N
»

Universidade Estadual de Campinas
v’ Instituto de Computacao /

.'\ INSTITUTO DE
UNICAMP COMPUTACAO

0

Elisa de Cassia Silva Rodrigues

Mathematical and computational methods for
modeling and editing deformations

Métodos matematicos e computacionais para
modelagem e edicao de deformacoes

CAMPINAS
2017

Elisa de Cassia Silva Rodrigues

Mathematical and computational methods for modeling and
editing deformations

Métodos matematicos e computacionais para modelagem e
edicao de deformacoes

Tese apresentada ao Instituto de Computagao
da Universidade Estadual de Campinas como
parte dos requisitos para a obtencao do titulo
de Doutora em Ciéncia da Computacao.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Supervisor /Orientador: Prof. Dr. Jorge Stolfi

Este exemplar corresponde a versao final da
Tese defendida por Elisa de Céssia Silva
Rodrigues e orientada pelo Prof. Dr. Jorge
Stolfi.

CAMPINAS
2017

Agéncia(s) de fomento e n%(s) de processo(s): CNPq, 140780/2013-0; CAPES,
01-P-04554-2013

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Maria Fabiana Bezerra Muller - CRB 8/6162

Rodrigues, Elisa de Céssia Silva, 1984-
R618m Mathematical and computational methods for modeling and editing
deformations / Elisa de Cassia Silva Rodrigues. — Campinas, SP : [s.n.], 2017.

Orientador: Jorge Stolfi.
Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Modelagem geomeétrica. 2. Computacgao grafica. 3. Sistemas lineares. 4.
Minimos quadrados. |. Stolfi, Jorge,1950-. Il. Universidade Estadual de
Campinas. Instituto de Computacéo. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Métodos matematicos e computacionais para modelagem e edicao
de deformacdes

Palavras-chave em inglés:

Geometric modeling

Computer graphics

Linear systems

Least squares

Area de concentracio: Ciéncia da Computagéo
Titulacao: Doutora em Ciéncia da Computacao

Banca examinadora:

Jorge Stolfi [Orientador]

Helena Cristina da Gama Leitéo

Rodrigo Minetto

Hélio Pedrini

Wu Shin Ting

Data de defesa: 10-02-2017

Programa de Pds-Graduacéao: Ciéncia da Computacdo

2,

)
',A Universidade Estadual de Campinas
(]

L W 4 Instituto de Computacao
'.'\ P ¢ INSTITUTO DE
UNICAMP COMPUTACAO

Elisa de Cassia Silva Rodrigues

Mathematical and computational methods for modeling and
editing deformations

Métodos matematicos e computacionais para modelagem e
edicao de deformacoes

Banca Examinadora:

e Prof. Dr. Jorge Stolfi (Supervisor/Orientador)
Instituto de Computagao - UNICAMP

e Profa. Dra. Helena Cristina da Gama Leitao
Instituto de Computacao - UFF

e Prof. Dr. Rodrigo Minetto
Departamento Académico de Informatica - UTFPR

e Prof. Dr. Hélio Pedrini
Instituto de Computacao - UNICAMP

e Profa. Dra. Wu Shin Ting
Faculdade de Engenharia Elétrica e de Computagao - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida académica do aluno.

Campinas, 10 de fevereiro de 2017

“What makes the desert beautiful is that
somewhere it hides a well.”
(Antoine Saint-Exupéry)

Acknowledgements

First, T thank my parents, Isabel and Flavio, for the psychological and financial support
and especially the encouragement, understanding and unconditional love offered through-
out my life, especially at this stage. My brother and my heart sister, Eduardo and Silvana,
for the advice and support. All my family for being by my side at all times.

I would also like to thank old friends and colleagues from courses that collaborated,
directly or indirectly, with the realization and completion of this work, sharing experi-
ences, supporting and celebrating achievements.

Many thanks to my advisor, Jorge Stolfi, for his guidance, support, trust, patience,
wisdom and professionalism offered through my research. The University of Campinas
(UNICAMP), the Institute of Computing (IC), and the Visual Computer Lab (LIV) for
the opportunity and available infrastructure, the teachers and staff for their support and
guidance.

At last, I would also like to thank the CAPES (Coordenacao de Aperfeicoamento de
Pessoal de Nivel Superior), and CNPq (Conselho Nacional de Desenvolvimento Cientifico
e Tecnoldgico) that granted me scholarships (01-P-04554-2013 and 140780,/2013-0).

Resumo

Nesta tese, descrevemos primeiramente o algoritmo ECLES (Editing by Constrained LEast
Squares), um método geral para edi¢ao interativa de objetos definidos por parametros
sujeitos a restricoes lineares ou afins. Neste método, as restricoes e as acoes de edicao
do usuério sao combinadas usando minimos quadrados restritos, ao invés da abordagem
mais comum de elementos finitos. Usamos aritmética exata para detectar e eliminar
redundancias no conjunto de restricoes e evitar falhas devido a erros de arredondamento.

O algoritmo ECLES tem diversas aplicacoes. Entre elas, podemos citar a edicao de
deformacoes spline com continuidade C!. Nesta tese, descrevemos um método interativo
de edi¢ao de deformagdes do plano, o algoritmo 2DSD (2D Spline Deformation). As
deformagoes sao definidas por splines de grau 5 sobre uma malha triangular arbitraria.
Estas deformagoes sao editadas alterando-se as posicoes dos pontos de controle da malha.
O algoritmo ECLES é usado em cada agao de edigao do usuario para detectar, de forma
robusta e eficiente, o conjunto de restricoes de continuidade C!' que sdo relevantes, garan-
tindo que nao existam redundancias. Em seguida, como os parametros sao modificados
pelo usuario, o ECLES é chamado para calcular as novas posicoes dos pontos de controle
satisfazendo as restricoes e as posicoes especificadas pelo usuario.

A fim de validar nosso método 2DSD, ele foi utilizado como parte de um editor in-
terativo para deformacoes do espaco 2.5D, o editor PrisMystic. Este editor foi utilizado,
principalmente, para deformar modelos tridimensionais de organismos microscopicos nao-
rigidos de modo a coincidir com imagens reais de microscopia 6tica. Também utilizamos
o editor para editar modelos de terrenos.

Abstract

In this thesis, we present the ECLES algorithm (FEditing by Constrained LEast Squares),
a general method for interactive editing of objects that are defined by parameters subject
to linear or affine constraints. In this method, the constraints and the user editing actions
are combined using constrained least squares instead of the usual finite element approach.
We use exact integer arithmetic in order to detect and eliminate redundancies in the set
of constraints and to avoid failures due to rounding errors.

The ECLES algorithm has various applications. Among them, we can cite the editing
of Cl-continuous spline deformations. In this thesis, we describe an interactive editing
method for deformations of the plane, the 2DSD algorithm (2D Spline Deformation).
The deformations are defined by splines of degree 5 on an arbitrary triangular mesh.
The deformations are edited by changing the positions of its control points. The ECLES
algorithm 1is first used in each user editing action in order to detect, in a robust and
efficient way, the set of relevant constraints of C!' continuity, ensuring that there are
no redundancies. Then, as the parameters are changed by the user, ECLES is called
to compute the new positions of the control points satisfying the constraints and the
positions specified by the user.

To validate our 2DSD algorithm, we used it as part of an interactive editor for 2.5D
space deformations, the PrisMystic editor. This editor has been used, mainly, to deform
3D models of non-rigid living microscopic organisms as seen in actual optical microscope
images. We also used the editor to edit terrain models.

List of Figures

1.1

2.1

2.2

2.3

5.1
6.1

7.1

7.2

(a) The morphology of the protozoan Dileptus anser; (b) a control mesh
surrounding a 3D model of that protozoan; (¢) an actual optical microscope
image; and (d) the control mesh and model deformed so as to match an
actual image using our PrisMystic editor.

Example of a parameter editing action in a graphical editor as described
in Part II. The five parameters are points of R? (dots). There is one con-
straint represented by the gray quadrilateral, that involves its four vertices;
namely, the quadrilateral must always be a parallelogram. The anchor set
is A = {0} (open bold dot), and the derived set is D = {1,2,3} (black
dots). (a) User-specified change of the anchor point py to pf; (b) desired
positions pf, py, and pj of the derived points; and (¢) final positions pY, pj,
and pj of the derived points forced by the constraint.
Example of the classification of n = 14 parameters P and m = 5 constraints
R. The rectangles represent the constraints of the matrix R. The black
dots are the nonzero elements of R. Note that equations 1 and 3 are not
relevant since they do not involve any parameters of A or D. Note also
that the parameters 2, 4, 6, 8, 10, and 11 are fixed but not relevant.
(a) Identifying non-redundant C! constraints (gray quadrilaterals) in the
2DSD algorithm (see Part II) with floating-point, and (b) the exact arith-
metic. Note that the floating-point version discarded one constraint which
in fact is not redundant. oo

Interaction model between application and the ECLES algorithm.
Invariant 12 of Algorithm 6. The gray parts are nonzero elements.

Bit size growth in the trivial factorization without simplification for random
matrices as a function of the number of rows m. The vertical axis is the
maximum bit size among all entries observed by factoring 1000 matrices
with n = 15 columns and varying number m of rows, with randomly chosen
10-bit signed integer elements. Note that the bit size stops growing when
m exceeds n. The slight decrease for m > n is due to the better chances of
finding a small pivot as m increases.
Bit size growth with the GCD simplification methods for random matrices
as a function of the number of rows m. The vertical axis is the maximum bit
size among all entries observed by factoring 1000 matrices varying the size
m = n of rows and columns, with randomly chosen 10-bit signed integer
elements. L e

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

10.1

10.2

Comparison of the bit size growth between the GCD and Turner simplifi-
cation methods for random matrices as a function of the number of rows
m. The vertical axis is the maximum bit size among all entries observed
by factoring 1000 matrices with n = 20 columns and varying number m of
rows, with randomly chosen 10-bit signed integer elements.
Comparison of the bit size growth between the GCD and Turner simplifica-
tion methods for random rank deficient matrices as a function of the rank
r. The vertical axis is the maximum bit size among all entries observed by
factoring 1000 20 x 20 matrices varying the deficient rank r, with 10-bit
signed integer elements.o
Comparison of the bit size growth between the GCD and Turner simpli-
fication methods for random sparse matrices as a function of the number
of rows m. The vertical axis is the maximum bit size among all entries
observed by factoring 1000 sparse matrices varying the size m = n of rows
and columns, with densities h ~ 0.10 and 10-bit signed integer elements.
Comparison of the bit size growth between the GCD and Turner simpli-
fication methods for random sparse matrices as a function of the number
of rows m. The vertical axis is the maximum bit size among all entries
observed by factoring 1000 sparse matrices varying the size m = n of rows
and columns, with densities h ~ 0.25 and 10-bit signed integer elements.
Comparison of the bit size growth between the GCD and Turner simplifi-
cation methods for random sparse matrices as a function of the density h.
The vertical axis is the maximum bit size among all entries observed by
factoring 1000 20 x 20 sparse matrices varying the density h, with 10-bit
signed integer elements. L L
Comparison of the bit size growth between the GCD and Turner simplifi-
cation methods for random rank deficient sparse matrices as a function of
the rank r. The vertical axis is the maximum bit size among all entries
observed by factoring 1000 sparse matrices varying the size m = n of rows
and columns and the rank deficient r, with densities h ~ 0.10 and 10-bit
signed integer elements. L
Comparison of the bit size growth between the GCD and Turner simplifi-
cation methods for random rank deficient sparse matrices as a function of
the rank r. The vertical axis is the maximum bit size among all entries
observed by factoring 1000 sparse matrices varying the size m = n of rows
and columns and the rank deficient r, with densities h ~ 0.25 and 10-bit
signed integer elements. Lo
Comparison of the bit size growth between the GCD and Turner simplifi-
cation methods for random rank deficient sparse matrices as a function of
the density h. The vertical axis is the maximum bit size among all entries
observed by factoring 1000 20 x 20 sparse matrices varying the density h
and the rank deficient r, with 10-bit signed integer elements.

A comparison between space deformations (a) without and (b) with C!
continuity.
A soft translation with 2 anchor points (black open dots) and derived points
(black dots) (a) and the result of displacing the anchor points by the vector

47

47

49

12.1

12.2

12.3

12.4

12.5

12.6

13.1

13.2

13.3
13.4

14.1
14.2

14.3

14.4
14.5
14.6

14.7

15.1

17.1
17.2
17.3

Nominal positions u;; (dots) of the Bézier coefficients ¢, for the Bernstein-
Bézier Bjj; of degree 5 relative to a triangle, and the local Bézier control

net (solid and dashed lines). oL 64
A deformation of R? of the (a) reference mesh T in the (b) deformed refer-
encemesh O(T'). L 64

(b) Bézier control points g%, of a degree 3 patch ¢* from Q — R? and; (a)
their nominal positions u;j;, on the domain triangle u. The curved triangle

on the right is the image of u under the deformation ¢*. 65
(a) Nominal positions and (b) Bézier control points of a deformation ¢ of
degree 3 which satisfy C° continuity constraints. 66
(a) Nominal positions and (b) Bézier control points of a deformation ¢ of
degree 3 which satisfy C! continuity constraints (the gray diamonds). . . . 67
A reference mesh T for a spline deformation of degree 5, showing the Bézier
control points and the quadrilateral conditions. 67

Labels of the triangles of the reference mesh 7' that shared the oriented

edge e, and their vertices. L oL 68
Labels of the Bézier control points that form the quadrilateral conditions
on the shared edge e of the reference mesh 7', for degree d =5. 69

A spline with consistent orientation of the quadrilaterals around the vertices. 70
Labels of the control points to obtain a consistent orientation of the quadri-
laterals around the vertices. L Lo 71

Control flow for a typical editing action (soft translation). 72
Translating of two anchor points. (a) Anchor points (set .A) specified by
the user; (b) initial derived points (set S) selected by the user; and (c)
derived points (set D) specified by the 2DSD.ExpandDerived. 73
Translating of two anchor points. (a) Anchor points A (black open dots),
derived points D (black dots), and non-redundant relevant constraints spec-

ified by ECLES; and (b) control points updated. 74
Examples of (a) rotation and (b) scaling of one anchor point. 74
Classification of the control points of a Bézier patch of degree 6. 76

Relevant continuity constraints (gray diamonds) and derived points added
to D (solid dots) depending on the type of the control point ps with s €
AUD (open dot). For each type, the left figure shows a typical situation
where the point p, is sufficiently far from the triangulation’s border. The
right figure shows a situation near the border where some of those control
points and constraints are missing. These diagrams are generalized to
vertices of arbitrary degree in the obvious way. 77
Editing point gg3, with the derived points qiys, G199, @31, @ - - - - -« . 79

(a) An actual microscope image of the protozoan C. elegans; (b) 2D view;
and (c¢) 3D view of a deformed model obtained with PrisMystic, matching
the image (a). L 81

The 3D model mesh M of a Dragon |82, represented by a triangular mesh. 86
The 3D model mesh M of a Dragon [82], represented by a point cloud. . . 86
A 3D model mesh M surrounded by a 3D reference mesh P, and the cor-

responding 2D reference mesh 7. oo 87

17.4 Barycentric coordinates ag, aq, By, 51 and [y of a point p of the 3D model
mesh M, related to the prism U of the 3D reference mesh P.
17.5 A deformed reference mesh ¢(P) surrounding a deformed model mesh 1 (M).
17.6 View of the deformed reference mesh ¢ (P) in the zy-mode, showing the
control points and the global Bézier control net G (dotted line) on the
deformed reference mesh (7).o
17.7 View of the deformed reference mesh v (P) in the z0-mode (a) and z1-mode
(b), showing the control points of the splines oy and o7, respectively.

18.1 The user interface of the PrisMystic editor in the initialization mode. .
18.2 The options of the Editor Settings window of the PrisMystic editor.
18.3 The options of the Editing Control window of the PrisMystic editor.
18.4 The view mode of the PrisMystic editor.
18.5 The PrisMystic editor highlighting (a) the selected anchor points, and (b)
the initial derived points with 0,,,, = 3, in the xy-mode.
18.6 The PrisMystic editor highlighting (a) the initial derived points, and (b)
the scaling operation applied to all control points.
18.7 The editing xy-mode of the PrisMystic editor.
18.8 (a) Before and (b) after a soft translation of two anchor points (black open
dots) with 0,4 = 4, showing the derived points D (black dots), and the
C! continuity constraints (quadrilaterals).
18.9 (a) Before and (b) after a soft rotation of one anchor point (black open dot)
with d,,,; = 8 around the center ¢, showing the derived points D (black
dots), and the C! continuity constraints (quadrilaterals).
18.10(a) Before and (b) after a soft scaling of one anchor point (black open dot)
with d,,,; = 6 around the center ¢, showing the derived points D (black
dots), and the C! continuity constraints (quadrilaterals).
18.11The editing modes, (a) z1-mode and (b) z0-mode, of the PrisMystic editor.
18.12(a) Before and (b) after the editing of one anchor point with 0,4, = 3 in
z1-mode, showing the control points and the derived points. The relevant
constraints and the global Bézier control net G of the reference mesh are
also shownin (a). Lo

19.1 Morphology of the organism (left). The 2D view (middle) and 3D view
(right) of the reference mesh, and the organism models in a typical resting
shape.

19.2 Actual microscope images of the nematode C. elegans (left); 2D view (mid-
dle); and 3D view (right) of the deformed models.

19.3 Actual microscope images of the protozoan Dileptus anser (left); 2D view
(middle); and 3D view (right) of the deformed models.

19.4 Actual microscope images of the Lacrymaria olor (left); 2D view (middle);
and 3D view (right) of the deformed models.

19.5 Actual images of the starfish Asterias rubens (left); 2D view (middle); and
3D view (right) of the deformed models.

19.6 (a) 2D view and (b) 3D view of the model of a digital terrain and its
reference mesh; and (c) 2D view of the deformed model using the PrisMystic
editor.

19.7 3D view in Blender editor [83] of the deformed model shown in Figure 19.6.

97
98

101

105
105

List of Tables

16.1 Comparison among cells of meshes consisting of tetrahedra, hexahedra, and
PIISIS. o v o e e e e e e e 85

19.1 Parameters of the model mesh M and the reference mesh 7' for the organ-

isms used in the tests. 99
19.2 Parameters of the model mesh M and the reference mesh 7" used in the test.105

List of Algorithms

Tt W N~

= O 00 1O

14

15

16
17

ECLES.Initialize e 33
ECLES.ExtractRelevant 34
ECLES.CheckStrongSolvabitity 35
ECLES.Update e 36
ECLES.CheckWeakSolvabitity 36
LinSys.LDUFactor 38
LinSys.Pivot 39
LinSys.EliminateVariable 40
LinSys.SimplifyURow 40
LinSys.SimplifyLColumn 41
LinSys.SimplifyURowGCD 44
LinSys.SimplifyLColumnGCD 44
LinSys.SimplifyURowTurner 46
LinSys.Solve e o1
LSQ.Solve e e e e 56
2DSD.Select 75

2DSD.Translate e e e 78

Contents

1 Introduction

1.1 Part I: The ECLES Algorithm
1.2 Part II: The 2DSD Algorithm
1.3 Part III: The PrisMystic Editor
1.4 Contributions

I The ECLES Algorithm

2 General Parameter Editing

2.1 Statement of the problem
2.2 Relevant equations and fixed parameters
2.3 Solvability condition
2.4 The need for exact computation

3 Related Work

3.1 Constraint-based editing and modeling
3.2 Finite element basis Lo
3.3 Optimization

3.3.1 Least squares

4 Basic Tools

4.1 Fraction-free LDU factoring
4.2 Using the hints
4.3 Redundant equations
4.4 Multidimensional parameters Lo

5 The ECLES Method

5.1 Simplified descriptiono
5.2 The ECLES.Initialize procedure.
5.2.1 The ECLES.ExtractRelevant procedure
5.2.2 The ECLES.CheckStrongSolvabitity procedure
5.3 The ECLES.Update procedure
5.3.1 The ECLES.CheckWeakSolvabitity procedure
6 Fraction-Free LDU Factoring
6.1 The main algorithm Lo
6.2 Pivoting

6.3 Variable elimination

6.4 Row and column simplificationo
6.5 Computing cost

7 Simplification Techniques for LDU Factoring

7.1 Plain fraction-free Gaussian elimination
7.2 Simplifying by GCD elimination L.
7.3 Turner’s GCD-free simplification

7.3.1 Bit size growth for rank deficient matrices

7.3.2 Bit size growth for random sparse matrices
7.3.3 Bit size growth for sparse matrices with deficient rank
7.3.4 Discussion about theresults,

8 Solving Exact Linear Systems

8.1 Solving the system
8.2 Checking consistencyo
8.2.1 Weak solvabilityo
8.2.2 Strong solvability oL
83 Anexample

9 Solving the Least Squares Problem

9.1 Constrained least squares
9.2 Anexample L

I The 2DSD Algorithm

10 Interactive Editing of 2D Spline Deformations

10.1 Statement of the problem
10.1.1 Deformations
10.1.2 Meshes and splines

10.2 User interface

11 Related Work

11.1 Non-spline methods
11.2 Spline methods, ..

12 Triangular Splines Deformation

12.1 Triangular Bézier splines
12.2 Using splines to model deformations

12.2.1 Continuity constraints
12.3 Local controlo oL

13 Spline Representation

13.1 Notation
13.1.1 Labeling and orientation of the edges
13.1.2 Labeling and orientation of the quadrilateral conditions

13.2 Data structure. 0L
13.2.1 Representation of the reference mesh
13.2.2 Representation of the spline
13.2.3 Representation of the C! constraints

42
42
43
45
46
47
48
49

50
20
52
52
92
23

55
95
57

58

59
29
29
60
60

61
61
62

63
63
64
65
67

14 The 2DSD Editing Algorithm

14.1 The user interaction modelo
14.1.1 Soft translation Lo
14.1.2 Soft rotation and scalingo

14.2 The 2DSD.Select procedure
14.2.1 The 2DSD.ExpandDerived procedure
14.2.2 The 2DSD.ComputeRelMagnitude procedure

14.3 The 2DSD.Translate procedure o oo

14.4 Anexample

III The PrisMystic Editor

15 Goals and Motivation

15.1 Goals o
15.2 Relation to the Masters version

16 Related work

16.1 Deformation of 3D models
16.2 Space deformations
16.3 Interpolation techniques L.
16.4 Spline interpolation

17 Overview of the editor

171 The 3D model
17.2 The 3D reference mesh 0oL

17.2.1 Defining the barycentric coordinates
17.3 Deformation paradigmo
17.4 Editing the deformation 0oL
17.5 Ensuring the spline continuity 0L

18 Editing Paradigm

18.1 PrisMystic user interface o000
18.1.1 Editor Settings window
18.1.2 FEditing Control window

18.2 Imitialization mode

18.3 Viewmode e

18.4 Point selection sub-mode oo
18.4.1 Anchor selection oo
18.4.2 Neighborhood selection L.

18.5 Editing xy-deformationo
18.5.1 Local soft translation
18.5.2 Local soft rotation
18.5.3 Local soft scaling

18.6 Editing z-deformationo

72
72
73
74
)
76
78
78
79

80

81
81
82

83
83
84
84
85

86
86
87
87
88
89
90

19 Examples
19.1 Deformation of organism models 0L

19.1.1 Results

19.2 Deformation of terrain models

20 Conclusion and Future Work
20.1 Part I e
20.2 Part II e
20.3 Part TIT e

Bibliography

A Implementation

Al

A2
A3

A4

The LinSys library
A.1.1 Fraction-free matrix factoring
A.1.2 Solving linear system L.
The LSQ library o
The ECLES library
A3.1 Initializingo
A3.2 Updating L
The 2DSD library o
A.4.1 Editing the deformation
A.4.2 Deforming the spline L.

99
99
100
105

106
106
106
107

108

Chapter 1

Introduction

In this thesis, our objective is to develop mathematical and software tools for interactive
editing of parameters of some model or process, subject to linear or affine constraints, in
a general, robust, and efficient way.

This problem occurs in many applications of the areas of computer graphics and image
processing, such as the geometric modeling and deformation, 2D and 3D spline modeling,
image morphing, registration and vectorization, CAD, among others [42, 80, 91, 97]. Other
possible applications include control of industrial process and power grids [19].

In Part I, we develop a general method for solving this problem. In Part II, we
apply this method to the specific problem of creating and editing two-dimensional spline
deformations subject to smoothness constraints. In Part I1I, we describe an editor of 2.5D
space deformations for three-dimensional solid modeling using the method of Part II.

1.1 Part I: The ECLES Algorithm

In Part I, we consider the abstract numerical problem of interactive editing of parameters
of some model or process, subject to affine constraints, in a general way.

We assume that the application has a finite list of real valued parameters p1, ps, ..., pp
that are subjected to a finite set of affine equality constraints; that is, polynomial equations
of degree 1, like 3p3 — bps = 7.

We assume that, at each editing action, the user specifies new required values for some
subset A of parameters (the anchors), and desirable but not required “hint” values for
another subset D (the derived parameters). The application is then supposed to adjust the
parameters in D in order to preserve the constraints, the required values for the anchors,
and be as close as possible to the hints. An important feature of ECLES is that the sets
A and D are not fixed, but are specified by the application at each editing action.

To solve the stated problem, we propose a general and robust method, that we call
ECLES (Editing by Constrained LEast Squares). The ECLES algorithm uses linear system
solving with exact integer arithmetic, to detect and eliminate redundancies among the
constraints that are relevant to each editing action and to avoid failures due to rounding.
It uses weighted and constrained least squares to minimize the discrepancy between the
hints and the values for the set D.

19

CHAPTER 1. INTRODUCTION 20

1.2 Part II: The 2DSD Algorithm

In Part II, we apply the ECLES algorithm to a specific application: the interactive editing
of smooth simplicial spline deformations of the plane. We describe an algorithm for this
application, called 2DSD (2D Spline Deformation).

The deformation is modeled by a spline defined on a triangular mesh. The desired
deformation is specified by manipulating the Bézier control points of the spline. Each
editing operation requires the automatic adjustment of several other nearby control points
in order to preserve the smoothness of the spline. The set of adjusted points is determined
at the time of editing through the 2DSD algorithm. We use the ECLES general parameter
editing method in order to compute the new positions of the control points selected under
the condition that the smoothness constraints are satisfied.

The 2DSD method can be adapted to other applications such as editing 3D spline
surfaces [13, 94], editing 2.5D and 3D space deformation [31], image morphing [42, 53, 63,
91] and registration [73, 80, 97| and interactive image vectorization [92].

The main advantage of splines over other function interpolation methods is that they
allow local control: if we change only one control point, the spline changes only within
the corresponding cell of the mesh and perhaps a few other triangles surrounding it [25].
Simplicial (triangular or tetrahedral) Bézier patches have the advantage over quadrangular
patches since they can be joined with almost arbitrary topology. On the other hand, their
continuity constraints are more complicated.

Since the deformation is applied to a control mesh that deforms space, rather than to
the object mesh directly, the edited deformation can be applied to other models. This
method is independent of the resolution and representation of the object to be deformed.
Another advantage is that the deformed control mesh provides an immediate intuitive
understanding of the general nature of the deformation, and of the scope of each control
parameter.

Unlike radial basis methods [17, 20|, the 2DSD description of the deformation remains
simple and of finite size even after an arbitrarily long sequence of editing operations. At
each point of the domain, except in cell boundaries, the deformation has a simple analytic
formula that allows the efficient computation of derivatives.

1.3 Part III: The PrisMystic Editor

In Part III, we used the 2DSD algorithm to implement an editor of 2.5D space deforma-
tions |31, 67] to deform three-dimensional models, called PrisMystic editor.

The PrisMystic is an effective and user-friendly editor that can be used, for example,
to reproduce deformations of 3D models of non-rigid cells and other organisms viewed
through optical microscopes. See Figure 1.1.

The PrisMystic editor is an evolution and generalization of the editor described in
my Masters dissertation [67]. The improvements include: using the ECLES algorithm,
described in Part I, instead of floating-point linear algebra packages; a more flexible and
general method for the selection of control points (allowing multiple anchors and more
derived points); and a different goal function for the least squares method. Also, we used

CHAPTER 1. INTRODUCTION 21

(a) (b)

(d)

Figure 1.1: (a) The morphology of the protozoan Dileptus anser; (b) a control mesh surrounding
a 3D model of that protozoan; (c) an actual optical microscope image; and (d)
the control mesh and model deformed so as to match an actual image using our
PrisMystic editor.

the general 2DSD approach, described in Part II, to connect the user interface to the
ECLES solver, described in Part I. With these changes, it would be now relatively easy
to extend the editor to accommodate other affine constraints, such as C? smoothness,
vertical or horizontal alignment, fixed points, etc.

1.4 Contributions

The original contributions of this thesis are:

e a rigorous approach to parameter editing that combines exact integer arithmetic
and weighted and constrained least squares for linear system solving;

e a robust and general algorithm (ECLES) for local editing of parameters with linear
constraints;

e an algorithm (2DSD) for editing smooth two-dimensional spline deformations;
e an editor (PrisMystic) for 2.5D deformation of 3D solid models.

e public C/C++ implementations of ECLES, 2DSD, and PrisMystic including li-
braries for linear system solving using exact integer arithmetics and least squares
optimization [22].

Some of these contributions were presented in conferences [71, 72|, and published as
technical reports [70]. The PrisMystic editor is an improved and expanded version of the
editor developed in my Masters dissertation [67, 68, 69|

Part 1

The ECLES Algorithm

22

Chapter 2

General Parameter Editing

In this chapter, we describe the problem of interactive editing of objects that are defined
by parameters subject to linear or affine constraints. We present also a discussion about
the solvability condition of the problem, and how the general problem can be reduced to
the relevant parameters and constraints.

2.1 Statement of the problem

The problem of general parameter editing involves a set of variables (the control parame-
ters) of an application subject to a fixed set of linear or affine equations (the constraints).

More specifically, let pi, po, ..., p, be the n control parameters, and p be the vector
of the values of those parameters. We can write the constraints as a matrix equation

Rp=gq (2.1)

where R is a constant m x n coefficient matrix, and ¢ is a vector of m constants (possibly
Z€10).

For example, a chemical process may have four pumps whose flow rates p, po, p3, and
ps must always satisfy p; + p, = ps and py = ps + 5, that is

b1
11 -1 0 D2 _ 0 (22)
0 0 —1 1 D3 51° ’
D4

Any change in one of the four rates must then be simultaneously compensated by a change
in one or both of the other three.

Let P ={1,2,...,n} be the set of parameter indices. For each editing action, the user
(or the application) must define two disjoint subsets of P:

e A (anchor): the indices of one or more parameters whose values will be set by the
user;

e D (derived): the indices of zero or more parameters that may be adjusted if necessary
to satisfy the constraints.

23

CHAPTER 2. GENERAL PARAMETER EDITING 24

We denote by F the set P\ (AU D), the fired parameters whose values are not to be
changed. For each parameter s € A, the user then specifies a new value p/ which is
mandatory. For each s € D, a new value p/, is also suggested. The editing algorithm then
computes a new value p” for each parameter. If s € A, p” will be equal to the given value
pl. If s € D, p is close to p’, but not necessarily equal to it. For every s € F the value
does not change, that is, the desired value p/ and final value p” are equal to the current
value p;.

More generally, each parameter may be an element of some vector space R?. In that
case, p is an n X d matrix, and ¢ is an m X d matrix. This is the case of the application
considered in Part II. See Figure 2.1.

PO = Po

/!

Py

/!

Pp3

2

Figure 2.1: Example of a parameter editing action in a graphical editor as described in Part II.
The five parameters are points of R? (dots). There is one constraint represented
by the gray quadrilateral, that involves its four vertices; namely, the quadrilateral
must always be a parallelogram. The anchor set is A = {0} (open bold dot), and
the derived set is D = {1,2,3} (black dots). (a) User-specified change of the anchor
point py to pj; (b) desired positions p}, ph, and p4 of the derived points; and (c) final
positions pf, py, and pf§ of the derived points forced by the constraint.

2.2 Relevant equations and fixed parameters

The constraints that involve parameters of A or D are called relevant constraints. The
indices of these constraints comprise the set £, a subset of R = {1,2,...,m}. We define
the set F' of fized relevant parameters as comprising the indices s € F such that p, occurs
in some equation of £. See Figure 2.2.

For any subset) of P, we will denote by py the subvector of P whose elements are
all elements ps; with s €). Similarly, for any subset X € R, we denote by Rxy the
sub-matrix of R consisting of the elements R;; with ¢ € X and j € V.

We can replace the full constraint system (2.1) by the smaller system

Rep ph = qs — Reapy — Rer pr (2.3)

which represents the relevant constraints £. We can write this system as Az = b, where
A= Rep, v =pp and b = g¢ — Reaply — Rer pr.

CHAPTER 2. GENERAL PARAMETER EDITING 25

P

N
o N\

1 2 3 45 6 7 8 9 10111213 14

100000000000 000]
2 (0000000000000
R < 3000000000 00000]
1 |[00000000000e0e
0000000000800

£+ttt FOf

5

Figure 2.2: Example of the classification of n = 14 parameters P and m = 5 constraints R. The
rectangles represent the constraints of the matrix R. The black dots are the nonzero
elements of R. Note that equations 1 and 3 are not relevant since they do not involve
any parameters of A or D. Note also that the parameters 2, 4, 6, 8, 10, and 11 are
fixed but not relevant.

2.3 Solvability condition

Depending on the choices of A and D, and of the new values p/, the problem may or may
not have a solution.

We say that a given choice of A and D is strongly solvable if for any parameter vector
p that satisfies all constraints, and any assignment of values for p’, » there is a solution
p”, that satisfies all constraints, with py = py and p’s = p/. That is, the set D of derived
parameters must be large enough to allow any combination of new values to be assigned
to the control parameters in A, while satisfying all constraints by assigning appropriate
new values to all parameters in D.

We say the problem is weakly solvable if such a solution exists for the particular given
values p/y and the current values of p’z.

2.4 The need for exact computation

The problem of editing parameters with linear constraints may involve redundant equa-
tions, which need to be detected and eliminated to correctly solve the system. For exam-
ple, we may have p; + 2py, = 0, ps + p3 = 5, 2p3 — p; = 10. Note that the last equation is
a linear combination of the first two.

In general, a constraint-solving algorithm cannot assume that the application is toler-
ant to rounding errors. The presence of these errors, in approaches that use floating-point
arithmetic, can generate numerical instabilities causing failures in the reliable detection
of redundancies.

It is possible to identify and ignore the redundant constraints by using exact arith-
metic to solve the linear systems. For this task, we use the fraction-free LDU factoring,
described in Chapter 4. Figure 2.3 shows an example of application of the 2DSD algo-
rithm, described in Part II of this thesis. In this example, the use of exact arithmetic (the

CHAPTER 2. GENERAL PARAMETER EDITING 26

ECLES algorithm, described in Chapter 5) removed the rounding errors and numerical
instabilities of the previous floating-point implementation.

Figure 2.3: (a) Identifying non-redundant C! constraints (gray quadrilaterals) in the 2DSD al-
gorithm (see Part II) with floating-point, and (b) the exact arithmetic. Note that
the floating-point version discarded one constraint which in fact is not redundant.

Therefore, we assume that the constraint equations have integer coefficients (rounded by
the application, as appropriate) and the parameter values are approximated by rational
values. For the exact and rational computations, we used the library FLINT (Fast Library
for Number Theory) [36].

Chapter 3

Related Work

There are many systems for interactive editing of objects under linear and affine con-
straints [10, 38, 47, 62, 79]. In this chapter, we present an overview about some techniques,
described in the literature, for parameter editing with constraints.

3.1 Constraint-based editing and modeling

Typical constraint-based interactive editors recompute all parameters at each user editing
request, and use penalty terms in order to minimize the changes to non-edited parameters.

The METAFONT font design system, developed by Knuth in 1979 [47], can be viewed
as a precursor of constraint-based parameter editing. It is a programming language where
function parameters may be subjected to linear and affine constraints. The language lets
the user specify any subset of independent parameters, automatically solving for the others
when enough parameters have been specified. However, it was not interactive.

In 1985, Nelson [62] described Juno, a constraint-based interactive editor for 2D draw-
ings. Later, an extended version of the editor (Juno-2) was developed by Heydon and
Nelson [38]. With Juno-2, the user can graphically define constraints, which are solved
by a non-linear equation solver combined with some symbolic techniques. The user could
define hints for unknown parameters.

3.2 Finite element basis

For linear and affine constraints (which we consider in this thesis), a common approach is
to pre-compute a finite element basis of parameter change vectors that has small support
and spans the space of all possible changes allowed by the constraints; and then give the
user a separate “knob” for each finite element.

A typical example is the editing of splines with specified continuity. Each basis ele-
ment has exactly one editable value (typically a Bézier control point or value), the other
Bézier points are then computed from those. This approach was extensively studied by
Schumaker [50] and others [93].

One particular case of the finite element technique is the B-spline approach [25], where
there is only one control point for each patch, and the resulting spline is automatically

27

CHAPTER 3. RELATED WORK 28

continuous to the maximum possible order. B-splines are well defined for tensor (quad-
rangular or hexahedral) type meshes with regular topology [18, 21]; extending them to
irregular and simplicial meshes is possible, but rather complicated [37].

One serious limitation of finite element technique is that the finite element basis must
be recomputed every time the space of allowed solutions change; that is, every time the
sets A of anchors and D of derived parameters change.

3.3 Optimization

Since the constraints are usually under-determinate, the final solution must be chosen by
optimizing some additional criteria.

Systems like METAFONT [47] build the set of derived parameters D incrementally by
adding parameters to it according to certain ad hoc priority rules. For instance, variables
that were most recently included in the set of anchors A of previous actions have lower
priority. Other systems [10, 38, 62] solve for all constraints simultaneously by an iterative
algorithm using the current situation p as a starting guess.

3.3.1 Least squares

To handle under-determinate constraints, we instead use the criterion of least squares
with first-degree constraints [66] to find the solution p%, that is closest to the hints p/p.

This technique was used, for instance, by Masuda et al. [57| for surface mesh editing. It
allows editing any control point A = {k} and computes the remaining points in D = P\ A
by solving a linear system that combines the criterion of least squares and the constraint
equations.

Our method, described in Chapter 5, differs from Masuda’s by assuming that the
application provides, at each editing event, a small subset D of parameters that can be
changed. Moreover, we use exact arithmetic to reliably detect inconsistent or redundant
constraints.

Least squares were also used, by Sorkine and Cohen-Or [79] to globally approximate
points given by 3D triangular meshes. However this technique has no concept of splines
and smoothness. The constraints are satisfied only in the sense of least squares.

Chapter 4

Basic Tools

In this chapter, we describe the method used to solve linear systems with exact integer
arithmetic. This method detects and eliminates redundancies among the constraints of
the problem and avoids failures due to rounding errors. Moreover, we also described the
weighted and constraint least squares to minimize the discrepancy between the desired
and final solutions of the system.

4.1 Fraction-free LDU factoring

To exactly solve the linear system in Equation (2.3) whose coefficients are integers, we
use a fraction-free LDU factoring |43] of a rectangular matrix A (m x n), with rank r. It
consists of five integer matrices: IIg (m x m, a permutation matrix of rows), L (m x r),
D (r x r, diagonal), U (r x n), and IIg (n X n, a permutation matrix of columns) such
that

A=TrLD 'Ullc. (4.1)

Note that, the matrices IIg and Ils can be represented as integer vectors to save space.
The matrices L and U have specific structures:

L= (%) and U= (0 0) (4.2)

where L is an 7 x 7 lower triangular matrix, Uisanr xr upper triangular matrix, both
invertible, and L, U are arbitrary integer matrices with sizes (m —r) x r and r X (n —7),
respectively.

For example, the matrix A below has m = 5 rows, n = 4 columns, and rank r = 3:

29

CHAPTER 4. BASIC TOOLS 30

4 9 16 29
-1 -6 —-19 —16
A=| 1 5 15 19 (4.3)
5 6 -1 —12
5 10 15 20

Its fraction-free LDU factoring using full pivoting is

00100 -1 0 0
-1 ' 1000
1 0000 11 0 -1 0 0 -1 -6 —16 19
| 0100
01000 4 15 80 0 -1 0 0 1 -3, 4
—————————— ‘ 0001
00010 5 24 —164 0 0 —80 0 0 -8 ' 0
| 0010
000 0 1 5 20 —120

As detailed in Chapter 6, the factoring enables the exact solution of the system Az = b
for any integer vector b, yielding a rational vector z.

4.2 Using the hints

Besides exact system solving, the other main tool that we use is the least squares (quadratic
optimization) method with affine constraints. This method is used whenever there is more

than one solution pf, to find the one that is ‘closest’ to the given hints p/,.

/
n

) of values that minimizes the distance between each new value z” and the

Given a vector ©' = (zf,...,x) of desired values, we want to find a vector z” =

1/
n

(xf, ..,z
desired value z’, while satisfying a set of constraints Az” = b, where A is any m x n
matrix and b is a vector of m elements. More precisely, we want to find the vector x” that

minimizes the goal function
S(x) = Z wy(zs — 20)? (4.4)
s=1

where the coefficient wy is a weight that indicates the importance of honoring the hint 2/
(the higher the weight value wy is, compared to the other weights, the more the algorithm
will try to make value 2 close to z%).

This subproblem reduces to solving a linear system that includes the equations Az = b,
as detailed in Chapter 9.

CHAPTER 4. BASIC TOOLS 31

4.3 Redundant equations

In many applications, there are often redundant constraints, especially when some of the
parameters are considered fixed. Therefore, one of the subproblems that we need to solve
is to identify and ignore such redundant constraints.

This task is a side effect of computing the fraction-free LDU factoring of the matrix
A of the constraint system Az = b.

If the rank r determined during the factoring is less than m, as in example (4.3), the
system Ax = b has redundant equations, and can be replaced by

Az =0b (4.5)

where A is an 7 x n matrix which is the first r rows of H;{IA = LD~ 'UIlg, that is,
LD~ 'UTlg; and b is an r-element column vector, which is the first r rows of IIz'b. For
the example 4.3, we have

-1 0 0 1 0 071 '[=1 -6 —-16 —19 3?88

A= 1 1 o0 0 -1 0 0 1 =3 40|01
4 15 — _ _

5 —80 0 0 —-80 00 =80 o]0,

= 1) 15 19
4 9 16 29

(-1 -6 -—19 —16]

4.4 Multidimensional parameters

As observed in Chapter 2, in some applications each parameter is a vector from some
Cartesian space R? and each constraint is an affine equation on vectors of R%. For example,
the ECLES algorithm generalizes trivially to this case. The application we consider in
Parts II and III has d = 2.

Then equations (2.1) and (4.5) can be rewritten as RP = @) and AX = B, where P, @,
X, and B are matrices with d columns. This is the case, in particular, of the application
we consider in Parts II and III. So, in the rest of this thesis, we make this assumption.

Chapter 5

The ECLES Method

In this chapter, we provide a detailed description of our interactive and general param-
eter editing method, that we call ECLES (Editing by Constrained LEast Squares). This
method is suitable for editing any kind of object that is defined by parameters subject to
linear or affine constraints.

ECLES solves the problem defined in Chapter 2 computing a set of values Pj for a
given set D of derived parameters, so as to satisfy a set of linear constraints after the user
changes the anchor parameters to given values P/, and provides hints P, for the derived
ones.

5.1 Simplified description

The ECLES method consists of two procedures, ECLES.Initialize and ECLES.Update.
The ECLES.Initialize procedure, described with more detail in Section 5.2, is called
when the user chooses the sets A and D of parameters to be adjusted through some
editing software (the user interface). The ECLES.Update procedure is then called one or
more times as the user specifies new values P, for the anchors, to modify those parameters
so that all constraints remain satisfied. See Figure 5.1.

ECLES
A, D, R
- ECLES.Initialize
Q, P
Aplicagéio .A f’ £ HR,L D, U HC T
,,,,,,,,,,,,,,,,,,, yoooo
Q, R, P
ECLES.Update
Py

Figure 5.1: Interaction model between application and the ECLES algorithm.

32

CHAPTER 5. THE ECLES METHOD 33

The ECLES.Initialize procedure identifies the subset £ C R of relevant constraints
and the set 7/ C F of the fixed relevant parameters. This process reduces the editing
problem to the relevant parameters A U D U F’ and the relevant constraints £. The
ECLES.Initialize procedure also checks whether there are redundant constraints in the
set £.

Optionally, the procedure also verifies if the sets A and D, provided by the applica-
tion, satisfy the strong solvability condition of the ECLES. In any case, it returns the
coefficient matrix of the non-redundant constraints, in factored form, to be used by the
ECLES.Update procedure.

Basically, the ECLES.Update procedure, described with more detail in Section 5.3,
solves the linear system that combines the set of non-redundant relevant constraint, the
specified anchor values P/, and the hints Py, and computes the derived values Pp.

5.2 The ECLES.Initialize procedure

After defining the set £, ECLES.Initialize extracts the relevant equations and rewrites
them in the form of the system (2.3).

In general, there may be redundancies in system (2.3). The ECLES.Initialize pro-
cedure computes the fraction-free LDU factoring (described in Section 4.1) of the ma-
trix Rgp into integer matrices L, D, U, and permutation matrices [Ig and Ilg, such that
Rep = IR LD 1UTIc. In the process, it obtains the rank r of Rep. The first r rows of
H;{IRgD are a set of non-redundant equations. These steps are formalized in Algorithm 1.

Algorithm 1: ECLES.Initialize

Input: A: set of indices of the a anchor parameters;
D: set of indices of the n derived parameters;
R: | X ¢ coefficient matrix of all constraint equations;
@: m X j matrix of independent terms of all constraints;
P: n x 7 matrix of the current values of all parameters;
strong: boolean flag requesting strong satisfiability;
method: the simplification method of the factoring.

Output: F': set of indices of the f relevant fixed parameters;
E: set of indices of the m relevant constraints;
Ig, L, D, U, I, r: fraction-free LDU factoring of Rgep.
1 begin
2 (€, F') + ECLES.ExtractRelevant (A, D, R)
3 (Ilg, L, D, U, g, r) < LinSys.LDUFactor (Rep, method)
4 if strong then
5 if not ECLES.CheckStrongSolvabitity (R,&, A, F',Q, P, 1lg, L,r) then
6 L L error “Strong solvability is not satisfied!”

CHAPTER 5. THE ECLES METHOD 34

If the strong solvability (see Section 5.2.2) is required, the ECLES.Initialize proce-
dure checks it in step 5. If the solvability condition of the ECLES method is not satis-
fied, then the ECLES.Update is not called. Otherwise, the information returned by the
ECLES.Initialize procedure will be used by the ECLES.Update procedure in order to
constructs a non-redundant linear system (see Section 5.3).

5.2.1 The ECLES.ExtractRelevant procedure

The ECLES .ExtractRelevant procedure identifies the equations of R that depend on any
parameter of the sets A or D. The set £ of relevant constraints consists of these equations.
Based on the set &£, the ECLES.ExtractRelevant procedure defines the set F’ of fixed
relevant parameters. These steps are formalized in Algorithm 2.

Algorithm 2: ECLES.ExtractRelevant
Input: A: set of indices of the a anchor parameters;
D: set of indices of the n derived parameters;
R: | x ¢ coefficient matrix of all constraint equations.

Output: &: set of indices of the m relevant constraints;
F': set of indices of the f relevant fixed parameters.
1 begin
2 for i< 1to !l do
3 if (3je{l,...,¢}),7 € AUD then
4 L &« EU{i}

5 for each 7 € £ do

6 for j + 1 to cdo

7 if ((Re¢)i; #0) and (j ¢ AUD) then
8 L F +— F U{j}

5.2.2 The ECLES.CheckStrongSolvabitity procedure

The ECLES.CheckStrongSolvabitity procedure verifies whether the relevant constraints
can be satisfied for any assignment of values of the anchor parameters. The mathematical
justification is described in Section 8.2.2. These steps are formalized in Algorithm 3.

CHAPTER 5. THE ECLES METHOD 35

Algorithm 3: ECLES.CheckStrongSolvabitity
Input: R: [x ¢ coefficient matrix of all constraint equations.;

E: set of indices of the m relevant constraints;
A: set of indices of the a anchor parameters;
F': set of indices of the f relevant fixed parameters;
@: m X j matrix of independent terms of all constraints;;
P : n x 7 matrix of the current values of all parameters;
IIg: m x m permutation matrix of rows;
L: m x r lower triangular matrix of integer coefficients;
r: rank of the matrix Rgp.
Output: Boolean flag indicating if the strong solvability condition is satisfied.

1 begin

2 C « Uz (Qe — Rer Prr)

3 | K<« IIg'Res

4 (C,C) < LinSys.SplitRows(C,r)

5 | (K,K) < LinSys.SplitRows(K,r)

6 X, « L7\C

7 X, « LK

s | Vi LX,

9 Yo + ng

10 return Y; = C and Yy = K

5.3 The ECLES.Update procedure

If strong solvability was not checked in ECLES.Initialize, the ECLES.Update procedure
first uses the method, described in Section 5.3.1, to determine if the weak solvability
condition of the linear system (2.3) is satisfied for the given values P/ and current values
of Pr.. That is, if there is a displacement Pj} of the derived points such that all constraints
in Re are satisfied. When this condition is not satisfied, the ECLES.Update procedure
returns a message to the application notifying that the specified anchor parameter values
are not valid. Then, for example, the procedure cancels the editing action and the user
must select new values for the anchors.

Otherwise, if the solvability condition is satisfied, the values PJ of the derived param-
eters are computed by the ECLES.Update procedure, each time the suggested values P,
are given by the user interface, by solving the system

~

AP =B (5.1)

where A is the first 7 rows of LD~ 'UTl¢ and B is the first r rows of HP_{IB, obtained from
the ECLES.Initialize.

The ECLES . Update procedure solves the least squares system, equations (9.6) and (9.8),
obtaining the new computed values Pj for the derived parameters. This method is de-
scribed with more detail in Section 9.1.

CHAPTER 5. THE ECLES METHOD 36

The steps described in this section are formalized in Algorithm 4.

Algorithm 4: ECLES.Update
Input: A: set of indices of the a anchor parameters;

F': set of indices of the f relevant fixed parameters;
E: set of indices of the m relevant constraints;
R: | x ¢ coefficient matrix of all constraint equations;
@: m X j matrix of independent terms of all constraints;
IR, L, D,U,Ilg, r: fraction-free LDU factoring of Rep;
P': n x j matrix of the suggested values of all parameters.

Output: PJ: n x j matrix of the new values of the n derived parameters.
begin

2 | B+ Qg — ReaP — Rer Pr

s | (B, B) < LinSys.SplitRows(II;'B,7)

4 | (L, L)+ LinSys.SplitRows(L,")

5 | if ECLES.CheckWeakSoluabitity(L, L, B, B) then

6 | Pj < LSQ.Solve (M, L, D, U, Il¢, B, P')

7 else

L error “Weak solvability is not satisfied!”

[uny

5.3.1 The ECLES.CheckWeakSolvabitity procedure

The ECLES.CheckWeakSolvabitity procedure verifies whether the relevant constraints
can be satisfied for given values of the anchor parameters. The mathematical justification
is described in Section 8.2.1. These steps are formalized in Algorithm 5.

Algorithm 5: ECLES.CheckWeakSolvabitity
Input: L: v x r lower triangular matrix of integer coefficients;
L: (m —r) x r lower triangular matrix of integer coefficients;
B: r x r matrix of the right-hand side of integer coefficients;
B: (m —) x r matrix of the right-hand side of integer coefficients.
Output: Boolean flag indicating if the weak solvability condition is satisfied.
1 begin
2 X« L 'B
3 Y « LX
4 return Y = B

Chapter 6

Fraction-Free LDU Factoring

In this chapter, we describe the technique used to solve linear systems with integer co-
efficients. We need to exactly solve the system in order to check for linearly dependent
equations. The basic idea has described by Jeffrey [43]. We reimplemented his algorithm
with minor differences in the pivoting strategy (full pivoting instead of partial pivoting)
column permutation.

6.1 The main algorithm

We now describe the full fraction-free LDU factoring procedure used by ECLES. The
factorization (4.1) can be obtained by adapting the Gauss-Jordan elimination algorithm
to use fraction-free integer arithmetic that uses cross multiplication to avoid fractions.
Namely, we use the pivot value to multiply the target row, instead of dividing the pivot
row. As we shall see, it is important to simplify the matrices during this algorithm by
removing common factors of the coefficients in each equation.

The factoring is executed by the procedure LinSys.LDUFactor (Algorithm 6) which
factors the matrix A into matrices I, L, D~', U and II¢. Recall that the matrices Iz and
II can be represented as integer vectors to save space. This procedure is more complicated
than necessary because it allows the user to choose between three simplification methods,
as discussed further on.

The rank 7 of the matrix is the number of nonzero rows of the triangularized matrix
U. In step 15 of LinSys.LDUFactor, the procedure LinSys.RemoveNullParts discards
all zero rows and columns of the resulting matrices L, D, and U.

The main loop invariant of this algorithm (I1) states that formula (4.1) is valid; that
is, the matrices Iz, L, D!, U and Il¢, in that order, are a factorization of the input
array A. This invariant is true before and after every step.

37

CHAPTER 6. FRACTION-FREE LDU FACTORING 38

Algorithm 6: LinSys.LDUFactor

Input: A: m X n matrix of integers;

method: the simplification method: “None”, “GCD” or “Turner”.

Output: IIg: m x m row permutation matrix;

L: m x r lower triangular matrix of integer coefficients;
D: r x r diagonal matrix of integer coefficients;

U: r x n upper triangular matrix of integer coefficients;
[Te: n X n column permutation matrix;

r: rank of the matrix A.

1 begin

2 IR < Lnsm; L < Lxm; D Lywm; U < Apsn; o < Lixn

3 141,74+ n

4 while : <m and i < j do

5 (7, g, L, U,1l¢) < LinSys.Pivot(i, j, m,n, g, L, U, 1)

6 if U; # 0 then

7 if i =1 then

8 L (L,D,U) < LinSys.SimplifyURow(i — 1,4,n,m, L, D, U, method)
9 Lii <= LyjUsi 5 Di; <= DyUsi

10 for t from ¢+ 1 to m do

11 (L,D,U) < LinSys.EliminateVariable(i,t,n, L, D,U)
12 (L,D,U) < LinSys.SimplifyURow(i,t,n, L, D, U, method)
13 (L, D) « LinSys.SimplifyLColumn(i, m, L, D, method)

14 141+1

15 r<«i—1; (L,D,U) < LinSys.RemoveNullParts(L, D,U,r)

A secondary loop invariant (I2) says that the matrices L and U are partially triangulated

and the rank of A is at least i. Specifically:

the first ¢ — 1 rows and columns of U are an upper triangular matrix with nonzero
elements in the diagonal;

the elements in rows ¢ to m and columns 1 to ¢ — 1 and j 4+ 1 to n of U are zero;

the first ¢ — 1 rows and columns of L are a lower triangular matrix with nonzero
elements in the diagonal;

all elements of the diagonal of D are nonzero;
the elements in rows 1 to i — 1 and columns 7 to m of L are zero;

rows ¢ to m and columns ¢ to m of L are an identity matrix.

Loop invariant 12 is true before step 2 and after step 14, inclusive. See Figure 6.1.
In addition, after step 3 an additional condition holds: the element U;; is nonzero and

elements U1 j to Uy, are all zero (invariant 12').
The factorization is complete when j < ¢, that is, rows ¢ to m of U are zero.

CHAPTER 6. FRACTION-FREE LDU FACTORING 39

1 m 1 +++ 4 -+ m 1 -+ 1 em 1 .- 17 n 1 n
1 1 _L\H 1 1_L\—H-‘ 1
1 g i i i .
m m m m
L D U .

Figure 6.1: Invariant 12 of Algorithm 6. The gray parts are nonzero elements.

6.2 Pivoting

The auxiliary procedure LinSys.Pivot swaps the rows and columns of L, D, U (and IR,
1) to bring the chosen pivot element Uy, to position Uy;. It may also reduce j.

Algorithm 7: LinSys.Pivot
Input: i: current row in the factoring process;

j: last column nonzero in matrix U;
m: number of rows in matrix A;
n: number of columns in matrix A;
[g, L, U,1l¢: factoring satisfying invariants [1 and 12.
Output: j: last column nonzero in matrix U;
Ilg, L, U, 1lc: updated factoring.

[uy

begin

T 1+ 1 y<—1; 505t 1

(U,T¢, j) + LinSys.GatherNonzeroColumns (i, j, U, Il¢)
if j < then

| return (j,TIg, L, U, Ic)

U wN

6 pivot < Uy

7 for p from 7 to m do

8 for ¢ from 7 to j do

9 if Uy, # 0 and (pivot = 0 or |U,,| < |pivot|) then
10 pivot <= Upg;
11 S pt<4—gq
12 if pivot = 0 then
13 j+—1—1
14 return (7, Ig, L, U, 1)

15 if i #t then
16 t (U,1l¢) - LinSys.SwapColumns(i,t, U, Il¢)

17 if i # s then
18 t (Ilg, L, D,U) < LinSys.SwapRows (i, s,IIg, L, D, U)

CHAPTER 6. FRACTION-FREE LDU FACTORING 40

6.3 Variable elimination

The auxiliary procedure LinSys.EliminateVariable modifies the matrix U so that row
t (> 1) does not depend on permuted variable i.

Algorithm 8: LinSys.EliminateVariable
Input: ¢: current row in the factoring process;
t: next row in the factoring process;
n: number of columns in matrix A;
L, D,U: matrices of the factoring.
Output: L, D,U: updated factoring.
1 begin
2 Ly < Ly Uy
3 Dy < Dy Uy,
4
5

for s from 7+ 1 to n do
L Uts — (Uzz Uts) - (Uti Uzs)

6 Uti<_0

On input, invariants I1 and 12’ are valid. On output, row ¢ of U, L;;, and D;; are modified
so that invariants I1 and 12" are still valid, and U;; = 0.

6.4 Row and column simplification

The procedure LinSys.SimplifyURow eliminates common factors of the row ¢ of the
matrix U, adjusting L and D so that invariant I1 is preserved. It does not affect invariant
12’. Depending on the method argument, it can use GCD (Greatest Common Divisor)
elimination, or Turner’s GCD-free method, or (for comparison purposes) no simplification
at all. See Chapter 7.

Algorithm 9: LinSys.SimplifyURow
Input: i: current row in the factoring process;
t: next row in the factoring process;
n: number of columns in matrix A;
L, D,U: matrices of the factoring;
method: the simplification method: “None”, “GCD” or “Turner”.
Output: L, D,U: updated factoring.
1 begin
2 if method = “GC D" then
3 | (L,U) + LinSys.SimplifyURowGCD(i, ¢, n, L,U)

else if method = “Turner” then
| (D,U) « LinSys.SimplifyURowTurner (i, ¢,n, D,U)

[S B

If the simplification method is “GCD”, the procedure LinSys.SimplifyLColumn eliminates
common factors of the column ¢ of the matrix L, adjusting D so that invariant I1 is

CHAPTER 6. FRACTION-FREE LDU FACTORING 41

preserved. See Chapter 7. It does not affect invariant 12’. This procedure does nothing
when method is “Turner” or “None”.

Algorithm 10: LinSys.SimplifyLColumn
Input: ¢: current row in the factoring process;
m: number of rows in matrix A;
L, D: matrices of the factoring;
method: the simplification method: “None”, “GCD” or “Turner”.
Output: L, D: updated factoring.
1 begin
2 if method = “GC D" then
3 L L (L, D) « LinSys.SimplifyLColumnGCD(i, m, L, D)

6.5 Computing cost

?n) arithmetic operations

The procedure LinSys.LDUFactor (Algorithm 6) executes ©(m
for a general m x n matrix of rank m. Multiplication of two t-bit numbers takes time
O(#?). Since the bit size of the matrix entries grows like ©(m) (whether with GCD or

Turner’s simplification), the running time of the LinSys.LDUFactor algorithm is ©(m?n).

Chapter 7

Simplification Techniques for LDU
Factoring

In this chapter, we justify the need for elimination of common factors presenting the
plain fraction-free Gaussian elimination, and describe two simplification methods (GCD
and Turner). We compare both methods according to the bit size growth of the matrix
elements resulting of the fraction-free LDU factoring, described in Chapter 4

7.1 Plain fraction-free Gaussian elimination

The following example [87] shows the execution of the straightforward fraction-free Gauss-
Jordan elimination on a matrix A without elimination of common factors, obtaining the
matrix U. We omit the processing of the L and D matrices and the pivoting step, for

clarity.
(8 7 4 1 8 7 4 1
4 6 7 3 0 20 40 20
A:U:

6 346| |0 —18 8 42
45 8 2 0 12 48 12
(8 7 4 1 8 7 4 1

{020 40 20| 020 40 20
0 0 880 1200 0 0 880 1200
[0 0 480 0 0 0 0 —576000

A practical problem when using this algorithm is that the bit size of the integers generated
during the elimination grows exponentially with the number of equations [33|. In this
example, the elements of the original matrix U are in signed 3-bit integers (excluding
sign) but the resulting U matrix has 21-bit integers. In general, if the input numbers have
t bits (excluding sign), the final matrices will have ¢ - 2"~! bits, where r is the rank (the
number of non-redundant equations). See Figure 7.1.

42

CHAPTER 7. SIMPLIFICATION TECHNIQUES FOR LDU FACTORING 43

-10° -10° -10°
1 T T T — 2 T T T — 1 5
aan o e o L o]
~ L Q - | |
p 0.8 PIETT = 0.8
)) [
Z 0.6 5 S 06 R
= = 1f =
= 04r = = 04F 1
= 3 ES
£ 0.2 E 05F £ 02
g el] 2)
g ES g
Of eeeceeo B Of eeeeeoe 0 eeeeese B
Il Il Il Il Il Il Il

L L L L L Il Il Il
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
rows in the matrix A rows in the matrix A Rows in the matrix A

Figure 7.1: Bit size growth in the trivial factorization without simplification for random matrices
as a function of the number of rows m. The vertical axis is the maximum bit size
among all entries observed by factoring 1000 matrices with n = 15 columns and
varying number m of rows, with randomly chosen 10-bit signed integer elements.
Note that the bit size stops growing when m exceeds n. The slight decrease for
m > n is due to the better chances of finding a small pivot as m increases.

7.2 Simplifying by GCD elimination

The bit size growth of the numbers can be greatly reduced by dividing each computed
row by the GCD of its coefficients. Therefore, the range growth in subsequent stages of
the elimination is restricted to a level inherent in the problem. The following example [87]
shows the result for on the same matrix U.

8 7 4 1 8§ 7 4 1 8§ 7 4 1 8§ 7 4 1
U — 4 6 7 3 N 0 1 2 1 o 01 2 1 01 2 1
6 3 4 6 0 -9 4 21 0 0 11 15 0 0 11 15
4 5 8 2 0 1 4 1 00 1 O 00 0 1

In this example the elements of the resulting matrix U can be stored in 5-bit signed
integers. Note that the L matrix must be adjusted too to maintain the invariants. With
this optimization, we observe experimentally that the bit size of the elements in the
matrix U grows linearly with the number of equations (specifically, close to ¢ - r), instead
of exponentially.

To obtain a linear growth of the matrices L and D, the columns of the matrix L and
the related elements of the matrix D can be divided by the GCD of its coefficients. See
Figure 7.2.

These simplifications are described by the procedure LinSys.SimplifyURowGCD. This
procedure finds the largest common factor GCD in row ¢ and divides that factor into that
row, and multiplies it into column ¢ of L.

The procedure LinSys.SimplifyLColumnGCD finds the GCD common factor between
the column 7 of the matrix L and the element D;; of the matrix D. Then, it divides the
column ¢ of L and the element D;; by that GCD factor.

CHAPTER 7. SIMPLIFICATION TECHNIQUES FOR LDU FACTORING 44

1007 T T T — T T T T T
2 - -
200 - 00

300 |-

—
ot
f==}
T
I

150 |

100 100 |- b

SN
T
I

50

maximum bit size in L
maximum bit size in D
maximum bit size in U

fe=l
T
fe=l
T
I

0 5 0 15 2 0 5 0 15 20 0 5 0 15 20
rows in the matrix A rows in the matrix A rows in the matrix A
Figure 7.2: Bit size growth with the GCD simplification methods for random matrices as a
function of the number of rows m. The vertical axis is the maximum bit size among

all entries observed by factoring 1000 matrices varying the size m = n of rows and
columns, with randomly chosen 10-bit signed integer elements.

Algorithm 11: LinSys.SimplifyURowGCD
Input: ¢: current row in the factoring process;
t: row to simplify;
n: number of columns in matrix A;
L, U: factoring matrices.
Output: L,U: updated factoring.
1 begin
2 ged <= Uy i
3 for s from i + 1 to n and (ged # 1) do
4 | ged + LinSys.CalculateGCD(ged, Uy)

5 if ged > 1 then

6 for s from 7+ 1 to n do
7 L Uss < Uss/gcd
8 Ltt <— Ltt * ng

Algorithm 12: LinSys.SimplifyLColumnGCD
Input: i: current row in the factoring process;
m: number of rows in matrix A;
L, D: factoring matrices.
Output: L, D: updated factoring.
1 begin
2 ged < Dy
3 for ¢t from ¢ to m while ged # 1 do
4 | ged + LinSys.CalculateGCD(ged, Ly;)

5 if gcd > 1 then
6 for ¢ from 7 to m do

8 Ly; + Lyi/gcd

CHAPTER 7. SIMPLIFICATION TECHNIQUES FOR LDU FACTORING 45

7.3 Turner’s GCD-free simplification

In 1968, G. H. Bareiss [4] observed that some common factors in the computed rows are
predictable and can be avoided by using more complex formulas in the elimination step.
Later, in 1995, Peter R. Turner [87] observed that some of these factors can be found
easily. Specifically, after elimination of variable ¢, the diagonal element of row i — 2 of the
partially triangulated matrix divides all the elements of the new rows ¢, +1,...,m.

The following example shows the execution of the fraction-free Gaussian elimination
with Turner’s simplification on the same matrix U.

8 7 4 1 8 7 4 1
4 6 7 3 0 20 40 20
U = — (first stage)
6 3 4 6 0 —18 8 42
i 4 5 8 2 0 12 48 12
(8 7 4 1 8 7 4 1
0 20 40 20 0 20 40 20
— — (second stage)
0 O 880 1200 0 0 110 150
(0 0 480 0 0 0 60 0
(8 7 4 1 8 7 4 1
0 20 40 20 0 20 40 20 .
N — (third stage)
0 0 110 150 0 0 110 150
i 0 0 0 —9000 0O O 0 —450

Note that, in the second stage, the pivot U1; = 8 divides all elements of sub-matrix U;; with
i,7 € {3,4}. In this example, the original matrix has 3-bit integer elements, and the computation
can be performed using 16-bit integer arithmetic.

Turner’s algorithm has the advantage that the determinant of the original matrix U is au-
tomatically detected as the final value of U, (apart from signed changes, if pivoting is used).
Still, Turner’s algorithm reduces the growth in the bit size of elements to linear instead of expo-
nential [4, 33, 87].

A comparison between GCD and Turner’s simplification shows that the bit size growth in
the factored matrices is similar in both methods. See Figure 7.3.

T T T T T T
200~ GCD 400 |-|—* GCD B . - GCD

20000 o Purner) Q —=—Turner o 200 & Turner)
R k= 8
§ 150} g 9007 £ 10| 1
i 100 | 2 200 2 ook i
e = g
g g
£ o) £ 0] £ 5ol |
g ! E

0r 0 ol i

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
rows in the matrix A rows in the matrix A rows in the matrix A
Figure 7.3: Comparison of the bit size growth between the GCD and Turner simplification meth-
ods for random matrices as a function of the number of rows m. The vertical axis
is the maximum bit size among all entries observed by factoring 1000 matrices with

n = 20 columns and varying number m of rows, with randomly chosen 10-bit signed
integer elements.

CHAPTER 7. SIMPLIFICATION TECHNIQUES FOR LDU FACTORING 46

The procedure LinSys.SimplifyURowTurner implements the Turner’s algorithm to eliminate the
common factors in row ¢t. Note that Turner’s simplification does not modify the matrix L.

Algorithm 13: LinSys.SimplifyURowTurner
Input: ¢: current row in the factoring process;
t: next row in the factoring process;
n: number of columns in matrix A;
D, U: factoring matrices.
Output: D,U: updated factoring.
1 begin

2 if ¢ > 2 then

3 for s+ i+1tondo
4 L Us < Uts/Ui—l,i—l
5 Dy < Utt/Ui—l,i—l

However, while Turner’s method saves some time by eliminating the computation of the GCD,
it may result slightly in a bit larger numbers, because it fails to eliminate some common factors
that may arise by coincidence — like the factor 20 in row 2 of the example. It also saves time
by not modifying the matrix L. Other authors have identified additional common factors in the
matrices L, D, and U that can be eliminated computing the GCD [58].

Originally, the fraction-free factoring method was defined only for square or non-singular
matrices [4, 24, 60, 65, 96]. In this thesis, we follow the presentation of D. J. Jeffrey [43] which
can be applied to arbitrary rectangular matrices of any rank r.

7.3.1 Bit size growth for rank deficient matrices

The previous results hold also for rank-deficient square matrices: the bit size grows linearly in
the rank r. The factoring of matrices with rank deficient using the GCD simplification generates
smaller matrix elements. See Figure 7.4. In these tests, each matrix was obtained by multi-
plying two matrices of size 20 x r and r x 20 with random elements in the appropriate range

[— /2] -+ - 4 [\/2872/r], where t is the bit size of the final matrix elements.

250 -

T T T T T
120 | —— GCD 4 —— GCD 120 |-|—e— GCD N
= —=— Turner Q —=— Turner S) —a— Turner
g 100 | § R E 200 - b £ 100 | B
7 801 1 ‘7 150 } w 80 a
_E 60 4 TE 100 | E 60 - b
g dof | g E dof .
7 750 1 "
g 20| 4 = £ 20p B
0 L Il Il Il Il Il il 0 i Il Il Il Il Il | () L Il Il Il Il Il]
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
rank of the matrix A rank of the matrix A rank of the matrix A

Figure 7.4: Comparison of the bit size growth between the GCD and Turner simplification meth-
ods for random rank deficient matrices as a function of the rank r. The vertical axis
is the maximum bit size among all entries observed by factoring 1000 20 x 20 matrices
varying the deficient rank r, with 10-bit signed integer elements.

CHAPTER 7. SIMPLIFICATION TECHNIQUES FOR LDU FACTORING

47

7.3.2 Bit size growth for random sparse matrices

In this section, we determine the bit size growth for the case when the matrix is sparse, as a

function of its density h of non-zero elements. Figures 7.5 and 7.6 show how the bit size grows as

a function of the number m = n of rows and columns for fixed densities A ~ 0.10 and h ~ 0.25.

Figure 7.7 show how the bit size varies with A for a fixed matrix size.

maximum bit size in L

500

400

300

200

100

0

—— GCD

—=— Turner

|
20 25 30 35 40 45
rows in the matrix A

50

rows in the matrix A

500

rows in the matrix A

— : : \
~~ GCD -
QH 800 = 400 | = Turner
5 600 Z 300
2 5
5 200 % 100| :
g E
() Il Il Il Il Il Il Il ()7 Il Il Il Il Il Il Il
20 25 30 35 40 45 50 20 25 30 35 40 45 50

Figure 7.5: Comparison of the bit size growth between the GCD and Turner simplification meth-
ods for random sparse matrices as a function of the number of rows m. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse

maximum bit size in L

500

400

300

200

100

matrices varying the

size m = n of rows and columns, with densities A =~ 0.10 and

10-bit signed integer elements.

—— GCD R

—=— Turner

20 25 30 35 40 45
rows in the matrix A

50

rows in the matrix A

h

rows in the matrix A

1,000 “e~ GeD 1 500 =~ GCD
Q —=—Turner '.l'... S —=—Turner
=1 =

3 800 5400

£ 600 Z 300|

é 400 5

2: g 200 |-

= 200 T

20 25 30 35 40 45 50 20 25 30 35 40 45 50

Figure 7.6: Comparison of the bit size growth between the GCD and Turner simplification meth-
ods for random sparse matrices as a function of the number of rows m. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse

matrices varying the

size m = n of rows and columns, with densities h = 0.25 and

10-bit signed integer elements.

CHAPTER 7. SIMPLIFICATION TECHNIQUES FOR LDU FACTORING 48

T T T T T T T T T T

200 |~ GCD g p——— 400 [-|-e— GCD . m w R 200 L|—— GCD .
~ —=— Turner /'/'/J S —u-Turner | — S) —= Turner | - —e—°
£ 150 1 g 3001 | g 150 3
7 5 3
p= 2 z
= E 200} ;=
= 100 h =) = 100 |- b
g g g
El = 100 |- B £
5 o50) 1 2 £ os50f 1

0r i

| | | | | | | | | | | |
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
percentage of non-zeros in the matrix A percentage of non-zeros in the matrix A percentage of non-zeros in the matrix A

Figure 7.7: Comparison of the bit size growth between the GCD and Turner simplification meth-
ods for random sparse matrices as a function of the density h. The vertical axis is
the maximum bit size among all entries observed by factoring 1000 20 x 20 sparse
matrices varying the density h, with 10-bit signed integer elements.

7.3.3 Bit size growth for sparse matrices with deficient rank

Figures 7.8 and 7.9 show how the bit size grows as a function of rank r for densities h ~ 0.10
and h = 0.25. Figure 7.10 show how the bit size varies with h for a fixed matrix size.

T T T 150 F— T L 80 F T L
80— GCD » -~ GCD o —o— GCD o,
| —=— Turner " "\ _Q —=—Turner [= S —=—Turner S
P - = | n/ 2 60k \m
g 001 . g 100 I I o
2) ' | B o E a0f |
g g . g
E = 50 B 3
E g =
g 20 1 % 2 20 |
B g E
oL woed’s% |
0k \ \ . L | \ \ | . 0k | \ . I
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
rank of the matrix A rank of the matrix A rank of the matrix A

Figure 7.8: Comparison of the bit size growth between the GCD and Turner simplification meth-
ods for random rank deficient sparse matrices as a function of the rank r. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse ma-
trices varying the size m = n of rows and columns and the rank deficient r, with
densities h = 0.10 and 10-bit signed integer elements.

CHAPTER 7. SIMPLIFICATION TECHNIQUES FOR LDU FACTORING 49

T T T T T T
120 |- GCD " —— GCD " 120 - GCD LI
| | = Turner 200 | —= Turner an = 1001 —=— Turner !'l.. |

60 - d_.n-"- 1

40 - b

maximum bit size in L
D
o
T
L
maximum bit size in D
—
= -
o
T
L
maximum bit size in U

20 - 1

07\ Il i 0 Il Il \7 07\ Il Il \7

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
rank of the matrix A rank of the matrix A rank of the matrix A

Figure 7.9: Comparison of the bit size growth between the GCD and Turner simplification meth-
ods for random rank deficient sparse matrices as a function of the rank r. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse ma-
trices varying the size m = n of rows and columns and the rank deficient r, with
densities h = 0.25 and 10-bit signed integer elements.

T T T 190 F= T — T T T
e GCD b —— GCD ” 6oLl GCD L
~ —=— Turner / Q 100 || = Turner /A) —=— Turner ,/
o = k=
& g 80 E g
o400 1 @ w40 1
5 Z 60F 1 E
=] =1 =1
ES = 40+ E E
£ 20| {1 E T £ 207 1
= 2 L/ i %
= g 20 5]
g g v E
Of & : L i
0t I I I I L I I I I I I 0 I I I I I I
0 02 04 06 08 1 0 02 04 06 038 1 0 02 04 06 038 1
percentage of non-zeros in the matrix A percentage of non-zeros in the matrix A percentage of non-zeros in the matrix A

Figure 7.10: Comparison of the bit size growth between the GCD and Turner simplification
methods for random rank deficient sparse matrices as a function of the density h.
The vertical axis is the maximum bit size among all entries observed by factoring
1000 20 x 20 sparse matrices varying the density h and the rank deficient r, with
10-bit signed integer elements.

7.3.4 Discussion about the results

We can conclude from these tests that sparsity and low rank considerably reduce the running
time of the ECLES.Update algorithm both by reducing the size of the matrices Land U (tomxr
and r x n instead of m x m and n X n, respectively) and by reducing the bit size of their elements.
The last factor is quite significant if full GCD simplification is used instead of the Turner method,
even though the two are nearly equivalent for dense full-rank matrices.

Chapter 8

Solving Exact Linear Systems

In this chapter, we describe the technique used to solve linear systems with integer coefficients
in factored form [43|, obtained from the fraction-free LDU factoring algorithm, described in
Chapter 6.

8.1 Solving the system
We assume in general that the linear system to be solved is
AP =B (8.1)

where P is an unknown array of n rational numbers, and B is a known vector of m integers.
Substituting formulas (4.1) and (4.2) into system (8.1), we have

Mg (%) D! (ﬁ (7) P = B. (8.2)

Letting X = [IcP, Y = UX and, B and B be the first 7 and last m — 7 elements of HP_{IB,

respectively, Equation (8.2) becomes
L B
S| Dly=(2]). (8.3)
L B

We can split the system (8.3) into two systems
ILD'Y =B and LD 'Y =B (8.4)
Since LD~1 is an 7 x r invertible matrix, we can solve the first system for Y
Y = DL 'B. (8.5)

The matrix DL~ turns out to be integer [43], therefore Y is a array of integers.

20

CHAPTER 8. SOLVING EXACT LINEAR SYSTEMS

To solve the system (8.2), we can find X by solving
o\ (X
0 0)()=v
7))

UX =Y -UX

that is, by solving

where X can be chosen arbitrarily. Setting X = 0, we get
X =U"'y.

Then we can get the solution P by
P=T'X.

ol

(8.7)

(8.8)

(8.9)

The matrix U~ is not integer, therefore the computation (8.8) must be done with rational

~

arithmetic, and X is a vector of rational numbers.

The steps for solving the system are formalized in Algorithm 14. The rank r and the matrices

Mg, L, D, U and IIR are received of the LinSys.LDUFactor procedure.

Algorithm 14: LinSys.Solve

Input: L: r x r lower triangular matrix of integer coefficients;
D: r x r diagonal matrix of integer coefficients;
U: r x r upper triangular matrix of integer coefficients;
llc: n X n permutation matrix of columns;

B: n x j matrix of the right-hand side of integer coefficients.

Output: P: n X j matrix of coordinates of the new values of the n parameters.

1 begin

> | Y« DL 'B
3 X« Uy
4 X«0

5 | X + LinSys.JoinRows(X,X)
P« Ig'X

=]

CHAPTER 8. SOLVING EXACT LINEAR SYSTEMS 52

8.2 Checking consistency

The second system LD~'Y = B in Equation (8.4) is non-empty only if the rank r of A is less
than the number of rows m, in which case either some constraints are redundant, or there are
incompatible constraints.

8.2.1 Weak solvability

To verify whether the original system (8.1) is consistent, for the given right-hand-side matrix B,
it is necessary and sufficient to check if the bottom half of the Equation (8.3) is satisfied with
this value Y, that is

LL'B=B. (8.10)

8.2.2 Strong solvability

Strong solvability means that the system (8.1) can be solved assignment Pj’ to the anchor pa-
rameters. Recall that B = Q¢ — Rga P’y — Rer Py then

' B =1 (Q¢ — Rer Prr) — g ' Rea Py (8.11)
We can rewrite the matrix HﬁlB as
II;'B=C-KP)

where C' = I3 (Q¢ — Rez Pr/) and K = I3 Re 4.
The matrices H;B, C and K can be split as

DRCNCE

where E, 6, and K are the r first rows of the matrices HﬁlB, C, and K. Then, we have two
equations

B=C-KPy and B=C-KP}. (8.13)
Substituting B and B in the Equation (8.10), we have
LL-(C-KP))=C—-KP)
LL'C—-C=(LL'K — K)P),. (8.14)

So, to verify whether the original system (8.1) is consistent for any B, it is necessary and sufficient
to check if

LL'C=C (8.15)
LL 'K = K. (8.16)

CHAPTER 8. SOLVING EXACT LINEAR SYSTEMS

8.3 An example

53

Considering the system AP = B, where A is the matrix of the example (4.3), and B the following

integer vector.

4 9
1 -6

A=| 1 5
5 6

5 10

We have the following fraction-free LDU factoring matrices, described in Chapter 4.

00100][-1 o 0
1000 0 11 0
0100 0 4 15 80
000 10| 5 24 —164
0000 1 5 20 —120

1 0 0
1 1 0] -1
15 —80 0
5 24 —164 0
5 20 —120 |
[-1 0 0]
1 1 0[] -1
4 15 —80 0
5 24 —164 0
| 5 20 —120 |

16 29 142
—-19 -16 42
15 19 and B = 40 (8.17)
-1 —-12 —128
15 20 | 50 |
1 | 1 0 0 O
—1 0 0 -1 -6 -16 1 —19
| 010 0
0 -1 0 0 1 -3 4
0 0 0 1
0 0 -80 0 0 —80'! 0
‘ 0 01 0

Then, we have the system

00100 142
o o] " 1000 0 42
1 0 Y=|01000 40
0 —80 00010 —128
] 0000 1] | 50
C
o o] 40
1 0 Y = | 142 (8.18)
0 —80 128
l 50 |

Checking the solvability condition (8.10), we have that the original system A is consistent

5 24
5 20

—164
—120

-1
42

Solving the first system (8.5) for Y, we have

0 0
1 0
0 —80

—1
0 0 —128
1 1 0 40 | = 50
4 15 —-80 142
—-12 —12
8= 51 (8.19)
50 50
-1
-1 0 0 42 42
1 1 0 40 | = —82 (8.20)
4 15 =80 142 —920

CHAPTER 8. SOLVING EXACT LINEAR SYSTEMS

Solving the second system (8.8) for X, we have

-1

-1 -6 —16 42 59
X=| 0o 1 -3 —82 | = | —95/2
0 0 —80 —920 23/2

Setting X = 0, and solving of Equation (8.9) for P, we have

-1

1000 59 59
s_|0 100 —95/2 | | —95/2
0001 23/2 23/2
00 10 0 0

54

(8.21)

(8.22)

The parameter vector P may be converted from rational to floating-point. For example, con-

verting the rational solution P in Equation (8.22), we have

59 59
b | 92 | _ | 475
23/2 11.5

0 0

(8.23)

Chapter 9

Solving the Least Squares Problem

In this chapter, we describe the quadratic optimization (least squares) method [66] with affine
constraints. This method is used whenever there is more than one solution, to find values of P
that are “close” the given hints Py,.

We combine the least squares optimization with the fraction-free LDU factoring, in order to
obtain a best solution for the problem of interactive editing of parameters with constraints.

9.1 Constrained least squares

We now describe in detail the procedure LSQ.Solve used by ECLES.Update, described in Sec-
tion 5.3. It receives the fraction-free LDU factoring of the m X n constraint matrix A, the
right-hand side vector B and the hints P’ for the n unknowns. If r = n, there is a single solution
which is computed by solving the constraint system (2.3) AX = B as described in Section 8.1.

Otherwise, if » < n, the system has many solutions and the procedure has to minimize the
goal function S defined by Equation (4.4) while satisfying the constraints (4.5), as described in
Chapter 4.

At the maximum point, the gradient V.S of the goal function S must be perpendicular to the
solution set of the non-redundant constraints. The gradient consists of the derivatives

oS
0P

(P) :2ws(Ps_Ps/) (91)

for s = 1,2,...,n. To be perpendicular to the constraint solution space, the gradient V.S(P")

must satisfy

a8 U
s k=1

where each variable Ay is an indeterminate real coefficient, the Lagrange multiplier |64] of the
constraint expressed by row k of the system (4.5). From (9.1) and (9.2) we get

n
2w, P+ ApAps = 2w, P, (9.3)
k=1

95

CHAPTER 9. SOLVING THE LEAST SQUARES PROBLEM 56

Equation (9.3) can also be written in matrix form
MP"+ATA=MP (9.4)

where M is the n x n invertible diagonal matrix with Mgz = 2wy; AT is the transpose of A\; and
A is an array with the Lagrange multipliers Aq, ..., Ay,.

We can combine Equation (9.4) with the constraints (4.5) obtaining the least squares linear
system

MP' = MP — ATA
AP" = B. (9.5)

System (9.5) can be solved in two steps; namely, since AM~1AT is r x r invertible matrix, we

can solve the first system for A
AM~*ATA = AP — B. (9.6)

Then we can compute P” by solving
MP" = MP — ATA. (9.7)

That is,
P'=pP — M'ATA. (9.8)

These steps are formalized in Algorithm 15.

Algorithm 15: LSQ.Solve
Input: M: n X n matrix of weight;

L: r x r lower triangular matrix of integer coefficients;
D: r x r diagonal matrix of integer coefficients;
U: r x n upper triangular matrix of integer coefficients;
lg: n X n permutation matrix of columns;
B: r x j matrix of the right-hand side of integer coefficients;
P': n x j matrix of coordinates of the suggested values of the parameters.

Output: P”: n x j matrix of coordinates of the new values of the parameters.
1 begin

2 if r = n then

3 ([7, [7) < LinSys.SplitColumns(U,r)

4 PJ < LinSys.Solve (E, D, [7, Ilc, §)

5 else

6 A« LD 'UTI¢

7 A+ (AM'AT)"Y(AP' — B)

8 P' ¢« P — M'ATA

CHAPTER 9. SOLVING THE LEAST SQUARES PROBLEM 57

9.2 An example

Considering the system AP = B, where A is the matrix of the example (4.3), and B the following

integer vector.

4 9 16 29 142
-1 -6 —-19 -16 42
A= 1 5 15 19 and B= 40 | . (9.9)
5 6 -1 -—-12 —128
| 5 10 15 20 | i 50 |
The matrices A and B are
-1 -6 —-19 -16 42
A= 1 5 15 19 and B = 40 | . (9.10)
4 9 16 29 142

Considering the matrices M and P’ following

20 00 1
2 1
M = 0 00 and P = (9.11)
00 20 1
00 0 2 1
We solve the system (9.5) in two steps. First, solving the Equation (9.6) for A
-1 1
327 —-310 —413 -1 -6 —-19 -16 1 42 —123/20
A= 1| =310 306 420 1 5 15 19 LT 40 | = -23/4 | . (9.12)
—413 420 597 4 9 16 29 1 142 —7/20
To find P”, we solve the Equation (9.8)
—1
1 2 0 00 -1 1 4 3/2
~123/20 /
o110 20 0 6 5 9 ~3/2
P’ = —23/4 | = . (9.13)
1 00 20 —-19 15 16 _7/20 —23/2
1 0 0 0 2 —-16 19 29 23/2
Converting the rational solution P” (9.13) obtained by least squares, we have
3/2 1.5
pro| 32| (9.14)
—23/2 ~115
23/2 11.5

Note that, unlike the solution obtained in Section 8.3, the least squares solution is close to the
vector P’.

Part 11

The 2DSD Algorithm

o8

Chapter 10

Interactive Editing of 2D Spline
Deformations

In this chapter, we describe the problem of interactive editing of 2D spline deformations that are
defined by Bézier control points subject to smoothness constraints.

10.1 Statement of the problem

10.1.1 Deformations

Let Q be some region of R?, the domain. A deformation is a function ¢ from Q to . We consider
here deformations that are polynomial splines defined on a triangular mesh that covers 2. See
Chapter 12. As defined in Section 12.2, the deformation is determined by a set of Bézier control
points that are subject to various continuity constraints.

A deformation is applied to an object (image, 3D model, etc.) by mapping each point p of
the latter to the point ¢(p), and assigning to this point the same properties (color, texture, etc)
that p had.

For many applications, such as solid modeling and image morphing, the deformation must
be smooth, that is, its derivatives must be continuous. Otherwise, it will introduce corners or
creases in embedded smooth objects. See Figure 10.1.

(a)

Figure 10.1: A comparison between space deformations (a) without and (b) with C! continuity.

29

CHAPTER 10. INTERACTIVE EDITING OF 2D SPLINE DEFORMATIONS 60

10.1.2 Meshes and splines

A t-dimensional mesh T is a partition of some domain © C R? into simple parts (or cells) with
pairwise disjoint interiors. We define a (polynomial) spline function on a mesh T with domain
Q as a function f : 2 — R such that the restriction f* of f to each part uw of the mesh is a
polynomial on the coordinates of the argument.

In this thesis, only polynomial spline deformations are considered. Both coordinates of the
spline ¢(p) are polynomial spline functions on the same mesh T, the reference mesh.

10.2 User interface

As described in Chapter 14, the spline to be edited is defined by a set of Bézier control points
which belong to the Bézier patches associated with the faces of the reference mesh. The user is
expected to edit the deformation by moving those control points (e.g. with the mouse).

A typical implementation of the 2DSD algorithm is described in Part III. Generally, we
assume that, in each operation, the user first chooses the operation type (translation, rotation,
etc), the anchor set A, and an initial set D of derived points (that may be enlarged by the
application in order to ensure solvability). Then, the user drags the anchor points with the
mouse. For each new placement of the anchors the editor adjusts the deformation and applies it
to the object being deformed.

For example, in a local soft translation all the anchor points are translated by the same
displacement vector v. The derived points D are automatically updated in order to maintain the
smoothness of the deformation. If there are enough degrees of freedom, the displacement of the
derived points decreases gradually in the their distance from the set A. See Figures 10.2.

Figure 10.2: A soft translation with 2 anchor points (black open dots) and derived points (black
dots) (a) and the result of displacing the anchor points by the vector v (b).

Other operations (local soft rotation, local soft scaling, etc.) are described in Part III.

Chapter 11

Related Work

In this chapter, we present a literature review about methods for deformations of two-dimensional
models and interpolation techniques. We focus, specifically, on techniques that use 2D control
meshes to define the deformation.

2D deformations have many specific applications, and therefore there is no single approach
that is optimal for all of them.

Two-dimensional deformation techniques such as radial basis functions and free-form defor-
mations have been extensively studied in the context of image morphing and registration. These
techniques have been surveyed by Wolberg [91]| and, more recently, by Islam et al. [42]|. Zitova
and Flusser |97] and Sotiras et al. [80] provide reviews of image registration methods, including
2D deformation techniques.

Smooth space deformations also have been extensively studied in the context of three-
dimensional shape editing. See Chapter 16.

Many existing space deformation methods provide continuity (C%) but not smoothness (C').
The few existing techniques for C! deformation either provide little control (like B-splines which
are practical only with a regular grid mesh); or are hard to edit because they have a very large
number of free parameters with non-intuitive effects and constraints; or yield deformations whose
representations become increasingly complex as they are edited.

11.1 Non-spline methods

Some mesh-based space deformation methods attempt to obtain C! smoothness by the use of
non-polynomial interpolating functions, which are determined only by the control mesh vertices
and/or faces. Some techniques are:

e Mean value coordinates: this interpolation technique was one early approach, it is
infinitely smooth almost everywhere, but is not C! at the vertices of the control mesh [29,
30, 40, 45, 52].

e Harmonic coordinates: this interpolation is smooth everywhere, but does not have
closed formulas, and is expensive to compute numerically [44].

o Green coordinates: this technique is one of the most recent approaches to interpolation.
It has closed formulas, but is still expensive to compute. It also yields quasi-conformal
deformations, which partially preserves the shape of the deformed objects. [54, 78|.

61

CHAPTER 11. RELATED WORK 62

e Radial basis functions: another popular approach to non-spline modeling uses a linear
combination of radial basis functions [17, 20]. Each time the deformation is edited, one
radial element is added to its description and its coefficient is manipulated directly by
the user. This approach is very flexible, but has the drawback that the complexity of the
deformation increases without bound as editing goes on. It is also difficult to ensure that
the deformation remains one-to-one, without “fold-over”.

11.2 Spline methods

Many deformation modeling methods use polynomial splines, that is, piecewise-defined functions
where each piece is a polynomial on the domain coordinates, developed by Paul de Casteljau
and Pierre Bézier [25].

Barr [5], and Sederberg and Parry [74] were the pioneers in the development of a space defor-
mation method using splines as interpolation technique, namely free-form deformation (FEFD).
Due to its advantages, the FFD approach has been widely investigated allowing several extensions
and variations [15, 31, 56].

Spline-based deformation editors for modeling of 3D objects generally use a control mesh
consisting of either hexahedra [51, 74] or tetrahedra [8, 41, 95| defined by Bézier control points.
As we shall see in Part III, one can also use prismatic elements [67].

In the two-dimensional context, most spline-based deformation techniques use quadrangu-
lar or triangular patches. Some applications include morphing [53, 63|, registration [73], and
vectorization [92]. Simplicial (triangular or tetrahedral) Bézier patches have the advantage over
quadrangular patches since they can be joined with almost arbitrary topology. On the other
hand, their continuity constraints are more complicated.

Compared to non-spline methods, splines generally use more control points, but can use
a control mesh with fewer cells. An important advantage of the spline approach is that the
complexity of the deformation is independent of its editing history. Namely, the number of
patches and control points is fixed by the choice of the control mesh. Moreover, the existence
of a simple analytic expression for the deformation around a point is an important advantage in
many applications that require derivatives of the deformation.

Chapter 12

Triangular Splines Deformation

In this chapter, we review the theory of Bézier splines defined on simplicial meshes, whose cells
are geometric t-dimensional simplices (intervals, triangles, tetrahedra, etc.). We consider here
specifically the case t = 2, that is Q C R?, so the cells are triangles.

12.1 Triangular Bézier splines

As is well known [50], any polynomial f from R? to R can be conveniently expressed as a linear
combination of the Bernstein-Bézier simplicial polynomials relative to any simplex u. Let p be
a point of R?, and By, 51 and B2 be the barycentric coordinates of p relative to the vertices of a
triangle u. Let d € N be a degree, and i, 5 and k be non-negative integers such that i+ j+k = d.
Then the two-dimensional Bernstein-Bézier polynomial of degree d with indices 4, j, and k is

defined as
d!

iljlk!
There are (d+ 1)(d 4 2)/2 Bernstein-Bézier polynomials (and hence Beézier coefficients) for each

ik (p) = Bijk(Bo, B1, B2) = BB 55 (12.1)

triangle. The set of all polynomials B;j;, with i4-j+k = d is a basis for the bivariate polynomials
of total degree at most d defined on R?. That is, every such polynomial can be written uniquely
as

f)= > ciBip) (12.2)

i+j+k=d

for all p € R2. The coefficients ciji are called the Bézier coefficients of f relative to the triangle
u [50]. The Equation (12.2) says that f(p) is a linear combination of the control coefficients c;;y.
In fact, for any point p in R?, and any simplex u, it can be shown that

> Bip) =1 (12.3)

i+jt+k=d

Therefore f(p) is actually an affine combination of the ¢;;,. Moreover, for any point p in the
simplex u, the values of the polynomials Bi“jk(p) lie between 0 and 1. Therefore these values
form a partition of unity and f(p) is a convexr combination of the c;jy.

Each coefficient ¢;j; can be associated to a nominal position u;;, in the triangle u, whose
barycentric coordinates are, by definition, (i/d, j/d, k/d) relative to u. See Figure 12.1.

63

CHAPTER 12. TRIANGULAR SPLINES DEFORMATION 64

U500 = Uo
U410 #---- & U401
\ /
\ /
N7
U320 g -4 -~ —R U302
\ /U311,
\ / \\ /
N/ N7/
U230 #--—-# - -®_ & U203
/

U221,/ U212/
\ /

\ / \ /

U1 = Uos0

Upg1 UE32 U023 U014

Figure 12.1: Nominal positions u;;;, (dots) of the Bézier coefficients c;;;, for the Bernstein-Bézier
B, of degree 5 relative to a triangle, and the local Bézier control net (solid and
dashed lines).

The triangular grid defined by those points and the edges, shown in Figure 12.1, will be called
the local Bézier control net of the triangle; the union of all those local nets is the global Bézier

control net.

12.2 Using splines to model deformations

A deformation of a region 2 C R" can be defined as a function ¢ : Q@ — R™. A convenient
way of modeling such functions is to let each coordinate of ¢(x) be a spline function ¢, (x), with
0 < r < n; all these splines being of the same degree and defined on the same mesh T. We call
such function a spline deformation. The function ¢ deforms T', the reference mesh, into a new
mesh ¢(T') with curved boundaries, the deformed reference mesh. See Figure 12.2.

(a)

Figure 12.2: A deformation of R? of the (a) reference mesh T in the (b) deformed reference mesh

o(T).

The Bernstein-Bézier polynomial representation can be used to describe the deformation ¢. For
n = 2, let u be a triangle of T' and ¢“ be the part of ¢ with domain u. For each coordinate r
(0 for x or 1 for y), the Beézier coefficient Ciikar of ¢! can be viewed as coordinate r of a point
4;s1» the Bézier control point of ¢* with indices i, j and k. The function ¢“ can be modified by
moving the points ;. See Figure 12.3.

CHAPTER 12. TRIANGULAR SPLINES DEFORMATION 65

U300

3
Up3o Up21 Ugiz Uoos

Figure 12.3: (b) Bézier control points gj3, of a degree 3 patch ¢* from — R? and; (a) their
nominal positions u;j; on the domain triangle u. The curved triangle on the right
is the image of u under the deformation ¢“.

Note that the control points q;‘jk are distinct from their nominal positions wu;jz. They are also
distinct from the images ¢"(u;;;) of those nominal positions, except at the corners. That is,

" (udoo) = Gy, ¢"(uodo) = @60 and ¢“(ugod) = g, but otherwise ¢"(ujx) # qijr in general.

12.2.1 Continuity constraints

Generally, we say that a deformation ¢ : Q — R? is continuous to order r (C") if each coordinate
of ¢ is continuous to order r. This is called parametric continuity which is distinct from the
geometric continuity (G") sometimes used in computer graphics [25]. The latter is not appropriate
here since the parametrization of the deformed mesh ¢(7T') is relevant, not just its shape.

Ensuring C° continuity

A spline function has C° continuity when there are no discontinuities across cell boundaries. For
a spline function f defined on a triangulation T, the C° condition can be easily expressed in
terms of the Bézier coefficients.

Let u and v be two adjacent triangles of T" with Bézier coefficients ¢j;; and ¢}, - 1t 1s well
known that the condition for f to be continuous across the common edge of v and v is that
c%k
Uik = Vi k. Similarly, a deformation ¢ : £ — R? defined by spline is C°-continuous across an

= chjyp for all 4,5, k.7, j', k" such that the nominal positions coincide, that is, such that

edge if have quk = q;’,j,k, whenever u;j;, = vy . See Figure 12.4.

CHAPTER 12. TRIANGULAR SPLINES DEFORMATION 66

Uy = 1
Upo3 m_ V030
/U()u] “U()21\ \
Uy / Vo
Up21 w Vp12 /
U= Vg T 9030

o(T)

(a) (b)

Figure 12.4: (a) Nominal positions and (b) Bézier control points of a deformation ¢ of degree 3
which satisfy CY continuity constraints.

Ensuring C' continuity

We say that a function is smooth when it has at least C' continuity. A polynomial spline is
always smooth in the interior of any cell. Thus the spline is smooth along the edge between
two adjacent cells v and v if the first derivatives of the corresponding polynomials f“ and f*
in any direction coincide at any point on that boundary. For simplicial polynomial splines, this
requirement translates into a set of linear constraints on the Bézier coeflicients of f* and fv.
Specifically, f has C! continuity along that common edge if and only if

Cojk = Cojk (12.4)

ik = Boct ji + B1€0 j1,k + B2¢G j ks (12.5)

for all j, k such that j+ k& = d— 1, where By, 81 and B2 are barycentric coordinates of vg relative
to up, u1 and wug [50].

For a spline deformation ¢ : — R?, the C! continuity is given by analogous conditions to
equations in (12.4) and (12.5) over the Bézier control points quk instead of the coefficients ijk-
Namely, the deformation ¢ is continuous across the shared edge if and only if

qgjk = qgjk (12.6)
Qi = Bodi jr + P40 41,6 t 8240 j k1 (12.7)

We call Equation (12.7) the quadrilateral condition. 1t says that the quadrilateral formed by the
control points D> D> 90 541 k> 90 j 1 TS be an affine image of the quadrilateral formed by
their nominal positions. See Figure 12.5.

CHAPTER 12. TRIANGULAR SPLINES DEFORMATION 67

Figure 12.5: (a) Nominal positions and (b) Bézier control points of a deformation ¢ of degree 3
which satisfy C! continuity constraints (the gray diamonds).

12.3 Local control

The theory of C'-continuous 2D splines with triangular cells has been extensively studied, for
example, by Schumaker [50]. It is known that there is a minimum degree d of the interpolating
spline that allows local editing of the spline while maintaining its smoothness [34, 93]. If the
degree d is too low, the constraints are interconnected in such a way that the required changes
propagate from triangle to triangle over all the reference mesh T, so that local control is not
possible.

In particular, for triangle meshes in R?, the smallest degree that allows local control with C!
continuity is d = 5, which we use in the examples that follow. In this case, each triangle has 21
Bézier control points as shown in Figure 12.6.

Figure 12.6: A reference mesh T for a spline deformation of degree 5, showing the Bézier control
points and the quadrilateral conditions.

Let n be the number of parts and [be the number of edges in the free border of the mesh, it can
be proved (by induction on n) that a simplicial spline of that size has 2n + O(l) distinct control
points and %n + O(1) degrees of freedom; that is, about % = 1.9 control points for each degree
of freedom.

In comparison, a quadrangular bicubic tensor spline of degree 3 (the smallest degree that
provides local control and C! continuity) with n patches has 9n+O(l) control points and 4n-+O(l)
degrees of freedom; that is, about 9/4 = 2.25 control points for each degree of freedom. Therefore,
despite requiring a higher degree than tensor splines to obtain locality, the triangular spline
deformation needs fewer control points to achieve the same flexibility.

Chapter 13

Spline Representation

In this chapter, we define the representation and the data structure to store the reference mesh T,
the spline deformation on that mesh, and its continuity constraints. This definition is important
to ensure the consistency of data stored in the structure, which are basis for the 2DSD algorithm.
This data structure was used in the previous version of our editor [67].

13.1 Notation

13.1.1 Labeling and orientation of the edges

For each oriented edge e of the reference mesh 7', we denote by [¢ and ¢ its source and destination
vertices, respectively. Moreover, we denote by u® the adjacent triangle to the left of edge e, and
v¢ the adjacent triangle to the right of edge e. The notation p® and n® are the other vertices
of those triangles. See Figure 13.1. Note that, if we consider the same edge in the opposite
direction, the labels are swapped in pairs u® with v¢, [¢ with ¢, and p® with n¢.

e

p

le 7,.6

ne

Figure 13.1: Labels of the triangles of the reference mesh 7' that shared the oriented edge e, and
their vertices.

68

CHAPTER 13. SPLINE REPRESENTATION 69

13.1.2 Labeling and orientation of the quadrilateral conditions

There are d quadrilateral conditions Qf, Qf,...,Q%_; for each oriented edge e of the reference
mesh T, numbered according to the direction of the edge e. For each quadrilateral condition, we
denote I, ¢, p¢, and n{ the four Bézier control points of that condition, as shown in Figure 13.2.
We say that [{ and r{ are left and right medial members; and p{ and nf are previous and next
extreme members of the quadrilateral condition ¢, respectively.

/
5 pI PS5 D5 P4
ng ng ns ns ng

Figure 13.2: Labels of the Bézier control points that form the quadrilateral conditions on the
shared edge e of the reference mesh T, for degree d = 5.

If ¢ is the edge e taking in the opposite direction, then condition Q) coincides with Qg_i_l, jos

: e € il e’
with n§_, |, and [with 7§_, ;.

13.2 Data structure

13.2.1 Representation of the reference mesh

The reference triangulation T is represented in our editor by the set of its vertices, the set of its
edges, and the set of its faces. So, there are three structures to represent a triangulation:

e Point: has the coordinates x and y on the triangulation T

e Edge: has the pointers 1 and r to the source and destination vertices of the edge, respec-
tively. The orientation of the edge is chosen arbitrarily.

e Face: has the pointers p0, pl, and p2 to its vertices and €0, el, and e2 to its edges. The
vertices and edges are numbered in counter clockwise orientation from a arbitrary vertex.
So that p0, p1, and p2 are the source vertices of €0, el, and e2, respectively.

CHAPTER 13. SPLINE REPRESENTATION 70

13.2.2 Representation of the spline

The spline deformation ¢ is represented by a data structure with three record types:

e ControlPoint: represents a Bézier control point of the spline ¢. It has the current coor-
dinates x, y, z in R3, and an integer type that indicates its position on a triangle of the
reference mesh 1T'. Note that two or more control points, that must be identified to obtain
C! continuity, are represented by a single record of type ControlPoint.

e BezierTriangle: represents a triangle of the reference mesh 7' in one particular orienta-
tion. It has a pointer £ to the corresponding face of the T', and a vector Cp of pointers to
its (d+ 1)(d 4+ 2)/2 control points qf;k These points are stored in lexicographic order of
the indices ijk.

e BezierEdge: represents a edge of the reference mesh 7" shared by two triangles. It has
a pointer e to the corresponding record of type Edge; and two pointers p and n, to the
Point record of the other two vertices of the triangles that share the edge, according to
Figure 13.1. It also has pointers to the two records of the type BezierTriangle u and v,
and a vector Qc[0...d-1] of pointers to the d records of the type Quadrilateral that
represent the C! continuity constraints related to this edge. See Section 13.2.3.

13.2.3 Representation of the C! constraints

Each quadrilateral condition is represented by a record of the type:

e Quadrilateral: has a four pointers p, 1, n and r, to the four ControlPoint record
affected by the quadrilateral condition. It also has an integer orientation that indicates
the orientation of the quadrilateral with respect to the direction of the shared edge (0 -
same direction; 1 - opposite direction).

The quadrilateral condition is stored only once in the data structure, that is, it is stored in the
attribute Qc[i] of each shared edge e, either the quadrilateral @) or the quadrilateral Qfl’_i_l,
where ¢’ is the edge e in the opposite direction.

The orientation of the quadrilaterals QSI and Qﬁ’ or QZLl and QELZ must be opposite to the
orientation of the BezierEdge record because it is necessary to ensure that the quadrilaterals
around a vertex have consistent orientations. See Figure 13.3.

Figure 13.3: A spline with consistent orientation of the quadrilaterals around the vertices.

CHAPTER 13. SPLINE REPRESENTATION 71

The other quadrilaterals Qf with (2 < i < d — 3) can be oriented arbitrarily. In Figure 13.4 the
quadrilateral Qc[2] = @5, that is, it has the same orientation of the edge e.

Figure 13.4: Labels of the control points to obtain a consistent orientation of the quadrilaterals
around the vertices.

Chapter 14

The 2DSD Editing Algorithm

The editing of smooth 2D spline deformations can be considered a special case of the general
problem of editing a set of parameters with linear or affine constraints. In this chapter, we
describe the 2DSD algorithm for this problem using the ECLES general algorithm, described in
Chapter 5.

Each constraint can be expressed by a linear equation with integer coefficients, if the coor-
dinates of the vertices of the reference mesh T are rational. Therefore, we can use the ECLES
general parameter editing method, as part of our interactive algorithm for editing of 2D spline
deformations, in order to adjust the control points preserving the C! continuity of the spline
while trying to obey the changes indicated by the user.

14.1 The user interaction model

In Part III, we describe in detail a typical local editing action, as seen by the user of the editor.
Here the focus is on the back stage of the editor, namely the interaction of the user interface with
the 2DSD algorithm. Figure 14.1 shows the interaction model between the user, the application’s
user interface, our interactive algorithm 2DSD, and the ECLES general method.

User Interface 2DSD ECLES
A, S A, D, R
4>{ UI.Select }—P{ 2DSD.Select }Wb{ ECLES.Initialize
A, D, 0 A, F', €, IR, L,| D, U, llg,
************************************ Y- -

User

2DSD.Translate ECLES.Update

Figure 14.1: Control flow for a typical editing action (soft translation).

The interaction process has two steps: the first occurs once in each editing action when the user
chooses the control points to be adjusted; and the second step occurs one or more times when
the user modifies the position of those control points, e.g. by dragging them with the mouse.
To simplify, only one editing operation is shown (translation of the anchor points described in
Section 18.5.1). Other operations, such as rotation and scaling of the anchor points can be

implemented in similar ways.

72

CHAPTER 14. THE 2DSD EDITING ALGORITHM 73

Initially, through appropriate gestures of the user interface, the user selects a set of anchors
(A) and a set of initial derived control points (S). These sets are transmitted by the interface
method (UI.Select) to the first part of the 2DSD algorithm, the 2DSD.Select procedure (see
Section 14.2). This procedure chooses the final derived control points (set D) based on the
user-selected set S, and computes the relative magnitude 6, of the desired displacement for each
control point p;.

Then, the sets A and D of control points and the coefficient matrix of constraints R are given
to ECLES.Initialize (see Section 5.2). This procedure constructs the coefficient matrix of the
linear system, in factored form (I, L, D, U, 1), and computes the true rank r of that matrix.

14.1.1 Soft translation

In soft translation, the user displaces all the anchors by the some vector v. See Figure 14.2.

fo
FAIER
L P \.\ » k
.]‘k---,ﬂ” . nom
.- f/'.\'-'./.'i\- . ;
) .'_ A _'-\ .o
Eay
»‘"",' . \ / /’ \\
/ .'/'/.'/ N A
L ~
(c)

Figure 14.2: Translating of two anchor points. (a) Anchor points (set .A) specified by the user;
(b) initial derived points (set S) selected by the user; and (c) derived points (set
D) specified by the 2DSD.ExpandDerived.

The suggested translation 6,v for a derived point ps decreases in magnitude as one goes away
from the anchor points.

The second part of our algorithm is executed when the user specifies (e.g. by dragging
with the mouse) a change in the anchor points, represented by some list v of change arguments,
summarized by a displacement vector v, in Figure 14.1. This data is passed by the corresponding
interface method (UI.Translate) to the second part of the 2DSD algorithm, the 2DSD.Translate
procedure (see Section 14.3). This procedure computes the new positions P/ of the anchors and
the suggested positions Py, for the derived control points. The 2DSD.Translate then passes
those informations to ECLES.Update (see Section 5.3), that computes the new positions Pj} of
the derived control points satisfying the constraints. Then 2DSD.Translate updates the current
position P of the control points in A and D, and gives that information to the user interface for
visual feedback - namely, to display the effects of the change on the deformed mesh and/or the
deformed object. See Figure 14.3.

The 2DSD ensures (by rounding, if necessary) that the vector v has rational coordinates.
The suggested displacements 0,v to the derived points can be computed with floating point and
then rounded. The choice of D (see Section 14.2.1) ensures that the constraints can always be
solved, for any choice of A and vector v. Note that if P:4 = P4+ 0s5v any constraint that involve
only points of A are satisfied by P’ if and only if they are satisfied by P4. More generally, this
is true if P:A is an exact image of P4 by an affine map.

CHAPTER 14. THE 2DSD EDITING ALGORITHM 74

Figure 14.3: Translating of two anchor points. (a) Anchor points A (black open dots), derived
points D (black dots), and non-redundant relevant constraints specified by ECLES;
and (b) control points updated.

The ECLES . Update procedure then computes the new positions Pp of the derived points satisfying
the constraints. Then, 2DSD.Translate updates the current position Ps of each control point
s € (AUD), and gives that information to the user interface to display the effects of the change
on the deformed mesh and/or the deformed object.

14.1.2 Soft rotation and scaling

Other editing operations can be easily added to 2DSD, by adding a new procedure for each
operation. Our prototype editor (see Chapter 18) also supports the operations of local soft
rotation and local soft scaling of one or more anchor points. See Figure 14.4.

Figure 14.4: Examples of (a) rotation and (b) scaling of one anchor point.

For the soft rotation (see Section 18.5.2), the user defines an arbitrary angle a and center ¢ € R
The suggested angle o/, of each derived point s will be f5a. In soft scaling (see Section 18.5.3),
the user defines a center ¢ and a scale factor . The suggest scaling for each derived point s will
be ~0%.

The new positions p’, of the anchors are computed in floating point (they are usually ir-
rational) and then rounded to rationals with suitable precision. As a result, they are not a

CHAPTER 14. THE 2DSD EDITING ALGORITHM 75

linear map of the original positions ps. If there are four or more anchors, the new anchor posi-
tions may violate some constraints. Therefore, for this operation, ECLES.Initialize calls the
ECLES.CheckStrongSolvabitity procedure to check the strong solvability condition in equa-
tion 2.3, and, if it is not satisfied, fails and notifies the application. Then, 2DSD.Select returns
a message to the user, asking her to select a different (usually smaller) set of anchor points.

14.2 The 2DSD.Select procedure

The 2DSD.Select procedure is described in Algorithm 16.

Algorithm 16: 2DSD.Select
Data: A, S: set of anchor and initial derived points;
G: the control graph;
R: | x ¢ coefficient matrix of all constraint equations;
@: n X j matrix of independent terms of the constraints;
P: n x j matrix of coordinates of the current positions of the control points.
Result: D, F': sets of derived and relevant fixed points;
E: set of relevant constraints;
0: relative magnitude to the displacement of point;
[Ig, L, D, U, Ilg, r: fraction-free LDU factoring of Rep.

1 begin

2 | D < 2DSD.ExpandDerived (A, S, G)

3 0 < 2DSD.ComputeRelMagnitude (A, D, G)

4 (F,E g, L, D,U,1l¢,r) < ECLES.Initialize (A, D, R, Q, P, true, Turner)

The 2DSD.Select procedure expands the initial set S of derived points to the set D using the
2DSD.ExpandDerived procedure, in step 2 (see Section 14.2.1).

In step 3, the 2DSD.Select procedure uses 2DSD.ComputeRelMagnitude (see Section 14.2.2)
to compute a real coefficient 8 for each control point p, relative to the displacement of the anchor
points, which will be used by 2DSD.Translate (see Section 14.3) to compute the positions P..

Finally, in step 4, 2DSD.Select calls the ECLES.Initialize procedure, described in Sec-
tion 5.2, to identify the relevant and non-redundant C! continuity constraints for the editing
action, and to obtain a collection of matrices IIgr, L, D, U, IIlc and the rank r needed for the
ECLES.Update procedure, described in Section 5.3.

CHAPTER 14. THE 2DSD EDITING ALGORITHM 76

14.2.1 The 2DSD.ExpandDerived procedure

The 2DSD.ExpandDerived procedure is used in step 2 of 2DSD.Select to determine a superset
D of the specified derived points S in order to ensure the ECLES solvability condition.

Initially, 2DSD.ExpandDerived sets D < S. Then, for each s € (AU D), the algorithm finds
all quadrilateral conditions that involve the control point ps; and then adds the indices of zero
or more control points that enter into these conditions to the set D. The process is iterated until
all points in A U D have been examined. When d > 5, the final set of derived control points D
can be confined to the triangles that own the control points in (AU S) and only a few adjacent
triangles.

For the purpose of this step, each Bézier control point ps; = qZ‘»ij is classified into six types
according to its nominal position u;j;, in the triangle u. See Figure 14.5.

m corner
o edge corner
e edge
A inner corner
o inner edge
x gnterior
Type Description
corner t=dorj=dor k=d.
edge corner i=0and (j=1lork=1)or
j=0and (i=1lork=1)or
k=0and (i=1or j=1).
edge none other above and (i =0 or j =0 or k = 0).
inner corner i=j=1lori=k=1lorj=k=1.
inner edge none other above and (i =1or j=1or k =1).
interior 1>2and j >2and k> 2.

Figure 14.5: Classification of the control points of a Bézier patch of degree 6.

The type of the point p determines the set of quadrilateral constraints that apply to that point
and the additional points inserted in the set D. A point p of type interior does not take part in
any quadrilateral condition, so it does not contribute to the set D. A point p of any other type
contributes the additional derived points according to rules are shown in Figure 14.6.

When applying these rules, the algorithm skips any control points that would lie on non-
existing triangles, and any quadrilateral conditions that would depend on them. These rules
ensure that there is at least one derived point for each quadrilateral involved in the editing
action. The set D obtained ensures the strong solvability condition of the ECLES.

The relevant quadrilateral constraints determined by the A and D points may include redun-
dant equations. This happens, for example, when A U D includes a corner or edge corner point
of an interior vertex.

CHAPTER 14. THE 2DSD EDITING ALGORITHM 77

Type: corner

.
\ /
o o o d

\ /
o yjue 4 o \
\ / \ /
o e e o e O 6 o o d
N/ \ /
——o0-0—o Q-e-o0——-0—- o Q . P/ o
/o\ ,
o e /dp. e O o e \Q e o O
S /
\
o ,C{ . \C{ o ——0-—o-—e-Q-9—0--0—-
/ \
o o o Qq P

/ \
/ \

Type: edge corner

.
\ /
o o o d

\ /
o yjue 4 o \
\ / \ /
o e e o e O o o o d
N/ \ /
——0-0— o —%-0-o0— -0 —- o Q ° P/ o
N ,
o e /d oPe o o e \Q s o ©
\ N
o ,C{ o \C{ o ——0-—0— e —-%-0Q-o0--0—-
/
o o o % p
/ \
/ \
Type: edge
\ \
\ / \
o o o d o
\ / \
o Q o ;{ o o b\
\ / \
o o Q © 0 0 e o |
\ 7 \
——0—-0-—0--tf-0— -0 -0 —- --0-0-—0--b
AN /
o o d o e e ePe ¢
/ \ /
/
o / . . o g
/ pQ\ /
o e e q [3)

/ \ /
/ \ /

Type: inner corner

\ / \

o o o d o
\ / \
o} o 4 o opb\
\ / \
o o Q © o o e O 1
A/ \
——0—-0-—0--tf-0— -0 -0 —- —-—0-—e-—0--0
N p /
o o d o " Q e o o d
/ \ /
o g o L o #
/ \ /
o o o Q o

/ \ /
/ \ /

Type: inner edge

// p \
g o Q@ © b\
Q/—{r—o——o——o——})
N o e o ,d/

\ /
\ /

Figure 14.6: Relevant continuity constraints (gray diamonds) and derived points added to D
(solid dots) depending on the type of the control point ps with s € AU D (open
dot). For each type, the left figure shows a typical situation where the point ps is
sufficiently far from the triangulation’s border. The right figure shows a situation
near the border where some of those control points and constraints are missing.
These diagrams are generalized to vertices of arbitrary degree in the obvious way.

CHAPTER 14. THE 2DSD EDITING ALGORITHM 78

14.2.2 The 2DSD.ComputeRelMagnitude procedure

The 2DSD.ComputeRelMagnitude procedure computes the value 65, which defines the relative
magnitude of the desired displacement of each point ps, that is, how much the suggested position
P! is affected by the specified displacement v of the anchor points. The value 65 is a number

between 0 and 1 given by the formula

5!
05 = AR

(14.1)

where ¢, is the distance between the point ps and the nearest anchor point; and 47 is the
distance between the point ps and the nearest fixed point. Both ¢’ and ¢” are graph-theoretical
distances measured on the global Bézier control net G. The distances are computed by Dijkstra’s
algorithm [16]. The value 65 computed for anchor points is 1, and for fixed points is 0.

14.3 The 2DSD.Translate procedure

The 2DSD. Translate procedure is called by the user interface to implement soft translation, every
time the anchor points are moved by the user to a new position. It is described in Algorithm 17.

Algorithm 17: 2DSD.Translate
Data: v: displacement applied to the anchor points;
(): independent terms of the constraints;
A, D, F': set of anchor, derived and relevant fixed points;
0: relative magnitude to the displacement of points;
Ilg, L, D, U, Ilg,r: matrices and rank r returned by ECLES.Initialize;
P: matrix of coordinates of the current positions of the control points.
Result: P: updated matrix of coordinates of the control points.
1 begin
for each s € P do P, < P, + 6v
P}, <ECLES.Update (A, ', &, R, Q, lIg, L, D, U, llg, r, P')
for each s € D do P, < P!
for each s € Ado P, < P!

(S

In step 2, the 2DSD.Translate procedure computes the suggested positions P! of each con-
trol point s using the value #,. Then, in step 3, the new positions Pp of the derived points
are computed by the ECLES.Update procedure (see Section 5.3). Finally, in steps 4 and 5,

2DSD.Translate sets the final position P of each control point.

CHAPTER 14. THE 2DSD EDITING ALGORITHM 79

14.4 An example

Suppose that the set A is the point p = ¢{/3o between the triangles u (right) and v (left), shown
in Figure 14.7, and § = @.

Figure 14.7: Editing point g3, with the derived points q{99, 152, @31, ¢i3;1-

According to Figure 14.6, the algorithm will select the four derived control points D = {¢}ss,
@59, q¥31, Gi's1 } (large black dots in Figure 14.7). Based on these points and on the anchor point
q§32, ECLES.Initialize identifies two relevant constraints, which are included in the set &:

—(Bo + B1 + B2)qi22 + (Bo)di2a + (B1)q032 + (B2)q523 = 0 (14.2)
—(Bo + B+ B2)ais1 + (Bo)disr + (B1)q041 + (B2)ah32 = 0 (14.3)

where (g, f1, and (2 are the barycentric coordinates of vg relative to ug, ui, and us. The set F’
has the two points: qfos3 = qfo3 and g4y = G-
The matrix form of equations (14.2) and (14.3) of the example in Figure 14.7 is

ERRTI S PR T

where the constant matrix Q¢ is zero.

In the example in Figure 14.7, the equations are linearly independent and the system is
indeterminate. Therefore, the new positions PJ, are computed by ECLES.Update which solves
the system (14.4) using the least squares criterion.

Part 111

The PrisMystic Editor

80

Chapter 15

Goals and Motivation

In this chapter, we describe the goals and motivation for the interactive editor of deformations
for 3D models that we developed, called PrisMystic.

15.1 Goals

The original motivation for developing the PrisMystic editor was to help the analysis of images
of organisms and organic structures. Specifically, the editor was used to deform 3D models of
those organisms to match the images of real specimens obtained by optical microscopes. See
Figure 15.1.

(a)

Figure 15.1: (a) An actual microscope image of the protozoan C. elegans; (b) 2D view; and (c)
3D view of a deformed model obtained with PrisMystic, matching the image (a).

Although the models for this application are three-dimensional, the deformations are essentially
two-dimensional with little change in depth, because the third dimension cannot be easily per-
ceived through a microscope.

This editor can also be used for models of other mostly planar biological structures, such
as blood cells or neurons grown on a flat surface. As it turns out, the editor is also to edit 2D
deformations of other non-biological objects, such as editing terrains (see Section 19.2).

81

CHAPTER 15. GOALS AND MOTIVATION 82

15.2 Relation to the Masters version

The PrisMystic editor is an improved version of the editor previously described in my Masters
dissertation [67]. This editor uses a 2.5D space deformation technique (see Section 17.3) also
previously proposed.

The improvements include: using the ECLES algorithm, described in Part I, instead of
floating-point linear algebra packages; a more flexible and general method for the selection of
control points (allowing multiple anchors); and a different goal function for the least squares
method. Also, we used the general 2DSD approach, described in Part 11, to connect the user
interface to the ECLES solver, described in Part 1.

With these changes, it would be now relatively easy to extend the editor to accommodate
other affine constraints, such as C? smoothness, vertical or horizontal alignment, fixed points,
among others.

Chapter 16

Related work

The literature presents some approaches to deformations of three-dimensional models. We focus,
specifically, on space deformation methods that use volumetric meshes as a control tool to deform
the space surrounding the 3D model. In this approach, the deformation of the control mesh is
transfered to the embedded model using interpolation techniques.

16.1 Deformation of 3D models

There are many approaches for modeling of 3D objects, which can be classified in Physics-based
or geometry-based methods. The goal of the Physics-based deformation methods is to simulate
the physical behavior of objects under internal and external forces. Realistic simulations require
the use of these methods. However, they are not adequate for interactive applications or real-
time simulations due to the high computational cost [61]. In this thesis, we did not consider
using these approaches since they would require accurate physical models of the interior of the
models. For example, the model of a microorganism should include information of elasticity and
viscosity of tissues, which is unlikely to be available, even for the best-studied organisms.

The geometric methods are simpler, faster, and relatively easier to implement. Moreover, they
allow arbitrary deformations without regard to the laws of physics [6]. The challenge of these
methods is to produce deformations that are close to reality, and simultaneously to maintain
the initial characteristics of the objects, such as smoothness of their surface. The geometric
approaches can be classified in surface or space deformation methods.

The surface deformation methods assume that the object is represented by its external sur-
face. The parameters or vertices of this surface are manipulated directly by the user. Usually,
these methods are used when the deformation must preserve details of the surface of the object.
Linear techniques produce good results for small deformations [13]. However for large defor-
mations, they can generate unwanted artifacts due to linearization errors, which leads to the
popularization of the nonlinear techniques [94].

The space deformation methods allow the user modifies the object mesh indirectly by de-
forming the space surrounding it [31]. These methods can have fewer parameters than the object
mesh itself, reducing the editing work of the deformation. Usually, they are used in interactive
applications where the model has thousands of vertices. In these applications, the surface defor-
mation techniques are impractical due to the large number of parameters to be manipulated by
the user, and because it is difficult to maintain the smoothness of the surface. Another advan-
tage of space deformation methods is that the modeling of the deformation is independent of the
model’s representation.

83

CHAPTER 16. RELATED WORK 84

16.2 Space deformations

Smooth space deformations have been extensively studied in the context of three-dimensional
shape editing. A survey focusing on interactivity is presented by Gain and Bechmann [31]|. They
classify the space deformation methods according to the dimension of the control objects used to
define the deformation:

e Point-based deformations (0D): the user handles control points which are freely po-
sitioned on the space surrounding the model. Each control point has a region of influ-
ence within which the movement of the point causes displacements of the model’s points.
Some methods of this class are: Constraint-based Deformation [3], Directly Manipulated
FFD [31], Dirichlet FFD [31], and Simple Radial Deformation [1, 2, 11, 49].

e Curve-based deformations (1D): the user handles one or more curves or control axes for
local or global deformations of the model. Examples of such methods are: Regular Global
Deformations [31], Generalized de Casteljau Deformation [31], Axial Deformation [31],
Wires [31], Bender [31], and Skinning Frameworks [5, 55];

e Surface-based deformations (2D): the user handles one or more control surfaces for
local or global deformations of the model. Some of these methods are: Parametric Patch
Tools [26, 27|, Star-convex Tools [23], Triangular Meshes [45, 48|, and Field-based Tools [88,
89];

e Volume-based deformations (3D): the user handles a coarse mesh surrounding the
model. Sederberg and Parry [74] introduced the space deformation approaches using vol-
umetric meshes formed by hexahedra: the Bézier Free-Form Deformation (FFD). Then,
other methods were developed: FFD with Local Control |39, 51| and FFD with Arbitrary
Topology Grid [8, 15, 41, 56, 95].

Space deformation editors that use three-dimensional control meshes seem better suited to arbi-
trary smooth deformations. The deformed control mesh provides an immediate intuitive under-
standing of the general nature of the deformation, and of the scope of each control parameter. In
particular, it becomes easier to notice and avoid singularities in the deformation (places where
the deformation is not injective, meaning that space is being folded over itself). For these reasons,
we have opted for a 3D (or “2.5D”) control method in this work.

Most 3D space deformation methods described in the literature use either hexahedral [51, 74|
or tetrahedral [8, 41, 95| control meshes defined by Bézier control points. Other works use
prismatic elements [12, 67|, including the method described in this thesis. We have opted using
a control mesh of triangular prisms with vertical walls. So, our deformation method is 2.5D
according to the classification of Gain and Bechmann [31].

16.3 Interpolation techniques

Interpolation techniques are used to transfer the deformation of the control mesh to the embedded
model in the deformed space. Some space deformation methods use non-spline interpolating
functions, which are determined by the control mesh vertices and/or faces only, in order to
obtain smooth deformations (see Section 11.1).

Another interpolation technique widely adopted in graphical applications, that provide local
control and smooth deformations are the spline functions [25], defined in Chapter 12. Barr [5],

CHAPTER 16. RELATED WORK 85

and Sederberg and Parry [74] were the pioneers in the development of a space deformation
method using splines as interpolation technique, namely Free-Form Deformation (FFD). Due to
its advantages, the FFD approach has been widely investigated allowing several extensions and
variations [15, 31, 56].

16.4 Spline interpolation

The splines functions can also be used to maintain the continuity and smoothness of the control
mesh and of the inner 3D model|8, 67, 74|. Simplicial Bézier patches have the advantage over
quadrangular ones since they can be joined with almost arbitrary topology. On the other hand,
their continuity constraints are more complicated.

However, the requirement of C' continuity makes this approach very hard to edit because
of the large number of control parameters. For example, with a tetrahedral mesh, the degree
of the interpolating spline must be at least 5 to allow localized editing of the mesh. Therefore,
to specify each tetrahedron in the mesh the user must specify the position of 56 control points
(56 x 3 (x,y,2) = 168 real parameters) [8]. With an hexahedral mesh one can have C! splines
of degree 3, however each cell requires 64 control points (192 parameters) [31].

With so many control points, it becomes difficult to identify and select the ones that must
be edited to achieve a desired effect. Furthermore, the editing software must automatically move
many additional control points in order to satisfy the C! continuity constraints, increasing the
user’s confusion. Complex user interfaces, with high-level abstractions, have been developed to
address this problem [8, 31], but they do not solve it completely.

Compared to these methods, meshes with prismatic cells require only 42 control points per
cell. All these points are outside the control mesh, and its coordinates are more restricted so
that there are only 84 free real parameters (21 x 2 (x,y) +42 x 1 (z)). Moreover, the necessary
editing interface is much simpler than other 3D control meshes because these coordinates can be
separately edited. So, the user needs to edit at most 21 control points per cell, at a time. See
Table 16.1.

Degree | Number of points | Inner points Real parameters
Tetrahedron 5 56 yes 56 x 3(x,y,z) = 168
Hexahedron 3 64 yes 64 x 3(x,y,z) = 192
Prism 5 42 no 21 x 2(x,y) +42 x 1(z) = 84

Table 16.1: Comparison among cells of meshes consisting of tetrahedra, hexahedra, and prisms.

For our application, we believe that our 2.5D method provides a reasonable balance between
control mesh size, naturalness of editing, and computation speed.

Chapter 17

Overview of the editor

In this chapter, we describe an overview of PrisMystic editor and its deformation paradigm, that

is, the 2.5D space deformation approach [67, 68].

17.1 The 3D model

We assume that the organism to be deformed is given as a dense triangular model mesh M with
tens of thousands of triangles, which is read from a file in the Wavefront format (.obj). See

Figure 17.1.

Figure 17.1: The 3D model mesh M of a Dragon 82|, represented by a triangular mesh.

Note that the space deformation approach allows other representations of the model, and not
just triangular meshes. The PrisMystic editor also supports point cloud models. See Figure 17.2.

Figure 17.2: The 3D model mesh M of a Dragon [82], represented by a point cloud.

86

CHAPTER 17. OVERVIEW OF THE EDITOR 87

17.2 The 3D reference mesh

To use the PrisMystic editor, the user must provide a 8D reference mesh P around the object
consisting of a single layer of triangular prisms with flat top and bottom faces, parallel to the
xy plane, and vertical walls. The projection of the 3D reference mesh on the xy plane is the 2D
reference mesh T of Part II. The projection of P and its projection on the z axis is an interval
|a, b]. See Figure 17.3.

b

[
ZT<'1;‘ T

Figure 17.3: A 3D model mesh M surrounded by a 3D reference mesh P, and the corresponding
2D reference mesh T'.

17.2.1 Defining the barycentric coordinates

In order to compute the deformed image 1 (p) of a point p of the object, the program finds the
prism U of P that contains it and computes the barycentric coordinates [y, 81 and B2 of p with
respect to the triangle u of the 2D reference mesh T' corresponding to the prism U. The program
also computes the vertical position of p relative to both triangular faces u® and u' of U, that is,
the two numbers ag = (b —2)/(b—a) and a1 = (z — a)/(b — a). See Figure 17.4.

Figure 17.4: Barycentric coordinates ag, a1, Bo, 1 and P2 of a point p of the 3D model mesh
M, related to the prism U of the 3D reference mesh P.

CHAPTER 17. OVERVIEW OF THE EDITOR 88

If the object is defined by mesh M of triangles, the deformation is applied only to the vertices
of the mesh assigning that the triangles remain flat. This the resulting mesh M is not exactly
the deformation ¢ (M) applied to the original object. However, if M is sufficiently fine, the
discrepancy between M and (M) can be negligible.

17.3 Deformation paradigm

The deformations allowed by our editor consist of 2D spline deformations of the x and y co-
ordinates combined with (x,y)-dependent 1D stretching maps of the z coordinates. All three
functions are defined on a same reference mesh 7" in R?.

In many applications, the viewing conditions are such that the organism is almost viewed
from the same angle (always sideways, or always from the top), so that these “2.5D” deformations
are sufficient. If the organism can be viewed from different angles, then the model should be
appropriately rotated before being loaded into PrisMystic.

More precisely the deformation is a function v from P to R? that consists of a two-dimensional
deformation ¢ : ' — R?, and two spline functions og : ' — R and o; : T — R, all with the same
degree d,

U(p) = (V(p)-x:9(p)-y; ¥ (p)-2), (17.1)
where p = (7,7, 2) € R and

2/)(£C,y, Z).I' = (Z)(:c,y):c
V(,y,2)y = o(x,y)y
Q[)(%‘, Y, Z)'Z = aO(x7y)UO(w>y) + Oél(l', y)al(x7y)'

Note that, for each position p inside of P, the coordinate z of the point v(p) varies between
oo(x,y) and o1(z,y).

The deformation function ¢ then takes the reference mesh P to the 3D deformed reference
mesh (P), which consists of a set of prisms with vertical walls, whose top and bottom faces
are curved triangles forming two spline surfaces. The deformed model mesh (M) is another
triangular mesh with the same topology of M, obtained by mapping all vertices of M through
the function 1. See Figure 17.5.

U(P)

Figure 17.5: A deformed reference mesh ¢ (P) surrounding a deformed model mesh ¢ (M).

CHAPTER 17. OVERVIEW OF THE EDITOR 89

17.4 Editing the deformation

The splines g, o1 and ¢, described in Section 17.3, are defined by their Bézier control points.
The user can modify the deformation by moving the control points with the mouse. Considering
splines with degree d = 5, each function has pieces defined by (d+1)(d+2)/2 = 21 Bézier control
points, according to Chapter 12.

The editor has separate modes for adjusting the (z,y) deformation (a spline mapping ¢ :
R? — R?) and the top and bottom surfaces (two spline functions og,01 : R? — R). The
algorithm 2DSD, described in Part II, is used by the editor to edit these three functions.

The user can select one of three editing modes available in the editor: xy-mode, 20-mode and
z1-mode. In the xy-mode, the user has a view of the top of the deformed reference mesh v (P),
that is, the 2D deformed reference mesh ¢(7'). Thus, the user can only modify the coordinates
x and y of each control point Gk of ¢. See Figure 17.6.

Figure 17.6: View of the deformed reference mesh ¢ (P) in the xzy-mode, showing the control
points and the global Bézier control net G (dotted line) on the deformed reference
mesh ¢(T).

In the z0-mode and z1l-mode, the user can edit the coefficients cyjk;r of the splines og or o,
respectively. In these modes, the user has an oblique view of the deformed reference mesh
(P). For each triangle u € T' and each set of indices ¢, j and k with i + j + k = d, there are
two coefficients: Ciik00 for the bottom surface; and c?jk:;l’ for the top surface (as described in
Section 12.2). Therefore, there are 2(d + 1)(d + 2)/2 = (d + 1)(d + 2) control points, for each
prism of P but only the coordinate z0 or z1 can be modified by the user. Each one of the two
splines og and o7 is edited independently, by moving the point with the mouse along the vertical
line that contains it. See Figure 17.7.

Figure 17.7: View of the deformed reference mesh ¢ (P) in the z0-mode (a) and zl-mode (b),
showing the control points of the splines og and o1, respectively.

CHAPTER 17. OVERVIEW OF THE EDITOR 90

17.5 Ensuring the spline continuity

As observed in Section 12.2.1, the CY continuity condition is ensured because only one control
point is available for two or more nominal positions that coincide, that is, nominal positions on
the shared edges or vertices by two or more triangles in T

The C! continuity constraints are represented by quadrilateral conditions, as shown in Fig-
ure 12.6. When the user edits one or more control points (anchors), the program uses the 2DSD
algorithm to determine one or more additional control points that must be modified in order to
ensure the C! continuity, and to apply the necessary adjustments as the anchors are moved by
the user, as described in Part II.

Chapter 18
Editing Paradigm

In this chapter, we present the user interface of the PrisMystic editor and its main controls. We
also describe the editing paradigm used by the editor that allows the view and editing in distinct
modes: xy-mode, z0-mode, and z1-mode.

18.1 PrisMystic user interface

The user interface of the PrisMystic editor has a main editing window, a menu bar, and two

control windows. See Figure 18.1.

PrisMystic Editor

File Edit Model TargetImage Lattice Window Help
Editor Settings B = Editing Control ® &=

Figure 18.1: The user interface of the PrisMystic editor in the initialization mode.
The main window is used for editing and visualization of the deformations. Various options and

parameters of the editor are selected in the windows Editor Settings (see Section 18.1.1) and
Editing Control (see Section 18.1.2).

91

CHAPTER 18. EDITING PARADIGM 92

The PrisMystic has five distinct editor mode:
1. Initialization;
2. 3D viewing;
3. Editing the deformation spline ¢ in xy plane;
4. Editing the deformation spline o¢ in z axis;
5. Editing the deformation spline ¢ in z axis.

When started the editor is in the initialization mode and the other modes are disabled, as shown
in Figure 18.1.

18.1.1 Editor Settings window

The possible settings for the PrisMystic editor include items which are to be shown in the main
editing window, and the available constraints. See Figure 18.2.

Editor Settings B

Show
Model Mesh

Target Image
Reference Mesh
Bézier Control Points
Derived Points
Bézier Control Net
All Constraints

Relevant Constraints

Continuity Constraints
co

& €1

Figure 18.2: The options of the Editor Settings window of the PrisMystic editor.

Among the available options, the user can choose to display in the main editing window the
model mesh, and/or the reference mesh, and/or the target image to be matched (displayed in
the background).

When the reference mesh is displayed, the user can choose to display any combination of:

e Bézier control points of the deformed reference mesh;

e Derived control points D;

e Global Bézier control net;

e Constraints on the control points (for example, the C! continuity constraints);
e Non-redundant relevant constraints defined during the editing of a deformation.

The current set of anchors A, is always displayed. The user can also choose between enforcing
only (that is, no constraints on the control point) C°, or the C! continuity constraints as described
in Section 12.2.1.

CHAPTER 18. EDITING PARADIGM 93

18.1.2 FEditing Control window

The Editing Control window lets the user choose between view and editing modes (zy, 20, and
z1), and controls the view mode. Moreover, the user can select the type of editing operation to
be applied to the anchor points: translation, rotation, or scaling. See Figure 18.3.

Editing Control B ® Selection

Operation Anchors
. Translation Neighbohood

Rotation 0 All

Scaling
View

Mode X Y Z

View
+) xy Editing
zl Editing

z0 Editing

Figure 18.3: The options of the Editing Control window of the PrisMystic editor.

In both view and editing mode, it is possible display any object available in the Show group of
the Editor Settings. See Figure 18.2.

18.2 Imitialization mode

When the editor is initialized all its options are disabled, except the menu options. See Fig-
ure 18.1. In the menu bar, there are options to load the model mesh (it can be a 2D or 3D
mesh), the reference mesh of prisms, and a target image that is to be matched, if necessary.
There are also options to clear these three objects, and to save the model and the reference mesh
displayed in the main editing window.

The model and the reference mesh are loaded from files in Wavefront format .obj, which
contain lists of vertices and faces of a triangular mesh. The reference mesh P file should contain
a 2D mesh of triangles, that is the top face of P, whose vertices should have the z coordinate
z = b, for some positive number b. The bottom face of P is assumed to be the same triangulation,
with z coordinate a = —b (see Section 17.2).

From this information, the editor builds the global Bézier control net, defines the Bézier
control points, and locates the vertices of the model mesh M relative to the reference mesh P
(see Section 17.2). Then, the editor enables the editing zy-mode by default.

18.3 View mode

The view mode is enabled by selecting View among the available modes in the Editing Control
window. See Figure 18.3.

The default setting of the editor view mode displays the model and the reference mesh of
prisms. The view mode also allows the user to rotate the objects, displayed in main editing
window, in any direction through the sliders X, Y and Z. See Figure 18.3.

Figure 18.4 shows the PrisMystic editor in the view mode, displaying the deformed reference
mesh ¢(P) and the deformed 3D model mesh ¢ (M).

CHAPTER 18. EDITING PARADIGM 94

PrisMystic Editor x

File Edit Model Targetlmage Lattice Window Help

=
5]

Editor Settings B® Editing Control

Show
¥ Model Mesh
| Target Image
o Reference Mesh

Bézier Control Points
Mode

Derived Points +) View
Bézier Control Net xy Editing
All Constraints 21 Editing

| Relevant Constraints z0 Editing

Continuity Constraints
co

€1

View

Figure 18.4: The view mode of the PrisMystic editor.

18.4 Point selection sub-mode

The zy, 20, and z1 editing modes have a selection sub-mode, in which the user selects the set A
of anchor points of the editing action, and the set S of initial derived points.

By default of this sub-mode, the user sees the model mesh, the reference mesh, and its control
points. The selection sub-mode is enabled in all editing modes, and the editor maintains the
view according to the selected editing mode: zy-mode, z0-mode, and z1-mode. As a shortcut, if
the editor is in any of the editing modes, and there are no anchors selected, clicking one control
point makes it the only anchor and sets the set S to empty.

18.4.1 Anchor selection

When the checkbox Anchors is checked, the user can choose a set A of anchor points by clicking
on them, with the mouse. To move the anchor, the user needs to uncheck the Anchors option.
See Figure 18.5(a)

18.4.2 Neighborhood selection

The user can choose the radius of the Neighborhood 4, in the editing region, through a numeric
widget. See Figure 18.3. The initial set S of derived points is then set to all points at maximum
distance §,q, from the anchors, in the global Bézier control net G.

For example, Figure 18.5(b) shows the initial derived points S selected in the maximum
neighborhood defined by the user.

CHAPTER 18. EDITING PARADIGM 95

Figure 18.5: The PrisMystic editor highlighting (a) the selected anchor points, and (b) the initial
derived points with §,,4; = 3, in the zy-mode.

When the checkbox All is checked, the numeric widget is disabled, and the maximum distance is
defined automatically as the greatest possible (0,40 = +00). So, all control points are automat-
ically included in the set S, except the anchor point clicked by the user. This function allows
that the operation applied to the anchor point to be reproduced at all control points, that is, it
is useful to apply global translation, rotation and scaling. See Figure 18.6.

Figure 18.6: The PrisMystic editor highlighting (a) the initial derived points, and (b) the scaling
operation applied to all control points.

When the user exits the selection sub-mode and clicks on any one anchor point to drag it, the
initial derived set S is automatically selected by the interface. Then, it is augmented with the
extra control points needed for solvability, obtaining the set D of derived points (see Section 14.1).

18.5 Editing ry-deformation

In the editing xy-mode, the user is presented with a top view of the reference mesh of prisms, that
is, the 2D deformed reference mesh 7" and the Bézier control points. See Figure 18.7. The user
can modify the coordinates x and y of the control points by selecting one operation (translation,
rotation, or scaling), and dragging any one anchor point with the mouse.

CHAPTER 18. EDITING PARADIGM

Editing Control 28

Figure 18.7: The editing xy-mode of the PrisMystic editor.

18.5.1 Local soft translation

In the xy-mode of our editor, the local soft translation is the default editing operation. The user
defines a displacement ¢ for any one anchor points by clicking on one of the anchor points and
dragging it to a new position, with the mouse. The same displacement will be applied to all
anchors. Then, the new positions of the derived points is computed by 2DSD algorithm. See

Figure 18.8.

Figure 18.8: (a) Before and (b) after a soft translation of two anchor points (black open dots)
with 840 = 4, showing the derived points D (black dots), and the C! continuity

constraints (quadrilaterals).

CHAPTER 18. EDITING PARADIGM 97

18.5.2 Local soft rotation

Another editing operation available in xy-mode is the local soft rotation of the anchor points
around a user-chosen center point. The user defines a center ¢ in the zy plane by clicking on
the desired position in the main editing window, with the right button of the mouse. Then, the
user chooses an angle « by clicking on any one of the anchor points and dragging it to a new
position, with the mouse. A guide line between the center ¢ and the new position is displayed
during the dragging. The same rotation angle o around c is applied to all other anchors. Then,
the new positions of the derived points is computed by 2DSD algorithm. See Figure 18.9.

(a) (b)

Figure 18.9: (a) Before and (b) after a soft rotation of one anchor point (black open dot) with
dmaz = 8 around the center ¢, showing the derived points D (black dots), and the
C! continuity constraints (quadrilaterals).

18.5.3 Local soft scaling

The local soft scaling operation also available in the zy-mode, expands or contracts the anchor
points relative to a user-chosen center point. As in the rotation operation, the user defines a
center c¢ in the xy plane by clicking on the desired position in the main editing window, with
the right button of the mouse. Then, the user chooses a scale factor v by clicking on one of the
anchor points and dragging it to a new position with the mouse. A guide line between the center
¢ and the new position is displayed during the dragging. The same scale factor v around c is
applied to all other anchors. Then, the new positions of the derived points are computed by the
2DSD algorithm. See Figure 18.10.

Figure 18.10: (a) Before and (b) after a soft scaling of one anchor point (black open dot) with
Omaz = 6 around the center ¢, showing the derived points D (black dots), and the
C! continuity constraints (quadrilaterals).

CHAPTER 18. EDITING PARADIGM 98

18.6 Editing z-deformation

In the editing modes z0-mode and zl-mode, the user is presented with a oblique view of the
deformed reference mesh ¢ (P).

In the z1-mode, the control points of the top spline o of ¥(P) is displayed. For the user’s
convenience, the view is automatically rotated 180° so that the spline oy appears on top. See
Figure 18.11.

mmmmmmmm

Figure 18.11: The editing modes, (a) z1-mode and (b) z0-mode, of the PrisMystic editor.

In z0-mode or z1-mode the user can modify the z coordinate of the selected anchor points by
dragging, with the mouse, any one anchor point up or down along the vertical line that passes
through it. The same z displacement is applied to all anchors. The 2DSD algorithm then
computes the vertical displacements for the derived points. See Figure 18.12.

Figure 18.12: (a) Before and (b) after the editing of one anchor point with d,,4, = 3 in z1-mode,
showing the control points and the derived points. The relevant constraints and
the global Bézier control net G of the reference mesh are also shown in (a).

By default, the set of anchors A contain only the point clicked with the mouse, and the set
of initial derived points S is empty. Optionally, the user can select larger sets A and S (see
Section 18.4).

Chapter 19

Examples

In this chapter, we present images of the obtained results using the PrisMystic editor to deform
models. We test the 2.5D space deformation method, described in this part of the thesis, which
uses the 2DSD algorithm, described in Part II.

19.1 Deformation of organism models

Our experiments tested the suitability of the developed algorithms, using the PrisMystic editor
to reproduce some deformations of organisms which were observed in actual images.

We used examples of three microorganisms in the experiments: the nematode worm Caenorhab-
ditis elegans, and the protozoa Dileptus anser and Lacrymaria olor. We also used the organism
starfish Asterias rubens. The organism models were created based on its morphology. See left
column in Figure 19.1.

The models of the organisms were generated using the Blender editor [83]. The model is
a dense triangular mesh consisting of tens of thousands of triangles, showing a typical resting
shape of the organism. For each model was appropriately defined a file in the Wavefront format
(.obj), which contains the coordinates x, y, and z of the vertices of the reference mesh T, and
the three vertices of each triangular face. See middle column in Figure 19.1. From the load of
this file, the PrisMystic editor automatically generates the reference mesh P adequate for each
model. See right column in Figure 19.1.

Table 19.1 summarizes the parameters of the model and the reference meshes used for each

organism.
C. elegans | D. anser | L. olor | Starfish
Number of vertices on M 10425 18967 10425 10242
Number of faces on M 20830 37930 20830 20480
Number of vertices of T 8 9 10 11
Number of faces of T 6 7 8 10
Number of edges of T 13 15 17 20
Number of shared edges of T 5 6 7 10
Number of constraints on ¢(T') 25 30 35 50
Number of control points of ¢(T) 96 111 126 151

Table 19.1: Parameters of the model mesh M and the reference mesh 7" for the organisms used
in the tests.

99

CHAPTER 19. EXAMPLES 100

(d) D. anser [77]. (e) (f)

(j) A. rubens [76]. (k) Q)

Figure 19.1: Morphology of the organism (left). The 2D view (middle) and 3D view (right) of
the reference mesh, and the organism models in a typical resting shape.

19.1.1 Results

In this section, we present some actual images of the considered organisms, in various poses and
deformations. These images were obtained in the Internet.

We used the PrisMystic editor to interactively deform the 3D model of each organism in order
to match it with the images. The actual images, the 2D and 3D views of the obtained results
are shown in Figures 19.2 to 19.5. After acquiring some experience with the editor, editing each
example could last no more than 10 minutes [22].

CHAPTER 19. EXAMPLES 101

(a) [32]. (b) (c)

(m) [35]. (0)

Figure 19.2: Actual microscope images of the nematode C. elegans (left); 2D view (middle); and
3D view (right) of the deformed models.

CHAPTER 19. EXAMPLES 102

™
b

(d) [85]. (f

)

A
o~
~
e

(c)

)
(i)
0]
(0)

(g) [85].

NS
e

(m) [85]. (n) [

Figure 19.3: Actual microscope images of the protozoan Dileptus anser (left); 2D view (middle);
and 3D view (right) of the deformed models.

CHAPTER 19. EXAMPLES 103

(a) [86]. (b) (c)

(m) [86]. (n)

Figure 19.4: Actual microscope images of the Lacrymaria olor (left); 2D view (middle); and 3D
view (right) of the deformed models.

CHAPTER 19. EXAMPLES 104

® I3

Figure 19.5: Actual images of the starfish Asterias rubens (left); 2D view (middle); and 3D view
(right) of the deformed models.

CHAPTER 19. EXAMPLES 105

19.2 Deformation of terrain models

The PrisMystic can also be used to create and deform digital terrains. An interesting feature
of PrisMystic is that it allows displacing features such as hills and rivers horizontally as well
as displacing the surface vertically. It can be useful therefore to edit terrains to be used as
displacement maps in 3D rendering or relief patterns in numerically controlled machining and
3D printing.

We apply 2.5D deformations in terrain surfaces to z-deformations provided by our editor.
See Figure 19.6. The Blender editor was used to help visualizing the deformed terrain. See
Figure 19.7. Table 19.2 summarizes the parameters of the model and the reference meshes used
in this test.

Terrain
Number of vertices on M 1089
Number of faces on M 2048
Number of vertices of T 9
Number of faces of T 8
Number of edges of T 16
Number of shared edges of T 8
Number of constraints on ¢(T) 121
Number of control points of ¢(T) 40

Table 19.2: Parameters of the model mesh M and the reference mesh 7" used in the test.

(2) (b) (¢)

Figure 19.6: (a) 2D view and (b) 3D view of the model of a digital terrain and its reference mesh;
and (c) 2D view of the deformed model using the PrisMystic editor.

(a) (b)

Figure 19.7: 3D view in Blender editor [83] of the deformed model shown in Figure 19.6.

Chapter 20

Conclusion and Future Work

In Part I, we developed a general method for interactive editing of parameters subject to linear
or affine constraints. In Part II, we applied this method to the specific problem of creating and
editing two-dimensional spline deformations subject to smoothness constraints. In Part III, we
described an editor of 2.5D space deformations for three-dimensional solid modeling using the
method of Part II.

20.1 Partl

In Part I of this thesis, we described the general ECLES method for interactive editing of param-
eters subject to linear or affine constraints. We use exact integer arithmetic in order to detect
and eliminate redundancies among constraints and avoid rounding failures.

In the ECLES algorithm, the constraints and the user editing actions are combined using
weighted constrained least squares, instead of the usual finite element approach, thus providing
more flexible control to the user.

One aspect that needs more discussion and tools is the conversion of parameters from floating
point to rational values, rounded so as to satisfy the constraints.

20.2 Part 11

In Part IT of this thesis, we described a general modeling technique for interactive editing of
C!-continuous two-dimensional deformations using triangular elements with Bézier control nets.
The method described, the 2DSD algorithm, supports splines of degree 5 or higher and allows
convenient editing of the deformation while preserving the C! continuity of the surface.

We use the integer-based ECLES general method, described in Part I, to combine the user
editing actions and the continuity constraints in a reliable and efficient way, avoiding the fatal
failures that could arise from floating-point rounding errors.

One direction for future work is the consideration of new affine geometric and physical con-
straints such as C2? continuity. Another direction for future work is the use of rational rotation
matrices for soft rotation. This would allow replacing the strong solvability requirements by
weak solvability, so that multiple anchors can be rotated.

106

CHAPTER 20. CONCLUSION AND FUTURE WORK 107

20.3 Part 111

In Part IIT of this thesis, we described the PrisMystic editor, an interactive editor for the defor-
mation of 3D models. This editor uses a 2.5D space deformation technique and is an improved
version of the editor previously described [67]. One of the main improvements is the use of the
algorithm 2DSD, described in Part II, as part of the 2.5D space deformation method.

The PrisMystic editor can also be used to create and deform digital terrains. In this direction,
the user interface can be improved to provide a better editing and viewing of the terrain surface.

The PrisMystic editor can be improved in many ways: one easy improvement would be the
addition of colors to the model meshes. With this improvement, one could use it for image
morphing by converting the original image into a fine mesh of colored triangles all on the zy
plane.

A more ambitious project would be to develop an editor with similar interface for 3D deforma-
tions, using 3D simplicial splines defined on a mesh of tetrahedra, with C! continuity constraints.
This editor would use the same general ECLES algorithm, but would require a 3DSD module
analogous to 2DSD.

Bibliography

1]

2]

3]

[4]

5]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

Alexis Angelidis, Marie-Paule Cani, Geoff Wyvill, and Scott King. Swirling-sweepers:
Constant-volume modeling. Graph. Models, 68(4):324-332, 2006.

Alexis Angelidis, Geoff Wyvill, and Marie-Paule Cani. Sweepers: Swept user-defined tools
for modeling by deformation. In SMI ’04: Proceedings of the Shape Modeling International
2004, pages 63-73, Washington, DC, USA, 2004. IEEE Computer Society.

Fabrice Aubert and Dominique Bechmann. Volume-preserving space deformation. Comput.
Graph., 21(5):625-639, 1997.

Erwin H. Bareiss. Sylvester’s Identity and Multistep Integer-preserving Gaussian Elimina-
tion. Mathematics of Computation, 22:565-565, 1968.

Alan H. Barr. Global and local deformations of solid primitives. SIGGRAPH Comput.
Graph., 18(3):21-30, January 1984.

Cagatay Basdogan and Chih-Hao Ho. Force reflecting deformable objects for virtual enwvi-
ronments. SIGGRAPH’99 Course Notes n. 38, SIGGRAPH-ACM publication, 1999.

Michael Bastiani. Howard Hughes Medical Institute. Available at: http://www.hhmi.org/
content/jorgensen-abstract-slide-show. Accessed on Dec 10, 2016.

D. Bechmann, Y. Bertrand, and S. Thery. Continuous free form deformation. In COMPU-
GRAPHICS °96: Proceedings of the fifth international conference on computational graphics
and visualization techniques on Visualization and graphics on the World Wide Web, pages
1715-1725, New York, NY, USA, 1997. Elsevier Science Inc.

Mark Blaxter. Mark Blaxter’s teaching pages. Available at: http://www.nematodes.org/
teaching/tutorials/Caenorhabditis/caenorhabditis.shtml. Accessed on Dec 10, 2016.

Mario Botsch and Leif Kobbelt. An intuitive framework for real-time freeform modeling.
ACM Trans. Graph., 23(3):630-634, August 2004.

Mario Botsch and Leif Kobbelt. Real-time shape editing using radial basis functions. In
Computer Graphics Forum, pages 611-621, 2005.

Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt. PriMo: Coupled Prisms
for Intuitive Surface Modeling. In Proceedings of the fourth Furographics symposium on
Geometry processing, SGP 06, pages 11-20, Aire-la-Ville, Suica, Suica, 2006. Furographics
Asgsociation.

Mario Botsch and Olga Sorkine. Oun linear variational surface deformation methods. IEFEE
Transactions on Visualization and Computer Graphics, 14(1):213-230, 2008.

108

BIBLIOGRAPHY 109

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

Pam Brophy. Starfish: Caswell Bay. Available at: http://www.geograph.org.uk/photo/
409413. Accessed on Dec 10, 2016.

Sabine Coquillart. Extended free-form deformation: a sculpturing tool for 3d geometric
modeling. In SIGGRAPH °90: Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, pages 187-196, New York, NY, USA, 1990. ACM.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

Pieter Coulier and Eric Darve. Efficient Mesh Deformation Based on Radial Basis Function
Interpolation by Means of the Inverse Fast Multipole Method. Computer Methods in Applied
Mechanics and Engineering, 308:286-309, 2016.

Yuanmin Cui and Jieqing Feng. Technical section: Real-time b-spline free-form deformation
via gpu acceleration. Comput. Graph., 37(1-2):1-11, February 2013.

V. P. Dardengo, F.L. Schmidt, and M. C. Almeida. Identificagdo de medidas e conjuntos
criticos usando matriz de gram e técnicas de fatoragdo com aritmética inteira. In Anais do
V Simpdsio Brasileiro de Sistemas Elétricos (SBSE 2014), pages 1-6, Foz do Iguacgu, PR,
Brasil, 2014.

A. de Boer, M.S. van der Schoot, and H. Bijl. Mesh deformation based on radial basis
function interpolation. Computers & Structures, 85(11-14):784-795, 2007. Fourth MIT
Conference on Computational Fluid and Solid Mechanics.

Carl de Boor. Splines as linear combinations of B-splines. A Survey, 1976.

Elisa de Cassia Silva Rodrigues. Mathematical and computational methods for modeling and
editing deformations. Available at: http://www.ic.unicamp.br/"erodrigues. Accessed on
Mar 28, 2017.

Philippe Decaudin. Geometric deformation by merging a 3D-object with a simple shape.
In GI ’96: Proceedings of the conference on Graphics interface "96, pages 55—60, Toronto,
Ont., Canada, 1996. Canadian Information Processing Society.

David Dureisseix. Generalized Fraction-free LU Factorization for Singular Systems with
Kernel Extraction. Linear Algebra and its Applications, July 2011.

Gerald Farin. Curves and surfaces for CAGD: A practical guide. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 5th edition, 2002.

Jieqing Feng, Lizhuang Ma, and Qunsheng Peng. A new free-form deformation through the
control of parametric surfaces. Computers and Graphics, 20:531-539, 1996.

Jieqing Feng, Jin Shao, Xiaogang Jin, Qunsheng Peng, and A. Robin Forrest. Multires-
olution free-form deformation with subdivision surface of arbitrary topology. The Visual
Computer, 22(1):28-42, 2006.

Donald L. Ferry. Vidcaps from the Lake near Mud Lake. Available at: http://wolfbat359.
com/6¢crpl42. jpg. Accessed on Dec 10, 2016.

Michael S. Floater. Mean value coordinates. Comput. Aided Geom. Des., 20:19-27, March
2003.

BIBLIOGRAPHY 110

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

|44]

[45]

Michael S. Floater, Géza Koés, and Martin Reimers. Mean value coordinates in 3d. Comput.
Aided Geom. Des., 22:623-631, October 2005.

James Gain and Dominique Bechmann. A survey of spatial deformation from a user-centered
perspective. ACM Trans. Graph., 27(4):1-21, 2008.

Maria Gallegos. C. elegans Nomarski Image. Available at: http://wormclassroom.org/
image/c-elegans-nomarski-image. Accessed on Dec 10, 2016.

Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Computer Alge-
bra. Kluwer Academic Publishers, Norwell, MA, USA, 1992.

Stefanie Hahmann and Georges-Pierre Bonneau. Polynomial surfaces interpolating arbitrary
triangulations. IEEE Transactions on Visualization and Computer Graphics, 9(1):99-109,
January 2003.

John Alex Halderman. Worm Patterns. Available at: http://www.youtube.com/watch?v=
7W0xyVvMp8s. Accessed on Dec 10, 2016.

W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory, 2013.
Version 2.4.0, http://flintlib.org.

Ying He, Xianfeng Gu, and Hong Qin. Fairing triangular B-splines of arbitrary topology.
In In Proceedings of Pacific Graphics 05, pages 153 — 156, 2005.

Allan Heydon and Greg Nelson. The Juno-2 Constraint-Based Drawing Editor. In Technical
Report 131a, Digital Systems Research, 1994.

Gentaro Hirota, Renee Maheshwari, and Ming C. Lin. Fast volume-preserving free form
deformation using multi-level optimization. In SMA ’99: Proceedings of the fifth ACM
symposium on Solid modeling and applications, pages 234-245, New York, NY, USA, 1999.
ACM.

Kai Hormann and Michael S. Floater. Mean value coordinates for arbitrary planar polygons.
ACM Transactions on Graphics, 25:1424-1441, 2006.

Jin Huang, Lu Chen, Xinguo Liu, and Hujun Bao. Efficient mesh deformation using tetra-
hedron control mesh. In SPM ’08: Proceedings of the 2008 ACM symposium on Solid and
physical modeling, pages 241-247, New York, NY, USA, 2008. ACM.

Md. Baharul Islam, Md. Tukhrejul Inam, and Balaji Kaliyaperumal. Overview and chal-
lenges of different image morphing algorithms. International Journal of Advanced Research
in Computer Science and Electronics Engineering (IJARCSEE), 2(4), 2013.

D. J. Jeffrey. LU Factoring of Non-invertible Matrices. ACM Commun. Comput. Algebra,
44(1/2):1-8, July 2010.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. Harmonic
coordinates for character articulation. ACM Trans. Graph., 26, July 2007.

Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed triangular
meshes. ACM Trans. Graph., 24:561-566, July 2005.

BIBLIOGRAPHY 111

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Judith Kimble. Microscopic worm Caenorhabditis elegans. Available at: http://news.
wisc.edu/newsphotos/kimble.html. Accessed on Dec 10, 2016.

Donald E. Knuth. Tex and Metafont, New Directions in Typesetting. American Mathemat-
ical Society and Digital Press, Stanford, 1979.

Kazuya G. Kobayashi and Katsutoshi Ootsubo. t-fid: Free-form deformation by using
triangular mesh. In Proceedings of the eighth ACM Symposium on Solid Modeling and
Applications, SM 03, pages 226-234, New York, NY, USA, 2003. ACM.

Nikita Kojekine, Vladimir Savchenko, Mikhail Senin, and Ichiro Hagiwara. Real-time 3D
deformations by means of compactly supported radial basis functions. In Proceedings of
Eurographics 2002 (Short Papers), pages 35-43, 2002.

Ming-Jun Lai and Larry L. Schumaker. Spline Functions On Triangulations. Cambridge
University Press, New York, NY, USA, 2007.

Henry J. Lamousin and Warren N. Waggenspack Jr. NURBS-based free-form deformations.
IEEE Comput. Graph. Appl., 14(6):59-65, 1994.

Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. Spherical barycentric coordi-
nates. In Proceedings of the fourth Eurographics symposium on Geomelry processing, SGP
06, pages 81-88, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

Seung-Yong Lee, Kyung-Yong Chwa, and Sung Yong Shin. Image metamorphosis using
snakes and free-form deformations. In Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH 95, pages 439-448, New York, NY,
USA, 1995. ACM.

Yaron Lipman, David Levin, and Daniel Cohen-Or. Green coordinates. ACM Trans. Graph.,
27:78:1-78:10, August 2008.

Ignacio Llamas, Alexander Powell, Jarek Rossignac, and Chris D. Shaw. Bender: A virtual
ribbon for deforming 3D shapes in biomedical and styling applications. In Proceedings of the
2005 ACM symposium on Solid and physical modeling, SPM 05, pages 89-99, New York,
NY, USA, 2005. ACM.

Ron MacCracken and Kenneth 1. Joy. Free-form deformations with lattices of arbitrary
topology. In SIGGRAPH ’96: Proceedings of the 28rd annual conference on Computer
graphics and interactive techniques, pages 181-188, New York, NY, USA, 1996. ACM.

H. Masuda, Y. Yoshioka, and Y. Furukawa. Interactive mesh deformation using equality-
constrained least squares. Comput. Graph., 30(6):936-946, December 2006.

J. Middeke, A. Almohaimeed, and D. J. Jeffrey. Common Factors in Fraction-Free Matrix
Reduction. In 2013 15th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, pages 76-80, Sept 2013.

Moe. The Immortal Worm of Cain and His Hluminated Race of Worms. Available at:
http://gnosticwarrior.com/worm-of-cain.html. Accessed on Dec 10, 2016.

George C. Nakos, Peter R. Turner, and Robert M. Williams. Fraction-free Algorithms for
Linear and Polynomial Equations. SIGSAM Bull., 31(3):11-19, September 1997.

BIBLIOGRAPHY 112

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Andrew Nealen, Matthias Miiller, Richard Keiser, Eddy Boxerman, and Mark Carl-
son. Physically based deformable models in computer graphics. Comput. Graph. Forum,
25(4):809-836, 2006.

Greg Nelson. Juno, a Constraint-based Graphics System. SIGGRAPH Comput. Graph.,
19(3):235-243, July 1985.

Tomoyuki Nishita, Toshihisa Fujii, and Eihachiro Nakamae. Metamorphosis using bézier
clipping, 1993.

Carl E. Pearson. Handbook of applied mathematics: Selected results and methods. Van
Nostrand Reinhold, New York, NY, US, 2th edition, 1990.

R. Piziak and P.L. Odell. Matriz Theory: From Generalized Inverses to Jordan Form.
Chapman and Hall/CRC Pure and Applied Mathematics Series. Chapman & Hall/CRC,
2007.

William H. Press. Numerical Recipes: The Art of Scientific Computing. Cambridge Univer-
sity Press, Nova lorque, NY, EUA, 3 edition, set 2007.

Elisa de Cassia Silva Rodrigues. Modelagem de Deformagdo do Espaco 2.5D para Estru-
turas Bioldgicas. MSc em Ciéncia da Computagao, Instituto de Computacao, Universidade
Estadual de Campinas, 2011.

Elisa de Céssia Silva Rodrigues, Anamaria Gomide, and Jorge Stolfi. A User-editable C-
Continuous 2.5D Space Deformation Method For 3D Models. Electronic Notes in Theoretical
Computer Science, 281:159 — 173, 2011. Artigo selecionado da XXXXVII Conferencia Lati-
noamericana de Informatica (CLEI 2011).

Elisa de Céssia Silva Rodrigues, Anamaria Gomide, and Jorge Stolfi. A User-editable C'-
Continuous 2.5D Space Deformation Method For 3D Models. In CLEI ’11: Proceedings of
Simposio Latinoamericano sobre Computacion Grdfica, Realidad Virtual y Procesamiento de
Imdgenes, pages 1-16, 2011.

Elisa de Cassia Silva Rodrigues, Anamaria Gomide, and Jorge Stolfi. Editing C'-Continuous
2D Spline Deformations by Constrained Least Squares. Technical Report 1C-14-05, Instituto
de Computacao, Universidade Estadual de Campinas, Fevereiro 2014.

Elisa de Céssia Silva Rodrigues and Jorge Stolfi. ECLeS: A Flexible and General Method
for Local Editing of Parameters with Linear Constraints. In SIBGRAPI ’15: Proceedings
of Workshop of Works in Progress, pages 1-4, Salvador, BA, Brazil, August 2015.

Elisa de Cassia Silva Rodrigues and Jorge Stolfi. Interactive Editing of C'-Continuous 2D
Spline Deformations Using ECLES Method. In Technical Papers of the 29th Conference on
Graphics, Patterns and Images (SIBGRAPI’16), Sao José dos Campos, SP, Brazil, October
2016.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G Hill, M. O. Leach, and D.J. Hawkes. Nonrigid
registration using free-form deformations: application to breast mr images. Medical Imaging,
IEEE Transactions on, 18(8):712-721, 1999.

Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric models.
SIGGRAPH Comput. Graph., 20(4):151-160, 1986.

BIBLIOGRAPHY 113

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

shadowshador. Starfish (Asterias rubens). Available at: https://www.flickr.com/photos/
29287337@N02/5526667479/sizes/1. Accessed on Dec 10, 2016.

Richa Shah. Asterias (Starfish): History, Habitat and Development. Avail-
able at: http://www.biologydiscussion.com/invertebrate-zoology/starfish/
asterias-starfish-history-habitat-and-development/27860. Accessed on Dec 10,
2016.

Zhang 7Z Shen YF. Modern biomonitoring techniques using freshwater microbiota. Available
at: http://starcentral.mbl.edu/microscope. Accessed on Dec 10, 2016.

Daniele Silva, Tago Berndt, Rafael Torchelsen, and Anderson Maciel. A Levels-of-Precision
Approach for Simulating Multiple Physics-based Soft Tissues. In L. A. F. Fernandes
D. G. Aliaga, L. S. Davis and W. R. Schwartz, editors, Technical Papers of the 29th Confer-
ence on Graphics, Patterns and Images (SIBGRAPI’16), Sao José dos Campos, SP, Brazil,
october 2016.

Olga Sorkine and Daniel Cohen-Or. Least-squares meshes. In Proceedings of the Shape
Modeling International 2004, SMI '04, pages 191-199, Washington, DC, USA, 2004. IEEE
Computer Society.

A. Sotiras, C. Davatzikos, and N. Paragios. Deformable medical image registration: A
survey. Medical Imaging, IEEE Transactions on, 32(7):1153-1190, 2013.

Heidelberg Spektrum Akademischer Verlag. Lacrymaria. Available at: http://www.
spektrum.de/lexikon/biologie/lacrymaria/37873. Accessed on Dec 10, 2016.

Stanford. The Stanford 3D Scanning Repository. Available at: http://graphics.
stanford.edu/data/3Dscanrep/. Accessed on Dec 10, 2016.

The Blender Foundation. Blender. Available at: http://www.blender.org. Accessed on
Dec 10, 2016.

The Qt Company. Qt. Available at: http://www.qt.1io. Accessed on Mar 28, 2017.

Y. Tsukii. Protist Images: Dileptus anser. Available at: http://protist.i.hosei.ac.jp/
pdb/images/Ciliophora/Dileptus. Accessed on Dec 10, 2016.

Y. Tsukii. Protist Images: Lacrymaria olor. Available at: http://protist.i.hosei.ac.
jp/pdb/images/Ciliophora/Lacrymaria. Accessed on Dec 10, 2016.

P. R. Turner. A Simplified Fraction-free Integer Gauss Elimination Algorithm. Technical
report, 1995.

Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field based shape defor-
mations. ACM Trans. Graph., 25(3):1118-1125, 2006.

Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Explicit control of vector
field based shape deformations. In PG ’07: Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications, pages 291-300, Washington, DC, USA, 2007. IEEE
Computer Society.

Jessica Winder. Starfish. Available at: https://natureinfocus.files.wordpress.com/
2010/03/p1020684asnapshot. jpg. Accessed on Dec 10, 2016.

BIBLIOGRAPHY 114

[91]

92]

[93]

[94]

[95]

[96]

[97]

George Wolberg. Image morphing: a survey. The Visual Computer, 14(8-9):360-372, 1998.

Tian Xia, Binbin Liao, and Yizhou Yu. Patch-based image vectorization with automatic
curvilinear feature alignment. ACM Trans. Graph., 28(5):115:1-115:10, December 2009.

Dianna Xu. Incremental algorithms for the design of triangular-based spline surfaces. PhD in
computer and information science, Faculties of the University of Pennsylvania, Philadelphia,
PA, USA, 2002.

Wei-Wei Xu and Kun Zhou. Gradient domain mesh deformation: A survey. J. Comput.
Sci. Technol., 24(1):6-18, 2009.

Yong Zhao, Xinguo Liu, Chunxia Xiao, and Qunsheng Peng. A unified shape editing frame-
work based on tetrahedral control mesh. Comput. Animat. Virtual Worlds, 20(2-3):301-310,
2009.

Wengin Zhou and DavidJ. Jeffrey. Fraction-free Matrix Factors: New Forms for LU and
QR Factors. Frontiers of Computer Science in China, 2(1):67-80, 2008.

Barbara Zitova and Jan Flusser. Image registration methods: a survey. Image and Vision
Computing, 21(11):977 — 1000, 2003.

Appendix A

Implementation

In this appendix, we describe the structure of the implemented libraries: LinSys (Linear System),
LSQ (Least Squares), ECLES (Editing by Constrained Least Squares), and 2DSD (2D Spline
Deformation).

We use the programming language C/C++ to implement the libraries and the PrisMystic
editor. The interface of PrisMystic was implemented using the graphics libraries Qt GUI and
Qt OpenGL of the framework Qt [84]. We also use functions and data structures of the library
FLINT (Fast Library for Number Theory) [36] to work with integer and rational arithmetic.

The implementation and instructions for running the PrisMystic editor, as well as the files
of the libraries are available at http://www.ic.unicamp.br/ erodrigues.

A.1 The LinSys library

LinSys is a C/C++ library of functions for solving linear systems using integer and rational
arithmetic. This library uses the following record type:

typedef struct factoring_t {
int m;
int n;
int r;
int Pr[1;
fmpz_mat_t L;
fmpz_mat_t D;
fmpz_mat_t U;
int Pc[1;
} factoring_t

The components of this record are the factors of a matrix A (m x n) of rank r, as defined
in Chapter 4. Namely, the row permutation matrix IIg (m x m), represented as a vector of m
indices; the lower triangular factor L (m x r); the diagonal matrix D (r x r); the upper triangular
factor U (r x n); and the column permutation matrix IIc (n x n), represented as a vector of n
indices. The L, D, and U fields are FLINT integer matrices (fmpz_mat_t). Some computations
use FLINT rational matrices (fmpg_mat_t).

115

APPENDIX A. IMPLEMENTATION 116

A.1.1 Fraction-free matrix factoring

The fraction-free LDU factoring is obtained through the LinSys.LDUFactor procedure (Algo-
rithm 6), described in Chapter 6. This algorithm is implemented by the LDUFactor () procedure
of the library LinSys.h:

factoring_t LDUFactor{(int m, int n, fmpz_mat_t A, int method)

which receives the m x n original matrix A to be factored, of the system Ax = B; and the
simplification method (GCD or Turner) that must be used, as described in Chapter 7. The
procedure returns a record of type factoring_t with the factoring of the coefficient matrix A.

A.1.2 Solving linear system

The exact linear system solution is obtained through the LinSys.Solve procedure (Algorithm 14),
described in Chapter 8. This algorithm is implemented by the solve () procedure of the library
LinSys.h:

fmpq_mat_t *solve(int t, factoring_t fact, fmpz_mat_t B)

which receives the constraints AP}, = B in the form of the record fact with the factoring of
the coefficient matrix A, and the right-hand-side matrix B (n x t). The procedure returns the
computed matrix P (n x t) which is the solution of the linear system.

A.2 The LSQ library

LSQ is a C/C++ library of functions for solving the linear systems using the least squares crite-
rion. The implementation uses the LSQ.Solve procedure (Algorithm 15), described in Chapter 9,
except for one further optimizations. The weight matrix M = 2+«W is omitted since W is an iden-
tity matrix in PrisMystic editor. This algorithm is implemented by the solveLSQ() procedure
of the library LSQ.h:

fmpg_mat_t #*solvelLSQ(int t, factoring_t fact, fmpz_mat_t B, fmpq_mat_t P1)

which receives the constraints AP = B in the form of the record fact with the factoring of
the coefficient matrix A, the right-hand-side matrix B (n x t), and the hints matrix P, (n X t).
The procedure returns the computed matrix Pp (n x t) which is the solution of the least squares
linear system.

A.3 The ECLES library

ECLES is a C/C++ library of functions for general editing of parameters subject to linear or
affine constraints. This library uses the following record type:

typedef struct set_t {
int a;
int A[1;

} set_t

APPENDIX A. IMPLEMENTATION 117

A.3.1 [Initializing

The implementation uses the ECLES.Initialize procedure (Algorithm 1), described in Chap-
ter 5. This algorithm is implemented by the initialize() procedure of the library ECLES.h:

bool initialize(int t, set_t A[], set_t D[1, int 1, int c, fmpz_mat_t R,
fmpz_mat_t Q, fmpg_mat_t P, bool strong, int method, factoring_t fact,
int *F, int *E)

which receives the sets A and D of indices of the a anchors and of the n derived parameters,
respectively; the coefficient matrix R (I X ¢), and the matrix @ (m X t) of independent terms of
all constraints; the matrix of the current values P (n x t); a boolean flag indicating if the strong
solvability condition must be checked; and a integer indicating the simplification method used
during the factoring. The procedure returns the record fact with the factoring of the coefficient
matrix Rep; a pointer to the set F’ of indices of the relevant fixed parameters; and the set £ of
indices of the non-redundant relevant constraints defined by the procedure.

A.3.2 Updating

The updating was implemented using the ECLES.Update procedure (Algorithm 4), described in
Chapter 5. This algorithm is implemented by the update () procedure of the library ECLES.h:

bool *update(int t, set_t A[], set_t F[1, set_t E[], fmpz_mat_t R,
fmpz_mat_t Q, factoring_t fact, fmpq_mat_t P1, fmpg_mat_t P2)

which receives the sets A, F/, and &; the coefficient matrix R (I X ¢), and the matrix @ (m x t) of
independent terms of all constraints; the record fact with the factoring of the coefficient matrix
Rep; and the hints matrix P, (n x t). The procedure returns the computed matrix Pp (n x t).

A.4 The 2DSD library

2DSD is a C/C++ library of functions for general editing of two-dimensional spline deformations.

A.4.1 Editing the deformation

The implementation uses the 2DSD.Select procedure (Algorithm 16), described in Chapter 14.
This algorithm is implemented by the select () procedure of the library 2DSD.h:

bool select(int t, set_t A[], set_t S[], fmpz_mat_t R, fmpz_mat_t Q,
fmpq_mat_t P, factoring t fact, int *D, int *F, double *T[])

which receives the sets A and S; the coefficient matrix R (I x ¢) of all constraints; the matrix
Q@ (m x t) of independent terms of all constraints; and the matrix P (n x t) of coordinates of
the current positions of the control points. The procedure returns the record fact with the
factoring of the coefficient matrix Rgp; a pointer to the sets D' and F’ of indices of the derived
and relevant fixed parameters; and a pointer to the vector T' of the values 6 of each control point.

APPENDIX A. IMPLEMENTATION 118

A.4.2 Deforming the spline

The implementation of the translation uses the 2DSD.Translate procedure (Algorithm 17), de-
scribed in Chapter 14. Rotation and scaling also were implemented using the same idea such
as described in Section 14.1.2. These algorithms are implemented by the translate(), the
rotate (), and the scale() procedures of the library 2DSD.h:

bool translate(int v[], int t, set_t A[], set_t D[], set_t F[1,
double T[1, fmpz_mat_t Q, factoring_t fact, fmpq_mat_t P,
fmpq_mat_t P2)

which receives the vector v of the displacement applied to the anchor points; the sets A, D, and
F'; the vector T of the values 6 of each control point; the matrix @ (m X t) of independent
terms of all constraints; the record fact with the factoring of the coefficient matrix Rep; and
the matrix P (n x t) of coordinates of the current positions of the control points. The procedure
returns the computed matrix P (n x t);

bool rotate(double c[], double ang, int t, set_t A[1, set_t D[1],
set_t F[], double T[1, fmpz_mat_t Q, factoring_t fact, fmpq_mat_t P,
fmpq_mat_t P2)

which receives the center point ¢ and the angle ang of the rotation; the sets A, D, and F'; the
vector 1" of the values 6 of each control point; the matrix @ (m x t) of independent terms of all
constraints; the record fact with the factoring of the coefficient matrix Rgp; and the matrix P
(n x t) of coordinates of the current positions of the control points. The procedure returns the
computed matrix Pp (n x t);

bool scale(double c[], double sf, int t, set_t A[], set_t D[],
set_t F[], double T[], fmpz_mat_t Q, factoring t fact, fmpq mat_t P,
fmpq_mat_t P2)

which receives the center point ¢ and the scale factor sf of the scaling; the sets A, D, and F;
the vector T of the values 6 of each control point; the matrix @ (m x t) of independent terms of
all constraints; the record fact with the factoring of the coefficient matrix Rep; and the matrix
P (n x t) of coordinates of the current positions of the control points. The procedure returns
the computed matrix Pp (n X t).

	Introduction
	Part I: The ECLES Algorithm
	Part II: The 2DSD Algorithm
	Part III: The PrisMystic Editor
	Contributions

	I The ECLES Algorithm
	General Parameter Editing
	Statement of the problem
	Relevant equations and fixed parameters
	Solvability condition
	The need for exact computation

	Related Work
	Constraint-based editing and modeling
	Finite element basis
	Optimization
	Least squares

	Basic Tools
	Fraction-free LDU factoring
	Using the hints
	Redundant equations
	Multidimensional parameters

	The ECLES Method
	Simplified description
	The ECLES.Initialize procedure
	The ECLES.ExtractRelevant procedure
	The ECLES.CheckStrongSolvabitity procedure

	The ECLES.Update procedure
	The ECLES.CheckWeakSolvabitity procedure

	Fraction-Free LDU Factoring
	The main algorithm
	Pivoting
	Variable elimination
	Row and column simplification
	Computing cost

	Simplification Techniques for LDU Factoring
	Plain fraction-free Gaussian elimination
	Simplifying by GCD elimination
	Turner's GCD-free simplification
	Bit size growth for rank deficient matrices
	Bit size growth for random sparse matrices
	Bit size growth for sparse matrices with deficient rank
	Discussion about the results

	Solving Exact Linear Systems
	Solving the system
	Checking consistency
	Weak solvability
	Strong solvability

	An example

	Solving the Least Squares Problem
	Constrained least squares
	An example

	II The 2DSD Algorithm
	Interactive Editing of 2D Spline Deformations
	Statement of the problem
	Deformations
	Meshes and splines

	User interface

	Related Work
	Non-spline methods
	Spline methods

	Triangular Splines Deformation
	Triangular Bézier splines
	Using splines to model deformations
	Continuity constraints

	Local control

	Spline Representation
	Notation
	Labeling and orientation of the edges
	Labeling and orientation of the quadrilateral conditions

	Data structure
	Representation of the reference mesh
	Representation of the spline
	Representation of the C1 constraints

	The 2DSD Editing Algorithm
	The user interaction model
	Soft translation
	Soft rotation and scaling

	The 2DSD.Select procedure
	The 2DSD.ExpandDerived procedure
	The 2DSD.ComputeRelMagnitude procedure

	The 2DSD.Translate procedure
	An example

	III The PrisMystic Editor
	Goals and Motivation
	Goals
	Relation to the Masters version

	Related work
	Deformation of 3D models
	Space deformations
	Interpolation techniques
	Spline interpolation

	Overview of the editor
	The 3D model
	The 3D reference mesh
	Defining the barycentric coordinates

	Deformation paradigm
	Editing the deformation
	Ensuring the spline continuity

	Editing Paradigm
	PrisMystic user interface
	Editor Settings window
	Editing Control window

	Initialization mode
	View mode
	Point selection sub-mode
	Anchor selection
	Neighborhood selection

	Editing xy-deformation
	Local soft translation
	Local soft rotation
	Local soft scaling

	Editing z-deformation

	Examples
	Deformation of organism models
	Results

	Deformation of terrain models

	Conclusion and Future Work
	Part I
	Part II
	Part III

	Bibliography
	Implementation
	The LinSys library
	Fraction-free matrix factoring
	Solving linear system

	The LSQ library
	The ECLES library
	Initializing
	Updating

	The 2DSD library
	Editing the deformation
	Deforming the spline

