distributed mode, the egocentric

betweenness measure was applied. Through the experiment results, it was verified that the use

of the centrality measures contributes to better network performance.

4.3 Sociocentric and Egocentric Centrality Measures

In SNA, the centrality measures indicate the importance of a node within a graph. This is per-

formed by taking into account all connections from the node (or the ones that pass through it)

to other nodes [41, 61]. The importance of a node can be computed by means of centrality

measures such as degree, closeness, betweenness, among many others. SNA can be divided

into two network analysis approaches: ego-network analysis (egocentric) and global network

analysis (sociocentric). The former studies the relationships existing from the perspective of

a participant. The latter tries to observe all relationships between the participants within the

network. In this section, we will study the difference between sociocentric and egocentric cen-
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trality measures for network analysis. In Subection 4.3.1, the most commonly-used centrality

measures in sociocentric analysis will be described, while in Subection 4.3.2, the centrality mea-

sure used in the egocentric analysis will be detailed. Finally, Section 4.3.3 gives the complexity

analysis of both measures.

4.3.1 Sociocentric Centrality Measures

Centrality measures are the most useful mathematical models developed for SNA [82]. These

measures aim to understand the structural properties of social relationships. For instance, a

participant with a high centrality score usually has a higher degree of influence than other

participants within the network. According to the SNA, the network structure consists of an

undirected graph, and its definition is presented below.

Definition 2 Let G = (V,E) where V corresponds to a set of nodes (v), also called vertices

or actors and E corresponds to a set of edges (e, where e ∈ E ⊆ V × V is identified by a

pair of nodes), also called ties. We represent the neighbourhoods of the node v′ as the set of

nodes v ∈ V reachable in r hops (N v
r ). Thereby, N v

r = {v′ ∈ V |v′ 6= v ∧ d(v, v′) ≤ r}, where

d represents the geodesic distance between nodes. Furthermore, a graph can be defined as a

two-dimensional adjacency matrix A, where each element aij takes a value of one if an edge

connects the node i to the node j (i 6= j) and zero otherwise.

Freeman’s degree, closeness and betweenness measures are the most commonly-used cen-

trality metrics in sociocentric analysis [23, 41, 61]. They are briefly described below.

Degree centrality is the simplest and the most well-known measure. It assesses the number

of direct ties that involve a given node, i.e., it is the number of adjacent edges [61]. A node

with a high degree of centrality can be seen as popular because it has a large number of ties

to others [20]. According to the work of Wasserman and Faust [139], the degree can also be

considered as a measure of local centrality. Therefore, degree centrality of a given node, pi, can

be mathematically represented as:

CD(pi) =
N
∑

j=1

e(pi, pj) (4.1)

where e(pi, pj) = 1 means a direct link exists between pi and pj , otherwise e(pi, pj) = 0.

Closeness centrality is defined by the geodesic distance d of a subset of nodes that are mu-

tually connected in the network [61], i.e., it measures how close a node is in relation to all

other nodes in the network. This measure can be represented as an indicator of how long infor-

mation will take to be propagated from a given node to other nodes within the network [102].

Therefore, closeness centrality for a given node, pi, can be mathematically represented as:

CC(pi) =
(N − 1)

∑N

j=1 d(pi, pj)
(4.2)

where N is the number of nodes in the network and i 6= j.

Betweenness centrality is usually calculated as a fraction of the geodesic distance between

all node pairs that pass by a determined node [102], i.e., it is based on the idea that a node is
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central if it is located on the shortest path between other pairs of node sets within the network.

This measure is often applied as a metric of the influence of a node on the spread of information

compared to other nodes of the network [20]. Therefore, betweenness centrality for a given

node, pi, can be mathematically represented as:

CB(pi) =
N
∑

j=1

j−1
∑

k=1

gjk(pi)

gjk
(4.3)

where gjk(pi) represents the number of geodesic paths that pass through node pi and gjk repre-

sents the total geodesic path between pj and pk.

Freeman’s centrality measures usually require global knowledge of all network nodes and

their interconnections [41, 86, 96]. The problem here is that this knowledge is not always

accessible. Furthermore, the applicability of these measures is often difficult in large-scale

networks (World Wide Web) and highly dynamic networks (VANETs). This is true because

in the first one, it requires a high computational power to compute all the measures, while

in the second one, the interconnection topologies change rapidly over time. For this reason,

the concept of ego-networks has been introduced [86, 96]. The ego-network analysis can be

carried out using only local knowledge, without the need for complete knowledge of the network

topology.

4.3.2 Egocentric Centrality Measures

First of all, the definition of ego-networks is needed in order to understand the concept of

egocentric centrality measures. By definition, an ego-network is a local subgraph consisting of a

single node (ego) in addition to nodes that are connected to it (alters) and all the interconnection

links among alters [56, 96]. Figure 4.1 highlights a local subgraph where n represents ego and

the one-hop neighbours (1, 2, 3, 4 and 5) denote the alters.

Figure 4.1: An illustration of the ego-network (local subgraph), where n represents the ego and

the nodes (1, 2, 3, 4 and 5) denote the alters.

Inside the ego-network, the degree centrality of the nodes can be easily computed, as it
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is the number of direct connections of one node to its immediate neighbourhood. Because

of that, it is possible to conclude that the degree centrality is similar to both egocentric and

sociocentric network topologies. Incidentally, this same conclusion was reported by Wasserman

and Faust [139]. On the other hand, the closeness centrality measure concerns the geodesic

distances from a given node to all other nodes within the network. It is possible to notice

that this measure requires the participation of all nodes involved in the network. Thereby, this

measure cannot be directly applied in ego-networks, since all geodesic distances from the ego to

other nodes are one-hop neighbours by definition, and this holds true because geodesic paths are

no greater than two. Among the three measures presented in Subection 4.3.1, the betweenness

centrality measure is the most studied in several fields [25, 96]. However, the literature lacks an

investigation of this measure on VANETs.

The betweenness centrality in ego-networks will be analysed in the remainder of this section.

From now on, we are going to call it the egocentric betweenness measure (EBM). The definition

and how it is computed are presented below.

Definition 3 Once again, let an undirected graph G = (V,E) where V corresponds to a set of

nodes (v) and E corresponds to a set of edges (e, where e ∈ E ⊆ V × V is identified by a pair

of nodes). The neighbourhoods of the node v′ are expressed as set of nodes v ∈ V reachable in

r hops. Let N r
n be the set of nodes that is r hops away from n (ego), i.e., N r

n = {v′ ∈ V |v′ 6=
n∧1 ≤ d(n, v′) ≤ r}, where d(n, v′) denotes one hop between n and v′. Thereby, the first-order

of node n consists of an undirected graph G = (V 1
n , E

1
n), where the set of nodes corresponds to

V 1
n = {N1

n ∪ {n}} and the set of edges corresponds to E1
n = {(i, j) ∈ E1

n|i, j ∈ V 1
n }.

The EBM of a certain node, n, can be calculated by the sum of reciprocal values of the

A2
n[1− An]i,j , as defined in Equation (4.4) [56].

EBM(n) =
∑

An(i,j) 6=0,i<j

1

A2
n[1− An]i,j

(4.4)

where An depicts the adjacency matrix of the node n, 1 is a matrix of all ones and the matrix

A2
n provides the number of geodesic distances of a length of two between node pairs i and j.

Mathematically, an adjacency matrix (Ak×k) can represent node-to-node inter-communication

links, where k is the number one-hop neighbours. Thereby, each element of the adjacency ma-

trix, ai,j , is given by:

aij =

{

1 if a direct link exists between i and j

0 otherwise

To demonstrate the calculation of the egocentric betweenness measure using the adjacent

matrix, we employed a classical graph example [96], see Figure 4.2.

Just to give one example, the egocentric betweenness score from the perspective of node W4

of Figure 4.2 is computed. The following adjacency matrix describes a view of all connection

links between W4 (ego) and its alters, as well as the connection links between the alter pairs.
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Figure 4.2: A classical graph example [96].

W4 =

W4

I1

S1

W3

W1

W2

W5























W4

0

I1

1

S1

1

W3

1

W1

1

W2

1

W5

1

1 0 0 1 1 1 0

1 0 0 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 1 1 0 0

1 0 1 1 1 0 0























Since the adjacency matrix W4 is symmetric and according to Equation (4.4), only the non-

zero values above the primary diagonal need to be analysed (i < j). In this case, the remaining

entries of W42[1−W4] are 4, 3 and 4, as shown in the matrix below.

W42[1−W4] =

W4

I1

S1

W3

W1

W2

W5























W4

∗
I1

∗
S1

∗
W3

∗
W1

∗
W2

∗
W5

∗
∗ ∗ 4 ∗ ∗ ∗ 3

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 4

∗ ∗ ∗ ∗ ∗ ∗ ∗























Therefore, the egocentric betweenness score of the ego node W4 is 0.83 (1/4+ 1/3+ 1/4).

In this way, by using only the local knowledge available, each node can compute its egocentric

betweenness score. Table 4.1 shows the scores of all nodes from the example of Figure 4.2,

based on both betweenness centrality measures. Since egocentric betweenness is computed over

the geodesic paths of the maximal length of two, the scores found in the egocentric betweenness

measure are usually smaller than their sociocentric equivalents. However, an observation that is

important to highlight is the similarity ranking of nodes.

The illustrative example given here was based on static networks; however, one of our major

challenges is to perform the same calculation in highly dynamic network scenarios such as

VANETs. In these networks, the egocentric betweenness score should be updated whenever a
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Table 4.1: Egocentric and sociocentric betweenness scores of Figure 4.2.

Betweenness Centrality

Sociocentric Egocentric

Nodes

W1 3.75 0.83

W2 0.25 0.25

W3 3.75 0.83

W4 3.75 0.83

W5 30.00 4.00

W6 0.00 0.00

W7 28.33 4.33

W8 0.33 0.33

W9 0.33 0.33

S1 1.50 0.25

S2 0.00 0.00

S4 0.00 0.00

I1 0.00 0.00

I3 0.00 0.00

new communication link is established or when a communication link ceases to exist.

To exemplify how each node behaves and how the network structure can change in a highly

dynamic network scenario, in relation to the betweenness centrality score, a set of footprints that

describe a frame sequence (Figure 4.3) was illustrated; see Figures 4.3(a), 4.3(b), and 4.3(c).

It shows the behaviour of the network topology (or temporal graphs) through a heat map set

of our experiment scenario that will be presented later. The density is 150 vehicles/km2, and

the transmission range is 287 m. Each node (or vehicle) is represented by a circle, and every

communication link is represented by a bar. Moreover, each node can have five different colours

according to the betweenness centrality score, ranging from low to high, as shown in Figure 4.3.

4.3.3 Complexity Analysis of the Sociocentric and Egocentric Measures

In this section, the complexity of the sociocentric and egocentric betweenness metrics is anal-

ysed. The main goal is to assess message overhead and time complexity.

For the sociocentric betweenness measure, the nodes need to collect the global network

topology information before performing the calculation. A straightforward way is as follows:

(i) compute the length and the number of geodesic distances between all node pairs; (ii) for each

node, calculate every pair-dependency, and sum them up. Consequently, this naive algorithm

will consume Θ(N3) time, where N is the number of nodes of the network. The well-known

Brandes’ algorithm can be efficiently calculated in O(NM) time [24], where N and M repre-

sent the number of nodes and edges of the network, respectively. The message overhead over

the entire network generally needs O(N) message copies and O(D) time steps for each node’s

message, where D represents the network diameter [24].

For the egocentric betweenness measure, the nodes require only local network topology

information to carry out the calculation. The EBM calculation demands a computation com-

plexity equal to O(k3) for a square matrix of k× k dimensions, where k is the number of alters.
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(a) Frame one. (b) Frame two.

(c) Frame three.

Figure 4.3: frames sequence.

The message overhead over the entire ego-network topology is O(k), since each node needs to

send the identification of its neighbouring nodes. Table 4.2 depicts the complexity analysis of

the sociocentric and egocentric measures.

Table 4.2: Complexity comparison between sociocentric and egocentric measures.

Measure Time Complexity Message Overhead

CB(pi) O(NM) O(DN)
EBM(n) O(k3) O(k)

Since it is known that k is typically much smaller than N (k ≪ N ), therefore the local

measure approach can bring computational benefits for calculation.
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4.4 Egocentric Betweenness Measure in VANETs

Due to the high mobility of the vehicles in VANETs, getting all network topology knowledge

is not an easy task. The egocentric betweenness measure is computed using only the available

local knowledge; in that case, the adjacency matrix of one-hop neighbours. Each vehicle gets

the local knowledge of the network topology by means of periodic beacon packets broadcast

by its neighbours. The beacon transmission frequency employed was 1 Hz. Since the vehicle’s

beacon packets are only useful to adjacent neighbours, the beacons received are not forwarded.

Therefore, the information exchanged among vehicles is lists of neighbours, as illustrated in

Figure 4.4. In this example with four vehicles, the grey vehicle (labelled as 1), receives the lists

of neighbours of all vehicles that are currently within its transmission range (vehicles labelled

as 2, 3 and 4). Once having received the lists, the vehicle constructs the adjacency matrix

representation and calculates the egocentric betweenness score, according to Subection 4.3.2.

Each vehicle updates the egocentric betweenness score, whenever a new list is received.

Figure 4.4: An illustrative example of the beacon packets’ exchange among the vehicles to

calculate the egocentric betweenness score. In this case, the grey vehicle, labelled as 1, is

doing the calculation.

The main steps of our proposed approach are presented in Algorithm 2. The algorithm re-

quires the list of neighbours of all vehicles that are currently within the transmission range (rep-

resented by L), as input information. The output information is the current list of neighbours

and the egocentric betweenness score. Upon receiving a new list of neighbours, the adjacency

matrix is updated to represent a new ego-network topology (Lines 2 and 3). After the adjacency

matrix is updated, the algorithm computes the egocentric betweenness score (Lines 4, 5 and 6).

Thereafter, the list of neighbours is also updated (Line 7). Lastly, a beacon packet containing a

current list of neighbours is broadcast (Line 8).
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Algorithm 2: Calculation of the egocentric betweenness scores.

inputs : L = {l1, l2, ..., ln} list of neighbours of all vehicles that are currently within the

transmission range

output: Egocentric betweenness score and list of neighbours

1 foreach li, i ∈ [1, n] do

2 if isNew(li) then

3 A = updateAdjacencyMatrix(li);

4 if wasUpdate(A) then

5 E = A2[1− A];

6 egoV alue = computeEgoBetweenness(E);

7 myListNeighbors = updateMyListNeighbors();

8 sendBeacon(myListNeighbors);

4.5 Simulation Experiments and Results

This work uses a distributed approach to perform the calculation of egocentric betweenness

scores in vehicular networks. It consists of four stages, as depicted in Figure 4.5. For the

sake of clarity, the figure is divided into four different layers (in a bottom-up fashion). The

bottom layer represents the chosen map segment for the evaluation. The layer above it de-

scribes the road topology structure of that segment. The third layer shows the vehicle routes

and the inter-vehicle communication produced in the simulation. Finally, the top layer depicts

the egocentric betweenness calculation results. The next two sections describe the experimen-

tal settings (Subection 4.5.1) employed in our simulations and the analysis of the simulation

results (Subection 4.5.2), respectively.

4.5.1 Simulation Setup

The experiments were carried out with the aid of three different simulators. It is worth men-

tioning that all the experiments performed in this thesis were used in the same version of the

simulators, as presented below:

• SUMO 0.29.01: An open source road traffic simulation package designed to handle large

road networks. SUMO is licensed under GPL;

• OMNeT++ 5.02: A C++ based discrete event simulator for modeling communication

networks, multiprocessors and other distributed or parallel systems. OMNeT++ is public-

source, and can be used underthe Academic Public License;

• Veins 4.53: An open-source framework for running vehicular network simulations. Such

framework integrates OMNeT++ and SUMO and it offers a suite of models for inter-

vehicular communications simulation. The physical (PHY) and medium access con-

1http://sumo.sourceforge.net/
2https://omnetpp.org/
3https://veins.car2x.org
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Figure 4.5: The simulation setup layers.

trol (MAC) layers were implemented based on the WAVE (Wireless Access in Vehicular

Environment) standard, also known as IEEE 802.11p.

As for simulation parameters, each vehicle had a transmission rate of 6 Mbps, a transmission

power of 0.98 mW, a receiver sensitivity of -82 dBm and a transmission range of 287 m. Channel

178 (control channel–CCH) was used to exchange beacon packets, thereby excluding the effects

caused by channel switching between the CCH and the SCH (service channel).

In order to evaluate the applicability of the egocentric betweenness approach in vehicular

networks, a real map clipping of the Erlangen area (Germany), obtained from OpenStreetMap4,

was used (Figure 4.6). Meanwhile, a set of feasible vehicle routes was synthetically generated

with the aid of SUMO. Vehicle mobility used the Krauss car following model [83]. Five differ-

ent sets of vehicle traffic densities were generated to validate our approach (40, 60, 80, 100 and

150 vehicles/km2).

Finally, all experimental results of this work were executed thirty-three times on different

vehicle traffic densities with a confidence interval of 95 %. Table 4.3 summarizes the simulation

parameter settings.

In order to evaluate the performance of the proposed approach, eight metrics were used and

are described in detail below.

• Overhead: shows the number of beacon packets transmitted in the network by all vehicles

during the simulation run;

4www.openstreetmap.org
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Figure 4.6: Map clipping from Erlangen, Germany. The figure on the left was imported from

OSM and on the right represents the road topology used in our simulations.

Table 4.3: Simulation parameters.

Parameter Value

Density of vehicles 40–150 vehicles/km2

MAC layer 802.11p

Channel 178 (5.89 GHz)

Bandwidth 10 MHz

Transmission power 0.98 mW

Bitrate 6 Mbps

Sensitivity -82 dBm

Transmission range 287 m

Beacon transmission frequency 1 Hz

Simulation time 350 s

Confidence interval 95 %



57

• Beacon transmitted per vehicle: gives the number of beacon packets transmitted per each

vehicle during the simulation run;

• Beacon received: displays the number of beacon packets received per vehicle during the

simulation run;

• Total of lost packets: is the sum of both RxTx (receive/transmit) and SNIR (signal to noise

plus interference ratio) lost packets; the first one occurs due to the busy communication

channel, whereas the second one occurs due to bit errors in received packets;

• Channel busy ratio: indicates the fraction of the time in which the channel is identified as

busy;

• Regression analysis: is a set of statistical processes to estimate the linear relationships

between two datasets;

• Pearson correlation coefficient: expresses the strength of a linear association between

two datasets;

• Window time: points out the smallest window time under which there are no changes in

the egocentric betweenness.

In order to provide a better understanding of our approach, results are compared to the ones

obtained from the sociocentric betweenness approach. For this purpose, a dynamic graph was

generated, with the aid of the Dynamic Graph Library [50], to perform the sociocentric be-

tweenness calculation [24]. This library requires floating car data (FCD) as the input parameter.

FCD is a method applied to gather traffic knowledge. In the sociocentric approach, all the

vehicle network topology knowledge was used as input.

4.5.2 Simulation Results

The first set of experiments investigated the correlation between egocentric and sociocentric

betweenness scores in a VANET scenario. In other words, how accurate the results were when

using only the local knowledge of the network topology to compute the betweenness score,

instead of using global knowledge of the topology. The results of this approach are shown in

the scatter diagram set in Figure 4.7, which compares the two approaches for each vehicle traffic

density.

A scatter plot revealed the relationships between two variables (in our case, such variables

were the sociocentric and the egocentric scores). The relationship between two variables is

known as correlation. The higher the correlation between the two variables, the closer the

sample observations will be to a straight line. If the sample observations go along a straight

line (or regression line) from the origin to high x- and y-values, then the variables are assumed

to have a positive correlation. Thus, it is possible to observe in Figure 4.7 that the egocentric

and the sociocentric betweenness scores have a positive correlation.

Figures 4.7(a), 4.7(b), 4.7(c), 4.7(d), and 4.7(e) show the scatterplots for densities of 40,

60, 80, 100 and 150 vehicles/km2, respectively. As can be seen in these figures, these two

measures do not provide the same betweenness scores, as expected. The egocentric betweenness
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scores (x-axis) were smaller than the sociocentric betweenness scores (y-axis). This can be

explained by the fact that in the ego-network topology, the maximal geodesic distance between

nodes was two, and this limitation did not apply to the sociocentric betweenness. On the other

hand, through the analysis of the figures, the egocentric and the sociocentric betweenness scores

have demonstrated a high degree of similarity regarding the ranking of nodes. This similarity

can be confirmed in Table 4.4. The table depicts the Pearson correlation coefficient (PCC)

between the egocentric and the sociocentric betweenness approaches. The presented values

ranged from 0.953–0.983 (where 1.0 represents a perfect linear relationship between the two

datasets analysed), in all traffic densities.

Table 4.4: Pearson correlation coefficient (PCC) of egocentric and sociocentric betweenness.

Density (vehicles/km2) PCC

40 0.983

60 0.962

80 0.971

100 0.964

150 0.953

Lastly, it is possible to notice that some scores lie relatively away from the regression

line (red line). Even so, there is a clear positive relationship between the two betweenness

measures in VANETs.

Figures 4.8 and 4.9 depict the cumulative distribution function (CDF), in each vehicle traffic

density, of the egocentric betweenness scores and the number of one-hop neighbours, respec-

tively. The CDF measure is an interesting way of observing the behaviour of analysed variables.

As can be observed in Figure 4.8, the egocentric betweenness scores fluctuate in the same range

as in Figure 4.7, according to the vehicle traffic density. Another important information is to

analyse the distribution of these scores. It is possible to observe that 90 % of the samples, for

densities of 40, 60, 80, 100 and 150 vehicles/km2, were lower than 7, 11, 16, 18 and 30, respec-

tively. In other words, these scores were close to the regression line (red line of Figure 4.7),

i.e., 90 % of the samples of the two variables had a high correlation. The same distribution

analysis was performed for the number of one-hop neighbours, as shown in Figure 4.9. In this

example, it is possible to notice that 90 % of the samples, for densities of 40, 60, 80, 100 and

150 vehicles/km2, were lower than 7, 9, 12, 14 and 21 neighbours, respectively.

The relationship between the egocentric betweenness scores and the number of one-hop

neighbours is depicted in Figure 4.10. This figure shows the average egocentric betweenness

score (red line) and the average number of one-hop neighbours (blue line) for all vehicle traffic

densities. Therefore, it summarizes all the information presented in the two sets of Figures 4.8

and 4.9. The observed behaviour of both measures is in agreement: as the traffic density in-

creased, the number of vehicles in the vicinity and the egocentric betweenness scores also in-

creased. For instance, in a low traffic density (40 vehicles/km2), the egocentric betweenness

score was around 2.5, and the number of one-hop neighbours was around 3.9, on average. On

the other hand, in a high traffic density (150 vehicles/km2), the egocentric betweenness score

and the number of one-hop neighbours were around 12.2 and 9.8 on average, respectively.
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0 10 20 30 40 50 60

Egocentric Betweenness Values [#]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(X
<
=
x
)

(b) 60 vehicles/km2.
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(c) 80 vehicles/km2.
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(d) 100 vehicles/km2.
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(e) 150 vehicles/km2.

Figure 4.8: CDF of the egocentric betweenness scores in relation to the vehicle traffic densities.
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(b) 60 vehicles/km2.
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(c) 80 vehicles/km2.
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(d) 100 vehicles/km2.
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(e) 150 vehicles/km2.

Figure 4.9: CDF of the number of one-hop neighbours in relation to the vehicle traffic

densities.
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Figure 4.12: Average time window duration in which there were no changes to the egocentric

betweenness scores.

ted in each traffic density. For instance, in densities of 40, 60, 80, 100 and 150 vehicles/km2,

we had on average 49,000, 70,000, 90,000, 120,000 and 180,000 transmitted beacon packets,

respectively. As can be seen, the beacon overhead increased linearly as a function of the traf-

fic density, as expected. This expectation was well founded since as the density of vehicles

increased, the higher the transmission rate of beacon packets into the network would be.

The microscopic view is depicted in Figure 4.13(b), which shows the average number of

beacon packets transmitted by each vehicle in each traffic density. When the experimental

scenario had a density of 40 vehicles/km2, each vehicle, on average, transmitted around 148

beacons during the simulation time; while, in the scenarios with 60 and 80 vehicles/km2, on

average, 134 and 138 beacons were transmitted, respectively. For 100 and 150 vehicles/km2,

there were, on average, 144 and 150 beacons transmitted by each vehicle, respectively. It is

easy to see that the number of beacon packets transmitted, for each vehicle, is directly related

to its trip time during the simulation time. With that in mind, Figure 4.14 depicts the average

trip time of the vehicles during the simulation. It is possible to observe that in both of the

aforementioned figures, the same behaviour appears in all the vehicle traffic densities. For

example, in Figure 4.14, for the scenarios with 40 and 150 vehicles/km2, the average trip times

are higher than all other evaluated scenarios, reaching 2.8 and 2.55 min, respectively. On the

other hand, the scenario with 60 vehicles/km2 presented the lowest average (2.0 min).

Figure 4.13(c) depicts the total number of beacon packets lost either by the fact that the

communication channel was busy, or by errors in the received packets. As can be observed, the

low densities (40 and 60 vehicles/km2) presented a minimum packet loss rate. As the vehicle

traffic density increased up to 150 vehicles/km2, the total number of packets lost also increased.

The observed behaviour was directly related to the channel busy ratio. Taking this into ac-

count, Figure 4.15 shows the average channel busy ratio for each vehicle traffic density. As the

simulation time was set to 350 s, the calculation of the total busy time was nothing more than

the channel busy ratio multiplied by the simulation time. In our case, for densities of 40 and

60 vehicles/km2, the channel was busy for the shortest time, and as the density increased, the
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Chapter 5

Information Management and Knowledge

Distribution in VANETs

5.1 Introduction

For many ITS applications that use VANETs, the constant sharing of local information, with

one-hop communication neighbors, is essential to create awareness about vehicle traffic con-

ditions [91, 143, 145]. This type of sharing is well-known as beaconing, and most often, the

exchanges occur in the control channel with a transmission frequency generally between 1Hz

and 10Hz [130]. The default information contained in the beacon package includes vehicle iden-

tification, current vehicle position, average speed, the direction of travel, among others [29]. On

the other hand, the service channels are used to share all other data needed by the applications.

Several ITS that deal with local information management and knowledge distribution about

vehicle traffic conditions have been proposed [91, 143, 145]. This type of system extracts

knowledge, for instance, about the traffic condition of a given road, by processing the aggre-

gated local information received from the neighbor vehicles. However, many proposed systems

have the same shortcoming, the absence of a vehicle selection mechanism to carry out the tasks

of information aggregation and knowledge generation. Without the selection mechanism, all

vehicles would perform such tasks resulting in a highly redundant traffic of knowledge. In

addition, other systems [91, 143] do not apply any broadcast suppression mechanism during

knowledge distribution, increasing even further the network overhead.

In order to overcome the above-cited limitation, we propose TRUSTed, a disTRibUted

SysTem for information management and knowledge distribution. By means of beaconing,

TRUSTed collects the local information needed to apply the vehicle selection mechanism. The

result is the selection, within a subset of vehicles, of the most relevant ones in a given moment

to carry out the tasks of information aggregation and knowledge generation. The relevance is

defined as the importance of a vehicle in relation to the information flows that pass through it.

In other words, it defines how important is the intermediate vehicle for the information flow

continuity in the network. One of the advantages of such a mechanism is the use of the local

information (egocentric measure) to perform the necessary calculation. Beyond this advan-

tage, the work of [7] confirmed that the egocentric betweenness measure, in a highly dynamic

topology, has a high correlation with the sociocentric betweenness measure. Last but not least,
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a broadcast suppression mechanism was applied to avoid the redundant traffic of knowledge.

The goal of this case study is to prove that the mechanism can reduce bandwidth consumption,

taking into account the challenges of VANETs.

The remainder of this chapter presents a brief survey of the related work. After that, the

proposed solution is presented in Section 5.3. Some numerical results and analysis are given in

Section 5.4. Finally, Section 5.5 concludes this chapter.

5.2 Literature Review

All proposals presented, in this section, employ a periodic exchange of local information, be-

tween one-hop communication neighbors, this allows them to create the local knowledge base.

In addition, they were designed to operate only with vehicle-to-vehicle communication technol-

ogy.

The work of [91] has proposed a probabilistic aggregation for knowledge generation. This ap-

proach uses a hierarchical aggregation technique called soft-state sketches. This technique is

an extension of Flajolet–Martin sketches [60]. The fundamental characteristic of this approach

lies in the fact that the aggregate information does not have a specific value of the monitored

place, for instance, an average speed of a determined road. The aggregated information has,

instead, a probabilistic value. The main benefit of this approach is the capability to combine the

aggregated values, with the same context, for knowledge generation. However, this work lacks

a vehicle selection mechanism to perform knowledge generation task. Therefore, all vehicles

would perform such a task, thereby generating highly redundant traffic of knowledge.

Yu et al. [143] have proposed an adaptive forwarding delay control, named Catch-up, to

gather aggregated local information from different sources for knowledge generation. To this

goal, the forwarding speed of nearby information is dynamically adjusted. Thereby, each aggre-

gate information can have one of the two types of adaptive delays, RUN (short) or WALK (long).

The delay calculation is based on a distributed learning algorithm, in which each vehicle learns

by means of local information. The main advantage of catch-up is the use of an adaptive for-

warding delay for knowledge generation, as well as probabilistic aggregation. However, a disad-

vantage of this approach is that all vehicles can act as an information aggregator and knowledge

generator, which can incur network overhead.

Another solution is the data aggregation algorithm by restricting forwarders (DARF) [145].

This algorithm concentrates mainly on the selection of the vehicles that will continue the knowl-

edge forwarding process, which was generated in the aggregation step. In order to do that, each

vehicle receives one of the two available labels (forwarder or non-forwarder) according to the

neighbourhood labels. As the name says, each label defines whether the vehicles will be a for-

warder, or not, of the knowledge. The vehicle will be a non-forwarder if there is a forwarding

vehicle immediately in front of and behind it. One of the advantages of DARF is the broadcast

suppression mechanism applied during the knowledge distribution process, which is not applied

in the above-mentioned works. However, it is possible to notice that there is no vehicle selection

mechanism to aggregate local information and generate the knowledge. In this way, it allows

highly redundant traffic of knowledge in the network.

All systems presented here have the same shortcoming, the absence of a vehicle selection
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mechanism to carry out the tasks of information aggregation and knowledge generation. With-

out the selection mechanism, all the vehicles would perform such tasks, resulting in highly

redundant traffic of knowledge in the network. This, consequently, will lead to high bandwidth

consumption. Thus, the use of vehicle selection mechanism contributes to improving this issue,

which has not yet been addressed in the literature.

5.3 TRUSTed

TRUSTed is a distributed system for information management and knowledge distribution re-

lated to vehicle traffic conditions in VANETs. One of the main challenges of this type of system,

due to the highly dynamic topology, is the selection of the most relevant vehicle, within a subset

of vehicles, to perform the tasks of information aggregation and/or knowledge generation. If a

vehicle is not selected, all of them could carry out such tasks, this can overload the network with

highly redundant traffic of knowledge. With this in mind, the egocentric betweenness measure

was applied to select the vehicle that will carry out above-mentioned tasks.

5.3.1 Vehicle Selection Mechanism

The egocentric measure was chosen because it requires only the available local information

(one-hop neighbors) to find the most relevance vehicle. This relevance is based on the infor-

mation flow passing through it. The calculation of this measure is depicted in Section 4.4. In

addition to egocentric betweenness measure, a radio propagation model, the two-rays ground

reflected, was applied. The aim is to improve the process of data propagation, among vehicles,

through a path with minimum interference in inter-vehicle communication.

LTRI [dB] = 20log(4π
d

λ
|1 + Γ expϕ |−1) (5.1)

where λ is the wavelength, d is the Euclidean distance between two vehicles, Γ is the reflection

coefficient and ϕ is the interfering rays. The interfering rays are given by:

ϕ = 2π
dlos − dref

λ
,

{

dlos =
√

d2 + (ht − hr)2

dref =
√

d2 + (ht + hr)2
(5.2)

where dlos and dref correspond to the line-of-sight distance and reflected path between the

transmitting and receiving antennas, respectively. ht and hr represent the transmitter and the

receiver antenna heights, respectively. In this study, the same heights applied in the test bed

implementation of Sommer et al.’s work were used [129] (ht = hr = 149.5 cm). The value of λ

was fixed at 0.051 m according to IEEE 802.11p [73]. Lastly, the reflection coefficient can be

calculated as:

Γ =
sin θi −

√
ε− cos θi

sin θi +
√
ε− cos θi

,







sin θi =
ht+hr

dref

cos θi =
d

dref

(5.3)

where ε is the relative permittivity of the ground and θ is the angle between the ground and the

reflected ray.
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5.3.2 Knowledge Generation Process and Distribution

Our proposed solution periodically shares the local information, between one-hop neighbours,

through beacon packets to create the local knowledge base. In order to do that, two more pieces

of information were added in the beacon package: the current EBM score and the aggregated

information.

The local knowledge base is built by aggregating the local information received from the

neighbourhood, as well as the calculation of the weight of the roads. Once the local knowledge

base is created, the next step is to share it with the most relevant neighbour vehicle, this is

performed by following the selection criterion presented in Section 5.3.1.

The following representation shows an example of the fusion of two aggregated values:

Ar := ∂(A1, A2), where ∂ is the aggregation function that has two input values (A1 and A2).

These values are combined, resulting in a new aggregated value (Ar). As the main goal of the

proposed study is the generation and distribution of knowledge about the traffic condition, the

aggregation function is given as follows:

vavgaggi
=

v1n1 + v2n2

n1 + n2

(5.4)

where vavgaggi
represents the aggregate average speed of a given road i. The parameters v1 and v2

are the two input values from i. ni indicates the amount of information that contributed to the

generation of the new aggregated value. Thereby, the weight of the road i (wi) is calculated as

follows:

wi = 1−
vavgaggi

vmax
spei

,















wi :weight of road i

vavgaggi
: aggregate average speed of road i

vmax
spei

:maximum speed of road i

(5.5)

After aggregating all the local information, the vehicle with the highest EBM score classifies

the weight of the roads according to Table 5.1. The levels of service and traffic classification

were based on the Highway Capacity Manual (HCM) [51].

Table 5.1: Level of service and traffic classification [51].

Level of Service Traffic Classification pi

A Free flow (0.0∼0.33]

B Reasonably free flow (0.33∼0.4]

C Stable flow (0.4∼0.5]

D Approaching unstable flow (0.5∼0.7]

E Unstable flow (0.7∼0.9]

F Forced or breakdown flow (0.9∼1.0]

After the classification step, if an event is identified (in our case, roads with the level of ser-

vice D, E or F), a message (also known as knowledge), containing the identification of the roads

in question is generated. Thereby, the knowledge distribution process in the service channel is

started.
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Figure 5.1: Operation flowchart of the proposed solution.

Figure 5.1 shows the operation flowchart of the proposed solution. The flowchart is di-

vided into two phases. The first one is the information aggregation and knowledge generation,

and the second is the data dissemination. In the first phase, every time the vehicle receives

the local information, it either inserts or aggregates the local information into the local knowl-

edge base (Block 1). In the next step, it calculates the weight of roads according to Equa-

tion (5.5) (Legend (A)). After this step, the vehicle with the highest EBM score (Legend (B))

classifies the weight of roads according to Table 5.1 (Legend (C)). During this process, if the

selected vehicle detects some congested traffic flow, the knowledge is generated and distributed

in the network (Legend (D)). On the other hand, if the vehicle does not have the highest EBM

score, it selects the next most relevant vehicle and sends the aggregated local information to

it (Legend (E)). The second phase (data dissemination), is responsible for informing vehicles

that are inside an area of interest (AoI - Legend (F)) according to the application requirements.

In addition, it also avoids the broadcast storm problem during the knowledge distribution pro-

cess. Basically, to avoid this problem, a forwarder candidate suppresses the rebroadcast of

low-priority candidates forwarders [148]. For this purpose, every time that a vehicle receives

knowledge to be distributed, it checks if it is within the zone of preference [10] (Legend (G)),

and if so, it transmits first (Legend (H)) because it has the shortest waiting time. Due to the

broadcast suppression mechanism implemented (zone of preference), as soon as the neighbour-

ing vehicles outside the zone of preference receive the same scheduled knowledge, they cancel

the retransmission (Legend (I)), thereby avoiding the traffic of redundant knowledge in the net-

work.
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5.4 Evaluation Metrics

Four metrics were applied in order to evaluate the performance of the proposed solution:

• Overhead: measures the total amount of transmitted messages in the network;

• Collision: estimates the total number of packet collisions during message transmission;

• Delay: measures the time spent in delivering the messages to vehicles;

• Coverage: estimates the percentage of messages delivered to the vehicles that are within

the scenario.

The simulation parameters used here are the same ones of Table 4.3, except the density of

vehicles, which in this case ranges from 100–300 vehicles/km2. Moreover, AoI has been applied

with a 1-km radius from the congestion point. It is worth mentioning that the scenario used is

the same as of Figure 4.6.

5.4.1 Performance Analysis and Discussion

Figure 5.2 presents the performance results of all solutions analyzed using the coverage metric.

The Probabilistic solution displays the lowest coverage, reaching an average of 80 %, for all

analyzed densities. These results can be justified due to the network overhead, which is caused

because all vehicles perform the tasks of information aggregation, generation, and distribution

of the knowledge (Figure 5.3 and Figure 5.5). In addition, during the process of knowledge

distribution none broadcast suppression mechanism is applied, thus, resulting in a highly re-

dundant traffic of knowledge, as shown in Figure 5.3. Because of this, it is possible to observe

a high rate of packet collisions in the network (Figure 5.5). It is also evident the long delays in

the delivery of knowledge, compared to the other systems considered (Figure 5.4). We can see

a slight drop in the coverage rate as the vehicle density increases. This is due to the fact of the

high network overhead and the high collision rate.

The other solution analyzed is the Catch-up system. The main strategy of this system is

the insertion of an adaptive delay in the message forwarding process. This allows increasing

the probability of the meeting of the aggregated information. This approach was able to de-

crease the total number of messages transmitted and consequently, the collisions, as shown in

the Figures 5.3 and 5.5. For this reason, Catch-up achieves better results when, compared to

the Probabilistic system. It was able to reduce, on average, 10 % of both transmitted messages

and packet collisions. In addition to that, it increased the coverage by 5 % (Figure 5.2). In

both, Probabilistic and Catch-up, there is a slight drop in the coverage rate as the vehicle den-

sity raises. In addition to this, the Catch-up system still has a higher knowledge transmission

rate and packet collisions. It is known that both Probabilistic and Catch-up do not use any type

of selection mechanism to chose the most relevant vehicle to perform the tasks of information

aggregation, generation, and distribution of knowledge. The lack of such mechanism is trans-

lated in the delays for both systems when compared to DARF and TRUSTed. This situation is

depicted in Figure 5.4.









76

Chapter 6

Collaborative and Infrastructure-less

Vehicular Traffic Management

6.1 Introduction

Over recent years, the research community in the field of communication and ad-hoc networks

has been very attracted to social network analysis (SNA) and social network concepts (SNC)

to design and implement new algorithms and protocols for socially aware networks, such as

mobile social networks (MSNs) and vehicular social networks (VSNs). The legacy of social

networks in communication networks is that all entities have a certain degree of interdependence

to each other [116]. Such interdependencies can include network topology similarity, physical

contact, community, and mutual interest. In addition to the interdependencies, the correlations

between the entities can be explored in SNA. Social networks are a virtual group of entities that

have some social interdependencies among them, and such interdependencies can be applied to

improve the efficiency and effectiveness of network services [3, 57].

The VSN paradigm has emerged through the integration of the concepts of MSNs and

VANETs [113, 115, 134]. As a consequence of this integration, two approaches can be ex-

plored in the vehicular environment, such as (i) application of the SNA [113, 115] techniques

and/or (ii) use of the SNC [115, 134]. The first approach focuses on identifying the node im-

portance in the network. To this end, three main measures of centrality most used in VSNs are

degree, closeness, and betweenness [113, 115]. It is known that the network topology, in VSNs,

is highly dynamic and consequently calculating the node centrality is a challenging task. On

the other hand, once identified, it can be useful for many applications such as the management

of information flow in the network. The second one, however, involves social interactions be-

tween nodes that have mutual interests in the temporal virtual community [5, 134]. In other

words, such an approach provides the opportunity of vehicles to participate in a virtual vehicle

community and share information of mutual interest through social interactions. Based on this

idea, each vehicle can share their social information, for example, the personal route. In this

way, allowing the practice of collaborative route-planning. The social interaction occurs when

vehicles meet each other and share their social information through wireless communication.

ATMS integrate communication, storage, and processing technologies to collect raw data

from the VSNs, to extract knowledge of vehicular traffic on roads [5]. The ATMS can provide
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services to improve traffic management efficiency and safety using such knowledge. For better

performance, many ATMS applications require vehicles to periodically share their data (floating

car data) between neighboring vehicles, a central server, and/or RSU. Through this sharing, it

is possible to create awareness about vehicular traffic conditions [49, 110, 137]. This practice

is known as beaconing and the data exchanged is associated with vehicle mobility.This data

exchange is performed by the CCH and generally at a transmission frequency between 1 Hz

and 10 Hz [130].

Different ATMS have been designed and implemented to overcome the lack of urban mo-

bility that affects the daily life and well-being of the citizens [44, 49, 110, 137]. Several so-

lutions implement a centralized approach [49, 110] due to the difficulty of selecting the most

appropriate vehicles, in highly dynamic networks, for congestion detection and calculation of

alternative routes. As a result, such solutions are not easily scalable. Another solution em-

ploys a distributed approach for congestion detection and calculation of alternative routes [44].

However, to achieve its goal, such a solution needs to segment the entire scenario into multi-

ple sub-regions beforehand. Moreover, the alternative route is calculated selfishly, i.e., without

considering the routes chosen by neighboring vehicles.

Based on the gaps found, SOPHIA, a distributed System of urban mObility management

based on a collaborative aPproach in veHIcular sociAl networks was designed and imple-

mented. Inspired by the two VSN approaches mentioned above, an SNA technique to classify

and select the vehicles in each clustering was applied to reduce bandwidth consumption. Two

SNCs were employed (social interaction and virtual temporal community) to perform the ex-

change of information of common interest. This exchange of information helps in alternative

route-planning in a collaborative way, thus improving urban mobility management. In brief, the

focus of the SOPHIA system is to minimize the problems associated with traffic congestion, in

a distributed manner, and without jeopardizing its scalability.

To address the aforementioned issues, this chapter firstly introduces a brief survey of state

of the art (Section 6.2). After that, Section 6.3 describes the design of SOPHIA. Performance

evaluation and results are discussed in Section 6.4. The final remarks are given in Section 6.5.

6.2 Literature Review

This section presents the related works relevant to the design and implementation of SOPHIA

system. Moreover, the aspects related to dynamic clustering algorithms are discussed along

with infrastructure-less and infrastructure-based for urban mobility management.

6.2.1 Dynamic Clustering Algorithms

Grouping nodes into clusters has been extensively investigated in many fields, such as wireless

ad-hoc networks and mobile ad-hoc networks, by focusing mainly on energy saving [1, 37, 101].

In VANETs, due to the high topology changes, the clustering algorithms proposed for other

kinds of ad-hoc networks such as mobile sensor networks are not suitable to be applied in

VANETs [37].

In VANETs, clustering techniques have been proposed to improve communication effi-

ciency and facilitate network management, by grouping vehicles in a geographical vicinity
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together. The advantages of clustering can be visible in highly dynamic networks, in which

information aggregation and management can be performed in each network cluster [80]. Thus,

clustering can increase the network scalability and decrease the communication overhead.

Hafeez et al. [66] proposed a clustering algorithm by considering speed as the main param-

eter to build clusters. The cluster head (CH) is elected in a distributed manner according to their

relative speed and distance from their cluster members (CMs). This algorithm improves cluster

stability through diffuse speed processing. Besides that, it chooses the second optimal vehicle

as the temporary CH when the original one becomes unavailable.

In [120], the authors proposed a mobility-based clustering scheme according to the param-

eters of the vehicle’s movements, such as moving direction, relative velocity, and the relative

distance between vehicles. Such parameters are applied to select the CH. In mobility-based

clustering, each CH is located in the geographical center of a cluster, and CMs are inside trans-

mission range of the CH and moving in the same direction as the CH. Hassanabad et al. [69]

also proposed a mobility-based clustering scheme like the aforementioned one. The difference

between them is that the latter applies the Affinity Propagation algorithm, proposed by the au-

thors, to produce clusters with high stability.

Abuashour and Kadoch [2] proposed the algorithm named CORA–Control Overhead Re-

duction Algorithm. The proposed algorithm aims to minimize the overhead network generated

by CMs in a clustered segment scenario. The CHs are selected based on maximum lifetime

among all vehicles that are located within each cluster.

6.2.2 Infrastructure-Based Urban Mobility Management

In [49], the authors proposed a centralized system for traffic management called EcoTrec.

The proposed system is centralized because of congestion detection and alternative route cal-

culation are performed by a central entity. The EcoTrec system aims to reduce CO2 emis-

sions without significantly increase travel time. To this end, the system was built on a three-

component architecture: Vehicle Model, Road Model, and Traffic Model. The Vehicle Model

collects and updates the individual information of the vehicle, as well as periodically shar-

ing them with the Road Model. The shared information comes from Global Positioning Sys-

tem (GPS), accelerometer, and gyroscope embedded in vehicles. The Road Model is hosted in

the RSUs which are along the roads and connected by the Traffic Model. The Traffic Model is

a central server containing the characteristics and road traffic conditions. Both Road Model and

Traffic Model communicate with vehicles through V2I communication. Each vehicle makes

periodic requests to the server about the road traffic condition and if the route is congested, the

server sends an alternate route.

In [137], the authors introduced Next Road Rerouting (NRR). The main objective is to assist

drivers in choosing the next most appropriate road, to circumvent the congested areas. The

proposed system operates in two-stage traffic management: (i) estimates only the next road for

the vehicle to bypass the congested point, and thereafter, (ii) uses the vehicle’s GPS to calculate

the remainder of the alternate route to the destination. The reason for this approach lies in the

fact that the calculation of the next road is less costly than the recalculation of the end-to-end

route. The NRR mechanism needs a central server (Traffic Operation Center) to gather all the

traffic information. In this case, NRR assumes that there is a traffic light at each intersection, to
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collect such information. Once the congestion is detected, the server notifies the nearest traffic

light of the congested area. Thereafter, the traffic light notifies the next most appropriate road

for vehicles. After that, the rest of the route is calculated with the aid of the vehicles’ GPS.

Pan et al. [110], the authors proposed a hybrid urban vehicle management system named

DIVERT. It is considered a hybrid approach because it requires a central server to collect infor-

mation from vehicles and detect vehicular traffic condition. The alternative routes calculation is

carried out by the vehicles in a collaborative manner. In the DIVERT system, the central server

operates as a coordinator that receives the vehicle information (speed, location, and direction)

via V2I communication. Through this information, the server can detect congested locations

and inform the vehicles that are driving to such locations. In this system, the responsibility

for the alternative routes calculation is given to the vehicles. Once they need to compute an

alternative route, it must take into account the chosen route of the neighboring vehicles, i.e., a

collaborative routing decision applies. It is important to notice that in the DIVERT system, the

broadcast suppression mechanism was not applied during the message dissemination process.

This can lead to a broadcast storm problem.

6.2.3 Infrastructure-Less Urban Mobility Management

In [44], the authors proposed a distributed system for vehicular traffic management, named

FASTER. In the proposed system the congestion detection and alternative route calculation do

not need any infrastructure. To achieve its goal, FASTER needs to previously segment the entire

scenario into multiple sub-regions (or districts). This is performed to aggregate traffic informa-

tion. Each district has an area equal to 1-hop communication. Each vehicle periodically collects

and transmits information, such as average speed and route identification to everyone within its

transmission range. The vehicle closest to the center of the district is selected to initiate the

dissemination of traffic information aggregated to other vehicles. During the dissemination

process, a broadcast suppression mechanism is applied to avoid network overhead. In such a

system, the calculation of the alternative route is performed selfishly, based on the probabilistic

k-shortest path.

Kasprzok et al. [77] presented a decentralized congestion avoidance strategy for connected

vehicles. Their approach measures the vehicular traffic congestion level of a road segment

using the amount of wireless network traffic generated by vehicle-to-vehicle communications.

The vehicle computes an alternative path employing a modified k-shortest path algorithm whose

paths are weighted using a Logit model [30] upon the congestion is detected.

In [63], the authors proposed a fully distributed congestion avoidance system which detects

traffic congestion and reroutes vehicles to minimize their travel time. The proposed system

does not require global traffic information to detect congested areas but rather only the local

information about the traffic conditions. According to local traffic information, each vehicle

computes the traffic condition in its current road segment. Hereafter, if necessary, it requests

information about the alternative paths of the surrounding vehicles to make the choice that

will minimize its remaining travel time. This system relies on sending information request

messages whenever a vehicle desires or needs to know more about upcoming roads and traffic.

This strategy was applied to reduce network overhead and increase system scalability.

On one hand, infrastructure-based vehicular traffic management systems have been most
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6.3.1 Vehicular Crowdsensing

The mobile crowdsensing paradigm (MCS) employs the concept of ubiquitous computing in the

collection and sharing of data [22, 138]. In other words, this paradigm aims to incentivize par-

ticipants to efficiently and effectively contribute to a common goal to use context-related sensing

data from their mobile devices in solving a specific problem in a collaborative manner [62]. In

addition, by aggregating the crowd-generated local data, it is possible to create cooperative lo-

cal awareness. Such awareness can lead to improvements in numerous large-scale applications,

such as air pollution monitoring and traffic congestion warnings. Since vehicles are equipped

with wireless communication technologies along with smart sensors in VSNs, that enables the

vehicle crowdsensing (VCS) paradigm [138]. This paradigm, in turn, enables the monitoring of

dynamic and large-scale phenomena [18].

The motivation for using VCS lies in the fact that the participants of the networks can solve

problems in cooperation. For example, VSN participants can jointly improve urban mobility by

sharing data collected about traffic conditions. In doing so, VSNs’ systems can aggregate the

collected data and extract knowledge (local awareness) about real-time traffic conditions. Thus,

the knowledge extracted can assist in urban mobility management.

In this work, the VCS paradigm was applied to create the local traffic awareness, in which

vehicles cooperate to sense and collect urban data requested by the system. For this purpose,

it was assumed that each vehicle (n) periodically generates a packet (bn) containing some data

collected from onboard units, such as current speed (sn), location (pn), time stamp (tn), and

vehicle score (vescn), as described in Equation (6.1). The vescn will be used in the dynamic

clustering mechanism which will be explained later.

bn = (pn, sn, vescn , tn) (6.1)

6.3.2 Dynamic Clustering Approach

One of the great challenges in highly dynamic networks is to select the most appropriate nodes

within a subset to perform a given task [37]. A straight solution for this problem is to em-

ploy an infrastructural approach, for example, RSUs and/or a central server [49, 110, 137],

thus eliminating the difficult task of selecting vehicles. To overcome this challenge in an

infrastructure-less approach, the proposed work adopts a dynamic clustering technique. Un-

like the FASTER [44] system, SOPHIA does not need to segment scenario to select the most

appropriate vehicle that will perform the congestion detection task.

Network clustering is the division of a graph into a set of subgraphs, called clusters. Each clus-

ter elects one node leader (CH), according to some rules, that works as a local management

entity. In addition to that, CMs are all nodes from CH’s 1-hop neighbor set. A 1-hop cluster

is a clustering such that every node in the network can communicate in 1-hop with the CH of

the cluster it belongs to. The cluster is composed of two levels of communications [120]. The

first one is intra-cluster communication, where CMs can directly communicate with its CH or

nearby CMs within the same cluster. The second one is when a CH communicates with nearby

CHs or roadside infrastructures, which is known as inter-cluster communication.

As a general procedure in cluster formation, the nodes participating in, or seeking to join in

one, will typically carry out some or all the steps described below [37]:
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1. Neighborhood discovery: a node generally announces its existence to its neighbors through

a periodic short-message transmission, while simultaneously gathering the same message

from its neighbors;

2. CH selection: after collecting data about the local environment, each node will compute,

based on some rule, to find the most appropriate node to act as its CH. In this step, the

node can also consider its suitability to be a CH;

3. Affiliation: the node will contact the neighbor node that was chosen as the appropriate

CH and seek to become a CM of that cluster;

4. Announcement: the most appropriate CH may then send an announcement message to its

neighbors to initiate the process of cluster formation;

5. Maintenance: this step is divided into two parts:

(a) As a CH: if a CH loses all connections with its CMs, the cluster is assumed to be

dead, and the procedure is started again (Step 1). On the other hand, a cluster can

merge with another one and become a larger cluster. In this case, the node will

execute the Step 5(b);

(b) As a CM: the node periodically evaluates the link to its CH. If the link fails it will

return to Step 1. If the node receives an affiliation request from a node that does not

belong to its group, it can start the CH selection again (Step 2) to choose the next

appropriate CH.

In SOPHIA, each cluster is associated with a set of vehicles called CMs and a representative

of CH, as shown in Figure 6.2. The vehicles depicted by the labels A and B represent the CHs

of the clusters 1 and 2, respectively, while the other vehicles portray the CMs. The vehicle label

as 1 will be used in an example afterward. The CH is the vehicle temporarily selected with the

responsibility of gathering and forwarding the information on behalf of the CMs. The vehicle

with the highest score (vescn) is selected as CH, the details of the scoring computation are given

below. By means of the dynamic clustering approach, it is possible to overcome the following

challenges: (i) selecting the most appropriate vehicle in a distributed manner; (ii) minimizing

the network overhead; (iii) increasing the scalability of the system; and (iv) facilitating the data

flow within network. It is noteworthy that in congested areas, fatally, there will be vehicles in

multiple clusters and this particularity was explored to improve the flow of data on the network,

otherwise, the information flow would be interrupted.

Our dynamic clustering algorithm procedure only takes into consideration Steps 1 and 2

of the aforementioned general procedure. The idea here is to explore the social properties of

nodes to select the CH to improve data flow in the network. This improvement can be done by

a path with minimal interference in communication along with the social properties of nodes.

To achieve this goal, each vehicle autonomously calculates its score according to neighborhood

communication links. This calculation is performed together with a received signal strength

indicator, as shown in Equation (6.2).
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Algorithm 3: Vehicle score calculation.

inputs : N = {n1, n2, ..., nn} the set of all vehicles that are currently within the

transmission range

output: Vehicle score (vescn)

1 foreach Ni, i ∈ [1, n] do

2 if isNew(ni) then

3 M = updateAdjacencyMatrix(ni);

4 if wasUpdate(M) then

5 vescn = computeV ehicleScore(Equation(6.2));

6 updateAllBeaconData();

7 sendBeacon();

6.3.3 Knowledge Extraction and Distribution

To better understand the details of the aggregation functions for knowledge extraction, a formal

definition of the road network topology is required.

Definition 4 The road topology can be represented through a directed graph G = (V,E,W ),

where V corresponds to a set of intersections (v), whereas E denotes to a set of segments (e,

where e ∈ E ⊆ V 2). In addition to that, a set of weight (ρ ∈ W ) is attributed to each

road segment. This weight indicates the level of service and will be explained in detail later on.

Finally, a route between two points A and B, r(A,B), is a sequence of intersections (v1, . . . , vn)

such that v1 = A, vn = B and all pairs of consecutive intersections are connected by a road

segment, i.e., for all i = 1, . . . , n− 1 exists (vi, vi+1) ∈ E.

To extract the knowledge about the vehicular traffic condition, two different aggregation

functions are required, i.e., (i) aggregation of beacons received from the neighborhood—local

awareness (Equation (6.3)) and (ii) aggregation of local awareness—knowledge of the traffic

condition (Equation (6.4)).

Λ := (E ′,Υ,Ω) (6.3)

where E ′ = {e1, . . . , en} | E ′ ∈ E(G). The parameters Υ and Ω are {t1, . . . , tn} and

{vm1
, . . . , vmn

}, i.e., the current time and average speed of each element of E ′.

Λr,s :=
∑

1≤r,s≤n

σΛr + (1− σ)Λs ,

{

tr > ts

sr , ss 6= 0
(6.4)

where σ is the weighting factor. The purpose of such a factor is to consider the most current

information in the information aggregation process (tr > ts).

Considering again the example of the Figure 6.2, assuming that the vehicle 1 starts the

process of extracting local awareness. After finishing the initial process, it forwards the local

awareness to the CH (vehicle A) of its cluster. After that, the CH performs the aggregation of

the beacons of its neighborhood (Equation (6.3)) and the aggregate information received from

the vehicle 1 (Equation (6.4)). The result of that will be forward to the subsequent CH (vehicle
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B) until it reaches the vehicle with the highest score. In this example, the vehicle B has the

highest score temporarily, therefore, such a vehicle is responsible for computing the weight of

each road segment according to Equation (6.5).

ρk = vavgagrk
× (1− vlimek )−1 | ∀ek ∈ E ′ (6.5)

where the parameters vavgagrk
and vlimek correspond the average aggregate speed and the maximum

speed allowed on the road, k, respectively.

After this step, the vehicle B classifies the weight of the road segment according to the

level of service (LOS) according to Table 6.1. This table shows the traffic classification for

each service level according to the weight (ρ) calculated by Equation (6.5). Each service level

depicts a traffic condition. If during the classification process, the LOS D, E, and F are found, a

message containing identification about these roads segment is generated and the dissemination

process begins. To avoid the problem of the broadcast storm during the data dissemination

process, the concept of preference zone (ZoP) [10] was applied. ZoP is a region within the

transmission range, whose vehicles within it are most proper to continue the dissemination

process. The ZoP concept is based on the delay, this means that the vehicles within it have

lower delay (or priority) than the vehicles outside it. Thus, vehicles outside the ZoP receive

redundant messages and cancel the scheduled transmission.

Table 6.1: Level of service and traffic classification [51].

Level of Service Traffic Classification pi

A Free flow (0.0∼0.33]

B Reasonably free flow (0.33∼0.4]

C Stable flow (0.4∼0.5]

D Approaching unstable flow (0.5∼0.7]

E Unstable flow (0.7∼0.9]

F Forced or breakdown flow (0.9∼1.0]

6.3.4 Collaborative Route-Planning

As mentioned earlier, VSNs involve social interactions (also known as social object relationship–

SOR [16]) within a temporal virtual community of vehicles based on common interests or mu-

tual goals [115, 134]. The common interests applied in this work is the alternative routes chosen

neighborhood vehicles. Inspired by this idea, it was proposed the collaborative route-planning

employing two SNC concepts, such as temporal virtual community and social interactions, as

shown in Figure 6.3. Therefore, all vehicles within the temporal virtual community area are

considered participants of such a community. The social interactions between community par-

ticipants are realized through V2V communication and the information of common interest

exchanged are the alternative routes chosen. It is worth mentioning that the area covered by the

temporal virtual community depends on the circumference radius defined by the application,

and the location of the congestion point was defined the central point of the community area.
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Algorithm 4: Collaborative route-planning for vehicles that are moving toward the con-

gested road.

inputs : msg—warning message, which contains the coordinates of the traffic congestion

point (sx, sy). (rx, ry) depicts the coordinates of the receiving vehicle

output: r - the alternative route chosen

1 waitingT ime(ms) =
√

(sx − rx)2 + (sy − ry)2;

2 if hasExpired(waitingT ime) then

3 pop = computeRoadsPopularity(Equation(6.6));

4 r = leastPopularRoute ‖ r∗ ‖;

5 send(r);

Now suppose that r∗(pcur, dest) denotes the set of all possible alternative routes from the

current position (pcur) to the destination (dest). Thus, the choice of an alternative route is given

by Equation (6.7), in other words, the vehicle selects the least popular route (r) among all

possible routes (Line 4) and shares it through social interaction (Line 5). In this way, reducing

the possibility of generating congestion points in another place in the near future.

r = leastPopularRoute
r∈R(pcur,dest)

‖ r∗ ‖ (6.7)

6.4 Performance Evaluation and Results

This section shows the performance assessment of SOPHIA and compares it to FASTER [44],

DIVERT [110], and EcoTrec [49] systems. In addition, the EcoTrec system is going to be used

as a baseline due to its simplicity. It is worth mentioning that SOPHIA’s aim is to make the most

of public roads without compromising the system’s scalability. For a better presentation, this

section was divided into four subsections: simulation setup is shown in Section 6.4.1 and the

results and analysis of simulations were divided into: control channel assessment–Section 6.4.2,

scalability assessment–Section 6.4.3, and traffic management assessment–Section 6.4.4.

6.4.1 Simulation Setup

The TAPASCologne project1 of the Institute of Transportation Systems at the German Aerospace

Center (ITS-DLR) was adopted in the simulation process. This project aims to reproduce the

vehicle traffic, with the highest possible level of realism, in a large-scale scenario of the city of

Köln, Germany, see Figure 6.4.

We chose the dataset that contains traffic data traces from 6:00 am to 8:00 am, representing

more than 250.000 vehicle routes. However, only a central submap was chosen for the simula-

tion experiments because it displays a higher incidence of traffic congestion (LOS D, E, and F

heat bar), as shown in Figure 6.4. With the traffic demand of the submap, it was constructed a

new dataset (containing more than 46.000 vehicles routes) and divided into five different vehi-

cle insertion rates, namely 20 %, 40 %, 60 %, 80 %, and 100 %. For example, 20 % means that

only 20 % of the total vehicles are inserted in the scenario for the simulation experiments, and

1http://kolntrace.project.citi-lab.fr/
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• Latency: demonstrates the time spent to deliver the messages to the vehicles;

• Packet loss: shows the total number of lost packets during the message transmis-

sions;

• Coverage: indicates the percentage of messages successfully delivered.

3. Traffic management assessment

• Travel time: indicates the average travel time in relation to all vehicles;

• Travel Time Index: measures the level of urban traffic congestion [124]. This index

is calculated by the ratio of the total travel time to the free-flow travel time;

• Congestion time loss: describes the average time spent on congestion;

• CO2 emission: gives the average CO2 emission of all vehicles.

6.4.2 Control Channel Assessment

As all the solutions apply the beaconing approach in their solution to achieve the goals, and

the channel used for that purpose is the control channel. Then, the assessment of the control

channel is necessary to analyze. In the experiments, the beacon transmission rate of 1Hz was

set to all systems.

Figure 6.5 shows the performance result of the control channel in relation to the vehicle in-

sertion rate. The table (top of figure) depicts the channel busy ratio while the bar chart (bottom)

depicts the gain over EcoTrec. As expected, the channel busy ratio increases with the vehicle

insertion rate because of the number of vehicles in the neighborhood increases, thereby raising

the competition for control channel access. Among all the analyzed solutions, SOPHIA has the

lowest average channel busy ratio for all vehicle insertion rates. The reason for this behavior

is due to the system’s ability to perform better vehicular traffic management. In a few words,

SOPHIA distributes vehicular traffic to make the most of the availability of public roads. As

a result, the homogeneous distribution of vehicular traffic on the roads reduces the consume

on the control channel bandwidth. In addition, we can observe that SOPHIA, FASTER, and

DIVERT have a gain, on average, of 19 %, 15 %, and 11.17 %, respectively, over EcoTrec in all

vehicle insertion rates. It is important to notice that, on average, SOPHIA had 27 % better result

in comparison to FASTER and a 70% improvement in comparison to DIVERT.

6.4.3 Scalability Assessment

This subsection analyzes the scalability results of SOPHIA against the FASTER, DIVERT, and

EcoTrec systems in terms of overhead, packet loss, latency, and coverage metrics. Each figure is

composed of two bar charts. The top one represents the numerical value of the assessed metric

and the bottom one represents the gain with respect to EcoTrec.

Figure 6.6 displays the performance results of all the evaluated systems according to the

overhead metric. Both systems, EcoTrec and DIVERT, constantly need to exchange messages

between the vehicles and the central server to reach their purposes. Due to this strategy, it is

possible to observe that both have a higher average rate of messages transmitted in relation to

FASTER and SOPHIA. Another determining factor for this high rate, for both systems, is the
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Chapter 7

Final Remarks

This chapter summarizes this thesis and discusses directions for future research. The objective

is to highlight our main contributions and point out some possible directions to proceed with

the research to address the drawbacks of the proposed solutions. In this context, we first present

the thesis conclusions in Section 7.1. Then, in Section 7.2, we present future directions of this

work. Finally, in Section 7.3, we present the publications related to this thesis.

7.1 Conclusions

Traffic congestion is a daily occurrence for citizens living in large cities around the world. This

problem tends to worsen with economic and population growth in urban centers. The increasing

vehicular traffic demand may overwhelm the existing transport infrastructure, especially during

rush hour. To overcome this issue, two immediate solutions come to mind: (i) the expansion

of road infrastructure; or (ii) the amendment of the traffic management system. In the former

solution, the cost of road infrastructure expansion is often impractical, due to financial and/or

physical-space constraints. The latter solution, on the other hand, allows the use of already

existing technologies, along with the new ones, to improve the efficiency of the vehicular traffic

management system. This thesis has been directed toward the second one.

To this end, we proposed the collaborative and infrastructure-less vehicular traffic rerouting

as an alternative to improving ITS applications. However, before we reach this primary goal,

four research questions (Section 1.2) had to be answered such as:

• Research Question 1: How can we obtain a global view of road network topology with-

out exchanging data between vehicles and the central server for traffic management pur-

poses?

To deal with this question, we proposed a people-centric approach for vehicular traffic

management in urban centers, called APOLO. The purpose is to use the historical mo-

bility to obtain a global view of the road network and avoid the constant data exchange

between the vehicle and the central server. The main idea of APOLO is to periodically

analyze the spatial and temporal parameters of mobility patterns of drivers to manage

vehicular traffic flow in urban centers.
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• Research Question 2: How can we dynamically identify the best-located vehicle among

the candidate ones, in a distributed manner, to perform a given application task?

To answer this question, we firstly evaluated the betweenness measure based on two ap-

proaches: (i) local topology information (egocentric) and (ii) global topology informa-

tion (sociocentric). The egocentric network has the benefit of using only locally available

knowledge to evaluate the importance of a node. The idea here is to assess whether the

egocentric metric, applied in VANETs, has a high degree of similarity compared to the

sociocentric. The evaluation results showed that the egocentric betweenness measure has

a high degree of similarity. We then designed and implemented TRUSTed, a distributed

system for information management and knowledge distribution. In this system, each

vehicle autonomously ranks themselves based on the betweenness measure (one-hop link

structure). Therefore, best-ranked vehicles are selected to carry out the tasks of infor-

mation aggregation and knowledge generation. From the obtained results, it is clear that

such a measure makes VANETs applications more scalable and leads to more efficient

use of network resources.

• Research Questions 3 and 4: Can collaborative route planning help effectively minimize

traffic congestions without compromising scalability? Can infrastructure-less vehicular

traffic management systems be as efficient as infrastructure approaches and also scalable

and cost-effective?

To deal with these questions, we proposed and assessed a distributed system of urban

mobility management based on a collaborative approach in vehicular social networks

(VSNs), called SOPHIA. The main advantage of SOPHIA is the combined use of two

approaches of VSNs, such as social network concepts and analysis. A metric of social

network analysis, more specifically, the egocentric betweenness metric, was employed

to compute the vehicle ranking. Also, two social network concepts were employed for

the collaborative route-planning, i.e., social interaction and temporal virtual community.

Simulation results confirmed that SHOPIA has excellent potential in increasing system

scalability, as well as improving urban mobility management efficiency.

7.2 Future Research Directions

During the development of this research, new ideas have emerged to advance the state-of-the-art

in urban mobility management systems. Such ideas, listed below as future works, may guide

new research projects in addition to complementing this thesis:

• In our solution, the area covered by the temporal virtual community depends directly on

the circumference radius defined by the application. In this regard, a solution that goes

one step further is to propose a community detection algorithm in highly dynamic topol-

ogy. Where each community, Figure 7.1, can perform the exchange of information of

common interest. Thus the solution does not depend on a static delimitation of commu-

nity;

• Current solutions for urban mobility management that use the Fog Computing infrastruc-

ture (for example, RSU), require all vehicles send their floating car data (FCD) directly
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inal event and festival), in addition to FCD to improve the urban mobility management

system. The idea here is to propose an infrastructure-based urban mobility management

system, where the collection of the FCD is the responsibility of VECs, and other data is

collected opportunistically by the Fog infrastructure;

• The infrastructure-based urban mobility management system needs a mechanism for data

orchestration, identifying which part of the data load will be handled by VEC resources

and which part will be handled by the Fog infrastructure [90, 111]. In this context, another

aspect that could be investigated is the implementation of the mechanism for data orches-

tration, in order to provide low latency, real-time computing, and autonomy to decide data

processing and storage.

7.3 Publications from the Thesis

In the following sections, we present a list of publications produced at the moment of this thesis

writing. The list is divided into journals, conference papers, and book chapter:

7.3.1 Journals

1. Akabane, A. T., Immich, R., Madeira, E.R. and Villas, L.A. (2019). “Handling Dy-

namic Community Structures for Intelligent Traffic Management System with Support of

VANETs”. Elsevier Ad Hoc Networks (Impact Factor: 3.490 and QUALIS A2). Under

review;

2. Akabane, A. T., Immich, R., Bittencourt, L. F., Madeira, E.R. and Villas, L.A. (2019).

“Towards a Distributed and Infrastructure-less Vehicular Traffic Management System”.

Elsevier Computer Communications (Impact Factor: 2.766 and QUALIS A2). Accepted;

3. Akabane, A. T., Immich, R., Pazzi, R.W., Madeira, E.R. and Villas, L.A. (2019). “Ex-

ploiting Vehicular Social Networks and Dynamic Clustering to Enhance Urban Mobility

Management”. Sensors (19)16, 3558. (Impact Factor: 3.031 and QUALIS A1);

4. Akabane, A. T., Immich, R., Pazzi, R.W., Madeira, E.R. and Villas, L.A. (2018). “Dis-

tributed Egocentric Betweenness Measure as a Vehicle Selection Mechanism in VANETs:

A Performance Evaluation Study”. Sensors (18)8, 2731. (Impact Factor: 3.031 and

QUALIS A1).

7.3.2 Conferences

1. Akabane, A. T., Pazzi, R.W., Madeira, E.R. and Villas, L.A. (2019). “Aplicando Redes

Sociais Veiculares para Aprimorar o Gerenciamento da Mobilidade Urbana”. In the

37th The Brazilian Symposium on Computer Networks and Distributed Systems (SBRC).

(QUALIS - A4);
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2. Akabane, A. T., Immich, R., Madeira, E.R. and Villas, L.A. (2018). “iMOB: An Intelli-

gent Urban Mobility Management System Based on Vehicular Social Networks”. In IEEE

Vehicular Networking Conference (VNC). (QUALIS A2);

3. Akabane, A. T., Pazzi, R.W., Madeira, E.R. and Villas, L.A. (2018). “Sistema Dis-

tribuído para Gerenciamento de Informação e Distribuição de Conhecimento em Redes

Veiculares”. In the 36th The Brazilian Symposium on Computer Networks and Dis-

tributed Systems (SBRC). (QUALIS - A4);

4. Akabane, A. T., Immich, R., Pazzi, R.W., Madeira, E.R. and Villas, L.A. (2018). “TRUSTed:
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