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Resumo

Construir veículos capazes de operar sem supervisão humana é um grande desafio, exi-
gindo percepção e compreensão adequadas do mundo. Neste sentido, determinar a posição
espacial do veículo é fundamental. Algoritmos de Odometria Visual (VO) estimam a pos-
tura do agente usando apenas alterações visuais nas imagens de entrada. Os métodos de
odometria visual mais recentes implementam técnicas de deep learning usando redes neu-
rais convolucionais (CNN) extensivamente, o que adiciona um custo substancial ao lidar
com imagens de alta resolução. Em tarefas de VO, mais dados de entrada não significa
uma melhor previsão; pelo contrário, a rede pode ter que aprender a filtrar informações
desnecessárias. Portanto, a implementação de arquiteturas computacionalmente leves e
eficientes despertou o interesse em abordar o problema a partir de uma nova perspectiva.
Neste contexto, o Modelo Recorrente Atencional (RAM) surge como uma nova arquite-
tura, que implementa o conceito de atenção através da seleção de partes essenciais da
informação usando aprendizado por reforço (RL). No entanto, o RAM foi introduzido
principalmente como prova de conceito para tarefas de classificação no conjunto de dados
MNIST. Neste trabalho, propomos o RAM-VO, que é a extensão do RAM para tarefas de
regressão e odometria visual. A nova arquitetura modifica a arquitetura base e melhora
a representação visual e temporal das informações, incluindo o fluxo ótico como informa-
ção contextual para inicialização do agente de RL. Além disso, o RAM-VO implementa
o algoritmo Proximal Policy Optimization (PPO) no lugar do algoritmo REINFORCE,
o que garante o aprendizado de uma política mais robusta. Os resultados indicam que
o RAM-VO pode realizar regressões com seis graus de liberdade a partir de imagens de
entrada monoculares usando aproximadamente 3 milhões de parâmetros. Além disso, ex-
perimentos no conjunto de dados KITTI demonstram que o RAM-VO alcança resultados
competitivos utilizando apenas 5.7% da informação visual disponível.



Abstract

Building vehicles capable of operating without human supervision is challenging, requiring
a proper perception and understanding of the world. Mainly, determining the vehicle’s
pose is fundamental. Visual Odometry (VO) algorithms estimate the agent’s egomo-
tion using only visual changes from the input images. The most recent visual odometry
methods implement deep-learning techniques using convolutional neural networks (CNN)
extensively, which add a substantial cost when dealing with high-resolution images. In VO
tasks, more input data does not mean a better prediction; on the contrary, the network
may have to learn how to filter out useless information. Therefore, the implementation
of computationally efficient and lightweight architectures has sparked an interest in ap-
proaching the problem from a new perspective. In this context, the Recurrent Attention
Model (RAM) has emerged as a novel architecture, which implements the concept of at-
tention by incrementally selecting the essential pieces of information using reinforcement
learning. However, RAM was introduced mainly as a concept proof for classification
tasks on the MNIST dataset. In this work, we propose the RAM-VO, which is the RAM’s
extension to regression and visual odometry tasks. Our novel model modifies the basic
RAM architecture and improves the visual and temporal representation of information,
including the optical flow as contextual information for initializing the RL agent. Also,
RAM-VO implements the Proximal Policy Optimization (PPO) algorithm in place of the
REINFORCE algorithm, which guarantees the learning of a robust policy. The results
indicate that RAM-VO can perform regressions with six degrees of freedom from monoc-
ular input images using approximately 3 million parameters. In addition, experiments on
the KITTI dataset demonstrate that RAM-VO achieves competitive results using only
5.7% of the available visual information.
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Chapter 1

Introduction

Autonomous vehicles have attracted significant attention in the last years. Several compa-
nies started commercializing these vehicles, notably autonomous cars and drones, bring-
ing more traction and funding to the field. Further, autonomous vehicles have been a
long-standing research topic for the scientific community. Building vehicles capable of op-
erating without human supervision is challenging, which requires a proper perception and
understanding of the world. Although many tasks depend on these concepts, determining
the vehicle’s spatial position is fundamental.

Visual Odometry (VO) is the field concerned with estimating the egomotion of an agent
(e.g., human, automobile, drone, robot) using only visual changes from the input images.
Nistér et al. [91] named the field in reference to classical odometry, which uses wheel
encoders’ information. VO emerged with the promise of solving the main issues that wheel
odometry presents, such as the pose estimation error due to wheel skating, skidding, and
displacement over uneven terrain. The results achieved by visual odometry also provided
the ability to estimate the pose in environments where GPS cannot be employed (e.g.,
aerospace, underwater, indoor); and replace expensive laser scanner sensors. Compared
to traditional sensors (e.g., sonars, accelerometers, and IMUs), cameras provide richer
information, which can be relevant to the embedded application [107].

Several approaches have been developed to estimate the agent’s pose by capturing the
apparent motion from subsequent images. These methods require the environment to have
sufficient light, the objects to have texture, and the subsequent images to overlap. These
methods can be classified as direct or indirect, depending on how they process the input
image. Direct methods operate directly on the pixel intensities, using more information
from the scene in exchange for processing power and speed. Indirect methods detect and
track high-salient features in the frames; they are faster but discard valuable information.

Both methods present advantages and disadvantages. However, hand-crafted solutions
based on either direct or indirect approaches become complicated due to the problem’s
nature, which presents a huge search space, and considerable non-linearities. Usually,
these solutions do not cover all possibilities and suffer from robustness issues when used
in different environments. Even traditional learning methods such as kernel machines,
Gaussian processes, and linear regression could not provide reliable solutions in a real-
world scene [17, 47, 100].

In recent years, Deep Learning (DL) techniques have appeared as a novel way to
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perform statistical learning on real data captured from the environment. The use of DL
has shown promising results in complex datasets, such as KITTI [42], TUM [109], and
EuRoC [10]. These datasets impose a great challenge for traditional methods due to
sudden changes in the agent’s speed, changes in the scene such as illumination, shadows,
occlusions, and simultaneous motion of numerous objects. Nevertheless, DL techniques
can solve these problems by learning the various nonlinear factors that influence the scene
generation and motion, outperforming traditional learning methods that usually suffer
from non-linearities [45].

However, the visual odometry field makes extensive use of convolutional neural net-
works (CNN), which add a substantial cost when dealing with high-resolution images.
Further, more input data does not mean a better prediction; on the contrary, the network
may have to learn how to filter out useless information. Therefore, the implementation
of computationally efficient and lightweight architectures, especially for mobile devices,
has sparked an interest in approaching the problem from a new perspective. Though
capturing only the necessary information is fundamental, learning where to look requires
elaborating several cognitive concepts, such as attention and memory. Attention, espe-
cially, has quickly attracted the scientific community’s interest due to its ability to provide
inexpensive solutions to complex problems.

In this context, the Recurrent Attention Model (RAM) [80] have emerged as a novel
architecture, which implements a recurrent attentional glimpse, incorporating the atten-
tion concept by incrementally selecting the essential pieces of information. One of the
RAM’s main advantages is employing reinforcement learning (RL) to guide the glimpse
sensor through the image; the RL paradigm allows the model to learn a more robust and
efficient policy by trial and error. However, RAM was introduced mainly as a concept
proof, only implemented for classification tasks on the MNIST [68] dataset. RAM also
uses the REINFORCE algorithm [130] to guide the glimpse sensor, but this algorithm
presents convergence problems and slowness to learn in challenging scenarios.

In this work, we propose the RAM-VO, an extension of RAM to visual odometry
tasks. Compared to other odometry modalities, visual odometry problems are consider-
ably more complicated as input images have high resolution, and visual information is
complex. The 6-degrees-of-freedom (DoF) regression is also challenging – the smallest
error in angle prediction results in significant drift errors in the end. Therefore, extending
the RAM’s potential from classification to regression tasks requires a significant change
in the architecture and an increase in the model’s representation capacity. The novel
architecture implements spatial and temporal structures to operate with complex visual
inputs; the optical flow is also employed as contextual information to initialize the RL
agent. Enabling RAM-VO to learn robust policies requires replacing the REINFORCE
algorithm [130] with the Proximal Policy Optimization (PPO) [111]. To the best of our
knowledge, this is the first architecture to perform visual odometry that implements re-
inforcement learning in part of the pipeline.
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1.1 Objectives

This work aims to create a monocular end-to-end visual odometry architecture – RAM-
VO – that employs the reinforcement learning paradigm to train an attentional focus
over time. The proposed RAM-VO architecture will extend the RAM [80] by introducing
spatial, temporal, and contextual elements to enable the 6-DoF pose regression in real-
world sequences. The RAM-VO is expected to be more computationally efficient than
similar VO methods due to the addition of attentional concepts and the use of Proximal
Policy Optimization (PPO) [111] to learn the agent’s policy.

In this sense, to achieve the main objective, the following specific objectives are pro-
posed:

• To conduct a literature review on visual odometry methods that use deep learning,
reinforcement learning, and attention;

• To explore spatial and temporal elements to extend the RAM [80] architecture from
classification to regression tasks;

• To design the new visual odometry architecture using the Proximal Policy Optimiza-
tion (PPO) [111] algorithm and contextual information to perform 6-DoF regression
in real-world sequences;

• To validate the proposed architecture in the KITTI dataset [43] in different trajec-
tories.

Therefore, based on the specified objectives, the following hypotheses are raised:

1. H1: The RAM [80] architecture can be extended to perform regression tasks;

2. H2: The extended RAM architecture can be utilized to perform regression tasks in
complex visual scenarios;

3. H3: The Proximal Policy Optimization (PPO) [111] can be employed to generate a
robust policy for VO regression tasks;

4. H4: The optical flow can be used as contextual information to initialize the RL
agent and to guide the glimpse sensor in the construction of an efficient latent space
for VO regression tasks;

5. H5: The proposed RAM-VO can achieve state-of-the-art results concerning the drift
error with a lesser computational cost.

1.2 Contributions

This work provides the following contributions:

• A literature review of the visual odometry methods that use Deep Learning tech-
niques;
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• A novel architecture for visual regression, derived from RAM [80];

• A novel visual odometry architecture that implements innovative concepts derived
from biology, such as attention;

• The first visual odometry architecture that implements reinforcement learning as
part of the pipeline;

• Several experiments on real-world VO sequences demonstrating the validity and
efficiency of RAM-VO.

The proposed architecture and codes are available on the following GitHub repository:
https://github.com/icleveston/RAMVO.

1.3 Text Structure

This work is structured in six chapters to provide the reader with the necessary fundaments
for understanding the proposed architecture and the results achieved.

Chapter 1 introduced the problem we intend to solve and indicated our motivation
and objectives with this work. Also, hypotheses were raised to guide our investigation.
We additionally presented the contributions that this work gave to the field.

In Chapter 2, we will address the theoretical basis for visual odometry, reinforcement
learning, and the Recurrent Attention Model [80], which will serve as the foundation for
comprehending this work.

Chapter 3 contains a literature review of the most used visual odometry methods,
such as the learning-based methods. Besides, we present a review of the methods that
use concepts of attention in their construction.

Chapter 4 contains the materials used to construct our proposed model, such as
datasets for training models, metrics for evaluation, and software and hardware tech-
nologies. Also, we will describe in detail the methodology used in the development.

Chapter 5 details the RAM-VO development. We start by extending the RAM archi-
tecture to regression tasks while adding more sophisticated structures to represent spatial,
temporal, and contextual information. We also explore alternative RL methods to learn
better policies, and discuss the experiments in visual odometry sequences and compare
them with the literature.

Finally, Chapter 6 concludes this work, assessing our results and providing directions
for further improvements and possible future work.

https://github.com/icleveston/RAMVO
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Chapter 2

Theoretical Background

This chapter presents the fundamental knowledge to comprehend the proposed architec-
ture and the achieved results. We will explain the visual odometry theory, camera models,
and egomotion estimation. We will also introduce the reinforcement learning paradigm
and the policy gradient methods such as REINFORCE [130] and Proximal Policy Opti-
mization (PPO) [111] algorithm. Finally, we detail the Recurrent Attention Model [80],
which will serve as the base for our work.

2.1 Visual Odometry

Odometry is the process of estimating the agent’s egomotion, which is the incremental
progression of position and orientation over time. Traditionally, odometry is performed
by placing encoders on the robot’s wheels and counting the rotations. Wheel odometry
is closely related to the robot’s kinematic model, extensively employed to determine the
pose by computing the incremental displacements from a known starting point. However,
the encoder readings regularly present small errors caused mainly by the robot skidding
in uneven terrains or slippery floors [136]. These errors accumulate over time, gradually
drifting the estimated pose from the ground-truth pose. The specificities of each floor
further complicate the development of precise error models.

Incorporating inertial sensors (e.g., inertial measurement units, accelerometers, gyro-
scopes) can reduce the drift error, although it cannot be removed completely; the error
accumulation rate depends on the sensor’s precision and quality. GPS and laser scanner
sensors can also determine the pose; however, they have limitations regarding the cost, la-
tency, and precision in indoor and outdoor spaces, respectively [107, 11]. Currently, wheel
odometry still presents significant accumulating drift error and only works for wheeled
ground vehicles, impeding its use for legged robots and aerial vehicles.

With the increase in computational power, an alternative has been to use camera sen-
sors, which became increasingly cheap and accurate in the last few years. Images contain
more information than simple wheel encoders readings, enabling real motion detection
instead of inferring it from angular velocities. Therefore, visual odometry (VO) methods
estimate the egomotion by computing visual changes between the frames [107]. To detect
the apparent motion, the environment must present sufficient illumination, texture, and
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the captured frames must overlap. VO can only be estimated when there are visual vari-
ations across the frames, including individual pixel changes. Also, the camera capturing
frequency must be adequately set concerning the agent’s dynamics – inappropriate cap-
turing rates might prevent the images from overlapping or generating aliasing, making
egomotion estimation inaccurate.

Historically, the VO field emerged around the 1980s with the works of Moravec [84],
which captured images from stereo cameras sliding on a rail. Corners were detected in the
images and matched using the Normalized Cross-Correlation (NCC) to reconstruct the
original 3D structure. Moravec [83] also described one of the first corner detectors, being
the predecessor of several popular detectors [39, 51], his corner detector was subsequently
applied in VO. Other essential landmarks were reached by Olson et al. [93], which built
a maximum-likelihood stereo vision method to reduce the accumulating drift error for
long distances in exploratory rovers. Lacroix [67] also worked on rovers able to operate
correctly on all kinds of terrains found in planetary-like environments. These rovers should
estimate the 6 degrees of freedom (DoF) from tracking features across raw stereo images
instead of using geometry constraints for motion estimation. Cheng et al. [15] further
applied these ideas to the Mars Rover.

Nistér et al. [91] introduced the term “Visual Odometry” and developed a novel feature-
based method to estimate the motion, which detected the features and matched them in
all frames – instead of tracking them across the frames. They also proposed an out-
lier removal method based on the Random Sample Consensus (RANSAC) [37], which
eliminates incorrect features during the matching step. Further, Scaramuzza and Sieg-
wart [108] proposed a method to operate directly at the pixel level, which uses a monocular
omnidirectional camera for outdoor environments.

In general, a VO solution is usually composed of either a monocular [12] or a stereo
camera [77, 3, 90]. A monocular VO uses only one camera, which becomes cheaper
and more accessible. Frequently, monocular VO incorporates inertial and dimensional
environment information to determine the displacements’ absolute scale; an alternative
to recover the absolute scale is to use two cameras. Stereo VO explores the camera’s
epipolar geometry to extract information from two images of the same scene, captured
from a slightly different perspective, as shown in Figure 2.1. However, a stereo VO solution
requires strict camera synchronization and calibration [107]. Recently, newer VO systems
started to include omnidirectional and RGB-D cameras [139, 29, 53].

The formulation of a visual odometry problem considers a rigid-body agent moving
in the environment and capturing images in equally sampled time instants k. For sim-
plicity, the coordinate of the camera is assumed to be the same as the agent. Consider
the captured image Ik = {ILk , IRk } in a stereo system and Ik = {ILk } in a monocular sys-
tem. Therefore, the main goal of a VO system is to estimate the relative rigid-body
transformation Tk ∈ R4×4 from the images Ik−1 and Ik as

Tk =

[
Rk tk
0 1

]
, (2.1)

where Rk ∈ R3×3 is the rotation matrix, tk ∈ R3×1 is the translation vector. The current
pose can be determined by multiplying the previous pose by the current transformation
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Figure 2.1: An illustration of a stereo VO system, which is composed of a left and right
camera. The system captures images at time instants k, and each captured image pair
{Ik−1, Ik} is related by a rigid-body transformation Tk.

Tk as

Ck = Ck−1Tk, (2.2)

with C0 being the agent’s initial pose at instant k = 0. The concatenation of all the poses
C0:n = {C0,C1, ...,Cn} provides the full trajectory. In this sense, a VO system retrieves
the path incrementally, pose after pose [107].

The rigid-body transformation Tk can be estimated by either computing visual vari-
ations from the image pixels or the pre-processed features extracted from the image.
Direct or appearance-based methods operate directly on pixel intensities provided
by the camera sensor. These methods minimize a photometric error for each frame and
are computationally more expensive – most of the DL works for visual odometry imple-
ment a direct approach. On the other hand, indirect or feature-based methods use
only salient features extracted from the image, such as corners, edges, and invariant blob
features. Indirect methods are fast, but they discard relevant information presented in
the pixel’s intensities, which becomes problematic in environments with low texture and
blur. These methods generally perform a keypoint detection and matching across frames;
therefore, the egomotion estimation is essentially geometric. Most of the classical VO
methods are indirect, mainly due to the computational cost of real-time pixel-level pro-
cessing, although newer direct methods are challenging this idea. A common alternative
is to create hybrid methods to take advantage of both approaches.

2.1.1 Indirect Approaches

Indirect or feature-based methods extract distinct salient points from the image and
describe them using feature vectors. These techniques depend on the image textures and
are generally not applicable in environments with low texture (e.g., tunnels, sandy soil,
and asphalt) [136]. In general, an indirect VO pipeline is composed of several stages, such
as feature detection and description [118], feature tracking [28], and egomotion estimation.
The input is either a monocular or a stereo image sequence, whose colorspace can be either
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RGB or grayscale, as shown in Figure 2.2.
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Figure 2.2: An abstraction of a general indirect VO pipeline. The pipeline stages consist of
an image sequence as input, feature detection, feature description, feature correspondence
and tracking, and egomotion estimation.

The feature detection stage detects the salient keypoints, usually regions of high energy
(i.e., where the gradient is high). The detection stage determines the keypoints location
using corner detectors [51, 83, 39] or blobs detectors [75, 5, 102]. Most of the blobs
detectors also include a descriptor. Traditional edge and corner detection approaches were
common for providing fast keypoint correspondence between frames [83, 39, 51]. However,
corner detectors are not invariant to several transformations, such as scale, rotation, and
translation. The development of invariant blob detectors such as SIFT [75], SURF [5],
ORB [102], and BRISK [69] improved the VO accuracy in exchange of speed. These blobs
detectors provide much higher robustness to scale and perspective transformations, blur,
luminosity, and even small deformations in the images. Consequently, these techniques
replaced the simple corner detectors [98, 35, 3]. Despite the wide range of detection
methods, selecting a method that correctly meets the desired application latency and
precision restrictions is still a challenge. Several works compared the performance of
detector-descriptor pairs in visual odometry using different criteria [16, 6, 116, 88]. Pose
estimation is significantly influenced by the features selected, which leveraged new research
on the feature-selection field, and several works advanced in this direction [23, 25, 61, 9].

The next stage corresponds to the keypoint description, in which the keypoints are
described in a dense, useful, and invariant form for future matching across the frames,
such as histogram of the oriented gradients (HOG), binary strings, and even raw pixel
values. In the feature tracking stage, the descriptors are compared to the subsequent frame
descriptors by a geometric distance metric (e.g., Euclidean distance) or correlations. The
goal is to find the best feature correspondence between frames; however, the tracking
search space can be large and computationally expensive depending on the number of
features detected. IMUs, wheel encoder can be employed to reduce the search space; also,
data structures (e.g., hash tables, trees) can be utilized to support the tracking.

A necessary procedure is to remove outlier keypoints produced mainly by noise and
image deformations. RANSAC [37] is the default method to estimate keypoint correspon-
dence in the presence of outliers. The method works by computing hypotheses from data-
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points and discarding the ones that present the lowest consensus with the data. RANSAC
returns the model’s parameters which best represent the relations between the keypoints.
The final stage estimates the egomotion by computing the rigid-body transformation Tk

between consecutive frames using a defined feature’s correspondence specification, which
can be 3D-to-3D, 3D-to-2D, and 2D-to-2D [40].

Despite the extensive use, indirect methods are still not robust enough for low-texture
environments due to limitations in keypoint detection, correspondence robustness, and
consistency in providing invariant features. The matches are inadequate in situations
where the frame presents blur, brightness variation, or even sudden variations in the
agent’s speed – resulting in significant estimation errors.

2.1.2 Direct Approaches

Direct or appearance-based methods estimate the rigid-body transformation Tk by oper-
ating directly on the pixel level and computing the variations from the photometric values
provided by the camera sensor – instead of using geometric distances between keypoints.
Direct methods generally outperform feature-based methods when the scene has low tex-
ture due to motion blur or low visibility. In general, a direct VO pipeline is composed of a
stage that determines the depth map from the frame Ik−1. The epipolar geometry usually
calculates this in a stereo setup. Alternatively, several consecutive monocular images can
be used in a monocular setup; or a generative model can be employed. Further, the frames
Ik−1 and Ik are aligned by iteratively minimizing a nonlinear cost function, as shown in
Figure 2.3. It is important to highlight that in learning-based methods, this pipeline is
implicit and derived from the data.

Direct methods consider the pixel-intensity gradient magnitude and orientation to
minimize the photometric error when aligning the frames Ik−1 and Ik. The cost function

T
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Nonlinear Optimization
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Depth Estimation
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Figure 2.3: An abstraction of a general direct VO pipeline. The pipeline stages consist of
a depth map generation for the frame Ik−1; an image alignment stage, which optimizes a
nonlinear least-squares cost function. The estimated egomotion is the transformation Tk

that minimizes the photometric error during the image alignment stage.
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generates a nonlinear least-squares problem, which is frequently solved by the Gauss-
Newton algorithm. This method works by iteratively optimizing the function squared
sum, giving an initial Tk guess. Lie algebra is commonly used to reduce the Tk represen-
tation and increase stability and accuracy during optimization [114]. The Gauss-Newton
variation called the Levenberg-Marquardt algorithm is frequently used to add the possi-
bility to perform gradient descent [106, 30].

Although the image alignment stage provides reasonable estimates for Tk, the drift
error still tends to accumulate over time. One way to mitigate this issue is to refine
the egomotion estimation using a technique known as Local Bundle Adjustment (BA).
BA is a non-linear simultaneous refinement of structure (p, where p is a point in the
world) and motion, performed by minimizing the cost function considering the last Ik−n
frames. Also, direct methods have instability issues during initialization, which requires
the generation of a precise depth map. They are also not robust to occlusions in the
scene and more computationally expensive when applied to dense image representations.
Several approaches try to work around these issues by providing prior knowledge to the
cost function, such as smoothing the depth map, geometric constraints for the pixels’
location, and providing a sparse representation by segmenting the image in patches.

Historically, the first direct methods only tracked planar image patches, which were
manually selected from the scene [38]. Further, a Extended Kalman Filter (EKF) was
applied to track the egomotion across the frames [58, 82]. Nonlinear least-squares methods
were also utilized to estimate the egomotion [112, 78, 99]. These methods were based on
the idea of estimating the patches’ normal, which allowed them to track each patch across
multiple frames – this technique significantly reduces the drift error compared to indirect
methods. Also, these methods provide real-time performance. However, they were limited
to small datasets and required extensive image patch selection.

Comport [21] proposed to estimate motion by relaxing the planarity assumption in a
stereo setup. Later, the same principles were applied to RGB-D camera sensors [60, 79].
The Dense Tracking and Mapping in Real-Time (DTAM) algorithm [89] introduced a new
way to compute the transformation Tk by using a depth map for each monocular frame.
However, DTAM required intensive processing in GPUs due to dense image representation.
The work of Engel et al. [31] diminished DTAM’s intensive processing cost by using only
high-gradient regions. The Direct Sparse Odometry (DSO) [30] proposed a sparse method
to compute VO, which combines the photometric error minimization with a consistent
joint optimization of all parameters.

2.1.3 The Perspective Camera Model

Visual odometry can be performed with either a perspective or an omnidirectional camera.
The classical model for perspective cameras assumes a pinhole projection model, in which
the image is formed by the light intersection between the camera’s lens center c and the
image plane, as shown in Figure 2.4.

Consider p = [x, y, z]T as the 3D point in the world and q = [u, v]T as the 2D point
projected on the image plane. The mapping of the 3D world to the 2D image is given by
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Figure 2.4: Illustration of a perspective camera model. c is the camera center; p is the
3D world point; q is the projected 2D point on the image plane; f is the focal length.

the equation of the perspective projection

λ

uv
1

 = K

xy
z

 , (2.3)

where λ is the depth factor and K is the intrinsic parameters matrix, given by

K =

αu 0 u0
0 αv v0
0 0 1

 , (2.4)

where αu and αv are the focal length, u0, and v0 are the coordinates of the image plane’s
center. The intrinsic parameters K depend on the camera characteristics and do not
change from scene to scene. A complete camera modeling can be found in [52].

For a stereo system, the cameras’ position and orientation must be determined and
precisely calibrated. These parameters are extrinsic, and the most popular calibration
method uses a patterned image of a chessboard, in which the position of each square
is known. Thus, several chessboard images are captured in different orientations and
positions, ensuring the entire field of view is covered. After that, the extrinsic parameters
are determined using a minimization method, such as the least-squares method [107].

2.1.4 Egomotion Estimation

The egomotion estimation depends on the type of method employed. Indirect methods
rely on the features’ correspondence specification. Regularly, the rigid-body transforma-
tion Tk can be determined by three different approaches, such as 3D-to-3D, 3D-to-2D,
and 2D-to-2D.

3D-to-3D Indirect Approach. The egomotion is estimated by triangulating the 3D
feature points provided by the frame sequence in a stereo system. Further, the Euclidean
distance between the points is minimized to find the transformation Tk between the
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frames as

argmin
Tk

∑
i

‖ Xi
k −TkXi

k−1 ‖, (2.5)

where Xk−1 are the 3D feature points detected in frame Ik−1 and Xk are the 3D features
points in frame Ik, i is the number of features used to compute the transformation.
Usually, adding more keypoints increases the computational time and presents better
robustness.

3D-to-2D Indirect Approach. This approach is similar to 3D-to-3D. However,
Nistér [90] defined this approach as more accurate because it minimizes the 2D reprojec-
tion error to determine the transformation Tk instead of the feature position error. The
equation is defined by

argmin
Tk

∑
i

‖ zi − f(Tk,Xi
k−1) ‖, (2.6)

where z is the observed feature point in frame Ik, and f(Tk,Xk−1) is the reprojection
function, which reprojects the feature point from the 3D world space to the 2D image
space. This problem has many solutions, known as “perspective from n points” (PnP)
[107]. The egomotion estimation for monocular systems should capture at least three
consecutive frames because a triangulation among the points is needed to determine the
correspondence.

2D-to-2D Indirect Approach. When 3D points are unavailable, the egomotion can
be estimated by exploring the geometry between the cameras, as illustrated by Figure 2.5.

p

Reprojected point

Baseline

Epipoles

Epipolar line

E

crcl

q l

q r

Figure 2.5: An illustration of the epipolar geometry between the left camera cl and the
right camera cr. The cameras are related by the essential matrix E and capture the same
3D point p at different angles. Adapted from [136].

A stereo system captures the same 3D point p from the world, at slightly different
angles, generating a projection ql and qr onto both cameras planes centered at cl and cr,
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respectively. The cameras are related by a transformation matrix E, which is called the
essential matrix, defined by

E = [t]×R, (2.7)

where t = [tx, ty, tz]
T is the translation vector and R is the rotation matrix. [t]× is the

skew symmetric matrix defined as

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 . (2.8)

Therefore, the epipolar geometry can be defined by

qlEqr = 0. (2.9)

The egomotion estimation using epipolar geometry defines a constraint called the
epipolar line, in which the points on one image correspond to the points on the other
image. Estimating the egomotion for the 2D-to-2D approach requires at least five cor-
respondences of points. Nister [90] proposed the 5-point algorithm to estimate motion.
Another alternative is to use the 8-point algorithm [74] or the normalized 8-point algo-
rithm.

Direct Approach. Direct methods usually estimate the rigid-body transformation
Tk by minimizing the photometric error when aligning the previous frame Ik−1 with the
current frame Ik. Therefore, the log-likelihood or energy ρ are integrated for the entire
frame I concerning each pixel w = [u, v]T as

argmin
Tk

∫ ∫
I
ρ[δI(Tk,w)]dw, (2.10)

where δI is the difference in pixel intensity defined by the photometric values between
the current and previous frame, defined as

δI(Tk,w) = Ik(KTkK−1D(w)w)− Ik−1(w). (2.11)

The inverse depth map D should be provided for the time step k − 1, and the 2D point
w must be visible in both frames.

The process of determining the new pixel coordinate for the frame Ik can be understood
as back-projecting the 2D point w to the 3D world using the inverse depth map D and
the inverse of intrinsic parameters K−1. Then, the transformation Tk is applied to the 3D
point, rotating and translating it into a new position; after that, the 3D point is projected
again to the image plane using the intrinsic parameters K, giving the new 2D coordinate
representation.

A common approach is to discretize the image in patches according to the depth map
specification [38]. Due to occlusions, a robust cost function δI should be determined. In
practice, the cost function is considered as normally distributed, and the problem can be
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faced as a least-squares problem, defined by

argmin
Tk

1

2

M∑
i=0

‖ δI(Tk,wi) ‖2, (2.12)

with M corresponding to the set of all image patches previously determined [38].
Equation (2.12) is nonlinear in Tk, which can be commonly solved by the Gauss-

Newton method [38]. Also, during the minimization process, the Lie algebra provides a
minimal representation for the transformation and increases each iteration’s robustness.
The Tk can be mapped into the Lie space by the exponential function as

T(ξ) = exp(ξ̂), (2.13)

where the ξ is called the twist coordinates, represented by ξ = (ω, θ)T , where ω is the
angular velocity and θ is the linear velocity in the Lie space.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm that consists of an agent
that interacts with the environment by taking actions and maximizing a cumulative reward
defined by the designer. RL is based on human behavior and optimal control theory
but can be quickly extended to several fields (e.g., economics, game theory, information
theory). RL is not only limited to classification or regression tasks, but it is also a
framework for decision making, knowledge representation, planning, and responding to
new and unfamiliar elements [117]. The RL paradigm is fundamental when there is
no labeled data available or when the system’s dynamics are not differentiable; in such
contexts, the model can still learn through rewards signals.

The RL framework consists of several components such as the environment, actions,
and rewards, as shown in Figure 2.6. At every time step t, the agent follows a policy π(a|s)
and performs an action at in the environment, receiving a reward rt and a new state st+1.
The policy is one of the most important aspects of reinforcement learning, which defines
the action a that will be taken in each state s. The learning process consists of determining

Environment

Agent

State (st)

Reward (rt) Action (at)

Figure 2.6: Reinforcement learning framework. At every time step t, the agent follows a
policy π(a|s) and performs an action at in the environment, receiving a reward rt and a
new state st+1.



31

the optimal policy; in this process, the agent’s goal is to maximize the cumulative reward
function.

2.2.1 Markov Decision Process (MDP)

Markov Decision Process (MDP) is a discrete-time stochastic control process commonly
used to model the environment in reinforcement learning. MDP provides a framework
for decision making in which the conditional probability distribution of future states
depends only upon the current state; the sequence of previous states does not add new
information – this is know as the Markov property. The MDP definition consists of a
tuple M = (S,A, P,R), where S is a discrete and finite set of states that model the
environment, A is a finite set of actions, P

(
s
′|s, a

)
is a probabilistic transition function

that describes the effects of executing an action a ∈ A in a state s ∈ S and resulting in a
state s′ ∈ S. R (s, a) is the reward received by executing an action a ∈ A in a state s ∈ S.
Solving the MDP requires maximizing the total expected reward Gt. Usually, a discount
factor γ is used to prevent unbounded accumulated values in non-episodic MDPs, with
0 ≤ γ < 1. Hence, after t steps the reward is discounted by γt. Therefore, the total
expected discounted return is

Gt =
∞∑
k=0

γtRt+k+1. (2.14)

The solution for an MDP is a policy π : S → A that specifies the action a = π(s) to be
chosen in each state s. A policy can be either stationary or non-stationary regarding its
variation over time. It can also be deterministic or stochastic, considering the state-action
tuple relation. In stationary policies, the best action to be taken in the state s is always
the same, regardless of time. In non-stationary policies, the action depends on the step’s
information. In deterministic policies, each state s ∈ S is always mapped into a single
action; in stochastic policies, states are mapped into a probability distribution of actions;
therefore, each action has a probability of being chosen. Among all policies capable of
solving an MDP, we desire to find an optimal policy π∗ that maximizes the expected total
return; this can be done through Value Iteration or Policy Iteration algorithms.

Policy Iteration. Policy iteration-based algorithms find the optimal policy π∗ by
evaluating and improving a random initial policy π0 iteratively until convergence. In
this class of methods, the policy is evaluated several times in order to approximate the
state-value function vπ by

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

P (s′|s, a)
[
r + γvk (s′)

]
. (2.15)

After the state value is updated, the policy is also updated by

πk+1(s) = argmax
∑
s′,r

P (s′|s, a)
[
r + γvk (s′)

]
. (2.16)

Value Iteration. Value iteration-based algorithms determine the state value v∗ for
each state s ∈ S. They can be seen as an improvement over the Policy Iteration since the
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state-value function does not need to be improved only through the policy’s improvement.
Thus, from an arbitrary v0, this approach performs updates in all states of S as follows

vk+1(s) = max
a∈A

∑
s′,r

P (s′|s, a)
[
r + γvk (s′)

]
. (2.17)

In the infinite, the state-value function vk converges to v∗, that is limt→∞ |vk (s) −
vk−1 (s) | = 0; and the optimal policy π∗ can be obtained directly from v∗.

POMDP. Most real world problems are not completely accessible to the agent. Hence,
they cannot be described as MDPs but rather by Partially Observable Markov Decision
Processes (POMDPs), formally defined as a 7-tuple (S,A, T,R,Ω, O, γ), where Ω is the set
of observations, O is the set of conditional observation probabilities, and γ is the discount
factor. In a POMDP, the agent does not directly observe the environment’s true state,
but through observations, it updates the probability distribution of the environment is in
a specific state s. In an MDP, the agent always knows with confidence the environment’s
current state, but in a POMDP, the agent also has to learn the belief b(s) after taking
action a and observing o ∈ Ω.

2.2.2 RL Approaches

When the environment’s dynamics are unknown or hard to compute, dynamic program-
ming methods based on policy iteration or value iteration become unfeasible. In these
cases, different approaches are required. Monte Carlo (MC) and Temporal Difference
(TD) are those approaches.

MC methods require only sequences of samples from states, actions, and rewards of
either online or simulated interaction with the environment. This class of methods seeks
to solve the learning problem based on the sample returns average. MC methods calculate
from complete episodes S1, A1, R1, ..., ST the return Gt. The main issue with MC methods
is that they require an episodic MDP.

On the other hand, TD methods update the estimated value function V (St) for state
St after n-steps by visiting and storing the next n-steps before the update. For the specific
case of TD(0), the update is performed immediately after a visit to St+1 through

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)], (2.18)

where Rt+1 is the reward for the next state, α is the learning rate, and Rt+1 +γV (St+1) is
the target for this update. SARSA and Q-learning are two representatives of TD methods.

2.2.3 Policy Gradient Methods

Instead of using value functions to determine the actions, policy gradient methods improve
the policy directly by learning a function approximator parameterized by the weights θ.
The policy is defined as

π(a|s,θ) = Pr{At = a|St = s,θt = θ}, (2.19)
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which means the probability of action a be taken at time t considering the environment is
in state s at time t with parameters θ. The optimization process uses the gradient ascent
to update the weights and maximize performance through

θt+1 = θt + α∇J(θt), (2.20)

where ∇J(θt) is the stochastic estimate whose expectation approximate the gradient in
respect to θ, α is the learning rate, which determine the update magnitude. J(θ) is
commonly defined using the value function for the initial state as vπθ(s0). Then, the
policy gradient theorem states that

∇J(θ) =
∑
s

dπ(s)
∑
a

qπ(s, a)∇θπ(a|s,θ), (2.21)

where dπθ(s) is stationary distribution of the Markov chain using πθ.
The methods that follow this rule for updating the weights are called policy gradient,

regardless of whether they used a value function. The configuration of the weights can be
made in any way since the policy is differentiable regarding its parameters. An essential
point of these methods is their need for exploration; for this reason, the policy cannot
become deterministic during training. Commonly, the parameters θ are represented by
the weights between neurons in an artificial neural network. Besides, the policy gradient
theorem ensures convergence for this class of methods compared to value-based methods
with non-linear function approximators.

The REINFORCE algorithm. The REINFORCE algorithm is directly derived
from the policy gradient theorem. The algorithm updates the weights θt proportional to
the return Gt in the direction that increases the probability of selecting action At in the
state St, weighted by the action probability. The update rule is given by:

θt+1 = θt + αGt
∇π(At|St,θt)
π(At|St,θt)

, (2.22)

where Gt is the cumulative discounted reward at time t.
REINFORCE with Baseline. Being a Monte Carlo method, REINFORCE has

high variance, slowing down learning. One way to mitigate this problem is to generalize
REINFORCE to compare the return Gt with a baseline function b(St). Therefore, the
update rule for the REINFORCE with baseline b(St) is

θt+1 = θt + α(Gt − b(St))
∇π(At|St,θt)
π(At|St,θt)

. (2.23)

The baseline function can be any, as long as it does not vary with the action a; thus,
the baseline does not affect the expected value for the update but considerably reduces
the variance. For MDPs, the baseline value should depend on the state – generally, the
baseline is the estimated value function v̂(St,w), where the parameters w are jointly
learned with the policy’s parameters θ.

Actor-critic methods. Reinforcement learning methods can also be divided into two
classes: actor-only and critic-only. Actor-only methods provide a policy parameterized by
gradient ascent. The gradient’s performance is directly estimated by simulation, and the
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parameters are updated in the direction of improvement; however, these methods present
high variance between episodes. Moreover, as the policy changes, a new gradient is esti-
mated regardless of previous estimates; consequently, the accumulation and consolidation
of older information do not occur. On the other hand, the critic-only methods depend
exclusively on the value function approximation and aim to learn an approximate solu-
tion to the Bellman equation (Q(st, at) = Q(st, at) +α(rt +γmaxaQ(st+1, a)−Q(st, at))),
which hopefully will derive an almost optimal policy. These methods do not attempt to
optimize the policy space directly.

On the other hand, the actor-critic methods try to combine the strengths of these two
methods. The critic learns the value function parameters w, which is then used to update
the actor policy’s parameters. Depending on the algorithm, the function can be either
action/state q(a|s;w) or state/value v(s;w). The actor then updates the policy param-
eters θ in the direction suggested by the critic. This strategy maintains the promise of
providing faster convergence due to reduced variance, in contrast to critic-only methods
for which convergence is guaranteed in limited environments. Summarily, the actor-critic
performs the following main steps, as shown by the Algorithm 1.

Algorithm 1: Actor-critic algorithm
Initialize s, θ, w at random;
Sample a ∼ π (a|s;θ);
for t = 1, ..., T do

Sample reward rt ∼ R (s, a) and next state s′ ∼ P (s′|s, a);
Sample the next action a′ ∼ π (a′|s′;θ);
θ ← θ + αθQ (s, a; )∇θlnπ (a|s;θ);
Update policy parameters
Compute the correction for action-value at time t:
Gt:t+1 = rt + γQ (s′, a′;w)−Q (s, a;w);
Use Gt:t+1 for update value function parameters:
w← w + αwGt:t+1∇wQ (s, a;w);
Update a← a′ and s← s′;

end

2.2.4 The Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) [111] is an improved version of the TRPO [110]
algorithm, which aims to minimize a surrogate function to restrain the size of the pol-
icy update’s step. TRPO uses the Kullback–Leibler (KL) divergence to determine the
variation between the current and old policy; however, PPO simplifies this process by
computing the probability ratio and monotonically improves the policy. In essence, the
goal is to update the policy parameters inside trusted regions; for that, the objective
function is defined as

J(θ) = Et
[ πθ(a|s)
πθold(a|s)

At

]
, (2.24)
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where At is the advantage function and θold are the old policy’s parameters. The use of
probability ratios is known as importance sampling, allowing unbiased estimates for the
policy’s samples. However, importance sampling is unbounded and often causes overes-
timation and underestimation. One way to solve this is to use the surrogate function,
defined as

J(θ) = Et [min (r(θ), clip (r(θ), 1− ε, 1 + ε))At] , (2.25)

assuming the probability ratio r(θ) = πθ(at,st)
πθold (at,st)

, and ε as a hyperparameter commonly
defined as 0.2. With this surrogate function, only the overestimation problem is corrected.
The underestimation is considered harmless and favors the objective function’s concavity.

2.3 Attention

Attention is a concept studied in several fields (e.g., philosophy, psychology, neuroscience,
and computer science). Although several studies attempted to define attention, investi-
gating how it occurs and the relation among many cognitive elements is still challenging.
One of the most accepted definitions considers attention as a behavioral and cognitive
process of focusing selectively on a discrete aspect of information while ignoring other
perceptible information [20]. Attention plays an essential role in animal and human cog-
nition. In animals, attention provides the allocation of perceptual resources, which allows
them to respond correctly to the environment’s stimuli, ensuring their survival. In hu-
mans, attention acts on practically all mental processes (e.g., planning, reasoning, and
executing).

In this sense, artificial attentional systems based on psychological and neurobiologi-
cal evidence have existed for at least two decades, intending to provide machines with
behaviors closer to humans. Treisman’s Feature Integration Theory (FIT) [122], Nor-
man Attentional Model [92, 59], SeLective Attention Model [97], and a Saliency-based
Visual Attention [57] are some of the most relevant computational models from an ever-
growing list of pioneering research in the field. In the last few years, significant advances
in artificial intelligence were obtained by coupling attentional mechanisms in deep neural
networks – which is considered one of the most relevant ideas in the field. Such mech-
anisms were initially used for machine translation and later implemented in computer
vision, recommendation systems, question and answer (QA), machine comprehension,
automatic summarization, entity recognition, and robotics [121].

Bahdanau et al. [4] proposed the RNNSearch – the first attentional architecture in
literature - to solve the information bottleneck problem in encoder-decoder frameworks.
The encoder generates a fixed-size context vector in the classic framework, and the de-
coder used it to generate translations. However, the network needs to compress all the
information into a single context vector, deteriorating the learning as the sequence length
increases [26]. Therefore, RNNSearch proposes an attentional mechanism to build a dy-
namic context vector based on the previously translated words and the encoder’s hidden
states. The attentional mechanism allows all the information from the encoder to be
propagated through the network, eliminating the context vector’s information bottle-
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neck. Based on this approach, several end-to-end attentional networks have appeared in
the literature to deal with multiples issues (e.g., sensory multimodality, inter-alignment,
long-term dependencies, features recalibration, external memory, and computation time).

Concepts of attention are fundamental to computer vision because this field commonly
deals with many nonlinear data. One of the most researched concepts is the multi-glimpse,
which refers to iteratively scanning the entire image and finding the most critical regions,
enabling the scene understanding with high robustness. Humans build a sequential rep-
resentation of the analyzed scene by paying attention to only one part of the image
simultaneously, enabling a unique performance in capturing the internal relationship of
different regions. Also, ignoring irrelevant parts of the image makes the learning process
easier in the presence of occlusion, changes in viewpoint, and noise.

However, convolutional neural networks have a very different structure: a) they are
not fully scalable and flexible given that the number of parameters increases according
to the input size, reaching a point where training may be unfeasible; b) they treat the
whole image in the same way for every filtering process, even if the relevant information
is only in a small portion of the image; c) they treat equally all feature maps’ frequencies,
although some may represent only noise or distractors for the task; d) they are massively
parallel, neglecting the process of sequential construction of knowledge carried out by
human visual attention.

Methods that implement attention in the classic CNN structure aim at improving
their structural deficiencies to deal with the above mentioned issues. Attentional mech-
anisms are introduced mainly in the CNN input and between the convolutional layers.
In the input, attention filters the image’s raw data, delimiting the most relevant regions
for learning; only the selected regions pass to the convolutional layers. Between layers,
attention generally acts as a complementary agent to the convolutional operation’s defi-
ciencies in capturing dependencies from long distances, internalizing and correctly taking
advantage of information from the past, and merging high and low-level features. Liu et
al. [72] used attention in CNN to explore important priors in counting crowded tasks by
providing attentive maps referring to the crowd regions and each region’s density – such
information provides much more accurate estimation than traditional approaches. Also,
Squeeze-and-Excitation Networks [56] is the first approach to modeling interdependencies
between channels to recalibrate features in a mechanism called squeeze and excitation,
which is capable of exploiting local dependencies on the channel and capturing channel-
wise dependencies in a not mutually exclusive way between channels, introducing in the
literature an attentional dynamics to boost features.

Despite the success, few methods explore the composition of glimpse mechanisms,
visual attention, and recurrent processing. Fu et al. [41] propose a pioneering framework
for recurrent convolutional networks, in which an input image is given, and the classic
CNN extracts the feature maps while the attentional structure estimates the next focus
region to be served to the CNN instance. Once the focus region is determined, the system
crops and enlarges the region to a higher resolution to extract more refined features. In
this ensembled structure, each CNN in the stack generates a prediction so that the deeper
CNNs generate more accurate predictions. This framework presents a straightforward
glimpse mechanism in which attention facilitates the ensemble process. However, the
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structure does not fully incorporate the biological mechanism since the stacked CNNs do
not maintain a temporal relationship between them, and the composition of knowledge is
still decoupled between the stacks.

2.3.1 The Recurrent Attention Model (RAM)

The Recurrent Attention Model (RAM)[80] is currently one of the most innovative frame-
works for visual attention, although little explored in subsequent literature. RAM works
by iteratively building a latent space through multiple glimpses, similar to biological vi-
sual attention. Therefore, the input image is scanned through the cropping and resizing of
small patches; then, feature extraction is employed to detect the most salient information.
This information is iteratively stored in a latent space, which provides the knowledge to
perform the task at hand. The location of each glimpse is determined by a policy learned
through REINFORCE [130] in a reinforcement learning setup.

Although presenting innovative concepts, RAM was mainly concerned with concept
proof for classification tasks in the MNIST dataset, unable to deal with more complex
tasks. Its architecture is composed of four networks, as shown in Figure 2.7, which
comprehends the glimpse network fg, the core network fh, the location network fl, and
the action network fa. Each network encapsulates important characteristics, such as
extracting visual information, integrating the extracted information, and generating the
next focus location and predictions.

GLIMPSE NETWORK

fg

ht
ht

Input

ht-1

gt

at

lt

ACTION NETWORK

fa

CORE NETWORK

fh

LOCATION NETWORK

fl

lt-1

Figure 2.7: The RAM architecture is composed of four networks. The glimpse network fg
extracts visual features from the input image, given a focus location lt−1; the core network
fh integrates these features in an informative latent space ht; the location network fl
generates the image focus location lt for the subsequent iteration; the action network fa
generates the class prediction at.

The glimpse network fg represents the perceptual system and is responsible for ex-
tracting meaningful information from the input images. The glimpse network comprises
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a glimpse sensor that implements attention and several linear layers to generate the la-
tent space. First, the glimpse sensor receives an image xt and a focus location lt−1 as
input. The attentional system discretely selects several image patches centered at the fo-
cus location lt−1; each patch is selected with an increased resolution. This process builds
a pyramidal-like structure, further reduced by either the max or average pool function.
Then, all patches are concatenated to form the retina representation ρ(xt, lt−1). Finally,
the glimpse network concatenates ρt and lt−1 to produce the glimpse feature vector gt.
The entire process is mathematically described as follows

hl = Rect (Linear (lt−1)) , (2.26)

hg = Rect (Linear (ρ (xt, lt−1))) , (2.27)

gt = Rect (Linear (hg) ,Linear (hl)) , (2.28)

with hg and hl ∈ R128, and gt ∈ R256. Also, the linear layers and the rectifier nonlinearity
are defined by

Linear (x) = Wx + b, (2.29)

Rect (x) = max (x, 0) , (2.30)

where W is the weight matrix, and b is the bias vector.
The core network fh is responsible for storing the information across multiple glimpses.

Therefore, it receives the glimpse feature vector gt and the previous internal state ht−1
as input at every time step t. Through linear layers, it outputs the current internal state
ht, which condenses all the sequential information provided by the glimpse network. The
core network is mathematically described by

ht = Rect (Linear (ht−1) + Linear (gt)) , (2.31)

where ht ∈ R256. For simple experiments in the MNIST dataset, fh is originally composed
of linear layers; however, in dynamic experiments, the linear layers are substituted by
LSTM layers.

The location network fl is responsible for generating the focus location lt for the
subsequent input image. Therefore, it uses the internal state ht to parameterize the mean
µt for a Gaussian distribution p with two dimensions and a fixed standard deviation of
0.05. The mathematical definition is

µt = Linear(ht), (2.32)

lt ∼ p(·|µt), (2.33)

where lt is the reparameterized sample, which allows the network to be differentiable.
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The action network fa is responsible for predicting the class at, which is the architec-
ture’s ultimate goal. Therefore, the authors employed the Softmax function

at = argmax

(
eLinear(ht)

Z

)
, (2.34)

where Z is the normalizing constant.
Considering that RAM uses a hard attention mechanism, i.e., only parts of the image

are selected for processing, optimization via supervised learning is not feasible. Hence,
reinforcement learning strategies are used in training. This RL setup is defined as an
instance of a Partially Observable Markov Decision Process (POMDP), in which the true
state of the environment is unobserved; therefore the model needs to learn a stochastic
policy π ((lt, at) |s1:t;θ) with the parameters θ = {θg,θa,θh} that maps the environment
history s1:t = {x1, l1, a1, ..., xt, lt, at} to a distribution over the action in time step t,
restricted by the sensor. In this sense, the glimpse is considered the agent, the environment
is the whole image presented to the glimpse sensor, and the rewards are defined according
to the success in the classification. After executing a classification action, the agent
receives a reward rt+1 and a new observation – a patch of the input image. The goal is to
maximize the sum of the reward signal which is generally sparse and delayed, therefore,
the return is G =

∑T
t=1 rt. For example, the agent receives rt = 1 from the ground-truth

values if the class is classified correctly after T time steps, and 0 otherwise.
The architecture parameters θ are optimized by maximizing the total reward when

the agent interacts with the environment. The agent’s policy, in combination with the
environment’s dynamics, produces a distribution over the possible iteration sequences
s1:N , and the goal is to maximize the return under that distribution via

J(θ) = Ep(s1:T ;θ)[G], (2.35)

where p(s1 : T ;θ) depends on the policy.
Maximizing J(θ) is not trivial because it involves an expectation about high-dimension

iteration sequences, which may involve an unknown environment dynamics. However,
it is possible to obtain an approximation of the gradient given by the REINFORCE
algorithm [130] as follows

∇J(θ) =
1

M

M∑
i=1

T∑
t=1

∇logπ
(
uit|si1:t;θ

)
(Gi

t − bt), (2.36)

where si are the sequences obtained by running the current agent policy πθ for i = 1, ...,M

episodes, Gi
t is the accumulated reward obtained after executing the action, and bt is

the baseline value, which reduces the variance for the gradient updates. The baseline
value bt depends on sequence si1:t via the hidden state hit but not directly of the action
uit. As a result, the algorithm increases the log-probability of actions that generate a
high cumulative reward and diminishes the probability of actions that generates a low
cumulative reward. Also, the baseline loss aims to reduce the mean squared error between
the baseline value bt and the return Gi

t.
The REINFORCE algorithm [130] allows training the agent when the best actions
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are unknown, and the learning signal is provided only through reward. It is possible
not to know a priori which sequence of glimpses provides more information about an
unknown image, but the total reward at the end of the episode indicates whether the
sequence was good or bad. For image training, the label is known, making it possible to
directly optimize the policy to generate the correct label associated with a training image
at the end of an observation sequence. This is achieved by maximizing the conditional
probability of the ground-truth label given the image observations, that is, maximizing
log[π(a∗T |s1:T ;θ)], where a∗T is the ground-truth image. Following this approach, the action
network is optimized by the cross-entropy loss; and the gradients are propagated through
the core and glimpse network. The location network is therefore detached and trained
only by the REINFORCE algorithm, producing a hybrid supervised loss [80].

2.4 Final Considerations

Visual odometry methods can be built in several different ways, depending on the project’s
goals and restrictions. In this work, we are mainly interested in building a cost-effective
method to learn from the input data. Therefore, the monocular setup will be utilized
due to a) cost reduction by decreasing the required sensors; b) stereo setups degenerate
to monocular at great distances; c) stereo setups require constant calibration due to the
agent’s motion and shaking.

For visual odometry tasks, RAM [80] can be classified primarily as a direct method
due to operating over the pixel values. However, the attentional glimpse acts as a feature
selector, where the extracted patches can be seen as regions of interest (i.e., keypoints).
Therefore, RAM can access all the image information and work directly with the raw
data while keeping its low-cost nature by selecting only the regions of interest. Further,
reinforcement learning allows the agent to learn a robust policy, enabling the architecture
to track motion, avoid specific object/regions in the scene, and be invariant to image
resolution. These characteristics are vital to visual odometry and constitute the primary
source of error.

However, RAM is mainly a conceptual architecture, being tested only for simple clas-
sification tasks on the MNIST dataset. The visual odometry problem is significantly more
complex; the input images have a higher resolution, consisting of many mobile objects,
illuminance variation, shadows, and other non-linearities. The 6-DoF regression is also
quite tricky; the minimum error in the angle at the start results in a substantial accumu-
lating error at the end. Hence, extending RAM requires the addition of spatial, temporal,
and contextual elements; the implementation of robust RL algorithms such as Proximal
Policy Optimization (PPO) [111]; and the elaboration of alternative reward functions.
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Chapter 3

Related Work

This chapter presents the most relevant literature related to our work. The presented
methods concern mainly the use of supervised deep learning in visual odometry. Further,
a section is dedicated to attentional methods in the VO field. Finally, we present some
consideration on reinforcement learning.

3.1 Visual Odometry and Deep Learning

The first visual odometry solution implemented with a deep learning method was pro-
posed by Konda et al. [63] in 2015. Their model implemented an end-to-end CNN ar-
chitecture to estimate motion direction and velocity from raw stereo images, as shown in
Figure 3.1. The architecture is composed of several CNN layers followed by a fully con-
nected layer. The network’s output consisted of a softmax activation function; therefore,
the VO problem was formulated as a classification problem – due to limited data, a regres-
sion approach has not provided satisfying results. The first CNN layer was initialized by
a synchrony/depth autoencoder [62], which increases the model’s accuracy and provided
better filters. The use of depth information during the initialization reduced overfitting,
and it was fundamental to solve ambiguity issues when determining changes in the agent’s
direction. The training was performed on the KITTI [42] dataset and consisted of a 5-
frame stereo sequence as input and a pre-computed discretized vector of velocities and
direction changes as labeled data. The results were promising concerning the velocity and
direction predictions; however, there were significant drift errors – possibly due to the
limited model’s capacity, since visual data usually requires several CNN layers to capture
the scene dynamics.

The first method capable of performing VO with monocular images was proposed
by Mohanty [81] in 2016. Their method estimated the trajectory by computing the
transformation matrix between two frames based on the extraction of high-level features.
The architecture is composed of a fully-connected CNN partially inspired by AlexNet
[65], which receives a pair of monocular images (It, It+1) corresponding to subsequent
time periods, and pre-processed labeled ground-truth values representing the differential
displacement in pose (∆x,∆y,∆θ) at each time instant, as shown in Figure 3.2. Unlike
previous techniques, this solution is formulated as a regression problem capable of learning
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Figure 3.1: The architecture proposed by Konda [63] is composed of convolutional layers
followed by fully connected layers. The architecture can predict the agent’s velocity and
direction.

the camera’s intrinsic parameters and pose. It also provided encouraging results for
predicting absolute scale using only one camera. The training was carried out on the
KITTI [42] dataset using the L2 loss function. The results in known environments (i.e.,
seen during training) were accurate. However, results in unknown environments performed
poorly, even when the FAST feature detector was incorporated during training. The poor
performance can be explained by the architecture’s nature, which lacks the structures to
capture temporal/sequential relationships.
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Figure 3.2: The architecture proposed by Mohanty [81] is composed of convolutional and
fully connected layers. The architecture outputs the displacement in pose (∆x,∆y,∆θ).

Recovering the world scale is a big issue for monocular VO due to the ill-posed problem
of estimating the depth from a single image – stereo VO can reliably compute the depth
by triangulation but require careful calibration. To address this issue, Yin et al. [135]
proposed an architecture able to recover the scale by estimating the depth from the input
monocular images. The authors proposed to use a modified ResNet CNN-based archi-
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tecture and conditional random fields to estimate the depth. Tang et al. [119] proposes
a Geometric Correspondence Network, which consists of a CNN trained together with
an RNN to detect the keypoints’ location and generate descriptors in the same architec-
ture. The proposed GCN works by warping points from a source frame to a target frame.
The convolutional networks were implemented based on ResNet. Brahmbhatt et al. [8]
proposes an aware geometry method, which learns the camera’s global position based on
data-driven map representation with geometric constraints between two images. However,
this method only works for already known environments.

Other methods aim to perform VO by extracting the optical flow from the input
images. The Flowdometry architecture proposed by Muller and Savakis [86] extracts the
optical flow from monocular RGB images, as shown in Figure 3.3. Their architecture is
trained in an end-to-end manner, without any algorithm to pre-process the frames used
in P-CNN VO [22]. Flowdometry is entirely based on the FlowNetS [36] architecture
due to the better results it presents in natural scenes than FlowNetC. Therefore, the
pipeline’s first stage computes the optical flow directly from pairs of monocular images
using the original FlowNetS; the second stage computes the incremental changes in angle
and displacements using a re-purposed version of FlowNetS, which replaced the input
from a six-channel image to a two-channel optical flow, and the modification in the output
layer to allow the pose regression. The entire solution is based on CNN layers and trained
from scratch without pre-trained weights, as seen in P-CNN VO [22]. The results seem
promising, considering the possibility of operating in real-time due to the avoidance of
the high-cost computation of extracting optical flow by the Brox algorithm.

Ik

Ik+1

T
im

e

Input Output

Monocular Images CNN CNN

FlowNetS
Adapted

FlowNetS

Incremental
Changes

Optical Flow Extraction Pose Estimation

Figure 3.3: The Flowdometry architecture proposed by Muller [86] extracts the optical
flow based on the FlowNet and outputs the pose’s displacements.

Peretroukhin and Kelly [95] proposed the DPC-Net architecture, which aims to inte-
grate the representation capabilities of deep neural networks with the efficiency of geomet-
ric and probabilistic algorithms. Therefore, DPC-Net implements a CNN-based architec-
ture to learns the corrections for the pose estimator. In this sense, the authors proposed
novel loss functions based on the Lie groups, balancing the translational and rotational
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errors. DPC-Net was tested on the KITTI dataset and improved the results compared
to the baseline model, mitigating poor sensor calibration and environmental factors such
as lens distortion. Zhao et al. [137] proposes the L-VO architecture, which predicts the
6-DoF pose from 3D optical flow for a monocular VO. The loss function employs a Bivari-
ate Gaussian model. The optical flow is computed by the FlowNet architecture and the
depth map by the DepthNet architecture. The dense 2D optical flow and the depth map
are used to generate a 3D optical flow, further consumed by the L-VO. The architecture
is tested on the KITTI dataset and presented better results than monocular geometric
methods and ESP-VO; however, the KITTI images were downsampled to 320x96 pixels,
degrading the performance.

Instead of explicitly extracting the optical flow, Wang et al. [126] proposed the DeepVO,
which is an end-to-end monocular architecture capable of extracting features and mod-
eling the sequential dependence right from the input raw images. DeepVO consists of
a CNN that extracts the interesting features from the monocular images; these features
are further processed in an LSTM network, which can infer temporal dependencies and,
consequently, determine a more robust 6-DoF pose, as shown in Figure 3.4. DeepVO does
not need the camera parameters nor prior knowledge to determine the absolute scale,
considering the ground-truth values are provided during training. Even parameter fine-
tuning, found in most VO pipelines, is avoided since the model is trained in an end-to-end
manner. The experiments were performed on the KITTI dataset, employing the MSE of
all positions and orientations as the loss function. The results have shown that DeepVO
can retrieve the absolute scale similar to stereo methods. Compared to [63, 81], the better
results are explained mainly by the use of recurrent layers and the deeper CNN stage.
However, the results were still inferior to geometric methods, making the authors consider
DL as a complementary tool.
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Figure 3.4: The DeepVO architecture proposed by Wang [126] is composed of several
convolutional layers to extract the visual features from the input images. Also, the archi-
tecture implements LSTM layers to regress the 6-DoF pose.

Long-term navigation still poses a significant challenge for visual odometry due to the
accumulating drift error – robotic systems are not able to operate for a long time in real-
world scenarios without accumulating significant error. One solution is to employ semantic
information in the VO pipeline. In this context, Valada et al. [125] proposed the VLocNet
architecture, which is capable of estimating the 6-DoF pose in a monocular setup. Their
architecture fuses relative and global RCNN-based architectures to improve accuracy. The
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relative architecture is used to smooth the VO path, while global architecture reduces the
drift error. Although the use of recurrent networks has improved the VO accuracy in
recent years, these networks still have limited capacity for storing long-term data – an
alternative is to increase storage by using external memories.

Training deep neural networks for VO applications requires a vast amount of compu-
tational resources, limiting its application in constrained contexts (e.g., mobile phones,
MAV). Several alternatives tried to compress the neural networks (e.g., quantization and
pruning) at the cost of reducing accuracy. An emerging approach is to employ Knowledge
Distillation (KD) to train two networks jointly. KD enables the transfer of knowledge
from a teacher network to student networks, similar to an imitation learning model. Us-
ing these concepts, Saputra et al. [103] proposed to distill knowledge from a pose regressor
– up to that point, KD had only been applied to classification problems.

Learning methods usually perform VO by regressing the 6-DoF pose given a pair of im-
ages. However, these methods do not consider essential transformation properties, which
can improve the model’s accuracy. To tackle this issue, Wang et al. [129] proposed a
monocular VO that implements a novel cost function based on mathematical properties
of group homomorphisms. Mainly, the authors aim to guarantee the properties of closure,
identity element, and inverse element. Although these new cost functions were imple-
mented in a supervised learning context, they can also be used for unsupervised methods.
The authors validated their architecture on the KITTI dataset, where they implemented
two versions: using only L2 loss and the novel homomorphism loss. The results present by
the novel loss function outperform the usually used L2 loss. Also, the authors proposed
to reduce the drift error by estimating drivable paths using semantic segmentation. The
idea is that pose estimation should be consistent with the observed path.

Directly learning the 6-DoF pose from a scene represents a great difficulty for con-
vergence due to the accumulative errors. One alternative is to incrementally increase the
task difficulty while learning the pose so that the network gradually converges to a good
solution. In this context, Saputra et al. [105] proposes the first Curriculum Learning (CL)
architecture, called CL-VO. It aims to learn scene geometry for monocular VO using a
bio-inspired learning paradigm, which gradually increases the task’s difficulty. Their archi-
tecture is composed of extraction and regression stages; the extraction stage comprehends
the use of FlowNet to extract the optical flow and generate a latent space; the second
stage is composed of two layers of LSTM, which regresses the 6-DoF pose. Curriculum
learning is defined as the composite loss function, which penalizes the pose errors for a
small bounded window. Therefore, CL-VO incrementally learns the scene geometry by
gradually giving more weight to the composite loss during training. The authors compared
their method with others that utilize reverse curriculum and no curriculum; as expected,
the network presented more difficulty to converge when other learning approaches were
employed, validating the CL-based approach.

Real-time VO is still a complicated task. Several methods extract optical flow; how-
ever, extracting the optical flow is a costly procedure. In this context, Guo et al. [48]
proposed the LightVO, which uses a CNN-based architecture called TVNet to extract the
optical flow. The pose estimation is achieved by DenseNet, which reduces the amount
of parameters and training time. Training was perform using the KITTI dataset, and
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results proved it to be at least 50% faster than similar methods, such as Flowdometry
and P-CNN. However, the rotation estimation errors were corrected by employing IMU
readings combined with a Kalman Filter.

Segmenting images in drivable regions brings scene understanding, which can be fur-
ther explored in odometry methods. In this context, Holder et al. [54] proposed a CNN
architecture able to predict the path taken by the vehicle in off-road environments. Their
architecture segments the path that the driver would likely take and maps it into the
image. The authors proposed three CNN-based architectures (i.e., SegNet, U-Net, and
FCN). The U-Net architecture achieved the best results in terms of memory usage and
speed. Also, the authors built their own dataset.

Feature-based methods deliver poor results in low-texture environments; even direct
learning methods can present difficulties to converge in such scenarios. A common al-
ternative is to enhance the input images before passing them to the learning system.
Therefore, Yan et al. [134] proposed an RCNN architecture able to combine monocular
RGB images with their edge-enhanced correspondence. Their architecture enhanced the
input images with the Canny Detector and passed them to a CNN+LSTM architecture
to regress the 6-DoF pose. The achieved results showed an improvement in performance
compared to monocular VISO, but still worse than stereo geometric methods. In gen-
eral, VO systems have several issues with illumination variations and high-dynamic-range
environments (HDR). The sensors are responsible for such problems due to assumptions
such as brightness constancy. To tackle HDR scenarios, Gomez-Ojeda et al. [44] proposed
two architectures based on CNN+LSTM to enhance the entire VO image sequence. Their
architecture comprehends an encoder composed of convolutional layers initialized with
VGGNet weights, LSTM recurrent layers to guarantee sequentially consistent images,
and a CNN-based decoder that outputs the improved image. The VO results with the
corrected images showed a slight improvement compared to the original images; visual
inspections indicate that the corrected images presented better gradient information.

Similarly, direct methods rely on assumptions such as photometric consistency; how-
ever, in practice, they are usually violated. To attenuate this issue, Clement and Kelly [19]
trains a CNN-based encoder-decoder network to predict the Canonical Appearance Trans-
formations (CAT) given input frames under different illumination settings. The authors
chose the U-Net architecture to perform the image compression and decompression, given
skipped connections, which allows the network to preserve information. The network can
generate a canonical image as output, which improves the robustness against illumination
variations due to camera response and environment dynamics, therefore improving the
visual odometry accuracy.

The presented supervised deep learning methods are summarized in Table 3.1. Also,
we reported other VO methods, which add mainly technological contributions. Many
other VO methods use unsupervised and self-supervised learning. However, they are not
in the scope of this work. In the table, we summarize relevant aspects of a VO DL-based
model such as network architecture, loss function, input and output data, and dataset
used for training.
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Method Year Arch Goal Input Output Loss Dataset
Konda and
Memisevic et al. [63] 2015 CNN End-to-end

stereo VO Stereo images Velocity,
direction - KITTI

P-CNN VO [22] 2016 CNN Mono VO Optical flow Disp. camera,
euler orient. RMSE KITTI

Mohanty et al. [81] 2016 CNN End-to-end
mono VO Mono images Diff. changes

(∆x,∆y,∆θ) L2 KITTI

VINet [18] 2017 CNN,
LSTM

Visual-inertial
odometry

Mono images,
IMU

3D trans, 4D
orient. quart. L2 EuRoC,

KITTI

Flowdometry [86] 2017 FlowNetS Mono VO Optical flow Inc. changes
(ang, displac.) - KITTI

DeepVO [126] 2017 CNN,
LSTM

End-to-end
mono VO Mono images 6-DoF pose MSE KITTI

Yin et al. [135] 2017 ResNet Depth estimat.
for mono VO Mono images Depth map MSE, Huber KITTI

Haarnoja et al. [49] 2017 CNN State estimat.
w/ KF for VO Mono images KF state

estimation - Synthetic,
KITTI

DeepTAM [138] 2018 CNN Tracking and
mapping VO Stereo images L2 6-DOP pose SUN3D,

SUNCG

EndoVO [123] 2018 Inception,
LSTM Endoscopic VO Mono images 6-DoF pose L2 Own

Sun-BCNN [94] 2018 CNN Inferring
sun direction Mono image Sun direction Cosine

distance KITTI

VLocNet [125] 2018 ResNet,
CNN

End-to-end
global pose VO Mono images 6-DoF pose L2 7-Scenes,

Camb. Land.

GCN [119] 2018 ResNet,
RCNN

Keypoint
detection for VO RGB images Keypoint

location L2 KITTI,
TUM

ESP-VO [127] 2018 CNN,
LSTM

End-to-end
probabilistic VO Mono images 6-DoF pose,

covariance
MSE, cond.
probability

KITTI.
EuRoC

Gomez-
Ojeda et al. [44] 2018 CNN,

LSTM
Image enhancing
for mono VO Mono images Enhanced

image
Log RMSE,

SSIM
Adapted,
Synthetic

MapNet [8] 2018 PoseNet Geometry-aware
VO RGB images 6-DoF pose Global-local

pose dist.
7-Scenes,
RobotCar

Holder and
Breckon et al. [54] 2018 SegNet,

U-Net
Off-road path
segmentation Mono images Segmented

path MSE Own

Clement and
Kelly et al. [19] 2018 U-Net Image enhancing

for mono VO Mono images Enhanced
image

Squared
L2

ETHL
KITTI

DPC-Net [95] 2018 CNN Stereo VO Stereo images 6-DoF pose Lie-group
corrections KITTI

L-VO [137] 2018 FlowNet,
DepthNet

End-to-end
mono VO 3D Optical flow 6-DoF pose L2, Bivariate

Gaussian
KITTI

GFS-VO [131] 2018 FlowNet,
ConvLSTM

Context aware
mono VO Mono images 6-DoF pose L2 KITTI,

EICL-NUIM

Chen et al. [13] 2019 FlowNet,
IONet

End-to-end
mono VIO

Mono images,
IMU 6-DoF pose -

KITTI,
EuRoC,

PennCOS.

Lin et al. [71] 2019 ResNet,
LSTM

Global-relative
mono VO Mono images 6-DoF pose Cross trans.

const., MSE
7-Scenes,
KITTI

Xue et al. [132] 2019 CNN,
LSTM

Attentional
mono VO Mono images 6-DoF pose L2-local,

L2-global
KITTI,
TUM

Ruan et al. [101] 2019 FlowNet,
CNN

End-to-end
VO

Mono/stereo
images 6-DoF pose MSE KITTI

Saputra et al. [103] 2019 ESP-VO,
CNN, LSTM

Knowledge
distillation VO Mono images 6-DoF pose Attentive

Imitation
KITTI,
Malaga

InertialNet [73] 2019 FlowNet2,
CNN

End-to-end
mono VIO Mono images IMU data MSE EuRoC,

own

3DC-VO [64] 2019 CNN End-to-end
mono VO Mono images 6-DoF pose MSE KITTI,

own

Wang et al. [129] 2019 CNN New homomor-
phism losses Mono images 6-DoF pose L2, Homomor-

phism losses
KITTI

CL-VO [105] 2019 FlowNet,
LSTM

End-to-end
curriculum
learning VO

Mono images 6-DoF pose Bounded pose
regression loss

KITTI,
Malaga,
own

Chen et al. [14] 2019 FlowNet,
LSTM

End-to-end
monocular VO Mono images 6-DoF pose MSE KITTI

LightVO [48] 2019 TVNet,
DenseNet

End-to-end
mono VIO

Optical flow,
IMU 6-DoF pose - KITTI

Yan et al. [134] 2019 CNN,
LSTM

Image enhancing
for mono VO

Mono enhanced
images 6-DoF pose MSE KITTI

Teixeira et al. [120] 2020
SfmLearner,
GeoNet,
LSTM

Underwater
VO

RGB images,
IMU 6-DoF pose

MSE,
quaternion
distance

Own

DeepTIO [104] 2020 CNN,
LSTM

Thermal-inertial
odometry

Thermal images,
IMU 6-DoF pose Huber Own

DeepPCO [128] 2020 CNN,
FlowNet

Point-cloud
odometry Depth images 6-DoF pose MSE KITTI

Table 3.1: A summary of supervised deep learning methods.

3.1.1 Attentional Methods

In recent years, several methods started to use concepts of attention in their pipeline.
Attention is mainly employed to filter out unnecessary information and reduce compu-
tational resources to perform VO in complex scenes. Most methods utilize attention to
weight either the input image or the latent space inside the architecture. When employed
in the inputs, the attention mechanism allows the network to select meaningful informa-
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tion from the whole image, which is a complicated task for CNN-based architectures.
In 2020, Damirchi et al. [24] explored the concept of self-attention to extract mean-

ingful features in complex scenarios, which usually have many moving objects and low
texture. The authors were interested in retrieving global-scale information from the input
images, which is complicated with only CNN networks because they provide local-scale
information. Therefore, an alternative is to use self-attention, which correlates all the
input image pixels, allowing the network to pool information from different areas. The
self-attention block is placed right after the CNN layers and before the LSTM layers. The
experiments were performed on the KITTI dataset and showed a reduction in the drift
error compared to DeepVO [126]. Therefore, using self-attention for spatial features is a
viable and simple option to improve visual odometry by generating a more representative
latent space.

Also, Kuo et al. [66] proposed the DAVO architecture, which is a dynamic attention-
based visual odometry composed of two attentional networks. Their first network can
generate semantic masks for determining the weights that each piece of the input image
should have, while the second network uses a squeeze-and-excite attentional block. The
authors also provided several ablation studies to prove the validity of their method. The
experiments were conducted on the KITTI dataset and showed the superior performance
of DAVO compared to other state-of-the-art methods.

Equally important in VO is to be able to save and retrieve meaningful information
across multiples frames. Therefore, Xue et al. [132] proposed to add memory and re-
fining components inside the VO pipeline. The use of memory enables the architecture
to maintain global information through selection criteria. The refining components use
a spatial-temporal attention mechanism to improve accuracy. The methods achieve im-
pressive results in environments where traditional methods fail (e.g., low texture, sudden
motion variation). The authors tested their method in the KITTI and TUM-RGBD
datasets. Further, Xue et al. [133] proposed an adaptive memory block, which saves and
refine the information from local-scale to global-scale. Therefore, the architecture can
store and process long-term dependencies to refine the local pose estimation. The exper-
iments were conducted on the KITTI dataset and had shown that their methods could
generate predictions similar to classic methods.

Attentional concepts are also employed to support the salient feature extraction from
the input images. Liang et al. [70] proposes the SalientDSO architecture, which applies
attention in the Direct Sparse Odometry (DSO) [30] algorithm. The proposed method
runs in two distinct modules, the first one detects the visual salience using SalGAN, and
the second one performs visual odometry with DSO. The drift error has substantially de-
creased compared to the original DSO due to the improved sampling from salient points
instead of randomly selected. However, SalientDSO has not presented significant improve-
ment in sequences where there are insufficient salient points. Chen et al. [14] also proposed
an end-to-end CNN+LSTM salient-feature attention and context-guided networks for ro-
bust visual odometry. Their architecture can be trained using only monocular images
and aimed to decouple rotational and translational motion. The first stage selects salient
features using a pre-trained VGG in a FlowNet backbone; the second stage regresses the
pose in two parallel LSTM architectures, decoupling the rotational and translational mo-
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tion. The experimental results in the KITTI dataset showed better performance than
state-of-the-art methods such as monocular VISO, ESP-VO, and DeepVO; however, the
impact was caused mainly by decoupling the motion in two independent LSTM.

3.2 Final Considerations

The visual odometry field has seen a massive increase in the number of architectures and
publications in recent years, mainly with the advent of deep learning. Geometric meth-
ods still present the best results in restricted and well-controlled scenarios, while deep
learning methods already achieve good results in open-world and complex environments.
However, deep learning methods demand a high computational cost and the creation of
large and representative datasets. One recent alternative is performing VO with unsu-
pervised methods because they do not require data labeling. Despite the benefits, these
architectures are substantially large and costly to train due to the necessity of depth maps
currently being generated by Generative Adversarial Networks (GAN) [1, 34].

Therefore, the creation of lightweight and efficient methods is fundamental to the
field. The massive increase in robotic applications and mobile devices will require power-
efficient algorithms. Also, the capacity to collect only the necessary information is essential
due to the highly dynamic environment. In this sense, one way forward is to bring
innovative concepts to the field. Several methods have appeared, using both supervised
and unsupervised learning, which have presented important concepts. Still, we have not
found any method that implements reinforcement learning in any part of the pipeline.
RL applied to visual odometry tasks allows the architecture to learn a robust policy to
deal with complex scenarios, therefore mitigating the drift error. Also, the architecture
becomes efficient by selecting only the necessary input data.
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Chapter 4

Materials and Methods

This chapter presents the materials and the methods used to develop this work. The
datasets used to train the model will be detailed, including the metrics used to evaluate
the results’ quality. We specify the software and hardware technologies used in the exper-
iments. Also, we present the methodology employed to build the architecture and reach
the final results.

4.1 Materials

4.1.1 Popular and Created Datasets

In the early years, visual odometry datasets were created to leverage simple algorithms
for localization, mapping, and odometry systems. Visual data acquisition started inside
the universities, which collected data by agents (e.g., car, robot, human) circulating on
their campuses or in controlled scenes. However, academic environments presented lim-
ited complexity, making it necessary to acquire data in larger real-world scenarios. The
popularization of autonomous navigation systems has further requested the construction
of diverse datasets to address the new challenges caused by complex environments, such
as many moving objects, occlusions, low visibility, noisy sensors, and long-term function-
ing. As a summary, Table 4.1 presents the most popular datasets for visual odometry,
including their main features.

In this work, we mainly used the KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) dataset [42], a vision benchmark suite developed to promote the
creation of new algorithms for the robotic and computer vision fields. The dataset was
built in 2013 and remained one of the most popular datasets for autonomous navigation
in an outdoor environment. The dataset consists of 22 sequences (total length of 39.2
km) of real-world traffic data captured by a car moving across urban and rural areas
in Germany. The dataset is divided into several categories (e.g., Road, City, Residential,
Campus, Person), contemplating a wide variety of static and mobile objects. These objects
are annotated in 3D bounding boxes and classified in the most seen classes (e.g., Car, Van,
Truck, Pedestrian, Person, Cyclist, Tram, Misc). Stereo cameras captured high-resolution
grayscale and RGB images. A Velodyne 3D laser scanner captured the point cloud, and
an IMU/GPS navigation system captured the positional/inertial data.
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Dataset Year Carrier Enviro. Camera Other sensors Ground-truth Length

New
College[113] 2009 Seg

way Outdoor

Stereo gray
512x384 @20 Hz,
Panoramic RGB
384x512 @3 Hz

1x IMU,
1x GPS @5Hz,
2x Laser @75 Hz

GPS,
wheel odometry

@28 Hz

3 seqs,
2.2 km

TUM
RGB-D[115] 2012

Hand
held,
robot

Indoor Mono RGB-D
640x480 @30 Hz

Depth sensor,
accelerometer

@500 Hz

Motion capture
8x cameras
@100Hz,

acc. < 1 mm

39 seqs

KITTI [42] 2013 Car Outdoor
Stereo RGB/gray
1392x512 @10 Hz,
global shutter

1x Laser @10 Hz,
1x IMU/GPS

@100Hz,
soft. sync.

IMU/GPS,
acc. < 10 cm

22 seqs,
39.2 km

ICL-
NUIM [50] 2014 Hand

held
Synth.
Indoor

Mono RGB-D
640x480 @30 Hz,
rolling shutter

Depth sensor Provided by
simulator

8 seqs,
58.46 m

Malaga
Urban [7] 2014 Car Outdoor Stereo RGB

1024x768 @20Hz

5x Laser,
1x IMU @100 Hz,
1x GPS @1 Hz,

soft. sync.

GPS,
low accuracy

15 seqs,
36.8 km

TUM
Mono [32] 2016 Hand

held
Indoor/
Outdoor

Mono gray
1080x1024
@20-50 Hz,

global shutter

- Loop closure,
low accuracy

50 seqs,
100 min

EuRoC
MAV [10] 2016 MAV Indoor

Stereo gray
752x480 @20 Hz,
global shutter

1x IMU @200 Hz
hard. sync.

Laser tracker
@20Hz,

VICON @100Hz,
acc. < 1mm

11 seqs,
0.9 km

Penn
COSY
VIO [96]

2017 Hand
held

Indoor/
Outdoor

4x RGB
1920x1080 @30Hz.

Stereo gray
752x480 @20 Hz.
Fisheye gray

640x480 @30 Hz

2x accelero.
@128 Hz,
2x gyros.
@100 Hz,

1x acce./gyros.
@200 Hz

Visual markers,
acc. < 15cm

4 seqs,
0.6 km

Zurich
MAV [76] 2017 MAV Outdoor

Mono RGB
1920x1080 @30 Hz,

rolling shutter

1x IMU @10 Hz,
1x GPS,
soft. sync.

Photogram. 3D
reconstruction

on Pix4D

1 seq,
2 km

Event-
Camera[85] 2017 Hand

held

Indoor/
Outdoor/
Synth.

Mono gray
240x180 @24 Hz,
event camera

1x IMU @1kHz,
soft. sync.

Motion capture
system @200 Hz.
high accuracy

27 seqs

TUM
VI [109] 2018 Hand

held
Indoor
Outdoor

Stereo gray
1024x1024 @20 Hz

1x IMU @200 Hz,
hard. sync.

Motion capture
system @120Hz
acc < 1mm

28 seqs,
20 Km

UZH-
FPV [27] 2019 MAV Outdoor/

Indoor

Mono gray
346x260 @50 Hz,
event camera.
Stereo gray,

640x480 fish-eye

1x IMU,
hard. sync.

Laser tracking
system @20 Hz,
acc. < 1mm

27 seqs,
10 km

Table 4.1: A summary of the most common datasets for visual odometry.

However, to perform visual odometry, only the first eleven (00-10) sequences have
ground-truth information; each sequence has a different frame length, as shown in Ta-
ble 4.2. The available dataset to be used in training has then 23,201 frames in total.
Each sequence’s nature is also diverse: some sequences have a substantial variation in
translation, others in rotation, and some sequences have both. Also, there is variation in
the agent’s speed. The images are grayscale for all sequences as exemplified by Figure 4.1.
In this work, we only use images provided by the left camera.

Sequence
00 01 02 03 04 05 06 07 08 09 10

Frames 4,541 1,101 4,661 801 271 2,761 1,101 1,101 4,071 1,591 1,201

Table 4.2: The frame length of each sequence in the KITTI dataset [42].

Although the KITTI dataset was used to develop the final model, it imposes a greater
difficulty to build new models from scratch due to a) the complexity of the input images
(e.g., illumination variation, shadows, moving objects), and b) the requirement of a 6-DoF
prediction. In this sense, we created two datasets with increasing degrees of difficulty. The
first one, called the Pixel dataset, comprises 12,499 images of 100x100 pixels, in which
the salient point is represented by several pixels in white color, and the background is



52

Figure 4.1: Sequential images from the KITTI dataset [42]. In this illustration, the images
were picked up with an interval of 20 frames to highlight the differences among them.

filled with black color. The salient point is uniformly assigned and has a coordinate (x, y)

concerning origin (0, 0) located on the image’s top-left corner. An illustration of the Pixel
dataset is shown in Figure 4.2. This dataset enabled us to perform regression between
two salient points without paying attention to other visual information on the images.

Figure 4.2: Sequential images from the Pixel dataset.

For more advanced experiments, we proposed the City dataset, which adds complex
visual information. This dataset was created by linearly cropping 25,780 images from a
high-resolution city landscape in portions of 300x300 pixels. The images were extracted
in a continuous form, producing considerable overlap among them, which gives temporal
information to the dataset, as shown in Figure 4.3. Similarly to the Pixel dataset, we
saved the image’s center coordinates (x, y) as ground-truth for each portion extracted.
The City dataset allowed our architecture to understand complex spatial information in
a temporal regression task.

Figure 4.3: Sequential images from the City dataset.

4.1.2 Metrics for Evaluation

The most common metrics used to evaluate the consistency compute the agent’s absolute
trajectory error (ATE) and the relative pose error (RPE). The dataset usually provides
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the ground-truth values to compute these metrics. The ground-truth sequence and the
predicted trajectory sequence must be time-synchronized, uniformly sampled, and have
the same length.

Absolute Trajectory Error (ATE) is a metric primarily used to compute the
method’s global consistency. The estimated pose is compared with the ground-truth pose
for each frame. However, the poses usually are specified in arbitrary coordinate frames
and must be aligned to be compared. An aligning method should be used, such as the
Umeyama method [124] or the Horn method [55], which finds a rigid-body transformation
between the estimated and ground-truth pose.

The absolute pose error at instant i is given by

Ei = G−1i AHi (4.1)

where Gi is the ground-truth pose at instant i, Hi is the estimated trajectory pose at
instant i, A is the best alignment transformation.

Traditional ways of computing the relative pose error for the entire trajectory is per-
formed by the mean squared error (MSE) as

MSE(E1:n) =
1

n

n∑
i=1

‖proj(Ei)‖2 , (4.2)

where n is the number of camera poses in the trajectory, and proj is usually the translation
component [115].

An alternative way of computing it is by the root mean square error (RMSE), which
amplifies the impact of outliers presented in the trajectory.

RMSE(E1:n) =

√√√√ 1

n

n∑
i=1

‖proj(Ei)‖2. (4.3)

Also, the median can be used to attenuate the influence of outlier even more than the
MSE. In practice, ATE is a useful metric for visual inspection.

Relative Pose Error (RPE) was first introduced to calculate the error using only
a relative relationship between the frames, which could solve the issues associated with
a global frame comparison. In this sense, RPE measures the local consistency of the
trajectory and is a reliable metric for the drift.

The relative pose error at instant i is given by

Fi =
H−1i Hi+k

G−1i Gi+k

, (4.4)

where Gi is the ground-truth pose at instant i, Hi is the estimated trajectory pose at
instant i, and k is a fixed time interval. k determines the trajectory consistency accuracy,
a small k intensifies the local drift, and a large k intensifies the global drift. For visual
odometry, k = 1 is usually used because it provides the drift error frame-by-frame.

Similarly, RPE can be calculated for the entire trajectory using the mean squared
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error (MSE) as

MSE(F1:n) =
1

n− k

n−k∑
i=1

‖proj(Fi)‖2 , (4.5)

and the root mean square error (RMSE) as

RMSE(F1:n) =

√√√√ 1

n− k

n−k∑
i=1

‖proj(Fi)‖2, (4.6)

where n is the number of camera poses and proj(Fi) is the projected component, which
can be translational or rotational.

RPE can also be used to evaluate the global consistency by averaging over all periods.
ATE and RPE are significantly correlated; however, RPE includes rotational and trans-
lation errors, while ATE commonly computes the translational error [115]. The KITTI
dataset recommends evaluating the RPE by averaging all sub-sequences ranging from 100
to 800 meters.

4.1.3 Softwares, Libraries, and Tools

This work was implemented with the Python 3 programming language. To implement
the neural networks, we preferred to use Pytorch due to its versatility to debug code and
accelerate development.

In general, the main libraries used are the following:

• Matplolib: for data ploting;

• Numpy: for matrix calculations;

• Scipy: for scientific calculations;

• PIL: for image manipulation;

• Pandas: for tabular processing;

• PyTorch: for building neural networks;

• Scikit-Learn: for machine learning in general.

We also used the tool EVO [46] to align the odometry trajectory, compute the metrics
and generate the statistics.

4.1.4 Hardware Specification

The hardware used for building and training the models has the following specifications:

• Motherboard: Asus Rog Strix Z490-E Gaming;

• CPU: Intel Core i7-10700KF @ 3.80GHz;
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• RAM: Corsair DDR4 2x16 Gb @ 3600MHz;

• GPU: Nvidia RTX 2060 with 6Gb, and Cuda v11.1;

• Disk: Western Digital 1Tb;

• Operating System: ArchLinux v5.9.2.

4.2 Methodology

The methodology employed in this work will be divided into two parts, as follows:

1. Developing the architecture:

• Extending the RAM architecture from classification to regression tasks. We
will refer to this extended model as RAM-R. The Pixel dataset will be employed
to train the model to regress the relative displacement between pixels. This
step will generate a baseline model;

• Increasing the problem’s complexity by adding structured spatial information
will require a better visual representation from the model. The City dataset
will be used in this step, and the regressor must still produce the relative
displacement between the images;

• Improving the baseline model robustness by adding spatial structures (CNN)
to the glimpse network, and temporal structures (LSTM) to the core network.
We will refer to this extended model as RAM-RC. We will train this model on
the City dataset;

• Adapting the baseline model to the visual odometry context using the KITTI
dataset [43] to train the model to regress the 6-DoF pose and learn geometry
information in the glimpse network. This step will generate a visual odometry
model. This model represents our RAM-VO architecture;

• Replacing the REINFORCE [130] algorithm with the Proximal Policy Opti-
mization (PPO) [111] to learn robust policies;

• Employing the optical flow as contextual information to initialize the RL agent,
and employing sequential information to represent the RL states better;

• Performing studies on how the learned policies and hyper-parameters influence
the architecture stability, solution quality, and computation cost.

2. Validating the architecture:

• Employing the visual odometry model RAM-VO to generate trajectories from
unseen sequences on the KITTI dataset;

• Using the ATE and RPE metrics to evaluate the generated trajectories. Mea-
suring the solution cost, quality, trade-off;

• Discussing the results.
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Chapter 5

RAM-VO

This chapter will present the RAM-VO construction, starting from its simpler version,
RAM-R, a RAM extension to regression tasks, focusing ultimately on visual odometry.
We will detail the overall implementations, such as increasing the network complexity, in-
troducing spatial, temporal, and contextual structures, implementing the Proximal Policy
Optimization (PPO), and configuring the glimpses hyperparameters and the RL rewards.
Studies and discussions are presented to demonstrate our choices and results.

5.1 Extending RAM to Regression Tasks

The original RAM architecture was developed for simple classification tasks, as presented
in Chapter 2. In this sense, we have developed a methodology to extend it to regression
tasks, increasing the architecture’s complexity to deal with more challenging input data.
The methodology comprises two steps: a) adapting RAM to learn the displacement be-
tween single pixels in two different images; b) increasing the architecture complexity to
provide the displacement between two images with complex visual structures. The next
sections will detail each one of these implementations.

5.1.1 RAM-R: Simple Regression on Pixel Dataset

Adapting RAM to regression tasks to track image changes requires two glimpse networks,
allowing the architecture to consume two different images simultaneously. Therefore, the
modified RAM - from now on called RAM-R - can find the same features in both images
and determine their correspondence. To do so, we changed the original decision network
(our Regressor network) to generate linear outputs instead of class’ probabilities. Be-
sides, the architecture’s capacity has been increased, which means the number of layers
in each subnetwork increased, ensuring more representation power since the input infor-
mation has doubled. Different from the original RAM, the policy’s standard deviation is
also learned during training, promoting exploration in the first epochs.

RAM-R is composed only of fully connected layers. The core network is a classic
recurrent neural network; the layers use the rectified linear unit (ReLU) as activation
functions, except the last layer in the locator and regressor network, which uses
the hyperbolic tangent (tanh). We have not used any regularization techniques, such as
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dropout and batch normalization. RAM-R architecture is shown in Figure 5.1; Table A.1
details the architecture parameters, number of neurons per layer, and activation function.
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Figure 5.1: RAM-R: RAM architecture adapted to simple regression tasks. The modifi-
cations consisted of adding a second glimpse network, modifying the regressor network to
allow linear outputs in the interval [-1, 1], learning the policy’s standard deviation, and
increasing the model’s capacity.

RAM-R receives two images (x1
t ,x2

t ) and a location of interest lt as input. Each
image is cropped with three increasing resolutions centered at the location provided to
the retina sub-module. An average pooling is performed in each extracted patch to reduce
its dimensions to a standard patch size defined as a hyperparameter. The three patches
are flattened and concatenated into a single vector; then, they are processed through fully
connected layers in the glimpse network; the location where the patches were extracted is
added to the latent vector, originating a glimpse vector git. We fuse the two glimpses by
concatenating their latent spaces, producing the final vector gt. In this sense, the glimpse
network captures patches in several resolutions from a determined location on both images,
producing a latent vector combining the two information with their locations in the input.

The core network integrates the received information gt into its latent space ht, which
is also composed of fully connected layers. This process is repeated several times according
to the number of steps defined. For each step, the locator network reads the latent space
ht, providing the next location lt+1. Only in the last iteration, when the core network
generates the best latent space ht, the regressor network generate the prediction d. The
RAM-R architecture is trained via supervised and reinforcement learning. The locator
network is detached from the backpropagation graph, which avoids gradients’ propagation;
therefore, the regressor, core, and glimpse networks are trained in a supervised learning
fashion. The REINFORCE algorithm [130] is employed to train the locator network as
in the original paper; however, we also learn the policy’s standard deviation to promote
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exploration in the first epochs. We jointly train a baseliner network to provide the
state value bt for each step and reduce the variance between the returns. More detail on
the RAM’s functionalities is provided in the next sections.

Several experiments were performed to reach this version. Some of them include: a)
subtracting the latent spaces git in the glimpse networks; b) adding a second locator net-
work, which allowed independent glimpse’s location; c) increasing the number of glimpses;
d) increasing the glimpse scale. However, modifications on the glimpse scale and quan-
tity did not change the performance significantly due to the input data’s simplicity. The
addition of a second locator network slows down the learning process due to the necessity
of learning two RL policies. The glimpses’ subtraction causes the final vector gt to keep
unrepresentative information, decreasing performance. Therefore, we kept the architec-
ture as functional and simple as possible. The complete architecture comprises 530,000
parameters.

Dataset creation and training stage. To validate the RAM-R architecture in
simple visual regression tasks, we proposed the Pixel dataset. This dataset was created
in several versions, with increasing image sizes. The first version consisted of images with
25x25 pixels where the white point measures 1 pixel. The second dataset was generated
with images of 100x100 pixels; the white point consisted of 4x4 pixels. Furthermore, the
third version consisted of images with 300x300 pixels. The results achieved were positive
on all dataset versions. This section will report the results on the 100x100 version; the
subsequent sections will deal with more complex image structures.

The input image pair consists of a black background and a white point in the fore-
ground; the point location is randomly assigned, as shown in Figure 5.2. The purpose of
the architecture is to determine the displacement (dx, dy) from one point to another. In
this way, the dataset allows a maximum displacement of 100 pixels.

(a) Left glimpse sensor (b) Right glimpse sensor

Figure 5.2: Example of input for the left and right glimpse sensors. Each sensor receives
a different image of 100x100 pixels. The white point consists of 4x4 pixels, and the goal
is to determine the displacement between then.

Our experiments employed the z-score normalization on the training set, which guar-
antees the dataset has properties of a standard normal distribution. The ground-truth
data were also standardized with the z-score function; this step is of high importance since
large ground-truth values generate large gradients when compared to predictions, causing
the problem of exploding gradient and making the model unstable – we want to be sure
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the gradients are inside a safe region. We define the reward function as the inverse MSE
between the predictions and the ground-truth. We also train the supervised networks
using MSE. We chose to capture five glimpses with patches of 8x8 pixels in resolution.
Each glimpse is composed of 3 patches with resolutions multiple of 3 – we will detail
them in the next section. The dataset separation is defined as 70% for training, 20% for
validation, and 10% for testing. Table 5.1 resumes the hyperparameters used for training.

Glimpses 5
Patch Size 8
Patches 3
Patch Scale 3
Batch Size 128
Learning Rate Supervised 1× 10−3

Learning Rate RL 1× 10−4

Epochs 400
Training Samples 10,626
Validation Samples 1,249
Test Samples 624

Table 5.1: Hyperparameters employed for training RAM-R on the Pixel dataset.

We kept the learning rate for the reinforcement network at 1× 10−4 due to the train-
ing’s stability; high learning rate values tend to cause loss oscillation and make the model
diverge. Also, larger batches help reduce the gradient variance in training, providing a
better estimate for the update. We have not used early stopping or learning rate decay
during training. The model was trained for 400 epochs and provided a good minimization,
as seen in Figure 5.3.

The curves presented higher oscillation on the validation set due to the presence of
fewer samples. The supervised loss presented a considerable minimization even for the
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(a) Training and validation loss
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(b) Training and validation reward

Figure 5.3: The evolution of training loss, validation loss, and reward. The validation su-
pervised loss is close to the training loss, which indicates that the regressor is generalizing.
However, the RL agent presents some difficulties in generalizing to unseen samples.
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validation set; the reward signal has a discrepancy between the train and validation sets,
which indicates a difficulty in generalizing to unseen samples. One possible explanation
is the nature of the dataset, which presents zero values for most of the input image; the
RL agent can understand that as being in the same state and continually reinforcing the
same action. Although the location vector lt is added to the current state, we noted a
difficulty for the RL agent to make sense of it. In general, we considered that the model
could reach a reasonable global solution without using regularization techniques.

Figure 5.4 presents a heat map with the glimpses locations distributed along with
the training. We can observe that the glimpses are spread across the whole image at
the beginning of training, indicating the agent has high entropy and consequently high
exploration. As the training proceeds, the glimpses start to be gradually concentrated in
regions around the image’s corners. Indeed, this would be a good policy since capturing
image patches from corner regions covers the whole image space, thus increasing the
probability of finding the white pixel. We tested several policies to penalize glimpses
outside the image space or increase the glimpse location’s standard deviation; the policies
learned slightly changed to select the same patches on the corners. However, we decided
not to bias the RL agent towards a specific behavior for the final model. Therefore, we do
not impose any restriction on the reward function besides MSE between the predictions
and ground-truth.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(a) Epoch 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

(b) Epoch 85
0.0 0.5 1.0 1.5 2.0 2.5 3.0

(c) Epoch 202
0 1 2 3 4 5

(d) Epoch 400

Figure 5.4: Heatmaps of glimpse’s fixations during the training stage for a single mini
batch. The glimpses are spread across the image on epoch one and gradually become
concentrated on the corners.

Commonly, the weights of a neural network are kept at small ranges close to zero;
however, for reinforcement algorithms, this hurts exploration. One way to solve this issue
is to initialize the locator network’s weights orthogonally - this guarantees a more diverse
actions’ selection in the first epochs. Regularization techniques such as dropout and batch
normalization present some challenges for networks trained by reinforcement; it is vital
that the state distribution be as stationary as possible during training; these techniques
add significant noise to states and shift the mean to unknown regions. These alterations
have a considerable impact on training and mainly in generalization; therefore, we prefer
to avoid them.

Testing stage. The Pixel dataset was divided into a test set for testing our model on
unseen data. The test dataset comprehends 624 image pairs and is normalized by the z-
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score function with the same mean and standard deviation used for training; therefore, the
test data is not biased. We can observe that the glimpses’ locations match the fixations’
heatmap generated by the learned policy, as shown in Figure 5.5.

(a) Glimpse 1 (b) Glimpse 2 (c) Glimpse 3 (d) Glimpse 4 (e) Glimpse 5

Figure 5.5: Glimpses’ locations for the left sensor on the test set. Each colored square
represents a glimpse scale. The five glimpses capture information from the pixel four
times.

The first glimpse is performed in a random position; the agent defines the other four
according to the policy. The colored squares correspond to the three input scales retrieved
from the environment. Considering this experiment’s simplicity, the RL agent can deter-
mine the displacement without using the high-resolution scale; only a raw representation
is sufficient for a good prediction. However, we noted experimentally that just one pixel’s
capture is usually not enough for a reasonable prediction; therefore, using a small patch
scales hurts performance. One way around is to use large scales, which allow more than
one capture. For this test sample, the totality of five glimpses captures the pixel four
times.

The first predictions in the test set are shown in Table 5.2. The Mean Absolute Error
(MAE) was employed to compare the results because the pixel’s displacement respects
the Manhattan’s distance. Therefore, MAE provides the distance between the pixels,
facilitating the comprehension of the results. The final results demonstrate that the
RAM-R could infer the pixel’s displacement between the two images with small average

Prediction (dx, dy) Ground-truth (dx, dy) MAE
-0.98, -53.19 -1.70, -54.70 2.230
-2.85, -13.37 -5.70, -13.70 3.180
34.75, -22.5 38.30, -23.70 4.750
33.81, 43.45 32.30, 41.30 3.660
50.89, 31.81 58.30, 29.30 9.920
-28.22, 31.07 -28.70, 29.30 2.250
4.38, -41.38 1.30, -36.70 7.760
60.07, -6.21 64.30, -8.70 6.720
82.72, -2.84 81.30, -2.70 1.560
20.94, 2.86 22.30, 1.30 2.920

Mean 4.495

Table 5.2: The first results reported for the test set on the Pixel dataset. The displacement
is given for (x, y) coordinates. The average MAE is considered acceptable.
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errors. For the complete test set, the final MAE was 3.118, which corresponds to an
error of 3.19% for images of 100x100 pixels. We also had similar results for input images
of 300x300 pixels. Therefore, we understand that the predictions were good enough to
continue increasing the input image’s complexity. In this sense, we conclude that RAM
can be extended to perform regression tasks, confirming the hypothesis H1.

5.1.2 RAM-RC: Complex Regression on City Dataset

Although the Pixel experiments’ results are acceptable, the problem is straightforward,
and the glimpse scales are not fully useful. The integration of information in the core
network is also problematic due to null inputs most of the time – the RL agent has diffi-
culties differentiating between states. To make the regression more complicated, we pro-
pose the City dataset, which comprises images with 300x300 pixels extracted from a city’s
panoramic image in high resolution. This dataset provides an important environment to
understand the agent’s behavior when dealing with highly non-linear visual information.
In this sense, we can observe how the agent uses the glimpse scales to choose an action;
and how the sequence of observations generates a usable latent space for predictions.

A significant feature presented in RAM’s formulation is the image scales, which sim-
ulate the human visual system. The first scale corresponds to a high-focus region with
a smaller dimension at the center; the other scales have large dimensions but lower res-
olutions, as exemplified in Figure 5.6. The designer can define the number of scales; we
prefer to keep the model with three scales, considering the input image’s size.

(a) Left input image (b) First scale in red (c) Second scale in blue (d) Third scale in green

(e) Right input image (f) First scale in red (g) Second scale in blue (h) Third scale in green

Figure 5.6: Example of an input image pair. Each glimpse sensor extracts three patches
with increasing scale size; then, they are resized to a standard patch size with the same
size as the first scale. In this example, the first scale is set to 48x48 pixels; the others are
two times larger than the previous.
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This pyramidal-like structure provides a trade-off between the amount of information
and computational cost; that is, the agent can observe the environment’s details in high-
resolution with the first scale; and observe the most salient elements presented on the
boundaries with the others. The second and third scales are resized to the same size as
the first one using average pooling. Thus, the image patch from the first scale does not
undergo any modifications, whereas the other two patches are changed by the average of
the pixel values in its proximity. In practice, the network deals with three input images
with the same shape for each glimpse sensor.

Conceptually, the agent will use this peripheral information to determine the next focus
location lt+1 for the next glimpse. For this purpose, the glimpse network was modified to
interpret structured visual elements through convolutional networks (CNN). Thus, three
independent convolutional layers process each glimpse scale without any pooling layer
between the CNNs. We found it reasonable to use a kernel size of 5 and to generate four
channels for the first CNN layer and eight channels for the second. More channels should
improve the model even further; however, pooling operations or increasing the stride
become necessary to avoid increasing parameters when flattening the resulting vector.

Figure 5.7 exemplifies the RAM-RC model used in this experiment. It includes more
sophisticated memory elements such as the Long Short-term Memory (LSTM) in the core
network, allowing the model to track long-distance dependencies and better represent the
predictions. LSTM structures diminish the problem of vanishing gradients during training,
stabilizing the model. We propose only one LSTM layer for this problem although more
layers allow the model to have a hierarchical representation of the sequential data. More
details on model configurations are depicted in Table A.2.

The addition of convolutional layers added a relevant cost to the model. Although
CNN has shared parameters, the cost of convolution operations makes training more
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Figure 5.7: The RAM-RC architecture adapted to complex regression tasks. The modi-
fications consisted of adding CNN layers on the glimpse network and an LSTM layer on
the core network. These elements provide a better spatial and temporal representation’s
capacity to the model. The baseliner network is omitted.
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expensive. Also, the use of LSTM significantly increases the number of parameters in
the model. We counterbalanced this issue with the use of fewer channels and smaller
patches. LSTMs were also maintained with the smallest hidden space that would provide
acceptable results. In total, the model has 2 million parameters.

Training stage. Like the Pixel experiment, the goal here is to predict the displace-
ment (dx, dy) between two complex input images by iteratively building a latent space ht.
Most of the experiment configuration stays the same, except for patch size, which has been
increased to 32x32 pixels. This change improves the information flow since the image was
increased from 100x100 to 300x300 pixels; therefore, the major scale represents around
10% of the original image. We also decreased the learning rate to maintain the model’s
stability, and the epochs were increased to 700. Table 5.3 resumes the hyperparameters
used for training.

Glimpses 5
Patch Size 32
Patches 3
Glimpse Scale 2
Batch Size 128
Learning Rate Supervised 1× 10−4

Learning Rate RL 1× 10−5

Epochs 700
Training Samples 21,897
Validation Samples 2,575
Test Samples 1,287

Table 5.3: Hyperparameters employed for training the RAM on the City dataset.

During training, we can note that the agent starts with much exploration in epoch
one and gradually makes fixations horizontally and vertically in the image, as shown in
Figure 5.8. This behavior is possibly due to the City dataset’s dynamics, which varies
linearly on the axes x and y; thus, the policy’s refinement during training reveals that the
agent is learning the most natural way of selecting the appropriate data to the supervised
network. In the end, the fixations tend to be primarily concentrated in a small region at
the bottom. For this experiment, only a small portion of the image is sufficient to make
a good prediction; fixations in distant portions do not provide more information for the
problem’s solution; therefore, the learned policy aims to capture and exploit a small region
without concern about the rest of the image. This kind of regression is commonly solved
using larger convolutional networks that capture the entire image. However, consuming
the whole image makes the architecture more computationally expensive and not a scalable
solution for higher resolution images, such as those used in visual odometry. Therefore,
using the innovative concept of attention guided by reinforcement learning allows the
model to determine what is important to consume for the problem’s solution – some
policies can be very counterintuitive for the designer.
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(b) Epoch 200
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(c) Epoch 500
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(d) Epoch 700

Figure 5.8: Heatmaps of glimpse’s fixations during the training stage for a single mini
batch. The glimpses are spread across the image on epoch one and gradually become
concentrated on a single region.

Like the previous experiment, the supervised validation loss presented a behavior
similar to the training loss, which indicates that the model can learn information that
allows generalization for unseen data. This time, the reward curve indicates that the
RL agent can make good predictions for the validation set; the observed difference when
compared to the Pixel experiment is due to the higher image variability presented on the
City dataset, which allows the model to build a robust state representation. Figure 5.9
presents the training and validation losses, as well as the reward achieved by the agent.
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(b) Training and validation reward

Figure 5.9: The evolution of training loss, validation loss, and reward. The validation
loss is close to the training loss, which indicates that the model is generalizing for unseen
samples. The reward curve indicates the RL agent can provide a good estimate in the
validation set.

Testing stage. RAM-RC was tested on data unseen during training. We can observe
that the glimpses’ behavior is much more concentrated on a single region than scanning the
whole image, as seen in Figure 5.10. The scales play a role after the second glimpse when
the agent explores regions of a high gradient in the image, facilitating the displacement’s
identification.
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(a) Glimpse 1 (b) Glimpse 2 (c) Glimpse 3 (d) Glimpse 4 (e) Glimpse 5

Figure 5.10: Glimpses’ location for the left sensor for test set on City dataset. Each
colored square represents a glimpse scale.

The first predictions in the test set are shown in Table 5.4. Similarly, the MAE
was used to determine the displacement between the two images and evaluate the results’
quality. An average MAE of 2.118 is considered acceptable for the displacement estimation
in the City dataset – for the whole test set, MAE was 3.810.

Prediction (dx, dy) Ground-truth (dx, dy) MAE
1.64, 21.36 1.00, 23.00 2.280
7.32, -16.67 9.00, -16.00 2.350
-3.95, -1.35 -4.00, 0.00 1.400
3.20, -29.82 5.00, -33.00 4.980
-30.46, -0.24 -33.00, 0.00 2.780
17.45, 3.00 17.00, 3.00 0.450

-14.81, -1.19 -15.00, 0.00 1.380
11.83, 40.72 9.00, 42.00 4.110
49.10, 23.08 49.00, 24.00 1.020
-6.82, -0.25 -7.00, 0.00 0.430

Mean 2.118

Table 5.4: The first results reported for the test set on City dataset. The displacement is
given for (x, y) coordinates.

Compared to the Pixel’s experiments, the results on City present a lower error; we
attribute this to the use of more sophisticated spatial and temporal elements. The use
of a CNN allowed the glimpse network to identify the most interesting spatial regions
at different scales and target them in the following glimpses. Also, LSTM layers in the
core network offered a better capacity to integrate the information from the five glimpses
and produce a representative latent space for regression. The experiment with complex
visual information allows the RL agent to determine a robust policy; from the results,
we conclude that just a small region is sufficient for good quality predictions. Therefore,
we confirm the hypothesis H2 in which RAM-RC can be used for regression tasks with
complex visual data.



67

5.2 RAM-VO: Visual Odometry Regression

Visual odometry regression is substantially more complex than the experiments reported
so far. The 6-DoF regression makes the predictions trickier; the input images have a higher
resolution, requiring a better state representation. Therefore, this section will detail the
modifications made to creating the RAM-VO, such as increasing the architecture’s capac-
ity, adding contextual information, and implementing the Proximal Policy Optimization
(PPO) [111] algorithm. We will present a baseline version and incrementally add the
other functionalities. The architecture presented here corresponds to the final version;
however, several experiments have been carried out to reach this point; we will discuss
the relevant modifications along the text.

Initially, the RAM-RC was adapted to allow 6-DoF regressions; thus, the network
regressor’s capacity doubled to allow the rotational and translational predictions inde-
pendently. The glimpse network has also been changed to promote the learning of the
scene’s geometry. In the previous experiments, the RAM-RC used independent convolu-
tional filters on each input image and delegated the integration of the whole latent spaces
git to the core network; which is inefficient because it promotes the learning of the image’s
appearance, and, in visual odometry, we are interested in learning the geometric relations
and their correspondence between frames. To solve this issue, we were inspired by the
FlowNetS [36] architecture, in which the input images are concatenated and used into
the convolutional channels; this alternative design favors the model to capture the scene’s
geometry, especially the optical flow. In this sense, RAM-VO still has three convolu-
tional pipelines but processes the two images simultaneously. The proposed changes are
shown in Figures 5.11 and 5.12. For more information on the model’s configurations, see
Table A.3.

Learning the image’s appearance significantly overfits the network; that is, the predic-
tions for the seen sequences present low errors, whereas the model cannot generalize with
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Figure 5.11: The RAM-VO architecture for the baseline version. The modifications in-
cluded increasing the glimpse network capacity, providing the image patches into convolu-
tional channels, adding two LSTM layers in the core network, and doubling the regressor
network’s capacity to enable 6-DoF pose regression. Figure 5.12 shows the Glimpse.
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Figure 5.12: The glimpse network configuration. The input images are cropped at the
location lt, generating three patches Pi for each image. Then, the patches are concate-
nated by their scales and processed by independent CNNs; the resulting latent space is
multiplied by the location lt, providing the final vector gt.

quality to unseen sequences. We understand that the ability to generalize well is closely
associated with learning the scene’s geometry; learning appearance does not provide good
generalization results in our case. Therefore, RAM-VO learns the optical flow in the
glimpse network, already integrating the two image’s information and releasing the core
network to deal only with the integration of observations – these structural modifications
remove inefficiencies like redundancy and bottlenecks.

Considering that the convolutional operations are performed on both image patches
simultaneously, the application of the same filters considerably reduces the computational
cost compared to performing the features’ extraction separately. However, convolutional
operations still add a high cost to the model; although the number of parameters has
decreased due to their sharing, the cost of applying the filters increased. We also tested
the viability of a fully connected glimpse, but losing spatial relations decreases the per-
formance. Therefore, we maintained the convolution operations but use only 6 layers
for the high-resolution scale, with 128 channels in the last operation. In contrast, the
DeepVO [126] architecture employs 9 CNN layers with up to 1,024 channels in the last
layer.

In this sense, we observed that convolutional operations with smaller kernels signifi-
cantly minimize the loss – which is expected since smaller kernels enable the detection of
finer features. Therefore, we chose to keep the high-resolution scale with a kernel size of
3x3 pixels and the other scales with a 5x5 kernel since they represent large areas. Padding
values are defined as zero to avoid the reduction in the input size across the CNN layers.
Based on the FlowNetS [36] model, pooling operations are entirely removed, and the in-
put information’s dimensionality is reduced by varying the stride between 1 and 2 during
the filters’ application. Pooling operations have the premise of reducing the information
amount that flows through the network by calculating either the average or the maximum
value of a group of neurons. However, this kind of information reduction impacts regres-
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sion in visual odometry, mainly the translational component. From a visual inspection of
the input images, we can observe that the translation is the component that varies least
from one frame to another. In this way, the glimpse network captures the same image
region with only subtle differences between frames; when the pooling operation is used,
this difference becomes imperceptible.

The supervised loss and the reward function are both defined in terms of the MSE.
MAE was also tested as a reward function; however, it does not penalize outliers; and in
visual odometry, we want to minimize the outliers as much as possible since only one poor
prediction can harm the entire trajectory. Therefore, the supervised loss L is defined as

L =
1

N

N∑
i=1

‖p̂− p‖22 + k ‖ϕ̂−ϕ‖22 , (5.1)

where p̂ and ϕ̂ are the position and orientation prediction, respectively; p and ϕ are the
ground-truth values; and k is the constant factor weighting the two losses; we defined it
as 1. The reward function R is then defined as

R =
1

1 + L
. (5.2)

Similar to previous experiments, we prefer not to bias the RL agent towards a specific
behavior; therefore, only the visual odometry error is employed in the reward function.
The weighting constant k can also be altered to favor one component over another; this
is specially done when the ground-truth values are not normalized, and the orientation
component must be compensated since they present a lower variation range. Tests were
carried out without normalization to determine the best value for k; we tested values of
50, 100, and 200. The test’s results indicate that the trajectory’s prediction becomes more
accurate for some sequences and worse for others. Therefore, we preferred to maintain the
ground-truth values normalized and k = 1 for this baseline version. Also, we composed
the orientation component ϕ with the Euler angles as roll φ, pitch θ, and yaw ψ; the
position p is composed of the coordinates x, y, and z. In conclusion, the RAM-VO’s goal
is to regress the 6-DoF vector [φ, θ, ψ, x, y, z]T .

Data analysis and pre-processing. Before training, we analyzed the motion dy-
namics present in the KITTI dataset sequences. There is a considerable average variation
in motion for rotational and translational components between sequences, as shown in
Table 5.5. Sequence 1 has a higher average variation for the translational component z
concerning the other sequences; furthermore, sequence 1 has fewer samples, compromising
learning. Sequence 0 is the one with the highest average variation concerning the rota-
tional motion. We observed that the architecture could not generalize with quality for
the sequences with little data and significant differences in the motion average. This fact
was expected since the architecture would have a hard time generalizing such disparity to
training data. Therefore, we chose to carry out the training in long sequences and those
with a regular variation in the average motion, leaving the others sequences to validate
and test. In this sense, sequences 0, 2, 4, 5, 6, 8, 9 were used for training, sequences 10
for validation, and sequences 3, 7 for testing. We did not use sequence 1. We also used
this split to compare the results with other methods.
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Sequence φ̄ θ̄ ψ̄ x̄ ȳ z̄
0 0.8316 0.6113 0.8194 0.6243 0.4985 0.6384
1 0.3605 0.3742 0.3839 0.5601 1.1367 2.1863
2 0.7071 0.5266 0.7476 0.5814 0.5602 0.5751
3 0.6508 0.3233 0.7225 0.3229 1.1602 0.6588
4 0.3226 0.0353 0.5380 0.1962 0.6007 0.8007
5 0.5838 0.4234 0.5677 0.4214 0.4137 0.6601
6 0.4506 0.3841 0.3633 0.3838 0.4686 0.6610
7 0.5545 0.5906 0.5811 0.5725 0.5269 0.8050
8 0.6392 0.5121 0.6957 0.6336 0.7961 0.6666
9 0.5834 0.6021 0.6767 0.6244 0.4729 0.6104
10 0.7741 0.4521 0.7678 0.4786 0.5189 0.7259

Table 5.5: Motion component’s mean variation for each sequence in the KITTI dataset.
Each component is standardized independently. Some sequences present a higher mean
variation, which impacts the model’s generalization capability.

The monocular input images are captured in real-world environments with 1200x360
pixels in resolution. Initially, the pixel intensity histogram was equalized by the Contrast
Limited Adaptive Histogram Equalization (CLAHE) method, which equalizes the his-
togram in small windows of 8x8 pixels, preventing noise from a small part be extended to
the entire image. In this way, we can highlight the image’s features without increasing the
noise, as seen in Figure 5.13. The histogram equalization was especially useful to provide
smoother optical flow maps, as presented in the next section. The training images were
then normalized with the z-score function before entering the glimpse network due to the
sequences’ significant illumination variation.

(a) Before equalization (b) Before equalization

(c) After equalization (d) After equalization

Figure 5.13: The impact of adaptive histogram equalization for samples from sequences
7 and 8. The features are highlighted without increasing noise.

When performing experiments with higher RL learning rates than those chosen, we
observed RAM-VO concentrates most of the glimpses in the image’s borders. In those
cases, for which the REINFORCE algorithm diverged, we consider this behavior a su-
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pervised convergence to a local minimum – hence, the generalization capacity is strongly
affected in those situations. Although the RL agent diverges, the tendency to look at
the image’s corners can also be seen as an attempt to cover regions with a more mean-
ingful data variation for the problem. The optical flow on the image’s border presents
the highest magnitude, mainly for translational motions, as shown in Figure 5.14. There-
fore, the RL agent can be precipitately attracted to these regions and end up learning
a low-quality policy that always favors data input from the borders without exploring
alternative sequences of observations.

(a) Optical flow during a rotational motion.

(b) Optical flow during a translational motion.

Figure 5.14: Sparse optical flow extracted for rotational and translational motion for
sequence 0 in the KITTI dataset. For a rotational motion, the optical flow is concentrated
mainly in the image’s center; for a translational motion, it is distributed around the
image’s border.

Understanding how the optical flow behaves helps us understand whether the learned
policy can favor the supervised network to generalize. Ideally, the RL agent should capture
data from regions that provide both rotational and translational information. Once the
proportionality constant k = 1, no preference is given for one component over the other
in the baseline version. We can note that the image’s center does not provide meaningful
information for translation from the sparse optical flow, but it does provide for rotation.
In this sense, a complementary behavior seems to exist between rotation and translation.

Training stage. Despite the RAM-VO separation into several distinct sub-networks,
the model can be understood only as two separate networks; the first is trained by super-
vised learning and the second one by reinforcement. The locator network controls the
input information so that the supervised network can generate predictions. In this sense,
the correct alignment of the two networks is very delicate – a rapid convergence of the
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supervised network generates an ineffective policy, which tends to have the same behavior
regardless of the input images. In this case, the model arrived at a suboptimal solution,
which inhibits more exploration and stuck the model at local minima. On the other hand,
a supervised network that does not learn makes the reinforcement network unstable since
it depends on the reward function. Adjusting the hyperparameters and the reward func-
tion adequately to allow the two networks’ convergence was the most complex task we
handle. For example, the definition of an adequate learning rate significantly impacts the
supervised network’s convergence speed and, consequently, the reinforcement network’s
stability. In general, we kept the learning rate for the reinforcement network lower than
the supervised one. Also, the batch size plays an important role when training by rein-
forcement. The return has a significant variance across the episodes; this dramatically
slows the learning process. One alternative is to increase the batch size; however, this
can be done only to a limited degree, usually defined by the GPU’s memory. Table 5.6
resumes the hyperparameters used in training.

Glimpses 8
Patch Size 32
Patches 3
Glimpse Scale 3
Batch Size 128
Learning Rate Supervised 1× 10−4

Learning Rate RL 1× 10−6

Epochs 400
Training Samples 18,990
Validation Samples 1,200
Test Samples 1,902

Table 5.6: Hyperparameters employed for training the baseline RAM-VO on the KITTI
dataset.

For the experiments, we varied the number of glimpses from 1− 8 with a patch size of
32x32 pixels and three scales; for all cases, the totality of input information corresponds
to only a small percentage of the input (5.7% of the total available for 8 glimpses) –
this is far less compared to methods that deal with the whole image. The whole train set
comprehends 18,990 image pairs; although the training is possible with this amount, more
data should significantly improve the results – training in complex environments requires
as much data as possible to cover the many dynamics presented (e.g., people walking,
cars, lens distortion).

The training was performed for 400 epochs and presented a minimization of the super-
vised training loss and maximized the agent’s cumulative reward. However, the validation
loss has not been minimized to the same extent; more training epochs would not solve
the issue since it would overfit the model even more. Still, this generalization capability
is superior to that presented by a RAM-VO version that learned the image’s appearance,
for instance. A better understanding can be achieved by decomposing the supervised loss
into its rotational and translational components, as shown in Figure 5.15.
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(c) Decomposed rotational loss
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(d) Decomposed translational loss

Figure 5.15: The evolution of training loss, validation loss, and reward for the baseline
RAM-VO. Also, the supervised loss is decomposed into its rotational and translational
components. The baseline model presents a difficulty to minimize the validation losses,
especially the translation one.

Although the supervised network can minimize the rotational loss to a certain ex-
tent, the translational loss minimization presents some difficulties. This possibly occurs
due to the ambiguity in determining depth from monocular images. Methods based on
unsupervised learning like GANVO [1] learn to predict the depth map, which helps de-
termine the correct 3D position in space. A second alternative is to integrate inertial
information such as IMUs. It is important to note that learning the scene’s geometry
had significantly diminished both the translational and rotational errors in the test set;
the apparent rotational motion presents higher variation between frames when the car
is rotating, contributing to its minimization, while the apparent translational motion is
subtle and predominant on the image’s borders.

From the heatmaps of glimpses’ fixations on Figure 5.16, we can see that the majority
is concentrated between the image’s center and the left border. This contributes to a more
significant minimization of the rotational loss, although the translation is also contem-
plated. The first glimpse is randomly defined, and the RL agent chooses the remaining.
Lowering the RL learning rate contributes to stabilizing the agent, which promotes greater
observation diversity. We can also observe that the entire image is not necessary to pre-
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dict motion; similar to the City experiment, only a restrained region is sufficient. From
the composed heatmap (i), we cannot distinguish between individuals glimpses, although
the typical Gaussian pattern for stochastic policies is well observed. Figure B.1 contains
the trajectories learned during training.

0 1 2 3 4 5 6 7

(a) Glimpse 1
0 1 2 3 4 5 6 7 8 9

(b) Glimpse 2

0 2 4 6 8 10

(c) Glimpse 3
0 2 4 6 8 10 12

(d) Glimpse 4

0 2 4 6 8 10

(e) Glimpse 5
0 2 4 6 8 10

(f) Glimpse 6

0 2 4 6 8 10

(g) Glimpse 7
0 2 4 6 8 10

(h) Glimpse 8

0 5 10 15 20 25 30 35 40

(i) All glimpses

Figure 5.16: Heatmaps of glimpses’ fixations for the entire sequence 2. The first glimpse is
randomly defined, and the RL agent chooses the other 7. Most of them are concentrated
between the image’s center and left border.
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The observations sequence depicted in Figure 5.17 shows that the glimpses are located
according to the heatmap, and the tendency is to explore high-gradient regions, which
are more informative for the problem. The glimpse sensor seems to use the peripheral
information only to some extent; one possibility is that the RL agent is learning a com-
plementary behavior. The scales information can be used to discard the current region
and jump to different ones in the expectation of finding more informative features.

(a) Glimpse 1 (b) Glimpse 2

(c) Glimpse 3 (d) Glimpse 4

(e) Glimpse 5 (f) Glimpse 6

(g) Glimpse 7 (h) Glimpse 8

Figure 5.17: The sequence of glimpses’ observations for the first frame on sequence 2. The
scales are used only to some extent; the glimpse sensor exploits high-gradient regions in
most captures.

Testing stage. The baseline RAM-VO was then tested on several sequences, as
shown in Figure 5.18; the training sequences are presented in Figure B.1. The results
indicate that the RAM-VO learned 6-DoF pose regression; moreover, it could generalize to
unseen sequences during training. The predictions generated for the train set show a drift
error caused mainly by the rotational component, whereas the translational component
impacts most of the predictions on the test set. Their origin is aligned to the ground-truth
to highlight the accumulated drift error; the Umeyama method [124] was used only on
computing the metrics.
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Figure 5.18: Trajectory predictions for training and testing sequences on the KITTI
dataset. The results indicate the baseline RAM-VO can generalize for unseen sequences.
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The prediction’s decomposition into the rotational and translational components al-
lows us to investigate in which situations the RAM-VO cannot make a good prediction.
For this, Figure 5.19 presents the 6-DoF regression for the entire sequence 7 separated by
each component. We can note that only some components have a more significant impact
on the drift error, such as the translational component x and z; although component y
seems to have a significant error visually, the variation interval is narrow. The transla-
tional error occurs mainly when the vehicle also performs a rotation; the RL agent presents
difficulty selecting image patches for both the rotational and translation prediction in the
same frame pair. Also, abrupt angle variation cannot be predicted adequately.
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Figure 5.19: The rotational and translational components for sequence 7 on the test set.
The translational drift error is significantly higher on the test set.

We conducted several experiments to provide a better understanding of the RAM-VO
behavior on complex sequences. Table 5.7 presents a summary for each experiment, in-
cluding the metrics RPE and ATE for predictions on train and test set. It is important
to note that the ATE metric can be misleading, as it evaluates the entire trajectory, so
rotation and translation errors might have a compensatory effect on specific trajectories,
producing a lower ATE. Therefore, it is preferable to compute relative metrics (RPE)
for 100 to 800-meter subsequences and calculate the average; furthermore, computing a
separate RPE for rotational and translational components provides a better understand-
ing of the system behavior. In the following experiments, we were mainly interested in
validating the number of glimpse’s and the RL policy on building a usable latent space for
regression. Thus, we vary the glimpse amount from 1 to 12; we also tested configurations
with random glimpses. For a detailed comparison by sequence, see Table B.1.

The first experiment consisted of capturing a single image patch at the image’s center.
The error metrics indicate that the model can overfit the train sequences well, possibly by
learning the appearance instead of geometry; however, the ability to generalize is strongly
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Train set Test set
Configuration t̄rpe(%) r̄rpe(

◦) ATE(m) t̄rpe(%) r̄rpe(
◦) ATE(m)

1 glimpse at center 0.9841 0.4077 3.2162 16.3689 7.6665 36.1037
1 glimpse random 16.5162 4.9401 127.1582 25.9694 7.9394 42.2208
4 glimpses 3.5918 1.6027 36.4627 10.9291 3.9851 17.4179
8 glimpses 3.0208 1.3928 20.3115 10.8881 4.2062 19.8061
8 glimpses random 5.2271 2.1264 58.1929 12.4608 4.1275 21.0045
12 glimpses 3.3349 1.5039 32.5167 13.1815 5.7713 24.7622

Table 5.7: The impact of glimpses on the average RPE and ATE for all sequences on train
and test set. t̄rpe represents the average translational RMSE drift (%) on length of 100m
to 800m. r̄rpe is the average rotational RMSE drift (◦/100m) on length of 100m to 800m.
ATE represents the average absolute trajectory error.

affected. The information captured from only a central region facilitates the learning
of the scale since it tends to be constant for most frames; however, some frames show
different behaviors (e.g., obstructions by other vehicles, reflections) and quickly degrades
the accumulated trajectory prediction. Also, only one capture in the same location reduces
the data diversity necessary to learn complex regressions; the model may memorize the
single patch instead of learning a general dynamic. The second experiment consisted of a
single capture in a random location; we can see that the training and the generalization
are harmed. Although a single random glimpse provides more diversity during training, it
tends to capture little and sparse information, which affects the scale learning and makes
robust predictions difficult. Random glimpses require general dynamics learning since the
input space is ample and the model’s capacity is limited. It is important to highlight
that these experiments do not use reinforcement learning since the location is already
determined. One evident conclusion from these experiments is that a single glimpse does
not provide enough information to generalize for unseen sequences.

The subsequent experiments aim to determine the impact of the information’s amount
on the regression quality; from this, we extend our knowledge to understand the policy’s
capacity to select informative image regions and the core network’s ability to integrate
them. Therefore, the experiments consisted of setting the glimpses amount to 4, 8, and
12; all of them determined by the learned policy. The best generalization results were
achieved with 4 and 8 glimpses; 12 glimpses have not provided better results, as more data
not necessarily means better predictions since the extra observations demand more from
the core network and the RL agent – a single poor observation can harm the entire latent
space. In the train set, 8 glimpses provided the smallest error for all metrics, followed by
the 12 glimpses; however, 4 glimpses present slightly better generalization results than 8
glimpses in the test set. There is a significant gap between train and test results, showed
mainly by the relative metrics.

The experiment with 8 glimpses provides the lowest error during training; however,
the results are still close to those presented by an 8-glimpse random policy for testing.
The RL agent’s difficulty in learning a better-than-average policy probably happens due
to a) the REINFORCE [130] algorithm presents difficulties in building a decent latent
space with information from rotation and translation; b) the state representation makes



79

the differentiation between states difficult, directly impacting the best action selection.
Therefore, the following sections will investigate the impact of replacing the REINFORCE
algorithm with Proximal Policy Optimization (PPO) [111], and improving the state rep-
resentation by adding optical flow as contextual information to initialize the RL agent
and also adding temporal information from the last frames.

5.2.1 Learning a Policy with Proximal Policy Optimization (PPO)

The REINFORCE [130] algorithm is known for presenting converge issues and slowness;
this occurs by sudden updates on the policy’s parameters, which can harm the entire
training by converging to suboptimal solutions and losing the entropy quickly – we desire
an algorithm that explores the state/action possibilities in the beginning, slowly converg-
ing to the best action selection as the training reaches its end. Another significant issue
occurs when using small mini-batches during training, which increases the variance across
episodes, making the convergence very slow. A baseliner network attenuates this variance
by learning the state value, but we can do it better by using a fully actor-critic algorithm.

The Proximal Policy Optimization (PPO) [111] aims to solve these problems by updat-
ing the policy inside trusted regions. Therefore, the PPO’s surrogate function determines
that the current policy must be close to the last one, avoiding large parameters shift.
Another essential feature employed in our method is the maximization of the entropy
during training – this feature is primarily used in maximum entropy methods and aims
to prevent the algorithm from quickly converging to local minima. The use of memory
replay also played an essential role since it enabled the policy refinement with already
sampled data, improving the architecture’s efficiency. We defined the refinement iteration
as 20, which means the RL policy updates in the proportion of 20:1, compared to the
supervised network. This is an important advancement since we always want the best
policy to control the input information flow.

In practice, the PPO implementation consisted of replacing the locator and baseliner
network with a similar architecture in terms of layers and hidden units, as detailed in
Table A.4. RAM-VO with PPO learned a different policy, although very similar to the
one learned by the REINFORCE algorithm. From the heatmap of all glimpses’ fixation,
as shown in Figure 5.20, we can observe the Gaussian pattern is still present, but with a
lower standard deviation.

We investigated the gap between train and test results through several experiments.
We hypothesize that the core network may have a larger capacity than the necessary for a
good state representation; this fact can harm the generalization since lowering the capacity
tends to promote the learning of better representations. The core network corresponds
to most of the model’s parameters; therefore, knowing the minimum capacity required
to achieve good results is crucial for delivering lightweight models. We captured eight
glimpses for all experiments to determine the impact of replacing REINFORCE by PPO.
Table 5.8 show the experiments performed by varying the core network’s hidden units
from 1024 to 512 and 256. For a detailed comparison by sequence, see Table B.2. The
chosen configurations generated architectures with large variance in parameters; therefore,
we can observe the capacity’s impact on the result’s quality and computational cost.
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Figure 5.20: The heatmap for all glimpses’ fixation on the test sequence 3. The learned
PPO policy presents similar behavior as those presented by the REINFORCE. The
heatmap is generated with the bicubic interpolation.

Train set Test set
Config. Param. t̄rpe(%) r̄rpe(

◦) ATE(m) t̄rpe(%) r̄rpe(
◦) ATE(m)

1024 REINF 17.35M 3.0208 1.3928 20.3115 10.8881 4.2062 19.8061
1024 PPO 16.54M 3.8720 1.5470 28.0067 9.5815 3.9858 14.7036
512 PPO 5.84M 5.2254 2.1378 40.8940 13.8468 6.6393 21.6508
256 PPO 2.92M 5.3610 2.2898 27.9853 9.8839 4.4774 16.1354

Table 5.8: The impact of model’s capacity on the average RPE and ATE for all sequences
on train and test set. t̄rpe represents the average translational RMSE drift (%) on length
of 100m to 800m. r̄rpe is the average rotational RMSE drift (◦/100m) on length of 100m
to 800m. ATE represents the average absolute trajectory error.

We conclude, from the experiments, that RAM-VO achieved the best generalization
results with 1024 hidden units and PPO. Since the only change was the REINFORCE
replacement by the PPO algorithm. We attribute the better generalization to learning
a more robust policy. This improvement, although subtle, allows us to achieve visually
better results, as shown by Figure 5.21. The other experiments aim to determine the
impact of lower capacity models on the regressions’ quality. We can observe that decreas-
ing the number of parameters increases the relative error during training; however, the
generalization is not strongly affected by the model’s capacity when evaluated in the test
set. Also, the 512-hidden-unit model performed worse than the 256 on the test; therefore,
we conclude that the states’ representation capacity does not significantly influence the
generalization.

The 1024-hidden-unit models have the best training and testing performance; however,
the difference in the results’ quality may not justify a three-fold increase in the parameters
amount. The RAM-VO version with 2.92 million parameters provided results compatible
with the 16.54-million version in the test; in contrast, similar methods easily pass 32
million parameters [126]. Deep RL tends to overfit the policy in training, having significant
issues with generalizing – we noted this behavior in our experiments. Increasing the
input data and model’s capacity tends to improve results in training but does not affect
generalization significantly. In conclusion, we can assert that PPO provided a slightly
better generalization capacity than the REINFORCE algorithm – partly proving our
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Figure 5.21: The impact of varying the core network’s hidden units on trajectory predic-
tions for train and test sets.

hypotheses H3 in which PPO can generate a useful latent space for regression, but, from
the experiments, we cannot affirm that the learned policy is more robust.

5.2.2 Providing Optical Flow as Contextual Information

Following our hypothesis that the RL states are poorly represented, we decided to initialize
the last LSTM layer in the core network with contextual information, as suggested in the
DRAM work [2]. The most helpful information is the optical flow extracted between the
two frames since it resumes the salient features required to predict the motion. We decided
to inform the dense optical flow extracted by the Farneback [33] method and use CNN
layers to determine their importance, as shown in Figure 5.22. Initializing the RL agent
with the dense optical enables it to determine the most valuable image regions for further
exploration through the subsequent glimpses; therefore, the optical flow is used to provide
an overview of the scene so that the agent can optimize the subsequent observations.

However, the initialization must occur only for the last LSTM hidden space h2
t ; the

regressor network must be changed to consume the first LSTM latent space h1
t . The

locator and baseliner networks still consume the h2
t . These alterations aim to prevent

the regressor from shortcutting the observations’ integration and learning directly from
the contextual information. The context network is then trained with gradients provided
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Figure 5.22: The RAM-VO architecture with contextual information. The modifications
included adding a secondary network to provide contextual information from the dense
optical flow. The context is used to initialize the RL state and give a scene overview for
further observations. The baseliner network was omitted.

by the baseliner network; thus, the goal is to maximize the expected reward. The entire
process consists of extracting the optical flow from the input image pair, resizing it to
a determined size by an average pool operation, and processing it through four convo-
lutional layers with four channels. Similar to the glimpse network, we do not employ
pooling operations between layers. For more information on the model’s configuration,
see Table A.5.

The context network can also be seen as a primitive bottom-up attentional system,
where the salient features present on the scene are informed to the agent a priori. Af-
terwards, the agent captures more details guided by cognitive processes, in this case,
represented by the locator network; this process is called top-down attention. In this
sense, contextual information provides a second kind of attention to the RAM-VO; and
the LSTM latent space initialization provides a way to embed information for the first RL
state. This allows the agent to have a scene overview of interesting regions and determine
the first glimpse location instead of randomly chosen.

Also, the optical flow allows the RL agent to determine whether the vehicle is either
in rotational or translational motion so that the integration of the observations can occur
appropriately. The optical flow can be represented as an image, where the flow’s magni-
tude and direction are represented in independent channels, as shown in Figure 5.23. The
Farneback [33] method generates an image pyramid with increasing resolutions, which
enables tracking large object’s motion; however, more pyramid levels increase the com-
putation cost – we keep it as 10 with a window size of 40x40 pixels. The motion is
tracked from the lowest-resolution level, and it is refined as the keypoints are propagated
to the next level. Sparse optical flow can also be used, but a different structure must be
implemented to deal with the features’ representation.

The RAM-VO results achieved with contextual information are shown in Table 5.9.
For a comparison by sequences see Table B.3. Both relational and absolute pose errors
have diminished compared to the RAM-VO without context; however, the generalization
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(a) Translation motion on frame 0. (b) Translation motion on frame 36.

(c) Rotation motion on frame 112. (d) Rotation motion on frame 122.

Figure 5.23: Dense optical flow extracted by the Farneback [33] method for rotational
and translational motions on sequence 0. We can observe that the motion dynamics
are different: rotational information tends to be present on the entire image, while the
translational are mainly concentrated around the borders.

results have not shown any improvement. The better results achieved in training may
not justify the addition in complexity and computation cost; the context network added
almost 5 million parameters to the baseline model.

Train set Test set
Config. t̄rpe(%) r̄rpe(

◦) ATE(m) t̄rpe(%) r̄rpe(
◦) ATE(m)

Baseline 3.0208 1.3928 20.3115 10.8881 4.2062 19.8061
Baseline w/ context 2.5410 1.1668 17.3839 11.7558 5.3126 23.7073

Table 5.9: The impact of contextual information on the average RPE and ATE for all
sequences on train and test set. t̄rpe represents the average translational RMSE drift (%)
on length of 100m to 800m. r̄rpe is the average rotational RMSE drift (◦/100m) on length
of 100m to 800m. ATE represents the average absolute trajectory error.

The RL agent’s initialization with optical flow tends to generate policies that explore
regions where motion is more apparent, as seen in Figure 5.24. We can observe that the
totality of 8 glimpses cover central regions where mainly rotation is present; also, the scales
are more explored than the baseline version. Important to highlight that several hyper-
parameters determine the sparse optical flow extraction; therefore, even regions where
significant motion is not identified may present important information for regression. In
conclusion, optical flow can be used to initialize the RL agent and achieve better results,
at least in training – proving our hypothesis H4.

5.2.3 Learning Sequential Information

Although RAM-VO can generalize for unseen sequences, some trajectories accumulate a
significant drift error. One way to attenuate this is to incorporate temporal information
instead of only training with random image pairs. Informing previous frames than the
current one allows the network to determine what kind of motion is in progress; this
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(a) The baseline RAM-VO.

(b) RAM-VO with contextual information.

Figure 5.24: The sparse optical flow with eight glimpses captures for the first frame pair
on test sequence 3.

generates a more robust representation of the RL state, making it possible to improve
differentiation between states and, consequently, choose the best action.

In this sense, we propose two experiments with substantial differences between them.
The first experiment consists of adding two previous frames, totaling four frames, and
inserting them in the channels of convolutional operations. The second experiment con-
sists of distributing the glimpses between the four frames so that the first pair of frames
receive four glimpses and the current one receives the other four glimpses; in this case,
the agent’s environment has been extended. The glimpses’ observations for the first ten
frames in sequence 8 with the 2-2-sequential model is shown in Figure 5.25, indicating
that the model tends to cover on average regions of high magnitude in optical flow.

The experiment with four frames on the CNN channels has not shown any improve-
ments; instead, it increased the translational error significantly. The geometry learning
seems to be more accurate when applied only to two frames, and four frames seem to
have caused more losses in the motion representation. The experiment with 2-2 sequen-
tial frames, although it has not achieved better results, it showed competitive results
compared to the baseline. We considered that improving the RL state by increasing the
environment’s information is a better way to incorporate sequential information than on
the CNN channels. The results of the experiments are shown in Table 5.10. For a complete
comparison by sequence, see Table B.4.
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(a) Frame 1 (b) Frame 6

(c) Frame 2 (d) Frame 7

(e) Frame 3 (f) Frame 8

(g) Frame 4 (h) Frame 9

(i) Frame 5 (j) Frame 10

Figure 5.25: The sequence of glimpses’ observations for the first 10 frames on sequence 8
with optical flow. The glimpses seem to have a predilection for cover regions with high
magnitude in optical flow.

Train set Test set
Config. t̄rpe(%) r̄rpe(

◦) ATE(m) t̄rpe(%) r̄rpe(
◦) ATE(m)

Baseline 3.0208 1.3928 20.3115 10.8881 4.2062 19.8061
4 frames on channels 6.0316 2.4514 56.8278 15.0731 7.4456 26.8214
2-2 frames sequential 3.5017 1.6121 15.6343 12.7082 5.5148 22.4577

Table 5.10: The impact of sequential information on the average RPE and ATE for all
sequences on train and test set. t̄rpe represents the average translational RMSE drift (%)
on length of 100m to 800m. r̄rpe is the average rotational RMSE drift (◦/100m) on length
of 100m to 800m. ATE represents the average absolute trajectory error.
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5.3 Comparison with Literature

This section presents a brief literature comparison between RAM-VO and similar methods.
For this purpose, we selected the model with the best generalization results. In this
case, the RAM-VO with PPO will be compared to ORB-SLAM [87], DeepVO [126], and
ESP-VO [127], as shown in Table 5.11. All selected methods perform monocular visual
odometry in the KITTI dataset. Except for the ORB-SLAM method, the others are
end-to-end learning methods.

Input Seq. 03 Seq. 07 Seq. 10
Method data(%) trpe(%) rrpe(

◦) trpe(%) rrpe(
◦) trpe(%) rrpe(

◦)

ORB-SLAM [87] - 21.07 18.36 24.53 38.90 86.51 98.90
DeepVO [126] 100.00 8.49 6.89 3.91 4.60 8.11 8.83
ESP-VO [127] 100.00 6.72 6.46 3.52 5.02 9.77 10.20
RAM-VO 1024 5.68 5.72 3.08 9.17 5.63 13.85 3.24
RAM-VO 256 5.68 7.08 4.01 7.55 4.30 15.02 5.12

Table 5.11: RAM-VO results compared with other methods on test sequences. trpe is the
average translational RMSE drift (%) on length of 100m to 800m. rrpe is the average rota-
tional RMSE drift (◦/100m) on length of 100m to 800m. RAM-VO presents comparable
results with significantly fewer parameters and input information consumption.

RAM-VO obtained competitive results using less input information than similar meth-
ods, around 5.7% of the total available (considering the eight glimpses with the size of
32x32 pixels). While RAM-VO uses top-down attention to capture regions of interest,
methods like ORB-SLAM need to analyze an entire image to detect keypoints. Besides,
ORB-SLAM is a geometric method that depends on high-texture regions for an accurate
keypoint match between frames. In the same sense, the results provided by ORB-SLAM
have some improvements over pure odometry, such as bundle adjustment – which makes
a fair comparison problematic; however, it enables us to analyze the difference between
learning-based and geometry-based methods.

DeepVO and ESP-VO are both based on the FlowNet [36] architecture and therefore
have more convolutional layers and channels than RAM-VO. These architectures perform
direct visual odometry by determining the frames’ correspondence from the pixel values;
therefore, they are more robust to outliers than ORB-SLAM. However, direct methods
are costly, especially DeepVO and ESP-VO, which use the entire image as input. In
visual odometry, the motion is present in the entire image; hence, more data does not
necessarily bring novel information. Nevertheless, an efficient image patch selection and
integration become necessary since inappropriate regions could be selected (e.g., other
vehicles, walking people, low-contrast and high-reflective regions) – with RAM-VO, we
demonstrate this assumption to some extent.

As observed during the architecture’s construction, RAM-VO presents difficulty ob-
taining the world scale and determining the translational motion with greater precision.
This issue probably happens due to the small image patches that, depending on the vehi-
cle’s velocity, can prevent the overlap between frames, compromising the regression since
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it relies on the features’ correspondence. The other methods can achieve better results
concerning the translational component because they do not impose any restriction on
the image size, allowing more overlap across frames.

The model’s capacity is also a relevant fact to be considered. Although DeepVO and
ESP-VO may present similar results on average, the RAM-VO with 256 hidden units in
the core network achieves comparable results with only 2.7 million parameters in total –
which is much lower than the 17 million parameters reached by the RAM-VO with 1024
hidden units. Concurrent methods regularly pass 32 million parameters, especially when
they are extensions of architectures like AlexNet [65], and FlowNet [36]. Also, these CNN
networks are considerably deep and add a high cost in terms of floating-point operations,
making the training slow and the deployment a complicated task.

In the same way, the results presented by the ORB-SLAM are worse compared to
learning-based methods, but they are sufficient to build online applications on mobile
devices. Learning-based methods tend to be slow and costly to run due to requiring
high-end devices with large processing power, GPUs, and better batteries; all these issues
make adopting learning methods problematic. In this context, RAM-VO represents an
alternative method capable of providing results similar to large models but with a smaller
cost in terms of trainable parameters and floating-point operations.
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Chapter 6

Conclusion and Future Work

In this work, we proposed the RAM-VO architecture for end-to-end visual odometry re-
gression using only monocular images. RAM-VO is extended from RAM [80] architecture
and therefore implements visual attentional concepts for an optimized selection of input
information; the image’s observations are guided by reinforcement learning and integrated
on a recurrent basis. To the best of our knowledge, RAM-VO is the first architecture for
visual odometry that implements reinforcement learning in part of the pipeline. The
experimental results indicate that RAM-VO can predict 6-DoF poses in the real-world
KITTI [42] dataset with moderate generalization for unseen sequences.

Initially, the RAM architecture was extended to regression tasks in simple problems
such as the Pixel dataset; after that, more sophisticated spatial (CNN) and temporal
(LSTM) elements were included to improve the prediction in complex visual scenarios
as the City dataset. Developing our datasets allowed us to incrementally increase the
problems’ complexity, add the pertinent structures to address them efficiently, and adapt
the RAM to visual regression. From these modifications, we proved our hypotheses H1

and H2, in which RAM was able to perform complex and straightforward regressions using
visual information selected by an attentional mechanism.

Then, we proposed the RAM-VO architecture, which performed visual odometry in the
KITTI dataset. RAM-VO is fundamentally more complex than the previous architectures
since 6-DoF pose regressions are tricky, and the input images have increased in resolution.
Thus, we increased the model’s representation capacity and treated the input images in
the CNN channels to favor learning the scene geometry instead of appearance. The best
training and generalization results were achieved with 4-8 glimpses; more glimpses and
random policies have not provided efficient learning. Therefore, we conclude that the
REINFORCE [130] algorithm can learn a policy able to produce a usable latent space for
visual odometry, especially in the training set.

To investigate the performance gap between training and test results, we replaced
the REINFORCE algorithm with the Proximal Policy Optimization (PPO) [111], which
learned a visually similar policy, but improved the learning curve, prevented the model
from collapsing in some situations, and increased the model’s generalization capacity sub-
stantially. Therefore, the hypothesis H3 was partially proved, PPO algorithm produced
a usable latent space for visual odometry, but we cannot affirm that the learned policy
is more robust than the one learned by REINFORCE. Also, we investigated the model’s
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cost in terms of trainable parameters; we conclude that it is possible to achieve compara-
ble results between a 17-million-parameter and a 2-million-parameter model. Therefore,
capacity does not play a significant role in generalization; instead, the input/state repre-
sentation and the reward function should be investigated further.

We also carried out experiments to investigate the impact of producing RL states
more representative for the regression. Therefore, we added the dense optical flow as
contextual information to initialize the RL agent; contextual information helped the RL
agent to infer the motion present in the scene better, and consequently, determine the
subsequent observations with greater precision. The hypothesis H4 was then partially
proved since the optical flow improved the results in training but had a low impact in
generalization. In the same sense, RAM-VO was adapted to consume sequential frames
in the expectation of having a better state representation; however, no significant impact
on the predictions was observed.

The comparison with the literature indicated that RAM-VO could achieve competitive
results compared to similar methods using significantly less trainable parameters and input
information, proving our hypothesis H5. Similar learning methods use the whole input
image to determine the pose, while the RAM-VO can generate regressions with a small
fraction, around 5.7% of the whole available input data. RAM-VO was especially able to
predict rotational motion, being consistently better than similar methods; for translational
motion, it achieves comparable results. Therefore, considering the ever-growing demand
for robust and efficient methods, RAM-VO is another step towards this end.

For future work, we can highlight the improvement of the model’s generalization
through data augmentation and training with alternative datasets, in which the sequences
provide different dynamics, mainly for the vehicle speed. Another critical point is to im-
prove the model’s temporal representation with the possibility of adding external mem-
ories to keep information between distant frames – this would significantly impact the
drift error. Regularization techniques such as dropout and batch normalization should be
carefully investigated as a way to improve generalization. The reward function should be
explored in-depth; we believe that reward shaping can induce better policies.

The proposed architecture does not implement any method for correcting the tra-
jectory, such as local bundle adjustment. Therefore, the trajectories presented are only
computed considering the incremental pose’s displacement; RAM-VO can be extended
to include these features and reduce the drift error. Besides, inertial information such
as IMU can improve the translational motion; however, sensor fusion must be carefully
thought out. RAM-VO can be adapted to consume stereo and RGB-D images, which
significantly impact the depth prediction. Similarly, inverse depth maps can be gener-
ated by unsupervised learning and help to improve mainly the translational motion. One
valuable contribution would be generating depth maps from the small patches captured
by the glimpse network – currently, the depth maps computation is costly and considers
the whole image.

Self-attention is an essential step towards reducing the computational cost, primarily
if implemented in an end-to-end manner. Self-attention can be employed at three levels
in RAM-VO: a) replacing the convolutional networks and integrating the pixels of the
different glimpse scales; b) integrating the latent space of the two sensor glimpses; c)
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integrating the glimpses observations in the core network. Thus, the use of self-attention
would completely replace the need for CNN and LSTM structures. In the same line,
other attentional mechanisms can be implemented in other parts of the pipeline, such as
between the actor and the critic networks, and generate the predictions. The association
of reinforcement learning, attention, and memory elements provides a robust framework
to build cognitive architectures.

Learning the motion dynamics presented in visual odometry tends to be challenging
when training from scratch; further, the available datasets present few examples of the
many nonlinearities – learning complex regressions and optimal policies require as many
samples as possible. Therefore, transfer learning can be employed to reduce the training
cost and to provide generic dynamics. Curriculum learning is another important feature
that could improve the learning of better policies by incrementally increase the regression
difficulty – which could be done by starting the regression with only one component and
adding the others on the way. Meta-learning can also be an essential tool for learning
generic dynamics across many datasets, thus, solving the limitations presented by a single
dataset.

Finally, RAM-VO can be employed in many similar tasks, and a natural extension is
to use in Simultaneous Localization and Mapping (SLAM) and the other Structure from
Motion (SfM) techniques. Other domains can benefit from RAM-VO characteristics, such
as part-based models, face recognition systems, and image-to-text labeling. Also, RAM-
VO can easily be adapted to perform classification and to consume other kinds of input
data. The attentional system is ideal for integrating multi-modal data and extracting
meaningful representations; the reinforcement learning paradigm also allows the system
to find the most beneficial behavior for the task at hand.
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Appendix A

Architecture Configuration

This appendix will present the configuration and parameters used for training the model
and executing the experiments. We present the configurations for the architectures used
in the Pixel, City, and visual odometry experiments.

Network/Layer Neurons (in, out) Activation
glimpse.fc_xt_1 192, 192 relu
glimpse.fc_xt_2 192, 128 relu
glimpse.fc_xt_3 128, 128 linear
glimpse.fc_lt_1 2, 128 relu
glimpse.fc_lt_2 128, 128 linear
core.fc_gt_1 256, 256 relu
core.fc_gt_2 256, 256 linear
core.fc_ht_1 256, 256 relu
core.fc_ht_2 256, 256 linear
regressor.fc_rt_1 256, 128 relu
regressor.fc_rt_2 128, 2 tanh
locator.fc_mu_1 256, 64 relu
locator.fc_mu_2 64, 32 relu
locator.fc_mu_3 32, 2 tanh
locator.fc_std_1 256, 64 relu
locator.fc_std_2 64, 32 relu
locator.fc_std_3 32, 2 linear
baseliner.fc_bt_1 256, 64 relu
baseliner.fc_bt_2 64, 32 relu
baseliner.fc_bt_3 32, 1 linear

Table A.1: The model configuration for the experiments in the Pixel dataset.
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Network/Layer Configuration (in, out, others) Activation
glimpse.conv_xt_1_1 1, 4, kernel_size=5, stride=1 leaky relu
glimpse.conv_xt_1_2 4, 8, kernel_size=5, stride=1 leaky relu
glimpse.conv_xt_2_1 1, 4, kernel_size=5, stride=1 leaky relu
glimpse.conv_xt_2_2 4, 8, kernel_size=5, stride=1 leaky relu
glimpse.conv_xt_3_1 1, 4, kernel_size=5, stride=1 leaky relu
glimpse.conv_xt_3_2 4, 8, kernel_size=5, stride=1 leaky relu
glimpse.fc_xt_1 1352, 64 linear
glimpse.fc_xt_2 1352, 32 linear
glimpse.fc_xt_3 1352, 32 linear
glimpse.fc_lt_1 2, 128 relu
glimpse.fc_lt_2 128, 128 linear
core.lstm_ht 256, 512 relu
regressor.fc_rt_1 512, 256 relu
regressor.fc_rt_2 256, 2 tanh
locator.fc_mu_1 512, 64 relu
locator.fc_mu_2 64, 32 relu
locator.fc_mu_3 32, 2 tanh
locator.fc_std_1 512, 64 relu
locator.fc_std_2 64, 32 relu
locator.fc_std_3 32, 2 linear
baseliner.fc_bt_1 512, 64 relu
baseliner.fc_bt_2 64, 32 relu
baseliner.fc_bt_3 32, 1 linear

Table A.2: The model configuration for the experiments in the City dataset.
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Network/Layer Configuration (in, out, others) Activation
glimpse.conv_1_1 2, 32, kernel_size=3, stride=1 leaky relu
glimpse.conv_1_2 32, 32, kernel_size=3, stride=1 leaky relu
glimpse.conv_1_3 32, 64, kernel_size=3, stride=2 leaky relu
glimpse.conv_1_4 64, 64, kernel_size=3, stride=1 leaky relu
glimpse.conv_1_5 64, 128, kernel_size=3, stride=2 leaky relu
glimpse.conv_1_6 128, 128, kernel_size=3, stride=2 leaky relu
glimpse.conv_2_1 2, 32, kernel_size=5, stride=1 leaky relu
glimpse.conv_2_2 32, 32, kernel_size=5, stride=2 leaky relu
glimpse.conv_2_3 32, 64, kernel_size=5, stride=2 leaky relu
glimpse.conv_2_4 64, 64, kernel_size=5, stride=2 leaky relu
glimpse.conv_3_1 2, 32, kernel_size=5, stride=1 leaky relu
glimpse.conv_3_2 32, 32, kernel_size=5, stride=2 leaky relu
glimpse.conv_3_3 32, 64, kernel_size=5, stride=2 leaky relu
glimpse.conv_3_4 64, 64, kernel_size=5, stride=2 leaky relu
glimpse.fc_xt_1 2048, 256 linear
glimpse.fc_xt_2 1024, 128 linear
glimpse.fc_xt_3 1024, 128 linear
glimpse.fc_lt_1 2, 256 leaky relu
glimpse.fc_lt_2 256, 512 linear
core.lstm_ht_1 512, 1024 leaky relu
core.lstm_ht_2 1024, 1024 leaky relu
regressor.fc 1024, 256 leaky relu
regressor.fc_lt_1 256, 32 leaky relu
regressor.fc_lt_2 32, 2 linear
regressor.fc_lr_1 256, 32 leaky relu
regressor.fc_lr_2 32, 2 linear
locator.fc_mu_1 1024, 256 tanh
locator.fc_mu_2 256, 32 tanh
locator.fc_mu_3 32, 2 tanh
locator.fc_std_1 1024, 256 relu
locator.fc_std_2 256, 32 relu
locator.fc_std_3 32, 2 linear
baseliner.fc_bt_1 1024, 256 tanh
baseliner.fc_bt_2 256, 32 tanh
baseliner.fc_bt_3 32, 1 linear

Table A.3: The baseline RAM-VO configuration for the experiments in the KITTI dataset.
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Network/Layer Configuration (in, out) Activation
actor.fc_1 1024, 128 tanh
actor.fc_2 128, 32 tanh
actor.fc_3 32, 2 tanh
critic.fc_1 1024, 128 tanh
critic.fc_2 128, 32 tanh
critic.fc_3 32, 1 linear

Table A.4: The PPO network replaced the locator and baseliner networks on the baseline
RAM-VO.

Network/Layer Configuration (in, out, others) Activation
context.conv_1 2, 16, kernel_size=5, stride=1 leaky relu
context.conv_2 16, 16, kernel_size=3, stride=2 leaky relu
context.conv_3 16, 32, kernel_size=3, stride=2 leaky relu
context.conv_4 32, 32, kernel_size=3, stride=2 leaky relu
context.fc_xt 6656, 1024 leaky relu

Table A.5: The context network added to the baseline RAM-VO.
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Appendix B

Trajectory Predictions and Metrics

This appendix will present the trajectories’ predictions and metrics.
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Figure B.1: Other trajectory’s prediction for the baseline RAM-VO on the train set.
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Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 1.0763 0.4401 4.6062
2 1.1153 0.3974 6.1720
4 0.4678 0.3621 0.2870
5 0.9404 0.3878 3.7622
6 1.1564 0.4126 1.5388
8 0.9798 0.3978 2.9054
9 1.1526 0.4560 3.2415
Mean 0.9841 0.4077 3.2162

Test set
3 15.6642 5.3904 24.6669
7 14.5508 9.3104 28.7291
10 18.8916 8.2986 54.9151
Mean 16.3689 7.6665 36.1037

(a) 1 glimpse at center

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 23.1781 8.1843 305.9996
2 17.8436 5.3696 246.9051
4 11.5616 1.0198 12.4498
5 17.3727 6.2303 103.0818
6 11.8251 3.6210 31.7991
8 17.6408 4.5736 114.9046
9 16.1914 5.5823 74.9670
Mean 16.5162 4.9401 127.1582

Test set
3 19.6587 6.1033 24.9080
7 28.9232 10.4805 49.0730
10 29.3264 7.2343 52.6815
Mean 25.9694 7.9394 42.2208

(b) 1 glimpse random

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 6.8526 2.8410 110.9812
2 3.7823 1.4547 70.0347
4 0.8177 1.2061 0.6088
5 3.8986 1.7768 21.6607
6 2.1190 0.9397 4.7911
8 4.7732 1.7542 36.2751
9 2.8990 1.2459 10.8877
Mean 3.5918 1.6027 36.4627

Test set
3 11.0282 5.1012 7.6712
7 7.4283 3.6165 12.8483
10 14.3307 3.2376 31.7342
Mean 10.9291 3.9851 17.4179

(c) 4 glimpses

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 3.8358 1.7240 34.7433
2 3.4659 1.3217 46.6921
4 1.1637 0.6898 1.0144
5 3.6743 1.7049 15.9267
6 2.9833 1.5528 9.4757
8 3.3647 1.3694 21.4095
9 2.6575 1.3874 12.9188
Mean 3.0208 1.3928 20.3115

Test set
3 10.3137 4.8420 10.1368
7 7.2814 3.6886 13.9782
10 15.0694 4.0881 35.3034
Mean 10.8881 4.2062 19.8061

(d) 8 glimpses

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 7.4362 3.0950 136.6553
2 5.8078 2.1137 129.7836
4 1.3799 0.7238 1.3612
5 6.5283 3.0681 37.8829
6 2.9707 1.1420 5.3964
8 6.3407 2.5983 56.5116
9 6.1263 2.1442 39.7590
Mean 5.2271 2.1264 58.1929

Test set
3 11.5491 4.4609 8.0572
7 9.8063 5.1468 20.2515
10 16.0270 2.7750 34.7048
Mean 12.4608 4.1275 21.0045

(e) 8 glimpses random

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 4.6368 2.0435 68.8990
2 3.3005 1.3302 67.0351
4 0.4292 0.7193 0.2891
5 4.2827 1.9339 24.2714
6 2.6755 1.2114 7.7146
8 4.6252 1.9255 41.7535
9 3.3946 1.3636 17.6544
Mean 3.3349 1.5039 32.5167

Test set
3 13.0198 5.9033 15.9198
7 7.9654 5.0906 15.1237
10 18.5594 6.3199 43.2433
Mean 13.1815 5.7713 24.7622

(f) 12 glimpses

Table B.1: RPE and ATE metrics by sequence for the baseline RAM-VO.
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Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 3.3424 1.6220 29.2420
2 4.8571 1.7879 70.5255
4 1.0508 0.5456 0.9110
5 4.8045 1.9640 29.7684
6 2.1752 1.0551 5.8504
8 4.9200 1.9146 23.6712
9 5.9543 1.9397 36.0784
Mean 3.8720 1.5470 28.0067

Test set
3 5.7210 3.0849 4.4624
7 9.1726 5.6282 12.6231
10 13.8508 3.2444 27.0254
Mean 9.5815 3.9858 14.7036

(a) 1024 hidden units

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 4.6124 1.9951 50.8312
2 6.5830 2.3823 111.2751
4 3.5543 2.1643 1.6722
5 6.2361 2.4078 33.8585
6 3.2783 1.3283 5.9350
8 5.7592 2.2392 39.1822
9 6.5545 2.4480 43.5041
Mean 5.2254 2.1378 40.8940

Test set
3 16.3040 7.7288 16.1894
7 9.2066 7.7197 21.7765
10 16.0297 4.4694 26.9866
Mean 13.8468 6.6393 21.6508

(b) 512 hidden units

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 6.1718 2.5393 52.4030
2 5.1550 1.9580 54.9758
4 1.7816 1.7199 1.2154
5 5.8573 2.7780 22.5703
6 8.1119 2.9400 23.4548
8 6.7982 2.4358 26.2370
9 3.6509 1.6576 15.0408
Mean 5.3610 2.2898 27.9853

Test set
3 7.0859 4.0115 6.7140
7 7.5475 4.3027 11.6459
10 15.0185 5.1179 30.0463
Mean 9.8839 4.4774 16.1354

(c) 256 hidden units

Table B.2: RPE and ATE metrics by sequence for the RAM-VO with PPO.
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Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 3.3473 1.4112 45.1485
2 2.6061 0.9661 23.6524
4 0.8735 1.2657 0.5595
5 4.0874 1.6830 25.5541
6 1.8174 0.7626 4.0826
8 2.6959 1.1845 18.7020
9 2.3593 0.8943 3.9882
Mean 2.5410 1.1668 17.3839

Test set
3 8.8108 5.3063 9.2007
7 10.0028 6.1038 22.4449
10 16.4538 4.5277 39.4764
Mean 11.7558 5.3126 23.7073

Table B.3: RPE and ATE metrics by sequence for the RAM-VO with context.

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 5.9431 2.4440 73.9850
2 7.3894 2.6324 149.6708
4 1.5093 1.0244 0.6390
5 7.6114 3.3830 42.1866
6 4.1802 1.7005 6.7460
8 7.8974 3.1604 69.9174
9 7.6905 2.8151 54.6501
Mean 6.0316 2.4514 56.8278

Test set
3 16.0100 9.6344 19.0475
7 9.2246 5.8308 20.1384
10 19.9846 6.8716 41.2782
Mean 15.0731 7.4456 26.8214

(a) 4 frames on the CNN channels

Train set
Seq. trpe(%) rrpe(

◦) ATE(m)

0 4.0976 1.6976 18.5851
2 3.8759 1.5965 35.9077
4 0.8953 1.6918 0.6451
5 4.5682 1.9319 19.3594
6 3.4979 1.4174 4.5701
8 3.7940 1.4561 18.4065
9 3.7830 1.4934 11.9661
Mean 3.5017 1.6121 15.6343

Test set
3 13.3778 6.6116 15.8119
7 8.2596 4.7371 14.5764
10 16.4871 5.1957 36.9847
Mean 12.7082 5.5148 22.4577

(b) 2-2 frames sequential

Table B.4: RPE and ATE metrics by sequence for the RAM-VO with sequential informa-
tion.
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