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RESUMO 

A proteína mTOR (mammalian target of rapamycin) é uma proteína quinase de serina e 

treonina, que funciona como um integrador celular para o crescimento e atividades metabólicas. 

mTOR existe em dois complexos: mTORC1 e mTORC2. mTORC1 responde a uma variedade 

de sinais, incluindo fatores de crescimento, hormônios, citocinas, glicose, energia e 

aminoácidos. A sinalização de aminoácidos através de mTORC1 depende de uma família de 

proteína pequenas GTPases. As GTPases Rag são ativadas por um complexo pentamérico 

denominado Ragulator. O complexo Ragulador foi recentemente identificado como fator de 

troca de nucleotídeo de guanina (GEF) para as GTPases Rag. Vários estudos indicaram a 

importância do complexo Ragulator para a ativação de mTORC1 na sinalização mediada por 

aminoácidos. O complexo consiste em MP1, p14, p18, HBXIP e C7orf59. Aqui apresentamos 

a estrutura cristalográfica de C7orf59-HBXIP que exibe o domínio roadblock assim como MP1 

p14. Surpreendentemente, a região N-terminal de C7orf59 apareceu como um loop não 

estruturado, o que é uma informação completamente nova. A presença do N-terminal flexível 

lembra a subunidade Ego2 do complexo Ego em levedura. Os resultados da mutagênese nos 

levaram a desvendar os achados iniciais de um possível mecanismo regulador para a ativação 

de mTORC1 envolvendo a quinase PKA e subunidades do Ragulator. Após tratamento com 

moduladores de PKA, existe uma alteração clara no padrão de ligação de p18 e HBXIP com 

C7orf59. Tais descobertas abriram novas possibilidades de controlar a atividade mTORC1 

especialmente em condições patológicas. Propusemos também uma interface potencial de p18 

com C7orf59 e MP1-p14 através de mutantes de terminação prematura e dados de ligação 

cruzada e espectrometria de massas. Os dados revelaram muita informação que seria útil para 

futuros estudos sobre o complexo Ragulator e sua caracterização como alvo potencial para 

controlar mTORC1 em várias condições patológicas. 

Palavras-chaves: proteína quinase de serina, sinalização de aminoácidos, subunidades do 

complexo Ragulator, estrutura cristalográfica 	  



	

    

ABSTRACT 

 

The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase, which 

functions as a cellular hub for growth and metabolic activities. mTOR exists in two complexes 

mTORC1 and mTORC2. mTORC1 responds to a variety of signals including growth factors, 

hormones, cytokines, glucose, energy and amino acids. Amino acids signaling through 

mTORC1 depends on a family of small Ras-related GTP-binding protein. Rag GTPases are 

activated by a pentameric complex named Ragulator. Ragulator complex has recently been 

identified as guanine exchange factor (GEF) for the Rag GTPases. Several studies have 

indicated the importance of Ragulator complex for the activation of mTORC1 through amino 

acid signaling. The complex consists of MP1, p14, p18, HBXIP and C7orf59. Here we present 

the crystal structure of C7orf59-HBXIP that displays roadblock domain like MP1-p14. 

Surprisingly, the N-terminal region of C7orf59 appeared as an unstructured loop, which is a 

completely new information. The presence of flexible N-terminal reminds of the Ego2 subunit 

of Ego complex in yeast. Mutagenesis results led us to unveil the initial findings of a possible 

regulatory mechanism for mTORC1 activation involving PKA and Ragulator complex 

subunits.  Upon treatment with PKA modulators, there is clear change in the binding pattern of 

p18 and HBXIP with C7orf59. Such findings have opened a new way of controlling mTORC1 

activity especially in pathological conditions. We have also proposed a potential interface of 

p18 with C7orf59 and MP1-p14 through stop codon mutants and crosslink data. The observed 

data revealed a lot of information that would be useful for future studies on Ragulator complex 

and its characterization as potential target to control mTORC1 in various disease conditions. 

 

Keywords: serine/threonine protein kinase, amino acids signaling, subunits of Ragulator 

complex, crystal structure 
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PKCβ - Protein kinase C β  
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Chapter 1 

1. INTRODUCTION	

 The organizational and functional complexity endorsed by all the eukaryotic organisms 

deeply relies upon the balancing act between the anabolic and catabolic cellular activities in 

mutable environmental conditions. The execution of growth related processes requires the 

detection and coordination of favorable conditions such as nutrients, growth factors and high 

energy levels. Conversely, lack of growth stimulating signals hinders cell growth and promotes 

catabolic activities. Most eukaryotic organisms have a conserved signaling pathway controlled 

by the protein kinase TOR (Target of Rapamycin) which enables them to survive in nutrient 

insufficient/deprived conditions. 

 

1.1 THE	TARGET	OF	RAPAMYCIN	KINASE:	STRUCTURE	AND	FUNCTION	

 The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that 

belongs to phosphatidylinositol 3-kinase-related kinase protein family and is also known 

as mechanistic target of rapamycin or FK506 binding protein 12-rapamycin associated protein 

1 (FRAP1) (Brown et al., 1994; Chiu et al., 1994; Sabatini et al., 1994; Sabers et al., 1995). The 

TOR proteins were first identified in yeast as mediator of rapamycin toxic effects (Cafferkey et 

al., 1993; Kunz et al., 1993). Over the last decades, rapamycin has been well characterized as 

an anti-fungal, immunosuppressive and anti-cancer drug. It was isolated from a bacterial strain 

Streptomyces hygroscopicus from the island of Rapa Nui. Initial screening showed that the 

compound seemingly did not have any effect on the bacterial cells while its uptake by yeast and 

mammalian cells led to significant growth arrest. Later on, several studies based on mammalian 

cells confirmed TOR as the target of Rapamycin (Brown et al., 1994; Sabatini et al., 1994; 

Sabers et al., 1995). In mammalian cells, mTOR interacts with different proteins to form two 

complexes, mTORC1 and mTORC2, depending upon its distinct interaction with the accessory 

protein Raptor (regulatory-associated protein of mTOR) and with Rictor (rapamycin-insensitive 

companion of mTOR), respectively (Hara et al., 2002; Jacinto et al., 2004; Kim et al., 2002; 

Loewith et al., 2002; Sarbassov et al., 2004). The discovery of these two complexes added 

significant complexity to mTOR signaling as mTORC1 was found to be the real target of 

rapamycin inhibition while mTORC2 was initially considered rapamycin-insensitive (Jacinto 

et al., 2004; Sarbassov et al., 2004). However, mTORC2 is only insensitive to an acute dose of 
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rapamycin, exposure to chronic treatment can lead to disruption of its structure (Sarbassov et 

al., 2006).  

 

1.1.1 The architecture of two complexes: mTORC1 and mTORC2 

 Figure 1.1 illustrates the components of mTORC1 and mTORC2. On the structural 

basis, both mTORC1 and mTORC2 complexes share a structural core composed of the catalytic 

subunit mTOR and a β-propeller protein named GβL or Mammalian Lethal with sec-13 protein 

8 (mLST8) (Kim et al., 2003). These two complexes are defined by the presence of mutually 

exclusive subunits Raptor (regulatory associated protein of mTOR) in mTORC1 (Hara et al., 

2002; Kim et al., 2002) or Rictor (rapamycin insensitive companion of mTOR) in mTORC2 

(Jacinto et al., 2004; Sarbassov et al., 2004). Additionally, a negative regulator called DEP 

domain containing mTOR interacting protein (DEPTOR) (Peterson et al., 2009) and the 

Tti1/Tel2 scaffold protein complex (Kaizuka et al., 2010) are associated both with mTORC1 

and mTORC2. On the other hand, proline rich Akt substrate 40kDa (PRAS40), which 

negatively regulates the pathway, is an exclusive subunit of mTORC1 (Sancak et al., 2007; 

Thedieck et al., 2007), while mammalian stress-activated map kinase-interacting protein 1 

(mSin1) (Frias et al., 2006; Jacinto et al., 2006) and protein observed with Rictor 1 and 2 

(protor1/2) (Pearce et al., 2007; Thedieck et al., 2007) are specific to mTORC2. mTORC2 can 

be found in three variants, depending upon which of the three different isoforms of the mSin1 

is bound to the Rictor at the time of mTORC2 assembly. The existence of three mTORC2 

variants has been associated to varying level of insulin input (Frias et al., 2006). The diversity 

in the architectural assembly of both mTOR complexes is the basis of their different regulatory 

mechanisms and unique downstream effects mediated by distinct substrates.  
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through its component Tel2. Until year mid-2015, only low-resolution structure of full length 

Tor and mTOR were available. Baretić and colleagues have determined a 6Å resolution 

structure of the full-length Tor–Lst8 complex from the thermotolerant yeast Kluyveromyces 

marxianus (KmTor) (Baretić et al., 2016). The structure showed a dimer interface of two 

KmTor subunits distinct from the previously described interface in the low-resolution structure 

of human mTORC1.  

 A recent Cryo-EM structure of mTORC1 has revealed useful insight about subunit 

interactions and N-terminus HEAT repeats (Aylett et al., 2016). This structure, shown in Figure 

1.2, reveals that mTORC1 dimer adopts a	hollow lozenge shape, in which kinase domains of 

mTOR come close to each other and reside near the center of the assembly without making any 

contact. The peripheral regions of the complex are occupied by Raptor and mLST8. For better 

visual understanding, the structure was viewed from an angle perpendicular to the symmetry 

axis. mTOR kinase domains and mLST8 subunits with outwardly open active site clefts can be 

observed from one side of the complex. The other side revealed N-terminal HEAT repeat 

domains of mTOR forming two superhelical α solenoids. The two superhelical α solenoids can 

be differentiated into a large and small α solenoids. The seven repeats of larger one forms a 

highly curved superhelix, while the remaining repeats which are poorly resolved in the 

structure. The small section with seven HEAT repeats assumes a relatively linear arrangement 

and appears like a helical linkage to a more compact large α solenoids. The compact (large) and 

linear (small) superhelical α solenoids have been named as “horn” and “bridge” by the authors 

respectively. The horn and bridge are linked to each other while the HEAT repeats of two 

individual mTORC1 do not interact each other within the mTORC1 dimer. The first HEAT 

repeat of the mTOR horn region is buried in the base of the adjacent mTOR FAT domain, thus 

forming a solid foundation of mTORC1 dimer assembly. This new structure differs from the 

old monomeric crystal structure due to changes in the conformation of FAT domain triggered 

by dimerization (Aylett et al., 2016). 

 The Cryo-EM structure has revealed that the FRB domain and mLST8 prevents 

mTORC1 activity toward noncognate substrates by limiting the access to the adenosine5′-

triphosphate (ATP)–binding groove. The active site cleft not only appeared to be constricted by 

the FRB domain and mLST8, the RNC (Raptor N-terminal Conserved) domain of Raptor also 

restricts the active site from being accessed through solvent-exposed surface. The new 

mTORC1 structure dismisses the notion that rapamycin binding to mTORC1 destabilizes 

Raptor binding by steric hindrance (Yip et al., 2010). FKBP rapamycin binding domain (FRB) 
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is away from the dimerization interface and does not make any contact the RNC domain of 

Raptor (Aylett et al., 2016). 

	

Figure	1.2.	High-resolution	structure	of	mTORC1	and	core	structure	of	TORC1/TORC2	A:	 Schematic	

representation	 of	 the	 primary	 structure	 and	 domain	 organization	 of	 mTOR	 kinase.	 The	 Cryo-EM	

structure	 of	 mTORC1/FKBP	 complex	 (PDB:	 5FLC)	 is	 shown	 in	 cartoon	 representation	 in	 different	

orientations:	“front”	(B),	“back”	(C)	and	“top”	(D).	The	mTOR	subunit	is	colored	in	blue	shades	from	

light	(N-terminus)	to	dark	(C-terminus).	Raptor	is	colored	green,	mLST8	is	orange	and	FKBP	is	red.	The	

symmetry	related	subunits	of	the	dimeric	complex	are	colored	in	white.	E:	Superposition	of	the	core	

mTORC1/mTORC2	and	TORC1/2	complexes	 from	human	and	yeast,	 respectively.	 The	mTOR/mLST8	

subunits	 (PDB:	 5FLC)	 were	 superposed	 to	 the	 Cryo-EM	 structure	 of	 TOR/LST8	 complex	 from	 the	

thermophilic	 yeast	 Kluyveromyces	 marxianus	 (PDB:	 5FVM).	 The	 human	 complex	 is	 shown	 in	

blue/orange	as	indicated	and	the	yeast	complex	is	colored	white.	Figures	were	prepared	with	PyMol.	
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1.2	BIOLOGICAL	FUNCTION	AND	SUBSTRATES	OF	mTOR	COMPLEXES	

 Despite the widespread efforts to characterize the downstream effectors of mTOR 

pathway, there are relatively few validated substrates of mTORC1 and mTORC2, partially 

because unlike other kinases, mTOR lacks a clear linear consensus motif. An updated list of 

mTORC1 substrates includes 4E-BP, S6K, ULK1, Lipin1, TFEB, Grb10 (Yu et al., 2011), 

PRAS40, Maf1 (Kantidakis et al., 2010), and mTOR itself. These substrates differ in their 

rapamycin sensitivity, and mTORC1 rapamycin-sensitive and rapamycin-insensitive sites may 

even coexist in a single protein substrate (Kang et al., 2013).  

 mTORC1 regulates mRNA translation through its substrates 4E-BP1 (4E-binding 

protein 1) and S6 Kinase 1 (S6K), which were the first substrates to be identified and still are 

the most widely studied. When activated by the presence of nutrients and growth factors, 

mTORC1 inhibits 4E-BP1 and activates S6K1 through phosphorylation.  

 4E-BP1 is a translation initiation repressor which binds and sequesters the translation 

initiation factor eIF4E (Eukaryotic translation initiation factor 4E), and upon phosphorylation 

by mTORC1, 4E-BP1 can no longer repress the translation initiation process (Gingras et al., 

1998). The mTORC1 phosphorylation sites on 4E-BP1 are Ser65 (rapamycin sentitive), Thr37 

and Thr46 (both rapamycin insensitive). The rapamycin sensitivity of 4E-BP1 phosphorylation 

is cell type-dependent and it is frequently rephosphorylated  after long rapamycin exposure 

(Choo et al., 2008). 4E-BP1 mediates mTORC1 effects on cell proliferation, but not cell growth, 

the latter is dependent on S6K (Dowling et al., 2010). 4E-BP1 phosphorylation and 

4EBP1/eIF4E ratio seem to underlie, at least partially, the complex phenomenon of rapamycin 

resistance, in which a cell no longer responds to the cytotoxic effect of rapamycin (Alain et al., 

2012; Yoon and Roux, 2013). 

 On the other side, S6K1 phosphorylation on Thr389 behaves as a typical rapamycin-

sensitive site and its phosphorylation status is frequently used to monitor mTORC1 inhibition.  

The most known substrate of S6K1, which is also used as a proxy of mTORC1 activation, is 

the ribosomal protein RPS6 (component of 40S ribosome subunit). Although it has been thought 

that S6K exerts its effects on translation initiation by directly phosphorylating a ribosomal 

protein, recent findings indicate that RPS6 phosphorylation is not required for the downstream 

effects of S6K activation. The effects of S6K1 activation on translation initiation, ribosome 

biogenesis and increased cell size depend on its interaction or phosphorylation of some 

members of translation machinery including eIF4B (Eukaryotic translation initiation factor 4B), 

S6K1 Aly/REF-like substrate (SKAR), eukaryotic elongation factor 2 kinase (eEF2K), 
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eukaryotic initiation factor 3 (eIF3), 80 kDa nuclear cap-binding protein (CBP80) and 

programmed cell death 4 (PDCD4) (Magnuson et al., 2012; Zoncu et al., 2011b).  

 mTORC1 also controls the processing and nuclear localization of sterol-regulatory-

element-binding protein (SREBP) through S6K1 and Lipin 1 (Peterson et al., 2011). In turn, 

active SREBP enhances the expression of genes involved in pentose phosphate pathway (PPP) 

and lipid synthesis pathways (Düvel et al., 2010; Horton et al., 2002). mTORC1 also mediates 

the biosynthesis of pyrimidines by activating Carbamoyl-phosphate synthetase 2 (CAD2) 

enzyme and thus upregulates pentose phosphate pathway (PPP) (Ben-Sahra et al., 2013). 

mTORC1 also plays an important role in the negative regulation of the initiation of autophagy 

by directly phosphorylating its two substrates ATG13 (Puente et al., 2016) and ULK1 in the 

ULK1/Atg13/FIP200 complex (Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009). 

The details of how each substrate influences the anabolic and catabolic activities of the cell is 

described in ‘Downstream Effects of mTORC1’ section. 

 One of the major functions ascribed to mTORC2 is the regulation of the actin 

cytoskeleton and migration. However, the underlying mechanism through which mTORC2 

controls the assembly of actin fibers is still unknown. Although Ser2448 phosphorylation site 

is predominantly associated, yet it is not specific to mTOR catalytic subunit of mTORC1. On 

the other hand, in 2009 Copp et al. showed Ser2481 as mTORC2-specific phosphorylation site 

(Copp et al., 2009). Although active mTORC2 phosphorylates Akt (direct substrate) at Ser473 

that resides in the hydrophobic motif, still Akt can remain largely active due to phosphorylation 

of Thr308 by phosphoinositide-dependent kinase 1 (PDK1, PI3K/PTEN pathway). Both sites 

can be independently phosphorylated and do not display any hierarchical phosphorylation 

pattern. However, mTORC2-mediated Akt phosphorylation determines substrate specificity for 

Akt. Akt substrates include glycogen synthase kinase 3 (GSK3), tuberous sclerosis complex 

protein 2 (TSC2), BAD (Bcl-2-associated death promoter) and the forkhead class O 

transcription factors 1/3a (FOXO1/3a). Phosphorylation of FOXO1/3a and to some extent of 

BAD by Akt is linked to its Ser473 phosphorylation whereas Thr308 phosphorylation is 

sufficient to phosphorylate GSK3 and TSC2. It is important to mention that GSK3 and 

FoxO1/3a can also be phosphorylated by kinases S6K and SGK1 (Serum/glucocorticoid-

regulated kinase 1) respectively. Recently, SGK1 was identified as mTORC2 direct substrate. 

Various studies using different approaches have demonstrated that the effect of reduced 

mTORC2 activity on PKC (protein kinase C) protein levels and later PKCα and PKCε were 

identified as additional substrates of mTORC2. Since the discovery of Akt and PKC as 

substrates of mTORC2, it is obvious that mTORC2 also controls a number of important aspects 
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of cell survival, metabolism and growth activities through poorly understood mechanisms. It is 

critical to comprehend how mTORC2 governs these activities for better functional 

characterization of the kinase.     

 The topics discussed in this section and the following section are illustrated in Figure 

1.3. 

 

1.3	DOWNSTREAM	EFFECTS	OF	mTORC1	

 mTORC1 is considered as a cellular hub for growth and metabolic activities. Activated 

mTORC1 promotes anabolic process such as protein synthesis, lipogenesis, and energy 

metabolism (Zoncu et al., 2011) and inhibits autophagy and lysosome biogenesis whereas 

mTORC2 is activated by growth factors and regulates cytoskeletal organization and cell 

survival. mTORC1 has been better characterized over the last few years as compared to 

mTORC2. The remaining part of the introduction would be focused on mTORC1.  

 

1.3.1 Lipid synthesis 

 Proliferating cells require lipids to form membranes, and mTORC1 regulates 

lipogenesis by controlling the expression of multiple genes involved in the biogenesis of fatty 

acids and cholesterol. Sterol regulatory element binding protein 1/2 (SREBP1/2) transcription 

factors are the key players in this mechanism. mTORC1 controls the levels and availability of 

SREBP1/2 through different ways such as by limiting Lipin-1 (a phosphatidic acid 

phosphatase) from entering into nucleus by phosphorylating it. Unphosphorylated Lipin-1, 

upon entering the nucleus, can suppress SREBP1/2 levels (Düvel et al., 2010; Li et al., 2011; 

Porstmann et al., 2008; Wang et al., 2011). mTORC1 also promotes adipogenesis by enhancing 

the expression of peroxisome proliferator-activated receptor γ (PPAR-γ) (Kim and Chen, 2004; 

Zhang et al., 2009). 

 

1.3.2 Protein synthesis and ribosome biogenesis 

 Translation initiation/elongation factors and ribosomes biogenesis are the founding 

features of protein synthesis. Activated mTORC1 phosphorylates eukaryotic translation 

initiation factor 4E (eIF4E) binding protein 1(4E-BP1) and S6 kinase1 (S6K1). Upon mitogen 

stimulation, RPS6 (40s ribosomal subunit protein) has been observed to be phosphorylated by 

S6K1. mTORC1 activates S6K1 by phosphorylating it at a conserved threonine residue 389 

(Thr 389). This S6K1 activation via mTORC1 embodies a substantial role in the regulation of 
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5' TOP (terminal oligopyrimidine) mediated translation which involves a specific subset of 

ribosomal protein mRNAs and elongation factors with pyrimidine-rich sequence at their 5' end, 

referred to as a 5' TOP (Jefferies et al., 1997; 1994; Ma and Blenis, 2009). mTORC1 also 

controls cell cycle progression at G1 stage. The cap-dependent translation of the Cyclin D1 

(mRNA), one of the key regulators of G1 stage, is controlled by 4E-BP1. Cap-dependent 

translation heavily depends upon the attachment of initiation factor 4F (eIF4F) to the mRNA 

with extensive secondary structures. eIF4F is a complex of eIF4A, eIF4E, and eIF4G. In this 

complex, eIF4E is the cap-binding protein, which interacts with the 5’ cap of mRNAs. 

Unphosphorylated 4E-BP1 binds elF4E leading to the removal of eIF4F from the mRNA, which 

halts the cap-dependent translation. Upon phosphorylation, 4E-BP1 loses the interaction with 

elF4E, and promotes translation initiation (Sonenberg and Hinnebusch, 2009).  

 

1.3.3 Cellular energy levels and mitochondrial biogenesis 

 Mitochondrial membrane potential and function holds great importance in maintaining 

the energy hemostasis of the cell. Variations in the expression and translation of genes of the 

oxidative phosphorylation machinery directly reflects on the cellular ATP levels. As all 

anabolic activities require energy, the notion of potential involvement of mTORC1 in the 

regulation of mitochondrial biogenesis is indeed intriguing. A study based on the conditional 

deletion of Raptor in the skeletal muscle of mice demonstrated alterations in the mitochondrial 

phosphoproteome due to reduced expression of genes involved in the mitochondrial biogenesis 

(Bentzinger et al., 2008). The translocation of mTORC1 from cytoplasm to lysosomal surface 

has been well documented but the idea of mTORC1 shuttling in and out of the nucleus demands 

strong evidences. However, in 2007 Cunningham et al., showed that mTOR could directly 

influence the physical interaction and coactivation of the transcriptional factor yin-yang 1 

(YY1) by a nuclear co factor called PPARγ coactivator 1 (PGC-1alpha) (Cunningham et al., 

2007).  

 

1.3.4 Autophagy 

 Autophagy is a catabolic cellular process involved in cellular recycling, which depends 

on various protein complexes. One of these conserved complexes, formed by the kinase ULK1 

(unc 51 like kinase 1), ATG13 (autophagy-related gene 13) and FIP200 (focal adhesion kinase 

family-interacting protein of 200kDa) in mammals and the orthologues Atg1-Atg13-Atg17 in 

yeast, is the major target of TOR/mTORC1 regulation (Ganley et al., 2009; Hosokawa et al., 
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nature, yet the risk of renal cell carcinoma is increased (Kwiatkowski, 2003). LKB1 kinase 

inhibits the function of mTOR via AMP-dependent kinase pathway. Under low energy 

conditions, LKB1 activates AMPK, which in turn phosphorylates TSC2 that finally leads to 

inhibition of mTOR. Loss of function mutations in LKB1 and uncontrolled mTOR activity in 

low energy levels was observed in PeutzJeghers cancer prone syndrome (Shaw et al., 2004a, 

2004b). Different types of tumors such as endometrial carcinomas, lung carcinoma, 

glioblastoma, hepatocellular carcinoma, melanoma and prostate cancer lack functional PTEN. 

Loss of function is either because of mutations, silencing or because of gene deletion. Since 

PTEN negatively regulates Akt activation by PIP3 (phosphatidylinositol 3,4,5 trisphosphate), 

loss of PTEN will result in the activation of Akt, which will later activate mTORC1 (Easton 

and Houghton, 2006). Active Akt also suppresses p53 activity by phosphorylating MDM2 

(Mouse double minute 2 homolog, an E3 ubiquitin ligase). Phosphorylation by Akt results in 

the translocation of MDM2 to nucleus where it interacts with p53. MDM2 translocates p53 to 

cytosol for degradation (Hasty et al., 2013; Manning and Cantley, 2007).  

 In the early stage of tumorigenesis, the proliferating cells can outgrow their blood supply 

and suffer from oxygen deprivation. mTORC1 controls a diverse array of anabolic activities 

which makes it an oxygen sensitive pathway. The hypoxia negatively controls mTORC1 by 

inducing the expression of transcriptional regulation of DNA damage response 1 (REDD1), that 

results in the constitutive activation of TSC2 in a poorly understood fashion (DeYoung et al., 

2008; Reiling and Hafen, 2004; Wouters and Koritzinsky, 2008). Under moderate hypoxic 

conditions, AMP-dependent kinase dependent TSC1-TSC2 activation leads to inhibition of 

mTORC1 (Arsham et al., 2003). The interaction between mTOR and Rheb (Ras homolog 

enriched in brain, a small GTPase) is also interfered during low oxygen levels. Hypoxia 

inducible proteins such as myelocytic leukaemia tumor suppressor (PML) and proapoptotic 

protein BCl2/ adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) directly binds with 

mTOR and Rheb respectively and thus hinder the mTOR-Rheb interaction (Bernardi et al., 

2006; Li et al., 2007). Cancer cells bypass hypoxia-mediated negative-regulation of mTORC1 

by driving growth favouring mutations in the pathways regulated by hypoxia. Loss of PML is 

one of the ways through which tumorigenesis is promoted (Bernardi et al., 2006). In advanced 

cancers, where outgrowing tumor cells suffer through hypoxic stress, the O2 dependency of 

mTORC1 regulation forces cancer cells to re-establish mTOR signaling for protein synthesis 

and other anabolic activities for cell survival. However, which pathway components drive this 

hypoxia tolerance in cancer cells is still not clearly understood (Wouters and Koritzinsky, 2008) 

(Figure 1.4). 
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 Hypoxia can also induce unfolded protein response (UPR) in endoplasmic reticulum 

(ER) stress conditions. During ER stress, UPR signaling is activated by various other signals 

including secretory protein over load, redox state, glucose availability and calcium homeostasis. 

The general role of UPR signaling activation is to restore the ER homeostasis or in case of 

irreparable damage induce cell death. PKR-like ER kinase (PERK/ EIF2AK3), inositol-

requiring protein 1 (IRE1) and ATF6 (Activating transcription factor 6) are ER integral 

membrane proteins that function as stress sensors. Hypoxia stimulates autophosphorylation of 

PERK (Protein kinase R (PKR)-like endoplasmic reticulum kinase) and phosphorylation of 

EIF2α (Eukaryotic Initiation Factor 2 α), which is the main substrate of PERK. ATF6 negatively 

regulate the phosphorylation of EIF2α by upregulating GADD34 (growth arrest and DNA 

damage-inducible protein) that is a substrate targeting subunit of protein phosphatase 1. Protein 

phosphatase 1 holds phosphatase activity against EIF2α, as evidenced by the transient levels of 

phosphorylated EIF2α (reviewed by Wouters and Koritzinsky, 2008). PERK-dependent 

phosphorylation of EIF2α leads to overall inhibition of mRNA translation. Apart from 

controlling the ER stress, UPR signaling can also influence autophagy. In response to ER stress, 

autophagy happens to be mediated by either PERK or IRE1. IRE1 is another ER transmembrane 

stress sensor protein. It holds endonuclease activity. During ER based stress, IRE1 alters gene 

expression.  Its splicing activity against X-box binding protein 1 (XBP1) pre-mRNA that leads 

to the activation of XBP1 is evident in hypoxia. The ratio of spliced to unspliced XPB1 is 

associated to poor disease free survival rate in breast cancer (Davies et al., 2008). A study 

showed an increase in the apoptosis rate and compromised tumor growth when IRE1 dependent 

arm of UPR was disrupted in XPB1 knock out cells (Romero-Ramirez et al., 2004). 

 UPR signaling also promotes apoptosis in case of prolonged ER stress. The pro-

apoptotic family members BAX and Bcl2 homologous antagonist/killer (BAK) required for 

signaling the UPR transcriptional response are associated with XBP1 activation through IER1 

(Hetz et al., 2006). IER1 influences mTOR activity by recruiting TRAF2 (tumor necrosis factor 

receptor associated factor 2), that leads to the inactivation of insulin receptor substrate 1 (IRS1) 

through Jun N-terminal kinase (JNK)-mediated phosphorylation. IRS1 is a positive regulator 

of mTOR (reviewed by Wouters and Koritzinsky, 2008). S6K1, substrate of mTORC1 also 

forms a negative loop by directly phosphorylating the insulin receptor substrate-1 (IRS1) which 

leads to IRS1 degradation and reduces the ability of growth factors to signal downstream of 

receptor tyrosine kinase (RTK). The presence of such negative loops further contributes to 

limited efficacy of drugs (reviewed by Laplante and Sabatini, 2012).  
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 The importance of hypoxia in the regulation of mTOR is evident through its influence 

on autophagy and apoptosis. Oncogenic mutations in the regulatory components of the hypoxia 

mediated signaling pathways collaborate with mTOR to promote hypoxia tolerance.  The 

interplay between mTOR and UPR pathways needs further exploration for better 

characterization of therapeutic targets for cancer treatment. 

 Deregulation of mTOR signaling through its downstream effectors has also been 

associated with tumor growth since its substrate eIF4E-binding protein (4E-BP1) is a major 

player in protein translation. Phosphorylated 4E-BP1 binds with eIF4E to form eIF4F complex, 

and this complex promotes protein translation therefore, amplified phosphorylation of 4E-BP1 

by mTORC1 has been observed in various types of tumor. Irregular eIF4E-4E-BP1 axis is 

thought to fuel the translation of proteins involved in pro-oncogenesis and cell survival through 

an unknown mechanism (Laplante and Sabatini, 2012). Several types of late-stage carcinoma 

including head and neck carcinoma, breast (ductal cell) carcinoma and thyroid carcinoma 

reportedly show eIF4E gene amplification (Haydon et al., 2000; Wang et al., 2001). Elevated 

levels of eIF4E are also observed in some colon, breast and bladder carcinomas, however in 

case of breast and bladder carcinomas, high levels of vascular endothelial growth factor (VEGF) 

results in poor prognosis. In 2004 Wendel et al., showed how the cooperation of eIF4E with 

overexpressed c-myc promoted tumor formation in lymphomagenesis mouse model (Wendel 

et al., 2004). Down-regulation of eIF4E suppress the expression of angiogenic factors such as 

bFGF (Basic fibroblast growth factor) and VEGF and may possibly be therapeutically 

important in controlling the tumorigenicity. Considering the importance and frequency of 

overexpression of eIF4E in different types of cancer, in a 2006 review paper, Easton and 

Houghton pointed at the possibility that eIF4E may act as an oncogene under some conditions 

(Easton and Houghton, 2006).  

 In cancer-based studies, substantial amount of data has shown deregulation of pathways 

that lie upstream and downstream of mTOR whereas alterations in the expression or function 

related mutations in mTOR have not been reported. One can anticipate that cancer cells depend 

on mTOR pathway for continuous proliferation and care about the overall integrity of the 

kinase. Any variation within the kinase itself would not be favourable for the growing tumor to 

maintain the transformed phenotype. Apparently, tumor cell is not addicted to mTOR kinase; 

instead, aberrations in PI3K/AKT pathway are common in cancer.			
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caspase-9, IKKα and BAD to resist apoptosis (Manning and Cantley, 2007). Rapamycin can 

also indirectly activate PI3K-Akt independent effectors like PDK1. High levels of PDK1 have 

shown to be associated with sustaining tumor growth (Vasudevan et al., 2009). High 

concentration of rapamycin can also block mTORC2 activity but clinical applicability of such 

high levels of rapamycin demands thorough investigation (Shor et al., 2008). A series of 

structurally similar semi-synthetic derivatives of rapamycin have been developed. These 

derivatives namely Temsirolimus, Everolimus, Deforolimus, and Zotarolimus are collectively 

called Rapalogs (Benjamin et al., 2011). Rapalogs hold improved pharmacokinetic properties. 

They have the same mode of action as rapamycin and share similar side effects (Hartford and 

Ratain, 2007).  

 

1.5.2 Catalytic Inhibitors  

 Several groups have simultaneously reported another class of mTORC1 inhibitor that 

blocks mTOR catalytic site. The catalytic inhibitors of mTOR includes Torin (Thoreen et al., 

2009), PP242 and PP30 (Feldman et al., 2009), Ku-0063794 (García-Martínez et al., 2009) and 

WAY-600, WYE-687 and WYE-354 (Yu et al., 2009). Development of catalytic inhibitors 

presented another therapeutic advantage. These inhibitors not only inhibit all target activities 

of mTOR (both mTORC1 and mTORC2), they also obstruct Akt phosphorylation at Ser473. It 

would be interesting to determine if phosphorylation at Ser473 would affect Akt activity 

towards all its effectors or not, and if it does impair then to what extent. It is intuitive to think 

whether inhibition of all mTOR activities would cause potential toxicity. A study based on 

prostate cancer has shown that mTORC2 promotes tumor growth while lack of mTORC2 

activity did not display any toxic effect on normal prostate (Yu et al., 2009).  

 

 1.5.3 Rapalink: a third-generation mTOR inhibitor 

 Rapalink was designed by linking a first-generation mTOR inhibitor, which binds to 

one part of the molecule, to a second-generation inhibitor, which targets a separate pocket in 

proximity. Resistance screening in MCF-7 cells revealed three somatic mutations within 

mTOR. Two mutations A2034V and F2108L in the FRB-FKBP12-rapamycin-binding- domain 

confer resistance to rapamycin while the third mutation at a position of M2327I within the 

kinase domain aggravates resistance against AZD8055 (ATP competitive inhibitor) (Rodrik-

Outmezguine et al., 2016). The importance of these mutations concerning drug resistance came 

from the clinical data. A case report of a patient under treatment with everolimus (a rapalog), 
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after relapse acquired F2108L mTOR mutation (Wagle et al., 2014). Surprisingly, data from a 

different patient showed that hyperactive M2327I along with other kinase domain mutations 

were already present even before receiving any drug treatment (Grabiner et al., 2014). The 

recent elucidation of Cryo-EM structure of mTORC1 has also revealed that FRB and kinase 

domains exist in close proximity. The authors took a modeling approach to design a molecule 

that could bind both sites. Later, a bivalent molecule comprising rapamycin and MLN0128 

(highly selective catalytic site inhibitor) joined by a chemical linker was developed and named 

as RapaLink. RapaLink effect was tested in cells expressing F2108L and M2327I mTOR 

mutants, as expected RapaLink showed inhibitory effects on both mutants and cells did develop 

resistance for a period of nine months. Further, the new drug was also tested on xenografts in 

mouse model, again RapaLink showed promising results (Rodrik-Outmezguine et al., 2016). 

 

1.5.4 mTOR as a drug target: an open debate  

 mTOR pathway holds central role in various clinical pathologies such as diabetes, aging, 

neuro-degenerative diseases and more importantly cancer. Interestingly, mTOR pathway is 

rarely mutated in cancer but its activation is predominant in tumor growth, which has made it a 

popular target for the treatment of cancer. After the discovery of rapamycin inhibitory activity 

towards mTORC, both academics and pharmaceutical companies have made a lot of effort to 

manipulate the pathway that is so critical to cell growth and survival. Although rapalogs have 

shown promising anti-tumor effects, and some of them are also FDA (Food and Drug 

Administration) approved for use in chemotherapy. Temsirolimus and Everolimus are used in 

the treatment of renal cell carcinoma and kidney cancer respectively (Hartford and Ratain, 

2007). Still, the effectiveness of the drugs is only limited to extended survival rate in cancer 

patients. It is also important to understand that oncogenic/gain of function mutations in the 

downstream effectors of mTORC1 may also contribute to cell resistance to rapamycin/catalytic 

inhibitors treatment. Downstream effectors such as S6K1 and 4E-BP1 are crucial for cell 

proliferation and cancer growth, but inhibition of these substrates is also not sufficient to control 

tumorigenesis. Contrary to general understanding of mTOR activity in growth, inhibition of 

mTOR pathway sometimes may result in more aggressive tumor growth such as in case of 

colorectal carcinoma (O'Reilly et al., 2006). This might be due to Akt activation as rapamycin 

can block the negative feedback loop starting from S6K1 to PI3K. Rapamycin inhibits 

mTORC2 in a cell selective manner while partially inhibiting mTORC1, long exposure of 

rapamycin leads to disruption of mTORC2 complex. Taking the effect of rapamycin on 

mTORC2 disassembly into account, it is intuitive to think that rapamycin inhibits cell growth 
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due to loss of Akt activation because of mTORC2 disruption. Rapamycin inhibitory activity 

towards mTORC2 in select cells is not clearly understood as mTORC2 disruption is not 

correlated with the efficacy of rapamycin. Irregular eIF4E/4E-BP1 axis in cancer also explains 

the poor efficacy of rapamycin in certain cases as it cannot inhibit 4E-BP1 phosphorylation. It 

was initially proposed that binding of rapamycin in FRB domain may hinder with Raptor-

mTOR complex stability but recently discovered cryo-EM structure of mTORC1 has ruled out 

this possibility (Aylett et al., 2016). 

 The PI3K/Akt pathway lies upstream of mTOR and regulates various anabolic activities 

such as cellular proliferation and growth, survival and protein synthesis. Mutation or 

amplification of the PIK3CA gene is a frequent phenomenon that occurs in cancer cells. The 

frequency of aberrations in PI 3-K/AKT pathway in cancer has enhanced its importance for 

therapeutic uses. A wide range of PI3K/Akt cascade kinases has been validated as therapeutic 

targets. Since mTOR is a kinase, therefore the idea to target the catalytic site of mTOR led to 

the development of various ATP-competitive inhibitors.  

 Given the evidence that mTORC2 substrate Akt activation through PI3K pathway is 

involved in the regulation of mTORC1 activity through TSC1/2 axis, the researchers started to 

look for the ways to generate dual inhibition of PI3-Kinase and mTOR pathway. ATP-

competitive inhibitors include both dual PI3Kinase/mTOR and selective mTOR inhibitors. The 

thought behind the development of dual PI3Kinase/mTOR ATP competitive inhibitors was to 

target both pathways at the same time to generate a more pronounced effect. In theory, an ATP 

competitive inhibitor can also target mTORC2 pathway. Torin, an ATP-competitive inhibitor 

of mTOR, inhibited mTORC1 phosphorylations in a greater range as compared to rapamycin 

(Thoreen et al., 2009). The development of PI3Kα selective inhibitors such as PP242 and PP30 

offers an opportunity to explore an expanded role of mTOR within the PI3K/Akt pathway. 

PP242 inhibited 4EBP1 phosphorylation at Thr36, Thr45 and Ser65 and hindered cell 

proliferation in a dose dependent manner (Feldman et al., 2009). These findings revealed the 

rapamycin insensitive components of the mTOR pathway and demonstrated that rapamycin is 

a partial inhibitor of mTOR pathway. Several studies have shown the effects of various selective 

and dual ATP competitive inhibitors however, an optimally good dual PI3K/mTOR catalytic 

inhibitor with equal selectivity and less toxicity towards normal cells is yet to be developed. 

Drug combination such as an Akt inhibitor along with mTOR inhibitor is another approach that 

can be used to fully inhibit proliferation with lower chances of activation of feedback loops that 

may recapitulate the growth process. One of the major challenges in the development of the 

combination drug is to deal with the toxic response of each drug.  
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 Recently, the development of RapaLink, a third generation mTOR inhibitor has reached 

a new horizon in drug development process for the treatment of cancer (Rodrik-Outmezguine 

et al., 2016). It would be interesting to see how RapaLink or RapaLink alike drugs would 

behave in clinical setting. Intriguingly, screening of naturally occurring compounds might be 

anticipated to search for potential RapaLink-like molecules for future drug development. 

Lastly, mTOR inhibition remains an attractive option for therapeutic interventions for the 

treatment of cancer. Search for patterns in an evolving disease like cancer could pave a way for 

better target selection, development of novel drugs and overcome insurgence of resistance 

causing mutations. 

 

1.6 	INFLUX	AND	SIGNAL	INTEGRATION	UPSTREAM	OF	mTORC1		

 mTORC1 responds to a variety of signals including growth factors, hormones, 

cytokines, glucose, energy (AMP: ATP ratio), stress, oxygen levels and amino acids. All these 

inputs are channelled down through two distinct branches of the signaling cascade before they 

finally converge at mTORC1. 

 

1.6.1 Signal convergence through the TSC/Rheb-GTPase axis 

	 The transduction of signals such as growth factors, hormones and cytokines and several 

types of stress to mTORC1 is regulated at a midpoint where a heterodimer of Tuberous 

Sclerosis Complex 1 and 2 (TSC1/Hamartin and TSC2/Tuberin) acts as GTPase-activating 

protein (GAP) for the Ras homolog enriched in brain (Rheb) GTPase and promotes Rheb-GTP 

hydrolysis (Garami et al., 2003; Inoki et al., 2003; Tee et al., 2003; Zhang et al., 2003).  In its 

activated state, GTP-bound Rheb is a major upstream activator of  mTORC1 which acts by 

binding directly to mTORC1, this behavior of Rheb is observed concomitant of all stimuli 

including amino acids (Long et al., 2005). By acting as a GAP, TSC1/2 promotes the inactive 

state of Rheb, thereby preventing mTORC1 activation. TSC2 functions directly as a GAP for 

Rheb through a catalytic arginine located in a region homologous to the Rap1-GTPase-

activating protein domain  while TSC1 undertakes a scaffolding/regulatory function (Li et al., 

2004). The basal GTP-bound levels of Rheb are high and there is no evidence for the existence 

of any Rheb GEF (Laplante and Sabatini, 2012). In the absence of TSC1/2 complex, mTORC1 

is active even without upstream signals. This is observed as increased cell size both in TSC-

null mouse embryonic fibroblasts (MEFs) and in Tuberous Sclerosis patients which 

spontaneously develop benign tumors known as hamartomas. However, it has been observed in 
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TSC2-null MEFs, that just Rheb activation is not sufficient for mTORC1 activation: in case of 

amino acids deficiency, some other components of the pathway which are not part of TSC-

Rheb pathway can cause inactivation of mTORC1 (Long et al., 2005; Smith et al., 2005). 

 Physiologically, the mTORC1 activating signals act in different ways to neutralize the 

action of TSC1/2 complex thereby allowing Rheb to remain in its activated state. In the 

hormone/growth factor sensitive branch of mTOR signaling,  known as PI3K-Akt-mTOR 

pathway, Akt phosphorylates TSC2 and disrupts the heterodimer assembly, which promotes the 

accumulation of GTP-bound Rheb GTPase (Inoki et al., 2002; Manning et al., 2002; Potter et 

al., 2002). Phosphatidyl inositol-3-kinase (PI3K) mediates insulin-signaling effects through 

Akt. PI3K phosphorylates Phosphatidylinositol 4, 5-bisphosphate (PIP2) and converts it into 

Phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3). Conversely, PIP3 can be dephosphorylated 

by a tumor suppressor phosphatase PTEN. Loss of function mutations in PTEN have been 

reported in different types of cancers. PDK1 (3-phosphoinositide dependent protein kinase-1) 

and Akt are recruited to the plasma membrane by PIP3, enabling PDK1 to phosphorylate Akt 

at Thr308 site. Active Akt phosphorylates tuberous sclerosis complex protein 2 (TSC2). Upon 

phosphorylation, TSC2 is dissociated from the complex and can no longer inhibit Rheb GTPase. 

GTP bound Rheb interacts and activates mTORC1 at the lysosomal surface.  

 Other pathways signaling to mTORC1 through TSC complex include proinflammatory 

cytokine signaling through IkB kinase β (IKKβ), MAP kinase signaling through Extracellular-

signal-regulated kinase 1/2 (ERK1/2), canonical Wnt signaling through GSK3-β (in this case, 

GSK3-β-mediated phosphorylation of TSC2 promotes its GAP activity and Wnt pathway 

activation results in inhibition of GSK3-β). All these pathways result in inhibition of either 

TSC1 or 2 and consequently mTORC1 activation. On the other hand, sensing of stress 

conditions such as hypoxia and low energy levels (low ATP:AMP ratio) through Adenosine 

monophosphate-activated protein kinase (AMPK) results in phosphorylation and activation of 

TSC2 and consequently inactivation of mTORC1 (Laplante and Sabatini, 2012). 

 

1.6.2 TSC-independent, Rag-mediated amino acid sensing  

 The TOR pathway evolved as a nitrogen sensor for environmental conditions in 

unicellular eukaryotes, which in mammals translates as amino acid sensing which acts in 

concert with other cues such as growth factors and hormones to coordinate cell growth in a 

multicellular context. It has been known for a long time that mTORC1 is activated by amino 

acids in a TSC-independent fashion (Smith et al., 2005), however, TSC antagonizes amino acid 

signaling to mTOR (Gao et al., 2002; Inoki et al., 2002; Tee et al., 2002). The presence of amino 
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acids is a necessary condition for the activation of mTORC1, even in the presence of other 

signals as discussed above (Hara et al., 1998). Despite its ancestral function, the mechanism for 

sensing intracellular amino acids remained unclear until 2008, when Kim et al., and Sancak et 

al., independently discovered the involvement of a family of small Ras-related GTP-binding 

protein (RRAGs) in amino acid dependent activation of mTORC1 (Kim et al., 2008; Sancak et 

al., 2008). In their activated state, promoted by amino acid sufficiency, these GTPases interact 

with mTORC1 and recruit it to the lysosomal surface where Rheb resides. This mechanism 

explains the need for both inputs (nutrients and growth factors) to fully activate mTORC1 

signaling. The recent elucidation of the mechanisms of amino acid sensing is described in detail 

in the next section. 

  

1.7 AMINO	ACID	SIGNALING	TO	mTORC1	

 In the past decade, a series of experiments led to the elucidation of an intricate network 

of proteins involved in amino acid sensing, starting with the discovery of Rag GTPases which 

are more proximal to mTORC1, followed by characterization of their positive and negative 

regulators and ultimately unravelling the structural basis for upstream leucine and arginine 

sensing.  

  Rags are small GTPases of the Ras superfamily, which exist as obligate heterodimers, 

contrasting with the majority of small GTPases, which are monomeric. In  mammals, there are 

four Rag proteins which  form obligate heterodimers: RagA or RagB dimerizes with RagC or 

RagD (Sekiguchi et al., 2001). They are orthologous to yeast proteins Gtr1 and Gtr2, 

respectively. These heterodimers seem to have a preference for opposite nucleotide loading 

states, such that when RagA/B is loaded with GTP, their partner RagC/D would be loaded with 

GDP. The nucleotide loading of RagA/B defines the activation state of the dimer (Bar-Peled et 

al., 2012). The active dimer, containing GTP bound RagA/B and GDP-bound RagC/D, interacts 

with Raptor component of mTORC1, consequently, mTORC1 translocates from cytoplasm to 

lysosomal surface, where it can now interact with Rheb GTPase to become active (Bar-Peled 

et al., 2012). Amino acids promote the GTP loading on RagA/B through an unknown 

mechanism (Jewell et al., 2013). Rag GTPase binds with a multisubunit complex of proteins 

called Ragulator (Sancak et al., 2010). The Rag-Ragulator complex pathway will be discussed 

in details later in the section about lysosomal regulation of mTORC1. 

 The activation and inactivation of GTPases rely on the bound state of GTP. GTP-bound 

small GTPases are active (meaning that they can recruit their effectors) while GDP-bound 

GTPases are inactive. Usually, the intrinsic hydrolysis of bound GTP to GDP is very slow in 
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small GTPases therefore they require a GTPase Activating Protein (GAP) to assist the 

hydrolysis of bound GTP to GDP. On the other hand, GEFs (Guanine nucleotide Exchange 

Factors) can remove the bound GDP and leave an empty site, promoting the binding of a GTP 

molecule, which is more abundant than GDP in the cytosolic environment and enters the 

GTPase active site by diffusion. In the case of Rags, the activated obligate heterodimer state is 

represented as RagAGTP/RagCGDP while the inactive state is RagAGDP/RagCGTP (where RagB 

might substitute for RagA, and RagD might substitute for RagC). The dimeric assembly 

suggests that each one of the monomers might have their own GAPs and GEFs, adding 

significant complexity to the system. After the discovery of Rag GTPases in amino acid sensing, 

an effort was initiated to find these regulatory factors, which might hold the answer to how 

amino acids affect the GTP loading of the Rags. 

 Amino acid signaling via mTORC1 pathway is regulated at both cytosolic and 

lysosomal level. Recent discovery of certain cytosolic proteins implicated in the regulation of 

mTORC1 pathway has revealed new alternative ways of manipulating the pathway for better 

understanding and treatment of pathologies associated to aberrations of the pathway. 

 

1.7.1 Regulation of mTORC1 at the Lysosome by Ragulator, V-ATPase and SLC38A9 

 Regulation of mTORC1 at lysosomal surface involves synchronization of several 

components. Ragulator has emerged as an important attribute of the mTORC1 assembly 

primarily driven by amino acids signaling.  Ragulator is a pentameric complex of p18, MP1, 

p14, HBXIP and C7orf59. These proteins are also known as Lamtor 1,2,3,4 and 5 respectively.  

In contrast to many GTPases, Rags lack lipid-anchoring moiety, instead they rely on Ragulator 

complex to interact with lysosomal surface. Recently, Ragulator was identified as a Guanine 

Exchange Factor (GEF) for the Rag A/B (Bar-Peled et al., 2012). The pentameric complex 

received its name fittingly due to its substantial role as a scaffold protein and reported GEF 

activity towards Rag A and B GTPases. Activation of Rag-Ragulator pathway involves two 

lysosomal integral membrane proteins: the v-ATPase complex and a solute carrier (SLC) named 

SLC38A9.  

 In 2011, Zoncu et al., showed that both V0 and V1 domains of v-ATPase (Forgac, 2007) 

interact with Ragulator complex (Zoncu et al., 2011a). Along with the discovery of C7orf59-

HBXIP complex as new components of Ragulator complex with GEF activity, Bar Peled et al., 

proposed a model for v-ATPase interplay with Ragulator (Bar-Peled et al., 2012). According to 

the proposed model, in the absence of amino acids, Rags, Ragulator and v-ATPase remain 

tightly bound to each other and Ragulator complex cannot perform its GEF activity on RagA/B. 
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The accumulation of lumenal amino acids leads to v-ATPase dependent amino acid signaling 

that allows Ragulator to substitute GDP to GTP on RagA/B. The active RagA/B can now recruit 

mTORC1 to lysosomes from cytosol where it can interact with Rheb GTPase to become active 

(Bar-Peled et al., 2012) (Figure 1.5). 

 Throughout the discovery of Rag-Ragulator complex, Sabatini’s group (Bar-Peled et al., 

2012; Sancak et al., 2010) found peptides of SLC38A9 in the immunoprecipitation samples 

through mass spectrometry. Later on, SLC38A9 was studied and found to be an arginine sensor. 

Three independent studies demonstrated that SLC38A9 binds to arginine and interacts with 

Rag-Ragulator complex to activate mTORC1 (Jung et al., 2015; Rebsamen et al., 2015; Wang 

et al., 2015). 

 In 2015, Schweitzer et al., identified a novel Ragulator binding protein. c17orf59 does 

not bind with Rags. The overexpression of c17orf59 leads to the disruption of Rag-Ragulator 

complex at lysosome and loss in the mTORC1 activity. Although overexpression of c17orf59 

seems to negatively regulate mTORC1 activity in a dose dependent manner, the loss of 

c17orf59 did not show any alteration in mTORC1 (Schweitzer et al., 2015). 

1.7.2 Regulation of mTORC1 at cytosol–lysosome interface by GATOR, Sestrins and 

CASTOR 

 In 2013, Bar Peled et al. discovered a complex of three different proteins (DEPDC5, 

Npr12 and Npr13) which showed GAP activity towards RagA and B, and therefore the complex 

was named GATOR1 (GAP activity towards the Rags) (Bar-Peled et al., 2013). The hydrolysis 

of GTP to GDP on RagA or B would inactivate the GTPase. This inactivation of the Rag 

GTPase will directly reflect upon mTOR pathway as the active Rag GTPase is required to bind 

mTORC1 and promotes its localization at lysosomal surface. Here it is important to mention 

that GATOR1 acts specifically on RagA and B while the GAP for RagC and D is Folliculin-

FNIP2 complex. Folliculin happens to be a tumor suppressor and surprisingly, behaves as a 

positive regulator of mTORC1 (Tsun et al., 2013). Previously, Leucyl t-RNA synthetase (LRS) 

had been reported to be involved in leucine sensing and functions as a GTPase activating protein 

(GAP) for RagD GTPase and not for RagA or B (Han et al., 2012).	However, Tsun et al., did 

not reproduce the LRS GAP activity for RagD.  

 Another cytosolic complex called GATOR2 negatively regulates the GAP activity of 

GATOR1 complex. GATOR2 is composed of five proteins namely Mios, WDR24, WDR59, 

Sehi L, and Sec13. GATOR2 interacts with GATOR1 and inhibits its GAP activity towards 

RagA/B (Bar-Peled et al., 2013). The upstream leucine-sensitive regulators of GATOR2 are the 

Sestrins (Sesn), a family of evolutionary conserved genes involved in metabolic control. Sesn1, 
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2 and 3 are three members of sestrin gene family found in mammals.  Numerous studies have 

reported the expression and activation of sestrin proteins by various stimuli such as stress, DNA 

damage and nutrient deprivation.  

 Two different groups have independently demonstrated the importance of sestrins in the 

regulation of GATOR2 complex. Budanov’s group identified only sestrin 2 to interact with 

GATOR2 (Parmigiani et al., 2014) while Sabatini’s group demonstrated sestrin 1 and 2 to bind 

GATOR2 and showed that sestrins do not affect GATOR1-GATOR2 interaction (Wolfson et 

al., 2016). Leucine bound sestrin cannot interact with GATOR2 thus indirectly inhibits 

GATOR1. Decrease in the level of cytosolic leucine would prevent sestrin bound GATOR2 to 

interact with GATOR1. Activated GATOR1 will be free to access and inhibit Rag GTPases. 

Hence, sestrin bound GATOR2 would indirectly prevent the translocation of mTORC1 from 

cytoplasm to lysosome (Chantranupong et al., 2014; Wolfson et al., 2016). The elucidation of 

this mechanism identified sestrins as the ultimate, long sought leucine sensors and opened the 

way for structural characterization of their interaction with leucine. Recently, the crystal 

structure of leucine bound sestrin has provided a solid rationale for its role as a leucine sensor 

in mTORC1 pathway (Saxton et al., 2016c), however, elucidation of the leucine-induced 

conformational changes would require the structure of apo Sestrin which is still lacking  (Saxton 

et al., 2016b). 

 In a study somehow conflicting with reports from other groups, Peng et al., have 

demonstrated the direct interaction of sestrins with Rags. Since the sestrin protein shares 

homology with GDI1 (GDP dissociation inhibitor 1) protein, a regulator of Rab GTPases family 

members, it was hypothesized that sestrins might work as guanine dissociation inhibitors 

(GDIs) for Rags. The hypothesis was supported by an experiment where the mutations in the 

GDI motif hindered the ability of sestrins to inactivate mTORC1 activity and the sestrins 

regained inhibitory role by the delivery of GDI motif peptide (Peng et al., 2014). 

 Besides leucine, another amino acid gained a lot of importance during the discovery of 

various regulators of mTORC1. Various studies have shown the role of arginine in the 

stimulation of muscle growth, insulin secretion and immune response through activation of 

mTORC1. A recently identified protein named CASTOR1 (Cellular Arginine Sensor for 

mTORC1) has been reported to be an arginine sensor and  GATOR2 interacting protein 

(Chantranupong et al., 2016); arginine binding to CASTOR1 is a part of cytosolic regulatory 

machinery for mTORC1 pathway. CASTOR1 is 63% homologous to another protein named 

CASTOR2 and CASTOR1/2 can form heterodimers, however, CASTOR2 does not show any 

affinity for arginine binding. Recently, two different groups have independently reported a 
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 SH3 domain-binding protein 4 (SH3BP4) was identified as a negative regulator of Rag 

GTPases. During amino acid starvation, SH3BP4 binds to GDP bound RagB GTPase through 

unknown mechanism while binding of SH3BP4 to RagC in complex with RagB GTPase 

depends upon the nucleotide loading state of RagB. Besides showing the direct interaction of 

SH3BP4 with RagB and RagC, the authors did not associate any GEF or GAP activity to 

SH3BP4 (Kim et al., 2012).  

 Duran et al., revealed an additional mechanism for the modulation of mTORC1 

activation. p62 was identified as a Raptor binding protein, its binding stabilises the Raptor 

complex with downstream substrates. p62 plays significant role in the formation of active Rag 

heterodimer and is required for the Rag-mTORC1 interaction. No interactions between p62 and 

Ragulator complex subunits were observed, indicating that p62 forms an alternative docking 

site for mTORC1 activation (Duran et al., 2011). 

 Yan and colleagues proposed a regulatory model for mTORC1 activation via 

phosphorylated MAP4K3 (Ser170) in the presence of amino acids by discovering PP2A T61 

epsilon as an inhibitor of MAP4K3. In amino acid starvation condition, PP2A in complex with 

its subunit PR61 epsilon dephosphorylates Ser170 MAP4K3 that leads to inhibition of 

mTORC1 activity  (Yan et al., 2010). 

 

1.7.4 Amino acid signaling through evolution  

 From evolutionary point of view, the Ego complex (EGOC), which resides at the 

vacuolar membrane, is involved in the regulation of TOR in yeast. EGOC is composed of Ego1, 

Ego3, Gtr1 and Gtr2. Like p18, Ego1 has a myristylation site that anchors it to the membrane 

and allows Ego1 to anchor Gtr1-Gtr2 (equivalent to Rag GTPase dimer) and TORC1 at the 

vacuolar membrane (Kogan et al., 2010). The exact function of Ego3 is still unknown but it 

shares structural similarity with MP1 and p14 and forms a homodimer that serves as yeast 

counterpart of MP1 and p14 heterodimer. There are no obvious orthologues of Ragulator in 

yeast, as EGOC and Ragulator complex do not share sequence similarity, but the overall 

homologous topology among the components is evident. Another variation in the pathways is 

of the GEF. Vam6 was identified as GEF for Gtr1 in yeast (Binda et al., 2009; Valbuena et al., 

2012). Although mammals have a homologue for Vam6 called VPS39 (Vacuolar Protein 

Sorting 39), this protein does not show any GEF activity towards RagA/B; as previously 

mentioned Ragulator was identified as GEF for Rags which implies the divergence of the 

pathway in mammals in comparison to yeast (Bar-Peled et al., 2012). In contrast to GATOR1 

complex in mammalian cells, SEACIT holds GAP activity towards Gtr1 and Gtr2 GTPases in 
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2012). Contrary to the general observation, in addition to a GTPase domain, the four Rag 

GTPases also have an intrinsic RD at their C-terminal. In order to keep the GTPase domains 

away from the RD dimerization platform, the GTPase domains of Rags happen to conform a 

rotation. Perhaps, this rotational conformation of GTPase domain enables the Rags to interact 

with the RDs of the Ragulator complex (Gong et al., 2011; Jeong et al., 2012). 

 Despite the conservation of a prevalent α-β-α sandwich with in the subunits of EgoC 

and Ragulator complex, there are few differences. The presence of a five-sheet β-meander with 

in Ego3 homodimer makes it equivalent to the MP1-p14 heterodimer. However, the overall 

interface of the Ego3 homodimer differs from that of MP1-p14 heterodimer due to the presence 

of an unstructured loop between α1 and β1 on the lower side of the RDs of Ego3 homodimer 

(Figure 1.8). Two small yeast proteins namely Ycr075wc-ap/Ego2 and Ynr034w-ap/Ego4 have 

been reported to be homologous to HBXIP and C7orf59.  The structure of Ynr034w-ap exhibits 

an RD fold with a missing helix (α3) just like the predicted model for C7orf59 (αββαβββ). On 

the other side, Ycr075w-ap lacks both the bottom surface helices (ββαβββ) (Levine et al., 2013).  

 Considering the reported crystal structures of MP1-p14 and HBXIP, and the predicted 

model of C7orf59, Ragulator complex consists of four roadblock domains, except p18, which 

does not contain a roadblock domain. p18 is predicted to be mostly alpha-helical with the 

presence of disordered regions. Biochemical characterization of p18 revealed molten globule 

characteristics (Magee and Cygler, 2011).  
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however in case of other pathologies such as diabetes, aging, obesity and benign tumors, mTOR 

pathway can be targeted through different means. Amino acid signaling holds great potential to 

control mTOR activity.  

 The term caloric restriction (CR) is a type of nutritional intervention comprised of 

reduced caloric intake without malnutrition. Initially, CR was thought to prevent the occurrence 

of chronic diseases and extend life span but studies carried on wild type mice and rhesus 

monkeys did not reduce cancer incidence or extend life span (Harper et al., 2006; Mattison et 

al., 2012), whereas mutations in the insulin-signaling pathway displayed positive effects on life 

span (Kenyon, 2010). Since amino acids and insulin signaling promote mTOR activity, 

therefore it was deduced that reduced mTOR signaling might extend life span (Evans et al., 

2011; Laplante and Sabatini, 2012). Reduced mTOR activity and AMPK upregulation enhance 

the degradation of accumulated old cellular components through autophagy (Jiang et al., 2008). 

As self-explanatory, continuous replenishment with new cellular components slows down the 

aging process and promotes life span. 

 Over activation of the mTOR pathway via amino acids signaling stimulates p70-S6K 

dependent negative feedback activation that consequently leads to degradation of insulin 

receptor substrate 1 (IRS1) (Laplante and Sabatini, 2012). mTOR pathway also controls lipid 

synthesis by regulating the transcription factor sterol regulatory element binding protein 1c 

(SREBP-1c) (Peterson et al., 2011). mTORC2 positively regulates SREBP-1c by 

phosphorylating protein kinase C β (PKCβ) which in turn activates SREBP-1c (Yamamoto et 

al., 2010). IRS1 degradation and SREBP-1c activation can lead to insulin resistance, which is 

one the major causes of Type 2 diabetes. It is a well-characterized observation that mTORC1 

is also activated by insulin. In a review paper, Yoon and Choi explained the possible reason of 

constitutive hyperactivation of mTORC1 in insulin resistance (Yoon and Choi, 2016). Clinical 

studies have reported high circulating levels of branched chain amino acids (BCAAs) in type 2 

diabetes and insulin-resistant obesity cases (Lackey et al., 2013; Olson et al., 2014). BCAAs 

include leucine, isoleucine and valine. These amino acids along with arginine and glutamine 

have been reported in the regulation of mTOR activity. Importance of leucine and arginine in 

the cytosolic regulation of mTOR has been discussed in details in section 1.7.2. A rat model 

with high blood levels of amino acids with sustained mTOR activity that led to insulin 

desensitization presents a strong case to target components of amino acid signaling for the 

treatment of type 2 diabetes (Newgard et al., 2009) (also reviewed by Choi and Yoon 2016). 

 Genetic diseases characterised by benign tumors including Tuberous sclerosis complex 

syndrome (TSCS), Cowden syndrome (CS) (Liaw et al., 1997) and Peutz-Jeghers syndrome 
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(PJS) are collectively termed as Hamartoma syndromes. Hamartoma syndromes are 

distinguished on the type of mutation originating the syndrome. Patients suffering from 

Hamartoma syndromes may grow benign tumors in vital organs of body such as brain, lungs, 

kidneys, skin and heart. Loss of function mutations in TSC1/TSC2 leads to hyperactivated 

mTOR pathway. In Cowden syndrome patients, continuous accumulation of active PIP3 due to 

the loss of PTEN phosphatase sustains active Akt feedback loop that keeps mTOR in 

hyperactive state. PJS is caused by the loss of LKB1 that prevents AMPK formation and keeps 

mTOR active even during oxidative stress (Inoki et al., 2005). 

 The importance of amino acid signaling axis in the regulation of mTOR pathway is 

evident in the above-described pathological conditions. For example, due to the mutations in 

TSC1/TSC2 (GAP for Rheb GTPase) in TSC syndrome, Rheb remains in active state that brings 

the other components of amino acid pathway machinery such as GATOR1/2, Rag GTPases, v-

ATPase and Ragulator complex into spotlight as therapeutically important targets. It would be 

interesting to see how amino acid pathway can be selectively targeted for the treatment of 

various metabolic and physiological diseases. Recently, the discovery of regulatory mechanism 

for GATOR2 by leucine bound sestrins have made the amino acid signaling machinery more 

intriguing. It would be interesting to explore the assembly and stability of the Ragulator 

complex through potential positive and negative regulators. Hence, amino acid signaling offers 

numerous opportunities for therapeutic intervention. 
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2. Justification  

 Over the last few years, the gained structural insight into various components of 

mTORC1 signaling has paved the way to get better understanding of the regulation of the 

pathway. In this thesis, we present the structural and functional characterization of subunits of 

Ragulator complex. The present study was idealized in 2012 through a personal communication 

with David Sabatini, when the landmark paper by Bar-Peled et al was yet to be published. The 

unpublished discovery that Ragulator was actually a pentamer instead of trimer, and this 

pentameric assembly acted as a GEF for RagA/B, explained the failure of previous efforts of 

our group to produce a trimeric Ragulator for structural studies. Sabatini’s group shared their 

expression construct for the newly discovered HBXIP-C7orf59 dimer and in 2013 this project 

was initiated as an effort to solve the structure of this dimer and gain insight into the assembly 

of pentameric Ragulator as a way to understand the structural basis of amino acid sensing, and 

maybe to allow future therapeutic interventions for cancer or other diseases. 

 We have employed various techniques such as protein crystallography, small angle X-

ray scattering (SAXS), cross-linking coupled to mass spectrometry (XL-MS), hydrogen-

deutrerium exchange (HDX)/MS, mutagenesis and pulldown assays to elucidate the 

architectural complexity of Ragulator complex. In addition to structural characterization, 

functional studies using PKA modulators in cell culture have opened an exciting opportunity 

for future studies to unveil the possible cross talk between mTORC1 pathway and PKA.   
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SUMMARY	

The Ragulator is a pentamer composed of MP1, p14, p18, C7orf59 and HBXIP, which acts as 

a lysosomal scaffold and GEF of the Rag GTPases in the amino acid sensitive branch of 

mTORC1 signaling. MP1, p14 and HBXIP are known to fold as Roadblock domains while 

C7orf59, the dimerization partner of HBXIP, is a poorly characterized protein predicted to 

display this same fold. Here we present the crystal structure of HBXIP-C7orf59 dimer at 2.9Å 

and explore its interaction with p18. The structure of the dimer revealed two Roadblock 
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domains associating to form an interface similar to MP1-p14, with the unexpected feature of an 

unfolded N-terminus in C7orf59 suggesting a closer connection to the yeast protein Ego2. We 

used a combination of cross-linking/mass spectrometry, site-directed mutagenesis/pulldown 

and spontaneous proteolysis to explore the HBXIP-C7orf59 interface with p18 in vitro and 

found a potential PKA phosphorylation site near this interface. PKA activation with Forskolin 

induced dissociation of the Ragulator complex, and the PKA inhibitor H-89 increased p18 

binding to C7orf59. Our results confirm the essential role of HBXIP-C7orf59 dimer as an 

integral part of pentameric Ragulator and highlight potential evolutionary connections of the 

Roadblock fold, while shedding light on the elusive PKA-mTORC1 connection.   
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INTRODUCTION	

 In order to survive in nutrient insufficient/deprived conditions, eukaryotic organisms 

have a signaling pathway controlled by the protein kinase mTOR. The mammalian target of 

rapamycin (mTOR) is a serine/threonine protein kinase that belongs to phosphatidylinositol 3-

kinase-related kinase protein family and is also known as mechanistic target of 

rapamycin or FK506 binding protein 12-rapamycin associated protein 1 (FRAP1) (Brown et 

al., 1994; Sabatini et al., 1994). mTOR signaling regulates growth, proliferation, motility, 

protein synthesis and transcription. Deregulation of mTOR can be observed in cancer, type 2 

diabetes, obesity and various neurodegenerative diseases (Efeyan et al., 2012; Guertin and 

Sabatini, 2005; Laplante and Sabatini, 2012).  

 Kim et al and Sancak et al (Kim et al., 2008; Sancak et al., 2008) independently 

discovered the involvement of Rag GTPases in amino acid dependent activation of mTORC1. 

In mammals, four Rag proteins form obligate heterodimers; RagA or RagB dimerizes with 

RagC or RagD. Amino acids promote the GTP loading on RagA/B (Jewell et al., 2013). The 

GTP bound RagA/B dimer induces the translocation of mTORC1 from cytoplasm to lysosomal 

surface and Rag GTPase binds with a multisubunit complex called Ragulator (Sancak et al., 

2010). Ragulator has emerged as an important regulator of the mTORC1 branch primarily 

driven by amino acids signaling. In contrast to many GTPases, Rags lack a lipid-anchoring 

moiety; instead, they rely on Ragulator complex to interact with lysosomal surface.  

 The Ragulator complex was originally identified as a trimer composed of the MP1-p14 

dimer with p18, a lysosome-associated adaptor protein (Sancak et al., 2010). Shortly after, two 

additional subunits were identified as an integral part of the Ragulator which was found to act 

as a GEF for RagB only in the presence of all five subunits (Bar-Peled et al., 2012). These 

additional subunits are HBXIP, an antiapoptotic protein previously known to interact with the 

HBx protein of the Hepatitis B virus and inhibit viral replication (Marusawa et al., 2003; 

Melegari et al., 1998) and the uncharacterized C7orf59 protein.   

 The yeast counterpart of mammalian Ragulator is the Ego complex. Although the Ego 

complex shares functional and structural features with mammalian Ragulator such as vacuolar 

localization (functionally equivalent to lysosomal localization), interaction with the Rag 

orthologues Gtr1/Gtr2 and regulation of amino-acid sensing in the conserved TOR pathway, 

the evolutionary and structural relationships between Ragulator and Ego subunits are less than 

clear. The MP1-p14 heterodimer is related to a homodimeric Ego3 protein, while p18 shares 

structural features with Ego1. The putative yeast counterparts of HBXIP and C7orf59 are 

Ego2/Ycr075w-a and Ego4/Ynr034w-a (Levine et al., 2013). Ego2, but not Ego4, was shown 
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to be an essential part of the EgoTC complex by interacting directly with Ego1 and Ego3 

forming a ternary complex (Ego-TC) which is required for the vacuolar localization of Gtr1/2 

and TORC1 activation (Powis et al., 2015). Ego4 interacts genetically and physically with Gtr2 

but the significance of this finding is yet to be determined (Powis et al., 2015).  

 A striking structural feature of both Ragulator/Rag and Ego/Gtr complexes is the 

presence of several Roadblock domains (RB), an ancient protein fold which functions as a 

protein interaction module. RB domains frequently interact to form either homo or heterodimers 

that function as platforms to anchor and regulate signaling proteins such as GTPases. 

Structurally, the RB domain consist of α-β-α sandwiches of approximately 100–120 amino acid 

residues in which a 5-sheet β-meander is flanked by one α-helix on one side (α2) and two helices 

on the other side (α1 and α3). Several RB proteins lack the C-terminal α3 helix, and this 

variation defines a subclass of Group II Roadblock domains (Powis et al., 2015). Less 

frequently, the N-terminal helix α1 might be missing as well, for example in Ego2. The missing 

helices of these incomplete RBs can in some cases be replaced by α-helices from their 

interaction partners. The MP1-p14 heterodimer and the yeast Ego3 homodimers belong to 

Group I as they display all three helices characteristic of this fold, while HBXIP, C7orf59, Ego2 

and Ego4 belong to Group II.  

 To gain further insight into the structure and function of the Ragulator complex, we have 

solved the crystal structure of the human complex of HBXIP and C7orf59 and explored its 

interaction with p18 by combining different biochemical techniques. We have also uncovered 

a potentially novel mechanism of PKA-mediated disassembly of the Ragulator complex, which 

might help to elucidate the unclear PKA-mTOR relationship.     
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RESULTS	

Structure and dynamics of the XPOF dimer  

We expressed and purified the HBXIP-C7orf59 dimer (called XPOF for simplicity – 

hbXiP/ c7OrF59) in E. coli from a bicistronic plasmid, recovering stoichiometric amounts of 

both proteins. Since only C7orf59 was expressed with an N-terminal hexahistidine tag, the 

copurification of untagged HBXIP indicated the formation of a stable dimer. HBXIP exists as 

a long isoform of 173 residues and a short isoform of 93 residues, both of which interacted with 

C7orf59 (Figure 1A, B). We chose the short isoform for structural characterization because the 

recombinant HBXIP-long was susceptible to proteolytic degradation.  

 The XPOF dimer crystallized in space group C2 with four dimers in the asymmetric unit 

(Table 1). The structure was deposited under PDB i.d. 5VOK. The crystals were small, plate-

like and diffracted up to 2.95 Å. Residues 2 – 86 of C7orf59 and 2 – 90 of HBXIP are present 

in the electron density. The overall structure and dimer interface of XPOF are similar to the 

MP1-p14 dimer (Kurzbauer et al., 2004; Lunin et al., 2004a) and the C-terminal domains of 

Gtr1-Gtr2 (Gong et al., 2011; Jeong et al., 2012), except for the absence of a C-terminal helix 

which results in an exposed beta-sheet surface and a boat-like shape for C7orf59-HBXIP as 

compared to the prolate ellipsoid shape of MP1-p14, and the presence of an unfolded N-

terminal region in C7orf59 corresponding to the N-terminal α-helix in HBXIP and other 

Roadblock proteins (Figure 1C). This unfolded segment (residues 1 - 15) displays an extended 

conformation, which is well defined in the electron density due to crystal packing. In the crystal, 

the N-terminal region of C7orf59 is stabilized by interactions with the exposed side of the beta-

sheet in an adjacent XPOF dimer (Supplementary Figure 1A), which suggests a protein-

binding potential for this surface. Figure 1D shows a superposition of the structures of C7orf59 

and HBXIP. Despite their lack of sequence similarity, both proteins share a common fold except 

for the unfolded N-terminus of C7orf59. Another difference between the two proteins resides 

in the conformation of loop b3. The structure of HBXIP in the heterodimer was superimposed 

on the previously reported HBXIP structure (Garcia-Saez et al., 2011), with rmsd = 0.592, 

indicating that it does not undergo major conformational changes upon binding to C7orf59 

(Supplementary Figure 1B).  

 The dimer interface buries an area of 910 Å2 (13.4% of total surface area of C7orf59 

and 16.1% of HBXIP) and is stabilized by hydrophobic contacts involving the α-helices b – b*, 

hydrogen bonding involving main chain of strands β3 – β3* in each monomer, and contacts 

mediated by side chains in the loops connecting helix b and sheet 3 in each monomer (loop b3). 

The aliphatic side chains in the two-helix bundle formed by helix b-b* , including Leu48, 



53	

 

Leu55, Ala40*, Ile43* and Val47*, engage in zipper-like hydrophobic interactions as reported 

previously for HBXIP homodimeric structure (Garcia-Saez et al., 2011) and MP1-p14 dimer 

(Kurzbauer et al., 2004). The structural elements are named according to Kurzbauer et al 

(Kurzbauer et al., 2004) and asterisks indicate structural elements or residues from C7orf59 

(Figure 1E).   

 A Consurf analysis (Supplementary Figure 2 and Figure 2A) indicated that the overall 

sequence conservation is low for both subunits, further confirming the notion that structural 

conservation goes well beyond sequence conservation in the Ragulator and Ego complexes.  

Both C7orf59 and HBXIP are highly hydrophobic, indicating that besides the heterodimer 

interface, most of their surfaces might be involved in protein-protein interactions with other 

Ragulator subunits (Figure 2A).  

 A closer inspection of the interface reveals that b3* loop – 2b pocket interaction appears 

to play a bigger role in stabilizing the dimer than the reciprocal b3 loop – 2b* pocket. C7orf59 

loop b3* bends towards HBXIP accommodating its hydrophobic side chains (Cys51*, Phe53*, 

the aliphatic part of Arg54*, and Leu55*)  in the 2b pocket of HBXIP, in a way analogous to 

the interaction of MP1 loop b3* with the 2b pocket in p14 (Kurzbauer et al., 2004) (Figure 

2B). The edges of this pocket 2b in HBXIP are lined by residues His41 and His87, which are 

well defined in the electron density, and Asn71 which is less defined. The b3*– 2b interface is 

mostly hydrophobic, however, it seems that it might be stabilized by a hydrogen bond between 

residues Arg54* in C7orf59 loop and Asn71 in HBXIP pocket due to the proximity of the side 

chains. The electron density of Phe53* side chain points to the dimer interface rather than the 

solvent. 

 Although the conformation of HBXIP b3 loop indicates a less prevalent role of the b3 

loop – 2b* pocket interface in stabilizing the heterodimer, the striking sequence conservation 

of some residues close to C7orf59 2b* pocket led us to probe this interface by site-directed 

mutagenesis. None of the side chains in HBXIP loop b3 makes contacts with C7orf59, except 

for Leu55 which is actually part of helix b. Some of the most highly conserved residues of 

C7orf59 belong to loop 2b* (residues 31–36), which lines the 2b pocket.  However, mutation 

of either Glu34/Asn35 or Asp36/Glu37 to alanine did not affect the dimer integrity or p18 

binding in an in vitro pulldown assay using recombinant proteins. Close to this loop lies the 

conserved Ser67*, located in the N-terminus of strand β4*, which is a potential phosphorylation 

site according to  KinasePhos 2.0 (Wong et al., 2007) and NetPhosK predictions. The close 

proximity of two negatively charged residues from HBXIP loop b3 (Asp58 and Asp61) 

suggested that phosphorylation of Ser67* might result in electrostatic repulsion and dissociation 
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of the heterodimer. Ser67* was mutated to aspartate to test this hypothesis. Although this 

mutation did not affect stability of the heterodimer, it severely diminished the dimer’s 

association with p18 (Figure 2D). 

 The structural relationships of HBXIP-C7orf59 and their putative yeast orthologues 

Ego2 and Ego4 are shown in Figure 3. The lack of both α1 and α3 in the structure of C7orf59 

suggests that it is closely related to Ego2. While HBXIP appears to be more closely related to 

Ego4 due to the presence of α1 and lack of α3, the orientation of α1 is strikingly different in 

these two proteins. This feature, in combination with the fact that Ego4 does not behave as a 

bona fide Ego complex subunit (Powis et al., 2015), sheds doubt on whether HBXIP and Ego4 

might be functionally related. 

  The purified XPOF dimer was analysed by hydrogen/deuterium exchange (HDX-MS) 

to evaluate its conformational dynamics and support crystallographic data (Figure 4 and 

Supplementary Figure 4). In the C7orf59 structure, the regions showing highest relative 

deuterium incorporation were the unfolded N-terminus, sheets β2 and β5 and the N-terminal 

side of helix b*. These regions displayed up to 50% deuterium incorporation after 2 hours. For 

HBXIP, the overall deuterium incorporation was lower, indicating a rigid fold. The only region 

where incorporation rates reached 50% in HBXIP was the C-terminal side of helix b, which is 

adjacent to the N-terminus of the corresponding helix in C7orf59 which also displayed high 

deuterium incorporation. The b3* loop displayed low deuterium incorporation, consistent with 

its tight interaction with the 2b pocket. These results confirm the unfolded nature of the C7orf59 

N-terminus and highlight additional regions with high conformational flexibility in the dimer, 

which might be involved in interactions with other Ragulator subunits. 
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Figure	1.	Structure	of	the	HBXIP-C7orf59	dimer.	A:	The	primary	structure	of	HBXIP	isoforms	long	and	

short,	 highlighting	 the	 Roadblock	 domain.	 B:	 Both	 isoforms	 of	 HBXIP	 copurify	 with	 C7orf59.	

Recombinant	 histidine-tagged	 C7orf59	 was	 	 coexpressed	 with	 HBXIP	 long	 or	 HBXIP	 short	 and	 the	

dimers	 were	 isolated	 by	 affinity	 chromatography.	 C:	 Cartoon/space	 filling	 representation	 of	 the	

structure	of	HBXIP-C7orf59	dimer.	D:	Superposition	of	C7orf59	(pink)	and	HBXIP	(cyan)	highlighting	the	

differences	in	conformation	of	loop	b3	and	the	N-terminus.	E:	Close	up	of	the	dimer	interface.	
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Figure	 3.	 Structural	 relationships	 of	 group	 I	 Roadblock	 folds.	 A:	 PDBsum	 diagrams	 of	 secondary	

structure	of	human	HBXIP	(PDB	3MS6),	yeast	Ego2	(PDB	4XPM,	chain	B)	and	yeast	Ego4	(PDB	2GRG).	

B:	 Topology	of	 the	C7orf59	 roadblock	 fold.	C:	 Structural	 comparison	of	 human	C7orf59/HBXIP	 and	

yeast	Ego2/Ego4.	Secondary	structure	elements	are	coloured	as	follows:	beta-sheets	in	pale	yellow,	

alpha	helices	in	teal,	loops	in	white.	The	structures	are	shown	in	the	same	orientation.		
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Figure	4.	Dynamics	of	the	HBXIP-C7orf59	dimer	in	solution.	(A) HDX	plot	displaying	the	percentage	of	

deuterium	incorporation	for	each	of	the	peptic	peptides	identified	in	HBXIP	(left)	and	C7orf59	(right).	

(B)	Structural	representation	of	the	relative	deuterium	incorporation	of	C7orf59	and	HBXIP.	Relative	

deuterium	exchange	(%)	is	represented	from	blue	to	red	as	indicated	in	the	scale	below.	

	

Purification of a XPOF–p18 complex 

To obtain a XPOF-p18 complex, the XPOF dimer was coexpressed in E. coli with an 

N-terminally truncated p18 construct (p18ΔN, residues 8–161) in fusion with an N-terminal 

GST tag. When GST-p18ΔN was expressed alone in E. coli and purified from the soluble 

fraction by GST-pulldown, a major band of 35 kD was detected indicating proteolytic 

degradation. Coexpression of the same GST-p18ΔN construct with HBXIP-C7orf59 followed 

by Talon-pulldown yielded a 44 kD band, compatible with the predicted molecular weight of 

the GST-p18ΔN fusion protein (Figure 5A), showing that recombinant XPOF dimer interacts 

with GST-p18ΔN and prevents its degradation. Under the same conditions, MP1-p14 failed to 

form a stable complex with p18 (not shown), confirming that the XPOF dimer is a fundamental 

piece of the Ragulator complex which cannot be replaced by MP1-p14.  

The affinity-purified trimeric complex was further purified by size exclusion 

chromatography in attempts to obtain a sample suitable for structural characterization. 

However, in spite of extensive efforts to stabilize the complex, the size exclusion elution profile 

invariably resulted in three peaks originating from spontaneous degradation of GST-p18ΔN and 
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dissociation of XPOF dimer from the complex. SDS-PAGE analysis showed that the first peak 

corresponded mostly to intact XPOF/GST-p18ΔN complex, although contaminated with a p18 

degradation product, followed by a second peak characterized by further degradation of p18 

and full dissociation of XPOF, and a third peak of XPOF dimer alone (Figure 5B). The apparent 

molecular weight of the p18 degradation intermediate indicates that it contains GST in fusion 

with the N-terminal half of p18, indicating that it dissociates from XPOF upon loss of its C-

terminal half. LC/MS analysis on Synapt G1 HDMS after tripsinization of samples from similar 

preparation as shown in Figure 5B detected nontryptic peptides 105LPPLPSLTSQPH116 and 

120ASEPIPFSDLQQVSR134, derived from the C-terminal half of p18 sequence as expected 

(Figure 5C). Both HBXIP and C7orf59 were identified in the same samples with high sequence 

coverage, thus validating the analysis (not shown). 

To confirm the size exclusion and SDS-PAGE analysis, representative fractions from 

the first and third peaks of size exclusion were analysed by small-angle X-ray scattering 

(SAXS). The first peak showed signs of aggregation which prevented further analysis. For the 

third peak, the linear Guinier region of the scattering curve indicated that this sample was 

monodisperse, and allowed us to calculate radius of gyration (Rg), maximum distance (Dmax) 

and molecular weight (MW). SAXS parameters calculated for the third peak (Rg: 2.29 nm, 

Dmax: 7.83 nm, MW: 29.1 kDa) supported the idea that this peak corresponds mostly to XPOF 

dimer dissociated from GST-p18ΔN (Figure 5C).  A model was built from this curve and fitted 

to the crystallographic model, supporting the existence of the XPOF dimer in solution 

(Supplementary Figure 4).  
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coexpressed XPOF or MP1-p14 dimer. As a control, we performed GST-pulldowns of each 

construct expressed alone to verify the effects of these mutations on the expression levels and 

stability of GST- p18ΔN (Figure 6C). 

 Both full length and 149_stop mutant of p18 interacted strongly with HBXIP-C7orf59 

dimer, while all the other mutations substantially decreased this interaction. This indicates that 

the C-terminus of p18 (residues 130–149) is both required to interact with HBXIP-C7orf59 and 

is also stabilized by this interaction, since full length p18 is only detected in the presence of 

XPOF (Figure 5A). This region defined by stop codon scanning overlaps with the peptide 

120ASEPIPFSDLQQVSR134, which coeluted with XPOF in size exclusion, indicating that 

residues 130–134 (QQVSR) might be particularly important for stable interaction with XPOF.  

 Surprisingly, deletion of residues 130–161 of p18 strongly favoured the interaction with 

MP1-p14, which was essentially undetectable both for full length p18 and 149_stop mutant 

(Figure 6C). This interaction was enhanced even further by deletion of residues 103–161 and 

108–161 of p18, which correlates with the intrinsic stabilizing potential of these truncations, 

observed when GST-p18 and its deletion mutants were expressed alone (Figure 6C, lower 

panel).  

 All the p18 C-terminal deletion constructs smaller than 80 residues display very weak 

binding to MP1-p14 or XPOF, detectable only by Western blot (not shown), suggesting that the 

conserved p18 region surrounding Lys60 (58LAKTA62) which was shown by XL-MS to interact 

with C7orf59 is not sufficient to stabilize the complex. We then used an alternative approach 

to confirm the importance of this region in the interaction with XPOF, by mutating all its polar 

residues to alanine (p18 mutant LAKTA–AAAAA). Although this mutation alone did not 

interfere in complex formation, an intriguing genetic interaction with the S67D mutant was 

observed, whereby the mutation was able to rescue p18 binding to Ser67* mutated XPOF 

(Figure 6D).  

 Taken together, these results indicate that multiple regions of p18 cooperate to assemble 

the pentameric Ragulator complex. The interaction with XPOF stabilizes recombinant p18 

against proteolytic degradation, while the interaction with MP1-p14, instead, requires previous 

stabilization of p18, which can be achieved in vitro by deleting its C-terminus. In the cell, it is 

likely that the interaction with HBXIP-C7orf59 is a previous requirement to stabilize p18 in the 

right conformation to promote subsequent binding of MP1-p14. 
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PKA activation induces dissociation of the Ragulator complex 

C7orf59 is an uncharacterized protein for which little information is available except for 

its role as a subunit of the Ragulator complex (Bar-Peled et al., 2012). To gain further insights 

into the regulation of C7orf59, we explored the role of the potential Ser67* phosphorylation 

site of C7orf59 in regulating its interactions in cell culture. Sequence analysis with KinasePhos 

2.0 (Wong et al., 2007) identified Ser67* as a potential PKA phosphorylation site with high 

score.  

 We expressed C7orf59 in HEK293-T cells as an N-terminal FLAG fusion and the 

transiently transfected cells were stimulated with forskolin, an activator of adenylate cyclase 

which is widely used as a PKA agonist. The C7orf59 interactions with p18, HBXIP and RagA 

were strongly reduced in the presence of forskolin, indicating that PKA activation results in 

breakdown of the Ragulator complex. However, besides PKA, forskolin has other cellular 

targets, for example PP2A. To further confirm that this effect could be attributed to PKA 

activation, we used the specific PKA inhibitor H-89. Incubation with this inhibitor markedly 

increased the amount of endogenous p18 coprecipitating with FLAG-C7orf59. The interactions 

with HBXIP and RagA were also slightly increased. Furthermore, pre-incubation with H-89 

before addition of forskolin prevented the dissociation of p18, HBXIP and RagA from FLAG-

C7orf59 (Fig. 7A).  

  Immunolocalization in HeLa cells showed that endogenous C7orf59 localizes in 

cytoplasmic vesicles. Colocalization with transfected DsRed-Rab7 indicates that these vesicles 

correspond to late endosomes/lysosomes, which is compatible with the role of C7orf59 as a 

subunit of the Ragulator complex (Fig. 7B). It has been shown previously that the lysosomal 

localization of other Ragulator subunits and Rags depend on their interactions with p18, which 

is anchored on the lysosomal surface though N-terminal myristilation/palmytoilation (Gong et 

al., 2011; Kurzbauer et al., 2004; Nada et al., 2009; Sancak et al., 2010). Treatment of U2OS 

cell line with H-89 induced a concentration of endogenous C7orf59 in vesicle-like spots, which 

is consistent with its increased binding to p18 (Fig. 7C and Supplementary Fig 5). 
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Figure	7.	Stability	of	the	Ragulator	complex	is	affected	by	PKA	activation	A:	Effect	of	PKA	modulation	

on	the	Ragulator	complex.	HEK293-T	cells	were	transiently	transfected	with	FLAG-C7orf59	and	treated	

with	 PKA	 modulators	 (Forskolin	 and	 H-89)	 as	 indicated.	 The	 interactions	 of	 FLAG-C7orf59	 with	

endogenous	 proteins	 were	 detected	 by	 immunoprecipitation	 using	 FLAG-specific	 antibody	 and	

Western	 blot	 using	 antibodies	 specific	 to	 p18,	 HBXIP	 and	 RagA.	 B:	 Colocalization	 of	 endogenous	

C7orf59	(stained	with	Alexa	488,	green)	and	transfected	DsRed-Rab7,	a	marker	of	late	endosomes	and	

lysosomes,	 in	 HeLa	 cells.	 	 C:	 Effect	 of	 PKA	 inhibition	 with	 H-89	 on	 the	 subcellular	 distribution	 of	

endogenous	C7orf59	(stained	with	Alexa	647,	red)	in	U2OS	cells.	Nuclei	are	stained	with	DAPI	(Blue).		
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DISCUSSION	

	 The roadblock fold is present in the MP1-p14 dimer (Kurzbauer et al., 2004; Lunin et 

al., 2004b) and HBXIP (Garcia-Saez et al., 2011). Our study showed that C7orf59 also folds as 

a roadblock domain, confirming previous predictions and thus highlighting this structural motif 

as a major theme in the pentameric Ragulator. As expected based on sequence analysis, the 

C7orf59 fold lacks the C-terminal helix present in Group II roadblock proteins such as MP1 

and p14. Unexpectedly, it also lacks the N-terminal α-helix, resulting in an overall topology, 

which is more closely related to yeast protein Ego2 than Ego4. Therefore, the crystal structure 

reported here suggests that C7orf59 is more likely to be the human orthologue of Ycr075w-

a/Ego2. This would be difficult to infer based on sequence information only and this new 

information allows a better comparison of the mammalian and yeast systems.  

 By close inspection of the crystal structure of XPOF heterodimer, we came across 

known elements of Roadblock domain interfaces such as the continuous β-sheet and the 

hydrophobic helix-helix contacts, as well as an unexpected key-lock interface that structurally 

relates with MP1-p14. Surface hydrophobicity analysis of the XPOF crystal structure revealed 

the presence of a hydrophobic pocket in HBXIP, comparable to the 2b pocket identified in p14 

by Kurzbauer et al (Kurzbauer et al., 2004). The b3* loop of C7orf59 is inclining towards the 

2b hydrophobic pocket of HBXIP and the side chains of residues Phe53* and Arg54* within 

this loop assume conformations that indicate the presence of an intersubunit hydrophobic key-

lock motif within the XPOF structure. This observation is supported by the presence of well-

defined electron density around critical residues such as Phe53* of C7orf59 and His41 and 

His87 of HBXIP (which form the outer less hydrophobic edges of the 2b pocket). Arg54* is 

possibly involved in a hydrogen bond with Asn71 of HBXIP. These contacts might explain the 

existence of the C7orf59–HBXIP heterodimer, considering that HBXIP is also known to form 

homodimers which do not display this lock-and-key feature (Garcia-Saez et al., 2011). 

 In addition to solving the structure of XPOF dimer, we also explored its interaction with 

p18. We have shown by cross-linking/MS and mutagenesis that an evolutionarily conserved 

region of p18 where residue Lys60 is located is closely associated with a conserved region of 

C7orf59 comprising loop 2b* and adjacent Ser67* residue. Mutation of Ser67* of C7orf59 to 

aspartate reduced its binding to p18 without affecting the C7orf59-HBXIP interaction, and 

mutation of the p18 residues surrounding Lys60 (LAKTA–AAAAA mutation) rescued the loss 

of binding to S67D mutant, indicating a genetic interaction of Ser67* mutation and LAKTA-

AAAA mutation. However, this interaction is likely to be secondary in determining the stability 

of the p18 association with HBXIP-C7orf59, as this region of p18 failed to associate stably with 
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the dimer either upon mutagenesis-mediated deletion of other C-terminal p18 regions or by 

spontaneous proteolysis, while other regions located closer to the C-terminus of p18 were able 

to do so. Intriguingly, a single region of p18 was both strongly associated with HBXIP-C7orf59 

upon spontaneous degradation of p18 (residues 92 – 103) and essential for the binding of p18 

to MP1-p14 dimer as determined by stop codon scanning (residues 81 – 103). This region is 

likely to be important in the assembly of pentameric Ragulator due to its unique ability to 

associate with the two dimers. 

 Many protein interactions are known to be regulated by reversible phosphorylation. The 

presence of a conserved serine residue (Ser67*) in a loop close to the dimer interface led us to 

investigate a potential phosphorylation site in C7orf59 and the consequences of its 

phosphorylation on the stability of the Ragulator complex. Because Ser67* is predicted to be a 

PKA site, we investigated the effect of PKA modulation on the Ragulator complex. The 

C7orf59-HBXIP and C7orf59-p18 interactions were negatively affected by specific activation 

of cAMP-dependent protein kinase A (PKA), while PKA inhibition resulted in a marked 

increase in the amount of p18 bound to C7orf59 and in the subcellular redistribution of C7orf59 

resulting in a less diffuse and more vesicle-like pattern. These results suggest that PKA 

phosphorylation of Ser67 in C7orf59 or other residues induces the regulated breakdown of the 

Ragulator complex and subsequent mTOR inactivation, although further experiments are 

required to demonstrate this observation. PKA is involved in metabolic regulation downstream 

of GPCR/cAMP signaling and one of its important upstream activators is the hormone glucagon 

(Pearce et al., 2010). Therefore, PKA is activated in response to nutritional scarcity to stimulate 

catabolism, in contrast with mTOR, which is activated by nutrient availability to stimulate 

anabolism. It would not be surprising if these two pathways could negatively regulate each 

other. However, while it is widely accepted that there exists a PKA-mTORC1 crosstalk, the 

exact mechanisms are not completely understood and cAMP may either activate or inactivate 

mTOR depending on cell type (Brown et al., 1994; Sabatini et al., 1994; Xie et al., 2011). Our 

results suggest a mechanism for mTORC1 regulation by PKA involving direct modulation of 

Ragulator stability by PKA activation. Further investigation of this novel mechanism might 

shed light on the crosstalk of these important pathways. 
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METHODS		

Plasmids 

 All plasmids used in this study were constructed using standard molecular biology 

techniques. Details about cloning procedures are given in Supplemental Methods. The MP1-

p14 expression plasmid was a kind gift from Dr. Lukas Huber (Kurzbauer et al., 2004). DsRed-

Rab7 expression plasmid was obtained from Addgene (Plasmid #12661).  

 

Purification and crystallization of XPOF 

 The 6xHis-tagged XPOF dimer was expressed in E. coli BL21(DE3) from the plasmid 

pACYC-Duet-C7orf59-HBXIP for 16 hours at 30ºC after induction with 0.5 mM IPTG. Protein 

purification was done by affinity chromatography using Talon resin, followed by proteolytic 

removal of the tag and size exclusion chromatography on Superdex 200 16/60 column (GE 

Healthcare). The initial crystallization attempts were performed in the high throughput 

crystallization facility of the Brazilian National Biosciences Laboratory, RoboLab. Crystals 

were grown by vapor diffusion (hanging drop) at 18°C. Diffraction quality crystals were fully 

grown after 25-30 days in conditions: 4M sodium Formate with 5% glycerol (as a main 

refinement condition) and 0.01M barium Chloride as an additive. Further information can be 

found in Supplemental Methods. 

 

 In silico model building of C7orf59-HBXIP heterodimer 

A computational model of the C7orf59 protein was built on the Phyre2 server 

(http://www.sbg.bio.ic.ac.uk/phyre2) (Kelley et al., 2015; Kim et al., 2008). The model 

displaying a Roadblock fold was one of the highest scoring models and was used for docking. 

Docking of predicted model over monomeric structure of HBXIP (PDB:3MS6) was performed 

using ClusPro server (Comeau et al., 2004; Kozakov et al., 2017) (https://cluspro.bu.edu). 

Among the options returned by ClusPro, a dimer displaying the expected roadblock interface 

was selected.  

	

Data collection and structure solution 

 Native data for HBXIP-C7orf56 crystals was collected at 100K on the I24 beamline at 

the Diamond Light Source (Didcot, United Kingdom). Data sets were processed by the 

automatic pipeline at beamline with xia2 using DIALS (Waterman et al., 2016; Winter, 2009), 

and then scaled and merged with AIMLESS using CC1/2 cutoffs (Evans and Murshudov, 2013; 
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Karplus and Diederichs, 2012; Winn et al., 2011). Initially, the data sets have been 

automatically assigned to one of the space groups I222, C2 or P1. The phase problem was firstly 

solved using the best crystal, indexed in space group I222. An automated molecular 

replacement procedure as implemented in MrBUMP (Keegan and Winn, 2007; Winn et al., 

2011) was employed, using as search models PDB files for HBXIP (3MSH, 3MS6) and an in 

silico modelling for C7orf59, both in their original forms and as additional modified models 

obtained with PDBClip (Winn et al., 2011), MOLREP (Vagin and Teplyakov, 1997) 

CHAINSAW (Stein, 2008), SCULPTOR (Bunkóczi and Read, 2011) and PDBset (Winn et al., 

2011). Multiple alignment and structural analysis were done with ClustalW2 (Larkin et al., 

2007) and SCOP (Murzin et al., 1995), respectively. After automated model preparation, 

molecular replacement solutions were obtained independently with MOLREP (Vagin and 

Teplyakov, 1997) and PHASER (McCoy et al., 2007), and subjected to a preliminary refinement 

with REFMAC5 (Murshudov et al., 2011). 

 A total of 23 solutions have been output by MrBUMP, the top solution with a Rfree value 

of 0.493. Curiously, overall inspection with PyMOL  (Schrödinger, 2016) showed that, with a 

few exceptions, most of the solutions corresponded to a same orientation within the asymmetric 

unit (with crystallographic symmetry taken into account if necessary). Surprisingly, a 

representative of the main solution cluster, the top solution, which was found by PHASER, was 

complementary to a different orientation found by MOLREP, as judged by the expected 

HBXIP-C7orf59 dimer interface obtained by in silico modelling. These two partial solutions 

were then manually combined to give an initial model. After a few rounds of refinement and 

model rebuilding, Rfree decreased to 0.425. Despite the indication of a successful solution, it 

was difficult to obtain a reliable and stable refinement, which led us to consider a lower 

symmetry space group. Further refinement then proceeded to completion with data from the 

same crystal now processed in space group C2, using the available pre-refined model in a simple 

molecular replacement procedure done with PHASER. All through the process, Free R flag was 

the same, ensuring the accuracy of the crystal structure. The model was improved by iteratively 

model rebuilding in COOT (Emsley et al., 2010) and refined using REFMAC5, PDB_REDO 

and phenix.refine (Adams et al., 2010; Afonine et al., 2012; Joosten et al., 2014; Murshudov et 

al., 2011; Winn et al., 2011). Data collection and refinement statistics are given in Table 1. 

PyMOL 1.7 was used to prepare the crystallographic models figures. 
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ConSurf analysis of evolutionary conservation 

 Evolutionary conservation profiles of HBXIP and C7orf59 were estimated using ConSurf 

version 3.0 (Ashkenazy et al., 2010; Glaser et al., 2003; Landau et al., 2005)  (consurf.tau.ac.il). 

A CSI-BLAST search for homologs of the sequences was performed against the UNIREF-90 

database with 3 iterations, an E-value cutoff 0.0001, minimal % ID of 35% for homologs and 

maximal % ID of 90% between sequences. A total of 50 sequences that sample the list of 

homologues were retrieved and aligned using MAFFT (with the accurate option L-INS-i). 

Calculation of position-specific conservation scores was performed using the Bayesian method. 

Evolutionary substitution model was set to default. The sequence conservation pattern was 

color coded by ConSurf from the most variable (turquoise) through intermediately conserved 

positions (white) to the most conserved (burgundy), and mapped onto the three-dimensional 

structure of the dimer.  

 

Pulldown assays 

 The expression plasmids for GST-p18ΔN, HBXIP-C7orf59 or MP1-p14, or the respective 

mutated constructs were cotransformed into E. coli BL21(DE3) and expression was induced by 

adding 0.5 mM IPTG and incubating for 16 hours at 30ºC at 200 rpm. The pellets were lysed 

using 0.2 mg ml-1 lysozyme combined with sonication in pH 7.4 PBS buffer supplemented 

with 5% glycerol, 2 mM β-mercaptoethanol and 5 mM of imidazol (the latter used only for 

Talon pulldowns). Glutathione sepharose beads (Glutathione-Sepharose 4B, GE Healthcare) or 

Talon beads (Clontech) were added to the cleared lysates, which were incubated for 3 hours at 

4ºC on an agitator at a very slow speed. The samples were washed five times with lysis buffer 

and the beads were eluted with Laemmli buffer and analyzed by coomassie stained SDS-PAGE 

15%. 

  

Cell culture, transfection, coimmunoprecipitation and localization 

 HEK293-T, HeLa or U2OS cells were grown in DMEM containing 10% fetal bovine 

serum (FBS) at 37º C with 5% CO2. Transient transfections were performed with PEI (Boussif 

et al., 1995). Cells were transfected with FLAG-tagged C7orf59 wild type. After 48h of 

transfection, cells were treated with Forskolin 40 µM or the PKA inhibitor H-89 (20µM), both 

from Sigma-Aldrich. Cells were lysed in lysis buffer (150 mM NaCl, 30 mM Tris, 3 mM EDTA 

and 0.3%(v/v) IGEPAL pH 8.0) supplemented with phosphatase inhibitor (10 mM beta 

glycerophosphate and 20 mM NaF) and incubated with FLAG-agarose affinity beads (Sigma-
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Aldrich) for 3-4 hours at 4ºC. The beads were washed four times with lysis buffer and bound 

proteins were eluted in Laemmli buffer. The samples were analysed by Western blot with 

antibodies anti-FLAG (Sigma), anti-p18/LAMTOR1, anti-HBXIP and anti-RagA (Cell 

Signaling Technology). For immunolocalization of endogenous C7orf59, cells were fixed with 

paraformaldehyde after the indicated treatments, and stained with primary C7orf59 antibody 

(Cell Signaling Technology) and secondary anti-rabbit antibody conjugated to Alexa647 or 

Alexa488 (Life Technologies) as indicated. Nuclei were stained with DAPI. Lysosomes/ late 

endosomes were stained with transfected DsRed-Rab7 where indicated. Images were captured 

in a TCS SP8 Leica confocal microscope at 63x magnification.  

	

Hydrogen-deuterium exchange  

Hydrogen-deuterium exchange was started by diluting the sample of purified HBXIP-

C7orf59 1:15 in deuterated buffer (50 mM Tris.DCl, 100 mM NaCl, 2 mM β-mercaptoethanol, 

5% glycerol, pD 7.4) at 25ºC and stopped at different time points (10s, 1 min, 10 min, 1h and 

2h) by adding equal volumes of quench buffer (800 mM Guanidine-HCl, 0.8% formic acid 

(vol/vol), 20 mM DTT, pH 2.5) at 4ºC. A control sample was collected at time = 0. Samples 

were injected into a nano Acquity UPLC system with HDX technology coupled to Synapt G1 

HDMS (Waters Corporation, USA). Online digestion was performed on an immobilized pepsin 

column (2x30 mm, Applied Biosystem, USA) for 4 minutes at 15ºC with 35 µL.min-1 flow. The 

resulting peptides were desalted on an ACQUITY UPLC BEH C18 pre-column (1.7 µm, 

VanGuard, Waters) at 0ºC and separated on an analytical column (ACQUITY UPLC BEH C18 

1.7 µm, 1 mm x 100 mm, Waters) at 0ºC with 50 µL.min-1 flow. The runs were processed by 

Protein Lynx Global Server v.2.4. (Waters Corporation, USA) and DynamX v.3.0 (Waters 

Corporation, USA). For C7orf59, a total 33 of peptides were detected, with 96.1% sequence 

coverage, and 3.76 redundancy, while for HBXIP, a total 34 of peptides were detected, with 

91.3% coverage and 4.00 redundancy. 

 

Chemical crosslinking/ Mass spectrometry analysis  

The HBXIP-C7orf59-GST-p18ΔN complex resultant from the first peak of purification 

by size-exclusion chromatography was submitted to chemical cross-linking combined with 

mass spectrometry. Cross-linking reactions were performed as previously described (Iglesias et 

al., 2009; 2010). The raw data from spectrometer were processed using Mascot Distiller 2.4.3 
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(Matrix Science) and the spectra were used for crosslinked peptide identification using SIM-

XL (Lima et al., 2015). Further information in Supplemental material. 

 

Small angle X-ray scattering 

 Small-angle X-ray scattering (SAXS) curves were recorded at the SAXS-1 beamline at 

Laboratório Nacional de Luz Síncrotron (Brazilian Synchrotron Light Laboratory, LNLS), 

equipped with a Dectris Pilatus 300K detector (84 mm × 107 mm) and a capillary sample 

holder. Sample-to-detector distance was 1606.50 mm and radiation wavelength was 1.55 Å, 

with q ranging from 0.0063 to 0.2787 Å−1 (q=4πsinθ/λ, where 2θ is the scattering angle). Further 

information in Supplementary material. 
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Table 1.  Data collection and refinement statistics. 
 HBXIP-C7orf59 

Wavelength (Å) 0.9686 

Resolution range (Å) 81.85 - 2.89 (3.07 - 2.89) 

Space group C 1 2 1 

Cell dimensions  

    a,b,c (Å) 180.88, 64.76, 79.23 

    α,β,γ (°) 90.00, 115.18, 90.00 

Total reflections 125792 (20673) 

Unique reflections 18719 (3004) 

Multiplicity 6.7 (6.9) 

Completeness (%) 99.5 (99.1) 

Mean I/sigma(I) 6.5 (0.7) 

Wilson B-factor (Å2) 86.24 

R-merge 0.171 (3.50) 

R-meas 0.186 (3.79) 

CC1/2 0.993 (0.337) 

Reflections used in refinement 18629 (3020) 

Reflections used for R-free 949 (158) 

R-work 0.3077 (0.4642) 

R-free 0.3548 (0.4572) 

Number of non-hydrogen atoms 5079 

    macromolecules 5077 

    solvent 2 

Protein residues 688 

RMS deviation (bonds) (Å) 0.007 

RMS deviation (angles) (°) 1.24 

Ramachandran favored (%) 88.02 

Ramachandran allowed (%) 8.83 

Ramachandran outliers (%) 3.14 

Rotamer outliers (%) 19.76 

Clashscore 11.37 

Average B-factor (Å2) 95.78 

    macromolecules 95.79 

    solvent 77.61 

Number of TLS groups 1 

Statistics for the highest-resolution shell are shown in parentheses. 
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Table 2.  Crosslinking/MS analysis of XPOF and XPOF-GST-p18ΔN complexes. 

	

Protein 1  Protein 2 

Peptide sequence Subunit Cross-linked 

Residue 
 Peptide sequence Subunit Cross-linked 

Residue 
TDEQALLSSILAKTASNIIDVSAADSQGM

EQHEYMDR 
p18 Lys 60  LAVLSSSLTHWKK p18 Lys 103 

TDEQALLSSILAKTASNIIDVSAADSQGM

EQHEYMDR 
p18 Lys 60  KLLLDPSSPPTK p18 Lys 20 

TDEQALLSSILAKTASNIIDVSAADSQGM

EQHEYMDR 
p18 Lys 60  VFVVKR C7orf59 Lys 88 

TDEQALLSSILAKTASNIIDVSAADSQGM

EQHEYMDR
p18 Lys 60  GMNVPFKR C7orf59 Lys 64 

TDEQALLSSILAKTASNIIDVSAADSQGM

EQHEYMDR 
p18 Lys 60  LLLDPSSPPTKALNG

AEPNYHSLPSAR 
p18 Lys 31 

LLLDPSSPPTKALNGAEPNYHSLPSAR p18 Lys 31  GMNVPFKR C7orf59 Lys 64 
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Supplemental	Data	

SUPPLEMENTAL	METHODS	

Plasmid construction and mutagenesis 

 The pET-Duet-C7orf59-HBXIP bicistronic expression plasmid was obtained by 

subcloning both cDNAs sequentially into a modified version of pET-Duet-1 plasmid (Clontech) 

harbouring a PreScission site. C7orf59 was cloned between the BamHI and NotI sites in frame 

with an N-terminal hexahistidine tag followed by the PreScission protease cleavage site, and 

HBXIP was cloned between NdeI and XhoI restriction sites. The pACYC-Duet-C7orf59-

HBXIP plasmid was constructed by subcloning the bicistronic cassete 6xHis-PreScission-

HBXIP-C7orf59 from pET-Duet-C7orf59-HBXIP into pACYC-Duet (Clontech) using 

the NcoI and XhoI restriction sites. p18ΔN was subcloned into pGEX-4T-1 from pET302. 

C7orf59 was subcloned from pACYC-Duet into pCDNA-FLAG (BamHI and NotI). Site-

directed mutagenesis (except for LAKTA_AAAAA mutation) was performed by thermal 

cycling with Pfu (Thermo Scientific) and digestion of parental DNA with DpnI (Thermo 

Scientific), followed by transformation into DH5α and clone confirmation by sequencing. A 

total of nine stop codon mutants of GST-p18ΔN were constructed (D149, Q130, L108, K103, 

E80, Q74, K60, G35, K31). Three mutants of C7orf59 i.e., E34A/N35A, D36A/E37A and S67D 

were also designed to target the conserved residues of the protein. GST-p18ΔN 

LAKTA_AAAAA mutant was obtained by PCR with the primers shown in Supplemental Table 

1 using Pfu polymerase followed by ligation with T4 DNA ligase. All the five residues were 

mutated in the same PCR reaction. All the mutant clones were confirmed through sequencing 

before proceeding to the pull down experiments. The sequences of mutagenic primers are given 

in Supplementary Table 1.  

	

Expression of His-C7orf59-HBXIP 

The expression of His-C7orf59-HBXIP dimer was done in E. coli strain BL21(DE3) 

using IPTG as an inducer. Initially, protein expression of dimers with either long or short 

HBXIP was tested at 25º C and 30º C, for 4 to 16 hours at 200 rpm in LB medium in the 

presence of 0.5 mM IPTG. Small-scale affinity purification was performed with Talon resin to 

test the quality of the expression from the soluble fraction. The short HBXIP isoform was 

chosen for further experiments due to the lack of degradation bands. Large-scale expression of 

His-C7orf59-HBXIP was induced with 0.5 mM IPTG at 30º C for 16 hours at 200 rpm in 20 

liters of LB medium. 
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Affinity purification  

Large-scale affinity purification of His-C7orf59-HBXIP was performed using PBS pH 

7.4 (1X) with 5% glycerol, 2 mM β-mercaptoethanol and 5 mM of imidazole as 

resuspension/lysis buffer.  The resuspended lysate was supplemented with 1 mM PMSF and 

protease inhibitor cocktail (1X), incubated with lysozyme (0.1 mg.ml-1) for 1 hour at 4ºC on ice 

and then lysed by sonication (5 to 6 cycles of 15 seconds at 1 min interval apart). The cleared 

lysate obtained after centrifugation at 16000 g for 1-2 hour at 4°C was subjected to batch affinity 

purification using Talon resin (Clontech). After incubation with resin, lysate was centrifuged at 

650 rpm at 4°C to remove the flow through. The Talon beads were washed five times with the 

resuspension buffer and proteins were eluted with PBS pH 7.4 (1X) supplemented with 300 

mM imidazole, 5% glycerol and 2 mM β-mercaptoethanol. The cleared lysates were divided 

into two batches before proceeding to the washing and elution steps. To remove the excess 

imidazole, the sample was dialysed in PBS buffer (1X) pH 7.4 with 5% glycerol, 2 mM β-

mercaptoethanol and later cleaved with 80 units of PreScission protease (GE Healthcare) for 

16 hours at 4ºC to remove the His tag from C7orf59.  

 

Size exclusion chromatography 

The cleaved sample was concentrated to 2 ml using a centrifugal filter device (GE 

Healthcare, MWCO 3.000/ 3kDa) and size exclusion chromatography was performed on a 

Superdex 200 column 16/60 (GE healthcare) connected to an ÄKTA FPLC system using 50 

mM Tris-HCl (pH 7.4) supplemented with 2 mM of β-mercaptoethanol, 5% glycerol and 100 

mM of NaCl. UV absorbance was monitored at 280 nm to indicate the presence of proteins. 

The peak fractions were collected and concentrated using a centrifugal filter device (GE 

Healthcare, MWCO 3.000) until the desired concentration was achieved for the follow up 

crystallization experiments. The final concentration of the pure protein was determined from 

the UV absorption at 280 nm using a NanoDrop spectrophotometer. ProtParam was used for 

the calculation of molar extinction coefficient of proteins 

(http://www.expasy.ch/tools/protparam.html).  

 

Chemical crosslinking/ Mass spectrometry analysis  

The protein complex was incubated with DSS (suberic acid bis (N-hydroxysuccinimide 

ester) in dry dimethylformamide (Merck, 27 mM stock) to a final 1:50 complex/DSS ratio for 

2 hours at 25ºC. Thereafter, reduction and alkylation reactions of cysteine (thiol groups) was 
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performed by reduction with 0.24 mM DTT (dithiothreitol in 0.1M ammonium bicarbonate, 30 

min at 60ºC) followed by a alkylation with 1.4 mM IAA (iodoacetamide in 0.1M ammonium 

bicarbonate, 30 min at room temperature in dark), and digested with trypsin (20 µg.mL-1) to a 

final 1:20 trypsin/protein ratio for 16 hours at 37ºC (all these reagents from Sigma-Aldrich). 

The digested samples were desalted and enriched by fractionation using cartridge Oasis HLB 

(Waters), eluted with different concentrations of acetonitrile (10, 20, 30 and 70% acetonitrile 

aqueous solution), and dried in vacuum concentration for a final volume of 20 µL (in water). In 

mass spectrometer, the fractions containing peptides were separated on nano-LC system (Easy-

nLC 1000, Thermo Fisher Scientific) at reverse-phase separation at a flow rate 300 nL/min 

using the following mobile phase gradient from 5 to 35% B (50 min); 35-70% B (2 min); 70% 

B (8 min) (solvents A: 5% ACN, 0.1% formic acid in water, and B: 95% ACN, 0.1% formic 

acid in water). The system was connected to a nano-ESI source coupled to Q-Exactive mass 

spectrometer (Thermo Fisher Scientific). Each full MS scan, acquired in the orbitrap over a 

mass rang of m/z 400-1800 at resolution of 70000 (m/z 400), was followed by ten data-

dependent acquisition (DDA) mode controlled by XCalibur 2.0 software. The ten most intense 

signals in the mass spectrum were selected for collision-induced dissociation (CID) and 

fragments were detected by Orbitrap at resolution of 35000 (m/z 400). 

 

Small angle X-ray scattering 

 Small-angle X-ray scattering (SAXS) curves were recorded at the SAXS-1 beamline at 

Laboratório Nacional de Luz Síncrotron (Brazilian Synchrotron Light Laboratory, LNLS), 

equipped with a Dectris Pilatus 300K detector (84 mm × 107 mm) and a capillary sample 

holder. Sample-to-detector distance was 1606.50 mm and radiation wavelength was 1.55 Å, 

with q ranging from 0.0063 to 0.2787 Å−1 (q=4πsinθ/λ, where 2θ is the scattering angle). 

Fractions from size exclusion chromatography were collected and analysed immediately after 

centrifugation at 13000 g for 10 min at 4ºC, and the size exclusion buffer was used as reference 

for buffer subtraction. A series of increasing exposure times (5, 30, 90 sec.) was employed to 

assess potential radiation damage. Fit2D (Hammersley et al., 1996) was used for data 

integration, normalization to the intensity of the transmitted beam and sample attenuation, and 

buffer scattering subtraction. Absolute calibration of scattering data was performed using water 

as a secondary standard (Mylonas and Svergun, 2007; Orthaber et al., 2000). ATSAS 

(Petoukhov et al., 2012) and GNUPLOT (http://www.gnuplot.info) were used for data analysis 

and plotting. The radius of gyration (Rg) and the zero-angle scattering intensity (I(0)) were 
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obtained from the Guinier approximation I(q) = I(0)exp(−q2Rg2/3), valid for qRg ≲ 1.3, and by 

the indirect Fourier transform method implemented in the program GNOM (Svergun, 1992). 

The pair-distance distribution function, P(r), was calculated from the scattering curve using 

GNOM. Molecular mass was estimated by a concentration-independent method based on the 

Porod invariant (∫q2
I(q)dq). For model construction, forty dummy atom models of the HBXIP-

C7orf59 dimer were generated from the scattering curve using DAMMIF (Franke and Svergun, 

2009) in mode ‘slow’, without enforcing any symmetry (P1) or anisotropy restrictions. This 

model set was clustered using DAMCLUST (Konarev et al., 2006). The biggest cluster 

consisting of 18 models for the HBXIP-C7orf59 dimer was averaged and superposition of the 

final model on the crystal structure of HBXIP-C7orf59 was done with SUPCOMB (Kozin and 

Svergun, 2001) after removing the flexible N-terminus of C7orf59 (residues 1–15). Images 

were generated using PyMOL 1.7 (Schrödinger, 2016). Computational jobs were automated 

with C shell scripts. 
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Supplementary Table 1. Mutagenic primers. 

	

Mutation	 Protein	 Primer	Sequence	(5’	–	3’)	 Type	

K31	 p18	 CTCCATTGAGAGCTTAGGTAGGGGGGCTGC	 Forward	

K31	 p18	 GCAGCCCCCCTACCTAAGCTCTCAATGGAG	 Reverse	

G35	 p18	 GGGCTCGGCTCAATTGAGAGCTTTGGTAGGG	 Forward	

G35	 p18	 CCCTACCAAAGCTCTCAATTGAGCCGAGCCC	 Reverse	

K60	 p18	 ATGTTGCTGGCTGTCTAGGCAAGGATGGAAGAG	 Forward	

K60	 p18	 CTCTTCCATCCTTGCCTAGACAGCCAGCAACAT	 Reverse	

Q74	 p18	 CTCCATGCCCTATGAGTCTGCAGCAGACACATC	 Forward	

Q74	 p18	 GATGTGTCTGCTGCAGACTCATAGGGCATGGAG	 Reverse	

E80	 p18	 CGGTCCATGTACTAATGCTGCTCCATGCCC	 Forward	

E80	 p18	 GGGCATGGAGCAGCATTAGTACATGGACCG	 Reverse	

K103	 p18	 CGGTGGCAGCTTCTACCAATGGGTCAGGC	 Forward	

K103	 p18	 GCCTGACCCATTGGTAGAAGCTGCCACCG	 Reverse	

L108	 p18	 GCTGGTAAGAGACGGCTACGGTGGCAGCTTCTTC	 Forward	

L108	 p18	 GAAGAAGCTGCCACCGTAGCCGTCTCTTACCAGC	 Reverse	

Q130	 p18	 TCCTGGAGACCTGCTACAAATCAGAGAACGGG	 Forward	

Q130	 p18	 CCCGTTCTCTGATTTGTAGCAGGTCTCCAGGA	 Reverse	

D149	 p18	 AACCAGCTCCTCTTTTGCCTACACACGGATCTGAGAAAG	 Forward	

D149	 p18	 CTTTCTCAGATCCGTGTGTAGGCAAAAGAGGAGCTGGTT	 Reverse	

LAKTA_AAAAA	 p18	 CGCCGCCAGCAACATCATTGATGTGTCTG	 Forward	

LAKTA_AAAAA	 p18	 GCGGCGGCGATGGAAGAGAGCAGGGC	 Reverse	

E34A/N35A	 C7orf59	 GGCTGCCTGCTCATCAGCCGCCAGGTCCCCAGATGA	 Forward	

	E34A/N35A	 C7orf59	 TCATCTGGGGACCTGGCGGCTGATGAGCAGGCAGCC	 Reverse	

D36A/E37A	 C7orf59	 CACTGGCTGCCTGCGCAGCATTCTCCAGGTCC	 Forward	

D36A/E37A	 C7orf59	 GGACCTGGAGAATGCTGCGCAGGCAGCCAGTG	 Reverse	

S67D	 C7orf59	 GTTCTCCAAAGACCACATCCAGGCGCTTGAAGGGCA	 Forward	

S67D	 C7orf59	 TGCCCTTCAAGCGCCTGGATGTGGTCTTTGGAGAAC	 Reverse	

S67A	 C7orf59	 CTCCAAAGACCACAGCCAGGCGCTTGAAGGG	 Forward	

S67A	 C7orf59	 CCCTTCAAGCGCCTGGCTGTGGTCTTTGGAG	 Reverse	
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SUPPLEMENTAL	FIGURES		

	

	

Supplementary	Figure	1.	A:	Packing	of	the	dimers	in	the	crystal	lattice	stabilizes	the	flexible	N-terminal	

region	of	C7orf59.		Two	of	the	four	dimers	present	in	the	asymmetric	unit	are	shown.		B:	Superposition	

of	the	HBXIP	structure	reported	previously	(PDB:3MS6,	in	grey)	and	the	HBXIP	structure	from	this	study	

in	the	complex	with	C7orf59	(blue).	
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Supplementary	Figure	2.	Sequences	and	secondary	structure	elements	of	C7orf59	and	HBXIP	coloured	

according	 to	 the	Consurf	 conservation	analysis.	 The	arrows	 indicate	potentially	 important	 residues	

identified	in	the	crystal	structure.	
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Supplementary	Figure	3.	Small	angle	X-ray	scattering	analysis	of	the	XPOF	dimer	bound	to	p18-derived	

peptide,	obtained	from	spontaneous	dissociation	of	the	XPOF-GST-p18ΔN	trimer.		A:	Scattering	curve	

B:	Guinier	region.	C:	Krakty	plot.	D:	SAXS	envelope	fitted	to	the	XPOF	dimer.	The	flexible	N-terminal	

residues	of	C7orf59	were	removed	for	this	analysis.	HBXIP	is	in	light	cyan	and	C7orf59	is	in	dark	cyan.	
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Supplementary	Figure	4.	Sequence	coverage	of	HBXIP	and	C7orf59	in	the	HDX-MS	experiment.	
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Supplementary	Figure	5.	Additional	images	from	the	experiment	shown	in	Figure	7C.	
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Chapter 3 

Additional	data	on	Ragulator	complex	and	its	subunits	

INTRODUCTION		

 After optimizing the expression protocol of C7orf59-HBXIP heterodimer, the 

expression of full Ragulator complex was set up. The expression of p18 alone enhanced its 

degradation even in the presence of GST-tag but the co-expression of GST-p18ΔN WT and 

C7orf59-HBXIP dimer led to the formation of trimer complex (Chapter 2). We tried to 

construct the pentameric complex by mixing the XPOF-p18 trimer and MP1-p14 dimer. We 

were able to obtain Ragulator complex after a gel filtration step, but due to the intrinsically 

unstable nature of p18, the complex went through subsequent degradation. Later, pull down 

experiments using the stop codon mutants of p18 explained the importance of full-length p18 

for the formation of XPOF-p18 trimer complex (consult Chapter 2). This chapter depicts the 

efforts made to establish an understanding of the pentameric complex in parallel to the results 

described in Chapter 2. Here, we describe the protocol for the large-scale purification of XPOF-

p18 trimer complex along with an overview of the structural analysis of Ragulator complex 

through crosslink and SAXS data. Although several experiments provide insight at how p18 

peptides interact with other subunits of the complex, yet we refrain from predicting any 

structural model for the recombinant Ragulator complex in this dissertation. 

 

MATERIALS	AND	METHODS	

Expression vectors 

Table 1 shows all the vectors used for the expression of subunits of Ragulator complex. 

His-C7orf59-HBXIP and GST-p18ΔN-His-C7orf59-HBXIP trimer complex were 

cotransformed and coexpressed in E. coli BL21(DE3) while MP1-p14 dimer was expressed 

separately.  Both the trimer and dimer subunits were expressed using 0.5 mM of IPTG as 

inducer in LB medium at 30º C for 16 hours at 200 rpm. GST-p18ΔN-His-C7orf59-HBXIP 

trimer and His-C7orf59-HBXIP were always expressed in large volumes up to twenty litres 

(20L) due to low yield. Five litres (5L) expression of of MP1-p14 provided good yield.  
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Protein purification 

Talon beads were used to purify both trimer and dimer subunits through affinity batch 

purification. PBS pH 7.4 (1X) with 5% glycerol, 2mM β-mercaptoethanol and 5mM of 

imidazole was used for resuspension of bacterial pellets. The resuspended lysate was 

supplemented with 1 mM PMSF and protease inhibitor cocktail (1X), incubated with 

lysozyme (0.1 mg.ml-1) for 1 hour at 4ºC on ice and later lysed by sonication (5 to 6 cycles of 

15 seconds at 1 min interval apart). After sonication step, the lysates were centrifuged at 16000 

g for 1 hour at 4°C. The cleared lysates were incubated with resin for 2 to 3 hours. Later, lysates 

were centrifuged at 650 rpm at 4°C to remove the flow through. The talon beads were washed 

five times with the resuspension buffer and proteins were eluted with PBS pH 7.4 (1X) 

supplemented with 300 mM imidazole, 5% glycerol and 2mM β-mercaptoethanol. For the 

assembly of pentameric Ragulator complex, both dimer and trimer complexes were mixed and 

concentrated together. The concentrated sample was passed through Superdex 200 

column16/60 (GE) connected to an AKTA FPLC system using 50 mM Tris-HCl (pH 7.4) 

supplemented with 2 mM β-mercaptoethanol, 5% glycerol and 100mM NaCl. 

 

Crosslinking, SAXS, mutagenesis and pull down analysis of the pentamer 

Consult Chapter 2 for methods. 

	

RESULTS	AND	DISCUSSION	

Strategy for complex assembly 

We developed a strategy to assemble pentameric Ragulator in vitro from the 

combination of MP1-p14 dimer and XPOF-GST-p18ΔN trimer. As reported in Chapter 2, we 

had found that only the XPOF dimer, and not MP1-p14, can stabilize p18 against degradation. 

The formation of the pentamer was confirmed by size exclusion using the samples A and B of 

Figure 3.1. The pentamer peak is actually a dimer of pentamers due to the presence of GST, 

which forms a dimer. Surprisingly, it also showed the formation of a tetramer His-C7orf59-

HBXIP + MP1-p14 (Figure 3.2A) which is a completely new information. We assumed that 

the tetramer complex does not exist based on the previously published data (Bar-Peled et al., 

2012). However, the bands observed in the analysis of the fractions by SDS-PAGE indicate the 

presence of the MP1, p14, C7orf59 and HBXIP proteins, but not of GST-p18ΔN WT. Mass 

spectrometric analysis of the sample revealed two peptides from p18 in the assumed tetramer. 

Peptide sequence VDAKEELVVQFGIP, which corresponds to the C-terminal of p18 (148-161 
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a.a) and RLAVLSSSLTHW (91-102 a.a) were found in the tetramer complex. The 

identification of peptides in the tetramer sample indicated that the tetramer is a proteolytically 

modified pentamer, and not a complex of the two dimers only. To verify that the “tetramer” 

formation requires p18, a sample of only the two dimers XPOF and MP1-p14 combined was 

analysed by size exclusion under the same conditions (data not shown), which did not lead to 

the formation of tetramer. The data suggest that the tetramer is actually a version of the 

pentamer with attached p18 peptides; however, due to the small size of these p18 fragments, 

the sample was still treated as a tetramer in the SAXS analyses. 

 

Large-scale purification of GST-p18ΔN–C7orf59-HBXIP trimer 

As reported in Chapter 2, the GST-p18ΔN–C7orf59-HBXIP trimer undergoes 

spontaneous proteolysis and dissociation, resulting in a sample which appears to be a dimer but 

still has a p18-derived peptide associated with it. This appears to be analogous to the tetramer 

originating from the pentamer, as described above. Considering that spontaneous proteolysis 

can remove flexible regions and sometimes promote crystallization, we developed a large-scale 

purification protocol for this trimer-derived “dimer” to obtain samples for crystallization 

assays. We chose Talon beads over Glutathione resin (GST beads) to carry out the large-scale 

affinity purification of trimer complex to promote enrichment of full-length p18, which is 

associated with the XPOF dimer, by capturing his-tagged C7orf59 instead of GST-tagged p18. 

Use of Talon beads to pool only dimer bound GST-p18ΔN WT, later on proved to be a better 

strategy. The dimer purification protocol was used for the affinity purification and size 

exclusion/gel filtration of trimer complex. Due to intrinsic proteolysis of p18, the gel filtration 

protocol needs further optimization. Figure 3.3 shows the affinity purification and gel filtration 

chromatogram of the injected trimer. Fractions from both trimer and dimer peak are shown in 

Figure 3.4. The dimer complex that was the product of the subsequent degradation of trimer 

was sent for mass spectrometry analysis. As suspected peptides of p18 were found in the 

sample. The p18 peptide bound dimer complex has been subjected to initial crystallization 

screening (data not shown). Microcrystals were obtained from initial screening, the 

crystallization condition may require several refinement cycles.  

 

GST-p18ΔN LAKTA_AAAAA mutant does not interact with MP1-p14  

To further explore the results shown in chapter 2 for the LAKTA-AAAAA mutant, we 

decided to evaluate the effect of mutation in the LAKTA region of p18 in its binding to MP1-

p14 by combining this p18 mutation with stop codons at K103 and L108, which were previously 
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shown to increase the detection of p18 interaction with MP1-p14. We performed a pull down 

experiment using GST-p18ΔN LAKTA_AAAAA (K103 stop codon) and GSTp18ΔN 

LAKTA_AAAAA (L108 stop codon) with His-MP-p14 WT. Figure 3.5 A shows that these 

mutants continue to interact with MP1-p14 dimer, while GSTp18ΔN LAKTA_AAAAA (WT) 

mutant did not show any binding to MP1-p14 just like GSTp18ΔN WT (Figure 3.5 B). 

 

SAXS data analysis 

The fractions obtained from size exclusion (Figure 3.2) were subjected to small angle 

X-rays scattering technique (SAXS) at the SAXS1 beamline of LNLS to determine the overall 

low-resolution molecular envelopes of the complexes. Considering the sensitivity of SAXS data 

collection process and to ensure the quality of the collected data, fresh samples were purified 

and used on the same day.  The fractions considered as “tetramer” were monodisperse 

(especially fraction 22 which was used in the analysis) and with good signal to noise ratio, 

contrasting with the peak of intact pentamer containing GST which showed signs of 

aggregation. Figure 3.6 shows the scattering curves, Guinier Region, Krakty plot and distance 

distribution function of the tetramer (fraction 22 shown in Figure 3.2 A). The Krakty plot 

indicates a compact and well-folded shape. The calculated parameters for the tetramer were Rg 

2.93 nm and Dmax 10.04 nm. The molecular weigth calculated as the Porod volume divided by 

1.6 was 51.4, which agreed well with the molecular weigth calculated from the sequences of 

the four subunits MP1, p14, HBXIP and C7orf59 (50.9 kDa). We superimposed all SAXS data 

of tetramer over data from XPOF and MP1-p14 samples to highlight the increased size of the 

tetramer complex through distance distribution function (Figure 3.7). The distance distribution 

function indicates a prolate ellipsoid shape. Due to the lack of a reliable model of the pentamer, 

it was not possible to fit a model in the SAXS envelope.  

 

Crosslinking evidence 

In addition to XPOF dimer and its complex with p18, the protein samples used for the 

assembly of pentamer were also sent for crosslink coupled-mass spectrometric analysis using 

DSS to our collaborator Prof. Dr. Fabio Gozzo (IQ-Unicamp). Two MP1–p18 lysine crosslinks 

were detected in the pentamer, in addition to a p18 intramolecular crosslink. A search for serine 

crosslinks identified MP1–HBXIP, p14–HBXIP, and p18–C7orf59 crosslinks. The limited 

number of crosslinks involving MP1 and p14 prevented any conclusion about the three 

dimensional arrangement of the Ragulator subunits. Table 2 (Chapter 3) shows the detected 
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crosslinks within the subunits of Ragulator complex. For detailed protocol of crosslink and 

mass spectrometry experiment, consult Chapter 2. 
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Table 1: List of all the vectors used for expression of subunits of Ragulator complex and 

for the preparation of mutant clones.   

 

VECTOR	 RESISTANCE	 FUSION	TAG	 PROTEASE	

RECOGNITION	

SOURCE	

PET-302-p18ΔN	 Ampicillin	 His,	N-term	 --	 D.M.	

Sabatini	

PGEX-4T3-p18ΔN	 Ampicillin	 GST,	N-term	 thrombin	 This	Project	

PET28A-MP1-p14	 Kanamycin	 His,	C-term	(MP1)	 --	 T.	Clausen	

PET-DUET-	C7orf59-

HBXIP	(LONG)	

Ampicillin	 His,	N-term	

(C7orf59)	

PreScission	 D.	Sabatini	

PET-DUET-C7orf59-

HBXIP	(SHORT)	

Ampicillin	 His,	N-term	

(C7orf59)	

PreScission	 D.	Sabatini	

PACYC-DUET-	C7orf59-

HBXIP	(SHORT)	

chloramphenicol	 His,	N-term		

(C7orf59)	

PreScission	 This	Project	

 

 

Table 2: List of detected crosslink in the pentameric Ragulator. 
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Figure	3.6:	Small	angle	X-ray	scattering	analysis	of	the	XPOF-MP1-p14	tetramer	bound	to	p18-derived	

peptide,	 obtained	 from	 spontaneous	 dissociation	 of	 the	 XPOF-MP1-p14-GST-p18ΔN	 pentamer.	 	A:	

Scattering	curve.	B:	Guinier	region.	C:	Distance	distribution	function	p(r).	D:	Krakty	plot.		
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Chapter 4 

CONCLUSION	AND	FUTURE	DIRECTIONS	

 Over the last few years, the understanding of the mTORC1 pathway through amino acid 

signaling has expanded in an exponential manner. The identification of several components of 

the pathway through cell culture, biochemical techniques and mass spectrometry has provided 

valuable information about the regulatory mechanisms of the pathway. The crystal structures 

of some of components of the pathway has facilitated the process of discovering their molecular 

activity through which amino acids are sensed and later how this signal leads to the 

translocation of mTORC1 to lysosomes. The signal propagation mechanism involves Rag 

GTPases. The activation of Rag GTPases heavily depends upon the integrity of the Ragulator 

complex, which consists of MP1, p14, p18, HBXIP and C7orf59. The Ragulator complex 

displays an important regulatory role in the activation of mTORC1 at lysosomal surface. The 

crystal structures of MP1, p14 and HBXIP are already available. In this thesis, we present the 

crystal structure of C7orf59-HBXIP heterodimer (named XPOF for simplicity) at 2.95 

Å resolution. The unstructured N-terminal of C7orf59 links back to the evolutionary 

conservation of some of the structural features within the regulatory constituents of the TOR 

pathway in yeast.  

 Before solving the crystal structure of the dimer, we had relied on a computational 

model to interpret and guide our findings (Figure 4.1), including results from crosslinking/mass 

spectrometry and site-directed mutagenesis. Although this model had correctly predicted most 

of the features about the fold of C7orf59 and interface of the dimer, analysis of crystal structure 

of XPOF dimer revealed a new set of information that could not be observed in the 

computational model, including important differences in the conformation of the N-terminus 

and b3 loop of C7orf59 as well as in the positions of specific residues (Figure 4.2 and 4.3). 

 The crystal structure of XPOF not only displays the same fold as MP1-p14, but it also 

demonstrates a putative intersubunit key-lock motif. In the crystal structure of MP1-p14, two 

hydrophobic residues Leu63 and Leu65 of MP1 interact with the p14 residues Ile48, Ile52, 

Met74, Val81, Ile83, and Tyr94, which form a hydrophobic pocket. Kurzbauer et al referred to 

this hydrophobic pocket as 2b pocket (Kurzbauer et al., 2004). In the crystal structure of XPOF, 

the key-lock motif constitutes of b3* loop of C7orf59 inclining towards 2b pocket of HBXIP 

just like the structurally equivalent b3 loop of MP1 pointing towards 2b pocket of p14. Although 

many of the side chains are barely visible in the electron density due to low data quality, some 

residues such as Phe53 in b3* loop of C7orf59 and His41 and His87 of HBXIP that form the 
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edges of the hydrophobic 2b pocket, display good electron density in the crystallography data, 

probably as a consequence of their tight packing in the interface. Although Asn71 of HBXIP 

lies in the region with less defined electron density, yet we tend to assume that this residue is 

likely to make hydrogen bond with Arg54 of C7orf59 in regards to their close proximity with 

each other. Interestingly, side chain of Arg54 of C7orf59 presents an odd angle within the b3* 

loop, which in case of the absence of 2b pocket of HBXIP would be facing the solvent 

suggesting that the 2b pocket of HBXIP is protecting the Arg54 of C7orf59 from solvent access. 

The computational model did predict the right fold and helical and β-sheet interfaces for the 

heterodimer but the presence of this hydrophobic key-lock motif was only observed in the 

crystal structure. The in silico model of the heterodimer showed both loops on either side of 

helical interface to be away from each other. This conformational behaviour of the flanking 

loops can also be observed in the homodimer of HBXIP (Figure 4.4).  

 The C7orf59-HBXIP heterodimer is remarkably different from the crystal structure of 

HBXIP homodimer due to the presence of unstructured N-terminal of C7orf59 and the 

intersubunit hydrophobic key-lock motif. In the HBXIP homodimer, the equivalent b3 loop of 

a monomer is seemingly less hydrophobic which would not fit within the 2b hydrophobic 

pocket of dimerization partner (Figure 4.5). These differences suggest the likelihood of the 

prevalent existence of heterodimer over homodimer under physiological conditions, which 

could further be proved through future studies.  

 The orientation of the key-lock motif and the presence of a well-defined pocket in 

HBXIP to accommodate C7orf59 loop b3 also strongly points at the possibility of this interface 

being druggable. We aim to perform site directed mutagenesis to demonstrate the importance 

of this interface for the stability of the heterodimer, by mutating Arg54 and Phe53 to alanine 

and performing pulldowns with recombinant proteins.   

 Generally, only conserved residues are considered important for the stability and 

functional activity of the protein. Our observation regarding XPOF structure presents an 

unconventional case. The subunits of Ragulator complex do share similar fold with their yeast 

orthologs but they lack sequence homology. Additionally, the putative yeast orthologs for 

C7orf59 and HBXIP are yet to be fully characterized as members of EGO complex. This study 

revealed that C7orf59 appears as Ego2 with a distinct unstructured N-terminal region. Contrary 

to the heterodimer of C7orf59-HBXIP, Ego2 forms a homodimer that led us to assume that 

hypothetically during evolution MP1-p14 might be the first to evolve as a heterodimer with a 

much-conserved dimer interface, on the other hand, C7orf59 evolved later as dimerization 

partner of HBXIP. It is considerable to understand that the subunits of Ragulator complex might 
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have gone through structural modifications to support the cellular organizational complexity 

during evolutionary changes.  

 In the beginning of the project, based on the computational model, we assumed that 

sequence conservation was critical to find important residues in the dimer interface as well as 

the dimer-p18 interface. We designed E34A_N35A and D36A_E37A C7orf59 double mutants 

based on the high sequence conservation of these residues. These mutants neither affected the 

stability of the heterodimer nor its interaction with p18. Another conserved residue, Ser67 in 

C7orf59, was mutated to Aspartate to mimic phosphorylation. This mutation showed significant 

difference in terms of interaction with p18, but not HBXIP. Later, by solving the crystal 

structure it became clear that these residues lie close to the HBXIP b3 loop - C7orf59 2b pocket 

interface, which has a pseudo-symmetric relationship with the C7orf59 b3 loop - HBXIP 2b 

pocket, which is a less conserved interface, yet appears to be more important for the stability of 

the heterodimer.    

 The expression of recombinant XPOF in E. coli BL21(DE3) did not lead to high yield 

and the purification protocol needed a lot of optimization. Later, we also faced difficulties in 

crystallizing the complex. Several attempts led to 2D monocrystals, which were sent to 

Diamond Synchrotron Light Source for X-ray diffraction. The presence of 4M sodium formate 

in the crystallization condition could work as cryoprotectant, therefore further treatment with 

better cryoprotectants were avoided due to the fragile nature of crystals. After long sought 

analysis of diffraction data with low defined electron density in certain regions of the 

heterodimer, we still managed to gain some structural insight into the critical regions of the 

heterodimer. Further investigation in finding the scope of the unstructured N-terminal along 

with the putative druggable hydrophobic b3* loop-2b pocket of XPOF heterodimer in the 

assembly of Ragulator complex is beyond the timeframe associated with this dissertation.  

 In this project, we also studied the p18 interaction pattern with XPOF and MP1-p14 

dimers. Intriguingly, deletion of a C-terminal region of p18 abrogated its interaction with 

XPOF, while the same type of deletion promoted the interaction with MP1-p14, likely due to 

the increased stability of C-terminally deleted p18. We have tried to develop a protocol for the 

purification of GST-p18-C7orf59-HBXIP trimer complex. Due to low yield of trimer, the 

protocol requires adjustments to accommodate the intrinsic proteolysis of p18.  

 Recently, we have also found an important piece of information regarding the possible 

involvement of PKA in the regulation of mTORC1 activity through Ragulator complex. The 

hypothesis of PKA regulation came from the observation that the conserved Ser67 of C7orf59, 

which we found to be important for p18 binding, is a potential PKA phosphorylation site. 
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Mutation of this residue to Aspartate inserts a negative charge, which mimics the presence of 

phosphate group and results in partial dissociation of p18 in a pulldown assay with recombinant 

proteins.  The results documented in Chapter 2 of this dissertation demonstrate the changes in 

the interaction pattern of the subunits of Ragulator complex and RagA GTPase when treated 

with PKA modulators such as Forskolin (PKA activator) and H-89 (PKA inhibitor), as well as 

subcellular redistribution of endogenuous C7orf59 in U2OS cells upon H-89 treatment. These 

results clearly showed that PKA activation results in dissociation of the Ragulator complex. 

However, it is not clear at this point if this effect is mediated by phosphorylation of C7orf59 on 

Ser67, as mutations on this site seemed to behave in the same way as the wild type protein (data 

not shown). Future experiments, including in vitro phosphorylation of Ragulator subunits with 

PKA, detection of phosphorylation events by mass spectrometry and design of additional 

mutations should clarify this issue. Considering the fact that mTORC1 controls multiple 

anabolic activities of the cell, the crosstalk with a major catabolic pathway such as PKA 

signaling may likely be involved in the regulation of mTOR. Hopefully, future experiments 

would increase our understanding of the prospects of PKA involvement in mTORC1 activity 

through Ragulator complex.  
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