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Resumo

Robótica e suas aplicações de serviço com robôs bípedes tem se expandido recentemente
devido a possibilidade de se usar robôs desta categoria em ambientes originalmente plane-
jados para operação humana. No entanto, locomoção bípede tem se mostrado um desafio
teórico e prático devido a alta dimensionalidade do problema, visto que a ação de andar
tipicamente envolve o controle preciso em tempo-real de múltiplos atuadores e sensores
em conjunto com sistemas dinâmicos complexos. Concomitantemente, aprendizado por
reforço (RL) e sua versão com redes neurais profundas (DRL) estão se tornando uma
abordagem prominente para solucionar tais problemas, devido a sua capacidade de li-
dar com processos contínuos e livres de modelo. Neste trabalho, modelamos a tarefa
de locomoção como um problema de aprendizagem por reforço, propondo representa-
ções práticas baseada em MDPs e estratégias generalizáveis para funções de reforço. Em
seguida, prosseguimos desenvolvendo um framework para integrar nosso simulador de es-
colha (CoppeliaSim [11]) com a interface corrente padrão para aprendizagem por reforço
(OpenAI Gym [5]). Finalmente, nós aplicamos algoritmos do estado-da-arte em apren-
dizado por reforço profundo com nosso framework em experimentos configuráveis para
validar nossa modelagem e aprender uma política de caminhada estável em simulação
para o robô Marta, um sofisticado robô humanoide com 25 graus de liberdade.



Abstract

Robotics and its service applications with biped robots have faced an upsurge lately as
this category of robots is suitable for deployment in environments originally designed for
operation by humans. However, bipedal locomotion has proven to be a challenge in theory
and practice due to the problem’s high dimensionality: as walking gaits typically involve
precise real-time control of multiple actuators and sensors, coupled with complex dynam-
ical systems. Concomitantly, reinforcement learning (RL) and its deep neural network
version (DRL) are becoming a prominent approach in solving such challenging control
problems due to their capacity to work on continuous and model-free processes. In this
work, we modeled a locomotion task as an RL problem by proposing practical MDP repre-
sentations and generalizable reward engineering strategies. We then proceeded to develop
a framework for integrating our simulator of choice (CoppeliaSim [11]) with the de facto
standard interface for Reinforcement Learning (OpenAI Gym [5]). Finally, we applied
state-of-the-art DRL algorithms within our framework in configurable and reproducible
experiments to validate our modeling and learn a stable walking gait in simulation for the
Marta robot, a sophisticated humanoid robot with 25 DOFs.
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Chapter 1

Introduction

Artificial intelligence and automation are continually driving the frontiers of society in
recent times as whole industries have perished while new ones have flourished in the last
few decades. As a growing market, robotics is playing an important role in research nowa-
days because, as an interdisciplinary field, its applications demand growing collaboration
in research and education.

Robotic locomotion plays a key role in these developments, enabling an ever-increasing
pace of technological progress. Due to the simplicity of control and the high efficiency
in flat terrains, wheeled robots are still the most commonly used. However, they face
problems such as soil unevenness and adaptability. These problems, on the other hand,
tend not to be an issue for legged robots. Among the various legged arrangements, there
is a particular interest in humanoids since these would be the most adapted to interact
with tools and environments already created for humans.

Bipedal locomotion, in particular, has proven to be a long-standing challenge in the-
ory and practice. One of the most challenging aspects is the high dimensionality of the
problem: walking gaits typically involve precise real-time control of multiple actuators
and sensors coupled with complex dynamical systems and energy requirements to pro-
duce usable thrust. Hand engineering these attributes is an error-prone process and,
unfortunately, has to be reworked and adapted for each new model, environment or task.

Figure 1.1: Even under controlled environments and expensive budgets, bipedal locomo-
tion has been a notoriously difficult task with a myriad of real missteps. [24]

To tackle these contemporary challenges, classical and vanguard methods in artificial
intelligence are frequently employed on a large-scale. Machine learning (ML), in particu-
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lar, has enjoyed a recent upsurge in development and interest across both academia and
industry, gradually becoming a household name that has received uncommon mass media
coverage for a scientific field. One of the most recent of such methods in ML is Rein-
forcement Learning (RL). As we will discuss in the following sections, RL is increasingly
becoming one of the top choices to tackle these and other related problems. Deep Rein-
forcement Learning (DRL), in particular, employ deep neural networks to cope with high
dimensional inputs, as well as modeling non-linear behavior and fitting good predictions.

Over the next sections, we shall delve more formally in reinforcement learning, drafting
some key aspects that sets it apart from other machine learning approaches while adopting
a predominantly academic perspective.

1.1 Motivation
As DRL methods upsurge, many tasks related to bipedal control are now successfully
addressed [48, 19, 50] in the literature. However, most of the test scenarios where they are
applied run over simulated platforms that contain a non-negligible number of limitations
and constraints regarding the dynamics of the simulation or the robot model. Despite
their accomplishments, such simplifications in the controlled model could lead to the
unsuccessful application of these algorithms in more realistic scenarios.

1.2 Objectives
Our objective is to study and apply DRL algorithms to develop and improve a stable
walking gait for the humanoid robot Marta and possibly similar models. More details of
the Marta model are discussed in the following chapters. Our objective comprises both
the use of state-of-the-art DRL algorithms as a black box to assess how feasible the use of
reinforcement learning is in the automation of gait discovery and comparing and tuning
different algorithms parameters and reward functions for our particular case.

The following hypotheses were formulated to measure the attainment of our objectives:

• H1: DRL algorithms can be used to conceive a walking gait for Marta from scratch.

• H2: Reward engineering can be used to improve discovered gaits.

• H3: It is possible to transfer the policy learned in simulation to the real robot.

1.3 Main contributions
In this project, we widely investigated and applied Deep Reinforcement Learning to many
environments, architectures, and algorithms. Due to the field’s very nature, the work was
mostly experimental and heavily focused in rapid iterations and empirical results.

We list the following main contributions:
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• Developed an extensible and transparent framework for integrating the V-REP [11]
simulator (now CoppeliaSim) with the de facto standard interface for Reinforcement
Learning (OpenAI Gym [5]).

• Applied DRL state-of-the-art algorithms to discover novel gaits for Marta without
explicit supervision or human design.

• Proposed and compared different reward functions and how they affect the discov-
ered gaits.

1.4 Text structure
We organized this Master’s thesis as follows:

• In Chapter 1, we introduced our motivation, objective, hypotheses, and contribu-
tions.

• In Chapter 2, we discuss the theoretical background, and introduce useful mathe-
matical notation for later chapters.

• Chapter 3 outlines related work as well as recent developments in the field.

• Our main approach to modeling the problem is thoroughly discussed in Chapter 5.

• The experimental results of our models are presented and discussed in Chapter 6.

• Chapter 7 concludes the dissertation considering our main contributions and con-
templating possible opportunities for future work.
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Chapter 2

Theoretical Background

In this chapter, we present the theoretical background behind state-of-the-art Reinforce-
ment Learning methods and the common issues faced by these algorithms.

2.1 Computers and cognition
Machine learning problems are often divided into three categories [47]: supervised, unsu-
pervised, and reinforcement learning.

Supervised learning. This task category involves learning inference through labeled
training data. While supervised learning systems have displayed powerful classification
and inferring capabilities for a myriad of tasks, they usually require vast amounts of
correctly labeled input data [36]. While this requirement may be acceptable for problems
that possess a considerable amount of examples, it poses a prohibitive obstacle to original
or dynamic problems, such as robotic locomotion.

Unsupervised learning. On the other hand, unsupervised learning techniques do not
have the same requirements as supervised ones. This mode of learning is already exten-
sively used in statistical summarizing and clustering [18], but it has gained substantial
attention in recent years, enjoying and contributing to advancements in other areas of
artificial intelligence. Most notably, Generative Adversarial Nets (GANs) [14] were orig-
inally proposed as a generative model for unsupervised learning, but have found use in
Supervised and Reinforcement learning as well.

Reinforcement Learning. In this project, we shall focus on Reinforcement Learning
(RL). In this kind of problem, training data are not available or are hard to be defined.
However, behaviors may be objectively assessed automatically by one or more measure-
ments. These objective values are called rewards, and are intrinsically related to the task
at hand. For example, in a robotic locomotion task, the reward may be defined as the
final distance attained in one single episode. Another possible reward is the instantaneous
velocity at each moment of the episode. The first case is usually called a type of sparse
reward and the latter, a dense reward.
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2.2 Reinforcement learning
In reinforcement learning, the system does not require pre-labeled data to train and,
instead, relies on a reward signal to improve and construct policies that dynamically
interact with the problem environment. Differently from the previous tasks, RL tasks can
be modeled as an agent interacting with a simulated or real stochastic environment. These
interactions may span variable time frames and be episodic, giving rise to the notion of
long-term rewards or penalties. As such, RL is not limited to traditional classification
or regression, but incorporates decision-making, planning, knowledge representation and
responsiveness to new and unfamiliar elements. These concepts will be more formally
defined in Section 2.3. RL bears a strong theoretical foundation for modeling robotic
tasks, and developing this technique has bolstered plenty of practical applications.

Common challenges
Most RL methods face some common challenges that are addressed in different ways
depending on the selected technique. We detail next the most relevant of these challenges.

Exploration vs. exploitation. One of the major challenges in RL is the exploration
vs. exploitation dilemma [25]. This trade-off is of major practical importance and consists
of finding a balance between exploiting the current knowledge for amassing rewards, or
exploring unknown settings to improve such knowledge at the potentially cost of some
reward.

Credit assignment problem. When interacting with an environment, the agent may
observe a reward that is a consequence of a remote past action [52]. These delayed rewards
represent a problem because it encumbers the agent to identify and exploit favorable
actions correctly.

Partial observability. In RL problems, the agent only has access to observations,
which, in most cases, do not contain all the information about the environment state [6].
In Robotics, this problem is ubiquitous: it is impractical to have sensors to account for
every dynamic element of a complex system.

Reward shaping and specification gaming. For many useful tasks, it is hard to
evaluate performance in an objective and numerical way. Assessing the quality of a
walking gait, for example, tends to be an intuitive and subjective human ability, hard to
be translated analytically. For these kinds of tasks, a technique called Reward Shaping [37]
is used, in which additional reward signals are used to guide learning and approximate the
intended behavior. The drawback of reward shaping is specification gaming: in which the
agent learns how to satisfy the defined reward, but the learned policy is not satisfactory
for the original task, often in an ingenious way. By far, specification gaming was the most
frequent challenge that manifested in our project, and we will discuss it separately in the
following chapters.
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We will also analyze how the different RL techniques approach these challenges through-
out the text.

2.3 Markov decision process
As we previously discussed, RL is mainly concerned with the dynamic interactions of
an agent in a changing environment. Such a framework is often described as a Markov
decision process (MDP) [3]. Using the same notation as [49], an MDP consists of the
tuple (S,A, P, r, ρ0, γ) with S and A being the sets of states and actions, respectively,
and the transition probability distribution is described as:

P : S ×A× S 7→ [0, 1] (2.1)

The reward function can be defined as:

r : S 7→ R (2.2)

The distribution of the initial state s0:

ρ0 : S 7→ R (2.3)

and the discount factor γ ∈ [0, 1]. In regard to the agent formulation, we denote a
stochastic policy:

π : S ×A 7→ [0, 1] (2.4)

A policy can be understood as the main determinant of an agent, it is the decision-
making process we wish to optimize. In this stochastic formulation, the policy assigns a
probability value to all state-action pairs, expressing the probability of the action being
carried out. In the particular case that all probabilities are zero or one, the policy is
said to be deterministic. As we will discuss more in Section 2.4, there are a number of
different ways to represent a given policy, such as look-up tables, graphs, automata and
neural networks, to name a few. The agent main objective is to maximize the expected
cumulative reward, called return:

J(π) = Es0,a0,...

[

∞
∑

t=0

γtr(st)

]

(2.5)

We may also define secondary functions, such as the state-action value function:

Qπ(st, at) = Est+1,at+1,...

[

∞
∑

l=0

γlr(st+l)

]

(2.6)

The state-action value function can be understood as the cumulative reward of taking the
action at in state st and following the policy π thereafter. The value function is similarly
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defined, but the action is implicitly sampled from π:

V π(st) = Eat,st+1,...

[

∞
∑

l=0

γlr(st+l)

]

(2.7)

Some algorithms also define an advantage function such as:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.8)

with states and actions sampled accordingly. In the context of RL environments, the
MDP may be partially observable. In that case, the subset of the state space S that is
observable to the agent can be denoted as the observation space O. Such definitions may
facilitate further discussion on policy optimisation.

It is important to note that formal RL definitions and terminology are not completely
standardized and slight variations can be seen in different works.

2.4 RL approaches
As defined in Section 2.3, the main RL problem is to find an optimal policy π∗ that
maximizes the expected rewards for any given s0. In other words, RL can be understood
as a policy optimisation problem. Regarding this optimisation, RL can be tackled by two
main approaches: value-based or policy-based.

2.4.1 Value-based RL
This approach attempts to learn the value function (or, similarly, the state-action value
function). With it, an implicit policy is derived: for each state st, the policy consists
of choosing the action at = maxaQ(st, a). The prime example of value-based RL is Q-
learning [60]. In this method, the values of Qπ(st, at) are progressively approximated by
using the Bellman equation:

Q(st, at) = Q(st, at) + α(rt + γmaxaQ(st+1, a)−Q(st, at)) (2.9)

Where α ∈ (0, 1] is the learning rate parameter. It has been demonstrated that, with
appropriate values of α and infinite iterations, such approximation indeed converges to
the optimal policy [22]. In practice, an ε-greedy approach is used when deriving a policy
π from a Q function. Under this guideline, the action with the highest approximated Q

value is picked with probability (1 − ε), and a random action is selected otherwise. In
this way, ε-greedy procedures are an efficient and easily parameterized response to the
exploration vs. exploitation dilemma previously mentioned [57].

2.4.2 Policy-based RL
Policy-based RL avoid dealing with value functions and, instead, attempts to directly
learn the policy. This approach can be further classified into three categories [49].
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Policy iteration methods These methods iterate in policy space in an attempt to
improve the policy. They generally alternate between estimating the value function and
improving the policy [4]. These methods include more theoretical ones, such as brute
force, where all possible policies are iterated. While this may be suitable for small MDPs,
it is unfeasible for stochastic and large (sometimes infinite) MDPs in which RL is generally
concerned. Please note that including value-based RL inside policy iteration methods is
simply a matter of definition.

Policy gradient methods As the name suggests, these methods employ the gradient
(or an estimate) of the total reward concerning the policy parameters [45]. The purpose
of these methods is to update the policy with stable monotonic improvement.

Derivative-free optimization methods This last category does not require the use
of gradients, viewing all returns as a black box function [53]. Derivative-free stochastic
optimisation methods have been widely applied with good results, despite their apparent
simplicity. Standard techniques include the cross-entropy method (CEM) and covariance
matrix adaptation evolution strategy (CMA-ES).

As we shall see in Chapter 3, novel methods such as Actor-critic attempt to bridge
the gap between value-based and policy-based RL, learning the value function and policy
concomitantly.

2.5 Soft Actor-Critic
As our algorithm of choice in this work is the Soft Actor-Critic (SAC) [17], we will discuss
its theoretical framework into more detail here and its historical context at Chapter 3
along with other recently proposed algorithms.

SAC is an off-policy algorithm that optimizes a stochastic policy. It is a successor of
Soft Q-Learning SQL [16], incorporating ideas from earlier algorithms such as DQN [35]
and DDPG [32] while bearing similarities with TD3 [13]. It is based upon both actor-critic
methods and entropy-regularized RL, with the latter being its most distinctive feature.
Instead of maximizing the standard return, SAC’s objective is to maximize a trade-off
between expected return and entropy by using entropy regularization. Increasing entropy
makes the policy act more randomly which aids in exploration. Reminding that, for a
random variable x and probability mass or density function P , the entropy H of x can be
computed from its distribution P as:

H(P ) = E
x∼P

[− logP (x)] (2.10)

The entropy bonus is included directly in the definition of the optimal policy π∗ and
weighted by a new hyper-parameter α:

π∗ = arg max
π

E
τ∼π

[

∞
∑

t=0

γt

(

R(st, at, st+1) + αH (π(·|st))

)

]

(2.11)
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Similarly, the equations of V π and Qπ are also updated to include the entropy bonuses:

V π(s) = E
τ∼π

[

∞
∑

t=0

γt

(

R(st, at, st+1) + αH (π(·|st))

)

∣

∣

∣

∣

∣

s0 = s

]

(2.12)

Qπ(s, a) = E
τ∼π

[

∞
∑

t=0

γtR(st, at, st+1) + α

∞
∑

t=1

γtH (π(·|st))

∣

∣

∣

∣

∣

s0 = s, a0 = a

]

(2.13)

Similarly to TD3 [13], SAC concurrently learns two Q-functions, a technique known
as Clipped Double-Q Learning [13]. A SAC algorithm formulation [2] can be seen in
Algorithm 1.
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Algorithm 1: Soft Actor-Critic
1: Input: initial policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay

buffer D
2: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

3: repeat
4: Observe state s and select action a ∼ πθ(·|s)
5: Execute a in the environment
6: Observe next state s′, reward r, and done signal d to indicate whether s′ is

terminal
7: Store (s, a, r, s′, d) in replay buffer D
8: If s′ is terminal, reset environment state.
9: if it is time to update then

10: for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
12: Compute targets for the Q functions:

ã′ ∼ πθ(·|s
′)

y(r, s′, d) = r + γ(1− d)

(

min
i=1,2

Qφtarg,i(s
′, ã′)− α log πθ(ã

′|s′)

)

13: Update Q-functions by one step of gradient descent using

∇φi

1

|B|

∑

(s,a,r,s′,d)∈B

(Qφi
(s, a)− y(r, s′, d))

2 for i = 1, 2

14: Update policy by one step of gradient ascent using

∇θ

1

|B|

∑

s∈B

(

min
i=1,2

Qφi
(s, ãθ(s))− α log πθ ( ãθ(s)| s)

)

,

where ãθ(s) is a sample from πθ(·|s) which is differentiable wrt θ via the
reparametrization trick.

15: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

16: end for
17: end if
18: until convergence
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Chapter 3

Related work and Recent
Developments

As discussed so far, the area of reinforcement learning is teeming with diverse and promis-
ing ideas. RL could take advantage of solid mathematical frameworks such as MDPs while
also drawing inspiration from higher-level fields such as psychology. However, in order
to be practically useful, the methods previously described must be carefully implemented
and validated, demonstrating the ability to converge in a, preferably, finite amount of
time. In this section, we analyze some of the most recent and successful ideas found in
the literature while also broadly replicating some results and applications.

3.1 Artificial neural networks
Artificial neural networks (ANN) and, in particular, deep neural networks (DNN) also
have enjoyed widespread use in machine learning and other domains [29]. In the context
of RL, DNNs have been used primarily as approximators for the defined functions or
policies, whereas ANNs and DNNs tackle sensorial and high dimensional data, RL tackles
decision making and planning.

3.1.1 DQN
Two of the major problems in using sparse representation with the Q-learning method,
presented in Section 2.4.1, are the rate of convergence and the number of states. Nonethe-
less, DNN has demonstrated proficient capability in the task of approximating functions
and can be applied to approximate the Q function and mitigate both convergence and
combinatorial explosion problems [35]. One of the most significant advantages of this
variety is the ability to have good approximations of Q-values for states that have never
been visited. Instead of the traditional update, the network can be optimized with a
squared error loss:

L =
1

2

[

r + γmaxa′Q(s′, a′)−Q(s, a)
]2

Unfortunately, the introduction of DNNs produces some other practical obstacles. One
such problem is caused by the similarity of consecutive samples, which might converge the
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network into a local minimum. To avoid this, all the transitions are stored in a replay
memory, which is sampled randomly during training. This practical consideration is
called experience replay. A high-level DQN algorithm that considers the points as
mentioned earlier is described in Algorithm 2, using a notation scheme similar to OpenAI
Gym [5].

The seminal work in DQN of Mnih et al. [35] represented a breakthrough not only in
RL but in ML in general. Their work represented one of the first general-purpose agent
able to excel in a task of high-dimensional input, encouraging novel research on the topic.
An example game that their system was able to master is shown in Figure 3.1.

Algorithm 2: Deep Q-learning Algorithm
Input: Discrete environment E
Output: Q network with implicit policy

1 initialize replay memory D ;
2 initialize action-value function Q with random weights;
3 observe initial state s;
4 while learning_condition = true do
5 with probability ϵ: select a = random.action() ;
6 otherwise select a = argmaxa′Q(s, a′) ;
7 (s′, r) = E .transition(s, a) ;
8 store experience < s, a, r, s′ > in replay memory D ;
9 sample random transitions < sD, aD, rD, s

′

D > from replay memory D ;
10 calculate target for each mini-batch transition ;
11 if s′D is terminal state then
12 tD = rD ;
13 else
14 tD = rD + γmaxa′Q(s′D, a

′

D) ;
15 end
16 train the Q network using (tD −Q(sD, aD))

2 as loss ;
17 s = s′ ;
18 end

Following that, the original tabular Double Q-learning was combined with DQN, re-
sulting in Double DQN, with even better performance [59].

3.1.2 Actor-critic
In this method, the action-value function and policy are generally parameterized to sup-
port gradient methods.

The action-value and policy parameters are usually labeled as w and θ, respectively.
As mentioned in Section 2.2, actor-critic methods aims to benefit from the advantages of
both value-based and policy-based approaches, and have succeeded on a wide variety of
problems [34]. To achieve that, these algorithms maintain two entities with different roles:
the critic estimates the action-value function and updates w, while the actor updates θ

as directed by the critic. A diagram of a generic actor-critic framework can be seen in
Figure 3.2.
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Figure 3.1: A deep reinforcement learning agent proposed in [35] was able to achieve
super-human mastery on the simulated Atari game Breakout by using high-dimensional
input: the pixels on the screen.

Figure 3.2: Diagram of actor-critic generic strategy. Extracted from [51]

Actor-critic strategies have recently become part of the most popular algorithms in the
RL framework thanks to their manageable architecture and successful practical results [44]
being later extended as asynchronous actor-critic methods [43]. Actor-critic reinforcement
learning has also been applied with multiple policy gradients [15], which we review in
Section 3.2.

By using the actor-critic approach, Lillicrap et al. [31] proposed the Deep Determin-
istic Policy Gradient (DDPG), which extends DQN to continuous action spaces, allowing
its application to more diverse tasks.
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3.2 Policy gradients
Advancements in RL methods have not been limited to neural networks. Methods that
draw inspiration from classic optimization are also constantly improving. In this subsec-
tion, we discuss some improvements regarding direct policy optimization.

3.2.1 Natural policy gradient
In [26], Kakade provided a natural gradient method along with experimental results that
show great improvements over the standard gradient method in both simple and complex
MPDs, which translates as a drastic contribution to policy iteration methods.

3.2.2 Trust Region Policy Optimization (TRPO)
Schulman et al. [49] built upon natural policy gradient methods, describing an algorithm
with strong guarantees of monotonic improvement. In this method, the size of the policy
update is constrained by a parameter, which derive the name “Trust Region”. The pro-
posed Trust Region Policy Optimization (TRPO) can be used effectively for optimizing
large nonlinear policies such as neural networks. In the same article, experimental results
indicate robust performance for diverse tasks: from 2D robotic tasks to Atari playing with
screen inputs. One of the major contributions of their paper is a generic policy search
method able to learn such diverse controllers from scratch. Some models used in the tasks
are replicated in Figure 3.3.

Figure 3.3: 2D robot models used in [49] for locomotion experiments. Notice that the
models are visually rendered in three dimensions, but they are still constrained to a bi-
dimensional plane.

Subsequently, the same team combined TRPO for both the policy and the value
function with an estimator of the advantage function [50]. Using this approach, they were
able to create policies for controlling simulated 3D robots, with up to 33 state dimensions
and 10 actuators.
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Proximal Policy Optimization (PPO)

TRPO has been further developed and simplified, giving rise to Proximal Policy Opti-
mization (PPO) [48], outperforming previous online policy gradient methods. In PPO, the
policy update’s size is no longer constrained but, instead, is only penalized. The substitu-
tion of the hard constraint for a penalty has multiple benefits, in addition to simplifying
the implementation. At the time of writing, PPO is considered the best and default al-
gorithm for a wide range of DRL problems. We reproduce the method in Algorithm 3,
noting that it also adopts an actor-critic strategy.

Algorithm 3: PPO, Actor-Critic Style
1 for iteration = 1, 2, … do
2 for actor = 1, 2, …, N do
3 Run policy πθold in environment for T timesteps ;
4 Compute advantage estimates Â1, . . . , ÂT ;
5 end
6 Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT ;
7 θold ← θ ;
8 end

In [19], DeepMind researchers described the Distributed PPO (DPPO), an improved
algorithm able to learn locomotion behaviors in rich environments such as those presented
in Figure 3.4.

Figure 3.4: The simulated DPPO agent was able to learn to leap over obstacles and to
avoid obstacles [19].

3.2.3 Soft Actor-Critic (SAC)
Recently, a new off-policy actor-critic deep RL algorithm called SAC (Soft Actor-Critic)
[17] has been proposed. This algorithm tackles the two major issues of applying DRL
to real-world robotics directly: high sample complexity, which demands a longer train-
ing time and hyper-parameter tuning. Instead of maximizing only the expected reward,
SAC also attempts to maximize the policy’s entropy, which promotes policies that act
as random as possible while also achieving a high reward. This has a series of desir-
able consequences: it improves its sample efficiency and makes the policy more robust
to hyper-parameters and environment changes. All of these characteristics make SAC a
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viable algorithm for learning robotic skills, and the authors have already demonstrated
this by successfully applying SAC to real-world tasks [17], as seen in Figure 3.5.

Given those advantages and after initial tests, SAC was our algorithm of choice for
discovering policies for the walking gait in the Marta robot.

Figure 3.5: SAC was able to train a policy to learn how to operate the Dynamixel Claw
to rotate a valve [17].

3.3 Deep Reinforcement Learning and Locomotion
Despite all the recent successes in DRL, most control tasks are still being learned in
simulation only. Such simulations usually exhibit simplifications in the physical or robot
model [19][41][33].

Among the control tasks, the locomotion task, in particular, still presents a challenge
for realistic robot models and simulation parameters. However, the field is progressing fast
towards learning in the real world, with recent works applying DRL in varying degrees to
learn gaits for real quadrupedal robots [17][54][42][21][9] and real bipedal (non-humanoid)
robots [62]. However, learned policies applied in the real world are often brittle and may
fail to generalize well to unaccounted changes in the environment. Learning walking gaits
for real humanoid robots remains unsolved and currently represents the next frontier for
DRL.

3.3.1 Locomotion in simulation
Recent DRL methods are demonstrating to be a very suitable approach for locomotion
tasks in simulation. In the works from [41] and [33], DRL was used to train a simulated
humanoid in navigation tasks using high-dimensional input such as an RGB camera. This
tasks could be learned using limited amount of prior knowledge, usually in the form of
motion capture trajectories. An example result can be seen in Figure 3.6.

In [55], the authors demonstrate that motion capture can be avoided, and instead,
the model can rely on a simpler walking target trajectory. By using this trajectory as
an initial guide force, they propose a 3-stage curriculum to train DRL policies. During
one of the stages of the curriculum, the guide forces are gradually reduced. By using
this proposed curriculum and Proximal Policy Optimization [48], the agent could learn
complex walking policies for terrain with hurdles, stairs, and gaps. Some of these tasks
can be seen in Figure 3.7.
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policy was able to walk on varied terrains and obstacles even though it was trained only
on flat terrain. This robustness was mostly attributed to the entropy maximization in
SAC. Photos of the learned gait can be seen in Figure 3.9.

In [9] a combination of model-based control and RL is able to learn robust policies for
the Unitree Laikago real quadruped robot. Their approach splits the task into a high-
level and low-level controllers and use a DQN-like algorithm to train the high-level policy.
Their deployment to the real robot did not require domain randomization.

Figure 3.9: DRL policy gait learned for the Minitaur quadrupedal robot [17].

3.3.3 Bipedal locomotion in the real world
Zhaoming et al.[61] proposed a mixed method that allows an iterative design process
for locomotion skills. Their work tackles directly the difficulties related to shaping and
predictability of reward function changes. In this proposed method, reference motions and
aggregated state-action pairs are used in combining Reinforcement Learning and Imitation
Learning. This data collection method is referred to in the paper as Deterministic Action
Stochastic State (DASS). One of the advantages of this approach is that it allows the
iterative design of reward functions while limiting the previous iteration deviation. The
method was evaluated in the Cassie bipedal robot, a robot designed and built by Agility
Robotics that stands approximately 1 meter tall. Despite using a reference motion and
imperfections in the walking gait, this technique demonstrates a practical method for
leveraging DRL ideas to develop a useful gait. Once more, photos of the learned gait can
be seen in Figure 3.10.

3.4 Summary
In this chapter, we show how DRL-based methods have evolved and are now employed
in various tasks, from action video games to robotics navigation. We discussed the main
approaches followed, showing that real robot models are not yet tackled for the model-
free learning algorithms despite the quality of the methods. Indeed, agents like those
presented in [19] and the environment where they were simulated are far from considering
the complexity of joints’ dynamics as other aspects of the agent’s model. We also showed
how DRL worked with real Cassie and Minitaur robots. However, no model-free DRL
algorithm was applied to a humanoid robot in more realistic simulations as far as we are
concerned. In this scenario, we aim at learning a DRL based policy to control the gait of
our humanoid robot Marta.
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Figure 3.10: By mixing RL-based and Imitation Learning, an iterative-design approach
could successfully develop locomotion skills for the Cassie robot [61] .
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Chapter 4

Materials and Methods

As discussed in Chapter 3, the number of reinforcement learning applications has in-
creased rapidly in the last few years. This project aims to contribute to this growth
by both performing experiments using the most successful recent techniques while also
investigating novel approaches on a new humanoid robot model developed by our team.

This project’s source code can be found on our laboratory’s Github repository. 1

4.1 Materials
Fortunately, academia and industry have been working closely on such problems, col-
laborating considerably in the rapid development on RL. This collaboration fostered the
invention of multiple robust and accessible virtual environments designed to test, vali-
date, and compare RL methods. One of these environments, OpenAI Gym [5], became
the de-facto standard interface for Reinforcement Learning, and its tasks are commonly
used as benchmarks in recent papers [48]. All the environments and tasks proposed use
OpenAI Gym as its interface, facilitating reproducibility, and comparing algorithms.

4.1.1 Simulated Environment
The chosen simulator in this project was V-REP [11]. During this project, V-REP was dis-
continued and succeeded by CoppeliaSim. CoppeliaSim and V-REP are largely compati-
ble with each other, and, currently, the major differences are performance and improved
interfaces. For this work, CoppeliaSim can be seen as a major version enhancement over
V-REP. This simulator is exceptionally accessible and user-friendly with an intuitive scene
editor, flexible remote API, and multiple alternatives for the physical back-end. Partic-
ularly, CoppeliaSim’s dynamics module currently supports Vortex Dynamics, a physics
engine that produces high fidelity physics simulations. It is worth noting that, currently,
most DRL papers use a class of fast simulators that lack the intuitiveness of CoppeliaSim
when creating realistic control tasks and robotic models. Three of this simulators are
MuJoCo (Multi-Joint dynamics with Contact) [56], PyBullet [8] and Roboschool [48],
now discontinued. MuJoCo has seen a recent rapid growth in adoption [39] due to its

1Github repository: https://github.com/larocs/msc_yuri_soares
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4.1.3 Programming languages and software libraries
Most experiments were conducted using the Python3 programming language. A com-
bination of multiple available libraries, tools and simulator bindings contributed to this
choice:

• NumPy [58]: Performant n-dimensional array and numerical computation library.

• OpenAI Gym [5]: Common interface for RL environments.

• TensorFlow [1]: Software library for dataflow and differentiable programming,
widely used for machine learning research and applications.

• CoppeliaSim [11]: The chosen robot simulator.

• PyRep [23]: Toolkit for efficient interfacing between CoppeliaSim and Python3.

• Stable Baselines [20]: Set of implementations of RL algorithms based on OpenAI
Baselines [10].

Using pre-existing libraries also aids in reproducibility and easier comparison with
other methods. We also developed a framework called vrep_env for wrapping the low-
level CoppeliaSim API by using Gym environment semantics. A diagram showing how
CoppeliaSim, vrep_env and other components interoperate is shown at Figure 4.2.

4.1.4 Algorithms
To test our hypothesis, we applied two algorithms that are close to the state of the art on
reliability and sample efficiency among policy-learning algorithms [2]: PPO [48] and SAC
[17]. However, after initial tests, the sample-efficient SAC algorithm, when empirically
compared to PPO, reduced training time considerably and allowed for faster iteration of
experiments. In fact, in our experiments, PPO has never been able to learn a control
policy for Marta control gait. Therefore, we choose to focus our efforts in experimenting
with multiple MDP formulations and reward functions using SAC only.

4.1.5 SAC hyper-parameters
The hyper-parameters used in the SAC algorithm can be seen in Table 4.1.

Hyper-parameter Value
discount factor (γ) 0.99
learning rate (α) 0.0003
replay buffer size 50000

minibatch size 64
soft update coefficient (τ) 0.005

Table 4.1: SAC hyper-parameters.
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4.2 Methods

4.2.1 Quantitative evaluation criteria
In order to compare the learned gaits, we use a set of metrics that are aggregated through-
out each episode. These following metrics are collected once at the end of each episode
and evaluate the overall episodic performance:

• Distance walked in x (bigger is better).

• Distance walked in y (smaller absolute value is better).

• Whether the agent reached 50m and was terminated (true is better).

We also collected measurements made in each time-step of an episode to compare different
gaits in their intermediary steps:

• Simulated energy use (smaller is better).

• Feet z position (bigger is better, capped by an empirical parameter).

• Variations in pitch (smaller absolute value is better).

• Variations in roll (smaller absolute value is better).

All of these results are averaged across 40 different runs for each policy compared in
Section 6.6.

4.2.2 Qualitative evaluation criteria
As we discussed in Section 2.2, it is hard to evaluate the quality of a gait learned by opti-
mization techniques. Even by devising metrics that take into account multiple objective
factors such as energy efficiency, stability, balance, and measurements, the ultimate sieve
will almost always reside on whether the gait looks “natural” or not. For this qualitative
evaluation, we also rendered videos of the walking gaits in motion along with relevant
plotting, which allow the detection of possible issues in the learned gait. While we admit
that this criterion is a highly subjective one, it tends to be consensual among different
individuals since walking is a natural skill possessed by most humans. This situation is
also alleviated when considering the similarities between the Marta robot and the human
anatomy, making it easier to envision a natural gait for the model. It would be possible
to take an approach similar to [7] with a human evaluator, but our goal is to attempt a
more automated approach.

As we shall see in Chapter 6, the agent was deceptively clever on specification gam-
ing, learning policies that could walk on a single leg, sideways, backward, among other
arrangements to avoid penalty factors and exploit rewards in an unintended way.
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4.2.3 Transfer Learning
In order to accelerate our reward design iteration process, transfer learning [46] was greatly
used. As we shall see in Chapter 5, multiple different RL formulations are proposed, with
each building up in complexity. Instead of training the policy from scratch each time,
the learned parameters from simpler tasks could be reused to bootstrap learning in more
complex ones. As discussed in Section 6.7 this process did not substantially change the
obtained policy, only accelerated the training phase.



38

Chapter 5

Locomotion as a Reinforced
Learning problem

As discussed in Section 2.4, MDPs provide a very general mathematical framework for
modeling control problems [3] and RL ones. In the particular case of locomotion, RL is
already demonstrating success in both simulated and real tasks [17].

In order to apply RL algorithms in our problem, we first need to model the Marta
locomotion task as a RL problem. Using the notation from Section 2.3, we must define
our observation space O, action space A and reward function r. The state-space S and
transition probability P are implicit from the physics simulation engine and only require
minor additional configuration, e.g., setting the gravity constant and time step dt.

As we will show throughout the text, practical RL also tends to define additional
conventions and signals. One of the most important ones is the “done” signal, which
would technically belong to O, but tends to influence the choice of r considerably.

5.1 Observation space
To choose an observation space, we should take into account which information is neces-
sary for the agent to learn a walking gait and how this information should be represented.
Redundant or extra information should be avoided for the sake of efficiency in the learning
process. But its presence does not cause any major problems, as neural network policies
can learn to ignore any input if advantageous. Therefore, when in doubt regarding an
input’s relevance, it is better to err on the side of caution and include it anyway, at the
smaller cost of efficiency.

5.1.1 Proprioception observation inputs
As we can see in Figure 5.1, the robot has 25 revolute joints: 5 central and 10+10
symmetrical joints. Of all these joints, only HeadPitch and NeckYaw are not used in the
observation vector. All the remaining 23 joints contribute to the observation space with
2 scalars per joint: one for the normalized joint angular position and the other for the
joint angular velocity.
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Yaw
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Roll
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Figure 5.1: Positions and orientations of Marta’s joints, highlighting symmetrical versus
central joints.

Bounded coordinates It is preferred not to include values in the observation vector
that could increase or decrease without bounds during the walking cycle. Due to the
nature of how neural networks compute functions, this kind of values may help in the
initial frames but become meaningless as the robot moves forward and away from the
initial position. The absolute x and y coordinates of the robot, for example, should be
irrelevant to compute the actions during the walking cycle, because the robot walks in
the xy plane and these coordinates can assume any value. The z coordinate, on the other
hand, is bounded and could provide relevant information during the cycle. A similar
argument could be made to discard the yaw, but include the roll and pitch rotation axes
[17]. With that in mind, we include these 3 additional scalars in our observation vector:
z, roll, and pitch, all of them from the central robot link.

Relative linear velocities Using the same ideas from the previous paragraph, the
absolute linear velocity along the x and y axes would have different meanings for the
robot because the agent is, in principle, free to rotate in that plane. To correct this, we
consider the velocity from the robot’s planar reference. To compute this, we simply rotate
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by the yaw:

vpov =





cos(−yaw) −sin(−yaw) 0

sin(−yaw) cos(−yaw) 0

0 0 1









vx

vy

vz



 (5.1)

Adding vpov to the observation vector yields 3 additional scalars to the observation space.

Adding all together These (23 × 2) + 3 + 3 = 52 scalars set represents our “core”
observation inputs and are included in all experiments.

5.1.2 Additional observation inputs
In addition to the “core” observations mentioned, we also defined additional observational
inputs for different experiments and depending on each strategy for learning walking gaits.

Foot z information We experimented including the information of each foot into the
observation, as it could potentially benefit the agent’s decision-making. Using a similar
argument from Section 5.1.1, only the z axis component of each foot’s position and velocity
were included, adding 2× 2 = 4 new inputs.

Floor contact With similar reasoning, we choose to experiment including floor contact
information. Differently to the previously mentioned observation inputs, floor contact is
represented as a boolean value. Since all inputs are mapped to the interval [−1.0,+1.0],
these boolean values are simply mapped to {−1,+1}. As the contact is measured at the
front and back of each foot, these inputs also add 2 × 2 = 4 values to our observation
input.

5.1.3 Sensorial observation inputs
So far, all the inputs discussed were related to the robot’s proprioception. However,
healthy humans rely on visual cues for walking [64]. In order to be able to walk in a fixed
direction, our agent needs at least some information from the environment. Without
this sensory information, any deviation from the intended walking direction could never
be corrected and would likely accumulate over time. For that reason, we choose to also
experiment with additional sensory information in the observation vector.

Robot target position One of the simplest possible sensory information we could
include the intended direction of movement. To model this, we pick a point ptarget in the
xy plane located at a distance dmax away and straight ahead of the robot initial position
p0. The exact value of dmax is chosen so the robot can barely reach this point in the
allotted time, even at full theoretical speed. Then we compute θtarget, which is the angle
difference between the robot’s yaw and the angle to the target. An example can be seen in
Figure 5.2. To avoid angle discontinuities in the neural network input, we do not include
θ directly in the observation, but instead [sin(θtarget), cos(θtarget)].
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Figure 5.3: Rendering of the simulated environment using foot target position as “stepping
stones”. Left image is a perspective view and right is a top-view orthogonal one. Past,
current, and next stones can be seen for each foot.

yield similar results. Position control turned out to be a bit more tricky to work in Cop-
peliaSim as it would require setting additional PID parameters for each joint. Position
control would, in turn, cause the agent to learn how to indirectly control the PID con-
troller. Therefore, by setting appropriate PID parameters, position control, should be, in
theory, similar to velocity control in simulation.

As previously mentioned, all 25 joints in Marta are revolute joints (its spherical joint
is treated as 3 revolute joints) and all have upper and lower bounds of angular freedom,
hence unable to perform full rotations. In addition to position limits, all joints are also
simulated with velocity and torque limits, which the agent must learn to manage.

5.3 Episode termination
Defining the criteria for episode termination has many different consequences. Although
it may seem trivial, this decision is almost as important as the choice of r itself. In fact,
both the termination criteria and the reward function should be constructed in unison
[40]. Doing otherwise could lead to an unnecessarily inefficient learning or even change
the optimal policy.

In theory, the most straightforward way would be to always terminate an episode
after reaching a predefined number of frames. This way is, in fact, the easiest way to
theoretically examine the incentives: the policy would learn to maximize J(π) in the
allotted frames and we would be able to define the reward function r with greater freedom.

However, terminating the episode early in the case of hard-to-recover states (such as
falling) is desirable since ending these episodes earlier can reduce the total time required
for training. Although it may seem like a harmless modification this kind of early termi-
nation could introduce a dilemma for our agent. Suppose that, in our environment, we
are training a policy to find a low cost regarding some metrics. In our case, this could
be the energy expenditure during the walking cycle, for example. We may be tempted to
introduce in r a negative term that computes this cost. If this term is not appropriately
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scaled, our agent could, instead of learning how to minimize this cost, “prefer” to learn
how to terminate the episode as soon as possible (which tends to be much easier). The
incentive has shifted towards having shorter episodes to amass less negative rewards.

This kind of counter-intuitive optimization logic is also observed in evolutionary com-
putation [30] and is often called “specification gaming”. We will see more ingenious
examples in Chapter 6.

Fortunately, in this case, this kind of gaming is relatively easy to counteract: we must
simply guarantee that r evaluates to strictly positive values. In practice, this is done by
always adding a positive constant term to the reward, usually called keep_alive. To be
able to cancel any possible negative values, this term should have the absolute value of
the largest negative number that the original r could assume.

Nonetheless, as we shall see in the next subsection, introducing a large positive term
in our reward can introduce its problems that require additional adjustments.

5.3.1 Potential-based rewards and practical considerations
As demonstrated in [37], rewards that are not potential-based could change the optimal
policy. Because of this result, all positive reward factors were carefully chosen to com-
ply with potential functions. Even when accounting for potential-based rewards, some
practical considerations are worth addressing: Negative reward factors (penalties) do not
necessarily share this restriction because they usually cannot be exploited by the agent in
infinite positive loops and negative loops should not be a concern in this task as they are
naturally disincentivized. However, to comply with potential functions, our terms must
span negative values, demanding an even higher value for the keep_alive constant. To
make matters worse, the keep_alive term itself, by its own nature, is not potential-based.

A workaround is to reintroduce the upper limit on the number of frames mentioned
in the beginning of this section, even when also using early termination. It is also worth
noting that all terms in the reward function (including keep_alive) should be scaled ap-
propriately. A very large value for keep_alive could lead to a lethargic policy: one that
avoids “dying”, but does not accomplish anything else.

With all this being said, even though using early termination and keep_alive might
seem not worth the additional complexity, analogous constant factors are used in similar
locomotion tasks from other environments [8][5].

5.4 Reward function
In this section, we discuss the main reward terms experimented with Marta, as well as
the motivation behind each of them. To ease the discussion, we will present the reward
terms as if negative components were not a problem, assuming that keep_alive was scaled
properly as described in Section 5.3.

As we saw in Section 2.3, r must evaluate to a single number. It is notoriously hard
to evaluate a complex task such as walking and reshape it as a single scalar. Nonetheless,
we attempted to construct a reward function by weighting multiple derived data from the
model that should be proxies for a good gait.
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The general form of our reward function is a weighted linear combination of multiple
reward signals:

r(st) = keep_alive+
∑

i

wiρi(st) (5.3)

where each ρi : S 7→ R is a function that computes a scalar from the current state st and
wi is how much this scalar contributes to the final reward. In the next subsections, we
will elaborate more on each ρi and its intended effects.

5.4.1 Velocity to target field
As we already discussed, [37], provides the rationale for choosing reward terms that are
potential-based.

As a small intuitive example for that proof, let us suppose that we define a simple r

that incurs a small positive reward when the agent moves forward and no other terms.
While our hopes may be that the robot learns to walk forward as far as possible, it is much
more likely that it will learn instead how to make some kind of small cyclic movements
and, essentially, stay in the same place. The reason this happens is that we do not punish
the backward movement, only reward the forward one.

In the case of the walking gait for Marta, that is exactly what we did: we simulated a
physical field that emanates from the ptarget and use those field lines to project the robot
velocities into. First, let’s define pdif :

pdif = ptarget − pxyz (5.4)

Then, we can define this projected velocity towards the target as ρprogress:

ρprogress(st) = ρprogress(pxyz, vxyz) = vxyz · p̂dif (5.5)

The only info from st required by ρprogress are the robot’s spatial position pxyz and velocity
vxyz (ptarget is not considered part of the state, but a constant defined for the environment).
The final result is simply a scalar projection as illustrated in Figure 5.4.

5.4.2 Penalties
In our first experiments, ρprogress and keep_alive were the only reward terms in r. As
we will see in Chapter 6, the algorithm with this simple r was able to learn a reasonable
policy for simulation, but impractical for the real robot. Therefore, the process of adding
penalties was an iterative one, with each new penalty added with the intent of adjusting
perceived flaws in the gait and shifting the policy to a more desirable solution.

Knee extension penalty One of the first observed flaws on the learned gaits was that
the agent initially tried to walk with the knees fully extended (similar to infants). To
prevent that, a penalty term ρknee was added:

ρknee(st) = (# of knees extended more than βknee)/2 (5.6)
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Chapter 6

Results and discussion

In this chapter, we will discuss the experimental results and compare the walking gaits
learned by the algorithm using different rewarding shapes strategies.

Graphs and plots In order to compare the different learned gaits, we generated graphs
and plots from the multiple roll-outs of each policy. Due to the temporal and spatial nature
of walking gaits, videos were also rendered for better visualization and evaluation of the
gaits. In this chapter, locomotion plots provide different “trail” lines for better temporal
perception. For these lines, we use the following color convention: red for the center of
mass, magenta for the head, blue for the left foot and green for the right foot.

6.1 Policy derived from target field
In the first experiments, we choose to design a minimalist reward function, using only
ρprogress as defined in Section 5.4.1. The policy derived from this reward function would
be highly informative for the robot model and environment parameters, as it is a highly
unbiased policy. Due to the simplicity of r and absence of penalties, the algorithm has a
relatively high freedom to learn a policy with the sole objective of walking forward.

For these reasons, this policy was analyzed as a baseline and all of our attempts to
refine the gait are compared against the gait learned by this policy, which will be referred
as πprogress.

Policy results
The gait time-lapse with marked points can be seen in Figure 6.1 and the trajectory of the
CoM can be seen in Figure 6.2. As we can see from the time-lapse, the learned policy gait
is unnatural: the agent learned to take very low steps, bend backward and use the arms
for balancing unusually. The robot also moves using what we called “micro-steps”, that
is, steps that are so low and short that it looks like the robot is moving with both legs
simultaneously. However, this policy did manage to move the robot forward, frequently
reaching the predefined limit of 50 m. Remember that r does not explicitly penalize any
deviation on the y axis, since it mostly uses a single potential field. The reward weights
can be seen in Table 6.1. Even without explicit shaping, the agent managed to keep the
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