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The important thing is not to stop questioning.

Curiosity has its own reason for existence. One

cannot help but be in awe when he contemplates

the mysteries of eternity, of life, of the marvelous

structure of reality. It is enough if one tries

merely to comprehend a little of this mystery

each day.

(Albert Einstein - LIFE Magazine, 2 May 1955,

p. 64)
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Resumo

Assim como em outros domínios do conhecimento, as técnicas de aprendizado profundo revo-

lucionaram o desenvolvimento de abordagens para a super-resolução de imagens. Algoritmos

recentes para solucionar este problema têm empregado redes neurais convolucionais em arqui-

teturas residuais com várias camadas e funções gerais de perda. Essas estruturas (arquiteturas

e funções de perda) são genéricas e não abordam as principais características de uma imagem

para a percepção visual humana (luminância, contraste e estrutura), resultando em melhores

imagens, no entanto, com ruído principalmente em suas bordas. Neste trabalho, apresentamos e

avaliamos um método, denominado super-resolução de imagens refinada com informação de

bordas (Edge Enhanced Super-Resolution - EESR) usando uma nova rede neural residual com

foco nas bordas da imagem e uma combinação de funções de perda: Peak Signal-to-Noise Ratio

(PSNR), L1, Multiple-Scale Structural Similarity (MS-SSIM) e uma nova função baseada na

técnica Pencil Sketch. Como principal contribuição do trabalho, o modelo proposto visa alavancar

os limites da super-resolução de imagens, apresentando uma melhoria dos resultados em termos

da métrica SSIM e alcançando resultados promissores para a métrica PSNR. Os resultados

experimentais obtidos mostram que o modelo desenvolvido é competitivo quando comparado

com o estado da arte para os quatro conjuntos de dados (Set05, Set14, B100, Urban100) avaliados

para super-resolução de imagens.



Abstract

As in other knowledge domains, deep learning techniques have revolutionized the development

of approaches to image super-resolution. Recent algorithms for addressing this problem have

employed convolutional neural networks in multi-layered residual architectures and general loss

functions. These structures (architectures and loss functions) are generic and do not address

the main features of an image for human visual perception (luminance, contrast and structure),

resulting in better images, however, with noise mainly at its edges. In this work, we present

and evaluate a method, called Edge Enhanced Super Resolution (EESR), using a new residual

neural network focusing on the edges of the image and a combination of loss functions: Peak

Signal-to-Noise Ratio (PSNR), L1, Multiple-Scale Structural Similarity (MS-SSIM) and a new

function based on the Pencil Sketch technique. As main contribution of this work, the proposed

model aims to leverage the limits of image super-resolution, presenting an improvement of the

results in terms of the SSIM metric and achieving promising results for the PSNR metric. The

obtained experimental results show that the developed model is competitive when compared to

the state of the art for the four data sets (Set05, Set14, B100, Urban100) evaluated for image

super-resolution.
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Chapter 1

Introduction

This chapter describes the problem under investigation in this dissertation, as well as its motiva-

tion, objectives and research questions, contributions and text organization.

1.1 Context and Motivation

The super-resolution using single images is the process of upscaling images, where a Super-

Resolution (SR) version of an image is obtained from a Low Resolution (LR) image, such that

the SR image will be ideally equivalent to the High Resolution (HR) image. The super-resolution

problem is considered a classic problem in the image processing field, having many solutions

already developed, which use different interpolation equations to reconstruct the image and

filters to make corrections to the final result [12, 19, 20, 23, 30, 53, 79].

The classic solutions [17, 32, 62, 66, 67, 78], however, become outdated with the evolution

of technology presenting unsatisfactory results for several application areas. In medicine, high-

resolution images may provide more details and allow better diagnosis [47,52]. In entertainment,

old images captured at low resolution may be reproduced in order to be displayed on larger

televisions with high resolution [44]. In security and surveillance, the resulting images may

improve the identification of people, objects, car plates, and other information [26, 49, 57].

Furthermore, the acquired images do not always possess a proper quality, containing noise, focus

or distortion problems. Such issues make the upscaling process more difficult and causing the

resulting images to be less understandable to the human visual system [10, 77].

Nowadays, due to the advances in technology and larger processing power, different machine

learning and image processing techniques have been explored to allow the use of Deep Neural

Network (DNN), becoming the state of the art in segmentation, classification, and reconstruction

of images [14].

The challenge New Trends in Image Restoration and Enhancement (NTIRE) was created in

20161 with issues in 20172, 20183 and 20194. This competition aims to drive the improvement

of super-resolution algorithms and, since its first edition, the best algorithms on individual super-

resolution images use DNN, such as Enhanced Deep Super-Resolution (EDSR) [39], Multi-scale

1NTIRE 2016: http://www.vision.ee.ethz.ch/ntire/
2NTIRE 2017: http://www.vision.ee.ethz.ch/ntire17/
3NTIRE 2018: http://www.vision.ee.ethz.ch/ntire18/
4NTIRE 2019: http://www.vision.ee.ethz.ch/ntire19/
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Deep Super-Resolution (MDSR) [39], Very Deep Network Super-Resolution (VDSR) [31],

which reinforces the importance of this technique to the area [15].

The super-resolution algorithms based on DNN usually have different architectures, however,

they commonly use Peak Signal-to-Noise Ratio (PSNR) and L2 as loss functions [48, 50, 58, 60,

80, 81]. According to the Kautz et al. [83], these loss functions for the super-resolution problem

are generalist and do not consider the position of the error in the image, which can generate

images with noise at the edges, making it difficult for the human visual system to interpret the

images.

1.2 Research Questions and Objectives

In order to improve the results of the super-resolution in single images, we have raised some

guide questions. The main research questions are outlined as follows:

• Can the use of an edge loss function help the neural network achieve a better super-

resolution image?

• Can edge-focused layers in a neural network produce super-resolution images better for

the human visual system?

• Can the use of inputs with different edge information help the network to improve the

result?

The main objective of this work is to improve the processing of super-resolution images,

making the perception of the resulting images more pleasant to the human visual system and

allowing a better understanding of their content. To be consistent with our goals, the following

guidelines were defined in this work:

• The investigation of super-resolution methods.

• The evaluation of deep learning architectures for the super-resolution of single images.

• The analysis of different loss functions used in the state of the art.

• The comparison of the results obtained with state of the art approaches.

1.3 Contributions

The main contributions of our work related to the super-resolution problem in single images

include:

• The development and evaluation of a deep neural network architecture, named Edge

Enhanced Super-Resolution (EESR) [21], based on a Residual Network (ResNet), with

layers modified with the Unsharp filter, becoming more specialized at the edges.
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• The proposition of a mix of loss functions, which encompasses both general and specific

edge faults. This mix of functions uses the Pencil Sketch technique to consider the image

edges and helps the network converge to an image with improved edges.

These contributions provided superior results for the Structural Similarity (SSIM) metric and

similar results for the PSNR metric in the data sets tested when compared to the state of the art

algorithms.

1.4 Text Organization

This text is organized as follows. Section 2 briefly reviews some relevant concepts and techniques

related to the topic under investigation. Section 3 presents relevant works related to super-

resolution. Section 4 describes the proposed method for image super-resolution enhanced by

edge information. Section 5 presents and analyzes the experimental results obtained with our

method, as well as a comparison to other methods available in the literature. Section 6 concludes

the work with some final remarks and directions for future work. Finally, Appendix A presents

some additional results obtained with our EESR method.
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Chapter 2

Background

This chapter presents some relevant concepts related to our work, more specifically, a brief

introduction of deep learning, the residual network (ResNet) architecture, the concept of super-

resolution, the pencil sketch, the unsharp mask filter, and performance metrics.

2.1 Deep Learning

Deep Learning or Deep Neural Network (DNN) is the name given to a set of machine learning

algorithms that are based on Neural Network (NN) [11, 14, 25, 37, 42, 43]. These algorithms are

inspired by the neurons in the human brain and have existed since the 1960’s, however, they have

gained notoriety in recent years due to the increased computational power, larger amount of data,

and emergence of new techniques. A DNN is composed of layers that can have one or more

operations. A set of convolutions is commonly used in neural networks for image and video

processing; these networks are called Convolutional Neural Networks (CNN) [18, 22, 36, 56].

One of the most important competitions in image processing is the ImageNet [13] challenge,

composed of approximately 1 million images divided into 1000 classes (for instance, dogs, cats,

birds, cars). As of 2012, with AlexNet [34] winning the ImageNet [35] challenge with a 10%

less error than the second place, the DNN architectures begin to gain prominence, boosting the

development of other architectures that reached the state of the art in diverse applications, such as

VGGNet [60], GoogLeNet [65], ResNet [28], Inception [64], YOLO [55] among others [13, 54].

2.1.1 Residual Network - ResNet

The Residual Network (ResNet) is a DNN created by He et al. [28] in 2015 for the ImageNet

challenge, inspired by the philosophy of VGG [28] networks. The ResNet has most of the layers

with 3×3 convolutions and follows two basic rules: (i) for the same feature map size, the number

of filters in the layers are the same; and (ii) when the feature map size is halved, the number of

filters is folded.

The architecture ends with a global average pooling layer, where the number varies with the

number of outputs. The original network has 1000-way, as illustrated in Figure 2.1. Finally, to

obtain the residual network, shortcut connections are inserted. When the dimensions between the

output and input layers are the same, the shortcut is a identity mapping (solid line shortcuts in

Figure 2.1), but when dimensions increase (dotted line shortcuts in Figure 2.1), two options are
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considered: the shortcut performs a identity mapping or a projection. The architecture version,

without the shortcuts, is referred to as plain network [28].

Figure 2.1: Examples of architectures presented by the creators of ResNet. Left: the VGG-19

model as a reference. Middle: a plain network with 34 parameter layers. Right: a residual

network with 34 parameter layers [28].
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ResNet-based residual networks are easier to optimize and train, even with a significant

number of layers, however, they can achieve competitive results in a variety of tasks, such as

classification and super-resolution, resulting in less computational time for training.

2.2 Super-Resolution

Super-Resolution (SR) of images [23, 63, 68, 72, 76] is a classic problem in the image processing

field that affects several application domains, such as medicine [52], entertainment [44], and

surveillance [26]. The computation of SR images are divided into (i) super-resolution of single

images - where only one Low Resolution (LR) image is used to obtain a High Resolution (HR)

image, such that this SR can be considered more complex, since there is a minimum amount of

information about the image; (ii) super-resolution of multi-images - where multiple LR versions

of an image are used to obtain a HR image, and the LR image versions may contain images with

intermediate resolutions or different noise types [5, 9, 70]. In our work, we focus only on SR of

single images.

(a) high-resolution (481×321 pixels) (b) low-resolution 2× (240×160 pixels)

(c) low-resolution 3× (160×107 pixels) (d) low-resolution 4× (120×80 pixels)

Figure 2.2: Image 108070.png in HR and LR versions reduced using only the bicubic

function [45].

The LR images can be obtained under different strategies, but most researches assume that

the LR images are downscaled versions, created through the bicubic technique, of the HR images.

These images may still contain randomly noise to simulate compression or loss of information.

Figure 2.2 shows an HR image and LR versions reduced 2, 3, and 4 times using only the bicubic
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function. It is possible to observe a greater loss of information when the reduced factor increases,

such as the loss of some edges in Figure 2.2b and the complete loss of these edges in Figure 2.2d.

2.3 Pencil Sketch

Pencil sketch [40, 69] is a non-photorealistic technique used to convert colored images into

a grayscale sketch. This technique simulates the effects of different pencils and strokes on

paper [69]. The result of the pencil sketch is an image with edges and a sense of preserved

depth, however, without colors and textures, since they are suppressed in the process. Thus, this

technique is used to create beautiful non-realistic images, with many details and shadow effects.

The pencil sketch technique is simple to implement and it is composed of three basic steps:

(i) initially, the color image is converted to a grayscale image; (ii) the blurred image is then

created based on the grayscale image; (iii) finally, the resulting image is created by dividing

the grayscale image by the blurred image. The image resulting from this process is grayscale.

In order to create the color image, we convert the original image from Red Green Blue (RGB)

color space to the Y-luma, Cr-red difference, and Cb-blue difference (YCrCb) color space, and

multiply the Y-luma by the result of the pencil sketch.

Algorithm 1: Pencil sketch computation.

1 i m p o r t cv2

2

3 d e f p e n c i l _ s k e t c h ( img_rgb ) :

4 # S te p 1

5 i f img_rgb . shape [ 2 ] > 1 :

6 img_gray = cv2 . c v t C o l o r ( img_rgb , cv2 .COLOR_RGB2GRAY)

7 e l s e :

8 img_gray = cv2 . c v t C o l o r ( img_rgb )

9

10 # S te p 2

11 i m g _ b lu r = cv2 . G a u s s i a n B l u r ( img_gray , ( 2 1 , 21) , 0 , 0 )

12

13 # S te p 3

14 mg_ps = cv2 . d i v i d e ( img_gray , img_blur , s c a l e =256)

15

16 r e t u r n img_ps

17

18 img = cv2 . imread ( img_p )

19 img_ps = p e n c i l _ s k e t c h ( img )

20

21 # c o n v e r t s t h e RGB image t o YCrCb image

22 img_yCrCb = cv2 . c v t C o l o r ( img , cv2 . COLOR_RGB2YCR_CB)

23

24 # m u l t i p l i e s t h e Y−luma and p e n c i l s k e t c h r e s u l t

25 img_yCrCb [ : , : , 0 ] = cv2 . m u l t i p l y ( img_yCrCb [ : , : , 0 ] , img_ps , s c a l e = 1 . / 2 5 6 )

26

27 # r e s u l t i n g c o l o r image

28 i m g _ r e s u l t = cv2 . c v t C o l o r ( img_yCrCb , cv2 . COLOR_YCR_CB2RGB)

29

30
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Algorithm 1 presents the main implementation steps of the pencil sketch technique, imple-

mented in Python programming language and OpenCV library [7]. Figure 2.3 illustrates the

results achieved for each step of the algorithm.

(a) original image (b) grayscale image (Step 1)

(c) blurred image (Step 2) (d) pencil sketch result (Step 3) (e) resulting color image

Figure 2.3: Results of the Pencil Sketch algorithm. (a) original image [78]; (b) graycale image;

(c) blurred image; (d) result of the division between images (b) and (c); (e) result of multiplying

image (d) with Y-luma of image (a).

From the result of the pencil sketch technique (image shown in Figure 2.4c), it is possible

to observe shadow effects and image edges with no perfect lines, giving a more realistic notion

than an edge image.

The main difference between the pencil sketch and traditional edge detectors, such as

Sobel [61], Laplacian [24] and Canny [8], is the preservation of depth information and the fact

that the edge traces are not converted to lines, which can be seen in Figure 2.4.
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and n are the image dimensions, and K(i, j) is the super-resolution image.

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[I(i,j) −K(i,j)]
2 (2.1)

PSNR = 20 log10
(

max I(i,j)
)

− 10 log10(MSE) (2.2)

Using the MSE as the basis, the result of this method does not take into account the region

that has more or less noise, allowing images for having much noise at the edges, but no noise in

the interior regions, resulting in a high value, but with noise at the edges, which makes the visual

perception difficult.

The structural similarity in Single-Scale SSIM and Multiple-Scale Structural Similarity

(MS-SSIM) are similar structural methods that attempt to represent the similarity between images

in a way closer to that observed by the human eye, which takes into account the luminance,

contrast and structure information. In these methods, the values of similarity vary from 0 (the

images are not similar) to 1 (the images are similar) [71, 73].

The SSIM metric is shown in Equation 2.3, where µHR and σ2
HR are the mean and variance of

HR, µSR and σ2
SR are the mean and variance of SR, and σHS-R is the covariance of HR and SR, C1

and C2 are constants that stabilize the equation (C1 = 0.01 ∗ 2552 and C2 = 0.03 ∗ 2552).

SSIM(HR, SR) =
(2µHR µSR + C1)(2σHS-R + C2)

(µ2
HR + µ2

SR + C1)(σ2
HR + σ2

SR + C2)
(2.3)
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Chapter 3

Related Work

In this chapter, we present a review of the main approaches related to this dissertation and their

contributions to the super-resolution problem. The methods were selected based on two criteria:

(i) the contribution for the state of the art; (ii) the availability of the source codes by their authors.

3.1 Very Deep Super Resolution - VDSR

The VDSR is a DNN that was created by Lee et al. [31] with inspiration in VGG networks used

for classification images in the ImageNet challenge. The VDSR model is composed of 20 layers

that are in pairs of layers convolutional and nonlinear repeatedly and have 64 filters of the size

3×3×64.

The network input image is an interpolated HR (HRI) version of the LR image, with the HRI

image. The network predicts a residual image that is summed to the HRI image and generates

the final output image. The loss function used is denoted as

1

2
|r − f(x)|2 (3.1)

where r is a residual image calculated by r = y − HRI, where y is the output image and f(x) is

the network predicted image. Figure 3.1 illustrates the VDSR architecture.

The VDSR is approximately 104 times faster than Super-Resolution Convolutional Neural

Networks (SRCNN) [16], which was the state-of-the-art super-resolution algorithm. This was

possible due to the use of residual learning in the context of super-resolution. The authors

presented a comparison between a residual network and a standard network to demonstrate the

gains of residual networks in super-resolution.

The networks were created with 20 layers and tested for a scale factor of 2×. Figure 3.2

shows the PSNR results of the networks in 80 epochs, where it is possible to observe that the

residual network is more stable through the epochs and the final result is better [31].

3.2 Enhanced Deep Super Resolution - EDSR

Since the development of some state of the art models, such as VDSR [31] and SRResNet [59],

demonstrated that residual networks performed better in super-resolution, other models have
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(a) Original (b) SRResNet (c) EDSR

Figure 3.3: Image presented by Lee et al. [39] to compare the different residual blocks.

lution layer and residual block layer totaling 256 filters, and the loss function used is the least

absolute deviation (L1) [39]. The EDSR architecture is shown in Figure 3.4.

Figure 3.4: EDSR architecture [39].

3.3 Multi-scale Deep Super Resolution - MDSR

Lee et al. [39], creators of the EDSR, identified in their tests the possibility of another version

of the architecture that uses multiple scales. Thus, they developed the Multi-scale Deep Super-

Resolution (MDSR), a merge of EDSR with multi-scale models to have a single main branch.

The pre-processing modules are used to reduce the variance from input images of different

scales, which is composed of two residual blocks. At the end of the MDSR, the scale-specific



27

upsampling model is located in parallel to handle the multi-scale reconstruction. The MDSR

model has 80 residual blocks and 64 filters and using the L1 as the loss function [39]. Figure 3.5

shows the MDSR architecture.

Figure 3.5: MDSR architeture [39].

3.4 Deep Back-Projection Networks - DBPN

The Deep Back-Projection Network (DBPN), developed by Hais et al. [27], presented a different

approach from the SR, for instance, the back-projection layers, connections up-down-sampling,

and MSE loss function.

According to Hais et al. [27], the back-projection [30] is an efficient interactive procedure to

minimize the reconstruction error. Originally, the back-projection was been thought to multiple

LR inputs. However, given one LR input, the updating procedure can be obtained with the

up-sampling.

Unlike other architectures, the DBPN does not map directly the LR input image to HR output

image, but alternates between up-down-sampling stages, ending with the up-sampling stage.

Figure 3.6 shows this architecture, where the up-sampling is the blue box and the down-sampling

is the gold box.

The DBPN architecture is composed of three parts: (i) the initial, where is extracted the

features; (ii) the back-projection stages with the alternating sequence of up and down sampling;

and (iii) the reconstruction part, which unites the output images of the intermediate part.

Hais et al. [27] presented some versions for their architecture, however, the main and final

version is the Deep Dense Back-Projection Network (DDBPN), which used dense connections

between the projection units. Figure 3.7 illustrates the DDBPN architecture.
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Chapter 4

Proposed Method

In this chapter, we explain the proposed architecture and loss function for image super-resolution.

Initially, we analyze the state-of-the-art frameworks, where different architectures and number of

layers are identified, however, none of them with focus on the image edges. The loss functions

commonly employed in these approaches are L1, L2 and PSNR, which do not explore the edges

since they are average error functions.

Our proposal is an edge enhanced super-resolution framework, which consists of a ResNet-

based architecture, referred here to as EESR [21], as well as a combination of existing loss

functions with a new function based on the pencil sketch technique. According to our experiments,

the preservation of the image edges was able to improve the super-resolution results.

4.1 Data Sets

A typical problem found in the deep learning solutions is the low number of images available to

training and testing. In this work, we evaluated our results in four data sets (Set5 [5], Set14 [78],

B100 [45], and Urban100 [29]). It is worth mentioning that we used the Div2K [1] only for

training and validation, since the test images are reserved for the associated challenges. Table 4.1

shows the highest and lowest resolutions of the images in each data set.

Data Set Train Validation Test Highest Resolution Lowest Resolution

Div2k 800 100 - (2040, 2040) (648, 2040)

Set5 - - 5 (512, 512) (256, 256)

Set14 - - 14 (576, 720) (276, 276)

B100 - - 100 (321, 481) (321, 481)

Urban100 - - 100 (963, 1280) (1024, 567)

Table 4.1: Summary of the image dimensions for the evaluated data sets.

The Div2K [1] data set was launched in 2017 with the aim of training and evaluating super-

resolution algorithms. It has 800 images for training and 100 images for validation. These images

are given in pairs, where high-resolution images have a resolution of 2K and low-resolution
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images are reduced versions 2, 3 and 4 times. Figure 4.1 shows Div2K image samples for HR

and LR at two downscaling factors.

(a) (2040, 2040) (b) (1020, 1020) (c) (2040, 648) (d) (1020, 324)

Figure 4.1: Samples from the Div2K data set.

There are also other known data sets, such as Set5 [5], Set14 [78], B100 [45], and Ur-

ban100 [29], which are considered small, containing 5, 14, 100 and 100 pairs of HR and LR

images, respectively, and are commonly used as benchmark for the comparison between algo-

rithms. Figures 4.2, 4.3, 4.4, and 4.5 illustrate samples from Set5, Set14, B100, and Urban100

data sets for HR and LR at two downscaling factors.

(a) (512, 512) (b) (256, 256) (c) (256,256) (d) (128, 128)

Figure 4.2: Samples from the Set5 data set.

4.2 Loss Functions

According to Kautz et al. [83], the loss functions derived from the L2 function assume that noise

in the entire image is equivalent to the localized noise. In other words, the loss functions do

not consider the location of the error [74]. The sensitivity of the human visual system to noise

depends on the local luminance, contrast, and structure.

Kautz et al. [83] proposed a mix of loss functions, adding MS-SSIM and L1 [82] to optimize

the image restoration results. This relation between the loss function and the super-resolution
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(a) (720, 576) (b) (360, 288) (c) (276, 276) (d) (138, 138)

Figure 4.3: Samples from the Set14 data set.

(a) (481, 321) (b) (240, 160)

Figure 4.4: Samples from the B100 data set.

(a) (1280, 963) (b) (640, 481) (c) (567, 1024) (d) (283, 512)

Figure 4.5: Samples from the Urban data set.

result is shown in Figure 4.6, where (a) and (e) are LR, and the remaining images are super-

resolution results using (b) and (f) L2 loss function, (c) and (g) L1 loss function, and (d) and (h)
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the mixed loss functions proposed by Kautz et al. [83].

Figure 4.6: Comparison of the loss function effects performed by Kautz et al. [83], where (a)

and (e) are LR, and the remaining images are super-resolution results using (b) and (f) L2 loss

function, (c) and (g) L1 loss function, and (d) and (h) the mixed loss functions proposed by

Kautz et al. [83].

Although this mix achieved the best results and the MS-SSIM function already has an em-

phasis on the structure of the image, this focus is still subtle and does not contribute significantly

to enhance the edges. Our proposal is to use the pencil sketch method as a loss function added to

the combination MS-SSIM, L1 and PSNR.

The pencil sketch loss function consists of two steps. Initially, the RGB images are converted

to the YCbCr space, and the Y-luma is used to create the sketched pencil images. We choose

to use the YCbCr space because the Y-luma represents the luminance in an image. The other

spaces and variables were tested and the results were not better; these other approaches will

be discussed in the following sections. Then, the PSNR value of the pencil sketch images is

calculated, resulting in a loss value. Equation 4.1 denotes the process, where IHR
(i,j) and ISR

(i,j)

correspond to the Y-luma values of the HR and SR images, whereas PS() is the pencil sketch

method.

L(Pencil Sketch) = PSNR(PS(IHR), PS(ISR) (4.1)

Equation 4.2 denotes the final mixed loss function composed of the pencil sketch sum,

MS-SSIM, L1, and PSNR terms, each of them with weight 1.

Loss = 1× L1 + 1× PSNR + 1× MS-SSIM + 1× L(Pencil Sketch) (4.2)
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Chapter 5

Experimental Results

In this chapter, we present the experiments and results for the proposed EESR method [21]. The

results are compared to leading-edge architectures. We describe the settings and parameters used

to generate the EESR results along with the images and metrics for 2×, 3× and 4× downscaling.

Finally, we present other approaches studied and evaluated throughout this work, but not used in

the last version.

5.1 Experiments

In our experiments, we use three different types of equipments, two desktop computers and an

Oracle VM Cloud1. The main computer consists of an Intel R© Core
TM

i5-7400 CPU 3.0GHz,

16GB of memory and NVidia GeForce GTX 1060 with 6GB, which was used to develop, test

and generate the first results. The secondary computer consists of an Intel R© Core
TM

i7-3770K

CPU 3.50GHz, 32GB of memory and NVidia Titan V with 12GB of memory, which was used to

obtain the final EESR results. The VM used in Oracle Cloud consists of a VM.GPU3.1 with an

Intel R© Xeon R© Platinum 8167M CPU 2.0 GHz, 90GB of memory and an NVidia Tesla V100

with 16GB of memory, which was used to compare the results presented in the paper [21].

In the training stage, we used the DIV2K training data set by loading the LR and HR images,

where the LR images used are different versions with 2×, 3× and 4× downscaling. The final

tests executed 500 epochs and the best results were presented around the 475th epoch. For a fair

comparison, the start-of-the-art architectures executed 500 epochs, but their results were similar

to those using 300 times, having their best results around the 300th epoch.

The code has many parameters to configure, however, many of them are maintained as their

default values presented in the option.py file. The main parameters used to run the EESR are

the number of epochs 500 and the mixed loss function formed by the sum of L1, PencilSketch,

PSNR, and MS_SSIM, all with weight 1. The color space used is the YCrCb and the loss

function is applied in the channel zero, the block numbers are 32 with RUB in the layers 1 to 5.

The comparative tables that will be shown in the next sections were created based on the

PSNR and SSIM values presented in the analyzed state of the art architectures. Some resulting

images were made available by the authors along with the source code, whereas others were

generated using the instructions presented by the authors in their papers or code repositories.

1https://cloud.oracle.com/compute/gpu/features
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5.2 Results

The main strategies for comparing the images in the SR problem employ the PSNR and SSIM

metrics, which attempt to condense all errors in the comparison between the SR image and

corresponding HR image. However, the visual comparison is the only one so far that can

determine the actual human perception of the difference between the images. For comparison

purpose, we used four well-known and challenging data sets to SR: Set14, Set05, B100 and

Urban100.

Two images resulting from our EESR architecture are presented for each benchmark data set

in Appendix A. The images are enlarged from 2×, 3× and 4× downscaling factors.

5.2.1 2× Downscaling

The 2× downscaling is considered easier and the first step of the SR algorithms, such that

many methods available in the literature, based or not on machine learning, presented results for

this problem. Table 5.1 shows the PSNR and SSIM values for the benchmark data sets with a

downscaling factor of 2×, where is possible to observe that our model presented competitive

results for the PSNR metric, achieving first place in the Set5 data set and second in the Set14

data set, but having worse results for the B100 and Urban100 data sets. From the SSIM results,

it is possible to observe that our model exhibited significant improvement in all benchmark data

sets, with a mean improvement of 6.44% to the second algorithm.

DDBPN VDSR EDSR MDSR EESR

2×

Set05
38.09

0.9600

37.53

0.9587

38.20

0.9606

38.17

0.9605

38.21

0.9965

Set14
33.85

0.9190

33.03

0.9124

34.02

0.9204

33.92

0.9203

33.92

0.9931

B100
32.27

0.9000

31.90

0.8960

32.37

0.9018

32.34

0.9014

32.32

0.9926

Urban100
33.02

0.9310

30.76

0.9140

33.10

0.9363

33.03

0.9362

32.74

0.9946

Table 5.1: Results for PNSR / SSIM metrics on the evaluated data sets for 2× downscaling. The

first and second best results are highlighted in blue and red colors, respectively.

Figures 5.1 5.2 5.3 5.4 show the comparison between the images resulting of the state of

the art (VDSR, EDSR. MDSR, and DDBPN) networks, the image resulting of ours network

(EESR), and the HR image, all to for 2× downscale. The images are respectively to the data sets

Set14, Set05, B100 and Urban100.

From Figure 5.1, it is possible to observe the differences between the state of the art results

and our architecture results for the Set14 benchmark. From the images, we can see that red text

became clearer in the image resulting from the EESR and, when we look at the blue text, more

precisely the word “presentations”, it is possible to notice that, in all results, the letters “n” appear

blurry and, in the DDBPN result, this effect is more subtle and can allow the understanding of

the word. In our result, the first “n” is confused with the next letter “t”. Overall in this example,

our architecture obtained a slightly better result.
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.1: Comparative results for ppt3.png image with downscaling of 2× for the Set14

data set.

Figure 5.2 shows the super-resolution results for an image from the Set5 data set. In this

figure, it is possible to observe the differences on the edges, when the change is abrupt (on the top

of the bird head with the background and the black band in the start of itsr beak) and when it is

gradual (around eyes and in its chest). In this case, the VDSR, DDBPN and EESR architectures

obtained similar results and, when compared to the HR image, we notice that the main difference

is the perception of color intent and brightness.

Figure 5.3 compares the results for an image from Urban100 data set. The original image has

different textures, reflections, and colors, which make imaging challenging for super-resolution

architectures. From the results, it is possible to see the difference between processing smooth

surfaces and rough surfaces, where all architectures had an acceptable result for the part of the

image that is smooth, but lost a lot of quality on the rough surface. Another detail to notice in

this comparison is the difference in color tone, where the VDSR and EDSR results are closer to

the HR image. However, our architecture and the EDSR had better results for the reflections in

the smooth surface, which is observed on the bottom left of the results.

As mentioned in Chapter 1, surveillance is one of the areas that can be benefited from

the super-resolution techniques. In this context, a related task is the identification of people

and objects. The original image in Figure 5.4 has two common pieces of information in the

surveillance area, a face and a hand holding an object. When comparing the results of the

architectures to the HR image, we observe a difficulty in identifying features located on the face,

such as eyes, nose and ear. However, when observing the hand and the object in the images, it is

possible to see a slight difference between the results, mainly in the separation of the fingers and

in the contrast between the violin’s black arm and the black background suit.

5.2.2 3× Downscaling

Since the algorithms can address the 2× downscaling, a natural step is also to apply a 3×

downscaling to the images. However, an odd scale usually requires a different approach to obtain
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.2: Comparative results for Bird.png image with downscaling of 2× for the Set5 data

set.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.3: Comparative results for Img060.png image with downscaling of 2× for the

Urban100 data set.

good results, as described in Chapters 3 and 4. In our EESR architecture, as well as the EDSR

and MDSR architectures, there are specific layers to handle 3× resolution.

In this section, we will compare the results for the 3× downscaling. The DDBPN is not

presented in this comparison because its authors [27] did not present the results for this scale in
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.4: Comparative results for 119082.png image with downscaling of 2× for the B100

data set.

their paper. Table 5.2 reports the PSNR and SSIM values for the benchmark data sets with a 3×

downscaling factor, where it is possible to see close results between our model and the first and

second best architectures (in blue and red, respectively) for the PSNR values. However, for the

SSIM values, our architecture had the best results for all data sets.

VDSR EDSR MDSR EESR

3×

Set05
33.66

0.9213

34.76

0.9290

34.76

0.9288

34.68

0.9882

Set14
29.77

0.8314

30.66

0.8481

30.53

0.8465

30.56

0.9710

B100
28.82

0.7976

29.32

0.8104

29.30

0.8101

29.25

0.9642

Urban100
27.14

0.8279

29.02

0.8685

28.99

0.8683

28.71

0.9755

Table 5.2: Results for PNSR / SSIM metrics on the evaluated data sets for 3× downscaling. The

first and second best results are highlighted in blue and red colors, respectively.

Figure 5.5 shows the results for the ppt3.png image from the Set14 data set of the 3×

downscaling. It is possible to observe that these results are more difficult for a person to

understand the text in the image. However, it is still possible to identify some words such as:

“Make”, “point” and “in”. If we consider the same observation made for the 2× downscaling and

look at the word “presentations”, we can see from the EESR result that this word still holds some
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separation between the letters, while the other results merged these letters into a single blob.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.5: Comparative results for ppt3.png image with downscaling of 3× for the Set14

data set.

From Figure 5.6, it is possible to observe a slight difference between the results. Comparing

the results with the HR image, we can observe a sensation of the image blur and the loss of some

details, for instance, the white spot in the bird eye, which was not preserved in the upscaling

process. The EDSR and VDSR results presented the colors more similar to the original image.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.6: Comparative results for Bird.png image with downscaling of 3× for the Set5 data

set.

Figure 5.7 compares the results of the SR process for an image from the Urban100 data
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set. These results are similar to those presented in Figure 5.6. The images are blurred, making

it difficult to perceive the texture of the image. However, the result of the EDSR architecture

showed better detail on the left side of the image that contains some reflection effects.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.7: Comparative results for Img060.png with downscaling of 3× for the Urban100

data set.

Two noticeable pieces of information are present in Figure 5.8, the face and the hand with the

object. The VDSR presented the most blurred result when compared to the others. The EESR

and MDSR presented a slight improvement in the highlighting of the part of the object above the

hand. This improvement is a slightly lighter coloration in the object, which allows a highlighting

against the black background.

5.2.3 4× Downscaling

In this section, we will present and compare the results for the 4× downscaled images. These

images present a more difficult scenario for the SR to process since they are even smaller. Unlike

the 3× downscaling, most algorithms support this resolution because it is a direct multiple of the

first 2× downscaling case.

Table 5.3 reports the PSNR and SSIM results for the 4× downscaling for all the architectures.

Again, our architecture EESR is competitive compared to the other state of the art architectures.

The EESR obtained better results for PSNR in all data sets and achieved the second better results

on the Set14 and B100 data sets, however, the EDSR obtained the better results for PSNR. When

we consider the SSIM results, our architecture maintained a good effectiveness in the other

resolutions presented in the previous sections.

The results presented in Figure 5.9 show that, for a 4× downscaling, it is practically impossi-

ble to read the information after the SR process. However, the EESR and DDBPN architecture

were able to maintain some separation between letters, which is not so often in the other results.
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.8: Comparative results for 119082.png with downscaling of 3× for the B100 data

set.

DDBPN VDSR EDSR MDSR EESR

4×

Set05
32.47

0.8980

31.35

0.8838

32.62

0.8984

32.60

0.8982

32.48

0.9806

Set14
28.82

0.7860

28.01

0.7674

28.94

0.7901

28.82

0.7876

28.83

0.9538

B100
27.72

0.7400

27.29

0.7251

27.79

0.7437

27.78

0.7425

27.72

0.9434

Urban100
27.08

0.7950

25.18

0.7524

26.86

0.8080

26.86

0.8082

26.57

0.9590

Table 5.3: Results for PNSR / SSIM metrics on the evaluated data sets for 4× downscaling. The

first and second best results are highlighted in blue and red colors, respectively.

Figure 5.10 shows very similar results across the architectures, which makes it difficult for

people to identify the best image, but there is a slight difference among the results, such as in the

black line on the bird’s beak, where lines in the EDSR, VDSR and MDSR architectures became

more blurred and there is a continuity between the top and bottom of the beak that is not in the

original image. In the EESR and DDBPN results, the lines are more defined and the continuity

practically does not exist.

The focus of Figure 5.11 is to compare textural features. It is possible to observe that the

rough texture on the right side and the vertical lines on the mirrored texture on the left side were

completely lost in all SR images. Another point to notice is the vertical line separating the two

textures, where it is best viewed in the EESR and EDSR results.

Figure 5.12 shows the results for an image from the B100 data set, where several details of

the image were lost, making it virtually impossible to identify them in the resulting images.
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.9: Comparative results for ppt3.png image with downscaling of 4× for the Set14

data set.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.10: Comparative results for Bird.png image with downscaling of 4× for the Set5

data set.

5.3 Additional Experiments and Results

The results presented in the previous section were obtained from the latest version of our

architecture and, consequently, are the best results obtained during this research work. However,

several other ideas and approaches were studied, such that some of them are presented in this

section.

In these early tests, we set a small number of epochs to obtain fast results. We chose a state
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.11: Comparative results for Img060.png image with downscaling of 4× for the

Urban100 data set.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.12: Comparative results for 119082.png image with downscaling of 4× for the B100

data set.

of the art architecture to perform the same small number of epochs and compare the results. All

results were compared through the PSNR value on the Set14 data set and all tests used the Div2K

for training. In this case, the number of epochs was 40 and the architecture chosen was EDSR.

The initial approaches explored the idea of using data augmentation focused on image edges.

Thus, we used two classic edge extraction algorithms, Sobel [61] and Laplacel [51]. In these

tests, the number of input images was 12,800 images: the original Div2K training set with 800
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images, added to 800 images using Sobel [61] or Laplace algorithms, and all images multiplied

by 8 original EDSR geometric transformations. PSNR results for these tests were 32.531 for

Sobel [61] and 31.961 for Laplace, but the result to be surpassed was 33.314 for EDSR. Another

technique used for data augmentation was mathematical morphology, where the methods eroded

and dilated to obtain the edges, but their results were similar to those of Sobel [61]. Continuing

the data augmentation approach, we implemented other filters and normalization strategies, and

then combined these approaches, however, the best result was obtained using only the histogram

normalization, where we achieved the value of 33.207. Finally, we implemented the Pencil

Sketch technique, whose best result was obtained in the EDSR, with a PSNR value of 33.335.

The loss function is essential for deep neural network training. Since originally the EDSR

uses the L1 loss function, another approach considered was the use of other loss functions such as

PSNR, SSIM, and MS-SSIM. Initially, we explored these functions individually, but we obtained

results inferior to the previous ones, being the best for the PSNR loss function, which obtained

a value of 13.824. However, when we combined the loss functions, some improvements were

produced, where the combinations (MS-SSIM and L1), (PSNR and L1), and (PSNR, MS-SSIM

and L1) resulted, respectively, in 33.490, 33.508, and 33.510. By observing the best results for

the combined loss function and the Pencil Sketch, we created the mixed loss function presented

in our architecture.

After defining our loss function, we began to investigate approaches to modify the architecture,

first by changing the color space used in the network, such that the results were not satisfactory.

We then explored the modification in the residual blocks, converging to the model described in

Chapter 4.
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Chapter 6

Conclusions and Future Work

Super-resolution using single images is a classic problem in the image processing area, affecting

other knowledge domains such as medicine, security and surveillance, entertainment, and remote

sensing. Thus, it is necessary that the resulting images be adequate to the human visual system,

including information essential to our vision, such as luminance, contrast and structure. The aim

of this work was to create an architecture that would take these visual aspects into consideration

and give greater focus to the edges of the images.

This work presented a novel deep neural network architecture and a novel mixed loss function

for the single image super-resolution problem, named EESR [21], which is based on the state of

the art EDSR architecture, however, with focus on the image edges. The proposed architecture

implemented the unsharp mask filter in the layers and a loss function using the Pencil Sketch

technique. The EESR is composed of a network with 32 residual layers, where the first five use

a novel residual block, named Residual Unsharp Blocks (RUB), and a combined loss function

composed of the sum of L1, PSNR, MS-SSIM, and Pencil Sketch functions. These techniques

allowed the network to focus on the edges during learning step.

To validate the EESR improvement capability, an extensive evaluation was conducted on four

different benchmark data sets: Set05 (five images), Set14 (fourteen images), B100 (one hundred

images), and Urban100 (one hundred images) for three different downscaled input images

(factors of 2×, 3×, and 4×). To compare the results against other architectures, we employed the

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) values, as well as visual

inspection. The achieved results demonstrated to be promising for the super-resolution problem.

The novel edge-focused architecture is competitive when compared to the current state of the art,

surpassing some approaches in certain scenarios.

Three hypotheses were elaborated in this work. The first explored the possibility of an

edge-focused loss function to aid network effectiveness. Although a more detailed analysis may

be required, we could observe that using only one edge-focused loss function did not produce the

desired effect. However, when coupled with other more general loss functions, the combination

resulted in greater network attention at the image edges.

The second hypothesis verified the effectiveness of using specialized edge layers in a deep

neural network architecture. Experiments demonstrated that using these layers helps the network

significantly, however, their use in many layers made the processing very heavy and, consequently,

slow to use these layers at the end of the network, achieving worse results. These results are

acceptable because neural networks use the first layers to extract simpler features, forcing the
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network to interpret the image edges throughout the process. It fails to learn other information,

such as color and position, even when we use it at the end of the architecture. The last layers

already have the image edge representation defined and the effect interrupts the definition of

other information.

Finally, the third hypothesis investigated the use of other image edge information passed

as input to the network. This hypothesis proved to be false, because when using different

information to increase the data, we did not obtain results similar or better to the state of the art.

However, there are other valid approaches to this process that have not been addressed in this

dissertation and which may be explored in future work.

This research work has opened several possibilities for future directions. The use of different

filters could be investigated in the architecture by adding layers focused, for instance, on color,

contrast, luminance, and spatial structure. A detailed analysis of the impact of the edge-focused

loss function could be conducted in our architecture, as well as in other models available in

the literature. Qualitative metrics based on visual inspection could be used to evaluate the

super-resolution results. In addition, input images could be used as an additional channel or

stream containing edge information [2, 3, 4, 38, 41].
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Appendix A

Complete Results for EESR

Throughout this work, specific clippings of images resulting from our architecture were presented.

These clippings were shown in order to highlight differences among our results and state-of-the-

art results, or even to present certain limitations of the algorithms.

In this appendix, two images resulting from our architecture are presented for each benchmark

data set. These images are enlarged from three evaluated downscaling factors (2×, 3× and 4×).

(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.1: EESR results for img060.png on B100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.2: EESR results for img044.png on B100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.3: EESR results for 119082.png on Urban100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.4: EESR results for 103070.png on Urban100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.5: EESR results for ppt3.png on Set14 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.6: EESR results for comic.png on Set14 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.7: EESR results for bird.png on Set5 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.8: EESR results for butterfly.png on Set5 data set.
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