Universidade Estadual de Campinas

Instituto de Biologia

Bruno Udelsmann

"Estudo Populacional de Stramonita haemastoma (Gastropoda,

Prosobranchia)"

Este exe	n plar correc	spunde	à redação f	inal
as tese Brur	o tendica o Volels,	peio(a) mann	candidato	(a)
' 314°C /a	ປະ ມູເອໄສ Gon	histo J	ulgadora.	

Dissertação apresentada ao Instituto de Biologia para obtenção do Título de Mestre em Genética e Biologia Molecular, na área de Genética Animal e Evolução.

Orientadora: Profa. Dra. Vera Nissaka Solferini

Co-Orientadora: Dra. Sónia C.S. Andrade

Campinas, 2009

Campinas, 11 de fevereiro de 2009

BANCA EXAMINADORA

Profa. Dra. Vera Nisaka Solferini (Orientadora)

Hofferi-Assinatura

Prof. Dr. Louis Bernard Klaczko

Prof. Dr. Sérgio Russo Matioli

Prof. Dr. Luiz Francisco Lembo Duarte

Prof. Dr. Evandro Marsola de Moraes

Assinatura

Assinatura

Assinatura

Assinatura

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE BIOLOGIA – UNICAMP

Ud3e	Udelsmann, Bruno Estudo populacional de <i>Stramonita haemastoma</i> (Gastropoda, Prosobranchia) / Bruno Udelsmann. – Campinas, SP: [s.n.], 2009.				
	Orientadores: Vera Nisaka Solferini, Sónia Cristina da Silva Andrade. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia.				
	 Genética de populações. Moluscos. Litoral. Stramonita haemastoma. Muricidae. Solferini, Vera Nisaka. Andrade, Sonia Crista da Silva. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título. 				
	(scs/ib)				

Banca examinadora: Vera Nisaka Solferini, Luiz Francisco Lembo Duarte, Sérgio Russo Matioli.

Data da defesa: 11/02/2009.

Programa de Pós-Graduação: Genética e Biologia Molecular

Título em inglês: A population study of *Stramonita haemastoma* (Gastropoda, Prosobranchia). Palavras-chave em inglês: Population genetics; Molluscs; Seashore; *Stramonita haemastoma*; Muricidae.

Área de concentração: Genética Animal e Evolução.

Titulação: Mestre em Genética e Biologia Molecular.

Agradecimentos:

Várias pessoas contribuíram para a conclusão deste trabalho, tanto de forma direta quanto de forma mais indireta durante o dia-a-dia, inclusive nos momentos fora do trabalho.

Agradeço à Vera, minha orientadora, pela orientação, paciência e compreensão.

À Sónia, minha co-orientadora, pela orientação, introdução às isoenzimas e aos moluscos.

À minha família por todo apoio prestado sempre.

À Mariana por todo carinho, incentivo e ajuda neste último um ano e meio.

Aos membros do laboratório, em especial Camila, Kaiser, Aluana e Joice.

Aos meus amigos Renato, Egito, Zapa, Drixco, Júlio, Fabrício e Leandrinho pelas baladas, risadas, viagens e todo o caos envolvido desde longas datas.

Aos meus amigos patinadores Felipe, Róds, Diego, Thiago, Marcelo (ou Bunekão) e Tim pelos rolés e inúmeras tricks.

Aos meus outros amigos.

Aos funcionários da UNICAMP que ajudaram.

À Fapesp pela bolsa e financiamento do projeto.

Índice:

Agrad	lecimentos	V
Resun	9	
Abstra	11	
Introdução Geral		13
	Literatura Citada	23
Capít	ulo 1	29
	Introdução	29
	Objetivos	32
	Material e Métodos	32
	Resultados	41
	Discussão	52
	Considerações Finais	62
	Literatura Citada	63
0 1	1.0	
Capiti		69
Capiti	ulo 2 Introdução	69 69
Capiti	Introdução Objetivos	69 69 70
Capiti	Introdução Objetivos Material e Métodos	69 69 70 71
Capiti	Introdução Objetivos Material e Métodos Resultados	69 69 70 71 75
Capiti	Introdução Objetivos Material e Métodos Resultados Discussão	69 69 70 71 75 113
Capiti	Introdução Objetivos Material e Métodos Resultados Discussão Considerações Finais	69 69 70 71 75 113 119
Capiti	Introdução Objetivos Material e Métodos Resultados Discussão Considerações Finais Literatura Citada	 69 69 70 71 75 113 119 120
Capito	Introdução Objetivos Material e Métodos Resultados Discussão Considerações Finais Literatura Citada derações Gerais	 69 69 70 71 75 113 119 120 123
Capito Consid Apênc	Introdução Objetivos Material e Métodos Resultados Discussão Considerações Finais Literatura Citada derações Gerais dices	 69 69 70 71 75 113 119 120 123 125
Capiti Consid Apênc	Introdução Objetivos Material e Métodos Resultados Discussão Considerações Finais Literatura Citada derações Gerais lices Apêndice I	 69 69 70 71 75 113 119 120 123 125 125
Capiti Consid Apênc	Introdução Objetivos Material e Métodos Resultados Discussão Considerações Finais Literatura Citada derações Gerais lices Apêndice I Apêndice II	 69 69 70 71 75 113 119 120 123 125 125 156

Resumo:

Neste estudo foram analisados por eletroforese de isoenzimas e morfometria tradicional, indivíduos de *Stramonita haemastoma*, uma espécie de gastrópode que habita costões rochosos no litoral brasileiro.

Foram feitas coletas em nove localidades no litoral dos estados de Santa Catarina, São Paulo e Rio de Janeiro.

Em estudo prévio com esta espécie havia sido encontrado um distinção genética em dois grupos. Tal distinção se manteve, com diferenças marcantes nas freqüências dos alelos de três locos. Assim sendo, após interpretação dos géis de isoenzimas as amostras foram sub-divididas em dois grupos, denominados A e B. E esta divisão foi corroborada por um teste de atribuição de genótipos utilizando o programa Structure.

Os grupos genéticos foram então tratados independentemente para a obtenção de estimativas de variabilidade e estruturação genéticas. Os valores encontrados foram similares aos de outros moluscos com desenvolvimento larval planctotrófico. Sendo encontrada variabilidade moderadamente alta e estruturação reduzida. O grupo B apresentou maior estruturação indicando possíveis diferenças entre os grupos quanto ao desenvolvimento e dispersão.

Foram encontrados poucos desvios significativos do equilíbrio de Hardy-Weinberg foram poucos, assim como de desequilíbrio de ligação. Diversos locos apresentaram diferenças significativas de freqüência entre os grupos A e B.

A distância genética média das amostras foi de 0,338 entre os grupos, 0,006 entre as amostras do grupo A e 0,015 entre as amostras do grupo B. Estes valores são comparáveis aos encontrados em espécies cogenéricas.

Nos mesmos indivíduos das análises genéticas foram tomadas oito medidas distintas para análise morfológica. As medidas foram analisadas separadamente e por análise de componentes principais. A maior parte da diversidade foi encontrada entre as localidades amostradas e não entre os grupos A e B.

Nossos resultados indicam que *S. haemastoma* possui uma complexidade taxonômica ainda não elucidada, tendo os grupos A e B características de espécies crípticas.

Abstract:

In this study, *Stramonita haemastoma* individuals, a gastropod who inhabits marine rocky shores, were analysed through isozymes electrophoresys and traditional morphometrics.

Nine localities in the brazilian shore, extending from Santa Catarina to Rio de Janeiro were sampled.

In a preliminary study, a genetic distinction in two different groups was detected. This distinction continues to be found, with evident differentiation in three loci and in minor degree in other loci. After the interpretation of the isozymes data, individuals were adressed as belonging to groups A or B according to their genotypes. To corroborate with this division a genotype atribution test was performed using the software Structure, which resulted in a division 92% similar.

The groups A and B were treated independently to obtain the genetic variability and structure parameters. Values were similar to other molluscs whith similar larval development, with moderately high variation and reduced population structure. Group B has higher population structure indicating possible differences in development or dispersal.

There were few deviations to Hardy-Weinberg and few linkage disequilibrium, many loci differed in frequencies between populations of distinct groups.

Genetic distance was in average 0,338 between populations of distinct genetic groups, a value comparable to other cogeneric species. Between group A populations the distance was in average 0,006 and between group B populations distance was of 0,015 in average.

The same individual from the genetic analysis were used for the morphometrics. Eight different shell measures were used. Data was analysed measure by measure and through

principal components analysis. The majority of variation was found between sample sites rather than between the groups A and B.

From the results of this study it is possible to affirm that the taxonomy of *S. haemastoma* is not fully understood. The groups A and B have typical characteristics of cogeneric sibling species. More studies are necessary, in broader areas to asses the groups the status of distinct species, by the moment *S. haemastoma* should be adressed as a species complex.

Introdução Geral:

Organismo Estudado:

O filo Mollusca é o segundo filo com maior diversidade de espécies e está presente em diversos habitats, sobretudo em ambientes aquáticos. Entre os moluscos, a classe Gastropoda é a mais diversa e a mais conhecida, principalmente por suas belas conchas. O número de espécies estimado desta classe esta entre 40.000 e 100.000 espécies (Bieler, 1992).

Esta classe possui ampla distribuição geográfica sendo encontrada em uma grande diversidade de habitats; muitas espécies vivem em costões rochosos marinhos (Solem, 1974). *Stramonita (=Thais) haemastoma* (Linnaeus 1767), da família Muricidae (Gastropoda: Prosobranchia), popularmente chamada de "saquaritá", possui representantes em toda costa atlântica das Américas, possuindo distribuição desde a Flórida nos Estados Unidos até o litoral de Santa Catarina. Também é encontrada na costa leste do Atlântico, desde o mar Mediterrâneo ao oeste da África (Abbot, 1974; Rios, 1994).

Esta espécie habita a região entremarés de costões rochosos, ocupando principalmente a faixa do mediolitoral inferior e infralitoral e também, em menor grau, áreas um pouco superiores (Magalhães, 2000). Sua habilidade de ocupação de diferentes microhabitats no costão é relacionada à grande plasticidade fenotípica da concha e da probóscide, dentre outras características (Magalhães, 1988; Watanabe e Young, 2006).

Como todos os membros da família Muricidae, *S. haemastoma* é um predador e tem por dieta bivalves dos gêneros *Perna, Brachidontes, Modiulus* e *Crassostrea*; cirripédios dos gêneros *Chthamalus, Tetraclita* e *Megabalanus*, além de poliquetos da espécie *Phragmatopoma lapidosa* e, eventualmente, canibalizam pequenos conspecíficos (Pereira et al., 1988; Duarte, 1990; Lavrado, 1992; Watanabe e Young, 2006). Quando alimenta-se de moluscos e cirripédios o animal perfura a concha destes com auxílio de sua rádula e de secreções enzimáticas; em seguida insere sua probóscide através da perfuração para realizar a alimentação (Butler; 1985). No caso de poliquetos não há necessidade de perfuração, sendo a probóscide inserida nos seus tubos. Em ambientes onde há escassez de bivalves e cirripédios e onde os poliquetos são abundantes os moluscos apresentam uma probóscide praticamente duas vezes maior que a daqueles que se alimentam apenas de bivalves (Watanabe e Young, 2006). Os hábitos alimentares desta espécie fazem dela uma praga para a ostreicultura (Pereira, 1988).

Sua concha mede até 90mm de comprimento e 55mm de largura, possui padrão em espiral com presença de um opérculo em formato de "D" (Kool, 1993). É um molusco dióico, a fertilização é interna (Kool, 1993), há formação de grupos para oviposição (Papp e Duarte, 2001) e apresenta um longo estágio larval planctotrófico (D'Asaro, 1966; Roller e Stickle, 1988); esta forma larval permite uma grande capacidade de dispersão (Janson, 1987; Raff, 1996; Todd et al, 1998; Bohonak, 1999).

S. haemastoma é um caramujo que se desloca bastante chegando a passar de uma pedra para outra do costão, para a formação de agregados ou em busca de alimento (Papp e Duarte, 2001).

O status taxonômico dos membros da família *Muricidae* é bastante discutido, pois muitas espécies apresentam convergências nas características da concha, que são utilizadas em estudos taxonômicos do grupo (Kool, 1993).

Dentro da espécie *S. haemastoma* também há certa controvérsia taxonômica. Devido à sua ampla distribuição ela foi descrita diversas vezes, possuindo diversos nomes sinônimos.

Kool fez uma revisão do gênero em 1987 e atribui o status de gênero à *Stramonita* (anteriormente um subgênero de *Thais*).

Há também controvérsia com relação à existência de algumas subespécies; a maioria pode ser atribuída aos sinônimos da espécie (Kool, 1993) e outras possivelmente são espécies distintas (Liu et al, 1991; Vermeij, 2001). Apenas uma subespécie é relatada no Brasil (*S. haemastoma floridana*) (Abbot, 1974). Em um trabalho preliminar realizado no litoral de São Paulo e do Rio de Janeiro, foram encontrados fortes indícios de divisão da espécie em dois grupos simpátricos e geneticamente distintos.

Evidências de espécies crípticas foram encontradas em outros gastrópodes. Na espécie *Littorina saxatilis* (família Littorinidae) foi encontrada, na Espanha e na Suécia, uma evidente divisão entre os indivíduos de regiões mais elevadas e de regiões inferiores baixas do costão e entre costões mais abrigados e aqueles expostos às ondas, com diferenciação morfológica e genética (isoenzimas e DNA nuclear) assim como um parcial isolamento pré-cópulatório (Johannesson et al 1993, 2003; Johannesson e Tatarenkov, 1996; Johannesson e Panova, 2004; revisto por Rolán-Alvarez, 2007). Esta diferenciação foi relacionada à adaptação a diferentes microhabitats no costão, formando grupos de acasalamento.

A partir dos dados da iniciação científica, cogitou-se que algo similar poderia estar ocorrendo em *S. haemastoma* no Brasil.

A existência de espécies crípticas é comum na maioria dos grupos marinhos, com diversos exemplos inclusive no Brasil (Ridgway et al, 1998; Ignácio et al, 2000; Rahman e Uehara, 2004; Lima et al, 2005; Crummet e Eernise, 2007; revisto por Knowlton, 1993). Isto resulta muitas vezes da falta de conhecimento básico das espécies estudadas.

O reconhecimento químico é um dos principais fatores que leva ao isolamento de diversas espécies crípticas. Esta modalidade de reconhecimento é bastante distinta do reconhecimento visual e auditivo e não é associado à diferenças morfológicas evidentes muitas vezes. O reconhecimento químico em invertebrados marinhos pode ser fundamental no recrutamento larval (Burton et al, 1982; Cronin et al, 1986; Phillips et al, 1986; Morrow et al, 1992; Hough e Naylor, 1992; Garcia-Lavandeira et al, 2005; Laimek et al, 2008) assim como na escolha de parceiros reprodutivos (Knowlton, 1986; Weinberg et al, 1990; Stanhope et al, 1992).

Além da presença de muitas espécies crípticas em ambientes marinhos, a própria especiação de muitos animais deste ambiente impõe um desafio as teorias de especiação existentes. Isto porque animais com estágio larval planctotrófico, como *S. haemastoma*, em geral possuem elevado fluxo gênico, o qual preveniria a especiação (Palumbi, 1994). Mesmo assim a abundância de espécies marinhas é elevada, inclusive naquelas com estágio larval planctotrófico, indicando que a especiação ocorre normalmente mesmo com estas características. Uma explicação é que os mares podem oferecer diversas barreiras invisíveis ao fluxo gênico, como as correntes marinhas, fazendo dos oceanos ambientes fragmentados apesar da aparente uniformidade (Maynard, 1976; McGowan e Walker, 1985; Incze et al,1990). Muitas características locais também influenciam os movimentos da água, das correntes e conseqüentemente afetam o fluxo gênico.

Apesar dessas barreiras invisíveis ao fluxo gênico, os grandes tamanhos populacionais de muitas espécies marinhas, além da capacidade de produzir diversos eventos de recolonização fazem com que modelos de especiação alopátrica, dependentes muitas vezes de pequenas populações, tornem-se extremamente lentos. Por outro lado, alguns eventos de mutação e

seleção natural seriam capazes de alterar rapidamente freqüências gênicas mesmo em grandes populações e eventualmente gerar isolamento reprodutivo (Banse, 1986; Barton, 1989).

A especiação simpátrica também é apontada com uma possibilidade para animais marinhos, com a seleção natural atuando seja sobre a competição por recursos limitados, ou sobre a seleção sexual, ou sobre a formação de raças com habitats específicos (revisto por Turelli, 2001). Um exemplo bastante conhecido de uma possível especiação simpátrica em andamento em moluscos, ocorre com *Littorina saxatilis*, que apresenta raças adaptadas a níveis distintos do costão (Johannesson et al, 1993, 2003; Fernández et al, 2005).

A genética de populações de *S. haemastoma* é pouco estudada. Liu et al (1991) fizeram um estudo no litoral dos Estados Unidos, do Texas à Florida, com as subespécies *S. h. floridana* e *S. h. canaliculata*, para as quais há uma grande ambigüidade taxonômica. Eles encontraram uma distância genética (Nei, 1978) marcante entre as duas subespécies (D=0,30). As características morfológicas que deveriam diferenciá-las, no entanto, mostraram-se ambíguas e com muita sobreposição de dados. A estruturação genética foi nula dentro das duas subespécies, demonstrando um elevado fluxo gênico entre as populações. A diversidade gênica foi distinta entre as subespécies, com *S.h. floridana* possuindo uma diversidade três vezes maior que a subespécie *S.h. canaliculata*.

Não existem estudos genéticos anteriores publicados sobre esta espécie no Brasil, no entanto existem dados de outros moluscos e outras espécies de costão com os quais comparações podem ser feitas. Em estudos com *Colisella subrugosa* (José e Solferini, 2006), litorinídeos (Andrade et al, 2003, 2005; Andrade e Solferini, 2007), ostras (Ignácio et al, 2000), anêmonas

(Russo et al, 1994), ascídias (Dias et al, 2006), entre outros. O padrão encontrado é de alta diversidade gênica, deficiência de heterozigotos em muitos dos moluscos e baixa estruturação nos animais de larva planctotrófica e estruturação mais elevada naqueles com desenvolvimento direto.

A relação de baixa estruturação genética com estágio larval planctotrófico é comum, porém existem barreiras que podem gerar estruturação mesmo em espécies com capacidade de grande dispersão. Estas barreiras podem ser físicas, como as correntes marinhas, ou comportamentais. Por exemplo, há estruturação genética em animais de larva planctotrófica em localidades como Cabo Haterras, *Cape Cod*, *Point Conception* e o arquipélago indonesiano (revisto por Palumbi, 1994).

Região de Estudo:

O litoral brasileiro estende-se por mais de 7.400 km, a maioria na região intertropical e inteiramente voltado para o oceano Atlântico. As correntes oceânicas que chegam ao litoral brasileiro são basicamente: a corrente do Brasil (que flui do norte para o sul) e a corrente das Guianas (flui aproximadamente do sudeste para o noroeste), originadas da bifurcação da corrente Sul Equatorial (flui de leste para oeste); e a corrente das Malvinas fluindo do sul que se encontra com a corrente do Brasil.

A história geológica do litoral brasileiro remonta a 140 milhões de anos, quando no Cretáceo Inferior houve a formação de dois novos blocos continentais, a África e a América do Sul, e a formação do oceano atlântico (Ab' Saber, 2003).

Este estudo estendeu-se do litoral de Santa Catarina até o litoral do Rio de Janeiro, sendo também feitas coletas no litoral do Espírito Santo.

A vida na região entremarés de um costão marítimo exige uma grande adaptação. Ali os seres vivos enfrentam diferentes condições que se alternam de acordo com o ciclo das marés, intensidade das ondas, entre outras. Há, de um modo geral, uma elevada exposição aos rigores do ambiente físico, sendo o substrato um dos mais importantes fatores determinantes na distribuição e características adaptativas dos organismos. A dessecação, elevadas temperaturas e a própria luz devem ser enfrentadas durante a maré baixa quando muitos dos seres vivos do mediolitoral e do supralitoral são expostos ao ar, devendo possuir certa resistência à dessecação. Tais efeitos podem ser evitados pelo deslocamento ou recrutamento preferencial em locais abrigados, como frestas, no entanto isto na maioria das vezes não é possível, além de ser inviável para organismos fotossintetizantes.

Uma característica marcante dos costões rochosos, é a zonação de espécies. Como a tolerância das espécies à dessecação varia, estas se organizam ao longo do gradiente marinho/terrestre. Os fatores físicos são os principais determinantes desta zonação, e são resultado de diferentes tolerâncias aos estresses ambientais. Dentre os fatores biológicos, a competição por recursos limitados, principalmente por espaço, é a mais importante. Muitos organismos do supralitoral não possuem limitações físicas para ocupar regiões mais baixas, no entanto são deslocados pela competição com outras espécies. De forma geral, os limites inferiores das espécies são determinados por fatores biológicos (competição) e os limites superiores por fatores físicos (dessecação, temperatura, luminosidade) (Boaden, 1985).

Técnicas Utilizadas:

I - Isoenzimas

Em gastrópodes, um dos métodos para detectar e quantificar a variabilidade genética nas populações é a eletroforese de isoenzimas, que permite averiguar as diferentes formas moleculares de uma enzima catalisando a mesma reação (Thorpe e Solecava, 1994; Tan e Liu, 2001; Iness-Campbell et al 2003). Estas são uma expressão direta do genótipo, permitindo análises de variabilidade tanto dentro como entre populações.

A técnica de isoenzimas é vantajosa em uma série de aspectos. É uma análise objetiva, é um maracdor codominante e apresenta menor custo em relação a outros marcadores moleculares (Van der Bank et al, 2001). No entanto é limitada pela presença de alelos nulos, modificações na seqüência de DNA que não são detectáveis, e podem ocorrer mudanças nas proteínas após a tradução (Leberg, 1996). As isoenzimas são importantes para a compreensão e para a estimativa da variabilidade genética, do fluxo gênico, limite de espécies e hibridação, além de outros problemas (Murphy et al, 1996). Na taxonomia e sistemática é uma técnica usada principalmente para distinguir espécies próximas e para medir a divergência entre populações dentro de uma espécie (Van de Bank et al, 2001).

II – Morfometria tradicional

Os estudos sobre a forma dos seres vivos existem há séculos. Historicamente, a classificação taxonômica e compreensão da diversidade biológica foram ambas baseadas em descrições morfológicas. No início do século XX, a biologia iniciou uma transição de um campo

descritivo para uma ciência quantitativa, o que também ocorreu à morfometria (Bookstein, 1998).

A morfometria estuda a variação e mudança na forma (tamanho e formato) dos organismos. Ela adiciona um elemento quantitativo às descrições morfológicas, permitindo comparações mais rigorosas.

Sua forma tradicional, assim como a morfometria geométrica são bastante utilizadas na taxonomia; no entanto, ambas são bastante criticadas: a morfometria tradicional é criticada por causa de problemas de correção de tamanho e porque diferentes formas podem gerar as mesmas medidas (Adams et al, 2004); já a morfometria geométrica é criticada pela falta de informação entre os marcos anatômicos (Richtsmeier et al, 2002) e, em moluscos, pela dificuladade e a arbitrariedade em localizar os marcos (Johnston et al, 1991). Ambas são criticadas por dificuldades nas definições de tamanho e conseqüentemente problemas com definição de forma (Richtsmeier et al, 2002). Em moluscos, especialmente gastrópodes, estas críticas também são fortes apesar do amplo uso das técnicas morfométricas (Kool, 1993), as técnicas tradicionais são amplamente utilizadas nestes animais (Stone, 1998).

A morfometria tradicional vem sendo substituída pela geométrica desde a década de 1980 (Stone, 1998), no entanto esta substituição teve certa relutância em gastrópodes, isso porque existem dificuldades em encontrar os marcos anatômicos nas conchas (Johnston et al, 1991).

Apesar dos problemas da análise morfométrica da concha, seus estudos, sobretudo quando adicionados a alguma outra forma de análise, não deixam de apresentar resultados interessantes, principalmente na separação de espécies próximas (Kilgour et al, 1990;

Johanesson et al, 1993; Kool, 1993; Wullschleger e Jokela, 2002; Rintelen e Glaubrecht, 2003; Absalão et al, 2005).

Para este trabalho optou-se pela morfometria tradicional utilizando a análise de componentes principais (PCA), usada na separação de subespécies e espécies próximas de gastrópodes (Johannesson et al, 1993; Kool, 1993).

A análise de componentes principais (PCA) permite a apresentação de resultados de diversas medidas (Manly, 2005), e consegue separar diferenças de tamanho e formato (Jolicoeur, 1963) desde que estas não sejam confundidas por alometria (Tissot, 1988, e Airoldi e Flury, 1988).

Objetivo Geral:

Este trabalho teve por objetivo avaliar a estrutura genética populacional de *S. haemastoma* utilizando análise de isoenzimas. Foi avaliada a estrutura de cada um dos grupos geneticamente distintos encontrados durante o estudo prévio, sua relação e verificar se estes podem ou não representar espécies distintas. Foi realizada também uma análise morfológica da concha a fim de encontrar possíveis diferenças existentes entre os dois grupos e descrever a variação morfológica da espécie.

Literatura Citada:

- AB' SABER, A.N.; 2003. Litoral do Brasil Brazilian Coast. Metalivros. 288p.
- ABBOTT, R. T. 1974. American Seashells, second edition, Van Nostrand Reinhold. 663p.
- ABSALÃO, R.S., SILVA, P.H. DE A. e PAULA, T.S.; 2005. Shell morphometrics in four species of Gadilidae (Mollusca, Scaphopoda) in southwestern Atlantic Ocean, Brazil. **Revista Brasileira de Zoologia, 22:** 175-179.
- ADAMS, D.C., ROHLF, F.J. e SLICE, D.E.; 2002. Geometric morphometrics: ten years of progress following the 'revolution'. Italian Journal of Zoology, 71: 5-16.
- AIROLDI, J. e FLURY, B. K. 1988. An application of common principal component analysis to cranial morphometry of *Microtus californicus* and *M. ochrogaster* (Mammalia, Rodentia). Journal of Zoology (London) 216: 21-36.
- ANDRADE, S.C.S., MAGALHÃES,C.A. e SOLFERINI, V.N. 2003. Patterns Of Genetic Variability In Brazilian Littorinids (Mollusca): A Macrogeographic Approach. Journal of Zoology Systematics and Evolution, 41: 249-255.
- ANDRADE, S.C.S., MEDEIROS, H.F. e SOLFERINI, V.N. 2005. Homogeneity test of Hardy-Weinberg deviations in brazilian Littorinids: evidence for selection? Journal of Molluscan Studies, 71: 167-174.
- ANDRADE, S.C.S. e SOLFERINI, V.N.; 2007. Fine-scale genetic structure overrides macro-scale structure in a marine snail: nonrandom recruitment, demographic events or selection?. Biological Journal of the Linnean Society 91: 23-36
- BANSE, K., 1986. Vertical distribution and vertical transport of planktonic larvae of echinoderms and benthic polychaetes in an open coastal sea. **Bulletin of Marine Science**, **39**: 162-175.
- BARTON, N.H., 1989. Founder effect speciation. In Speciation and its Consequences, eds. Otte, D.; Endler, J.A.; pp. 229-256. Sunderland, Mass: Sinauer. 679 pp.
- BIELER, R. 1992. Gastropod phylogeny and systematics. Annual Review of Ecology and Systematics 23: 311–338.
- BOADEN, P.J.S.; 1985. An introduction to coastal ecology. Blackie & Son, Glasgow. 218p.
- BOHONAK, A.J.; 1999. Dispersal, gene flow, and population structure. **The Quarterly Review of Biology**, **74**: 21-45.
- BOOKSTEIN, F. L. 1998. A hundred years of morphometrics. Acta Zoologica Academiae Scientiarum Hungaricae 44:7-59.

- BURTON, R.S. e FELDMAN, M.W.; 1982. Population genetics of coastal and estuarine invertebrates: does larval behavior influence population structure? In Estuarine Comparisons, ed. Kennedy, V.S., pp. 537-551. New York: Academic. 709pp.
- BURTON, R.S. 1998. Intraspecific phylogeography across the point conception biogeographic boundary. **Evolution: 52:** 734-745.
- BUTLER, P. A. 1985. Synoptic review of the literature on the southern oyster drill Thais haemastoma floridana. N.O.A.A. Technical Report. NMFS 35:9.
- CRONIN, T.W. e FORWARD, R.B.; 1986. Vertical migration cycles of crab larvae and their role in larval dispersal. Bulletin of Marine Science, 39: 192-201.
- CRUMMET, L.T. e EERNISE, D.J.. 2007. Genetic evidence for the cryptic species pair, *Lottia digitalis* and *Lottia austrodigitalis* and microhabitat partioning in sympatry. **Marine Biology**, **152**: 1-13.
- CUNHA, S.B. e GUERRA, A.J.T. 1998. Geomorfologia do Brasil. BCD União de Editoras S.A. 392p.
- D'ASARO, C.N.; 1966. The egg capsules, embryogenesis, and early organogenesis of a common oyster predator, Thais haemastoma floridana (Gastropoda: Prosobranchia). **Bulletin of Marine Science, 16:** 884–914.
- DIAS, G. M. ; DUARTE, L. L. ; SOLFERINI, V. N.; 2006. Low genetic differentiation between isolated populations of the colonial ascidians Symplegma rubra Monniot, C. 1972. Marine Biology, 148: 807-815.
- DUARTE, L.F.L., 1990. Seleção de presas e distribuição do gastrópode Thais haemastoma (L.) no costão da Praia do Rio Verde, Estação Ecológica de Juréia-Itatins, Estado de São Paulo. Tese de Doutorado. Instituto de Biologia. Universidade Estadual de Campinas, 106p.
- FERNÁNDEZ, J., GALINDO, J., FERNÁNDEZ, B., PÉREZ-FIGUEROA, A., CABALLERO, A., ROLÁN-ÁLVAREZ, E.; 2005. Genetic differentiation and estimation of effective population size and migration rates in two sympatric ecotypes of the marine snail *Littorina saxatilis*. Journal of Heredity, 96: 460-464.
- GARCIA-LAVANDEIRA, M., SILVA, A., ABAD, M., PRAZOS, A.J., SÁNCHEZ, J.L. e PARALLÉ, L.; 2005. Effects of GABA and epinephrine on the settlement and metamorphosis of the larvae of four species of bivalve molluscs. Journal of Experimental Marine Biology and Ecology, 316: 146-156.
- HOUGH, A.R. e NAYLOR, E.; 1992. Biological and Physical aspects of migration in estuarine amphipod *Gammarus zaddachi*. Marine Biology 112: 437-443.
- IGNACIO, B.L., ABSHER, T.M., LAZOSKI, C. e SOLÉ-CAVA, A.M.; 2000. Genetic evidence of the presence of two species of *Crassostrea* (Bivalvia: Ostreidae) on the coast of Brazil. **Marine Biology**, **136**: 987-991.
- INCZE, L.S., ORTNER, P.B. e SCHUMACHER, J.D.; 1990. Microzooplakton, vertical mixing and advection in a larval fish patch. Journal of Plankton Research, 12: 365-379.

- INNESS-CAMPBELL, J.; STUCKEY, M. e JOHNSON, M.S. 2003. Allozymic investigation of phylogeny of Littoraria (Gastropoda : Littorinidae). Journal Of Molluscan Studies 69: 19-26
- JANSON, K.; 1987. Allozyme and shell variation in two marine snails (*Littorina*, Prosobranchia) with different dispersal abilities. **Biological Journal of the Linnean Society**, **30**: 245-256.
- JOHANNESSON, K.; JOHANNESSON, B. e ROLÁN-ALVAREZ, E. 1993. Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail *Littorina saxatilis*. Evolution, 47(6):1770-1787
- JOHANNESSON, K. e TATARENKOV, A.; 1996. Allozyme variation in a snail (Littorina saxatilis)deconfounding the effects of microhabitat and gene flow. **Evolution**, **51**: 402-409.
- JOHANNESSON, K., LUNDBERG, J., ANDRÉ, C. e NILSON, P.G.; 2003. Island isolation and habitat heterogeneity correlate with DNA variation in marine snail (Littorina saxatilis). Biological Journal of the Linnean Society, 82: 377-384.
- JOHANNESSON, K. e PANOVA, M.; 2004. Microscale variation in Aat (aspartate aminotransferase) is supported by activity differences between upper and lower shore allozymes of Littorina saxatilis. **Marine Biology**, **144**: 1157-1164.
- JOLICOEUR, P. 1963. The multivariate generalization of the allometry equation. Biometrics 19: 497-499.
- JOHNSTON, M. R., TOBACHNICKA R. E. e BOOKSTEIN, F.L.; 1991. Landmark-based morphometrics of spiral accretionary growth. **Paleobiology 17:**19-36.
- JOSÉ, J. e SOLFERINI, V.N.; 2007. Population genetics of *Collisella subrugosa* (Patellogastropoda: Acmaeidae): evidence of two scales of population structure. **Genetica**, **130**: 73-82.
- KILGOUR, B.W., LYNN, D.H. e MACKIE, G.L.; 1990. Use of shell morphometric data to aid classification of *Pisidum* (Bivalvia: Sphaeridae). American Malacological Bulletin, 7: 109-116.
- KNOWLTON, N.; 1986. Cryptic and sibling species among the decapod Crustacea. Journal of Crustacean Biology, 6: 356-363.
- KNOWLTON, N.; 1993. Sibling species in the sea. Annual Review of Ecology, Evolution and Systematics, 24: 189-216.
- KOOL, S.P.; 1987. Significance of radular characters for reconstruction of thaidid phylogeny (Neogastropoda: Muricacea). The Nautilus, 101: 117-131.
- KOOL, S.P.; 1993. Phylogenetic Analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia, 35 (2): 155-259.
- LAIMEK, P., CLARK, S., STEWART, M., PFEFFER, F., WANICHANON, C., HANNA, P. e SOBHON, P.; 2008. The presence of GABA in gastropod muçus and its role in inducing larval settlement. Journal of Experimental Marine Biology and Ecology, 354: 182-191.

- LAVRADO, H.P., 1992. Seleção de presas pelo gastrópodo *Thais haemastoma* (L.) na região de Arraial do Cabo,RJ. Dissertação de Mestrado. Instituto de Biologia. Universidade Estadual de Campinas, 106p.
- LEBERG, P.L. 1996. Applications of allozyme electrophoresis in conservation biology. In: Smith, T. B. & Wayne, R. K. (eds) Molecular genetics approaches in conservation. Oxford University Press, New York.
- LIMA, D., FREITAS, J.E.P., ARAUJO, M.E. e SOLÉ-CAVA, A.M.; 2005. Genetic detection of cryptic species in the frillfin goby *Bathygobius soporator*. Journal of Experimental Marine Biology and Ecology, 320: 211-223.
- LIU, L.L., FOLTZ, D.W. e STICKLE, W.B., 1991. Genetic population structure of the southern oyster drill *Stramonita (=Thais) haemastoma*. Marine Biology 111: 71-79.
- MAGALHÃES, C. A., 1988. Padrões de variação morfológica em *Thais haemastoma* L., 1767 (Gastropoda: Prosobranchia). Dissertação de Mestrado. Instituto de Biologia. Universidade Estadual de Campinas, 107p.
- MAGALHÃES, C.A., 2000. Partilha de Recursos em Guilda de Gastrópodes Predadores em Costões de São Sebastião, SP. Tese de Doutorado. Instituto de Biologia. Universidade Estadual de Campinas, 142p.
- MANLY, B. F. J. 2005. Multivariate statistical methods: a primer. Third Edition Chapman and Hall, London. 214p.
- MAYNARD, N.G.; 1976. The relationship between diatoms in the surface sediments of the Atlantic Ocean and the biological and physical oceanography of overlying waters. **Paleobiology 2:**91-121.
- McGOWAN, J.A. e WALKER, P.W.; 1985. Dominance and diversity maintenance in an oceanic ecosystem. Ecological Monographs, 55: 113-118.
- MORROW, C.C., THORPE, J.P. e PICTON, B.E.; 1992. Genetic divergence and cryptic speciation in two morphs of the common subtidal nudibranch *Doto coronata* (Opistobranchia: Dendronotacea: Dotoidae) from northern Irish Sea. Marine Ecology, Progress Series, 84: 53-61.
- MURPHY, R. W.; SITES, J. W.; BUTH, D. G. e HAUFLER C. H. Proteins: isozyme electrophoresis. In:Hillis, D. M.; Moritz, C. & Mable, B. K. (eds) 1996. Molecular systematics. Second edition Sinauer Associates, Inc., Massachusets.
- PAPP, M.G. e DUARTE, L.F.L., 2001. Locomotion of Stramonita haemastoma (Linnaeus)(Gastropoda, Muricidae) on a mixed shore of rocks and sand. Revista Brasileira de Zoologia 18 (1): 187-195.
- PEREIRA, O.M., YAMANAKA, N. e TANJI, S., 1988. Ataque da *Thais Haemastoma* (Linné, 1767) sobre a ostra cultivada *Crassostrea brasiliana* (Lamarck, 1819) em laboratório. Boletim do Instituto de Pesca, 15 (1): 266-288.
- PHILLIPS, B.F. e McWILLIAM, P.S.; 1986. The pelagic phase of spiny lobster development. Can. Journ. Fish. Aquat. Sci. 43: 2153-2163.

- RAFF, R.A.; 1996. The shape of life genes, Development and the evolution of animal form. The university of chicago press.
- RAHMAN, S.M. e UEHARA, T.; 2004. Interspecific and intraspecific variations in sibling species of sea urchin *Echinometra*. Comparative Biochemistry and Physiology – part A: Molecular and Integrative Physiology, 139: 469-478.
- RICHTSMEIER, J.T., DELEON, V.B. e LELE, S,R.; 2002. The promise of geometric morphometrics. Yearbook of Physical Anthropology, 45: 63-91.
- RIDGWAY, T.M., STEWART, B.A., BRANCH, G.M. e HODGSON, A.N.; 1998. Morphological and genetic differentiation of *Patella granularis* (Gastropoda: Patellidae): recognition of two sibling species along the coast of southern África. Journal of Zoology, 245: 317-333.
- RINTELEN, T.V. e GLAUBRECHT, M.; 2003. New discoveries in old lakes: three new species of *Tylomelania*: Sarasin &Sarasin, 1897 (Gastropoda: cerithioidea: pachychilidae) from the malili lake system on sulawesi, indonésia. **Journal of Molluscan Studies, 69:** 3-17.
- RIOS, E.C., 1994. Seashells of Brazil. Editora da Fundação Universidade do Rio Grande, Rio Grande, 492p.
- ROLÁN-Alvarez, E.; 2007. Sympatric Speciation as a By-product of Ecological Adaptation in the Galician *Littorina saxatilis* Hybrid Zone. Journal of Molluscan Studies, 73: 1-10.
- ROLLER, R.A. e STICKLE, W.B.; 1988. Intracapsular development of Thais haemastoma canaliculata (Gray) (Prosobranchia: Muricidae) under laboratory conditions. American Malacological Bulletin, 6: 189–197.
- RUSSO, C., SOLÉ-CAVA, A.M. e THORPE, J.P.; 1994. Population structure and genetic variation in two tropical sea anemones (Cnidária, Actinidae) with different reproductive startegies. Marine Biology, 119: 267-276.
- SILVEIRA, J.D., 1964. Morfologia do Litoral. Pp.253-305. In Brasil, a terra e o homem. Ed. A. de Azevedo, São Paulo.
- SOLEM, G.A., 1974. The shell makers, Wiley-interscience publication, 289p.
- STANHOPE, M.J., CONNELY, M.M. e HARTWICK, B.; 1992. Evolution of crustacean chemical communication channel: behavioral and ecological genetic evidence for a habitat modified, race-especific pheromone. Journal of Chemical Ecology, 18: 1871-1887.
- STONE, J.R. 1998. Landmark-Based Thin-Plate Spline Relative Warp Análisis of Gastropod Shells. Systematic Biology 47(2):254-263
- TAN, K. S. e LIU, L. L.; 2001. Description of a new species of *Thais* (Mollusca : Neogastropoda : Muricidae) fromTaiwan, based on morphological and allozyme analyses. Zoological Science 18 (9): 1275-1289

- THORPE J.P. e SOLECAVA A.M., 1994. The use of allozyme eletrophoresis in invertebrate systematics. Zoologica Scripta 23 (1): 3-18
- TISSOT, B. N. 1988. Multivariate analysis. Pp 35-51 in M. L. McKinney, ed. Heterochrony Evolution: a Multidisciplinary Approach. Plenum Press, NY.
- TODD, C.D., LAMBERT, W.J. e THORPE, J.P.; 1998. The genetic structure of intertidal populations of two species of nudibranch molluscs with planktotrophic and pelagic lecitotrophic stages: are pelagic larvae "for" dispersal? Journal of Experimental Marine Biology and Ecology, 228: 1-28.
- VAN DER BANK, H.; VAN DER BANK, M. e VAN WYK, B-E. 2001. A review of the use of allozime electrophoresis in plant systematics. **Biochemical Systematics an Ecology 29**:469-483
- VERMEIJ, G.J., 2001. Distribution, history, and taxonomy of the Thais clade (Gastripoda: muricidae) in the neogene of tropical America. Journal of Paleonthology 75(3): 697-705
- WATANABE, J.T. e YOUNG, C.M., 2006. Feeding habits and phenotypic changes in proboscis length in the southern oyster drill, Stramonita haemastoma (Gastropoda: Muricidae), on Florida sabellariid worm reefs. Marine Biology 148(5): 1021-1029.
- WEINBERG, J.R., STARCZAK, V.R., MUELLER, C., PESCH, G.C. e LINDSAY, S.M.; 1990. Divergence between populations of a monogamous polychaete with male parental care: premating isolation and chromossome variation. Marine Biology, 107: 205-213.
- WULLSCHLEGER, E.B. e JOKELA, J.; 2002. Morphological plasticity and divergence in life-history traits between two closely related freshwater snails, *Lymnaea ovata* and *Lymnaea peregra*. Journal of Molluscan Studies, 68: 1-5.

Capítulo I – Variabilidade Genética e Estrutura Populacional de *Stramonita haemastoma* (Gastropoda, Prosobranchia).

Introdução:

Stramonita (=Thais) haemastoma (Linnaeus 1767), da família Muricidae (Gastropoda: Prosobranchia), popularmente chamada de "saquaritá", possui representantes em toda costa Atlântica das Américas, sendo encontrada desde a Flórida nos Estados Unidos até o litoral de Santa Catarina. Também é encontrada na costa leste do Atlântico, desde o mar Mediterrâneo ao oeste da África (Rios, 1994, Abbot, 1974).

O status taxonômico dos membros da família Muricidae é bastante discutido devido à convergência de características e a ampla distribuição de muitas das espécies (Kool, 1993; Vermeij, 2001). Dentro da espécie *S. haemastoma* também há certa controvérsia taxonômica; devido a sua ampla distribuição ela foi descrita diversas vezes, possuindo diversos nomes sinônimos. Kool et al. fez uma revisão do gênero *Thais* em 1987 e atribuiu o status de gênero a *Stramonita*, anteriormente um subgênero de de *Thais*.

Há também controvérsia com relação à existência de algumas subespécies; a maioria pode ser atribuída aos sinônimos da espécie (Kool, 1993), e algumas possivelmente são espécies distintas (Liu et al, 1991; Vermeij, 2001). Embora apenas uma subespécie seja relatada no Brasil (*S. haemastoma floridana*) (Abbot, 1974), em um trabalho preliminar no litoral de São Paulo e do Rio de Janeiro, foram encontrados indícios de divisão da espécie em dois grupos geneticamente distintos. Os grupos apresentavam elevada distância genética e evidentes diferenças em três locos isozímicos (dois locos de Pgm, E.C. 2.7.5.1 e um de Pgi, E.C. 5.3.1.9).

Os grupos não foram confirmados como espécies distintas, assim como não foram encontradas diferenças morfológicas evidentes nas rádulas.

Estudos recentes têm demonstrado que alguns moluscos de costão apresentam estruturação microgeográfica, com diferenciação conforme a faixa estudada do costão formando, inclusive, raças morfologicamente distintas (Johannesson et al, 1993, 1996; Johannesson e Panova, 2004; Rolán et al, 2004; Fernández et al, 2005). Estas diferenças estão relacionadas com as acentuadas mudanças físicas encontradas ao longo do costão, gerando adaptações habitat-específicas.

Dentro da família Muricidae há um ótimo exemplo de estruturação microgeográfica com a formação de grupos genéticos e raças morfologicamente distintas. A espécie *Nucella lapillus* apresenta, em diversas localidades, dois morfos, um que habita as áreas superiores do costão, em ambientes mais abrigados, e outro que habita regiões mais baixas e mais expostas (Rolán et al, 2004). Os morfos apresentam diferenças sutis, porém significativas, de freqüências alélicas e polimorfismo cromossômico (Pascoe et al, 2004), além de diferenças na morfologia da concha, sobretudo entre os juvenis, e da rádula (Rolán et al, 2004).

A variação temporal também pode levar à variação morfológica e genética em populações naturais. Na análise preliminar, as localidades apresentaram os grupos genéticos de *S. haemastoma* em diferentes proporções, não sendo possível identificar algum padrão.

Os trabalhos de genética de populações feitos com outras espécies de muricídeos encontram padrões em geral condizentes com o modo de desenvolvimento larval da espécie. *Nucella lapillus* possui desenvolvimento direto e apresenta, além de altos valores de diversidade gênica, estruturação elevada entre os diversos pontos de sua distribuição (Day et al, 1994), além da estruturação micro-geográfica (Rolán et al, 2004). As espécies que apresentam estágio larval

planctotrófico possuem em geral baixa estruturação populacional e valores elevados de diversidade gênica (Liu et al, 1991; Holborn et al, 1994; Gallardo e Carrasco, 1996; Bohonak, 1999; Lambert et al, 2003; revisto por Palumbi, 1995). A deficiência de heterozigotos comumente encontrada em muitos moluscos (Zouros e Foltz, 1984; Andrade et al, 2005; Plutchak et al, 2006; José e Solferini, 2007) é relatada em poucos muricídeos, (Gallardo e Carrasco, 1996; Gajardo et al, 2001). Não foi relatada para *S. haemastoma* no estudo feito nos Estados Unidos por Liu et al (1991), que envolveu duas subespécies onde também foram encontrados baixos valores de estruturação em ambass e elevada diversidade gênica em apenas uma.

A divisão de *S. haemastoma* em subespécies gera confusão pois não existem características morfológicas evidentes para sua distinção taxonômica. As diferenças genéticas entre as duas subespécies analisadas no trabalho feito por Liu et al (1991) foram bastante evidentes, características de espécies cogenéricas distintas. No entanto as características morfológicas que, pela literatura, deveriam distingui-las mostraram enorme sobreposição, mostrando-se inconclusivas.

A partir dessas informações, a estruturação populacional de *S. haemastoma* foi investigada, em populações brasileiras. Averigou-se no presente trabalho, se a divisão genética anteriormente encontrada pode ser atribuída a espécies distintas e a estruturação genética destes grupos genéticos foi estimada macro e micro-geograficamente.

Objetivos:

- Verificar, por meio de análise de isoenzimas, se os grupos genéticos encontrados anteriormente representam espécies distintas.

- Caracterizar e comparar a variabilidade genética dos dois grupos.

- Verificar se há algum padrão de estruturação entre os grupos genéticos quanto à disposição no mediolitoral inferior e superior.

- Verificar se há algum padrão temporal da presença de cada grupo nas zonas do costão e diferentes localidades.

Material e Métodos

Coletas e Tratamento:

Foram realizadas coletas em dois períodos de tempo distintos em nove localidades. Os locais e datas estão indicados na tabela 1 e na figura I pode ser vista a localização dos pontos de coleta.

Em cada localidade foram coletados aproximadamente 70 indivíduos. Em alguns dos pontos esta amostragem não foi possível devido à baixa disponibilidade de indivíduos. Em três dos pontos de coleta foi feita a divisão entre mediolitoral inferior e superior; nestes casos onde houve divisão entre mediolitoral inferior e superior cada faixa foi tratada como uma coleta independente.

Foram coletas também em Vila Velha – ES e na Bahia, no entanto, os indivíduos de *S. haemastoma* foram raros, sendo observados muitos indivíduos de *S. rústica*, não havendo um número suficiente de indivíduos para análise.

Os indivíduos coletados foram imediatamente congelados em nitrogênio líquido, onde foram mantidos até a realização das análises.

Eletroforese de isoenzimas:

-Extração:

Para a análise genética através da técnica de isoenzimas, foi removido de cada indivíduo um pedaço do músculo do pé. O tecido extraído foi então macerado em 200 μ l de tampão de extração (0.1 M Tris pH 8.0, 0.5% β -mercaptoethanol). As conchas e o restante do tecido foram conservados em etanol 80% para análises posteriores e registro.

-Aplicação das amostras:

O macerado foi absorvido em tiras de papel de filtro Whatman #3 que em seguida foram aplicadas em géis de amido Sigma 8,5%. Uma amostra de um dos extremos dos géis foi marcada com azul de bromofenol para indicar a posição de corrida.

Os sistemas tampão e as condições de corrida eletroforética estão indicadas na tabela 2.

-Coloração dos géis:

Cada gel foi fatiado e cada fatia incubada a 37°C imersa em solução de coloração segundo Shawn e Prassad (1970) e Ward e Warwick, (1980), após adaptações. Os sistemas enzimáticos revelados estão mostrados na tabela 3, totalizando nove sistemas e 14 locos. Após a coloração as fatias dos géis foram fixadas em uma mistura de metanol, água e ácido acético (5:5:1), em seguida foram fotografados e diafanizados para registro.

-Análise dos dados:

Os genótipos foram interpretados pela leitura direta dos géis, sendo os alelos designados de acordo com a sua mobilidade em relação ao alelo mais comum no loco.

Os dois grupos geneticamente distintos, denominados grupo A e grupo B, possuem uma evidente diferenciação nos locos Pgm-1, Pgm-2 e Pgi. No entanto, existem na maioria das localidades alguns indivíduos com genótipos ambíguos em um ou mais destes locos, os quais foram classificados como possíveis híbridos e removidos das análises, exceto do teste de atribuição de genótipos descrito mais adiante. Também foram retirados das análises os indivíduos sem informações nestes três locos. Na figura II pode ser visto um gel do sistema Pgm, mostrando a distinção em dois grupos (A e B) nos dois locos deste sistema e indicando dois possíveis híbridos.

Figura I: Locais de coleta de *S. haemastoma*.

Local:	Data Coleta I:	Data Coleta II:	Coordenadas:	Faixa do Costão:	Sigla Coleta I:	Sigla Coleta II:
São Francisco do Sul-SC, Enseada, Prainha	01/03/2006	24/09/2006	26°13'43''S 48°29'56''O	Mediolitoral inferior e superior juntos	SFI	SFII
São Vicente-SP, Ilha Porchat	15/04/2006	10/09/2006	23°58'39''S 46°22'08''O	Mediolitoral inferior	SVinfraI	SVinfraII
São Vicente-SP, Ilha Porchat	15/04/2006	10/09/2006	23°58'39''S 46°22'08''O	Mediolitoral superior	SVsupraI	SVsupraII
Ilha Bela-SP, praia Grande	16/02/2006	20/10/2007	23°51'34''8 45°25'05''O	Mediolitoral inferior e superior juntos	IBI	IBII
São Sebastião, Praia Toque-Toque pequeno	17/03/2007	19/10/2007	23°49'24''S 45°32'00''O	Mediolitoral inferior e superior juntos	SS2I	SS2II
São Sebastião, Juquehy	17/03/2007	19/10/2007	23°46'17''S 45°43'22''O	Mediolitoral inferior	SS1infraI	SS1infraII
São Sebastião, Juquehy	17/03/2007	19/10/2007	23°46'17''S 45°43'22''O	Mediolitoral superior	SS1supraI	SS1supraII
Parati-RJ, Trindade, praia do Cepilho	07/05/2006	27/08/2007	23°20'39''S 44°42'46''O	Mediolitoral inferior e superior juntos	ParatyI	ParatyII
Angra dos Reis-RJ, Praia do Frade	06/05/2006	28/08/2007	22°58'02''S 44°26'08''O	Mediolitoral inferior e superior juntos	AngraI	AngraII
Rio de Janeiro-RJ, Arpoador	14/08/2006	14/04/2007	22°59'24''S 43°11'29''O	Mediolitoral inferior	RJinfraI	RJinfraII
Rio de Janeiro-RJ, Arpoador	14/08/2006	14/04/2007	22°59'24''S 43°11'29''O	Mediolitoral superior	RJsupraI	RJsupraII
Búzios-RJ, Praia da Tartaruga	31/05/2006	02/01/2007	22°45'19''S 41°54'09''O	Mediolitoral inferior e superior juntos	BúziosI	BúziosII

Tabela 1: Locais de coleta, data e como foram amostradas as faixas do costão.

	Solução (A) pH6,1 "Morfolina"	Solução (B) pH8,0 "Tri citrato"	Solução (C)pH8,0 "Lítio EDTA"
Gel	0,42g de Ác. Cítrico N(3aminopropil) morfolina pH6,1 1000ml de água	1,211g de Tris 0,48g de Ác. cítrico 1000ml de água	2,4g LiOH 23,6g H ₃ BO ₃ 4,4 g EDTA 1000ml de água
Eletrodo	diluído 1:20	diluído 1:25	diluído 1:10
Tempo de Corrida	3h	3h	3h
Condições	45mA constante	45mA constante	50mA constante

Tabela 2: Sistemas tampão usados nos géis, seus tempos de corrida e a voltagem/amperagem aplicadas.

Tabela 3: Sistemas enzimáticos utilizados para análise de isoenzimas.

Enzima	Loco	Código	Sistema Tampão
		(EC)	(Gel)
Isomerase da fosfoglicose	Pgi	5.3.1.9	A e C
Fosfoglicomutase	Pgm-1	2.7.5.1	А
	Pgm-2		
Desidrogenase do isocitrato	Idh-1	1.1.1.42	А
	Idh-2		
Desidrogenase do malato-NAD	Mdh	1.1.1.37	А
Transaminase do glutamato	Got	2.6.1.1	В
oxaloacetato			
Aminopeptidase da leucina	Lap-2	3.4.11.1	С
	Lap-3		
Peptidases leucina-glicina-	Pep LGG-1	3.4	С
glicina	Pep LGG-3		
Esterase	Est-1	3.1.1.1	С
	Est-2		
Isomerase da manose-fosfato	Mpi	5.3.1.8	В

Figura II: Exemplo de gel do sistema Pgm, indicando a distinção entre os grupos genéticos. Os dois indivíduos marcados com asterisco são possíveis híbridos.

O teste de atribuição de genótipos foi feito utilizando o programa Structure (Pritchard et al, 2000 e Falush et al, 2003), a fim de analisar a estruturação populacional segundo um algoritmo Bavesiano e verificar se esta é similar à divisão feita com base nos locos Pgm-1 Pgm-2 e Pgi. A estimativa de parâmetros assume que as populações estão em equilíbrio de Hardy-Weinberg e que os marcadores estão em equilíbrio de ligação, no entanto esta aproximação mostrou-se robusta para alguns desvios de tais parâmetros (Falush et al, 2003). O modelo mais adequado foi baseado em admixture (ou seja, os indivíduos podem ter uma ancestralidade mista, de diversas localidades) e independência das freqüências alélicas, onde estimativas q(i) são feitas, que representam a proporção de filiação a cada um dos K clusters. Os padrões de iteração foram de 50.000 iterações com período burn-in, onde os dados não são tomados, seguidas de 500.000 iterações. Cinco simulações independentes foram feitas para cada estimativa de K(número de *clusters* de 1 a 10) para testar a consistência dos resultados. Todos os indivíduos amostrados foram incluídos nesta análise, inclusive os possíveis híbridos e indefinidos, e os dois períodos de coleta foram tratados juntos, de forma que todos os dados obtidos fossem levados em conta. O valor de K mais provável foi calculado segundo a metodologia proposta por Evanno et. al. (2005) para valores de *K* de dois a dez. Nesta metodologia a probabilidade baseia-se na distribuição dos valores modais de ΔK .

As estimativas de variabilidade genética [proporção de locos polimórficos (P), número médio de alelos por loco (A), heterozigozidade observada e esperada (Ho e He respectivamente)] foram calculadas com auxílio do programa Genetix (Belkhir et al, 2002).

A estatística F foi realizada utilizando as estimativas $f \in \theta$ de Weir e Cockerham (1984) com o uso de 10.000 randomizações para obtenção do intervalo de confiança.

Também foi feita uma análise de F_{ST} hierárquica em cada um dos grupos encontrados com auxílio do programa GDA (Lewis e Zaykin, 1999) a fim de verificar se há alguma diferença temporal significativa entre os períodos de coleta. Os grupo genéticos foram separados de acordo com o tempo de coleta e foram estimados dois valores distintos de F_{ST} : F_{ST-P} para diferentes períodos de coleta e F_{ST-S} para as amostras. Foram utilizados 10.000 reamostragens para estimar o intervalo de confiança.

Com auxílio do programa Genepop (Raymond e Rousset, 1995) foram feitos os seguintes testes exatos: teste exato para avaliar os locos e populações estatisticamente fora do equilíbrio de Hardy-Weinberg; teste para a análise de desequilíbrio de ligação e sua significância estatística; e teste para a comparação par-a-par das freqüências alélicas de todas as populações nos dois tempos de coleta para cada loco. Foram aplicadas cadeias de Markov em todos os testes; para os testes exatos de desvio do equilíbrio de Hardy-Weinberg e comparação das freqüências alélicas os parâmetros foram: 10.000 dememorizações, 1.000 levas e 5000 iterações por leva; para o teste de desequilíbrio de ligação os parâmetros foram: 10000 dememorizações foram: 10000 dememorizações 100 levas e 5000 iterações por leva; para o teste de desequilíbrio de ligação os parâmetros foram: 10000 dememorizações 100 levas e 5000 iterações 100 le
Foi realizada uma análise de desequilíbrio de ligação para os locos como um todo, sem distinção de populações através de um teste exato, novamente com auxílio do programa Genepop e a correção de Bonferroni seqüencial. A fim de melhor averiguar a distinção dos grupos genéticos genéticos, o teste exato de desequilíbrio de ligação também foi feito sem a separação nos grupos; os parâmetros utilizados foram os mesmos.

Utilizando o programa TFPGA (Miller, 1997), foi calculada distância genética de Nei (1978) par a par entre as populações separadas nos grupos geneticamente distintos; os dois períodos de coleta foram analisados juntos. A partir das distâncias foi feito, com o mesmo programa, um dendograma (UPGMA).

Para verificar a relação entre as distâncias genéticas e as distâncias geográficas, foi feito teste de Mantel, comparando os valores de F_{ST} par-a-par e as distâncias geográficas diretas (em linha reta) entre as populações de cada grupo genético em cada um dos períodos de coleta. Foram feitas 10.000 permutações, o programa TFPGA (Miller, 1997) foi utilizado para esta análise.

Resultados:

Atribuição dos indivíduos para os grupos A e B:

Com base na diferenciação entre os grupos geneticamente distintos, foi feita a atribuição de cada indivíduo para um de dois grupos, denominados "A" e "B". Nas tabelas de freqüências gênicas obtidas (tabelas I.1 a I.11 do apêndice I) podem ser vistas as diferenças presentes nestes locos entre os grupos; na figura II pode ser visto um exemplo de gel do sistema Pgm mostrando a distinção dos grupos. Vários locos além destes exibem diferenças entre os grupos, no entanto estas não são tão evidentes, limitando-se às freqüências alélicas entre os grupos. Os valores significativos do teste exato de Fisher comparando estas freqüências também se encontram no Apêndice I (tabelas I.12 a I.18).

Os indivíduos classificados como possíveis híbridos foram encontrados em freqüência reduzida, porém não foram raros (freqüência de 10,4% no período I de coletas e 9,5% no período II de coletas).

O teste de atribuição de genótipos rendeu uma separação similar àquela feita com base nos locos Pgm-1, Pgm-2 e Pgi. A divisão em dois grupos (K=2) mostrou-se a mais provável (valores de ΔK na tabela 4). Os resultados desta análise indivíduo por indivíduo para K=2 podem ser vistos no apêndice II.

A separação feita pelo programa foi 92% similar à separação feita durante a leitura dos locos Pgm-1, Pgm-2 e Pgi nos géis, quando considerados todos os indivíduos amostrados. No entanto, se forem considerados somente os indivíduos enquadrados nos grupos A e B da divisão com base nos locos Pgm-1, Pgm-2 e Pgi durante a leitura (ou seja, descartando-se os possíveis

híbridos da divisão por estes três locos e os indivíduos sem informações nestes locos) este valor de semelhança passa a ser de 96%.

k=	ΔK
2	7391,891
3	20,544
4	14,749
5	2,239
6	8,347
7	2,309
8	2,036
9	21,113
10	72,362

Tabela 4: Valor de ΔK para cada um dos valores de K testados no programa Structure.

Todas as localidades apresentaram indivíduos dos dois grupos, em geral um dos grupos foi predominantemente, com alguns locais apresentando os dois em quantidades similares, esta desproporção em muitas localidades acabou gerando algumas amostras de tamanho reduzido.

A tabela 5 apresenta os grupos predominantes em cada localidade em cada período de coleta e os números amostrais de ambos acrescidos dos números de possíveis híbridos. Os indivíduos sem informação nos locos Pgm-1, Pgm-2 e Pgi, classificados como indefinidos não estão inclusos. Os números amostrais variam para cada loco analisado e podem ser vistos mais especificamente nas tabelas de freqüências alélicas no Apêndice I.

Como cada grupo foi tratado independentemente, as amostras de menos de seis indivíduos não foram analisadas. No geral o grupo A mostrou-se mais numeroso.

	Logal de Colote:	Grupo	n (A / B / hib.)
	Local de Coleta.	Predominante:	
	São Francisco do Sul-SC	A e B	21 / 34 / 3
	São Vicente-SP, medioitoral inferior	Α	41 / 4 / 5
	São Vicente-SP, medioitoral superior	Α	26 / 1 / 2
	Ilha Bela-SP	A e B	23 / 16 / 6
	São Sebastião-SP, Juquehy, mediolitoral inferior	Α	31 / 2 / 0
do I	São Sebastião-SP, Juquehy, mediolitoral superior	Α	29 / 1 / 0
) îrio	São Sebastião-SP, Toque-Toque Pequeno	A e B	24 / 15 / 5
Pe	Parati-RJ	В	5 / 22 / 7
	Angra dos Reis-RJ	Α	28 / 5 / 5
	Rio de Janeiro-RJ, mediolitoral inferior	В	11 / 21 / 7
	Rio de Janeiro-RJ, mediolitoral superior	Α	22 / 4 / 0
	Búzios-RJ	В	1 / 21 / 9
	São Francisco do Sul-SC	Α	31 / 8 / 3
	São Vicente-SP, mediolitoral inferior	Α	29 / 3 / 8
	São Vicente-SP, mediolitoral superior	Α	36 / 2 / 0
	Ilha Bela-SP	A e B	25 / 23 / 12
···	São Sebastião-SP, Juquehy, mediolitoral inferior	Α	32 / 9 / 3
lo I	São Sebastião-SP, Juquehy, mediolitoral superior	Α	33 / 11 / 3
río	São Sebastião-SP, Toque-Toque Pequeno	Α	30 / 5 / 0
Pe	Parati-RJ	В	3 / 30 / 1
	Angra dos Reis-RJ	Α	38 / 2 / 1
	Rio de Janeiro-RJ, mediolitoral inferior	В	5 / 30 / 8
	Rio de Janeiro-RJ, mediolitoral superior	В	5 / 21 / 6
	Búzios-RJ	A e B	12 / 8 / 1

Tabela 5: Grupo genético predominante em cada ponto de coleta (do sul ao norte) e seus números amostrais e número de possíveis híbridos por localidade (hib.).

Variabilidade Genética Estimada:

Dos 14 locos amostrados cinco foram monomórficos em todas as amostras (critério 95%): Got, Idh-1, Mpi, Est-1 e Est-2. Estes locos apresentaram o mesmo alelo fixado para ambos grupos genéticos.

Considerando os grupos genéticos separadamente, os locos Pgm-1, Pgm-2, Pgi, Pep-LGG-1 e Lap-3 foram monomórficos no grupo A e somente os locos Pgm-1 e Pgi foram monomórficos no grupo B.

As freqüências alélicas e tamanhos amostrais em cada população estão indicados nas tabelas I.1 a I.11 do Apêndice I. Os dois grupos genéticos e os dois tempos de coleta são mostrados na mesma tabela para uma maior facilidade de comparação.

As estimativas de variabilidade genética podem ser vistas na tabela 6.

Tabela 6: Variabilidade genética de *Stramonita haemastoma*, estimativa de F_{IS} e seu intervalo de confiança nas diferentes populações após separação dos grupos geneticamente distintos nos dois períodos de coleta e médias dos valores para cada grupo em cada período. H_e = diversidade gênica, H_o = Heterozigosidade observada, P = porcentagem de locos polimórficos (critério 95%), A = número médio de alelos por loco. Em cinza os valores de F_{IS} que não fora significativos.

Amostra	Р	Α	H _e	Ho	F _{IS}
SFIA	0,36	1,86	0,144	0,065	0,573 (0,331-0,755)
SFIB	0,43	1,93	0,186	0,061	0,687 (0,554-0,784)
SV1infraIA	0,36	1,93	0,136	0,076	0,453 (0,289-0,581)
SV1supraIA	0,21	1,43	0,098	0,034	0,682 (0,348-0,888)
IBIA	0,29	1,71	0,121	0,056	0,563 (0,304-0,760)
IBIB	0,64	2,14	0,251	0,063	0,776 (0,597-0,851)
SS1infraIA	0,29	1,71	0,110	0,066	0,4291 (0,161-0,643)
SS1ssupraIA	0,29	1,71	0,097	0,060	0,406 (0,123-0,563)
SS2IA	0,21	1,50	0,098	0,084	0,184 (-0,204-0,449)
SS2IB	0,29	1,43	0,107	0,035	0,716 (0,263-0,926)
ParatyIB	0,64	2,00	0,200	0,075	0,655 (0,409-0,766)
AngraIA	0,29	1,79	0,132	0,029	0,792 (0,634-0,916)
RJinfraIA	0,29	1,50	0,109	0,067	0,456 (-0,118-0,775)
RJinfraIB	0,50	1,86	0,176	0,086	0,537 (0,297-0,710)
RJsupraIA	0,29	1,64	0,123	0,086	0,332 (0,107-0,510)
BúziosIB	0,43	1,86	0,145	0,045	0,702 (0,518-0,820)
Média IA	0,29	1,68	0,117	0,062	0,494 (0,298-0,622)
Média IB	0,49	1,87	0,178	0,061	0,670 (0,570-0,759)

Período II:		T	T		
Amostra	Р	Α	H _e	H _o	F _{IS}
SFIIA	0,29	1,64	0,133	0,073	0,477
	,	,	,	,	(0,242-0,606)
SFIIB	0,15	1,23	0,086	0,096	(-0,725-0,453)
SV1infraIIA	0.29	1.64	0.111	0.072	0,373
	- , -		- ,	- ,	(0,108-0,572)
SV1 supraIIA	0,14	1,71	0,093	0,066	(0,086-0,495)
IBIIA	0.29	1.71	0.124	0.101	0,214
	-,	-,	-,		(-0,038-0,375)
IBIIB	0,21	1,50	0,072	0,055	(-0,076-0,439)
SS1infraIIA	0.21	1.50	0.113	0.065	0,445
	-)		- , -	-,	(0,183-0,628)
SS1infraIIB	0,29	1,43	0,096	0,049	(0,115-0,751)
SS1supraIIA	0.29	1 64	0.120	0.062	0,495
SSTSuprum	0,29	1,01	0,120	0,002	(0,308-0,629)
SS1 supraIIB	0,29	1,43	0,113	0,035	(0,403-0.929)
552114	0.21	1.64	0.111	0.062	0,460
552IIA	0,21	1,04	0,111	0,002	(0,245-0,614)
ParatyIIB	0,36	1,57	0,109	0,080	0,335
A in one II A	0.21	1.57	0.111	0.052	0,535
Aligialia	0,21	1,37	0,111	0,033	(0,299-0,693)
RJinfraIIB	0,29	1,64	0,104	0,054	0,502
	0.0.0	1 = 2			0.430
RJsupraIIB	0,36	1,79	0,141	0,089	(0,003-0,582)
BúziosIIA	0,29	1,43	0,119	0,138	0,137
	,	-	,	,	(-0,357-0,447)
BúziosIIB	0,38	1,54	0,163	0,042	(0,335-0,924)
Média IIA	0.25	1.61	0,115	0.077	0,399
	0,20	1,01	0,110	0,077	(0,193-0,552)
Média IIB	0,29	1,52	0,111	0,063	U,454 (0 350-0 563)
					(0,000-0,000)

Tabela 6: (continuação)

Somente um par de locos foi encontrado em desequilíbrio de ligação estatisticamente significativo (SVinfraIA, Idh2 x Pep-LGG3, p=0,003, ep=0,00006). No teste com populações agrupadas, feito independentemente para os grupos A e B não foram encontrados desequilíbrios significativos. O teste de desequilíbrio de ligação, quando realizado sem a distinção dos grupos

genéticos, apresentou diversos resultados significativos, sobretudo, nas regiões de maior simpatria dos dois grupos (tabelas I.20 e I.21 do apêndice I).

Foram encontradas diferenças significativas nas freqüências alélicas entre diversos pares de populações, os resultados significativos deste teste estão nas tabela I.12 a I.18 do apêndice I. As diferenças significativas encontradas são, na grande maioria, entre populações do grupo A comparadas com populações do grupo B. Foram pouquíssimas as diferenças significativas entre populações dentro do grupo B e somente duas entre populações do grupo A tiveram resultados significativos, ambas no loco Pep-LGG-3. De um modo geral, além dos locos utilizados na separação visual, os locos Mdh, Idh-2 e Lap-2 apresentaram diferenciação nas freqüências alélicas quando comparados um grupo com o outro.

		Loco	População	p=
		Pgm-2	IBA	0,0269
		Mdh	AngraA	0,0000
		Idh-2	SFA	0,0024
		PEP-LGG-3	AngraA	0,0002
		PEP-LGG-3	SV1supraA	0,0016
	÷	PEP-LGG-3	SV1infraA	0,0031
	op	PEP-LGG-3	IBA	0,0066
	erío	Lap-2	SFA	0,0022
	Ā	Lap-2	SV1infraA	0,0000
		Lap-2	SS1ssupraA	0,0000
		Lap-2	AngraA	0,0000
		Lap-2	IBA	0,0001
Ä		Lap-2	SS1infraA	0,0001
odn		Lap-2	RJsupraA	0,0001
Gr		PEP-LGG-3	SFIIA	0,0006
		PEP-LGG-3	AngraIIA	0,0002
		PEP-LGG-3	SS1supraI	0,0004
		PEP-LGG-3	SS1infraI	0,0053
	••	PEP-LGG-3	IBIIA	0,0102
	II C	Lap-2	SS1supraIIA	0,0000
	íode	Lap-2	SS2IIA	0,0000
	Per	Lap-2	AngraIIA	0,0000
		Lap-2	SV1supraIIA	0,0005
		Lap-2	SFIIA	0,0014
		Lap-2	SV1infraIIA	0,0019
		Lap-2	BúziosIIA	0,0019
		Lap-2	SS1infraIIA	0,0057

Tabela 7: Populações e seus locos significativamente fora do equilíbrio de
Hardy-Weinberg nos dois períodos de coleta no grupo A.

		Loco	População	p=
		Pgm-1	RJinfraB	0,0000
		Pgm-1	IBB	0,0063
		Pgm-2	BúziosB	0,0000
		Pgm-2	SFB	0,0000
		Pgm-2	ParatyB	0,0003
		Pgm-2	IBB	0,0086
		Mdh	ParatyB	0,0094
		Idh-2	IBB	0,0002
		Idh-2	RJinfraB	0,0017
	···	Idh-2	ParatyB	0,0018
	op	Idh-2	SS2B	0,0042
ä	erío	Idh-2	BúziosB	0,0044
00 H	00 B	Idh-2	SFB	0,0487
Gruj		PEP-LGG-1	ParatyB	0,0039
		PEP-LGG-3	SFB	0,0000
		PEP-LGG-3	IBB	0,0001
		PEP-LGG-3	BúziosB	0,0012
		PEP-LGG-3	RJinfraB	0,0026
		Lap-2	SFB	0,0000
		Lap-2	BúziosB	0,0003
		Lap-2	RJinfraB	0,0119
		Lap-3	SFB	0,0067
		Idh-2	ParatyIIB	0,0005
	Período	Idh-2	RJinfraIIB	0,0016
	11:	PEP-LGG-3	SS1supraIIB	0,0003
		Lap-2	RJinfraIIB	0,0028

Tabela 8: Populações e seus locos significativamente fora do equilíbrio de Hardy-Weinberg nos dois períodos de coleta no grupo B.

Estruturação Genética:

Os valores obtidos de F_{ST} foram baixos, porém significativos e podem ser vistos na tabela 9 juntamente com os valores médios de F_{IS} e seus respectivos intervalos de confiança.

Tabela 9: F_{IS} e F_{ST} e intervalos de confiança (critério 95%) para cada um dos grupos geneticamente distintos nos dois períodos de coleta.

		F _{IS} :	F _{ST} :
Paríodo I:	А	0,494 (0.298-0.622)	0,020 (0.001-0.033)
1 011000 1.	В	0,670 (0,570-0,759)	0,053 (0,029-0,080)
Período II:	Α	0,399 (0,193-0,552)	0,018 (0,011-0,024)
	В	0,454 (0,350-0,563)	0,042 (0,031-0,064)

A matriz de distância genética par a par entre as populações separadas nos grupos geneticamente distintos pode ser vista na tabela I.22 no apêndice I. Com base nestas distâncias foi feito o dendograma (UPGMA), figura III. Em média a distância entre populações do grupo A foi de 0,006; entre populações do grupo B foi de 0,015; e entre populações do grupo A com populações do grupo B foi de 0,338.

O teste de Mantel comparando valores de F_{ST} e distâncias geográficas diretas não detectou relação significativa entre estes valores em nenhum dos grupos genéticos em nenhum dos períodos (Grupo A período I: Z=683,312, p=0,076; Grupo A período II: Z=419,375, p=0,110; Grupo B período I: Z=230,685, p=0,896; Grupo B período II: Z=327,671, p=0,686).

Capítulo 1

Figura III: Dendrograma (UPGMA) baseado na distância genética de Nei (1978).

Por fim foi feita a análise de F_{ST} hierárquica com auxílio do programa GDA (Lewis e Zaykin, 1999) a fim de verificar se há alguma diferença temporal significativa em cada um dos grupos encontrados entre os períodos de coleta. Os valores de F_{ST-P} indicam que não há diferença temporal no grupo A e que esta é baixa no grupo B. Os resultados estão na tabela 10.

Tabela 10: Análise de F_{ST} hierárquica entre os períodos de coleta para cada um dos grupos. Intervalo de confiança de 95%. F_{ST-P} para diferentes tempos de coleta (Períodos I e II) e F_{ST-S} para amostras dentro de cada grupo/período de coleta.

	F _{ST-P}	F _{ST-S}
Crupa A.	-0,001	0,017
Grupo A:	(-0,004-0,002)	(0,011-0,024)
Course D.	0,043	0,089
Grupo B:	(0,001-0,118)	(0,033-0,180)

Discussão:

Duas espécies?

Dois grupos geneticamente diferenciados dentro da espécie *Stramonita haemastoma* foram encontrados no litoral brasileiro. Tais grupos apresentam diferenças nos locos Pgm-1, Pgm-2 e Pgi e foram referidos como grupo A e grupo B. Posteriormente também foram notadas diferenças nas freqüências alélicas de outros locos.

Apesar da distinção nos locos Pgm-1, Pgm-2 e Pgi, alguns indivíduos heterozigotos para alelos dos dois grupos foram encontrados em freqüência baixa. Estes indivíduos em sua maioria não eram heterozigotos nos três locos usados na separação, indicando que provavelmente há certo fluxo gênico entre os grupos ou que estes alelos ainda são presentes nos dois grupos em baixa freqüência, apontando para uma separação recente.

Como pode ser visto na tabela II.3 do apêndice II, em cada um dos dois *clusters* do teste de atribuição de genótipos, existe no *cluster* 1 a presença em baixa freqüência de alelos predominantes do *cluster* 2, como o contrário não ocorre, se houver fluxo gênico presente entre os *clusters*, talvez seja principalmente no sentido do *cluster* 2 para o *cluster* 1. O *cluster* 1 é representado por indivíduos do grupo B e o *cluster* 2 por indivíduos do grupo A, o que indica a possibilidade de introgressão entre os grupos genéticos.

Dos 14 locos amostrados, além dos três utilizados na distinção dos grupos, os locos Mdh, Idh-2 e Lap-2 também apresentaram diferenciação significativa. Os testes de desequilíbrio de ligação reforçam a separação nos dois grupos: quando feitos sem a separação genética diversos locos apresentaram desequilíbrio e a separação nos dois grupos eliminou a maioria dos desequilíbrios.

Diferenças gênicas em vários locos, entre populações simpátricas, indicam que há uma barreira ao fluxo gênico e ao menos uma barreira reprodutiva parcial (Thorpe e Solé-Cava, 1994). Esta afirmação baseia-se em dois pressupostos: primeiramente não pode haver seleção pós-zigótica alterando as freqüências gênicas e segundo não pode haver migração de indivíduos com freqüências gênicas diferentes de outras localidades.

O pressuposto dos indivíduos migrantes com freqüências gênicas diferenciadas é mais um problema teórico do que prático, pois por menor que seja a migração e o fluxo gênico entre populações este irá na maioria das vezes eliminar a divergência existente, exceto se houver uma pressão seletiva de grande intensidade (Wright, 1978, Nei, 1987). Em uma espécie como *S. haemastoma*, que possui um longo estágio larval planctotrófico e apresenta reduzida estruturação, isto parece improvável.

Assim, diferenças gênicas em vários locos entre populações simpátricas indicam que há uma barreira ao fluxo gênico e ao menos uma barreira reprodutiva parcial (Thorpe e Solé-Cava, 1994). Como visto nos resultados dos testes exatos comparando as freqüências gênicas entre as populações (tabelas I.12 a I.19 Apêndice I), os locos Pgm-1, Pgm-2 e Pgi usados na separação dos grupos, assim como os locos Idh-2, Mdh e Lap-2 diferem nas freqüências alélicas entre os grupos genéticos, indicando a exitência destal barreira ao fluxo gênico entre os grupos de *S. haemastoma*, e talvez a existência de alguma barreira reprodutiva.

Estudos isoenzimáticos com espécies próximas de moluscos distinguiram espécies morfologicamente e ecologicamente similares. As diferenças em geral encontradas entre estas espécies são diferenças alélicas fixadas e grandes distâncias genéticas (Chambers, 1978; Woodruff et al, 1988; Staub et al, 1990; Liu et al, 1991; González-Wangüermert et al, 2005).

A distância genética entre as populações dos diferentes grupos, de em média 0,338 também se encaixa bem nestes valores. Thorpe e Solé-Cava (1994) fizeram uma revisão dos

valores de identidade genética de Nei (1972) (*I*) encontradas entre gêneros da mesma família, entre espécies do mesmo gênero e entre populações da mesma espécie. Ele classificou uma série de valores críticos de *I*: para espécies cogenéricas, 85% dos valores de *I* excedem 0,35 (76% acima de 0,4 e 90% acima de 0,3) e, no limite superior, cerca de 97% dos valores de *I* são inferiores a 0,85. Os valores de *I* entre populações co-específicas são 98% das vezes superiores a 0,85 e 80% das vezes superiores a 0,95. A identidade genética obtida entre populações do grupo A foi de em média 0,988 e entre populações do grupo B de 0,976, o valor médio entre o grupo A e o grupo B foi de 0,707; a identidade genética entre os grupos A e B coloca estes grupos em uma faixa característica de espécies cogenéricas. Os valores de identidade genética entre as populações dentro de cada grupo são típicas de populações co-específicas.

No entanto é importante frisar que a retirada dos possíveis híbridos das análises, tende a incrementar a distância entre os grupos. Em contrapartida o valor de D segundo a separação gerada pelo programa Structure, que não foi tão radical com relação à presença de alelos de grupos diferentes, continua elevado sendo D=0,335.

Com base nestes dados fica claro que há separação entre os dois grupos, com uma diferenciação característica de espécies cogenéricas. A presença de possíveis híbridos é um indício de que estes grupos podem talvez ainda manter algum fluxo gênico reduzido, seja por um menor valor adaptativo dos híbridos e/ou alguma forma de isolamento pré-zigótico. Também é possível uma separação recente, sem a fixação completa de alelos distintos entre os grupos nos locos utilizados na separação.

Outra possibilidade para esta distinção seria o polimorfismo Robertsoniano; no entanto Pascoe et al (2004) em um trabalho com oito espécies de muricídeos na Europa (entre elas *S. haemastoma*) encontrou tal polimorfismo somente em *Nucella lapilus*. Além disso, a diferenciação por este polimorfismo estaria restrita a poucos locos.

A separação genética em dois grupos distintos não era esperada em *S. haemastoma*, assim como muitos outros seres marinhos; esta é uma espécie que, devido ao grande fluxo gênico, o estágio larval planctotrófico e os altos números populacionais, representa um desafio às teorias de especiação.

Apesar do grande fluxo gênico existente na espécie, os oceanos fornecem diversas barreiras invisíveis ao fluxo gênico, muitas de caráter temporário e capazes assim de gerar ao menos um isolamento parcial. As correntes marítimas são as barreiras mais evidentes a este fluxo; dados com copépodos (McGowan e Walker, 1985), peixes (Incze et al,1990) e zooplankton (Maynard, 1976) indicam que o oceano é um ambiente fragmentado apesar de sua aparente uniformidade. Além das correntes, características geográficas locais também são capazes de de criar barreiras ao fluxo gênico. Por exemplo, o Cabo Haterras, cabo Cód , Point Conception e o arquipélago Indonesiano, são locais onde o fluxo gênico em animais de larva planctotrófica é restrito ou foi restrito até recentemente, por influência das glaciações do pleistocênio (Saunders et al, 1985; Jablonski et al, 1985; Avise, 1992; Benzie e Stoddart, 1992 ; Bernardi et al, 1993; Burton, 1998; Lourie et al, 2005; Reide t al, 2006; Barber et al, 2006; revisto por Palumbi, 1994).

Outra possibilidade seria a seleção natural, que provocaria alterações nas freqüências gênicas em cada localidade, gerando clinas ou diferenciação entre populações de diferentes localidades; isto ocorre, por exemplo, no mexilhão em *Mytilus edulis* (Koehn et al, 1980; Hilbish e Koehn, 1985). No entanto, a grande simpatria observada dos grupo de *S. haemastoma* limita tal hipótese, mesmo em uma escala local, uma vez que não foram encontradas diferenças evidentes entre o mediolitoral superior e inferior.

Apesar das barreiras exemplificadas, um problema persiste: o grande tamanho populacional. As barreiras encontradas ao fluxo gênico destes animais muitas vezes não

garantem que as novas populações serão de tamanho reduzido. Os modelos de especiação alopátrica dependem muitas vezes de pequenos tamanhos populacionais onde diferenciação genética irá ocorrer mais rapidamente. Além disso, múltiplas recolonizações são bastante comuns. Desta forma os processos de especiação em moluscos seriam extremamente demorados, no entanto, argumenta-se por contra, que simples eventos de mutação e seleção podem ser importantes forças, alterando rapidamente freqüências gênicas mesmo em grandes populações e eventualmente criando isolamento reprodutivo (Banse, 1986; Barton, 1989).

Outro ponto de vista plausível seria a especiação simpátrica, que se daria por ação da seleção natural (revisto por Turelli et al, 2001).

A classe mais estudada de modelos de especiação simpátrica é a baseada nos modelos ecológicos, onde, a competição por recursos gera a seleção disruptiva com uma distribuição bimodal dos indivíduos levando possivelmente a especiação. Dieckmann et al (1999) propõe um modelo bastante interessante para este tipo de especiação simpátrica. Em moluscos, o caso de *Littorina saxatilis* é tido como um exemplo de processo simpátrico de especiação (em curso) baseada em condições ecológicas (Rolán-Alvarez, 2007).

A possibilidade de fluxo gênico em pequeno grau entre os dois grupos de *S. haemastoma* abre a possibilidade de introgressão.Tomando por base o conceito evolutivo de espécie, os grupos A e B possuem características genéticas típicas de espécies distintas cogenéricas, sendo de início mais cauteloso tratar *S. haemastoma* como um complexo de espécies.

Mais estudos em outras e nas mesmas localidades em tempos futuros podem ser bastante esclarecedores na questão taxonômica de *S. haemastoma*. Estudos mais localizados, preferencialmente em locais de grande simpatria, acompanhados de análises ecológicas de microhabitat e posicionamento dos animais podem ser muito úteis.

Variabilidade Genética Intrapopulacional Estimada:

Os valores de variabilidade encontrados foram parecidos nos dois grupos com apenas a porcentagem de locos polimórficos ligeiramente mais alta no grupo B.

Os valores obtidos são no geral moderadamente elevados. A porcentagem de locos polimórficos foi um pouco baixa e o número médio de alelos por loco foi baixo (tabela 6) quando comparados com os valores obtidos em outras espécies de moluscos no litoral brasileiro. Em membros da família *Littorinidae* foram obtidos valores de em média 45% de locos polimórficos por população e 2,7 alelos por loco por população (Andrade et al, 2003), enquanto em *Colisella subrugosa* estes valores foram respectivamente de 60% e 2,8 por população (José e Solferini, 2007). Os valores encontrados nestes grupos foram bastante elevados e superiores àqueles encontrados nas mesmas famílias em trabalhos realizados em outros países (Wilkins, 1977; Janson, 1985; Lavie et al, 1987; Ward, 1990; Sella et al, 1993; Corte-Real et al, 1996; Ridgway et al, 1998).

Em um trabalho realizado com duas subespécies de *S. haemastoma* nos Estados Unidos, Liu et al (1991) obtiveram valores um pouco mais elevados de polimorfismo para *S. haemastoma floridana* (P=39% em média por população); os indivíduos de *S. haemastoma* no Brasil são considerados membros desta subespécie (Abbot, 1974). No entanto a outra subespécie estudada, *S. haemastoma canaliculata*, apresentou valores bastante inferiores, sendo de em média 11% por população. O número médio de alelos por loco polimórfico destas duas subespécies foi similar, sendo de 2,2 e 2,4 para *S. haemastoma floridana* e *canaliculata* respectivamente, valores superiores ao encontrados neste estudo.

Com relação à diversidade gênica encontrada (H_e), os valores foram moderadamente altos, mas mais uma vez inferiores ao dos outros estudos brasileiros de moluscos, e similares aos estudos realizados com moluscos fora do Brasil (Wilkins, 1977; Janson, 1985; Lavie et al, 1987;

Ward, 1990; Sella et al, 1993; Corte-Real et al, 1996; Ridgway et al, 1998). Comparados com os valores obtidos por Liu et al (1991) eles foram muito parecidos com *S. haemastoma floridana* e superiores aos de *S. haemastoma canaliculata*.

De uma forma geral, a porcentagem de locos polimórficos foi similar à encontrada em outros moluscos marinhos, enquanto o número médio de alelos por loco foi um pouco inferior. A diversidade gênica foi moderadamente alta e similar à da mesma subespécie nos Estados Unidos. A alta diversidade gênica é associada à características bionômicas, ecológicas e ambientais assim como à heterogeneidade ambiental (Ward e Warwick, 1980), permitindo adaptação às variações ambientais no espaço e no tempo, em escalas micro e macro geográficas.

Os valores de F_{IS} foram elevados, com alguns locos significativamente fora do equilíbrio de Hardy-Weinberg, principalmente os locos Lap-2 e Pep-LGG-3 no grupo A; no grupo B esta tendência não foi tão acentuada, sendo encontrados desvios sobretudo nos locos Lap-2, Pep-LGG-3, Pgm-1, Pgm-2 e Idh-2 no primeiro período de coleta enquanto no segundo período o número de valores significativos foi menor. No trabalho feito por Liu et al (1991) nos Estados Unidos não havia sido encontrado deficiência de heterozigotos na espécie.

A tendência à deficiência de heterozigotos em moluscos é conhecida há bastante tempo e seus motivos são em geral atribuídos ao endocruzamento, à seleção natural (disruptiva e balanceadora) e ao efeito Wahlund (Zouros e Foltz, 1984; Gallardo e Carrasco, 1996; Gajardo et al, 2001; Andrade et al, 2005; Plutchak et al, 2006; José e Solferini, 2007). *S. haemastoma* possui larva planctotrófica de longa duração, o que deveria gerar um recrutamento aleatório das larvas e panmixia. Os grandes tamanhos populacionais tornam a hipótese de endocruzamento bastante improvável; a seleção natural poderia ser um dos agentes na deficiência de heterozigotos, no entanto, esta deveria ser de grandes proporções, afetando profundamente a

espécie e gerando alta carga genética. Por fim o efeito Wahlund poderia ser um dos motivos dos altos valores de F_{IS}, Tracey et al(1975) criaram a idéia de grupos de acasalamento preferenciais, hipótese na qual indivíduos de genótipos similares agrupam-se para o acasalamento, gerando desvios do equilíbrio de Hardy-Weinberg, com deficiência de heterozigotos. Esta hipótese dos grupos de acasalamento preferenciais é discutida também para outras espécies de moluscos marinhos no Brasil (Andrade et al, 2005; José e Solferini, 2007).

Variabilidade genética entre amostras:

Em espécies como *S. haemastoma*, que possuem um longo estágio larval planctotrófico é esperada uma baixa estruturação genética.

Os valores de F_{ST} encontrados foram diferentes entre os dois grupos, ambos compatíveis com fluxo gênico entre populações em uma espécie de estágio larval planctotrófico.

O grupo A apresentou valores bastante reduzidos nos dois períodos de coleta (F_{ST} = 0,020 e 0,018 nos períodos I e II respectivamente), indicando uma estruturação mínima e, conseqüentemente, intenso fluxo gênico entre as populações. A análise hierárquica entre os tempos de coleta indicou ausência de variação temporal significativa. Os alelos raros encontrados neste grupo (freqüência menor que 5%) foram em sua maioria encontrados em heterozigose e vários foram compartilhados por populações geograficamente distantes, mais um indício de grande fluxo gênico. As distâncias genéticas entre as populações deste grupo foram baixíssimas apesar das grandes distâncias geográficas entre as populações (fig. II). As comparações pelo teste de Mantel não demonstraram nenhuma relação significativa entre as distâncias geográficas e os valores de F_{ST} par-a-par.

O grupo B apresentou valores maiores de estruturação genética, com uma estruturação moderada nos dois períodos de coleta (F_{ST} =0,053 e 0,042 respectivamente para os períodos I e

II). A análise hierárquica revelou uma diferenciação temporal baixa e significativa entre os períodos de coleta ($F_{ST-P}=0,043$), além de distâncias genéticas maiores. Se levarmos em conta todas as amostras deste grupo (os dois tempos de coleta), a estruturação encontrada foi moderada ($F_{ST-S}=0,089$). Alguns alelos raros foram encontrados simultaneamente em populações distantes. As distâncias genéticas entre as populações deste grupo também foram bem reduzidas, no entanto, em média, cerca de duas vezes e meia maiores que aquelas encontradas para o grupo A (Fig. II e tabela I.22 do apêndice I). Algumas populações deste grupo apresentaram diferenças significativas nas freqüências alélicas em alguns locos. No entanto, o teste de Mantel não encontrou correlação significativa entre distância geográfica e F_{ST} par-a-par.

Esta maior estruturação no grupo B não era esperada e pode indicar alguma diferenciação entre os grupos quanto à maneira de recrutamento e dispersão. Outros estudos são necessários para um maior esclarecimento neste aspecto.

Algumas mudanças temporais não relacionadas a estruturação genética dentro dos grupos chamaram atenção. Primeiramente a mudança na quantidade de indivíduos de cada grupo nas amostras, a amostra de SS1infra e SS1supra, por exemplo, possuíam indivíduos majoritariamente do grupo A no primeiro período de coleta, tendo números reduzidos de indivíduos do grupo B que não foram suficientes para serem analisados. Já no segundo período de coletas a quantidade de indivíduos do grupo B foi bem maior e estes foram suficientes para serem incluídos nas análises. Nas amostras de RJsupra e infra ocorre algo ainda mais interessante. No primeiro período de coletas foram obtidos indivíduos do grupo A e B em RJinfra, enquanto em RJsupra foram obtidos majoritariamente indivíduos do grupo A. Já no segundo período de coletas, os indivíduos do grupo A foram escassos sendo encontrados tanto no mediolitoral superior e mediolitoral inferior basicamente indivíduos do grupo B. Estas flutuações indicam que deve haver uma dinâmica populacional intensa, apesar de certa

estabilidade genética temporal. A influência do meio ambiente é grande em *S. haemastoma*, tanto nas características dos animais quanto no seu desenvolvimento e números populacionais (Butler, 1985).

A predominância de somente um dos grupos em algumas localidades, como em Paraty (Grupo B), São Vicente e Angra dos Reis (Grupo A), sugere que pode haver alguma diferença de microhabitat preferencial de cada um dos grupos. A diferença de grupos entre mediolitoral inferior e superior no Rio de Janeiro no primeiro período de coletas também indica esta possível distinção. Assim, possivelmente, diferenças de cada ambiente favoreceriam um ou outro grupo.

Outra hipótese, mais plausível, seria que *S. haemastoma*, e no caso os dois grupos, possuem recrutamento mais complexo que uma simples disposição aleatória, tendo a larva certo controle e preferências do ambiente em que irá se fixar. Este recrutamento preferencial já é reportado para larvas planctotróficas de outras espécies (Burton e Feldman, 1982; Cronin e Forward, 1986; Phillips e McWilliam, 1986; Hough e Naylor, 1992; Laimek et al, 2008; revisto por Levin, 2006) e parece seguir padrões extremamente complexos, envolvendo muitas vezes reconhecimento químico. A freqüência similar dos dois grupos em alguns dos pontos de coleta aponta para uma grande similaridade do ambiente preferencial que cada grupo teria. Nesta hipótese ainda podem haver pressões seletivas diferenciadas entre os grupos em diferentes localidades, no entanto menos intensas do que sob um recrutamento aleatório das larvas. Mais estudos seriam necessários para confirmar esta hipótese e discriminar quais as diferenças entre os ambientes preferenciais de cada grupo.

Considerações finais:

Os resultados indicam a divisão da espécie em dois grupos geneticamente distintos. Os grupos seguem o padrão esperado para a espécie, com baixa estruturação genética, certa deficiência de heterozigotos e variabilidade genética moderadamente alta. A maior estruturação no grupo B indica que possivelmente existem diferenças entre os grupos no modo de dispersão e recrutamrento.

A distância encontrada entre os grupos genéticos é característica de espécies cogenéricas, porém algum fluxo gênico parece possível, ainda que bastante limitado, mantendo assim distintas as identidades dos dois grupos.

S. haemastoma possui grande variabilidade morfológica e possui assim diversos nomes sinônimos (Kool, 1993); algumas subespécies foram descritas, no entanto não há consenso quanto às diferenças morfológicas destas subespécies.

A distribuição temporal dos grupos indica uma dinâmica intensa, onde devem ocorrer múltiplas colonizações, o que é esperado em um ambiente de alta energia e impacto como no costão marinho. As diferenças de freqüência dos grupos em cada localidade indicam um possível recrutamento preferencial das larvas de cada grupo para microhabitats diferentes.

A presença de grupos geneticamente distintos simpátricos de *S. haemastoma* em mais de uma localidade no mundo revela que esta espécie, de ampla distribuição geográfica, deve possuir grande complexidade taxonômica e que faltam estudos para a melhor compreensão de sua ecologia e taxonomia, devendo, por precaução, ser considerado um complexo de espécies até que maiores esclarecimentos surjam. Estudos ecológicos de microhabitat seguidos de análises genéticas podem trazer informações importantes.

Literatura citada:

ABBOTT, R. T. 1974. American Seashells, second edition, Van Nostrand Reinhold.

- ANDRADE, S.C.S., MAGALHÃES,C.A. e SOLFERINI, V.N. 2003. Patterns Of Genetic Variability In Brazilian Littorinids (Mollusca): A Macrogeographic Approach. Journal of Zoology Systematics and Evolution, 41: 249-255.
- ANDRADE, S.C.S., MEDEIROS, H.F. e SOLFERINI, V.N.; 2005. Homogeneity test of Hardy-Weinberg deviations in brazilian Littorinids: Evidence for selection? Journal of Molluscan Studies, 71: 167-174.
- AVISE, J.C.; 1992. Molecular population structure and biogeographic history of a regional fauna: a case history with lessons for conservation biology. **Oikos**, **63**: 62-76.
- AYALA, F. J.; 1983. Enzymes as taxonomic characters. In: OXFORD, G.S. e ROLLINSON, D. (eds.) Protein polymorphism: adaptive and taxonomic significance. Academic Press, London.
- BANSE, K., 1986. Vertical distribution and vertical transport of planktonic larvae of echinoderms and benthic polychaetes in an open coastal sea. **Bulletin of Marine Science**, **39**: 162-175.
- BARBER, P.H., ERDMANN, M.V. e PALUMBI, S.R.; 2006. Comparative phylogeography of three co-distributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. **Evolution**, **60**: 1825–1839.
- BARTON, N.H., 1989. Founder effect speciation. In Speciation and its Consequences, eds. Otte, D.; Endler, J.A.; pp. 229-256. Sunderland, Mass: Sinauer. 679 pp.
- BELKHIR K., BORSA P., CHIKHI L., RAUFASTE N. e BONHOMME F.; 1996-2002 GENETIX 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).
- BENZIE, J.A. e STODDART, J.A.; 1992. Genetic structure of crown-of-thorns starfish (*Acanthaster planci*) in Australia. Marine Biology, 112: 631-639.
- BERNARDI, G., SORDINO, P. e POWERS, D.A.; 1993. Concordant mithochondiral and nuclear DNA phylogenies for populations of the teleost fish *Fundulus heteroclitus*. Proceedings of the National Academy of Science USA, 90: 9217-9274.
- BOHONAK, A.J.; 1999. Dispersal, gene flow, and population structure. The Quarterly Review of Biology, 74: 21-45.
- BURTON, R.S. e FELDMAN, M.W.; 1982. Population genetics of coastal and estuarine invertebrates: does larval behavior influence population structure? In Estuarine Comparisons, ed. Kennedy, V.S., pp. 537-551. New York: Academic. 709pp.
- BURTON, R.S. 1998. Intraspecific phylogeography across the point conception biogeographic boundary. **Evolution: 52:** 734-745.
- BUTLER, P. A. 1985. Synoptic review of the literature on the southern oyster drill Thais haemastoma floridana. N.O.A.A. Technical Report. NMFS 35:9.

- CHAMBERS, S.M.; 1978. An eletrophoretically detected sibling species of "Goniobasis floridensis" (Mesogasatropoda: Pleuroceridae). Malacologia, 17: 157-162.
- CORTEREAL, H., HAWKINS, S.J. e THORPE, J.P.; 1996. Population differentiation and taxonomic status of the exploited limpet *Patella candei* in the mediterranean islands (Azores, Madeira, Canaries). Marine Biology, 125: 141-152.
- CRANDALL, E.D., FREY, M. A., GROSBERG, R.K. e BARBER, P.H., 2008. Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. **Mollecullar Ecology**, **17**: 611-626.
- CRONIN, T.W. e FORWARD, R.B.; 1986. Vertical migration cycles of crab larvae and their role in larval dispersal. Bulletin of Marine Science, 39: 192-201.
- D'ASARO, C.N.; 1966. The egg capsules, embryogenesis, and early organogenesis of a common oyster predator, Thais haemastoma floridana (Gastropoda: Prosobranchia). **Bulletin of Marine Science, 16:** 884–914.
- DAY, A.J., LEINAAS, H.P. e ANSTENSRUD, M.; 1994. Allozyme differentiation of populations of the dogwhelk *Nucella lapillus*, (L.): the relative effects of geographic distance and variation in chromossome number. Biological Journal of the Linnean Society, 51: 257-277.
- DIECKMANN, U. e DOEBELI, M.; 1999. On the origin of species by sympatric speciation. Nature, 294: 467-478.
- DOVER, G.; 1989. Molecular drive, a cohesive mode of species evolution. Nature, 299: 111-117.
- EVANNO, G., REGNAUT, S., GOUDET, J.; 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. **Molecular Ecology**, **14**: 2611-2620.
- FALUSH, D., STEPHENS, M. e PRITCHARD, J.K.; 2003 Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. **Genetics**, 164: 1567–1587.
- FERNÁNDEZ, J., GALINDO, J., FERNÁNDEZ, B., PÉREZ-FIGUEROA, A., CABALLERO, A. e ROLÁN-ÁLVAREZ, E.; 2005. Genetic differentiation and estimation of effective population size and migration rates in two sympatric ecotypes of the marine snail *Littorina saxatilis*. Journal of Heredity, 96: 460-464.
- GAJARDO, G., CANCINO, J.M. e NAVARRO, J.M.; 2002. Genetic variation and population structure in the marine snail *Chorus giganteus* (Gastropod: Muricidae), an overexploited endemic resource from Chile. Fisheries Research, 55: 329-333.
- GALLARDO, M.H. e CARRASCO, J.I.; 1996. Genetic cohessiveness among populations of *Concholepas concholepas* (Gastropoda, Muricidae) in Southern Chile. Journal of Experimental Marine Biology and Ecology, 197: 237-249.
- GONZÁLEZ-WANGÜEMERT, M., GIMÉNEZ-CASALDUERO, F. e PÉREZ-RUZAFA, Á.; 2005. Genetic differentiation of *Elysia timida* (Risso, 1818) populations en the Soutwest Mediterranean and Mar Menor coastal lagoon. Biochemical Systematics and Ecology, 34: 514-527.
- HARTL, D.L., LOZOVSKAYA, E.R. e LAWRENCE, J.G.; 1992. Nonautonomous transposable elements in prokaryotes and eukaryotes. **Genetica**, 86: 47-53.

- HILBISH, T.J. e KOEHN, R.K.; 1985. The physiological basis of natural selection at the LAP locus. **Evolution**, **39**: 1302-1317.
- HOLBORN, K., JOHNSON, M.S. e BLACK, R.; 1994. Population genetics of the corallivorous gastropod *Drupella* cornus at Ningaloo Reef, westerna Australia. Coral reefs, 13: 33-39.
- HOUGH, A.R. e NAYLOR, E.; 1992. Biological and Physical aspects of migration in estuarine amphipod *Gammarus zaddachi*. Marine Biology 112: 437-443.
- INCZE, L.S., ORTNER, P.B. e SCHUMACHER, J.D.; 1990. Microzooplakton, vertical mixing and advection in a larval fish patch. Journal of Plankton Research, 12: 365-379.
- JABLONSKI, D., FLESSA, K. e VALENTINE, J.W.; 1985. Biogeography and paleobiology. **Paleobiology**, **11**: 75-90.
- JANSON, K., 1985. Genetic variation in three species of caribbean periwinkles, *Littorina angustior*, *L. lineolata* and *L. ziczac* (Gastropoda: Prosobranchia). Bulletin of Marine Science, 37: 871-879.
- JANSON, K.; 1987. Allozyme and shell variation in two marine snails (*Littorina*, Prosobranchia) with different dispersal abilities. Biological Journal of the Linnean Society, 30: 245-256.
- JOHANNESSON, K.; JOHANNESSON, B. e ROLÁN-ALVAREZ, E. 1993. Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail *Littorina saxatilis*. Evolution, 47(6):1770-1787
- JOHANNESSON, K. e TATARENKOV, A.; 1996. Allozyme variation in a snail (Littorina saxatilis)deconfounding the effects of microhabitat and gene flow. **Evolution**, **51**: 402-409.
- JOHANNESSON, K., LUNDBERG, J., ANDRÉ, C. e NILSON, P.G.; 2003. Island isolation and habitat heterogeneity correlate with DNA variation in marine snail (Littorina saxatilis). Biological Journal of the Linnean Society, 82: 377-384.
- JOHANNESSON, K. e PANOVA, M.; 2004. Microscale variation in Aat (aspartate aminotransferase) is supported by activity differences between upper and lower shore allozymes of Littorina saxatilis. Marine Biology, 144: 1157-1164.
- JOSÉ, J. e SOLFERINI, V.N.; 2007. Population genetics of *Collisella subrugosa* (Patellogastropoda: Acmaeidae): evidence of two scales of population structure. **Genetica**, **130**: 73-82.
- KAWECKI, T.J.; 1997. Sympatric speciation by habitat specialization driven by deleterious mutations. Evolution, 51: 1751-1763.
- KIRBY, R.R.; 2000. An ancient transpecific polymorphism shows extreme divergence in a multitrait cline in an intertidal snail (*Nucella lapilus* (L)). Molecular Biology and Evolution, 17: 1816-1825.
- KOEHN, R.K., NEWELL, R.I. e IMMERMAN, F.; 1980. Maintenance of an aminopeptidase allele frequency clin by natural selection.. **Proceedings of the National Academy of Science USA**, **77**: 5385-5389.

- KOOL, S.P., 1987. Significance of radular characters for reconstruction of thaidid phylogeny (Neogastropoda: Muricacea). The Nautilus, 101: 117-131.
- KOOL, S.P., 1993. Phylogenetic Analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia, 35 (2): 155-259.
- LAIMEK, P., CLARK, S., STEWART, M., PFEFFER, F., WANICHANON, C., HANNA, P. e SOBHON, P.; 2008. The presence of GABA in gastropod muçus and its role in inducing larval settlement. Journal of Experimental Marine Biology and Ecology, 354: 182-191.
- LAMBERT, W.J., TODD, C.D. e THORPE, J.P.; 2003. Genetic population structure of two intertidal nudibranch molluses with contrasting larval types: temporal variation and transplant experiments. Marine Biology, 142: 461-471.
- LAVIE, B., NOY, R. e NEVO, E.; 1987. Genetic variability in the marine gastropods *Patella coerulea* and *Patella aspera* patterns and problems. **Marine Biology**, **96**: 367-370.
- LEVIN, L.A.; 2006. Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology, 46: 282-297.
- LEWIS, P.O. e ZAYKIN, D. 1999. Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d12). Free program.
- LIU, L.L., FOLTZ, D.W. e STICKLE, W.B., 1991. Genetic population structure of the southern oyster drill *Stramonita (=Thais) haemastoma*. Marine Biology, 111: 71-79.
- LOURIE, S.A., GREEN, D.M. e VINCENT, C.J.; 2005. Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae: Hippocampus). Molecular Ecology, 14: 1073–1094.
- MAYNARD, N.G.; 1976. The relationship between diatoms in the surface sediments of the Atlantic Ocean and the biological and physical oceanography of overlying waters. **Paleobiology 2:**91-121.
- McGOWAN, J.A. e WALKER, P.W.; 1985. Dominance and diversity maintenance in an oceanic ecosystem. Ecological Monographs, 55: 113-118.
- MILLER, M. P., 1997. Tools for population genetic analysis (TFPGA) 1.3: A Windows program for the analysis of allozime and molecular population genetic data. Logan, Utah, USA, Computer software distributed by the author.
- NEI, M.; 1972. Genetic distance between populations. Amercian Naturalist, 106: 283-292.
- NEI, M.;1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89:583–590.
- NEI, M.; 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
- PALUMBI, S.R.; 1994. Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology, Evolution and Systematics, 25:547-572.
- PALUMBI, S.R.; 1995. Using genetics as an indirect estimator of larval dispersal. CRC press, New York.

- PAPP, M.G. e DUARTE, L.F.L., 2001. Locomotion of Stramonita haemastoma (Linnaeus)(Gastropoda, Muricidae) on a mixed shore of rocks and sand. **Revista Brasileira de Zoologia 18 (1):** 187-195.
- PASCOE, P.L., JHA, A.N. e DIXON, D.R.; 2004. Variation of karyotype composition and genome size in some muricid gastropods from the northern hemisphere. Journal of Molluscan Studies, 70: 389-398.
- PHILLIPS, B.F. e McWILLIAM, P.S.; 1986. The pelagic phase of spiny lobster development. Can. Journ. Fish. Aquat. Sci. 43: 2153-2163.
- PLUTCHAK, L.L., SIMMONS, R.E. e WOODRUFF, D.S.; 2006. Multilocus allozyme heterozygote deficiencies in *Crepidula onyx*: geographic and temporal patterns among adult snails im Mission Bay, California. Journal of Molluscan Studies, 72: 337-348.
- PRITCHARD, J.K., STEPHENS, M. e DONNELLI, P.; 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.
- RAFF, R.A.; 1996. The shape of life genes, Development and the evolution of animal form. The university of chicago press.
- RAYMOND M. e ROUSSET, F.; 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86:248-249
- REID, D.G., LAL, K. e MACKENZIE-DODDS, J.; 2006. Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific. Journal of Biogeography, 33: 990–1006.
- RICE, W. R., 1989. Analyzing tables of statistical tests. Evolution, 43: 223-225.
- RIDGWAY, T.M., STEWART, B.A., BRANCH, G.M. e HODGSON, A.N.; 1998. Morphological and genetic differentiation of *Patella guanularis* (Gastropoda: Patellidae): recognition of two sibling species along the coast of southern África. Journal of Zoology, 245: 317-333.
- RIOS, E.C., 1994. Seashells of Brazil. Editora da Fundação Universidade do Rio Grande, Rio Grande, 492p.
- ROLÁN, E., GUERRA-VARELA, J., COLSON, I., HUGHES, R.N. e ROLÁN-ALVAREZ, E.; 2004.
 Morphological and genetic analysis of two sympatric morphs of the dogwhelk *Nucella lapillus* (Gastropoda: Muricidae) from Galicia (Northwestern Spain). Journal of Molluscan Studies, 70: 179-185.
- ROLÁN-ALVAREZ, E.; 2007. Sympatric speciation as a by-product of ecological adaptation in the galician *Littorina saxatilis* hybrid zone. Journal of Molluscan Studies., 73: 1-10.
- ROLLER, R.A. e STICKLE, W.B.; 1988. Intracapsular development of Thais haemastoma canaliculata (Gray) (Prosobranchia: Muricidae) under laboratory conditions. American Malacological Bulletin, 6: 189–197.
- ROSE, M.R. e DOOLITTLE, F.; 1983. Molecular biological mechanisms of speciation. Science, 220: 157-162.
- SAUNDERS, N.C., KESSLER, L.G. e AVISE, J.C.; 1985. Genetic variation and geographic differentiation in mithochondrial DNA of the horseshoecrab, *Limulus polyphemtus*. Genetics, 112: 613-627.
- SELLA, G., ROBOTTI, C.A. e BIGLIONE, V. 1993. Genetic divergence among 3 sympatric species of mediterranean *Patella* (Archaegastropoda). Marine Biology, 115: 401-405.

- SHAW, C.R. e PRASSAD, R.; 1970. Starch gel electrophoresis of enzymes a compilation of recipes. Biochemical Genetics, 4: 297-320.
- STAUB, K.C., WOODRUFF, D.S., UPATHAM, E.S. e VIYANANT, V.; 1990. Genetic variation in *Neotricula aperta*, the intermediate snail host of *Schistosoma mekongi*: allozyme differences reveal a group of sibling species. American Malacological Bulletin, 7: 93-103.
- THORPE. J. P. e SOLÉ-CAVA. A. M. 1994. *The* use of allozyme electrophoresis in invertebrate systematics. **Zoologica Scripta. 2**.3: 3-18
- TODD, C.D., LAMBERT, W.J. e THORPE, J.P.; 1998. The genetic structure of intertidal populations of two species of nudibranch molluscs with planktotrophic and pelagic lecitotrophic stages: are pelagic larvae "for" dispersal? Journal of Experimental Marine Biology and Ecology, 228: 1-28.
- TRACEY, M.L., BELLET, N.F. e GRAVEM, C.D., 1975. Excess allozyme homozygosity and breeding population structure in the mussel *Mytilus californianus*. Marine Biology, 32: 303-311.
- TURELLI, M., BARTON, N.H. e COYNE, J.A.; 2001. Theory and speciation. Trends in Ecology & Evolution, 16: 330-343.
- VERMEIJ, G.J., 2001. Distribution, history, and taxonomy of the Thais clade (Gastripoda: muricidae) in the neogene of tropical America. Journal of Paleonthology, 75(3): 697-705
- WARD, R.D. e WARWICK, T., 1980. Genetic differentiation in the molluscan species Littorna rudis and L. arcana (Prsobranchia: Littorinidae). Biological Journal of the Linnean Society, 14: 417-428.
- WARD, R.D., 1990. Biochemical genetic variation in the genus *Littorina* (Prosobranchia: Mollusca). Hydrobiologia, 193: 53-69.
- WEIR, B.S. e COCKERHAM, C.C.; 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370.
- WILEY, E.O.; 1981. Phylogenetics the theory and practice of phylogenetics systematics. Jhon Wiley & Sons, New York.
- WILKINS, N.P., 1977. Genetic variability in littoral gastropods phosphoglucose isomerase and phosphoglucomutase in *Patella vulgata* and *Patella aspera*. Marine Biology, 40: 151-155.
- WOODRUFF, D.S., STAUB, K.C., UPATHAM, E.S., VIYANANT, V. e YUAN, V.; 1988. Genetic variation in Oncomelania hupensis: Schistosoma japonicum transmitting snails in China and the Philippines are distinct species. Malacologia, 29: 347-361.
- WRIGHT, S. 1978. Evolution and the genetics of populations, vol. 4. Variability within and among natural populations. <u>Univ. Chicago Press</u>, Chicago.
- ZOUROS, E. e FOLTZ, D.W., 1984. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia, 25: 583-591.

Capítulo II - Análise Morfométrica de *Stramonita haemastoma* (Gastropoda, Prosobranchia) Associada a Dados Genéticos.

Introdução:

A presença de dois grupos geneticamente distintos dentro da espécie *S. haemastoma* leva a uma pergunta elementar: há alguma diferenciação morfológica entre os grupos? Devido a grande similaridade entre os grupos, optou-se por uma análise morfométrica a fim de testar se a diferenciação genética estaria relacionada a uma diferenciação morfológica.

A morfometria em seus primórdios, baseou-se em medidas como comprimento e largura, medida de ângulos e na estatística multivariada. Na década de oitenta esta passou a ser substituída pela morfometria geométrica (Rholpf e Marcus , 1993; Stone, 1998), que se baseia em marcos anatômicos. Esta substituição teve certa relutância em gastrópodes devido à dificuldade em encontrar os marcos anatômicos nas conchas (Johnston et al 1991).

As técnicas morfométricas tradicionais são amplamente utilizadas nestes animais (Kool, 1993; Stone, 1998); assim como a morfometria geométrica, ambas encontram certas críticas (Richtsmeier et al , 2002; Adams et al , 2004; Kool, 1993), mas a morfometria da concha têm uso na separação de subespécies e espécies próximas de gastrópodes (Johanneson et al , 1993; Kool, 1993; Rintelen e Glaubrecht, 2003; Absalão et al , 2005; Wullschleger e Jokela, 2002; Kilgour et al, 1990).

Neste trabalho optou-se pela morfometria tradicional da concha. Por ser uma abordagem simples e amplamente utilizada na sistemática de moluscos, esta análise associada à análise de componentes principais (PCA) permite que os resultados de diversas medidas sejam apresentados (Manly, 2005), possibilitando a separação de diferenças de tamanho e formato (Jolicoeur, 1963), desde que não haja alometria (Tissot, 1988; Airoldi e Flury, 1988).

Nos estudos com abordagem tanto genética quanto morfométrica, as diferenças encontradas foram associadas tanto à plasticidade fenotípica, devido a diferentes dietas e diferenças de nicho, como à fatores genéticos, com características hereditárias em laboratório, variando bastante conforme o caso estudado. Foi tentado em estudo anterior a diferenciação dos grupos genéticos de *S. haemastoma* através da análise da rádula dos animais, porém sem êxito.

Uma diferenciação morfológica entre os grupos genéticos seria valiosa para a taxonomia de *S. haemastoma*.

Objetivos:

- Descrever a variação morfológica de Stramonita haemastoma no litoral brasileiro.

- Testar se há alguma diferenciação morfológica da concha entre os dois grupos genéticos encontrados na espécie *S. haemastoma* no litoral brasileiro.

Material e Métodos:

<u>Medidas:</u>

Exceto pelos indivíduos com conchas quebradas, foram tomadas as medidas de todos aqueles que foram analisados geneticamente. As medidas foram obtidas com o auxílio de um paquímetro marca Mitutoyo modelo da linha 500, com precisão de 0,01mm. Os pontos de coleta receberam os mesmos nomes que na análise genética do capítulo anterior (tabela 1).

As coletas foram divididas nos grupos genéticos encontrados, "A" e "B", pela separação visual baseada nos locos Pgm-1, Pgm-2 e Pgi. As oito medidas utilizadas na análise estão indicadas na tabela 11 e figura IV.

As medidas escolhidas foram baseadas em outros trabalhos morfométricos da concha de gastrópodes, pelo seu amplo uso e por terem fornecido em espécies próximas ou crípticas informações importantes na separação das mesmas (Magalhães, 1988; Johanneson et al, 1993; Kool, 1993; Rintelen e Glaubrecht, 2003; Absalão et al, 2005; Wullschleger e Jukela, 2002; Kilgour et al, 1990).

Medida	Abreviação
1- Comprimento Total	СТ
2- Largura Total	LT
3- Comprimento da Abertura	CA
4- Largura da abertura	LA
5- Espessura da Concha	EC
6- Largura do canal sifonal	LC
7- Diâmetro do último segmento	DS1
8- Diâmetro do penúltimo segmento	DS2

Tabela 11: medidas que foram utilizadas para a análise.

Figura IV: Medidas da concha utilizadas. Abreviauras na tabela 11.

<u>Análises:</u>

Segundo o teste de Shapiro-Wilk, realizado com o programa Bioestat versão 5.0 (Ayres, et al , 2007), os dados apresentaram distribuição normal em algumas amostras e em outras não; para evitar problemas com os pressupostos de algumas testes optou-se por uma análise não-paramétrica.

As análises foram todas feitas nos programas PAST (Hammer et al , 2001) e Bioestat (Ayres et al , 2007). Inicialmente as amostras do mesmo grupo genético foram comparadas umas com as outras para cada uma das medidas em cada período de coleta, para verificar a variação presente entre os pontos de coleta **dentro** de cada um dos grupos. Para isto foi utilizado o teste de Kruskal-Wallis seguido do teste de Mann-Whitney corrigido pela técnica de Bonferroni caso o primeiro teste fosse significativo; somente foram analisadas as populações de ao menos seis indivíduos.

A fim de verificar se alguma das medidas difere **entre** os grupos genéticos, foi aplicado o teste de Mann-Whitney para cada medida em cada um dos lugares onde os dois grupos foram presentes com pelo menos seis indivíduos.

Em seguida, visando comparar os grupos A e B e os períodos de coleta, a divisão em populações foi ignorada e os períodos I e II subdivididos nos grupos genéticos foram comparados com teste de Kruskal-Wallis seguido de Mann-Whitney par-a-par com correção de Bonferroni para cada uma das medidas (comparação entre IA, IB, IIA e IIB para cada uma das medidas).

Por fim foi feita a análise de componentes principais (PCA). Inicialmente todas as amostras foram incluídas na análise, sendo separadas as populações. Os tempos de coleta foram

tratados independentemente. As populações de menos de seis indivíduos não foram incluídas nesta análise.

A mesma análise também foi feita **localidade por localidade** com os dois tempos de coleta, os dois grupos genéticos (caso presentes) e caso o ponto de coleta tivesse separação entre mediolitoral inferior e superior, estes foram analisados no mesmo teste. Nesta segunda análise também foram incluídos os indivíduos que foram classificados como possíveis híbridos na análise genética do capítulo anterior, marcados nas análises com *"indef"*. Esta análise visou descrever a variação presente em cada localidade.

Foi feita, também, análise ignorando as divisões em populações, sendo comparados os grupos A e B nos dois períodos de coleta. Tal análise foi feita de duas formas: com separação dos tempos de coleta (comparação entre IA, IB, IIA e IIB) e sem separação dos tempos de coleta (comparação de todos os indivíduos do grupo A com todos do grupo B).

Todos as PCAs foram feitas com o uso de 1.000 *boostraps* para obtenção do intervalo de confiança dos autovalores. A fim de obter uma melhor visualização dos resultados, os gráficos das duas componentes mais importantes foram analisados visualmente e os valores das mesmas componentes com ao menos seis indivíduos foram comparados entre as amostras testadas utilizando o teste de Kruskal-Wallis seguido do teste de Mann-Whitney par-a-par corrigido por Bonferroni caso o primeiro teste fosse significativo. Nos locais onde somente duas amostras obtiveram números suficientes para serem comparadas foi aplicado o teste de Mann-Whitney.

Resultados:

As distribuições das medidas tomadas das conchas apresentaram certa irregularidade quanto a normalidade: uma mesma medida apresentava distribuição normal em uma população e em outra não. A distribuição das medidas em um histograma mostrou que diversas das medidas encontravam-se sob uma distribuição bimodal. Por esse motivo optou-se pelo uso de testes não-paramétricos. Os números amostrais, médias e desvios dos dados brutos estão no apêndice III (tabelas III.1 e III.2).

Os resultados do teste de Kruskal-Wallis para cada grupo genético em cada um dos períodos de coleta estão indicados na tabela 12, todos os valores encontrados foram altamente significativos. As comparações feitas pelo teste de Mann-Whitney estão no apêndice III (tabelas III.3 a II.34).

Já na tabela 13 estão os resultados do teste entre os grupos, aplicado nos locais onde os dois grupos genéticos foram presentes, localidade por localidade. Neste segundo teste foram encontrados resultados significativos principalmente em SS2I e RJinfraI, porém nestas mesmas localidades no período II de coleta o mesmo não ocorreu.

Na tabela 14 estão os resultados do teste de Kruskal-Wallis entre os grupos genéticos e períodos de coleta sem separação nas populações amostradas para cada uma das medidas, todos os valores foram significativos, em seguida, na tabela 15 estão os resultados do pós-teste de Mann-Whitney par-a-par para todas as medidas.
		medida	H	p=	gl
		СТ	165,4	<0,001	10
		LT	143,0	<0,001	10
	¥:	CA	152,2	<0,001	10
	00 7	LA	125,4	<0,001	10
	lnı	EC	70,7	<0,001	10
	Ū	LC	91,6	<0,001	10
Ŀ		DS1	63,3	<0,001	10
opo		DS2	58,0	<0,001	10
Perío		СТ	41,3	<0,001	6
		LT	30,9	<0,001	6
	B:	CA	38,9	<0,001	6
	00	LA	47,5	<0,001	6
	lnı	EC	23,2	<0,001	6
	G	LC	43,3	<0,001	6
		DS1	21,5	<0,001	6
		DS2	24,9	<0,001	6
		СТ	138,4	<0,001	10
		LT	129,3	<0,001	10
	A:	CA	128,9	<0,001	10
	00	LA	89,8	<0,001	10
	lnı	EC	81,4	<0,001	10
	G	LC	79,9	<0,001	10
II:		DS1	82,1	<0,001	10
do		DS2	63,7	<0,001	10
río		СТ	41,9	<0,001	7
Pe		LT	37,8	<0,001	7
	B:	CA	48,9	<0,001	7
	0d	LA	37,0	<0,001	7
	ru	EC	32,8	<0,001	7
	9	LC	32,8	<0,001	7
		DS1	31,5	<0,001	7
		DS2	25,3	<0,001	7

Tabela 12: Resultados dos testes Kruskal-Wallis para cada medida nos dois períodos de coleta em cada um dos grupos genéticos. H- valor H do teste de Kruskal-Wallis, p=- probabilidade, gl- graus de liberdade.

Tabela 13: Resultados dos testes Mann-Whitney (T) entre os grupos genéticos nas localidades onde ambos foram presentes com pelo menos seis indivíduos nos dois períodos de coleta, em destaque estão os valores significativos. p= probabilidade.

	Medida	Local:									
		SF:	IB:		SS2		Р	araty:		Angra:	RJinfra:
	СТ	T=190	T=129		T=29)	-	Т=43		T=35	T=45
		p=0,4062	p=0,4380)	p<0,00	01	p=	0,7762	1	p=0,1131	p= 0,0231
	IТ	T=177	T=123		T=32	2		Г=40		T=27	T=43
	L1	p=0,2528	p=0,2285	5	p<0,00	01	p=	0,6188	1	p= 0,0440	p= 0,0126
	CA	T=151	T=100		T=20)	Т	=39,5		T=30	T=32
	CA	p=0,0768	p=0,1334	1	p<0,0001		p=0,5940		p=0,0639		p= 0,0058
ło I:	LA	T=135,5	T=75,5	T=75,5		T=51		Т=		T=54	T=13
eríod	LA	p=0,0436	p=0,1345	p=0,1345		p=0,0004		p=		p=0,5728	p=0,0008
Ā	FC	T=193	T=74,5		T=41		T=			T=28	T=27
		p=0,5524	p=0,0192	p=0,0192		01]	p=	1	p=0,0499	p=0,0043
	IC	T=183	T=134		T=60)	T=	=223,5		T=61	T=18
		p=0,3999	p=0,7431	1	p=0,00	06	p=	0,3914	p=0,8509		p=0,0025
	DC1	T=134	T=146,5		T=60,	,5	T=43			T=29,5	T=75
	151	p=0,1418	p=0,8430)	p=0,0017		p=0,7762		p=0,1432		p=0,1583
	D92	T=127	T=137	T=43		3	T=19		T=28		T=75
	1052	p=0,0743	p=0,6089)	p=0,00	05	p=	0,5696	1	p=0,1441	p=0,1543
	Medida	Local:					•				
		IB:	SS1 infra :	SS	S1supra :	SS	52 :	RJinfra	:	RJsupra :	Búzios :
	СТ	T=181	T=108		T=152		=67	T=65		T=55	T=25
		p=0,0443	p=0,5097	р	=0,7193	p=0,	7237	p=0,7336		p=0,7842	p=0,4510
	LT	SF: IB $T=190$ $T=1$ $p=0,4062$ $p=0,4$ LT $T=177$ $T=1$ $p=0,2528$ $p=0,2$ CA $T=151$ $T=1$ $p=0,0768$ $p=0,1$ LA $T=135,5$ $T=7$ $p=0,0436$ $p=0,1$ EC $T=193$ $T=7$ $p=0,05524$ $p=0,0$ LC $T=133$ $T=1$ $p=0,5524$ $p=0,0$ LC $T=133$ $T=1$ $p=0,3999$ $p=0,7$ DS1 $T=134$ $T=14$ $p=0,0743$ $p=0,6$ dida Local: $D=0,604$ DS2 $T=127$ $T=1$ $p=0,0743$ $p=0,5097$ $T=108$ DT $T=251$ $T=65$ $p=0,4575$ $p=0,2984$ $p=0,5097$ T $T=247$ $T=98,5$ $p=0,5442$ $p=0,3268$ $p=0,3268$ A $T=286,5$	T=65		T=104	T=4	48,5	T=69		T=50	T=29
		p=0,4575	p=0,2984	р	=0,3720	р=0,	2532	p=0,9800)	p=0,5632	p=0,7250
	CA	T=247	T=98,5		T=154	T=	=51	T=70		T=48	T=33
	011	p=0,5442	p=0,3268	р	=0,7628	р=0,	2679	p=0,9225	5	p=0,4840	p=0,9599
lo II:	LA	T=286,5	T=71,5		T=84	T=	=33	T=57		T=47,5	T=26
eríod	LA	p=0,9918	p=0,4448	р	=0,2954	р=0,	0579	p=0,8852	2	p=0,4652	p=0,9098
P	FC	T=190,5	T=112		T=106	T=	=30	T=26,5		T=53	T=24
		p=0,0705	p=0,6002	р	=0,2375	р=0,	,0411	p=0,0350	5	p=0,6924	p=0,7340
	IC	T=234,5	T=80,5		T=67	T=	=48	T=50,5		T=43,5	T=26
		p=0,3829	p=0,1348	р	=0,1384	р=0,	2804	p=0,6033	3	p=0,5050	p=0,5136
1			Τ (0.5		T=148	T=	T=44 T=32		2 T=29,5		T=19
	DS1	T=259	1=69,5								
	DS1	T=259 p=0,7255	1=69,5 p=0499	р	=0,3711	р=0,	1505	p=0,0451	l	p=0,0679	p=0,2548
	DS1	T=259 p=0,7255 T=262	p=0499 T=90	р Л	=0,3711 Γ=179,5	р=0, Т=2	1505 22,5	p=0,045 1 T=72	1	p=0,0679 T=0,51	p=0,2548 T=15
	DS1 DS2	T=259 p=0,7255 T=262 p=0,7739	p=0499 T=90 p=0,2048	p J p	=0,3711 Γ=179,5 =0,9676	p=0, T=2 p=0 ,	1505 22,5 0142	p=0,045 1 T=72 p=0,9062	L 2	p=0,0679 T=0,51 p=0,5024	p=0,2548 T=15 p=0,1753

Medida	Valor H	Probabilidade
СТ	H=19,39	p<0,005
LT	H=9,343	p<0,005
CA	H=11,58	p<0,005
LA	H=19,58	p<0,005
EC	H=45,47	p<0,005
LC	H=16,48	p<0,005
DS1	H=39,59	p<0,005
DS2	H=51,56	p<0,005

Tabela 14: Resultado do teste de Kruskal-Wallis medida por medida entre grupos genéticos e períodos de coleta, sem distinção entre as populações coletadas. Medidas seguem a nomenclatura da tabela 11.

Tabela 15: Pós teste de Mann-Whitney par-a-par entre os grupos genéticos e períodos de coleta para cada uma das medidas tomadas. Legenda: IA=grupo genético A no primeiro período de coleta, IB= grupo genético B no primeiro período de coleta, IIA= grupo genético A no segundo período de coleta, IIB= grupo genético B no segundo período de coleta, medidas segundo nomenclatura da tabela 11. Em destaque os valores significativos.

СТ	IA	IB	IIA	E	C	IA	IB	IIA
IB	1,00			IB	3	1,00		
IIA	1,00	1,00		IL	A	<0,001	<0,001	
IIB	0,001	0,001	0,005	III	В	<0,001	<0,001	1,00
LT	IA	IB	IIA	L	C	IA	IB	IIA
IB	0,7532			IB	3	0,113		
IIA	0,030	1,00		IL	А	0,002	1,00	
IIB	0,1114	1,00	1,00	III	В	0,007	1,00	1,00
CA	IA	IB	IIA	D) S1	IA	IB	IIA
IB	0,008			IB	3	1,00		
IIA	1,00	0,042		IL	А	<0,001	0,020	
IIB	1,00	0,05003	1,00	III	В	<0,001	0,010	1,00
LA	IA	IB	IIA	D	S2	IA	IB	IIA
IB	0,004			IB	3	1,00		
IIA	0,284	0,143		IL	А	<0,001	<0,001	
IIB	0,002	1,00	0,295	III	В	<0,001	<0,001	1,00

Os resultados de cada uma das PCAs foram agrupados em tópicos cada um com título representando a respectiva análise.

1-Análise do Período I, com todas as amostras inclusas:

Nas tabelas 16 e 17 e figuras V e VI estão os resultados da PCA para o primeiro período de coleta com todas as amostras na análise, na figura V cada localidade e grupo é representado por um símbolo. Devido ao grande número de populações na figura VI está a mesma figura, mas com distinção apenas entre indivíduos do grupo A e do grupo B. Em seguida nas tabelas 18 e 19 estão os valores do teste de Mann-Whitney par-a-par corrigido por Bonferroni para as duas primeiras componentes respectivamente. O teste de Kruskal-Wallis entre as amostras desta análise foi altamente significativo para as duas componentes (componente 1: H= 164,171; gl=15; p<0,0001; componente 2: H=138,305; gl=15; p<0,0001).

Tabela 16: Auto-valores das componentes principais e porcentagem representada da variação das medidas dos indivíduos do primeiro período de coleta.

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	108,066	92,537	91,328	93,656
	2	3,358	2,876	2,226	3,603
I:	3	2,531	2,168	1,745	2,657
op	4	1,870	1,601	1,263	1,901
erío	5	0,591	0,506	0,365	0,628
Pe	6	0,183	0,157	0,124	0,189
	7	0,115	0,098	0,071	0,121
	8	0,067	0,058	0,043	0,070

	Auto-vetores d	as compon	entes:
	Medida\PC	1	2
	СТ	0,7445	-0,6402
	LT	0,3896	0,5485
0 I:	CA	0,4606	0,3361
íod	LA	0,2624	0,4133
Per	EC	0,01783	0,0207
	LC	0,05323	0,04561
	DS1	0,03985	-0,05274
	DS2	0,09031	-0,01088

Tabela 17: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos do primeiro período de coleta.

Component 1

Figura V: Diagrama de dispersão da PCA das medidas dos indivíduos do primeiro período de coleta. Componentes 1 e 2 representadas.

Legenda: + SFAI; ■ SVinfraAI; X SVsupraAI; 0 IBAI; ◊ SS1infraAI; * SS1supraAI; Δ SS2AI; • AngraAI; • RJinfraAI; ▲ RJsupraAI; ▼ SFBI; □ IBBI; ▼ SS2BI; • ParatyBI; • RJinfraBI; – BúziosBI.

Component 1

Figura VI: Diagrama de dispersão da PCA das medidas dos indivíduos do primeiro período de coletas divididos apenas nos dois grupos genéticos. Componentes 1 e 2 representadas. Legenda: + Grupo A; \Box Grupo B.

	SFAI	SVinfraAI	SVsupraA I	IBAI	SS1infraA I	SS1supra AI	SS2AI	AngraAI	RJinfraAI	RJsupraAI	SFBI	IBBI	SS2BI	ParatyBI	RJinfraBI
SVinfraAI	1,0000														
SVsupraA I	1,0000	1,0000													
IBAI	1,0000	0,0083	0,4234												
SS1infraA I	0,0005	0,0000	0,0067	0,1187											
SS1supra AI	0,0034	0,0002	0,0263	0,8820	1,0000										
SS2AI	1,0000	1,0000	1,0000	1,0000	0,0019	0,0057									
AngraAI	0,0009	0,0007	0,0365	0,0001	0,0014	0,0008	0,0594								
RJinfraAI	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,0404							
RJsupraAI	0,0541	0,0003	0,0050	1,0000	1,0000	1,0000	0,0743	0,0004	1,0000						
SFBI	1,0000	1,0000	1,0000	1,0000	0,0053	0,0182	1,0000	0,0123	1,0000	0,0743					
IBBI	1,0000	0,3917	1,0000	1,0000	0,0077	0,0360	1,0000	0,0004	1,0000	0,6072	1,0000				
SS2BI	0,0048	0,0925	0,0008	0,0124	0,0585	0,0332	0,0039	0,0004	1,0000	0,5118	0,0010	0,0100			
ParatyBI	1,0000	1,0000	1,0000	1,0000	0,0001	0,0005	1,0000	0,0880	1,0000	0,0129	1,0000	1,0000	0,0014		
RJinfraBI	0,0267	0,1314	0,6889	0,0032	0,0001	0,0606	0,0271	1,0000	0,3182	0,0030	0,7300	0,0137	0,0030	1,0000	
BúziosBI	1,0000	1,0000	1,0000	1,0000	0,0005	0,0017	1,0000	0,0177	1,0000	0,0235	1,0000	1,0000	0,0056	1,0000	0,5154

 Tabela 18: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a primeira componente principal do período I. Em destaque os valores

 significativos.

	SFAI	SVinfraAI	SVsupraAI	IBAI	SS1infraAI	SS1supraAI	SS2AI	AngraAI	RJinfraAI	RJsupraAI	SFBI	IBBI	SS2BI	ParatyBI	RJinfraBI
SVinfraAI	0,5136														
SVsupraAI	1,0000	1,0000													
IBAI	1,0000	0,1502	1,0000												
SS1infraAI	1,0000	0,0121	1,0000	1,0000											
SS1supraAI	1,0000	0,0001	1,0000	1,0000	1,0000										
SS2AI	1,0000	0,0400	0,4476	1,0000	0,6822	0,4759									
AngraAI	1,0000	1,0000	1,0000	0,8916	0,0030	0,0072	0,0006								
RJinfraAI	1,0000	0,5095	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000							
RJsupraAI	1,0000	0,0913	1,0000	1,0000	1,0000	1,0000	0,9417	0,8190	1,0000						
SFBI	0,0971	0,0009	0,0474	0,9572	0,0279	0,0170	1,0000	0,0485	1,0000	0,1285					
IBBI	0,8492	0,0832	0,6963	1,0000	0,3230	0,2608	1,0000	0,0008	1,0000	0,5171	1,0000				
SS2BI	0,1755	0,0002	0,2157	1,0000	0,0518	0,0420	1,0000	0,0010	1,0000	0,2411	1,0000	1,0000			
ParatyBI	0,0010	0,0018	0,0006	0,0019	0,0743	0,0185	0,0729	0,0217	0,2456	0,0012	0,1733	0,1395	0,2576		
RJinfraBI	0,2977	0,0002	0,0719	0,9812	0,2263	0,1619	1,0000	0,0025	1,0000	0,4337	1,0000	1,0000	1,0000	1,0000	
BúziosBI	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9417	1,0000	1,0000	1,0000	0,1591	0,4392	0,3535	0,0053	0,3639

Tabela 19: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal do período I. Em destaque os valores significativos.

2-Análise do Período II, com todas as amostras inclusas:

Nas tabelas 20 e 21 e figuras VII e VIII estão os resultados da PCA para o segundo período de coleta com todas as amostras na análise, na figura VII cada localidade e grupo é representado por um símbolo, devido ao grande número de populações na figura VIII está a mesma figura, mas com distinção apenas entre indivíduos do grupo A e do grupo B. Em seguida nas tabelas 22 e 23 estão os valores do teste de Mann-Whitney par-a-par corrigido por Bonferroni para as duas primeiras componentes respectivamente. O teste de Kruskal-Wallis entre as amostras desta análise foi altamente significativo para as duas componentes (componente 1: H= 133,976; gl=16; p<0,0001; componente 2: H=166,136; gl=16; p<0,0001).

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	93,274	94,794	93,628	95,737
	2	2,613	2,655	2,008	3,449
11:	3	1,021	1,037	0,764	1,364
[op	4	0,745	0,757	0,570	1,004
río	5	0,418	0,425	0,317	0,528
Pe	6	0,179	0,181	0,139	0,230
	7	0,101	0,102	0,074	0,135
	8	0,047	0,048	0,027	0,081

Tabela 20: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos do segundo período de coleta.

	Auto-vetores d	as compon	entes:
	Medida\PC	1	2
	СТ	-0,7383	0,6479
	LT	-0,4478	-0,3243
0 II	CA	-0,4413	-0,5131
jod	LA	-0,2279	-0,45
Peri	EC	-0,01449	-0,01085
	LC	-0,04838	-0,08729
	DS1	-0,03277	0,03751
	DS2	-0,06415	-0,01499

Tabela 21 Auto-vetores das duas primeiras componentes

principais das medidas dos indivíduos do segundo período de coleta.

Component 1

Figura VII: Diagrama de dispersão da PCA das medidas dos indivíduos do segundo período de coleta. Componentes 1 e 2 representadas.

Legenda: • SFAII; + SVinfraAII; □ SVsupraAII; ■ IBAII; X SS1infraAII; • SS1supraAII; ◊ SS2AI; * AngraAII; △ RJsupraAII; ■ BúziosAII; ● IBBII; ■ SS1infraBII; ◆ SS1supraBII; △ ParatyBII; ▼ RJinfraBII; ▼ RJsupraBII

Component 1

Figura VIII: Diagrama de dispersão da PCA das medidas dos indivíduos do segundo período de coletas divididos apenas nos dois grupos genéticos. Componentes 1 e 2 representadas.

Legenda: + Grupo A; 🗌 Grupo B.

	SFAII	SVinfraAI I	SVsupraA II	IIBAII	SS1infraA II	SS1supra AII	SS2AII	AngraAII	RJinfraAII	RJsupraAI I	SFBII	IIBBII	SS2BII	ParatyBII	RJinfraBII
SVinfraAI I	1,0000														
SVsupraA II	0,0460	1,0000													
IIBAII	1,0000	1,0000	0,5076												
SS1infraA II	1,0000	0,0146	0,0188	0,0035											
SS1supra AII	0,6045	0,0029	0,0009	0,0036	0,0797										
SS2AII	1,0000	1,0000	0,0271	1,0000	0,3364	0,0934									
AngraAII	0,0096	1,0000	1,0000	0,0750	0,0000	0,0001	0,0035								
RJinfraAII	1,0000	1,0000	0,5402	1,0000	1,0000	1,0000	1,0000	0,9561							
RJsupraAI I	1,0000	1,0000	1,0000	1,0000	0,0092	0,0019	1,0000	1,0000	1,0000						
SFBII	1,0000	1,0000	0,0331	1,0000	0,1041	0,0083	1,0000	0,0186	1,0000	1,0000					
IIBBII	1,0000	1,0000	0,1847	1,0000	1,0000	0,2323	1,0000	0,1172	1,0000	0,7635	1,0000				
SS2BII	1,0000	0,5343	0,0339	0,6135	1,0000	0,1674	1,0000	0,0071	1,0000	0,2992	1,0000	1,0000			
ParatyBII	1,0000	1,0000	1,0000	1,0000	0,0074	0,0011	1,0000	0,3341	1,0000	1,0000	1,0000	1,0000	1,0000		
RJinfraBII	1,0000	0,8765	0,0150	1,0000	1,0000	0,0002	1,0000	0,0126	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	
BúziosBII	1,0000	0,2306	0,0088	0,6032	1,0000	0,1008	1,0000	0,0006	1,0000	0,1661	1,0000	1,0000	1,0000	1,0000	1,0000

Tabela 22: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a primeira componente principal do período II. Em destaque os valores significativos.

	SFAII	SVinfraAII	SVsupraAII	IIBAII	SS1infraAII	SS1supraAII	SS2AII	AngraAII	RJinfraAII	RJsupraAII	SFBII	IIBBII	SS2BII	ParatyBII	RJinfraBII
SVinfraAII	1,0000														
SVsupraAII	1,0000	1,0000													
IIBAII	1,0000	1,0000	0,3074												
SS1infraAII	1,0000	1,0000	0,0065	1,0000											
SS1supraAII	1,0000	1,0000	0,0537	1,0000	1,0000										
SS2AII	1,0000	1,0000	0,2068	1,0000	1,0000	1,0000									
AngraAII	1,0000	1,0000	1,0000	1,0000	0,9483	1,0000	1,0000								
RJinfraAII	1,0000	0,5938	0,1847	1,0000	1,0000	1,0000	1,0000	1,0000							
RJsupraAII	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000						
SFBII	0,0567	0,0236	0,0934	0,4731	1,0000	0,0457	0,1937	0,0041	1,0000	0,1966					
IIBBII	1,0000	1,0000	0,6400	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
SS2BII	0,1634	0,0785	0,0068	1,0000	1,0000	0,0642	0,2947	0,0534	1,0000	0,2270	1,0000	1,0000			
ParatyBII	0,0053	0,0590	0,0002	0,0004	0,0001	0,0002	0,0000	0,0015	0,0338	0,0022	0,0010	0,1603	0,1027		
RJinfraBII	0,0003	0,0006	0,0100	0,0002	0,0007	0,0408	0,0887	0,0002	1,0000	0,0207	1,0000	1,0000	1,0000	0,1934	
BúziosBII	0,0007	0,0012	0,0274	0,0011	0,0012	0,0001	0,0003	0,0010	1,0000	0,0220	1,0000	1,0000	1,0000	1,0000	1,0000

Tabela 23: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal do período II. Em destaque os valores significativos.

A fim de melhor verificar possíveis diferenças entre os grupos em cada localidade foram feitas PCAs localidade por localidade, com os dois tempos de coleta e incluindo os indivíduos que não puderam ser definidos a nenhum dos grupos, seja por falta de dados genéticos ou ambigüidades nos locos (possíveis híbridos). Os resultados estão nos tópicos a seguir:

3- Análise de São Francisco do Sul (SF):

Nas tabelas 24 e 25 e figura IX estão os resultados da PCA para os dois períodos de coleta em São Francisco do Sul (SF) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. Nenhuma das componentes apresentou resultados significativos no teste de Kruskal-Wallis (componente 1: H=54,158; gl=2; p=0,0667; componente 2: H=48,224; gl=2; p=0,0897).

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	99,471	93,793	91,313	95,705
	2	2,386	2,250	1,173	3,511
	3	2,052	1,935	0,979	3,386
÷	4	1,473	1,389	0,614	2,742
\mathbf{S}	5	0,296	0,279	0,162	0,397
	6	0,168	0,159	0,068	0,265
	7	0,117	0,111	0,061	0,163
	8	0,090	0,085	0,026	0,179

Tabela 24: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras de São Francisco do Sul (SF).

Tabela 25: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos de São Francisoc do Sul (SF).

Component 1

Figura IX: Diagrama de dispersão da PCA das medidas dos indivíduos de São Francisco do Sul (SF). Componentes 1 e 2 representadas. Legenda: SFAI +, SFBI , SF indefinido I •, SFAII •, SFBII X, SF indefinidos II •.

4- Análise de São Vicente (SV):

Nas tabelas 26 e 27 e figura X estão os resultados da PCA para os dois períodos de coleta em São Vicente (SV) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. A primeira componente não apresentou resultados significativos no teste de Kruskal-Wallis (H=54,732; gl=3; p=0,14), a segunda componente obteve resultado significativo (H=40,9944; gl=3; p<0,01), os resultados do teste de Mann-Whitney par a par corrigido por Bonferroni estão na tabela 28.

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	65,063	89,807	85,717	92,425
	2	2,949	4,071	2,664	6,408
	3	2,297	3,171	2,022	4,984
:>	4	1,095	1,511	0,938	2,156
S	5	0,593	0,818	0,393	1,373
	6	0,289	0,399	0,237	0,585
	7	0,107	0,148	0,083	0,227
	8	0,054	0,075	0,040	0,109

Tabela 26: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras de São Vicente (SV) (infra e supra).

Tabela 27: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos de São Vicente (SV) (infra e supra).

	Auto-vetores das componentes:								
	Medida \PC	1	2						
	СТ	-0,7356	0,4654						
	LT	-0,4238	-0,8445						
	CA	-0,4487	0,0921						
SV:	LA	LA -0,2654							
•	EC	-0,0131	0,0425						
	LC	-0,0574	-0,0223						
	DS1	-0,0313	0,1069						
	DS2	-0,0567	0,1665						

Component 1

Figura X: Diagrama de dispersão da PCA das medidas dos indivíduos de São Vicente(SV) (infra e supra). Componentes 1 e 2 representadas. Legenda: SVinfraAI +, SVinfraBI □, SVinfra indefinido I •, SVinfraAII ■, SVinfraBII X, SV indefinidos II o, SVsupraAI ◊, SVsupra indefinido I △, SVsupraAII -, SVsupraBII], SVsupra indefinido II . •

Tabela 28: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal de São Vicente (SV). Em destaque os valores significativos.

	SVinfraAl	SVsupraAl	SVinfraAll				
SVsupraAl	0,6981						
SVinfraAll	0,0002	0,0345					
SVsupraAll	0,0001	0,0005	1,0000				

5- Análise de Ilha Bela (IB):

Nas tabelas 29 e 30 e figura XI estão os resultados da PCA para os dois períodos de coleta em Ilha Bela (IB) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. Ambas as componentes apresentaram resultados significativos no teste de Kruskal-Wallis (componente 1: H=16,540; gl=4; p=0,0024; componente 2: H=21,533; gl=4; p=0,0002), os resultados do teste de Mann-Whitney par a par corrigido por Bonferroni estão na tabela 31 e 32 para as componentes 1 e 2 respectivamente.

Tabela 29: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras de Ilha Bela (IB).

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	42,754	89,424	84,991	92,958
	2	2,255	4,717	1,730	9,154
	3	1,491	3,118	2,150	4,476
	4	0,570	1,192	0,532	2,001
II	5	0,474	0,992	0,590	1,439
	6	0,154	0,323	0,207	0,446
	7	0,068	0,141	0,085	0,195
	8	0,045	0,093	0,048	0,134

Tabela 30: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos de Ilha Bela (IB).

	Auto-vetores das componentes:								
	Medida\PC	1	2						
	СТ	0,6837	-0,6557						
	LT	0,4921	0,4825						
	CA	0,4664	0,3564						
IB:	LA	0,2507	0,2865						
	EC	0,0247	0,0085						
	LC	0,0525	0,0208						
	DS1	0,0387	-0,0895						
	DS2	0,0723	-0,3460						

Component 1

Figura XI: Diagrama de dispersão da PCA das medidas dos indivíduos de Ilha Bela (IB). Componentes 1 e 2 representadas. Legenda: SFAI +, SFBI \Box , SF indefinido I •, SFAII •, SFBII X, SF indefinidos II •.

Tabela 31: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a primeira componente principal de Ilha Bela (IB). Em destaque os valores significativos.

	IB A I	IB BI	IB A II	IB B II
IB B I	1,0000			
IB A II	0,0071	0,2683		
IB B II	0,5814	1,0000	1,0000	
IB indef II	0,0125	0,1463	1,0000	1,0000

Tabela 32: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal de Ilha Bela (IB). Em destaque os valores significativos.

	IB A I	IB BI	IB A II	IB B II
IB B I	0,5212			
IB A II	1,0000	1,0000		
IB B II	0,0016	0,1556	0,0060	
IB indef II	0,1860	1,0000	1,0000	1,0000

6- Análise de São Sebastião, Toque-Toque Pequeno (SS2):

Nas tabelas 33 e 34 e figura XII estão os resultados da PCA para os dois períodos de coleta em São Sebastião, Toque-Toque Pequeno (SS2) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. A primeira componente apresentou resultados significativos no teste de Kruskal-Wallis (H=22,968; gl=2; p<0,001), a segunda componente não obteve resultado significativo (H=29,743; gl=2; p<0,01), os resultados do teste de Mann-Whitney par a par corrigido por Bonferroni da primeira componente estão na tabela 33.

Tabela 33: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras de São Sebastião – Toque Toque Pequeno (SS2).

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%	
2:	1	73,851	93,528	90,775	95,842	
	2	2,015	2,551	1,160	4,667	
	3	1,724	2,183	1,537	3,095	
	4	0,878	1,111	0,336	1,572	
SS	5	0,251	0,318	0,159	0,453	
-	6	0,124	0,157	0,098	0,221	
	7	0,060	0,077	0,039	0,106	
	8	0,058	0,073	0,041	0,099	

Tabela 34: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos de São Sebastião - Toque Toque Pequeno (SS2).

	Auto-vetores das componentes:							
	Medida\PC	1	2					
	СТ	-0,7430	0,5825					
	LT	-0,4553	-0,2383					
••	CA	-0,4078	-0,6441					
SS2	LA	-0,2385	-0,3493					
	EC	-0,0290	-0,0077					
	LC	-0,0469	-0,1185					
	DS1	-0,0458	0,1146					
	DS2	-0,1113	0,1995					

Component 1

Figura XII: Diagrama de dispersão da PCA das medidas dos indivíduos de São Sebatião - Toque Toque Pequeno (SS2). Componentes 1 e 2 representadas. Legenda: SS2AI +, SS2BI □, SS2 indefinido I •, SS2AII •, SS2BII X, SS2 indefinidos II •.

Tabela 35: Resultado do teste de Mann-Whitney par-apar corrigido por Bonferroni para a primeira componente principal de São Sebastião, Toque-Toque Pequeno (SS2). Em destaque os valores significativos.

	SS2 A I	SS2 B I
SS2 B I	0,0985	
SS2 A II	1,0000	0,0000

7- Análise de São Sebastião, Juquehy (SS1):

Nas tabelas 36 e 37 e figura XIII estão os resultados da PCA para os dois períodos de coleta em São Sebastião, Juquehy (SS1) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. Ambas as componentes apresentaram resultados significativos no teste de Kruskal-Wallis (componente 1: H=21,042; gl=4; p=0,0003; componente 2: H=57,118; gl=4; p<0,0001), os resultados do teste de Mann-Whitney par a par corrigido por Bonferroni estão na tabela 38 e 39 para as componentes 1 e 2 respectivamente.

Tabela	i 36:	Auto-valores	das	componentes	principais	e	porcentagem	da	variação	das	medidas	dos
indivíduos. Amostras de São Sebastião - Juquehy (SS1) (infra e supra).												

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	21,874	87,742	82,008	91,344
	2	1,347	5,405	3,818	9,178
	3	0,817	3,278	1,622	5,062
SS1:	4	0,437	1,755	0,905	2,519
	5	0,236	0,946	0,594	1,411
	6	0,120	0,482	0,326	0,635
	7	0,061	0,246	0,155	0,339
	8	0,037	0,147	0,086	0,197

Tabela 37: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos de São Sebastião - Juquehy (SS1) (infra e supra).

	Auto-vetores das componentes:					
	Medida\PC	1	2			
	СТ	-0,7192	0,5310			
	LT	-0,4475	-0,2545			
••	CA	-0,4517	-0,4741			
SS1	LA	-0,2252	-0,4906			
	EC	-0,0293	0,0566			
	LC	-0,0504	-0,1508			
	DS1	-0,0582	0,1681			
	DS2	-0,1445	0,3655			

Component 1

Figura XIII: Diagrama de dispersão da PCA das medidas dos indivíduos de São Sebatião - Juquehy (SS1) (infra e supra). Componentes 1 e 2 representadas. Legenda: SS1infraAI +, SS1infraBI \Box , SS1infra indefinido I •, SS1infraAII =, SS1infraBII X, SS1 indefinidos II o, SS1supraAI \Diamond , SS1supraBI *, SS1supra indefinido I Δ , SS1supraAII -, SS1supraBII].

Tabela 38: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a primeira componente principal de São Sebastião, Juquehy (SS1). Em destaque os valores significativos.

r rranna	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	SS1 infra A I	SS1 infra A II	SS1 infra B II	SS1 supra A I
SS1 infra A II	1,0000			
SS1 infra B II	1,0000	1,0000		
SS1 supra A I	1,0000	1,0000	1,0000	
SS1 supra A II	0,0048	0,0149	0,0119	0,0012

Tabela 39: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal de São Sebastião, Juquehy (SS1). Em destaque os valores significativos.

	SS1 infra A I	SS1 infra A II	SS1 infra B II	SS1 supra A I
SS1 infra A II	0,0070			
SS1 infra B II	0,0113	1,0000		
SS1 supra A I	1,0000	0,0000	0,0044	
SS1 supra A II	0,0029	1,0000	0,8561	0,0025

8- Análise de Paraty:

Nas tabelas 40 e 41 e figura XIV estão os resultados da PCA para os dois períodos de coleta em Paraty inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. A primeira componente não apresentou resultados significativos no teste de Kruskal-Wallis (H=0,78; gl=2; p=0,6784), a segunda componente obteve resultado significativo (H=22,917; gl=2; p<0,0001), os resultados do teste de Mann-Whitney par a par corrigido por Bonferroni estão na tabela 42.

Tabela 40: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras de Paraty.

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	121,002	92,340	86,072	95,833
	2	4,365	3,331	1,853	6,365
	3	3,118	2,380	0,754	6,802
aty	4	1,573	1,200	0,448	1,769
Par	5	0,646	0,493	0,211	0,933
	6	0,239	0,183	0,069	0,357
	7	0,070	0,054	0,017	0,114
	8	0,027	0,020	0,008	0,032

Tabela 41: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos de Paraty.

	Auto-vetores das componentes:				
	Medida\PC	1	2		
	СТ	-0,7187	0,3994		
	LT	-0,3825	-0,8684		
y:	CA	-0,4752	0,0349		
urat	LA	-0,3039	-0,0306		
\mathbf{P}_{3}	EC	-0,0224	0,0013		
	LC	-0,0631	0,0557		
	DS1	-0,0451	0,1067		
	DS2	-0,1114	0,2641		

Component 1

Figura XIV: Diagrama de dispersão da PCA das medidas dos indivíduos de Paraty. Componentes 1 e 2 representadas. Legenda: ParatyAI +, ParatyBI
, Paraty indefinido I •, ParatyAII
, ParatyBII X, Paraty indefinidos

II **o**.

Tabela 42: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal de Paraty. Em destaque os valores significativos.

	Paraty B I	Paraty indef I
Paraty indef I	0,0634	0,0000
Paraty B II	0,0027	0,0002

9- Análise de Angra dos Reis (Angra):

Nas tabelas 43 e 44 e figura XV estão os resultados da PCA para os dois períodos de coleta em Angra dos Reis (Angra) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. Somente as amostras Angra A I e Angra A II obtiveram números amostrais suficientes para serem comparadas estatisticamente. Entre estas foi aplicado o teste de Mann-Whitney às componentes 1 e 2, ambas foram significativas (componente 1: T=151; p=0,0022; componente 2: T=89; p<0,0001).

Tabela 43: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras de Angra.

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	76,123	89,821	84,711	93,507
	2	3,888	4,587	2,952	7,446
	3	2,097	2,474	1,158	4,067
gra:	4	1,634	1,928	0,825	3,273
Ang	5	0,666	0,786	0,421	1,095
	6	0,141	0,166	0,068	0,253
	7	0,135	0,160	0,075	0,278
	8	0,067	0,079	0,038	0,105

Tabela 44: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos de Angra.

	Auto-vetores das componentes:				
	Medida\PC	1	2		
	СТ	-0,7675	0,5728		
	LT	-0,3817	-0,7192		
a:	CA	-0,4217	-0,3745		
ngr	LA	-0,2726	-0,0343		
A	EC	-0,0113	0,0700		
	LC	-0,0329	-0,0745		
	DS1	-0,0421	-0,0227		
	DS2	-0,1010	0,0472		

Component 1

Figura XV: Diagrama de dispersão da PCA das medidas dos indivíduos de Angra. Componentes 1 e 2 representadas. Legenda: AngraAI +, AngraBI □, Angra indefinido I •, AngraAII ■, AngraBII X, Angra indefinidos II •.

10- Análise do Rio de Janeiro (RJ):

Nas tabelas 45 e 46 e figura XVI estão os resultados da PCA para os dois períodos de coleta no Rio de Janeiro (RJ) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. Ambas as componentes apresentaram resultados significativos no teste de Kruskal-Wallis (componente 1: H=30,045; gl=4; p<0,0000; componente 2: H=35,658; gl=4; p<0,0001), os resultados do teste de Mann-Whitney par a par corrigido por Bonferroni estão na tabela 47 e 48 para as componentes 1 e 2 respectivamente.

Tabela 45: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras do Rio de Janeiro (RJ).

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	105,018	94,185	92,184	95,723
	2	3,687	3,307	2,321	4,833
	3	1,291	1,158	0,712	1,608
J:	4	0,875	0,785	0,499	1,113
R	5	0,334	0,300	0,162	0,462
	6	0,200	0,179	0,111	0,235
	7	0,081	0,072	0,040	0,107
	8	0,017	0,015	0,008	0,021

Tabela 46: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos do Rio de Janeiro (RJ).

	Auto-vetores das componentes:				
	Medida \PC	1	2		
	СТ	-0,7046	0,4397		
	LT	-0,4022	-0,8714		
	CA	-0,5089	0,1380		
RJ:	LA	-0,2591	-0,1402		
, ,	EC	-0,0176	0,0045		
	LC	-0,0647	-0,0370		
	DS1	-0,0379	0,0302		
	DS2	-0,0991	0,0797		

Component 1

Figura XVI: Diagrama de dispersão da PCA das medidas dos indivíduos do Rio de Janeiro (RJ). Componentes 1 e 2 representadas. Legenda: RJinfraAI +, RJinfraBI \Box , RJinfra indefinido I •, RJinfraAII •, RJinfraBII X, RJ indefinidos II •, RJsupraAI \diamond , RJsupraBI *, RJsupra indefinido I Δ , RJsupraAII -, RJsupraBII , RJ•, ra indefinido II.

Tabela 47: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a primeira componente principal do Rio de Janeiro (RJ). Em destaque os valores significativos.

	RJ infra A I	RJ Infra B I	RJ infra B II	RJ supra A I
RJ Infra B I	0,0265			
RJ Infra B II	1,0000	0,0003		
RJ supra A I	1,0000	0,0002	0,2440	
RJ supra B II	1,0000	0,0003	1,0000	0,5985

Tabela 48: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal do Rio de Janeiro (RJ). Em destaque os valores significativos.

	1 <u>1</u>		1	č	
		RJ infra A I	RJ Infra B I	RJ infra B II	RJ supra A I
	RJ Infra B I	1,0000			
	RJ Infra B II	0,0189	0,0097		
	RJ supra A I	1,0000	1,0000	0,0001	
	RJ supra B II	0,0122	0,0051	1,0000	0,0001

11- Análise de Búzios:

Nas tabelas 49 e 50 e figura XVII estão os resultados da PCA para os dois períodos de coleta em São Sebastião, Juquehy (SS1) inclusos os indivíduos que não puderam ser atribuídos a nenhum dos grupos genéticos nas análises do capítulo anterior. Assim como ocorreu em Angra, somente duas amostras obtiveram números amostrais suficientes para serem comparadas estatisticamente, foram elas: Angra B I e Angra A II. Entre estas foi aplicado o teste de Mann-Whitney nos valores das componentes 1 e 2, somente a componente 2 apresentou resultados significativos (componente 1: T=48; p=0,6959; componente 2: T=11; p=0,0025).

Tabela 49: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Amostras do Búzios.

	РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
	1	36,839	79,578	72,066	86,098
	2	4,984	10,767	6,893	16,107
	3	2,675	5,778	3,363	8,477
ios	4	0,936	2,023	0,805	3,181
Зúz	5	0,500	1,079	0,515	1,752
Γ	6	0,162	0,351	0,069	0,518
	7	0,130	0,280	0,072	0,447
	8	0,067	0,144	0,038	0,236

Tabela 50: Auto-vetores das duas primeiras componentes principais das medidas dos indivíduos do Búzios.

	Auto-vetores das componentes:			
	Medida \PC	1	2	
	СТ	0,7175	-0,2924	
	LT	0,4685	0,7534	
:Se	CA	0,4201	-0,2096	
ízic	LA	0,2624	0,0636	
B	EC	0,0275	-0,0062	
	LC	0,0313	0,0593	
	DS1	0,0641	-0,1878	
	DS2	0,1205	-0,5100	

Component 1

Figura XVII: Diagrama de dispersão da PCA das medidas dos indivíduos do Búzios. Componentes 1 e 2 representadas. Legenda: BúziosAI +, BúziosBI □, Búzios indefinido I •, BúziosAII ■, BúziosBII X, Búzios indefinidos II •.

12- Análise entre grupos genéticos e períodos de coleta sem distinção de populações:

Nesta última análise de componentes principais os limites das populações foram ignorados, todos os indivíduos designados para um dos grupos genéticos foram usados, sendo feita apenas a distinção entre os grupos genéticos. Os dados foram tratados de duas formas, inicialmente com distinção entre os períodos de coleta e em seguida sem esta distinção, sendo neste segundo caso feito apenas um teste de Mann-Whitney entre os grupos A e B para as componentes um e dois.

Nas tabela 51, 52 e figuras XVIII e XIX estão os resultados para as duas primeiras componentes, na primeira figura há distinção entre os grupos genéticos e os períodos de coleta, na segunda apenas entre os grupos genéticos.

O teste de Kruskal-Wallis entre os grupos genéticos e períodos de coleta (IA, IB, IIA, IIB) não foi significativo para a primeira componente (H=7,045; gl=4; p=0,0705) e na segunda componente os resultados foram altamente significativos (H=238,200; gl=4; p<0,0001). Os resultados das comparações par-a-par estão na tabela 53.

O teste de Mann-Whitney comparando os dois grupos genéticos como um todo (unindo os períodos de coleta) não foi significativo para a componente 1 ($T=4,277x10^4$; p=0,5258) e foi significativo para a componente 2 ($T=1,901x10^4$; p<0,0001).

РС	auto-valores	% var	Eig. 2.5%	Eig. 97,7%
1	100,944	92,991	92,105	93,785
2	3,254	2,998	2,556	3,568
3	1,758	1,619	1,319	1,920
4	1,651	1,521	1,279	1,767
5	0,576	0,531	0,418	0,648
6	0,189	0,174	0,148	0,203
7	0,115	0,106	0,084	0,128
8	0,067	0,061	0,048	0,075

Tabela 51: Auto-valores das componentes principais e porcentagem da variação das medidas dos indivíduos. Todos os indivíduos inclusos.

Tabela 52: Auto-vetores das duas primeiras componentes principais das medidas de todos os indivíduos

Auto-vetores das componentes:			
Medida\PC	1	2	
СТ	0,7465	-0,6322	
LT	0,4130	0,5009	
CA	0,4480	0,3946	
LA	0,2463	0,4016	
EC	0,0173	-0,0079	
LC	0,0506	0,0767	
DS1	0,0375	-0,0906	
DS2	0,0809	-0,1353	

Component 1

Figura XVIII: Diagrama de dispersão da PCA das medidas de todos os indivíduos. Componentes 1 e 2 representadas. Legenda: AI +, BI □, AII ■ e BII X.

Component 1

Figura XIX: Diagrama de dispersão da PCA das medidas dos indivíduos. Componentes 1 e 2 representadas. Legenda: grupo A + e grupo B □.

Tabela 53: Resultado do teste de Mann-Whitney par-a-par corrigido por Bonferroni para a segunda componente principal da análise com todos indivíduos distinguindo grupos genéticos e períodos de coleta. Em destaque os valores significativos.

	IA	IB	IIA
IB	2,53x10 ⁻¹³		
IIA	6,96x10 ⁻²²	0,1831	
IIB	1,81x10 ⁻³⁶	1,16x10 ⁻⁰⁹	6,83x10 ⁻²⁶

Discussão:

Os testes de Kruskal-Wallis, medida por medida no mesmo grupo genético indicaram que sempre há alguma amostra com uma ordenação significativamente diferente do restante das amostras. O pós-teste de Mann-Whitney corrigido por Bonferroni (resultados no apêndice III) indicou grande diversidade entre as localidades no grupo genético "A", com a amostra de RJsupra bastante diferenciada em relação às outras em vários dos caracteres no período I e a amostra de SS1supra no período II.

O mesmo pós-teste indicou uma diferenciação menos acentuada entre as amostras do grupo genético "B", com SS2 bastante diferenciado no período I. No segundo período há um maior número de amostras diferenciadas sendo estas sobretudo de Paraty e SS1supra.

Esta alta variação fenotípica é reportada para *S. haemastoma* no litoral brasileiro (Magalhães, 1988) e em outras localidades (Kool, 1993; Liu et al , 1991; Vermeij, 2001), com variações de forma, cor e tamanho dentro de uma localidade e sobretudo entre localidades. Esta variação, em uma espécie que habita os dois extremos longitudinais do Atlântico, levou certos taxonomistas a duvidar da unidade genética de *S. haemastoma* (Kool, 1993, Vermeij, 2001), podendo esta variação dentro e entre localidades ser resultado da união de mais de uma espécie nas amostras.

Pelos resultados deste estudo, aparentemente, a alta variação fenotípica da concha é uma característica compartilhada pelos dois grupos, sendo mais acentuada no grupo "A", no entanto não foram analisadas diversas características de forma e coloração, assim como da parte mole dos animais. Alta plasticidade fenotípica também é relatada para a espécie, com mudanças de tamanho da probóscide conforme mudanças no tipo de alimento (Watanabe e Young, 2006).

113

As diferenças entre o período I e II de coleta indicam uma variação temporal na diferenciação populacional, provavelmente resultante de uma dinâmica populacional de recolonizações e mudanças do ambiente. Watanabe e Young (2006) observaram que os indivíduos de *S. haemastoma* habitando na superfície de construções arenosas de poliquetos, apesar de terem uma alimentação privilegiada, desaparecem antes de reproduzirem, provavelmente perecendo antes da maturidade sexual.

As comparações entre os grupos genéticos "A" e "B" nos locais onde ambos estavam presentes indicam que, em sua maioria, os grupos não diferem significativamente nas medidas tomadas. As exceções foram SS2 e RJinfra no período I de coleta, sendo que o mesmo não ocorreu nestes locais no segundo período, indicando que a diferenciação no primeiro período pode ser resultante de um evento sazonal como o recrutamento.

Unindo os animais das diferentes populações e comparando somente os grupos A e B e os períodos de coleta (comparações entre IA, IB, IIA e IIB), sempre há alguma diferenciação significativa. Nas comparações par-a-par fica evidente que muitas das diferenças são entre os períodos de coleta no mesmo grupo genético, não havendo nenhuma indicação de algum padrão de diferenciação entre os grupos genéticos em nenhuma medida e indicando uma variação temporal das medidas, embora sem um padrão fixo.

Em seguida foi feita a análise de componentes principais. Inicialmente todas as populações nos grupos genéticos, foram comparadas para cada período de coleta. A transformação dos dados mostrou-se bastante eficaz nos dois casos. Nos períodos de coleta notam-se que os indivíduos das mesmas amostras tendem a ficar agrupados na grande maioria dos casos. Nos mesmos diagramas, com a distinção somente entre os grupos genéticos A e B, nota-se na componente dois uma leve distinção entre estes grupos, porém ainda com uma grande sobreposição. A componente um não apresenta nenhuma diferenciação em ambos os períodos.

114

Nas análises de Kruskal-Wallis dos valores de *loadings* das componentes, os testes indicaram a presença de população(ões) diferenciada(s) nas duas componentes dos dois períodos. Tal resultado era esperado tendo em vista os resultados das análises anteriores e não diz muito com relação a possíveis diferenças entre os grupos genéticos.

As comparações par-a-par pelo teste de Mann-Whitney corrigido segundo Bonferroni levam a um resultado mais interessante. A proporção de resultados significativos na componente **dois** nas comparações entre populações do grupo A com populações do grupo B (AxB) é maior que nas demais comparações (AxA e BxB) nos dois períodos de coleta. Comparando estas proporções através de testes exatos de Fisher par-a-par corrigidos por Bonferroni, temos diferenças significativas no **segundo** período, onde a proporção de resultados significativos nas comparações AxB é superior a proporção nas comparações AxA e BxB (AxA comparado com AxB, p<0,001; BxB comparado com AxB, p=0,003; AxA comparado com BxB, p=1,000; valores corrigidos segundo Bonferroni). O **primeiro** período de coleta não apresentou resultados significativos neste aspecto (AxA comparado com AxB, p=0,112; BxB comparado com AxB, p= 0,171; AxA comparado com BxB, p=1,000; valores após a correção de Bonferroni). Apesar disso, a correção de Bonferroni é bastante discutida (revisto por Nakagawa, 2004) e os dados indicam uma tendência geral de maior diferenciação entre os grupos do que dentro dos mesmos **na componente dois**.

Os resultados da componente **dois** estão de acordo com o que pode ser observado nos diagramas de dispersão das componentes principais dos dois períodos onde há alguma distinção entre indivíduos do grupo genético A e do grupo genético B, apesar de ainda haver grande sobreposição. Nessa mesma componente (**dois**), as populações dos grupos A e B quando comparadas com outras do mesmo grupo mostraram-se relativamente homogêneas, com um número baixo de diferenciações significativas.

A componente **um**, no primeiro período de coleta mostrou heterogeneidade entre as amostras em todas as comparações efetuadas, com diversas comparações significativas e sem diferenças significativas na proporção de resultados significativos por tipo de comparação (AxA, BxB e AxB), apontando para a grande variação entre os pontos de coleta também observada nas análises medida por medida. Já no segundo período esta heterogeneidade também é observada, exceto no grupo genético B, onde todas as amostras foram homogêneas sendo a proporção de resultados significativos significativos significativamente diferente em somente um dos casos (AxA comparado com BxB, p=0,038; BxB comparado com AxB, p= 0,193; AxB comparado com AxA, p=0,526; valores corrigidos segundo Bonferroni). A componente **um** representou principalmente a variação encontrada entre as amostras do mesmo grupo genético, já notada nas análises prévias, com exceção do grupo genético B no segundo período.

Apesar do grupo B apresentar maior homogeneidade nas análises univariadas e na componente 1 no segundo período, vale ressaltar que as comparações par-a-par por Mann-Whitney foram todas corrigidas por Bonferroni. Essa correção é considerada bastante rigorosa (Nakagawa, 2004) e tende a reduzir o número de valores significativos, tornando difícil discutir homogeneidade entre as amostras.

Desta forma, esta análise revelou uma sutil diferenciação na componente 2, sendo importante frisar que esta componente representa somente 2,88% da variação encontrada no período I e 2,66% no período II, fazendo dessa diferenciação algo mínimo em relação aos dados utilizados neste estudo.

Nas análises localidade por localidade, a variação das medidas de todos os pontos foram bem representadas pelas PCAs. Búzios obteve a menor representação da variação na componente 1, com aproximadamente 80% da variação, no entanto a componente 2 desta

116

localidade representou mais de 10% da variação encontrada, representando juntas pouco mais de 90% da variação total.

As comparações localidade por localidade não demonstraram diferenciação entre os grupos genéticos, em devido à presença majoritária de um dos grupos em cada localidade, inviabilizando as comparações estatísticas. As comparações possíveis foram inconclusivas, com diferenças significativas no mesmo grupo entre os períodos de coleta e, no geral, menor diferenciação dos animais coletados no mesmo período em relação às diferenças entre períodos de coleta. As diferenças entre estes, se presentes nas medidas tomadas, são muito sutis.

Na análise sem distinção entre as populações, onde foram comparados os grupos genéticos e os períodos de coleta, não houve diferenciação entre os grupos genéticos e períodos de coleta na componente um. Na componente dois no entanto há diferenciação significativa entre todos as amostras exceto entre IA e IIB, pertencentes a grupos genéticos distintos. Isso mostra que a distinção entre os períodos de coleta provavelmente sobrepõe-se às diferenças entre os grupos genéticos.

A diferenciação entre os grupos genéticos também é significativa nessa componente quando não há distinção entre os períodos de coleta. No entanto a sobreposição ainda é grande e a componente dois representa uma parcela mínima da variação. A ausência de diferenciação entre IA e IIB nesta componente e a diferenciação significativa entre os períodos de coleta no mesmo grupo genético compromete a diferenciação dos grupos nessa componente.

Com relação às medidas utilizadas, pode se dizer que os grupos genéticos A e B, apesar de uma mínima diferenciação, são crípticos. A elevada variação descrita para a espécie é compartilhada pelos dois grupos não sendo resultado da junção destes.

A variação de forma entre localidades encontrada nos dois grupos já era esperada para a espécie. Em muitos gastrópodes há variação e plasticidade fenotípica de diversas características,

induzida por fatores ambientais. Variação no formato da concha pode ser induzida pela presença de predadores, exposição às ondas, há também variação na coloração por influências ambientais entre outras (Hughes e Elner, 1979; Butler, 1985; Appleton e Palmer, 1988; Palmer, 1990; Kool, 1993; Rolán et al, 2004).

A alta variação em diversas espécies de moluscos indica que existem pressões seletivas no nível populacional influenciando características físicas dos animais. Estas mesmas pressões, por serem fortes o bastante a ponto de influenciar populações locais, podem induzir a convergência de características das espécies (Kool, 1993).

Em *Nucella lapilus*, os morfos encontrados apresentam diferenciação de tamanho, forma e cor, apesar da maior proximidade genética (Rolán et al, 2004); em *Littorina saxatilis* as diferenças morfológicas também são características , existindo estágios intermediários (Johannesson et al, 2003). Estas diferenças exemplificadas estão associadas a causas genéticas e também a causas ambientais, devido a diferentes micro-habitats, característica que não foi encontrada para os grupos de *S. haemastoma* deste estudo. Animais com desenvolvimento direto possuem em geral características mais especializadas ao seu ambiente, enquanto aqueles com larva planctônica são mais generalistas e podem apresentar uma maior uniformidade (Janson, 1987).

Mais estudos da morfologia de *S. haemastoma* são necessários para encontrar uma possível diferença entre os dois grupos genéticos; esta diferenciação parece detectável, uma vez que há ligeira diferenciação na componente dois deste estudo. Uma abordagem utilizando características anatômicas e morfometria geométrica poderia ser interessante. Estudos comportamentais, sobretudo do recrutamento seriam de grande auxílio na compreensão desta espécie, apesar da grande dificuldade na realização deste tipo de estudo.

Considerações finais:

As análises morfométricas mostraram a presença de uma grande variação fenotípica nos dois grupos genéticos, menos acentuada no grupo B. Esta alta variabilidade fenotípica já era descrita para a espécie (Magalhães, 1988).

Quando analisados como um todo, os grupos mostraram uma sutil diferenciação na componente 2 das análise de PCAs, no entanto ainda há grande sobreposição entre os grupos genéticos e tal componente representa menos de 3% da variação. Assim não se pode dizer que há alguma diferença entre os grupos, mas sim uma ligeira tendência a diferenciação.

As comparações feitas localidade por localidade não mostram esta tendência tanto nas análises de componente principal, como nas análises medida por medida. Quando presente, tal diferenciação ocorria em geral somente um dos períodos de coleta.

Nas comparações entre os grupos sem separação nas populações, muitas diferenças entre períodos de coleta são observadas, sobretudo na componente dois.

Tendo em vista a diferenciação mínima encontrada entre os grupos genéticos, é possível afirmar que, baseando-se em características básicas da concha, os grupos genéticos A e B são crípticos.

Uma pesquisa morfológica mais aprofundada, com uso de características anatômicas e morfometria geométrica podem ser de grande utilidade na separação dos dois grupos genéticos, assim como um estudo do recrutamento larval e reconhecimento químico.

119

Literatura citada:

- APPLETON, R.D., PALMER, A.R.; 1988. Water-bone stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proceedings of the National Academy of Science USA, 85: 4387-4391.
- ABSALÃO, R.S., SILVA, P.H.A., PAULA, T.S.; 2005. Shell morphometrics in four species of Gadilidae (Mollusca, Scaphopoda) in southwestern Atlantic ocean, Brazil. Revista Brasileira de Zoologia, 22: 175-179.
- ADAMS, D.C., ROHLF, F.J., SLICE, D.E.; 2004. Geometric morphometrics: ten years of progress following the 'revolution'. Italian journal of zoology, 71: 5-16.
- AIROLDI, J. & FLURY, B. K. 1988 Na application of common principal componet analysis to cranial morphometry of *Microtus californicus* and *M. ochrogaster* (Mammalia, Rodentia). Journal of Zoology (London) 216: 21-36.
- AYRES, M., AYRES JR., M., AYRES, D.L., SANTOS, A.A.S.; 2007. BioEstat, aplicações estatísticas nas áreas das ciências bio-médicas. Belém, Brasil.
- BUTLER, P.A.; 1985. Synoptic review of the literature on the southern oyster drill *Thais haemastoma floridana*. NOAA Technical Report, NMFS 35, 12pp.
- HAMMER, Ø., HARPER, D. A. T., RYAN, P. D. 2001. PAST: Palaeontological Statistics software package for education and date analysis. **Paleontologia Eletronica 4**(1):9.
- HUGHES, R.N., ELNER, R.W.; 1980. Tactics of predator, *Carcinus maenas*, and morphological responses of the prey, *Nucella lapillus*. Journal of Animal Ecology, 30: 245-256.
- JANSON, K.; 1987. Allozyme and shell variation in two marine snails (*Littorina*, Prosobranchia) with different dispersal abilities. **Biological Journal of the Linnaen Society**, **30**: 245-256.
- JOHANNESSON, K.; JOHANNESSON, B.; ROLÁN-ALVAREZ, E. 1993. Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail *Littorina saxatilis*. Evolution 47(6):1770-1787
- JOHANNESSON, K., LUNDBERG, J., ANDRÉ, C. e NILSON, P.G.; 2003. Island isolation and habitat heterogeneity correlate with DNA variation in marine snail (Littorina saxatilis). Biological Journal of the Linnean Society, 82: 377-384.
- JOHNSTON, M. R., R. E. TOBACHNICKA, ND F. L. BOOKSTEIN. 1991. Landmark-based morphometrics of spiral accretionary growth. Paleobiology 17:19-36.

JOLICOEUR, P. 1963. The multivariate generalization of the allometry equation. **Biometrics 19:** 497-499. KOOL, S.P., 1987. Significance of radular characters for reconstruction of thaidid phylogeny (Neogastropoda:

Muricacea). The Nautilus, 101: 117-131.

- KOOL, S.P., 1993. Phylogenetic Analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia, 35 (2): 155-259.
- KILGOUR, B.W., LYNN, D.H., MACKIE, G.L.; 1990. Use of shell morphometric data to aid classification of *Pisidum* (Bivalvia: Sphaeridae). American Malacological Bulletin, 7: 109-116.
- LIU, L.L., FOLTZ, D.W. e STICKLE, W.B., 1991. Genetic population structure of the southern oyster drill *Stramonita (=Thais) haemastoma*. Marine Biology 111: 71-79.
- MAGALHÃES, C. A., 1988. Padrões de variação morfológica em *Thais haemastoma* L., 1767 (Gastropoda: Prosobranchia). Dissertação de Mestrado. Instituto de Biologia. Universidade Estadual de Campinas, 107p.

MANLY, B. F. J. 2005. Multivariate statistical methods: a primer. Third Edition Chapman and Hall, London. 214p.

- NAKAGAWA, S., 2004. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology, 15: 1044-1045.
- PALMER, A.R.; 1990. Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and Shell morphology of the Atlantic dogwhelk *Nucella lapilus* (L.). **Hydrobiologia**, **193**: 155-182.
- RICHTSMEIER, J.T., DELEON, V.B., LELE, S.R.; 2002. The promise of geometric morphometrics. Yearbook of Physical Anthropology, 45: 63-91.
- RINTELEN, T.V., GLAUBRECHT, M.; 2003. New discoveries in old lakes: three new species of *Tylomelania*: Sarasin &Sarasin, 1897 (Gastropoda: cerithioidea: pachychilidae) from the malili lake system on sulawesi, indonésia. Journal of Molluscan Studies, 69: 3-17.
- ROLÁN, E., GUERRA-VARELA, J., COLSON, I., HUGHES, R.N. e ROLÁN-ALVAREZ, E.; 2004. Morphological and genetic analysis of two sympatric morphs of the dogwhelk *Nucella lapillus* (Gastropoda: Muricidae) from Galicia (Northwestern Spain). Journal of Molluscan Studies., 70: 179-185.
- ROHLF, F.J., MARCUS, L.F.; 1993. A revolution in morphometrics. TREE, 8: 129-132.
- STONE, J.R.; 1998. Landmark-based thin-plate spline relative warp analysis of gastropod shells. Systematic Biology, 47: 254-263.

- TISSOT, B. N. 1988. Multivariate analysis. Pp 35-51 in M. L. McKinney, ed. Heterochrony Evolution: a Multidisciplinary Approach. Plenum Press, NY.
- VERMEIJ, G.J., 2001. Distribution, history, and taxonomy of the Thais clade (Gastripoda: muricidae) in the neogene of tropical America. Journal of Paleonthology, **75(3)**: 697-705
- WATANABE, J.T. e YOUNG, C.M., 2006. Feeding habits and phenotypic changes in proboscis length in the southern oyster drill, Stramonita haemastoma (Gastropoda: Muricidae), on Florida sabellariid worm reefs. Marine Biology 148(5): 1021-1029.
- WULLSCHLEGER, E.B., JOKELA, J.; 2002. Morphological plasticity and divergence in life-history traits between two closely related freshwater snails, *Lymnaea ovata* and *Lymnaea peregra*. Journal of Molluscan Studies, 68: 1-5.

Considerações Gerais:

• Os resultados indicam uma clara divisão da espécie em dois grupos geneticamente distintos, com distâncias comparáveis às de espécies cogenéricas. Possivelmente algum fluxo gênico existe entre estes, mas, limitado por algum mecanismo de isolamento reprodutivo. O compartilhamento de alguns alelos, em baixa freqüência nos locos utilizados na distinção dos grupos, também pode indicar separação recente.

• Com exceção da estruturação genética moderada no grupo B, os dois grupos apresentaram as características esperadas para a espécie, com baixa estruturação genética (somente no grupo A), alguma deficiência de heterozigotos e variabilidade genética moderadamente alta. Esta maior estruturação no grupo B indica possíveis diferenças entre os grupos no desenvolvimento larval e/ou recrutamento.

• A distribuição dos grupos genéticos pode indicar uma preferência por micro-habitats diferentes em cada grupo, mas ainda com grande similaridade, além de uma dinâmica intensa com diversos eventos de recolonização. O recrutamento das larvas é provavelmente mais complexo do que uma mera distribuição aleatória.

• A presença de dois grupos genéticos revela uma complexidade taxonômica maior do que a descrita porém já esperada por alguns autores.

• Morfologicamente, os dois grupos genéticos apresentaram grande variação fenotípica, sobretudo entre localidades. Esta variação foi um pouco menos acentuada no grupo B.

• Há uma ligeira tendência à diferenciação morfológica entre os grupos genéticos. No entanto esta diferenciação é mínima, sobretudo entre animais da mesma localidade, não sendo possível distinguir os grupos genéticos a partir das medidas tomadas da concha.

123

• Os dados indicam os grupos genéticos A e B possuem características típicas de espécies cogenéricas crípticas. Apesar do possível fluxo gênico entre os grupos tal distinção se mantém. A partir das características encontradas, mais estudos são necessários para uma melhor compreensão da taxonomia do que pode ser chamado de complexo *Stramonita haemastoma*.

Apêndice I:

Neste apêndice estão inclusas as tabelas de freqüência alélicas e números amostrais obtidas no estudo isoenzimático de *S. haemastoma* em cada uma das localidades amostradas (tabelas I.1x a I.10), os locais onde houve divisão entre mediolitoral inferior e superior foram tratados como pontos de coleta distintos. Os locos que foram completamente monomórficos estão agrupados na tabela I.11 onde estão indicados os números amostrais de cada localidade.

Em seguida estão as tabelas das comparações significativas das freqüências gênicas entre as localidades realizada pelo teste exato (tabelas I.12 a I.19).

Após isso estão os resultados do teste de desequilíbrio de ligação por localidade sem a distinção dos grupos genéticos (tabelas I.20 e I.21).

E por último está a matriz de distâncias genéticas par-a-par entre as populações dos dois períodos de coleta (tabela I.22) utilizada para produzir o UPGMA do capítulo I (figura II).

Tabela I.1: Freqüências alélicas do loco Idh-2 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Pop Pgi		SFA I	SF B I	SF A II SF	B II SVi	nfA I SVinf	A II SVsu	ip A I SVs	sup A II	IBA I I	BAII	IB B I	IB B II
8	(N)	10	22	20	5 2	28 19		8	31	14	23	11	22
	3		1,00	1,	- 00							1,00	1,00
	4	1,00		1,00	0,	,98 1,0	0 1,	00	1,00	1,00	1,00		
	5				0,	,02							
	Hexp				0,	,04							
	Hobs				0,	,04							
Pop Pgi		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A I	SS1sup A II	SS1sup B I	I SS2 A	I SS2	AII SS	2 B I	Par B I	Par B II
- 8-	(N)	27	28	6	27	28	8	24	24	4	15	4	24
	3			1,00			1,00			- 1	.00	1,00	1,00
	4	1,00	1,00		1,00	1,00		1,00) 1,0	- 00			
	5												
	Hexp												
	Hobs												
Pop Pgi		AngA I	Ang A	II RJinfA	I RJin	ıf B I RJir	nf B II 🔤	RJsup A I	RJ sup B I	I Búzios A	A II	Búzios B I	Búzios B II
8	(N)	15	32	7	1	3	19	17	14	7		11	3
	3				0,	92 1.	,00		1,00			1,00	1,00
	4	1,00	1,00	1,00	0,	- 08		1,00		1,00)		
	5					-							
	Hexp				0,	14 -							
	Hobs				0,	15 -							

Tabela I.2: Freqüências alélicas do loco Pgm-1 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Pop Pgm-1		SFA I	SF B I	SF A II	SF B II	SVinfA I	SVinf A II	SVsup A I	SVsup A	II IBA	I IB A II	IB B I	IB B II
0	(N)	21	29	29	8	39	29	26	36	18	25	12	23
	2											0,17	
	3		1,00		1,00							0,83	0,98
	4	0,98		1,00		0,99	1,00	1,00	1,00	0,97	0,96		
	5												
	7	0,02				0,01				0,03	0,04		0,02
	Hexp	0,05				0,03				0,05	0,08	0,28	0,04
	Hobs	0,05				0,03				0,06	0,08		0,04
Pop Pom-1		SS1infA I	SS1inf A II	SS1inf B	II SS1sup	A I SS1su	pAII SS1	sup B II	SS2 A I	SS2 A II	SS2 B I	Par B I	Par B II
- g	(N)	24	31	8	22	3	2	9	18	28	11	19	25
	2											0,03	
	3			1,00				1,00			0,95	0,92	1,00
	4	0,98	1,00		1,00	1,	00		1,00	1,00			
	5											0,03	
	6											0,03	
	7	0,02									0,05		
	Hexp	0,04									0,09	0,15	
	Hobs	0,04									0,09	0,11	
Pop Pgm-1		AngA I	Ang	AII R	JinfA I	RJinf B I	RJinf B II	RJsup	DAI R	J sup B II	Búzios A II	Búzios B I	Búzios B II
-	(N)	24	3-	4	9	19	28	18	3	20	12	21	8
	2								-				
	3					0,74	1,00		-	1,00		0,93	1,00
	4	0,98	1,0	00	1,00			1,0	0		0,96		
	5								-		0,04	0,02	
	6 7	0,02				0,26			-			0,02 0,02	
	Hexp	0,04				0,39			-		0,08	0,14	
	Hobs	0,04							-		0,08	0,14	

Pop Barn 2		SFA I	SF B I	SF A II	SF B II	SVinfA I	SVinf A II	SVsup I	A SVsup II	A IBA	I IBAI	I IBBI	IB B II
Pgm-2	(N)	21	34	27	7	41	29	26	36	19	25	13	23
	4	1.00		1.00		1.00	1.00	1.00	1.00	0.9	5 1.00		
	5		0.76		1.00					0.0	5	0.73	1.00
	6		0,24									0,27	
	Hexp		0,36							0,10)	0,39	
	Hobs											0,08	
Pop Dom 2		SS1infA I	SS1inf A II	SS1inf I II	B SS1s	up A SS1 I	sup A SS II	S1sup B II	SS2 A I	SS2 A II	SS2 B I	Par B I	Par B II
rgm-2	(N)	26	31	9	2	5	32	11	18	28	11	20	28
	4	1.00	1.00		1.	00 1	.00		1.00	1.00			
	5			1,00				1,00			1,00	0,50	1,00
	6											0,50	
	Hexp											0,50	
	Hobs											0,10	
Рор		AngA l	Ang A	A II RJ	infA I	RJinf B I	RJinf B	II RJsu	pAI ^R	J sup B II	Búzios A II	Búzios B I	Búzios B II
Pgm-2													
0	(N)	27	36		9	14	24	2	0	15	12	22	5
	4	1,00	1,0	0	,00		0,02	1,0	00		1,00		
	5			-		0,96	0,98			0,97		0,61	1,00
	6			-		0,04				0,03		0,39	
	Hexp					0,07	0,04			0,06		0,47	
	Hobs			-		0,07	0,04			0,07		0,05	

Tabela I.3: Freqüências alélicas do loco Pgm-2 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Tabela I.4: Freqüências alélicas do loco Idh-2 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Pop Idh-2		SFA I	SF B I S	FAII SF	B II SVi	nfA I SV	inf A II	SVsup A I	SVsup A I	I IBA I	IB A II	IB B I	IB B II
	(N)	19	31	29 8	3	37	29	21	36	23	25	13	23
				 0.02			0.03	0.02				0.12	0.11
	23	0.08	0.37	0,02 0,2	25 - 25 0	07	0.03	0,02	0.04		0,04	0,12	0.35
	4	0.89	0.60	0.88 0.5	50 0	.92	0.93	0.98	0,96	1.00	0.92	0,46	0.54
	5												
	6		0,02	0,05	0	,01						0,08	
	7	0,03	0,02										
	Hexp	0,19	0,51	0,22 0,0	53 0	,15	0,13	0,05	0,08		0,15	0,65	0,57
	Hobs	0,05	0,32	0,24 0,7	75 0	,16	0,07	0,05	0,03		0,12	0,15	0,43
Pop Idh-2		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A I	SS1sup A	II SS1st	ıp B II	SS2 A I	SS2 A II	SS2 B I	Par B I	Par B II
	(N)	31	32	7	29	33	1	11	23	30	14	20	29
	1												
	2			0,21						0,02		0,10	0,16
	3	0,02	0,03	0,36	0,03	0,03	0,	,59		0,02	0,32	0,50	0,47
	4	0,98	0,97	0,36	0,97	0,97	0,	,41	1,00	0,97	0,61	0,38	0,38
	5			0,07									
	6										0,07	0,03	
	7												
	Hexp	0,03	0,06	0,69	0,07	0,06	0,	,48		0,07	0,52	0,60	0,62
	Hobs	0,03		0,43	0,07		0,	,27		0,07	0,21	0,35	0,34
Pop Idh-2		AngA I	Ang A I	I RJinfA	I RJii	nf B I I	RJinf B II	RJsup	AI RJ	sup B II	Búzios A II	Búzios B I	Búzios B II
	(N)	28	34	11	1	8	26	20		21	11	21	8
	1			0,09	0.	08	0,04			0,07		0,02	0,06
	2				0.	19	0,06	0,10)			0,02	0,38
	3	0,04	0,01	0,09	0,	17	0,31			0,19		0,50	0,25
	4	0,93	0,99	0,77	0,	53	0,54	0,83	3	0,62	1,00	0,43	0,31
	5									0,02			
	6	0,04		0,05	0,	03	0,06	0,03	;	0,10			
	7							0,05	5			0,02	
	Hexp	0,14	0,03	0,38	0,	65	0,61	0,31		0,57		0,56	0,70
	Hobs	0,14	0,03	0,27	0,	28	0,35	0,25	5	0,38		0,33	0,38

Pop		SFA I	SF B I	SF A II SF	FBII SV	infA I SVin	fAII S	Vsup A I	SVsup A I	I IBA	IBAII	IB B I	IB B II
Muli	(N)	17	32	30	8	39 2	9	18	33	21	25	16	23
	3	0 44	0.88	0.57 1	00 0	50 0	38	0.50	0 39	0.62	0.68	0.84	1.00
	4	0.56	0.13	0.43	0	50 0	62	0.50	0,59	0.38	0.32	0.16	
	7								0,02				
	Hexp	0,49	0,22	0,49	0	.50 0.	47	0,50	0,50	0,47	0,44	0,26	
	Hobs	0,18	0,19	0,33	0	,28 0,	41	0,22	0,45	0,29	0,56	0,06	
Pop Mdb		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A I	SS1sup A II	SS1sup	BII S	552 A I	SS2 A II	SS2 B I	Par B I	Par B II
mun	(N)	26	31	9	25	32	9		22	30	11	21	30
	3	0.42	0.48	0.83	0.56	0.48	0.94	1	0.48	0.43	0.82	0.88	1.00
	4	0.58	0.52	0.17	0.44	0.52	0.06	5	0.52	0.57	0.18	0.12	
	7												
	Hexp	0,49	0,50	0,28	0,49	0,50	0,10)	0,50	0,49	0,30	0,21	
	Hobs	0,38	0,45	0,11	0,48	0,41	0,11		0,50	0,40	0,18	0,05	
Pop Mdh		AngA I	Ang A	II RJinf.	AI RJi	nfBI RJ	inf B II	RJsup A	I RJ	sup B II	Búzios A II	Búzios B I	Búzios B II
	(N)	27	37	10		21	30	18		20	12	18	6
	3	0,41	0,46	0,7	5 1.	,00	1,00	0,47	(0,93	0,29	0,92	0,75
	4	0,59	0,54	0,2	5 -			0,53	(0,08	0,71	0,08	0,25
	7												
	Hexp	0,48	0,50	0,3	8 -			0,50	(0,14	0,41	0,15	0,38
	Hobs	0,07	0,43	0,30	- 0			0,50	(0,15	0,58	0,06	0,17

Tabela I.5: Freqüências alélicas do loco Mdh em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Tabela I.6: Freqüências alélicas do loco Lap-2 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Pop Lap-2		SFA I	SF B I	SF A II S	SF B II	SVinfA I	SVinf A II	SVsı	up A I S	Vsup A II	IBA	I IB A II	IB B I	IB B II
•	(N)	11	20	27	6	27	24		8	30	19	13	16	18
	1	0,05				0,04		-						
	2	0,14	0,13	0,24		0,26	0,21	-		0,08	0,26	0,42	0,03	
	3	0,09	0,15	0,37		0,28	0,25	0	,56	0,25	0,42	0,19	0,03	0,06
	4	0,73	0,73	0,33	0,58	0,37	0,46	0	,44	0,52	0,32	0,31	0,69	0,94
	5			0,06	0,42	0,06	0,08	-		0,07		0,08	0,25	
	6							-		0,02				
	8							-		0,07				
	Hexp	0,44	0,44	0,69	0,49	0,71	0,68	0.	,49	0,65	0,65	0,68	0,46	0,10
	Hobs	0,18	0,05	0,44	0,50	0,30	0,38	0	,13	0,37	0,21	0,46	0,25	
Pop Lap-2		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A	I SS1su	рАП SS	1sup B II	I SS2	AI	SS2 A II	SS2 B I	Par B I	Par B II
	(N)	13	23	7	15	2:	5	8	10)	23	8	13	26
	1	0.04								-				
	2	0,15	0,30		0,20	0,2	20		0,1	5	0,09			0,02
	3	0.31	0.33	0.07	0.10	0.2	26		0.4	5	0.33		0.08	
	4	0.50	0.37	0.93	0.67	0,4	6	0.75	0.4	0	0.54	0.88	0.92	0.94
	5				0.03	0.0)8	0.25		-	0.04	0.13		0.04
	6									-				
	8									-				
	Hexp	0,63	0,66	0,13	0,50	0,6	57	0,38	0,6	2	0,59	0,22	0,14	0,11
	Hobs	0,15	0,35	0,14	0,07	0,2	24		0,4	0	0,13		0,15	0,04
Pop Lap-2		AngA I	Ang A l	I RJin	fA I I	RJinf B I	RJinf B I	I	RJsup A I	RJ su	ip B II	Búzios A II	Búzios B I	Búzios B II
	(N)	14	19	5		9	18		15	1	4	10	17	6
	1	0.14			-									
	2	0.21	0.21	0.5	i0				0.27	0.	07	0.15		
	3	0.32	0.16	0.2	20				0.30	0	11	0.65	0.09	0.17
	4	0.29	0.39	0.3	0	0.78	0.78		0.20	0.	82	0.20	0.79	0.83
	5	0.04			-	0.22	0.19		0.23				0.12	
	6				-		0.03							
	8		0,24		-									
	Hexp	0,75	0,72	0,6	52	0,35	0,36		0,74	0,	31	0,52	0,35	0,28
	Hobs	0,07	0,21	0,2	20		0,11		0,27	0,	21	0,10	0,06	

Pop Lon 2		SFA I	SF B I	SF A II SI	FBII SV	vinfA I SV	/inf A II	SVsup A I	SVsup A I	I IBA	I IB A II	IB B I	IB B II
Гар-3	(N)	8	11	7	0	10	6	5	28	10	14	3	13
	3		0,05								0,04		0,04
	4	1,00	0,68	1,00		1,00	1,00	1,00	1,00	1,00	0,96	0,67	0,96
	5		0,23									0,33	
	6		0,05										
	Hexp		0,48								0,07	0,44	0,07
	Hobs		0,18								0,07		0,08
Pop Lan-3		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A I	SS1sup A	II SS1suj	BII S	552 A I	SS2 A II	SS2 B I	Par B I	Par B II
Lap-5	(N)	12	27	8	18	26	7		14	24	8	6	2
	3							-		0,02			
	4	0,96	1,00	1,00	1,00	1,00	1,0	0	1,00	0,98	1,00	0,67	0,75
	5	0,04						-				0,33	0,25
	6							-					
	Hexp	0,08						-		0,04		0,44	0,38
	Hobs	0,08						-		0,04			0,50
Pop Lap-3		AngA I	Ang A	II RJinfA	I RJin	nfBI F	RJinf B II	RJsup A	I RJ s	up B II	Búzios A II	Búzios B I	Búzios B II
	(N)	16	4	2	1	12	14	13		10	1	7	0
	3				-								
	4	1,00	1,00	1,00	1,	,00	1,00	1,00	1	,00	0,50	1,00	
	5				-						0,50		
	6				-								
	Hexp				-						0,50		
	Hobs				-						1,00		

Tabela I.7: Freqüências alélicas do loco Lap-3 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

genetico		•												
Рор Рер-		SFA I	SF B I	SF A II	SF B II S	SVinfA I	SVinf A II	SVsup A	A I SVsu	p A II	IBA I	IB A II	IB B I	IB B II
LGG-1	(N)	14	26	19	6	23	19	3		32	17	20	11	18
	2					0,02			-					
	3	0,07				0,09			-		0,03		0,09	
	4	0,93	1,00	1,00	1,00	0,89	1,00	1,00	1	,00	0,97	1,00	0,86	1,00
	5								-				0,05	
	6								-					
	Hexp	0,13				0,20			-		0,06		0,24	
	Hobs					0,13			-		0,06		0,09	
Pop		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A	I SS1sup	AII SS1	sup B II	SS2 A I	SS2 A	лп	SS2 B I	Par B I	Par B II
	(ND)	30	32	7	20	20		10	21	20		15	15	23
100-1	2	50	0.02	,	0.03	0.0	5	10	21	2)	_	15	15	25
	3	0.08	0,02	0.14	0,03	0,0	3		0.02	0.0	3			0.09
	4	0.92	0.98	0.86	0,02	0,0	1	1.00	0,02	0,0.	7	1.00	0.87	0.91
	5										-		0.13	
	6						-				-			
	Hexp	0,15	0,03	0,24	0,10	0,10	6		0,05	0,0	7		0,23	0,16
	Hobs	0,10	0,03		0,10	0,1	7		0,05	0,0	7			0,09
Pop Pen-		AngA I	Ang A	II RJin	fA I R.	Jinf B I	RJinf B II	RJs	up A I	RJ sup B II	Búz	zios A II	Búzios B I	Búzios B II
LGG-1	(N)	21	34	6		11	19		11	7		10	7	5
	2							0	0.05					0.20
	3		0.01				0.05	C	0.05					
	4	1,00	0,99	0,9	02	0,91	0,95	C	.91	0,79		1,00	1,00	0,80
	5									0,21				
	6			0,0)8	0,09								
	Hexp		0,03	0,1	5	0,17	0,10	C),17	0,34				0,32
	Hobs		0,03	0,1	7	0,18	0,11	0),18	0,43				

Tabela I.8: Freqüências alélicas do loco Pep-LGG-1 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Tabela I.9: Freqüências alélicas do loco Pep-LGG-3 em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo)
genético B em cinza.	

Pop Pep-		SFA I	SF B I	SF A II SI	F B II	SVinfA I	SVinf A II	SVsup A l	SVsup A	AII IBA	I IB A II	IB B I	IB B II
LGG-3	(N)	11	18	10	2	22	13	13	24	12	16	10	15
	1	0,05	0,06							0,04	1		
	2	0,23	0,25					0,04		0,04	4	0,15	
	3	0,14	0,14	0,20		0,07		0,08	0,02	0,04	4 0,06	0,50	
	4	0,45	0,56	0,70	1,00	0,84	0,88	0,81	0,98	0,7	0,81	0,30	0,93
	5	0,14		0,10		0,09	0,12	0,08		0,0	3 0,13	0,05	0,07
	Hexp	0,70	0,61	0,46		0,28	0,20	0,33	0,04	0,3	5 0,32	0,64	0,12
	Hobs	0,45	0,11			0,14	0,08	0,08	0,04	0,1	7 0,13	0,10	0,13
Pop Pen-		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A	I SS1sup	AII SS1	sup B II	SS2 A I	SS2 A II	SS2 B I	Par B I	Par B II
LGG-3	(N)	16	13	6	12	18	;	9	17	19	4	6	26
	1						-						
	2	0,03	0,15				-	0,06			0,25	0,08	
	3	0,03			0,04	0,0	3	0,17	0,06				0,13
	4	0,94	0,81	1,00	0,92	0,8	3	0,56	0,91	0,82	0,75	0,75	0,87
	5		0,04		0,04	0,1	4	0,22	0,03	0,18		0,17	
	Hexp	0,12	0.32		0,16	0,2	9	0,61	0,16	0,30	0,38	0,40	0,23
	Hobs	0,13	0,08		0,08	0,0	6	0,11	0,18	0,16		0,17	0,12
Pop Pen-		AngA I	Ang A	II RJinf	AI F	Jinf B I	RJinf B II	RJsup	AI R	J sup B II	Búzios A II	Búzios B I	Búzios B II
LGG-3	(N)	13	22	2		13	13	11		5	6	13	3
	1	0,08							-				
	2								-				
	3	0,08	0,05			0,15	0,23		-	0,20	0,08	0,23	0,33
	4	0,73	0,84	1,00		0,65	0,77	1,0	0	0,60	0,92	0,77	0,67
	5	0,12	0,11			0,19			-	0,20			
	Hexp	0,44	0,28			0,51	0,36		-	0,56	0,15	0,36	0,44
	Hobs	0,08	0,05			0,31	0,15		-		0,17		

Tabela I.10: Freqüências alélicas do loco Mpi em todas as populações nos dois tempos de coleta, grupo genético A em preto, grupo genético B em cinza.

Pop Mni		SFA I	SF B I S	FAII SF	BII SV	infA I S	SVinf A II	SVsup A I	SVsup A II	A IBA	I IBAI	I IBBI	IB B II
wipi	(N) 2	18	31	31 8	3	35	29	21	36	20	25	13	23
	2 4 5 7	1,00 	1,00	1,00 1,(·	,00 	0,98 0,02	1,00 	0,99 0,01	1,0	0 1,00 	0,92 0,08	0,96 0,04
	Hexp Hobs						0,03 0,03		0,03 0,03		 	0,14 0,15	0,08 0,09
Pop		SS1infA I	SS1inf A II	SS1inf B II	SS1sup A I	SS1sup II	A SS1	sup B II S	582 A I	SS2 A II	SS2 B I	Par B I	Par B II
Мрі	(N) 2	30	32	9	27	31	-	11	22 0.02	30	12	16	30
	4	1,00	1,00	1,00	0,98	1,00	1	,00,	0,98	1,00	1,00	0,94	0,98
	5						-					0,06	0,02
	7				0,02		-						
	Hexp				0.04		-		0,04			0,12	0,03
	Hobs				0,04		-		0,05			0,13	0,03
Рор		AngA I	Ang A	II RJinfA	I RJin	If BI F	RJinf B II	RJsup	AI ^{RJ}	sup B II	Búzios A II	Búzios B I	Búzios B II
Мрі	(N) 2	15	38	9	1	4	30	19		21	12	21	7
	4	1.00	1.00	1.00	0.	89	1.00	1.00		1.00	1.00	1.00	1.00
	5				0,	11							
	7												
	Hexp				0,	19							
	Hobs				0,	21							

Tabela I.11: Números amostrais dos locos Idh-1, Got, Est-1 e Est-2, que foram monomórficos, em todas as populações nos dois tempos de coleta. grupo genético A em preto, grupo genético B em cinza.

Рор		SFA I	SF B I	SF A II	SF B II	SVinfA I	SVinf A II	SVsup A I	A SVsup A II	A IBA	I IBAI	I IBBI	IB B II
Idh-1	(n)	19	32	31	8	40	29	26	36	23	25	16	23
Got	(n)	9	21	31	8	36	29	19	36	15	25	12	23
Est-1	(n)	16	33	31	8	37	29	26	36	21	25	12	23
Est-2	(n)	16	33	31	8	37	29	26	36	21	25	12	23
Рор		SS1infA I	SS1inf A II	SS1in	f B SS1	sup A SS1s	sup A SS	S1sup B II	SS2 A I	SS2 A II	SS2 B I	Par B I	Par B II
Idh-1	(n)	31	32	8	2	29 3	33	11	23	30	15	22	30
Got	(n)	26	32	9	2	25 3	33	11	19	30	12	15	30
Est-1	(n)	31	32	9	2	29 3	33	11	24	30	15	13	25
Est-2	(n)	31	32	9	2	29 3	33	11	24	30	15	13	25
Рор		AngA]	I Ang	A II F	RJinfA I	RJinf B I	RJinf B	II RJsuj	pAI ^{RJ}	sup B	Búzios A II	Búzios B I	Búzios B II
Idh-1	(n)	31	3	8	11	21	30	22	2	21	12	21	8
Got	(n)	23	3	8	10	16	30	10	5	21	10	17	6
Est-1	(n)	20	3	4	8	11	30	17	7	21	12	20	8
Est-2	(n)	20	3	4	8	11	30	17	7	21	12	20	8

Рор	Рор	р=	Ep=	Рор	Рор	p=	Ep=	Рор	Рор	р=	Ep=
SFA	SFB	0,00000	0,00000	SV1infA	SS1supIIB	0,00000	0,00000	IBB	IBIIA	0,00000	0,00000
SFA	IBB	0,00000	0,00000	SV1infA	ParatyIIB	0,00000	0,00000	IBB	SS1infIIA	0,00000	0,00000
SFA	SS2B	0,00000	0,00000	SV1infA	RJinfIIB	0,00000	0,00000	IBB	SS1supIIA	0,00000	0,00000
SFA	ParatyB	0,00000	0,00000	SV1infA	RJsupIIB	0,00000	0,00000	IBB	SS2IIA	0,00000	0,00000
SFA	RJinfB	0,00000	0,00000	SV1infA	BúziosIIB	0,00000	0,00000	IBB	AngraIIA	0,00000	0,00000
SFA	BúziosB	0,00000	0,00000	SV1supA	IBB	0,00000	0,00000	IBB	BúziosIIA	0,00000	0,00000
SFA	SFIIB	0,00000	0,00000	SV1supA	SS2B	0,00000	0,00000	SS1infA	SS2B	0,00000	0,00000
SFA	IBIIB	0,00000	0,00000	SV1supA	ParatyB	0,00000	0,00000	SS1infA	ParatyB	0,00000	0,00000
SFA	SS1infIIB	0,00000	0,00000	SV1supA	RJinfB	0,00000	0,00000	SS1infA	RJinfB	0,00000	0,00000
SFA	SS1 supIIB	0,00000	0,00000	SV1supA	BúziosB	0,00000	0,00000	SS1infA	BúziosB	0,00000	0,00000
SFA	ParatyIIB	0,00000	0,00000	SV1supA	SFIIB	0,00000	0,00000	SS1infA	SFIIB	0,00000	0,00000
SFA	RJinfIIB	0,00000	0,00000	SV1supA	IBIIB	0,00000	0,00000	SS1infA	IBIIB	0,00000	0,00000
SFA	RJsupIIB	0,00000	0,00000	SV1supA	SS1infIIB	0,00000	0,00000	SS1infA	SS1infIIB	0,00000	0,00000
SFA	BúziosIIB	0,00000	0,00000	SV1supA	SS1 supIIB	0,00000	0,00000	SS1infA	SS1supIIB	0,00000	0,00000
SFB	SV1infA	0,00000	0,00000	SV1supA	ParatyIIB	0,00000	0,00000	SS1infA	ParatyIIB	0,00000	0,00000
SFB	SV1supA	0,00000	0,00000	SV1supA	RJinfIIB	0,00000	0,00000	SS1infA	RJinfIIB	0,00000	0,00000
SFB	IBA	0,00000	0,00000	SV1supA	RJsupIIB	0,00000	0,00000	SS1infA	RJsupIIB	0,00000	0,00000
SFB	SS1infA	0,00000	0,00000	IBA	IBB	0,00000	0,00000	SS1infA	BúziosIIB	0,00000	0,00000
SFB	SS1supA	0,00000	0,00000	IBA	SS2B	0,00000	0,00000	SS1supA	SS2B	0,00000	0,00000
SFB	SS2A	0,00000	0,00000	IBA	ParatyB	0,00000	0,00000	SS1supA	ParatyB	0,00000	0,00000
SFB	AngraA	0,00000	0,00000	IBA	RJinfB	0,00000	0,00000	SS1supA	RJinfB	0,00000	0,00000
SFB	RJinfA	0,00000	0,00000	IBA	BúziosB	0,00000	0,00000	SS1supA	BúziosB	0,00000	0,00000
SFB	RJsupA	0,00000	0,00000	IBA	SFIIB	0,00000	0,00000	SS1supA	SFIIB	0,00000	0,00000
SFB	SV1infIIA	0,00000	0,00000	IBA	IBIIB	0,00000	0,00000	SS1supA	IBIIB	0,00000	0,00000
SFB	SV1supIIA	0,00000	0,00000	IBA	SS1infIIB	0,00000	0,00000	SS1supA	SS1infIIB	0,00000	0,00000
SFB	IBIIA	0,00000	0,00000	IBA	SS1 supIIB	0,00000	0,00000	SS1supA	SS1supIIB	0,00000	0,00000
SFB	SS1infIIA	0,00000	0,00000	IBA	ParatyIIB	0,00000	0,00000	SS1supA	ParatyIIB	0,00000	0,00000
SFB	SS1supIIA	0,00000	0,00000	IBA	RJinfIIB	0,00000	0,00000	SS1supA	RJinfIIB	0,00000	0,00000
SFB	SS2IIA	0,00000	0,00000	IBA	RJsupIIB	0,00000	0,00000	SS1supA	RJsupIIB	0,00000	0,00000
SFB	AngraIIA	0,00000	0,00000	IBA	BúziosIIB	0,00000	0,00000	SS1supA	BúziosIIB	0,00000	0,00000
SFB	BúziosIIA	0,00000	0,00000	IBB	SS1infA	0,00000	0,00000	SS2A	SS2B	0,00000	0,00000
SV1infA	IBB	0,00000	0,00000	IBB	SS1supA	0,00000	0,00000	SS2A	ParatyB	0,00000	0,00000
SV1infA	SS2B	0,00000	0,00000	IBB	SS2A	0,00000	0,00000	SS2A	RJinfB	0,00000	0,00000
SV1infA	ParatyB	0,00000	0,00000	IBB	AngraA	0,00000	0,00000	SS2A	BúziosB	0,00000	0,00000
SV1infA	RJinfB	0,00000	0,00000	IBB	RJinfA	0,00000	0,00000	SS2A	SFIIB	0,00000	0,00000
SV1infA	BúziosB	0,00000	0,00000	IBB	RJsupA	0,00000	0,00000	SS2A	IBIIB	0,00000	0,00000
SV1infA	SFIIB	0,00000	0,00000	IBB	SFIIA	0,00000	0,00000	SS2A	SS1infIIB	0,00000	0,00000
SV1infA	IBIIB	0,00000	0,00000	IBB	SV1infIIA	0,00000	0,00000	SS2A	SS1supIIB	0,00000	0,00000
SV1infA	SS1infIIB	0,00000	0,00000	IBB	SV1supIIA	0,00000	0,00000	SS2A	ParatyIIB	0,00000	0,00000

Tabela I.12: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α=0,00156) entre as freqüências alélicas de cada localidade amostrada para o loco Pgi. Pop=população, Ep= erro padrão.

Tabela I.12: (continuação)

Рор	Рор	p=	Ep=	Рор	Рор	р=	Ep=	Рор	Рор	p=	Ep=
SS2A	RJinfIIB	0,00000	0,00000	RJinfA	SS1supIIB	0,00000	0,00000	SFIIB	IBIIA	0,00000	0,00000
SS2A	RJsupIIB	0,00000	0,00000	RJinfA	ParatyIIB	0,00000	0,00000	SFIIB	SS1infIIA	0,00000	0,00000
SS2A	BúziosIIB	0,00000	0,00000	RJinfA	RJinfIIB	0,00000	0,00000	SFIIB	SS1supIIA	0,00000	0,00000
SS2B	AngraA	0,00000	0,00000	RJinfA	RJsupIIB	0,00000	0,00000	SFIIB	SS2IIA	0,00000	0,00000
SS2B	RJinfA	0,00000	0,00000	RJinfB	RJsupA	0,00000	0,00000	SFIIB	AngraIIA	0,00000	0,00000
SS2B	RJsupA	0,00000	0,00000	RJinfB	SFIIA	0,00000	0,00000	SFIIB	BúziosIIA	0,00000	0,00000
SS2B	SFIIA	0,00000	0,00000	RJinfB	SV1infIIA	0,00000	0,00000	SV1infIIA	IBIIB	0,00000	0,00000
SS2B	SV1infIIA	0,00000	0,00000	RJinfB	SV1supIIA	0,00000	0,00000	SV1infIIA	SS1infIIB	0,00000	0,00000
SS2B	SV1supIIA	0,00000	0,00000	RJinfB	IBIIA	0,00000	0,00000	SV1infIIA	SS1supIIB	0,00000	0,00000
SS2B	IBIIA	0,00000	0,00000	RJinfB	SS1infIIA	0,00000	0,00000	SV1infIIA	ParatyIIB	0,00000	0,00000
SS2B	SS1infIIA	0,00000	0,00000	RJinfB	SS1supIIA	0,00000	0,00000	SV1infIIA	RJinfIIB	0,00000	0,00000
SS2B	SS1supIIA	0,00000	0,00000	RJinfB	SS2IIA	0,00000	0,00000	SV1infIIA	RJsupIIB	0,00000	0,00000
SS2B	SS2IIA	0,00000	0,00000	RJinfB	AngraIIA	0,00000	0,00000	SV1infIIA	BúziosIIB	0,00000	0,00000
SS2B	AngraIIA	0,00000	0,00000	RJinfB	BúziosIIA	0,00000	0,00000	SV1supIIA	IBIIB	0,00000	0,00000
SS2B	BúziosIIA	0,00000	0,00000	RJsupA	BúziosB	0,00000	0,00000	SV1supIIA	SS1infIIB	0,00000	0,00000
ParatyB	AngraA	0,00000	0,00000	RJsupA	SFIIB	0,00000	0,00000	SV1supIIA	SS1supIIB	0,00000	0,00000
ParatyB	RJinfA	0,00000	0,00000	RJsupA	IBIIB	0,00000	0,00000	SV1supIIA	ParatyIIB	0,00000	0,00000
ParatyB	RJsupA	0,00000	0,00000	RJsupA	SS1 infIIB	0,00000	0,00000	SV1supIIA	RJinfIIB	0,00000	0,00000
ParatyB	SFIIA	0,00000	0,00000	RJsupA	SS1supIIB	0,00000	0,00000	SV1supIIA	RJsupIIB	0,00000	0,00000
ParatyB	SV1infIIA	0,00000	0,00000	RJsupA	ParatyIIB	0,00000	0,00000	SV1supIIA	BúziosIIB	0,00000	0,00000
ParatyB	SV1supIIA	0,00000	0,00000	RJsupA	RJinfIIB	0,00000	0,00000	IBIIA	IBIIB	0,00000	0,00000
ParatyB	IBIIA	0,00000	0,00000	RJsupA	RJsupIIB	0,00000	0,00000	IBIIA	SS1infIIB	0,00000	0,00000
ParatyB	SS1infIIA	0,00000	0,00000	RJsupA	BúziosIIB	0,00000	0,00000	IBIIA	SS1supIIB	0,00000	0,00000
ParatyB	SS1supIIA	0,00000	0,00000	BúziosB	SFIIA	0,00000	0,00000	IBIIA	ParatyIIB	0,00000	0,00000
ParatyB	SS2IIA	0,00000	0,00000	BúziosB	SV1infIIA	0,00000	0,00000	IBIIA	RJinfIIB	0,00000	0,00000
ParatyB	AngraIIA	0,00000	0,00000	BúziosB	SV1supIIA	0,00000	0,00000	IBIIA	RJsupIIB	0,00000	0,00000
ParatyB	BúziosIIA	0,00000	0,00000	BúziosB	IBIIA	0,00000	0,00000	IBIIA	BúziosIIB	0,00000	0,00000
AngraA	RJinfB	0,00000	0,00000	BúziosB	SS1infIIA	0,00000	0,00000	IBIIB	SS1infIIA	0,00000	0,00000
AngraA	BúziosB	0,00000	0,00000	BúziosB	SS1supIIA	0,00000	0,00000	IBIIB	SS1supIIA	0,00000	0,00000
AngraA	SFIIB	0,00000	0,00000	BúziosB	SS2IIA	0,00000	0,00000	IBIIB	SS2IIA	0,00000	0,00000
AngraA	IBIIB	0,00000	0,00000	BúziosB	AngraIIA	0,00000	0,00000	IBIIB	AngraIIA	0,00000	0,00000
AngraA	SS1infIIB	0,00000	0,00000	BúziosB	BúziosIIA	0,00000	0,00000	IBIIB	BúziosIIA	0,00000	0,00000
AngraA	SS1 supIIB	0,00000	0,00000	SFIIA	SFIIB	0,00000	0,00000	SS1infIIA	SS1infIIB	0,00000	0,00000
AngraA	ParatyIIB	0,00000	0,00000	SFIIA	IBIIB	0,00000	0,00000	SS1infIIA	SS1supIIB	0,00000	0,00000
AngraA	RJinfIIB	0,00000	0,00000	SFIIA	SS1 infIIB	0,00000	0,00000	SS1infIIA	ParatyIIB	0,00000	0,00000
AngraA	RJsupIIB	0,00000	0,00000	SFIIA	SS1supIIB	0,00000	0,00000	SS1infIIA	RJinfIIB	0,00000	0,00000
AngraA	BúziosIIB	0,00000	0,00000	SFIIA	ParatyIIB	0,0000	0,00000	SS1infIIA	RJsupIIB	0,00000	0,00000
RJinfA	RJinfB	0,00000	0,00000	SFIIA	RJinfIIB	0,00000	0,00000	SS1infIIA	BúziosIIB	0,00000	0,00000
RJinfA	BúziosB	0,00000	0,00000	SFIIA	RJsupIIB	0,00000	0,00000	SS1infIIB	SS1supIIA	0,00000	0,00000
RJinfA	SFIIB	0,00000	0,00000	SFIIA	BúziosIIB	0,00000	0,00000	SS1infIIB	SS2IIA	0,00000	0,00000
RJinfA	IBIIB	0,00000	0,00000	SFIIB	SV1infIIA	0,0000	0,00000	SS1infIIB	AngraIIA	0,00000	0,00000
RJinfA	SS1infIIB	0,00000	0,00000	SFIIB	SV1supIIA	0,00000	0,00000	SS1infIIB	BúziosIIA	0,00000	0,00000

Tabela I.12: (continuação)

Рор	Рор	p=	Ep=
SS1supIIA	SS1supIIB	0,00000	0,00000
SS1supIIA	ParatyIIB	0,00000	0,00000
SS1supIIA	RJinfIIB	0,00000	0,00000
SS1supIIA	RJsupIIB	0,00000	0,00000
SS1supIIA	BúziosIIB	0,00000	0,00000
SS1supIIB	SS2IIA	0,00000	0,00000
SS1supIIB	AngraIIA	0,00000	0,00000
SS1supIIB	BúziosIIA	0,00000	0,00000
SS2IIA	ParatyIIB	0,00000	0,00000
SS2IIA	RJinfIIB	0,00000	0,00000
SS2IIA	RJsupIIB	0,00000	0,00000
SS2IIA	BúziosIIB	0,00000	0,00000
ParatyIIB	AngraIIA	0,00000	0,00000
ParatyIIB	BúziosIIA	0,00000	0,00000
AngraIIA	RJinfIIB	0,00000	0,00000
AngraIIA	RJsupIIB	0,00000	0,00000
AngraIIA	BúziosIIB	0,00000	0,00000
RJinfIIB	BúziosIIA	0,00000	0,00000
RJsupIIB	BúziosIIA	0,00000	0,00000
SV1supA	BúziosIIB	0,00001	0,00000
BúziosIIA	BúziosIIB	0,00002	0,00000
RJinfA	BúziosIIB	0,00003	0,00000

Tabela I.13: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α =0,00028) entre as freqüências alélicas de cada localidade amostrada para o loco Pgm-1. Em negrito estão destacadas as comparações significativas entre populações do mesmo grupo genético. Pop=população, Ep= erro padrão.

Рор	Рор	p=	Ep=
SFA	SFB	0,00000	0,00000
SFA	IBB	0,00000	0,00000
SFA	SS2B	0,00000	0,00000
SFA	ParatyB	0,00000	0,00000
SFA	RJinfB	0,00000	0,00000
SFA	BúziosB	0,00000	0,00000
SFA	SFIIB	0,00000	0,00000
SFA	IBIIB	0,00000	0,00000
SFA	SS1infIIB	0,00000	0,00000
SFA	SS1supIIB	0,00000	0,00000
SFA	ParatyIIB	0,00000	0,00000
SFA	RJinfIIB	0,00000	0,00000
SFA	RJsupIIB	0,00000	0,00000
SFA	BúziosIIB	0,00000	0,00000
SFB	SV1infA	0,00000	0,00000
SFB	SV1supA	0,00000	0,00000
SFB	IBA	0,00000	0,00000
SFB	SS1infA	0,00000	0,00000
SFB	SS1supA	0,00000	0,00000
SFB	SS2A	0,00000	0,00000
SFB	AngraA	0,00000	0,00000
SFB	RJinfA	0,00000	0,00000
SFB	RJsupA	0,00000	0,00000
SFB	SFIIA	0,00000	0,00000
SFB	SV1infIIA	0,00000	0,00000
SFB	SV1supIIA	0,00000	0,00000
SFB	IBIIA	0,00000	0,00000
SFB	SS1infIIA	0,00000	0,00000
SFB	SS1supIIA	0,00000	0,00000
SFB	SS2IIA	0,00000	0,00000
SFB	AngraIIA	0,00000	0,00000
SFB	BúziosIIA	0,00000	0,00000
SV1infA	IBB	0,00000	0,00000
SV1infA	SS2B	0,00000	0,00000
SV1infA	ParatyB	0,00000	0,00000
SV1infA	RJinfB	0,00000	0,00000
SV1infA	BúziosB	0,00000	0,00000
SV1infA	SFIIB	0,00000	0,00000

Рор	Рор	p=	Ep=
SV1infA	IBIIB	0,00000	0,00000
SV1infA	SS1infIIB	0,00000	0,00000
SV1infA	SS1supIIB	0,00000	0,00000
SV1infA	ParatyIIB	0,00000	0,00000
SV1infA	RJinfIIB	0,00000	0,00000
SV1infA	RJsupIIB	0,00000	0,00000
SV1infA	BúziosIIB	0,00000	0,00000
SV1supA	IBB	0,00000	0,00000
SV1supA	SS2B	0,00000	0,00000
SV1supA	ParatyB	0,00000	0,00000
SV1supA	RJinfB	0,00000	0,00000
SV1supA	BúziosB	0,00000	0,00000
SV1supA	SFIIB	0,00000	0,00000
SV1supA	IBIIB	0,00000	0,00000
SV1supA	SS1infIIB	0,00000	0,00000
SV1supA	SS1supIIB	0,00000	0,00000
SV1supA	ParatyIIB	0,00000	0,00000
SV1supA	RJinfIIB	0,00000	0,00000
SV1supA	RJsupIIB	0,00000	0,00000
SV1supA	BúziosIIB	0,00000	0,00000
IBA	IBB	0,00000	0,00000
IBA	SS2B	0,00000	0,00000
IBA	ParatyB	0,00000	0,00000
IBA	RJinfB	0,00000	0,00000
IBA	BúziosB	0,00000	0,00000
IBA	SFIIB	0,00000	0,00000
IBA	IBIIB	0,00000	0,00000
IBA	SS1infIIB	0,00000	0,00000
IBA	SS1supIIB	0,00000	0,00000
IBA	ParatyIIB	0,00000	0,00000
IBA	RJinfIIB	0,00000	0,00000
IBA	RJsupIIB	0,00000	0,00000
IBA	BúziosIIB	0,00000	0,00000
IBB	SS1infA	0,00000	0,00000
IBB	SS1supA	0,00000	0,00000
IBB	SS2A	0,00000	0,00000
IBB	AngraA	0,00000	0,00000
IBB	RJinfA	0,00000	0,00000

Рор	Рор	р=	Ep=	
IBB	RJsupA	0,00000	0,00000	
IBB	SFIIA	0,00000	0,00000	
IBB	SV1infIIA	0,00000	0,00000	
IBB	SV1supIIA	0,00000	0,00000	
IBB	IBIIA	0,00000	0,00000	
IBB	SS1infIIA	0,00000	0,00000	
IBB	SS1supIIA	0,00000	0,00000	
IBB	SS2IIA	0,00000	0,00000	
IBB	AngraIIA	0,00000	0,00000	
IBB	BúziosIIA	0,00000	0,00000	
SS1infA	SS2B	0,00000	0,00000	
SS1infA	ParatyB	0,00000	0,00000	
SS1infA	RJinfB	0,00000	0,00000	
SS1infA	BúziosB	0,00000	0,00000	
SS1infA	SFIIB	0,00000	0,00000	
SS1infA	IBIIB	0,00000	0,00000	
SS1infA	SS1infIIB	0,00000	0,00000	
SS1infA	SS1supIIB	0,00000	0,00000	
SS1infA	ParatyIIB	0,00000	0,00000	
SS1infA	RJinfIIB	0,00000	0,00000	
SS1infA	RJsupIIB	0,00000	0,00000	
SS1infA	BúziosIIB	0,00000	0,00000	
SS1supA	SS2B	0,00000	0,00000	
SS1supA	ParatyB	0,00000	0,00000	
SS1supA	RJinfB	0,00000	0,00000	
SS1supA	BúziosB	0,00000	0,00000	
SS1supA	SFIIB	0,00000	0,00000	
SS1supA	IBIIB	0,00000	0,00000	
SS1supA	SS1infIIB	0,00000	0,00000	
SS1supA	SS1supIIB	0,00000	0,00000	
SS1supA	ParatyIIB	0,00000	0,00000	
SS1supA	RJinfIIB	0,00000	0,00000	
SS1supA	RJsupIIB	0,00000	0,00000	
SS1supA	BúziosIIB	0,00000	0,00000	
SS2A	SS2B	0,00000	0,00000	
SS2A	ParatyB	0,00000	0,00000	
SS2A	RJinfB	0,00000	0,00000	
SS2A	BúziosB	0,00000	0,00000	

Tabela I.13: (continuação)

Рор	Рор	p=	Ep=
SS2A	SFIIB	0,00000	0,00000
SS2A	IBIIB	0,00000	0,00000
SS2A	SS1infIIB	0,00000	0,00000
SS2A	SS1supIIB	0,00000	0,00000
SS2A	ParatyIIB	0,00000	0,00000
SS2A	RJinfIIB	0,00000	0,00000
SS2A	RJsupIIB	0,00000	0,00000
SS2A	BúziosIIB	0,00000	0,00000
SS2B	AngraA	0,00000	0,00000
SS2B	RJinfA	0,00000	0,00000
SS2B	RJsupA	0,00000	0,00000
SS2B	SFIIA	0,00000	0,00000
SS2B	SV1infIIA	0,00000	0,00000
SS2B	SV1supIIA	0,00000	0,00000
SS2B	IBIIA	0,00000	0,00000
SS2B	SS1infIIA	0,00000	0,00000
SS2B	SS1supIIA	0,00000	0,00000
SS2B	SS2IIA	0,00000	0,00000
SS2B	AngraIIA	0,00000	0,00000
SS2B	BúziosIIA	0,00000	0,00000
ParatyB	AngraA	0,00000	0,00000
ParatyB	RJinfA	0,00000	0,00000
ParatyB	RJsupA	0,00000	0,00000
ParatyB	SFIIA	0,00000	0,00000
ParatyB	SV1infIIA	0,00000	0,00000
ParatyB	SV1supIIA	0,00000	0,00000
ParatyB	IBIIA	0,00000	0,00000
ParatyB	SS1infIIA	0,00000	0,00000
ParatyB	SS1supIIA	0,00000	0,00000
ParatyB	SS2IIA	0,00000	0,00000
ParatyB	AngraIIA	0,00000	0,00000
ParatyB	BúziosIIA	0,00000	0,00000
AngraA	RJinfB	0,00000	0,00000
AngraA	BúziosB	0,0000	0,00000
AngraA	SFIIB	0,00000	0,00000
AngraA	IBIIB	0,00000	0,00000
AngraA	SS1infIIB	0,00000	0,00000
AngraA	SS1supIIB	0,00000	0,00000
AngraA	ParatyIIB	0,00000	0,00000
AngraA	RJinfIIB	0,00000	0,00000
AngraA	RJsupIIB	0,00000	0,00000
AngraA	BúziosIIB	0,00000	0,00000

Рор	Рор	p=	Ep=
RJinfA	RJinfB	0,00000	0,00000
RJinfA	BúziosB	0,00000	0,00000
RJinfA	SFIIB	0,00000	0,00000
RJinfA	IBIIB	0,00000	0,00000
RJinfA	SS1infIIB	0,00000	0,00000
RJinfA	SS1supIIB	0,00000	0,00000
RJinfA	ParatyIIB	0,00000	0,00000
RJinfA	RJinfIIB	0,00000	0,00000
RJinfA	RJsupIIB	0,00000	0,00000
RJinfA	BúziosIIB	0,00000	0,00000
RJinfB	RJsupA	0,00000	0,00000
RJinfB	SFIIA	0,00000	0,00000
RJinfB	SV1infIIA	0,00000	0,00000
RJinfB	SV1supIIA	0,00000	0,00000
RJinfB	IBIIA	0,00000	0,00000
RJinfB	SS1infIIA	0,00000	0,00000
RJinfB	SS1supIIA	0,00000	0,00000
RJinfB	SS2IIA	0,00000	0,00000
RJinfB	AngraIIA	0,00000	0,00000
RJinfB	BúziosIIA	0,00000	0,00000
RJsupA	BúziosB	0,00000	0,00000
RJsupA	SFIIB	0,00000	0,00000
RJsupA	IBIIB	0,00000	0,00000
RJsupA	SS1infIIB	0,00000	0,00000
RJsupA	SS1supIIB	0,00000	0,00000
RJsupA	ParatyIIB	0,00000	0,00000
RJsupA	RJinfIIB	0,00000	0,00000
RJsupA	RJsupIIB	0,00000	0,00000
RJsupA	BúziosIIB	0,00000	0,00000
BúziosB	SFIIA	0,00000	0,00000
BúziosB	SV1infIIA	0,00000	0,00000
BúziosB	SV1supIIA	0,00000	0,00000
BúziosB	IBIIA	0,00000	0,00000
BúziosB	SS1infIIA	0,00000	0,00000
BúziosB	SS1supIIA	0,00000	0,00000
BúziosB	SS2IIA	0,00000	0,00000
BúziosB	AngraIIA	0,00000	0,00000
BúziosB	BúziosIIA	0,00000	0,00000
SFIIA	SFIIB	0,00000	0,00000
SFIIA	IBIIB	0,00000	0,00000
SFIIA	SS1infIIB	0,00000	0,00000
SFIIA	SS1supIIB	0,00000	0,00000

Рор	Рор	p=	Ep=
SFIIA	ParatyIIB	0,00000	0,00000
SFIIA	RJinfIIB	0,00000	0,00000
SFIIA	RJsupIIB	0,00000	0,00000
SFIIA	BúziosIIB	0,00000	0,00000
SFIIB	SV1infIIA	0,00000	0,00000
SFIIB	SV1supIIA	0,00000	0,00000
SFIIB	IBIIA	0,00000	0,00000
SFIIB	SS1infIIA	0,00000	0,00000
SFIIB	SS1supIIA	0,00000	0,00000
SFIIB	SS2IIA	0,00000	0,00000
SFIIB	AngraIIA	0,00000	0,00000
SFIIB	BúziosIIA	0,00000	0,00000
SV1infIIA	IBIIB	0,00000	0,00000
SV1infIIA	SS1infIIB	0,00000	0,00000
SV1infIIA	SS1supIIB	0,00000	0,00000
SV1infIIA	ParatyIIB	0,00000	0,00000
SV1infIIA	RJinfIIB	0,00000	0,00000
SV1infIIA	RJsupIIB	0,00000	0,00000
SV1infIIA	BúziosIIB	0,00000	0,00000
SV1supIIA	IBIIB	0,00000	0,00000
SV1supIIA	SS1infIIB	0,00000	0,00000
SV1 supIIA	SS1supIIB	0,00000	0,00000
SV1supIIA	ParatyIIB	0,00000	0,00000
SV1supIIA	RJinfIIB	0,00000	0,00000
SV1supIIA	RJsupIIB	0,00000	0,00000
SV1supIIA	BúziosIIB	0,00000	0,00000
IBIIA	IBIIB	0,00000	0,00000
IBIIA	SS1infIIB	0,00000	0,00000
IBIIA	SS1supIIB	0,00000	0,00000
IBIIA	ParatyIIB	0,00000	0,00000
IBIIA	RJinfIIB	0,00000	0,00000
IBIIA	RJsupIIB	0,00000	0,00000
IBIIA	BúziosIIB	0,00000	0,00000
IBIIB	SS1infIIA	0,00000	0,00000
IBIIB	SS1supIIA	0,00000	0,00000
IBIIB	SS2IIA	0,00000	0,00000
IBIIB	AngraIIA	0,00000	0,00000
IBIIB	BúziosIIA	0,0000	0,00000
SS1infIIA	SS1infIIB	0,00000	0,00000
SS1infIIA	SS1supIIB	0,00000	0,00000
SS1infIIA	ParatyIIB	0,00000	0,00000
SS1infIIA	RJinfIIB	0.00000	0.00000

Tabela I.13: (continuação)

Рор	Рор	p=	Ep=
SS1infIIA	RJsupIIB	0,00000	0,00000
SS1infIIA	BúziosIIB	0,00000	0,00000
SS1infIIB	SS1supIIA	0,00000	0,00000
SS1infIIB	SS2IIA	0,00000	0,00000
SS1infIIB	AngraIIA	0,00000	0,00000
SS1infIIB	BúziosIIA	0,00000	0,00000
SS1supIIA	SS1supIIB	0,00000	0,00000
SS1supIIA	ParatyIIB	0,00000	0,00000
SS1supIIA	RJinfIIB	0,00000	0,00000
SS1supIIA	RJsupIIB	0,00000	0,00000
SS1supIIA	BúziosIIB	0,00000	0,00000
SS1 supIIB	SS2IIA	0,00000	0,00000
SS1supIIB	AngraIIA	0,00000	0,00000
SS1 supIIB	BúziosIIA	0,00000	0,00000
SS2IIA	ParatyIIB	0,00000	0,00000
SS2IIA	RJinfIIB	0,00000	0,00000
SS2IIA	RJsupIIB	0,00000	0,00000
SS2IIA	BúziosIIB	0,00000	0,00000
ParatyIIB	AngraIIA	0,00000	0,00000
ParatyIIB	BúziosIIA	0,00000	0,00000
AngraIIA	RJinfIIB	0,00000	0,00000
AngraIIA	RJsupIIB	0,00000	0,00000
AngraIIA	BúziosIIB	0,00000	0,00000
RJinfIIB	BúziosIIA	0,00000	0,00000
RJsupIIB	BúziosIIA	0,00000	0,00000
BúziosIIA	BúziosIIB	0,00000	0,00000
SFB	RJinfB	0,00004	0,00001
RJinfB	RJinfIIB	0,00005	0,00001
RJinfB	ParatyIIB	0,00011	0,00001

Tabela I.14: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α=0,00071) entre as freqüências alélicas de cada localidade amostrada para o loco Pgm-2. Em vermelho estão destacadas as comparações significativas entre populações do mesmo grupo genético. Pop=população, Ep= erro padrão.

<i>,</i>			1	<i>, , ,</i>	1 1						
Рор	Рор	р=	Ep=	Рор	Рор	р=	Ep=	Рор	Рор	p=	Ep=
SFA	SFB	0,00000	0,00000	SV1infA	IBIIB	0,00000	0,00000	IBB	RJsupA	0,00000	0,00000
SFA	IBB	0,00000	0,00000	SV1infA	SS1infIIB	0,00000	0,00000	IBB	SFIIA	0,00000	0,00000
SFA	SS2B	0,00000	0,00000	SV1infA	SS1supIIB	0,00000	0,00000	IBB	SV1infIIA	0,00000	0,00000
SFA	ParatyB	0,00000	0,00000	SV1infA	ParatyIIB	0,00000	0,00000	IBB	SV1supIIA	0,00000	0,00000
SFA	RJinfB	0,00000	0,00000	SV1infA	RJinfIIB	0,00000	0,00000	IBB	IBIIA	0,00000	0,00000
SFA	BúziosB	0,00000	0,00000	SV1infA	RJsupIIB	0,00000	0,00000	IBB	SS1infIIA	0,00000	0,00000
SFA	SFIIB	0,00000	0,00000	SV1infA	BúziosIIB	0,00000	0,00000	IBB	SS1supIIA	0,00000	0,00000
SFA	IBIIB	0,00000	0,00000	SV1supA	IBB	0,00000	0,00000	IBB	SS2IIA	0,00000	0,00000
SFA	SS1infIIB	0,00000	0,00000	SV1supA	SS2B	0,00000	0,00000	IBB	AngraIIA	0,00000	0,00000
SFA	SS1supIIB	0,00000	0,00000	SV1supA	ParatyB	0,00000	0,00000	IBB	BúziosIIA	0,00000	0,00000
SFA	ParatyIIB	0,00000	0,00000	SV1supA	RJinfB	0,00000	0,00000	SS1infA	SS2B	0,00000	0,00000
SFA	RJinfIIB	0,00000	0,00000	SV1supA	BúziosB	0,00000	0,00000	SS1infA	ParatyB	0,00000	0,00000
SFA	RJsupIIB	0,00000	0,00000	SV1supA	SFIIB	0,00000	0,00000	SS1infA	RJinfB	0,00000	0,00000
SFA	BúziosIIB	0,00000	0,00000	SV1supA	IBIIB	0,00000	0,00000	SS1infA	BúziosB	0,00000	0,00000
SFB	SV1infA	0,00000	0,00000	SV1supA	SS1infIIB	0,00000	0,00000	SS1infA	SFIIB	0,00000	0,00000
SFB	SV1supA	0,00000	0,00000	SV1supA	SS1supIIB	0,00000	0,00000	SS1infA	SS1infIIB	0,00000	0,00000
SFB	IBA	0,00000	0,00000	SV1supA	ParatyIIB	0,00000	0,00000	SS1infA	SS1supIIB	0,00000	0,00000
SFB	SS1infA	0,00000	0,00000	SV1supA	RJinfIIB	0,00000	0,00000	SS1infA	ParatyIIB	0,00000	0,00000
SFB	SS1supA	0,00000	0,00000	SV1supA	RJsupIIB	0,00000	0,00000	SS1infA	RJinfIIB	0,00000	0,00000
SFB	SS2A	0,00000	0,00000	SV1supA	BúziosIIB	0,00000	0,00000	SS1infA	RJsupIIB	0,00000	0,00000
SFB	AngraA	0,00000	0,00000	IBA	IBB	0,00000	0,00000	SS1infA	BúziosIIB	0,00000	0,00000
SFB	RJinfA	0,00000	0,00000	IBA	SS2B	0,00000	0,00000	SS1supA	SS2B	0,00000	0,00000
SFB	RJsupA	0,00000	0,00000	IBA	ParatyB	0,00000	0,00000	SS1supA	ParatyB	0,00000	0,00000
SFB	SFIIA	0,00000	0,00000	IBA	RJinfB	0,00000	0,00000	SS1supA	RJinfB	0,00000	0,00000
SFB	SV1infIIA	0,00000	0,00000	IBA	BúziosB	0,00000	0,00000	SS1supA	BúziosB	0,00000	0,00000
SFB	SV1supIIA	0,00000	0,00000	IBA	SFIIB	0,00000	0,00000	SS1supA	SFIIB	0,00000	0,00000
SFB	IBIIA	0,00000	0,00000	IBA	IBIIB	0,00000	0,00000	SS1supA	IBIIB	0,00000	0,00000
SFB	SS1infIIA	0,00000	0,00000	IBA	SS1infIIB	0,00000	0,00000	SS1supA	SS1infIIB	0,00000	0,00000
SFB	SS1supIIA	0,00000	0,00000	IBA	SS1supIIB	0,00000	0,00000	SS1supA	SS1supIIB	0,00000	0,00000
SFB	SS2IIA	0,00000	0,00000	IBA	ParatyIIB	0,00000	0,00000	SS1supA	ParatyIIB	0,00000	0,00000
SFB	AngraIIA	0,00000	0,00000	IBA	RJinfIIB	0,00000	0,00000	SS1supA	RJinfIIB	0,00000	0,00000
SFB	BúziosIIA	0,00000	0,00000	IBA	RJsupIIB	0,00000	0,00000	SS1supA	RJsupIIB	0,00000	0,00000
SV1infA	IBB	0,00000	0,00000	IBA	BúziosIIB	0,00000	0,00000	SS1supA	BúziosIIB	0,00000	0,00000
SV1infA	SS2B	0,00000	0,00000	IBB	SS1infA	0,00000	0,00000	SS2A	SS2B	0,00000	0,00000
SV1infA	ParatyB	0,00000	0,00000	IBB	SS1supA	0,00000	0,00000	SS2A	ParatyB	0,00000	0,00000
SV1infA	RJinfB	0,00000	0,00000	IBB	SS2A	0,00000	0,00000	SS2A	RJinfB	0,00000	0,00000
SV1infA	BúziosB	0,00000	0,00000	IBB	AngraA	0,00000	0,00000	SS2A	BúziosB	0,00000	0,00000
SV1infA	SFIIB	0,00000	0,00000	IBB	RJinfA	0,00000	0,00000	SS2A	SFIIB	0,00000	0,00000

Ep= 0,00000

Tabela I.14: (continuação)

Рор	Рор	p=	Ep=	Рор	Рор	p=	Ep=	Рор	Рор	p=
SS2A	IBIIB	0,00000	0,00000	AngraA	RJsupIIB	0,00000	0,00000	BúziosB	BúziosIIA	0,0000
SS2A	SS1infIIB	0,00000	0,00000	AngraA	BúziosIIB	0,00000	0,00000	SFIIA	SFIIB	0,0000
SS2A	SS1supIIB	0,00000	0,00000	RJinfA	RJinfB	0,00000	0,00000	SFIIA	IBIIB	0,0000
SS2A	ParatyIIB	0,00000	0,00000	RJinfA	BúziosB	0,00000	0,00000	SFIIA	SS1infIIB	0,0000
SS2A	RJinfIIB	0,00000	0,00000	RJinfA	SFIIB	0,00000	0,00000	SFIIA	SS1supIIB	0,0000
SS2A	RJsupIIB	0,00000	0,00000	RJinfA	IBIIB	0,00000	0,00000	SFIIA	ParatyIIB	0,0000
SS2A	BúziosIIB	0,00000	0,00000	RJinfA	SS1infIIB	0,00000	0,00000	SFIIA	RJinfIIB	0,0000
SS2B	AngraA	0,00000	0,00000	RJinfA	SS1supIIB	0,00000	0,00000	SFIIA	RJsupIIB	0,0000
SS2B	RJinfA	0,00000	0,00000	RJinfA	ParatyIIB	0,00000	0,00000	SFIIA	BúziosIIB	0,0000
SS2B	RJsupA	0,00000	0,00000	RJinfA	RJinfIIB	0,00000	0,00000	SFIIB	SV1infIIA	0,0000
SS2B	SFIIA	0,00000	0,00000	RJinfA	RJsupIIB	0,00000	0,00000	SFIIB	SV1supIIA	0,0000
SS2B	SV1infIIA	0,00000	0,00000	RJinfA	BúziosIIB	0,00000	0,00000	SFIIB	IBIIA	0,0000
SS2B	SV1supIIA	0,00000	0,00000	RJinfB	RJsupA	0,00000	0,00000	SFIIB	SS1infIIA	0,0000
SS2B	IBIIA	0,00000	0,00000	RJinfB	SFIIA	0,00000	0,00000	SFIIB	SS1supIIA	0,0000
SS2B	SS1infIIA	0,00000	0,00000	RJinfB	SV1infIIA	0,00000	0,00000	SFIIB	SS2IIA	0,0000
SS2B	SS1supIIA	0,00000	0,00000	RJinfB	SV1supIIA	0,00000	0,00000	SFIIB	AngraIIA	0,0000
SS2B	SS2IIA	0,00000	0,00000	RJinfB	IBIIA	0,00000	0,00000	SFIIB	BúziosIIA	0,0000
SS2B	AngraIIA	0,00000	0,00000	RJinfB	SS1infIIA	0,00000	0,00000	SV1infIIA	IBIIB	0,0000
SS2B	BúziosIIA	0,00000	0,00000	RJinfB	SS1supIIA	0,00000	0,00000	SV1infIIA	SS1infIIB	0,0000
ParatyB	AngraA	0,00000	0,00000	RJinfB	SS2IIA	0,00000	0,00000	SV1infIIA	SS1supIIB	0,0000
ParatyB	RJinfA	0,00000	0,00000	RJinfB	AngraIIA	0,00000	0,00000	SV1infIIA	ParatyIIB	0,0000
ParatyB	RJsupA	0,00000	0,00000	RJinfB	BúziosIIA	0,00000	0,00000	SV1infIIA	RJinfIIB	0,0000
ParatyB	SFIIA	0,00000	0,00000	RJsupA	BúziosB	0,00000	0,00000	SV1infIIA	RJsupIIB	0,0000
ParatyB	SV1infIIA	0,00000	0,00000	RJsupA	SFIIB	0,00000	0,00000	SV1infIIA	BúziosIIB	0,0000
ParatyB	SV1supIIA	0,00000	0,00000	RJsupA	IBIIB	0,00000	0,00000	SV1 supIIA	IBIIB	0,0000
ParatyB	IBIIA	0,00000	0,00000	RJsupA	SS1infIIB	0,00000	0,00000	SV1 supIIA	SS1infIIB	0,0000
ParatyB	IBIIB	0,00000	0,00000	RJsupA	SS1supIIB	0,00000	0,00000	SV1supIIA	SS1supIIB	0,0000
ParatyB	SS1infIIA	0,00000	0,00000	RJsupA	ParatyIIB	0,00000	0,00000	SV1supIIA	ParatyIIB	0,0000
ParatyB	SS1supIIA	0,00000	0,00000	RJsupA	RJinfIIB	0,00000	0,00000	SV1 supIIA	RJinfIIB	0,0000
ParatyB	SS2IIA	0,00000	0,00000	RJsupA	RJsupIIB	0,00000	0,00000	SV1 supIIA	RJsupIIB	0,0000
ParatyB	ParatyIIB	0,00000	0,00000	RJsupA	BúziosIIB	0,00000	0,00000	SV1 supIIA	BúziosIIB	0,0000
ParatyB	AngraIIA	0,00000	0,00000	BúziosB	SFIIA	0,00000	0,00000	IBIIA	IBIIB	0,0000
ParatyB	RJinfIIB	0,00000	0,00000	BúziosB	SV1infIIA	0,00000	0,00000	IBIIA	SS1infIIB	0,0000
ParatyB	BúziosIIA	0,00000	0,00000	BúziosB	SV1supIIA	0,00000	0,00000	IBIIA	SS1supIIB	0,0000
AngraA	RJinfB	0,00000	0,00000	BúziosB	IBIIA	0,00000	0,00000	IBIIA	ParatyIIB	0,0000
AngraA	BúziosB	0,00000	0,00000	BúziosB	IBIIB	0,00000	0,00000	IBIIA	RJinfIIB	0,0000
AngraA	SFIIB	0,00000	0,00000	BúziosB	SS1infIIA	0,00000	0,00000	IBIIA	RJsupIIB	0,0000
AngraA	IBIIB	0,00000	0,00000	BúziosB	SS1supIIA	0,00000	0,00000	IBIIA	BúziosIIB	0,0000
AngraA	SS1infIIB	0,00000	0,00000	BúziosB	SS2IIA	0,00000	0,00000	IBIIB	SS1infIIA	0,0000
AngraA	SS1supIIB	0,00000	0,00000	BúziosB	ParatyIIB	0,00000	0,00000	IBIIB	SS1supIIA	0,0000
AngraA	ParatyIIB	0,00000	0,00000	BúziosB	AngraIIA	0,00000	0,00000	IBIIB	SS2IIA	0,0000
AngraA	RJinfIIB	0.00000	0.00000	BúziosB	RJinfIIB	0.00000	0.00000	IBIIB	AngraIIA	0.0000

Tabela I.14: (continuação)

Рор	Рор	p=	Ep=
IBIIB	BúziosIIA	0,00000	0,00000
SS1infIIA	SS1infIIB	0,00000	0,00000
SS1infIIA	SS1supIIB	0,00000	0,00000
SS1infIIA	ParatyIIB	0,00000	0,00000
SS1infIIA	RJinfIIB	0,00000	0,00000
SS1infIIA	RJsupIIB	0,00000	0,00000
SS1infIIA	BúziosIIB	0,00000	0,00000
SS1infIIB	SS1supIIA	0,00000	0,00000
SS1infIIB	SS2IIA	0,00000	0,00000
SS1infIIB	AngraIIA	0,00000	0,00000
SS1infIIB	BúziosIIA	0,00000	0,00000
SS1supIIA	SS1supIIB	0,00000	0,00000
SS1supIIA	ParatyIIB	0,00000	0,00000
SS1supIIA	RJinfIIB	0,00000	0,00000
SS1supIIA	RJsupIIB	0,00000	0,00000
SS1supIIA	BúziosIIB	0,00000	0,00000
SS1supIIB	SS2IIA	0,00000	0,00000
SS1supIIB	AngraIIA	0,00000	0,00000
SS1supIIB	BúziosIIA	0,00000	0,00000
SS2IIA	ParatyIIB	0,00000	0,00000
SS2IIA	RJinfIIB	0,00000	0,00000
SS2IIA	RJsupIIB	0,00000	0,00000
SS2IIA	BúziosIIB	0,00000	0,00000
ParatyIIB	AngraIIA	0,00000	0,00000
ParatyIIB	BúziosIIA	0,00000	0,00000
AngraIIA	RJinfIIB	0,00000	0,00000
AngraIIA	RJsupIIB	0,00000	0,00000
AngraIIA	BúziosIIB	0,00000	0,00000
RJinfIIB	BúziosIIA	0,00000	0,00000
RJsupIIB	BúziosIIA	0,00000	0,00000
BúziosIIA	BúziosIIB	0,00000	0,00000
ParatyB	RJsupIIB	0,00001	0,00000
ParatyB	RJinfB	0,00003	0,00000
ParatyB	SS1supIIB	0,00003	0,00000
SFB	RJinfIIB	0,00006	0,00001
SFB	ParatyIIB	0,00008	0,00001
SS2B	ParatyB	0,00008	0,00001
ParatyB	SS1infIIB	0,00009	0,00001
SFB	IBIIB	0,00016	0,00001
IBB	ParatyIIB	0,00024	0,00001
BúziosB	SS1supIIB	0,00027	0,00001
IBB	RJinfIIB	0,00040	0,00002

Рор	Рор	р=	Ep=
IBB	IBIIB	0,00044	0,00002
RJinfB	BúziosB	0,00063	0,00002
BúziosB	RJsupIIB	0,00063	0,00002

Tabela I.15: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α =0,00017) entre as freqüências alélicas de cada localidade amostrada para o loco Idh-2. Em vermelho estão destacadas as comparações significativas entre populações do mesmo grupo genético. Pop=população, Ep= erro padrão.

Pop	Рор	p=	Ep=
SFA	ParatyB	0,00000	0,00000
SFA	ParatyIIB	0,00000	0,00000
SFB	SV1supA	0,00000	0,00000
SFB	IBA	0,00000	0,00000
SFB	SS1infA	0,00000	0,00000
SFB	SS1supA	0,00000	0,00000
SFB	SS2A	0,00000	0,00000
SFB	AngraA	0,00000	0,00000
SFB	RJsupA	0,00000	0,00000
SFB	SV1infIIA	0,00000	0,00000
SFB	SV1supIIA	0,00000	0,00000
SFB	SS1infIIA	0,00000	0,00000
SFB	SS1supIIA	0,00000	0,00000
SFB	SS2IIA	0,00000	0,00000
SFB	AngraIIA	0,00000	0,00000
SV1infA	ParatyB	0,00000	0,00000
SV1infA	RJinfB	0,00000	0,00000
SV1infA	BúziosB	0,00000	0,00000
SV1infA	IBIIB	0,00000	0,00000
SV1infA	SS1infIIB	0,00000	0,00000
SV1infA	SS1supIIB	0,00000	0,00000
SV1infA	ParatyIIB	0,00000	0,00000
SV1infA	BúziosIIB	0,00000	0,00000
SV1supA	IBB	0,00000	0,00000
SV1supA	ParatyB	0,00000	0,00000
SV1supA	RJinfB	0,00000	0,00000
SV1supA	BúziosB	0,00000	0,00000
SV1supA	IBIIB	0,00000	0,00000
SV1supA	SS1infIIB	0,00000	0,00000
SV1supA	SS1supIIB	0,00000	0,00000
SV1supA	ParatyIIB	0,00000	0,00000
SV1supA	RJinfIIB	0,00000	0,00000
SV1supA	BúziosIIB	0,00000	0,00000
IBA	IBB	0,00000	0,00000
IBA	ParatyB	0,00000	0,00000
IBA	RJinfB	0,00000	0,00000
IBA	BúziosB	0,00000	0,00000
IBA	SEIIB	0.00000	0.00000

Рор	Рор	p=	Ep=
IBA	IBIIB	0,00000	0,00000
IBA	SS1infIIB	0,00000	0,00000
IBA	SS1supIIB	0,00000	0,00000
IBA	ParatyIIB	0,00000	0,00000
IBA	RJinfIIB	0,00000	0,00000
IBA	RJsupIIB	0,00000	0,00000
IBA	BúziosIIB	0,00000	0,00000
IBB	SS1infA	0,00000	0,00000
IBB	SS1supA	0,00000	0,00000
IBB	SS2A	0,00000	0,00000
IBB	SV1supIIA	0,00000	0,00000
IBB	SS1infIIA	0,00000	0,00000
IBB	SS1supIIA	0,00000	0,00000
IBB	SS2IIA	0,00000	0,00000
IBB	AngraIIA	0,00000	0,00000
SS1infA	SS2B	0,00000	0,00000
SS1infA	ParatyB	0,00000	0,00000
SS1infA	RJinfB	0,00000	0,00000
SS1infA	BúziosB	0,00000	0,00000
SS1infA	SFIIB	0,00000	0,00000
SS1infA	IBIIB	0,00000	0,00000
SS1infA	SS1infIIB	0,00000	0,00000
SS1infA	SS1supIIB	0,00000	0,00000
SS1infA	ParatyIIB	0,00000	0,00000
SS1infA	RJinfIIB	0,00000	0,00000
SS1infA	RJsupIIB	0,00000	0,00000
SS1infA	BúziosIIB	0,00000	0,00000
SS1supA	ParatyB	0,00000	0,00000
SS1supA	RJinfB	0,00000	0,00000
SS1supA	BúziosB	0,00000	0,00000
SS1supA	IBIIB	0,00000	0,00000
SS1supA	SS1infIIB	0,00000	0,00000
SS1supA	SS1supIIB	0,00000	0,00000
SS1supA	ParatyIIB	0,00000	0,00000
SS1supA	RJinfIIB	0,00000	0,00000
SS1supA	BúziosIIB	0,00000	0,00000
SS2A	ParatyB	0,00000	0,00000
SS2A	RJinfB	0,00000	0,00000

Рор	Рор	p=	Ep=
SS2A	BúziosB	0,00000	0,00000
SS2A	IBIIB	0,0000	0,0000
SS2A	SS1infIIB	0,00000	0,00000
SS2A	SS1supIIB	0,00000	0,00000
SS2A	ParatyIIB	0,0000	0,0000
SS2A	RJinfIIB	0,00000	0,00000
SS2A	RJsupIIB	0,00000	0,00000
SS2A	BúziosIIB	0,00000	0,00000
SS2B	AngraIIA	0,00000	0,00000
ParatyB	AngraA	0,00000	0,00000
ParatyB	RJsupA	0,00000	0,00000
ParatyB	SFIIA	0,00000	0,00000
ParatyB	SV1infIIA	0,00000	0,00000
ParatyB	SV1supIIA	0,00000	0,00000
ParatyB	IBIIA	0,00000	0,00000
ParatyB	SS1infIIA	0,00000	0,00000
ParatyB	SS1supIIA	0,00000	0,00000
ParatyB	SS2IIA	0,00000	0,00000
ParatyB	AngraIIA	0,00000	0,00000
ParatyB	BúziosIIA	0,00000	0,00000
AngraA	RJinfB	0,00000	0,00000
AngraA	BúziosB	0,00000	0,00000
AngraA	IBIIB	0,00000	0,00000
AngraA	SS1infIIB	0,00000	0,00000
AngraA	SS1supIIB	0,00000	0,00000
AngraA	ParatyIIB	0,00000	0,00000
AngraA	BúziosIIB	0,00000	0,00000
RJinfB	SV1supIIA	0,00000	0,00000
RJinfB	SS1infIIA	0,00000	0,00000
RJinfB	SS1supIIA	0,0000	0,0000
RJinfB	SS2IIA	0,0000	0,0000
RJinfB	AngraIIA	0,00000	0,00000
RJsupA	BúziosB	0,00000	0,00000
RJsupA	SS1supIIB	0,00000	0,00000
RJsupA	ParatyIIB	0,00000	0,00000
BúziosB	SFIIA	0,00000	0,00000
BúziosB	SV1infIIA	0,00000	0,00000
BúziosB	SV1supIIA	0,00000	0,00000

Tabela I.15: (continuação)

Рор	Рор	p=	Ep=
BúziosB	IBIIA	0,00000	0,00000
BúziosB	SS1infIIA	0,00000	0,00000
BúziosB	SS1supIIA	0,00000	0,00000
BúziosB	SS2IIA	0,00000	0,00000
BúziosB	AngraIIA	0,00000	0,00000
BúziosB	BúziosIIA	0,00000	0,00000
SFIIA	SS1supIIB	0,00000	0,00000
SFIIA	ParatyIIB	0,00000	0,00000
SFIIA	BúziosIIB	0,00000	0,00000
SFIIB	AngraIIA	0,00000	0,00000
SV1infIIA	IBIIB	0,00000	0,00000
SV1infIIA	SS1supIIB	0,00000	0,00000
SV1infIIA	ParatyIIB	0,00000	0,00000
SV1infIIA	BúziosIIB	0,00000	0,00000
SV1supIIA	IBIIB	0,00000	0,00000
SV1supIIA	SS1infIIB	0,00000	0,00000
SV1supIIA	SS1supIIB	0,00000	0,00000
SV1supIIA	ParatyIIB	0,00000	0,00000
SV1supIIA	RJinfIIB	0,00000	0,00000
SV1supIIA	BúziosIIB	0,00000	0,00000
IBIIA	SS1supIIB	0,00000	0,00000
IBIIA	ParatyIIB	0,00000	0,00000
IBIIA	BúziosIIB	0,00000	0,00000
IBIIB	SS1infIIA	0,00000	0,00000
IBIIB	SS1supIIA	0,00000	0,00000
IBIIB	SS2IIA	0,00000	0,00000
IBIIB	AngraIIA	0,00000	0,00000
SS1infIIA	SS1infIIB	0,00000	0,00000
SS1infIIA	SS1supIIB	0,00000	0,00000
SS1infIIA	ParatyIIB	0,00000	0,00000
SS1infIIA	RJinfIIB	0,00000	0,00000
SS1infIIA	BúziosIIB	0,00000	0,00000
SS1infIIB	SS1supIIA	0,00000	0,00000
SS1infIIB	SS2IIA	0,00000	0,00000
SS1infIIB	AngraIIA	0,0000	0,00000
SS1supIIA	SS1supIIB	0,00000	0,00000
SS1supIIA	ParatyIIB	0,0000	0,00000
SS1supIIA	RJinfIIB	0,00000	0,00000
SS1supIIA	BúziosIIB	0,00000	0,00000
SS1supIIB	SS2IIA	0,00000	0,00000
SS1supIIB	AngraIIA	0,0000	0,0000
SS2IIA	ParatyIIB	0,00000	0,00000

Рор	Рор	р=	Ep=
SS2IIA	RJinfIIB	0,00000	0,00000
SS2IIA	RJsupIIB	0,00000	0,00000
SS2IIA	BúziosIIB	0,00000	0,00000
ParatyIIB	AngraIIA	0,00000	0,00000
ParatyIIB	BúziosIIA	0,00000	0,00000
AngraIIA	RJinfIIB	0,00000	0,00000
AngraIIA	RJsupIIB	0,00000	0,00000
AngraIIA	BúziosIIB	0,00000	0,00000
BúziosIIA	BúziosIIB	0,00000	0,00000
SFA	BúziosIIB	0,00001	0,00000
SFB	SV1infA	0,00001	0,00000
SFB	IBIIA	0,00001	0,00001
SV1infA	IBB	0,00001	0,00000
SV1infA	RJinfIIB	0,00001	0,00000
SV1supA	SS2B	0,00001	0,00000
SV1supA	RJsupIIB	0,00001	0,00000
IBA	SS2B	0,00001	0,00000
IBB	AngraA	0,00001	0,00000
IBB	SV1infIIA	0,00001	0,00001
SS1supA	SFIIB	0,00001	0,00000
SS2A	SS2B	0,00001	0,00000
SS2A	SFIIB	0,00001	0,00000
SS2B	SS2IIA	0,00001	0,00000
AngraA	RJinfIIB	0,00001	0,00000
RJsupA	IBIIB	0,00001	0,00000
SFIIA	IBIIB	0,00001	0,00000
SFIIB	SV1supIIA	0,00001	0,00000
SFIIB	SS1infIIA	0,00001	0,00000
SFIIB	SS1supIIA	0,00001	0,00000
SV1infIIA	RJinfIIB	0,00001	0,00000
SV1supIIA	RJsupIIB	0,00001	0,00001
SS1infIIA	RJsupIIB	0,00001	0,00000
SS1supIIA	RJsupIIB	0,00001	0,00000
ParatyIIB	RJsupIIB	0,00001	0,00000
SFA	BúziosB	0,00002	0,00001
SFA	SS1supIIB	0,00002	0,00001
IBB	IBIIA	0,00002	0,00001
SS1supA	RJsupIIB	0,00002	0,00001
SS2B	SV1supIIA	0,00002	0,00001
SS2B	SS1supIIA	0,00002	0,00000
SFIIB	SS2IIA	0,00002	0,00001
SV1infIIA	SS1infIIB	0,00002	0,00001

Рор	Рор	р=	Ep=								
SS1infIIB	BúziosIIA	0,00002	0,00000								
SS1supIIB	BúziosIIA	0,00002	0,00000								
SFB	SFIIA	0,00003	0,00001								
SS2B	SS1infIIA	0,00003	0,00001								
RJinfA	ParatyIIB	0,00003	0,00001								
IBIIA	IBIIB	0,00003	0,00001								
SV1infA	SFIIB	0,00004	0,00001								
SV1supA	SFIIB	0,00004	0,00001								
RJinfB	SV1infIIA	0,00004	0,00001								
SFIIA	SS1infIIB	0,00004	0,00001								
SV1infIIA	RJsupIIB	0,00004	0,00001								
IBIIA	SS1infIIB	0,00004	0,00001								
SFB	BúziosIIB	0,00005	0,00001								
AngraA	SFIIB	0,00005	0,00001								
RJsupA	RJinfIIB	0,00005	0,00001								
IBIIA	RJinfIIB	0,00005	0,00001								
SS1supA	SS2B	0,00006	0,00001								
SS2B	RJsupA	0,00006	0,00001								
RJsupA	BúziosIIB	0,00006	0,00001								
IBB	RJsupA	0,00007	0,00001								
IBB	BúziosIIA	0,00008	0,00001								
RJsupA	RJsupIIB	0,00009	0,00001								
SFB	RJinfB	0,00010	0,00002								
IBB	SFIIA	0,00011	0,00001								
SS2B	SV1infIIA	0,00012	0,00001								
SFA	SS1infIIB	0,00013	0,00002								
RJinfB	SFIIA	0,00014	0,00002								
RJsupA	SS1infIIB	0,00016	0,00002								
Рор	Рор	p=	Ep=	Рор	Рор	p=	Ep=	Рор	Рор	p=	Ep=
---------	-----------	---------	---------	-----------	-----------	---------	---------	-----------	-----------	---------	---------
SFA	RJinfB	0,00000	0,00000	SS2A	ParatyIIB	0,00000	0,00000	SV1infIIA	RJsupIIB	0,00000	0,00000
SFA	IBIIB	0,00000	0,00000	SS2A	RJinfIIB	0,00000	0,00000	SV1supIIA	IBIIB	0,00000	0,00000
SFA	ParatyIIB	0,00000	0,00000	ParatyB	AngraA	0,00000	0,00000	SV1supIIA	ParatyIIB	0,00000	0,00000
SFA	RJinfIIB	0,00000	0,00000	ParatyB	SV1infIIA	0,00000	0,00000	SV1supIIA	RJinfIIB	0,00000	0,00000
SFB	SV1infA	0,00000	0,00000	ParatyB	SV1supIIA	0,00000	0,00000	SV1supIIA	RJsupIIB	0,00000	0,00000
SFB	SS1infA	0,00000	0,00000	ParatyB	SS2IIA	0,00000	0,00000	IBIIA	ParatyIIB	0,00000	0,00000
SFB	AngraA	0,00000	0,00000	ParatyB	AngraIIA	0,00000	0,00000	IBIIA	RJinfIIB	0,00000	0,00000
SFB	SV1infIIA	0,00000	0,00000	ParatyB	BúziosIIA	0,00000	0,00000	IBIIB	SS1infIIA	0,00000	0,00000
SFB	SV1supIIA	0,00000	0,00000	AngraA	RJinfB	0,00000	0,00000	IBIIB	SS1supIIA	0,00000	0,00000
SFB	SS1infIIA	0,00000	0,00000	AngraA	BúziosB	0,00000	0,00000	IBIIB	SS2IIA	0,00000	0,00000
SFB	SS1supIIA	0,00000	0,00000	AngraA	IBIIB	0,00000	0,00000	IBIIB	AngraIIA	0,00000	0,00000
SFB	SS2IIA	0,00000	0,00000	AngraA	ParatyIIB	0,00000	0,00000	IBIIB	BúziosIIA	0,00000	0,00000
SFB	AngraIIA	0,00000	0,00000	AngraA	RJinfIIB	0,00000	0,00000	SS1infIIA	ParatyIIB	0,00000	0,00000
SFB	BúziosIIA	0,00000	0,00000	AngraA	RJsupIIB	0,00000	0,00000	SS1infIIA	RJinfIIB	0,00000	0,00000
SV1infA	RJinfB	0,00000	0,00000	RJinfB	RJsupA	0,00000	0,00000	SS1infIIA	RJsupIIB	0,00000	0,00000
SV1infA	IBIIB	0,00000	0,00000	RJinfB	SFIIA	0,00000	0,00000	SS1supIIA	ParatyIIB	0,00000	0,00000
SV1infA	ParatyIIB	0,00000	0,00000	RJinfB	SV1infIIA	0,00000	0,00000	SS1supIIA	RJinfIIB	0,00000	0,00000
SV1infA	RJinfIIB	0,00000	0,00000	RJinfB	SV1supIIA	0,00000	0,00000	SS1supIIA	RJsupIIB	0,00000	0,00000
SV1infA	RJsupIIB	0,00000	0,00000	RJinfB	SS1infIIA	0,00000	0,00000	SS2IIA	ParatyIIB	0,00000	0,00000
SV1supA	RJinfB	0,00000	0,00000	RJinfB	SS1supIIA	0,00000	0,00000	SS2IIA	RJinfIIB	0,00000	0,00000
SV1supA	IBIIB	0,00000	0,00000	RJinfB	SS2IIA	0,00000	0,00000	SS2IIA	RJsupIIB	0,00000	0,00000
SV1supA	ParatyIIB	0,00000	0,00000	RJinfB	AngraIIA	0,00000	0,00000	ParatyIIB	AngraIIA	0,00000	0,00000
SV1supA	RJinfIIB	0,00000	0,00000	RJinfB	BúziosIIA	0,00000	0,00000	ParatyIIB	BúziosIIA	0,00000	0,00000
IBA	IBIIB	0,00000	0,00000	RJsupA	IBIIB	0,00000	0,00000	AngraIIA	RJinfIIB	0,00000	0,00000
IBA	ParatyIIB	0,00000	0,00000	RJsupA	ParatyIIB	0,00000	0,00000	AngraIIA	RJsupIIB	0,00000	0,00000
IBA	RJinfIIB	0,00000	0,00000	RJsupA	RJinfIIB	0,00000	0,00000	RJinfIIB	BúziosIIA	0,00000	0,00000
SS1infA	ParatyB	0,00000	0,00000	BúziosB	SV1infIIA	0,00000	0,00000	RJsupIIB	BúziosIIA	0,00000	0,00000
SS1infA	RJinfB	0,00000	0,00000	BúziosB	SV1supIIA	0,00000	0,00000	SFA	SFB	0,00001	0,00000
SS1infA	BúziosB	0,00000	0,00000	BúziosB	SS2IIA	0,00000	0,00000	SFA	BúziosB	0,00001	0,00000
SS1infA	IBIIB	0,00000	0,00000	BúziosB	AngraIIA	0,00000	0,00000	SFA	RJsupIIB	0,00001	0,00000
SS1infA	ParatyIIB	0,00000	0,00000	BúziosB	BúziosIIA	0,00000	0,00000	SFB	SS2A	0,00001	0,00000
SS1infA	RJinfIIB	0,00000	0,00000	SFIIA	IBIIB	0,00000	0,00000	SV1infA	BúziosB	0,00001	0,00000
SS1infA	RJsupIIB	0,00000	0,00000	SFIIA	ParatyIIB	0,00000	0,00000	IBA	RJinfB	0,00001	0,00000
SS1supA	RJinfB	0,00000	0,00000	SFIIA	RJinfIIB	0,00000	0,00000	SS2A	RJsupIIB	0,00001	0,00000
SS1supA	IBIIB	0,00000	0,00000	SFIIB	SV1infIIA	0,00000	0,0000	RJinfB	IBIIA	0,00001	0,00000
SS1supA	ParatyIIB	0,00000	0,00000	SFIIB	SV1supIIA	0,00000	0,0000	RJsupA	RJsupIIB	0,00001	0,00000
SS1supA	RJinfIIB	0,00000	0,00000	SV1infIIA	IBIIB	0,00000	0,0000	BúziosB	SS1infIIA	0,00001	0,00000
SS2A	RJinfB	0,00000	0,00000	SV1infIIA	ParatyIIB	0,00000	0,0000	BúziosB	SS1supIIA	0,00001	0,00000
SS2A	IBIIB	0,00000	0,00000	SV1infIIA	RJinfIIB	0,00000	0,0000	SFIIB	BúziosIIA	0,00001	0,00000

Tabela I.16: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α=0,00013) entre as freqüências alélicas de cada localidade amostrada para o loco Mdh. Pop=população, Ep= erro padrão.

Рор	Рор	p=	Ep=		
IBIIA	IBIIB	0,00001	0,00000		
SV1infA	ParatyB	0,00002	0,00000		
IBB	SV1infIIA	0,00002	0,00000		
SS1infA	SFIIB	0,00002	0,00000		
AngraA	SFIIB	0,00002	0,00000		
SS2A	BúziosB	0,00003	0,00001		
ParatyB	SS1infIIA	0,00003	0,00001		
ParatyB	SS1supIIA	0,00003	0,00001		
SFIIB	SS2IIA	0,00003	0,00000		
SFIIB	AngraIIA	0,00003	0,00001		
SV1infIIA	SS1supIIB	0,00003	0,00000		
SV1supIIA	SS1supIIB	0,00003	0,00001		
SS1supIIB	BúziosIIA	0,00003	0,00000		
IBB	SV1supIIA	0,00004	0,00001		
SFB	RJsupA	0,00005	0,00001		
SV1supA	RJsupIIB	0,00005	0,00001		
SFA	ParatyB	0,00006	0,00001		
SS2A	ParatyB	0,00006	0,00001		
AngraA	SS1supIIB	0,00006	0,00001		
IBB	BúziosIIA	0,00007	0,00001		
SFA	SFIIB	0,00008	0,00001		
RJsupA	BúziosB	0,00008	0,00001		
SFB	SV1supA	0,00009	0,00001		
SS1infA	SS1supIIB	0,00009	0,00001		
SFIIA	RJsupIIB	0,00009	0,00001		
SS1supIIB	SS2IIA	0,00009	0,00001		
IBB	AngraA	0,00010	0,00001		
SFIIB	SS1infIIA	0,00010	0,00001		
SS1supA	RJsupIIB	0,00011	0,00001		
SFIIB	SS1supIIA	0,00011	0,00001		
RJsupA	SFIIB	0,00012	0,00001		
SV1infA	SFIIB	0,00013	0,00001		
SS1supIIB	AngraIIA	0.00013	0.00001		

Tabela I.17: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α=0,00011) entre as freqüências alélicas de cada localidade amostrada para o loco Lap-2. Em vermelho estão destacadas as comparações significativas entre populações do mesmo grupo genético. Pop=população, Ep= erro padrão.

Рор	Рор	р=	Ep=
SV1infA	IBIIB	0,00000	0,00000
SV1infA	ParatyIIB	0,00000	0,00000
SV1infA	RJinfIIB	0,00000	0,00000
SV1supA	ParatyIIB	0,00000	0,00000
SV1supA	RJinfIIB	0,00000	0,00000
IBA	IBB	0,00000	0,00000
IBA	ParatyB	0,00000	0,00000
IBA	RJinfB	0,00000	0,00000
IBA	BúziosB	0,00000	0,00000
IBA	SFIIB	0,00000	0,00000
IBA	IBIIB	0,00000	0,00000
IBA	SS1supIIB	0,00000	0,00000
IBA	ParatyIIB	0,00000	0,00000
IBA	RJinfIIB	0,00000	0,00000
IBB	SFIIA	0,00000	0,00000
IBB	SS1infIIA	0,00000	0,00000
IBB	AngraIIA	0,00000	0,00000
IBB	BúziosIIA	0,00000	0,00000
SS1infA	ParatyIIB	0,00000	0,00000
SS1infA	RJinfIIB	0,00000	0,00000
SS2A	ParatyIIB	0,00000	0,00000
SS2A	RJinfIIB	0,00000	0,00000
SS2B	BúziosIIA	0,00000	0,00000
ParatyB	RJsupA	0,00000	0,00000
ParatyB	SFIIA	0,00000	0,00000
ParatyB	IBIIA	0,00000	0,00000
ParatyB	BúziosIIA	0,00000	0,00000
AngraA	BúziosB	0,00000	0,00000
AngraA	IBIIB	0,00000	0,00000
AngraA	ParatyIIB	0,00000	0,00000
AngraA	RJinfIIB	0,00000	0,00000
RJinfA	ParatyIIB	0,00000	0,00000
RJinfB	SS1infIIA	0,00000	0,00000
RJinfB	BúziosIIA	0,00000	0,00000
RJsupA	IBIIB	0,00000	0,00000
RJsupA	ParatyIIB	0,00000	0,00000
RJsupA	RJinfIIB	0,00000	0,00000
BúziosB	SFIIA	0.00000	0.00000

Pop p- Ep-	Don	Don		En-
BuziosB IBIA 0,00000 0,00000 BúziosB SS1infIIA 0,00000 0,00000 BúziosB AngraIIA 0,00000 0,00000 BúziosB BúziosIIA 0,00000 0,00000 SFIIA IBIB 0,00000 0,00000 SFIIA ParatyIB 0,00000 0,00000 SFIIB SS1infIIA 0,00000 0,00000 SV1infIIA BIB 0,00000 0,00000 SV1infIIA BIB 0,00000 0,00000 SV1infIIA ParatyIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA ParatyIB 0,00000 0,00000 SV1infIIA ParatyIB 0,00000 0,00000 IBIA ParatyIB 0,00000 0,00000 IBIA RJinfIIB 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 SS1i	r op DúziosP	тор	- <u>-</u>	0.00000
BuziosB SSTIIIIA 0,00000 0,00000 BúziosB AngraIIA 0,00000 0,00000 BúziosB BúziosIIA 0,00000 0,00000 SFIIA IBIIB 0,00000 0,00000 SFIIA ParatyIIB 0,00000 0,00000 SFIIA RJinfIIB 0,00000 0,00000 SFIIB SS1infIIA 0,00000 0,00000 SV1infIIA BilB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIIA ParatyIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIIB AngraIIA 0,00000 0,00000 IBIIB AngraIIA 0,000000 0,000000	DúziosD	IDIIA SS1:nfIIA	0,00000	0,00000
BúziosB AligraffA 0,00000 0,00000 BúziosB BúziosIIA 0,00000 0,00000 SFIIA IBIB 0,00000 0,00000 SFIIA ParatyIIB 0,00000 0,00000 SFIIA RJinfIIB 0,00000 0,00000 SFIIB SS1infIIA 0,00000 0,00000 SV1infIIA IBIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 <	DuziosD DúrtiosD	AngroIIA	0,00000	0,00000
Buziosis Buziositia 0,00000 0,00000 SFIIA IBIB 0,00000 0,00000 SFIIA ParatyIIB 0,00000 0,00000 SFIIA RJinfIIB 0,00000 0,00000 SFIIB SS1infIIA 0,00000 0,00000 SFIIB BúziosIIA 0,00000 0,00000 SV1infIIA IBIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 IBIA RJinfIIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 S	DuziosD	Aligialia Décisionalia	0,00000	0,00000
SFIIA IBIB 0,00000 0,00000 SFIIA ParatyIIB 0,00000 0,00000 SFIIA RJinfIIB 0,00000 0,00000 SFIIB SS1infIIA 0,00000 0,00000 SFIIB BúziosIIA 0,00000 0,00000 SV1infIIA IBIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 IBIA BIIB 0,00000 0,00000 BIIA RJinfIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000	BUZIOSB	BUZIOSIIA	0,00000	0,00000
SFIIA ParatyIIB 0,00000 0,00000 SFIIA RJinfIIB 0,00000 0,00000 SFIIB SS1infIIA 0,00000 0,00000 SFIIB BúziosIIA 0,00000 0,00000 SV1infIIA IBIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1supIIA ParatyIIB 0,00000 0,00000 BIIA IBIB 0,00000 0,00000 BIIA ParatyIIB 0,00000 0,00000 BIIB SS1infIIA 0,00000 0,00000 BIIB AngraIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000	SFIIA	IBIIB	0,0000	0,00000
SFIIA RJinfilB 0,00000 0,00000 SFIIB SS1infIIA 0,00000 0,00000 SFIIB BúziosIIA 0,00000 0,00000 SV1infIIA IBIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1upIIA RJinfIIB 0,00000 0,00000	SFIIA	ParatyIIB	0,00000	0,00000
SFIIB SS1infIIA 0,00000 0,00000 SFIIB BúziosIIA 0,00000 0,00000 SV1infIIA IBIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1supIIA ParatyIIB 0,00000 0,00000 IBIA IBIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA RS1supIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000	SFIIA	RJinfIIB	0,00000	0,00000
SFIIB BúziosIIA 0,00000 0,00000 SV1infIIA IBIIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1supIIA ParatyIIB 0,00000 0,00000 IBIIA IBIIB 0,00000 0,00000 IBIIA ParatyIIB 0,00000 0,00000 IBIIA ParatyIIB 0,00000 0,00000 IBIIB SS1infIIA 0,00000 0,00000 IBIIB AngraIIA 0,00000 0,00000 IBIIB BúziosIIA 0,00000 0,00000 IBIIB BúziosIIA 0,00000 0,00000 S1infIIA RS1supIIB 0,00000 0,00000 S1infIIA RJinfIIB 0,00000 0,00000 S1iupIIA ParatyIIB 0,00000 0,00000 S1supIIA ParatyIIB 0,00000 0,00000 S2IIA ParatyIIB 0,00000 0,00000	SFIIB	SSImfIIA	0,00000	0,00000
SV1infIIA IBIB 0,00000 0,00000 SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1supIIA ParatyIIB 0,00000 0,00000 IBIIA IBIB 0,00000 0,00000 IBIA IBIB 0,00000 0,00000 IBIIA ParatyIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1upIIA ParatyIIB 0,00000 0,00000 SS1upIIA ParatyIIB 0,00000 0,00000	SFIIB	BúziosIIA	0,00000	0,00000
SV1infIIA ParatyIIB 0,00000 0,00000 SV1infIIA RJinfIIB 0,00000 0,00000 SV1supIIA ParatyIIB 0,00000 0,00000 IBIIA IBIIB 0,00000 0,00000 IBIIA IBIIB 0,00000 0,00000 IBIIA ParatyIIB 0,00000 0,00000 IBIIA RJinfIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA RJinfIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1upIIA RJinfIIB 0,00000 0,00000 SS1upIIA ParatyIIB 0,00000 0,00000 SS1upIIA ParatyIIB 0,00000 0,00000	SV1infIIA	IBIIB	0,00000	0,00000
SV1infIIA RJinfIIB 0,00000 0,00000 SV1supIIA ParatyIIB 0,00000 0,00000 IBIIA IBIIB 0,00000 0,00000 IBIIA IBIIB 0,00000 0,00000 IBIIA ParatyIIB 0,00000 0,00000 IBIIA RJinfIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS1apIIB BúziosIIA 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 <td>SV1infIIA</td> <td>ParatyIIB</td> <td>0,00000</td> <td>0,00000</td>	SV1infIIA	ParatyIIB	0,00000	0,00000
SV1supIIA ParatyIIB 0,00000 0,00000 IBIIA IBIIB 0,00000 0,00000 IBIIA IBIIB 0,00000 0,00000 IBIIA ParatyIIB 0,00000 0,00000 IBIIA RJinfIIB 0,00000 0,00000 IBIIB SS1infIIA 0,00000 0,00000 IBIIB AngraIIA 0,00000 0,00000 IBIIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS1IA ParatyIIB 0,00000 0,00000 SS1upIIB BúziosIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 </td <td>SV1infIIA</td> <td>RJinfIIB</td> <td>0,00000</td> <td>0,00000</td>	SV1infIIA	RJinfIIB	0,00000	0,00000
IBIIA IBIIB 0,00000 0,00000 IBIA ParatyIIB 0,00000 0,00000 IBIA RJinfIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS1IA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000	SV1supIIA	ParatyIIB	0,00000	0,00000
IBIIA ParatyIIB 0,00000 0,00000 IBIIA RJinfIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS1IA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 RJinfIIB BúziosIIA 0,00001 0,00000	IBIIA	IBIIB	0,00000	0,00000
IBIIA RJinfIIB 0,00000 0,00000 IBIB SS1infIIA 0,00000 0,00000 IBIB AngraIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 IBIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1upIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 BA SS2B 0,00001 0,00000	IBIIA	ParatyIIB	0,00000	0,00000
IBIIB SS1infIIA 0,00000 0,00000 IBIIB AngraIIA 0,00000 0,00000 IBIIB BúziosIIA 0,00000 0,00000 IBIIB BúziosIIA 0,00000 0,00000 SS1infIIA SS1supIIB 0,00000 0,00000 SS1infIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 RJinfIIB BúziosIIA 0,00001 0,00000 BA SS2B 0,00001 0,00000 BB AngraA 0,00001 0,00000	IBIIA	RJinfIIB	0,00000	0,00000
IBIIB AngraIIA 0,00000 0,00000 IBIIB BúziosIIA 0,00000 0,00000 SS1 infIIA SS1 supIIB 0,00000 0,00000 SS1 infIIA ParatyIIB 0,00000 0,00000 SS1 infIIA ParatyIIB 0,00000 0,00000 SS1 supIIA ParatyIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00001 0,00000 BA SS2B 0,00001 0,00000 BB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000	IBIIB	SS1infIIA	0,00000	0,00000
IBIIB BúziosIIA 0,00000 0,00000 SS1 infIIA SS1 supIIB 0,00000 0,00000 SS1 infIIA ParatyIIB 0,00000 0,00000 SS1 infIIA ParatyIIB 0,00000 0,00000 SS1 infIIA RJinfIIB 0,00000 0,00000 SS1 supIIA ParatyIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIB BúziosIIA 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 BB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AsgraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,0	IBIIB	AngraIIA	0,00000	0,00000
SS1 infIIA SS1 supIIB 0,00000 0,00000 SS1 infIIA ParatyIIB 0,00000 0,00000 SS1 infIIA RJinfIIB 0,00000 0,00000 SS1 supIIA ParatyIIB 0,00000 0,00000 SS1 supIIA ParatyIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA 0,00000 0,00000 0,00000 RJinfIIB BúziosIIA 0,00001 0,00000 IBA SS2B 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000<	IBIIB	BúziosIIA	0,00000	0,00000
SS1 infIIA ParatyIIB 0,00000 0,00000 SS1 infIIA RJinfIIB 0,00000 0,00000 SS1 supIIA ParatyIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000 RJinfA SFIIA 0,00001 0,00000	SS1infIIA	SS1supIIB	0,00000	0,00000
SS1 infIIA RJinfIIB 0,00000 0,00000 SS1 supIIA ParatyIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIA RJinfIIB 0,00000 0,00000 SS1 supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AsgraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000 RJinfA SFIIA 0,00001 0,00000 <td>SS1infIIA</td> <td>ParatyIIB</td> <td>0,00000</td> <td>0,00000</td>	SS1infIIA	ParatyIIB	0,00000	0,00000
SS1supIIA ParatyIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000	SS1infIIA	RJinfIIB	0,00000	0,00000
SS1supIIA RJinfIIB 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS1supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	SS1supIIA	ParatyIIB	0,00000	0,00000
SS1supIIB BúziosIIA 0,00000 0,00000 SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AsgraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	SS1supIIA	RJinfIIB	0,00000	0,00000
SS2IIA ParatyIIB 0,00000 0,00000 ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	SS1supIIB	BúziosIIA	0,00000	0,00000
ParatyIIB AngraIIA 0,00000 0,00000 ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	SS2IIA	ParatyIIB	0,00000	0,00000
ParatyIIB BúziosIIA 0,00000 0,00000 AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000	ParatyIIB	AngraIIA	0,00000	0,00000
AngraIIA RJinfIIB 0,00000 0,00000 RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	ParatyIIB	BúziosIIA	0,00000	0,00000
RJinfIIB BúziosIIA 0,00000 0,00000 IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	AngraIIA	RJinfIIB	0,00000	0,00000
IBA SS2B 0,00001 0,00000 IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	RJinfIIB	BúziosIIA	0,00000	0,00000
IBB AngraA 0,00001 0,00000 SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	IBA	SS2B	0,00001	0,00000
SS2A IBIIB 0,00001 0,00000 ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	IBB	AngraA	0,00001	0,00000
ParatyB AngraA 0,00001 0,00000 ParatyB SS1 infIIA 0,00001 0,00000 RJinfA RJinfIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	SS2A	IBIIB	0.00001	0,00000
ParatyB SS1infIIA 0,00001 0,00000 RJinfA RJinfIIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	ParatyB	AngraA	0,00001	0,00000
RJinfA RJinfIIB 0,00001 0,00000 RJinfB SFIIA 0,00001 0,00000	ParatyB	SS1infIIA	0,00001	0,00000
RJinfB SFIIA 0,00001 0.00000	RJinfA	RJinfIIB	0,00001	0,00000
	RJinfB	SFIIA	0,00001	0,00000
RJsupA BúziosB 0,00001 0.00000	RJsupA	BúziosB	0,00001	0,00000

Рор	Рор	p=	Ep=
RJsupA	RJsupIIB	0,00001	0,00000
IBIIB	SS1supIIA	0,00001	0,00000
SS2IIA	RJinfIIB	0,00001	0,00001
SFB	RJsupA	0,00002	0,00000
SS2B	SS1infIIA	0,00002	0,00001
RJinfA	IBIIB	0,00002	0,00000
SV1infA	IBB	0,00003	0,00001
SV1infA	ParatyB	0,00003	0,00001
SV1infA	BúziosB	0,00003	0,00001
IBB	SS2A	0,00004	0,00001
RJsupIIB	BúziosIIA	0,00004	0,00001
SFB	RJinfIIB	0,00005	0,00001
IBB	IBIIA	0,00005	0,00001
AngraA	RJinfB	0,00005	0,00001
RJinfB	AngraIIA	0,00005	0,00001
SFIIA	SS1supIIB	0,00005	0,00001
SS2B	RJsupA	0,00006	0,00001
SS2B	SFIIA	0,00006	0,00001
ParatyB	AngraIIA	0,00006	0,00001
SV1supA	IBB	0,00007	0,00001
SV1supA	RJinfB	0,00007	0,00001
IBB	RJsupA	0,00007	0,00001
SS2A	RJinfB	0,00007	0,00001
ParatyB	RJinfA	0,00008	0,00001
RJinfB	RJsupA	0,00009	0,00001
SFIIA	SFIIB	0,00009	0,00001
SS1infIIB	BúziosIIA	0,00009	0,00001
SS1supIIB	AngraIIA	0,00009	0,00001
RJsupA	SS1infIIB	0,00010	0,00001
SS1infA	IBIIB	0,00011	0,00002
RJinfB	IBIIA	0,00011	0,00001
SV1supIIA	RJinfIIB	0,00011	0,00002

Tabela I.18: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α =0,00021) entre as freqüências alélicas de cada localidade amostrada para o loco Lap-3. Pop=população, Ep= erro padrão.

Рор	Рор	p=	Ep=
SFB	SV1supIIA	0,00005	0,00001
SFB	SS1infIIA	0,00007	0,00001
SFB	SS1supIIA	0,00009	0,00001

Tabela I.19: Diferenças significativas segundo teste exato após correção de bonferroni seqüencial (α=0,00010) entre as freqüências alélicas de cada localidade amostrada para o loco Lgg-3. Em vermelho estão destacadas as comparações significativas entre populações do mesmo grupo genético. Pop=população, Ep= erro padrão.

Pop	Pop	р=	Ep=		
SFA	SV1supIIA	0,00000	0,00000		
SFB	SV1supIIA	0,00000	0,00000		
SFB	SS2IIA	0,00000	0,00000		
IBB	SS1infA	0,00000	0,00000		
IBB	SS2A	0,00000	0,00000		
IBB	RJsupA	0,00000	0,00000		
IBB	SV1infIIA	0,00000	0,00000		
IBB	SV1supIIA	0,00000	0,00000		
IBB	IBIIB	0,00000	0,00000		
IBB	SS1supIIA	0,00000	0,00000		
IBB	SS2IIA	0,00000	0,00000		
IBB	ParatyIIB	0,00000	0,00000		
IBB	AngraIIA	0,00000	0,00000		
SFA	ParatyIIB	0,00001	0,00000		
SFB	AngraIIA	0,00001	0,00000		
SV1infA	IBB	0,00001	0,00000		
SFB	SS1supIIA	0,00002	0,00001		
IBB	SS1supA	0,00002	0,00001		
IBB	IBIIA	0,00003	0,00001		
SFB	IBIIB	0,00004	0,00001		
IBB	SS1infIIA	0,00004	0,00001		
SFB	SV1infA	0,00005	0,00001		
SFB	ParatyIIB	0,00006	0,00001		
SV1supIIA	SS1supIIB	0,00006	0,00001		
SFA	RJsunA	0.00007	0.00001		

Figura I. 20: Pares de locos com desequilíbrio de ligação significativos segundo teste exato seguido da correção de Bonferroni seqüencial para cada população do período I de coleta, sem distinção entre os grupos genéticos. α= nível de significância para cada localidade após a correção de Bonferroni sequencial; Pop= poupações; Ep= Erro padrão.

	Рор	Lo	cos	p=	Ep=	
		Pgm-1	Pgm-2	0,00000	0,00000	
	SF	Pgm-1	Pgi	0,00000	0,00000	
		Pgm-2	Pgi	0,00000	0,00000	
	α=0,00161	Pgm-1	Mdh-1	0,00025	0,00003	
		Mdh-1	Pgi	0,00083	0,00005	
				1		
	SVinfra	Pgm-1	Pgm-2	0,00017	0,00002	
	0.00200	Pgm-1	Pgi	0,00057	0,00003	
	α=0,00200	Pgm-1	Idh-2	0,00179	0,00010	
		Pgm-1	Pgm-2	0,00000	0,00000	
	IB	Pgm-2	Idh-2	0,00006	0,00002	
	0.001.47	Pgm-1	Pgi	0,00034	0,00002	
	α=0,00147	Pgm-1	Idh-2	0,00059	0,00008	
		Pgm-2	Pgi	0,00083	0,00006	
Ι:					1	
lo		Pgm-1	Pgm-2	0,00000	0,00000	
,Í0(SS2	Pgm-1	Pgi	0,00000	0,00000	
Per	0.001(1	Pgm-2	Pgi	0,00000	0,00000	
	α=0,00161	Idh-2	Pgi	0,00003	0,00001	
		Pgm-2	Idh-2	0,00011	0,00003	
	_				1	
	Paraty	Pgm-2	Lap-2	0,00005	0,00001	
	α=0,00139	Pgm-1	Pgm-2	0,00022	0,00003	
]	
	A	Pgm-1	Pgm-2	0,00002	0,00001	
	Angra	Pgi	Mpi	0,00003	0,00001	
	α=0,00227	Pgm-2	Pgi	0,00037	0,00002	
		Pgm-2	Mpi	0,00133	0,00003	
	Riinfra	Pam_1	Pam 2	0 00008	0 00003	
	,	Dam 2	Dai	0.00046	0,00003	
	α=0,00161	rgill-2	гgi	0,00040	0,00005	
	Rjsupra					
	0 00070	Pgm-1	Pgm-2	0,00013	0,00001	
	α=0,00278					

Figura I. 21: Pares de locos com desequilíbrio de ligação significativos segundo teste exato seguido da correção de Bonferroni sequencial para cada população do período II de coleta, sem distinção entre os grupos genéticos. α= nível de significância para cada localidade após a correção de Bonferroni sequencial; Pop= poupações; Ep= Erro padrão.

	Per	íodo II:					Per	ríodo II:		
Рор	Lo	cos	p=	Ep=		Pop	Lo	cos	p=	Ep=
	Pgm-1	Pgm-2	0,00000	0,00000			Pgm-1	Pgm-2	0,00000	0,00000
SFII	Pgm-1	Pgi	0,00000	0,00000		SS1supraII	Pgm-1	Pgi	0,00000	0,00000
$\alpha = 0.00217$	Pgm-2	Pgi	0,00006	0,00001		0.00017	Pgm-2	Pgi	0,00000	0,00000
u 0,00217	Pgm-2	Idh-2	0.00043	0.00003		α=0,00217	Idh-2	Pgi	0,00000	0,00000
	- 8		.,	.,	J		Pgm-2	Idh-2	0,00002	0,00001
SV1infraII]		Pgm-1	Idh-2	0,00011	0,00001
0.00102	Pgm-1	Pgm-2	0,00015	0,00002						
α=0,00192						SCOIL.	Pgm-1	Pgm-2	0,00021	0,00001
SV1supraII					1	55211	Idh-2	Pgi	0,00070	0,00003
Svibupium	Pgm-1	Pgm-2	0,00148	0,00003		α=0,00156	Pgm-2	Idh-2	0,00129	0,00005
α=0,00192	-	-					Pgm-1	Idh-2	0,00135	0,00005
			r		1					
	Pgm-1	Pgm-2	0,00000	0,00000		ParatyII	Pgm-2	Mdh-1	0,00041	0,00003
	Pgm-2	Mdh-1	0,00000	0,00000		0.001(1	Pgm-1	Mdh-1	0,00044	0,00003
	Pgm-2	Idh-2	0,00000	0,00000	1	α=0,00161	Pgm-1	Pgm-2	0,00114	0,00006
	Pgm-1	Pgi	0,00000	0,00000		RJinfraII				
	Pgm-2	Pgi	0,00000	0,00000			Pgm-1	Pgm-2	0,00001	0,00001
IBII	Mdh-1	Pgi	0,00000	0,00000	1	α=0,00208				
α=0,00152	Pgm-2	Lap-2	0,00000	0,00000	1		Pgm-1	Pgm-2	0,00010	0,00001
,	Pgi	Lap-2	0,00001	0,00001	1	BúziosII	Pgm-2	Mdh-1	0,00039	0,00002
	Pgm-1	Mdh-1	0,00005	0,00001	1	0.00050	Pgm-1	Idh-2	0,00100	0,00009
	Idh-2	Pgi	0,00009	0,00002	1	α=0,00250	Pgm-2	Idh-2	0,00100	0,00005
	Pgm-1	Idh-2	0,00011	0,00003	1		Mdh-1	Idh-2	0,00150	0,00007
	Pgm-1	Lap-2	0,00020	0,00004]					

	Pgm-1	Pgm-2	0,00000	0,00000
	Pgm-1	Idh-2	0,00000	0,00000
SS1infraII	Pgm-2	Idh-2	0,00000	0,00000
α=0,00167	Pgm-1	Pgi	0,00000	0,00000
	Pgm-2	Pgi	0,00000	0,00000
	Idh-2	Pgi	0,00035	0,00002

Tabela I.22: Distâncias genéticas (Nei, 1978) par a par entre todas as populações analisadas (1-SFAI; 2-SV1infraAI; 3-SV1supraAI; 4-IBAI; 5-SS1infraAI; 6-SS1supraAI; 7-SS2AI; 8-AngraAI; 9-RJinfraAI; 10-RJsupraAI; 11-SFBI; 12-IBBI; 13-SS2BI; 14-ParatyBI; 15-RJinfraB; 16-BúziosB; 17-SFAII; 18-SVinfraAII; 19-SVsupraAII; 20-IBAII; 21-SS1infraAII; 22-SS1supraAII; 23-SS2AII; 24-AngraAII; 25-BúziosAII; 26-SFBII; 27-IBBII; 28-SS1infraBII; 29-SS1supraBII; 30-ParatyBII; 31-RJinfraBII; 32-RJsupraBII; 33-BúziosBII).

População	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	***															
2	0,012	***														
3	0,016	0,004	***													
4	0,017	0,000	0,001	***												
5	0,012	0,000	0,002	0,004	***											
6	0,009	0,003	0,010	0,007	0,002	***										
7	0,017	0,000	-0,002	-0,001	-0,002	0,005	***									
8	0,012	-0,001	0,003	0,002	0,002	0,009	0,000	***								
9	0,031	0,005	0,019	0,005	0,012	0,009	0,011	0,013	***							
10	0,028	0,002	0,009	0,005	0,005	0,011	0,003	0,004	0,006	***						
11	0,310	0,323	0,323	0,307	0,324	0,308	0,327	0,334	0,313	0,344	***					
12	0,318	0,344	0,349	0,336	0,352	0,332	0,357	0,355	0,345	0,367	0,007	***				
13	0,301	0,314	0,317	0,305	0,312	0,291	0,319	0,328	0,308	0,330	0,009	0,026	***			
14	0,325	0,335	0,339	0,330	0,334	0,312	0,343	0,354	0,323	0,356	0,012	0,020	0,030	***		
15	0,299	0,306	0,310	0,292	0,313	0,285	0,314	0,322	0,292	0,321	0,026	0,025	0,010	0,039	***	
16	0,306	0,308	0,312	0,301	0,313	0,290	0,315	0,324	0,295	0,324	0,012	0,018	0,015	0,010	0,021	***
17	0,012	0,000	0,002	-0,001	0,005	0,008	0,001	0,000	0,007	0,006	0,317	0,331	0,316	0,337	0,301	0,305
18	0,011	0,000	0,004	0,005	-0,001	0,003	0,000	0,000	0,013	0,003	0,329	0,354	0,315	0,338	0,312	0,315
19	0,014	0,003	0,004	0,008	-0,001	0,003	0,001	0,004	0,016	0,006	0,327	0,354	0,309	0,334	0,310	0,309
20	0,019	0,002	0,012	0,001	0,009	0,006	0,007	0,006	-0,002	0,006	0,310	0,333	0,308	0,327	0,289	0,299
21	0,011	0,000	0,003	0,000	0,001	0,005	0,000	0,000	0,007	0,004	0,322	0,353	0,315	0,342	0,315	0,317
22	0,009	-0,002	0,003	0,001	-0,001	0,001	0,000	0,001	0,009	0,004	0,323	0,346	0,311	0,334	0,304	0,310
23	0,008	0,001	0,001	0,004	0,000	0,003	0,000	0,002	0,017	0,008	0,324	0,348	0,311	0,331	0,306	0,312
24	0,012	0,001	0,007	0,005	0,002	0,004	0,003	0,002	0,011	0,007	0,328	0,353	0,317	0,342	0,311	0,316
25	0,035	0,009	0,003	0,009	0,003	0,024	0,001	0,005	0,028	0,009	0,345	0,372	0,371	0,363	0,377	0,368
26	0,386	0,363	0,372	0,350	0,368	0,344	0,370	0,384	0,338	0,360	0,027	0,039	0,011	0,039	0,011	0,024
27	0,331	0,331	0,333	0,318	0,330	0,304	0,334	0,351	0,312	0,347	0,019	0,039	0,003	0,027	0,010	0,016
28	0,335	0,332	0,337	0,327	0,329	0,309	0,337	0,353	0,319	0,343	0,024	0,042	0,004	0,028	0,016	0,017
29	0,337	0,350	0,357	0,341	0,361	0,334	0,363	0,364	0,339	0,370	0,016	0,017	0,006	0,031	0,011	0,012
30	0,354	0,358	0,365	0,349	0,358	0,331	0,366	0,381	0,336	0,375	0,011	0,020	0,007	0,015	0,014	0,014
31	0,327	0,328	0,334	0,317	0,333	0,307	0,336	0,346	0,312	0,342	0,016	0,021	0,003	0,034	0,006	0,011
32	0,315	0,324	0,326	0,310	0,329	0,306	0,330	0,339	0,316	0,348	0,014	0,020	0,005	0,030	0,007	0,017
33	0,365	0,375	0,374	0,368	0,375	0,357	0,380	0,391	0,372	0,391	0,016	0,015	0,010	0,029	0,013	0,019

Takala I 22.	(a a matimum a a a a)
1 adeia 1.22: (continuação

População	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
18	0,004	***														
19	0,008	0,000	***													
20	0,001	0,007	0,012	***												
21	0,001	0,001	0,004	0,003	***											
22	0,001	-0,001	0,001	0,004	0,000	***										
23	0,004	-0,001	0,001	0,010	0,003	-0,001	***									
24	0,004	0,001	0,002	0,006	0,002	0,001	0,003	***								
25	0,010	0,007	0,009	0,021	0,007	0,010	0,009	0,013	***							
26	0,365	0,368	0,362	0,344	0,373	0,363	0,369	0,371	0,410	***						
27	0,333	0,334	0,327	0,319	0,337	0,329	0,329	0,335	0,392	0,010	***					
28	0,339	0,334	0,326	0,330	0,341	0,332	0,331	0,339	0,391	0,011	0,001	***				
29	0,344	0,357	0,356	0,337	0,360	0,350	0,352	0,357	0,423	0,015	0,011	0,015	***			
30	0,359	0,365	0,357	0,345	0,368	0,358	0,360	0,366	0,402	0,012	0,001	0,000	0,007	***		
31	0,325	0,337	0,330	0,315	0,338	0,328	0,332	0,335	0,395	0,005	0,004	0,007	0,004	0,003	***	
32	0,320	0,332	0,330	0,314	0,331	0,322	0,324	0,330	0,387	0,021	0,008	0,012	0,008	0,011	0,003	***
33	0,371	0,379	0,375	0,373	0,385	0,375	0,374	0,384	0,412	0,018	0,012	0,001	0,013	0,006	0,007	0,006

Apêndice II:

Neste apêndice estão mostrados os resultados indivíduo por indivíduo do teste de atribuição de genótipos feito utilizando o programa Structure (Pritchard et al, 2000 e Falush et al, 2003). Estão inclusos apenas os dados para K=2 da simulação que obteve a maior probabilidade.

Todos os indivíduos amostrados nos dois períodos de coleta foram inclusos nesta análise.

Os parâmetros da análise foram:

- 995 indivíduos
- 14 locos
- 50000 Burn-in period
- 500000 Iterações

Na tabela II.1 pode ser vista a proporção de pertencimento de cada um dos grupos geneticamente distintos (A e B) segundo a divisão pelos locos Pgm-1, Pgm-2 e Pgi, em cada um dos dois clusters da análise, a partir destes dados é possível notar claramente a grande similaridade das duas divisões. Os indivíduos marcados com "?" são aqueles classificados como possíveis híbridos ou que não possuíam informação nos locos utilizados para a separação.

Tabela II.1: Proporção de pertencimento de cada uma dos grupos genéticos (A e B) segundo a divisão pelos loco Pgm-1, Pgm-2 e Pgi nos dois clusters encontrados (1 e 2). n= número de indivíduos, ?= possíveis híbridos ou sem informação nos locos de divisão.

Pop\cluster	1	2	n:
?	0,626	0,374	137
Α	0,018	0,982	555
В	0,983	0,017	303

Na tabela II.2 estão os valores das proporções de pertencimento de cada indivíduo para cada um dos dois *clusters*, também está indicado para qual dos grupos cada indivíduo foi designado segundo a divisão visual pelos locos Pgm-1, Pgm-2 e Pgi. Novamente os possíveis híbridos e indivíduos sem informação nos locos de divisão foram marcados com "?". A figura II.1 é a mesma

representação de proporção de pertencimento, no entanto de uma forma gráfica, cada barra representa um indivíduo e cada uma das cores a porcentagem de pertencimento no cluster representado pela cor. E por fim a tabela II.3 indica as freqüências alélicas de todos os locos testados em cada um dos clusters.

Tabela II.2: Proporção de pertencimento de cada indivíduo em cada um dos dois *clusters* para o período I de coleta. O grupo genético indicado foi feito a partir dos locos Pgm-1, Pgm-2 e Pgi. ?= indivíduos possíveis híbridos ou sem informação nos locos Pgm-1, Pgm-2 e Pgi.

			Pr	Prob.				Pr	ob.				Pr	ob.
			perten	cimento				perten	cimento				perten	cimento
Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2
1	SF1	A	0.013	0.987	60	SF60	?	0.840	0.160	119	SV1infra56	?	0.331	0.669
2	SF2	А	0.007	0.993	61	SF61	?	0.858	0.142	120	SV1infra57	?	0.331	0.669
3	SF3	А	0.137	0.863	62	SF62	?	0.673	0.327	121	SV1infra58	?	0.017	0.983
4	SF4	A	0.011	0.989	63	SF63	?	0.147	0.853	122	SV1infra59	?	0.014	0.986
5	SF5	A	0.008	0.992	64	SV1infra1	A	0.011	0.989	123	SV1infra60	?	0.539	0.461
6	SF6	A	0,009	0.991	65	SV1infra2	A	0.011	0.989	123	SV1supra1	Ā	0.016	0.984
7	SF7	A	0.008	0.992	66	SV1infra3	A	0.009	0.991	125	SV1supra2	A	0.008	0.992
8	SF8	A	0.007	0.993	67	SV1infra4	A	0.015	0.985	126	SV1supra3	A	0.009	0.991
9	SF9	A	0.007	0.993	68	SV1infra5	A	0.008	0.992	120	SV1supra4	A	0,009	0.991
10	SE10	Δ	0.019	0.981	69	SV1infra6	Δ	0.012	0.988	127	SV1supra5	Δ	0.013	0.987
11	SF11	A	0.011	0.989	70	SV1infra7	A	0.009	0,991	120	SV1supra6	A	0.012	0.988
12	SF12	A	0.005	0.995	71	SV1infra8	A	0.009	0.991	130	SV1supra7	A	0.007	0.993
13	SF13	A	0.007	0.993	72	SV1infra9	A	0.008	0.992	131	SV1supra8	A	0.005	0.995
14	SF14	A	0.006	0.994	73	SV1infra10	A	0.005	0.995	132	SV1supra9	A	0,009	0.991
15	SF15	A	0.005	0.995	74	SV1infra11	A	0.007	0.993	133	SV1supra10	A	0.029	0.971
16	SF16	A	0.006	0.994	75	SV1infra12	A	0.005	0.995	134	SV1supra11	A	0.008	0.992
17	SF17	A	0.012	0.988	76	SV1infra13	A	0.007	0.993	135	SV1supra12	A	0.005	0.995
18	SF18	A	0.478	0.522	77	SV1infra14	A	0.007	0.993	136	SV1supra13	A	0.005	0.995
19	SF19	A	0.006	0.994	78	SV1infra15	A	0.010	0,990	137	SV1supra14	A	0.005	0.995
20	SF20	A	0.006	0.994	79	SV1infra16	A	0.007	0.993	138	SV1supra15	A	0.006	0.994
20	SF21	A	0.023	0.977	80	SV1infra17	A	0.039	0.961	139	SV1supra16	A	0.010	0,990
22	SF22	B	0.987	0.013	81	SV1infra18	A	0.012	0.988	140	SV1supra17	A	0.005	0.995
23	SF23	B	0.993	0.007	82	SV1infra19	A	0.009	0.991	141	SV1supra18	A	0.006	0.994
24	SF24	B	0.991	0.009	83	SV1infra20	A	0.013	0.987	142	SV1supra19	A	0.005	0.995
25	SF25	B	0.987	0.013	84	SV1infra21	A	0.006	0.994	143	SV1supra20	A	0.015	0.985
26	SF26	B	0.994	0.006	85	SV1infra22	A	0.005	0.995	144	SV1supra20	A	0.009	0.991
27	SF27	B	0.994	0.006	86	SV1infra23	A	0.008	0.992	145	SV1supra22	A	0.008	0.992
28	SF28	B	0.991	0.009	87	SV1infra24	A	0.010	0,990	146	SV1supra23	A	0.011	0.989
29	SF29	B	0.994	0.006	88	SV1infra25	A	0.008	0.992	147	SV1supra24	A	0.011	0.989
30	SF30	B	0.994	0.006	89	SV1infra26	A	0.005	0.995	148	SV1supra25	A	0.022	0.978
31	SF31	B	0.988	0.012	90	SV1infra27	A	0.009	0.991	149	SV1supra26	A	0.012	0.988
32	SF32	B	0.916	0.084	91	SV1infra28	A	0.088	0.912	150	SV1supra27	B	0.992	0.008
33	SF33	B	0.920	0.080	92	SV1infra29	A	0.021	0.979	151	SV1supra28	?	0.481	0.519
34	SF34	B	0.980	0.020	93	SV1infra30	A	0.010	0.990	152	SV1supra29	?	0.284	0.716
35	SF35	B	0.982	0.018	94	SV1infra31	A	0.005	0.995	153	SV1supra30	?	0.805	0.195
36	SF36	B	0.956	0.044	95	SV1infra32	A	0.005	0.995	154	IB1	Å	0.009	0.991
37	SF37	B	0.970	0.030	96	SV1infra33	A	0.007	0.993	155	IB2	A	0.013	0.987
38	SF38	B	0.995	0.005	97	SV1infra34	A	0.005	0.995	156	IB3	A	0.013	0.987
39	SF39	B	0.980	0.020	98	SV1infra35	A	0.006	0.994	157	IB4	A	0.012	0.988
40	SF40	B	0.995	0.005	99	SV1infra36	A	0.004	0.996	158	IB5	A	0.011	0.989
41	SF41	В	0.976	0.024	100	SV1infra37	А	0.006	0.994	159	IB6	А	0.006	0.994
42	SF42	B	0.993	0.007	101	SV1infra38	A	0.006	0.994	160	IB7	A	0.007	0.993
43	SF43	B	0,993	0,007	102	SV1infra39	A	0,005	0,995	161	IB8	A	0,007	0,993
44	SF44	B	0,987	0,013	103	SV1infra40	A	0,040	0,960	162	IB9	A	0,007	0,993
45	SF45	В	0,996	0,004	104	SV1infra41	А	0,393	0,607	163	IB10	Α	0,008	0,992
46	SF46	В	0.993	0,007	105	SV1infra42	А	0.009	0,991	164	IB11	Α	0.008	0.992
47	SF47	В	0.993	0,007	106	SV1infra43	А	0,096	0,904	165	IB12	А	0,006	0,994
48	SF48	В	0.817	0,183	107	SV1infra44	А	0,012	0,988	166	IB13	А	0,009	0,991
49	SF49	B	0,995	0,005	108	SV1infra45	A	0,019	0,981	167	IB14	A	0,007	0,993
50	SF50	В	0,993	0,007	109	SV1infra46	A	0,008	0,992	168	IB15	A	0,006	0,994
51	SF51	В	0,966	0,034	110	SV1infra47	А	0,023	0,977	169	IB16	Α	0,018	0,982
52	SF52	В	0,578	0,422	111	SV1infra48	А	0,011	0,989	170	IB17	Α	0,014	0,986
53	SF53	B	0,994	0,006	112	SV1infra49	В	0,994	0,006	171	IB18	A	0,006	0,994
54	SF54	B	0,994	0,006	113	SV1infra50	B	0,990	0,010	172	IB19	A	0,037	0,963
55	SF55	В	0.995	0,005	114	SV1infra51	В	0.977	0,023	173	IB20	Α	0.557	0.443
56	SF56	В	0,988	0,012	115	SV1infra52	В	0,995	0,005	174	IB21	А	0,005	0,995
57	SF57	?	0,943	0,057	116	SV1infra53	?	0,202	0,798	175	IB22	Α	0,012	0,988
58	SF58	?	0,756	0,244	117	SV1infra54	?	0,642	0,358	176	IB23	Α	0,004	0,996
59	SF59	?	0,462	0,538	118	SV1infra55	?	0,331	0,669	177	IB24	Α	0,007	0,993

			Pr	ob.				Pr	ob.				Pr	ob.
			perten	cimento				perten	cimento				perten	cimento
Ind.	Pop e n⁰	grupo	1	2	Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2
178	IB25	Α	0,011	0,989	242	SS1supra3	Α	0,006	0,994	306	SS2-36	В	0,988	0,012
179	IB26	В	0,993	0,007	243	SS1supra4	Α	0,009	0,991	307	SS2-37	В	0,864	0,136
180	IB27	В	0,994	0,006	244	SS1supra5	Α	0,008	0,992	308	SS2-38	В	0,992	0,008
181	IB28	В	0,994	0,006	245	SS1supra6	Α	0,013	0,987	309	SS2-39	В	0,994	0,006
182	IB29	В	0,985	0,015	246	SS1supra7	Α	0,023	0,977	310	SS2-40	?	0,975	0,025
183	IB30	В	0,995	0,005	247	SS1supra8	Α	0,006	0,994	311	SS2-41	?	0,842	0,158
184	IB31	В	0,993	0,007	248	SS1supra9	Α	0,012	0,988	312	SS2-42	?	0,904	0,096
185	IB32	В	0,995	0,005	249	SS1supra10	Α	0,006	0,994	313	SS2-43	?	0,978	0,022
186	IB33	В	0,978	0,022	250	SS1supra11	Α	0,008	0,992	314	SS2-44	?	0,032	0,968
187	IB34	В	0,995	0,005	251	SS1supra12	Α	0,006	0,994	315	Paraty1	Α	0,006	0,994
188	IB35	В	0,986	0,014	252	SS1supra13	Α	0,029	0,971	316	Paraty2	Α	0,008	0,992
189	IB36	В	0,994	0,006	253	SS1supra14	Α	0,010	0,990	317	Paraty3	A	0,005	0,995
190	IB37	В	0,934	0,066	254	SS1supra15	A	0,005	0,995	318	Paraty4	A	0,412	0,588
191	IB38	В	0,858	0,142	255	SS1supra16	A	0,022	0,978	319	Paraty5	A	0,005	0,995
192	IB39	В	0,991	0,009	256	SS1supra17	Α	0,008	0,992	320	Paraty6	В	0,945	0,055
193	IB40	В	0,992	0,008	257	SS1supra18	A	0,008	0,992	321	Paraty7	В	0,991	0,009
194	IB41	В	0,986	0,014	258	SS1supra19	A	0,006	0,994	322	Paraty8	В	0,991	0,009
195	IB42	В	0,993	0,007	259	SS1supra20	A	0,006	0,994	323	Paraty9	В	0,863	0,137
196	IB43	В	0,993	0,007	260	SS1supra21	A	0,022	0,978	324	Paraty10	В	0,996	0,004
197	IB44	?	0,947	0,053	261	SS1supra22	A	0,013	0,987	325	Paraty11	В	0,995	0,005
198	IB45	?	0,550	0,450	262	SS1supra23	A	0,008	0,992	326	Paraty12	В	0,993	0,007
199	IB46	?	0,935	0,065	263	SS1supra24	A	0,007	0,993	327	Paraty13	В	0,997	0,003
200	IB47	?	0,970	0,030	264	SS1supra25	A	0,005	0,995	328	Paraty14	В	0,989	0,011
201	IB48	?	0,467	0,533	265	SS1supra26	A	0,006	0,994	329	Paraty15	В	0,992	0,008
202	IB49	?	0,977	0,023	266	SS1supra27	A	0,008	0,992	330	Paraty16	В	0,992	0,008
203	IB50	?	0,688	0,312	267	SS1supra28	A	0,018	0,982	331	Paraty17	В	0,991	0,009
204	SS1infra1	A	0,005	0,995	268	SS1supra29	A	0,012	0,988	332	Paraty18	В	0,991	0,009
205	SS1infra2	A	0,005	0,995	269	SS1supra30	В	0,953	0,047	333	Paraty19	В	0,994	0,006
206	SS1infra3	A	0,007	0,993	270	SS1supra31	?	0,064	0,936	334	Paraty20	В	0,987	0,013
207	SS1infra4	A	0,008	0,992	271	SS2-1	A	0,005	0,995	335	Paraty21	В	0,994	0,006
208	SS1infra5	A	0,020	0,980	272	SS2-2	A	0,006	0,994	336	Paraty22	В	0,986	0,014
209	SS1infra6	A	0,005	0,995	273	SS2-3	A	0,006	0,994	337	Paraty23	B	0,989	0,011
210	SSIinfra/	A	0,006	0,994	274	SS2-4	A	0,006	0,994	338	Paraty24	B	0,990	0,010
211	SS1infra8	A	0,006	0,994	275	<u>SS2-5</u>	A	0,008	0,992	339	Paraty25	В	0,991	0,009
212	SSTinfra9	A	0,020	0,980	276	SS2-6	A	0,007	0,993	340	Paraty26	B	0,991	0,009
213	SSIinfralo	A	0,005	0,995	277	<u>SS2-/</u>	A	0,011	0,989	341	Paraty27	В	0,995	0,005
214	SSIInfrall	A	0,015	0,985	278	552-8	A	0,008	0,992	342	Paraty28	B	0,959	0,041
215	SSIInfra12	A	0,007	0,993	279	552-9	A	0,006	0,994	343	Paraty29	<u> </u>	0,862	0,138
210	SS1infra13	A	0,007	0,993	280	<u>552-10</u>	A	0,005	0,995	244	Paraty30	<i>!</i>	0,720	0,280
217	SS1IIIIa14	A	0,005	0,995	201	SS2-11 SS2-12	A	0,007	0,995	245	Paraty31	<u> </u>	0,962	0,038
218	SSIIIIIais SSIinfral6	A	0,003	0,993	202	SS2-12 SS2-12	A	0,000	0,994	247	Paraty32	<u> </u>	0,970	0,050
219	SS1infra17	A	0,008	0,992	285	SS2-15 SS2-14	A	0,003	0,995	247	Paraty33	? 9	0,930	0,030
220	SSIIIIIai /	A A	0,008	0,992	204	SS2-14 SS2-15	A A	0,007	0,995	340	Faialy34 Daraty25	2 9	0,790	0,204
221	SS1infra10	A .	0,005	0,993	203	SS2-13 SS2-14	A A	0,007	0.090	250	Daraty26	2 9	0,799	0.109
222	SS1infra20	Δ A	0,000	0,994	280	SS2-10 SS2-17	A	0,011	0,909	351	Paraty37	2 9	0,302	0.242
223	SS1infra21	Δ A	0,008	0,992	287	SS2-17	Δ Δ	0.005	0,905	352	Paraty38	2	0.386	0.614
224	SS1infra??	Δ	0.006	0.994	280	SS2-10	Δ	0.020	0.980	352	Paraty30	2	0.560	0.440
225	SS1infra23	Δ	0.014	0.986	207	SS2-17	Δ	0.004	0,996	354	Anoral	Δ	0.016	0.984
220	SS1infra24	Δ	0.012	0.988	291	SS2-20	Δ	0.004	0,996	355	Anora?	Δ	0,009	0 991
227	SS1infra25	Δ	0.012	0,985	292	SS2-22 SS2-22	Δ	0,009	0,991	356	Angra3	Δ	0.012	0.988
220	SS1infra26	Δ	0,015	0,903	292	SS2-22 SS2-23	Δ	0.014	0.986	357	Angra	Δ	0.012	0,988
230	SS1infra27	Δ	0.019	0.981	294	SS2-25	Δ	0.013	0.987	358	Anoras	Δ	0.044	0.956
231	SS1infra28	A	0.008	0.992	295	SS2-24 SS2-25	R	0 994	0.006	359	Anora6	A	0,009	0 991
232	SS1infra29	A	0.013	0.987	296	SS2-26	B	0.994	0.006	360	Angra7	A	0.039	0.961
233	SS1infra30	A	0.008	0.992	297	SS2-20 SS2-27	B	0.986	0.014	361	Angra8	A	0.007	0.993
234	SS1infra31	A	0.006	0.994	298	SS2-28	B	0 984	0.016	362	Angra9	A	0.008	0 992
235	SS1infra32	B	0.994	0.006	299	SS2-29	B	0.993	0.007	363	Angra10	A	0.007	0.993
236	SS1infra33	B	0.992	0.008	300	SS2-30	B	0.992	0.008	364	Angrall	A	0.008	0.992
237	SS1infra34	2	0 1 9 8	0.802	301	SS2-31	B	0 993	0.007	365	Angra12	A	0.005	0 995
238	SS1infra35	?	0.023	0.977	302	SS2-32	B	0.992	0.008	366	Angra13	A	0,008	0.992
239	SS1infra36	?	0.967	0.033	303	SS2-32 SS2-33	B	0.989	0.011	367	Angra14	A	0.005	0.995
240	SS1supra1	A	0.005	0.995	304	SS2-34	B	0.993	0.007	368	Angra15	A	0.009	0.991
241	SS1supra?	A	0.005	0.995	305	<u>SS2-35</u>	B	0.973	0.027	369	Angral6	A	0.013	0.987

			Pr	ob.				Pr	ob.				Pr	ob.
			perten	cimento				perten	cimento				perten	cimento
Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2
370	Angra17	A	0,135	0,865	434	RJinfra36	?	0,882	0,118	498	Búzios30	?	0,932	0,068
371	Angra18	Α	0,007	0,993	435	RJinfra37	?	0,993	0,007	499	Búzios31	?	0,982	0,018
372	Angra19	Α	0,005	0,995	436	RJinfra38	?	0,976	0,024	500	Búzios32	?	0,878	0,122
373	Angra20	Α	0,008	0,992	437	RJinfra39	?	0,925	0,075	501	Búzios33	?	0,769	0,231
374	Angra21	Α	0,005	0,995	438	RJinfra40	?	0,847	0,153	502	SFII1	А	0,011	0,989
375	Angra22	Α	0,005	0,995	439	RJsupra1	Α	0,008	0,992	503	SFII2	Α	0,011	0,989
376	Angra23	Α	0,009	0,991	440	RJsupra2	Α	0,009	0,991	504	SFII3	Α	0,008	0,992
377	Angra24	Α	0,021	0,979	441	RJsupra3	A	0,006	0,994	505	SFII4	Α	0,007	0,993
378	Angra25	A	0,009	0,991	442	RJsupra4	A	0,005	0,995	506	SFII5	A	0,012	0,988
379	Angra26	A	0,018	0,982	443	RJsupra5	A	0,005	0,995	507	SFII6	A	0,006	0,994
380	Angra27	A	0,023	0,977	444	RJsupra6	A	0,004	0,996	508	SFII7	A	0,014	0,986
381	Angra28	A	0,008	0,992	445	RJsupra/	A	0,005	0,995	509	SFII8	A	0,007	0,993
382	Angra29	A	0,006	0,994	446	RJsupra8	A	0,032	0,968	510	SFII9	A	0,006	0,994
383	Angra30	A	0,004	0,996	44/	RJsupra9	A	0,009	0,991	511	SFIII0	A	0,030	0,970
384	Angra31	A	0,004	0,996	448	RJsupra10	A	0,008	0,992	512	SFII11	A	0,011	0,989
385	Angra33	A B	0,000	0,994	449	R Jsupra12	A	0,005	0,995	514	SFII12 SFII13	A	0,013	0,983
380	Angra34	B	0,990	0,010	450	RJSupra12	A	0,000	0,994	515	SFII13 SFII14	A	0,010	0,990
388	Angra35	B	0,994	0,000	451	R Isupra14	Δ	0,009	0,991	516	SFII15	Δ	0,000	0,994
389	Angra36	B	0,994	0,000	453	R Isupra15	A	0.007	0.993	517	SFII16	A	0,007	0,994
390	Angra37	B	0.994	0.006	454	RJsupra16	A	0.008	0.992	518	SFII17	A	0.011	0.989
391	Angra38	2	0.140	0.860	455	R Isupra17	A	0.025	0.975	519	SFII18	A	0.008	0.992
392	Angra39	?	0.136	0.864	456	RJsupra18	A	0.010	0.990	520	SFII19	A	0.006	0.994
393	Angra40	?	0,974	0,026	457	RJsupra19	Α	0,012	0,988	521	SFII20	А	0,015	0,985
394	Angra41	?	0,841	0,159	458	RJsupra20	А	0,022	0,978	522	SFII21	А	0,012	0,988
395	Angra42	?	0,938	0,062	459	RJsupra21	Α	0,048	0,952	523	SFII22	А	0,009	0,991
396	Angra43	?	0,988	0,012	460	RJsupra22	Α	0,047	0,953	524	SFII23	А	0,004	0,996
397	Angra44	?	0,011	0,989	461	RJsupra23	В	0,987	0,013	525	SFII24	А	0,006	0,994
398	Angra45	?	0,226	0,774	462	RJsupra24	В	0,995	0,005	526	SFII25	Α	0,029	0,971
399	RJinfra1	Α	0,009	0,991	463	RJsupra25	В	0,996	0,004	527	SFII26	Α	0,009	0,991
400	RJinfra2	A	0,013	0,987	464	RJsupra26	В	0,990	0,010	528	SFII27	A	0,011	0,989
401	RJinfra3	A	0,713	0,287	465	RJsupra27	?	0,915	0,085	529	SFII28	A	0,006	0,994
402	RJinfra4	A	0,007	0,993	466	RJsupra28	?	0,255	0,745	530	SFII29	A	0,023	0,977
403	RJinfra5	A	0,006	0,994	467	RJsupra29	?	0,013	0,987	531	SFII30	A	0,006	0,994
404	RJinfra6	A	0,013	0,987	468	RJsupra30	?	0,008	0,992	532	SFII31	A	0,005	0,995
405	RJinfra/	A	0,012	0,988	469	Buziosi Dácia 2	A	0,006	0,994	533	SFII32	B	0,995	0,005
406	R Jinfrað	A	0,008	0,992	470	Buzios2	B	0,992	0,008	534	SFII33	B	0,995	0,005
407	R Jinfra10	A A	0,018	0,982	4/1	Búzios/	D B	0,993	0,005	536	SF1134 SF1135	D B	0,992	0,008
408	R Jinfra 11	Δ	0,023	0.989	473	Búzios5	B	0,992	0,000	537	SFII36	B	0.993	0,007
410	R Jinfra 12	B	0.983	0.017	474	Búzios6	B	0.974	0.026	538	SFII37	B	0,995	0,007
411	R Jinfra13	B	0.992	0.008	475	Búzios7	B	0.986	0.014	539	SFII38	B	0.993	0.007
412	RJinfra14	B	0.987	0.013	476	Búzios8	B	0.994	0.006	540	SFII39	B	0.993	0.007
413	RJinfra15	B	0,995	0,005	477	Búzios9	B	0,990	0,010	541	SFII40	?	0,848	0,152
414	RJinfra16	В	0,993	0,007	478	Búzios10	В	0,947	0,053	542	SFII41	?	0,051	0,949
415	RJinfra17	В	0,991	0,009	479	Búzios11	В	0,984	0,016	543	SFII42	?	0,226	0,774
416	RJinfra18	B	0,993	0,007	480	Búzios12	В	0,990	0,010	544	SFII43	?	0,022	0,978
417	RJinfra19	В	0,989	0,011	481	Búzios13	В	0,995	0,005	545	SFII44	?	0,679	0,321
418	RJinfra20	В	0,993	0,007	482	Búzios14	В	0,992	0,008	546	SV1infraII1	A	0,007	0,993
419	RJinfra21	В	0,994	0,006	483	Búzios15	В	0,995	0,005	547	SV1infraII2	Α	0,006	0,994
420	RJinfra22	В	0,994	0,006	484	Búzios16	В	0,996	0,004	548	SV1infraII3	A	0,005	0,995
421	RJinfra23	В	0,914	0,086	485	Búzios17	В	0,989	0,011	549	SV1infraII4	A	0,130	0,870
422	RJinfra24	B	0,897	0,103	486	Búzios18	В	0,989	0,011	550	SV1infraII5	A	0,011	0,989
423	RJinfra25	B	0,993	0,007	487	Búzios19	B	0,995	0,005	551	SV1infraII6	A	0,006	0,994
424	KJinfra26	В	0,991	0,009	488	Buzios20	В	0,995	0,005	552	SV1intrall7	A	0,005	0,995
425	KJinfra27	В	0,990	0,010	489	Buzios21	В	0,995	0,005	553	SV1infrall8	A	0,012	0,988
426	KJINITa28	B	0,989	0,011	490	Buzios22	B	0,994	0,000	555	SV1infra119	A	0,009	0,991
427	RJIIIITa29	D D	0,989	0,011	491	Búzios24	10 10	0,993	0,007	555	SV1infraII10	A	0,041	0,939
420	R linfra 21	P	0,980	0,014	492	Búzios25	2 9	0,394	0,000	550	SV1infraII12	A A	0,000	0,994
429	R linfra37	B	0,993	0,007	495	Búzios26	1 9	0.987	0,222	558	SV1infraII12	Δ	0,000	0.001
431	RJinfra33	2	0.900	0.100	495	Búzios27	?	0.504	0.496	559	SV1infraII14	A	0.005	0.995
432	RJinfra34	?	0.974	0.026	496	Búzios28	?	0.797	0.203	560	SV1infraII15	A	0.006	0.994
433	RJinfra35	?	0.820	0,180	497	Búzios29	?	0.244	0.756	561	SV1infraII16	A	0.008	0.992

			Pr	ob.				Pr	ob.				Pr	ob.
			perten	cimento				perten	cimento				perten	cimento
Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2
562	SV1infraII17	A	0.006	0 994	626	IBIII	A	0.010	0 990	690	SS1infraII4	A	0.005	0 995
563	SV1infraII18	A	0.006	0.994	627	IBII2	A	0.008	0.992	691	SS1infraII5	A	0.006	0.994
564	SV1infraII19	A	0.009	0.991	628	IBII3	A	0.006	0.994	692	SS1infraII6	A	0.008	0.992
565	SV1infraII20	A	0.005	0.995	629	IBII4	A	0.012	0.988	693	SS1infraII7	A	0.005	0.995
566	SV1infraII21	A	0.009	0.991	630	IBII5	A	0.014	0.986	694	SS1infraII8	A	0.009	0.991
567	SV1infraII22	A	0.008	0.992	631	IBII6	A	0.006	0.994	695	SS1infraII9	A	0.012	0.988
568	SV1infraII23	A	0.005	0.995	632	IBII7	A	0.008	0.992	696	SS1infraII10	A	0.012	0.988
569	SV1infraII24	A	0.008	0.992	633	IBII8	A	0.019	0.981	697	SS1infraII11	A	0.007	0.993
570	SV1infraII25	A	0.008	0.992	634	IBII9	A	0.011	0.989	698	SS1infraII12	A	0.005	0.995
571	SV1infraII26	А	0.006	0.994	635	IBII10	А	0.006	0.994	699	SS1infraII13	А	0.005	0.995
572	SV1infraII27	А	0,006	0,994	636	IBII11	А	0,005	0,995	700	SS1infraII14	Α	0,004	0,996
573	SV1infraII28	Α	0,005	0,995	637	IBII12	Α	0,005	0,995	701	SS1infraII15	Α	0,008	0,992
574	SV1infraII29	Α	0,022	0,978	638	IBII13	Α	0,008	0,992	702	SS1infraII16	Α	0,007	0,993
575	SV1infraII30	В	0,989	0,011	639	IBII14	А	0,008	0,992	703	SS1infraII17	А	0,006	0,994
576	SV1infraII31	В	0,994	0,006	640	IBII15	А	0,005	0,995	704	SS1infraII18	А	0,006	0,994
577	SV1infraII32	В	0,993	0,007	641	IBII16	А	0,006	0,994	705	SS1infraII19	Α	0,006	0,994
578	SV1infraII33	?	0,202	0,798	642	IBII17	Α	0,006	0,994	706	SS1infraII20	Α	0,006	0,994
579	SV1infraII34	?	0,010	0,990	643	IBII18	Α	0,006	0,994	707	SS1infraII21	Α	0,005	0,995
580	SV1infraII35	?	0,308	0,692	644	IBII19	Α	0,013	0,987	708	SS1infraII22	Α	0,006	0,994
581	SV1infraII36	?	0,303	0,697	645	IBII20	Α	0,006	0,994	709	SS1infraII23	Α	0,004	0,996
582	SV1infraII37	?	0,442	0,558	646	IBII21	Α	0,129	0,871	710	SS1infraII24	Α	0,005	0,995
583	SV1infraII38	?	0,611	0,389	647	IBII22	А	0,007	0,993	711	SS1infraII25	Α	0,004	0,996
584	SV1infraII39	?	0,437	0,563	648	IBII23	А	0,006	0,994	712	SS1infraII26	Α	0,005	0,995
585	SV1infraII40	?	0,304	0,696	649	IBII24	А	0,011	0,989	713	SS1infraII27	Α	0,007	0,993
586	SV1infraII41	?	0,548	0,452	650	IBII25	Α	0,009	0,991	714	SS1infraII28	Α	0,005	0,995
587	SV1infraII42	?	0,010	0,990	651	IBII26	В	0,994	0,006	715	SS1infraII29	Α	0,004	0,996
588	SV1supraII1	A	0,087	0,913	652	IBII27	В	0,994	0,006	716	SS1infraII30	A	0,005	0,995
589	SV1supraII2	A	0,020	0,980	653	IBII28	В	0,993	0,007	717	SS1infraII31	A	0,008	0,992
590	SV1supraII3	A	0,007	0,993	654	IBII29	В	0,995	0,005	718	SS1infraII32	A	0,382	0,618
591	SV1supraII4	A	0,008	0,992	655	IBII30	В	0,993	0,007	719	SS1infraII33	В	0,989	0,011
592	SV1supral15	A	0,008	0,992	656	IBII31	B	0,975	0,025	720	SS1infraII34	B	0,994	0,006
593	SVI suprall6	A	0,008	0,992	657	IBII32	В	0,994	0,006	721	SS1infrall35	В	0,853	0,147
594	SVIsuprall/	A	0,011	0,989	658	IBII33	B	0,994	0,006	722	SSTinfrall36	B	0,994	0,006
595	SVIsuprali8	A	0,008	0,992	659	IBII34	B	0,994	0,006	723	SSTINITALI3/	В	0,995	0,005
596	SV1suprall9	A	0,006	0,994	660	IBII35	B	0,994	0,006	724	SS1infrall38	B	0,985	0,015
5097	SV1supral110	A	0,004	0,996	662	IBII30	B	0,993	0,007	725	SS1infraII39	B	0,995	0,005
598	SV1supraII12	A	0,000	0,994	662		D	0,994	0,000	720	SS1infraII40	D	0,992	0,008
600	SV1supraII12	A A	0,011	0,989	664	IBII30	B	0,993	0,005	727	SS1infraII41	2 2	0,993	0,007
601	SV1supraII14	Δ	0,005	0,995	665	IBII/0	B	0,993	0,003	720	SS1infraII42	2	0,000	0,994
602	SV1supraII15	Δ	0,005	0,995	666	IBII40	B	0.993	0,000	730	SS1infraII44	2	0.986	0,003
603	SV1supraII16	A	0,005	0.994	667	IBII47	B	0,992	0.008	731	SS1supraII1	A	0.014	0,986
604	SV1supraII17	A	0.006	0 994	668	IBII43	B	0.993	0.007	732	SS1suprall2	A	0.006	0.994
605	SV1supraII18	A	0.006	0.994	669	IBII44	B	0.993	0.007	733	SS1suprall3	A	0.008	0.992
606	SV1supraII19	A	0.006	0.994	670	IBII45	B	0.996	0.004	734	SS1supral14	A	0.005	0.995
607	SV1supraII20	A	0,006	0,994	671	IBII46	B	0,994	0,006	735	SS1supraII5	Α	0,009	0,991
608	SV1supraII21	А	0,005	0,995	672	IBII47	В	0,995	0,005	736	SS1supraII6	Α	0,017	0,983
609	SV1supraII22	А	0,007	0,993	673	IBII48	В	0,992	0,008	737	SS1supraII7	Α	0,008	0,992
610	SV1supraII23	Α	0,004	0,996	674	IBII49	?	0,009	0,991	738	SS1supraII8	Α	0,006	0,994
611	SV1supraII24	А	0,007	0,993	675	IBII50	?	0,953	0,047	739	SS1supraII9	А	0,008	0,992
612	SV1supraII25	А	0,006	0,994	676	IBII51	?	0,990	0,010	740	SS1supraII10	А	0,007	0,993
613	SV1supraII26	А	0,007	0,993	677	IBII52	?	0,632	0,368	741	SS1supraII11	А	0,009	0,991
614	SV1supraII27	А	0,006	0,994	678	IBII53	?	0,862	0,138	742	SS1supraII12	А	0,005	0,995
615	SV1supraII28	А	0,006	0,994	679	IBII54	?	0,909	0,091	743	SS1supraII13	Α	0,005	0,995
616	SV1supraII29	A	0,007	0,993	680	IBII55	?	0,986	0,014	744	SS1supraII14	Α	0,006	0,994
617	SV1supraII30	Α	0,074	0,926	681	IBII56	?	0,982	0,018	745	SS1supraII15	Α	0,006	0,994
618	SV1supraII31	Α	0,005	0,995	682	IBII57	?	0,986	0,014	746	SS1supraII16	Α	0,006	0,994
619	SV1supraII32	Α	0,014	0,986	683	IBII58	?	0,980	0,020	747	SS1supraII17	Α	0,008	0,992
620	SV1supraII33	Α	0,011	0,989	684	IBII59	?	0,826	0,174	748	SS1supraII18	Α	0,005	0,995
621	SV1supraII34	Α	0,006	0,994	685	IBII60	?	0,427	0,573	749	SS1supraII19	Α	0,007	0,993
622	SV1supraII35	A	0,005	0,995	686	IBII61	?	0,114	0,886	750	SS1supraII20	A	0,006	0,994
623	SV1supraII36	Α	0,007	0,993	687	SS1infraII1	Α	0,015	0,985	751	SS1supraII21	Α	0,080	0,920
624	SV1supraII37	В	0,990	0,010	688	SS1infraII2	Α	0,008	0,992	752	SS1supraII22	Α	0,010	0,990
625	SV1supraII38	В	0,994	0,006	689	SS1infraII3	A	0,007	0,993	753	SS1supraII23	Α	0,006	0,994

			Pr	ob.				Pr	ob.				Pr	ob.
			perten	cimento				perten	cimento				perten	cimento
Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2	Ind.	Pop e nº	grupo	1	2
754	SS1supraII24	Α	0,004	0,996	818	ParatyII6	В	0,995	0,005	882	AngraII35	Α	0,005	0,995
755	SS1supraII25	А	0,006	0,994	819	ParatyII7	В	0,995	0,005	883	AngraII36	Α	0,006	0,994
756	SS1supraII26	Α	0,006	0,994	820	ParatyII8	В	0,965	0,035	884	AngraII37	Α	0,008	0,992
757	SS1supraII27	A	0,008	0,992	821	ParatyII9	В	0,995	0,005	885	AngraII38	A	0,013	0,987
758	SS1supraII28	A	0,006	0,994	822	ParatyII10	В	0,994	0,006	886	AngraII39	В	0,955	0,045
759	SS1supraII29	A	0,004	0,996	823	ParatyII11	B	0,995	0,005	887	AngraII40	B	0,560	0,440
760	SS1suprall30	A	0,006	0,994	824	Paratyl112	B	0,996	0,004	888	Angrall41	?	0,148	0,852
761	SS1supral131	A	0,006	0,994	825	ParatyIII3	B	0,983	0,017	889	Angrall42	?	0,008	0,992
762	SS1supral132	A	0,006	0,994	826	Paraty1114	B	0,995	0,005	890	RJINITAIII	A	0,006	0,994
763	SS1supral133	A D	0,007	0,993	827	ParatyII15	B	0,995	0,005	891	RJINITAII2 P linfraII2	A	0,007	0,993
765	SS1suprall35	B	0,995	0,005	820	ParatyII17	B	0,990	0,004	892	R JinfraII/	A A	0,000	0,994
766	SS1supraII36	B	0,991	0,005	830	ParatyII18	B	0,994	0,007	894	R Jinfrall5	A	0,102	0,897
767	SS1supraII37	B	0.989	0,007	831	ParatyII19	B	0.988	0.012	895	R JinfraII6	B	0.994	0,006
768	SS1supraII38	B	0.992	0.008	832	ParatyII20	B	0.990	0.010	896	R.JinfraII7	B	0.991	0.009
769	SS1supraII39	B	0.994	0.006	833	ParatyII21	B	0.994	0.006	897	RJinfraII8	B	0.993	0.007
770	SS1supraII40	В	0,995	0,005	834	ParatyII22	В	0,980	0,020	898	RJinfraII9	В	0,993	0,007
771	SS1supraII41	В	0,996	0,004	835	ParatyII23	В	0,992	0,008	899	RJinfraII10	В	0,996	0,004
772	SS1supraII42	В	0,990	0,010	836	ParatyII24	В	0,992	0,008	900	RJinfraII11	В	0,996	0,004
773	SS1supraII43	В	0,995	0,005	837	ParatyII25	В	0,994	0,006	901	RJinfraII12	В	0,990	0,010
774	SS1supraII44	В	0,991	0,009	838	ParatyII26	В	0,992	0,008	902	RJinfraII13	В	0,991	0,009
775	SS1supraII45	?	0,543	0,457	839	ParatyII27	В	0,995	0,005	903	RJinfraII14	В	0,985	0,015
776	SS1supraII46	?	0,966	0,034	840	ParatyII28	В	0,995	0,005	904	RJinfraII15	В	0,978	0,022
777	SS1supraII47	?	0,607	0,393	841	ParatyII29	В	0,992	0,008	905	RJinfraII16	В	0,981	0,019
778	SS2II1	A	0,006	0,994	842	ParatyII30	В	0,991	0,009	906	RJinfraII17	В	0,864	0,136
779	SS2II2	A	0,006	0,994	843	ParatyII31	B	0,995	0,005	907	RJinfrall18	B	0,988	0,012
780	SS2II3	A	0,005	0,995	844	ParatyII32	B	0,994	0,006	908	RJinfrall19	B	0,987	0,013
781	SS2114	A	0,005	0,995	845	Paratyl133	B	0,995	0,005	909	RJinfrall20	B	0,993	0,007
/82	SS2115	A	0,006	0,994	846	Paraty1134	?	0,987	0,013	910	RJinfrall21	В	0,995	0,005
783	SS2116 SS2117	A	0,010	0,990	84/	Paraty1135	? 	0,986	0,014	911	RJinfrall22	B	0,993	0,007
785	SS211/ SS2119	A	0,000	0,994	840	AngraII2	A	0,000	0,994	912	RJIIIIaII23	D	0,995	0,007
785	\$\$2110	Δ	0,008	0.992	850	AngraII2	Δ	0,004	0,990	913	R JinfraII24	B	0,990	0,004
787	SS2II)	A	0.006	0,994	851	AngraII4	A	0,010	0,994	915	R Jinfrall26	B	0,900	0,012
788	SS2II10	A	0.008	0.992	852	AngraII5	A	0.032	0.968	916	R JinfraII27	B	0.994	0.006
789	SS2II12	A	0.005	0.995	853	AngraII6	A	0.006	0.994	917	RJinfraII28	B	0.993	0.007
790	SS2II13	А	0,059	0,941	854	AngraII7	Α	0,004	0,996	918	RJinfraII29	В	0,995	0,005
791	SS2II14	А	0,013	0,987	855	AngraII8	А	0,010	0,990	919	RJinfraII30	В	0,993	0,007
792	SS2II15	Α	0,008	0,992	856	AngraII9	Α	0,037	0,963	920	RJinfraII31	В	0,996	0,004
793	SS2II16	Α	0,006	0,994	857	AngraII10	Α	0,006	0,994	921	RJinfraII32	В	0,994	0,006
794	SS2II17	А	0,006	0,994	858	AngraII11	Α	0,010	0,990	922	RJinfraII33	В	0,993	0,007
795	SS2II18	Α	0,010	0,990	859	AngraII12	Α	0,014	0,986	923	RJinfraII34	В	0,994	0,006
796	SS2II19	Α	0,008	0,992	860	AngraII13	Α	0,011	0,989	924	RJinfraII35	В	0,995	0,005
797	SS2II20	A	0,010	0,990	861	AngraII14	A	0,009	0,991	925	RJinfraII36	?	0,980	0,020
798	SS2II21	A	0,004	0,996	862	AngraII15	A	0,005	0,995	926	RJinfraII37	?	0,888	0,112
799	SS21122	A	0,006	0,994	863	Angrall16	A	0,008	0,992	927	RJinfrall38	?	0,983	0,017
800	SS21123	A	0,004	0,996	864	Angrall17	A	0,005	0,995	928	RJinfrall39	?	0,920	0,080
801	5521124 5521125	A	0,004	0,996	865	Angrail18	A	0,005	0,995	929	KJINTrall40	?	0,754	0,213
802	5521125	A	0,010	0,990	800	Angrailiy	A	0,012	0,988	930	KJINITAII41	/ 2	0,/54	0.826
803	SS21120 SS21127	A	0,000	0,994	80/	Angrall20	A	0,006	0,994	931	RJinfrall42	<i>!</i>	0,104	0,830
804	<u>5521127</u>	A	0,008	0,992	808	Angrall21	A	0,005	0,995	932	RJIIII7a1143	? 	0,992	0,008
805	\$\$21128 \$\$21120	A	0,008	0,992	870	AngraII22	A	0,005	0,995	933	R Jsuprall?	A	0,700	0,240
807	SS21129 SS21130	Δ	0.008	0,902	871	AngraII23	Δ Δ	0.005	0,995	935	R IsupraII3	Δ	0.013	0.987
808	SS2II30 SS2II31	B	0.993	0.007	872	AngraII25	A	0.006	0.994	936	RJsupraII4	A	0.036	0.964
809	SS2II32	B	0.996	0.004	873	AngraII26	A	0.006	0.994	937	RJsuprall5	A	0.006	0.994
810	SS2II33	B	0.995	0,005	874	AngraII27	A	0.005	0,995	938	RJsuprall6	A	0.005	0.995
811	SS2II34	B	0.989	0,011	875	AngraII28	A	0.006	0,994	939	RJsupraII7	B	0.781	0.219
812	SS2II35	В	0,985	0,015	876	AngraII29	А	0,006	0,994	940	RJsupraII8	В	0,982	0,018
813	ParatyII1	A	0,005	0,995	877	AngraII30	A	0,005	0,995	941	RJsupraII9	В	0,983	0,017
814	ParatyII2	Α	0,006	0,994	878	AngraII31	Α	0,005	0,995	942	RJsupraII10	В	0,978	0,022
815	ParatyII3	A	0,006	0,994	879	AngraII32	A	0,005	0,995	943	RJsupraII11	В	0,988	0,012
816	ParatyII4	В	0,994	0,006	880	AngraII33	Α	0,008	0,992	944	RJsupraII12	В	0,994	0,006
817	ParatyII5	В	0,995	0,005	881	AngraII34	Α	0,007	0.993	945	RJsupraII13	В	0.993	0,007

			Pr	ob.
			perten	cimento
Ind.	Pon e n⁰	gruno	1	2
946	R Isuprall14	B	0.992	0.008
947	R IsupraII15	B	0.992	0.008
9/8	R IsupraII16	B	0.993	0,000
9/9	R IsupraII17	B	0,992	0,007
950	P IsupraII18	B	0.003	0,000
950	R Jsuprall10	B	0,993	0,007
951	RJSuprall20	D	0,991	0,009
932	RJSupraII20	D	0,987	0,013
933	RJSuprall21	D	0,972	0,028
954	RJSuprall22	В	0,980	0,020
955	RJsuprall23	B	0,994	0,006
956	RJsuprall24	В	0,993	0,007
957	RJsuprall25	В	0,992	0,008
958	RJsuprall26	В	0,993	0,007
959	RJsuprall27	В	0,995	0,005
960	RJsuprall28	?	0,994	0,006
961	RJsupraII29	?	0,926	0,074
962	RJsuprall30	?	0,946	0,054
963	RJsupraII31	?	0,770	0,230
964	RJsupraII32	?	0,881	0,119
965	RJsupraII33	?	0,986	0,014
966	BúziosII1	Α	0,006	0,994
967	BúziosII2	Α	0,006	0,994
968	BúziosII3	Α	0,007	0,993
969	BúziosII4	Α	0,005	0,995
970	BúziosII5	Α	0,005	0,995
971	BúziosII6	Α	0,008	0,992
972	BúziosII7	Α	0,008	0,992
973	BúziosII8	А	0,005	0,995
974	BúziosII9	А	0,005	0,995
975	BúziosII10	А	0,005	0,995
976	BúziosII11	Α	0,014	0,986
977	BúziosII12	Α	0,010	0,990
978	BúziosII13	В	0.986	0.014
979	BúziosII14	В	0.981	0.019
980	BúziosII15	В	0.993	0.007
981	BúziosII16	В	0.996	0.004
982	BúziosII17	B	0.983	0.017
983	BúziosII18	B	0.924	0.076
984	BúziosII19	B	0.995	0.005
985	BúziosII20	B	0.968	0.032
986	BúziosII21	2	0.016	0.984
987	BúziosII21	9	0 794	0.206
988	BúziosII22	2	0.887	0.113
080	BúziosII23	· 9	0.015	0.085
000	BúziosII24	۱ ۲	0,913	0,005
990 001	BúziosII25	۱ ۲	0,191	0,809
771 002	DuziosII20	<u>्</u>	0,193	0.807
77 <u>7</u> 002	DuziosII2/	<u>्</u>	0,140	0,034
775	DuziosII28	/ 0	0,778	0,222
994	Buziosii29	<i>!</i>	0,544	0,656
995	BuziosII30	?	0,953	0,047

Figura II.1: Proporção de pertencimento de cada indivíduo em cada um dos dois *clusters*. Os números dos indivíduos são equivalentes àqueles da tabela II.2. A cor vermelha representa o *cluster* 1 e a cor verde representa o cluster 2.

Tabela II.3: Freqüências alélicas em cada loco para cada um dos dois clusters no período I de coleta.

Loco e alelos	Freqüência no <i>cl</i>	luster
	1	2
Pgm-1		
4	0,061	0,983
7	0,032	0,013
3	0,890	0,000
2	0,008	0,000
6	0,005	0,001
5	0,004	0,003
Pgm-2		
4	0,027	0,999
5	0,851	0,000
6	0,120	0,000
7	0,002	0,000
Mdh		
4	0,055	0,516
3	0,945	0,483
7	0,000	0,001
Idh-1		
4	1,000	1,000
Idh-2		
4	0,467	0,957
3	0,384	0,021
7	0,007	0,002
6	0,026	0,008
2	0,094	0,009
1	0,019	0,002
5	0,003	0,000
Pgi		
4	0,001	0,998
3	0,998	0,000
5	0,000	0,001
Got		
4	0,997	1,000
Мрі		
4	0,968	0,996
5	0,031	0,001
7	0,000	0,001
2	0,000	0,001

Loco e alelos	Freqüência	no <i>cluster</i>
	1	2
Pep-LGG-1		
4	0,933	0,962
3	0,023	0,025
2	0,011	0,012
5	0,023	0,000
6	0,010	0,000
Pep-LGG-3		
4	0,700	0,843
5	0,080	0,080
3	0,151	0,049
1	0,005	0,008
2	0,064	0,020
Lap-2		
4	0,829	0,398
2	0,008	0,211
3	0,048	0,315
1	0,000	0,011
5	0,110	0,042
7	0,002	0,000
6	0,002	0,003
8	0,001	0,019
Lap-3		
4	0,933	0,990
3	0,013	0,005
6	0,004	0,000
5	0,050	0,004
Est-1		
4	1,000	1,000
Est-2		
4	1,000	1,000

Apêndice III:

Inicialmente encontram-se neste apêndice os números amostrais e valores de média e variância dos dados morfométricos. Em seguida estão as tabelas de todas as comparações par-a-par feitas entre as amostras do mesmo grupo genético para cada uma das medidas tomadas na análise morfométrica utilizando o teste de Mann-Whitney corrigido segundo Bonferroni. Cada tabela representa as comparações de uma medida específica em um dos grupos genéticos "A" ou "B" em todas as localidades amostradas. Mais informações sobre a metodologia encontram-se no Capítulo 2, as abreviações das localidades e das medidas são as mesmas do Capítulo 1 e Capítulo 2 respectivamente.

r	medida	СТ	LT	CA	LA	EC	LC	DS1	DS2
SFAI	n	15	15	15	15	15	15	13	13
	média	30,26	18,67	18,85	10,32	1,25	2,66	2,98	6,55
	var	12,97	4,99	6,43	1,58	0,07	0,17	0,34	1,85
SFBI	n	30	30	30	29	29	29	29	30
	média	31,97	20,62	21,15	12,06	1,25	2,78	2,76	5,85
	var	60,13	24,68	20,54	6,93	0,26	0,36	0,57	2,47
SFindef I	n	8	8	8	7	7	7	8	8
	média	29,45	17,29	19,31	11,00	1,04	2,44	2,74	5,31
	var	42,31	13,47	12,16	4,51	0,10	0,25	0,34	1,02
SV1infraAI	n	44	42	43	41	42	38	35	35
	média	35,28	19,59	21,58	10,67	1,04	2,97	3,36	6,50
	var	19,37	6,71	7,63	2,95	0,06	0,38	0,89	3,04
SV1infraBI	n	3	3	3	2	2	3	2	2
	média	48,91	25,45	29,77	19,74	1,87	4,84	3,38	6,32
	var	20,79	3,45	16,10	3,64	0,00	0,29	0,27	0,27
SV1infra indefI	n	7	7	7	6	6	6	5	5
	média	34.03	17.70	20.51	9.80	0.89	2.76	2.96	5.57
	var	15,40	0,94	8,72	2,17	0,05	0,24	1,11	2,63
SV1supraAI	n	23	22	23	23	22	22	18	18
	média	35.92	21.07	22.27	11.53	1.29	2.84	3.12	6.44
	var	54.41	17.91	22.61	6.97	0.36	0.48	0.99	3.70
SVsupra indef I	n	3	3	3	3	3	3	3	2
o voupru muor r	média	33.02	20.98	21.59	11.74	1.14	2.36	4.00	6.10
	var	67.98	17.36	27.10	3 19	0.04	0.12	2.69	0.43
IBAI	n	18	19	18	16	19	18	18	18
	média	26.96	16.31	18.02	9.18	0.85	2.41	2.73	5.84
	var	10.61	8.08	4.98	1.93	0.08	0.21	0.32	0.89
IBBI	n	17	17	16	14	15	16	17	17
	média	28.15	17.61	19.42	10.15	1.01	2.40	2.69	5.71
	var	19.56	14.69	12.14	2.49	0.07	0.31	0.22	1.26
IB indef I	n	5	4	5	4	4	5	5	5
	média	24 76	15 71	17.01	9 56	0.96	2.03	2.54	5 44
	var	50.95	31.93	28.66	9.31	0.07	0.21	0.63	3.77
SS1infraAI	n	31	30	30	27	27	27	30	28
	média	23 42	15 53	15.07	7.85	0.94	2.11	2.55	5 14
	var	5.42	2.33	2.23	0.72	0.05	0.13	0.28	0.79
SS1infraBI	n	2	2	2	2	2	2	1	1
	média	26.35	17.77	17.72	8.97	1.34	2.34	3.32	5.58
	var	0.81	0.66	0.02	0.01	0.43	0.06	XXX	XXX
SS1infra indef I	n	3	3	3	3	3	3	3	3
	média	22.83	15.30	15.02	7.75	0.72	1.96	2.55	5.24
	var	6.09	2.64	2.27	0.53	0.04	0.23	0.03	0.35
SS1supraAI	n	29	29	29	29	29	29	28	27
~~···	média	24.18	15.70	15.52	7.96	1.07	2.13	2.69	5.54
	var	7,53	3,56	4,23	1,27	0,05	0,23	0,16	1,02
SS1supraBI	n	1	1	1	1	1	1	1	1
uprum r	média	21.04	14.36	12.36	6.55	0.91	1.65	2.63	4.84
	var	XXX	XXX	XXX	XXX	XXX	XXX	XXX	XXX
SS1supra indef I	n	1	1	1	1	1	1	1	1
r winner I	média	25.24	17.00	16.73	9.08	0.87	2.85	3.05	5.75
	var	XXX	XXX	XXX	XXX	XXX	XXX	XXX	XXX
L									

Tabela III.1: Números amostrais (n), médias e variâncias (var) para cada uma das medidas no primeiro período de coleta. Siglas das localidades conforme capítulos 1 e 2.

Tabela III.1: (continuação).

	medida	СТ	LT	CA	LA	EC	LC	DS1	DS2
SS2AI	n	24	24	24	24	24	24	23	23
	média	30,26	19,91	20,02	10,78	1,34	2,56	2,79	6,09
	var	34,85	12,27	6,29	4,61	0,16	0,27	0,54	3,06
SS2BI	n	15	15	14	14	14	15	14	13
	média	19,96	13,82	14,19	8,12	0,79	1,99	2,08	3,93
	var	9,60	4,11	5,23	1,71	0,05	0,17	0,15	0,40
SS2 indef I	n	5	5	5	5	5	5	5	5
	média	22.16	15.10	15.04	8.26	1.12	2.07	2.08	4.45
	var	48.00	19.07	17.75	4.77	0.42	0.09	0.18	1.89
ParatyAI	n	5	5	5	3	3	5	5	5
	média	34.00	18.81	22.26	14.40	1.06	3.37	2.75	6.39
	var	63,12	22,80	18,64	1,19	0,02	0,20	0,51	2,24
ParatyBI	n	19	19	19	19	19	19	19	18
	média	32.43	20.81	23.80	13.79	1.08	3.19	2.68	5.96
	var	55.28	20.49	26.87	13.75	0.14	0.62	0.59	3.03
Paraty indef I	n	10	9	10	10	10	9	8	8
	média	33.88	19.77	23.99	13.60	1.16	3.67	2.89	6.55
	var	133.67	46.06	66.24	25.59	0.18	2.37	1.92	9.55
AngraAI	n	26	26	26	26	26	26	21	20
i ingrui ii	média	43 32	24 21	26.20	13.99	1.15	3.15	3.10	-°
	var	19,52	4 33	7 94	3 49	0.10	0.28	0.32	1.61
AngraBI	n	5	5	5	5	5	5	5	5
Augrabi	média	38 77	20.95	23.27	13 29	1 70	3 12	2 68	5 65
	var	40.42	13.56	8 86	2.68	0.28	0.29	1.03	9,50
Angra indef I	n	8	8	8	2,00	8	8	5	2
/ ingra inder i	média	42.00	24.42	25.24	13.96	1 27	2 79	3 20	5.03
	var	121 57	49.65	45.85	20.60	0.16	0.35	3 20	5,05
R linfra A I	n	10	11	10	0	11	0,55	11	11
KJIIIIaAI	média	26.29	15 53	17 75	974	0.74	235	2.18	4.65
	var	64 94	19.27	28.84	7.66	0.03	0.63	0.61	2 60
R linfraBI	n	19	19,27	18	13	15	16	20	2,00
KJIIIIaDI	mádia	3/ 01	21.16	25.45	15 11	1.06	3.62	2.61	5.85
	var	79.55	33.61	40.58	1 89	0.07	0.73	0.84	5,65 4.66
P linfra indef I	vai n	6	7	-10,50	-,07	7	5	6	4,00
KJIIII a IIIQCI I	mádia	32 77	20 65	22.06	12.03	1.00	2 03	2 03	6.07
	var	50.61	9 38	22,70	9.24	0.10	0.44	0.26	1.56
D Jaupro A J	vai	21	3,30	29,52	9,24	14	18	0,20	1,50
KJSupiaAi	II mádia	21	12 21	15 50	7.02	0.74	2.00	1.02	2.04
	Wor	12,05	5.02	7.02	1.95	0,74	2,09	0.16	0.85
DIguproDI	vai	2	3,03	2	1,04	0,02	0,12	0,10	0,85
KJSupraDi	II mádia	5 25.62	14.07	19.09	2 0.77	0.71	2 25	2 22	4
	vor	23,03	6.06	6.22	2,77	0,71	2,23	0.22	4,50
D Jaumra in daf J	vai	4	0,90	0,33	2,35	0,04	0,17	0,33	2,14
KJSUPIA IIIdel I	II mádia	4	4	4	2	2 0.91	2 25	4	4
	liteuta	12 06	6 49	2 5 5	9,00	0,01	2,23	2,15	4,00 5,41
Dácian Al	vai	18,00	0,40	3,33	0,23	0,04	0,11	0,50	3,41
DUZIOSAI	n mádi-	1	20.00	20.20	12.70	1	1	1	1
	media	30,26	20,90	20,20	12,79	0,90	2,70	2,92	0,42
Dúgi - DI	var	10	10	10	1.4	14	10	17	17
BUZIOSBI	n 	18	18	18	14	14	18	1/	1/
	media	33,09	18,96	21,40	11,39	1,56	2,66	5,50	0,80
D/ : : 1.01	var	28,30	ð,/4	10,95	4,/9	0,21	0,22	0,4 /	3,89
Buzios indef I	n	9	9	9	8	9	9	2.00	(21
	média	34,77	19,91	22,03	11,31	0,98	2,52	2,99	6,21
	var	11,01	13,02	3,31	1,97	0,07	0,28	0,73	4,79

Tabela III.2: Números	amostrais (n),	médias e	variâncias	(var)	para	cada	uma	das	medidas	no	segundo
período de coleta. Sigla	is das localidade	es conform	e capítulos 1	e 2.							

	medida	СТ	LT	CA	LA	EC	LC	DS1	DS2
SFAII	n	26	26	26	24	23	23	22	22
	média	26,43	17,24	17,28	9,77	0,92	2,56	2,16	4,03
	var	58,59	20,67	18,33	5,61	0,21	0,21	0,39	1,10
SFBII	n	3	3	3	3	3	3	3	3
	média	18,94	13,16	14,78	7,77	0,58	1,90	1,72	3,55
	var	0,66	0,06	6,81	0,08	0,02	0,05	0,03	0,02
SFindef II	n	3	3	3	3	2	2	3	3
	média	27,63	18,97	19,20	10,93	0,92	3,04	2,21	4,67
	var	49,74	34,68	33,60	10,21	0,11	0,73	0,04	0,00
SV1infraAII	n	18	17	18	16	16	15	17	17
	média	35,68	23,38	22,36	11,87	1,02	3,50	2,87	5,46
	var	47,93	14,15	18,83	4,78	0,06	0,47	0,29	1,22
SV1infraBII	n	2	2	2	2	2	1	3	3
	média	30,17	19,59	18,55	9,69	1,21	1,55	2,66	5,16
	var	200,00	87,38	57,25	17,05	0,83	XXX	0,07	0,33
SV1infra indefII	n	9	9	9	8	8	8	9	7
	média	33,09	21,65	21,26	11,15	0,86	3,24	2,52	4,77
	var	39,53	13,21	13,81	4,86	0,02	0,70	0,20	0,47
SV1supraAII	n	32	32	32	30	31	32	28	25
	média	35,64	22,76	22,13	11,80	0,99	3,11	2,52	5,29
	var	33,26	11,87	12,95	4,60	0,06	0,39	0,28	1,00
SVsupraBII	n	1	1	1	1	1	1	1	1
	média	33,17	21,23	21,06	11,55	1,34	2,80	2,22	4,31
	var	XXX	XXX	XXX	XXX	XXX	XXX	XXX	XXX
IBAII	n	24	25	24	25	24	24	24	24
	média	31,57	20,01	20,99	11,15	1,10	2,85	2,67	5,25
	var	13,38	7,76	5,52	2,74	0,06	0,19	0,37	1,66
IBBII	n	23	23	23	23	23	23	23	23
	média	28,79	19,66	20,40	11,17	0,97	2,72	2,55	5,00
	var	22,76	8,37	10,45	2,73	0,06	0,26	0,11	0,88
IB indef II	n	13	13	13	13	13	13	13	13
	média	31,82	21,20	21,64	12,11	1,24	2,70	2,97	6,02
	var	11,59	4,60	4,48	1,99	0,09	0,12	0,47	2,59
SS1infraAII	n	32	30	32	30	32	31	32	32
	média	23,98	15,89	16,52	9,09	0,86	2,39	2,30	4,69
	var	23,33	8,49	8,14	2,69	0,07	0,25	0,21	1,04
SS1infraBII	n	8	6	8	6	8	8	8	8
	média	23,81	16,59	16,91	9,42	0,79	2,58	2,56	4,96
	var	5,21	1,24	1,53	0,37	0,03	0,07	0,11	0,67
SS1infra indef II	n	3	3	3	3	3	2	3	3
	média	24,06	16,56	16,66	9,05	0,79	2,58	2,51	4,89
	var	5,02	1,60	1,32	0,02	0,02	0,24	0,11	1,16
SS1supraAII	n	33	29	33	28	32	26	33	33
	média	20,96	13,33	14,70	7,95	0,62	2,18	1,93	4,05
	var	7,64	4,84	4,55	0,76	0,02	0,21	0,06	0,25
SS1 supraBII	n	10	9	10	8	9	8	11	11
	média	21,45	14,11	15,07	8,49	0,69	1,88	2,01	4,07
	var	3,89	5,09	2,67	1,95	0,02	0,26	0,05	0,19
SS1supra indef II	n	3	3	3	3	3	2	3	3
	média	19,63	13,30	13,69	7,76	0,53	2,16	2,03	3,98
	var	0,34	0,82	0,42	0,30	0,01	0,00	0,01	0,04

Tabela III.2: (continuação).
1 40 014 111.2.	

× ×	medida	CT	LT	CA	LA	EC	LC	DS1	DS2
SS2AII	n	30	29	30	29	29	28	30	30
	média	29,06	19,03	19,20	10,41	1,01	2,70	2,35	4,69
	var	29,52	11,83	11,50	4,05	0,06	0,25	0,22	1,21
SS2BII	n	5	5	5	5	5	5	5	5
	média	29.93	21.05	21.10	12.07	1.26	2.92	2.68	6.22
	var	2.39	1.05	1.95	0.48	0.06	0.14	0.22	0.32
ParatyAII	n	3	3	3	3	3	2	3	3
1 4140 / 111	média	21.24	14 47	15 56	8 36	0.67	2.63	1 90	4 25
	var	5.35	1.22	0.50	0.80	0.02	0.03	0.13	0.40
ParatyBII	n	30	30	30	30	30	29	2.9	29
1 4140 211	média	30.44	21.87	22.95	13.06	0.96	3 29	2 32	5 22
	var	38.45	14.83	20.28	6 78	0.02	0.42	0.21	0.79
Paraty indef II	n	20,10	2	20,20	2	2	1	2	2
Tutury inder if	média	29.02	20.94	16.26	12 44	1 14	3 40	2 28	4 95
	var	146 38	73 21	1 84	19.91	0.11	xxx	0.83	5.18
AngraAII	n	38	37	38	38	38	38	33	35
AngraAn	média	36.93	23.27	24.04	12.29	0.93	3.03	3.01	5 75
	var	29.15	8 72	9.11	3.69	0,95	0.23	0.47	1.83
AngraBII	vai	27,15	2	2	3,07	2	2	2	1,05
Aligiabli	média	43.58	26 73	27.65	15.01	0.99	3.01	3.64	7 37
	var	45,58	20,75	27,05	19.34	0,99	0.00	0.03	7,57 xxx
Angra indaf II	vai	2	20,20	21,77	2	0,00	0,00	0,05	2
Aligia illuci il	II mádia	40.52	2	26.48	2 14 17	1.02	2 54	2 04	2 5 50
	var	40,55	6.81	20,48 12.07	7.64	0.11	0.00	2,94	0.59
D Linfra A II	vai	40,12	5	42,97	7,04	5	0,99	0,55	0,39
KJIIIIIaAII	II mádia	5 25 20	17.09	3	10.42	5	2 279	5 2.62	5 1 70
	media	23,20	2 01	5 10	10,45	0,08	2,78	2,02	4,78
D L'a fao DII	vai	0,80	3,01	3,10	1,15	0,01	0,28	0,19	0,39
KJINITABII	n mádia	29	28	29	24	27	24	2.06	30 4 29
	litedia	10.54	21.69	28.40	9,55	0,74	2,43	2,00	4,58
D linfro in dof II	vai	0	51,08	20,49	6	0,03	0,79	0,43	2,40
KJIIII a liidel li	ll mádia	0	10.20	0	10.65	0.82	2 02	2 22	0 4.60
	media	23,71	19,39	2 5 2	10,05	0,82	2,95	2,25	4,09
D I A II	vai	0,54	4,22	3,33	0,01	0,02	0,00	0,09	0,32
KJSUPFAAII	n 	0	0	0	0	0 0 0 1	0	0	0
	media	24,05 67.12	17,20	27.06	9,09	0,81	2,08	1,95	4,55
DIDII	vai	07,13	29,08	27,00	0,80	0,03	1,08	20	0,94
КЈѕиргаБП	11 	20	20	20	20	20	19	20	21 4.92
	media	24,01	18,09	18,08	10,18	0,85	2,84	2,39	4,82
DI 1CH	var	25,67	14,25	10,40	4,30	0,03	0,43	0,10	0,98
KJsupra inder II	n) 22 72	6	5	6	6) 0.50	0	0
	media	22,73	17,01	16,43	9,62	0,77	2,52	1,98	4,36
D/ : 41	var	10,23	7,02	5,88	0,95	0,02	0,19	0,06	0,34
BuziosAll	n	13	13	13	13	13	13	12	11
	media	33,42	21,60	21,06	11,26	1,07	2,99	2,65	5,09
D / · · · ····	var	20,15	8,09	6,31	2,72	0,04	0,16	0,22	0,65
BüziosBII	n	7	7	7	6	6	7	7	7
	média	30,87	20,91	20,65	11,32	1,14	2,88	3,32	6,00
D / · · · · · · · · · · · · · · · · · · ·	var	23,29	10,00	8,02	3,00	0,23	0,53	1,76	2,25
Buzios indef II	n	6	6	6	5	5	6	6	6
	média	29,40	18,04	18,48	10,22	1,00	2,72	2,34	4,87
	var	15,89	10,30	8,87	3,40	0,01	0,09	0,44	2,42

Pop.	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	ParatyA	AngraA	RJinfraA
SVinfraA	0,0119									
SVsupraA	1,3280	51,5300								
IBA	1,7300	0,0000	0,0053							
SS1infraA	0,0000	0,0000	0,0000	0,0242						
SS1supraA	0,0004	0,0000	0,0000	0,3541	19,3300					
SS2A	18,3400	0,0657	1,2880	0,3736	0,0011	0,0042				
ParatyA	14,1100	42,8400	35,9000	3,1540	0,2896	0,6299	18,7400			
AngraA	0,0000	0,0000	0,0165	0,0000	0,0000	0,0000	0,0000	0,9266		
RJinfraA	11,6600	0,2162	0,3563	37,6000	24,1400	36,5300	14,5700	6,9180	0,0008	
RJsupraA	0,0004	0,0000	0,0000	0,0277	11,6300	3,7150	0,0024	0,1878	0,0000	11,2700

Tabela III.3: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para CT período I grupo A. Destacados os valores significativos.

Tabela III.4: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para CT período I grupo B. Destacados os valores significativos.

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB
IBB	2,4900					
SS2B	0,0000	0,0010				
ParatyB	19,4600	1,3880	0,0001			
AngraB	2,4000	0,1007	0,0260	1,5870		
RJinfraB	5,1730	0,6045	0,0002	8,0030	10,0200	
BúziosB	11,2700	0,3207	0,0001	10,7800	1,9640	9,9790

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA	RJsupraA
SVinfraA	0,0338									
SVsupraA	0,0009	44,0300								
IBA	3,5020	0,8079	0,2239							
SS1infraA	14,8700	0,0001	0,0000	0,0002						
SS1supraA	0,9282	0,0000	0,0000	0,0000	1,8440					
SS2A	15,5000	0,0594	0,0037	7,2670	0,0368	0,0000				
AngraA	0,0000	37,4100	20,5400	0,0007	0,0000	0,0000	0,0000			
RJinfraA	42,2200	0,4480	0,0601	0,1620	17,4600	0,3357	5,7130	0,0440		
RJsupraA	35,5600	0,5647	0,4806	1,3260	54,1200	18,7100	6,1290	0,3603	28,7500	
BúziosA	0,5002	17,1500	13,6400	8,2570	0,0022	0,0001	0,9435	2,3590	0,3602	1,6890

Tabela III.5: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para CT período II grupo A. Destacados os valores significativos.

Tabela III.6: I	Resultado test	e de Mann-W	hitney par-a-p	oar corrigido p	oor Bonferron	i para CT per	íodo II grupo	B. Destacados	os valores significativos.

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
SS1infraB	0,1338						
SS1supraB	0,0044	1,0300					
SS2B	16,5000	0,1895	0,0754				
ParatyB	8,2260	0,0295	0,0009	22,2700			
RJinfraB	0,1601	3,2730	0,1238	0,5486	0,0059		
RJsupraB	0,5615	22,9300	5,0300	1,0710	0,0621	18,9500	
BúziosB	10,4800	0,3310	0,0558	18,1500	17,0900	0,9456	1,0010

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	ParatyA	AngraA	RJinfraA
SVinfraA	17,3000									
SVsupraA	4,0030	11,7400								
IBA	1,5880	0,0245	0,0107							
SS1infraA	0,0011	0,0000	0,0000	11,3800						
SS1supraA	0,0062	0,0000	0,0000	21,3100	46,0800					
SS2A	3,2260	13,1000	49,7100	0,0271	0,0003	0,0005				
ParatyA	43,6400	52,7300	27,0800	12,4800	2,4820	2,8470	38,9100			
AngraA	0,0001	0,0000	0,0394	0,0000	0,0000	0,0000	0,0003	0,5465		
RJinfraA	3,3940	0,2480	0,1694	33,3100	40,4300	32,2100	0,4955	7,7450	0,0004	
RJsupraA	0,0002	0,0000	0,0000	0,0980	0,0156	0,0160	0,0001	1,7210	0,0000	10,3200

Tabela III.7: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LT período I grupo A. Destacados os valores significativos.

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB
IBB	0,9981					
SS2B	0,0006	0,1226				
ParatyB	20,8300	1,0780	0,0002			
AngraB	19,0300	3,8410	0,0473	17,4500		
RJinfraB	17,9800	1,8730	0,0012	18,7200	19,1300	
BúziosB	4,9820	8,7930	0,0005	4,4690	4,0340	5,4890

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA	RJsupraA
SVinfraA	0,0092									
SVsupraA	0,0022	25,0700								
IBA	6,4810	0,1694	0,4932							
SS1infraA	9,2170	0,0000	0,0000	0,0014						
SS1supraA	0,1119	0,0000	0,0000	0,0000	0,0481					
SS2A	11,0100	0,0298	0,0275	26,2300	0,0597	0,0000				
AngraA	0,0000	41,3300	35,3700	0,0012	0,0000	0,0000	0,0001			
RJinfraA	49,1300	0,3780	0,2290	0,9194	9,8510	0,1414	9,5340	0,0910		
RJsupraA	41,4500	1,5080	0,9473	2,9830	43,0400	2,5540	9,2390	0,5495	28,7500	
BúziosA	0,6663	6,9470	23,9700	8,7520	0,0017	0,0001	2,8900	6,0960	1,7250	2,7510

Tabela III.9: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LT período II grupo A. Destacados os valores significativos.

Tabela III.10: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LT período II grupo B. Destacados os valores significativos.

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
SS1infraB	0,2527						
SS1supraB	0,0045	1,2640					
SS2B	8,6200	0,2272	0,0939				
ParatyB	1,5670	0,0241	0,0006	26,4200			
RJinfraB	4,4370	1,5360	0,0230	0,8107	0,0194		
RJsupraB	4,1270	19,3900	0,2855	4,5840	0,1812	18,9200	
BúziosB	10,4800	1,8350	0,1572	25,9600	25,6300	3,0460	2,9900

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	ParatyA	AngraA	RJinfraA
SVinfraA	0,1169									
SVsupraA	0,9661	36,3400								
IBA	15,7400	0,0014	0,0468							
SS1infraA	0,0011	0,0000	0,0000	0,0012						
SS1supraA	0,0124	0,0000	0,0000	0,0544	21,5400					
SS2A	6,1790	2,1690	6,6630	0,4349	0,0000	0,0000				
ParatyA	3,0150	18,0200	38,3300	2,6540	0,2058	0,3557	3,7930			
AngraA	0,0000	0,0000	0,0226	0,0000	0,0000	0,0000	0,0000	1,8630		
RJinfraA	35,0500	2,1810	1,6390	45,6000	11,3200	14,6900	17,4100	6,9180	0,0070	
RJsupraA	0,1020	0,0000	0,0001	0,1951	28,3400	48,9800	0,0008	0,2311	0,0000	13,0200

Tabela III.11: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para CA período I grupo A. Destacados os valores significativos.

Tabela III.12: Resultado teste de Mann-Whitney par-a-pa	ar corrigido por Bonferroni para C	A período I grupo B. Destacados os	valores significativos.
---	------------------------------------	------------------------------------	-------------------------

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB
IBB	4,9330					
SS2B	0,0003	0,0127				
ParatyB	2,2520	0,2862	0,0001			
AngraB	6,0660	0,9045	0,0404	18,6300		
RJinfraB	0,4764	0,2861	0,0002	7,7710	12,1000	
BúziosB	16,9400	2,9930	0,0002	3,0380	5,8760	1,7780

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA	RJsupraA
SVinfraA	0,1188									
SVsupraA	0,0056	50,1300								
IBA	0,0721	23,2800	13,3700							
SS1infraA	28,4000	0,0013	0,0000	0,0001						
SS1supraA	0,8903	0,0000	0,0000	0,0000	1,0920					
SS2A	4,4880	1,3560	0,2845	1,8930	0,1590	0,0001				
AngraA	0,0000	5,7550	0,6843	0,0006	0,0000	0,0000	0,0000			
RJinfraA	49,1300	0,8480	0,8508	0,3354	21,2500	0,9650	10,7200	0,0577		
RJsupraA	41,4500	1,1800	0,8491	1,7280	54,1200	12,9300	10,7500	0,3603	28,7500	
BúziosA	1,3700	20,9400	21,7700	44,9500	0,0172	0,0001	10,4700	0,2137	1,2910	2,7510

Tabela III.13: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para CA período II grupo A. Destacados os valores significativos.

Tabela III.14: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para CA período II grupo B. Destacados os valores significativos.

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
SS1infraB	0,0647						
SS1supraB	0,0037	0,5846					
SS2B	14,2600	0,1207	0,0754				
ParatyB	1,6330	0,0038	0,0002	10,7300			
RJinfraB	0,2557	5,6860	0,0664	0,5486	0,0005		
RJsupraB	1,0460	12,9000	0,5853	2,3300	0,0060	25,9600	
BúziosB	24,4100	0,3310	0,0800	25,9600	10,1200	2,3470	2,6380

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA
SVinfraA	20,6700								
SVsupraA	9,4380	12,2400							
IBA	1,7080	0,1481	0,0655						
SS1infraA	0,0001	0,0000	0,0000	0,0899					
SS1supraA	0,0004	0,0000	0,0000	0,2776	38,5600				
SS2A	14,3700	22,7400	31,2200	0,4796	0,0001	0,0003			
AngraA	0,0001	0,0000	0,0115	0,0000	0,0000	0,0000	0,0001		
RJinfraA	23,0300	12,2400	5,9100	34,9700	3,8690	5,3200	12,7800	0,0431	
RJsupraA	0,0143	0,0005	0,0009	1,1150	38,6200	31,3900	0,0120	0,0000	5,1880

Tabela III.15: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LA período I grupo A. Destacados os valores significativos.

Tabela III.16: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LA período I grupo B. Destacados os valores significativos.

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB
IBB	0,4901					
SS2B	0,0003	0,0346				
ParatyB	2,1020	0,0707	0,0002			
AngraB	8,5770	0,0744	0,0295	18,6300		
RJinfraB	0,0531	0,0006	0,0002	2,6220	1,5960	
BúziosB	8,0900	3,3830	0,0078	0,8687	2,2090	0,0509

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA	RJsupraA
SVinfraA	0,6859									
SVsupraA	0,4255	35,9100								
IBA	3,3060	12,8900	22,4100							
SS1infraA	10,8700	0,0108	0,0003	0,0054						
SS1supraA	0,2239	0,0001	0,0000	0,0000	0,3907					
SS2A	22,3300	1,6520	1,5960	9,2320	0,6512	0,0009				
AngraA	0,0122	41,9000	13,6500	1,6480	0,0000	0,0000	0,0460			
RJinfraA	41,3000	9,5180	7,9160	14,6100	4,2400	0,0554	45,4700	1,0890		
RJsupraA	40,4900	5,3440	1,7640	3,7400	41,2600	3,1780	17,2700	0,8749	12,9400	
BúziosA	6,2600	22,8500	42,8900	48,9900	0,0949	0,0004	12,7300	10,1000	16,9400	7,9770

Tabela III.17: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LA período II grupo A. Destacados os valores significativos.

Tabela III.18: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LA período II grupo B. Destacados os valores significativos.

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
SS1infraB	0,3714						
SS1supraB	0,0409	0,9285					
SS2B	6,1270	0,2272	0,1895				
ParatyB	0,1936	0,0378	0,0025	13,4300			
RJinfraB	6,6520	3,1860	0,1828	2,4790	0,0187		
RJsupraB	2,6020	16,9400	1,1040	1,4800	0,0110	12,8200	
BúziosB	22,0400	3,3790	0,6516	18,9300	6,4210	11,7300	6,1990

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA
SVinfraA	0,2114								
SVsupraA	21,0300	2,7050							
IBA	0,0236	0,0726	0,0187						
SS1infraA	0,0304	2,8910	0,2651	6,6160					
SS1supraA	1,2010	16,2700	11,7800	0,0375	1,4870				
SS2A	9,4150	0,0620	12,0100	0,0160	0,0136	0,1480			
AngraA	14,2500	4,0330	29,5400	0,0404	0,5055	14,0300	2,5670		
RJinfraA	0,0084	0,0067	0,0129	12,6900	0,3919	0,0088	0,0106	0,0159	
RJsupraA	0,0023	0,0006	0,0020	10,2100	0,1322	0,0007	0,0022	0,0017	36,7500

Tabela III.19: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para EC período I grupo A. Destacados os valores significativos.

Tabela III.20: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para EC período I grupo B. Destacados os valores significativos.

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB
SFB						
IBB	5,1360					
SS2B	0,0953	0,3871				
ParatyB	9,2740	14,4900	0,0891			
AngraB	1,1500	0,4880	0,0744	0,6924		
RJinfraB	11,4300	3,5920	0,1976	8,3050	0,6110	
BúziosB	9,1740	0,4609	0,0071	0,7952	2,6590	2,8950

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA	RJsupraA
SVinfraA	4,9140									
SVsupraA	2,9280	38,1900								
IBA	0,1762	12,6400	6,9660							
SS1infraA	42,8100	1,5370	3,2290	0,0511						
SS1supraA	0,0106	0,0000	0,0000	0,0000	0,0010					
SS2A	2,5080	44,1900	49,5000	10,7300	1,4380	0,0000				
AngraA	20,6800	9,1690	9,0940	0,2779	5,2400	0,0000	8,3010			
RJinfraA	6,5370	0,1077	0,7917	0,0608	4,7950	15,2000	0,1658	0,1341		
RJsupraA	36,6700	4,5760	6,7270	1,1570	35,4900	2,7400	5,0580	8,0350	22,6200	
BúziosA	0,8313	13,0000	28,5900	44,2000	0,9890	0,0001	24,1900	1,9240	0,1773	2,7510

Tabela III.21: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para EC período II grupo A. Destacados os valores significativos.

Tabela III.22: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para EC período II grupo B. Destacados os valores significativos.

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
SS1infraB	1,8900						
SS1supraB	0,0578	5,4300					
SS2B	1,0780	0,2916	0,0939				
ParatyB	22,6400	0,3592	0,0069	0,4254			
RJinfraB	0,4305	17,0700	1,5430	0,0866	0,0126		
RJsupraB	4,5220	10,4600	0,7041	0,1661	1,3040	6,1610	
BúziosB	14,8100	3,4800	0,7786	11,3000	26,9500	3,1760	10,5600

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	ParatyA	AngraA	RJinfraA
SVinfraA	4,6150									
SVsupraA	31,1900	19,1300								
IBA	6,1410	0,0628	2,9470							
SS1infraA	0,0161	0,0000	0,0047	2,2810						
SS1supraA	0,0130	0,0000	0,0091	3,6310	51,0500					
SS2A	19,9700	0,4198	8,4100	22,0900	0,1083	0,0760				
ParatyA	1,0140	7,1210	7,3770	0,4480	0,0492	0,0732	0,9116			
AngraA	0,1990	15,7900	2,3420	0,0017	0,0000	0,0000	0,0110	12,4800		
RJinfraA	11,5800	1,6670	6,7300	53,8700	15,9200	17,1100	23,0400	0,9017	0,6296	
RJsupraA	0,0326	0,0001	0,0082	1,7990	44,4300	38,1500	0,1207	0,1089	0,0000	11,4200

Tabela III.23: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LC período I grupo A. Destacados os valores significativos.

Tabela III.24: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LC período I grupo B. Destacados os valores significativos.

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB				
IBB	0,8701									
SS2B	0,0021	0,5932								
ParatyB	3,0570	0,0832	0,0005							
AngraB	6,6960	0,2475	0,0834	21,0000						
RJinfraB	0,0431	0,0037	0,0002	3,3010	5,5640					
BúziosB	8,3890	2,2810	0,0133	0,6869	3,7740	0,0134				
	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA	RJsupraA
-----------	---------	----------	----------	---------	-----------	-----------	---------	---------	----------	----------
SFA										
SVinfraA	0,0035									
SVsupraA	0,0199	5,3910								
IBA	2,2580	0,0447	3,0130							
SS1infraA	4,7560	0,0003	0,0002	0,0324						
SS1supraA	0,0977	0,0001	0,0000	0,0001	5,0880					
SS2A	25,6400	0,0189	0,2938	19,4700	1,6160	0,0163				
AngraA	0,0351	1,0340	27,7900	4,7010	0,0001	0,0000	0,7134			
RJinfraA	12,6600	2,4580	15,2000	42,5100	4,5190	2,2690	37,8400	27,9000		
RJsupraA	49,1100	1,7760	7,9180	30,3100	52,2900	28,3000	22,8900	7,0420	35,6400	
BúziosA	0,9667	2,0840	26,7600	19,0500	0,0864	0,0026	4,8930	37,6100	33,5600	18,6800

Tabela III.25: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para LC período II grupo A. Destacados os valores significativos.

$T_{-1} = 1 = 111 \Delta C_{-1} D_{-1} = 14 = 1 = 4 = 4 = 1 = M_{-1} = 10^{-1} M_{-1} = 10^{-1}$			D C	IC	/ . 1. II D	$D_{1} = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =$
1 a n e a 111 / b' R estilitado teste de Mann-Whitney	nar_a_nar	r corrigido na	or Ronterroni nai	iraiin	eriodo II griino R	Destacados os valores significativos
1 doeld 111.20. Resultado teste de Maini Winthey	par a par	configue po	or Domerrom par	ոս ոշ թ	chout in grupt D.	Destaction of valores significativos.
	1	<u> </u>	1		U 1	ę

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
SS1infraB	15,1800						
SS1supraB	0,0477	0,2823					
SS2B	6,4470	3,4800	0,1895				
ParatyB	0,0189	0,0220	0,0013	7,0880			
RJinfraB	25,3900	14,0000	0,0285	6,3100	0,0226		
RJsupraB	15,7700	10,0600	0,0828	16,8500	0,5536	16,6200	
BúziosB	17,0500	20,9100	0,6683	23,9400	10,6800	13,1000	24,2900

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	ParatyA	AngraA	RJinfraA
SVinfraA	13,7900									
SVsupraA	48,8700	20,2000								
IBA	13,0700	1,9940	16,3000							
SS1infraA	3,3240	0,0147	3,2710	18,8800						
SS1supraA	6,7840	0,2067	10,1300	45,2100	17,3500					
SS2A	29,8300	3,8490	26,7500	38,1400	8,0330	21,1100				
ParatyA	23,6700	8,7050	27,6300	53,3600	39,8000	48,4100	34,7200			
AngraA	31,3900	38,6800	26,9500	2,3390	0,0236	0,1808	7,6340	13,2900		
RJinfraA	0,8228	0,0266	0,4118	1,3540	6,5380	1,1040	2,4650	4,9090	0,2076	
RJsupraA	0,0006	0,0000	0,0008	0,0042	0,0038	0,0001	0,0034	0,6310	0,0000	25,7400

Tabela III.27: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS1 período I grupo A. Destacados os valores significativos.

Tabela III.28: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS1 período I grupo B. Destacados os valores significativos.

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB
IBB	20,6200					
SS2B	0,0488	0,0238				
ParatyB	12,1000	11,9400	0,3578			
AngraB	15,4000	13,4000	5,1900	18,6300		
RJinfraB	6,8010	9,1790	1,4450	13,2900	18,7300	
BúziosB	0,3127	0,1167	0,0023	0,4350	3,5780	0,5481

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA	RJsupraA
SVinfraA	0,0506									
SVsupraA	0,6084	1,6210								
IBA	0,2778	15,2900	34,4700							
SS1infraA	11,1000	0,0444	1,5280	1,0300						
SS1supraA	14,7300	0,0000	0,0000	0,0000	0,0339					
SS2A	5,4600	0,1432	4,9430	1,8930	36,4300	0,0054				
AngraA	0,0008	51,4100	0,1128	4,7670	0,0004	0,0000	0,0030			
RJinfraA	3,8650	19,0900	43,0300	52,4700	5,7690	0,1032	8,6510	10,3300		
RJsupraA	25,6700	0,3865	3,0180	1,3260	6,0120	34,4600	4,2980	0,1084	6,6380	
BúziosA	0,8093	14,2200	25,0700	54,1700	1,7110	0,0011	3,7220	4,5090	46,9800	3,5860

Tabela III.29: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS1 período II grupo A. Destacados os valores significativos.

Tabela III.30: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS1 período II grupo B. Destacados os valores significativos.

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
IBB							
SS1infraB	23,9900						
SS1supraB	0,0042	0,0548					
SS2B	8,2270	14,2800	0,8781				
ParatyB	0,6104	2,4150	1,3230	2,6160			
RJinfraB	0,0131	0,3415	5,7620	0,8435	6,9770		
RJsupraB	6,1270	12,9000	0,2450	2,6890	11,9700	1,5680	
BúziosB	3,4980	6,1610	0,0433	14,6400	0,5699	0,1020	1,6580

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	ParatyA	AngraA	RJinfraA
SVinfraA	46,9000									
SVsupraA	23,9300	43,2000								
IBA	6,2600	15,4100	23,5900							
SS1infraA	0,1364	0,3612	0,8032	2,9100						
SS1supraA	1,4940	2,1740	7,9420	14,6400	25,5200					
SS2A	29,2300	25,2900	53,8500	25,8500	2,1990	11,3200				
ParatyA	38,1400	53,2100	43,6800	23,8600	2,3100	11,7100	55,0000			
AngraA	15,2400	31,0000	42,9700	25,5700	0,2371	5,4870	41,8500	33,5700		
RJinfraA	0,7001	0,1548	1,0060	0,7866	4,5790	1,7780	2,5750	5,5250	0,7716	
RJsupraA	0,0006	0,0000	0,0005	0,0001	0,0015	0,0000	0,0039	0,2735	0,0004	10,6800

Tabela III.31: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS2 período I grupo A. Destacados os valores significativos.

Tabela III.32: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS2 período I grupo B. Destacados os valores significativos.

	SFB	IBB	SS2B	ParatyB	AngraB	RJinfraB
IBB	20,6300					
SS2B	0,0005	0,0021				
ParatyB	15,7600	18,6200	0,0075			
AngraB	6,5270	5,7270	2,1810	7,4650		
RJinfraB	12,4500	16,9500	0,1013	13,9300	14,8800	
BúziosB	0,6853	0,4832	0,0079	2,6930	3,8410	3,2850

	SFA	SVinfraA	SVsupraA	IBA	SS1infraA	SS1supraA	SS2A	AngraA	RJinfraA
SVinfraA	0,0287								
SVsupraA	0,0204	30,5600							
IBA	0,1587	19,8700	38,3100						
SS1infraA	5,0060	0,6640	0,8914	3,3120					
SS1supraA	52,7400	0,0018	0,0002	0,0040	0,3034				
SS2A	6,8320	1,4340	0,6638	3,0530	36,9900	2,4880			
AngraA	0,0002	49,3200	12,2500	5,5330	0,0109	0,0000	0,0086		
RJinfraA	6,9410	9,3700	13,9700	34,3000	25,4900	1,6060	19,6900	7,1750	
RJsupraA	19,5600	4,0810	12,1300	18,5600	54,1200	7,9410	50,3500	3,6410	43,1300

Tabela III.33: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS2 período II grupo A. Destacados os valores significativos.

Tabela III.34: Resultado teste de Mann-Whitney par-a-par corrigido por Bonferroni para DS2 período II grupo B. Destacados os valores significativos.

	IBB	SS1infraB	SS1supraB	SS2B	ParatyB	RJinfraB	RJsupraB
SS1infraB	22,0200						
SS1supraB	0,0629	0,1801					
SS2B	0,1945	0,6516	0,0622				
ParatyB	8,2220	9,4480	0,0139	0,3207			
RJinfraB	14,8400	23,2400	0,5627	0,2166	1,5980		
RJsupraB	17,6400	20,0000	1,8210	0,1760	5,0780	24,8000	
BúziosB	2,8160	4,9070	0,2166	21,9600	6,6440	1,6490	2,1080