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Resumo

Na Odometria Visual Monocular, existem várias abordagens relacionadas à otimização
de pose e estrutura. Algumas permitem o uso de observações em granularidade fina (ex.:
pontos de interesse), mas requerem um número grande de parâmetros. Isso limita a den-
sidade da reconstrução de estrutura e o número de poses que podem ser otimizadas em
tempo real. Nós investigamos uma caracterização com poucos parâmetros da Odometria
Visual que consiste apenas de poses e das posições de epipolos em pares de imagens.
Fazemos isso formulando um tipo indireto de Bundle Adjustment, onde parâmetros de
estrutura como profundidade inversa de pontos são substituídos por epipolos da geome-
tria de dois pontos de vista. Nossa formulação permite a reconstrução da cena com a
mesma densidade que qualquer conjunto de associações de pontos-chave. Além disso, tal
reconstrução não aumenta o número de parâmetros quando o número de pontos aumenta
e possui custo computacional de tempo linear no número de pontos. Para verificar se
a formulação proposta reflete dados do mundo real, construímos uma pipeline de Odo-
metria Visual baseada em características (indireta) que minimiza o erro da reprojeção
com relação às poses e epipolos. Nós usamos gradientes de segunda ordem para otimizar
as poses na álgebra do SE(3) e os epipolos em seu espaço original. Daí executamos a
odometria e a reconstrução de cena na base de dados KITTI. Os experimentos mostram
que a abordagem proposta de fato se encaixa com observações reais e tem resultados de
odometria compatíveis com os da literatura, ao mesmo tempo que exerce controle sobre
a estrutura sem usar parâmetros de pontos.



Abstract

In Visual Odometry, there are many approaches related to the optimization of pose and
structure. Some allow for fine-grained use of the observations, like feature points, but
require many parameters. This limits the density of structure reconstruction and the
number of poses that can be optimized in real-time. In this work, we propose a low-
parameter characterization of Visual Odometry that consists solely of poses and the loca-
tions of eipoles in pairs of images. We do that by formulating an indirect type of Bundle
Adjustment that consists of replacing structure parameters like inverse point depths with
epipoles from two-view geometry. Our formulation allows us to reconstruct the scene with
the same density as any set of point associations provided. Furthermore, this reconstruc-
tion does not increase the number of parameters when the number of points increases,
and it has a linear computational time cost on the number of points. To check if the
proposed formulation fits real-world data, we build a feature-based (indirect) VO pipeline
that minimizes the reprojection error concerning poses and epipoles. We employ second-
order gradients to optimize the poses in the algebra of SE(3) and the epipoles in their
original space. Then, we perform odometry and structure reconstruction in the KITTI
dataset. Experiments show that the proposed approach indeed fits real observations and
has odometry results compatible with the literature while allowing for some control over
structure without point parameters.
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Chapter 1

Introduction

The term “odometry” is derived from “odometer”, a sensor of wheeled vehicles that mea-

sures the amount of wheel rotation. This type of measurement was one of the first used

to estimate ego-motion on the ground. Nevertheless, the word “odometry” has been used

lately to describe motion computation in the general sense, including other sensors (e.g.,

camera, IMU) and movement not restricted to the ground (e.g., underwater, aerial). In

this context, Visual Odometry (VO) is the odometry based solely on apparent movement

in a sequence of images from one or more cameras attached to a vehicle (Nister et al.

[42]).

Monocular Visual Odometry differs from Stereo Visual Odometry on the type of cam-

era view: in the first, there is only a single camera not provided with any stereo rig (e.g.,

the camera is static concerning the vehicle), while the second usually involves two or

more cameras. If a single camera slides over a stereo rig to take multiple images when the

vehicle is in the same position, it is also considered stereo, such as in the work of Moravec

[39].

VO is an essential component in mobile robotics, as it continuously provides the sys-

tem with information about the current location and orientation inside a map of the

environment. In turn, this allows for the execution of tasks inside that environment.

Moreover, VO does not depend on the robot model or dynamics and can be developed

independently of other components, although information about the robot model might

be useful in some cases. VO also has applications in Virtual Reality (VR). For instance,

the combination of virtual objects and characters in real scenes fits the VO approach well.

In VO and Visual SLAM (VSLAM), we want to estimate ego-motion from a time-

sequence of images in real time and also create a map of the environment. In the ideal

case, if we know the first, we can reconstruct the second from geometric constraints.

But in practice, there are problems in measurements like noise and wrong associations of

scene primitives (e.g. points, lines). Many of the works in VO/VSLAM treat the data

association problem with outlier filtering using robust methods like RANSAC (Fischler

and Bolles [16]). The noise in measurements is supposed to vanish away as we observe

more (filtered) points in the scene and minimize the reprojection error. Some works in

VO/VSLAM do minimize the reprojection error in a windowed Bundle Adjustment (BA)

setup with parameters related to point depth, where inverse point depth is a popular

choice (Engel et al. [12]). Some of the works that do not include point parameters also do
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not minimize the reprojection error in BA (Engel et al. [10, 11]), but optimize pose with

pose-graph optimization, which does not depend on point measurements, but adjusts

the initialization values of poses. There are also methods that do not use pose-graph

optimization nor BA with point parameters and they work like “concatenative” systems

that optimize only in small windows and will not have features like loop-closure (Pereira

et al. [46], Wang et al. [58]) but might have some sense of global optimization if using

data-driven techniques like Deep Learning (Parisotto et al. [44]). An interesting case

is a subroutine of ORB-SLAM (Mur-Artal et al. [40]), which has point parameters but

the point depths are frozen at their current value and BA is performed optimizing only

poses. Nothing restricts the use of both BA and pose-graph optimization, and it is done

in ORB-SLAM. Regardless of the choice of pose optimization method, the scene can be

reconstructed by triangulation of the associated points, although it can be polluted if

the point association only happens in short intervals of time but the points are observed

in longer periods. Therefore, joint optimization of pose and structure in BA have the

possibility of better map construction, although the optimization gets harder as more

parameters enter the system.

Although there are many aspects of VO that can be subject to optimization, like that

of scene primitives, in this work we are only interested in parametrization to optimize pose

and structure, which are the main goals of VO and VSLAM. In this work, we propose a

low-parameter characterization of Visual Odometry that consists solely of poses and the

locations of epipoles in pairs of images. We do that by formulating an indirect type of BA

that consists of replacing structure parameters like inverse point depths with epipoles from

two-view geometry. The proposed approach reduces the number of parameters drastically

and still allows for some control over structure optimization.

More specifically, we propose to minimize the reprojection error in BA without at-

tributing directly one parameter for each key-point. We do so by writing the point depth as

a function of the pose, epipole, and the point association related to the epipole. This form

of depth is easy to manipulate for analytical purposes and allows for Jacobians’ derivation

of the reprojection error concerning poses and epipoles without the need for point param-

eters. Hence, efficient second-order optimization routines like Levenberg-Marquardt can

be employed to allow real-time applications. However, we leave the investigation of the

practical use of our formulation for future work.

As contributions of this work, we can list the following. First, this work observes a

geometrically sound connection between camera pose (orientation and position), second

epipole from two-view geometry, and point depth. It also considers the generalization for

sequences with more than two camera frames to be compatible with windowed optimiza-

tion. Then, we propose a VO pipeline that incorporates the parametrization to validate

our formulation.

1.1 Objective

In this work, our goal is to propose a characterization of VO that relies on a small number

of parameters and can still adjust pose and geometry to some extent. Although there are
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many aspects of VO that can be subject to optimization, like scene primitives, in this

work, we are only interested in parametrization to optimize pose and structure, which

are VO’s primary goals. Furthermore, we want to implement a prototype feature-based

monocular VO system based on such parametrization and test it on a well-established

VO benchmark.

We want to find such a few-parameter VO based on two-view geometry, which regards

the relationship between points in a 3D scene and its images in two pinhole cameras (not

to be confused with physical cameras).

1.2 Contributions

As contributions of this work, we can list the following. First, this work finds a geomet-

rically sound connection between camera pose (orientation and position), second epipole

from two-view geometry, and point depth. It generalizes the relation for sequences with

more than two camera frames to be compatible with windowed optimization. Then, we

propose a VO pipeline that incorporates the parametrization and implement an open-

source prototype of the algorithm1. Then, we analyze the algorithm’s results on a set

of sequences from an outdoor dataset. That analysis gives intuition about what can be

modified to improve the algorithm in terms of quality and speed, making running on

more complex configurations possible. That, in turn, would allow for a more in-depth

investigation of the parametrization that we propose.

Second, the above contributions employed an open-source automatic second-order op-

timization framework from two other existing frameworks2. Although it is a straightfor-

ward way to implement the VO algorithm’s optimization, it is only useful for prototyping

and not real-world applications. Hence, we provide an efficient C++ implementation of

the optimization3.

1.3 Research Questions

Considering the following requirements for a VO system: (i) the use of windowed op-

timization of poses and geometry; (ii) a small number of optimization parameters that

do not depend on the number of key-points; (iii) it models the key-point depths, even if

indirectly, we make the following questions:

• Is there a formulation of the reprojection error in terms of pose parameters plus a

constant number (per frame) of parameters that also model the depth of key-points

in the 3D scene?

• If so, is it compatible with windowed optimization Bundle Adjustment?

• Can it be implemented in a VO pipeline?

1https://github.com/Ronnypetson/tfoe_vo
2https://github.com/Ronnypetson/sotorch
3https://github.com/Ronnypetson/epivo
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1.4 Outline

The remaining of this work is organized as follows. In Chapter 2 we explain many im-

portant concepts concerning the VO pipeline, including camera projection geometry and

the close view of two cameras to a mathematical optimization apparatus, selection, and

matching of image points informative ego-motion. Then, in Chapter 3, we summarize

some representative work from classic SLAM/VO based on regular Bundle Adjustment

and optimization of the reprojection error. We also summarize application-oriented work

and applications of learning-based methods to the SLAM/VO pipeline. In Chapter 4, we

introduce the pose plus epipole parametrization and describe the Epipolar VO algorithm

in detail, including the algorithm’s parametrization role. Then Chapters 5 and 6 describe

the methodology of the experiments and give a detailed analysis of the results from Epipo-

lar VO in 11 outdoors sequences. Chapter 7 contains general conclusions about this work

and gives some directions to investigate better the parametrization we present.
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points in a three-dimensional scene inside the 3D Euclidean space to a plane, which has

two dimensions and is equivalent to the 2D Euclidean space. Such mapping is a non-linear

transformation, nevertheless it can be implemented by using a multiplication by a matrix

followed by a perspective division.

The simplest camera model is known as the pinhole camera (Hartley and Zisserman

[24]) (Figure 2.2). In this model, the projection of a point X in the scene is the intersection

x of the line connecting X and the center of projection (or camera center) C with the

image plane Z = f , considering a Euclidean coordinate system with the origin at C and

its Z axis being the “forward-looking” direction of the camera. f is known as the focal

distance.

Figure 2.2: Projection of a point accordingly to the pinhole model. Image adapted from
Hartley and Zisserman [24].

It follows that the point of intersection x is (fx/z, fy/z, f), which translates into

(fx/z, fy/z) inside the image plane. In terms of homogeneous coordinates (e.g., con-

sidering the equivalence class (kx, ky, k) as referring to the same point (x, y)), a point

X = (x, y, z, 1) in space is mapped as follows







f 0 0 0

0 f 0 0

0 0 1 0

















x

y

z

1











=







fx

fy

z






≡

[

fx/z

fy/z

]

, (2.1)

such that

P =







f 0 0 0

0 f 0 0

0 0 1 0






(2.2)

is known as the camera projection matrix. Thus, P is a convenient way to represent the

camera, and it is sometimes called the camera interchangeably.

A more general form of P for the pinhole model includes offsets in the x and y

coordinates of the image plane, as this is required in many practical situations (e.g., the
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camera and the image have different coordinate systems). This translates into

P =







f 0 cx 0

0 f cy 0

0 0 1 0






, (2.3)

so that point (x, y, z) is mapped to (fx/z + cx, fy/z + cy).

The matrix P is usually factored into

P =







f 0 cx
0 f cy
0 0 1







[

I3×3 03×1

]

= K
[

I3×3 03×1

]

, (2.4)

so that K is intrinsic to the camera (e.g., does not depend on external factors) and is known

as the camera calibration matrix. The right multiplier represents the pose transformation

of the camera concerning the world coordinate frame. Because we assumed the camera

coordinate system to be the world (inertial) coordinate system, the transformation is the

identity (e.g., no translation and no rotation). That does not need always to be the case,

and the transformation of the coordinate system can be any composition of translation

followed by a rotation, or rigid body transformation. Section 2.2 will give more details on

that.

In practice, the individual light receptors of each pixel in a camera may not be a

perfect square. In such a case, the sensor does not preserve the proportions between

the horizontal and vertical dimensions. This is the case of CCD cameras (Hartley and

Zisserman [24]), for which the focal distance is replaced by two new values, αx, and αy.

These values incorporate both the focal distance and the stretching, sx and sy, in the X

and Y axis so that

[

αx

αy

]

= f

[

sx
sy

]

(2.5)

and

P =







αx 0 cx
0 αy cy
0 0 1







[

I3×3 03×1

]

= K
[

I3×3 03×1

]

. (2.6)

2.2 Camera Pose and its Representations

When working with more than one coordinate system, it is common to establish a world

frame, which is the coordinate system from where all the others will be expressed (see

Figure 2.3). Therefore, a coordinate system (X ′, Y ′, Z ′) is characterized by a translation

followed by a rotation from the world frame (X, Y, Z). Such transformation is known as

the pose of the frame. Both rotation and translation in 3D Euclidean space have 3 degrees

of freedom each, totaling 6 degrees of freedom for the frame pose. In practice, poses can

be used to pinpoint the location and orientation of a moving camera in the world.

Then, if X is a point with (x, y, z) coordinates in the world frame, and the camera
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Figure 2.3: Illustration of a pose p with 6 degrees of freedom in a reference coordinate
frame (X, Y , Z), a 3D point a and its relative coordinates a’ in p. Image obtained from
Blanco [3].

pose in the world frame is equivalent to the affine transformation [R|t], the coordinates

of the same point in the camera frame will be R−1X −Rt. In homogeneous coordinates,

it is

Xcam =

[

R t

0 1

]−1

X. (2.7)

Pose estimation between pairs of consecutive camera frames is at VO’s heart, as it is

generally used as initialization for further refinement with windowed bundle adjustment

or pose-graph optimization, which will be detailed in Sections 2.5 and 2.6, respectively.

Nothing restricts the use of pure pairwise pose estimation to compute the global estimates

of poses, as the global poses (e.g., in the world frame) consist of the “concatenation” of

the relatively smaller increments. Then, if

Ti+1,i =

[

Ri+1,i ti+1,i

0 1

]

(2.8)

is the relative pose displacement of frame i+ 1 w.r.t frame i, the global pose or the pose

concerning the first frame of the entire sequence is

Ti+1 = TiTi+1,i. (2.9)

In the above representation, T is a 4x4 homogeneous transformation matrix, while

R ∈ SO(3) (see Section 2.2.3) is its rotation component, and t ∈ R
3 is its translation

component. It has 12 parameters, although general motion only has 6 degrees of freedom.

Other forms of representation include:

• Euler angles plus translation [θx, θy, θz, tx, ty, tz]. It has the minimum number of

parameters possible but suffers from gimbal lock.
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Figure 2.4: Illustration of yaw, pitch, and roll angles.

• Quaternions plus translation [qw, qx, qy, qz, tx, ty, tz], with one parameter more than

the minimum necessary but, is free of singularities.

• Ŋe(3) representation (Section 2.2.3). It results from the invertible logarithmic map

from the homogeneous form in SE(3) to the Ŋe(3) algebra form. It only contains

the minimum of 6 parameters (3 for rotation and 3 for translation) and is free of

singularities. This is the form of the pose parameters in the algorithm introduced

in Chapter 4.

2.2.1 Euler Angles and Translation

One of the most used pose representations is the translation plus the Euler angles yaw

θz, pitch θy, and roll θx (see Figure 2.4). The translation values are the same as in

the homogeneous transformation. The meaning of the three angles are three consecutive

rotations along each axis individually: first, a rotation of θz around the Z axis, followed by

a rotation of θy around the new modified Y axis, and then a rotation of θx around the new

modified X axis. As long as the pitch angle is not ±90◦, there is always a correspondence

free of ambiguity between each 3D rotation and a triplet of yaw, pitch, and roll angles.

The special case when the pitch angle is ±90◦ is known as gimbal lock, and it results in

the ambiguity between the roll and yaw angles.

2.2.2 Quaternions and Translation

Another common pose representation is the translation plus unit-length quaternion. In

this representation, the translation part is the same as in the homogeneous transformation.

The values (qw, qx, qy, qz) in the quaternion are related to the 3D rotation by an angle of

θ around the vector

1

sin
θ

2







qx
qy
qz






, (2.10)
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such that qw = cos
θ

2
and

∥

∥(qw, qx, qy, qz)
∥

∥ = 1. Even though there are 4 parameters for

rotation in this representation, it has just 3 degrees of freedom because of the unit-length

constraint. Different from the Euler angles plus translation representation, this one does

not have degenerate cases.

2.2.3 SE(3) Lie Group and its Associated Algebra

As mentioned previously in this Section 2.2, the homogeneous form of poses or rigid body

transformations is

T =

[

R3×3 t3×1

01×3 1

]

, (2.11)

where t ∈ R
3 is its translation component and R ∈ SO(3) is its rotation matrix. The

Special Orthogonal group, or SO(3) for short, is the Lie group formed by 3× 3 orthogonal

matrices in R
3×3 with determinant equal to 1 and its product being the usual matrix

product. This means that the product of any two of such matrices also has those properties

(e.g., the composition of two rotations is also a rotation, which preserves proportions and

scale).

The 4× 4 homogeneous transformation itself is also a Lie group, known as the Special

Euclidean group or SE(3) for short and the usual matrix product as its operation. The

fact that SE(3) is a Lie group is useful because of the existence of the associated Lie

algebra Ŋe(3), which has the minimal representation of 6 parameters, is free of degenerate

cases, and has been preferred for gradient-based optimization in the last years (Blanco

[3]).

As is going to be detailed next, the transformation of elements from SE(3) to Ŋe(3)

is invertible and differentiable, which guarantees that optimizing in Ŋe(3) using gradients

and interpreting the result in SE(3) is possible without ambiguity. This is what happens

in the algorithm introduced in Chapter 4.

The Ŋo(3) Lie Algebra

The elements of Ŋo(3) are the linear combinations of the derivatives of the rotations along

the three axes at infinitesimally small angles. Those derivatives form the basis of Ŋo(3)

and are

B0 :=







0 0 0

0 0 −1

0 1 0






, (2.12)

B1 :=







0 0 1

0 0 0

−1 0 0






, (2.13)
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and

B2 :=







0 −1 0

1 0 0

0 0 0






. (2.14)

Therefore, the three degrees of freedom correspond to the three real scalars of the

combination, so that if

ω̂ = αB0 + βB1 + γB2 (2.15)

then ω̂ is uniquely defined by ω = (α, β, γ).

The Ŋe(3) Lie Algebra

Similarly to Ŋo(3), the elements of Ŋe(3) are generated by a basis that is formed by the

derivatives of the individual displacements (rotations and translations) at values approach-

ing 0. For the rotation part, it is isomorphic to the Ŋo(3) basis {B0, B1, B2}, so that only

the translation generators remain to be defined:

B3 :=











0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0











, (2.16)

B4 :=











0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0











, (2.17)

and

B5 :=











0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0











. (2.18)

So, if

ζ̂ = αB0 + βB1 + γB2 + xB3 + yB4 + zB5 (2.19)

then ζ̂ is uniquely defined by ζ = (α, β, γ, x, y, z) and therefore has six degrees of freedom.

Logarithmic and Exponential Maps

The SE(3) group and its Ŋe(3) algebra are connected by the logarithmic and exponential

maps. The logarithmic map takes one element of the group and returns one element of

the algebra:

log : SE(3) −→ Ŋe(3), (2.20)
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while the exponential map

exp : Ŋe(3) −→ SE(3) (2.21)

is its inverse:

exp ◦ log = ISE(3) (2.22)

and vice-versa:

log ◦ exp = IŊe(3). (2.23)

If ζ = (α, β, γ, x, y, z) = (ω, t) represents ζ̂ ∈ Ŋe(3), then

exp(ζ) :=

[

eω̂ Ut

01×3 1

]

, (2.24)

where eω̂ is the matrix exponential and

U = I3×3 +
1− cosφ

φ2
ω̂ +

φ− sinφ

φ3
ω̂⊤ω̂ (2.25)

and φ =
∥

∥ω
∥

∥

2
.

On the other hand, if T ∈ SE(3) has rotation component R and translation t, then

log(T ) := (ω, U−1t), (2.26)

where ω is the 3-vector form of log(R) =
φ

2 sinφ
(R − R⊤) (from the Rodrigues’ formula)

with φ =
∥

∥ω
∥

∥

2
.

Blanco (Blanco [3]) gives details about gradient-based optimization on Ŋe(3).

2.3 Formulation of Monocular Visual Odometry

VSLAM and VO have a probabilistic formulation in which parameters X are optimized in

order to maximize the probability P (Y |X), where Y is either the raw observations (e.g.,

pixel intensities) or the observations in terms of intermediary features (e.g., the position

of key points). When Y is the set of raw pixel intensities, the method is direct, while it

is indirect (feature-based) when Y is a set of features that represent the frames. Figure

2.5 illustrates some basic SLAM concepts such as landmark (feature) mapping, robot

localization, and drift.

In an indirect model, the positions of the points which it keeps are, at least ap-

proximately, the projection of the associated 3D point, that is ptruei = Πi(X), where Πi

is the projection of the point indexed by i. For direct models the assumption is that

the pixel intensities are the intensities at the corresponding projected points, that is

Iref (pi) = I true(Πi(X)), where Iref and I true are the reference and true images, respec-

tively. An even more basic assumption that holds for almost all implementations is that

the chosen points are points over rigid bodies, points over bodies that cannot be distorted.

In direct methods, uncertainty about a pixel’s intensity (photometric noise) is usually

modeled as noise that obey a Gaussian distribution (Iobs(pi) = I true(pi) + nphoto, where
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Figure 2.5: A feature-based SLAM and the divergence between real and predicted location,
and divergence in keypoint mapping. Figure obtained from Jha and Raman [26].

nphoto ∼ N (0, σ2)), while indirect methods model the position of key points with uncer-

tainty as Gaussian noise (pobsi = ptruei + ngeom, where ngeom has distribution N (02, σ
2
2×2))

for both pixel coordinates (geometric noise). Generally, the parameters X are compound

by the camera parameters (calibration values). In formulations with other sensors, it can

have inertial IMU (Inertial Measurement Unit) parameters, filtering parameters (Bain

and Crisan [2]) (when applicable), and the geometry of pixels or key points, depending

on the method.

Optimization of the parameters in these algorithms’ formulation requires minimizing

a negative log-likelihood or energy objective function. The energy function is the sum of

the squares of residuals defined as the difference between a measurement and a prediction.

For direct methods, this difference is

ri(X) := Iobs(Πi(X))− Iref (pi) (2.27)

and the corresponding energy function is

E(X) :=
∑

pi∈Iref

ri(X)2 (2.28)

For indirect methods, the residuals are

ri(X) := Πi(X)− pobsi (2.29)
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and the energy

E(X) :=
∑

pi∈Iref

∥

∥ri(X)
∥

∥

2

2
. (2.30)

2.4 Epipolar Geometry and Visual Odometry

The two views’ geometry is related to the projection of 3D points into different cameras

and the relative positions and orientations of the camera views. Such relationships allow

the derivation of epipole properties between any pair of frames given the epipoles of

adjacent frames. In turn, that can define an optimization problem for Visual Odometry

and 3D reconstruction with a low amount of parameters.

2.4.1 Epipolar Geometry

The geometry involving two points of view, each one consisting of a projective camera

(e.g., the pinhole camera) and the correspondence between the projections of a scene

point X in the two images is known as epipolar geometry. Figure 2.6 illustrates the main

elements involved: the camera centers behind their respective image planes, the image x of

3D point X in the left camera and also implicitly its correspondent x′ in the right camera,

the baseline, which is the line segment connecting the camera centers, the epipoles, which

are the intersections of the baseline with each image plane, the epipolar plane, which is

the plane determined by point X and the camera centers, and finally the epipolar lines,

which are the lines of intersection between the epipolar plane and the image planes.

Notice that, because all epipolar planes contain the baseline, all the epipolar lines

intersect at the corresponding epipole. Also, given that every point x in one image is the

projection of some 3D point in the line connecting the camera center and the point itself,

there is a one-to-one correspondence between a point x in one image to an epipolar line

in the other image. This is one of the most essential properties in epipolar geometry, as it

restricts the match of x in the other image, x′, to be over that epipolar line. The mapping

from point to epipolar line is a linear map F , and the epipolar constraint just mentioned

can be expressed as

x′⊤(Fx) = 0. (2.31)

The term (Fx) is the epipolar line of x in the other image. The product being zero

indicates that x′ should lie on that line. F is known as the fundamental matrix. The

essential matrix E is analogous to F , but for x and x′ in pixel coordinates. That means

E = K ′⊤FK, (2.32)

where K and K ′ are the calibration matrices of the first and second cameras, respectively,

when working with monocular visual odometry, K = K ′ because the two cameras corre-

spond to the same physical camera in different instants in time. Working with E or F is

a matter of which coordinates one prefers the points to be on, but one can be recovered

from the other if the calibration matrices are known.
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Notice that the motion is not the set of parameters itself, but the values of E notice

that, from the optimization point of view. Once E is estimated, then R and t are extracted

from it. To do so, the Singular Value Decomposition (SVD) is applied so that if

USV ⊤ = E (2.35)

and

S =







s 0 0

0 s 0

0 0 0






(2.36)

then there are four candidate poses:

R = U(±W⊤)V ⊤ (2.37)

t = U(±W )(S/s)U⊤ (2.38)

where t is determined up to scale and

W =







0 −1 0

1 0 0

0 0 0






. (2.39)

There is only one correct pose from the candidates, and it is the one that satisfies

the positive depth constraint of a point triangulated from its locations in the two images

(Hartley and Zisserman [24]).

When using RANSAC, the number of minimal sets necessary to achieve a certain

probability of finding one with only inliers grows exponentially with the minimal set size.

Therefore, it is desirable to need as few points as possible. The 5 points needed for the

computation of E are the minimum considering the general motion, which has 6 degrees

of freedom. However, in constrained motion, like planar or car motion, there are fewer

degrees of freedom, and it should be possible to use fewer points. Scaramuzza [49] shows

that locally planar car movement can be estimated using only one point correspondence

and RANSAC or other outlier removal method known as histogram voting. In such case,

the rotation and translation (up to scale) are functions of a single parameter, that is, the

angle at the Instantaneous Center of Rotation and between the positions of the car in

two subsequent instants.

2.5 Windowed Bundle Adjustment

Bundle Adjustment consists of estimating camera pose and scene geometry in the general

sense, without the requirements of SLAM or VO, by minimizing the reprojection error

of a large number of feature points. The underlying optimization problem results from

some probabilistic assumptions about the distribution of the measurement errors and the

measurements’ independence. It depends heavily on the correct data association between
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the feature points and the scene points. The minimization of the reprojection error

consists of solving a large linear system. In order for it to be practical, the sparsity of the

associated matrix must be explored.

As new frames and key-points are incorporated into the system, the number of pa-

rameters increases rapidly. When the optimization involves second-order derivatives, the

computation time is quadratic or cubic in the number of parameters, especially if there is

too much correlation between pairs of parameters. The strategies to keep the computation

time practical include parameter marginalization with Schur complement and key-frame

selection. Both strategies are used in Engel et al. [12]. A simpler strategy is to work with

limited local maps, as the feature points are the most responsible for the big number of

parameters in the system. This is adopted in Aladem and Rawashdeh [1]. In this work, we

formulate an “indirect” type of bundle adjustment by replacing the structure parameters

with epipoles from two-view geometry to drastically reduce the number of parameters and

still have some control over the structure’s optimization.

Geometric versus Photometric Reprojection error

In order to find suitable estimates of motion (poses) and structure (point depth), it is

common to minimize the geometric reprojection error. For a single point correspondence

(x,x′) in pixel coordinates, camera matrix K, pose T = [R|t], and depth d it is defined

as

E(R, t, d)(x,x′) =
∥

∥KΠ(T−1d[K−1x|1]⊤)− x′
∥

∥

γ
, (2.40)

where Π is the projection from the scene to the second frame and
∥

∥.
∥

∥

γ
is some norm,

usually L2, L1, or Huber. The error involving all reprojected points is the weighted sum

over the point matches M

E(R, t, d) =
∑

m∈M

wmE(R, t, d)m. (2.41)

The photometric error, used in direct methods, is based on the pixel brightness dif-

ference around the estimated reprojection (at the target image) and around the point in

the source image. For the photometric error to be differentiable, the image derivatives for

pixel positions must be defined, which is not much of a problem because nowadays, even

automatic differentiation frameworks implement that.

Reprojection graph and factor graph

One way to characterize the relationship between poses that “see” a lot of same features

or “reproject” into one another is by a directed graph, where each node is a pose and edges

indicate that features can be reprojected from source to target node. Then we can define

a global pose error that involves the pairwise reprojections and might have redundant

information that helps to adjust the motion and structure estimates in a broader locality.

Even though there can be many reprojections, the number of parameters in the proposed

parametrization scales linearly with the number of frames.
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ters. In such a case, the poses are initialized and then refined by optimizing the problem

defined in the pose-graph. In this context, g2o (Kümmerle et al. [29]) is a powerful tool

used often.

One example of a successful pose-graph algorithm is the one by Olson et al. [43], as

they introduce a fast algorithm for the refinement of noisy initial poses. It is based on

SGD (Kiefer and Wolfowitz [27]) and on a special representation of the state space being

optimized. Latif et al. [31] equip pose-graph SLAM with robust place recognition, so

that it performs loop-closures. One example of optimization with a pose-graph that can

have its constraints altered during optimization is the one introduced in Sünderhauf and

Protzel [56]. As a result, the loop-closure part of the algorithm becomes more robust.

Pure pose-graph optimization without structure parameters belongs to the “few pa-

rameter” side of Visual Odometry, as in the minimal case, there are just 6 parameters

per key-frame. Its downside is that it does not make full use of the information from

point measurements, and in turn, the quality of the pose estimates might be inferior.

Furthermore, if we perform triangulation using point matches and the resulting poses,

the pose estimates’ inferior quality will lead to poor structure reconstruction. We try

to alleviate this problem without adding too many parameters replacing the structure-

related parameters from bundle adjustment (e.g., inverse depth of points) by epipoles (see

Section 4.1).

2.7 On-manifold Second-Order Optimization

Suppose we want to minimize an energy function E defined as

E(x) :=
N
∑

i=1

ri(x)
2, (2.42)

where ri is called a residual and x are the values we want to find. If we have a current

estimate x0 for x that is close enough to the global optimum, we might refine the estimate

iteratively with displacements ǫ, so that if E is flat around x0 then x0 + ǫ is closer to

the optimum. Methods like Gauss-Newton and Levenberg-Marquardt do this by using a

first-order Taylor approximation of E:

E(x0 + ǫ) =
∥

∥r(x0 + ǫ)
∥

∥

2

2

≈
∥

∥

∥r(x0) +
∂r

∂x
(x0)

∥

∥

∥

2

2

= r⊤0 r0 + 2ǫ⊤J⊤

0 r0 + ǫ⊤J⊤

0 J0ǫ

, (2.43)
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where

J0 =
∂r

∂x
(x0)

r0 = r(x0)

r :=













r1
r2
...

rN













. (2.44)

Then if we take H := J⊤
0 J0 and b := J⊤

0 r0, it follows that

ǫ = −H−1b, (2.45)

and the new value of x0 is

x0 ← x0 + ǫ. (2.46)

The difference of Levenberg-Marquardt from Gauss-Newton lies on the matrix H,

which is also known as approximate Hessian (under the assumption of normally distributed

errors):

HLM := (H + λdiag(H)), (2.47)

as this has a regularization effect that makes the optimization behave as gradient descent

for high λ (good if the current estimate is too far from the optimum) or Gauss-Newton for

small λ (if the current estimate is close to the optimum). λ should always be non-negative.

2.8 Extraction and Correspondence of Key-points

Visual Odometry methods that depend on a feature-matching step usually rely on three

things: the extraction of points of interest, the matching of those points between adjacent

frames, and the computation of the relative pose between the adjacent frames. For the

first, feature descriptors and corner detectors are useful in many applications because

they take the high-dimensional input images and return a reduced set of points that are

informative enough for the task at hand. Those points can then be matched in a brute-

force way (e.g., checking among all the point pairs that give the better matches), but

it can also involve some optimization, as in the case of the Lucas-Kanade optical flow.

Finally, the resulting set of point correspondences can be used to estimate movement

parameters (e.g., find the Essential Matrix with RANSAC and then recover the relative

pose from it).

2.8.1 FAST Corner Detector

The main requisites for a feature detector in a Visual Odometry algorithm are robustness

to noise and the correctness of the points’ position. Also, the point detection step’s speed
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to scale transformation, are removed. True physical corners of objects in a scene, on the

other hand, are more robust to scale transformation and give correct matches in two-view

vision most of the time.

2.8.2 Lucas-Kanade Optical Flow

Optical flow is the apparent 2D displacement of objects in a sequence of images. It has

applications in Structure from Motion and is based on two assumptions: the pixel inten-

sities in the image do not change with the time approaching zero, and close neighboring

pixels tend to have the same displacement or disparity. If I(x0, y0, t0) is the intensity of

pixel (x0, y0) at time t0, then the first assumption is expressed by

I(x0, y0, t0) = I(x0 + dx, y0 + dy, t0 + dt). (2.49)

By taking the linear approximation around (x0, y0, t0) it holds that

I(x0, y0, t0) ≈ I(x0, y0, t0) +
dI

dt
(t0)dt

= I(x0, y0, t0) +

(

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t

dt

dt

)

(t0)dt
(2.50)

so that
(

Ixu+ Iyv + It
)

(t0)dt ≈ 0, (2.51)

where u =
dx

dt
and v =

dy

dt
are the components of the displacement. The term dt and

t0 can be omitted if the computation involves just two discrete image frames. In this case

the optical flow equation is

Ixu+ Iyv + It = 0. (2.52)

The Lucas-Kanade optical flow (Lucas and Kanade [36]) solves Equation 2.52 for a

small window (e.g. 3 × 3) around a given point. It finds (u, v) by solving an equivalent

linear system formed by several equations equal to the number of points in the window,

thus being over-determined whenever the window has more than 2 points. In its original

formulation, it uses iterative weighted Newton-Raphson. Also, it applies the multi-scale

strategy first with a small resolution and then with the original resolution. This helps

the algorithm be more robust to large displacements because in the small resolution, the

bigger displacements “fit” inside the window while the original resolution naturally works

for the smaller ones.

2.8.3 Random Sampling and Consensus

Random Sampling and Consensus (RANSAC) (Fischler and Bolles [16]) is a model fitting

paradigm robust to outliers. Unlike non-robust methods, it does not assume that errors in

data points are just noise that vanishes by the use of many data points. On the contrary,

it is based on model fitting with the minimum number of data points required. Algorithm
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Algorithm 1: Given a set of data points P , a minimum number of points M
for fitting a model, a minimum number of points K for the final consensus set,
an error tolerance ǫ for a point to be considered part of a consensus, and the
probability p of an arbitrary point to be an outlier, for every q ∈ (0, 1) there is
an integer N > 0 such that N or more iterations inside RANSAC will give a
consensus set with at least M points (none of those outliers) with probability q.

Result: If found, the fitted model parameters Θ and its consensus set C.
Otherwise {}, {}.

i←− 0
while i < N do

S ←− sample_points(P,M)
Θ←− fit_parameters(S)
C ←− find_consensus_set(P, ǫ,Θ)
if K ≤ |C| then

Θ←− fit_parameters(C)
return Θ, C

end
i←− i+ 1

end
return {}, {}

1 is a high-level form of RANSAC. The sample_points subroutine samples a set S of M

points from the input data points P . The subset S is known as a minimal set for fitting

the model. Then find_consensus_set creates a set C consisting of all points in P that

have error less than ǫ under the current model Θ returned by fit_paramters(S). If the

number of elements in the current consensus set C is greater than the minimum required

K to have a satisfactory consensus, the algorithm stops and returns Θ and C. If it did

not find a suitable consensus after all the iterations, the algorithm returns nothing.

The relationship between the rate of outliers p in the data and the number of iterations

needed to find a satisfactory set with probability q is

N =
log(1− q)

log(1− (1− p)M)
. (2.53)

For instance, if q is fixed at 99% and p is 40%, a minimal set of M = 4 points requires

around 34 iterations, while a minimal set of M = 6 points requires 97 iterations, and 272

iterations for M = 8. This growth is exponential. Also, depending on the outliers’ rate,

RANSAC may take a very low number of iterations, although it might not find a suitable

set if that rate is much higher than half the points. In Structure-from-Motion, RANSAC

is widely applied in estimating the Essential Matrix, usually with 5 points for the minimal

set.

The presence of just a few outliers can divert the estimated model from the ideal one

if the fitting strategy is not robust (see Figure 2.9). In linear regression with one input

variable, there are only 2 parameters, and the minimum number of points required to fit

the line is 2.
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Chapter 3

Related Work

This chapter reviews part of the Visual SLAM/Visual Odometry literature. It includes

classic works, application/niche works, and applications of data-based learning to Visual

Odometry. Works related to VO that have a low amount of parameters usually do not

use windowed optimization, like Scaramuzza [49], or if they do, it is just pose-graph

optimization without geometry parameters, as Kiefer and Wolfowitz [27], Latif et al.

[31], Olson et al. [43], Sünderhauf and Protzel [56].

3.1 Classic Works on SLAM/VO

Among the works on monocular SLAM, Davison et al. [9] came up with an efficient real-

time algorithm, which runs on a conventional CPU with a frame rate of 30 Hz. Their work

is one of the first in the “pure” vision domain (they also use information about the vehicle’s

acceleration and angular acceleration) to achieve drift-free results. The approach defines a

sparse set of features consisting of small patches, such as 11x11 rectangles from the images,

such that the search for the optimal locations of these features is controlled by Gaussian

ellipsoids generated around the expected feature location, which significantly limits that

search space. Besides the probabilistic approach to mapping the image features, they

also introduce feature initialization and feature orientation estimation solutions. Despite

being called “MonoSlam,” their system focuses on the 3D trajectory recovery more than

on geometry reconstruction and can thus be classified as an indirect visual odometry

algorithm.

ORB-SLAM (Mur-Artal et al. [40]) combines the efficient and robust ORB features

(Rublee et al. [48]), which are invariant concerning rotation, scale, and also are resistant to

noise, with a new initialization procedure that suggests initial maps for the planar and non-

planar scene possibilities. Whereas the planar case aims at finding a proper homography

matrix, the non-planar case searches for a good fundamental matrix. A selection is then

performed to select the best of the two. Furthermore, a survival of the fittest approach

guides the selection of map points and keyframes, helping to discard redundant frames

and keep only a set of frames and points diverse enough for all the algorithm tasks, namely

tracking, mapping, re-localization, and loop closing. The reuse of the same features for

the algorithms tasks helps to make it efficient and straightforward.
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ORB-SLAM is tested on three known benchmarks: NewCollege (Smith et al. [53]),

TUM RGB-D (Sturm et al. [55]), and KITTI (Geiger et al. [20]). The first is a large

robot outdoors sequence of 2.2km. TUM RGB-D is a set of 16 hand-held indoors sequences

useful for evaluation of general indoors performance. KITTI is a 11 car outdoors sequence

and is very challenging for monocular SLAM/VO because of fast car speed and rotations.

Contrary to previous work tested on the NewCollege dataset, ORB-SLAM can handle the

20fps sequence while closing global loops. The absolute trajectory errors (ATE) on the

TUM RGB-D dataset on ground-truth are compared to those of LSD-SLAM and PTAM

(Klein and Murray [28]). While ORB-SLAM can process all sequences entirely, except one,

PTAM and LSD-SLAM fail on much more. ORB-SLAM and PTAM are equally accurate

on the open sequences and better than LSD-SLAM, while ORB-SLAM is superior in

detecting large loops. ORB-SLAM also shows much better trajectory accuracy when

compared to the state-of-the-art at the time on the KITTI dataset.

Direct Sparse Odometry (DSO) (Engel et al. [12]) is a monocular direct method,

where a kind of photometric error should be minimized concerning the parameters, which

include camera poses, depth maps, and the intrinsic values of the camera. To understand

how this error is computed, we can look at its most fundamental part: the photometric

error around a pixel. First, we take two frames: a reference frame and the current

frame. Then we choose one of the pixels in the selected sparse subset of pixels in the

reference image. By obtaining the pixels’ reprojection around the selected pixel into the

current image (given the parameters’ values at the moment), we compute the sum of

the differences of the pixels’ intensities, taking into account the exposure times and the

brightness transfer parameters. The amount gives the total error over all frames, overall

points in the frames, and those from which the reference frame’s point is visible. Unlike

the usual direct methods, there is no smoothness prior, but pixels from regions with

gradient are sampled uniformly from the images instead.

DSO is evaluated in the following datasets: TUM monoVO (Engel et al. [13]), EuRoC

MAV (Burri et al. [5]), and ICL NUIM (Handa et al. [21]). The first has 50 photo-

metrically calibrated sequences from outdoors and indoors environments, but it only has

ground-truth data for loop-closure, making the authors use alignment error instead of

absolute trajectory error. The second dataset has 11 stereo-inertial sequences from in-

door environments but lacks photometric calibration. ICL NUIM is a set of ray-traced

sequences from indoor environments and does not require calibration. The error metric

for both EuRoC and ICL NUIM is absolute trajectory error. Compared to ORB-SLAM,

the method outperforms it in a big part of the sequences in all datasets.

Large-Scale Direct Monocular SLAM (LSD SLAM) (Engel et al. [10]) is a stereo

direct method that provides accurate maps and poses estimates in big environments, like

street blocks, while the previous direct techniques were limited to smaller scales. On the

algorithm”s full-scale, the scene’s map consists of a graph with the pose of the keyframes

and the frames’ depth maps as vertices and the photometric constraint between consecu-

tive keyframes as edges. Therefore, the optimization over the global map is a graph opti-

mization problem, for which a highly recommended global optimizer like g2o (Kümmerle

et al. [29]) could be used. However, the authors preferred to use their implementation

of a Gauss-Newton based optimization for the underlying least-squares problem. On a
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small scale between frames, a new image is to be considered the new reference frame if

the camera got too far from the previous keyframe, in which case a frame alignment is

performed for the new frame, resulting in its pose and depth map. Otherwise, the image

is used to refine the reference frame’s current depth-map through filtering, a probabilis-

tic model for updating a system’s states by merging new observations with the current

estimate. When it replaces a keyframe, it adds to the global map through optimization.

3.2 Applications of Learning-Based Methods

Deep Learning can be used for both frame preprocessing and end-to-end pose estimation

in visual SLAM/Odometry. In the first case, images provided by a camera need to be

undistorted, as in the rolling shutter effect, before being passed as input. This process

has the advantage of detachment from the SLAM system, although such preprocessing

may turn the whole process too time-consuming and therefore not feasible for real-time

applications. For end-to-end pose estimation, the poses are estimated directly from the

frames by a deep neural network. Even though the training phase can consume too much

time, given that it requires a significant and varied amount of images, it has the potential

of modeling a variety of behaviors in different environments that would otherwise be

manually crafted by an expert or just ignored. For instance, new state-of-the-art visual

SLAM/Odometry systems hardcode effects like lens vignetting, time of exposure, camera

intrinsic reprojection geometry, and photometry. There is also the advantage of using a

pre-trained network for feature extraction and training a separate model with the resulting

representations as input.

A Deep Learning architecture is used in Laina et al. [30] to directly estimate in real-

time the depth map of all pixels of a given RGB image. It is a fully convolutional

neural network formed of a pre-trained ResNet 50 (He et al. [25]) network followed by

a set of new efficient up-scaling layers introduced by the authors. The model is trained

with a reverse Huber loss, and its ground-truth data comes from the NYU depth V2

dataset (Silberman et al. [51]). Their architecture, combined with the reverse Huber loss,

shows better accuracy than the previous state of art Deep Learning works and uses fewer

parameters. One noticeable advantage of their work is that the model is trained end-to-

end without processing its output again. Their experiments on two known benchmarks

of indoors and outdoors scenes compare their results against a handful of state-of-the-

art works for scene reconstruction. They outperform the results of the other works in

seemingly all the metrics used before their work.

Rengarajan et al. [47] used a CNN (LeCun et al. [32]) with horizontal and vertical

rectangular filters to predict parameters of the camera motion for each row of a given

single frame. With the estimated motion values at hand, which are a simplified version

of camera motion in their work, the input frame is undistorted. The data used in their

work is synthesized by people purposely shaking a camera while taking the pictures and

some artificially distorted images. The camera motion model for each row y is limited to

rotation around the optical axis and translation on the x axis, but the motion on every

row is not independent of each other because they are given by polynomial interpolation
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of degree 3. It considerably reduces the number of values to be estimated and may lead

to oversimplification of the possible distortions. Using a preprocessing step that relies on

a deep neural network may be impractical in some scenarios, as the time and processing

power required for generating the estimates of frame correction can be too high. Still,

if a centralized server can provide the correction step for many clients in real-time, the

overall efficiency could be worth it if the distortion removal is good enough for the motion

algorithm’s structure receiving the corrected images.

Their quantitative analysis regards PSNR (Peak Signal-to-Noise Ratio) and RMSE for

translational and rotational errors between ground truth and estimated displacement. The

experiments on a synthetic dataset show less error if considering all possible combinations

of shutter effect (rotation only, translation only, and rotation plus translation) among

methods that do not use references in the pictures, but still worse in most metric methods

that use references. The same is true on a dataset of real urban scenes and human faces.

DeepVO (Wang et al. [58]) uses feature representation from a deep network like VG-

GNet (Simonyan and Zisserman [52]) as input to a recurrent neural network that esti-

mates poses directly from sequences of such observations. They trained the system from

the mean squared error between ground truth poses and estimated poses. Instead, if in a

direct formulation with mapping, the objective function could be independent of ground-

truth data, as the photometric error from reprojection could be computed from poses and

depth values. In their experimental results on the KITTI VO benchmark (Geiger et al.

[20]), the authors show that their method outperforms monocular VISO2 (Geiger et al.

[19]) regarding the KITTI metrics like the RMSEs of translational and rotational errors,

although this is not true when compared to the stereo version of VISO2.

In Parisotto et al. [44], the authors present a complete visual SLAM solution employing

end-to-end differentiable Convolutional and Recurrent Neural Network modules. There

are three main parts: a local pose estimator that is a convolutional model and acts on

pairs of subsequent frames, a pose aggregator composed of temporal convolutional layers,

and a neural graph optimizer formed by Recurrent Neural Network (RNN) cells and an

attention mechanism. This last module is responsible for accumulating information over

an entire trajectory and minimize drift.

Experiments are executed on 2D and 3D game maze environments. Compared with

DeepVO, their method is superior regarding translational and rotational pose errors if

the global estimation is allowed, but it draws with DeepVO if the only local estimation

is permitted.

3.3 Applications of VSLAM/VO for Aerial and Under-

water Vehicles

Given that a vehicle can navigate in a wide variety of conditions, like indoors or outdoors,

in places with high or low texture, and with high or low speed, there are different require-

ments for good navigation for each case. For aerial vehicles and robots, the navigation

can suffer severely because of sudden motion (drones and robots), even in well-behaved

indoors, and therefore it needs special attention.
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The indoors navigation strategy presented in Celik et al. [8] runs the monocular SLAM

FastSLAM (Montemerlo et al. [37]) on a micro aerial vehicle (MAV) with all the necessary

processing hardware onboard and a consumer-level USB camera. Their SLAM is based

on corner and line features and explores the lines’ orthogonality in a closed environment

to estimate distance. The experiments show that the systems suffer from position drift

in the order of 2m in a loop with more than 100m, but has good feature tracking and is

capable of closing loops.

One work for underwater applications with a low-cost camera is Ferrera et al. [15].

This work uses optical flow features in a keyframe setting and graph optimization for the

resulting local tracking objective. They show how optical flow is considerably better than

descriptors for this type of environment and test their algorithm on simulated and real

underwater datasets against current state-of-the-art methods, namely ORB-SLAM, LSD-

SLAM, and SVO (Forster et al. [17]). These experiments in different water turbidity levels

show that their algorithm has less translation drift in more than half of the sequences.

Table 3.1 summarizes related works developed for a range of different applications,

from aerial and terrestrial to underwater. It also classifies them by the type of method

(direct or indirect, sparse or dense, monocular or stereo), by the kind of sequence in which

it was tested, indoor, outdoor, or both it used Deep Learning.

Paper BA? PG? FP? Dataset

Davison et al. [9] Yes No Yes Humanoid robot

Mur-Artal et al. [40] Yes Yes Yes KITTI, NC, TUM-RGBD

Engel et al. [12] Yes No Yes TUM Mono, Euroc, ICL

Engel et al. [10] No Yes No TUM-RGBD

Engel et al. [11] No Yes No KITTI, Euroc

Wang et al. [58] No No No KITTI

Ferrera et al. [15] Yes No Yes private

Celik et al. [8] No No No private
Gao et al. [18] Yes Yes Yes TUM-Mono, Euroc, KITTI

Parisotto et al. [44] No No No 2D maze, ViZ-Doom

Lovegrove et al. [34] Yes Yes Yes Simulated

Schubert et al. [50] Yes No Yes ICL, TUM-RGBD

Table 3.1: Visual SLAM/Odometry related works spanning different scenarios. BA stands
for Bundle Adjustment, PG stands for Pose-graph, and FP stands for feature parameters.
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Chapter 4

The Epipolar VO Algorithm

This chapter presents a high-level view of our algorithm, the Epipolar VO pipeline (Figure

4.2). Epipolar VO is a Monocular VO algorithm based on the connection between two-

view geometry, relative poses of frames, and scene points’ depth. It incorporates the

parametrization introduced in Section 4.1.

4.1 The Relationship Between Epipoles, Poses,

and Depth

The following properties involving poses, epipoles, and point depths are the basis for

a parametrization of Visual Odometry consisting of poses (6-parameter general motion)

and second-epipoles (3 parameters instead of 2 for derivation, implementation, and in-

terpretation convenience) from pairs of images. This parametrization will be used in the

Monocular VO algorithm introduced in Chapter 4. It is also possible to include relative

scales (1 parameter per frame), but in this work, the scale is treated separately in Section

4.5. Thus, such parametrization contains only 9n parameters, where n is the number of

image frames in the sequence. It can be used to retrieve depth maps with the desired

density at the time wanted, online or offline. Also, it is compatible with both direct and

indirect methods.

In the next sections, epipoles can be refered to as pairs (x, y) in pixel coordinates or

their equivalence classes (kx, ky, k), with k 6= 0, in order to simplify the derivation and

explanation of their properties. Points x will be 2-D projection coordinates (x, y) or 3-D

(x, y, 1) depending on the context.

4.1.1 Second Epipole and Point Depth

In pure translation (Figure 4.1), one might assume that the depth of point P with re-

spect to the first (left) image is inversely proportional to the magnitude of the apparent

displacement x′ − x. Furthermore, the closer P is to a point Q, the smaller is the dis-

placement x′−x, being 0 if P = Q. So, to the depth of the points over the circumference

be constant, some quantity must compensate that decrease. Assume that multiplying

the inverse of
∥

∥x′ − x
∥

∥ by the distance between x′ and e′ in the second (right) image
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If R = I and tz 6= 0 then

d =

∥

∥t− tzx
′
∥

∥

∥

∥x− x′
∥

∥

=
∥

∥tz
∥

∥

∥

∥x′ − e′
∥

∥

∥

∥x′ − x
∥

∥

, (4.5)

that is the same as Equation 4.1 up to
∥

∥tz
∥

∥ if tz 6= 0. Section 4.1.3 will show how to use e′

instead of t so that Equation 4.4 is the “general form” of Equation 4.1. It is also possible

to infer from Equation 4.4 that d may get bad values as the denominator approaches zero

because noise becomes more relevant. Then, one possibility is to set wm in Equation 2.41

to a non-decreasing function of that denominator.

In order to get to Equation 4.4 use the property that if A,B,C,D ∈ R, B 6= 0, D 6= 0,

and

A

B
=

C

D
, (4.6)

with

C = Ak,D = Bk, k ∈ R, (4.7)

then
∥

∥

∥

∥
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]

∥
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∥

∥

∥

∥
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∥

∥

∥

[

A

Ak

]

∥
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∥

∥

∥

∥
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∥

∥

∥

∥

=

√

A2(1 + k2)
√

B2(1 + k2)
=

∥

∥A
∥

∥

∥

∥B
∥

∥

. (4.8)

4.1.2 Uncertainty of Measurements

One downside of getting rid of feature parameters - like inverse depth - is that one loses

the ability to model the uncertainty of measurements at the point-level granularity (e.g.,

assign low importance to the errors of points with high uncertainty). In a second-order op-

timization setup (e.g., with Levenberg-Marquardt), this lack of feature parameters trans-

lates into a much more compact and “less informative” Hessian structure. One possibility

is to create many “candidate epipoles” per-frame where each can be initialized at different

locations or fit to a subset of the points. Then one epipole would be derived or selected

from the candidates. That is left for further investigations.

4.1.3 Properties of Epipoles

Suppose the second epipole in the image is modeled as a parameter, and it is desired to

avoid redundancy of those parameters in an optimization window for bundle adjustment.

In that case, one option is to take advantage of some relationship between the epipoles of

adjacent frames. In particular, from two-view geometry (Hartley and Zisserman [24])

e′ = Kt21 (4.9)

and

e = KR⊤

21t21, (4.10)
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where e′ is the second epipole in the second image concerning the first, e is the correspond-

ing first epipole - which is also the second epipole of the first image for the second, and

K is the intrinsic camera matrix (monocular case). Rij and tij are the pose components

of frame i with respect to frame j. Also, from Equations 4.9 and 4.10

e = KR⊤

21K
−1e′. (4.11)

This implies that it is unnecessary to create separate parameters for both epipoles if

one also wants to minimize some reprojection error from the second image into the first.

It also implies that in pure translation, the two epipoles are equal.

It also would be interesting to have some “inductive” property of second epipoles, so

that one could define the second epipole in a third image concerning the first (e′31) given

the second epipoles in the second w.r.t the first (e′21) and given the third w.r.t the second

(e′32). Thus, if

e′31 = K[R31|t31][0|1]
⊤ = Kt31 (4.12)

and

[R31|t31] = [R32|t32][R21|t21] (4.13)

then

e′31 = KR32t21 +Kt32 (4.14)

e′31 = KR32K
−1e′21 + e′32. (4.15)

Notice that the composition of second epipoles is equivalent to the aggregation of

translations between consecutive frames, as expected, given the relationship in Equation

4.9. We treat the translation and the second epipole as separated parameters because we

want more freedom to fit geometry, which is represented by e′. Otherwise, if there were

no epipole, the optimization would be equivalent to pose-graph optimization.

Also, it might be useful to define a “second epipole” function relating second epipoles

from every pair of images:

E : N× N→ R
2, (4.16)

where its arguments are the indexes of the second and first image frames in the sequence,

respectively. This function could be defined inductively as



















E(i, i) := K
[

0 0 1
]⊤

i ∈ N

E(i, j) := KRi,j+1K
−1E(j + 1, j) + E(i, j + 1) i > j

E(i, j) := KR⊤
i,jK

−1E(j, i) j > i

. (4.17)

It is going to be well-defined if the values, E(i + 1, i), K, and Ri+1,i are given. In

an optimization setup, the optimizer would try to find the E(i + 1, i) that best fits the

definition of E, and the number of parameters could be linear in the number of image

frames.
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Simplifying the definition of E above leads to

E(i, j) = KRi

i
∑

τ=j+1

R−1
τ K−1E(τ, τ − 1), (4.18)

where Ri and Rτ are rotations with respect to world coordinates. Now it is possible

to define a continuous version of E that could be useful for parametrizations with an

interpolation:

E(t1, t0) = KRt1

∫ t1

t0

R−1
τ K−1ξ(τ)dτ (4.19)

where

ξ(t) := lim
h→0

E(t, t− h). (4.20)

Even though E(t, t) = 0, the limit above can assume other values, like with pure

translation with some x or y component. The limit is the constant value of the epipoles

across the interval, except at t. In the continuous formulation, t can be interpreted as

being time.

If the motion is planar, then the second epipole has only one degree of freedom corre-

sponding to its position along the x axis. In such a case, its y coordinate is constant at

the center of height.

4.2 Jacobian of Geometric Reprojection Error

The matrix J0 =
∂r

∂x
(x0) is known as the Jacobian around x0. The present notation

has N rows, which is the number of residuals, and D columns, which is the number of

parameters to be optimized (the dimension of column vector x). Thus, H is a D × D

matrix and b is a D-dimensional column vector. For the Epipolar VO algorithm, finding

the Jacobian of the reprojection error as in Section 2.7 might be useful. In that case,

D = 6 + 3 = 9 is the total number of parameters of pose and epipole from a pair of

consecutive frames.

Depending on whether we compute the reprojection error in pixel space or projection

plane, the part of the Jacobian concerning the epipole may be multiplied by the calibration

matrix K or not. Because we assume that K is already optimal, we work on the projection

plane without needing to include K.

First, we show the Jacobian of reprojection residuals concerning the pose part of

parameters in the algebra of SE(3), ζ = (t, ω). Let the reprojection residual of a single

point pair (p,p′) in the projection plane coordinates be

r =
∥

∥Π(T0e
ζ(dp))− p′

∥

∥

2

2
, (4.21)
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with

d =
∥

∥d
∥

∥ =

∥

∥

∥

∥

[

1 0 −p
′

1

0 1 −p
′

2

]

R0e
ωe′
∥

∥

∥

∥

∥

∥

∥

∥

[

1 0 −p
′

1

0 1 −p
′

2

]

R0eωp

∥

∥

∥

∥

(4.22)

as in Equation 4.4, with eζ being the exponential map of ζ (see Section 2.2.3) in the

homogeneous transformation form, and eω being the rotation part of that form. e′ is the

second epipole in the projection plane (not in pixel coordinates).

The Jacobian
∂r

∂ζ

∣

∣

∣

∣

ζ=0

follows from successive applications of the chain rule, product

rule, and division rule. The most important “sub-Jacobians” are going to be
∂d

∂ζ

∣

∣

∣

∣

ζ=0

,

∂eζ

∂ζ

∣

∣

∣

∣

ζ=0

, and
∂eω

∂ζ

∣

∣

∣

∣

ζ=0

. The last two we take from Blanco [3]:

∂eζ

∂ζ

∣

∣

∣

∣

ζ=0

=











03×3 −B0

03×3 −B1

03×3 −B2

I3 03×3











12×6

(4.23)

∂eω

∂ζ

∣

∣

∣

∣

ζ=0

=







03×3 −B0

03×3 −B1

03×3 −B2







9×6

, (4.24)

where Bi are the generators of the algebra of SO(3) introduced in Section 2.2.3. The

Jacobian columns are arranged to correspond to the “denominator” stacked column by

column in one long column vector. Then let

A =

[

1 0 −p
′

1

0 1 −p
′

2

]

R0e
ωe′ (4.25)

and

B =

[

1 0 −p
′

1

0 1 −p
′

2

]

R0e
ωp, (4.26)

then

d =
(A⊤A)1/2

(B⊤B)1/2
(4.27)

and

∂d

∂ζ
=

1

B⊤B

(

(A⊤A)−1/2(B⊤B)1/2A⊤
∂A

∂ζ
− (B⊤B)−1/2(A⊤A)1/2B⊤

∂B

∂ζ

)

, (4.28)

so that we need A|ζ=0, B|ζ=0,
∂A

∂ζ

∣

∣

∣

∣

ζ=0

, and
∂B

∂ζ

∣

∣

∣

∣

ζ=0

in order to find
∂d

∂ζ

∣

∣

∣

∣

ζ=0

. The first two

are easy, as we just replace eω by I3. The other two may be tricky to visualize because they

are 3-D tensors, but we can separate the last dimension of the Jacobian corresponding to
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the parameters ζ and find the individual expressions:

∂A

∂ζi

∣

∣

∣

∣

ζ=0

=

[

1 0 −p
′

1

0 1 −p
′

2

]

R0
∂eω

∂ζi

∣

∣

∣

∣

ζ=0

e′ (4.29)

∂B

∂ζi

∣

∣

∣

∣

ζ=0

=

[

1 0 −p
′

1

0 1 −p
′

2

]

R0
∂eω

∂ζi

∣

∣

∣

∣

ζ=0

p. (4.30)

Likewise, we get
∂d

∂ζi

∣

∣

∣

∣

ζi=0

by plugging in the corresponding values in Equation 4.28.

The result will be a 1× 6 row matrix. This strategy works whenever there is a Jacobian

multiplying a vector or matrix on the right.

Then we can proceed by applying the chain and product rules procedurally, as the

final nonreducible form may be too convoluted and not be worth the risk of error from

an implementation point of view:

∂r

∂ζ

∣

∣

∣

∣

ζ=0

= 2(Π(T0(d0p))− p′)⊤
∂Π

∂T0eζ(dp)

∣

∣

∣

∣

ζ=0

R0

(

∂eζ

∂ζ

∣

∣

∣

∣

ζ=0

(d0p) + p
∂d

∂ζ

∣

∣

∣

∣

ζ=0

)

, (4.31)

where d0 is d at ζ = 0, and

Π(X) = Π([x, y, z]⊤) = [x/z, y/z, 1]⊤ (4.32)

and

∂Π

∂X
=

1

z







1 0 −x/z

0 1 −y/z

0 0 0






, (4.33)

assuming z > 0. A C++ implementation of the Jacobian of this reprojection error is

available1.

The Jacobian with respect to the epipole
∂r

∂e′

∣

∣

∣

∣

e′=e′0,ζ=0

follows from
∂d

∂e′

∣

∣

∣

∣

e′=e′0,ζ=0

,

which is

∂d

∂e′

∣

∣

∣

∣

e′=e′0,ζ=0

=
1

(B⊤B)1/2

(

(A⊤A)−1/2A⊤
∂A

∂e′

) ∣

∣

∣

∣

e′=e′0,ζ=0

, (4.34)

where
∂A

∂e′

∣

∣

∣

∣

e′=e′0,ζ=0

=

[

1 0 −p
′

1

0 1 −p
′

2

]

R0. (4.35)

The appearance of e′0 is because we want to discern the current value of the epipole

from the parameter epipole being optimized. Now suppose that the reprojection error is

not a function that involves just R0, t0, and e′0 because the reprojection is not between

consecutive frames, but distant frames t0 and t1 (t1 > t0). If the parameters are the poses

and epipoles between consecutive frames in the forward order, then T0e
ζ in Equation 4.21

1Refer to https://github.com/Ronnypetson/epivo/blob/master/test_jac.cpp
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must be replaced with the product (on the left)

t1−1
∏

t=t0

T
(t)
0 eζ

(t)

, (4.36)

while R0e
ω must be replaced with (also a product of successive multiplications on the left)

t1−1
∏

t=t0

R
(t)
0 eω

(t)

(4.37)

in Equation 4.22 and e′ must be replaced by

E(t1, t0) = E(t1−1) +

t1−1
∑

t=t0+1











t1−1
∏

k=t

R
(k)
0 eω

(k)



E(t−1)






, (4.38)

which is the same as Equation 4.18, but in terms of local rotations. E(x) := E(x+1, x) is

the generalization of epipole introduced in Section 4.1. Now the Jacobians we need are

∂E(t1, t0)

∂E(k)

∣

∣

∣

∣

E(k)=E
(k)
0 ,ζ=0

=

t1−1
∏

t=k+1

R
(t)
0 , (4.39)

∂
∏t1

t=t0
R

(t)
0 eω

(t)

∂ζ
(k)
i

∣

∣

∣

∣

ζ=0

=





t1−1
∏

t=k+1

R
(t)
0





∂eω

∂ζi

∣

∣

∣

∣

ζ=0





k
∏

t=t0

R
(t)
0



 , (4.40)

and

∂E(t1, t0)

∂ζ
(k)
i

∣

∣

∣

∣

ζ=0

=
k
∑

t=t0+1











t1−1
∏

j=k+1

R
(j)
0





∂eω

∂ζi

∣

∣

∣

∣

ζ=0





k
∏

j=t

R
(j)
0



E(t)






. (4.41)

If there are backward reprojections (from a frame to a previous), which is the case for

loop closure, first write the inverse of the reprojection transformation and then derive the

Jacobian analogously.

4.3 Feature Extraction and Matching

Figure 4.2 depicts the pipeline proposed for our VO algorithm. The first step in the

pipeline consists of taking pairs of subsequent images of a sequence and then search for

points of interest in both. Then it stores the matches for the subsequent frames (indexes

i and i + 1) in a hash-table so that those points are going to be filtered in the key-point

selection stage.

The same procedure as above applies for any pair of images (not necessarily in forward

order or adjacent) specified in the window of reprojections (see Figure 4.3). For

instance, to optimize reprojection errors between frames i and j inside a window of time
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Algorithm 2: Initialization and key-point selection. S and T are lists of 2-D
point coordinates from consecutive images. A point S[i] is the match of T [i] and
vice-versa.
Result: Initial values for poses (R, t) and epipoles (e); selected feature points

and their matches (source, target) (S ′′, T ′′) and the reprojection weight
s.

E, S ′, T ′ ←− RANSAC_Essential_Matrix(S, T )
R, t, S ′′, T ′′ ←− Triangulate(E, S ′, T ′)
s←− 1
if Tr(R) < 2.4 then

R←− I3

t←−
[

0 0 1
]⊤

s←− 1e−14
else

if max(|t|) < 0.8 then

t←−
[

0 0 1
]⊤

s←− 1e−14
end

end
if median(abs(S ′′ − T ′′)) < 1e−2 OR |S ′′| < 64 then

R←− I3

e←−
[

0 0 1
]⊤

else
e←− t

end

and then take s0 as the desired scale factor (see Figure 4.4). This is equivalent to solving

the linear system below (Equation 4.43). This step of the algorithm finds the solution by

least-squares to ignore problems with ill-conditioned matrices.

[

RL,R
i,i+1t

L,L
i+1,i tL,Ri,i+1

]

[

s0
s1

]

= tL,Ri,i . (4.43)

Even though the scale can be included as a parameter and be optimized jointly with

other parameters, this possibility is left for further investigations.

4.6 Windowed (Indirect) Bundle Adjustment

Given the initial values of the relative poses between consecutive frames and those of the

respective epipoles, the algorithm solves many optimizations, one for each position of the

sliding window. There is no overlap between the positions of the sliding window. For a

particular position in the sequence, the algorithm minimizes a cost function that depends

on the window’s reprojection errors.

Each sliding window position uses the same reprojection pattern, a graph with the

arrows representing the directed pairs of frames to be considered (see Figure 4.3). A
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Algorithm 3: High-level view of the algorithm. It is the optimization of poses
given reprojection graph G with window size w as a list of edges (x = (i, j),
where i and j are frame indices), and key-point (source, target) matches (S, T )
for every x ∈ G. L is the total length of the sequence. The Initialize routine
is the same as in Algorithm 2. The Compute_scale and Extract_and_match
routines are described in Sections 4.5 and 4.3, respectively.

Result: Poses (R, t) and epipoles (e) for the entire sequence after minimization
of reprojection errors; global-scale factors (z).

start←− 0
while start < L− w do

G′ ←− Shift(G, start)
params←− {}
scales←− {}
for x ∈ G′ do

u, v ←− x
S, T ←− Extract_and_match(Iu, Iv)
Rx, tx, ex, Sx, Tx, sx ←− Initialize(S, T )
if v = u+ 1 then

params←− Insert(params, [Rx, tx, ex])
z ←− Compute_scale(Iu, Iv)
scales←− Insert(scales, z)

end
while Not converge do

cost←− 0
for x ∈ G′ do

u, v ←− x
Ru,v, tu,v, eu,v ←− Recover(params, u, v)
T ′
x ←− Reproject(Sx, Ru,v, tu,v, eu,v, K)

error ←−
∥

∥T ′
x − Tx

∥

∥

γ
cost←− cost+ sxerror

end
cost←− cost/|G′|
J ←− Jacobian(cost, params)
params←− Update(params, J)

end

end
start←− start+ w

end
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Chapter 5

Experimental Setup

This chapter describes the experiments analyzed in Chapter 6 on what concerns the data,

the evaluation, and some implementation details of the Epipolar VO algorithm, introduced

in Chapter 4.

5.1 Dataset

In this work, we used the camera sequences 00 to 10 from KITTI dataset (Geiger et al.

[20]), as their ground-truth poses are available, differently from sequences 11 to 22. All

sequences are outdoors and from car movement. The dataset contains two calibrated

stereo pairs of cameras. One pair is gray-scale, and the other is RGB. It also contains

LiDAR points, which are used as a reference in evaluating the scene reconstruction.

5.1.1 Camera Data

In all our experiments, the left image is the default for simulating the monocular setup.

Our experiments only use the gray-scale stereo pair of images, which are 376 by 1241

pixels, when recovering the global scale (see Section 4.5).

5.1.2 Laser Points

The Velodyne laser points serve as the standard for checking the dense depth maps gen-

erated by Epipolar VO. Every frame of every sequence has an associated Velodyne set of

points that can be projected into the image plane. Thus, it contains the depth information

for a relatively dense set of points in the images, although the visible ones are mostly in

the lower half of the images.

5.2 Evaluation Metrics

The experiments’ main pose metrics are adapted from the tool available at the KITTI

odometry benchmark, which computes average translational (%) and average rotational

(rad/m) errors for sub-sequences of 100, 200, 300, ..., 800 meters. Because the publicly
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available ground-truth poses are for sequences 00 - 10, the evaluation code needs adapta-

tion to computes the errors against those poses instead of poses from sequences 11 - 21.

The overall error of a sequence is the average of the errors of the subsequences. Also, we

change the rotation error unity from rad/m to deg/100m.

For a given sequence from KITTI, the computation of the rotational and translational

errors for a length l subsequence starting at position p is, provided that

Ep,l := (T̂
−1

p T̂p+l)
−1(T−1

p Tp+l), (5.1)

• Translational error:

Ep,l
t

:=

∥

∥tp,l
∥

∥

2

l
, (5.2)

where tp,l is the translation part of Ep,l;

• Rotational error:

Ep,l
R :=

arccosmax(min(d, 1),−1)

l
, (5.3)

where Rp,l is the rotation part of Ep,l and d =
Tr(Rp,l)− 1

2
.

The error associated with a subsequence of length l is the average of all errors from

the start 0, 10, 20, . . . multiples of 10 until it fits in the original sequence. The orig-

inal sequence’s final error is the average of the errors of the subsequences of lengths

100, 200, 300, 400, 500, 600, 700, 800 that fit inside it.

When comparing the general formulation of depth with the limited pure translation

case, we use the Relative Pose Error (RPE) metric. This metric is defined as follows

• Relative Pose Error (RPE):

RPE :=

√

√

√

√

1

k

n−k
∑

i=1

∥

∥Ei

∥

∥

F
(5.4)

where
∥

∥.
∥

∥

F
is the Frobenius norm and Ei = (T̂

−1

i T̂i+k)
−1(T−1

i Ti+k) and k is chosen

depending on how local the accuracy should be. A small k tells more about local drift

and large k about global drift (Sturm et al. [55]).

5.3 Implementation

The current implementation is not optimized for frame-rate, as the optimizer L-BFGS-

B (Byrd et al. [6]) receives, at every iteration, Jacobians computed automatically with

PyTorch’s autograd (Paszke et al. [45]) and that requires expensive operations of type

conversion between PyTorch’s tensors and Numpy arrays (Harris et al. [23]). However,

we have implemented an optimized version in C++ for the final algorithm. The project

repository is available1.

1Refer to https://github.com/Ronnypetson/tfoe_vo
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The scene primitives that the algorithm matches are FAST corners (Trajkovic and

Hedley [57]). The matches (from one image to another) come from Lucas-Kanade optical

flow (Lucas and Kanade [36]). The implementation uses OpenCV (Bradski [4]) for both

the point detection and matching steps.

5.4 Experiments

To approach distinct features of our Epipolar VO algorithm, we run three sets of experi-

ments, as described in the following sections.

5.4.1 Parametrization Evaluation

To evaluate the effect of employing different estimations of keypoints’ depth, we perform

a set of experiments (Section 6.1) where with estimate depth using the particular case

(Equation 4.1) and the general case (Equation 4.4) formulations. We run the experiments

in two dataset sequences that have high rotations and low rotations.

5.4.2 Odometry Experiments

To evaluate our proposed approach, we run five different configurations of Epipolar VO

with different window-stride configurations and keypoint weighting, denoted I to V, for

the sequences 00 to 10 from KITTI. For these experiments, we measure the rotational and

translational errors detailed in Section 5.2. We evaluate the error statistics concerning

sub-sequence length and velocity and the qualitative aspect of the final Visual Odometry

trajectory compared to the ground-truth. These experiments are presented in Section 6.2.

The norm used in the reprojection error is the Huber norm.

5.4.3 Structure Experiments

To evaluate the depth maps of some pairs of frames provided by our parametrization,

we run this set of experiments. The depth maps are generated by combining a dense

Farneback (Farnebäck [14]) optical flow with the frame pair is optimized epipole. The

evaluation consists of a visual comparison with the Velodyne scan’s depth map corre-

sponding to the frame pair. For each map (Velodyne and ours), we normalize the point

depths so that the furthest point has a depth equal to 1. Results from this experiments

are presented in Section 6.3.
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Chapter 6

Results and Analysis

This section analyzes the suitability of the depth formulation, the effect of indirect bundle

adjustment with small windows in the odometry, and the quality of reconstruction after

optimization, having as standard the Velodyne points from the data.

6.1 Depth in General Motion vs Pure Translation

To evaluate the effect of employing different estimations of keypoints’ depth, we perform

this set of experiments. We show that, even when the relative difference in orientation

is locally small (e.g., between consecutive frames), the keypoints’ depth approximation

proposed by Equation 4.1 results in inferior quality compared to the one proposed by

Equation 4.4. Experiments performed with sequences 04 (very little rotation) and 03

(considerable rotation) of the KITTI dataset demonstrate that the general form of depth

described in Equation 4.4 should be employed as a default estimator. In Figure 6.2 and

Figure 6.1, the box-plots on the left are from the “pure translation” depth (Equation 4.1),

while its “general” counterpart (Equation 4.4) is the other. Due to this confirmation, we

employ the general formulation from now onwards.

6.2 Indirect Bundle Adjustment

We present qualitative and quantitative assessments of our Epipolar VO with different BA

configurations through ATE and RPE metrics and trajectories in the following sections.

We also break the trajectory errors by length and by speed for a more in-depth analysis.

All the trajectory figures, as well as the error by length/speed figures in this section, are

from configuration IV only, as we prioritize the analysis of the effect of the biggest bundle

adjustment window. We compare our results with the results from Pereira et al. [46] and

Song et al. [54]. The complete quantitative comparison is depicted in Table 6.2 and the

overall error comparison (sequences 00-10) are presented in Table 6.1.
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Table 6.1: Overall error comparison (sequences 00-10). s stands for stride of reprojection
and w is sliding window size.

Config. Trans. (%) Rot. (deg/100m)

s = {±1,±2}, w = 3, key-
point weighting (I)

4.95 1.00

s = {±1}, w = 2 (II) 4.35 0.54

s = {±1,±2}, w = 3 (III) 4.94 0.81

s = {±1,±2}, w = 4 (IV) 4.55 0.65

Initialization only (V) 4.03 0.31

Pereira et al. [46] 1.10 0.31

Song et al. [54] 2.10 0.47

6.2.1 Sequence 00

Including our configurations and the results from Pereira et al. [46] and Song et al. [54],

sequence 00 has medium to high difficulty in both rotation and translation. It is the

second-longest sequence, making it more prone to difficult regions’ appearance (e.g., bad

texture, high movement of scene objects). Figure 6.3a shows that even though the odom-

etry is good at many hard turns, some locations with severe error in rotation affect the

trajectory’s overall appearance. There is also a slight error in scale, reflecting regions with

bad initialization of translation, like the one near the first turn.

For sequence 00, Figure 6.5 shows that rotation error statistics decrease with the

increase of the subsequence length. This may be explained by the fact that, for the

most part, the subsequences will have straight trajectories, and thus, the rotation error in

turns are smoothed out. Translation error by length, on the other hand, seems to decrease

much more softly. This may be because translation errors happen more uniformly, not

depending so much on the trajectory aspect.

The fact that subsequences with higher speed have lower rotational error is counter-

intuitive (Figure 6.6) but may be explained by the fact that the vehicle is at the lower

speeds when it is making a turn, and that is precisely where the rotational error happen

more. On the other hand, when the vehicle is going on a straight line, it increases its

velocity, and the rotation part of the odometry is easier to estimate. That is not the same

for translation, as straight accelerated trajåectories are harder to estimate translation

with correct relative scale than constant velocity movement.
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Table 6.2: Detailed error comparison (sequences 00-10). Translation and rotation errors
are in % and deg/100m, respectively. The rows marked with I to V denote the configu-
rations in Table 6.1. The last rows refer to Pereira et al. [46] and Song et al. [54].

Seq. 00 01 02 03 04 05 06 07 08 09 10

I
Tr. 4.17 35.23 3.40 1.25 5.76 3.37 5.05 5.60 3.03 2.40 1.73
Rot. 1.21 2.17 1.05 0.15 0.21 0.55 1.00 1.85 0.77 0.25 1.06

II
Tr. 2.83 35.89 2.29 1.29 5.75 4.67 3.00 2.29 2.50 2.47 1.24
Rot. 0.32 2.30 0.29 0.13 0.21 1.27 0.36 1.05 0.30 0.20 0.28

III
Tr. 3.98 34.88 4.10 1.23 5.75 3.45 4.04 4.74 2.62 2.57 1.39
Rot. 0.97 1.82 1.06 0.14 0.14 0.52 0.62 1.52 0.39 0.23 0.60

IV
Tr. 4.07 34.72 2.59 1.23 5.75 2.86 3.99 5.40 2.67 2.53 1.51
Rot. 1.05 2.01 0.43 0.13 0.18 0.34 0.63 1.85 0.33 0.24 0.41

V
Tr. 2.82 34.50 2.18 1.24 5.75 2.73 3.12 2.49 2.47 2.53 1.25
Rot. 0.32 0.62 0.26 0.11 0.20 0.22 0.37 0.65 0.28 0.23 0.26

[46]
Tr. 1.03 1.37 1.33 0.87 0.86 0.99 0.73 1.12 1.23 1.54 1.02
Rot. 0.30 0.23 0.38 0.22 0.24 0.37 0.26 0.57 0.28 0.28 0.24

[54]
Tr. 2.04 - 1.50 3.37 1.43 2.19 2.09 - 2.37 1.76 2.12
Rot. 0.48 - 0.35 0.21 0.23 0.38 0.81 - 0.44 0.47 0.85
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Figure 6.5: Errors by length for sequence 00.
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Figure 6.6: Errors by speed for sequence 00.

6.2.2 Sequence 01

The resulting trajectory for this sequence (Figure 6.3b) is the most affected in rotation

and translation, the latter having a notable high error. This happens because of bad
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initialization of translation, magnified because the global scale (Section 4.5) is computed

based on it. This sequence is very poor in terms of texture and contains many moving

objects that can divert the pose estimation if the key-points are over those objects.

Like in sequence 00, the rotation error statistics (Figure 6.7) is lower for longer subse-

quences for the same reason: longer subsequences contain more straight-line trajectories

that decrease the mean rotation error raised in the parts with turns. For the translation

part, the big error is accumulated after the main turn at the beginning, followed by a

long and slightly curved trajectory that is almost straight locally. This region is heavily

affected by the presence of other cars moving at different speeds.

The distribution of error given speed (Figure 6.8) indicates another possible reason

for the difficulty of sequence 01: the range of speeds in the sequence is the biggest among

all, reaching 85Km/h. The high velocities can make the key-point correspondence step

very difficult because a point in one frame is too far apart from its counterpart in the

other. Figure 6.8 also shows that the translation errors around 35.0% happen exactly at

the higher velocities.
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Figure 6.7: Errors by length for sequence 01.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 40  45  50  55  60  65  70  75  80  85  90

R
o

ta
ti
o

n
 E

rr
o

r 
[d

e
g

/m
]

Speed [km/h]

Rotation Error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 40  45  50  55  60  65  70  75  80  85  90

T
ra

n
s
la

ti
o

n
 E

rr
o

r 
[%

]

Speed [km/h]

Translation Error

Figure 6.8: Errors by speed for sequence 01.

6.2.3 Sequence 02

Despite being the longest of all sequences and having many long soft turns and smaller

but more sharp turns, the trajectory for sequence 02 (Figure 6.3c) has a global scale very

close to the ground-truth and has seemingly just one overshoot problem at the third turn

that deviates it from being aligned with the true trajectory. The scene contains almost

just trees, bushes, and the road, which is a texture problem and can negatively influence

the key-point matching step. In general, that is not a problem of this sequence, as it is

rich in texture and compensates the presence of some moving vehicles along the way.
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The distribution of translation error by subsequence length decreases as well as the

rotation error (Figure 6.9). Unlike what happens for sequences 00 and 01, in sequence

02, the initializations are almost always good. Therefore, the global scale is also good,

resulting in a low translation error.

Another factor contributing to small translation and rotation errors is the velocities

lower than 50 Km/h (Figure 6.10), as it makes the key-point matching processes with

fewer outliers and then the initial pose very close to the optimum.

As expected, the translation error increases with the increase in velocity because the

velocities at the upper end happen in regions of the trajectory where the car accelerated.

Then the error in the bundle adjustment window becomes harder to optimize.
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Figure 6.9: Errors by length for sequence 02.
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Figure 6.10: Errors by speed for sequence 02.

6.2.4 Sequence 03

The odometry for this sequence (Figure 6.3d) has the lowest rotation and translation

errors among all. It is almost perfectly aligned with the ground-truth, except for a couple

of locations where it seems to miscalculate the scale a little. Thus, the general aspect

of the estimated trajectory is good. This is because there is only one major turn at the

beginning and then three soft turns along the sequence. Also, there is no longer a straight

trajectory so that the vehicle does not get to high velocities or accelerations. Indeed, the

maximum velocities in this sequence are around 35 Km/h (Figure 6.12).

Concerning texture, even though there are many trees and bushes, there are also

buildings and shadows in the road. Those last objects give better points for the matching

step than the first ones. There is only one moving car in the scene about moving objects,

but it does not interfere with the pose initializations.

The distribution of errors given path length (Figure 6.11) behaves as expected, with

rotation errors being smoothed by straight trajectories and the translation errors staying
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stable as most of the straight trajectories have less than 350 meters.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 100  150  200  250  300  350  400  450  500

R
o

ta
ti
o

n
 E

rr
o

r 
[d

e
g

/m
]

Path Length [m]

Rotation Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400  450  500

T
ra

n
s
la

ti
o

n
 E

rr
o

r 
[%

]

Path Length [m]

Translation Error

Figure 6.11: Errors by length for sequence 03.
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Figure 6.12: Errors by speed for sequence 03.

6.2.5 Sequence 04

Sequence 04 is the simplest of all in terms of curves, as it consists of one straight line

(Figure 6.3e). It is also the smallest of all sequences. However, even though it has no

considerable curves, it has, in all of the configurations I to V and in the works of Pereira

et al. [46] and Song et al. [54], more significant rotation error than sequence 03, which

has curves. This may be the case because the amount of static texture available at some

points might not compensate all the moving vehicles in the opposite lane of the road,

which results in too many outlier matches and then gives sub-optimal initializations.

The rotation and translation error distributions (Figure 6.13 and Figure 6.14) are all

steady, which reflects at the beginning of the sequence. At this point, the car already has

some velocity, so that the range of velocities is small even if the velocities are around 50

Km (Figure 6.14). In other words, the effect of error variation seems to be present when

the higher and lower velocities are present, as we saw sequences 00 to 03.
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Figure 6.13: Errors by length for sequence 04.
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Figure 6.14: Errors by speed for sequence 04.

6.2.6 Sequence 05

The major problem that we can identify by visually inspecting the odometry for this

sequence (Figure 6.3f) is the global scale at the second line from right to left, especially

in the first half. This causes part of the trajectory to reflect a right-shift translation,

which remains until the end of the sequence. Again, it seems a problem happens in long

lines (e.g., greater than 200 m) with very soft or no rotation. However, in the case of this

sequence, the translation error only happens at one location. In fact, despite having a

moderate translation error, this sequence has one of the lowest rotation errors (see Table

6.2). It is not clear what causes this problem, as in that section, the scene has good

texture, no moving vehicles, and the car’s speed is not high.

As in most other sequences, the rotation errors are higher at low speeds (Figure 6.16)

and decrease with the length of the subsequence (Figure 6.15).
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Figure 6.15: Errors by length for sequence 05.
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Figure 6.16: Errors by speed for sequence 05.

6.2.7 Sequence 06

Sequence 06 is an interesting case for investigating the quality of the rotation from odom-

etry. This sequence’s accumulated rotation returns to the initial orientation, as it is a

closed-loop (Figure 6.4a). It has two curves, each one with 180◦. The odometry is capa-

ble of making the second curve well, but the first one not so much. A visual inspection

indicates that it might be due to the lack of good key-points at the first curve, as it faces

many house walls with no texture but uniform color.

The appearance of scale and translation looks good, although the rotation error im-

plies high translation error in the sequence’s long term. In the case of sequence 06, the

translation error would be much smaller if there was no such significant rotation error at

a single location.

The high rotation and translation errors (Figure 6.17 and Figure 6.18) happen at the

lower speeds because those speeds coincide with curves, including the problematic one.
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Figure 6.17: Errors by length for sequence 06.
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Figure 6.18: Errors by speed for sequence 06.

6.2.8 Sequence 07

The odometry for this sequence (Figure 6.4b) starts very close to the ground truth, includ-

ing the entirety of the first two main road segments. Then, it suffers from scale problems

in the third, fourth, and seventh segments. It also contains a major rotation error in the

seventh curve, which increases the translation error from then on.

On what concerns the scale problems, at the end of the third segment, we verify some

regions with very uniform color and others with a poor texture of big tree bushes. Then,

there are many repeating patterns of windows of very similar houses in the fourth segment,

only white walls and many bushes on the other side of the road. All those factors can

result in bad key-point correspondences. The scale problem in the seventh segment is

very similar to what happens in the first segment of sequence 00, as the respective roads

are very similar if not the same. Again, those contain repeated patterns of windows in

uniformly colored walls.

The big rotation error at the seventh curve is very probably due to many moving cars

at the road intersection, where the camera car is stopped waiting for its time to proceed.

It looks like the initialization of poses is difficult at regions where the car is stopped

because the translation part has magnitude zero and cannot be “normalized” to a vector

of norm 1.

The distribution of errors by speed (Figure 6.20) show the main tendency in other

sequences: those errors are higher at the speeds in the extremes, where the lower extreme

is around 20 Km/h or lower and the higher extreme is around 80 Km/h or higher. We

believe this is due to deceleration in curves in the lower speeds, which make windowed

optimization harder in our setup, while in the higher speeds, this is due to bad key-point

matching.
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The distribution of errors by length (Fig.6.19) behaves like most of the other sequences:

the errors decrease with bigger subsequences as the hard parts are rarer and get smoothed.
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Figure 6.19: Errors by length for sequence 07.
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Figure 6.20: Errors by speed for sequence 07.

6.2.9 Sequence 08

In the odometry of this sequence (Figure 6.4c), the orientation seems to keep aligned with

the ground truth until the end, although some small rotation errors seem to compensate

each other. The visible difference between the odometry and ground-truth is a trans-

lational shift caused by scale errors, as some segments shrink when approaching some

curves. Indeed, at the lower speeds close to the curves, we see that the translation errors

are highest (Figure 6.22), while the rotation errors keep relatively low. The distribution

of errors by subsequence length (Figure 6.21) follows the dominant trend detailed in the

previous sections.

This sequence’s scene problems are the same as sequence 07: a high amount of bushes

and trees, some moving cars (but less than 07), repeating patterns, and uniform coloring

of walls.



72

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 100  200  300  400  500  600  700  800

R
o

ta
ti
o

n
 E

rr
o

r 
[d

e
g

/m
]

Path Length [m]

Rotation Error

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100  200  300  400  500  600  700  800

T
ra

n
s
la

ti
o

n
 E

rr
o

r 
[%

]

Path Length [m]

Translation Error

Figure 6.21: Errors by length for sequence 08.
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Figure 6.22: Errors by speed for sequence 08.

6.2.10 Sequence 09

This sequence is a long loop formed by soft and acute curves. Like in other sequences

that have short curves close to 90◦ degrees or higher, the odometry (Figure 6.4d) shrinks

the scale as it approaches those curves, but much less in the long soft curves. However,

this time, we cannot attribute this to deceleration, as configuration V, which has no

windowed adjustment, has precisely the same translation error than IV (see Table 6.2).

At this point, we cannot figure out what causes the scale problems, as the sequence has

a good texture for the most part, and there are just a few moving vehicles.

The orientation returns to the initial state, as in the ground-truth. The total rotation

error for this sequence is one of the smallest among all sequences. The distribution of

errors by subsequence length (Figure 6.23) behaves like most other sequences, but the

distribution of errors by speed (Figure 6.24) shows a tendency of increasing rotation error

already at speeds close to 60 Km/h, although those errors are still relatively low in all

velocities of the range if we compare to other sequences.
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Figure 6.23: Errors by length for sequence 09.
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Figure 6.24: Errors by speed for sequence 09.

6.2.11 Sequence 10

This odometry for this sequence (Figure 6.4e) has no big rotation problems, but just one

major scale problem at the last acute curve. Like in sequence 09, this is not clear why

there is a scale problem, as the scene seems to have good texture and no moving objects to

introduce initialization errors. However, there is an apparent increase in error compared

with configuration V that may indicate the problem of the windowed adjustment in

regions with high deceleration.

The distribution of errors by path length (Figure 6.25) follows the sequences’ common

trend. The rotation errors by speed (Figure 6.26) follow the trend of an increase next to

higher speeds, in this case, when it approaches 60 Km/h. The translation errors by speed

(see Figure 6.26) agree with the deceleration hypothesis, as those are relatively high when

approaching 15 Km/h.
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Figure 6.25: Errors by length for sequence 10.
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Figure 6.26: Errors by speed for sequence 10.

6.2.12 General Tendencies

We could consider sequence 01 (Figure 6.3b) to have smooth rotation, but we keep it apart

because it contains much less texture than the others, the scene contains a uniformly

textured road and sky. Besides that, sequence 01 also contains many more moving cars

in the scene. It is the most challenging sequence for our algorithm.

As we expect from sequences 03 and 04, those with smaller rotation errors (see Table

6.2). Those sequences have just a few and soft turns - virtually none in 04. Also, there is

plenty of landmarks with parallax close to the camera and on the horizon. The number

of moving objects in the scene is small, too, so that the key-point selection is easy and

with few outliers.

We see that indirect bundle adjustment (configurations I to IV) has similar perfor-

mance to our initialization (configuration V) in sequences with soft rotation, namely 03,

04, and 09. Sequence 09 (Figure 6.4d) in particular has more acute rotations than 03 but

still have its results in (IV) comparable with the initialization. We think this is the case

because the initial pose and the resulting scale for this sequence are good and facilitate

the optimization.

For the configurations with indirect bundle adjustment, sequences 01 and 07 are the

most difficult in the rotation. As we saw in the last paragraph, this is expected from

01. In the case of sequence 07, even though it is well-textured and with few moving

objects, for the most part, it contains many moving vehicles at one point. It tricks the

pose initialization because at that point, the car is stopped at an intersection, and many

other cars pass closely in the orthogonal street, thus having big apparent movement in

the scene.

In the remaining sequences, the configuration with the biggest window (IV) is, on
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average, better than the sequences with window size 3 (I and III). This indicates that

there may be a configuration with a bigger window and some reprojection pattern that

gives better results than the initialization, although we were not able to find it yet.

The translational error also reflects the error in scale, as the magnitude of translation

from the essential matrix initialization is multiplied by a scale factor, which is computed

based on the initial estimate of the pose and the relative pose between the stereo pair.

The scale is not optimized afterward, so translation error is heavily related to it, even

after pose optimization. The recovery of the global scale of Pereira et al. [46] is better

than ours, and it does not use the stereo pair. Nevertheless, for the rotation part, our

initialization looks competitive to theirs.

It is possible that, inside a reprojection window, the drift in the relative scale between

frames (due to acceleration) pushes the optimization to the wrong minima, as the initial

values of the poses all have translation with norm 1. Therefore, there are two options:

to include the optimization scale or have a better estimate for scale and use it to re-scale

initial poses. As our initial estimates of poses determine the scale, bad initialization of

poses has a double impact on the result after optimization. Also, it may be the case

that the compound reprojection error of a window is not robust to pairs of frames with

a bad selection of key-points and bad initial poses and epipoles, even with the filter of

bad reprojections we described in Algorithm 2. Therefore, to get results superior to the

initialization, fixing the scale and robustness of window error are prerequisites.

6.3 Scene reconstruction

After optimizing relative pose and second epipole, we can reconstruct the scene with

the same density of any given set of point matches between the corresponding pair of

images. Thus, this is not limited to the set of key-points used previously, but the quality

of reconstruction depends on the point matches’ quality. In Figure 6.27, we compare the

depth maps of ground-truth Velodyne (top) with our estimate (bottom) given the dense

optical flow from Farneback (Farnebäck [14]). We restrict the optical flow to the Velodyne

points that are visible for the sake of comparison. We also remove the global scale from

both ground-truth and our estimate. So, in both, the furthest points have a distance

equal to 1.

Because the optical flow we used is not robust to big displacements, the bigger parallax

points at the lower left part of the image have worse depth prediction. For this pair of

images, in particular, the pose error is low, and the epipole is not too far from the image

center because of the car’s smooth movement. Therefore, provided that our pose-depth-

epipole relationship is correct, we can attribute most depth errors to the optical flow

quality.
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Chapter 7

Conclusion and Future Work

In this work, we proposed a VO algorithm with a parametrization based on the epipolar

geometry. We aimed at finding a characterization of VO that relies on a small number of

parameters and that is able to adjust pose and geometry. From the work, we answered

the following research questions:

RQ1 Is there a formulation of the reprojection error in terms of pose param-

eters plus a constant number (per frame) of parameters that also model

the depth of key-points in the 3D scene?

We showed that we can write the reprojection error of image points without depend-

ing on feature parameter by using the relationship between key-point depth, camera

pose, and second epipole from two-view geometry. Indeed, we were able to write

the reprojection error of image points without depending on feature parameters like

inverse depth.

RQ2 If so, is it compatible with windowed optimization like Bundle Adjust-

ment?

We showed that our characterization of odometry and scene reconstruction is not

limited to just two camera frames, but it extends to an arbitrary sequence of frames.

Therefore, we also answered whether the reprojection error that does not depend

on point parameters explicitly could be extended and optimized in a windowed way.

RQ3 Can it be implemented in a VO pipeline?

From the experiments conducted we the proposed Epipolar VO algorithm, we demon-

strate that an optimization based on the proposed parametrization works in a VO

pipeline. However, it needs more evaluation and more practical modifications for

real-world applications.

We evaluated the algorithm’s performance in a specific setup, consisting of a moderate

set of hyper-parameter combinations. To make a complete investigation of the proposed

parametrization (e.g., bigger windows and reprojection strides), we started a new im-

plementation of the optimization back-end in C++ that does not make expensive type

conversions between PyTorch tensors and Numpy arrays at every single iteration. It also
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promises to have much less overhead in the Jacobians’ computation, as it will not be

made of general-purpose automatic gradients. We can also replace FAST with a point

descriptor like ORB and replace Lucas-Kanade optical flow with a robust point-matching

algorithm. There are also strategies for selecting key-frames and loop-closure detection

that could make the algorithm more robust.

Another aspect that can be improved regards better computation of global scale, with

two-fold benefits. First, the final translation error would decrease. Second, we could

initialize the poses inside the reprojection window so that the magnitude of translation

is close to the real value (not all equal to 1), which would make the optimization easier

when there is acceleration inside the window. A stereo version of the algorithm could

handle the scale problems easily.

On what concerns the type of motion, we could include indoor and drone datasets as

well. Also, using IMU data could be useful in this context for more robust initialization

of pose (e.g., identifying bad rotation, checking the local consistency of scale). Another

possibility is investigating the recovery pose from the 3D laser points in the context of

two-view geometry and bundle adjustment, without the feature extraction step. Finally,

we could also test our proposed algorithm with a direct approach.
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