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Resumo

Sensoriamento remoto é o conjunto de técnicas que permitem, por meio de sensores, ana-
lisar objetos a longas distâncias sem estabelecer contato físico com eles. Atualmente,
sua contribuição em ciências naturais é enorme, dado que é possível adquirir imagens de
alvos em mais regiões do espectro eletromagnético além do canal visível. Trabalhar com
imagens compostas por múltiplas bandas espectrais requer tratar grandes quantidades de
informação associada a uma única entidade, coisa que afeta negativamente o desempenho
de algoritmos de predição, fazendo nacessário o uso de técnicas de redução da dimensio-
nalidade. Este trabalho apresenta uma abordagem de extração de características baseada
em índices espectrais aprendidos por Programação Genética (GP), que projetam os dados
associados aos pixels em novos espaços de características, com o objetivo de aprimorar a
acurácia de algoritmos de classificação. Índices espectrais são funções que relacionam a
refletância, em canais específicos do espectro, com valores reais que podem ser interpre-
tados como a abundância de características de interesse de objetos captados à distância.
Com GP é possível aprender índices que maximizam a separabilidade de amostras de duas
classes diferentes. Assim que os índices especializados para cada par possível de classes são
obtidos, empregam-se duas abordagens diferentes para combiná-los e construir um sistema
de classificação de pixels. Os resultados obtidos para os cenários binário e multi-classe
mostram que o método proposto é competitivo com respeito a técnicas tradicionais de
redução da dimensionalidade. Experimentos adicionais aplicando o método para análise
sazonal de biomas tropicais mostram claramente a superioridade de índices aprendidos
por GP para propósitos de discriminação, quando comparados a índices desenvolvidos por
especialistas, independentemente da especificidade do problema.



Abstract

Remote sensing is the set of techniques that allow, by means of sensor technologies, to
analyze objects at long distances without making physical contact with them. Currently,
its contribution for natural sciences is enormous, since it is possible to acquire images
of target objects in more regions of the electromagnetic spectrum than the visible region
only. Working with images composed of various spectral bands demands dealing with huge
amounts of data associated with single entities, which affects negatively the performance
in prediction tasks, and makes necessary the use of dimensionality reduction techniques.
This work introduces a feature extraction approach, based on spectral indices learned by
Genetic Programming (GP), to project data from pixel values into new feature spaces
aiming to improve classification accuracy. Spectral indices are functions that map the
reflectance of remotely sensed objects in specific wavelength intervals, into real scalars
that can be interpreted as the abundance of features of interest. Through GP, it is
possible to learn indices that maximize the separability of samples from two different
classes. Once the indices specialized for all the pairs of classes are obtained, they are used
in two different approaches to fuse them into a pixel classification system. Results for
the binary and multi-class scenarios show that the proposed method is competitive with
respect to traditional dimensionality reduction techniques. Additional experiments in
tropical biomes seasonal analysis show clearly how superior GP-based spectral indices are
for discrimination purposes, when compared to indices developed by experts, regardless
the specificity of the problem.
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Chapter 1

Introduction

Remote sensing is the set of techniques that allow to analyze objects at long distances.
Making use of sensors (e.g., imaging, altimeters, spectroscopes), the captured radiation,
most of the time from an upper perspective, is used to infer properties of the Earth
surface [7]. Currently, its contribution for natural sciences is enormous, principally in
those areas in which it is fundamental to take advantage of large amounts of data of the
real world, acquired remotely. Some of those sciences are agriculture, geology, ecology,
climatology, and medicine.

Imaging sensors can acquire images not only in the visible regions of the electromag-
netic spectrum (red, green, and blue), but also in a much wider range. In addition,
it is possible to acquire these data sequentially in different timestamps, so a temporal
dimension may also be incorporated into the analysis.

Working with images composed of various spectral bands and in different timestamps
demands the management of a big number of features of data associated with single enti-
ties. This affects negatively the performance in classification tasks, in terms of efficiency
and accuracy. Normally, in multi-band image classification, the number of dimensions in
which the entities (pixels or regions of interest) are represented, is unreasonably larger
than the number of training entities, prompting the Hughes phenomenon (or Curse of

dimensionality) [30], which causes a low generalization capacity due to very sparse data.
Reducing dimensionality, with a minimum loss of discriminatory information, becomes
necessary, since augmenting the training data normally is a costly option.

Due to the emission/reflectance of the target objects, for a specific classification task,
some bands might be noisy or redundant and can be ignored [36]. Many physical or
chemical properties of targets become evident in relations that may exist among two or
more bands, provided by the spectral signature of objects in the real world [63]; however,
deducing this kind of relations demands specialized knowledge, which normally is not
available.

Existing approaches for dimensionality reduction are based principally on the idea
that, most of the time, adjacent spectral bands contain similar information, so the state-
of-the-art techniques look for intelligent ways to select spectral bands for classification
purposes (see Section 3.1). A less popular approach consists in mapping the band space
into a (normally) smaller space, through diverse transformations (see Section 3.2).

The present work introduces a spectral-index-based approach for classification of multi-

13
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band images, using an evolutionary technique called Genetic Programming, which builds
formulas (i.e., spectral indices) that arithmetically combine the bands and map entities
into a one-dimensional space, where examples of different classes can be linearly separated.

Genetic programming is a bio-inspired search technique that comes up with solutions
to complex problems by exploring a solution space, which generally encodes computer
programs or formulas [44]. Inspired by the principles of the Darwinian theory of evolution,
the algorithm starts with a randomly-generated initial population of candidate solutions
to the problem (also known as individuals) and moves throughout the solution space
relying on heuristics that tell where better solutions might be, by giving the chance to
“fitter” solutions in the population, of being selected to “procreate” similar solutions that
are hopefully better, and will be part of a next generation of individuals.

In the case of dimensionality reduction, a fit solution will be one that represents
the entities in such a space where classification accuracy is improved. In the proposed
technique, this desired representation will be achieved by a spectral index that combines
the bands in such a way that samples from different classes are separated. Spectral
indices can explore complex interactions between bands in order to find latent properties
of real-world entities, yielding a more promising scenario than just excluding some bands.

It is important to notice that spectral indices are traditionally used to measure a
feature of interest, so the process of learning an index is associated with the resolution of
a regression problem. This makes the proposed framework general enough to address both
problems: classification, because of the further application of the indices to this purpose,
and regression, due to their functional nature.

The proposed approach transforms data and projects it into a smaller feature space,
which potentially makes clear the key (but complex) discriminative properties that were
latent in the original representation. This research aims to prove this as possible, as long
as there exist the available data about the regions of the electromagnetic spectrum in
which those variations occur. Two research questions are, therefore, formulated:

1. Can Genetic Programming effectively select bands?

Genetic programming operates with all the bands of a scene, without applying prior
knowledge about their relevance, and does not explicitly aim at ignoring those that
are not discriminative. The algorithm can choose anytime a band that may be noisy.
However, if the optimization objective is settled correctly, its dynamics may cause
the irrelevant bands to be naturally ignored, after some iterations.

2. Can a one-dimensional non-linear projection learned by Genetic Pro-

gramming overcome one-dimensional linear ones?

The simplest way to project data into a one-dimensional space is by a linear com-
bination of the spectral bands, aiming at maximizing inter-class distance, while
minimizing intra-class distance. The optimal solution for those objectives, under
normality assumptions, is already achievable [38]. Intuition tells that non-linear
solutions are more powerful, but Genetic Programming is theoretically far away of
reaching an optimal solution and may face serious difficulties in hard search spaces.
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The structure of this document is described below. Chapter 2 introduces and explains
the fundamental concepts involved in this research. Chapter 3 presents related work. The
applications and different techniques developed are distributed in three chapters (5, 6,
and 7). Each one of them presents its own pipeline and methodology, but they have the
same basis (the Genetic-Programming-based index learning approach) as initial phase.
The index learning phase is presented in Chapter 4, and its outcomes are explored in
different applications, which are discussed in the next three chapters. Chapter 5 presents
the application of the indices for binary classification. Chapter 6, in turn, presents their
application in a multi-class classification scenario. Chapter 7 presents the potential uses
of the indices in tropical biomes seasonal analysis. Chapter 8 presents the conclusions
and draws possible future work.



Chapter 2

Background

This chapter introduces the fundamental concepts involved in the research. The broad
area of interest is Remote Sensing (Section 2.1), the principal problems to be addressed are
index saturation and the Hughes phenomenon (Section 2.2), and the proposed technique
is Genetic Programming (Section 2.3).

2.1 Remote sensing

Remote sensing is the set of techniques used for the acquisition and analysis of information
to deduce knowledge about objects or phenomena, without making physical contact with
them [7]. Currently, the term remote sensing is mostly used to refer to the analysis of
information collected by upper-perspective sensor technologies (e.g., satellites, aircraft
platforms) about targets on the terrestrial surface. The data is mostly collected in the
form of images in one or more regions of the electromagnetic spectrum, which encode the
quality of the radiation emitted or reflected by them. Images of the same geographic region
in different channels of the spectrum (bands) are known as multi- or hyper-spectral scenes,
depending on the quantity and continuity of the bands that compose them. Temporal
analysis is possible as well, thanks to the sequential acquisition of data from sensors.

The general process of remote sensing is depicted in Figure 2.1. An energy source (nor-
mally, the Sun) sends radiation that goes through the Earth’s atmosphere before reaching
an object of interest. The radiation resulting of the interaction of the source radiation
and the target object (i.e., radiance) is captured by sensors (after going through the at-
mosphere again), which send data to processing units that prepare it to be interpreted
and analysed, and thus applied for a particular task [7].

For the purposes of this research, there are two key concepts that will be explained in
detail: spectral imagery and spectral indices.

2.1.1 Spectral imagery

Scenes collected by sensors can be either multi- or hyper-spectral, depending on the
quantity of bands and continuity of the spectral ranges contained in them. Each band of
the image encodes the aggregation of the emittance/reflectance in a specific range of the
spectrum. The difference between multi- and hyper-spectral images is shown in Figure 2.2.

16
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objects for their recognition.
Spectral indices are one of the most used tools in remote sensing to represent features

of the objects in terms of their spectral signature. They are functions that map the
reflectance/emittance at one or more wavelengths to real scalars that can be interpreted
as the abundance of features of interest from target objects in the environment.

A relevant example is NDVI (acronym for Normalized Difference Vegetation Index ), a
vegetation spectral index for biomass measurement [58], based on the difference between
the reflectance of an object in the visible (red) channel and its reflectance in the near-
infrared channel:

NDV I =
NIR−RED

NIR +RED
(2.1)

where NIR is the emission rate in the near-infrared channel and V IS is the emission rate
in the visible (red) channel. Healthy vegetation in most cases presents NDV I values close
to 1, since it reflects big quantities of infrared radiance while absorbing big quantities in
visible radiance [63]. Vegetation indices are the most common type of spectral indices
and NDVI is only one of the vast amount of indices that exist for vegetation monitoring.
Besides vegetation, spectral indices are widely used in other areas such as geology and
urban planning and, although they are normally formulated by specialists, they can also be
deduced automatically, relying on ground-truth data and pattern recognition techniques.

The application of indices to spectral imagery demands the calibration of the raw
pixels, proceeding from the data collected by sensors, into physically meaningful units [56].
These issues are beyond the scope of this work, so the availability of calibrated data for
the experiments is taken for granted.

2.2 Issues on remote sensing hyper- and multi-spectral
image analysis

The present research aims to address two issues: index saturation and the curse of di-

mensionality. This section describes in detail both phenomena.

2.2.1 Index saturation

Human-developed spectral indices are normally purpose-specific and, although they are
used in a wide range of applications, they are few in contrast to the huge number of specific
needs present in natural sciences. One single index is used to describe different (but
related) phenomena to the one it was originally developed, giving rise to a very common
issue called saturation, in which the index is not descriptive enough of the phenomenon
it is intended to point out.

Figure 2.3 illustrates the problem of saturation. The spectral index (y-axis), is sup-
posed to describe a feature of interest whose real values were obtained through some in
situ measure (x-axis). It can be seen that from one point on, the index fails at describing
effectively the feature of interest, since its variation is significantly lower than the varia-
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bands) is associated. This information, besides being redundant, is regularly misleading
(noisy) for classification purposes. In this scenario, the use of dimensionality reduction
techniques is mandatory.

Dimensionality reduction

Dimensionality reduction is a very common process performed in various machine learn-
ing tasks [11]. It consists in mapping entities from a high dimensional feature space into
a space with less dimensions, aiming at maintaining relevant discriminative information.
Some of the advantages of applying dimensionality reduction to data are: reducing pro-
cessing time, saving storage space, reducing noise in data, and improving its visualization.
In the context of spectral imagery, dimensionality reduction is widely used, since many
of the bands are usually noisy or redundant for a specific purpose.

There are two main families of techniques used in this field [36]: feature selection tech-
niques focus on selecting the best subset of features, excluding the less informative ones.
Feature extraction techniques focus on generating new features by applying transforma-
tions to the original set of features. Both families contain supervised and unsupervised
techniques; the former evaluates the performance of the reduction in terms of the distri-
bution of the data while the latter, in terms of statistical measures such as correlation,
mutual information or separability.

2.3 Genetic Programming (GP)

Genetic Programming (GP) [44] is a machine learning technique that belongs to the family
of Evolutionary Algorithms (EA). EAs comprise a set of heuristic-based stochastic search
techniques that are population-based and, inspired by the principles of Darwinian theory,
simulate the dynamics of evolution of life forms, in order to guide searches in complex
solution spaces.

In EAs, candidate solutions to a complex problem are represented as individuals within
a population. A fitness function is defined as a criterion to select and maintain/reproduce
the solutions of the current population that best solve the problem, according to the
principle of survival of the fittest.

A typical EA starts with a population of randomly generated individuals (see Fig-
ure 2.5). Each iteration of the algorithm is considered a generation, in which individuals
reproduce (Figure 2.5-b), creating new similar ones to form a new population (Figure 2.5-
d). The fitness function is used to guide the selection of individuals to reproduce (i.e.,
create new solutions similar to the original), by attributing a higher chance of selection to
those individuals with higher fitness (Figure 2.5-a). Different selection approaches can be
used [44]. The algorithm keeps iterating until a stop condition is reached, e.g., a maximum
number of generations, a specific fitness value, or the convergence of the fitness function.

Particularly in GP, the individuals are computer programs or formulas, whose fitness
scores depend on the result of their execution. The next sections will describe in detail
how the algorithm operates with the solutions.
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Related work

A common approach used to construct effective hyper- and multi-spectral remote sens-
ing image classification systems relies on the selection of appropriate bands and their
combination with the objective of providing a better discrimination among the pixel val-
ues observed for different classes. Many approaches have been proposed regarding this
matter [46], and this chapter summarizes the most representative ones.

3.1 Band selection techniques

Band selection-based methods typically use a metric to select the most informative bands
and provide a subset that could be the most appropriate. This strategy is based on the
fact that some bands may contain noisy or redundant information, being bad candidates
to be selected. It is very useful in many applications because it can not only reduce
dimensionality, but also preserves relevant original information of the spectral bands. If
prior knowledge is available, supervised methods [28,31,52,54,70] can be used to achieve
good classification results (above 85% of accuracy, tested on several datasets).

Concerning the unsupervised band selection methods, some approaches exploit clus-
tering techniques, in which the first step is to compute a distance measure for each pair
of bands. With these metrics, the bands are grouped in disjoint clusters such that bands
in a given cluster tend to be similar among them, according to these metrics, and bands
in different clusters tend to be dissimilar. After the grouping step, a representative band
from each cluster is chosen [16,26,33,34,72]. The results associated, with several datasets
yield accuracies above 90%. Search-based methods, on the other hand, aim at finding
a good set of bands by evaluating subset of features. Using exhaustive search strategies
to find the best subset is normally unmanageable for this kind of data, however, several
sub-optimal search strategies like sequential backward selection [43] or evolutionary tech-
niques are used in this kind of problem [21, 71]. Rank-based methods use metrics, such
as entropy [35], mutual information [4, 24, 25], and correlation [17], to sort the bands by
their importance in the selection. The results associated with rank-based methods, with
several datasets yield accuracies above 85%.

Many of the works presented in this section run experiments in famous hyperspectral

23



CHAPTER 3. RELATED WORK 24

scenes,1 that can be considered as benchmarks. In general, the techniques present in the
literature have obtained competitive results on these datasets (above 80%).

3.2 Band combination techniques

Band combination techniques are included in the family of feature extraction techniques
(see Section 2.2.2). The most conventional methods within this field are Principal Com-
ponents Analysis (PCA) [38], Linear Discriminant Analysis (LDA) [50], Nonparametric
Weighted Feature Extraction (NWFE) [45], and the Minimum Noise Fraction transforma-
tion (MNF) [23], which have been widely studied and currently are considered as baselines
of more sophisticated methods.

In 2014, an unsupervised cluster-based feature extraction method (CBFE) was in-
troduced [32]. This method uses K-means to cluster the feature vectors formed by the
spectral bands and training data, and calculates the mean vector of each cluster, to be
considered as part of the new representation. This technique obtained accuracies above
80%, outperforming various of the baselines described above.

Another work published in the same year exploited the fact that adjacent bands contain
redundant information, and that there is a strong correlation between neighbor pixels [39].
This method consists in grouping adjacent bands and calculating their mean. The new
representation is then processed by a Transform Domain Recursive Filter and the result
is used as input to a SVM for region classification. This technique obtained accuracies
above 98%.

A work introduced in 2015 [42] proposed a variation of the PCA-based extraction
with pre-selection with a joint group sparse PCA (JGSPCA) algorithm, forcing the basic
coefficients of groups of features to be jointly sparse and ensuring that the integrity of
the features is preserved at most. The method outperforms other sparse-PCA-based
techniques, obtaining accuracies above 80%.

Experiments run in these works are mainly on the same group of datasets introduced
at the end of Section 3.1. In general, the techniques present in the literature have obtained
competitive results on these datasets (above 80%).

3.3 Genetic programming and remote sensing

Various researches have been focusing on the use of GP for remote sensing image band
combination. Usually, they aim to find formulas that measure the concentration of chem-
icals or the presence of an object.

Particularly, the method proposed by Fonlupt et al. uses GP to measure the concentra-
tion of phytoplankton, sediment, and yellow substance in oceans and coastal waters [19].
Using a dynamic fitness function to be optimized for each class at a time, it was possible
to outperform traditional polynomial approximations, by reducing the root-mean-square
error (RMSE) of the approximation almost to the half (0.012).

1Available at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_

Scenes. Last accessed on February, 2017.
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Chion et al. [8] proposed the genetic programming-spectral vegetation index (GP-SVI),
a method that evolves a regression model to describe the nitrogen level in vegetation. The
fitness depends on the correlation with ground-truth data and the size of the formula. GP-
SVI outperformed a group of regression methods, such as genetic algorithms for partial
least squares regression (GA-PLS), multiple regression (MR), tree-based models (TBM),
and some classical spectral vegetation indices such as NDVI, obtaining a slightly lower
RMSE with respect to the baselines (0.15).

A very similar work was presented few years later by Puente et al. [58]. That work
introduced a genetic programming vegetation index (GPSVI) to estimate the vegetation
cover factor in soils to assess erosion. The proposed fitness function depended on the co-
variance with the cover-management factor obtained by in situ observations. The method
outperformed vegetation indices such as NDVI and RVI.

A slightly different approach is presented by Ross et al. for mineral classification (3
classes) [62]. Binary classifiers are trained with GP and the fitness function depends on
the rate of correctly classified examples.

Rauss et al. proposed to evolve an index in [61] that returns values greater than 0
when there is grass in the image, and values smaller than 0 in the other case. The fitness
function depends on the number of correctly classified examples, relying on ground-truth
data. No explicit quantitative results were reported.

Perkins et al., in turn, introduced GENIE [55], a hybrid algorithm based on linear
genetic programming that finds a combination of successive image processing operations
that can reproduce suitable feature planes for conventional classifiers.

The majority of the above initiatives uses GP to construct indices for regression tasks.
The few approaches for classification [55,61,62] are applied in very close scenarios like few
classes or isolated binary cases. Different from those methods, in this work, GP is used
for classification purposes in general multi-class scenarios, relying on the quality of the
feature space constructed by the band combination that was provided by the algorithm.

3.4 Spectral indices for classification tasks

Although spectral indices are widely used for continuous analysis purposes (e.g., regres-
sion), they have been used for classification tasks in various areas, mainly for plant cover-
age discrimination [15], but also in others such as astronomy [49] or flood monitoring [13].

Gerstmann et al. [22] introduces a method to find a general-form normalized difference
index to separate cereal crops. It performs an exhaustive search in a set of possible
permutations of bands and constants used in a general formula and measures the η2

effect size to determine class separability. Classification was based on clustering of the
pixels of the index image. The baselines used to assess the discrimination capacity of
the new indices were NDVI, EVI (Enhanced Vegetation Index) and SAVI (Soil-Adjusted
Vegetation Index), and the optimized index outperformed all of them.

Bhatt et al. [5] proposed a method to classify regions of interest integrating the scenes
of vegetation, water, and built-up land spectral indices to classify soil coverage. The use
of spectral indices reduces data correlation and redundancy between the bands, boosting



CHAPTER 3. RELATED WORK 26

the discriminative capacity of their cluster-based classification algorithm.
Spectral indices have demonstrated ability to separate different classes of woody veg-

etation [47]. However, efforts that apply spectral indices for classification purposes nor-
mally rely on time series [9, 48, 57]. A single value in time of the indices about an object
of interest is not enough to discriminate it. This is particularly true in vegetation analysis
since an object of interest can change its state seasonally so, in order to classify it, it is
necessary to look at its behavior though time. The possibility of novel indices that encode
discriminative information invariant through time is open and could be achieved with the
proposed technique (see Chapter 7).



Chapter 4

Spectral index learning via Genetic

Programming

GP (see section 2.3) can build any kind of formula with few or no constraints, as long as
the appropriate functions and parameters have been initially declared. It is expected that
the learned indices (see section 2.1.2) through this method have a superior discriminative
capacity than human-developed ones, since GP can explore the space of possible functions
more freely. GP is a method that builds one-dimensional projections with many degrees
of freedom, able to reproduce complex transformations that could be comparable, in
terms of performance, with more sophisticated algorithms that consider more dimensions,
since every classification task is at the end simple decision after complex transformations,
regardless the dimensionality.

Therefore, this work introduces a GP-based technique for spectral imagery pixel-wise
classification, aiming to find a spectral index that maximizes classification accuracy. The
way to achieve it relies on finding an index that maximizes the separation of the distribu-
tions of different classes, so measures of separability of distributions will be used as fitness
functions. This chapter describes in detail the first phase of the proposed technique: an
early training step, which consists in the learning process of a spectral index.

4.1 Pipeline

Figure 4.1 shows the general pipeline of this phase. First, the labeled pixels of the scene
are separated into training, validation, and test sets. For this phase, only training and
validation sets are used.

Each individual of the population in every generation of the algorithm represents a
candidate index (i.e., an arithmetic combination of the values of one pixel of the image in
different spectral bands). In terms of its computational representation, they are syntax
trees whose intern nodes stand for arithmetic operators and the leaves represent both
variables bi (corresponding to each spectral band) and real constants. For the first gen-
eration, randomly generated indices are used, and for the next ones, the population of
indices will depend on the fitness function and the immediately previous population, as
described in Section 2.3.
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assigned an object is to its cluster, with respect to the others, i.e., this score assesses how
compact their distributions are and how far from the others.

Let the average dissimilarity of an object x to a cluster Ci be the mean of the distances
of x to all the objects that belong to Ci. Let a(x) be the average dissimilarity of x to its
own cluster and b(x) the smallest average dissimilarity of x to the other clusters, so b(x)

indicates how dissimilar x is with respect to the most similar cluster that is not its own.
The silhouette of a single object x is defined as.

s(x) =
b(x)− a(x)

max{a(x), b(x)}
(4.2)

yielding values between −1.0 and 1.0. Negative values mean that there is at least one
cluster that is more similar to x than the cluster to which it is assigned currently. The
larger the silhouette, the better the assignment of x to its cluster. The overall score of
the clustering method is the mean of the silhouettes of all the objects. The objective of
the GP framework is to maximize this score.

This score can be applied to any number of classes and, since it has to compare all the
pairwise distances, it runs in quadratic time. Figure 4.3a shows that there is a positive
correlation between the silhouette score and the classification accuracy obtained.

4.2.2 Ward’s method clustering-based classification

The use of a hierarchical clustering method was also tested as fitness function. This proce-
dure consists in applying the Ward’s Method [67], one of the most popular agglomerative
clustering approaches, to the pixel values.

The final score depends on the adherence of the clustering to the real classes, i.e. how
similar are the formed clusters to the real ones, provided by the ground truth. For a
two-class scenario, this adherence is calculated in terms of classification accuracy: the
clustering can be arranged in a confusion matrix and two accuracy scores (along both
diagonals of the matrix) are calculated, choosing the greatest as the final score. In a
multi-class scenario, another score, such as Adjusted Rand Index [60] may be used.

In detail, an agglomerative clustering method starts by assuming one cluster per sam-
ple and, relying on some determined criteria, merges the clusters in each iteration, until
the target number of clusters is reached. Ward’s minimum variance criterion consists in
finding at each step the pair of clusters that leads to minimum increase in total within-
cluster variance after merging and then proceed to join them. This algorithm has a
complexity of O(n2log(n)), where n is the total number of examples. Figure 4.3b shows
that the majority of experiments that obtained an accuracy of 1.0 yielded a silhouette of
0.8 or more.

4.2.3 Normalized distance of means

Let µa and µb be the mean values of all the pixel values of, respectively, classes a and b,
and let σa and σb be their corresponding standard deviations. The score of separability
of the two classes is given by:
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S =
|µa − µb|

max{σa, σb}
(4.3)

The max function for the standard deviations was used instead of the sum or product,
because a small standard deviation of one class can compensate the large standard devi-
ation of the other, and they could obtain high separability values, even if they overlap.
This measure returns real values greater or equal to 0. The larger the score, the better
the separability.

This notion of distance cannot be extended to more than two classes, so the measure
only works in a binary classification scenario. The calculation of this score runs in lin-
ear time. Figure 4.3c shows a positive correlation between the score and the obtained
classification accuracy.



Chapter 5

Binary classification scenario

Once the spectral index is learned in the framework introduced in Chapter 4, it is used
to project the data into a new feature space, where a classification algorithm is executed.

The classification stage for a binary scenario is introduced in this chapter. Spectral
indices are projections into a one-dimensional space, and it is considered unnatural to
distribute more than two classes in a one-dimensional space, unless there is a linear order
relation between classes that indicates some notion of sequence (e.g., cold, warm, hot).
Indexes separating more that two arbitrary classes can be learned and perform effectively,
but may lack of sense in its interpretation. Far from being a disadvantage, the specialized
indices learned for a binary scenario can be used as input to fusion approaches to yield a
multi-class scenario, which is more realistic (see Chapter 6).

Experiments were executed on two widely used datasets with more than two classes
so, for every possible pair of classes of the dataset, one index is learned.

This chapter describes the framework in detail, presents the experimental set up for
discrimination between two classes, and presents and discusses the obtained results.

5.1 Pipeline

Counting on a good definition of the classes, provided by the best individual found in the
GP phase, the classification task can be done with a Nearest Centroid Classifier (NCC),
one of the simplest classification algorithms, in this new feature space.

Figure 5.1 illustrates the process. The best individual found is used to take the multi-
band scene and combine each one of its pixels according to the formula of the index,
forming a single-band image. The centroids of the two classes is obtained by calculating
the mean of the training pixel values that belong to the same class. Once the centroids
of each class are calculated, an unlabeled sample can be classified into the class of the
closest centroid. Another central tendency measure, besides the mean, can be used to
calculate the centroids of the classes.

The training data for this phase are the training and validation set of the GP phase.
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Table 5.1: Classes in the Salinas dataset and the number of examples per class.

Class Num.

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Salinas

This scene was collected by the Airborne visible/infrared imaging spectrometer (AVIRIS)
in 224 spectral bands at 10 nanometer intervals across the spectrum from 400 to 2500
nanometers. Its spatial resolution is 3.7 meters/pixel, forming a 512 x 217 image.1 Its
ground truth contains 16 classes, as shown in Table 5.1 and Figure 5.2a.

Thetford Mines

This scene was collected by a 84-channel sensor, with a spacial resolution of about 1
meter/pixel forming a 795 × 564 image. The wavelengths covered are between 7.8 and
11.5 micrometers. This is one of the data sets of the 2014 IEEE GRSS Data Fusion
Contest.2 Its ground truth contains 7 classes, as shown in Table 5.2 and Figure 5.2b.

5.2.2 Parameters

Table 5.3 summarizes the configuration of the GP algorithm. The parameters of the
formulas (i.e., leaves of the trees) are random real numbers between 0 and 106, and the
variables that indicate the spectral bands. Six possible arithmetical operators are con-
sidered for the formulas (i.e., internal nodes); three of them are the regular addition (+),

1Data retrieved from http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_

Sensing_Scenes. Last accessed on February, 2017.
2http://www.grss-ieee.org/community/technical-committees/data-fusion/

2014-ieee-grss-data-fusion-contest/. Last accessed on February, 2017.
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Table 5.2: Classes in the Thetford Mines dataset and the number of examples per class.

Class Num.

1 road 4293
2 trees 1027
3 red roof 1739
4 grey roof 1973
5 concrete roof 3797
6 vegetation 7167
7 bare soil 1711

Table 5.3: GP parameters setup.

Parameter Value

Population size 200
Generations 300
Operators (intern nodes) {+, -, *, %, srt(), rlog()}
Parameters (leaves) {bi : 0 ≤ i < n} ∪ {cj ∈ [0, 106]}

Maximum initial tree depth 6
Maximum crossover depth 15
Selection method Tournament × 3

Crossover rate 0.9

Mutation rate 0.1

Individuals kept for validation 10

Elitism 10

subtraction (−) and multiplication (*). The other three are protected versions of functions
that are not defined for all the possible values of the operands. These new operators are
recommended by Koza [44], since using them is more practical than controlling the values
that enter to those functions. The protected division operation (%) avoids division by
zero, by returning 1 every time the denominator is 0. The protected square root (srt())
operation avoids returning imaginary roots by calculating before the absolute value of the
input value. The protected natural logarithm (rlog()) operation avoids the calculation of
the natural logarithm for values equal or less than zero, by returning zero if the input
value is zero, and returning the natural logarithm of the absolute value of the input if it
is less than zero.

Experiments were performed with 200 individuals and 300 generations. New ran-
domly generated trees will not have a depth greater than six, and crossover and mutation
operations will not yield trees with a depth greater than 15.

The selection method is tournament with three individuals. It consists in selecting at
random three individuals from the population and allowing the best one to go to crossover,
as many times as a new generation is completed. Once two individuals are chosen, they
have a probability of 0.9 to cross their genetic information and create new individuals.
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Every new individual in the population has a probability of 0.1 to mutate.
For validation, the best ten individuals of all the generations are re-ranked according to

the score described in Section 4.1. The best individuals found with and without validation
are kept for classification, and their performances are compared. Taking advantage of this,
elitism is included, by selecting the best 10 individuals of the population directly to the
next generation without any modification.

The population size, the number of generations and the crossover and mutation rates
are parameters that normally require tuning, regardless the domain of the problem [51].
The choice of the crossover and mutation rate constitutes a trade-of between the capacity
of the algorithm to explore the search space and its capacity to conserve good solutions.
The larger the population size and the number of generations, the better to achieve good
solutions. However, a good combination of those rates is the key to make the algorithm
converge in a satisfactory solution without the need of a high number of generations or big
populations. The process of parameter tuning consisted in different runs of the evolution
with a subset of the data in order to compare their convergence. Values presented in this
section correspond to the best configuration found.

Experiments for each one of the fitness functions introduced in Section 4.2 where
executed, obtaining highly equivalent results, in terms of accuracy, showing that none
of them was significantly superior with respect to the others. For the sake of simplicity,
only the experiment corresponding to the normalized distance of means fitness function
(Section 4.2.3) is reported, because it is the less computationally expensive measure.

No stop condition different to the maximum number of iterations was considered, since
it was not clear in the beginning what was the minimum fitness score needed to yield a
good classification accuracy.

5.2.3 Evaluation protocol

Given a dataset with n classes, a total of n(n−1)
2

different experiments, considering every
possible pair of classes were executed. The 5-fold cross validation approach was used to
evaluate the performance of the classification of each pair of classes. The data is divided
into three sets (folds), whose content is fixed for all the experiments performed on them.
Three of the folds were used for training, one for validation, and one for testing. Five runs
were executed in such a way that folds were shifted to be used for training, validation,
and testing. The same evaluation protocol stands for the baselines, which are described
below.

Two variations of the proposed method are compared: index learning with and without
considering the validation set. The impact of the validation set is studied.

Baselines

Traditional band selection and/or combination methods are considered in order to measure
the effectiveness of the GP-based band combination. They are:

1. No selection (NS): The raw values of the bands are used to form a feature vector
of as many dimensions as number of bands.
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Table 5.4: Results for binary classification scenario (% normalized accuracy). A N symbol
indicates that the proposed approaches were statistically superior to the corresponding
baseline, - means that it was statistically inferior and • means that both methods were
statistically tied.

Salinas T. Mines

Method µ σ µ σ

NS N N 97.41 5.39 • • 80.34 18.25
UFS N N 98.63 3.77 • • 81.46 17.62
PCA N N 97.41 5.41 • • 80.34 18.25
LDA - - 99.62 2.45 • • 87.19 13.63
RFS N N 98.25 4.22 • • 81.20 17.96
GP • 99.19 3.01 • 84.16 15.68
GPVAL • 99.17 3.09 • 83.95 15.79

2. Uni-variate feature selection (UFS): Unsupervised selection of the best ranked
bands based on uni-variate statistical tests, in this case, the F-test.

3. Principal component analysis (PCA): Unsupervised orthogonal transformation
to convert a set of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables.

4. Linear discriminant analysis (LDA): Supervised linear projection of observa-
tions aiming to maximize class separability.

5. Random forest selection (RFS): Supervised band selection with the Random
Forest classification algorithm, aiming at maximizing information gain.

The resulting feature vectors of each one of this methods are used as input to a NCC
algorithm, as well as the GP-based approaches.

5.3 Results

In order to evaluate the impact of the validation set (see Section 4.1), this section reports
the performance of two methods: NCC-based classification without validation set (GP)
and NCC-based classification with validation set (GPVAL).

Additionally, the frequency of the selected bands in the GP-phase to build the spectral
indices is analysed.

5.3.1 Classification accuracy

Due to the low inequality of the number of samples for each class in both datasets,
the results consider the normalized accuracy, which is the mean of the rate of correctly
classified samples for each class. For unbalanced datasets, this value is more reliable than
the absolute accuracy, since it reduces the dominance of classes with more samples.
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(a) Salinas GP (b) Salinas GPVAL

(c) Thetford Mines GP (d) Thetford Mines GPVAL

Figure 5.3: Histograms of the classification mean accuracies for all the possible pairs of
classes in Salinas and Thetford Mines datasets.

A total of 120 independent runs of the cross validation were performed, corresponding
to the different pairs that can be picked from the 16 classes of Salinas dataset. Similarly,
a total of 21 independent runs of the cross validation were performed for the 7 classes of
Thetford Mines dataset.

Figure 5.3 shows the distribution of the mean normalized accuracies of each cross val-
idation. For Salinas dataset, it can be seen that at least half of the pairs obtained a mean
classification accuracy of 100%, and only one pair obtained an accuracy smaller than 85%

(Grapes_untrained x Vinyard_untrained). For Thetford Mines dataset, approximately
half of the pairs obtained a mean accuracy of 100% and just a few obtained mean ac-
curacies between 80% and 100%. There were pairs with a very poor performance, like
reed_roof x grey_roof that obtained accuracies below 50%.

Table 5.4 shows the mean of the normalized accuracies for all the experiments associ-
ated with each method for both datasets. To the left of each of the mean accuracy of the
baselines, there are two symbols, representing the statistical significance of the difference
of each baseline with respect to the two methods: GP (first symbol) and GPVAL (sec-
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ond symbol). A N symbol indicates that the GP approach was statistically superior to
the alternative, - means that it was statistically inferior and • means that both methods
were statistically tied.

The statistical significance was estimated with the Friedman test for all the methods,
considering each binary classification as a different problem. For Salinas dataset, the p-
value associated is 1.5798× 10−71 and for Thetford Mines dataset, it is 0.0017. Pairwise
Wilcoxon Signed Rank tests (significance level of 0.05) with Bonferroni post hoc adjust-
ment was performed in order to compare the proposed methods with the baselines and
within themselves.

The GP approach was superior with respect to the rest of methods, except for LDA.
For Thetford Mines dataset, the variability was high for all the methods, causing statistical
tests to fail at coming up with conclusions. The comparison between the GP approaches
with and without validation showed that they are not statistically different, even for
Salinas dataset, which reports low variability, so it can be concluded that the use of the
validation set had no effect in these experiments.

5.3.2 Band frequency within the indices

One of the advantages of spectral indices relies on the fact that they can be interpreted,
through the arithmetic operations between the bands. This section presents the number
of times a spectral band was used for all the indices learned in this set of experiments, as
the simplest approach for analysing its relevance. For Salinas dataset, a total of 600 (120
pairs × 5 folds) indices were learned and for Thetford Mines dataset, a total of 105.

Figure 5.4 shows the histograms for both datasets, indicating the cumulative sum of
the times a band is present in an index. The sensors of both datasets cover different regions
of the infra-red: for Salinas, the information of the visible (VIS), near-infrared (NIR), and
short-wavelength infrared regions is available. For Thetford Mines, only information of
the thermal or Long-wavelength infrared (LWIR) is available.

The ten most frequent bands for Salinas dataset were, from the most to the less
frequent, 172, 171, 43, 32, 42, 41, 44, 177, 10, and 16, from which two intervals can be
highlighted: from 1.9661µm to 1.9758µm and from 0.7646µm to 0.7928µm. For Thetford
mines dataset, they were, from the most to the less frequent, 12, 11, 9, 69, 64, 45, 62,
10, 8, and 26, from which the interval from 8.1083µm to 8.2845µm can be highlighted.
Additionally, two band intervals of notoriously low frequency were present for Salinas:
105-116 and 154-169. Both intervals match lightly the water absorption intervals 108-112
and 154-167 (according to the dataset specification3), which are generally ignored.

5.3.3 Examples of GP-based spectral indices

In this section, some of the spectral indices learned through the method introduced in
Chapter 4, intended to separate samples of two classes, are visualized. Each one of the
figures below has the the following structure: three images which, from left to right,

3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.

Last accessed on February, 2017.
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(b116 - b136) % (((b122 + b18) % ((b116 - b136) - ((((b116 - b40) - (b136 - b41)) - b189) * (((b189 +

b213) - ((((b116 - b40) - (b136 - b41)) - b189) * (b122 + ((b189 + b213) - b122)))) + (((b122 + b18) -

b41) - b122))))) * (b18 + (((b122 + b37) % (((b116 - b40) - (b136 - b41)) - (b189 + (b189 + ((((b189 +

b213) - ((b41 - b189) * (b122 + ((b189 + b213) - b122)))) - b122) % ((b116 - b40) + b37)))))) * (b122

+ (b122 + b37)))))

Figure 5.5: Visualization of the index obtained to separate Brocoli_green_weeds_1 from
Brocoli_green_weeds_2 in the Salinas dataset. Mean accuracy: 0.9862.

represent the equalized image of the spectral index, the ground-truth of the classes to be
separated and the equalization of the index in order to see the separation. The associated
formula is presented below the images. In order to visualize the indices, the generated
images of the corresponding scenes (using min-max normalization) had to be equalized,
due to pixels with extremely low or high values with respect to the rest. This was necessary
only for those indices that were complex.

Some pairs of classes were easy to separate, so the learned associated indices were
considered trivial, because they involved one spectral band only. For Salinas dataset,
Figures 5.5 and 5.6 show two of the non-trivial indices learned that yielded classification
accuracies above 0.9. Figure 5.7 shows one of the indices learned that yielded poor results.
It can be seen that not even by binarizing the image, it was possible to evidence a good
separation of the involved regions.

For Thetford Mines dataset, Figures 5.8 and 5.9 show two of the indices learned that
yielded classification accuracies above 0.95. Resulting images were equalized and binarized
as well. Figure 5.10 shows one of the indices learned that yielded poor results. As it can
be observed, likewise the one shown for Salinas dataset in Figure 5.7, no good separation
can be evidenced.

5.4 Discussion

For the Salinas dataset, all the methods obtained mean accuracies higher than 0.98 (see
Table 5.4), and LDA and the two proposed approaches presented the lowest standard
deviations. The same three methods obtained the lowest deviations in the Thetford Mines
dataset however, the deviations of all methods were so high that it was not possible to
determine a statistical superiority of any of them, although the obtained mean accuracies
were higher that 0.81.

For both datasets, the LDA algorithm for dimensionality reduction was the only one
that the proposed method could not outperform significantly. LDA, when applied to
binary classification, provides the optimal linear projection to a one-dimensional space,
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b133 - ((((((((((b200 % b133) % b133) * (b152 + b33)) % b133) % b133) * ((((((b200 % b133) % b133) *

((((((b200 % b133) % b133) * (b152 + b33)) % b133) * ((b81 * (b30 + b197)) + (((((b200 % b133) % b133)

* ((((b200 % b133) % b133) * (b200 % b133)) * (b200 % b133))) % b133) % ((b33 % b133) * (b30 +

b197))))) * (b200 % b133))) % b133) % b133) * b33)) * b210) * (b152 + b33)) * b210) * (b212 * b191))

Figure 5.6: Visualization of the index obtained to separate Fallow from Fallow_smooth
in the Salinas dataset. Mean accuracy: 0.9321.

(((b60 - b101) % (b207 * b40)) % (b201 * ((b204 + b31) % b31))) % (b201 * (((b207 * b40) % ((b60 -

b101) % ((b61 % b70) % b70))) % (b201 + ((((((b61 % b70) % ((b61 % b70) % b70)) * (b61 % ((b61 % b70)

* b132))) * b31) - b31) % ((b140 % b32) % (b76 + b132))))))

Figure 5.7: Visualization of the index obtained to separate Grapes_untrained from Vine-
yard_untrained in the Salinas dataset. Mean accuracy: 0.6870.
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(((b0 - b41) - (b22 % b60)) % (((b14 + b10) * (b10 * (b27 * (b3 * b3)))) * (b10 * (b3 * b3)))) % ((b10

* (b3 * b3)) % (b3 + ((((b8 + b29) - b71) % ((b8 + b29) * ((b14 + b75) * (b8 + b29)))) % (((b14 + b10)

* (b3 * (b44 + b55))) % ((((b71 % (b14 + b10)) % ((b0 - b41) * ((b8 + b29) * (b10 * (b27 * (b3 *

b3)))))) % (b10 * (b3 * b3))) + b55)))))

Figure 5.8: Visualization of the spectral index obtained to separate road from trees in
Thetford Mines dataset. Mean accuracy: 0.9793.

((b61 + b17) - ((((b74 - (b18 + b6)) % (((b11 * b43) * (((b11 * b43) * ((((b11 * b43) * ((b11 * b43) *

((b53 + b5) * ((b53 + b5) * b61)))) * b61) * ((b6 * ((b6 * ((b11 * b43) * (b53 + b5))) * (b18 + b6)))

* b61))) * b43)) * (b48 + b15))) % b30) - (b48 + b15))) % ((((b11 * b43) * (b53 + b5)) * ((b6 * ((b53

+ b5) * ((b53 + b5) * b61))) * b61)) * ((b11 * b43) * (b61 + b17)))

Figure 5.9: Visualization of the spectral index obtained to separate road from bare soil
in Thetford Mines dataset. Mean accuracy: 0.9930.
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((b41 * (b68 * (b41 * b68))) * (b41 * b41)) % (((b28 - b51) % b81) % (b41 % (((((b28 - b51) *

((((((((((b28 - ((b28 - b51) % b41)) % (b41 * b41)) * ((b41 * b41) % (b41 * b41))) + b49) + b49) %

b68) % b41) % b41) % (b41 * b41)) % ((b41 * (b41 % b41)) * b41))) + b49) % (b41 * b41)) % ((b41 * b41)

% b41))))

Figure 5.10: Visualization of the spectral index obtained to separate red roof from grey
roof in Thetford Mines dataset. Mean accuracy: 0.4663.

that minimizes intra-class distance and maximizes inter-class distance. GP can, in theory,
come up with the LDA solution, while it is not possible the other way around, so the key
aspect in this case is the search algorithm. For some hard-to-separate pairs of classes,
the variability of the indices learned by GP was high (approximately 5% in classification
accuracy), and the evolution curves showed that the fitness score of the executions did
not improve from some generation on, which is a possible sign that the algorithm could
have reach local optima.

The results presented in Table 5.4 also showed no statistically significant difference
between the proposed method and its variation considering an adjustment by means of a
validation set to avoid overfitting. These results, along with the fact that the proposed
method was superior with respect to almost all the baselines, suggest that the method
had a good generalization capacity by itself.

An interesting pattern with the AVIRIS bands was evidenced in Figure 5.4a for the
Salinas dataset. The specification of the AVIRIS sensor4 warns about three water absorp-
tion regions of the spectrum, which are normally ignored, due to its lack of information.
The results obtained with the experiments of binary classification shows that GP at-
tributed a low relevance to the bands that belong to those regions, by not selecting them
in most of the indices.

4https://aviris.jpl.nasa.gov/html/aviris.spectrum.html. Last accessed on February, 2017.



Chapter 6

Multi-class classification scenario

Recalling that the classification of two or more classes is considered unnatural, the idea
of indices specialized for two classes is preserved for the multi-class scenario. For this, the
indices learned in the GP phase are combined to build a multi-class classification system.
This chapter describes in detail two fusion methods that were proposed, as well as the
comparison of their performances with respect to a set of baselines, equivalent to those
used in the binary scenario.

6.1 Pipelines

The two proposed fusion methods are very straightforward: the first one simply builds
an One vs. One (OVO) ensemble strategy, and the second concatenates the indices to
build multi-dimensional feature vectors. This section describes both methods and their
respective pipelines.

6.1.1 One-vs-One Classifier Fusion (GP-OVO)

Figure 6.1 illustrates the pipeline of the fusion method based in the OVO strategy [3].
This consists in, for every possible pair of classes, training a binary classifier and, for
unlabeled examples, predicting the class with every classifier, and choosing the one with
more votes.

The n(n−1)
2

learned indices (Step A in Figure 6.1) are used as separate feature spaces
where the same number of Nearest Centroid Classifier algorithms (NCC) will be trained
(Step B). Next, these classifiers will compose a one-vs-one ensemble strategy for classifi-
cation (Step C).

6.1.2 Vector-based Fusion (GP-VBF)

For each pair of (n) classes, a specialized spectral index is learned, aiming at maximizing
the separation between the training samples of both classes (Step A in Figure 6.2). A
total of n(n−1)

2
indices learned are used to map each multi-band pixel into a feature space

of the same number of dimensions (Step B). The resulting feature vectors are then used
in a classification system (Step C).
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Table 6.1: Results for multi-class classification (% normalized accuracy). A N symbol
indicates that the proposed approaches were statistically superior to the corresponding
baseline, - means that it was statistically inferior and • means that both methods were
statistically tied.

Salinas T. Mines

Method µ σ µ σ

NS + NCC N N 78.86 3.63 N • 39.17 6.68

NS + RF • • 93.70 3.77 • • 49.95 9.76

UFS + NCC N N 72.35 6.35 N N 33.39 2.74

UFS + RF N • 89.11 6.89 N N 36.49 4.40

PCA + NCC N N 78.06 3.78 N • 39.11 6.66

PCA + RF N • 90.55 4.78 N • 53.22 10.24

LDA + NCC N • 93.77 3.65 • • 54.14 10.74

LDA + RF • • 95.56 1.86 • • 53.93 8.83

RFS + NCC N N 79.38 4.08 N • 36.50 5.29

RFS + RF • • 93.59 3.99 • • 49.21 9.35

GP-OVO + NCC • 94.46 2.23 • 54.08 10.40

GP-VBF + RF • 95.09 3.07 • 54.10 9.63

1.94167×10−6 and for Thetford Mines, it is 5.647328×10−6. Likewise the binary scenario,
pairwise Wilcoxon Signed Rank tests (significance level of 0.05) with Bonferroni post hoc
adjustment were performed in order to compare the proposed methods with the baselines
and within themselves.

Figures 6.3 and 6.4 show the thematic maps of the ground truth, and the classification
results of the best baselines and the proposed fusion schemes for the Salinas and Thetford
Mines datasets, respectively. It can be observed that the results related to the proposed
methods are quite similar to the ones of the best baselines.

Tables 6.2, 6.3 and 6.4 show the confusion matrices of the first fold, for the two
proposed methods and the best baseline in Salinas dataset. There is a clear confusion
between the classes Grapes_untrained and Vinyard_untrained, regardless the method.

Tables 6.5, 6.6 and 6.7 show the confusion matrices of the first fold, for the two
proposed methods and the best baseline in Thetford Mines dataset. For this dataset, the
only class easily separable from the rest is road while the others are highly conflicting,
particularly, trees and vegetation. Considering that, with Salinas (whose classes are species
of crop), the method achieved good separation of most of the classes, supporting the known
fact that NIR and SWIR are better at discriminating vegetation then LWIR.



CHAPTER 6. MULTI-CLASS CLASSIFICATION SCENARIO 50

(a) Ground truth (b) LDA + RF (c) GP-OVO (d) GP-VBF

Figure 6.3: Thematic map of the ground truth and classification of the two fusion methods
and the best baseline for the Salinas dataset.

(a) Ground truth (b) LDA + NCC (c) GP-OVO (d) GP-VBF

Figure 6.4: Thematic map of the ground truth and classification of the two fusion methods
and the best baseline for the Thetford Mines dataset.
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Table 6.2: Confusion matrix: GP-OVO + NCC (Salinas).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 401 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 745 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 392 0 0 0 0 0 0 2 1 0 0 0 0 0

4 0 0 0 276 2 0 0 0 0 0 0 0 0 0 0 0

5 0 0 17 18 498 0 0 0 0 2 0 0 0 0 0 0

6 0 0 0 0 0 791 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 700 0 0 0 0 0 0 1 0 14

8 0 0 0 0 0 0 0 1924 0 57 0 0 0 0 273 0

9 0 0 0 0 0 0 0 0 1196 38 0 3 1 2 0 0

10 0 0 0 2 0 0 0 0 23 619 0 1 0 0 10 0

11 0 0 0 0 0 0 0 0 0 0 208 5 0 0 0 0

12 0 0 0 0 0 0 0 0 0 2 0 383 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 183 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 214 0 0

15 0 0 0 0 0 0 0 663 0 2 0 0 0 0 788 0

16 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 357

Table 6.3: Confusion matrix: GP-VBF + RF (Salinas).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 397 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 746 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 268 0 128 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 279 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 2 534 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 2 790 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 715 1 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1494 0 34 0 0 0 0 727 0

9 0 0 0 0 0 0 0 0 1241 0 0 0 0 0 0 0

10 0 0 67 0 1 0 0 16 14 534 20 0 0 3 1 0

11 0 0 0 0 0 0 0 0 0 4 208 0 0 0 0 2

12 0 0 0 0 0 0 0 0 0 0 0 386 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 181 3 0 0

14 0 0 0 0 0 0 0 8 9 0 0 0 40 157 0 0

15 0 0 13 0 0 0 0 401 0 10 0 0 0 0 1021 9

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 362

Table 6.4: Confusion matrix: LDA + RF (Salinas).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 401 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 745 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 395 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 274 4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 18 512 3 0 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 791 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 715 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 2174 0 35 0 0 0 0 45 0

9 0 0 0 0 0 0 0 0 1229 9 2 0 0 0 0 0

10 0 0 0 0 0 0 0 17 43 593 0 2 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 211 2 0 0 0 0

12 0 0 0 0 0 0 0 0 0 1 0 384 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 2 177 4 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 214 0 0

15 0 0 0 0 0 0 0 1118 0 0 0 0 0 0 335 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 361

Table 6.5: Confusion matrix: GP-OVO + NCC (Thetford Mines).

1 2 3 4 5 6 7

1 822 0 13 21 2 0 0

2 0 158 0 0 10 22 15

3 0 14 152 170 8 3 0

4 1 5 200 168 13 6 1

5 3 75 215 243 107 37 79

6 1 927 4 8 175 106 212

7 0 36 0 0 28 1 277



CHAPTER 6. MULTI-CLASS CLASSIFICATION SCENARIO 52

Table 6.6: Confusion matrix: GP-VBF + RF (Thetford Mines).

1 2 3 4 5 6 7

1 844 0 1 2 2 4 6

2 0 0 0 0 12 190 4

3 9 0 118 90 16 115 0

4 8 0 138 117 73 59 0

5 5 1 1 2 272 431 48

6 12 1 8 14 102 1277 20

7 0 0 0 0 35 301 7

Table 6.7: Confusion matrix: LDA + NCC (Thetford Mines).

1 2 3 4 5 6 7

1 849 0 5 3 0 0 1

2 0 74 0 0 18 112 1

3 0 8 152 172 3 12 0

4 0 12 225 136 9 11 1

5 5 71 224 203 71 95 90

6 1 523 0 1 184 660 64

7 0 70 0 0 23 5 244

6.4 Discussion

The two proposed fusion methods for the multi-class scenario obtained statistically equiv-
alent results between them and, unlike the binary scenario (see Section 5.3), in which LDA
(the best baseline) outperformed the proposed method. In this case they were statistically
equivalent to LDA. This shows that the proposed methods are competitive with respect
to traditional dimensionality reduction techniques.

Unlike Salinas dataset, which presented very similar classification results for each class
between the binary and the multi-class scenario, the Thetford Mines dataset presented
a significant drop (from more than 0.8 to less than 0.55) in this transition, for all the
reported methods with no exception. The confusion matrices (Tables 6.5, 6.6 and 6.7)
for this dataset show a clear interference between almost all the classes, that only was
manifested when the discrimination among classes was not isolated.

One of the reasons for the low performance in the Thetford Mines dataset might be the
range of bands that its sensor covers, since the most frequent seem to be concentrated in
the region most contiguous to the SWIR, NIR, and VIS regions, which have shown to be
discriminative enough in the Salinas dataset, while they are not present in the Thetford
Mines dataset. In particular, for this dataset, the results obtained here are not comparable
with the results obtained in the GRSS contest,1 since it was about fusion techniques where,
besides the hyper-spectral scene provided, the contestants used a high-spatial-resolution
RGB scene, which did not match entirely to the hyper-spectral data.

1https://www.grss-ieee.org/community/technical-committees/data-fusion/

2014-ieee-grss-data-fusion-classification-contest-results/. Last accessed on February,

2017.



Chapter 7

Tropical biomes discrimination and

analysis

This chapter discusses the application of the technique introduced in Chapter 4 to char-
acterize sampled quadrants of tropical vegetation labeled either as forests or savannas.

Three classification scenarios are considered. The first one corresponds to the afore-
mentioned Forest/Savanna discrimination, in which the baselines are widely used. The
other two scenarios go further with a more specific classification, in which the baselines
normally get saturated, so they are not even considered for analysis. They consist in the
discrimination of subcategories of savannas and forests with respect to its physiognomy:
Evergreen forests vs. semi-deciduous forests, and savannas vs. woodland savannas.

The dataset used comprises a total of 294 regions (120 forests and 174 savannas)
distributed in tropical South America (see Figure 7.1). The geographical coordinates
used as ground truth are a modified subset of the inventory data used by Dantas et
al. [14].

The proposed method will be used to learn vegetation spectral indices (GPVIs, which
stands for Genetic-programming-based vegetation index) and compare its discriminative
properties with respect to the most popular vegetation indices developed by specialists
(NDVI, EVI, and EVI2), which will be the baselines.

Since it is a real-world problem and phenomena do not always belong completely to
one class or another, the classification accuracy is considered but will not be determinant.
The analysis presented in this chapter is qualitative, and its objective is to introduce the
potential applications of the automatically-learned spectral indices.

7.1 Experimental protocol

Since these are binary classification scenarios, the experimental protocol for this analysis
has various similarities with respect to the protocol presented in Section 5.2. Fundamental
differences are described below.
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Table 7.1: Specification of spectral bands for both sensors Landsat and MODIS.

Landsat MODIS

Description Band Wavelength (µm) Band Wavelength (µm)

Blue B1 0.45 - 0.52 B3 0.459 - 0.479

Green B2 0.52 - 0.60 B4 0.545 - 0.565

Red B3 0.63 - 0.69 B1 0.620 - 0.670

NIR B4 0.76 - 0.90 B2 0.841 - 0.876

NIR 2 - - B5 1.230 - 1.250

SWIR B5 1.55 - 1.75 B6 1.628 - 1.652

SWIR 2 B7 2.08 - 2.35 B7 2.105 - 2.155

Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+).
The data from both sensors was merged, due to lack of availability to build time
series. Statistical tests and qualitative inspection of the data were performed in
order to assure that there is no significant variability between the data of both
sensors, and therefore to confirm it would be safe to merge it.

2. Moderate Resolution Imaging Spectroradiometer (MODIS)2: The data
from the satellites Terra and Aqua was merged too. According to the specifica-
tions,3 the differences between both satellites do not involve the nature of data
collected in the bands considered for this analysis.

The data was downloaded at the same spatial resolution for both sensors: 250 meters,
so each region was covered by exactly one pixel. Although the sensors take daily snapshots,
on May 31, 2003 the Scan Line Corrector of Landsat 7 failed, so the presence of gaps was
considerable, preventing the construction of time series so, in order to reduce the impact
of those gaps, the data was aggregated per month using the median, and months without
data (due to huge gaps) were linearly interpolated. The time interval in which data was
collected correspond to 17 years, from January, 2000 to August, 2016.

Regarding spectral resolution, Table 7.1 shows the information of the bands consid-
ered for both sensors, Landsat4 and MODIS5, associating the channel name with each
band code and specifying the wavelength range covered by the band. For this analysis
information of the of the visible (Blue, Green, and Red regions), near infrared (NIR), and
shortwave infrared (SWIR) regions were used. Landsat TM products normally provide
information of the thermal infrared region (LWIR) too (corresponding to band number 6)
however, these SR products do not include it. As it can be seen in Table 7.1, the MODIS
product provides an additional NIR channel.

accessed on February, 2017.
2https://modis.gsfc.nasa.gov/about/. Last accessed on February, 2017.
3https://nsidc.org/data/modis/terra_aqua_differences. Last accessed on February, 2017.
4https://landsat.usgs.gov/landsat-5-history. Last accessed on February, 2017.
5https://modis.gsfc.nasa.gov/about/specifications.php. Last accessed on February, 2017.
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7.1.3 Evaluation protocol

As well as the experiments from Chapters 5 and 6, the comparison measure for classifica-
tion is the normalized accuracy (see Section 5.3.1). The 5-fold cross-validation protocol is
used too but, different from the approaches used in Chapters 5 and 6, the results reported
will correspond to unseen data in this cross validation protocol.

Each of the first five years of the series (i.e., 2000 - 2004) is used as a a fold. As
described in Section 5.2.3, a validation set is used too. Each fold run returns two spectral
indices: one considering validation and another without considering it. For the sake
of simplicity, from the ten indices learned by this protocol, only the one with the best
normalized accuracy is reported and further analysed. The reported accuracies correspond
to the classification of the data from the years that were not involved in the cross validation
protocol (i.e., 2005 - 2016).

Baselines

The indices learned through the proposed method (GPVI) are compared to three of the
most popular vegetation indices used to characterise forests and savannas [66].

1. Normalized difference vegetation index (NDVI): Normalized difference be-
tween the red and near infrared channels to measure vegetation greenness (see Equa-
tion 2.1) [63].

2. Enhanced vegetation index (EVI): Enhancement of sensitivity considering the
blue channel [29].

EV I =
2.5× (NIR−Red)

NIR + 6.0×Red− 7.5× Blue+ 1
(7.1)

3. Two-band enhanced vegetation index (EVI2): Calibration of EVI so it must
not depend on the blue band, which is not included in products of old sensors and
normally presents noise problems [37].

EV I2 =
2.5× (NIR−Red)

NIR + 2.4×Red+ 1
(7.2)

7.2 Results

A total of six experiments are executed, corresponding to the three classification scenarios
described above with the two sensors. For each experiment, the classification accuracy,
the time series associated with the indices, and the relevance of the spectral bands are
reported.

7.2.1 Classification accuracy

Table 7.2 shows the accuracies obtained in the experiment corresponding to the For-
est/Savanna discrimination for both sensors. The columns TFR and TSR correspond to
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Table 7.2: Normalized accuracies and assertion rates per class for Forest/Savanna dis-
crimination. The columns TFR and TSR correspond to the rate of correctly classified
forests and savannas, respectively.

Landsat MODIS

Sensor TFR TSR Acc. TFR TSR Acc.

NDVI 89.28 90.49 89.89 78.71 86.44 82.58

EVI 87.75 89.88 88.81 80.90 89.10 85.00

EVI2 87.34 89.48 88.41 78.24 87.93 83.09

GPVI 96.38 95.46 95.92 88.30 91.09 89.69
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Figure 7.2: Confidence vs. accuracy in each region for Landsat sensor.

the rate of correctly classified forests and savannas, respectively. The baselines presented
similar performances, which are clearly outperformed by GPVI by about 6% in the worst
case with Landsat and 4% in the worst case with MODIS. In general, the performance for
Landsat was better than the one for MODIS, and the rate of correctly classified savannas
was higher than the rate of correctly classified forests.

For the Forest/Savanna discrimination scenario, an analysis regarding the confidence
values provided by the logistic regression classification algorithm was performed. Fig-
ures 7.2 and 7.3 show scatter plots of mean accuracy vs. mean confidence score obtained
in each region, for Landsat and MODIS respectively. It can be seen that GPVI presents,
in average, higher confidence values than the baselines, which means less confusion in the
classification task. The results for the MODIS sensor present a particular tendency of
the algorithm to misclassify forest quadrants. Those regions presenting low accuracy and
high confidence in various experiments can be suspicious of having been mislabeled by
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Figure 7.3: Confidence vs. accuracy in each region for MODIS sensor.

Table 7.3: Normalized accuracies and assertion rates per class for Evergreen forest/Semi-
deciduous forest discrimination. The columns TEFR and TSDFR correspond to the
rate of correctly classified evergreen forests and semi-deciduous forests, respectively.

Landsat MODIS

Sensor TEFR TSDFR Acc. TEFR TSDFR Acc.

NDVI 67.04 39.95 53.50 75.17 61.61 68.39

EVI 64.50 61.38 62.94 72.19 63.39 67.79

EVI2 63.93 56.61 60.27 69.95 61.08 65.52

GPVI 78.40 61.90 70.15 84.44 78.72 81.58

the specialists.
Table 7.3 shows the accuracies obtained in the experiment corresponding to the Ever-

green forest/Semi-deciduous forest discrimination for both sensors. The columns TEFR

and TSDFR correspond to the rate of correctly classified evergreen forests and semi-
deciduous forests, respectively. The baselines presented similar performances, except for
NDVI in Landsat, with a much inferior performance than the other baselines. In general
the baselines behaved similarly for both sensors, and were outperformed by GPVI by
about 7% in the worst case for Landsat, and by about 13% in the worst case for MODIS.
For this scenario, the performance of GPVI in MODIS was much superior than Landsat,
and Evergreen forest obtained a higher rate of correctly classified regions.

Table 7.4 shows the accuracies obtained in the experiment corresponding to the Sa-
vanna/Woodland savanna forest discrimination for both sensors. The columns TSR and
TWSR correspond to the rate of correctly classified savannas and woodland savannas,
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Forest/Savanna discrimination with MODIS, the NIR and SWIR bands are the most
recurrent as well, and the operation NIR2 % NIR and NIR % SWIR appear various
times.

srt(srt(NIR2 % NIR)) % ((NIR2 - srt(Green - (Green - (NIR2 + SWIR + (((Green % SWIR2) * (NIR % (NIR2 %

NIR))) * ((((((NIR % SWIR + Blue) + Blue) * rlog(Red % NIR)) - ((srt(srt(NIR % SWIR)) + Blue) + Blue))

- (((NIR2 % NIR) * (Red % NIR)) * SWIR)) * ((((NIR % (NIR2 % NIR)) % SWIR) + Blue) + Blue))))))) -

(((NIR % SWIR) + Blue) + Blue))

For the classification of different physiognomies within the same biome, the complexity
of the learned indices increases significantly. Besides a greater quantity of operations, con-
stants appear in the formulas. The next is the index for Evergreen forest/Semi-deciduous
forest with Landsat. The operations Blue % Red and SWIR2 % (Blue + SWIR)

appear various times.

rlog(NIR * 529.24) % ((((SWIR2 * 699.14) % (Blue + SWIR)) - ((srt(Blue % Red) * (srt(SWIR) + ((srt(Blue % Red) * (srt(SWIR) + SWIR2 *

724.51)) * rlog(srt(rlog(((((SWIR2 * 724.51) % (Blue + SWIR)) - NIR * 599.64) - ((srt((SWIR2 - ((srt(Blue + Green) - (385.56 % (725.7 -

NIR))) * rlog(Green))) * 313.30) - (385.56 % (755.42 - NIR))) - srt(SWIR2))) + (SWIR2 * ((SWIR2 - (SWIR2 - NIR)) * 239.55))) - SWIR2 -

NIR))))) * rlog(srt(rlog(((NIR * 599.64 - Green) - ((srt(rlog(srt(rlog(SWIR2 - ((SWIR2 * 724.51) % (Blue + SWIR)))))) - (385.56 %

((rlog(srt(rlog(NIR * 599.64))) % (SWIR2 - (SWIR2 - ((((SWIR2 * 724.51) % (Blue + SWIR)) - NIR * 599.64) - (SWIR2 * (srt(Blue % Red) *

313.3)))))) - Green))) - SWIR)) + (SWIR2 * (((((SWIR2 * 724.51) % (Blue + SWIR)) - (SWIR2 * 724.51)) - (srt(SWIR + Green) - (456.53 %

((SWIR2 * (SWIR + Green)) - (SWIR2 - NIR - ((srt(Blue % Red) * srt(SWIR) + ((rlog(SWIR2 - ((((srt(SWIR + Green) - (385.56 % (725.7 -

NIR))) % (Blue + SWIR)) - NIR * 599.64) - (srt(Blue % Red) * (srt(SWIR) + ((srt(Blue % Red) * (srt(SWIR) + SWIR2 * 724.51)) *

rlog((rlog(srt(rlog(NIR * 599.64))) % (SWIR2 - (SWIR2 - ((((SWIR2 * 724.51) % (Blue + SWIR)) - NIR * 599.64) - (SWIR2 * srt(Blue % Red)

* 313.3))))) - Green)))))) * (385.56 + (SWIR2 * 724.51))) * rlog(srt(rlog(srt(SWIR + Green) + SWIR2 - NIR) - SWIR2 - NIR))))) *

rlog(SWIR2 - NIR * 599.64 - NIR * 599.64 - NIR * 599.64)) - ((SWIR2 - SWIR2 - SWIR) * 313.3))))) + (SWIR2 * SWIR2 * 711.52)) * 313.3)))

- (385.56 % (725.7 - NIR))))) - Green) - SWIR

The index for Evergreen forest/Semi-deciduous forest with MODIS is shown below.
SWIR and NIR2 are the more recurrent.

((srt((Green % Red) - 146.45 - Green) * (SWIR % (Blue + srt(NIR2) + SWIR2))) * (((rlog(Blue) - srt(SWIR2) - rlog(SWIR)) *

srt(srt(rlog(Blue) + srt(SWIR2) - rlog(SWIR) + srt(SWIR2) - rlog(SWIR)) - (((270.41 % SWIR2) % (377.91 % Red)) + ((((SWIR % NIR) * (SWIR

% ((Blue + (523.85 % srt(Red % NIR2))) + SWIR2))) + srt(Green + srt(SWIR))) - rlog(SWIR))))) + rlog((NIR2 - Blue) * (((rlog(Blue) -

(((NIR % (srt(((rlog(NIR) + (523.85 % Red)) + 523.85 % Red) + (NIR2 % SWIR2 - rlog(NIR))) - (((rlog(Green) - (NIR - (srt(rlog(SWIR) -

146.45 - Green) * (SWIR % (Blue + srt(NIR2) + SWIR2))))) + srt(SWIR2 * 601.47)) + srt(srt((SWIR % (146.45 - Green)) + ((SWIR %

(((srt(NIR2 % SWIR2) * (187.95 + SWIR - (Green % Red))) + ((rlog(Blue) - srt((NIR2 % SWIR2) - 146.45 - Green)) * SWIR2)) - rlog(Blue) -

Green)) * SWIR2)))))) * (SWIR - ((146.45 + (rlog(270.41 % SWIR2) + NIR2 - NIR2 % SWIR2)) + 509.05))) - (rlog(NIR) + srt(NIR2) +

rlog(srt(SWIR2))))) * SWIR2) * srt(NIR2 - NIR2 % SWIR2))))) + (srt((rlog(Blue) + rlog(SWIR % srt(Red % NIR2))) + (srt(SWIR2) -

rlog(SWIR) + (srt((srt(SWIR2) - rlog(SWIR)) % Red - 146.45 - rlog(NIR) + srt(SWIR2)) - rlog(SWIR)))) + (((srt((rlog(Blue) + rlog(SWIR %

srt(Red % NIR2))) + (srt(SWIR2) - rlog(SWIR) + (srt(((srt(SWIR2) - rlog(SWIR)) % Red) - 146.45 - rlog(NIR) + srt(SWIR2)) - rlog(SWIR))))

- (NIR - (srt((Green % (srt(SWIR2) - rlog(SWIR))) - 146.45 + Green) * (SWIR % (Blue + srt(NIR2) + SWIR2))))) + srt(SWIR2 * 319.95)) -

(rlog(146.45 + rlog(NIR) + Green) * (NIR2 - (NIR2 % SWIR2)))))

The index for Savanna/Woodland savanna with Landsat is shown below. The opera-
tion 1 % SWIR is recurrent.

((rlog(rlog(rlog(rlog(rlog(srt(SWIR)))))) * rlog(rlog((SWIR2 % (rlog(SWIR) * (rlog(SWIR2 * (rlog(rlog(srt((srt(SWIR) % (rlog(SWIR2 *

rlog(737.76 % SWIR) * (486.8 % SWIR)) + (486.8 % SWIR))) + rlog(rlog(Blue) % rlog(rlog((rlog(srt(SWIR))) +

rlog(rlog(rlog(rlog(srt(SWIR)))))))))) + rlog(rlog(rlog(SWIR2 * (rlog(486.8 % SWIR) * (634.11 % SWIR)))))) * (691.09 % SWIR)))))) -

SWIR))) + ((srt((rlog((557.12 % SWIR) % Blue) % (srt(rlog(737.76 % SWIR)) + (515.01 % ((SWIR +

(rlog(rlog(rlog(srt((rlog(srt(rlog(rlog(srt((SWIR2 % srt(SWIR)) - SWIR)))))) + (SWIR2 % (rlog(rlog(rlog(srt((SWIR2 % ((rlog(SWIR)) *

(rlog((SWIR2 * ((rlog((rlog((srt(SWIR)))))) * (486.8 % SWIR))))))) - SWIR)))) * (SWIR + 462.26 % SWIR))))))))) * rlog(449.83 %

srt(SWIR)))))) + rlog(SWIR2 % rlog(SWIR2 % (SWIR2 % rlog(Blue))))) + rlog(rlog(rlog(srt((SWIR2 % (rlog(SWIR) * rlog(SWIR2 *

(rlog(rlog(srt(SWIR))) * (486.8 % SWIR))))) - SWIR))))) * rlog(((rlog(rlog(SWIR)) + (SWIR + ((SWIR + rlog(rlog(rlog(srt((SWIR2 %

(rlog(SWIR) * rlog(SWIR2 * rlog(rlog(srt(SWIR))) * (486.8 % SWIR)))) - SWIR))))) * rlog(557.12 % (SWIR + (462.26 % srt(SWIR))))))) *

(rlog(rlog(srt(SWIR))) * (SWIR + (462.26 % srt(SWIR))))) + (rlog(srt((((557.12 % SWIR) % Blue) % (rlog(Blue) + 515.01 % SWIR)) +

rlog(SWIR2 % rlog(SWIR2 % (SWIR + SWIR))))) + rlog(rlog(rlog(SWIR2 * ((SWIR2 % (rlog(SWIR2 % rlog(Blue)))) * (737.76 % SWIR)))))) *

rlog(515.01 % srt(SWIR)))))) * srt(SWIR)

The index for Savanna/Woodland savanna with MODIS is shown below.
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(60.07 * Red + SWIR2 * NIR) % (NIR2 % NIR) + rlog(srt((((Red * 460.17 * rlog(rlog(Blue - SWIR))) * (NIR2 + Red * Red - 459.70 * 535.71 -

srt(((NIR2 + (rlog((472.68 * Red + SWIR2 * rlog(Blue)) * (230.3 * Red - ((srt(rlog(Blue)) + SWIR2) * NIR))) * Red)) - (459.70 * 535.71))

- srt(rlog(Blue))))) + (((((((rlog(696.71 % (((472.68 * Red) + (SWIR2 * rlog(Blue))) * (230.3 * Red - ((472.68 * Red + SWIR2 + SWIR2) *

NIR)))) + SWIR2) + Blue - SWIR) + ((NIR2 + NIR + SWIR2 * NIR) + rlog(Blue))) + rlog(Blue)) * (472.68 * Red - 459.70 * 535.71 -

srt(472.68 * rlog(Blue)))) + SWIR2 + SWIR2) * (SWIR2 * (rlog((SWIR2 * ((rlog(Blue) + SWIR2) + rlog(Blue))) * NIR) * (Red - Blue))))) *

((((srt(rlog(Blue) + SWIR2) + NIR) + rlog(Blue)) * (((((NIR2 + NIR + SWIR2 * NIR + rlog(Blue)) * ((472.68 * Red - 459.70 * 535.71) -

srt(SWIR2 * (472.68 * Red - 459.70 * 535.71 - srt((rlog(Blue) * (Red - Blue)) * rlog(Blue)))))) + (rlog(rlog((NIR2 + Red * Red - 459.70

* 535.71) - srt(((472.68 * ((Red * 460.17 * (NIR2 + Red * Red)) * (NIR2 + Red * Red - 697.86 * 535.71 - SWIR2 * rlog(Blue)))) + SWIR2 *

rlog(Blue)) * (230.3 * Red - (srt(((NIR2 + (rlog(Blue) * Red)) - 459.70 * 535.71) - srt(Red * Red)) * NIR))))) + 130.18 * Red)) * (SWIR2

* (rlog((SWIR2 * (rlog(Blue) + SWIR2 + rlog(Blue))) * NIR) * (Red - Blue)))) - srt(rlog(Blue) * (rlog(Blue) - NIR2 + NIR - (SWIR2 *

((rlog(Blue) + SWIR2 * 130.18 * Red * SWIR2 * NIR) * ((NIR2 + (rlog(Blue) * (Red - Blue) * WIR2 * 130.18 * Red * SWIR2 * NIR) - 459.70 *

535.71) - srt(rlog(Blue))) + 472.68 * NIR))))) + SWIR2 * SWIR2 * 130.18 * Red * SWIR2 * NIR) * (SWIR2 * (rlog(Blue) * (Red - Blue))))))

7.3 Discussion

The use of spectral indices to analyse phenomena related to living things normally takes
the time into account. In the case of biomes discrimination, traditional vegetation indices
need to be propagated through the time in order to analyse its behavior and then classify
the target objects. Figures 7.4 and 7.5 show that, for the traditional indices, sometimes
savannas take high values that could be interpreted as forests, and vice versa, so it is not
possible to point out one region in a specific time stamp, measure its index and conclude
its class. With GPVI, on the other side, it is possible, showing that there exist complex
interactions between the bands that characterize a class regardless the behavior through
time of the objects. It is important to point that, since they are learned with many degrees
of freedom, the GPVIs are not necessarily bounded like NDVI, for example, whose values
are always between -1 and 1.

NDVI, EVI, and EVI2 are classified as Greenness indices, which aim to measure vege-
tation vigor, relying principally on the Red and NIR wavelengths [47]. In the case of forest-
savanna discrimination, GPVI, at using the SWIR wavelength, could be classified more as
a Moisture index. This agrees with several recent studies that found the potential of this
kind of indices to detect woody vegetation in specifically these two biomes [6, 40,41,65].

As it was expected, the separation by physiognomy was harder, and obtained an
inferior performance with respect to Forest/Savanna classification. Something that, for
simplicity, was not documented, was the use of the GPVIs learned for Forest/Savanna
in the discrimination to classify the different physiognomies, because they got saturated
just as the traditional indices. One reason may be attributed to the fact that the fitness
function aimed to increase inter-class distance, while decreasing intra-class distance, so
the spatial distribution of forests and savannas might have become reduced, decreasing
its variety. The formulation of other fitness functions can be done, in order to see if the
physiognomy can be deduced naturally from general discrimination.

However, even training the GPVIs with the specific physiognomies, the separation ob-
tained was not as good as it was expected. This could be because the regions provided in
the sensors or its spectral resolution are not enough for such a specialized discrimination.
Except for the case of Evergreen forest/Semi-deciduous forest discrimination, which pre-
sented a huge difference in the classification performance with MODIS due to the presence
of the NIR2 channel, there were many inconsistencies between the relevance of bands in
both sensors.
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Conclusions

A Genetic-Programming-based framework for automatic spectral index learning from
ground-truth data has been presented, along with one classification scheme for binary
classification tasks by applying the indices, and two fusion approaches to combine the in-
dices for multi-class classification purposes. A Genetic Programming pipeline is employed
to determine both the most suitable bands and their combination in binary problems.
Later, these indices/classifiers are used in two different fusion methods. Performed exper-
iments using well-known datasets demonstrate that the proposed methods are effective,
yielding better or comparable results with respect to traditional methods in the literature.

The method was also used for a real-world problem of tropical biomes characteriza-
tion in which a set of vegetation indices developed by specialists is traditionally used.
The results show that the indices learned by means of the framework are superior for
discrimination purposes.

8.1 Closing remarks

The results obtained as product of this research prove that Genetic Programming is able
to find complex interactions between the reflectance of a target object in different regions
of the spectrum, providing spectral indices which, despite their complexity, specialists can
interpret and explain real-world phenomena coherently.

Regarding the research questions, the pattern in Figure 5.4a, showing that water ab-
sorption bands in the AVIRIS sensor naturally obtained a low relevance, suggests that GP
effectively selects bands. Additionally, Tables 5.4 and 6.1 show that the LDA algorithm
(the optimal linear projection of the bands) for dimensionality reduction was the only one
that the proposed method could not outperform significantly.

8.2 Contribution

The main contribution of this work is a framework that can be used either as a white-box
classification system or an analysis tool, by means of the spectral indices learned, that
can go through other frameworks (e.g., time series classifiers). The indices can be further
analysed in order to recognize interesting patterns made evident in the formulas. The GP
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framework can be conditioned to support regression, only by changing the fitness function,
and the concept of spectral indices in images applies to classification of regions of interest
as well. The framework was implemented in Java, and the source code is available on
Github1 with the name of GPSI (Genetic-Programming-based Spectral Index).

The work documented in Chapters 5, 6 and 7 are suitable to be published. The frame-
work for the binary scenario (Chapter 5) has already been published in the 2016 Con-

ference on Graphics, Patterns and Images (SIBGRAPI)2 as a full paper named
Learning to combine spectral indices with genetic programming [27]. The framework for
the multi-class scenario (Chapter 6) has been accepted to the 2017 IEEE International

Geoscience and Remote Sensing Symposium (IGARSS)3 as a paper named Fu-

sion of Genetic-Programming-based Indices in Hyperspectral Image Classification Tasks.
Finally, the contribution for tropical biomes characterization and analysis (Chapter 7) is
still under construction and is intended to be submitted to the multidisciplinary journal
Remote Sensing of Environment4.

8.3 Future work

Future work includes a more sophisticated (and context-dependent) analysis of the learned
formulas to determine band relevance, since in this work only the number of occurrences
of the bands in the indices were considered. Tree mining is an interesting option [53] to
achieve this.

Since the GP framework can be extended to learn indices that solve regression prob-
lems, an interesting application would be to learn indices to describe diverse functional
traits.

Considering that the fitness functions that aim at minimizing intra-class distance could
yield indices that saturate easily for more specialized tasks, another future work would
be the applications of fitness functions that ensure separation of classes without forming
compact clusters. For multi-class classification recently proposed fusion approaches can
be used [2, 18,69] to combine GP indices.

A natural extension of this work consists in using the gray-scale images formed by
the learned indices to perform classification of regions of interest (more suitable for the
current paradigm in multi- and hyper-spectral imagery classification [1]), by including the
use of image descriptors.

Finally, the serious problem of high variability of the search in hard spaces could be
addressed with non-conventional heuristics in evolutionary algorithms [59,68].

1https://github.com/jfhernandeza/gpsi
2http://gibis.unifesp.br/sibgrapi16/index.php. Last accessed on February, 2017.
3http://igarss2017.org/. Last accessed on February, 2017.
4https://www.journals.elsevier.com/remote-sensing-of-environment. Last accessed on

February, 2017.
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Appendix A

Other fitness functions considered

In this appendix, two fitness functions besides the ones introduced in Section 4.2 are
presented. They were not further considered because of its poor performance.

A.1 Bhattacharyya Distance

The Bhattacharyya Distance is a widely used measure of similarity between two proba-
bility distributions. Assuming normality, the distance between two distributions p and q

is defined as:

DB(p, q) =
1

4
exp

(

1

4

(

σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

))

+
1
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(
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2

σ2
p + σ2

q

)

(A.1)

Figure A.1a shows that there is no a clear correlation of the distance with the obtained
accuracy. This is because two distributions may be considered as distant, even if they
overlap, as long as their standard deviations are significantly different.

A.2 Hellinger Distance

The Bhattacharyya Distance does not obey the triangle inequality. The Hellinger distance
address this problem. It was calculated on the basis of the discrete probability distribu-
tions p(x) and q(x) of the pixel values, formed by their histograms. The distance score is
defined as:

H(p, q) =

√

1−
∑

x∈X

√

p(x)q(x) (A.2)

Figure A.1b shows a better correlation than Bhattacharyya Distance.
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