S".'é. Universidade Estadual de Campinas

%, \' Instituto de Computacao
- INSTITUTO DE
UNICAMP COMPUTACAO

Yuri Corréa Pinto Soares

Deep Reinforcement Learning for Bipedal
Locomotion

Aprendizagem por Reforco Profundo para
Locomocao Bipede

CAMPINAS
2020

Yuri Corréa Pinto Soares

Deep Reinforcement Learning for Bipedal Locomotion

Aprendizagem por Reforco Profundo para Locomoc¢ao Bipede

Dissertagdo apresentada ao Instituto de
Computacao da Universidade Estadual de
Campinas como parte dos requisitos para a
obtencao do titulo de Mestre em Ciéncia da
Computagao.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor /Orientadora: Profa. Dra. Esther Luna Colombini

Este exemplar corresponde a versao final da
Dissertacao defendida por Yuri Corréa Pinto
Soares e orientada pela Profa. Dra. Esther
Luna Colombini.

CAMPINAS
2020

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Soares, Yuri Corréa Pinto, 1994-
So11d Deep reinforcement learning for bipedal locomotion / Yuri Corréa Pinto
Soares. — Campinas, SP : [s.n.], 2020.

Orientador: Esther Luna Colombini.
Dissertacdo (mestrado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Aprendizado por reforgo profundo. 2. Caminhada bipede. 3. Robdtica. I.
Colombini, Esther Luna, 1980-. Il. Universidade Estadual de Campinas.
Instituto de Computagéo. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Aprendizado por reforco profundo para caminhada bipede
Palavras-chave em inglés:

Deep reinforcement learning

Biped locomotion

Robotics

Area de concentracéo: Ciéncia da Computagéo
Titulacao: Mestre em Ciéncia da Computacao

Banca examinadora:

Esther Luna Colombini [Orientador]

Marcos Ricardo Omena de Albuquerque Maximo

Eric Rohmer

Data de defesa: 23-10-2020

Programa de Pés-Graduacao: Ciéncia da Computagao

Identificacé@o e informacgoes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-9327-0189
- Curriculo Lattes do autor: http:/lattes.cnpq.br/9562053106843512

é".'é. Universidade Estadual de Campinas

%, \' Instituto de Computacao
- INSTITUTO DE
UNICAMP COMPUTACAO

Yuri Corréa Pinto Soares

Deep Reinforcement Learning for Bipedal Locomotion

Aprendizagem por Reforco Profundo para Locomocao Bipede

Banca Examinadora:

e Profa. Dra. Esther Luna Colombini
Instituto de Computagao - Unicamp

o Prof. Dr. Marcos Ricardo Omena de Albuquerque Maximo
Instituto Tecnolégico de Aeronautica

o Prof. Dr. Eric Rohmer
Faculdade de Engenharia Elétrica e de Computacao - Unicamp

A ata da defesa, assinada pelos membros da Comissao Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertacao/Tese e na Secretaria do Programa da Unidade.

Campinas, 23 de outubro de 2020

Acknowledgements

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de
Nivel Superior - Brasil (CAPES) - Finance Code 001.

This study was financed in part by the Sao Paulo Research Foundation (FAPESP),
grant #2017/21426-7.

I would like to thank the Unicamp community and staff for all the cherished years of
learning and personal growth. I also want to thank FAPESP and CAPES for not only
supporting this work, but also advancing the scientific and technological research in our
country as public foundations.

I would like to thank my advisor, Esther. She supported me enthusiastically ever since
the beginning of the program, both in academia and also in my personal and professional
development outside the university. I appreciate that Esther would always allow me the
freedom to explore my own path while always being kind and friendly when mentoring
me. Esther encouraged and inspired me to give my best at all times.

I also want to thank the friends I made in our research laboratory: Rafael, Gabriel,
Samuel, Guilherme and Renan for the relatively brief, but equally valuable companionship.

I would like to thank the friends I made at Unicamp: Douglas, Jardel, Luan, Fernando,
Luciano, Jucélio, André, Rafael, Murilo, Sachs and many others whose companies during
classes, projects, games and meals comprises the best memories I made during my time
in Unicamp.

I also want to thank my high school friends that, even from afar, still manage to
be very much present in my life after all these years: Bruno, Isabela, Rian, Carol and
Borsato.

Lastly, I would like to thank my family: José, Vania, Erick and Malu, for the uncondi-
tional love and support. Ever since moving out for studying, I started appreciating every
single opportunity I get at being with them and I feel truly fortunate for being a part of
this family.

Resumo

Robdtica e suas aplicagoes de servico com robos bipedes tem se expandido recentemente
devido a possibilidade de se usar robos desta categoria em ambientes originalmente plane-
jados para operacao humana. No entanto, locomocao bipede tem se mostrado um desafio
teodrico e pratico devido a alta dimensionalidade do problema, visto que a agdo de andar
tipicamente envolve o controle preciso em tempo-real de multiplos atuadores e sensores
em conjunto com sistemas dinamicos complexos. Concomitantemente, aprendizado por
reforco (RL) e sua versdo com redes neurais profundas (DRL) estdo se tornando uma
abordagem prominente para solucionar tais problemas, devido a sua capacidade de li-
dar com processos continuos e livres de modelo. Neste trabalho, modelamos a tarefa
de locomoc¢ao como um problema de aprendizagem por reforco, propondo representa-
¢Oes praticas baseada em MDPs e estratégias generalizaveis para funcoes de reforgco. Em
seguida, prosseguimos desenvolvendo um framework para integrar nosso simulador de es-
colha (CoppeliaSim [11]) com a interface corrente padrao para aprendizagem por reforgo
(OpenAl Gym [5]). Finalmente, nés aplicamos algoritmos do estado-da-arte em apren-
dizado por reforco profundo com nosso framework em experimentos configuréaveis para
validar nossa modelagem e aprender uma politica de caminhada estavel em simulagao
para o robé Marta, um sofisticado robé humanoide com 25 graus de liberdade.

Abstract

Robotics and its service applications with biped robots have faced an upsurge lately as
this category of robots is suitable for deployment in environments originally designed for
operation by humans. However, bipedal locomotion has proven to be a challenge in theory
and practice due to the problem’s high dimensionality: as walking gaits typically involve
precise real-time control of multiple actuators and sensors, coupled with complex dynam-
ical systems. Concomitantly, reinforcement learning (RL) and its deep neural network
version (DRL) are becoming a prominent approach in solving such challenging control
problems due to their capacity to work on continuous and model-free processes. In this
work, we modeled a locomotion task as an RL problem by proposing practical MDP repre-
sentations and generalizable reward engineering strategies. We then proceeded to develop
a framework for integrating our simulator of choice (CoppeliaSim [11]) with the de facto
standard interface for Reinforcement Learning (OpenAl Gym [5]). Finally, we applied
state-of-the-art DRL algorithms within our framework in configurable and reproducible
experiments to validate our modeling and learn a stable walking gait in simulation for the
Marta robot, a sophisticated humanoid robot with 25 DOFs.

List of Figures

1.1

3.1
3.2
3.3

3.4

3.5

3.6

3.7

3.8

3.9
3.10

4.1
4.2

5.1

5.2

5.3

5.4

6.1
6.2
6.3
6.4

Bipedal Locomotion failure examples 13
DRL agent for Atari playing L. 25
Diagram of actor-critic generic strategy. Extracted from [51] 25
2D robot models used in [49] for locomotion experiments. Notice that
the models are visually rendered in three dimensions, but they are still
constrained to a bi-dimensional plane. 26
The simulated DPPO agent was able to learn to leap over obstacles and
to avoid obstacles [19]. 27
SAC was able to train a policy to learn how to operate the Dynamixel
Claw to rotate a valve [17]. 28
“Soccer dribbling” task learned with a mixed actor-critic approach [41]. . 29
Walking tasks learned using Curriculum Learning and PPO [55]. 29
Curriculum Adaptive DRL for different agents architectures proposed by
(B3], . 29
DRL policy gait learned for the Minitaur quadrupedal robot [17]. 30
By mixing RL-based and Imitation Learning, an iterative-design approach
could successfully develop locomotion skills for the Cassie robot [61] 31
The real Marta robot and the simulated CoppeliaSim/V-REP model. . . . 33
vrep_env and its directly related components.00 35
Positions and orientations of Marta’s joints, highlighting symmetrical ver-

sus central joints.o 39
Example of 014,4¢: after a possible walking trajectory. pg is usually chosen
at (0,0,0), but this is not a requirement. This diagram is not in scale, and
Amae 18 usually much larger.o 41
Rendering of the simulated environment using foot target position as “step-
ping stones”. Left image is a perspective view and right is a top-view or-
thogonal one. Past, current, and next stones can be seen for each foot.

.. 42
Example of pprogress computation. Differently from 6;4,4e, the yaw value
isnot used. 45
Time-lapse of the gait produced by mpogress- - - - -« o o o oL 47
CoM X-Y position for 20 runs of Tpogress capped at 50 m. 47

Time-lapse of the gait produced by msone. Stepping stones can also be seen. 48
CoM X-Y position for 20 runs of mge,e capped at 50m. 49

6.5 Specification gaming: when encouraged to increase feet height difference
in order to improve the bipedal gait, the agent learns to walk on only one

foot. This policy is referred as myjeg.o 50
6.6 Specification gaming: introducing specific penalties unintentionally made

the agent learn to walk backwards. This policy is referred as mpger. 5l
6.7 CoM X-Y position for 20 runs for mpeer. -o 51
6.8 Time-lapse of the gait produced by myp,. 52
6.9 CoM X-Y position for 20 runs. m,,, capped at 50m. 52
6.10 Time-lapse of the gait produced by 7gpee. - - - - - o o o o oL L 53
6.11 CoM X-Y position for 20 runs of mrpee. -« v« v v o o oo 54

6.12 Learning my,, using the parameters trained from mp,ogress versus learning
from scratch. Reward axes are shown using a moving average of size 200. 55

List of Tables

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

SAC hyper-parameters. 34
Reward weights used to train mpogress: - - -« - o o oo oo 47
Reward weights used to train mgone. - - - - -« « o o Lo oL 49
Reward weights used to train myeg.o 50
Reward weights used to train mpgep. - - - -« o o o o oL 51
Reward weights used to train mmy,,. 53
Reward weights used to train mppee. . . - oL 54

Performance metrics averaged across 40 runs. L. 54

Contents

1 Introduction
1.1 Motivation
1.2 Objectives
1.3 Main contributions L
1.4 Text structure
2 Theoretical Background
2.1 Computers and cognition
2.2 Reinforcement learningo
2.3 Markov decision process
24 RLapproaches
2.4.1 Value-based RL
2.4.2 Policy-based RL
2.5 Soft Actor-Critic
3 Related work and Recent Developments
3.1 Artificial neural networkso
3.1.1 DQN . oo
3.1.2 Actor-critic
3.2 Policy gradients
3.2.1 Natural policy gradient 0.
3.2.2 Trust Region Policy Optimization (TRPO).
3.2.3 Soft Actor-Critic (SAC)
3.3 Deep Reinforcement Learning and Locomotion
3.3.1 Locomotion in simulation
3.3.2 Quadrupedal locomotion in the real world
3.3.3 Bipedal locomotion in the real world
3.4 Summary ...
4 Materials and Methods
4.1 Materials
4.1.1 Simulated Environment
4.1.2 Physical Modelo
4.1.3 Programming languages and software libraries
4.1.4 Algorithms
4.1.5 SAC hyper-parameters
4.1.6 Artificial Neural Network Architecture
4.2 Methods
4.2.1 Quantitative evaluation criteria

13
14
14
14
15

16
16
17
18
19
19
19
20

23
23
23
24
26
26
26
27
28
28
29
30
30

4.2.2 Qualitative evaluation criteria
4.2.3 Transfer Learning o oo

5 Locomotion as a Reinforced Learning problem
5.1 Observation space
5.1.1 Proprioception observation inputs
5.1.2 Additional observation inputs L.
5.1.3 Sensorial observation inputs L.
5.2 Action space
5.3 Episode termination
5.3.1 Potential-based rewards and practical considerations
5.4 Reward function
5.4.1 Velocity to target field L.
5.4.2 Penalties

6 Results and discussion
6.1 Policy derived from target field 0L
6.2 Foot target position oL
6.3 Specification gamingo
6.4 Body orientation penalties
6.5 Under-actuation of joints below knee
6.6 Quantitative Analysis oo
6.7 Transfer Learning Results
6.8 Other experiments
6.9 Hypotheses discussion Lo

7 Conclusion and future work

Bibliography

38
38
38
40
40
41
42
43
43
44
44

46
46
48
49
52
23
54
95
95
o6

57

59

13

Chapter 1

Introduction

Artificial intelligence and automation are continually driving the frontiers of society in
recent times as whole industries have perished while new ones have flourished in the last
few decades. As a growing market, robotics is playing an important role in research nowa-
days because, as an interdisciplinary field, its applications demand growing collaboration
in research and education.

Robotic locomotion plays a key role in these developments, enabling an ever-increasing
pace of technological progress. Due to the simplicity of control and the high efficiency
in flat terrains, wheeled robots are still the most commonly used. However, they face
problems such as soil unevenness and adaptability. These problems, on the other hand,
tend not to be an issue for legged robots. Among the various legged arrangements, there
is a particular interest in humanoids since these would be the most adapted to interact
with tools and environments already created for humans.

Bipedal locomotion, in particular, has proven to be a long-standing challenge in the-
ory and practice. One of the most challenging aspects is the high dimensionality of the
problem: walking gaits typically involve precise real-time control of multiple actuators
and sensors coupled with complex dynamical systems and energy requirements to pro-
duce usable thrust. Hand engineering these attributes is an error-prone process and,
unfortunately, has to be reworked and adapted for each new model, environment or task.

Figure 1.1: Even under controlled environments and expensive budgets, bipedal locomo-
tion has been a notoriously difficult task with a myriad of real missteps. [24]

To tackle these contemporary challenges, classical and vanguard methods in artificial
intelligence are frequently employed on a large-scale. Machine learning (ML), in particu-

14

lar, has enjoyed a recent upsurge in development and interest across both academia and
industry, gradually becoming a household name that has received uncommon mass media
coverage for a scientific field. One of the most recent of such methods in ML is Rein-
forcement Learning (RL). As we will discuss in the following sections, RL is increasingly
becoming one of the top choices to tackle these and other related problems. Deep Rein-
forcement Learning (DRL), in particular, employ deep neural networks to cope with high
dimensional inputs, as well as modeling non-linear behavior and fitting good predictions.

Over the next sections, we shall delve more formally in reinforcement learning, drafting
some key aspects that sets it apart from other machine learning approaches while adopting
a predominantly academic perspective.

1.1 Motivation

As DRL methods upsurge, many tasks related to bipedal control are now successfully
addressed [48, 19, 50] in the literature. However, most of the test scenarios where they are
applied run over simulated platforms that contain a non-negligible number of limitations
and constraints regarding the dynamics of the simulation or the robot model. Despite
their accomplishments, such simplifications in the controlled model could lead to the
unsuccessful application of these algorithms in more realistic scenarios.

1.2 Objectives

Our objective is to study and apply DRL algorithms to develop and improve a stable
walking gait for the humanoid robot Marta and possibly similar models. More details of
the Marta model are discussed in the following chapters. Our objective comprises both
the use of state-of-the-art DRL algorithms as a black box to assess how feasible the use of
reinforcement learning is in the automation of gait discovery and comparing and tuning
different algorithms parameters and reward functions for our particular case.

The following hypotheses were formulated to measure the attainment of our objectives:

e H;: DRL algorithms can be used to conceive a walking gait for Marta from scratch.
e H,: Reward engineering can be used to improve discovered gaits.

e Hj: It is possible to transfer the policy learned in simulation to the real robot.

1.3 Main contributions

In this project, we widely investigated and applied Deep Reinforcement Learning to many
environments, architectures, and algorithms. Due to the field’s very nature, the work was
mostly experimental and heavily focused in rapid iterations and empirical results.

We list the following main contributions:

15

» Developed an extensible and transparent framework for integrating the V-REP [11]
simulator (now CoppeliaSim) with the de facto standard interface for Reinforcement
Learning (OpenAl Gym [5]).

o Applied DRL state-of-the-art algorithms to discover novel gaits for Marta without
explicit supervision or human design.

o Proposed and compared different reward functions and how they affect the discov-
ered gaits.

1.4 Text structure
We organized this Master’s thesis as follows:

e In Chapter 1, we introduced our motivation, objective, hypotheses, and contribu-
tions.

o In Chapter 2, we discuss the theoretical background, and introduce useful mathe-
matical notation for later chapters.

o Chapter 3 outlines related work as well as recent developments in the field.
e Our main approach to modeling the problem is thoroughly discussed in Chapter 5.
o The experimental results of our models are presented and discussed in Chapter 6.

o Chapter 7 concludes the dissertation considering our main contributions and con-
templating possible opportunities for future work.

16

Chapter 2

Theoretical Background

In this chapter, we present the theoretical background behind state-of-the-art Reinforce-
ment Learning methods and the common issues faced by these algorithms.

2.1 Computers and cognition

Machine learning problems are often divided into three categories [47]: supervised, unsu-
pervised, and reinforcement learning.

Supervised learning. This task category involves learning inference through labeled
training data. While supervised learning systems have displayed powerful classification
and inferring capabilities for a myriad of tasks, they usually require vast amounts of
correctly labeled input data [36]. While this requirement may be acceptable for problems
that possess a considerable amount of examples, it poses a prohibitive obstacle to original
or dynamic problems, such as robotic locomotion.

Unsupervised learning. On the other hand, unsupervised learning techniques do not
have the same requirements as supervised ones. This mode of learning is already exten-
sively used in statistical summarizing and clustering [18], but it has gained substantial
attention in recent years, enjoying and contributing to advancements in other areas of
artificial intelligence. Most notably, Generative Adversarial Nets (GANs) [14] were orig-
inally proposed as a generative model for unsupervised learning, but have found use in
Supervised and Reinforcement learning as well.

Reinforcement Learning. In this project, we shall focus on Reinforcement Learning
(RL). In this kind of problem, training data are not available or are hard to be defined.
However, behaviors may be objectively assessed automatically by one or more measure-
ments. These objective values are called rewards, and are intrinsically related to the task
at hand. For example, in a robotic locomotion task, the reward may be defined as the
final distance attained in one single episode. Another possible reward is the instantaneous
velocity at each moment of the episode. The first case is usually called a type of sparse
reward and the latter, a dense reward.

17

2.2 Reinforcement learning

In reinforcement learning, the system does not require pre-labeled data to train and,
instead, relies on a reward signal to improve and construct policies that dynamically
interact with the problem environment. Differently from the previous tasks, RL tasks can
be modeled as an agent interacting with a simulated or real stochastic environment. These
interactions may span variable time frames and be episodic, giving rise to the notion of
long-term rewards or penalties. As such, RL is not limited to traditional classification
or regression, but incorporates decision-making, planning, knowledge representation and
responsiveness to new and unfamiliar elements. These concepts will be more formally
defined in Section 2.3. RL bears a strong theoretical foundation for modeling robotic
tasks, and developing this technique has bolstered plenty of practical applications.

Common challenges

Most RL methods face some common challenges that are addressed in different ways
depending on the selected technique. We detail next the most relevant of these challenges.

Exploration vs. exploitation. One of the major challenges in RL is the exploration
vs. exploitation dilemma [25]. This trade-off is of major practical importance and consists
of finding a balance between exploiting the current knowledge for amassing rewards, or
exploring unknown settings to improve such knowledge at the potentially cost of some
reward.

Credit assignment problem. When interacting with an environment, the agent may
observe a reward that is a consequence of a remote past action [52]. These delayed rewards
represent a problem because it encumbers the agent to identify and exploit favorable
actions correctly.

Partial observability. In RL problems, the agent only has access to observations,
which, in most cases, do not contain all the information about the environment state [6].
In Robotics, this problem is ubiquitous: it is impractical to have sensors to account for
every dynamic element of a complex system.

Reward shaping and specification gaming. For many useful tasks, it is hard to
evaluate performance in an objective and numerical way. Assessing the quality of a
walking gait, for example, tends to be an intuitive and subjective human ability, hard to
be translated analytically. For these kinds of tasks, a technique called Reward Shaping [37]
is used, in which additional reward signals are used to guide learning and approximate the
intended behavior. The drawback of reward shaping is specification gaming: in which the
agent learns how to satisfy the defined reward, but the learned policy is not satisfactory
for the original task, often in an ingenious way. By far, specification gaming was the most
frequent challenge that manifested in our project, and we will discuss it separately in the
following chapters.

18

We will also analyze how the different RL techniques approach these challenges through-
out the text.

2.3 Markov decision process

As we previously discussed, RL is mainly concerned with the dynamic interactions of
an agent in a changing environment. Such a framework is often described as a Markov
decision process (MDP) [3]. Using the same notation as [49], an MDP consists of the
tuple (S, A, P,r, po,v) with § and A being the sets of states and actions, respectively,
and the transition probability distribution is described as:

P:SxAxS—|0,1] (2.1)

The reward function can be defined as:

r:S—R (2.2)

The distribution of the initial state sq:

po:S—R (2.3)

and the discount factor v € [0,1]. In regard to the agent formulation, we denote a
stochastic policy:

7:Sx A 0,1] (2.4)

A policy can be understood as the main determinant of an agent, it is the decision-
making process we wish to optimize. In this stochastic formulation, the policy assigns a
probability value to all state-action pairs, expressing the probability of the action being
carried out. In the particular case that all probabilities are zero or one, the policy is
said to be deterministic. As we will discuss more in Section 2.4, there are a number of
different ways to represent a given policy, such as look-up tables, graphs, automata and
neural networks, to name a few. The agent main objective is to maximize the expected
cumulative reward, called return:

J(m) = B ap.... [Z ’ytr(st)] (2.5)
t=0
We may also define secondary functions, such as the state-action value function:
Qw(sta at) - E5t+1,at+17--- [Z ’ylr(st+l>] (26)
1=0

The state-action value function can be understood as the cumulative reward of taking the
action a; in state s; and following the policy 7 thereafter. The value function is similarly

19

defined, but the action is implicitly sampled from 7:

V7(st) = Eay 5144, [ZVZT(&H)] (2.7)

Some algorithms also define an advantage function such as:
A" (s,a) = Qr(s,a) — Vi(s) (2.8)

with states and actions sampled accordingly. In the context of RL environments, the
MDP may be partially observable. In that case, the subset of the state space S that is
observable to the agent can be denoted as the observation space O. Such definitions may
facilitate further discussion on policy optimisation.

It is important to note that formal RL definitions and terminology are not completely
standardized and slight variations can be seen in different works.

2.4 RL approaches

As defined in Section 2.3, the main RL problem is to find an optimal policy 7* that
maximizes the expected rewards for any given sy. In other words, RL can be understood
as a policy optimisation problem. Regarding this optimisation, RL can be tackled by two
main approaches: value-based or policy-based.

2.4.1 Value-based RL

This approach attempts to learn the value function (or, similarly, the state-action value
function). With it, an implicit policy is derived: for each state s;, the policy consists
of choosing the action a; = max,Q(s;, a). The prime example of value-based RL is Q-
learning [60]. In this method, the values of @, (s, a;) are progressively approximated by
using the Bellman equation:

Qs ar) = Q(s¢, ar) + a(ry + ymaz,Q (i1, a) — Q(S¢, ar)) (2.9)

Where o € (0,1] is the learning rate parameter. It has been demonstrated that, with
appropriate values of o and infinite iterations, such approximation indeed converges to
the optimal policy [22]. In practice, an e-greedy approach is used when deriving a policy
7 from a @ function. Under this guideline, the action with the highest approximated @)
value is picked with probability (1 — ¢), and a random action is selected otherwise. In
this way, e-greedy procedures are an efficient and easily parameterized response to the
exploration vs. exploitation dilemma previously mentioned [57].

2.4.2 Policy-based RL

Policy-based RL avoid dealing with value functions and, instead, attempts to directly
learn the policy. This approach can be further classified into three categories [49].

20

Policy iteration methods These methods iterate in policy space in an attempt to
improve the policy. They generally alternate between estimating the value function and
improving the policy [4]. These methods include more theoretical ones, such as brute
force, where all possible policies are iterated. While this may be suitable for small MDPs,
it is unfeasible for stochastic and large (sometimes infinite) MDPs in which RL is generally
concerned. Please note that including value-based RL inside policy iteration methods is
simply a matter of definition.

Policy gradient methods As the name suggests, these methods employ the gradient
(or an estimate) of the total reward concerning the policy parameters [45]. The purpose
of these methods is to update the policy with stable monotonic improvement.

Derivative-free optimization methods This last category does not require the use
of gradients, viewing all returns as a black box function [53]. Derivative-free stochastic
optimisation methods have been widely applied with good results, despite their apparent
simplicity. Standard techniques include the cross-entropy method (CEM) and covariance
matrix adaptation evolution strategy (CMA-ES).

As we shall see in Chapter 3, novel methods such as Actor-critic attempt to bridge
the gap between value-based and policy-based RL, learning the value function and policy
concomitantly.

2.5 Soft Actor-Critic

As our algorithm of choice in this work is the Soft Actor-Critic (SAC) [17], we will discuss
its theoretical framework into more detail here and its historical context at Chapter 3
along with other recently proposed algorithms.

SAC is an off-policy algorithm that optimizes a stochastic policy. It is a successor of
Soft Q-Learning SQL [16], incorporating ideas from earlier algorithms such as DQN [35]
and DDPG [32] while bearing similarities with TD3 [13]. It is based upon both actor-critic
methods and entropy-regularized RL, with the latter being its most distinctive feature.
Instead of maximizing the standard return, SAC’s objective is to maximize a trade-off
between expected return and entropy by using entropy regularization. Increasing entropy
makes the policy act more randomly which aids in exploration. Reminding that, for a
random variable x and probability mass or density function P, the entropy H of x can be
computed from its distribution P as:

H(P)= E [~ log P(z)] (2.10)

z~P
The entropy bonus is included directly in the definition of the optimal policy 7* and
weighted by a new hyper-parameter «:

= aurgm;txflir [Z o0& (R(st, at, Sev1) + oH (7w(-|st)))] (2.11)

21

Similarly, the equations of V™ and Q™ are also updated to include the entropy bonuses:

Vs = E [iv (Aot) 4 (nC4s)

50 = s] (2.12)

Q" (s,a) = TEW [Z Y R(sy, ag, $141) + @ Z'VtH (m(+]s¢))
t=0 t=1

S = S,a9 = a] (2.13)

Similarly to TD3 [13], SAC concurrently learns two Q-functions, a technique known
as Clipped Double-Q Learning [13]. A SAC algorithm formulation [2] can be seen in
Algorithm 1.

22

Algorithm 1: Soft Actor-Critic

1: Input: initial policy parameters 6, Q-function parameters ¢, ¢o, empty replay

bufter D
2: Set target parameters equal to main parameters Qiarg,1 <= @1, Prarg,2 < P2
3: repeat
4: Observe state s and select action a ~ my(+|s)
5: Execute a in the environment
6: Observe next state s’, reward r, and done signal d to indicate whether s’ is
terminal
7. Store (s,a,r, s, d) in replay buffer D
8 If &’ is terminal, reset environment state.
9: if it is time to update then
10: for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s,a,r,s',d)} from D
12: Compute targets for the (Q functions:
a ~ my(-]s")
y(r,s',d) =r+~(1—d) (mir% Qg (8, 0) — alogm;(&’\s’))
=1, ’
13: Update Q-functions by one step of gradient descent using
1 2
Vo, — (s,a) —y(r,s',d fori=1,2
ol D (Qulse)—yns.a)
(s,a,r,s',d)€B
14: Update policy by one step of gradient ascent using
1
— in 0. (s.d _al i)
Vorg 2 (min Qo (s (s)) — alogm (an(s)])).
seB
where ag(s) is a sample from my(-|s) which is differentiable wrt 6 via the
reparametrization trick.
15: Update target networks with
¢targ,i — p¢targ,i + (1 - p)¢z for i = 17 2
16: end for
17: end if

18: until convergence

23

Chapter 3

Related work and Recent
Developments

As discussed so far, the area of reinforcement learning is teeming with diverse and promis-
ing ideas. RL could take advantage of solid mathematical frameworks such as MDPs while
also drawing inspiration from higher-level fields such as psychology. However, in order
to be practically useful, the methods previously described must be carefully implemented
and validated, demonstrating the ability to converge in a, preferably, finite amount of
time. In this section, we analyze some of the most recent and successful ideas found in
the literature while also broadly replicating some results and applications.

3.1 Artificial neural networks

Artificial neural networks (AININ) and, in particular, deep neural networks (DNN) also
have enjoyed widespread use in machine learning and other domains [29]. In the context
of RL, DNNs have been used primarily as approximators for the defined functions or
policies, whereas ANNs and DNNs tackle sensorial and high dimensional data, RL tackles
decision making and planning.

3.1.1 DQN

Two of the major problems in using sparse representation with the @)-learning method,
presented in Section 2.4.1, are the rate of convergence and the number of states. Nonethe-
less, DNN has demonstrated proficient capability in the task of approximating functions
and can be applied to approximate the () function and mitigate both convergence and
combinatorial explosion problems [35]. One of the most significant advantages of this
variety is the ability to have good approximations of ()-values for states that have never
been visited. Instead of the traditional update, the network can be optimized with a
squared error loss:

L= %[T + 'Yma-ra’Q(Slv CL/) - Q(S’ a)] ’

Unfortunately, the introduction of DNNs produces some other practical obstacles. One
such problem is caused by the similarity of consecutive samples, which might converge the

24

network into a local minimum. To avoid this, all the transitions are stored in a replay
memory, which is sampled randomly during training. This practical consideration is
called experience replay. A high-level DQN algorithm that considers the points as
mentioned earlier is described in Algorithm 2, using a notation scheme similar to OpenAl
Gym [5].

The seminal work in DQN of Mnih et al. [35] represented a breakthrough not only in
RL but in ML in general. Their work represented one of the first general-purpose agent
able to excel in a task of high-dimensional input, encouraging novel research on the topic.
An example game that their system was able to master is shown in Figure 3.1.

Algorithm 2: Deep Q-learning Algorithm
Input: Discrete environment £
Output: Q network with implicit policy

1 initialize replay memory D ;
2 initialize action-value function) with random weights;
3 observe initial state s;
4 while learning condition = true do
5 with probability e: select a = random.action() ;
6 otherwise select a = argmazx,Q(s,a’) ;
7 (s',r) = E.transition(s, a) ;
8 store experience < s,a,r, s’ > in replay memory D ;
9 sample random transitions < sp,ap,rp,sH > from replay memory D ;
10 calculate target for each mini-batch transition ;
11 if s, is terminal state then
12 ‘ tp =7p ;
13 else
14 | tp =rp+ymazaQ(sh, ap) ;
15 end
16 train the Q network using (tp — Q(sp,ap))” as loss ;
17 s=1s";
18 end

Following that, the original tabular Double Q-learning was combined with DQN, re-
sulting in Double DQN, with even better performance [59].

3.1.2 Actor-critic

In this method, the action-value function and policy are generally parameterized to sup-
port gradient methods.

The action-value and policy parameters are usually labeled as w and 6, respectively.
As mentioned in Section 2.2, actor-critic methods aims to benefit from the advantages of
both value-based and policy-based approaches, and have succeeded on a wide variety of
problems [34]. To achieve that, these algorithms maintain two entities with different roles:
the critic estimates the action-value function and updates w, while the actor updates 0

as directed by the critic. A diagram of a generic actor-critic framework can be seen in
Figure 3.2.

25

Figure 3.1: A deep reinforcement learning agent proposed in [35] was able to achieve
super-human mastery on the simulated Atari game Breakout by using high-dimensional
input: the pixels on the screen.

state

Figure 3.2: Diagram of actor-critic generic strategy. Extracted from [51]

Y
—— Policy ————
Actor
. TD
Critic . errar
> 1l.:‘alu_e
Function
x
i
reward

{Environment }~

action

Actor-critic strategies have recently become part of the most popular algorithms in the

RL framework thanks to their manageable architecture and successful practical results [44]

being later extended as asynchronous actor-critic methods [43]. Actor-critic reinforcement

learning has also been applied with multiple policy gradients [15], which we review in

Section 3.2.

By using the actor-critic approach, Lillicrap et al. [31] proposed the Deep Determin-
istic Policy Gradient (DDPG), which extends DQN to continuous action spaces, allowing

its application to more diverse tasks.

26

3.2 Policy gradients

Advancements in RL methods have not been limited to neural networks. Methods that
draw inspiration from classic optimization are also constantly improving. In this subsec-
tion, we discuss some improvements regarding direct policy optimization.

3.2.1 Natural policy gradient

In [26], Kakade provided a natural gradient method along with experimental results that
show great improvements over the standard gradient method in both simple and complex
MPDs, which translates as a drastic contribution to policy iteration methods.

3.2.2 Trust Region Policy Optimization (TRPO)

Schulman et al. [49] built upon natural policy gradient methods, describing an algorithm
with strong guarantees of monotonic improvement. In this method, the size of the policy
update is constrained by a parameter, which derive the name “Trust Region”. The pro-
posed Trust Region Policy Optimization (TRPO) can be used effectively for optimizing
large nonlinear policies such as neural networks. In the same article, experimental results
indicate robust performance for diverse tasks: from 2D robotic tasks to Atari playing with
screen inputs. One of the major contributions of their paper is a generic policy search
method able to learn such diverse controllers from scratch. Some models used in the tasks
are replicated in Figure 3.3.

Figure 3.3: 2D robot models used in [49] for locomotion experiments. Notice that the
models are visually rendered in three dimensions, but they are still constrained to a bi-
dimensional plane.

Subsequently, the same team combined TRPO for both the policy and the value
function with an estimator of the advantage function [50]. Using this approach, they were
able to create policies for controlling simulated 3D robots, with up to 33 state dimensions
and 10 actuators.

27

Proximal Policy Optimization (PPO)

TRPO has been further developed and simplified, giving rise to Proximal Policy Opti-
mization (PPO) [48], outperforming previous online policy gradient methods. In PPO, the
policy update’s size is no longer constrained but, instead, is only penalized. The substitu-
tion of the hard constraint for a penalty has multiple benefits, in addition to simplifying
the implementation. At the time of writing, PPO is considered the best and default al-
gorithm for a wide range of DRL problems. We reproduce the method in Algorithm 3,
noting that it also adopts an actor-critic strategy.

Algorithm 3: PPO, Actor-Critic Style

1 for iteration = 1, 2, .. do

2 for actor = 1, 2, .., N do

3 Run policy my,,, in environment for 7" timesteps ;
4 Compute advantage estimates fll, ce ,AT ;

5 end

6 Optimize surrogate L wrt 0, with K epochs and minibatch size M < NT';
7 gold +— 0 ;
8 end

In [19], DeepMind researchers described the Distributed PPO (DPPO), an improved
algorithm able to learn locomotion behaviors in rich environments such as those presented
in Figure 3.4.

Figure 3.4: The simulated DPPO agent was able to learn to leap over obstacles and to
avoid obstacles [19].

3.2.3 Soft Actor-Critic (SAC)

Recently, a new off-policy actor-critic deep RL algorithm called SAC (Soft Actor-Critic)
[17] has been proposed. This algorithm tackles the two major issues of applying DRL
to real-world robotics directly: high sample complexity, which demands a longer train-
ing time and hyper-parameter tuning. Instead of maximizing only the expected reward,
SAC also attempts to maximize the policy’s entropy, which promotes policies that act
as random as possible while also achieving a high reward. This has a series of desir-
able consequences: it improves its sample efficiency and makes the policy more robust
to hyper-parameters and environment changes. All of these characteristics make SAC a

28

viable algorithm for learning robotic skills, and the authors have already demonstrated
this by successfully applying SAC to real-world tasks [17], as seen in Figure 3.5.

Given those advantages and after initial tests, SAC was our algorithm of choice for
discovering policies for the walking gait in the Marta robot.

Figure 3.5: SAC was able to train a policy to learn how to operate the Dynamixel Claw
to rotate a valve [17].

3.3 Deep Reinforcement Learning and Locomotion

Despite all the recent successes in DRL, most control tasks are still being learned in
simulation only. Such simulations usually exhibit simplifications in the physical or robot
model [19][41][33].

Among the control tasks, the locomotion task, in particular, still presents a challenge
for realistic robot models and simulation parameters. However, the field is progressing fast
towards learning in the real world, with recent works applying DRL in varying degrees to
learn gaits for real quadrupedal robots [17][54][42][21][9] and real bipedal (non-humanoid)
robots [62]. However, learned policies applied in the real world are often brittle and may
fail to generalize well to unaccounted changes in the environment. Learning walking gaits
for real humanoid robots remains unsolved and currently represents the next frontier for

DRL.

3.3.1 Locomotion in simulation

Recent DRL methods are demonstrating to be a very suitable approach for locomotion
tasks in simulation. In the works from [41] and [33], DRL was used to train a simulated
humanoid in navigation tasks using high-dimensional input such as an RGB camera. This
tasks could be learned using limited amount of prior knowledge, usually in the form of
motion capture trajectories. An example result can be seen in Figure 3.6.

In [55], the authors demonstrate that motion capture can be avoided, and instead,
the model can rely on a simpler walking target trajectory. By using this trajectory as
an initial guide force, they propose a 3-stage curriculum to train DRL policies. During
one of the stages of the curriculum, the guide forces are gradually reduced. By using
this proposed curriculum and Proximal Policy Optimization [48], the agent could learn
complex walking policies for terrain with hurdles, stairs, and gaps. Some of these tasks
can be seen in Figure 3.7.

29

Figure 3.6: “Soccer dribbling” task learned with a mixed actor-critic approach [41].

= v

Figure 3.7: Walking tasks learned using Curriculum Learning and PPO [55].

In [63], Xi et al. show that reinforcement learning alone, without curriculum learning,
is insufficient for solving the stepping stones task. Hence, they employ four different
curriculum learning strategies with PPO to train three different task agents. The agents
are simulated using PyBullet, the Humanoid has 21 joints and is torque-controlled.

Figure 3.8: Curriculum Adaptive DRL for different agents architectures proposed by [63].

3.3.2 Quadrupedal locomotion in the real world

Haarnoja et al.[17] described one of the first applications of DRL algorithms to learn
walking gaits in real robots. They applied the SAC algorithm in the Minitaur robot, a
small-scale quadruped with eight actuators (2 in each leg) [28]. Our formulation discussed
in Chapter 5 was heavily inspired by this work. In the observation space, some similarities
include the use of motor angles, angular velocities of the base and the exclusion of yaw
from the observation. In the reward function, the authors included penalties for preventing
odd angles and the extension of legs, two problems that we also encountered in our
experiments (Section 6.4) and had to counteract (Section 5.4). Their robot training
pipeline achieved a remarkable result, being able to learn stable walking gaits in the real
Minitaur robot in approximately 2 hours of real-world training time. Furthermore, the

30

policy was able to walk on varied terrains and obstacles even though it was trained only
on flat terrain. This robustness was mostly attributed to the entropy maximization in
SAC. Photos of the learned gait can be seen in Figure 3.9.

In [9] a combination of model-based control and RL is able to learn robust policies for
the Unitree Laikago real quadruped robot. Their approach splits the task into a high-
level and low-level controllers and use a DQN-like algorithm to train the high-level policy.
Their deployment to the real robot did not require domain randomization.

Figure 3.9: DRL policy gait learned for the Minitaur quadrupedal robot [17].

3.3.3 Bipedal locomotion in the real world

Zhaoming et al.[61] proposed a mixed method that allows an iterative design process
for locomotion skills. Their work tackles directly the difficulties related to shaping and
predictability of reward function changes. In this proposed method, reference motions and
aggregated state-action pairs are used in combining Reinforcement Learning and Imitation
Learning. This data collection method is referred to in the paper as Deterministic Action
Stochastic State (DASS). One of the advantages of this approach is that it allows the
iterative design of reward functions while limiting the previous iteration deviation. The
method was evaluated in the Cassie bipedal robot, a robot designed and built by Agility
Robotics that stands approximately 1 meter tall. Despite using a reference motion and
imperfections in the walking gait, this technique demonstrates a practical method for
leveraging DRL ideas to develop a useful gait. Once more, photos of the learned gait can
be seen in Figure 3.10.

3.4 Summary

In this chapter, we show how DRL-based methods have evolved and are now employed
in various tasks, from action video games to robotics navigation. We discussed the main
approaches followed, showing that real robot models are not yet tackled for the model-
free learning algorithms despite the quality of the methods. Indeed, agents like those
presented in [19] and the environment where they were simulated are far from considering
the complexity of joints’ dynamics as other aspects of the agent’s model. We also showed
how DRL worked with real Cassie and Minitaur robots. However, no model-free DRL
algorithm was applied to a humanoid robot in more realistic simulations as far as we are
concerned. In this scenario, we aim at learning a DRL based policy to control the gait of
our humanoid robot Marta.

31

Figure 3.10: By mixing RL-based and Imitation Learning, an iterative-design approach
could successfully develop locomotion skills for the Cassie robot [61] .

32

Chapter 4

Materials and Methods

As discussed in Chapter 3, the number of reinforcement learning applications has in-
creased rapidly in the last few years. This project aims to contribute to this growth
by both performing experiments using the most successful recent techniques while also
investigating novel approaches on a new humanoid robot model developed by our team.
This project’s source code can be found on our laboratory’s Github repository. *

4.1 Materials

Fortunately, academia and industry have been working closely on such problems, col-
laborating considerably in the rapid development on RL. This collaboration fostered the
invention of multiple robust and accessible virtual environments designed to test, vali-
date, and compare RL methods. One of these environments, OpenAl Gym [5], became
the de-facto standard interface for Reinforcement Learning, and its tasks are commonly
used as benchmarks in recent papers [48]. All the environments and tasks proposed use
OpenAl Gym as its interface, facilitating reproducibility, and comparing algorithms.

4.1.1 Simulated Environment

The chosen simulator in this project was V-REP [11]. During this project, V-REP was dis-
continued and succeeded by CoppeliaSim. CoppeliaSim and V-REP are largely compati-
ble with each other, and, currently, the major differences are performance and improved
interfaces. For this work, CoppeliaSim can be seen as a major version enhancement over
V-REP. This simulator is exceptionally accessible and user-friendly with an intuitive scene
editor, flexible remote API, and multiple alternatives for the physical back-end. Partic-
ularly, CoppeliaSim’s dynamics module currently supports Vortex Dynamics, a physics
engine that produces high fidelity physics simulations. It is worth noting that, currently,
most DRL papers use a class of fast simulators that lack the intuitiveness of CoppeliaSim
when creating realistic control tasks and robotic models. Three of this simulators are
MuJoCo (Multi-Joint dynamics with Contact) [56], PyBullet [8] and Roboschool [48],
now discontinued. MuJoCo has seen a recent rapid growth in adoption [39] due to its

LGithub repository: https://github.com/larocs/msc_yuri_soares

33

fast and accurate simulation engine [12]. PyBullet and Roboschool share the same un-
derlying physical engine (Bullet), behave similarly in most environments and, differently
from MuJoCo, do not require a license to run. We eventually came in contact with all
these three additional simulators during our work as they are used by different research
groups and are interchangeable to some degree. These simulators were also used when the
sporadic requirement of a faster training phase for testing purposes made CoppeliaSim
less suitable.

4.1.2 Physical Model

In this section, we will describe the physical model that was used to generate our simulated
model.

The model technical specifications are described along the following list:

o 25 DOFs (Dynamixel MX-64T/AX-12)

o Height: 1,10m

e Sensors: 1 Logitech C920 HD Pro webcam and a 9 axis IMU UM7-LT

o CPU: Intel Nuc Mini-PC 2.4GHz quad core 4GB, 120GB SSD (wifi, Bluetooth and
6 USB ports)

o Battery: 2 Lipo 4S 14.8V - 4400mAh

The model also incorporates several innovative ideas that could influence the quality
of the dynamic learned process, such as: a compact foot size for reduced surface contact;
a spheroidal joint in the waist with an actuation point, and an extra DOF in the foot.
The real robot and the simulated model are shown in Figure 4.1.

Figure 4.1: The real Marta robot and the simulated CoppeliaSim/V-REP model.

34

4.1.3 Programming languages and software libraries

Most experiments were conducted using the Pythond programming language. A com-
bination of multiple available libraries, tools and simulator bindings contributed to this
choice:

o NumPy [58]: Performant n-dimensional array and numerical computation library.
e OpenAlI Gym [5]: Common interface for RL environments.

o TensorFlow [1|: Software library for dataflow and differentiable programming,
widely used for machine learning research and applications.

« CoppeliaSim [11]: The chosen robot simulator.
« PyRep [23]: Toolkit for efficient interfacing between CoppeliaSim and Pythons5.

» Stable Baselines [20]: Set of implementations of RL algorithms based on OpenAl
Baselines [10].

Using pre-existing libraries also aids in reproducibility and easier comparison with
other methods. We also developed a framework called vrep_env for wrapping the low-
level CoppeliaSim API by using Gym environment semantics. A diagram showing how
CoppeliaSim, vrep_env and other components interoperate is shown at Figure 4.2.

4.1.4 Algorithms

To test our hypothesis, we applied two algorithms that are close to the state of the art on
reliability and sample efficiency among policy-learning algorithms [2]: PPO [48] and SAC
[17]. However, after initial tests, the sample-efficient SAC algorithm, when empirically
compared to PPO, reduced training time considerably and allowed for faster iteration of
experiments. In fact, in our experiments, PPO has never been able to learn a control
policy for Marta control gait. Therefore, we choose to focus our efforts in experimenting
with multiple MDP formulations and reward functions using SAC only.

4.1.5 SAC hyper-parameters

The hyper-parameters used in the SAC algorithm can be seen in Table 4.1.

Hyper-parameter Value
discount factor (vy) 0.99
learning rate («) 0.0003
replay buffer size 50000
minibatch size 64

soft update coefficient (7) | 0.005

Table 4.1: SAC hyper-parameters.

observations
rewards

'

: DRL agent

. or framework

. (user provided)

-

actions

Inheritance of gym.Env

'
. task-specific
: class & scene
0

] (user provided)

Secocaoe”

Remote API

Figure 4.2: vrep_env and its directly related components.

35

This choice of parameters was taken from the original authors [17] and the chosen

algorithm implementation [20]. Given the results obtained, the parameters did no require

further tuning.

4.1.6 Artificial Neural Network Architecture

All neural networks used in SAC for the present work were multilayer perceptron networks.

These networks had 3 layers of 128 neurons each. These 3 layers do not include input and

output layers, which depends on the observation and action spaces.

36

4.2 Methods

4.2.1 Quantitative evaluation criteria

In order to compare the learned gaits, we use a set of metrics that are aggregated through-
out each episode. These following metrics are collected once at the end of each episode
and evaluate the overall episodic performance:

« Distance walked in z (bigger is better).
« Distance walked in y (smaller absolute value is better).
o Whether the agent reached 50m and was terminated (true is better).

We also collected measurements made in each time-step of an episode to compare different
gaits in their intermediary steps:

Simulated energy use (smaller is better).

Feet z position (bigger is better, capped by an empirical parameter).

Variations in pitch (smaller absolute value is better).

Variations in roll (smaller absolute value is better).

All of these results are averaged across 40 different runs for each policy compared in
Section 6.6.

4.2.2 Qualitative evaluation criteria

As we discussed in Section 2.2, it is hard to evaluate the quality of a gait learned by opti-
mization techniques. Even by devising metrics that take into account multiple objective
factors such as energy efficiency, stability, balance, and measurements, the ultimate sieve
will almost always reside on whether the gait looks “natural” or not. For this qualitative
evaluation, we also rendered videos of the walking gaits in motion along with relevant
plotting, which allow the detection of possible issues in the learned gait. While we admit
that this criterion is a highly subjective one, it tends to be consensual among different
individuals since walking is a natural skill possessed by most humans. This situation is
also alleviated when considering the similarities between the Marta robot and the human
anatomy, making it easier to envision a natural gait for the model. It would be possible
to take an approach similar to [7] with a human evaluator, but our goal is to attempt a
more automated approach.

As we shall see in Chapter 6, the agent was deceptively clever on specification gam-
ing, learning policies that could walk on a single leg, sideways, backward, among other
arrangements to avoid penalty factors and exploit rewards in an unintended way.

37

4.2.3 Transfer Learning

In order to accelerate our reward design iteration process, transfer learning [46] was greatly
used. As we shall see in Chapter 5, multiple different RL formulations are proposed, with
each building up in complexity. Instead of training the policy from scratch each time,
the learned parameters from simpler tasks could be reused to bootstrap learning in more
complex ones. As discussed in Section 6.7 this process did not substantially change the
obtained policy, only accelerated the training phase.

38

Chapter 5

Locomotion as a Reinforced
Learning problem

As discussed in Section 2.4, MDPs provide a very general mathematical framework for
modeling control problems [3] and RL ones. In the particular case of locomotion, RL is
already demonstrating success in both simulated and real tasks [17].

In order to apply RL algorithms in our problem, we first need to model the Marta
locomotion task as a RL problem. Using the notation from Section 2.3, we must define
our observation space O, action space A and reward function r. The state-space S and
transition probability P are implicit from the physics simulation engine and only require
minor additional configuration, e.g., setting the gravity constant and time step dt.

As we will show throughout the text, practical RL also tends to define additional
conventions and signals. One of the most important ones is the “done” signal, which
would technically belong to O, but tends to influence the choice of r considerably.

5.1 Observation space

To choose an observation space, we should take into account which information is neces-
sary for the agent to learn a walking gait and how this information should be represented.
Redundant or extra information should be avoided for the sake of efficiency in the learning
process. But its presence does not cause any major problems, as neural network policies
can learn to ignore any input if advantageous. Therefore, when in doubt regarding an
input’s relevance, it is better to err on the side of caution and include it anyway, at the
smaller cost of efficiency.

5.1.1 Proprioception observation inputs

As we can see in Figure 5.1, the robot has 25 revolute joints: 5 central and 10+10
symmetrical joints. Of all these joints, only HeadPitch and NeckYaw are not used in the
observation vector. All the remaining 23 joints contribute to the observation space with
2 scalars per joint: one for the normalized joint angular position and the other for the
joint angular velocity.

39

HeadPitch 3

NeckYaw l ShoulderPitch

O—(:)—LJ—-. ShoulderRoll

HipRoll
P - @D ElbowPitch
HipPitch = —————-f—————-=
HipYaw
LegYaw
. - PelvisPitch
Central PelvisRoll
. Left
Right
' (. @ KneePitch
[] Yaw
Pitch . AnkleRoll
® Roll % i AnklePitch
FootPitch

Figure 5.1: Positions and orientations of Marta’s joints, highlighting symmetrical versus
central joints.

Bounded coordinates It is preferred not to include values in the observation vector
that could increase or decrease without bounds during the walking cycle. Due to the
nature of how neural networks compute functions, this kind of values may help in the
initial frames but become meaningless as the robot moves forward and away from the
initial position. The absolute x and y coordinates of the robot, for example, should be
irrelevant to compute the actions during the walking cycle, because the robot walks in
the xy plane and these coordinates can assume any value. The 2z coordinate, on the other
hand, is bounded and could provide relevant information during the cycle. A similar
argument could be made to discard the yaw, but include the roll and pitch rotation axes
[17]. With that in mind, we include these 3 additional scalars in our observation vector:
z, roll, and pitch, all of them from the central robot link.

Relative linear velocities Using the same ideas from the previous paragraph, the
absolute linear velocity along the x and y axes would have different meanings for the
robot because the agent is, in principle, free to rotate in that plane. To correct this, we
consider the velocity from the robot’s planar reference. To compute this, we simply rotate

40

by the yaw:
cos(—yaw) —sin(—yaw) 0] [v,
Upow = | sin(—yaw) cos(—yaw) 0O |v, (5.1)
0 0 1| |,

Adding v,,, to the observation vector yields 3 additional scalars to the observation space.

Adding all together These (23 x 2) + 3 + 3 = 52 scalars set represents our “core”
observation inputs and are included in all experiments.

5.1.2 Additional observation inputs

In addition to the “core” observations mentioned, we also defined additional observational
inputs for different experiments and depending on each strategy for learning walking gaits.

Foot 2z information We experimented including the information of each foot into the
observation, as it could potentially benefit the agent’s decision-making. Using a similar
argument from Section 5.1.1, only the z axis component of each foot’s position and velocity
were included, adding 2 X 2 = 4 new inputs.

Floor contact With similar reasoning, we choose to experiment including floor contact
information. Differently to the previously mentioned observation inputs, floor contact is
represented as a boolean value. Since all inputs are mapped to the interval [—1.0,+1.0],
these boolean values are simply mapped to {—1,+1}. As the contact is measured at the
front and back of each foot, these inputs also add 2 x 2 = 4 values to our observation
input.

5.1.3 Sensorial observation inputs

So far, all the inputs discussed were related to the robot’s proprioception. However,
healthy humans rely on visual cues for walking [64]. In order to be able to walk in a fixed
direction, our agent needs at least some information from the environment. Without
this sensory information, any deviation from the intended walking direction could never
be corrected and would likely accumulate over time. For that reason, we choose to also
experiment with additional sensory information in the observation vector.

Robot target position One of the simplest possible sensory information we could
include the intended direction of movement. To model this, we pick a point pigrge: in the
xy plane located at a distance d,,., away and straight ahead of the robot initial position
po- The exact value of d,,., is chosen so the robot can barely reach this point in the
allotted time, even at full theoretical speed. Then we compute 6044y4c;, Which is the angle
difference between the robot’s yaw and the angle to the target. An example can be seen in
Figure 5.2. To avoid angle discontinuities in the neural network input, we do not include
¢ directly in the observation, but instead [sin(0iarget), cOS(Orarget)]-

41

%Q //ptarget
Y [/S 'N P
a o e

~ 70

o target
: e

Figure 5.2: Example of 04,4 after a possible walking trajectory. py is usually chosen at
(0,0,0), but this is not a requirement. This diagram is not in scale, and d,;,, is usually
much larger.

Foot target position As we will see in Chapter 6, providing only the distant target
position sometimes led to unnatural gaits, with the agent learning to take very small
steps, essentially trying to walk with both legs simultaneously. In order to alleviate this
problem, we also experimented with foot target positions, inspired by ideas from [63]. Foot
target positions work somewhat like stepping stones: at any given moment, there are two
target positions, one for each foot that is constantly advancing when a foot reaches its
respective stone. The observation angles 0.5 and 0,4, are calculated similarly as 0yqrger
in the previous paragraph, but considering the (z,y) position of each foot:

Apr = stonepr — footpg 5 5

Opr = arctan(Apg.y, AL g.x) — yaw (5.2)

Where LR subscripts indicate that a variable is duplicated for both left and right,

stoner g are the 3-dimensional position of both next two stones and foot;r the positions

of the feet. Besides sin(f.r) and cos(fpr), we also include ||Apg|| and two booleans by g

that indicate which leg is expected to move next. In total, 2 X (24 1+ 1) = 8 new inputs

are added when foot target position is used. Two renderings of this setup can be seen in
Figure 5.3.

5.2 Action space

Similarly to the observation space, we must define our action space with all controls that
would be required for a walking gait. In an analogous manner, including joints that are
not relevant to walking has a marginal cost, so including all 25 joints would be a sensible
choice. However, both HeadPitch and NeckYaw are once again discarded as their effect
on locomotion is negligible.

As we will see in the Chapter 6, sometimes the agent heavily relied on the six lower
joints (AnkleRoll, AnklePitch and FootPitch of both legs) so we also conducted learning
experiments with these 3 pairs of joints underactuated.

Another possible choice on the action interpretation would be to choose between po-
sition, velocity, and torque controls. Turns out that both velocity and torque control

42

[

Figure 5.3: Rendering of the simulated environment using foot target position as “stepping
stones”. Left image is a perspective view and right is a top-view orthogonal one. Past,
current, and next stones can be seen for each foot.

yield similar results. Position control turned out to be a bit more tricky to work in Cop-
peliaSim as it would require setting additional PID parameters for each joint. Position
control would, in turn, cause the agent to learn how to indirectly control the PID con-
troller. Therefore, by setting appropriate PID parameters, position control, should be, in
theory, similar to velocity control in simulation.

As previously mentioned, all 25 joints in Marta are revolute joints (its spherical joint
is treated as 3 revolute joints) and all have upper and lower bounds of angular freedom,
hence unable to perform full rotations. In addition to position limits, all joints are also
simulated with velocity and torque limits, which the agent must learn to manage.

5.3 Episode termination

Defining the criteria for episode termination has many different consequences. Although
it may seem trivial, this decision is almost as important as the choice of r itself. In fact,
both the termination criteria and the reward function should be constructed in unison
[40]. Doing otherwise could lead to an unnecessarily inefficient learning or even change
the optimal policy.

In theory, the most straightforward way would be to always terminate an episode
after reaching a predefined number of frames. This way is, in fact, the easiest way to
theoretically examine the incentives: the policy would learn to maximize J(m) in the
allotted frames and we would be able to define the reward function r with greater freedom.

However, terminating the episode early in the case of hard-to-recover states (such as
falling) is desirable since ending these episodes earlier can reduce the total time required
for training. Although it may seem like a harmless modification this kind of early termi-
nation could introduce a dilemma for our agent. Suppose that, in our environment, we
are training a policy to find a low cost regarding some metrics. In our case, this could
be the energy expenditure during the walking cycle, for example. We may be tempted to
introduce in r a negative term that computes this cost. If this term is not appropriately

43

scaled, our agent could, instead of learning how to minimize this cost, “prefer” to learn
how to terminate the episode as soon as possible (which tends to be much easier). The
incentive has shifted towards having shorter episodes to amass less negative rewards.

This kind of counter-intuitive optimization logic is also observed in evolutionary com-
putation [30] and is often called “specification gaming”. We will see more ingenious
examples in Chapter 6.

Fortunately, in this case, this kind of gaming is relatively easy to counteract: we must
simply guarantee that r evaluates to strictly positive values. In practice, this is done by
always adding a positive constant term to the reward, usually called keep_ alive. To be
able to cancel any possible negative values, this term should have the absolute value of
the largest negative number that the original r could assume.

Nonetheless, as we shall see in the next subsection, introducing a large positive term
in our reward can introduce its problems that require additional adjustments.

5.3.1 Potential-based rewards and practical considerations

As demonstrated in [37], rewards that are not potential-based could change the optimal
policy. Because of this result, all positive reward factors were carefully chosen to com-
ply with potential functions. Even when accounting for potential-based rewards, some
practical considerations are worth addressing: Negative reward factors (penalties) do not
necessarily share this restriction because they usually cannot be exploited by the agent in
infinite positive loops and negative loops should not be a concern in this task as they are
naturally disincentivized. However, to comply with potential functions, our terms must
span negative values, demanding an even higher value for the keep alive constant. To
make matters worse, the keep alive term itself, by its own nature, is not potential-based.

A workaround is to reintroduce the upper limit on the number of frames mentioned
in the beginning of this section, even when also using early termination. It is also worth
noting that all terms in the reward function (including keep alive) should be scaled ap-
propriately. A very large value for keep_ alive could lead to a lethargic policy: one that
avoids “dying”, but does not accomplish anything else.

With all this being said, even though using early termination and keep alive might
seem not worth the additional complexity, analogous constant factors are used in similar
locomotion tasks from other environments [8][5].

5.4 Reward function

In this section, we discuss the main reward terms experimented with Marta, as well as
the motivation behind each of them. To ease the discussion, we will present the reward
terms as if negative components were not a problem, assuming that keep alive was scaled
properly as described in Section 5.3.

As we saw in Section 2.3, r must evaluate to a single number. It is notoriously hard
to evaluate a complex task such as walking and reshape it as a single scalar. Nonetheless,
we attempted to construct a reward function by weighting multiple derived data from the
model that should be proxies for a good gait.

44

The general form of our reward function is a weighted linear combination of multiple
reward signals:

r(s;) = keep__alive + Z w;p;(st) (5.3)

where each p; : § — R is a function that computes a scalar from the current state s; and
w; is how much this scalar contributes to the final reward. In the next subsections, we
will elaborate more on each p; and its intended effects.

5.4.1 Velocity to target field

As we already discussed, [37], provides the rationale for choosing reward terms that are
potential-based.

As a small intuitive example for that proof, let us suppose that we define a simple r
that incurs a small positive reward when the agent moves forward and no other terms.
While our hopes may be that the robot learns to walk forward as far as possible, it is much
more likely that it will learn instead how to make some kind of small cyclic movements
and, essentially, stay in the same place. The reason this happens is that we do not punish
the backward movement, only reward the forward one.

In the case of the walking gait for Marta, that is exactly what we did: we simulated a
physical field that emanates from the pyqrger and use those field lines to project the robot
velocities into. First, let’s define pg;¢:

Pdif = Ptarget — Payz (54)

Then, we can define this projected velocity towards the target as pprogress:

pprogress(st) = Pprogress (p:vyz» Umyz) = Ugyz * ﬁdif (55)

The only info from s; required by pprogress are the robot’s spatial position p,,. and velocity
Uszyz (Drarget 18 1Ot considered part of the state, but a constant defined for the environment).
The final result is simply a scalar projection as illustrated in Figure 5.4.

5.4.2 Penalties

In our first experiments, pprogress and keep alive were the only reward terms in r. As
we will see in Chapter 6, the algorithm with this simple r was able to learn a reasonable
policy for simulation, but impractical for the real robot. Therefore, the process of adding
penalties was an iterative one, with each new penalty added with the intent of adjusting
perceived flaws in the gait and shifting the policy to a more desirable solution.

Knee extension penalty One of the first observed flaws on the learned gaits was that
the agent initially tried to walk with the knees fully extended (similar to infants). To
prevent that, a penalty term pg,.. was added:

Prnee(St) = (# of knees extended more than Sipe.)/2 (5.6)

45

ptarget

Figure 5.4: Example of pprogress computation. Differently from 04,4¢1, the yaw value is
not used.

All joints angular position are normalised (1 being fully extended and 0 being fully con-
tracted). So here, frnee is a constant threshold to penalize and is usually set to around
80%. As the Marta model only has two legs, we can see that prpee : S — {0,0.5,1}.
As this measures a undesirable effect, we simply choose wgpee < 0. In other words, no
penalty is applied if no knees are not fully extended and the full penalty is applied if both
knees are extended.

Body orientation penalties This set of penalties were introduced to prevent the robot
tilting to odd angles. Examples include: walking sideways, backwards, leaning to one side
or not facing the target.

In the case of the roll and pitch, the penalty is straightforward, as both the desirable
angles are 0°:

roll(St) = prou(roll = |roll
Prou(st) = prou(.) | ‘ | (5.7)
ppitch(5t> = Ppitch (pZtCh) = |pZtCh’
For the yaw, as usual, additional steps are needed:
Pyaw(st) = Pyaw(yaw) = |aTCtan(sz’f-yapdif'x) - (yaw + 7T)| (5-8)

This makes sure that pyq, outputs higher values when the robot faces away from the
target and smaller otherwise.

46

Chapter 6

Results and discussion

In this chapter, we will discuss the experimental results and compare the walking gaits
learned by the algorithm using different rewarding shapes strategies.

Graphs and plots In order to compare the different learned gaits, we generated graphs
and plots from the multiple roll-outs of each policy. Due to the temporal and spatial nature
of walking gaits, videos were also rendered for better visualization and evaluation of the
gaits. In this chapter, locomotion plots provide different “trail” lines for better temporal
perception. For these lines, we use the following color convention: red for the center of
mass, magenta for the head, blue for the left foot and green for the right foot.

6.1 Policy derived from target field

In the first experiments, we choose to design a minimalist reward function, using only
Pprogress as defined in Section 5.4.1. The policy derived from this reward function would
be highly informative for the robot model and environment parameters, as it is a highly
unbiased policy. Due to the simplicity of r and absence of penalties, the algorithm has a
relatively high freedom to learn a policy with the sole objective of walking forward.

For these reasons, this policy was analyzed as a baseline and all of our attempts to
refine the gait are compared against the gait learned by this policy, which will be referred

as Tprogress-

Policy results

The gait time-lapse with marked points can be seen in Figure 6.1 and the trajectory of the
CoM can be seen in Figure 6.2. As we can see from the time-lapse, the learned policy gait
is unnatural: the agent learned to take very low steps, bend backward and use the arms
for balancing unusually. The robot also moves using what we called “micro-steps”, that
is, steps that are so low and short that it looks like the robot is moving with both legs
simultaneously. However, this policy did manage to move the robot forward, frequently
reaching the predefined limit of 50 m. Remember that r does not explicitly penalize any
deviation on the y axis, since it mostly uses a single potential field. The reward weights
can be seen in Table 6.1. Even without explicit shaping, the agent managed to keep the

47

y deviation low. The following reward engineering and policies attempt to improve on
Tprogress Dy modifying r to avoid its shortcomings while preserving its ability to succeed
in the task.

T

Figure 6.2: CoM X-Y position for 20 runs of m,,4gress capped at 50 m.

Parameter | Value
keep _alive | +1.0
Wprogress +1.0

Table 6.1: Reward weights used to train m.ogress-

48

6.2 Foot target position

As we discussed in Section 5.1, there are multiple possible approaches when defining our
observational inputs. As an attempt to improve on mp.gress, We experimented with the
foot target position strategy discussed in Section 5.1.3. Using the notation introduced
there, we will refer to the derived policy as Tsone.

As before, a gait time-lapse and trajectories can be seen in Figure 6.3 and Figure 6.4,
respectively. The weights can be seen in Table 6.2. Using the stepping stones did im-
prove the gait in some aspects. Most notably, the body no longer shifts backward and the
divergence in the y axis is practically eliminated. Unfortunately, the “micro-steps” issue
persists since stones provided only a potential reward but did not forbid missteps. How-
ever, the biggest drawback of assigning target positions for each foot is that we are now
imbuing the gait development with parameters such as step dimensions instead of having
them automatically discovered by the agent. This is error-prone, and it lacks adaptability.
For these reasons, we choose to explore other more general reward strategies instead of
relying on more opinionated reward shaping.

Figure 6.3: Time-lapse of the gait produced by 7Tsone. Stepping stones can also be seen.

49

0.05 A

= 0.00 A

—0.05 A

—0.10 A

—0.15 A

0 10 20 30 40 50

Figure 6.4: CoM X-Y position for 20 runs of 7y, capped at 50m.

Parameter | Value
keep _alive | +2.0
Wstone + 1 O

Table 6.2: Reward weights used to train mgope-

6.3 Specification gaming

At this point, it is worth mentioning that many different reward strategies experimented
with suffered from “specification gaming”, when agents exploit the reward in an unin-
tended way. E.g., in an attempt to mitigate the “micro-steps” issue discussed before, we
experimented with a reward factor that encouraged the agent to increase the z difference
of each foot. This made the agent learn how to briefly walk on one leg and keep the other
raised (mye,) as can be seen in Figure 6.5. The weights can be seen in Table 6.3.

20

Figure 6.5: Specification gaming: when encouraged to increase feet height difference in
order to improve the bipedal gait, the agent learns to walk on only one foot. This policy

is referred as 7yjeq.

Parameter | Value
keep _alive | +0.2
Wprogress | +2.0
W ootz +6.0

Table 6.3: Reward weights used to train 7.

Another undesirable behavior that kept appearing on experiments was that the agent
learned to walk with knees fully extended, so we introduced the knee extension penalty

described in Section 5.4.2. To also prevent “micro-stepping” caused by the overuse of
FootPitch this joint was underactuated as discussed in Section 5.2. The combination of the
knee extension penalty and underactuation of FootPitch resulted in another specification
gaming, in which the agent evade these adversities by learning to walk backward. These
policy results (mpqe) can be seen in Figure 6.6 and Figure 6.7. The weights can be seen

in Table 6.4.

ol

Figure 6.6: Specification gaming: introducing specific penalties unintentionally made the
agent learn to walk backwards. This policy is referred as mpqex-

40 -

20 A

T

Figure 6.7: CoM X-Y position for 20 runs for mpgek.

Parameter | Value
keep__alive | +5.0

Wprogress +2.0
Wiknee —5.0
ﬁknee +0 75

Table 6.4: Reward weights used to train my,e.

52

6.4 Body orientation penalties

In order to prevent the backward gait learned by the agent, the body orientation penalties
described in Section 5.4.2 were added. We refer to this resulting policy as m,,,, due to
the inclusion of all 3 rotation axes in . Once more, results can be seen in Figure 6.8 and
Figure 6.9. The weights can be seen in Table 6.5. This policy improved on some aspects
of previous ones, such as the knee extension, backward walking. Some new ones also
appeared, such as the unnatural hip position. However, instead of overusing FootPitch

the agent now misuses AnkleRoll and AnklePitch to keep walking using micro-steps.

0 10 20 30 40

Figure 6.9: CoM X-Y position for 20 runs. m,,, capped at 50m.

93

Parameter | Value
keep__alive | +10.0
wprog’l‘ess +10'0

Wiknee —=5.0
Brnee +0.76
Wyaw —6.0
Wpitch —6.0
Wyroll —6.0

Table 6.5: Reward weights used to train 7, .

6.5 Under-actuation of joints below knee

From the results of 7,,,, we decided to under-actuate AnkleRoll and AnklePitchin addition
to FootPitch. In other words, all joints strictly below the KneePitch are under-actuated.
For this reason, we refer to the resulting policy as mg,e.. Once more, results can be seen
in Figure 6.10 and Figure 6.11. The weights can be seen in Table 6.6. This policy was
the first to mitigate the micro-steps issue. Without enough controllable lower joints, the
agent was forced to use more its knees and pelvis to walk. There was also a natural
emergence of some kind of alternating movement between the two legs. As opposed to
Tstone, Where the movement phase was more enforced into the r itself, mg,.. discovered the
movement phase entirely by itself. Unfortunately, at the cost of this higher quality gait,
the required training time was longer than usual. This longer training time requirement
made it even harder to train the policy to reach the end of the simulated environment.
Tknee shares with 7, a similar problem of unnatural hip position.

Figure 6.10: Time-lapse of the gait produced by Trnee-

o4

1.00 -

0.75 1

0.50 A

0.25 A

0.00 A

—0.25 A

—0.50 A

—0.75 A

Figure 6.11: CoM X-Y position for 20 runs of mp,ce.

Table 6.6: Reward weights

Parameter | Value
keep__alive | +4.0
Wprogress | +4.0
Whnee —1.0
6knee +0.777
Wyaquw —1.0
Wpitch —1.0
Wroll —1.0

6.6 Quantitative Analysis

used to train Tinee-

As we described in Section 4.2.2, quantitative metrics were also collected to compare the

different policies. These results can be seen in Table 6.7.

Policy Energy Feet z Pitch Roll | T Y End
Tprogress | 0.755 £ 0.053 0.031 £ 0.004 -0.303 £ 0.105 -0.296 £+ 0.126 32.623 £ 17.426 -2.773 +£1.901 37.5%
Tstone | 0.725 £ 0.088 0.035 + 0.005 0.022 = 0.143 -0.150 £+ 0.104 12.288 4+ 12.125 -0.012 + 0.102 2.5%
Typr | 0.723 £ 0.047 0.029 £ 0.003 -0.247 + 0.095 0.064 £ 0.087 28.428 + 16.214 6.547 + 3.858 0.0%
Tgnee | 0.713 £ 0.088 0.036 + 0.010 -0.495 + 0.221 0.059 + 0.162 2.977 + 2.514 -0.106 £+ 0.501 0.0%
Tieg | 0.751 4+ 0.100 0.304 £ 0.091 0.264 £ 0.348 -0.440 £ 0.407 2.347 + 1.160 1.028 + 0.501 0.0%
Tpack | 0.751 + 0.053 0.039 £ 0.004 -0.093 + 0.111 0.431 £ 0.120 24.321 £+ 20.068 24.060 + 19.665 5.0%

Table 6.7: Performance metrics averaged across 40 runs.

The energy use of all the policies are similar since this metric was not included in any

reward function. Feet z measurement was dominated by .4, a test policy specifically

designed for that purpose. Both Pitch and Roll were successfully minimized in policies

that included this reward signal, such as 7,,, and Tipee. Tprogress had the best performance

%)

on the x metric. This result was expected since mp,gress had virtually only that metric to
optimize. The deviation on y was almost zero in m,e, given that this formulation was
much more constrained.

6.7 Transfer Learning Results

As discussed in Section 4.2.3, we frequently trained new policies by reusing parameters
that were learned from previous ones. By using Transfer Learning this way, we could not
only train our policies faster, but also iterate more quickly in promising reward functions.
In all of our experiments, the use of transfer, learning did not substantially changed the
final policy, only accelerated its materialization. As an example, we can see the impact of
reusing the parameters learned from 7,,4gress to retrain m,,, in Figure 6.12. Using transfer
learning reduced the training time considerably while achieving similar results.

..

50000 100000 150000 200000 250000
episodes

3000 A

N
(€N
o
o
1

2000 A

1500 A
1000 A ‘
500 A

0

3000 A

reward (moving average)

2500 A

2000 A

o | u i

500 -+

reward (moving average)

—— Transfer learning

——— From scratch

0 20 40 60 80 100 120 140
wall-clock time (hours)

Figure 6.12: Learning m,,, using the parameters trained from mp ogress versus learning
from scratch. Reward axes are shown using a moving average of size 200.

6.8 Other experiments

Before conceiving the reward functions, observational spaces and action spaces mentioned
in Chapter 5 and experimented in Chapter 6, many other experiments were conducted.
In total, around 40 different RL formulations were attempted. Between m,,ogress and my,,

o6

alone, there were more than 20. The policies showed along Chapter 6 and summarized in
Section 6.6 were chosen as a representative group to show the main ideas and consequences
of different formulations while also showing a progressive increment of ideas and growing
complexity in the MDP formulation.

6.9 Hypotheses discussion

Given our results, we can confirm H;:
o H;: DRL algorithms can be used to conceive a walking gait for Marta from scratch.

We could see that, with virtually no supervision or hand-engineering, the state-of-the-art
DRL algorithm SAC [17] was able to learn a walking gait for Marta in simulation, albeit
an unnatural one. We can also confirm Ho:

e H,: Reward engineering can be used to improve discovered gaits.

Our experiments showed that careful modifications in r could shift the policy towards
a more desired gait for Marta. These modifications can have their individual impacts
tested and then systematically composed to have a more comprehensive, but still tractable
reward function.

We could not confirm Hs:

o Hj: It is possible to transfer the policy learned in simulation to the real robot.

Despite the improvements to the walking gaits, even the best walking gaits learned in the
simulation were still unusual. Although we can assess in simulation that they are stable
and even tolerant to small perturbations, transferring the gait to the real robot would
probably still require further refinements to avoid damage to the real robot.

57

Chapter 7

Conclusion and future work

In this work, we applied Deep Reinforcement Learning algorithms to learn control policies
and, in particular, bipedal locomotion policies for the Marta robot. As far as we are
concerned, this is the first DRL model-free policy learned for a humanoid model in a high
fidelity simulator such as CoppeliaSim.

As our main contributions we can state:

o The development of an extensible and transparent framework for integrating a high
fidelity simulator, CoppeliaSim, to OpenAl Gym, the standard RL toolkit;

o A model-free learned gait for Marta robot, designed without explicit supervision,
under a high fidelity simulator;

o The proposition and comparison among distinct reward functions and how they
affect the discovered gaits.

We proposed new RL modeling strategies for the locomotion problem and validated our
models in configurable experiments in simulated environments. Our reward engineering
employed novel and modular strategies for bipedal locomotion and highlighted how high-
level abstractions can be translated into optimisation control tasks in an experimental
and end-to-end context.

In fact, our approach does not make many assumptions about the robot model and,
with the exception of step sizes in one experiment, did not use specific information from
the Marta robot. This means that, in theory, a similar approach could be employed for
different robot models. It also can imply that we could take advantage of Marta’s unusual
foot size and spherical hip joint to shape a more suitable policy.

While the learned policies appear to be unsuitable for the real robot in its current
form, they provide valuable benchmarks for simulated policies and also, provide insights
into the current robot dynamics design that could help in future iterations.

As for future works, the current policies could be further refined to address its current
flaws and better approach more commonly expected walking gaits.

Outside of the model-free realm, imitation and transfer learning both seem good can-
didates for further development in locomotion tasks for biped robots like Marta.

o8

There is also an increasing number of new techniques for better transferring simulated
policies to the real robot, with and without domain randomization [38][27][62], which
could be explored in future works.

29

Bibliography

1]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th { USENIX} Sympo-
sium on Operating Systems Design and Implementation ({ OSDI} 16), pages 265283,
2016.

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. GitHub repository,
2018.

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679-684,
1957.

Dimitri P. Bertsekas. Dynamic programming and optimal control, 3rd Edition. Athena
Scientific, 2005.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting
optimally in partially observable stochastic domains. In Barbara Hayes-Roth and
Richard E. Korf, editors, Proceedings of the 12th National Conference on Artificial
Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 2., pages 1023~
1028. AAAI Press / The MIT Press, 1994.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences, 2017.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org, 2019.

Xingye Da, Zhaoming Xie, David Hoeller, Byron Boots, Animashree Anandkumar,
Yuke Zhu, Buck Babich, and Animesh Garg. Learning a contact-adaptive controller
for robust, efficient legged locomotion, 2020.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov.
Openai baselines. https://github.com/openai/baselines, 2017.

[11]

[12]

[13]

[14]

[20]

[21]

60

M. Freese E. Rohmer, S. P. N. Singh. Coppeliasim (formerly v-rep): a versatile and
scalable robot simulation framework. In Proc. of The International Conference on
Intelligent Robots and Systems (IROS), 2013.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based
robotics: Comparison of bullet, havok, mujoco, ODE and physx. In IEFE Inter-
national Conference on Robotics and Automation, I[CRA 2015, Seattle, WA, USA,
26-30 May, 2015, pages 4397-4404. IEEE, 2015.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxima-
tion error in actor-critic methods, 2018.

[an J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December §8-13 2014,
Montreal, Quebec, Canada, pages 26722680, 2014.

Ivo Grondman, Lucian Busoniu, Gabriel A. D. Lopes, and Robert Babuska. A survey
of actor-critic reinforcement learning: Standard and natural policy gradients. [FEFE
Trans. Systems, Man, and Cybernetics, Part C, 42(6):1291-1307, 2012.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement
learning with deep energy-based policies, 2017.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha,
Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey
Levine. Soft actor-critic algorithms and applications. CoRR, abs/1812.05905, 2018.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The elements of statis-
tical learning: data mining, inference, and prediction, 2nd Edition. Springer series
in statistics. Springer, 2009.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and
David Silver. Emergence of locomotion behaviours in rich environments. CoRR,
abs/1707.02286, 2017.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for
legged robots. CoRR, abs/1901.08652, 2019.

[22]

23]

[24]

[25]

[26]

28]

[29]

[30]

61

Tommi S. Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the conver-
gence of stochastic iterative dynamic programming algorithms. Neural Computation,
6(6):1185-1201, 1994.

Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing v-rep to deep
robot learning. arXiv preprint arXiv:1906.11176, 2019.

Matt Johnson, Brandon Shrewsbury, Sylvain Bertrand, Duncan Calvert, Tingfan Wu,
Daniel Duran, Douglas Stephen, Nathan Mertins, John Carff, William Rifenburgh,
Jesper Smith, Christopher Schmidt-Wetekam, Davide Faconti, Alex Graber-Tilton,
Nicolas Eyssette, Tobias Meier, Igor Kalkov, Travis Craig, Nick Payton, Stephen
McCrory, Georg Wiedebach, Brooke Layton, Peter D. Neuhaus, and Jerry E. Pratt.
Team ihmec’s lessons learned from the DARPA robotics challenge: Finding data in
the rubble. J. Field Robotics, 34(2):241-261, 2017.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. J. Artif. Intell. Res., 4:237-285, 1996.

Sham Kakade. A natural policy gradient. In Thomas G. Dietterich, Suzanna Becker,
and Zoubin Ghahramani, editors, Advances in Neural Information Processing Sys-
tems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001,
December 3-8, 2001, Vancouwver, British Columbia, Canada/, pages 1531-1538. MIT
Press, 2001.

Manuel Kaspar, Juan David Munoz Osorio, and Jiirgen Bock. Sim2real transfer
for reinforcement learning without dynamics randomization. CoRR, abs/2002.11635,
2020.

Gavin D. Kenneally, Avik De, and Daniel E. Koditschek. Design principles for a
family of direct-drive legged robots. IEEE Robotics Autom. Lett., 1(2):900-907,
2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84-90, 2017.

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie
Beaulieu, Peter J. Bentley, Samuel Bernard, Guillaume Beslon, David M. Bryson,
Patryk Chrabaszcz, Nick Cheney, Antoine Cully, Stephane Doncieux, Fred C. Dyer,
Kai Olav Ellefsen, Robert Feldt, Stephan Fischer, Stephanie Forrest, Antoine Frénoy,
Christian Gagné, Leni Le Goff, Laura M. Grabowski, Babak Hodjat, Frank Hut-
ter, Laurent Keller, Carole Knibbe, Peter Krcah, Richard E. Lenski, Hod Lipson,
Robert MacCurdy, Carlos Maestre, Risto Miikkulainen, Sara Mitri, David E. Mo-
riarty, Jean-Baptiste Mouret, Anh Nguyen, Charles Ofria, Marc Parizeau, David
Parsons, Robert T. Pennock, William F. Punch, Thomas S. Ray, Marc Schoenauer,
Eric Shulte, Karl Sims, Kenneth O. Stanley, Francois Taddei, Danesh Tarapore,
Simon Thibault, Westley Weimer, Richard Watson, and Jason Yosinski. The sur-
prising creativity of digital evolution: A collection of anecdotes from the evolutionary
computation and artificial life research communities, 2019.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

62

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. CoRR, abs/1509.02971, 2015.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning, 2019.

Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tiru-
mala, Nicolas Heess, and Greg Wayne. Hierarchical visuomotor control of humanoids.
CoRR, abs/1811.09656, 2018.

Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. CoRR, abs/1602.01783, 2016.

Volodymyr Mmnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Ma-
chine Learning. Adaptive computation and machine learning. MIT Press, 2012.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In Ivan Bratko and Saso
Dzeroski, editors, Proceedings of the Sizteenth International Conference on Machine
Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999, pages 278-287. Morgan
Kaufmann, 1999.

OpenAl, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob
McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng,
Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s cube with a robot
hand. CoRR, abs/1910.07113, 2019.

OpenAl, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jézefowicz, Bob
McGrew, Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert,
Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,
Lilian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipulation.

CoRR, abs/1808.00177, 2018.

Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in
reinforcement learning. CoRR, abs/1712.00378, 2017.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. Deeploco:
dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Trans. Graph., 36(4):41:1-41:13, 2017.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

63

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey
Levine. Learning agile robotic locomotion skills by imitating animals, 2020.

Paris Pennesi and Ioannis Ch. Paschalidis. Solving sensor network coverage prob-
lems by distributed asynchronous actor-critic methods. In 46th IEEE Conference on
Decision and Control, CDC 2007, New Orleans, LA, USA, December 12-14, 2007,
pages 5300-5305. IEEE, 2007.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180—
1190, 2008.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. Neural Networks, 21(4):682-697, 2008.

Lorien Y. Pratt. Discriminability-based transfer between neural networks. In
Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neu-
ral Information Processing Systems 5, [NIPS Conference, Denver, Colorado, USA,
November 30 - December 3, 1992], pages 204-211. Morgan Kaufmann, 1992.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy
Optimization Algorithms. ArXiv e-prints, July 2017.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization. CoRR, abs/1502.05477, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. CoRR,
abs/1506.02438, 2015.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
IEEE Trans. Neural Networks, 9(5):1054-1054, 1998.

Richard Stuart Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, University of Massachusetts Amherst, 1984. AAI8410337.

Istvan Szita and Andras Lorincz. Learning tetris using the noisy cross-entropy
method. Neural Computation, 18(12):2936-2941, 2006.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,
Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for
quadruped robots, 2018.

Brendan Tidd, Nicolas Hudson, and Akansel Cosgun. Guided curriculum learning
for walking over complex terrain, 2020.

[56]

[57]

[58]

[59]

[63]

[64]

64

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-12, 2012, pages
5026-5033. IEEE, 2012.

Michel Tokic and Giinther Palm. Value-difference based exploration: Adaptive con-
trol between epsilon-greedy and softmax. In Joscha Bach and Stefan Edelkamp,
editors, KI 2011: Advances in Artificial Intelligence, 34th Annual German Confer-
ence on Al, Berlin, Germany, October 4-7,2011. Proceedings, volume 7006 of Lecture
Notes in Computer Science, pages 335—-346. Springer, 2011.

Stéfan van der Walt, S. Chris Colbert, and Gaél Varoquaux. The numpy array: a
structure for efficient numerical computation. CoRR, abs/1102.1523, 2011.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double g-learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoeniz, Arizona, USA., pages 2094-2100. AAAI Press, 2016.

C.J.C.H. Watkins. Learning from delayed rewards. ph.d. thesis. Cambridge Univer-
suty, 1989.

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonathan W. Hurst, and
Michiel van de Panne. Iterative reinforcement learning based design of dynamic
locomotion skills for cassie. CoRR, abs/1903.09537, 2019.

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonathan W. Hurst, and
Michiel van de Panne. Learning locomotion skills for cassie: Iterative design and
sim-to-real. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors,
3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30
- November 1, 2019, Proceedings, volume 100 of Proceedings of Machine Learning
Research, pages 317-329. PMLR, 2019.

Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de Panne. ALLSTEPS:
curriculum-driven learning of stepping stone skills. CoRR, abs/2005.04323, 2020.

A. P. Yelnik, S. Tasseel Ponche, C. Andriantsifanetra, C. Provost, A. Calvalido, and
P. Rougier. Walking with eyes closed is easier than walking with eyes open without
visual cues: The Romberg task versus the goggle task. Ann Phys Rehabil Med,
58(6):332-335, Dec 2015.

	Introduction
	Motivation
	Objectives
	Main contributions
	Text structure

	Theoretical Background
	Computers and cognition
	Reinforcement learning
	Markov decision process
	RL approaches
	Value-based RL
	Policy-based RL

	Soft Actor-Critic

	Related work and Recent Developments
	Artificial neural networks
	DQN
	Actor-critic

	Policy gradients
	Natural policy gradient
	Trust Region Policy Optimization (TRPO)
	Soft Actor-Critic (SAC)

	Deep Reinforcement Learning and Locomotion
	Locomotion in simulation
	Quadrupedal locomotion in the real world
	Bipedal locomotion in the real world

	Summary

	Materials and Methods
	Materials
	Simulated Environment
	Physical Model
	Programming languages and software libraries
	Algorithms
	SAC hyper-parameters
	Artificial Neural Network Architecture

	Methods
	Quantitative evaluation criteria
	Qualitative evaluation criteria
	Transfer Learning

	Locomotion as a Reinforced Learning problem
	Observation space
	Proprioception observation inputs
	Additional observation inputs
	Sensorial observation inputs

	Action space
	Episode termination
	Potential-based rewards and practical considerations

	Reward function
	Velocity to target field
	Penalties

	Results and discussion
	Policy derived from target field
	Foot target position
	Specification gaming
	Body orientation penalties
	Under-actuation of joints below knee
	Quantitative Analysis
	Transfer Learning Results
	Other experiments
	Hypotheses discussion

	Conclusion and future work
	Bibliography

