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Abstract

Image analysis has been widely employed in many areas of the Sciences and Engi-
neering to extract and interpret high-level information from images, with applications
ranging from a simple bar code analysis to the diagnosis of diseases. However, the
state-of-the-art solutions based on deep learning often require a training set with a
high number of annotated (labeled) examples. This may imply significant human
effort in sample identification, isolation, and labeling from large image databases,
specially when image annotation asks for specialists in the application domain, such as
in Medicine and Agriculture, such requirement constitutes a crucial drawback. In this
context, Convolution Networks (ConvNets) are among the most successful approaches
for image feature extraction, such that their combination with a Multi-Layer Perceptron
(MLP) network or a Support Vector Machine (SVM) can be used for effective sample
classification. Another problem in these techniques is the resulting high-dimension
feature space, which makes difficult the analysis of the sample distribution by the
commonly used distance-based data clustering and visualization methods. In this
work, we analyze both problems by assessing the main strategies for ConvNet design,
namely Architecture Learning (AL), Filter Learning (FL), and Transfer Learning (TL),
according to their capability of learning from a limited number of labeled examples,
and by evaluating the impact of feature space reduction techniques in distance-based
data classification and visualization. In order to confirm the effectiveness of feature
learning, we analyze the progress of the classifier as the number of supervised samples
increase during active learning. Data augmentation has also been evaluated as a poten-
tial strategy to cope with the absence of labeled examples. Finally, we demonstrate the
main results of the work for a real application — the diagnosis of intestinal parasites —
in comparison to the state-of-the-art image descriptors. In conclusion, TL has shown
to be the best strategy, under supervised data constraint, whenever we count with a
learned network that suits the problem. When this is not the case, AL comes as the
second best alternative. We have also observed the effectiveness of Linear Discriminant
Analysis (LDA) in considerably reducing the feature space created by ConvNets to
allow a better understanding of the feature learning and active learning processes by
the expert through data visualization. This important result suggests an interplaying
between feature and active learning with intervening of the experts to improve both
processes as future work.



Resumo

A análise de imagens vem sendo largamente aplicada em diversas áreas das Ciências e
Engenharia, com o intuito de extrair e interpretar o conteúdo de interesse em aplicações
que variam de uma simple análise de códigos de barras ao diagnóstico automatizado
de doenças. Entretanto, as soluções do Estado da Arte baseadas em redes neurais
com múltiplas camadas usualmente requerem um elevado número de amostras ano-
tadas (rotuladas), implicando em um considerável esforço humano na identificação,
isolamento, e anotação dessas amostras em grandes bases de dados. O problema é
agravado quando tal anotação requer especialistas no domínio da aplicação, tal como
em Medicina e Agricultura, constituindo um inconveniente crucial em tais aplicações.
Neste contexto, as Redes de Convolução (Convolution Networks - ConvNets), estão
entre as abordagens mais bem sucedidas na extração de características de imagens, tal
que, sua associação com Perceptrons Multi-Camadas (Multi Layer Perceptron - MLP)
ou Máquinas de Vetores de Suporte (Support Vector Machines - SVM) permite uma
classificação de amostras bastante efetiva. Outro problema importante de tais técnicas
se encontra na alta dimensionalidade de suas características, que dificulta o processo
de análise da distribuição das amostras por métodos baseados em distância Euclidi-
ana, como agrupamento e visualização de dados multidimensionais. Considerando
tais problemas, avaliamos as principais estratégias no projeto de ConvNets, a saber,
Aprendizado de Arquitetura (Architecture Learning - AL), Aprendizado de Filtros (Filter
Learning - FL) e Aprendizado por Transferência de Domínio (Transfer Learning - TL) em
relação a sua capacidade de aprendizado num conjunto limitado de amostras anotadas.
E, para confirmar a eficácia no aprendizado de características, analisamos a melhoria
do classificador conforme o número de amostras aumenta durante o aprendizado
ativo. Métodos de data augmentation também foram avaliados como uma potencial
estratégia para lidar com a ausência de amostras anotadas. Finalmente, apresentamos
os principais resultados do trabalho numa aplicação real — o diagnóstico de parasitos
intestinais — em comparação com os descritores do Estado da Arte. Por fim, pudemos
concluir que TL se apresenta como a melhor estratégia, sob restrição de dados super-
visionados, sempre que tivermos uma rede previamente aprendida que se aplique
ao problema em questão. Caso contrário, AL se apresenta como a segunda melhor
alternativa. Pudemos ainda observar a eficácia da Análise Discriminante Linear (Linear
Discriminant Analysis - LDA) em reduzir consideravelmente o espaço de característi-
cas criado pelas ConvNets, permitindo uma melhor compreensão dos especialistas
sobre os processos de aprendizado de características e aprendizado ativo, por meio de
técnicas de visualização de dados multidimensionais. Estes importantes resultados
sugerem que uma interação entre aprendizado de características, aprendizado ativo, e
especialistas, pode beneficiar consideravelmente o aprendizado de máquina.
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Chapter 1

Introduction

"Understand well as I may, my comprehension can

only be an infinitesimal fraction of all I want to

understand."

—Ada Lovelace

In many areas of Sciences and Engineering, images can provide important informa-

tion about real problems, such as diagnosis of diseases, biometric access to a service by

image analysis, and quality control of industrial products based on image inspection.

This image analysis usually requires an initial step of manual isolation (identification

and/or segmentation) and identification (label assignment) of the content of interest,

named sample, in training images. Such samples may appear as (Figure 1.1):

i. pixels, the constituent image elements;

ii. superpixels, connected regions that transmit a same color

and texture visual sensation;

iii. objects, connected regions with known shape, or

iv. subimages around regions of interest.

The advance of imaging and storage devices favor the acquisition of unlabeled

images in large scale. In some applications, such as the diagnosis of human intestinal

parasites (enteroparasites) from optical microscopy image analysis [88], each image

may also contain a high number of samples — objects to be identified as either fecal

impurity (the great majority) or one among the 15 most common species of human

enteroparasites in Brazil. A single microscopy slide with 22× 22 mm2 may contain, for

instance, 2.2 thousand images containing about 100 thousand of such samples each. In

such cases, manual labeling by experts of a high number of samples for supervised

machine learning can be infeasible, especially when crowd-sourcing techniques [16]

cannot be applied.

For a given training set with samples labeled by experts, the supervised learning

process relies on mathematical characterization (image features) of each sample to design

15
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(a) (b) (c) (d)

Figure 1.1: (a) Superpixels of a remote sensing image identified as either coffee or non-coffee plantation
region. (b) Objects from optical microscopy — fecal impurities and species of human enteroparasites —
for classification, being (c) several impurities similar to the parasites. (d) Subimages around iris and
fingerprints for person identification.

a pattern classifier — a function that assigns labels to new samples. Therefore, the

supervised learning process encompasses both tasks i.e., the feature learning process

and the design of the pattern classifier.

1.1 Scope of the work

The present work assumes sample isolation can be automated and concentrates on the

supervised learning process. For the sake of feasibility, this work also assumes the

number of training samples labeled (supervised) by experts is limited to a reasonably

low value with respect to the number of available unlabeled samples. Each training

sample s can be characterized by a set of n > 1 measures extracted from the image,

which maps s into a vector ~x(s) ∈ R
n (or point) of the corresponding n-dimensional

feature space. The process of learning a good set of measures is called feature learning,

which selects a feature space where samples from different labels (categories) fall in

separable regions by a pattern classifier.

Methods for feature learning can be divided into knowledge-based and data-driven

approaches. Knowledge-based methods count on experts knowledge about the problem

to develop a suitable feature extraction algorithm [4]. In the diagnosis of Alzheimer

disease from brain MR-image analysis, for instance, features of interest are expected

to capture some abnormal hippocampal atrophy [37]. Such handcrafted features are

usually more meaningful to experts of the application domain and therefore less

susceptible to generate a pattern classifier that overfits the training data 1 than features

from the data-driven approaches. On the other hand, data-driven methods, such

as those that rely on neuron network architectures with multiple hidden layers —

1A classifier with considerably reduced power to predict the labels of new samples.
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a strategy well known as deep learning —, have been shown to be more effective

than knowledge-based approaches [46, 59, 68]. Data-driven methods rely on some

optimization process to exploit correlation between features extracted from the samples

and the corresponding sample labels. Such approaches can be further divided into filter

and wrapper methods [33], where filters select features independently of the pattern

classifier, while wrappers design the feature extraction algorithm and the classifier at

the same time, by using the performance of the classifier on part of the training set to

score the predictive power of the features.

Many deep learning techniques can be seen as a wrapper that embraces a wide

family of different techniques based on the concept of stacking several neural network

layers. Among these techniques, Convolution Networks (ConvNets) present the best

results to extract features from subimages around detected/segmented objects for

image classification in many different scenarios [19, 32, 46, 52]. These ConvNets

consist of a sequence of layers, with linear and non-linear operations each, to transform

low level image features (e.g., pixel intensities) into high level texture features, more

suitable for pattern classification. As we will discuss in this work, the output of

the last convolution layer can be interpreted as a high-dimensional feature vector. Thus

following it, one may consider either a decision layer (classifier) or more network layers

for feature space dimensionality reduction followed by a decision layer — i.e., the

traditional multi-layer perceptron network [36].

However, feature learning through ConvNets is known to require a high number of

supervised samples. Therefore, the scope of this work is reduced to study image fea-

ture learning by ConvNets under supervised data constraint. Under such constraint,

for the cases where the pattern classifier is able to achieve high accuracy rates in a test

set, we can certainly conclude the descriptor is less prone to overfit.

1.2 Image feature learning by ConvNets

The name ConvNet stems from the operation performed by the first layers of such

networks, which relies on a linear convolution between input data and a filter bank —

a considerable simplification of the first operation in a typical neural network layer,

since the general case defines a different weight set for each neuron. In this operation,

each pixel can be interpreted as a neuron with the same synaptic weights for all pixels

of the same layer. The filter coefficients are those synaptic weights and the filter size,

which is the same for all filters in the layer, defines the neuron receptive field. The

adjacent pixel values form the input data of each neuron. A ConvNet layer also consists

of additional operations, namely activation, pooling, and normalization. Therefore, learn

the best features for a problem consists of finding the best solution for the number

of layers, number of filters per layer, their coefficients, and the parameters of each

remaining operation. These are called the network hyperparameters, with exception of

the filter coefficients which are called the network parameters.

The general pipeline for feature learning based on ConvNets is shown in Figure 1.2.
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1.3 Objectives and methodology

In order to study feature learning based on ConvNets under supervised data constraint,

we must consider the popular existing strategies, select image data sets with the

various distinct characteristics (e.g., type of sample, balanced and unbalanced number

of samples per category, image domain, and number of categories), and establish

a reasonably low number of supervised samples for the feature learning process.

Under these conditions, we wish to identify the best feature learning strategy with an

empirical analysis.

On the proposed scenario of supervised data constraints, we want to figure out

which is the best approach for feature learning, among Filter Learning, Transfer Learn-

ing and Architecture Learning, by imposing a strong limitation on the ammount of

supervised data available for ConvNet feature learning.

In order to confirm whether or not this feature learning process was effective, we

must also decouple the feature extraction algorithm from the pattern classifier, and

evaluate the performance of the latter, with the former being fixed, as the number

of supervised samples increases. We also evaluates, specifically for Architecture

Learning, how increasing the number of samples impacts the descriptor and classifier,

separately. Considering the output of ConvNets usually consists of a high-dimensional

feature vector, harming some common operations (e.g., data clustering, distance-

based classification, content-based image retrieval) that depend on computing distance

functions among samples, therefore we want to evaluate the effectiveness of the

dimensionality space reduction strategies as well.

Among the available strategies to deal with supervised data constraint, we can

include the possibility of augmenting the training set with unsupervised samples

(also known as data augmentation). For this reason, we also want to asses the effect

of augmenting the number of samples in the performance of ConvNets, considering

artificial data augmentation strategies, as well as the inclusion of the expert in the

learning process.

Finally, we wish to validate the best solution in a real problem and, for that purpose,

we have selected data sets from the diagnosis of intestinal parasites. Such data sets can

be automatically obtained when processing images from the microscopy slides [88].

These questions are seen in more details on Chapter 3.

1.4 Main contributions

Preliminary results for the diagnosis of intestinal parasites were published in [66]. As

it will be shown, we have found the best strategy to handle supervised data constraint

among the studied ones, while evaluating important limitations and characteristics of

ConvNets on such restrictions. After all, we validated our results on the diagnosis of

intestinal parasites in comparison with the state-of-the-art handcrafted image features

from [88] and our own ConvNet-based approach from [66].
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The fact we decoupled the feature extraction algorithm and the pattern classifier to

evaluate the effectiveness of the feature learning process, revealed the importance of

exploiting in future work an interplay between feature learning and active learning [53]

— a process that uses an apprentice classifier to label and discover the most relevant

samples in a given feature space for expert supervision along learning iterations,

in which the classifier is retrained with a higher subsequent number of supervised

samples. In the beginning of this process, the samples that better represent the

categories are necessary to teach the classifier the rough location of the decision

boundaries between categories. In the remaining learning iterations, the samples

near those decision boundaries (the most informative ones) are needed to adjust

them finely, by minimizing classification error in an evaluation set. Current solutions,

named active feature learning [97, 98], do not decouple feature extraction and pattern

classification, and so the samples selected in a given feature space might not be the

most relevant ones to retrain the neural network. By decoupling feature extraction

and pattern classification, we believe the active learning process will reveal when the

selected feature space is suitable for the problem. At the same time, a question remains

unsolved: how can we identify an initial set of relevant samples for feature learning?

Currently, the expert is responsible for that. If they are suitable, they should be enough

to select a feature space in which, by using multidimensional data projection [74], the

expert can identify more representative samples for feature learning.

1.5 Organization of the text

Chapter 2 introduces the main concepts, terminology, and provides an overview about

popular Deep Learning methods. Chapter 3 presents the proposed methodology

to evaluate feature learning by ConvNets under supervised data constraint. The

considered ConvNet-based strategies for feature learning are evaluated in Chapter 4,

where the best approach in feature learning is validated in a real application — the

diagnosis of intestinal parasites — in Chapter 5. Chapter 6 states the conclusion

by discussing the main results and indicating the most promising strategy to be

investigated in future work.



Chapter 2

Background

"Deep learning is just a buzzword for neural nets,

and neural nets are just a stack of matrix-vector

multiplications, interleaved with some

non-linearities. No magic there."

—Ronan Collobert

This chapter provides the main concepts and terminology to understand the related

methods and remaining chapters.

2.1 Problem definition

For any given set Z of samples from c distinct categories of a pattern recognition prob-

lem, we wish to discover a function (model) M : Z→ {1, 2, . . . , c} that can assign to any

sample s ∈ Z the label Ω(s) ∈ {1, 2, . . . , c} of its corresponding category [13]. In super-

vised pattern recognition, M is estimated based on a set X(s) = {x1(s), x2(s), . . . , xn(s)}

of n observations (measures or features) about each sample s of a training set Z1 ⊂ Z,

for which the label Ω(s) is known a priori. One can also represent the feature set

X(s) as a vector ~x(s) = (x1(s), x2(s), . . . , xn(s)) ∈ R
n (or point) of the corresponding

n-dimensional feature space. Hence, the solution of the problem essentially consists

of finding a feature extraction algorithm X that maps samples s ∈ Z into separable

regions of the feature space R
n. The model M must then be essentially designed to

minimize the classification errors (i.e., when the label L(s) assigned by M is different

from Ω(s)), which might occur whenever the success of X is incomplete and/or the

design of M is imperfect. That is, the model M is expected to maximize the posterior

probability P(L(s) = Ω(s)\~x(s)) of the correct decision over the samples s ∈ Z1. Fea-

ture learning is then concerned with the design of the feature extraction algorithm,

but deep learning approaches put together in the same pipeline the design of X and

M. The general (traditional) pattern recognition pipeline, however, is illustrated in

Figure 2.1.

21
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Figure 2.1: Pattern recognition general work flow.

The above problem is general for many different application domains and types

of samples, such as text in a spam detector, photos in a face recognizer, and audio

in a voice transcription application. By estimating X and M from Z1 by a supervised

machine learning method, the label L(s) assigned to new samples s ∈ Z\Z1 is expected

to be equal to Ω(s). Some methods may count on another set Z2 ⊂ Z, such that

Z1 ∩Z2 = ∅, named evaluation set, to measure the performance of X and M during their

design.

When the assignment errors of M are significantly lower in the test set Z3 =

Z\Z1 ∪Z2, we say M generalizes to unseen samples. Otherwise, M is said to overfit the

training data. In architecture learning, the use of Z2 makes the overfit less prone [59].

Note, however, that M strongly depends on the success of X. This makes the feature

learning process more important than the design of the classifier. At the same time,

Deep Learning methods usually produce high-dimensional feature vectors, making

the choice of M restricted to a linear classifier, such as logistic regression, support

vector machines, or a stacking of linear classifiers, such as multi-layer perceptrons, that

essentially transforms the feature space, specializing the neurons (features) for each

category in order to apply the classification at the last layer [36, 74].

In this work, all samples derive from images. An image Î = (DI,~I) is a pair, where

DI ⊂ R
m, where m corresponds to the number of bands, is the image domain, and

each element p ∈ DI is assigned to a vector ~I(p) ∈ R
m of image properties, such as

intensity, color components, or other measures obtained by some image transformation

(e.g., linear filtering).

The set Z can then be composed of images or other type of sample previously

isolated from them, such as pixels, superpixels (connected regions that transmit the

same color and texture visual sensation), objects (connected regions with known shape),

and subimages (regions of interest around objects), as illustrated in Figure 1.1. In
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this work, we are interested in feature learning methods as the crucial solution of the

presented problem when samples are images, subimages, objects, or superpixels.

2.2 Image feature learning

In Chapter 1 we divided the feature learning methods in two categories: knowledge-

based approaches [4] and data-driven approaches [10, 23, 83, 92]. The first creates

handcrafted features based on the knowledge of experts on the problem, which

makes the solutions specific and difficult to scale up to different domains [11]. This

turns our interest towards data-driven approaches. Among the most well succeeded

paradigms, we can highlight Dictionary Learning [83, 92] and Deep Learning [10, 23].

The techniques in Dictionary Learning are usually filters rather than wrappers, since

the design of the dictionary does not usually use the classification performance in

Z2 as a criterion for optimization. These techniques are also unsupervised, usually,

since the knowledge about the labels of the training samples is ignored in most of

them. Although, supervised methods for dictionary learning can be found [57]. As a

result, Dictionary Learning usually creates mid-level features rather than high-level

features. By stacking multiple hidden layers, Deep Learning techniques can transform

the low-level features, in our case represented by the pixel colors, into high-level

features, which are more suitable for pattern recognition. The next sections presents

both paradigms.

2.2.1 Dictionary learning

A dictionary, originally developed for text categorization, is composed by a collection

of words from a vocabulary (codebook). In the case of images, we are interested in Visual

Dictionary Learning — methods that build a collection of the most frequent image

patches (words), as represented by local image features, from a set of training images,

wherein all possible patches form the vocabulary. The origin of visual dictionary

learning comes from the seminal article of Zellig Harris [35] from linguistics. In the

general context of information retrieval, the idea is to build a Bag of Words (BoW) of

a given vocabulary and then represent a text (sometimes related to image indexing)

by its most frequent words — i.e., a feature vector of the text as a histogram of the

words in the dictionary — for the purpose of text retrieval or classification[85]. In the

context of content-based image retrieval, the idea was to build a Bag of Visual Words

(BoVW) and represent an image by the histogram of its most frequent patches in the

dictionary[63]. This essentially creates a mid-level image representation from low-

level features, suitable for content- based image retrieval and classification problems.

The patches resulting from images of different categories are expected to differ, such

that histograms of images from the same category will be similar among them and

dissimilar from the histograms of remaining categories.
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The main operations in constructing a BoVW (also called visual vocabulary) from

training images are [92].

i. Interesting point detection — detection of corresponding

points (also called local features) 1 that frequently occur

in the training images, such as the object corners. Meth-

ods based on the Harris-Laplace, Difference-of-Gaussian

(DoG), and Hessian-Laplace operators are examples of in-

teresting point detectors [60]. The success of these methods

is questionable and some works adopt a dense/random

sampling of points (see examples in Figure 2.2).

ii. Local image description — extraction of local image fea-

tures (also called local descriptors) in patches centered

at the detected points. These descriptors usually aim at

being invariant to image rotation and scaling. Examples

are SIFT [55] and SURF [8].

iii. Visual world generation/vector quantization — local de-

scriptors extracted from all training images are grouped,

usually by the k-means algorithm [26], and the representa-

tive descriptors of the groups are chosen as visual words

for the dictionary.

In order to create a feature vector for a new image (also called a term vector),

the local image descriptors are extracted from the detected interesting points and

matched with the visual words of the dictionary. At this stage, there are two most

popular approaches, namely hard assignment and soft assignment (and also called

pooling approaches) [6, 14]. In hard assignment, each descriptor is matched with its

closest word according to a distance function and the histogram of the words form the

resulting feature vector. In soft assignment, the feature vector contains the distances

between each local descriptor and all words in the dictionary.

Figure 2.3 summarizes the BoVW approach (also known as Bag-of-Features, BoF,

approach).

2.2.2 Deep learning

Deep Learning techniques can be seen as an evolution of visual dictionaries. By

stacking multiple hidden layers of neurons, they can transform local image features

into mid-level image representations at the output of the initial (shallowest) layers

and subsequently into high-level image representations at the output of the deepest

layers. Besides the linear operation between the input image data and each neuron,

other non-linear transformations, such as activation, pooling, and normalization can also

1We should avoid confusion here, since these features are not measures but image coordinates.
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Figure 2.2: DoG, Harris-Laplace, and dense sampling for interesting point detection, respectively.

Figure 2.3: Process for BoVW image representation [63].

be applied. In the context of machine learning, these techniques can be unsupervised

(generative), supervised (discriminative), or semi-supervised (hybrid) [23]. While

the generative models, such as Deep Autoencoders [39] and Deep Belief Networks

(DBN) [82], assume that, after unsupervised training, the parameters of the network

will be able to generate dissimilar high-level representations for new images of distinct

categories, the discriminative models, such as Recurrent Neural Networks (RNN) [17]

and Convolutional Networks (ConvNets) [18, 42, 48], use the knowledge of the training

image categories to specialize the parameters of the network such that an additional

decision layer can easily assign new images to their categories. The discriminative

models then usually learn features and train a classifier at the same time, as a single

operation. A hybrid method can simply use the image representation from a generative

network architecture as input for training a discriminative network architecture.

Perceptron and Neural Networks

Altough there is no consensus, a neural network can be considered deep when it

contains more than two hidden layers, in addition to the input and output layers.
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sample can be submitted to the network, with some parameter initialization, to measure

the classification error and, in the backward pass, the parameters of the network can

be adjusted to reduce error. This is known as the backpropagation algorithm, which is

addressed next.

Backpropagation

For a brief introduction on the backpropagation concept, consider a neural network

with layers l = 0, 1, 2, . . . ,L, such that l = 0 and l = L refer to the input and output

layers, respectively. We call xl−1
i the output of the ith perceptron (node) from the

previous layer l− 1, l ∈ [1,L] (actually, it is the ith feature input when l− 1 = 0), and

wl
i,j the synaptic weight of the connection between that perceptron and the jth node of

layer l, being blj its bias term. The output xlj of the jth node of layer l is given by

xlj = ϕ

(

bl
j +

∑

i

wl
i,j x

l−1
i

)

= ϕ(olj) (2.2)

for all nodes j in layer l.

For pattern classification, the last layer l = L contains as many perceptrons as the

number c of categories. Its output XL ∈ R
c is a column matrix, whose values fall

within [0, 1], such that the highest value indicates the chosen category for the input data

X0 ∈ R
n of the network, where n is the number of features. Let Λc = [λ1, λ2, . . . , λc]

⊤ be

the local encoded column matrix with λj = 1, j ∈ [1, c], at the corresponding category

(row) of the input X0 and 0 elsewhere. The decision error at the output layer L is then

given by

E =
1

2
‖XL −Λc‖2

2, (2.3)

where ‖.‖ is the Frobenius norm. This is equivalent to

E =
1

2

c
∑

kL=1

(

xLkL
− λkL

)2
. (2.4)

The error E depends of the choice of wl
i,j,b

l
j ∀i, j and l = 1, 2, . . . ,L. It can be

minimized by the gradient descent approach, which updates the weights and biases of

the layers according to the gradient direction of E. The partial derivative ∂E

∂w
L−p
i,j

of E

according to a given synaptic weight wL−p
i,j of the layer L− p, p ∈ [0,L− 1], is given by
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∂E

∂w
L−p
i,j

=
∑

kL

(

xLkL
− λkL

)

∂
(

xLkL
− λkL

)

∂w
L−p
i,j

∂E

∂w
L−p
i,j

=
∑

kL

(

xLkL
− λkL

) ∂xLkL

∂w
L−p
i,j

∂E

∂w
L−p
i,j

=
∑

kL

(

xLkL
− λkL

)

∂ϕ
(

oLkL

)

∂oLkL

∂oLkL

∂w
L−p
i,j

∂E

∂w
L−p
i,j

=
∑

kL

(

xLkL
− λkL

)

ϕ′
(

oLkL

)

∂
(

bL
kL

+
∑

kL−1
wL

kL−1,kL
xL−1
kL−1

)

∂w
L−p
i,j

∂E

∂w
L−p
i,j

=
∑

kL

(

xLkL
− λkL

)

ϕ′
(

oLkL

)





∑

kL−1

wL
kL−1,kL

∂xL−1
kL−1

∂w
L−p
i,j





∂E

∂w
L−p
i,j

=
∑

kL

(

xLkL
− λkL

)

ϕ′
(

oLkL

)





∑

kL−1

wL
kL−1,kL

ϕ′

(

oL−1
kL−1

)





∑

kL−2

wL−1
kL−2,kL−1

∂xL−2
kL−2

∂w
L−p
i,j









(2.5)

and the term
∂xL−2

kL−2

∂w
L−p
i,j

can be further expanded until
∂x

L−p
kL−p

∂w
L−p
i,j

. Let δL−q
kL−q

be defined for

q = 0, 1, . . . ,p as follows.

δ
L−q
kL−q

=







(

xLkL
− λkL

)

if q = 0, and

w
L−q+1
kL−q,kL−q+1

otherwise.
(2.6)

Note that,
∂x

L−p
kL−p

∂w
L−p
i,j

is ϕ′
(

o
L−p
kL−p

)

x
L−p−1
i where kL−p = j and kL−p−1 = i. Note also that,

for p = q,
∑

kL−p
δ
L−p
kL−p

ϕ′
(

o
L−p
kL−p

)

= δ
L−p
j ϕ′

(

o
L−p
j

)

, since the weight wL−p
i,j affects only

the output of the jth neuron. Given that, Equation 2.5 can be simplified to

∂E

∂w
L−p
i,j

= x
L−p−1
i δ

L−p
j ϕ′

(

o
L−p
j

)

p−1
∏

q=0





∑

kL−q

δ
L−q
kL−q

ϕ′

(

o
L−q
kL−q

)



 , (2.7)

for p = 0, 1, . . . ,L− 1, where for activation based on a sigmoid function, for example,

ϕ′ = ϕ(1 −ϕ).
The backpropagation algorithm executes in several iterations until some conver-

gence criterion is reached (e.g., the mean error is less than a threshold, or a maximum
number of epochs is reached). After a forward pass at iteration t, the weight update of
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each layer p = 0, 1, . . . ,L− 1, is computed by

w
L−p
i,j

(t+1)
= w

L−p
i,j

(t)
−α

∂E

∂w
L−p
i,j

(t)
, (2.8)

where α ∈ [0, 1] is a learning rate, wl
i,j
(t)

is the current weight, and wl
i,j
(t+1)

is the

weight matrix to be considered in the next iteration. Similarly, by computing ∂E

∂b
L−p
j

, for

p = 0, 1, . . . ,L− 1, one can obtain an update equation for the bias b
L−p
j .

The error function (Equation 2.3) may take into consideration the prediction error

of each training sample per iteration (stochastic gradient descent), as described above, or

it can be reformulated to consider the total prediction error of all training samples per

iteration — the batch gradient descent, which is less susceptible to noise in gradient, but

also more prone to become trapped in local minima. An intermediate alternative is to

consider a small number of samples in the weights update, this approach is known

as minibatch gradient descent, where a minibatch of 1 is equivalent to the stochastic

approach, while a minibatch as big as |Z1| corresponds to the batch approach. Regard-

less the batch approach, the process of forward and backward passes for all training

samples characterize one epoch.

Many epochs may be needed to achieve convergence, and the learning usually

decreases over iterations, as the method approaches the minimum. The learning rate

decay γ updates the learning rate as an α(d) that decreases the original learning rate

α(0) over iterations. A common approach is the step learning rate decay, defined as

α(d) = α(0)γ(d), (2.9)

where the iterations d are defined according to the learning rate drop, which consists

of the number of epochs, before the learning rate is updated.

The weight (and bias) matrix updates in Equation 2.8 can also consider ∂E

∂wl
i,j

(t) of a

previous iteration, introducing an inertial factor µ (momentum) to the learning process,

which is empirically known to speed up convergence, and avoid local minima.

Finally, in order to avoid overfitting, as the synaptic weights grow, the weight decay

λ can be considered as a regularization function over the network error E, which is

equivalent to subtract a factor of the current weight in the backpropagation update.

Considering the hyperparameters momentum, learning rate decay and weight decay.

Equation 2.8 becomes as following

wl
i,j

(t+1)
= wl

i,j
(t)

−α(d) ∂E

∂wl
i,j

(t)
− µ

∂E

∂wl
i,j

(t−1)
− λwl

i,j
(t)

. (2.10)

By referring Deep learning, we include a whole class of machine learning techniques,

where many layers of information processing stages in hierarchical architectures are
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exploited for both, feature learning and pattern classification [23]. Neural networks

are, in the long run, a collection of perceptrons, and their variants, with different

architectures and weight learning strategies.

2.3 Unsupervised neural networks

Although the scope of this work relies on supervised feature learning, and more

specifically in convolution networks, unsupervised neural networks can also be used

for feature learning as well, and those features may also be used for semi-supervised

learning, as input to train a supervised network. This strategy might be interesting

under supervised data constraint. Two basic and popular examples of unsupervised

neural networks are autoencoders and the Boltzmann machines.

An autoencoder [78] is a network aiming to reconstruct in the output the same

data used for input. It can have one or multiple hidden layers and the features may be

represented, for instance, by the output of the most central hidden layer [7]. It might

sound illogical to learn an identity function. However, when applying constraints in the

representation, such as a reduced number of hidden units or sparsity constraints [62],

the autoencoder is able to learn a simplified model that describes the most significant

information in the input data. When adopting linear activation functions, or a single

hidden layer with sigmoidal activation function, the autoencoder is strongly related to

Principal Component Analysis (PCA) [15].

A Boltzman machine [40], and more specifically a Restricted Boltzmann Machine

(RBM) [86], consists of one input and one hidden layer, connected with symmetrical

binary synapses, assuming two different states (on and off). The synaptic weights of a

RBM are learned through a Gibbs sampling approach, where the difference between

the probability distribution of the input and the hidden layer output is minimized. It

can be used to learn latent factors. For example, people provide a collection of movies

they like and dislike, and given that those movies may be characterized as scientific

fiction or fantasy, as latent factors, the network learns which type they like mostly

based on the probability distribution of the latent factors.

Popular deep learning approaches, such as Stacked Denoising Autoencoders [94]

and Deep Belief Networks [82], use as building blocks, the concepts drawn by autoen-

coders and RBMs.

2.4 Convolutional networks

Since 2012, the Convolutional Networks (ConvNets) have shown to outperform the

state-of-the-art methods in the ImageNet challenge [46], being successfully applied to

many scenarios. Therefore, we have chosen to focus our investigation in supervised

image feature learning on ConvNets.
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Each layer in a ConvNet consists of at most four operations: convolution, activation,

pooling, and normalization, which require the concept of adjacency relation and convolu-

tion kernel. Differently from a MLP, where the layers are usually fully connected — i.e.,

the input data, coming from the previous layer, to each perceptron of the current layer

is fixed —, the convolutional layer uses the values of a sliding window of adjacent

pixels as input to the neural unit in the current layer. In addition to that, the weight set

(kernel coefficients) is the same for all adjacencies at the current layer.

ConvNets consider a box adjacency relations A ⊂ DI ×DI between pixels of an

input image Î = (DI,~I). Let p = (xp,yp) be the 2D image coordinates of a pixel p, a

pixel q is said adjacent to a pixel p when

A : q ∈ A(p) if |xq − xp| 6
b
2 and |yq − yp| 6

b
2 , (2.11)

for some kernel size b > 3. A convolution kernel K̂ = (A,K) is a pair where K(q− p),

∀q ∈ A(p), is the weight of each adjacent pixel q. We may interpret A(p) as the

receptive field of a neuron unit at pixel p and the values of its adjacent pixels as

the input data for the neuron p. The kernel coefficients may also be vectors in a

multi band kernel. In this case, the convolution kernel K̂ is given by (A, ~K), where
~K = (K1,K2, . . . ,Km). Therefore, the main operations in a ConvNet layer may be

described as follows.

First, the input image may be normalized by

I ′j(p) =
Ij(p)

√

∑m
j=1

∑

∀q∈A(p) Ij(q)Ij(q)
, (2.12)

where Î ′ = (DI,~I
′), ~I ′ = (I ′1, I ′2, . . . , I ′m), in order to avoid any prevalence of some pixel

values over the others. Second, by using another box adjacency relation B, the input

image is convolved with a kernel bank (B, ~Ki), i = 1, 2, . . . ,nk, with nk multi band

kernels ~Ki = (K1,i,K2,i, . . . ,Km,1). The convolution operation with each kernel in the

bank results a new image band Ji, i = 1, 2, . . . ,nk, of the output image Ĵ = (DJ,~J),

where ~J = (J1, J2, . . . , Jnk
):

Ji(p) =
∑

∀q∈B

〈~I ′(q), ~Ki(p− q)〉. (2.13)

The values Ji(p) are subsequently submitted to an activation function ϕ. Considering

Ji(p) ← ϕ(Ji(p)), the features extracted with convolution must be aggregated by

pooling, which is intended to cope with possible object shifts in the training images.

The pooling operation takes into account another adjacency relation C and outputs an







Chapter 3

Methodology

"No great discovery was ever made without a bold

guess."

—Isaac Newton

Deep learning techniques, and of course Convolutional Networks (ConvNets), are

known for requiring large training sets to learn the parameters (weights and biases) of

the network [75]. Whenever, large supervised training sets require manual labeling

by experts, which constitutes a serious drawback for deep learning methods [53].

However, ConvNets architecture (using random weights) could be learned in scenarios

with no huge amount of supervised data for some categories of problems, such as iris

spoofing detection [59]. These facts aroused the interest in the present study about

image feature learning by ConvNets under supervised data constraints.

The absence of supervised training samples in deep learning can be addressed

by unsupervised and semi-supervised methods, such as Deep Belief Networks [41]

and Stacked Auto Encoders [94]. The Stacked Deep Polynomial Network [84] is

another example, proposed for tumor classification, which combines data-driven with

handcrafted features. In this chapter, we propose to investigate ConvNets under

supervised data constraint, with no help from handcrafted features and unsupervised

samples from the problem. We believe both can improve our results, but we are

interested in understanding the pros and cons of ConvNets when using a reasonably

low number of supervised samples only.

The chapter is organized as follows. Section 3.1 describes the methods considered

for ConvNet-based image feature learning. These methods must be evaluated on

data sets of various distinct characteristics: type of sample, balanced and unbalanced

number of samples per category, image domain, and number of categories. Section 3.2

describes the selected data sets that satisfy such a heterogeneity condition. A reasonably

low number of supervised samples for the feature learning process is established for

each data set. The main questions in this study and the proposed experiments to

answer them are presented in Section 3.3.

35







Chapter 3. Methodology 38

represented by the number of layers, kernels (and their size), the pooling factor β, as

well as the window size and stride applied for pooling and normalization. The kernels,

in this case, together with the Relu activation function, produce a sparse code, since

50% of the convolution results tend to be positives and the remaining 50% negatives.

Search the best set of hyperparameters can be performed by adding a last decision

layer (SVM or logistic regression) to the ConvNet, using the training set to find

the weights of the classifier, and evaluating the results of different hyperparameter

combinations, as feature extractors, on an evaluation set. In this work, we adopt an

SVM classifier evaluating a 5× 2 cross validation, considering the same hyperparameter

search space (Figure 3.3) used in [59], where, in a network up to 3 layers, we have 25

hyperparameters for optimization.

● Layer Parameters:

◆ convolution filter size,

◆ number of convolution filters,

◆ pooling filter size,

◆ pooling stride,

◆ pooling factor,

◆ apply/not normalization filter, and

◆ normalization filter size.

● Network Parameters:

◆ input image size,

◆ apply/not input normalization, and

◆ normalization filter size,

◆ depth.

As shown in [59], Architecture Learning has been able to learn well suited descrip-

tors for a iris spoofing scenario, even without huge training data sets. However, the

work in [22] has shown that only a very small portion of the evaluated architectures

are able to show a reasonable performance. Figure 3.4 shows the hyperparameter

search space for a face recognition problem [22] and the corresponding accuracy of

the evaluated models, where most evaluated architectures present a considerably poor

performance.
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3.2 Data sets

Deep Learning techniques, specially ConvNets, have achieved good classification

performance in many different scenarios [31, 46, 59, 61]. In order to evaluate ConvNets

under supervised data constraint, we have chosen a group of image classification data

sets with diverse characteristics in respect to the number of samples per class, number

of classes, sample type (image, subimage, superpixel, and object), image properties,

etc. Some of these data sets have been proposed in the literature with specific protocols

to evaluate image classification. However, those protocols do not represent a scenario

of supervised data constraint. Hence, we have designed our own evaluation protocols

for all data sets, aiming to answer the questions raised in Section 3.3.

We have chosen eight data sets, representing different types of samples: images

(Stl10, Cifar10, Scenes15, and Melanoma), objects ( Larvae, Mnist), subimages (Pubfig5),

and superpixels (Rome). The number of categories of these data sets varies from 2 to

15, and the categories are unbalanced in number of samples for Larvae, Melanoma,

and Rome. These data sets also vary in many fundamental image properties, such as

color, dimension and ratio. Only Scenes15, Mnist and Pubfig5 lack in color information,

being composed by grayscale images. All image dimension vary from a 28× 28 to

1816× 742 pixels.

In following sections we describe, in more details, the properties of each data set.

3.2.1 Stl10

Stl10 [20] consists of natural images extracted from the ImageNet challenge [79].

It contains 13, 000 images (samples) uniformly distributed in 10 distinct categories:

airplane, bird, car, cat, deer, dog, horse, monkey, ship, and truck.

Different from the original ImageNet data set, all images in Stl10 have the same

dimension (96× 96 pixels), as the examples in Figure 3.5.

Figure 3.5: Examples of images from all categories in Stl10.
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3.2.2 Cifar10

Cifar10 [45] is a data set with 10, 000 natural images (samples) uniformly distributed

in 10 categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

Although it has not been derived from ImageNet, the images in Cifar10 and Stl10

have some similarities. The images in Cifar10, however, present a considerably lower

dimension of 32× 32 pixels.

Figure 3.6: Examples of images from all categories in Cifar10.

3.2.3 Larvae

The data set Larvae is private and it has been obtained from our project to automate

the diagnosis of parasites [88]. The original images are regions of interest automatically

detected and extracted from 4M-pixel images of microscopy slide fields. All images

have a rectangular shape of 1816× 742, where a black background is added to turn

them a square image, followed by a resize interpolation to 224× 224 pixels. In Larvae,

there are two types of categories: S. stercoralis (with 476 samples) and fecal impurity of

similar size (with 3, 068 samples). Together, they represent a data set with 3, 544 images,

being some impurities very similar to larvae in shape. Figure 3.7 shows examples where

these categories are different in shape and position. A special aspect of this data set

relies on the strong unbalance in number of samples. Although we have not segmented

the image, samples are represented by a single segmented object (a different sample

type than the previous ones).

3.2.4 Melanoma

Melanoma contains 1, 039 images of skin lesions, being 495 images of benign tumors

(nevus), 272 images of malign tumors (melanoma), and the remaining 272 images of

other injuries. This is also a private data set, which was kindly provided by Prof. M.

Emre Celebi from the Dept. of Computer Science, University of Central Arkansas. Due

to different image acquisition protocols, the original images considerably change in
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Figure 3.7: Examples of a helminth larvae (left) and a fecal impurity (right) from the data set Larvae.

dimension (varying from 220× 203 to 220× 552 pixels), illumination, focus, partial

occusion by artifacts such as hair, ruler, mesh, etc. To apply on ConvNets, the images

are interpolated to a 224× 224 pixels(Figure 3.8). Again, the sample type is an object

with some uniform background.

Figure 3.8: Examples of images from the three categories in Melanoma: nevus (left), melanoma (center),
and other injury (right).

3.2.5 Mnist

Mnist [50] contains 60, 000 images of handwritten digits from 0 to 9, representing 10

uniformly distributed categories. The digits are represented by good-contrast grayscale

images of only 28× 28 pixels, being the data set with smallest dimension, among the

selected ones. Again, the object (sample) is the only information in the image. Figure

3.9 shows examples extracted from the Mnist dataset.

3.2.6 Pubfig5

Pubfig5 is a data set with only 5 categories extracted from the original Pubfig [47],

which contains 58, 797 face images of 200 popular people, as collected from the internet,

without any pose, illumination, or alignment restrictions (i.e., the scenario is said to be

in the wild). The faces and eyes in the images have been automatically detected, the

images were aligned by the positions of the eyes, and a region of interest with 200× 200
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Figure 3.9: Examples of images from all categories in Mnist.

pixels was extracted around the face to create the samples of the data set. Pubfig5 was

created with the five most frequent categories out of the original 83 individuals in the

data set, with 299, 300, 300, 354 and 367 images, respectively, composing a roughly

balanced data set with 1, 620 grayscale images.

Figure 3.10: Examples of images from all categories in Pubfig5.

3.2.7 Scenes15

Scenes15 is a data set with 8, 760 grayscale images of natural scenes, with dimensions

varying from 203× 220 to 552× 220 pixels each, distributed in 15 categories [49]:

office (215 samples), kitchen (210 samples), living room (289 samples), bedroom (216

samples), store (315 samples), industrial (311 samples), tall buildings (356 samples),

inside city (308 samples), street (292 samples), highway (260 samples), coast (360

samples), open country (410 samples), mountain (374 samples), forest (328 samples),

and suburb (241 samples), which are interpolated to the input size of the ConvNet. As

shown in Figure 3.11, it can be strongly difficult to distinguish across some categories,

even for humans, since their categorization depends on the contextual information not

always represented by the image content.

3.2.8 Rome

Rome [93] comes from a high-resolution aerial image taken from the city of Rome. The

original image contains 2, 817× 2, 847 pixels and we have segmented it into 24, 968
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kitchen bedroom tall buildings industrial office

forest suburb store highway inside city

coast living room mountain open country street

Figure 3.11: Examples of images from all categories in Scenes15.

superpixels (samples) [1], in order to evaluate the ability of ConvNets in handling

small and irregular homogeneous regions. The superpixels have been pre-annotated

into 7 categories: road (2048 samples), tree (2936 samples), shadow (4702 samples),

water (843 samples), building (13082 samples), Grass (1021 samples) and bare soil (336

samples). For deep learning, we extracted a small region of interest around each given

superpixel, showing its context, and scaled it to the dimension of the corresponding

input of the ConvNet.

Figure 3.12: A portion of the aerial image of Rome, showing the obtained superpixels.
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3.3 Research questions and proposed experiments

In order to assess the performance of Feature Learning (FL), Transfer Learning (TL),

and Architecture Learning (AL) for supervised data constraint, we first have to define a

reasonably low number of samples for manual annotation. For the presented data sets,

is feasible and reasonable to expect the specialist to be able to annotate 100 images per

category. In a real application, those images could be carefully selected by the specialist

to better represent their categories. In this work, we simply randomly selected 100

images per category from each data set. They constitute the respective training set for

image feature learning. The remaining images, for which we also know the label, have

been used to compose the test set. As we will see in the next chapter, the experiments

have also been repeated for different choices of training, and test sets, being the test

set fixed for all approaches, in order to obtain the statistics of the results.

Under such data constraint, we want to figure out which is the best method for

image feature among FL, TL, and AL? FL has a tendency to overfit, while TL can

considerably reduce the overfit and AL has shown to be effective with data limitation

in spoofing detection [59]. Therefore, we want to evaluate first, in the next chapter,

the best among the learning approaches to deal with supervised data restrictions.

However, how do we know the method with the best performance has learned an

effective feature space? When the feature space is effective, we should expect the

accuracy of a suitable classifier to increases with the number of supervised samples.

We then propose to observe the behavior of the SVM classifier when additional samples

are selected from the evaluation set and included in the training set by active learning.

The underlying idea here is to use the classifier to select the most important samples

for its learning process.

We believe that, using unsupervised samples from the same problem we can

improve the results of classification. However, for the present study, we would like

to explore only the supervised samples in the training set. This implies in the use of

data augmentation by affine transformations on our training samples. Can such type

of data augmentation improve image feature learning for any of the three methods,

FL, TL, and AL?

Another important aspect is the ability of reducing the feature space to make

feasible the use of operations that rely on distance functions, such as clustering

methods, distance-based classifiers, and content-based image retrieval applications.

The use of an MLP allows feature space reduction when the feature vector is extracted

from the output of the last hidden layer, as well as traditional dimensionality reduction

approaches, namely, PCA and LDA. Therefore, can we reduce the obtained feature

space from FL, AL, and TL?

Therefore, the next chapter is dedicated to answer the above questions and the

subsequent one evaluates the best solution for a real application.



Chapter 4

Experiments and Results

"No particular theory may ever be regarded as

absolutely certain.... No scientific theory is

sacrosanct..."

—Karl Popper

In the preceding chapters we have presented the main concepts of Deep Learning,

focusing on Convolutional Networks (ConvNets), as well as the main contributions

these techniques have brought into machine learning and image analysis fields. We

have also raised some questions about the behavior of ConvNets in overlooked scenar-

ios, with special attention to problems under supervised data constraint. This chapter

presents the experiments designed to answer those questions and a discussion about

their results.

4.1 General setup

We consider three approaches for image feature learning: Architecture Learning (AL),

Filter Learning (FL), and Transfer Learning (TL). This section describes the hyper-

parameter architecture search space adopted for AL, as well as the backpropagation

hyperparameters adopted to learn weights and biases in FL and TL.

ConvNets can be extremely expensive due to the large number of convolutions and

inner products to be computed. Since these operations are easily parallelized, modern

implementations of ConvNets rely on the recent advances in Graphics Processing Units

(GPUs) to speedup both, learning and deployment of such networks. In order to benefit

from these implementations, as well as make the results reproducible, all experiments

are performed with Simple-HP [18], which is based in Theano [90], and Caffe [43]

frameworks, for hyperparameter and parameter optimization, respectively.

For AL, we choose the best descriptor among 2, 000 randomly generated architec-

tures, while considering the AL search space, inspired by [59], described in Table 4.2.

Notice that, in order to deal with the small images obtained with superpixels, we

include an extra input size dimension of 32× 32 pixels.

47
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Table 4.1: Architecture Learning hyperparameters space.

Layer

Convolution Filter Size {3, 5, 7, 9}

Number of convolution filters {32,64,128,256}

Pooling filter size {3,5,7,9}

Pooling stride {1,2,4,8}

Pooling factor {1, 2, 10}

Apply/Not normalization filter yes/no

Normalization filter size {3,5,7,9}

Network

Input Size {32,64,128,256}

Apply/Not normalization filter yes/no

Normalization filter size {3,5,7,9}

Number of layers {1,2,3}

For FL and TL, we adopt the approach employed in [46] with the traditional

AlexNet architecture, training through 40 epochs of backpropagation. After the first 40

epochs, the original learning rate is dropped by a 0.1 decay, and followed by another

40 extra epochs. The backpropagation hyperparameters are chosen as follows:

FL and TL use the entire training set for feature learning (Z2 = ∅), while AL adopt

5× 2-fold cross validation over the training samples. That is, 50% of the samples (Z1)

are randomly chosen to train the SVM classifier for a given architecture and the other

50% are selected for the evaluation set Z2, used to assess the quality of the architecture

(i.e., classification accuracy in Z2). This process swaps Z1 and Z2, and repeats 5 times

to obtain the mean score of the architecture. Once the architecture with the highest

mean score is chosen, all samples (Z1 ∪Z2) are used to train the SVM classifier for final

assessment in the unseen test set Z3.

1For FL and TL respectively. The considerably smaller learning rate for TL is justified by the fact the
weights in TL are expected to be slightly adjusted only.
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Table 4.2: Filter and Transfer Learning stochastic gradient descent setup.

Backpropagation

Momentum 0.9

Learning Rate 0.01/0.00011

Weight Decay 0.05

Learning Rate Drop 40 epochs

Learning Rate Decay 0.1

Batch Size 50

4.2 What is the best image feature learning approach?

We are seeking the best image feature learning approach, among AL, FL, and TL, when

the training set contains only 100 supervised samples per category. Two challenges

stem from the fact ConvNets usually require large training sets [44, 46] and suffer with

category imbalance. The second problem justifies our choice for a uniform number

of training samples per category [38]. It is important to point out that, the imbalance

remains present in the test set of some data sets, as shown in the previous chapter.

After image feature learning with AL, FL, and TL, the output of the last ConvNet

layer is used as input to project a final SVM classifier with the entire training set

(Z1 ∪ Z2). The process is repeated considering different training and test data sets,

where different descriptors are learned and evaluated. The average of balanced

accuracy (numerical value on bars), along with the standard deviation (error bar in

black), are presented in Figure 4.1.

Considering a pairwise t-student test, TL significantly outperforms AL and FL,

except for the data sets Rome, Pubfig5, and Larvae. For these data sets, TL and AL

produce similar results. Indeed, whenever the texture information is higher (more

heterogeneous images), the results of TL and AL approximate each other. All methods

have presented a poor performance on Rome, indicating that the respective ConvNets

can not extract meaningful image features from superpixels. Perhaps, it is caused

by the absence of texture in those superpixels. Considering a pairwise comparison

between AL and FL, the t-student test shows AL is consistently better than FL, except

for Melanoma, as seen in Figure 4.2.

Another question is related to the quality of the AlexNet’s architecture. Can we

attribute the success of TL to the architecture of the AlexNet? This question can be

answered by substituting the ConvNet’s weights of the AlexNet by the randomly

initialized weights, such as in AL. Figure 4.3 presents a comparison between the

learned architecture and the AlexNet’s architecture with random weights.

The learned architecture shows indeed better results than the AlexNet’s architecture
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As we can observe, FL really requires large training sets and the impact of more

training samples on TL and AL is considerably less than their impact on FL. The

accuracy gain in TL and AL is considerably higher in the beginning of their curves,

which suggests they do not need large training sets. In order to confirm this observation

for AL, we fix the image descriptor learned with X%, X = 15, 30, 45, 60, 75, 90, of the

training samples, but project the SVM classifier with more training samples. Table 4.3

shows that above X = 30, the accuracy gain is only about 2%. In addition to that, the

network architecture selected by AL is consistently the same. However, it does not

seem feasible to predict the minimum number of required training samples before

their pre-annotation.

Table 4.3: An incremental comparison of sample size effect in architectures learning and the sample size
effect in learning the architecture classifier.

Training Size 15% 30% 45% 60% 75% 90%

15%-Descriptor 0.84849 0.80735 0.86716 0.87686 0.87417 0.87684

30%-Descriptor - 0.91840 0.92050 0.94463 0.94141 0.94730

45%-Descriptor - - 0.92050 0.94463 0.94141 0.94730

60%-Descriptor - - - 0.92162 0.92106 0.92485

75%-Descriptor - - - - 0.94141 0.94730

90%-Descriptor - - - - - 0.94730

We may conclude that TL is the best choice under supervised data constraint.

However, the effectiveness of the feature learning process can only be confirmed when

the number of supervised samples is increased. This issue is addressed next.

4.3 Is the learned feature space effective?

The effectiveness of a feature space may be observed by projecting the training samples

and verifying the separability among the categories [72, 73, 74]. However the obtained

feature spaces are sparse and highly dimensional, and data projection methods usually

depend on distance functions. Another option is to increase the number of supervised

training samples used to project the classifier and verify its accuracy gain. Active learn-

ing methods are the indicated strategies to reduce human effort in sample annotation.

In these methods, at each iteration, an apprentice classifier labels and selects the most

informative samples (i.e., those with uncertain labels) for the expert’s supervision. The

classifier is retrained with the new supervised samples and the process repeats until

the user is satisfied.

Considering an SVM classifier, we have evaluated the improvement in classification

accuracy when additional informative samples are selected per iteration, based on

their distance to the decision boundaries (hyperplanes of each category). We let the
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descriptors. Note also that the superiority of the descriptor from TL remains during

active learning.

It is important to point that, due to the poor performance obtained ofr Rome and

Scenes datasets during the feature learning process, both data sets have not shown to

benefit from the active learning, when compared with the remaining data sets.

The most important conclusion in this experiment is that we have been able to

improve accuracy with the learned descriptors as the number of supervised samples

increases. However, we still need to assess if the improvement is possible with artificial

data augmentation. This issue is addressed in the next section.

4.4 Does artificial data augmentation improve the results?

Due to the previously mentioned underperformance of Deep Learning under data

constraint, a common approach to deal with the problem is to artificially increase the

number of samples. Many techniques have been developed to virtually augment data

sets, from general approaches, such as affine transformations on images, to expensive

3D models that create different views for face recognition [58, 67].

The benefits of data augmentation on ConvNets have been widely shown in many

applications [46, 54, 96], using different approaches to artificially increase the training

data set (Z1). Since it surpasses the scope of this work, the data augmentation approach

adopted here relies solely in applying rotation on training images (90◦, 180◦, 270◦),

creating data sets 4 times bigger than the data sets adopted in the previous experiments.

Increasing the number of training samples, we also increase the time spent in the

learning process, while adopting the same learning hyperparameters as before on

both, backpropagation and architecture learning. The second reason in experimenting

simple data augmentation approaches is to assess if data augmentation approaches

will always be able to improve the descriptor learning process.

As ConvNets are usually employed with feature learning and design of the classifier

in a same pipeline, it is not usually possible to discriminate the impact of data augmen-

tation on the descriptor or the classifier. In this work, we decouple feature extraction

and classification, making it possible to evaluate two different approaches based on

data augmentation: (i) Learn the ConvNet features and design the SVM classifier

using the augmented data. (ii) Learn the ConvNet features with the augmented data

and design the SVM classifier using the original data only. In Figure 4.6 we present a

comparison among both approaches and the original one with no data augmentation.

Considering a t-student significance test, FL shows a significant improvement

on Rome, Mnist and Larvae data sets, while TL features improves in Rome, Larvae

and Melanoma. Data augmentation in AL, on the other hand, does not produce

considerable improvement in any data set.

In general, the improvement in classification obtained by the adopted data augmen-















Chapter 5

Case Study: Diagnosis of Human

Intestinal Parasites

"Science is the captain, and practice the soldiers."

—Leonardo da Vinci

This chapter presents an application of the concepts developed so far, applying

the Deep Learning concepts in a real scenario for the diagnosis of intestinal parasites.

The process of image acquisition is presented, along with the data sets adopted in

this experiment. We also compare the learned features against the state of the art

knowledge-based features [88] and data-driven features [66], where, even with the

data limitation imposed by the problem, ConvNets are able to significantly improve

the current model.

5.1 Automatic diagnosis of human intestinal parasites

Infections by human intestinal parasites can cause death, physical and mental disorders

in children and immunodeficient adults [70]. Image analysis methods have been

proposed [3, 5, 24, 29], in an effort to achieve fast and effective diagnosis. Among the

proposed ones, we can highlight the fully automated system developed by Suzuki et

al. [88], which is unique in performing image acquisition and analysis with no human

intervention.

In a single fecal exam, hundreds of image components (parasites and fecal impu-

rities) can be present per field of the optical microscopy slide. As a first stage, these

components must be detected and the parasite candidates must be segmented from

the images for subsequent characterization and classification. The image segmentation

method, as specified in Suzuki et al. [88], consists of the following steps (illustrated in

Figure 5.1):

i. Quantization: the colored images are converted to a 64 gray

level image, in order to simplify the search for candidate

objects.

61
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ii. Border enhancement: the borders are enhanced with a Sobel

filter.

iii. Ellipse matching: the regions with ellipse-like shape are

considered parasite candidates, since protozoa cysts and

helminth eggs have circular or elliptical shapes, and larvae

have elongated regions, where ellipses can fit properly.

iv. Object delineation: the matched ellipsis are used to define

external and internal markers, allowing a segmentation

through the Image Foresting Transform (IFT) algorithm

[27].

(a) (b) (c)
(d)

Figure 5.1: (a) Gray level quantization. (b) Sobel border enhancement. (c) Ellipse matching. (d) IFT
object delineation. Adapted from [88].

As some species strongly diverge in shape and size, Suzuki et al. [88] divide the

parasite species in three different groups, for better categorization:

i. Larvae: composed by S. stercoralis and impurities of similar

size and shape,

ii. Helminth eggs: composed by H. nana, H. diminuta, An-

cilostomideo, E. vermicularis, A. lumbricoides, T. trichiura, S.

mansoni, Taenia and impurities of similar size and shape,

iii. Protozoa: composed by E. coli, E. histolytica, E.nana, Giar-

dia, I.butschlii, B.hominis and impurities of similar size and

shape.

All experiments in this chapter are performed in a data set composed of 16.437

candidate objects of fecal impurities and the 15 most common species of intestinal

parasites in Brazil. This is the same data set considered in [88], and some sample

examples are presented in Figure 5.2.

An important aspect of this data set, lies on its strong category imbalance, caused by

an uneven a priori probability of infection by different species, as well as an exceedingly

number of impurities against true parasites. Table 5.1 presents the distribution of

samples per category in the given data set.
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(a) (b)

Figure 5.2: (a) Examples of some of the most common parasite species. (b) Impurities with size and
shape similar to parasites.

Table 5.1: Distribution of available samples in the parasites data set, according to parasite species and
group.

Protozoa Helminth eggs Larvae

E. coli 719 H. nana 348 S. stercoralis 446

E. histolytica 78 H. diminuta 80 Impurities 3068

E.nana 724 Ancilostomideo 148

Giardia 641 E. vermicularis 122

I.butschlii 1501 A. lumbricoides 337

B.hominis 189 T. trichiura 375

Impurities 5716 S. mansoni 122

Taenia 236

Impurities 3344

Total 9568 Total 5112 Total 3544

As we can notice, for some species, less than 100 samples are available for training,

evaluation and test, due to a naturally lower occurrence of such species. As mentioned

before, the category balance poses an important requirement for a good performance

of ConvNets. The experiments on ConvNets and the analysis of their results are

presented in the following section.

5.2 Classification of intestinal parasites based on Con-

vNets

In order to improve the automated diagnosis system of intestinal parasites, as proposed

in Suzuki et al. [88], Peixinho et al. [66] presented a ConvNet descriptor based on

Architecture Learning (AL). This descriptor is able to reasonably improve classification
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performance, when the classifier is trained with a sufficient number of samples obtained

by artificial data augmentation. Due to the strong category imbalance previously

mentioned in Section 5.1, this early Deep Learning solution learns the ConvNet

architecture by considering balanced subsets for each category with 5% of the samples

for training and 5% of the samples for evaluation (a total of 10% of the samples are

used to learn the descriptor). However, in order to achieve a reasonable classification

accuracy, the number of samples used to train the classifier is increased to 50% of the

samples, as in the state-of-the-art approach [88].

In this chapter we add the Transfer Learning (TL) of AlexNet, which has shown,

in the previous experiments, to perform better in scenarios where the available data

is strongly restricted. Considering the natural restriction imposed by the category

imbalance, the ConvNet descriptors are learned based on TL and AL with a small

number of training samples. For instance, we set a number of 70 samples per category

for the Helminth and Protozoa groups, and 100 samples for the Larvae group, since

this last group has more available samples.

In the following experiments we compare TL with the knowledge-based and

data-driven (AL) descriptors [66, 88]. Although the original approach, developed by

Suzuki et al. [88], relies on the Optimum-Path Forest [65] classifier, we are using the

SVM classifier due to the ConvNet-based features, thus providing a fair comparison

among the descriptors. Table 5.2 presents the classification accuracy achieved for all

descriptors.

Table 5.2: Classification accuracies using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], under supervised data constraint. (Bold values indicates statistical significance).

Dataset Transfer Learn Arch Learn [66] Suzuki et al. [88]

Larvae 0.974± 0.002 0.931± 0.009 0.936± 0.020

Protozoa 0.959± 0.004 0.915± 0.004 0.903± 0.007

Helmints 0.978± 0.007 0.932± 0.005 0.931± 0.006

The AL and the handcrafted descriptors achieve similar performance in the scenario

under supervised data constraint, while TL is able to significantly outperform them

in all groups. However, dealing with medical diagnosis, it is important to evaluate

how this outperformance reflects in precision and recall for each specie. We present

the comparative results using precision and recall for each specie in Tables 5.3 and 5.4,

respectively.

Although the recall has shown similar results for all descriptors, being the TL

descriptor able to outperform the others for only 3 out of 15 categories, the TL

precision is better for most species, by significantly reducing the number of false

positives.

In order to properly show the precision and recall improvement obtained with the

Deep Learning approaches in a scalar measure, we also evaluate the descriptors with
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Table 5.3: Classification precision using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], under supervised data constraint. (Bold values indicates statistical significance).

Species Transfer Learn. Arch Learn [66] Suzuki et al. [88]

E. coli 0.860± 0.034 0.795± 0.037 0.731± 0.066

E. histolytica 0.083± 0.020 0.057± 0.010 0.047± 0.013

E.nana 0.785± 0.034 0.658± 0.048 0.636± 0.074

Giardia 0.742± 0.038 0.570± 0.039 0.516± 0.053

I.butschlii 0.927± 0.024 0.747± 0.042 0.746± 0.040

B.hominis 0.363± 0.047 0.354± 0.066 0.274± 0.028

Protozoa Impurities 0.997± 0.001 0.984± 0.004 0.986± 0.004

H. nana 0.942± 0.032 0.737± 0.065 0.694± 0.113

H. diminuta 0.353± 0.092 0.127± 0.025 0.132± 0.023

Ancilostomideo 0.554± 0.104 0.333± 0.086 0.440± 0.038

E. vermicularis 0.879± 0.061 0.266± 0.040 0.323± 0.042

A. lumbricoides 0.605± 0.099 0.524± 0.084 0.504± 0.079

T. trichiura 0.913± 0.030 0.809± 0.029 0.680± 0.087

S. mansoni 0.414± 0.061 0.267± 0.046 0.136± 0.049

Taenia 0.797± 0.049 0.645± 0.070 0.499± 0.093

Helminth Impurities 0.998± 0.001 0.991± 0.002 0.993± 0.005

S. stercorali 0.762± 0.047 0.475± 0.050 0.527± 0.116

Larvae Impurities 0.998± 0.001 0.999± 0.001 0.998± 0.002

the Cohen’s Kappa statistic κ, which is known to be strongly related to the ROC curve

[9], being a more suitable metric. In Table 5.6, we present the Kappa statistic for each

descriptor, reinforcing the superior performance of TL.

In a scenario with supervised data restriction, the TL descriptor can significantly

improve classification performance, surpassing both, the handcrafted descriptor [88],

and the AL descriptor [66]. However, Suzuki et al. [88] evaluates its descriptor in a

scenario with more available data, since, as a knowledge-based descriptor, it does not

suffer from the strong category imbalance present on the parasite data set.

By increasing the number of training samples, we now compare the performances

of the descriptors similarly to the scenario proposed in Suzuki et al.[88]. Each group is

divided into 50% of training samples and 50% of test samples by random sampling,

with no category balance imposition. We keep the descriptors as previously learned,

while the classifier is retrained with more samples. Tables 5.7 and 5.8 present the

results in accuracy and kappa statistic.
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Table 5.4: Classification recall using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], under supervised data constraint. (Bold values indicates statistical significance).

Species Transfer Learn. Arch Learn. [66] Suzuki et al. [88]

E. coli 0.995± 0.002 0.986± 0.010 0.984± 0.005

E. histolytica 1.000± 0.000 1.000± 0.000 0.975± 0.050

E.nana 0.971± 0.010 0.907± 0.031 0.932± 0.028

Giardia 0.965± 0.009 0.955± 0.010 0.926± 0.017

I.butschlii 0.946± 0.010 0.895± 0.020 0.875± 0.019

B.hominis 0.973± 0.012 0.928± 0.033 0.948± 0.015

Protozoa Impurities 0.862± 0.029 0.735± 0.023 0.682± 0.030

H. nana 0.994± 0.005 0.986± 0.006 0.963± 0.027

H. diminuta 0.980± 0.040 0.980± 0.040 0.960± 0.049

Ancilostomideo 0.990± 0.010 0.928± 0.048 0.977± 0.013

E. vermicularis 0.996± 0.008 0.977± 0.019 0.981± 0.017

A. lumbricoides 0.983± 0.010 0.894± 0.030 0.958± 0.022

T. trichiura 0.997± 0.002 0.988± 0.006 0.974± 0.008

S. mansoni 1.000± 0.000 0.950± 0.029 0.985± 0.014

Taenia 0.994± 0.000 0.989± 0.005 0.993± 0.005

Helminth Impurities 0.865± 0.032 0.699± 0.027 0.592± 0.087

S. stercorali 0.985± 0.009 0.992± 0.006 0.987± 0.012

Larvae Impurities 0.963± 0.010 0.869± 0.024 0.886± 0.047

Table 5.5: The Cohen’s Kappa statistic of classification using the ConvNet-based descriptors and the
handcrafted descriptor proposed in [88], under supervised data constraint.

Table 5.6: A comparison of between the ConvNet and the state-of-the-art descriptor for automatic
diagnosis [88]. (Bold values indicates statistical significance).

Dataset TL AL [66] Suzuki et al. [88]

Larvae 0.839± 0.031 0.581± 0.052 0.626± 0.113

Protozoa 0.841± 0.026 0.708± 0.015 0.664± 0.021

Helmints 0.808± 0.038 0.618± 0.023 0.539± 0.061

With more training samples, a significant improvement in accuracy is achieved

for AL and the handcrafted descriptors. The classification accuracy with the TL

descriptor, however, has not improved much. The differences among the methods is

better perceived when using the kappa score. Tables 5.9 and 5.10 also show similar
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Table 5.7: Classification accuracy using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], with no data constraint. (Bold values indicates statistical significance).

Dataset TL AL [66] Suzuki et al. [88]

Larvae 0.976± 0.005 0.948± 0.014 0.921± 0.012

Protozoa 0.961± 0.006 0.940± 0.006 0.914± 0.008

Helmint eggs 0.977± 0.005 0.933± 0.006 0.900± 0.004

Table 5.8: The Cohen’s Kappa statistic of classification using the ConvNet-based descriptors and the
handcrafted descriptor proposed in [88], with no data constraint. (Bold values indicates statistical
significance).

Dataset TL AL [66] Suzuki et al. [88]

Larvae 0.974± 0.002 0.878± 0.026 0.898± 0.017

Protozoa 0.974± 0.002 0.958± 0.003 0.919± 0.002

Helminth eggs 0.978± 0.004 0.941± 0.006 0.918± 0.003

results for precision and recall, respectively, when using more training samples.

The results indicate that, based on the Cohen’s kappa, the precision and the recall

scores, TL is the best candidate to improve the automated diagnosis system of human

intestinal parasites.

Now, in order to understand the presented results by data visualization, we analyze

the data projection of the handcrafted and ConvNet feature spaces in the next section.
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Table 5.9: Classification precision using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], with no data constraint. (Bold values indicates statistical significance).

Species TL. AL [66] Suzuki et al. [88]

E. coli 0.987± 0.005 0.977± 0.009 0.963± 0.009

E. histolytica 0.975± 0.022 0.968± 0.019 0.863± 0.082

E.nana 0.965± 0.005 0.949± 0.009 0.904± 0.014

Giardia 0.966± 0.008 0.958± 0.011 0.930± 0.020

I.butschlii 0.982± 0.004 0.975± 0.004 0.921± 0.011

B.hominis 0.960± 0.015 0.947± 0.031 0.895± 0.034

Protozoa Impurities 0.990± 0.001 0.981± 0.002 0.969± 0.001

H. nana 0.986± 0.006 0.984± 0.016 0.958± 0.012

H. diminuta 1.000± 0.000 0.910± 0.030 0.939± 0.035

Ancilostomideo 0.954± 0.017 0.960± 0.033 0.946± 0.033

E. vermicularis 1.000± 0.000 0.966± 0.011 0.936± 0.014

A. lumbricoides 0.976± 0.014 0.938± 0.017 0.940± 0.015

T. trichiura 0.994± 0.005 0.988± 0.002 0.977± 0.007

S. mansoni 0.986± 0.013 0.920± 0.029 0.883± 0.032

Taenia 0.972± 0.013 0.952± 0.007 0.972± 0.015

Helminth Impurities 0.990± 0.002 0.971± 0.003 0.957± 0.003

S. stercorali 0.943± 0.022 0.881± 0.068 0.989± 0.008

Larvae Impurities 0.994± 0.002 0.988± 0.006 0.978± 0.003
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Table 5.10: Classification recall using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], with no data constraint. (Bold values indicates statistical significance).

Species Transfer Learn. Arch Learn. [66] Suzuki et al. [88]

E. coli 0.996± 0.003 0.989± 0.004 0.971± 0.004

E. histolytica 0.954± 0.019 0.908± 0.045 0.887± 0.058

E.nana 0.975± 0.008 0.944± 0.017 0.923± 0.019

Giardia 0.969± 0.003 0.959± 0.006 0.912± 0.015

I.butschlii 0.983± 0.003 0.977± 0.005 0.928± 0.013

B.hominis 0.862± 0.039 0.839± 0.034 0.812± 0.032

Protozoa Impurities 0.990± 0.001 0.985± 0.003 0.968± 0.001

H. nana 0.991± 0.006 0.979± 0.011 0.952± 0.016

H. diminuta 0.980± 0.019 0.960± 0.020 0.905± 0.043

Ancilostomideo 0.946± 0.015 0.846± 0.044 0.862± 0.048

E. vermicularis 0.997± 0.007 0.934± 0.057 0.921± 0.041

A. lumbricoides 0.962± 0.012 0.877± 0.023 0.894± 0.013

T. trichiura 0.999± 0.002 0.994± 0.006 0.965± 0.010

S. mansoni 0.928± 0.034 0.852± 0.018 0.695± 0.088

Taenia 0.998± 0.003 0.968± 0.012 0.925± 0.011

Helminth Impurities 0.992± 0.002 0.984± 0.005 0.979± 0.004

S. stercorali 0.960± 0.012 0.915± 0.042 0.843± 0.023

Larvae Impurities 0.992± 0.003 0.980± 0.015 0.999± 0.001







Chapter 6

Conclusion

"We can only see a short distance ahead, but we can

see plenty there that needs to be done."

—Alan Turing

Deep feature learning techniques can address pattern recognition problems from

many areas of Sciences and Engineering, in which decision-making and decision-

support systems based on image analysis rely on an effective feature space representa-

tion of the image content for pattern classification. However, the need for large training

sets with pre-annotated images is a well known problem.

In this work, we studied three possible solutions using Convolution Networks

(ConvNets) under a limited number of supervised images: Transfer Learning (TL),

Architecture Learning (AL), and Filter Learning (FL). We have also evaluated the

impact of increasing the training set size with no user supervision by artificial data

augmentation. The data augmentation strategies based on image rotation are not in

general justified to improve performance of the system. We have shown that TL from

the AlexNet can be effectively applied to learn features from image data sets with

different characteristics, being the best approach in comparison with AL and FL. At

the same time, in the absence of a previously learned network for TL, AL is the best

alternative under supervised data constraint in comparison with FL.

The performance order of the feature learning techniques was also visually verified

by the separation among classes in the 2D projections of their corresponding feature

spaces, as proposed in [72, 73, 74]. This suggests expert’s intervention for data

augmentation as future work. The expert can delineate the regions where unsupervised

samples are more likely to come from each class. We believe that data augmentation

based on the actual unsupervised images will improve deep feature learning, especially

when the accuracy of classification without data augmentation is low.

In order to use distance-based techniques for data visualization, as well as for

pattern classification, the reduction of the high-dimensional feature space created by

ConvNets is an important issue. The space reduction provided by subsequent fully

connected layers and by Linear Discriminant Analysis (LDA) are equally suitable to

72
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address the problem. However, the considerable dimensionality reduction of LDA

makes data visualization more efficient. In addition to the efficiency gain, the accuracy

of the SVM classification using the high-dimensional feature space was slightly affected

by feature space reduction followed by OPF classification. This positive result suggests

the further investigation of feature space reduction techniques and their application

to other distance-based operations, such as the data organization by clustering, with

possible data reduction, for more effective and efficient active learning [80, 81]. By

using active learning, the expert can select more relevant samples for supervision

and/or data augmentation, and the feature learning process can be revisited for

feature improvement. Indeed, we have demonstrated that active learning can improve

the classification accuracy of SVM as those relevant samples are selected for label

supervision. The interplaying between feature learning and active learning strategies

is an interesting research topic, which can reduce human effort and time in data

annotation in order to design effective decision-making (-support) systems.

Finally, we have validated TL and AL in a real application — the diagnosis of the 15

most common species of intestinal parasites, distinguishing them from the numerous

and diverse class of fecal impurities. TL presented the best result among the compared

methods from the state-of-the-art, with and without supervised data constraint. This

demonstrates the potential of TL using ConvNets for this application.

In addition to the above directions to future research, there are many other pos-

sibilities to improve this work. Unsupervised learning techniques, such as Visual

Dictionaries (BoVWs), may be useful to start the process with active learning in or-

der to select the most relevant samples for deep feature learning. The use of data

visualization in both, active learning and feature learning, may be exploited to let

the expert intervene in both by selecting unsupervised samples and by changing the

parameters/hyperparameters of the system. In the end, we expect to build decision-

making and -support systems in which the experts can understand the advantages

and limitations of the machine, and consequently know when they can rely on the

machine’s actions.
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Data Visualization Plots

A better version of the t-SNE 2D plot of data sets.
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