
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Flávia Pisani

Leveraging Constrained Devices for Custom Code

Execution in the Internet of Things

Utilizando Dispositivos Limitados para Execução de

Código Personalizado na Internet das Coisas

CAMPINAS

2019

Flávia Pisani

Leveraging Constrained Devices for Custom Code Execution in

the Internet of Things

Utilizando Dispositivos Limitados para Execução de Código

Personalizado na Internet das Coisas

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutora em Ciência da Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Edson Borin

Este exemplar corresponde à versão final da
Tese defendida por Flávia Pisani e orientada
pelo Prof. Dr. Edson Borin.

CAMPINAS

2019

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Flávia Pisani

Leveraging Constrained Devices for Custom Code Execution in

the Internet of Things

Utilizando Dispositivos Limitados para Execução de Código

Personalizado na Internet das Coisas

Banca Examinadora:

• Prof. Dr. Edson Borin
IC/UNICAMP

• Prof. Dr. Jó Ueyama
ICMC/USP

• Prof. Dr. Markus Endler
DI/PUC-Rio

• Prof. Dr. Edmundo Roberto Mauro Madeira
IC/UNICAMP

• Prof. Dr. Luiz Fernando Bittencourt
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 24 de junho de 2019

Acknowledgements

First, I would like to thank my PhD advisor (and undergraduate co-advisor), Prof. Edson
Borin. After seven years, I am still learning a lot from you and I hope we have other
opportunities to work together in the future.

I would also like to thank my friends and colleagues for the many conversations,
collaborations, and good times. Your presence made this journey a lot more fun.

I would like to thank my parents and the rest of my family. You have supported me
through my whole life and I am forever grateful for everything you have done for me.

I would like to thank Samuel. Your inputs have helped me grow as a person and a
researcher, and I would not have made it without your love and support.

Finally, I would like to thank the professors and staff of the Institute of Computing,
who were always there to give me advice and help me throughout this process. In par-
ticular, I would like to thank my undergraduate advisor, Prof. Ricardo da Silva Torres,
who invited me to work with him and encouraged me to do a PhD.

This study was financed in part by the Fundação de Desenvolvimento da Unicamp

(FUNCAMP) - Samsung grant, the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior - Brasil (CAPES) - Finance Code 001, and the Conselho Nacional

de Desenvolvimento Científico e Tecnológico (CNPq) - grant 140653/2017-1.

Resumo

Perspectivas atuais para a Internet das Coisas (IoT, do inglês, Internet of Things) indicam
que, dentro de alguns anos, uma rede global de objetos irá conectar dezenas de milhares
de dispositivos através da Internet. A maioria deles conterá sensores que geram fluxos de
dados constantemente e é comum que usuários precisem processar esses dados antes de
armazenar os valores finais. No entanto, com o crescimento progressivo da IoT, esta estra-
tégia precisa ser reavaliada, já que transmitir um imenso volume de informações pela rede
será muito custoso. Uma maneira de atender a estes futuros requisitos é trazer a compu-
tação para onde a informação já está. Com essa premissa, surgiu um paradigma chamado
computação em névoa que propõe processar os dados perto de dispositivos da borda da
rede. Outra característica comum dentre o grande número de dispositivos IoT será que
seus recursos (ex.: energia, memória e processamento) serão limitados. O Instituto Na-
cional de Padrões e Tecnologia dos EUA chama a atenção para este tipo de dispositivo
dentro do contexto da computação em névoa, nomeando-os nós de neblina, pois são nós
de névoa leves. Contudo, eles caracterizam estes nós como mais especializados, dedicados
e geralmente compartilhando a mesma localidade que os dispositivos finais inteligentes a
quem eles atendem. Em nosso trabalho, nós propomos uma abordagem diferente, onde
estes dispositivos limitados estão integrados com sensores e são capazes de executar código
de propósito geral, podendo assim executar códigos personalizados enviados pelo usuário.
A análise desta proposta é dividida em duas partes. Primeiro, nós desenvolvemos uma
plataforma chamada LibMiletusCOISA (LMC), que permite que usuários executem seus
códigos em dispositivos limitados e a comparamos com o arcabouço Apache Edgent. O
desempenho do LMC foi melhor que o do Edgent quando ambos foram executados no
mesmo dispositivo e ele possibilitou a execução de código em dispositivos limitados que
eram muito restritos para executar a outra ferramenta. Depois, criamos dois modelos
onde o usuário escolhe uma certa métrica de custo (ex.: número de instruções, tempo de
execução ou consumo de energia) e a emprega para decidir onde o seu código deve ser
executado. Um deles é um modelo matemático que usa uma equação linear para auxiliar
o usuário a dividir o seu problema em um conjunto de variáveis e então determinar os
custos de realizar a sua computação usando a nuvem e a névoa. O outro é um modelo
visual que permite que o usuário conclua facilmente qual é a abordagem mais vantajosa
em um cenário específico. Nós usamos estes modelos para identificar situações onde a
abordagem escolhida é executar o código no dispositivo que coletou os dados e também
simulamos cenários futuros onde mudanças na tecnologia podem impactar a decisão do
usuário.

Abstract

Current prospects for the Internet of Things (IoT) indicate that, within the next few
years, a global network of objects will connect tens of billions of devices through the
Internet. Most of them will contain sensors that constantly generate data streams and it
is common for users to need to process these data before storing the final values. However,
with the ever-growing scale of the IoT, this strategy must be re-evaluated, as transmitting
an immense volume of information through the network will be too taxing. One way to
meet these coming requirements is to bring the computation to where the information
already is. With this premise, emerged a paradigm called fog computing that proposes to
process data closer to network edge devices. Another common characteristic among a large
number of IoT devices will be that their resources (e.g., power, memory, and processing)
will be limited. The USA’s National Institute of Standards and Technology calls attention
to this type of device within the fog computing context, naming them mist nodes, as they
are lightweight fog computing nodes. Nevertheless, they characterize these nodes as more
specialized, dedicated, and often sharing the same locality with the smart end-devices
they service. In our work, we propose a different approach, where these constrained
devices are integrated with sensors and capable of general-purpose code execution, thus
being able to run custom code sent by users. The analysis of this proposal is divided into
two parts. First, we developed a platform called LibMiletusCOISA (LMC), which allows
users to execute their code on constrained devices and compared it to the Apache Edgent
framework. LMC outperformed Edgent when both were executed on the same device,
and made it possible to execute the code on a constrained device that was too limited to
execute the other tool. Then, we created two models where the user chooses a certain
cost metric (e.g., number of instructions, execution time, or energy consumption) and
employs it to decide where their code should be executed. One of them is a mathematical
model that uses a linear equation to help the user break down their problem into a set of
variables and then determine the costs of performing their computation using the cloud
and the fog. The other is a visual model that allows the user to easily conclude what is
the most profitable approach in a specific scenario. We employed these models to identify
the situations where executing the code on the device that collected the data is the chosen
approach and also simulated future scenarios where changes in the technology can impact
the user’s decision.

List of Figures

3.1 Overview of the main components of the LibMiletusCOISA (LMC) frame-
work. 28

3.2 Behavior of one-time and continuous queries for MinMax. 32
3.3 Percentage of values that passed the MinMax filter for each range. 35
3.4 User code handler execution time on DragonBoard for LMC and Edgent

with just-in-time (JIT) off. 37
3.5 User code handler execution time on DragonBoard for Native and Edgent. 38
3.6 Throughput of MinMax queries for different stream lengths. 39
3.7 Throughput of Outlier queries for different stream lengths and window sizes. 40
3.8 Throughput of FFT queries for different stream lengths and window sizes. 40

4.1 Graph of the relationship between fog and cloud computing costs. 44
4.2 Results summary for MinMax [−15, 15] fog-prone test cases. 49
4.3 Results summary for MinMax [−5, 5] fog-prone test cases. 49
4.4 Results summary for Outlier 16 fog-prone test cases (HVisibility). 50
4.5 Results summary for Outlier 256 fog-prone test cases. 50
4.6 Results summary for MinMax [−15, 15] cloud-prone test cases. 51
4.7 Results summary for MinMax [−5, 5] cloud-prone test cases (HWBTempC). 52
4.8 Results summary for Outlier 16 cloud-prone test cases (HWBTempC). . . . 52
4.9 Results summary for Outlier 256 cloud-prone test cases. 53
4.10 Graphs of the linear equations for each dataset and benchmark using exe-

cution time as the cost. Est., estimated. 55
4.11 Graphs of the linear equations for each dataset and benchmark using energy

consumption as the cost: NodeMCU. 57
4.12 Graphs of the linear equations for each dataset and benchmark using energy

consumption as the cost: Raspberry Pi 3. 59
4.13 Slope simulations for each test case using execution time as the cost. . . . 61
4.14 Slope simulations for each test case using energy consumption as the cost. . 62

A.1 Approximate boundaries for the classes of constrained devices (lower =
more constrained). 79

A.2 Expected behavior of classes of energy limitation in terms of time before
recharging/discarding (lower = more constrained). 80

A.3 Expected behavior of classes of strategies for power usage in terms of power
usage (lower = more constrained) and communication in terms of time to
answer (higher = more constrained). 81

A.4 Categorization of real-world devices according to the constrained devices
classification. 83

A.5 Possible resource management scenarios. Shadowed areas represent mis-
used resources. Figures (a), (b), and (c) show cases where there is no
elasticity, leading to resources being often under or overprovisioned. Fig-
ure (d) shows a case where it is possible to reallocate resources according
to demand predictions, resulting in better usage. 85

A.6 Applications for the Internet of Things. 89
A.7 Fog computing hierarchy. 94

List of Tables

1 Notation for the cloud and fog computing cost models. 13

2.1 Comparison between Darjeeling [16], SimpleRTJ [75], uJ [32], NanoVM [36],
TakaTuka [5], IBM Mote Runner [18], CILIX [83], and COISA [8]. Modified
from [8]. 21

2.2 Comparison between our proposed approach (LMC) and the tools Ed-
gent [2], IOx [22], FogHorn [30], and Parstream [76]. 25

3.1 Hardware and software setup for our experiments. 34
3.2 Comparison between the infrastructure of the LMC and Edgent frameworks. 36
3.3 Comparison between the LMC and Edgent frameworks during execution. . 36

A.1 Comparison between cloud and fog computing. Modified from [29]. 92

B.1 NodeMCU execution time results in fog-prone cases. 97
B.2 NodeMCU execution time results in cloud-prone cases. 98
B.3 NodeMCU energy consumption results in fog-prone cases. 99
B.4 NodeMCU energy consumption results in cloud-prone cases. 100
B.5 Raspberry Pi 3 energy consumption results in fog-prone cases. 101
B.6 Raspberry Pi 3 energy consumption results in cloud-prone cases. 102

List of Abbreviations

API Application Programming Interface 19, 35, 91

ARM Advanced RISC Machine 28

BLE Bluetooth Low Energy 28, 29, 60

CAT Cloud-Assisted Translation 37–39

CBIR Content-Based Image Retrieval 23

CoAP Constrained Application Protocol 79

COISA Constrained OpenISA 28–30, 35, 37, 65

CPU Central Processing Unit 78, 84

cURL Client URL 29

FFT fast Fourier transform 27, 36

HLL High-Level Language 20

HP Hewlett-Packard 23

HTTP Hypertext Transfer Protocol 79

I/O Input/Output 19

IaaS Infrastructure as a Service 85, 86

IDE Integrated Development Environment 28

IEC International Electrotechnical Commission 79

IETF Internet Engineering Task Force 78, 79

IoT Internet of Things 9, 16–21, 26, 27, 29, 34, 37, 41, 42, 64, 65, 86–89, 91, 93–95

IP Internet Protocol 79

ISA Instruction Set Architecture 20, 21, 28

JIT just-in-time 8, 37–39

JSON JavaScript Object Notation 28

JVM Java Virtual Machine 35, 37–39

LAN Local Area Network 22, 92

LMC LibMiletusCOISA 8, 10, 17, 25, 27–30, 32–40, 65–67

LTE Long-Term Evolution 60

MCC Mobile Cloud Computing 92, 93

mDNS Multicast Domain Name System 28

MEC Mobile-Edge Computing 25, 92, 93

MIPS Microprocessor without Interlocked Pipelined Stages 28

NFC Near-Field Communication 88, 89

NIST National Institute of Standards and Technologies 17, 83, 91, 94

OS Operating System 19, 20, 35

PaaS Platform as a Service 85, 86

RAM Random Access Memory 28, 34, 35, 78, 80

RFID Radio-Frequency Identification 86–89

RISC Reduced Instruction Set Computer 20

SaaS Software as a Service 85, 86

SSL Secure Sockets Layer 22

TCP Transmission Control Protocol 60

TLS Transport Layer Security 79

UDP User Datagram Protocol 60, 79

VM Virtual Machine 19–21, 27–30, 35, 37

WSAN Wireless Sensor and Actuator Network 92, 93

WSN Wireless Sensor Network 19, 20, 92, 93

List of Symbols

Table 1: Notation for the cloud and fog computing cost models.

Notation Restriction Definition

b 0 < b ≤ z
Number of blocks into which the stream is divided to
compute several f values along the stream.

C
C

C
C
> 0 Cost of sending the data to be processed on the cloud.

C
F

C
F
> 0

Cost of processing the data on the fog and sending the
data that pass the filter to the cloud.

f 0 ≤ f ≤ 1 Probability that a value will pass the filter.

i i > 0
Cost of being idle between processing a value and
reading the next one.

n 0 ≤ n ≤ v
Number of values that passed the filter among the
tested values.

p p > 0
Penalty for processing a value on the fog when it would
cost less to do so on the cloud.

r r > 0 Cost of reading a value.

s s > 0 Cost of sending a value to the cloud.

t t > 0
Cost of executing a custom code that decides if the
value should be sent to the cloud.

v 0 < v ≤ z
Number of values that we are allowed to test to
estimate f considering the maximum increase in cost
defined by the user.

z z > 0 Stream size (i.e., number of processed values).

Contents

1 Introduction 16

2 Related Work 19
2.1 Infrastructure for Code Execution on Sensors 19
2.2 Fog Computing Tools . 21
2.3 General Computation Offloading Schemes 22
2.4 Edge/Fog/Cloud Computation Offloading Schemes 24
2.5 Discussion . 25

3 A Framework for Custom Code Execution on Constrained Devices 27
3.1 Proposed Framework . 27

3.1.1 LibMiletus . 27
3.1.2 COISA . 28
3.1.3 Overview . 28
3.1.4 Implementation Details . 29

3.2 Experiments . 30
3.2.1 Test Cases . 30
3.2.2 Datasets . 33
3.2.3 Setup . 33

3.3 Analysis . 34
3.3.1 Filter Efficacy . 34
3.3.2 Number of Host and Guest Instructions 35
3.3.3 Code and Data Size . 35
3.3.4 Startup and Handler Execution Time 37
3.3.5 Events Processed per Second . 38

3.4 Conclusion . 39

4 Modeling Cloud and Fog Execution Costs 41
4.1 Modeling Platforms . 41

4.1.1 General Equations . 42
4.1.2 Estimating f . 43

4.2 Experiments . 45
4.2.1 Test Cases . 45
4.2.2 Datasets . 46
4.2.3 Setup . 46

4.3 Analysis . 47
4.3.1 Choosing an Approach to Estimate f 47
4.3.2 Deciding between Fog and Cloud for Execution Time 53
4.3.3 Deciding between Fog and Cloud for Energy Consumption 56

4.3.4 Simulating Other Scenarios . 60
4.4 Conclusion . 62

5 Conclusions 64
5.1 Scope of This Work . 64
5.2 Proposed Framework . 64
5.3 Proposed Model . 65
5.4 Main Contributions . 66
5.5 Future Work . 67

A Background 78
A.1 Constrained Devices . 78
A.2 Cloud Computing . 83
A.3 Internet of Things . 86
A.4 Fog Computing . 90
A.5 Mist Computing . 94

B Experimental Data 96

C Publications 103

16

Chapter 1

Introduction

Current prospects for the Internet of Things (IoT) indicate that, within the next few

years, a global network of objects will connect tens of billions of devices through the

Internet [54]. As this technology becomes more widespread, we can also expect that a

large number of devices with limited resources (e.g., power, memory, and processing) will

become part of it. These devices are known as constrained devices. Current examples

of smart constrained devices are the 2nd-generation Nest Learning Thermostat (which

has 128 KiB of RAM, 16KiB of Flash, and a microprocessor with a frequency of up to

32MHz) and the Fitbit activity tracker (which has 256 KiB of RAM, 64KiB of Flash, and

a microprocessor with a frequency of up to 80MHz).

Most IoT devices will contain sensors to help them interact with the environment

around them, and the data they collect will create many opportunities. For instance, this

will allow the improvement of strategies for resource usage and management in settings

such as urban planning and environmental sustainability, thus advancing agriculture and

contributing to an increase in the number of smart cities. It will also promote automation

and the use of cyber-physical systems, prompting the widespread adoption of industry

4.0 [10]. Moreover, considering that important processes such as data analytics can benefit

from working with more data, this will lead to data scientists not only being able to better

understand the world we live in, but also making more accurate predictions and creating

improved systems based on people’s behaviors and tastes.

Even though storage space on the cloud can be scaled according to the needs of its

users, with petabytes of data being produced by IoT devices every day, the sheer volume of

information will make transmitting every single byte to the cloud prohibitively expensive

in terms of both time and money [69]. Furthermore, moving data streams from sensor

nodes to servers will not only present the aforementioned costs, but also have an impact on

the energy consumption of devices that may have constricted power budgets (e.g., devices

that are battery-operated or depend on limited energy sources such as solar power).

A possible way to meet these expected requirements is not sending all the data to be

processed by machines that are far from the data source, but instead bringing the com-

putation closer to where the information already is. With this premise, a new paradigm

called fog computing emerged, proposing to process data closer to network edge devices,

such as switches and routers [14]. Enabling data to be processed near its origin (e.g., on

a local access point, router, or even on the sensor device itself) allows us to address prob-

17

lems related to transmission latency and network congestion. It also opens up the space

for new possibilities, such as filtering and discarding unnecessary information, analyzing

readings in search of outliers to report, and actual real-time response to local queries.

The USA’s National Institute of Standards and Technologies (NIST) calls attention

to constrained devices within the fog computing context, naming them mist nodes [41],

as they are lightweight fog computing nodes. However, NIST expects the purpose of

these devices to be more specialized and dedicated, while we see a valuable opportunity

in leveraging them for custom user code execution due to their proximity to the data

source. For instance, mist nodes have the potential to perform simple custom operations

on sensor streams, such as aggregation and filtering, to reduce network traffic and latency.

Given that the mist is part of the fog, when we refer to fog computing in this dissertation,

we are considering both fog and mist nodes.

Despite the potential of employing constrained IoT devices as a part of the fog hier-

archy, many current fog computing frameworks [2, 22, 30, 76] still require more resources

than what these devices provide, and thus cannot be used to enable them to execute

custom code. Therefore, investigating solutions that involve resource-constrained devices

and creating a lean infrastructure that enables their seamless incorporation into the IoT

is a gap that both industry and academia must explore to enable the full potential of this

technology.

In particular, we highlight the importance of understanding and characterizing the

scenarios where these devices can be used efficiently, as this is the key to developing so-

lutions that use the most profitable approach for each specific problem. For example,

although fog computing brings several advantages, there may be cases where the com-

putation takes longer or requires more energy to be completed on the fog device than it

would it take to send the values to the cloud. In addition, there are situations where the

whole computation depends on many different data sources. In these instances, it might

be more profitable to send the data to be processed by the more robust cloud servers

instead of executing the program locally.

Considering this context, this dissertation works toward the answer to the research

question “In what cases is it more profitable to perform computation on a constrained IoT

device instead of using the cloud? ”.

Unlike many works in the area, which focus on either the technical or theoretical

aspects of handling constrained devices and offloading the computation from these devices

to more powerful ones, our investigation used a broader approach, which combined both

the implementation and the formalization of our solution.

In the first part of our analysis, we developed a platform called LibMiletusCOISA

(LMC), which allows users to execute their code on constrained devices, and compared it

to the Apache Edgent framework [2]. LMC performed well when executed on the same

device as Edgent and made it possible to execute the code on a constrained device, which

does not have enough memory to support the execution of existing fog computing tools.

With that, we established that indeed there are cases where it is faster to perform

the computation on a constrained IoT device (that is, more profitable in terms of time),

therefore giving us more evidence to support the investigation of our research question.

The main contributions brought by this part of the analysis are the infrastructure that

18

we developed, which allows us to send user programs to constrained devices and execute

them, and the fact that we employed it to obtain real-world values for our test cases.

In the second part of our analysis, we created two models where the user chooses a

certain cost metric (e.g., number of instructions, execution time, or energy consumption)

and employs it to decide where they should execute their code. One of them is a generic

mathematical model that uses a linear equation to determine the costs and the other is a

visual model that allows the user to conclude quickly what is the most profitable approach

in a specific scenario.

For instance, consider that the user chose energy consumption as their cost metric.

The mathematical model would allow them to calculate, from the point of view of the

device that is collecting the data, how much energy would be required for the device to

perform the computation and send its result to the cloud, as well as how much energy

would be required to send all data to the cloud instead. The visual model would then

allow the user to visualize easily the approach where less energy is used (that is, the

approach that is more profitable in terms of energy).

We used datasheets and the infrastructure built in the first part of our analysis to

obtain real-world values to use in our test cases, and then used these values as the input for

simulations that employed our models to identify the situations where executing the code

on the device that collected the data would be the chosen approach. We also simulated

future scenarios where changes in communication and processing technologies can affect

whether the fog or the cloud is the most profitable solution.

With that, we formalized an approach to identifying the cases where it is more prof-

itable to perform computation on a constrained IoT device instead of using the cloud,

which is what we intended with the investigation guided by our research question. The

main contributions brought by this part of the analysis are the mathematical and visual

models, a procedure to estimate the probability of a value passing a filter based on the

cost penalty that the user is willing to pay for this calculation, and the simulation of

future scenarios.

This dissertation is organized as follows: Chapter 2 covers studies that are related

to our work on the topics of execution of code on sensors, fog computing tools, gen-

eral computation offloading schemes, and edge/fog/cloud computing offloading schemes.

Chapter 3 has the first part of our analysis, where we introduce the LibMiletusCOISA

framework and discuss the experimental results related to it. Chapter 4 describes the

second part of our analysis, in which we present our mathematical and visual models and

discuss the experimental results related to them. Chapter 5 gives our conclusions and

possibilities for future work. Appendix A characterizes important background concepts

for this research: constrained devices, cloud computing, IoT, fog computing, and mist

computing. Finally, Appendix B shows more detailed data for the experimental results

discussed in the dissertation.

19

Chapter 2

Related Work

This chapter presents the result of our research into the state-of-the-art technologies

related to our study and the opportunities and challenges we can tackle to advance it.

2.1 Infrastructure for Code Execution on Sensors

Throughout the years, much work has been put into developing technologies that provide

the necessary infrastructure for Wireless Sensor Networks (WSNs). Although this type of

network operates on a considerably smaller scale than the IoT, the knowledge obtained by

WSN studies can provide valuable insights for this emerging paradigm. For instance, we

have Operating Systems (OSs) that were specifically created to be executed on constrained

devices.

Tiny Operating System (TinyOS) [1] can be considered one of the most robust, inno-

vative, energy-efficient, and widely used OSs for WSNs. It was designed for low power

sensing motes and it is a flexible solution that supports concurrency, has easy memory

management, and uses good scheduling algorithms, while also complying with resource

limitations. Furthermore, compared to other OSs for sensors, TinyOS code is very simple

and short, and its installation and applications require less memory.

More recently, other OSs have been created targeting not only sensors but the “things”

that are part of the IoT as well. For instance, there is Android Things [31], which inte-

grates additional Application Programming Interfaces (APIs) to the core Android frame-

work, allowing developers to work with hardware that is not found on mobile devices. By

removing the need for kernel and firmware development, this tool also enables developers

without previous knowledge of embedded system design to build applications. One more

example is the ARM Mbed OS [4], which focuses on ARM Cortex-M microcontrollers. It

provides security, connectivity, a real-time OS, and drivers for sensors and I/O devices,

making prototyping for IoT applications quicker on low-cost development boards.

Another important feature for code execution on sensors is the ability to update soft-

ware through wireless connections instead of physical access to the hardware, be this

update a simple bug fix or a complete re-tasking of the sensor. Approaches to remotely

reprogramming a WSN can be divided into four main categories: Full-Image Replacement,

Differential Image Replacement, Dynamic Operating Systems, and Virtual Machines [61].

20

Full-Image Replacement techniques, such as XNP [23] or Deluge [40], work by prop-

agating a new binary image of both an application and an OS in the network. Since

the image is recompiled and relinked in every iteration, this type of solution offers a

very fine-grained control over the possible new configurations. However, this may lead to

bandwidth overhead, as unchanged parts of an application also need to be retransmitted.

Differential Image Replacement approaches, like the ones used by Zephyr [66] and

other tools [43, 71], aim to reduce bandwidth consumption by only disseminating the

changes between an executable deployed in the network and a new image. Still, they do

not possess high-level knowledge of the application structure and, therefore, suffer from

the intrinsic drawback of image replacing.

Dynamic Operating Systems, like Contiki [28], SOS [35], FiGaRo [60], FlexCup [56],

TOSthreads [44], and Dynamic TinyOS [61], allow fine-grained code updates with low

dissemination and runtime overhead. Nevertheless, most of these solutions present some

disadvantages, such as requiring position independent code, which is usually not fully

supported by common WSN runtime systems; only allowing one-way linking for loaded

modules, consequently leading to the use of more energy-intensive, polling-based services

for interrupts; and using nonstandard tools that need to be ported to a wide range of

development platforms.

Virtual Machines (VMs), such as COISA [8] and others [5, 6, 12, 16, 18, 32, 36,

46, 75, 79, 83], typically only enable application updates, but reduce the energy cost of

propagating a new functionality in the network, given that their code is commonly more

compact than native code [61] (due to being processed by software, which allows it to

be arbitrarily complex). They also allow developers to implement a program once and

deploy it to many different hardware platforms, which can be very useful in heterogeneous

settings such as the one expected for the IoT.

Darjeeling [16], simpleRTJ [75], uJ [32], and NanoVM [36] are bare-metal High-Level

Language (HLL) VMs that are capable of running on limited hardware environments.

While these implementations handle the complexity of Java by only supporting a subset

of the Java bytecode, projects like TakaTuka [5] choose to mitigate the disparity between

the resources required by Java and the ones available on constrained devices by using

bytecode compression and optimization, as well as a compact file format to reduce the

memory overhead of .class files.

Although most HLL VMs are restricted to a single programming language, there are

some solutions that target a wider range of implementations. One such case is the IBM

Mote Runner [18], which is designed to be executed on embedded systems and works with

all strictly typed programming languages, such as Java and C#. This VM runs a special-

ized bytecode, called Mote Runner intermediate language (SIL), and uses a stack-based

approach to achieve a more compact implementation. Another example is CILIX [83],

which works with the Common Intermediate Language (CIL) and is compatible with

many programming languages, such as C++, C#, F#, J++, and Visual Basic.

One more approach that supports different languages is COISA [8]. This VM uses a

single intermediate format to encode programs that run on several hardware platforms.

By translating the native code to OpenISA, an intermediate language that is as low level

as a RISC ISA, it becomes an architecture-neutral solution, thus playing to the strengths

21

of VM technology in the highly heterogeneous IoT scenario. Furthermore, this tool allows

the use of Cloud-Assisted Translation to create binary codes without the overhead of code

interpretation, which can greatly reduce the energy required to emulate the code.

Table 2.1 shows a comparison between the features of these virtual machines regarding

some of the parameters that are relevant for their execution on constrained devices.

Table 2.1: Comparison between Darjeeling [16], SimpleRTJ [75], uJ [32], NanoVM [36],
TakaTuka [5], IBM Mote Runner [18], CILIX [83], and COISA [8]. Modified from [8].

Project CPU (bits)
RAM
(kB)

Flash
(kB)

ISA Focuses on

Darjeeling 8/16 2-10 32-128
Java

bytecode
Java

SimpleRTJ 8/16/32 2-24 32-128
Java

bytecode
Java

uJ 8/16/32/64 4 60-80
Java

bytecode
Java

NanoVM 8 1 8
Java

bytecode
Java

TakaTuka 8/16 4 48
Java

bytecode
Java

IBM Mote
Runner

8/16/32 4 32 SIL C#, Java

CILIX 8/16 4 32 CIL C++, C#

COISA 8/16/32/64 2 6 OpenISA
Any (C
a.t.m.)

2.2 Fog Computing Tools

Despite the novelty of the fog computing paradigm, several tools that employ it for general-

purpose computation, or even specific applications such as data analytics, have appeared

since its inception.

Apache Edgent [2] is an open source programming model and runtime that executes

parts of analytics solutions on IoT devices to reduce the amount of data they transmit.

Instead of sending a continuous flow of possibly trivial data to a server, Edgent analyzes

the events at the device, and if they are meaningful, the data is sent to a back-end system

for further analysis, action, or storage. A few use cases for this mechanism are analyzing

data on distributed edge devices and mobile devices to provide local feedback and reduce

data transmission costs, and analyzing machine health and application server error logs

in real time without impacting network traffic.

IOx [22] is an application environment created by Cisco that allows the use of docker

tools for the development of IoT applications that are independent of the network infras-

22

tructure. It provides a way to execute these applications on the fog with secure connec-

tivity with Cisco IOS software and it is used by businesses varying from manufacturing

and energy corporations to public sector organizations such as cities and transportation

authorities.

FogHorn [30] provides a solution for industrial customers, enabling efficient testing

of potential edge use cases and on-site delivery of analytics and machine learning. This

technology operates in markets such as manufacturing, oil and gas, transportation, smart

buildings, renewable energy, and power and water. FogHorn combines services that run

on the edge and the cloud, and its edge intelligence platform can be used to prevent costly

machine failures or downtime, as well as improve the efficiency and safety of industrial

operations and processes in real time.

Parstream [76] is a geo-distributed data analytics platform that creates value for busi-

nesses by analyzing a combination of historical and real-time data. As data is now being

generated much faster than bandwidth is growing, solutions that store data and query it

at its source may become a requirement for data management. An example where this

approach is useful is the German railway system, which stores and analyzes data on board

of its trains, sending only the result back to the management teams that need it to make

decisions. Another instance is Siemens, which used Parstream to locally store the data

generated by 5,000 sensors making 100 readings per second on a gas turbine, and then

send only the results of the analysis to the Siemens’ network.

2.3 General Computation Offloading Schemes

Mathematical models are an effective way to describe the behavior of systems and help

users to better understand and optimize system performance. Therefore, many models

have been proposed to estimate costs related to computing and transferring data. Never-

theless, these costs are dependent on the execution behavior of the task being considered

and the highly-variable performance of the underlying resources. As such, remote ex-

ecution systems must employ sophisticated prediction techniques that accurately guide

computation offloading. These models are even more important for offloading systems, as

they may need to decide whether or not it is worth sending a computation to other de-

vices. To this end, many works have been proposed. However, they are usually complex,

computationally expensive, or specific for some metric.

Li, Wang, and Xu [50] considered offloading media encoding and compression compu-

tation from a small handheld device to a desktop through a wireless Local Area Network

(LAN). They used profiling information from applications to construct cost graphs, which

were then statically partitioned, and each part was set to run on either the small or the

large device. The results showed considerable energy savings by offloading computation

following this partition scheme. In another work [51], the authors tested the same infras-

tructure with benchmarks from the Mediabench suite using a Compaq iPAQ. Their scheme

significantly saved energy in 13 of the 17 programs tested. Later, Li and Xu [52] consid-

ered the impact of adding security to the offload process for the same infrastructure. They

added secure mechanisms such as the Secure Sockets Layer (SSL) in all offloaded wireless

23

communication and concluded that despite the extra overhead, offloading remained quite

effective as a method to reduce program execution time and energy consumption.

Kremer, Hicks, and Rehg [47] presented a prototype for an energy-aware compiler,

which automatically generates client and server versions of the application. The client

version runs on small devices, offloading computation to the server when necessary. The

client also supports checkpoints to allow server progress monitoring and to recover from

connection failures. They tested this compiler with multiple programs and mobile devices,

obtaining the energy consumption with actual power measurements, and showed that they

could save up to one order of magnitude of energy for the small devices.

Rong and Pedram [74] built a stochastic model for a client-server system based on the

theory of continuous-time Markovian decision processes and solved the offloaded dynamic-

power management problem by using linear programming. Starting with the optimal so-

lution constructed off-line, they proposed an online heuristic to update the policy based

on the channel conditions and the server behavior, resulting in optimum energy consump-

tion in the client and outperforming any existing heuristic proposed until the publication

of their work by 35%.

Chen et al. [20] introduced a framework that uses Java object serialization to allow

the offloading of method execution as bytecode-to-native code compilation (just-in-time

compilation). This tool takes into account communication, computation, and compilation

energies to decide where to compile and execute a method (locally or remotely). As many

of these variables vary based on external conditions, the decision is made dynamically as

the methods are called. Finally, they tested the framework in a simulator and showed

that the technique is very effective at conserving the energy of the mobile client.

O’Hara et al. [65] presented a system-wide model to characterize energy consumption

in distributed robot systems’ computation and communication. With the model, they

showed that it was possible to make better decisions about where to deploy each software

and how to do the communication between robots. They tested this on a simulator and

showed that for a search-and-rescue mission, there are several counterintuitive energy

trade-offs. By using their cost model scheme, AutoPower, they were able to improve by

up to 57% over the baseline energy consumption.

Unlike other authors, Xian, Lu, and Li [89] chose to offload the computation from one

device to another by using a timeout approach instead of analyzing the software statically

or dynamically. They set a specific amount of time in which the application would be

allowed to run on the client and after a timeout, the program execution was entirely

offloaded to the server. They showed that this heuristic works well and that it can save

up to 17% more energy than approaches that tried to compute the execution time of the

application beforehand.

Hong, Kumar, and Lu [38] showed a method to save energy in mobile systems that

perform Content-Based Image Retrieval (CBIR). They proposed three offloading schemes

for these applications (local search, remove extraction, and remote search) and physically

measured that their approaches were able to save energy on an HP iPAQ hw6945 running

CBIR applications.

Gu et al. [33] presented a dynamic partition scheme to decide when and which parts of

a program to offload to nearby surrogates. They took into consideration both application

24

execution patterns and resources fluctuations to use a fuzzy control policy model. They

ran a large number of tests, measuring the total overhead, the average interaction delay

(time to send and receive requested data), and the total bandwidth required. The results

showed that their model was effective as an offloading inference engine.

Gurun, Krintz, and Wolski [34] argued that offloading systems must predict the cost

of execution both locally and remotely. Moreover, they also say that these techniques

must be efficient, that is, they cannot consume significant resources (e.g., energy, execu-

tion time), given that they are performed on mobile devices. Thus, the authors proposed

NWSLite, a predictor of resource consumption for mobile devices. They empirically ana-

lyzed and compared both the prediction accuracy and the cost of NWSLite and a number

of different forecasting methods from existing remote execution systems, showing its ad-

vantages over the other approaches.

Wang and Li [85] used parametric analysis to deal with the issue of programs having

different execution behaviors for different input instances. They proposed a cost anal-

ysis for computation and communication of a program that generates a function of the

program’s inputs. With this strategy, better decisions can be made when partitioning a

program and making offload decisions based on the program input.

Wolski et al. [88] proposed a method to make offloading decisions in grid settings by

using statistical methods. When only considering the network bandwidth of the system,

they showed that a Bayesian approach can be superior to prior methods.

Nimmagadda et al. [64] showed that offloading mechanisms can even be feasible in

real-time scenarios such as real-time moving object recognition and tracking. They con-

sidered the real-time constraints when building the offloading decision system and tested

motion detection and object recognition using offloading in multiple network and server

configurations.

2.4 Edge/Fog/Cloud Computation Offloading Schemes

Jayaraman et al. [42] presented equations for a cost model that focuses on energy usage

and evaluates the energy gain of their approach when compared to sending all the raw

data to the cloud. They also introduced the CARDAP platform, which was implemented

for Android devices and uses energy-efficient data delivery strategies to distribute mobile

analytics applications among mobile devices on the fog.

Deng et al. [25] investigated the trade-off between power consumption and transmis-

sion delay in fog-cloud computing systems. Their model was formulated as a workload

allocation problem where the optimal workload allocations between fog and cloud intend

to minimize power consumption given a constrained service delay. Their aim was to pro-

vide guidance to other researchers studying the interaction and cooperation between the

fog and cloud.

Xu and Ren [90] analyzed an edge system consisting of a base station and a set of

edge servers that depend on renewable power sources. Their models considered workload,

power, battery, and delay cost, and they used them to formulate the dynamic offloading

and autoscaling problem as an online learning problem to minimize the system cost.

25

Liu et al. [53] used queuing theory to study a mobile fog computing system. Their

model was formulated as a multi-objective optimization problem with a joint objective to

minimize energy consumption, execution delay, and payment cost by finding the optimal

offloading probability and transmission power for each mobile device. They addressed the

multi-objective optimization problem with an interior point method-based algorithm.

Neto et al. [63] created a framework called ULOOF that takes location awareness into

account and uses empirical profiles to estimate the energy consumption and execution

time of Android application methods. Their model employs a scaling factor to prioritize

either saving execution time or battery charge. Without having to modify the underly-

ing operating system or requiring superuser privileges, their decision engine determines

whether to offload a task to an external Mobile-Edge Computing (MEC) server or not.

2.5 Discussion

In Chapter 3, we present our proposed framework, called LMC. In order to compare it

to the tools described in Section 2.2, we chose four main characteristics that are relevant

to our investigation of code execution on heterogeneous constrained devices (see the con-

strained devices definition in Appendix A.1). Table 2.2 has the results of this comparison.

Table 2.2: Comparison between our proposed approach (LMC) and the tools Edgent [2],
IOx [22], FogHorn [30], and Parstream [76].

LMC Edgent IOx FogHorn Parstream

Runs on end devices? ✓ ✓ ✗ ✗ ✗

Runs on Class 2 constrained
devices?

✓ ✗ ✗ ✗ ✗

Supports many programming
languages?

✓ ✗ ✓ ✓ ✗

Open source? ✓ ✓ ✗ ✗ ✗

Given that Edgent is an open-source framework and can be executed on end devices,

we chose it as a baseline for the experiments described in Chapter 3.

In Chapter 4, we introduce two models to assist the analysis of the cost trade-off

between fog and cloud computing. One of them is a general mathematical model and the

other is a visual model inspired by the roofline model introduced by Williams, Waterman,

and Patterson [87].

We note that our main goal is different from that of the works mentioned in Sec-

tions 2.3 and 2.4, given that we aim to enable users to select the most profitable platform

according to a metric of their choosing, while the other studies focus on optimizing specific

metrics (mostly time and energy).

Furthermore, the presented mathematical model is intended to be simple so its im-

plementation can be executed on constrained devices, which is not the case for most of

the listed models. Although some approaches such as NWSLite [34] also discuss the cost

26

model needing to be mindful of resource usage, it is still more complex than our approach

and too large to be used in the devices that are constrained according to the definition

presented in Appendix A.1. We consider this to be an important distinction between our

approach and the others, as constrained devices will have a growing importance in the

IoT scenario due to their low power consumption and reduced cost, size, and weight.

27

Chapter 3

A Framework for Custom Code

Execution on Constrained Devices

Considering the prediction that there will be tens of billions of devices connected to the

IoT in the near future [54], the demand for efficient ways to process data streams generated

by sensors grows ever larger, highlighting the necessity to re-evaluate current approaches,

such as sending all data to the cloud for processing and analysis.

In this chapter [68], we explore one of the methods for improving this scenario: bring-

ing the computation closer to data sources. By executing the code on the IoT devices

themselves instead of on the network edge or the cloud, solutions can better meet the

latency requirements of several applications, avoid problems with slow and intermittent

network connections, prevent network congestion, and potentially save energy by reducing

communication.

To this end, we propose the LibMiletusCOISA (LMC) framework and compare it with

Edgent [2], an open-source project that is under development by the Apache Incubator. In

our experiments, we used a DragonBoard 410c to execute a simple filter, an outlier detec-

tor, and a program that calculates the FFT. Our results indicate that LMC outperforms

Edgent when dynamic translation is disabled for both of them and is more suitable for

lightweight quick queries otherwise. More importantly, LMC also enables us to perform

cross-platform code execution on small, cheap devices that do not have enough resources

to run Edgent, like the NodeMCU 1.0.

3.1 Proposed Framework

The two main components of our proposed framework are the LibMiletus [59] library and

the COISA [8] VM. Therefore, we named it “LMC”, which stands for LibMiletusCOISA.

3.1.1 LibMiletus

The central goal of LibMiletus is to enable developers to easily design and implement IoT

devices. To achieve this, the library hides communication specifics so the programmer

can focus on device functionalities instead of system infrastructure.

29

On the left side, we have the client device, which hosts a program written by the

user with the help of libraries from the LMC framework. The program is compiled to

create a binary file and sent to the IoT device through the network. In our experiments,

we use a script that makes simple cURL requests to send this file. As there may be a

space limitation on the IoT device’s memory, we chose to split the binary file into several

smaller packages that can be individually received by the LMC server and then copied to

COISA’s VM memory until the whole program is stored.

On the right side, we have the IoT device where the LMC server is running. The

server program’s main function is divided into two parts: setup and event handling.

The first step of the setup consists in creating a new MiletusDevice object and defin-

ing the properties that identify the device and represent its characteristics (e.g., what

type of sensor the device contains) and the methods that allow it to answer requests and

execute user programs. Once the object is created, the setup defines its Platform inter-

face, which is responsible for handling the output (e.g., a GNU/Linux Platform interface

outputs with printf, while an Arduino Platform interface uses Serial.print), as well

as its Communication interface, which handles the connection using a certain wireless

network technology (e.g., Wi-Fi or BLE).

The event handling part is placed inside of an endless loop. It starts by calling the

handleEvents method from the MiletusDevice object, which checks if there are any

pending requests. In case there is custom code installed on the device, it is executed

until an exit syscall is performed. If an event such as a sensor value update happens,

the method sends it to the COISA event queue so it can be properly treated by the VM.

When the handleEvents method returns, the current sensor values are requested and the

MiletusDevice object is updated with this information (as we used simulated values in

our experiments, the implementation of this function simply reads the next value instead

of polling the sensors).

In order for COISA to be compatible with other intercommunication frameworks,

we kept it completely independent from LibMiletus. On the other hand, we modified

LibMiletus to allow access to certain COISA functions and structures, such as COISA’s

VM memory. This way, when the user program invokes a syscall provided by LMC for

reading values, the server event handling process can respond to this request with the

current value of a certain sensor by storing it in a place allocated by the user program in

the VM memory.

As a final note, we call attention to the fact that LMC is an open-source project1.

3.1.4 Implementation Details

The development of LMC required us to integrate the LibMiletus library and the COISA

VM, while also documenting the capabilities of the new framework.

Although we did not change COISA functionalities, we had to extend the implementa-

tion of its instruction set to support single and double precision floating-point operations,

which are part of OpenISA, but still needed to be added to the VM. We also included

counters to COISA that allowed us to get the statistics required for our experiments.

1https://github.com/fpisani/LibMiletusCOISA

30

We modified LibMiletus to support a new _coisa trait and a command that installs

the user code on the device that is running the server. This installation process occurs

by copying the code to the VM’s memory. If a new event happens and there is a code to

be executed, we made LibMiletus use COISA for this job.

Furthermore, we included the mechanism that allows the server to respond a reading

request from the user program with the current sensor value. This is done by storing the

value in a place allocated by the user program in the VM memory. We also added counters

to LibMiletus that allowed us to get the statistics required for our experiments. In order

to verify our code, we implemented unit tests in C++ that allowed us to guarantee that

LibMiletus functionalities were still working after the changes.

We implemented the test cases for our experiments in C and wrote Bash scripts that

automated compiling them and testing their functionalities. To verify if the test cases

were working correctly with LMC, we created Python scripts to automate the process of

starting the LMC server on a computer running GNU/Linux, sending the user program

to the server, and then checking the results of the computation. We did the same for the

Edgent test cases, but the programming language used to implement them was Java.

3.2 Experiments

In this section, we consider the following scenario to evaluate LMC and compare it with

Edgent: a device with processing capabilities is equipped with a capture instrument (e.g.,

a microphone or a sensor) that periodically measures an environmental variable such

as temperature, humidity, or luminosity. A user is interested in querying this device for

information that can be useful for synthesizing knowledge. To this end, the user expresses

their query as a program, sends it to be executed on the device, and then receives its result.

The answer to the user’s query can be a log file stored in the device itself, a stream of

values sent to the cloud, or any other reply that they may find convenient. For the purpose

of these experiments, however, we will simply consider that the answer was reported back

to the user and will not look further into the implementation of this procedure.

3.2.1 Test Cases

To explore our test case scenario, we implemented three different operations that a user

might want to use to query the device.

MinMax is a simple filter that checks whether a numeric value is outside of a certain

interval (Algorithm 1). It can be used to detect malfunctions in systems where the

expected upper and lower bounds for collected values are known.

Algorithm 1 Algorithm for the MinMax operation.
Input: sensor_value: floating-point value to be evaluated; min, max: lower and upper

bounds for the interval of values that do not need to be reported, respectively.
1: if sensor_value < min or sensor_value > max then
2: report_value(sensor_value)
3: end if

31

Outlier is a program that executes Tukey’s test [37] to detect outliers in a window

of stream values (Algorithm 2). It can be used to detect possible anomalies or failures in

data models.

Algorithm 2 Algorithm for the Outlier operation.
Input: sensor_values: array containing floating-point values to be used in the calcula-

tion; size: number of values.
1: insertion_sort(sensor_values)

⊲ These calculations use the definition of quartile that does not include the median:
2: q1 = find_median(0, (size/2)− 1) ⊲ The parameters indicate the first and last in-

dices of the array to consider for the calculation
3: if size % 2 == 0 then ⊲ The operator % represents the remainder of the division
4: q3 = find_median(size/2, size− 1)
5: else
6: q3 = find_median(size/2 + 1, size− 1)
7: end if
8: range = q3− q1
9: inner_lower_boundary = q1− range× 1.5

10: inner_upper_boundary = q3 + range× 1.5
11: outer_lower_boundary = q1− range× 3.0
12: outer_upper_boundary = q3 + range× 3.0
13: for each value ∈ sensor_values do
14: if value < outer_lower_boundary then
15: report_major_outlier(value)
16: else
17: if value < inner_lower_boundary then
18: report_minor_outlier(value)
19: else
20: if value > outer_upper_boundary then
21: report_major_outlier(value)
22: else
23: if value > inner_upper_boundary then
24: report_minor_outlier(value)
25: end if
26: end if
27: end if
28: end if
29: end for

FFT is a recursive algorithm that calculates the Fast Fourier Transform (Algorithm 3)

for a window of stream values. Among other applications, it can be useful as a step in

problems such as voice activity detection [19].

33

stores it in an array until size values are collected. Then, it runs the query kernel. If the

query is of the one-time type, the event handler will be unregistered after the execution,

and if it is continuous, the query will keep on being executed until a new request arrives.

We used a similar process for Edgent, except that there is no server running on the

device, only the user program written in Java with the help of the framework. Also,

Edgent’s TStream<T> interface offers a filter method which produces the same result as

MinMax, thus our Edgent program uses this method instead of the algorithm presented

above.

3.2.2 Datasets

In order to create the datasets used in our experiments, we simulated a stream of values

coming from a sensor by generating random floating-point numbers using the sine function

combined with a Gaussian noise. We decided to use Gaussian noise due to having easy

access to a working implementation of a function that calculates it. The sine was used to

add the characteristic of a wave to the values, similar to what would happen, for example,

with temperature variations throughout the day, and the random noise was introduced to

create a sufficiently varied dataset. Considering this, we calculated the i-th value of each

set as follows:

sin

(

i+ 1

4

)

× GaussianFunction(mean = 30, std_dev = 15)

3.2.3 Setup

For our experiments, we selected two devices with distinct characteristics: the develop-

ment board DragonBoard 410c, which we will simply call “DragonBoard” or “DB” from

now on, and the NodeMCU 1.0 (ESP8266, ESP-12E) IoT platform, which will be called

“NodeMCU” or “NMCU”.

As the DragonBoard can execute both LMC and Edgent, we employed it to compare

the performance of these two frameworks in the same setting. The NodeMCU, however,

is a less powerful device with more limited resources and was thus used to show that LMC

can be executed in devices that do not comply with Edgent’s requirement of either Java 7,

Java 8, or Android. Table 3.1 presents the hardware and software setup that we used for

both devices. Furthermore, we used Arduino 1.8.2 to program for the NodeMCU and the

OS Debian GNU/Linux 8.6 (4.4.23-linaro-lt-qcom), Java openjdk-1.8.0_102, and Edgent

1.1.0-incubating for the DragonBoard.

Although the NodeMCU does not belong to the constrained device classes presented

in Figure A.1, we verified that the number of resources used by LMC is compatible with

C2 devices, as described in Section 3.3.3.

Lastly, we also point out we created the OpenISA binary files that are sent to the

LMC server on a computer running Ubuntu 14.04.1 LTS GNU/Linux (4.4.0-81-generic)

using the following software: GCC Ubuntu 4.8.4-2ubuntu1 14.04.3 (-O3 flag), ELLCC

x86_64-linux-0.1.34, and GNU Binutils 2.24.

34

Table 3.1: Hardware and software setup for our experiments.

NodeMCU DragonBoard

RAM
64KiB (instruction)

+ 96KiB (data)
1GB LPDDR

Flash 1MiB + 3MiB (File System) 8 GB

CPU
Tensilica Xtensa L106

@ 80MHz

Quad-core ARM® Cortex®

A53 Snapdragon 410E
up to 1.2 GHz

Compiler
xtensa-lx106-elf-gcc (crosstool-NG

1.20.0) 4.8.2 (-Os flag)
gcc Debian/Linaro 4.9.2-10

(-O3 flag)

3.3 Analysis

We divided our analysis into five parts. Section 3.3.1 evaluates the impact of the filters

used in our tests on the number of values reported by the device. We compared the

number of host and guest instructions in Section 3.3.2 and used it as an indicator of

LMC’s interpreter quality. Section 3.3.3 reports the Flash and RAM used by both the

LMC and Edgent frameworks for each of the test cases, as these are the values used to

determine if they are compatible with the constrained device classification presented in

Appendix A.1. Section 3.3.4 analyzes the performance of both frameworks in terms of

startup and handler execution time. Finally, Section 3.3.5 considers their performance

with regard to the number of events processed per second.

3.3.1 Filter Efficacy

The predicted increase in the number of devices connected to the IoT may lead to the

approach of sending all sensor values to the user becoming too taxing due to network

congestion or the cost of keeping an ever-increasing storage space. Therefore, as a first

experiment, we looked into the impact that executing a filter on the device itself may have

on the amount of data that is reported to the user, as this can be a strong motivation for

the approach of bringing the computation closer to the data source.

Figure 3.3 shows the results for continuous MinMax queries considering different ranges

of values that the user may want to filter out. As expected, we see that for larger ranges

such as [-30, 30] (i.e., only values below -30 or above 30 are reported) there is a drastic

decrease in the size of the output, reaching as low as only 20% of the stream values being

reported. We also observe that a similar behavior occurs even when the query is executed

over larger numbers of stream values before being interrupted.

We also executed tests with continuous Outlier queries with window sizes of 5, 10, and

20 and stream lengths of 10, 100, and 1000. In this case, we noted that the maximum

number of values that were reported is 15 on a stream of length 1000 using a window of

size 10. Most cases reported either zero or one, a likely outcome considering that this

filter only lets through abnormal readings.

36

of memory when compiled for the Edgent framework. We were unable to measure the

amount of memory required to store the program data and stack when using Edgent.

The Outlier code program occupies 2.0 to 3.0 kB of memory on the LMC platform,

being 1.9 kB spent by code, 32 bytes by the program stack, and 64 to 1056 bytes spent

by the program data section, which hosts the array that stores the sensor values. The

Edgent framework uses roughly 6.9 kB of memory to store the program code.

The FFT code program consumes 12.5 to 14.5 kB of memory on the LMC platform,

being 10.4 kB used by code, 2080 bytes by the program stack, and 100 to 2084 bytes spent

by the program data section. This user code implements a recursive FFT function, which

consumes stack memory. The Edgent framework uses only 7.1 kB of memory to store the

program code, however, this code uses the sine and cosine methods available on the Java

libraries, while the FFT code for the LMC platform implements these functionalities. In

case these functions are removed, the FFT would occupy only 2.6 kB of code and 100 to

946 bytes of data on the LMC platform.

Table 3.2: Comparison between the infrastructure of the LMC and Edgent frameworks.

Flash (bytes) RAM (bytes)

Arduino Runtime / LMC / Arduino Runtime /
GNU/Linux Edgent GNU/Linux

NMCU LMC 239,369 87,012 49,912

DB
LMC - 126,524 88,080,384

Edgent - 287,826 88,080,384

Table 3.3: Comparison between the LMC and Edgent frameworks during execution.

RAM (bytes)

LMC / User Prog. User Prog. User Prog.
Edgent+JVM Code Data Stack

NMCU LMC
MinMax 26,258 1,129 25 32
Outlier 28,258 1,887 64 - 1,056 32
FFT 36,258 10,367 100 - 2,084 2,080

DB

LMC
MinMax 22,789 1,129 25 32
Outlier 25,248 1,887 64 - 1,056 32
FFT 33,578 10,367 100 - 2,084 2,080

Edgent
MinMax - 5,237 - -
Outlier - 6,903 - -
FFT 173,957 7,112 - -

41

Chapter 4

Modeling Cloud and Fog Execution

Costs

In this chapter [69], we work toward the answer to the question “is it worth processing a

data stream on the device that collected it or should we send it to be processed by more

powerful and distant devices?”. As it is often the case in Computer Science, the response

is “it depends”. To find out the cases where it is more profitable to stay in the device

(which is part of the fog) or to go to a different one (for example, a device on the cloud),

we propose two models that intend to help the user evaluate the cost of performing a

certain computation on the fog or sending all the data to be handled by the cloud. In our

generic mathematical model, the user can define a cost type (e.g., number of instructions,

execution time, energy consumption) and plug in values to analyze test cases. As filters

have a very important role in the future of the IoT and can be implemented as lightweight

programs capable of running on resource-constrained devices, this kind of procedure is the

main focus of our study. Furthermore, our visual model guides the user in their decision

by aiding the visualization of the proposed linear equations and their slope, which allows

them to find if either fog or cloud computing is more profitable for their specific scenario.

We validated our models by analyzing four benchmark instances (two applications using

two different sets of parameters each) being executed on five datasets. We use execution

time and energy consumption as the cost types for this investigation.

4.1 Modeling Platforms

When working with the data streams generated by sensors, it is common for users to need

to transform the raw collected data into something else before storing the final values.

For example, they may wish to standardize or clean the data (parsing), discard unwanted

readings (filtering), or generate knowledge (predicting).

With the task at hand, they will then need to decide where to execute it, and there are

a few options to choose from: they can process the data on the same device that collected

the values; they can send the data to other nearby devices, among which the task may

be split; or they can send the data to be processed by more powerful and distant devices,

such as cloud data centers.

42

In this dissertation, we discuss the first and third cases. Therefore, our main goal will

be working toward the answer to the question presented at the beginning of this chapter.

In a way, looking for the answer to this question is akin to a search for cases where fog

computing (performing computation close to the data source) is more profitable than

cloud computing (sending data to be processed by faraway devices).

For the purpose of this analysis, we consider that we are working with devices that are

capable of executing custom code, connected to the Internet, and able to send packets to

other devices. Furthermore, we assume that we are handling non-empty data streams of

limited size (i.e., the stream size is neither zero nor infinite) and that we are only dealing

with cases where there is no overlap between processing and transferring the data.

We chose this last restriction due to the fact that treating concurrent data processing

and transferring would require a more complex model, as the cost of performing both

events (or part of them) at the same time may not be the same as the sum of the costs

of performing them separately. For instance, devices may handle these cases differently

from the point of view of enabling/disabling parts of the hardware and buffering the data

to be transmitted.

4.1.1 General Equations

First, we look at the generic cost of performing the task on the device itself, which we

call fog computing cost (C
F
). We model this cost with regard to the steps that must

be executed to complete the computation. We start by reading the sensor value (cost

r). Then, we perform a custom code operation (cost t). We are particularly interested

in filtering procedures, given that, as seen in Section 3.3, these can be simple enough

to run on resource-constrained devices and have the potential to decrease the amount of

data sent to the cloud drastically, a situation that is posed to become a problem with the

large-scale adoption of technologies such as the IoT. For that reason, in this investigation,

we consider that our custom operations are filters, that is, operations that decide whether

or not each stream value should be sent to the cloud. In this case, we must also consider

the cost of sending the data to the cloud (s) and the probability that the value will pass

the filter in question (f). After completing the operation, the device is then idle until

a new reading comes along (cost i). If we are working with a data stream of size z,

Equation (4.1) shows the fog computing cost.

C
F
= (r + t+ s · f + i) · z (4.1)

Next, we look at the generic cost of performing the task on the cloud. As some of the

resources used by the cloud are not under the user’s control, from the point of view of the

device that is collecting the data, the cloud computing cost (C
C
) only includes, for each

of the z values in the data stream, reading (r), sending (s), and being idle (i), as shown

by Equation (4.2).

C
C
= (r + s+ i) · z (4.2)

Given that this is a generic model, it is possible to plug in values to calculate different

types of costs (e.g., number of instructions, execution time, energy consumed). We will use

43

this approach in Section 4.3 to analyze a few test cases. We note that we are considering

that all of the values are positive, with the exception of f , which is a probability and, as

a result, a number between zero and one. Table 1 in the List of Symbols has a summary

of the notation introduced in this section.

In order to answer our question, we would like to choose situations where the fog

computing cost is less than or equal to the cloud computing cost (we use the fact that

processing data locally decreases network traffic congestion as a tiebreaker in favor of fog

computing when fog and cloud costs are the same). Thus, in the cases where C
F
≤ C

C
,

we have:

(r + t+ s · f + i) · z ≤ (r + s+ i) · z

r + t+ s · f + i ≤ r + s+ i

t+ s · f ≤ s

t

s
+

s · f

s
≤

s

s

t

s
+ f ≤ 1

t

s
≤ 1− f

1− f ≥
t

s
(4.3)

Since f is the probability of a value passing the filter, 1−f is the probability of a value

being filtered out. Therefore, from Equation (4.3), we have that the probability that a

value will be filtered must be greater than or equal to t/s for us to choose fog computing

in this cost model.

4.1.2 Estimating f

We can find s and t by measuring the hardware and software infrastructures according

to the type of cost for which we are looking. However, f also depends on the data, so it

cannot be as easily calculated unless we know all data points in advance. What we can

do instead is estimate f by looking at a subset of the values.

We can start by plotting a graph to guide our analysis of the relationship between

C
F

and C
C
. In this graph, the horizontal axis represents the fog computing cost as a

function of the number of stream values being processed on the fog. Therefore, a case

where all z data points are processed on the fog would be represented by a point crossing

this axis. The value of this point, which we call C
F0

, can be calculated by Equation (4.1).

In the same way, the vertical axis represents the cloud computing cost from the point of

view of the device as a function of the number of stream values being processed on the

cloud, and a case where all values are handled by the cloud is represented by a point

crossing this axis. The value of this point, which we call CC0
, can be found with the help

of Equation (4.2).

We can also add more points to the graph by considering the cases where part of the

45

threshold for the maximum penalty that we are willing to pay. For example, if p = 0.0175,

each additional point processed on the fog will increase the computational cost by 1.75%.

Therefore, if we are willing to risk up to a 10% increase in cost, we can test if the first

v = ⌊10/1.75⌋ = 5 data points pass the filter or not. In this case, if n = 3 out of the

five values pass the filter, we can estimate that f = n/v = 3/5 = 0.6 and then plug this

value into Equation (4.3) to make our decision. It is up to the user to define what is a

reasonable trade-off given the parameters of their specific scenario. Table 1 in the List of

Symbols has a summary of the notation introduced in this section.

Examining Equation (4.4) and Figure 4.1 also gives us additional insights when we

evaluate the slope of the line, which is −CC0
/C

F0
. When C

F
= C

C
, the slope is −1 (as

is the case of the gray line with circular markers). If C
F
< C

C
, the slope is less than −1

(green line with square markers), and for C
F
> C

C
, it is greater than −1 (blue line with

triangular markers). From that, we have the following:

−1 = −
CC0

C
F0

−1 = −
(r + s+ i) · z

(r + t+ s · f + i) · z

1 =
r + s+ i

r + t+ s · f + i

r + t+ s · f + i = r + s+ i

t+ s · f = s (4.6)

Considering that all values are positive (or possibly zero in the case of f), we can follow

a similar logic for the cases where C
F
< C

C
and C

F
> C

C
. We see that Equation (4.6)

is analogous to Equation (4.3), but in this case, it helps us notice that the values of r,

i, and z do not affect the comparison between the slope and −1. Therefore, we can look

only at the values of f , s, and t when deciding whether to perform the computation on

the fog or the cloud using our cost model. We will use this simplification for our analysis

in Section 4.3.

4.2 Experiments

In this section, we put our theory to practice by using real-world data to perform simu-

lations using our mathematical model and then analyze the results with the help of our

visual model. In the future, we intend to implement a system that uses our model to

choose between processing values on the fog or the cloud so that the user can execute it

on the device while it is collecting the data.

4.2.1 Test Cases

We executed our tests using two of the test cases presented in Section 3.2.1. Namely, the

MinMax and Outlier benchmarks. We chose four instances of the benchmarks: MinMax

46

[−15, 15], which filters out numbers in the [−15, 15] range; MinMax [−5, 5], the same

program, but using the [−5, 5] range instead; Outlier 16, which finds outliers in a window

of 16 values; and Outlier 256, the same program, but with a window of 256 values instead.

The parameters of each benchmark were selected due to the results of Section 3.3.1, which

showed that these four instances filter out very different percentages of stream values.

4.2.2 Datasets

We executed the benchmarks for five different datasets: four real-world datasets down-

loaded from the United States National Oceanic and Atmospheric Administration’s Na-

tional Centers for Environmental Information website [62] and the artificial dataset de-

scribed in Section 3.2.2, which represents a stream of sensor readings. The four real

datasets are a subset of the hourly local climatological data collected at Chicago O’Hare

International Airport between September 2008 and August 2018 and are named HOUR-

LYRelativeHumidity (HRelHumidity, the relative humidity given to the nearest whole

percentage, with values between 16 and 100), HOURLYVISIBILITY (HVisibility, the

horizontal distance an object can be seen and identified given in whole miles, with values

between 0 and 10), HOURLYWETBULBTEMPC (HWBTempC, the wet-bulb temper-

ature given in tenths of a degree Celsius, with values between −27.3 and 27.4), and

HOURLYWindSpeed (HWindSpeed, the speed of the wind at the time of observation

given in miles per hour, with values between 0 and 55). We call the artificial dataset

Synthetic, and its values are random floating-point numbers between −84.05 and 85.07.

4.2.3 Setup

In our tests, we used the stream size z = 65,536, which is one of the stream sizes analyzed

in Chapter 3, while also being a reasonably large stream size for which our test cases

can be executed in a feasible time. Furthermore, as we have the infrastructure employed

in that same chapter to measure the execution time of our benchmarks on a NodeMCU

device, we used time as one of the cost types for this analysis.

The other cost type is energy consumption, which we obtained in two different ways:

the first way was by combining the NodeMCU execution times with electric current and

voltage information to calculate the energy consumption of executing the benchmarks

on this device; the second way was to use the number of instructions, host per guest

instruction, and average cycles per instruction combined with electric current, voltage, and

clock rate information to calculate the energy consumption of executing the benchmarks

on other devices, such as a Raspberry Pi 3. We chose the Raspberry Pi 3 instead of

the DragonBoard 410c for these tests due to it being easier to obtain all the information

required for our calculations from the Raspberry Pi 3 datasheet. Section 4.3.3 has a more

detailed explanation of these two approaches.

47

4.3 Analysis

We divided our analysis into four parts. As we need the value of f in order to calculate the

fog computing cost, Section 4.3.1 investigates different ways to implement the estimation

approach described in Section 4.1.2. Section 4.3.2 then uses the result of the previous

subsection to calculate the fog and cloud computing costs using execution time as the cost

type. Similarly, Section 4.3.3 presents the costs regarding energy consumption. These two

subsections evaluate the efficiency of the chosen estimation technique and how well our

model employs it to choose between processing values on the fog or on the cloud. Finally,

Section 4.3.4 describes a way to use our model to simulate different scenarios, allowing us

to observe how changing the values of our parameters would affect the decision between

fog and cloud.

4.3.1 Choosing an Approach to Estimate f

When following the steps presented in Section 4.1.2 to estimate the probability that a

value passes the filter (f), we come across the question of whether it would be more

profitable to make a decision at the beginning of the stream and then process the values

accordingly or to make several decisions along the stream with the intent of accounting

for possible changes in data patterns.

In order to evaluate the possibility of making several decisions along the stream, we

implemented two different estimation procedures, which we call Local and Cumulative.

In both approaches, we first divide our stream into a certain number of blocks (b). As

the number of values we are allowed to test (v) is still the same, we can now check ⌊v/b⌋

values in the first b− 1 blocks and v − (b− 1)× ⌊v/b⌋ values in the last block. The total

number of elements in each block depends on the stream size (z) and can be calculated

as ⌊z/b⌋ for the first b− 1 blocks and z − (b− 1)× ⌊z/b⌋ for the last one.

In the Local approach, we leverage the information obtained by testing local values in

order to try to better estimate f for each block. To that end, we test the values at the

beginning of each block and count how many of them passed the filter, then divide this

number by the number of tested values. Continuing the example from Section 4.1.2, for

b = 4, we would be able to check ⌊5/4⌋ = 1 data point in each of the first three blocks

and 5− 3×⌊5/4⌋ = 2 data points in the last one. If the number of values that passed the

filter (n) was one in each of the first and second blocks, none passed the filter in the third,

and one passed it in the fourth, we would have f = 1/1 = 1, f = 1/1 = 1, f = 0/1 = 0,

and f = 1/2 = 0.5 for each block, respectively.

In the Cumulative approach, we attempt to use the results from all previously-tested

blocks in order to make a more informed estimate using a larger number of data points.

In this case, we also test the values at the beginning of each block and count how many

passed the filter, but we then accumulate the number of both tested and passed values

with the count from previous blocks. In our example, that would lead to f = 1/1 = 1 for

the first block, f = (1+1)/(1+1) = 1 for the second block, f = (1+1+0)/(1+1+1) = 0.67

for the third, and f = (1 + 1 + 0 + 1)/(1 + 1 + 1 + 2) = 0.6 for last block.

Using these two approaches to estimate f , we calculated the costs in terms of execution

48

time for all benchmarks and datasets using the simplified versions of Equations (4.1)

and (4.2) obtained in Section 4.1.2 (i.e., C
F
= t + s · f and C

C
= s). The figures in

this subsection present a summary of these results. For the sake of simplicity, we did

not include all possible combinations between datasets and applications, as some of the

graphs are very similar to the ones shown. All figures employ the same values for stream

size (z = 65,536) and custom execution code cost (t, shown in Tables B.1 and B.2 in

Appendix B), but Figures 4.2–4.5 use the measured time of 7.3 ms [27] as the cost of

sending data to the cloud (s), while Figures 4.6–4.9 show what the costs would be like if

s was ten times smaller (0.73 ms). In the first case, the results are fog-prone, that is, the

fog is more likely to be profitable, as s is about one order of magnitude larger than t. On

the other hand, the results in the second case are cloud-prone, as the cloud is more likely

to be profitable when we have close values for s and t.

These figures compare the cost of processing all data on the cloud (Cloud); processing

all data on the fog (Fog); the cost of using the Local and Cumulative approaches to

estimate f and then decide where the data should be processed in each block (Local and

Cumulative, respectively); what the cost would be if there was a procedure that always

chose correctly between the fog and the cloud after testing the values at the beginning

of each block (Always right); and what the cost would be if we knew where to process

the data in each block without any testing (Oracle). The line in each graph shows the

minimum estimated cost among all the tested numbers of blocks for a certain combination

of dataset and benchmark, considering only Local and Cumulative estimates. The arrows

point to all Local and Cumulative bars that have the same value as the minimum cost.

We start by analyzing the fog-prone results. The graphs for the MinMax [−15, 15]

benchmark present three different sets of characteristics. The first can be seen in Fig-

ure 4.2a. Despite being fog-prone, the most profitable choice in this case is the cloud.

The division into 1,024 blocks gives us the best estimate, increasing the cost by 0.44%

in comparison to sending all values to the cloud. However, we note that the estimate

obtained by using one block increases the cost by only 0.50%.

The second case is shown in Figure 4.2b, which is similar to the results for the HWind-

Speed and Synthetic datasets (the difference being that the cost values are around 100 ms

and 300 ms for these two datasets, respectively). Here, all the divisions result in the same

estimate for both the Local and Cumulative approaches. For HWindSpeed and Synthetic

datasets, the Cumulative approach results in the same estimate for all values, with Local

starting to have increasingly worse estimates with 256 blocks and 512 blocks, respectively.

The third case is the one depicted in Figure 4.2c. Although the Cumulative approach

shows good estimates for a higher number of blocks, we see that both Local and Cumu-

lative obtain the minimum cost value for one and eight blocks, as well.

The graphs for MinMax [−5, 5] show two sets of characteristics. Figure 4.3a illustrates

the first one, which is a similar result to that of Figure 4.2a, and Figure 4.3b depicts

the second, which is akin to the graphs for the HVisibility, HWBTempC, and Synthetic

benchmarks. In this case, dividing the stream into only one block results in the minimum

cost value for all benchmarks except HWBTempC, for which the Cumulative approach

reduces the cloud cost by 22.20% when dividing by 128 blocks, compared to 22.03% for

just one block.

54

cases, over 900 values for Outlier 256 for fog-prone cases, and ten times fewer values for

cloud-prone cases (the exact numbers are also displayed in the aforementioned table). By

examining the output of the benchmarks, we are able to count the values that passed the

filter (n), which leads us to the f estimates, as well as the real f values for comparison.

Again, all of these results are reported in Tables B.1 and B.2.

Finally, we use the calculated f values to plot a graph similar to the one in Figure 4.1

for each benchmark. Like Section 4.3.1, here, we also used the simplified versions of

Equations (4.1) and (4.2) (i.e., C
F
= t + s · f and C

C
= s). The result is illustrated in

Figure 4.10. The continuous lines represent the tests that use the estimated values of f

(Est.), and the dashed lines represent the tests that use the real values of f (Real). The

continuous thick gray line represents the case where C
F
= C

C
, that is, a line with a slope

of −1. By observing the graphs, we can determine that most of the lines are below the

C
F
= C

C
threshold for fog-prone cases and above it for cloud-prone cases, as expected.

As discussed in Section 4.1, the lines below the threshold mean that it is more profitable

in terms of execution time to run these filters in the device that is collecting the data

instead of sending the values to be processed on the cloud. On the other hand, lines above

the threshold mean that, from the point of view of the device, it is more profitable to

process these data on the cloud.

A few notable exceptions are the MinMax benchmarks being executed on the HRel-

Humidity dataset in the fog-prone scenario and the MinMax [−15, 15] benchmark being

executed on the HVisibility and HWindSpeed datasets on the cloud-prone scenario. In the

first case, we see that although it was more likely that the fog would be more profitable,

the lines are above the threshold, indicating that in fact the cloud is the correct choice.

This can be explained by looking at the values of f for the MinMax benchmarks on the

HRelHumidity dataset, which are equal to one, meaning that all values passed the filter.

We can see that the cloud is more profitable every time this happens, as C
F
= t+ s · 1 is

always larger than C
C
= s. In the second case, the lines are below the threshold, indicat-

ing that the fog is more profitable instead of the cloud. This can again be explained by

looking at the values of f . MinMax [−15, 15] has f = 0 for HVisibility and f = 0.1393

for HWindSpeed. Using the values of s and t in each case, we can calculate what f would

be when C
F
= C

C
. For HVisibility, 0.614381 + 0.73 · f = 0.73, leading to f = 0.1584.

For HWindSpeed, 0.619163 + 0.73 · f = 0.73 and f = 0.1518. The f values for both test

cases are below the f value for the threshold, indicating that the fog is indeed the correct

choice for them.

We can also calculate the values of the slopes in order to verify the accuracy of our

f estimation. We do so by determining the slope of each of the lines using both the

estimated and real f values. The slopes obtained, as well as the error of the estimated

values in comparison to the real ones, are shown in Tables B.1 and B.2 in Appendix B.

In 16 out of the 20 fog-prone cases and in 16 out of the 20 cloud-prone cases, the error is

less than 5% in our predictions, thus we are able to get a close estimate of f while only

risking an increase of up to 0.5% in the processing cost. Furthermore, it is worth noting

that while the eight remaining test cases present larger errors, the choice between fog and

cloud is the correct one in all of them.

56

4.3.3 Deciding between Fog and Cloud for Energy Consumption

Similarly to what we did in the previous subsection, we start by obtaining values for s, t,

and f . However, we will now use energy consumption as our cost type and evaluate our

test cases on two different devices, namely NodeMCU and Raspberry Pi 3.

For the NodeMCU, we calculate t by taking the execution time for each test case

(displayed in Tables B.1 and B.2 in Appendix B) and multiplying it by the voltage of the

device (2V) and the electric current for when no data are being transmitted (17.2 mA) [58],

resulting in the values reported in Tables B.3 and B.4. We use the same method to

calculate the values of s, multiplying the time it takes to send the data to the cloud

(7.3ms for fog-prone cases and 0.1825 ms for cloud-prone cases) by the voltage and by the

electric current for when data are being transmitted (70 mA) [58], producing s = 1.022mJ

for fog-prone cases and s = 0.025 55mJ for cloud-prone ones. The next step is to calculate

C
F0

and CC0
for f = 1, the worst-case scenario from the fog point of view.

Given z = 65,536, we use Equation (4.5) to determine the penalty for processing a

value on the fog when it would cost less to do so on the cloud (p). Tables B.3 and B.4

have all the values for p, which are less than 0.0002 for fog-prone scenarios and less than

0.006 for cloud-prone scenarios. We again use 0.5% as the limit for the increase in cost

that we are willing to pay to estimate the value of f , which allows us to test over 13,000

values for most fog-prone cases (with the exception of Outlier 256, where v ranges between

3,600 and 5,700, as this benchmark executes a more costly procedure in comparison to

the others) and over 320 values for most cloud-prone ones (here, the values of v range

between 90 and 150 for Outlier 256), as can been seen in Tables B.3 and B.4.

The last step is to estimate f and plot the resulting linear equations using the simplified

versions of Equations (4.1) and (4.2) (i.e., C
F
= t + s · f and C

C
= s), as illustrated by

Figure 4.11. From Tables B.3 and B.4, we see that the slope estimate error is less than 5%

in 13 out of the 20 fog-prone cases and in 16 out of the 20 cloud-prone ones, which again is

a close estimate for risking only up to 0.5% increase in the processing cost. Moreover, from

the 11 remaining test cases, 10 correctly choose the more profitable approach. We see that

these results are analogous to the ones obtained in Section 4.3.2, with the expected choice

being made on most fog- and cloud-prone cases and the same four test cases appearing as

exceptions (fog-prone MinMax [−15, 15] and MinMax [−5, 5] executed on HRelHumidity

and cloud-prone MinMax [−15, 15] on HVisibility and HWindSpeed).

One interesting difference in the cloud-prone Outlier 16 cases is that as all lines are

very close to C
F
= C

C
. In this type of situation, it is necessary to check the slope values

to get a more accurate view of the decisions being made. From Table B.4, we have the

following slope estimates (and real values): for HRelHumidity, −1.0070 (−1.0128); for

HVisibility, −0.9836 (−1.0105); for HWBTempC, −1.0106 (−1.0032); for HWindSpeed,

−1.0019 (−1.0048); and for Synthetic, −0.9990 (−0.9945). From that, we have that the

fog is chosen for HRelHumidity, HWBTempC, and HWindSpeed, with the cloud being

chosen for the other two datasets. However, in the case of HVisibility, the real slope value

tells us that the best choice would have been processing the values on the fog. Even so,

considering how close the fog (0.025 29mJ) and cloud (0.025 55mJ) costs are in this case,

choosing the less profitable option will not greatly affect the performance of the system.

58

Instead of also executing our test cases on a Raspberry Pi 3 device, we employ a

different approach to calculate the value of t. First, we use the infrastructure presented

in Chapter 3 to count the number of instructions for each test case (displayed in Ta-

bles B.5 and B.6 in Appendix B). As our infrastructure is a virtual machine, we then

multiply this number by the number of host per guest instructions (60 for MinMax and

66 for Outlier, as seen in Section 3.3.2) and by the average number of cycles per instruc-

tion (which we estimate to be one). This gives us an estimate of the number of cycles that

each test case would take to process the whole data stream on the Raspberry Pi 3. We

then divide this result by the clock rate (1.2GHz [26]) to find out the time each test case

takes to process all stream values and by the stream size (z = 65,536) to finally obtain

the execution time of each test case. We then proceed with the same method that we

used for NodeMCU to obtain the t values reported in Tables B.5 and B.6. In this device,

the voltage is 3.3 V, and the electric current for when no data are being transmitted is

330 mA.

We determine the value of s in the same way as we did for NodeMCU, that is, by

multiplying the time it takes to send the data to the cloud (7.3ms for fog-prone cases and

0.001 825 ms for cloud-prone cases) by the voltage and by the electric current for when

data are being transmitted (500 mA) [26], which gives us s = 12.045mJ for fog-prone

cases and s = 0.003 011 25mJ for cloud-prone ones.

After that, we calculate C
F0

and CC0
for f = 1 and use Equation (4.5) to determine

the penalty for processing a value on the fog when it would cost less to do so on the

cloud (p, which can be found in Tables B.5 and B.6). In the fog-prone cases, p is less

than 0.00001, and in the cloud-prone cases, it is less than 0.03. This time, we use 0.01%

as the limit for the increase in cost that we are willing to pay to estimate the value of

f in the fog-prone cases and 1% as the limit in cloud-prone cases. This is done due to

the fact that we have very small values for p in the former and larger values for p in the

latter. With these limits, we can test over 11,000 values for most fog-prone cases (with

the exception of Outlier 256, where v ranges between 1,700 and 2,900) and over 290 values

for most cloud-prone ones (here, the values of v range between 40 and 80 for Outlier 256),

as indicated in Tables B.5 and B.6.

Finally, we estimate f using the simplified versions of Equations (4.1) and (4.2) to plot

the graphs in Figure 4.12. Tables B.5 and B.6 show us that 10 out of the 20 fog-prone

cases and 16 out of the 20 cloud-prone ones have a slope estimate error of less than 5%.

Although there are four fog-prone scenarios where the error is higher than 30% and three

cloud-prone scenarios where it is higher than 15%, the most profitable option between

cloud and fog is chosen in all cases.

Like the previous cases, most fog-prone and cloud-prone tests result in the expected

choice, with the exception of fog-prone MinMax [−15, 15] and MinMax [−5, 5] executed

on HRelHumidity and cloud-prone MinMax [−15, 15] on HVisibility and HWindSpeed.

60

4.3.4 Simulating Other Scenarios

As we have seen with our study of fog-prone and cloud-prone scenarios in the previous

subsections, another application for our model is simulating the decision process for dif-

ferent ranges of values. This is useful to help us visualize how changes in technology may

affect the decision to filter values in the device instead of sending them to be processed

on the cloud. It also allows us to analyze how far we can change s and t and still keep

the same decisions.

The value of s is related to factors such as the network protocol being used (e.g., TCP,

UDP); the implementation of network processes (e.g., routing); and the communication

technology employed by the device (e.g., Wi-Fi, Bluetooth, BLE, LTE, Zigbee, WiMax).

Moreover, it may include costs related to information security like authentication and

data confidentiality. Therefore, improving the performance of any of these elements would

decrease the value of s and lead us to change the decision from processing values on the

fog to sending them to be processed on the cloud.

At the same time, t is related to factors such as the quality of the filtering procedure’s

code and the technology of the processing unity used by the device. While we do not

expect the performance of these elements to decrease with time, it is possible that t may

increase as progressively more limited devices are employed or more robust features are

added to the procedures being executed, which would also lead to processing data on the

cloud being more profitable than doing so on the fog.

In our simulations, we use the estimated f values for the fog-prone cases of the Syn-

thetic dataset. The upper values for t are approximations of the result of Equation (4.6),

and the s values are numbers close to the 7.3 ms, when the cost type is execution time,

and 1.022mJ, when the cost type is energy consumption. We calculate the slope of the

lines obtained with these coefficients to observe how changing them affects our results.

In all figures in this subsection, the dashed area represents the space where the values

used in Sections 4.3.2 and 4.3.3 are located. The green cells (below the continuous line)

are the ones where the slope is less than or equal to −1, that is, the cases where fog

computing is more profitable. The blue cells (above the continuous line) are the cases

where cloud computing has the lower cost.

Figure 4.13a depicts the simulation results for MinMax [−15, 15]. In this case, we need

to either increase t or decrease s by 5.1× to reach a situation where fog computing no

longer has the lowest cost. Figure 4.13b shows the simulation results for MinMax [−5, 5],

for which we need to increase t or decrease s by only 1.9× to change our decision. This

is due to this case having a higher f than the previous one, which brings its initial slope

already close to −1. Figure 4.13c illustrates the simulation results for Outlier 16, and an

increase in t or decrease in s of 9.8× is necessary in this instance to make cloud computing

the more profitable choice, as the initial slope is far from −1 due to a very low value of f .

Figure 4.13d has the simulation results for Outlier 256. In this test, we need to increase t

or decrease s by 2.8× to change our decision. Although this case also presents a very low

f value, this is compensated by a t value that is much closer to s than the other cases,

explaining why its initial slope is much closer to −1 than Outlier 16.

63

We applied our models to two instances of a filter that allows numbers outside of a

certain range to pass and two instances of a filter that finds outliers in a window of values.

We used execution time and energy consumption as the cost types for our analysis and

executed the tests on five different datasets (four datasets with real-world climatological

data and one dataset with artificial data). Our experimental results indicate that: i)

our estimation process for fog and cloud computing costs works well, presenting less than

5% error in most of our test cases and correctly choosing the most profitable strategy

to process the values in all but one case; ii) in order to visualize possible changes in

technology, we were able to use our mathematical model to simulate a different range of

values for our test cases and found out how changing the time it takes to send the data

to the cloud (parameter s of our model) or changing the time it takes to execute the

application on the fog (parameter t of our model) would affect our decision between fog

and cloud computing.

64

Chapter 5

Conclusions

In this dissertation, we worked toward the answer to the research question “In what cases

is it more profitable to perform computation on a constrained IoT device instead of using

the cloud? ”.

5.1 Scope of This Work

We started by defining the restrictions of our solution. That is, we established that

the devices that we are working with must be: i) capable of executing custom code; ii)

connected to the Internet; iii) able to send packets to other devices; iv) equipped with

a capture instrument, such as a microphone or a sensor that periodically measures an

environmental variable. Furthermore, we assumed that we are handling: i) non-empty

data streams of limited size (i.e., the stream size is neither zero nor infinite); ii) cases

where there is no overlap between processing and transferring the data.

Then, we delimited the type of application that would be the focus of our analysis,

which can be expressed as: a user (e.g., a data scientist) wants to query a device looking for

meaningful information. To reach this goal, the user expresses their query as a program,

sends it to be executed on the device, and then receives its result. These requests are

of one of two types: one-time queries, which consider the data of a snapshot taken from

the stream at a certain moment in time, are evaluated only once, and return the answer

to the user; or continuous queries, which are evaluated continuously as new values arrive

and produce answers over time, always reflecting the stream data seen so far. Moreover,

we noted that filtering procedures are particularly interesting for these queries, as they

can be simple enough to run on constrained devices and may become very useful with the

large-scale adoption the IoT due to their potential to drastically decrease the amount of

data sent to the cloud.

5.2 Proposed Framework

Considering the expected scope of our solution, we proceeded to look for existing frame-

works that allowed users to send custom code to be executed on constrained devices. As

the studied tools were not compatible with the resource limitations of these devices, we

65

developed LMC, a framework that enables cross-platform code execution on constrained

IoT devices by combining a compact virtual machine (COISA) with a lean event handling

mechanism (LibMiletus).

We used LMC to deploy and execute one-time and continuous queries on constrained

IoT devices and compared its performance with the Apache Edgent framework using

three test cases on two IoT platforms, the simple NodeMCU 1.0 and the more robust

DragonBoard 410c. Our experimental results indicated that LMC is: i) very compact and

compatible with Class 2 constrained devices; ii) overall faster than the Edgent framework

if we disable dynamic translation mechanisms; iii) faster than Edgent at lightweight quick

queries when they are both being interpreted, in some cases, even if LMC is running on

the small NodeMCU platform while Edgent is running on the DragonBoard 410c.

With this result, we were able to establish that indeed there are cases where it is prof-

itable to leverage constrained IoT devices for custom code execution instead of employing

more powerful devices.

5.3 Proposed Model

In order to be able to systematically identify the cases where it is more profitable to

leverage constrained IoT devices for custom code execution instead of employing more

powerful devices, it was necessary to characterize the scenarios where this holds true.

Thus, we introduced two cost models for fog and cloud computing. The first is a math-

ematical model that can be used to estimate the cost of processing a data stream on

the device that collected it (fog computing cost) and the cost of sending the data to be

processed on the cloud (cloud computing cost). Both of these costs are calculated from

the point of view of the device, as this would allow it to choose where to process the

data stream while collecting its elements. The second is a visual model that is a cloud

computing cost vs. fog computing cost graph. It intends to help the user decide which

of the strategies presents the lowest cost according to a certain metric. Using this visual

model, the user can better understand the test cases they are working with and improve

the implementation of their processing strategy.

Considering that our models are based on linear equations, we observed that the user

can make their decision by analyzing the slope of a line drawn in the visual model. As

discussed, fog computing is more profitable in the cases where the slope is less than or

equal to −1, with cloud computing having the lower cost otherwise.

One of the parameters of our model is the probability that a number will pass the

filter, which we call f . We analyzed different strategies to estimate this value and ob-

served that looking at a contiguous set of elements at the beginning of the stream is a

straightforward approach that yields good estimates. The two other approaches that we

tested, which involve continuously monitoring the stream and dynamically adjusting the

estimate, presented very little performance gains, not justifying their use.

We applied our models to two instances of two different filters, used execution time

and energy consumption as the cost types for our analysis, and executed the tests on five

different datasets (four datasets with real-world climatological data and one dataset with

66

artificial data). By comparing the slope of the linear equation obtained with the real and

estimated values of f , we noticed that our estimation process worked well, as it presented

an error of less than 5% in most of our test cases and allowed us to decide correctly on

the more profitable strategy to process the values in all but one case.

We also simulated a different range of values for our test cases and found out how

different parameters would affect our decision. We looked at how much it would be

necessary to decrease the time it takes to send the data to the cloud (which we call s) or

increase the time it takes to execute the application on the fog (which we call t) for cloud

computing to become the more profitable approach in cases where the fog was the chosen

solution. When using execution time as the cost type, the values of the parameters had

to change from 1.9× to 9.8× to affect our decision, and in the case of energy consumption

as the cost type, they had to change from 7.9× up to 39.8×. We noticed that the size

of these alterations depends on factors such as the value of f and how close s and t are

to each other. We point out that this type of investigation is very useful to visualize

possible changes in technology. Again, our estimation process proved to be effective, as

the simulations using the real and predicted values presented the same decisions in all

cases.

By employing these models, we were able to systematically identify a set of cases where

performing the computation on a constrained IoT device is more profitable than sending

the values to be processed on the cloud.

5.4 Main Contributions

The main contributions of this work are as follows:

• We developed an open-source platform called LibMiletusCOISA (LMC), which al-

lows users to execute their code on constrained devices;

• We used our infrastructure to obtain real-world values to use in our test cases;

• We created two models where the user chooses a certain cost metric (e.g., number

of instructions, execution time, and energy consumption) and employs it to decide

where they should execute their code:

– A generic mathematical model that uses a linear equation to determine the

costs;

– A visual model that allows the user to conclude quickly what is the most

profitable approach in a specific scenario.

• We created a procedure to use our mathematical model to estimate the probability

of a value passing a filter based on the cost penalty that the user is willing to pay

for this calculation;

• We simulated future scenarios where changes in communication and processing tech-

nologies can affect whether the fog or the cloud is the most profitable approach.

67

5.5 Future Work

There are still several paths to be explored within this research topic for both the LMC

framework and the cost models.

Regarding LMC, we have the possibility to compare it to other frameworks, the use of

more benchmarks and larger test cases, and the execution of tests on constrained devices

that belong to Class 2 or lower. Another possibility is the implementation of the Cloud-

Assisted Translation mechanism and using it to obtain more precise results related to

statically translating the user programs.

In the case of the cost models, we can test them using other custom code operations,

such as aggregation, parsing, or other more general queries. We can also consider that

the calculated costs may change over time (due to, for example, device mobility, packet

collisions, radio-frequency interference from other devices, or changes in the network). A

possible approach to doing this is using a network simulator to generate new values for

the cost of sending the data to the cloud.

The models can also be improved to account for scenarios not included in this disser-

tation, such as the device having multiple antennas with different wireless technologies,

splitting tasks and sending data to other devices in the fog hierarchy, overlapping pro-

cessing and transferring times, and the device receiving data for actuation.

Another interesting path is to not only consider the costs from the point of view of

the device, but also to calculate the costs looking at the whole system in order to analyze

the impact of employing fog computing in the studied applications. Moreover, there is

the possibility to implement a system that uses our model to choose between processing

values on the fog or the cloud, and execute it on constrained devices.

68

Bibliography

[1] Muhammad Amjad, Muhammad Sharif, Muhammad Khalil Afzal, and Sung Won

Kim. TinyOS-New Trends, Comparative Views, and Supported Sensing Applications:

A Review. IEEE Sensors Journal, 16(9):2865–2889, May 2016. doi:10.1109/JSEN.

2016.2519924. (Cited on page 19.)

[2] Apache Software Foundation Incubator. Apache Edgent Overview. https://edgent.

apache.org/docs/overview. Accessed: May 01, 2019. (Cited on pages 10, 17, 21,

25, and 27.)

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. A View of Cloud Computing. Communications of the ACM, 53(4):50–58,

April 2010. doi:10.1145/1721654.1721672. (Cited on pages 83, 84, and 85.)

[4] ARM Ltd. Mbed OS. https://www.mbed.com/en/platform/mbed-os/. Accessed:

May 01, 2019. (Cited on page 19.)

[5] Faisal Aslam, Luminous Fennell, Christian Schindelhauer, Peter Thiemann, Gidon

Ernst, Elmar Haussmann, Stefan Rührup, and Zastash A. Uzmi. Optimized Java

Binary and Virtual Machine for Tiny Motes. In Proceedings of the 6th IEEE In-

ternational Conference on Distributed Computing in Sensor Systems, DCOSS ’10,

pages 15–30, June 2010. doi:10.1007/978-3-642-13651-1_2. (Cited on pages 10,

20, and 21.)

[6] Dale Athanasias. PyMite. https://wiki.python.org/moin/PyMite. Accessed: May

01, 2019. (Cited on page 20.)

[7] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A sur-

vey. Computer Networks, 54(15):2787–2805, October 2010. doi:10.1016/j.comnet.

2010.05.010. (Cited on pages 86, 87, 88, and 89.)

[8] Rafael Auler, Carlos Eduardo Millani, Alexandre Brisighello, Alisson Linhares,

and Edson Borin. Handling IoT platform heterogeneity with COISA, a compact

OpenISA virtual platform. Concurrency and Computation: Practice and Experience,

29(22):e3932, November 2017. doi:10.1002/cpe.3932. (Cited on pages 10, 20, 21,

27, 28, 35, and 37.)

[9] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and Issues in Data Stream Systems. In Proceedings of the Twenty-first ACM

69

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS

’02, pages 1–16, June 2002. doi:10.1145/543613.543615. (Cited on page 32.)

[10] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo

Madeira, Marilia Curado, Leandro Villas, Luiz da Silva, Craig Lee, and Omer Rana.

The Internet of Things, Fog and Cloud continuum: Integration and challenges. In-

ternet of Things, 3–4:134–155, October 2018. doi:10.1016/j.iot.2018.09.005.

(Cited on page 16.)

[11] Luiz Fernando Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F. Rana,

and Manish Parashar. Mobility-Aware Application Scheduling in Fog Computing.

IEEE Cloud Computing, 4(2):26–35, March–April 2017. doi:10.1109/MCC.2017.27.

(Cited on page 90.)

[12] Genom Bob. HaikuVM - A Java VM for ARDUINO and other micros using the leJOS

runtime. http://haiku-vm.sourceforge.net/. Accessed: May 01, 2019. (Cited on

page 20.)

[13] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog Computing:

A Platform for Internet of Things and Analytics. In Nik Bessis and Ciprian Dobre,

editors, Big Data and Internet of Things: A Roadmap for Smart Environments,

volume 546 of Studies in Computational Intelligence, pages 169–186. Springer, Cham,

March 2014. doi:10.1007/978-3-319-05029-4_7. (Cited on page 91.)

[14] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing

and Its Role in the Internet of Things. In Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, August 2012.

doi:10.1145/2342509.2342513. (Cited on pages 16, 90, and 93.)

[15] Carsten Bormann, Mehmet Ersue, and Ari Keranen. Terminology for Constrained-

Node Networks. Technical report, Internet Engineering Task Force, May 2014. doi:

10.17487/RFC7228. (Cited on pages 78 and 79.)

[16] Niels Brouwers, Peter Corke, and Koen Langendoen. A Java Compatible Virtual

Machine for Wireless Sensor Nodes. In Proceedings of the 6th ACM Conference

on Embedded Network Sensor Systems, SenSys ’08, pages 369–370, November 2008.

doi:10.1145/1460412.1460456. (Cited on pages 10, 20, and 21.)

[17] Charles C. Byers. Architectural Imperatives for Fog Computing: Use Cases, Require-

ments, and Architectural Techniques for Fog-Enabled IoT Networks. IEEE Commu-

nications Magazine, 55(8):14–20, August 2017. doi:10.1109/MCOM.2017.1600885.

(Cited on page 92.)

[18] Alexandru Caracaş, Thorsten Kramp, Michael Baentsch, Marcus Oestreicher,

Thomas Eirich, and Ivan Romanov. Mote Runner: A Multi-language Virtual Ma-

chine for Small Embedded Devices. In Proceedings of the 2009 Third International

Conference on Sensor Technologies and Applications, SENSORCOMM ’09, pages

70

117–125, June 2009. doi:10.1109/SENSORCOMM.2009.27. (Cited on pages 10, 20,

and 21.)

[19] Joon-Hyuk Chang, Nam Soo Kim, and Sanjit K. Mitra. Voice Activity Detection

Based on Multiple Statistical Models. IEEE Transactions on Signal Processing,

54(6):1965–1976, June 2006. doi:10.1109/TSP.2006.874403. (Cited on page 31.)

[20] Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir, Narayanan Vijaykrishnan,

Mary Jane Irwin, and Rajarathnam Chandramouli. Studying Energy Trade Offs

in Offloading Computation/Compilation in Java-Enabled Mobile Devices. IEEE

Transactions on Parallel and Distributed Systems, 15(9):795–809, September 2004.

doi:10.1109/TPDS.2004.47. (Cited on page 23.)

[21] Mung Chiang and Tao Zhang. Fog and IoT: An Overview of Research Opportunities.

IEEE Internet of Things Journal, 3(6):854–864, December 2016. doi:10.1109/JIOT.

2016.2584538. (Cited on page 86.)

[22] Cisco Systems. Introduction to IOx. https://developer.cisco.com/docs/iox/.

Accessed: May 01, 2019. (Cited on pages 10, 17, 21, and 25.)

[23] Inc. Crossbow Technology. TOS In-Network Programming User Reference. http:

//cs.uccs.edu/~cs526/tinyos/doc/Xnp.pdf. Accessed: May 01, 2019. (Cited on

page 20.)

[24] Andy Davis, Jay Parikh, and William E. Weihl. Edgecomputing: Extending Enter-

prise Applications to the Edge of the Internet. In Proceedings of the 13th International

World Wide Web Conference on Alternate Track Papers & Posters, WWW Alt. ’04,

pages 180–187, May 2004. doi:10.1145/1013367.1013397. (Cited on page 93.)

[25] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H. Luan, and Hao Liang. Optimal

Workload Allocation in Fog-Cloud Computing Toward Balanced Delay and Power

Consumption. IEEE Internet of Things Journal, 3(6):1171–1181, December 2016.

doi:10.1109/JIOT.2016.2565516. (Cited on page 24.)

[26] Behnam Dezfouli, Immanuel Amirtharaj, and Chia-Chi Li. EMPIOT: An Energy

Measurement Platform for Wireless IoT Devices. Journal of Network and Computer

Applications, 121:135–148, November 2018. doi:10.1016/j.jnca.2018.07.016.

(Cited on page 58.)

[27] Vanderson Martins do Rosario, Flávia Pisani, Alexandre Rodrigues Gomes, and Ed-

son Borin. Fog-Assisted Translation: Towards Efficient Software Emulation on Het-

erogeneous IoT Devices. In Proceedings of the 7th Workshop on Parallel Programming

Models - Special Edition on Edge/Fog/In-Situ Computing, MPP ’18, pages 1268–

1277, May 2018. doi:10.1109/IPDPSW.2018.00196. (Cited on pages 48 and 53.)

[28] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors. In Proceedings of the 29th

Annual IEEE International Conference on Local Computer Networks, LCN ’04, pages

455–462, November 2004. doi:10.1109/LCN.2004.38. (Cited on page 20.)

71

[29] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan. Fog Computing: Will

it be the Future of Cloud Computing? In Proceedings of the Third International

Conference on Informatics & Applications, ICIA ’14, October 2014. (Cited on pages

10, 91, and 92.)

[30] FogHorn Systems. Real-Time Edge Intelligence for Industrial IoT. www.foghorn.io/.

Accessed: May 01, 2019. (Cited on pages 10, 17, 22, and 25.)

[31] Google Inc. Android Things - Overview. https://developer.android.com/

things/get-started. Accessed: May 02, 2019. (Cited on page 19.)

[32] Dmitry Grinberg. uJ - a Java VM for microcontrollers. http://dmitry.gr/index.

php?r=05.Projects&proj=12.%20uJ%20-%20a%20micro%20JVM. Accessed: May 02,

2019. (Cited on pages 10, 20, and 21.)

[33] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and Dejan Milojicic.

Adaptive Offloading Inference for Delivering Applications in Pervasive Computing

Environments. In Proceedings of the First IEEE International Conference on Per-

vasive Computing and Communications, PerCom ’03, pages 107–114, March 2003.

doi:10.1109/PERCOM.2003.1192732. (Cited on page 23.)

[34] Selim Gurun, Chandra Krintz, and Rich Wolski. NWSLite: A Light-Weight Predic-

tion Utility for Mobile Devices. In Proceedings of the 2nd International Conference

on Mobile Systems, Applications, and Services, MobiSys ’04, pages 2–11, June 2004.

doi:10.1145/990064.990068. (Cited on pages 24 and 25.)

[35] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A

Dynamic Operating System for Sensor Nodes. In Proceedings of the 3rd International

Conference on Mobile Systems, Applications, and Services, MobiSys ’05, pages 163–

176, June 2005. doi:10.1145/1067170.1067188. (Cited on page 20.)

[36] Till Harbaum. The NanoVM - Java for the AVR. http://www.harbaum.org/till/

nanovm/index.shtml. Accessed: May 02, 2019. (Cited on pages 10, 20, and 21.)

[37] David C. Hoaglin, Boris Iglewicz, and John W. Tukey. Performance of Some Re-

sistant Rules for Outlier Labeling. Journal of the American Statistical Association,

81(396):991–999, December 1986. doi:10.2307/2289073. (Cited on page 31.)

[38] Yu-Ju Hong, Karthik Kumar, and Yung-Hsiang Lu. Energy Efficient Content-Based

Image Retrieval for Mobile Systems. In Proceedings of the 2009 IEEE International

Symposium on Circuits and Systems, ISCAS ’09, pages 1673–1676, May 2009. doi:

10.1109/ISCAS.2009.5118095. (Cited on page 23.)

[39] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.

Mobile Edge Computing - A key technology towards 5G. Technical report, Euro-

pean Telecommunications Standards Institute, September 2015. Accessed: May 01,

2019. URL: https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_

mec_a_key_technology_towards_5g.pdf. (Cited on page 93.)

72

[40] Jonathan W. Hui and David Culler. The Dynamic Behavior of a Data Dissemination

Protocol for Network Programming at Scale. In Proceedings of the 2nd Interna-

tional Conference on Embedded Networked Sensor Systems, SenSys ’04, pages 81–94,

November 2004. doi:10.1145/1031495.1031506. (Cited on page 20.)

[41] Michaela Iorga, Larry Feldman, Robert Barton, Michael J. Martin, Nedim Goren,

and Charif Mahmoudi. Fog Computing Conceptual Model - Recommendations of the

National Institute of Standards and Technology. Technical report, National Institute

of Standards and Technology, March 2018. doi:10.6028/NIST.SP.500-325. (Cited

on pages 17, 91, and 94.)

[42] Prem Prakash Jayaraman, João Bártolo Gomes, Hai Long Nguyen, Zahraa Said

Abdallah, Shonali Krishnaswamy, and Arkady Zaslavsky. CARDAP: A Scalable

Energy-Efficient Context Aware Distributed Mobile Data Analytics Platform for the

Fog. In Proceedings of the 2014 East European Conference on Advances in Databases

and Information Systems, ADBIS ’14, pages 192–206, September 2014. doi:10.

1007/978-3-319-10933-6_15. (Cited on page 24.)

[43] Jaein Jeong and David Culler. Incremental Network Programming for Wireless Sen-

sors. In Proceedings of the First Annual IEEE Communications Society Conference

on Sensor and Ad Hoc Communications and Networks, IEEE SECON ’04, pages

25–33, October 2004. doi:10.1109/SAHCN.2004.1381899. (Cited on page 20.)

[44] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Răzvan Musăloiu-E, Philip

Levis, Andreas Terzis, and Ramesh Govindan. TOSThreads: Thread-safe and Non-

invasive Preemption in TinyOS. In Proceedings of the 7th ACM Conference on

Embedded Networked Sensor Systems, SenSys ’09, pages 127–140, November 2009.

doi:10.1145/1644038.1644052. (Cited on page 20.)

[45] Hermann Kopetz. Internet of Things. In Design Principles for Distributed Embed-

ded Applications, Real-Time Systems, pages 307–323. Springer, Boston, MA, USA,

February 2011. doi:10.1007/978-1-4419-8237-7_13. (Cited on pages 86, 87, 88,

89, and 90.)

[46] Joel Koshy and Raju Pandey. VMSTAR: Synthesizing Scalable Runtime Environ-

ments for Sensor Networks. In Proceedings of the 3rd International Conference on

Embedded Networked Sensor Systems, SenSys ’05, pages 243–254, November 2005.

doi:10.1145/1098918.1098945. (Cited on page 20.)

[47] Ulrich Kremer, Jamey Hicks, and James Rehg. A Compilation Framework for Power

and Energy Management on Mobile Computers. In Proceedings of the 2001 Inter-

national Workshop on Languages and Compilers for Parallel Computing, LCPC ’01,

pages 115–131, August 2001. doi:10.1007/3-540-35767-X_8. (Cited on page 23.)

[48] Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck,

Pieter Simoens, and Bart Dhoedt. Multi-Fidelity Matryoshka Neural Networks for

Constrained loT Devices. In Proceedings of the 2016 International Joint Conference

73

on Neural Networks, IJCNN ’16, pages 1305–1309, July 2016. doi:10.1109/IJCNN.

2016.7727348. (Cited on page 78.)

[49] Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things: a sur-

vey. Information Systems Frontiers, 17(2):243–259, April 2015. doi:10.1007/

s10796-014-9492-7. (Cited on pages 86, 87, and 88.)

[50] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation Offloading to Save Energy

on Handheld Devices: A Partition Scheme. In Proceedings of the 2001 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems, CASES

’01, pages 238–246, November 2001. doi:10.1145/502217.502257. (Cited on page

22.)

[51] Zhiyuan Li, Cheng Wang, and Rong Xu. Task Allocation for Distributed Multimedia

Processing on Wirelessly Networked Handheld Devices. In Proceedings of the 16th

IEEE International Parallel and Distributed Processing Symposium, IPDPS ’02, April

2002. doi:10.1109/IPDPS.2002.1015589. (Cited on page 22.)

[52] Zhiyuan Li and Rong Xu. Energy Impact of Secure Computation on a Handheld

Device. In Proceedings of the 2002 IEEE International Workshop on Workload Char-

acterization, WWC-5, pages 109–117, November 2002. doi:10.1109/WWC.2002.

1226499. (Cited on page 22.)

[53] Liqing Liu, Zheng Chang, Xijuan Guo, Shiwen Mao, and Tapani Ristaniemi. Multiob-

jective Optimization for Computation Offloading in Fog Computing. IEEE Internet

of Things Journal, 5(1):283–294, February 2018. doi:10.1109/JIOT.2017.2780236.

(Cited on page 25.)

[54] Sam Lucero. IoT platforms: enabling the Internet of Things. Technical report, IHS

Technology, March 2016. (Cited on pages 16 and 27.)

[55] Chris Mack. The Multiple Lives of Moore’s Law. IEEE Spectrum, 52(4):31–37, April

2015. doi:10.1109/MSPEC.2015.7065415. (Cited on page 79.)

[56] Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder, Olga

Saukh, and Kurt Rothermel. FlexCup: A Flexible and Efficient Code Update

Mechanism for Sensor Networks. In Proceedings of the Third European Work-

shop on Wireless Sensor Networks, EWSN ’06, pages 212–227, February 2006.

doi:10.1007/11669463_17. (Cited on page 20.)

[57] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Technical

report, National Institute of Standards and Technology, September 2011. doi:10.

6028/NIST.SP.800-145. (Cited on pages 83, 84, and 86.)

[58] Jozef Mocnej, Martin Miškuf, Peter Papcun, and Iveta Zolotová. Impact of

Edge Computing Paradigm on Energy Consumption in IoT. IFAC-PapersOnLine,

51(6):162–167, May 2018. Special issue: 15th IFAC Conference on Programmable

Devices and Embedded Systems (PDeS ’18). doi:10.1016/j.ifacol.2018.07.147.

(Cited on page 56.)

74

[59] MotorolaMobilityLLC. LibMiletus - IoT prototyping made easy! Accessed: May 02,

2019. URL: http://libmiletus.ic.unicamp.br. (Cited on pages 27 and 28.)

[60] Luca Mottola, Gian Pietro Picco, and Adil Amjad Sheikh. FiGaRo: Fine-Grained

Software Reconfiguration for Wireless Sensor Networks. In Proceedings of the 5th

European Conference on Wireless Sensor Networks, EWSN ’08, pages 286–304,

January–February 2008. doi:10.1007/978-3-540-77690-1_18. (Cited on page 20.)

[61] Waqaas Munawar, Muhammad Hamad Alizai, Olaf Landsiedel, and Klaus Wehrle.

Dynamic TinyOS: Modular and Transparent Incremental Code-Updates for Sensor

Networks. In Proceedings of the 2010 IEEE International Conference on Communi-

cations, ICC ’10, May 2010. doi:10.1109/ICC.2010.5501964. (Cited on pages 19

and 20.)

[62] National Centers for Environmental Information. Climate Data Online: Dataset

Discovery - Local Climatological Data. https://www.ncdc.noaa.gov/cdo-web/

datasets#LCD. Accessed: May 02, 2019. (Cited on page 46.)

[63] José Leal D. Neto, Se-Young Yu, Daniel F. Macedo, José Marcos S. Nogueira, Rami

Langar, and Stefano Secci. ULOOF: A User Level Online Offloading Framework for

Mobile Edge Computing. IEEE Transactions on Mobile Computing, 17(11):2660–

2674, November 2018. doi:10.1109/TMC.2018.2815015. (Cited on page 25.)

[64] Yamini Nimmagadda, Karthik Kumar, Yung-Hsiang Lu, and C. S. George Lee. Real-

time Moving Object Recognition and Tracking Using Computation Offloading. In

Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots

and Systems, IROS ’10, pages 2449–2455, October 2010. doi:10.1109/IROS.2010.

5650303. (Cited on page 24.)

[65] Keith J. O’Hara, Ripal Nathuji, Himanshu Raj, Karsten Schwan, and Tucker Balch.

AutoPower: Toward Energy-Aware Software Systems for Distributed Mobile Robots.

In Proceedings of the 2006 IEEE International Conference on Robotics and Automa-

tion, ICRA ’06, pages 2757–2762, May 2006. doi:10.1109/ROBOT.2006.1642118.

(Cited on page 23.)

[66] Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff. Zephyr: Efficient

Incremental Reprogramming of Sensor Nodes Using Function Call Indirections and

Difference Computation. In Proceedings of the 2009 USENIX Annual Technical Con-

ference, USENIX ’09, pages 411–424, June 2009. (Cited on page 20.)

[67] Poonam Pingale, Kalpana Amrutkar, and Suhas Kulkarni. Design aspects for Up-

grading Firmware of a Resource Constrained Device in the Field. In Proceed-

ings of the 2016 IEEE International Conference on Recent Trends in Electronics,

Information Communication Technology, RTEICT ’16, pages 903–907, May 2016.

doi:10.1109/RTEICT.2016.7807959. (Cited on page 78.)

75

[68] Flávia Pisani, Jeferson Rech Brunetta, Vanderson Martins do Rosario, and Ed-

son Borin. Beyond the Fog: Bringing Cross-Platform Code Execution to Con-

strained IoT Devices. In Proceedings of the 29th International Symposium on Com-

puter Architecture and High Performance Computing, SBAC-PAD ’17, pages 17–

24, October 2017. © 2017 IEEE. Reprinted (modified), with permission. doi:

10.1109/SBAC-PAD.2017.10. (Cited on page 27.)

[69] Flávia Pisani, Vanderson Martins do Rosario, and Edson Borin. Fog vs. Cloud

Computing: Should I Stay or Should I Go? Future Internet, 11(2), February 2019.

doi:10.3390/fi11020034. (Cited on pages 16 and 41.)

[70] Deepak Puthal, Bibhudutta P. S. Sahoo, Sambit Mishra, and Satyabrata Swain.

Cloud Computing Features, Issues, and Challenges: A Big Picture. In Proceedings

of the 2015 International Conference on Computational Intelligence and Networks,

CINE ’15, pages 116–123, January 2015. doi:10.1109/CINE.2015.31. (Cited on

pages 84 and 86.)

[71] Niels Reijers and Koen Langendoen. Efficient Code Distribution in Wireless Sensor

Networks. In Proceedings of the 2nd ACM International Conference on Wireless

Sensor Networks and Applications, WSNA ’03, pages 60–67, September 2003. doi:

10.1145/941350.941359. (Cited on page 20.)

[72] Industrial Internet Consortium. The Industrial Internet Consortium and OpenFog

Consortium Unite. https://www.iiconsortium.org/press-room/01-31-19.htm.

Accessed: August 09, 2019. (Cited on page 91.)

[73] OpenFog Consortium Architecture Working Group. OpenFog Reference Architec-

ture for Fog Computing. Technical report, OpenFog Consortium, February 2017.

Accessed: August 12, 2019. URL: https://www.iiconsortium.org/pdf/OpenFog_

Reference_Architecture_2_09_17.pdf. (Cited on page 90.)

[74] Peng Rong and Massoud Pedram. Extending the Lifetime of a Network of Battery-

Powered Mobile Devices by Remote Processing: A Markovian Decision-based Ap-

proach. In Proceedings of the 40th annual Design Automation Conference, DAC ’03,

pages 906–911, June 2003. doi:10.1145/775832.776060. (Cited on page 23.)

[75] RTJ Computing Pty. Ltd. SimpleRTJ - a small footprint Java VM for embedded

and consumer devices. Accessed: May 02, 2019. URL: https://rtjcom.com/files/

simpleRTJ-TechInfo.PDF. (Cited on pages 10, 20, and 21.)

[76] Amanda Saint. Where next for the Internet of Things? Engineering & Technology,

10(1):72–75, February 2015. doi:10.1049/et.2015.0111. (Cited on pages 10, 17,

22, and 25.)

[77] Muhammad Sajjad, Khan Muhammad, Sung Wook Baik, Seungmin Rho, Zahoor

Jan, Sang-Soo Yeo, and Irfan Mehmood. Mobile-cloud assisted framework for se-

lective encryption of medical images with steganography for resource-constrained

76

devices. Multimedia Tools and Applications, 76(3):3519–3536, February 2017. doi:

10.1007/s11042-016-3811-6. (Cited on page 78.)

[78] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies. The

Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing,

8(4):14–23, October–December 2009. doi:10.1109/MPRV.2009.82. (Cited on page

93.)

[79] Doug Simon and Cristina Cifuentes. The Squawk Virtual Machine: Java™ on the

Bare Metal. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages

150–151, October 2005. doi:10.1145/1094855.1094908. (Cited on page 20.)

[80] Karolj Skala, Davor Davidovic, Enis Afgan, Ivan Sovic, and Zorislav Sojat. Scalable

Distributed Computing Hierarchy: Cloud, Fog and Dew Computing. Open Journal

of Cloud Computing, 2(1):16–24, 2015. doi:10.19210/1002.2.1.16. (Cited on page

90.)

[81] Ivan Stojmenovic. Fog computing: A cloud to the ground support for smart things

and machine-to-machine networks. In Proceedings of the 2014 Australasian Telecom-

munication Networks and Applications Conference, ATNAC ’14, pages 117–122,

November 2014. doi:10.1109/ATNAC.2014.7020884. (Cited on page 92.)

[82] Hao Sun, Xiaofeng Wang, Rajkumar Buyya, and Jinshu Su. CloudEyes: Cloud-

based malware detection with reversible sketch for resource-constrained internet of

things (IoT) devices. Software: Practice and Experience, 47(3):421–441, March 2017.

doi:10.1002/spe.2420. (Cited on page 78.)

[83] Takayuki Suyama, Yasue Kishino, and Futoshi Naya. Abstracting IoT Devices using

Virtual Machine for Wireless Sensor Nodes. In Proceedings of the 2014 IEEE World

Forum on Internet of Things, WF-IoT ’14, pages 367–368, March 2014. doi:10.

1109/WF-IoT.2014.6803190. (Cited on pages 10, 20, and 21.)

[84] Luis Miguel Vaquero and Luis Rodero-Merino. Finding Your Way in the Fog:

Towards a Comprehensive Definition of Fog Computing. ACM SIGCOMM Com-

puter Communication Review, 44(5):27–32, October 2014. doi:10.1145/2677046.

2677052. (Cited on pages 90 and 91.)

[85] Cheng Wang and Zhiyuan Li. Parametric Analysis for Adaptive Computation Of-

floading. In Proceedings of the ACM SIGPLAN 2004 Conference on Program-

ming Language Design and Implementation, PLDI ’04, pages 119–130, June 2004.

doi:10.1145/996841.996857. (Cited on page 24.)

[86] Andrew Whitmore, Anurag Agarwal, and Li Da Xu. The Internet of Things–A

survey of topics and trends. Information Systems Frontiers, 17(2):261–274, April

2015. doi:10.1007/s10796-014-9489-2. (Cited on pages 86, 87, 88, and 89.)

77

[87] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An Insightful

Visual Performance Model for Multicore Architectures. Communications of the ACM,

52(4):65–76, April 2009. doi:10.1145/1498765.1498785. (Cited on page 25.)

[88] Rich Wolski, Selim Gurun, Chandra Krintz, and Dan Nurmi. Using Bandwidth

Data To Make Computation Offloading Decisions. In Proceedings of the 22nd IEEE

International Symposium on Parallel and Distributed Processing, IPDPS ’08, April

2008. doi:10.1109/IPDPS.2008.4536215. (Cited on page 24.)

[89] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. Adaptive Computation Offloading

for Energy Conservation on Battery-Powered Systems. In Proceedings of the 2007 In-

ternational Conference on Parallel and Distributed Systems, ICPADS ’07, December

2007. doi:10.1109/ICPADS.2007.4447724. (Cited on page 23.)

[90] Jie Xu and Shaolei Ren. Online Learning for Offloading and Autoscaling in

Renewable-Powered Mobile Edge Computing. In Proceedings of the 2016 IEEE

Global Communications Conference, GLOBECOM ’16, December 2016. doi:10.

1109/GLOCOM.2016.7842069. (Cited on page 24.)

[91] Shanhe Yi, Cheng Li, and Qun Li. A Survey of Fog Computing: Concepts, Applica-

tions and Issues. In Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata

’15, pages 37–42, June 2015. doi:10.1145/2757384.2757397. (Cited on pages 91

and 93.)

78

Appendix A

Background

This appendix outlines the key concepts to which this dissertation is related. The aim

here is not to cover each topic exhaustively, but rather lay out important characterizations

to facilitate the comprehension of the discussion presented in the text.

A.1 Constrained Devices

The concept of constrained device, or resource-constrained device, relates to restrictions

imposed on power, energy, memory, and processing resources of small devices [15]. How-

ever, there is no established threshold for the size of these constraints. For instance, there

have been cases where a system with a microcontroller such as the ATSAM4E8C [67], a

device like the Intel Edison [48], nodes with CPU frequencies ranging from 512 MHz to

1 GHz and RAM going from 768 MB to 1GB [82], and even smartphones [48, 77] were

considered constrained devices.

With that in mind, we adopt the definition that is presented in the “Terminology for

Constrained-Node Networks” technical report [15], which describes several terms with the

intent to help the standardization work for constrained-node networks and represents the

consensus of the Internet Engineering Task Force (IETF) community.

According to the report, a constrained device is one where some of the characteristics

that are expected to be present on other devices currently connected to the Internet are

not achievable. This is often due to cost constraints and/or physical restrictions of fea-

tures such as size, weight, and available power and energy. The tight limits on power,

memory, and processing resources lead to hard upper bounds on power state, code space,

and processing cycles, making the optimization of energy and network bandwidth usage

a primary concern in all design requirements. Although this may not be a rigorous defi-

nition, it was created based on the state of the art and it can clearly separate constrained

devices from server systems, desktop and laptop computers, and more powerful mobile

devices such as smartphones [15].

The IETF proposed classifications for constrained devices considering the size of avail-

able memory, energy limitations, and strategies for power usage and network communica-

tion. In this appendix, we present the proposed categorization with visual aids to better

convey the expected behavior of the devices that belong to the classes in each category.

82

diture during reattachment may be acceptable. The main optimization goal, in this case,

is to minimize the effort during the reattachment process and any resulting application

communications.

The strategy of Class P1 (low-power) is most applicable to devices that operate on a

very small amount of power but still need to be able to communicate rather frequently.

Some form of attachment to the network may be retained due to the small extent of time

between transmissions, so even though the device may be in a sleep state, it appears con-

nected. In this case, parameters such as the frequency of communication can be optimized

and duty cycling (i.e., regularly switching components on and off) can be performed.

The approach used for Class P9 (always-on) is most applicable if extreme power saving

measures are not required. The device can always stay on as usual for non-constrained

devices and be connected to the network. Power-friendly hardware or limiting the number

of wireless transmissions, CPU speed, and other aspects may be useful for general power-

saving and cooling needs.

The graph in Figure A.3 shows two different aspects of the expected behavior of these

devices. First, we have the expected power usage, which grows along with the time

that the device stays on. It is important to note that this is due to the communication

frequency that is being assumed for each of these classes, as using a normally-off strategy

for a situation where communication is very frequent may cause the device to spend a lot

of power by executing continual shutting down and powering on processes. Then, we have

the time necessary for the device to answer requests, which is larger in the cases where

more aggressive power saving techniques are used. We expect that this delay is much

more prominent on devices that need to be woken up for communication, with low-power

devices also having high latency. Devices that are always connected should not present

any meaningful lag unless network availability is disrupted. The placement of the points

in this graph does not intend to show specific quantities but rather what we view as the

general tendency in the behavior of these devices. Like the two previous classifications,

the measures used by this categorization also have an important real-world impact when

deciding which devices are suitable for certain applications.

Furthermore, we can think of real-world devices and how they fit into the classifica-

tion of constrained devices. Figure A.4 shows twelve current devices, which are either

uncategorized or belong to one of the classes C0, C1, or C2. In particular, we would like

to highlight popular devices that belong to each category: for C0, we have the Arduino

Uno board, which is the most-used board in the Arduino family; the 2nd-generation Nest

Learning Thermostat belongs to C1 and is a smart device that programs itself automati-

cally and helps homeowners to save energy; and, in C2, we have the Fitbit activity tracker,

which assists people with exercising, eating, and sleeping habits.

84

operating systems and software configurations to concurrently be executed on the same

physical machine, sharing its resources while operating under the assumption that they

have sole access. For example, with the use of virtualization, each consumer may see that

they have been granted access to one of the server’s Central Processing Units (CPUs),

while in fact all virtual machines are taking turns using the same processor [70].

Rapid elasticity is one of the key cloud features, since it enables the consumer to

provision or release resources according to their needs, giving the impression that the

capabilities of the system are unlimited and can be requested in any quantity at any time.

Being able to elastically resize resources also enables the pay-as-you-go economic strategy,

which is one of the most compelling use cases of cloud computing [3]. Figure A.5 shows

a few scenarios where being able to adjust the infrastructure to demand would result in

benefits to either revenue or quality of service.

Figure A.5a represents a scenario where even though the peak demand for a service

has been correctly predicted, resources are being wasted during low-usage times. On the

other hand, there are the situations where demand differs from the initial forecast: Fig-

ure A.5b displays a case where an initial investment for a service was made corresponding

to a certain estimate of demand. However, after launching the service, the number of

users dropped below the expected, resulting in several resources being underutilized. Fig-

ure A.5c shows the opposite case, where demand was higher than the system’s capacity. It

illustrates one of the possible outcomes for this situation, in which users become frustrated

with the unavailability of the service and stop using it.

A system with rapid elasticity is depicted in Figure A.5d. Being able to dynamically

provide or release resources enables the cloud consumer to adjust (automatically or not)

the number of allocated machines according to demand, reducing the total price paid for

using the cloud provider without compromising service quality.

Another interesting case that points out the utility of the pay-as-you-go strategy is

the one where you can either use 1,000 machines running for one hour or one machine

running for 1,000 hours, paying the same price for both options. This approach can be

particularly favorable for organizations that perform batch analytics [3].

Having a measured service is important to enable monitoring, controlling, and re-

porting on the resource usage. This way, cloud systems can automatically control and

optimize resource allocation according to a certain metric (e.g., storage, processing, band-

width, and active user accounts) and this process is transparent to both the consumer

and the provider.

In sum, these characteristics ensure that the cloud provides ubiquitous, convenient,

on-demand access to its services in a way that resources can be quickly scaled up or

down with as little management effort and service provider interaction as possible [57].

Advantages such as the appearance of infinite computing resources, the elimination of

up-front commitment by consumers, and the ability to pay for needed resources on a

short-term basis are some of the main differences between clouds and small and medium-

sized data centers [3].

Knowing the necessary features for an infrastructure to be categorized as a cloud, we

can now look into different models for cloud deployment: private cloud, community cloud,

public cloud, and hybrid cloud.

86

they have no control over the underlying cloud infrastructure or application capabilities,

with the exception of occasional customizable settings [57]. GoogleDocs and Salesforce

are SaaS examples [70].

PaaS also does not give the consumer access to the cloud infrastructure. It does,

however, allow the deployment of consumer-created or acquired applications, as long as

its development tools are supported by the provider. This model may also allow the con-

sumer to control the configuration settings for the application-hosting environment [57].

Examples for PaaS are Google App Engine and Microsoft Azure [70].

In contrast to the other models, IaaS enables consumers to provision processing, stor-

age, networks, and other fundamental computing resources. They may use this model

to deploy and run any kind of software, including operating systems. In this model, the

consumer has permission to manage operating systems, storage, and deployed applica-

tions; and possibly has limited control of select networking components, such as host

firewalls. Nonetheless, IaaS also does not give the authorization to manage and control

the underlying cloud infrastructure [57]. Amazon Web Services EC2 and S3 are IaaS

examples [70].

A.3 Internet of Things

When the Internet of Things (IoT) was first proposed, the focus was to create a net-

work connecting objects that would be inter-operable and uniquely identifiable by Radio-

Frequency Identification (RFID). Since then, this definition has evolved to include ideas

that work on a much larger scope: the IoT must be a dynamic network infrastructure

with self-configuring capabilities based on standards. Also, its components are now seen

as physical or virtual “things” that have attributes as well as identities and are able to

use intelligent interfaces and integrate an information network [49].

Nevertheless, the IoT is still in its infancy, thus opening it up to different definitions.

For instance, the components of the IoT may also be expected to have sensing and pro-

cessing capabilities, allowing everyday objects to not only communicate with one another

but also work with services available on the Internet to achieve useful goals [86].

The ubiquity of objects such as mobile phones, sensors, actuators, and RFID tags

will create a scenario where the majority of content will be created and received by these

“things”, surpassing the scale that we see nowadays on the Internet, and leading to a

system that ensures connectivity anytime, anyplace, for anyone and anything [7].

The key to the innovation of the IoT lies precisely in its never-before-seen size. While

there already exist embedded systems connected to the Internet in modern day appliances,

the IoT presents the perspective of billions or trillions of smart objects that bring about

the creation of a smart planet where people can benefit from the intelligence gathered by

combining information coming from different sources [45]. This rapidly growing number

of connected devices is expected to generate data at an exponential rate, soon reaching

the mark of petabytes being produced daily [21].

There are several areas in today’s society that can profit from the wide deployment

of the IoT. For didactic purposes, we can group them into different domains: healthcare,

87

novelty, personal and social, smart environments, smart infrastructure, and transportation

and logistics.

Healthcare applications for the IoT propose to improve the quality of life by allowing

medical professionals to provide better service with reduced cost. Automatic data col-

lection from patients and hospital property can reduce form processing time, as well as

facilitate procedure auditing and inventory management. Patient identification and au-

thentication can prevent incidents such as incorrect administration of drugs and dosages

and procedures being executed on the wrong patient. It can also ease identification of

newborn children in maternities. Using the IoT to identify hospital assets can avoid

important instruments being misplaced or stolen, and staff authentication can improve

safety inside the premises [7]. In fact, medication delivery can even be automated through

the use of smart implants [45], which can also monitor allergic reactions and adverse in-

teractions [86]. Continuously monitoring the patient’s vital statuses (e.g., heart rate,

blood pressure, body temperature, glucose level) and combining this information to form

a comprehensive picture of their health at each moment can improve treatment and re-

sponsiveness, even if the patient is not in the hospital [7, 45, 49, 86]. Body area networks

can be used to track daily activities for patients in assisted living and trigger message

alarms in case of emergencies [45, 49]. Tracking the position of patients can also improve

the workflow inside the hospital and tracking materials can prevent items from being left

inside the patient during surgery [7].

Novelty IoT applications are those that depend on technologies that are currently

under development but are expected to not be fully adopted in the short/medium term.

Examples of this type of application are: augmented reality, where smartphones or other

devices can provide background information about smart objects by accessing several

context-dependent databases [45]; city information models, which monitor the status of

buildings and structures such as sidewalks, sewers, and railways, providing information

about environmental performance and enabling them to share resources like energy in the

most efficient and cost-effective way; enhanced game rooms, which measure the excitement

and energy of the players by sensing movement, noise, heart rate, blood pressure, etc., and

then set achievements and adjust the game accordingly; and robot taxis, which operate

with or without a driver, providing service in a timely manner, responding to real-time

traffic updates in the city, and automatically returning to set points for maintenance,

recharging, and cleaning [7].

There are many applications for the IoT in personal and social settings. They enable

users to interact with other people, maintain and build social relationships, and manage

their personal needs. For example, IoT-enabled mobile phones could connect to each

other and share contact information when their owners have matching dating or friendship

profiles [86]. Missing objects could easily be located through the use of RFID tags and

a search engine that queries their last recorded position. User-defined events can also

be used to notify the owner whenever the object’s location matches some predefined

conditions. A similar use case for this technology would be preventing thefts, as the

stolen items would be able to inform their owner that they are being relocated without

authorization. Furthermore, it would be possible for sensors to record events that happen

to people or objects and build timelines that enable historical queries. Users would be

88

able to look back and see how and with whom they have spent their time and trend plots

could be automatically generated to help them organize their future schedule [7]. Another

feasible application would be tracking user location and letting them know when they are

close to friends, social events, or other interesting activities [86]. Finally, IoT devices can

be integrated with social networks such as Twitter and Facebook to help users save time

by providing automatic real-time information about their activities and locations [7, 86].

The intelligence of objects in the IoT can help bring more comfort to people through

the creation of smart environments. For instance, homes and offices can be made more

comfortable by having heating that adjusts itself to the weather and lighting that is

regulated by the time of the day [7]. It is also possible to reduce wastes and costs by

tracking the usage of objects and resources like electrical energy and then use this data to

make decisions such as turning off pieces of equipment when they are not needed [7, 49, 86].

Other spaces can be enhanced by the IoT as well. Mass deployment of RFID tags can

enable automation in industrial plants [7] and reduce maintenance costs and safety issues

by detecting equipment anomalies before they lead to failures [45]. Gyms and museums

are good examples of smart leisure environments, as the IoT can help these facilities

to provide more customized service. In the gym, exercise machines can change their

parameters for each person and monitor their health during the training session, while

the museum can adjust the climate of each of its rooms corresponding to their current

exhibition [7].

We can also have smart city infrastructures. By spreading sensors around public areas,

it is possible to monitor many factors that affect the life in the city. To name a few, we

have air quality, traffic, availability of parking spaces, and whether trash containers are full

or not. This information enables the development of more efficient city services, leading

to a better quality of life for its inhabitants. Integrating smart objects into the urban

physical infrastructure also contributes to improving flexibility, reliability, and efficiency

in infrastructure operation, as well as increasing safety and reducing both the costs and

the number of workers necessary for building and maintenance [86]. Another application is

IoT-based surveillance, which can be used to enhance overall security for the population.

Lastly, smart grids can help to better coordinate energy supply and demand through

the use of smart meters; detecting energy usage patterns in the collected data allows the

creation of plans to reduce energy consumption [45, 86].

Transportation and logistics can both benefit greatly from the IoT. If public and private

means of transportation were equipped with sensors, actuators, and processing power, and

perhaps even the roads themselves with tags and sensors, it would be possible to see con-

siderable advances in technologies such as assisted driving. Route optimization would be

improved through automatic real-time reports about traffic jams and incidents, and sys-

tems for collision avoidance and accurate monitoring of important vehicles (e.g., the ones

transporting hazardous materials) could be implemented. Overall, providing drivers with

more information about traffic and road conditions would lead to better navigation and

safety. Business transactions such as purchasing tickets for public transportation could

be facilitated by the use of Near-Field Communication (NFC) tags and visual markers

in posters and panels, since hovering a mobile phone over a tag or pointing it towards a

marker would allow users to find information about services, such as costs and available

90

requirements will not be met when we consider the time necessary for sending data to and

receiving data from the cloud; reliability, for tasks are more prone to failure if they are

distributed to a wide range of machines that are not very robust; and security, considering

that sending data to the cloud opens it up to attacks, possibly jeopardizing confidentiality

and integrity [45].

A.4 Fog Computing

Similarly to many other emerging paradigms, fog computing is a concept that is still under

discussion.

In 2012, Bonomi et al. [14] from Cisco Systems defined fog computing as a “highly

virtualized platform that provides compute, storage, and networking services between

end devices and traditional Cloud Computing Data Centers, typically, but not exclusively

located at the edge of network”.

The authors claim that the origins of the fog concept can be traced to early proposals

to support endpoints with rich services at the edge of the network, including applications

with low latency requirements, such as gaming, video streaming, and augmented reality.

As fog and cloud computing share many similarities, they credit the creation of the term

to the definition of fog as a cloud that is close to the ground.

In the same text, they also present a comprehensive list of defining characteristics

for the fog: low latency and location awareness, widespread geographical distribution,

mobility [11], very large number of nodes, the predominant role of wireless access, the

strong presence of streaming and real-time applications, and heterogeneity.

In 2014, Vaquero and Rodero-Merino [84] submitted an editorial note saying that the

fog should not be seen as simply an evolution of the cloud model, for doing so may lead

to the false interpretation that there is little novelty in this idea. Instead, they propose

that the fog should be analyzed as a result of many emerging trends in technology usage

patterns (e.g., the need for network connectivity and privacy for a extremely large num-

ber of small devices) and the advance of enabling technologies (e.g., 3D micro batteries,

new ways to manage networks through software, new wireless communication protocols).

They added ubiquity, improved network capabilities as a hosting environment, and better

support for cooperation among devices to the list of important features for fog computing.

Skala et al. [80] proposed an even further separation of the distributed computing

hierarchy in 2015, placing a new structural layer called dew computing below the fog with

the intent of scattering information among end-user devices so data can be accessed even

when an Internet connection is unavailable.

In November of 2015, the OpenFog Consortium was founded with the goal of establish-

ing an open architectural framework that can help business leaders, software developers,

hardware architects, and system designers to create and maintain the hardware, software,

and system elements necessary for implementing fog computing [73]. Since then, they have

published many reports such as a Reference Architecture for fog computing [73] with the

goal of fostering the creation of fully interoperable and secure systems. At the beginning

of 2019, the OpenFog Consortium and the Industrial Internet Consortium decided to work

91

together under the Industrial Internet Consortium name [72].

Other entities, such as the USA’s NIST, are also making efforts to help define the

fog, and to this end they published a Conceptual Model [41] which places fog computing

in relation to cloud and edge computing. They characterize fog computing as “a lay-

ered model for enabling ubiquitous access to a shared continuum of scalable computing

resources,” saying that it “facilitates the deployment of distributed, latency-aware ap-

plications and services, and consists of fog nodes (physical or virtual), residing between

smart end-devices and centralized (cloud) services.” These fog nodes “can be organized in

clusters - either vertically (to support isolation), horizontally (to support federation), or

relative to fog nodes ’ latency-distance to the smart end-devices.” [41]. In this dissertation,

we adopt this definition of fog computing.

It is important to emphasize that, much like the IoT, the fog does not intend to super-

sede the cloud but rather complement it [13]. For instance, the cloud has shortcomings

that could be mitigated by the fog, such as requiring high bandwidth client access links

and being unable to meet the latency and security requirements of certain problems [29].

Due to its characteristics, the fog is a good approach to handling large-scale distributed

control systems and geo-distributed or time-sensitive mobile applications [13].

There are many situations where fog and cloud can be used in conjunction, leveraging

both fog localization and cloud globalization. For example, there are the IoT applica-

tions presented in Appendix A.3. The majority of the use cases described can benefit

from the fog’s low latency, while cases such as data collection, historical queries, control

wastes/costs, and city infrastructure can use it to filter and pre-process streaming data.

Along with all the possibilities brought by fog computing, there also come a series of

challenges that stand in the way of its full realization [84, 91]:

• The possible need for centralization in applications running on devices at the edge;

• Compute and storage limitations in edge devices and how to manage computation

offloading when necessary;

• Managing, maintaining connectivity, and providing reliable services using an exten-

sive number of devices in a way that is scalable and decentralized;

• Privacy, authentication, and visibility in cases where the data is processed using

third-party hardware and software;

• Standardization of communication mechanisms;

• Accountability, monitoring, and monetization for users that share their resources to

host applications;

• The development of APIs and programming models that allow the portability of

applications to the fog and the use of small units spread across several locations;

• Provisioning and managing resources for applications executed on the fog.

The hierarchical structure envisioned for the fog can also provide many advantages

when we think about its increased potential for scalability and its ability to reduce re-

sponse latency. By enabling infrastructures to continue working even when the connection

to the cloud is unavailable, the fog increases their reliability and availability. As each fog

92

layer addresses data security and privacy, the fog allows for solutions that are overall more

secure as well (e.g., it is possible to aggregate privacy-sensitive data before they even leave

the network edge) [17].

Finally, in order to better place the fog in the current distributed computing scenario,

we compare the features of this platform with other approaches: the cloud, cloudlets,

edge computing, Mobile Cloud Computing, Mobile-Edge Computing, Wireless Sensor

Networks, and Wireless Sensor and Actuator Networks.

As mentioned before, it is easy to see that the cloud and the fog share many similarities,

with the major difference being that the latter is closer to end users. However, a more

in-depth look reveals that this divergence can impact a series of characteristics in both

paradigms. Firdhous, Ghazali, and Hassan [29] made such a comparison and the summary

of their results is presented in Table A.1. From this analysis, we again see that fog

computing excels in time-sensitive tasks, while the cloud still presents advantages for

more demanding jobs such as processing batches.

Table A.1: Comparison between cloud and fog computing. Modified from [29].

Characteristic Cloud computing Fog computing

Latency High Low
Delay jitter High Very low
Location of server nodes Within the Internet Edge of the LAN
Client-server distance Multiple hops One hop
Security Undefined Can be defined
Attack on data en route High probability Very low probability
Location awareness No Yes
Geographical distribution Centralized Distributed
Number of server nodes Few Very large
Computational power of server nodes High Low
Support for mobility Limited Supported
Real-time interactions Supported Supported
Last mile connectivity Leased line Wireless

Stojmenovic [81] defines cloudlets as layers placed between the cloud and mobile de-

vices which operate as “data centers in a box”, that is, they are often owned by a local

business and have little or no professional attention. When working with these interme-

diate layers, mobile devices play the role of thin clients and are able to rapidly instantiate

custom virtual machines to perform the required computation. This way, they avoid part

of the overhead brought by the use of the cloud, and therefore minimize their response

time.

Akin to the fog, the key behind this idea is to bring the cloud closer to the data, but in

the case of cloudlets, this only affects a few users at a time. Both models are also similar

in regard to demanding new solutions for issues such as privacy, software licensing, and

business models.

93

Although cloudlets were introduced in 2009 [78], years before Bonomi et al. [14] pre-

sented their definition of fog computing, an analysis of the characteristics of both platforms

points to cloudlets being an important special case of fog computing.

The concept of edge computing is also very similar to the fog and sometimes they are

even used interchangeably [91]. Nevertheless, edge computing was created with the focus

of distributing Web applications on the Internet’s edge [24], so we can consider that it

represents another subset of fog computing.

Mobile Cloud Computing (MCC) is defined as an infrastructure where the data is both

stored and processed outside of mobile devices. It relies on the cloud to provide processing

power and data storage, thus allowing smartphone users and other mobile subscribers to

benefit from mobile cloud applications and mobile computing [91].

Mobile-Edge Computing (MEC) is a natural development in the evolution of mobile

base stations and can be seen as a cloud server running at the edge of a mobile network.

Characterized by proximity, low latency, and high bandwidth, this paradigm enables the

execution of tasks which cannot be handled by traditional infrastructures due to issues

like network congestion [39, 91].

While fog computing may seem like a combination of MCC and MEC, the fact that it

is applied to a broader set of devices and networks makes it stand out as a more promising

and well-generalized computing paradigm in the context of the IoT [91].

Wireless Sensor Networks (WSNs) usually connect a large number of low bandwidth,

low energy, low processing power, small memory motes, i.e., wireless sensor nodes that run

on extremely low power or even extend their battery life by harvesting energy. Each mote

on a WSN acts as sources to one or more sinks (collectors). This type of network is suitable

for tasks such as sensing the environment, performing simple processing, and sending data

to the sink. However, WSNs fall short in cases that not only require sensing and tracking,

but also performing physical actions with the help of actuators (e.g., opening, closing,

targeting, or even carrying and deploying sensors).

Actuators, which can control either a system or the measurement process itself, bring a

new dimension to sensor networks, as the communication of Wireless Sensor and Actuator

Networks (WSANs) goes from both sensors to sinks and controller nodes to actuators.

Unlike networks that only connect motes, issues of stability and possible fluctuations in

behavior cannot be ignored in this case, and latency and jitter become the main concerns

if the system also requires that the actions be performed in near real time.

If we consider that fog computing is characterized by proximity and location awareness,

geo-distribution, and hierarchical organization, we see that it is a suitable platform to

support energy-constrained WSNs and WSANs [14].

Overall, the comparison between fog computing and other current paradigms leads us

to the conclusion that in each case the fog either represents a concept that is broader than

previous ideas or a complementary platform that enables previous approaches to thrive

within the immense scale of the Internet of Things.

95

instead of sending the data to more powerful fog nodes.

With this alternative view on mist computing, we get closer to a setup that is more in

line with the advances expected for the IoT, which we consider an important step toward

reaching the full potential of this emerging technology.

96

Appendix B

Experimental Data

This appendix shows more detailed data for the experimental results discussed in Sec-

tion 4.3.

97

Table B.1: NodeMCU execution time results in fog-prone cases.

Benchmark Dataset t (ms) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.673551 0.000141 3,551 3,551 1.0000 1.0000 −0.9155 −0.9155 −0.0000
HVisibility 0.614381 0.000128 3,893 0 0.0000 0.0000 −11.8819 −11.8819 −0.0000
HWBTempC 0.629857 0.000132 3,797 760 0.2002 0.2784 −3.4911 −2.7420 +27.3195
HWindSpeed 0.619163 0.000129 3,863 515 0.1333 0.1393 −4.5844 −4.4623 +2.7351
Synthetic 0.635126 0.000133 3,766 2,108 0.5597 0.5536 −1.5462 −1.5611 −0.9566

MinMax [−5, 5]

HRelHumidity 0.673655 0.000141 3,550 3,550 1.0000 1.0000 −0.9155 −0.9155 −0.0000
HVisibility 0.660127 0.000138 3,623 2,984 0.8236 0.8336 −1.0940 −1.0823 +1.0881
HWBTempC 0.646680 0.000135 3,698 2,613 0.7066 0.6911 −1.2576 −1.2826 −1.9489
HWindSpeed 0.656031 0.000137 3,646 2,920 0.8009 0.8013 −1.1227 −1.1222 +0.0440
Synthetic 0.643882 0.000135 3,715 3,087 0.8310 0.8299 −1.0880 −1.0892 −0.1187

Outlier 16

HRelHumidity 0.715757 0.000150 3,342 73 0.0218 0.0236 −8.3408 −8.2180 +1.4952
HVisibility 0.667375 0.000139 3,584 355 0.0991 0.0911 −5.2501 −5.4794 −4.1852
HWBTempC 0.723876 0.000151 3,304 65 0.0197 0.0222 −8.4151 −8.2367 +2.1662
HWindSpeed 0.719371 0.000150 3,325 121 0.0364 0.0267 −7.4110 −7.9862 −7.2024
Synthetic 0.741199 0.000155 3,227 26 0.0081 0.0076 −9.1248 −9.1606 −0.3902

Outlier 256

HRelHumidity 2.590709 0.000542 923 41 0.0444 0.0051 −2.5043 −2.7776 −9.8403
HVisibility 1.729101 0.000361 1,383 215 0.1555 0.1112 −2.5489 −2.8731 −11.2837
HWBTempC 2.561749 0.000535 933 15 0.0161 0.0124 −2.7248 −2.7522 −0.9963
HWindSpeed 2.454752 0.000513 974 5 0.0051 0.0160 −2.9291 −2.8386 +3.1893
Synthetic 2.633129 0.000550 908 4 0.0044 0.0012 −2.7389 −2.7629 −0.8681

98

Table B.2: NodeMCU execution time results in cloud-prone cases.

Benchmark Dataset t (ms) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.673551 0.001408 355 355 1.0000 1.0000 −0.5201 −0.5201 −0.0000
HVisibility 0.614381 0.001284 389 0 0.0000 0.0000 −1.1882 −1.1882 −0.0000
HWBTempC 0.629857 0.001317 379 210 0.5541 0.2784 −0.7058 −0.8762 −19.4563
HWindSpeed 0.619163 0.001294 386 7 0.0181 0.1393 −1.1543 −1.0127 +13.9844
Synthetic 0.635126 0.001328 376 206 0.5479 0.5536 −0.7053 −0.7024 +0.4010

MinMax [−5, 5]

HRelHumidity 0.673655 0.001408 355 355 1.0000 1.0000 −0.5201 −0.5201 −0.0000
HVisibility 0.660127 0.001380 362 302 0.8343 0.8336 −0.5752 −0.5754 −0.0392
HWBTempC 0.646680 0.001352 369 369 1.0000 0.6911 −0.5303 −0.6341 −16.3797
HWindSpeed 0.656031 0.001371 364 275 0.7555 0.8013 −0.6045 −0.5883 +2.7673
Synthetic 0.643882 0.001346 371 308 0.8302 0.8299 −0.5840 −0.5841 −0.0189

Outlier 16

HRelHumidity 0.715757 0.001496 334 10 0.0299 0.0236 −0.9897 −0.9959 −0.6239
HVisibility 0.667375 0.001395 358 43 0.1201 0.0911 −0.9668 −0.9947 −2.8069
HWBTempC 0.723876 0.001513 330 5 0.0152 0.0222 −0.9933 −0.9863 +0.7048
HWindSpeed 0.719371 0.001504 332 10 0.0301 0.0267 −0.9847 −0.9880 −0.3395
Synthetic 0.741199 0.001549 322 1 0.0031 0.0076 −0.9819 −0.9775 +0.4442

Outlier 256

HRelHumidity 2.590709 0.005415 92 0 0.0000 0.0051 −0.2818 −0.2814 +0.1445
HVisibility 1.729101 0.003614 138 55 0.3986 0.1112 −0.3614 −0.4033 −10.3846
HWBTempC 2.561749 0.005355 93 0 0.0000 0.0124 −0.2850 −0.2840 +0.3539
HWindSpeed 2.454752 0.005131 97 0 0.0000 0.0160 −0.2974 −0.2960 +0.4765
Synthetic 2.633129 0.005504 90 1 0.0111 0.0012 −0.2764 −0.2771 −0.2729

99

Table B.3: NodeMCU energy consumption results in fog-prone cases.

Benchmark Dataset t (mJ) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.023170 0.000035 14,453 14,453 1.0000 1.0000 −0.9778 −0.9778 −0.0000
HVisibility 0.021135 0.000032 15,845 0 0.0000 0.0000 −48.3565 −48.3565 −0.0000
HWBTempC 0.021667 0.000032 15,456 3,920 0.2536 0.2784 −3.6387 −3.3376 +9.0198
HWindSpeed 0.021299 0.000032 15,723 2,131 0.1355 0.1393 −6.3949 −6.2452 +2.3970
Synthetic 0.021848 0.000033 15,327 8,567 0.5589 0.5536 −1.7232 −1.7393 −0.9288

MinMax [−5, 5]

HRelHumidity 0.023174 0.000035 14,451 14,451 1.0000 1.0000 −0.9778 −0.9778 −0.0000
HVisibility 0.022708 0.000034 14,747 12,184 0.8262 0.8336 −1.1787 −1.1685 +0.8687
HWBTempC 0.022246 0.000033 15,054 11,189 0.7433 0.6911 −1.3071 −1.4028 −6.8176
HWindSpeed 0.022567 0.000034 14,839 11,701 0.7885 0.8013 −1.2336 −1.2145 +1.5716
Synthetic 0.022150 0.000033 15,119 12,530 0.8288 0.8299 −1.1759 −1.1743 +0.1301

Outlier 16

HRelHumidity 0.024622 0.000037 13,601 324 0.0238 0.0236 −20.8708 −20.9521 −0.3880
HVisibility 0.022958 0.000034 14,587 1,470 0.1008 0.0911 −8.1144 −8.8072 −7.8668
HWBTempC 0.024901 0.000037 13,448 297 0.0221 0.0222 −21.5284 −21.4534 +0.3493
HWindSpeed 0.024746 0.000037 13,532 409 0.0302 0.0267 −18.3694 −19.6518 −6.5253
Synthetic 0.025497 0.000038 13,134 90 0.0069 0.0076 −31.4457 −30.6958 +2.4432

Outlier 256

HRelHumidity 0.089120 0.000133 3,757 47 0.0125 0.0051 −10.0289 −10.8308 −7.4044
HVisibility 0.059481 0.000089 5,630 531 0.0943 0.1112 −6.5567 −5.9035 +11.0641
HWBTempC 0.088124 0.000132 3,800 15 0.0039 0.0124 −11.0896 −10.1371 +9.3965
HWindSpeed 0.084443 0.000126 3,965 52 0.0131 0.0160 −10.4449 −10.1371 +3.0363
Synthetic 0.090580 0.000135 3,697 5 0.0014 0.0012 −11.1133 −11.1277 −0.1295

100

Table B.4: NodeMCU energy consumption results in cloud-prone cases.

Benchmark Dataset t (mJ) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.023170 0.001384 361 361 1.0000 1.0000 −0.5244 −0.5244 −0.0000
HVisibility 0.021135 0.001262 396 0 0.0000 0.0000 −1.2089 −1.2089 −0.0000
HWBTempC 0.021667 0.001294 386 217 0.5622 0.2784 −0.7091 −0.8878 −20.1222
HWindSpeed 0.021299 0.001272 393 7 0.0178 0.1393 −1.1745 −1.0278 +14.2665
Synthetic 0.021848 0.001305 383 209 0.5457 0.5536 −0.7139 −0.7099 +0.5616

MinMax [−5, 5]

HRelHumidity 0.023174 0.001384 361 361 1.0000 1.0000 −0.5244 −0.5244 −0.0000
HVisibility 0.022708 0.001356 368 304 0.8261 0.8336 −0.5831 −0.5806 +0.4365
HWBTempC 0.022246 0.001329 376 376 1.0000 0.6911 −0.5346 −0.6403 −16.5127
HWindSpeed 0.022567 0.001348 370 280 0.7568 0.8013 −0.6097 −0.5936 +2.7142
Synthetic 0.022150 0.001323 377 312 0.8276 0.8299 −0.5901 −0.5894 +0.1345

Outlier 16

HRelHumidity 0.024622 0.001470 340 10 0.0294 0.0236 −1.0070 −1.0128 −0.5816
HVisibility 0.022958 0.001371 364 43 0.1181 0.0911 −0.9836 −1.0105 −2.6609
HWBTempC 0.024901 0.001487 336 5 0.0149 0.0222 −1.0106 −1.0032 +0.7445
HWindSpeed 0.024746 0.001478 338 10 0.0296 0.0267 −1.0019 −1.0048 −0.2919
Synthetic 0.025497 0.001523 328 1 0.0030 0.0076 −0.9990 −0.9945 +0.4576

Outlier 256

HRelHumidity 0.089120 0.005322 93 0 0.0000 0.0051 −0.2867 −0.2863 +0.1470
HVisibility 0.059481 0.003552 140 55 0.3929 0.1112 −0.3675 −0.4100 −10.3520
HWBTempC 0.088124 0.005263 95 0 0.0000 0.0124 −0.2899 −0.2889 +0.3601
HWindSpeed 0.084443 0.005043 99 0 0.0000 0.0160 −0.3026 −0.3011 +0.4848
Synthetic 0.090580 0.005410 92 1 0.0109 0.0012 −0.2812 −0.2820 −0.2709

101

Table B.5: Raspberry Pi 3 energy consumption results in fog-prone cases.

Benchmark Dataset
Instruction

Count
t (mJ) p (%) v n

f

(Est.)
f

(Real)
Slope
(Est.)

Slope
(Real)

Slope Error (%)

MinMax [−15, 15]

HRelHumidity 3,997,730 0.003321 0.000000 23,765 23,765 1.0000 1.0000 −0.9997 −0.9997 −0.0000
HVisibility 2,687,010 0.002232 0.000000 35,358 0 0.0000 0.0000 −5395.3493−5395.3493 −0.0000
HWBTempC 3,047,723 0.002532 0.000000 31,174 7,744 0.2484 0.2784 −4.0222 −3.5891 +12.0664
HWindSpeed 2,869,570 0.002384 0.000000 33,109 4,541 0.1372 0.1393 −7.2806 −7.1695 +1.5502
Synthetic 3,285,947 0.002730 0.000000 28,914 16,086 0.5563 0.5536 −1.7967 −1.8058 −0.4997

MinMax [−5, 5]

HRelHumidity 3,997,730 0.003321 0.000000 23,765 23,765 1.0000 1.0000 −0.9997 −0.9997 −0.0000
HVisibility 3,779,590 0.003140 0.000000 25,137 20,454 0.8137 0.8336 −1.2286 −1.1993 +2.4413
HWBTempC 3,537,571 0.002939 0.000000 26,857 19,474 0.7251 0.6911 −1.3787 −1.4465 −4.6872
HWindSpeed 3,737,250 0.003105 0.000000 25,422 20,039 0.7883 0.8013 −1.2682 −1.2476 +1.6506
Synthetic 3,584,428 0.002978 0.000000 26,506 22,025 0.8309 0.8299 −1.2031 −1.2047 −0.1299

Outlier 16

HRelHumidity 6,972,197 0.006372 0.000001 12,388 273 0.0220 0.0236 −44.3135 −41.3824 +7.0831
HVisibility 6,035,976 0.005516 0.000001 14,309 1,441 0.1007 0.0911 −9.8850 −10.9245 −9.5154
HWBTempC 7,285,119 0.006658 0.000001 11,856 258 0.0218 0.0222 −44.8151 −43.8595 +2.1788
HWindSpeed 7,045,547 0.006439 0.000001 12,259 369 0.0301 0.0267 −32.6425 −36.7553 −11.1898
Synthetic 7,384,825 0.006749 0.000001 11,695 80 0.0068 0.0076 −135.1194−122.1042 +10.6591

Outlier 256

HRelHumidity 49,584,961 0.045317 0.000006 1,741 41 0.0235 0.0051 −36.6140 −112.4953 −67.4529
HVisibility 30,115,961 0.027524 0.000003 2,868 459 0.1600 0.1112 −6.1604 −8.8124 −30.0942
HWBTempC 49,178,545 0.044946 0.000006 1,756 15 0.0085 0.0124 −81.4756 −61.9114 +31.6004
HWindSpeed 46,647,122 0.042632 0.000005 1,851 52 0.0281 0.0160 −31.6132 −51.1218 −38.1610
Synthetic 50,492,036 0.046146 0.000006 1,710 4 0.0023 0.0012 −162.0664−197.3519 −17.8795

102

Table B.6: Raspberry Pi 3 energy consumption results in cloud-prone cases.

Benchmark Dataset
Instruction

Count
t (mJ) p (%) v n

f

(Est.)
f

(Real)
Slope
(Est.)

Slope
(Real)

Slope Error (%)

MinMax [−15, 15]

HRelHumidity 3,997,730 0.003321 0.001683 594 594 1.0000 1.0000 −0.4755 −0.4755 −0.0000
HVisibility 2,687,010 0.002232 0.001131 883 0 0.0000 0.0000 −1.3488 −1.3488 −0.0000
HWBTempC 3,047,723 0.002532 0.001283 779 482 0.6187 0.2784 −0.6851 −0.8934 −23.3159
HWindSpeed 2,869,570 0.002384 0.001208 827 12 0.0145 0.1393 −1.2403 −1.0741 +15.4754
Synthetic 3,285,947 0.002730 0.001383 722 403 0.5582 0.5536 −0.6827 −0.6848 −0.3149

MinMax [−5, 5]

HRelHumidity 3,997,730 0.003321 0.001683 594 594 1.0000 1.0000 −0.4755 −0.4755 −0.0000
HVisibility 3,779,590 0.003140 0.001591 628 491 0.7818 0.8336 −0.5480 −0.5329 +2.8348
HWBTempC 3,537,571 0.002939 0.001489 671 671 1.0000 0.6911 −0.5061 −0.5998 −15.6321
HWindSpeed 3,737,250 0.003105 0.001573 635 484 0.7622 0.8013 −0.5576 −0.5457 +2.1783
Synthetic 3,584,428 0.002978 0.001509 662 550 0.8308 0.8299 −0.5495 −0.5498 −0.0523

Outlier 16

HRelHumidity 6,972,197 0.006372 0.003229 309 10 0.0324 0.0236 −0.4655 −0.4674 −0.4062
HVisibility 6,035,976 0.005516 0.002795 357 43 0.1204 0.0911 −0.5122 −0.5200 −1.5042
HWBTempC 7,285,119 0.006658 0.003374 296 5 0.0169 0.0222 −0.4488 −0.4478 +0.2404
HWindSpeed 7,045,547 0.006439 0.003263 306 10 0.0327 0.0267 −0.4606 −0.4619 −0.2767
Synthetic 7,384,825 0.006749 0.003420 292 1 0.0034 0.0076 −0.4455 −0.4447 +0.1873

Outlier 256

HRelHumidity 49,584,961 0.045317 0.022963 43 0 0.0000 0.0051 −0.0664 −0.0664 +0.0341
HVisibility 30,115,961 0.027524 0.013947 71 55 0.7746 0.1112 −0.1009 −0.1081 −6.6915
HWBTempC 49,178,545 0.044946 0.022775 43 0 0.0000 0.0124 −0.0670 −0.0669 +0.0832
HWindSpeed 46,647,122 0.042632 0.021603 46 0 0.0000 0.0160 −0.0706 −0.0706 +0.1132
Synthetic 50,492,036 0.046146 0.023383 42 1 0.0238 0.0012 −0.0652 −0.0652 −0.1471

103

Appendix C

Publications

This appendix presents a list of journal and conference articles published during this

Ph.D. research.

Publications which resulted from this project:

1. Flávia Pisani, Vanderson Martins do Rosario, Edson Borin. Fog vs. Cloud Com-

puting: Should I Stay or Should I Go?. Future Internet, 11(2):27–32, February 2019.

doi:10.3390/fi11020034.

2. Flávia Pisani and Edson Borin. Fog vs. Cloud Computing: Should I Stay or

Should I Go?. In: Proceedings of the Workshop on INTelligent Embedded Systems

Architectures and Applications, INTESA ’18, Turin, Italy, pages 27–32, October

2018. doi:10.1145/3285017.3285026.

3. Flávia Pisani, Jeferson Rech Brunetta, Vanderson Martins do Rosario, and Edson

Borin. Beyond the Fog: Bringing Cross-Platform Code Execution to Constrained

IoT Devices. In Proceedings of the 29th International Symposium on Computer Ar-

chitecture and High Performance Computing, SBAC-PAD ’17, pages 17–24, October

2017. doi:10.1109/SBAC-PAD.2017.10.

Publications which resulted from previous studies and from the collaboration with

other students and researchers as a part of their work:

1. Tiago Lobato Gimenes, Flávia Pisani, and Edson Borin. Evaluating the Perfor-

mance and Cost of Accelerating Seismic Processing with CUDA, OpenCL, Ope-

nACC, and OpenMP. In Proceedings of the 2018 IEEE International Parallel and

Distributed Processing Symposium, IPDPS ’18, Vancouver, Canada, pages 399–408,

May 2018. doi:10.1109/IPDPS.2018.00050.

2. Vanderson Martins do Rosario, Flávia Pisani, Alexandre Rodrigues Gomes, and

Edson Borin. Fog-Assisted Translation: Towards Efficient Software Emulation on

Heterogeneous IoT Devices. In Proceedings of the 2018 IEEE International Par-

allel and Distributed Processing Symposium Workshops, IPDPSW ’18, Vancouver,

Canada, pages 1268–1277, May 2018. doi:10.1109/IPDPSW.2018.00196.

104

3. Flávia Pisani, Daniel Carlos Guimarães Pedronette, Ricardo da Silva Torres, and

Edson Borin. Contextual Spaces Re-Ranking: accelerating the Re-sort Ranked

Lists step on heterogeneous systems. Concurrency and Computation-Practice &

Experience, 29(22):e3962, November 2017. doi:10.1002/cpe.3962.

4. Rafael Schmid, Flávia Pisani, Edson Borin, and Edson Cáceres. An Evaluation

of Segmented Sorting Strategies on GPUs. In Proceedings of the 2016 IEEE 18th

International Conference on High Performance Computing and Communications,

HPCC ’16, Sydney, Australia, pages 1123–1130, December 2016. doi:10.1109/

HPCC-SmartCity-DSS.2016.0158.

5. Edson Borin, Caian Benedicto, Ian Liu Rodrigues, Flávia Pisani, Martin Tygel,

and Mauricio Breternitz. PY-PITS: A Scalable Python Runtime System for the

Computation of Partially Idempotent Tasks. In Proceedings of the 2016 Inter-

national Symposium on Computer Architecture and High Performance Comput-

ing Workshops, SBAC-PADW ’16, Los Angeles, USA, pages 7–12, October 2016.

doi:10.1109/SBAC-PADW.2016.10.

6. Hércules Cardoso da Silva, Flávia Pisani, and Edson Borin. A Comparative

Study of SYCL, OpenCL, and OpenMP. In Proceedings of the 2016 International

Symposium on Computer Architecture and High Performance Computing Work-

shops, SBAC-PADW 2016, Los Angeles, USA, pages 61–66, October 2016. doi:

10.1109/SBAC-PADW.2016.19.

7. Flávia Pisani, Daniel Carlos Guimarães Pedronette, Ricardo da Silva Torres, and

Edson Borin. Improving the Performance of the Contextual Spaces Re-Ranking

Algorithm on Heterogeneous Systems. In Anais do XVI Simpósio em Sistemas

Computacionais de Alto Desempenho, WSCAD ’15, Florianópolis, Brazil, pages

132–143, October 2015. URL: http://www.lbd.dcc.ufmg.br/colecoes/wscad/

2015/012.pdf.

	Introduction
	Related Work
	Infrastructure for Code Execution on Sensors
	Fog Computing Tools
	General Computation Offloading Schemes
	Edge/Fog/Cloud Computation Offloading Schemes
	Discussion

	A Framework for Custom Code Execution on Constrained Devices
	Proposed Framework
	LibMiletus
	COISA
	Overview
	Implementation Details

	Experiments
	Test Cases
	Datasets
	Setup

	Analysis
	Filter Efficacy
	Number of Host and Guest Instructions
	Code and Data Size
	Startup and Handler Execution Time
	Events Processed per Second

	Conclusion

	Modeling Cloud and Fog Execution Costs
	Modeling Platforms
	General Equations
	Estimating f

	Experiments
	Test Cases
	Datasets
	Setup

	Analysis
	Choosing an Approach to Estimate f
	Deciding between Fog and Cloud for Execution Time
	Deciding between Fog and Cloud for Energy Consumption
	Simulating Other Scenarios

	Conclusion

	Conclusions
	Scope of This Work
	Proposed Framework
	Proposed Model
	Main Contributions
	Future Work

	Background
	Constrained Devices
	Cloud Computing
	Internet of Things
	Fog Computing
	Mist Computing

	Experimental Data
	Publications

