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RESUMO 

 A região Neotropical é reconhecida por sua grande diversidade biológica; no entanto, 

os mecanismos que levaram à essa alta diversificação ainda não são bem compreendidos. Neste 

trabalho, realizamos o estudo filogeográfico das duas espécies Neotropicais do gênero Nephila 

a fim de contribuir para a compreensão dos diferentes processos que influenciaram a 

diversificação de espécies Neotropicais, e apresentamos os resultados em dois manuscritos. No 

primeiro, “Phylogeography of the widespread spider Nephila clavipes (Araneae: Araneidae) in 

South America reveals geological and climate diversification, and Pleistocene connections 

between Amazon and Atlantic Forest”, buscamos elucidar como eventos geológicos e 

climáticos afetaram a diversificação de espécies adaptadas a florestas úmidas. Utilizando um 

marcador mitocondrial (COI) e dois nucleares (H3a e ITS2), detectamos cinco linhagens 

geograficamente informativas. A linhagem que se encontra a oeste da Cordilheira Central dos 

Andes colombianos divergiu das demais no final do Mioceno/Plioceno, concomitantemente ao 

soerguimento final dessa Cordilheira. As demais linhagens datam do Pleistoceno, o que sugere 

uma diversificação devido aos eventos climáticos do Quaternário. A distribuição geográfica das 

linhagens, e o teste de modelos feito por Approximate Bayesian Computation (ABC) indicam 

um isolamento prévio entre os biomas, com posterior contato secundário entre as linhagens no 

último máximo glacial (LGM – há 21 mil anos), provavelmente devido à mudança na 

distribuição dos biomas de acordo com as flutuações climáticas do Quaternário. A diagonal 

seca parece ter atuado como uma fonte de migrantes para Amazônia e Mata Atlântica, e nossos 

dados corroboram uma via de conexão entre as florestas pelo meio do Cerrado. No segundo 

manuscrito, “Phylogeography of the dry vegetation endemic species Nephila sexpunctata 

(Araneae: Araneidae) suggests recent expansion of the Neotropical Dry Diagonal” utilizamos 

populações de Nephila sexpunctata para realizar inferências sobre a história recente da diagonal 

seca. Utilizamos dois marcadores mitocondriais (COI e ND1-L1-16S) e um nuclear (CHP2), e 

detectamos uma linhagem associada ao Cerrado e uma ao Chaco, com alguma mistura. A 

modelagem de paleodistribuição realizada indicou uma expansão do nicho da espécie a partir 

do Holoceno Médio (cerca de 6 mil anos atrás), o que concordou com a recente expansão 

demográfica inferida com os dados genéticos. O teste de modelos feito com ABC indicou que 

a espécie passou por um severo gargalo populacional no LGM (que se reflete na baixa 

variabilidade genética encontrada), com uma expansão demográfica posterior ao glacial, 

contrariando o que seria esperado pelo Modelo dos Refúgios Pleistocênicos, evidenciando que 

o glacial pode ter apresentado condições climáticas severas demais até mesmo para espécies 

adaptadas a ambientes abertos. Nosso trabalho evidenciou que os estudos com espécies de 



ampla distribuição são fundamentais para a melhor compreensão da história evolutiva de 

regiões altamente diversas. Os dois trabalhos sugerem que a região Neotropical possui uma 

história bastante complexa, e que os padrões evolutivos são fortemente influenciados por 

características biológicas da espécie. Estudos com organismos menos representados como as 

aranhas devem ser encorajados pois são capazes de revelar padrões interessantes da história 

biogeográfica da região Neotropical. 

 

      

  



ABSTRACT 

 The Neotropical region is known by its great biological diversity; however, the 

mechanisms that drove this diversification are yet not well understood. In this work, we 

performed the phylogeographical study of the two Neotropical Nephila species aiming to 

contribute to the comprehension of different processes that influenced the diversification of 

Neotropical species, and we present the results in two manuscripts. In the first one, 

“Phylogeography of the widespread spider Nephila clavipes (Araneae: Araneidae) in South 

America reveals geological and climate diversification, and Pleistocene connections between 

Amazon and Atlantic Forest”, we sought to elucidate how geological and climate events 

affected the diversification of rainforest-adapted species. Using one mitochondrial (COI) and 

two nuclear (H3a and ITS2) molecular markers, we detected five geographically informative 

lineages. The lineage present westwards of the Colombian Central Andean Cordillera has 

diverged from the others in the late Miocene/Pliocene, concomitantly with the final uplift of 

this Cordillera. The other lineages emerged in the Pleistocene, what suggests a diversification 

guided by the Quaternary climate events. The geographical distribution of the lineages and the 

Approximate Bayesian Computation (ABC) model testing indicated a previous isolation among 

biomes, with posterior secondary contact among lineages in the Last Glacial Maximum (LGM 

– 21kya), probably due to the changes in biome distribution according to the Quaternary climate 

fluctuations. The Dry Diagonal seems to have provided migrants for both Amazon and the 

Atlantic Forest, and our data corroborate a connection route between the rainforests through the 

center of Cerrado. In the second manuscript, “Phylogeography of the dry vegetation endemic 

species Nephila sexpunctata (Araneae: Araneidae) suggests recent expansion of the Neotropical 

Dry Diagonal” we used Nephila sexpunctata populations to make inferences on the recent 

history of the Dry Diagonal. We used two mitochondrial (COI and ND1-L1-16S) and one 

nuclear (CHP2) molecular markers, and detected one lineage associated with Cerrado and one 

with Chaco, with some admixture. The palaeodistribution modelling indicated a niche 

expansion for this species in the middle Holocene (around 6 kya), what agrees with the recent 

demographic expansion inferred from the genetic data. The ABC model testing indicated a 

severe bottleneck in the LGM (which agrees with the low genetic diversity in the species), with 

a post-glacial demographic expansion, against what was expected by the Pleistocene Refugia 

Model, evidencing that the glacial may have presented harsh climate conditions even for species 

adapted to open environments. Our work evidenced that studies with widely distributed species 

are fundamental to a better comprehension of the evolutionary history of highly diverse regions. 

Both works suggest that the Neotropical region has a complex history, and that evolutionary 



patterns are strongly affected by biological peculiarities from each species. Studies with less 

represented taxa as spiders must be encouraged as they may unveil interesting patterns about 

the biogeographical history of the Neotropical region. 
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INTRODUÇÃO GERAL 

 

A região Neotropical 

 Dentre as regiões biogeográficas, os Neotrópicos – que se estendem do sul da Flórida 

até a Argentina – se destacam por apresentarem elevados índices de diversidade. Vários biomas 

nesta região são considerados prioridades mundiais para conservação, devido às altas taxas de 

endemismo e avançado estágio de degradação (Myers et al, 2000). A região constitui um 

mosaico de diferentes tipos de vegetação, que inclui florestas tropicais úmidas (como Amazônia 

e Mata Atlântica), formações secas (principalmente na chamada “Diagonal Seca”, que engloba 

a Caatinga, no nordeste brasileiro; o Cerrado, na região central do Brasil; e o Chaco, no norte 

da Argentina, Paraguai e Bolívia), florestas montanas (nas encostas de grandes cadeias de 

montanhas, como os Andes), vegetações subtropicais etc. (Ab’Saber, 1977; Carvalho & 

Almeida, 2011).  

 A paisagem do continente sul-americano foi intensamente transformada nos últimos 

milhões de anos. Anteriormente, em períodos quentes e úmidos como o Eoceno (56 a 33,9 

milhões de anos atrás), as formações vegetais úmidas se estendiam ao longo de todo o 

continente, constituindo uma grande área contínua de florestas tropicais na América do Sul 

(Morley, 2000). A partir de então, eventos em diferentes escalas afetaram a paisagem da região, 

influenciando diretamente na diversificação dos organismos que a habitavam. Eventos 

geológicos, datados principalmente do Neógeno, parecem ter tido papel importante nesse 

processo; dentre eles, o soerguimento da cadeia montanhosa dos Andes (entre o Mioceno e o 

Plioceno), além de funcionar como evento vicariante, provocou alterações drásticas no clima, 

regime de chuvas e sistemas hídricos (Hoorn et al, 2010; Rull, 2011). O fechamento do Istmo 

do Panamá, também estimado entre o final do Mioceno e o Plioceno (Winston et al, 2017), 

promoveu o intercâmbio entre as biotas da América do Sul e das Américas Central e do Norte, 

além de alterar a dinâmica das correntes marítimas e, por conseguinte, afetar o clima da região. 

As mudanças locais no clima ocasionadas por esses eventos, aliadas a uma diminuição global 

da precipitação e da temperatura, propiciaram um aumento na ocorrência das gramíneas C4, 

principalmente na região central do Brasil (Simon et al, 2009; Potter & Szatmari, 2009). A 

Diagonal Seca emergiu a partir dessa expansão das paisagens savânicas, e provocou uma 

marcante disjunção no grande cinturão de florestas tropicais úmidas, dando origem à Amazônia 

e à Mata Atlântica. Após a sua formação, a Diagonal Seca também sofreu a ação de eventos 

geológicos que influenciaram a diversificação nessa região, como o soerguimento do Planalto 
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Brasileiro no Mioceno (com o concomitante rebaixamento do Chaco e outras regiões baixas – 

Silva, 1995; Carvalho et al, 2013), e recorrentes transgressões marítimas no Chaco ao longo do 

Mioceno (Ruskin et al, 2011). 

 Além dos eventos geológicos, eventos climáticos do Quaternário também são 

frequentemente elencados como potenciais promotores de diversificação na região Neotropical. 

Desde a proposição da Teoria dos Refúgios Pleistocênicos (Haffer, 1969; Vanzolini & 

Williams, 1981), a alternância entre períodos quentes e úmidos com períodos frios e secos, 

bastante pronunciada nessa época, foi estabelecida como promotora de isolamento entre 

diferentes fragmentos de um mesmo bioma. As populações isoladas em cada fragmento, então, 

evoluiriam independentemente (Carnaval & Moritz, 2008), o que poderia acarretar em 

diferenciação de linhagens e até especiação. Com o aumento do número de trabalhos na 

América do Sul que mostram que houve intensa diversificação de linhagens no Quaternário 

(revisado por Turchetto-Zolet et al, 2013), a influência de eventos climáticos na diversificação 

de organismos da região parece ter ganhado nova força. Às flutuações climáticas, também, são 

atribuídas as alterações na distribuição geográfica dos biomas ao longo do Pleistoceno, que 

teriam acompanhado as mudanças na temperatura e pluviosidade (Sobral-Souza et al, 2015). 

Dessa maneira, a história dos biomas Neotropicais ao longo do Pleistoceno teria sido dinâmica, 

e conexões entre Amazônia e Mata Atlântica, mesmo depois do estabelecimento da Diagonal 

Seca, são hipotetizadas por diversos autores (e.g. Por, 1992; Costa, 2003; Batalha-Filho et al, 

2013; Prates et al, 2016). 

 Embora um conjunto de trabalhos tenha proposto hipóteses acerca da diversificação da 

região Neotropical, o número de estudos que efetivamente testou essas hipóteses ainda é 

pequeno, tendo em vista a complexidade dos padrões observados (Beheregaray, 2008; 

Turchetto-Zolet et al, 2013).  

 

A Filogeografia aplicada ao estudo da diversificação Neotropical 

 A filogeografia surgiu ao final da década de 1980, numa tentativa de aplicar os métodos 

e conhecimentos filogenéticos ao nível microevolutivo, estudando espécies ou pares de espécies 

(Avise et al, 1987). Usando como base a teoria da coalescência, a filogeografia permite inferir 

eventos demográficos do passado que tenham influenciado a atual distribuição de linhagens ou 

grupos gênicos dentro de espécies (Avise, 2009). Dessa maneira, a extrapolação desses 

resultados possibilita procurar eventos comuns que tenham afetado diretamente um grupo de 

espécies de distribuição similar, e até mesmo que tenham afetado todo um bioma. 



15 

 

 

 

 Apesar de a filogeografia ter suas bases em análises com DNA mitocondrial, os estudos 

filogeográficos tem cada vez mais buscado usar marcadores nucleares, uma vez que as 

tecnologias atuais de sequenciamento permitem a obtenção relativamente rápida de um grande 

número de marcadores moleculares (Garrick et al, 2015) e, em consequência, inferências mais 

robustas dos parâmetros demográficos. Aliado a isso, o grande avanço nas metodologias de 

análise de dados e a disseminação de técnicas como a modelagem de paleodistribuição 

(revisado em Lima-Ribeiro & Diniz-Filho, 2012), conjuntamente com o conhecimento da 

história geológica e climática da região, permitiram que novas hipóteses a priori fossem 

criadas. O surgimento da filogeografia estatística (Knowles & Maddison, 2002) foi de suma 

importância para aumentar a robustez das inferências históricas, pois as diversas hipóteses 

evolutivas passaram a ser testadas e o grau de incerteza das análises passou a ser estimado. A 

integração de todos esses métodos permite uma avaliação estatística de modelos que levam em 

conta as peculiaridades biológicas do organismo estudado (em oposição à mera comparação de 

modelos genéricos) e que consideram a estocasticidade inerente dos processos evolutivos que 

moldaram a distribuição da variabilidade genética em cada espécie (Knowles et al, 2007). 

 Na região Neotropical, os estudos filogeográficos ainda são poucos em comparação a 

outros continentes, embora em constante ascensão. Revisados em 2013 por Turchetto-Zolet et 

al, os trabalhos revelaram um forte viés em estudos com vertebrados (69% dos trabalhos), ou 

organismos que ocorram em apenas uma região climática (89%), ou em apenas um bioma 

(47%), e utilizando apenas o DNA mitocondrial (58%). Assim, há uma grande necessidade de 

que diferentes organismos, como os invertebrados, também sejam utilizados nesse tipo de 

estudo, uma vez que podem elucidar diferentes aspectos da história evolutiva dos biomas. Além 

disso, a utilização de organismos amplamente distribuídos pode contribuir para uma 

visualização mais acurada dos processos evolutivos de biomas que tem uma história intricada. 

Por fim, a utilização do DNA mitocondrial conjuntamente com o nuclear permite avaliar 

diferentes aspectos da história evolutiva das espécies. 

 

As aranhas como modelos de estudos filogeográficos 

 As aranhas (Arachnida: Araneae) constituem uma das mais diversas ordens dentre os 

invertebrados terrestres, com 46.762 espécies descritas atualmente, divididas em 112 famílias 

(World Spider Catalog, 2017). Essa grande diversidade se reflete em características biológicas 

de diferentes grupos. Além da grande variação quanto à tolerância ambiental, há uma grande 

variação nos modos de dispersão: algumas espécies dispersam pouco tanto na fase juvenil 
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quanto na adulta, e geralmente constroem as teias próximas às da mãe (e.g. Aglaoctenus lagotis 

- Santos & Brescovit, 2001), enquanto outras são capazes de praticar “balonismo”, ou dispersão 

aérea, na fase jovem (Bell et al, 2005) – quando os juvenis são carregados pelo vento através 

de fios de teia e podem se deslocar por diversos quilômetros (e.g. Nephila pilipes – Lee et al, 

2015). 

 A ordem Araneae tem sido utilizada como modelo filogeográfico em todos os 

continentes (e.g. África – Kuntner & Agnarsson, 2011; Ásia e Oceania – Su et al, 2007; Europa 

– Bidegaray-Batista et al, 2016; América do Norte – Crews & Gillespie, 2014). Na América do 

Sul, entretanto, o número de trabalhos filogeográficos envolvendo esse grupo ainda é reduzido. 

Os estudos de Magalhães et al, 2014 e Peres et al, 2015, foram os primeiros a utilizar aranhas 

como modelos na região. Ambos trabalhos implementaram uma abordagem estatística e 

contrastaram com sucesso diferentes modelos demográficos, conseguindo realizar inferências 

sobre o impacto das mudanças climáticas do Pleistoceno em diferentes partes do continente. 

Esses trabalhos evidenciam que a realização de estudos com aranhas amplamente distribuídas 

nos Neotrópicos pode ser essencial para a melhor compreensão de eventos biogeográficos dessa 

região. 

 

As espécies de Nephila da América do Sul 

 A classificação taxonômica de Nephila e seus gêneros próximos (Clitaetra, Herennia, 

Nephilengys, Nephilingis) tem sido amplamente debatida na última década. Em 2006, Kuntner 

estabeleceu a família Nephilidae através de análises etológicas e de morfologia, composta pelos 

gêneros acima citados (à exceção de Nephilingis, que foi separado de Nephilengys por Kuntner 

et al, 2013) anteriormente pertencentes à família Tetragnathidae. Entretanto, desde a elevação 

de Nephilidae à categoria de família, a relação desse clado com as famílias próximas nunca foi 

devidamente suportada. As principais hipóteses indicavam que Nephilidae poderia ser o grupo 

irmão de Araneidae (Kuntner, 2006; Su et al, 2011) ou de Araneidae+Tetragnathidae (Álvarez-

Padilla et al, 2009). Dimitrov et al, 2016, utilizando seis marcadores moleculares e dados de 

arquitetura da teia, transferiu os cinco gêneros nefilídeos para a família Araneidae, recriando a 

subfamília Nephilinae. Nós optamos por seguir essa classificação mais recente nos trabalhos 

desenvolvidos.  

 O gênero Nephila é pantropical e possui 23 espécies reconhecidas. Nas Américas, há 

ocorrência de apenas duas espécies: Nephila clavipes, distribuída ao longo de toda a região 

Neotropical, dos Estados Unidos à Argentina; e Nephila sexpunctata, restrita à porção central 
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do Brasil, Paraguai, Bolívia e norte da Argentina. Espécies do gênero tem sido utilizadas com 

sucesso como modelo para estudos sobre a evolução da vida em grupo (Hodge & Uetz, 1992), 

comportamento sexual (Quiñones-Lebrón et al, 2016), realocação e estrutura das teias 

(Blamires et al, 2010), além de trabalhos com biogeografia e filogeografia em outros 

continentes (Su et al, 2007, 2011). No entanto, o conhecimento de aspectos biogeográficos e de 

variabilidade genética das espécies de Nephila na América do Sul, sobretudo de N. sexpunctata, 

é praticamente inexistente. 
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OBJETIVOS 

 Esta tese teve como objetivo principal compreender os processos históricos e evolutivos 

que afetaram a diversificação de organismos da região Neotropical, por meio da análise 

filogeográfica das duas espécies do gênero Nephila (Araneae: Araneidae) da América do Sul. 

 Os dois manuscritos que compõe essa tese abordam diferentes aspectos da 

diversificação na região: eventos geológicos e climáticos que influenciaram a história evolutiva 

de organismos que ocorrem em florestas úmidas, com ênfase em conexões Pleistocênicas entre 

Amazônia e Mata Atlântica são discutidos no Manuscrito I, a partir dos padrões filogeográficos 

de Nephila clavipes; e a história demográfica recente de organismos da diagonal de vegetações 

secas, com ênfase no Cerrado e Chaco, é o foco do Manuscrito II, com Nephila sexpunctata. 

As duas abordagens, em conjunto, apresentam um panorama mais preciso dos processos 

responsáveis pela diversificação recente na região. 

 Dentre os objetivos específicos dos trabalhos, estão: 

- Quantificar a variabilidade genética de cada espécie e avaliar como ela está estruturada; 

- Verificar a presença de linhagens genéticas geograficamente informativas; 

- Estimar o tempo de divergência entre tais linhagens, relacionando a eventos climáticos ou 

geológicos característicos da região; 

- Inferir eventos demográficos nas espécies estudadas; 

- Testar hipóteses que auxiliem no melhor entendimento da evolução dos organismos da região 

Neotropical. 
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MATERIAL E MÉTODOS 

 

Organismos de estudo 

 As espécies do gênero Nephila tecem grandes teias orbiculares, que podem chegar a até 

1,5m de diâmetro (Kuntner, 2006). Os fios possuem coloração dourada, responsável pelo nome 

popular de “golden orb web spiders”. 

 Nephila clavipes (Linnaeus, 1767) é a espécie do gênero mais amplamente distribuída 

nos Neotrópicos, ocorrendo desde os Estados Unidos até o norte da Argentina. É abundante 

principalmente nas formações florestais úmidas, como Amazônia e Mata Atlântica, mas 

também pode ocorrer em enclaves florestais e matas de galerias em vegetações mais secas, 

como o Cerrado. Apresenta ciclo de vida anual (Moore, 1977), em que as fêmeas tecem as teias 

perto de estradas, trilhas ou corpos d’água, em microclimas bastante úmidos (Rypstra, 1985; 

Moore, 1977; Robinson & Mirick, 1971). A espécie apresenta um acentuado diformismo 

sexual, sendo as fêmeas muito maiores que os machos; estes, na vida adulta, não constroem teia 

própria e vivem nas teias das fêmeas, onde se alimentam e reproduzem (Moore, 1977). 

 

Figura 1: Fêmeas de Nephila clavipes (esquerda) e Nephila sexpunctata (direita). 

 

 Nephila sexpunctata (Giebel, 1867) possui uma distribuição mais reduzida, estando 

restrita à região sudoeste da Diagonal Seca, composta pelo Cerrado, Chaco e outras formações 

xéricas adjacentes, englobando a região central do Brasil, Paraguai, norte da Argentina e sul da 

Bolívia. Detalhes da biologia da espécie são profundamente desconhecidos, visto que trabalhos 

anteriores com a espécie são quase inexistentes. A espécie apresenta características comuns a 
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todas espécies do gênero como o ciclo de vida anual, o marcante dimorfismo sexual e as grandes 

teias douradas tecidas em árvores ou camadas arbustivas altas (observações pessoais). 

  Ambas espécies, assim como as demais componentes do gênero, são consideradas boas 

dispersoras (Kuntner & Agnarsson, 2011). Diversos trabalhos com espécies asiáticas 

demonstraram ausência de estruturação genética entre indivíduos separados por distâncias de 

mais de seis mil quilômetros ou por grandes cadeias montanhosas (Tso et al, 2002; Lee et al, 

2004; Su et al, 2007; Su et al, 2011), o que sugere boa manutenção de fluxo gênico. 

Recentemente, foi empiricamente constatado o comportamento de balonismo em juvenis de N. 

pilipes (Lee et al, 2015), o que reforça que as espécies do gênero devem ser capazes de dispersar 

por longas distâncias. Na fase adulta, os machos parecem ser responsáveis por uma maior 

manutenção de fluxo gênico, uma vez que são capazes de se mover de teia em teia de acordo 

com o sucesso alcançado no acasalamento (Rittschof, 2010). A menor movimentação das 

fêmeas pode gerar padrões de alta estruturação do DNA mitocondrial, como observado por 

Cooper et al, (2011) e Croucher et al, (2011). 

Apesar de serem as duas únicas espécies do gênero na região Neotropical, N. 

sexpunctata e N. clavipes não são espécies irmãs, e representam distintas linhagens do gênero 

Nephila que teriam chegado ao continente americano através de eventos independentes de 

dispersão a longa distância a partir da África, Ásia ou Oceania no Mioceno/Plioceno. De acordo 

com a filogenia proposta por Kuntner et al, 2013, baseada em marcadores mitocondriais e 

nucleares, morfologia e comportamento, Nephila clavipes possui como espécies mais próximas 

as africanas N. senegalensis, N. fenestrata, N. inaurata, N. turneri, N. komaci e N. sumptuosa. 

Já Nephila sexpunctata possui divergência mais recente com espécies da Ásia e Oceania, como 

N. edulis, N. plumipes, N. antipodiana e N. clavata. 

 

 

 

 

 

 

 

Figura 2: Filogenia parcial para o gênero Nephila reconstruída por Kuntner et al, 2013, indicando os principais 

clados dentro do gênero e o continente em que cada espécie ocorre.  
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Tabela 1: Localidades de coleta, com número de indivíduos utilizados nas análises, para N. clavipes e N. 

sexpunctata. 

 N. clavipes N. sexpunctata 

 Localidade N Localidade N 
1 Alcobaça /BA 8 Argentina – Basail 8 
2 Alta Floresta/MT 8 Argentina – Mercedes 8 
3 Aracruz/ES 8 Argentina – Paraná 3 
4 Belém/PA 8 Argentina – PN del Chaco 7 
5 Belo Horizonte/MG 8 Argentina – Santa Maria 8 
6 Bragança/PA 8 Argentina – Villa Federal 8 
7 Brasília/DF 8 Campo Grande/MS 4 
8 Campo Grande/MS 1 Catalão/GO 3 
9 Catalão/GO 1 Pirenópolis/GO 8 
10 Colombia – Amazon 1 Tupã/SP 8 
11 Colombia – V. del Magdalena 6 Total 65 
12 Colombia – Pacific 3   
13 Colombia – V. del Cauca 2   
14 Florestópolis/PR 8   
15 Foz do Iguaçu/PR 8   
16 Goiânia/GO 3   
17 Gramado/RS 8   
18 Ibirama/SC 8   
19 Ibitinga/SP 8   
20 Ilha do Cardoso/SP 8   
21 Itaguaçu/ES 3   
22 Juiz de Fora/MG 8   
23 Jundiaí/SP 8   
24 Linhares/ES 8   
25 Macapá/AP 3   
26 Manaus/AM 8   
27 Mata de São João/BA 8   
28 Moju/PA 8   
29 Monte Alegre do Sul/SP 8   
30 Paraty/RJ 7   
31 Passa Quatro/MG 8   
32 Pinhalzinho/SP 8   
33 Pirenópolis/GO 8   
34 Poços de Caldas/MG 8   
35 Porangatu/GO 8   
36 Porto Velho/RO 6   
37 Recife/PE 3   
38 Rio Branco/AC 8   
39 Rio Claro/SP 8   
40 Rio Preto do Eva/AM 1   
41 Santa Teresa/ES 1   
42 Santarém/PA 8   
43 Santos/SP 8   
44 São Carlos/SP 8   
45 Sapiranga/RS 8   
46 Silva Jardim/RS 7   
47 Teodoro Sampaio 8   
48 Uberlândia/MG 8   
49 Viçosa/MG 8   
 Total 320   
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Marcadores moleculares e análises 

 Nos dois manuscritos presentes neste trabalho, obtivemos sucesso ao usar 

conjuntamente marcadores mitocondriais e nucleares, que revelam em diferentes profundidades 

aspectos da história evolutiva das espécies estudadas (Zhang & Hewitt, 2003). Utilizamos o 

marcador mitocondrial Citocromo Oxidase c subunidade I (COI), que vem sendo amplamente 

utilizado em estudos filogeográficos, inclusive com diferentes grupos de aranhas Neotropicais 

(e.g. Magalhaes et al, 2015; Peres et al, 2015). No manuscrito I, com N. clavipes, utilizamos 

ainda duas regiões nucleares: o gene codificante da subunidade a da histona H3 (H3a), além do 

espaçador interno transcrito II (ITS2), de DNA ribossômico. Ambas regiões já haviam sido 

amplificadas com sucesso para N. clavipes (Kuntner et al, 2013) e utilizadas em estudos 

filogeográficos com aranhas (H3a - Magalhaes et al, 2015; ITS2 - Peres et al, 2015), em que se 

provaram bastante informativos. Já no manuscrito II, com N. sexpunctata, utilizamos 

adicionalmente: a região de DNA mitocondrial composta pelo gene da subunidade grande de 

rRNA 16S, o RNA transportador de Leucina e o gene da enzina NADH-ubiquinona 

oxidoredutase (16S-L1-NAD1); e uma região intrônica de DNA nuclear prospectada em nosso 

laboratório, denominada CHP2. 

 Em ambos manuscritos realizamos análises de diversidade e estruturação genética, 

fizemos inferências filogenéticas Bayesianas multilocus com estimativas de tempo de 

divergência entre as principais linhagens, construímos redes de haplótipos para todos os 

marcadores e realizamos inferências demográficas. No manuscrito I, com N. clavipes, também 

inferimos a área ancestral das principais linhagens mitocondriais a fim de entender possíveis 

mudanças na distribuição de cada uma delas. No manuscrito II, com N. sexpunctata, fizemos 

uma modelagem de paleodistribuição, a fim de reconstituir a área de distribuição da espécie ao 

longo do último ciclo glacial (Último Interglacial, ~120 mil anos atrás; Último Máximo Glacial, 

~21 mil anos atrás; Holoceno Médio, ~6 mil anos atrás; e presente) e, assim, dispor de mais 

informações relevantes para a formulação de hipóteses demográficas. Por fim, para as duas 

espécies também implementamos uma abordagem de teste de modelos, em que contrastamos 

as diferentes hipóteses demográficas para cada espécie e selecionamos a que melhor explica os 

nossos dados genéticos através de Approximate Bayesian Computation (ABC - Beaumont, 

2010; Csilléry et al, 2010; Sunnaker et al, 2013). 
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MANUSCRITO I 

 

 

 

Phylogeography of the widespread spider Nephila clavipes 

(Araneae: Araneidae) in South America reveals geological 

and climate diversification, and Pleistocene connections 

between Amazon and Atlantic Forest 

 

(Manuscrito submetido ao periódico Journal of Biogeography) 
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ABSTRACT 

Aim The South-American rain forests share a common biogeographic origin and have an 

interconnected history that includes the drier biomes between them. It is not clear the degree of 

isolation promoted by the establishment of the Neotropical Dry Diagonal and if connections 

between the forests have occurred after this event. We sought to elucidate aspects on these 

biomes’ biogeography through a phylogeographical study of Nephila clavipes, a rain forest-

dweller spider. 

Location South America. 

Methods We collected 320 individuals from 49 sites through the species’ range and sequenced 

one mitochondrial and two nuclear DNA regions. We performed analyses on genetic diversity 

and structure, demography, phylogenetic inferences and estimation of divergence times, 

inferred ancestral areas and applied a model-based approach in order to test competitive 

hypotheses on the species’ evolution.  

Results An ancient split, coincident with the Central Cordillera final uplift, segregated a Trans-

Andean Colombian lineage from the others. Four geographically informative lineages occur in 

Brazil, with a Pleistocene divergence. The biogeographical analysis indicated that some 

lineages have expanded their ranges towards other biomes along Pleistocene.   

Main Conclusions The distribution of lineages, as well as the model testing results, corroborate 

a rain forest connection through the central part of Cerrado taking place at the Last Glacial 

Maximum. Our data corroborates that geological and climate events have affected Neotropical 

diversification, and reinforces that studying widely distributed species is primordial to unveil 

evolutionary patterns in regions with an entangled and intricate history. 

Keywords Amazon, Atlantic Forest, Cerrado, Pleistocene climate fluctuations, Neotropics, 

phylogeography 
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INTRODUCTION 

The Neotropics harbor two large tropical forests, Amazon (AM) and Atlantic Forest 

(AF), acknowledged by high species richness and endemism. These forests, once continuous 

during the wet and warmer Eocene, are currently separated by a large corridor of drier 

environments, called Dry Diagonal (DD) – formed by Caatinga, Cerrado and Chaco –, which 

emerged after events of cooling and dryness along Oligocene and Miocene (Morley, 2000); 

however, the underlying biogeographic events are still not completely understood. 

Some of the major diversification events in South America are attributed to Neogene 

geologic/orogenic activities, such as the final uplift of the Andean Cordilleras (Hoorn et al, 

2010), estimated around the Miocene/Pliocene. The formation of this massive mountain range 

caused great impact in the region’s climate, hydric systems and rainfall regime (Hoorn et al, 

2010), promoting vicariance and diversification. Alternatively, Quaternary climate fluctuations 

are increasingly been cited as a strong source of intraspecific variation in the Neotropics 

(Turchetto-Zolet et al., 2013).  

Several studies show that DD settlement has affected the Neotropical biota evolution, 

isolating previously widespread forest taxa also promoting lineage diversification (Por, 1992; 

Costa, 2003). DD has possibly acted as a barrier to these organisms’ dispersion, and populations 

in each side have thus evolved independently. Some groups (such as amphibians and birds) 

present sister species in AM and AF with divergence times estimated in the Miocene or earlier 

(Batalha-Filho et al, 2013; Fouquet et al, 2014), reinforcing this idea. Other works, however, 

suggest putative rain forests connections after DD emergence, since sister lineages in each 

biome diverged in the Pliocene or Pleistocene (Costa, 2003; Batalha-Filho et al, 2013; Prates 

et al, 2016; Peres et al, 2017). Such connections have probably occurred due to shifts on biome 

distribution according to climate cycles (Sobral-Souza et al, 2015).  Moreover, present-day 

patches of humid vegetation within the DD form a net of gallery forests (Oliveira-Filho & 

Ratter, 1995), which preserve suitable habitats for rainforest-dwellers, possibly maintaining 

current connections between AM and AF.   

Phylogeography has been increasingly employed to study the evolution of megadiverse 

regions, as the Neotropics. However, most researches focus on already well studied groups such 

as birds, anurans and plants (reviewed by Turchetto-Zolet et al, 2013), while few have used less 

represented invertebrate taxa, despite they being abundant, highly diverse and suitable to unveil 

evolutionary patterns worldwide (Moritz et al, 2001). Spiders, notably, have received more 

attention in other continents, but few studies in the Neotropics have addressed 
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phylogeographical questions using this group (Magalhaes et al, 2014; Peres et al, 2015; 

Bartoleti et al, 2017; Peres et al, 2017). Spiders exhibit a wide range of environmental resilience 

(e.g. tolerance to dryness or low temperatures) and dispersal abilities (some species lack 

ballooning behavior – when spiderlings are pulled by the wind through silk threads –, while 

others have been reported to float for large distances); in a context of dynamic connections 

between rain forests, these disparities may affect differently how species can handle harsh 

conditions in an inhospitable matrix and how far individuals can get when connections are 

established. 

Nephila clavipes (Linnaeus, 1767) is a widespread Neotropical araneid, abundant in rain 

forests and in humid patches within open environments as Cerrado. As evidenced for other 

Nephila species (Lee et al, 2015), N. clavipes is supposed to successfully perform aerial 

dispersal. The species likely arrived in the Neotropics in the Miocene/Pliocene through a long-

distance dispersal event from Africa (Kuntner et al, 2013), and diversified in the continent. 

Given its wide distribution, ancient history in South America and biological peculiarities, N. 

clavipes is a suitable candidate for a phylogeographical study focusing on the history of 

Neotropical forests. 

In this work we investigated the historical biogeography of Neotropical rain forests 

through a phylogeographical study of N. clavipes. We used one mitochondrial and two nuclear 

markers and coupled population genetic analyses, divergence times estimation and a model-

testing framework to clarify how historical events affected diversification in this region. We 

proposed to test specific non-exclusive hypotheses concerning Neotropical evolution: (i) 

geological events from the Neogene shaped the diversification; (ii) patterns of diversification 

were caused by climate events along Quaternary. In addition, we sought to test whether 

connections among Brazilian biomes have occurred and when they took place. Therefore, we 

tested if these connections (a) happened due to Pleistocene climate fluctuations, mainly in the 

Last Glacial Maximum (LGM ~21 ka) or (b) these connections are still active in the present 

through the gallery forests within DD. Testing these hypotheses may contribute to a better 

understanding of the dynamics experienced by Neotropical forests that promoted diversification 

in the continent. 

 

MATERIALS AND METHODS 

Sample collection 
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The sampling design covered most of the species’ distribution in South America, 

through AM (66 individuals from 10 localities), DD (69 individuals from 11 localities), AF 

(173 individuals from 24 localities), including ecotones and transitional areas. We also sampled 

individuals from four localities in Colombia [in the Northern portion of the Andes, which are 

split into three Cordilleras [Eastern – EC, Central – CC and Western – WC (Cooper et al, 

1995)]: i) Amazonian Colombia, in the border with Brazil (one individual); ii) Magdalena 

Valley, in the eastern slopes of CC (six individuals); iii) Cauca Valley, between CC and WC 

(two individuals); iv) Pacific Colombia, close to the Pacific Ocean (three individuals) (Fig. 1). 

For some analyses, we grouped populations according to the biome where they occur, following 

the classification of IBGE (Brazilian Institute of Geography and Statistics): AM, DD, Northern 

Atlantic Forest (NAF) and Southern Atlantic Forest (SAF). We used the Doce River (~20ºS) to 

distinguish NAF and SAF as this region is frequently invoked as a place of species turnover in 

this biome (Carnaval et al, 2014) and it also marks a transition between two different climate 

regimes (Cheng et al, 2013). In locations where the official classification was dubious (i.e. 

transitional areas), we used field observations to assign biomes. Colombian samples were also 

separated in groups: Amazonian Colombia and Magdalena Valley, in the eastern side of CC, 

were included in the group AM (see Results); Cauca Valley and Pacific Colombia, in the 

western side of CC, constituted a group of Trans-Andean populations (TAC). 

 

DNA extraction, amplification, sequencing and alignment 

Genomic DNA was extracted from 1-8 legs using the Wizard Genomic DNA 

Purification kit (Promega) following the manufacturer’s protocol. Species were identified by 

female genitalia or male palps. Vouchers were deposited in the Coleção Científica de 

Aracnídeos e Miriápodes of Instituto Butantan (São Paulo, Brazil). 

We used the cytochrome c Oxidase subunit I (COI) as mitochondrial marker, and two 

nuclear regions: the coding portion of the Histone 3 subunit a (H3a) and the Internal Transcribed 

Spacer 2 (ITS2). For the mitochondrial marker, we obtained sequences for all sampled 

individuals, while for the nuclear markers we amplified a representative subsample (123 

individuals for H3a and 99 for ITS2 – Table 1, Fig. S1). Amplifications were obtained using 

the sets of primers: LCO1490 and HCO2198 (Folmer et al, 1994) for COI; H3aF2 and H3aR2 

(Colgan et al, 1998) for H3a; and 5.8S and ITS4 (White et al, 1990) for ITS2. 

PCR conditions varied for each marker: a denaturation step of 3-4’ at 94ºC, 30 cycles at 

94ºC for 45”, 46-61ºC for 45-60” and 72ºC for 1-2’, and a final extension step at 72ºC for 3-
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10’. The standard PCR reaction consisted of 1μL of template DNA, 0.2μL of 5U Taq DNA 

Polymerase (Thermo-Fisher), 2.5μL of 10X KCl Buffer (Thermo-Fisher), 2.5-3.5μL of  25mM 

MgCl2 (Thermo-Fisher), 0.5-1μL of 10mM dNTP mix (GE Healthcare), 0.4-0.5μL of each 

forward and reverse primer 10μM, and ddH2O to the volume of 25μL. Sequences were obtained 

in an automatic capillary sequencer ABI PRISM 3700 DNA Analyzer (Applied Biosystems). 

We performed the alignment in MEGA 7.0 (Kumar et al, 2016), using the Muscle algorithm 

(Edgar, 2004), visually inspecting each sequence.  

 

Genetic diversity, population structure and haplotype reconstruction  

 We calculated standard genetic diversity indices for each marker, assessed population 

structure within species through FST and performed an AMOVA using biomes as geographic 

groups in ARLEQUIN 3.5 (Excoffier & Lisher, 2010). We used DnaSP (Librado & Rozas, 

2009) to infer gametic phases from the nuclear markers, with a minimum posterior probability 

threshold of 0.9. We also used BAPS 6.0 (Corander et al, 2008) to determine the most likely 

number of genetic clusters within our sequences (testing from 1 to 20). We performed separate 

analyses for the mitochondrial and nuclear datasets, using two replicates to ensure the reliability 

of the results.  

We built median-joining networks (Bandelt et al, 1999) on POPART (Leigh & Bryant, 

2015) to assess relationships among haplotypes. 

 

Phylogenetic inferences and divergence times 

Substitution models that best fitted each dataset were defined according to the Akaike 

Information Criterion (AIC) on jMODELTEST 2.0 (Darriba et al, 2012). We conducted a 

multilocus species tree Bayesian phylogenetic analysis (*BEAST) in BEAST v1.8.0 (Heled & 

Drummond, 2010). We used lognormal relaxed clocks, as the test for the molecular clock 

performed on MEGA 7.0 rejected the strict clock hypothesis. For the mitochondrial dataset, we 

used a substitution rate of 0.0112 substitutions/site/million years, based on a geological 

calibration for the Dysderidae family in the Mediterranean basin (Bidegaray-Batista & Arnedo, 

2011) and considered an adequate estimate of mitochondrial evolution for nephilids based on a 

fossil calibration for this group (Kuntner et al, 2013). For the nuclear data, we used an estimate 

of 0.0013 substitutions/site/million years (Bidegaray-Batista & Arnedo, 2011) for H3a 

substitution rate (as there is no rate information available for ITS2 evolution on spiders). We 

chose as outgroup the African species N. inaurata, the species closest to N. clavipes according 
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to the phylogeny proposed by Kuntner et al, 2013 (GenBank accession numbers: KC849085.1, 

KC849044.1 and JF835932 for COI, H3a, and ITS2 respectively).   

 We grouped the sequences in five mitochondrial lineages inferred by BAPS (see 

Results) and performed 1 billion MCMC simulations (storing 10,000 trees). We checked the 

convergence with a stationary distribution in TRACER v1.5 (Rambaut et al, 2014), discarded 

the first 10% of the trees as burn-in and determined the best MCC species and gene trees with 

TREEANNOTATOR v1.8.0, visualized and edited in FIGTREE v1.3.1 (Rambaut, 2012). To 

access uncertainty among different gene trees, we built a density tree in DENSITREE 

(Bouckaert & Heled, 2014). 

 

Demographic patterns 

 We inferred demographic patterns through neutrality tests (Tajima, 1989; Fu, 1997) and 

analyses of mismatch distribution performed in ARLEQUIN 3.5, separately for each marker 

and for each mitochondrial group (see Results). We also conducted Extended Bayesian Skyline 

Plot analyses (EBSP) on BEAST v1.8.0 to detect demographic fluctuations over time in this 

species. We performed analyses for the whole dataset, as well as for each mitochondrial group, 

with the same nucleotide substitution rates as in the *BEAST analysis. We followed the tutorial 

for the analysis found in the BEAST website.   

 

Reconstruction of ancestral areas 

 We considered each biome (AM, DD, NAF, SAF and TAC) as discrete units and 

performed the reconstruction of N. clavipes ancestral areas using a Bayesian Stochastic Search 

Variable Selection (BSSVS) on BEAST v1.8.0. The analysis was performed with the mtDNA 

dataset using only one sequence per haplotype per population (154 individuals). We followed 

the steps on the BEAST tutorial for this analysis; nucleotide substitution model and COI 

substitution rate were the same as the used in the phylogenetic tree analysis, and we applied the 

lognormal relaxed molecular clock. The coalescent tree prior was set to a constant population 

size, and inference of ancestral areas was performed using a symmetric substitution model 

under a strict clock. We performed a run with 30 million generations (sampling every 3,000 

generations) and checked stationarity on TRACER v1.5. Steps to generate a MCC tree were 

similar to those used in the *BEAST analysis. 

 

Model Testing 
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We used an Approximate Bayesian Computation framework (ABC) to perform the 

model testing. We separated the individuals in geographic groups (TAC, AM, DD and AF) and 

constructed demographic models that represent biogeographical hypothesis concerning the 

evolutionary history of the Neotropical region (Fig. 2). We grouped similar models (which 

represent alternatives for the same hypothesis) in scenarios and performed the model testing 

hierarchically (as in Peres et al, 2015; Bartoleti et al, 2017), to ultimate select which hypothesis 

was the best overall. Scenario 1 represents a single panmictic population; Scenario 2 represents 

a Neogene split between TAC and the other samples, coincident with the CC final uplift (see 

Discussion), and a large panmictic population in the Brazilian samples. For scenarios 3-5 we 

considered that, after the Neogene TAC split, climate fluctuations promoted diversification 

among Brazilian biomes during Quaternary.  For Scenario 3 we considered that AM samples 

diverged from the panmictic population constituted by AF+DD in the Pleistocene; in Scenario 

4, AF and DD had the most recent divergence in the Pleistocene; in Scenario 5, all Brazilian 

biomes diverged due to a fragmentation event at the same time in the Pleistocene. In scenarios 

3-5, we tested for i) current multidirectional migration; ii) current non-uniform migration; iii) 

LGM multidirectional migration; iv) LGM non-uniform migration. We performed the analyses 

jointly for all markers. More details in the models, scenarios and the methodology can be 

assessed in the Appendix S1. 

 

RESULTS 

Genetic diversity 

 We obtained a 594bp COI segment, and HKY+G was the best fitting substitution model 

for this dataset. We found a high number of haplotypes (63), high haplotype and nucleotide 

diversity (0.937 and 0.0111, respectively – Table 2). Nucleotide diversity decreased 

substantially within biomes while haplotype diversity remained high for most of them. DD and 

SAF had higher diversity indices, attributable to the high admixture between different genetic 

groups (see Genetic Structure section). 

 The H3a dataset presented sequences of 243bp and had K2+G+I as the best substitution 

model. Diversity levels were lower than those from COI (24 haplotypes, Hd = 0.7428 and π = 

0.0089 – Table 2) and were similar among biomes, except for TAC populations which presented 

a unique haplotype for all individuals. 

 The ITS2 dataset spanned 211bp and GTR+I was the most fitting substitution model. 

While haplotype diversity and number of haplotypes were lower than H3a (Hd = 0.6132, H = 
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7), nucleotide diversity was equivalent (π = 0.009 – Table 2). As for H3a, haplotype diversity 

was similar in the overall dataset and within each biome; for the nucleotide diversity, levels 

were lower within biomes. TAC populations presented a single haplotype for all its individuals. 

Details on diversity within each population are presented on Tables S1-S2. 

 

Genetic Structure 

 The BAPS analysis identified five mitochondrial groups (Fig. 1): Group I is composed 

by all NAF samples, most of SAF and DD; Group II encompasses AM and Colombian samples 

in the eastern side of CC; Group III is composed by samples widespread from southern AM, 

through DD, reaching the southernmost SAF, but occurs mostly in the SAF-DD transition zone; 

Group IV occur predominantly in DD, but some individuals were found in southern AM and in 

SAF; Group V is found exclusively in the western side of CC in Colombia. Individuals from 

Group V are separated from the others by a minimum of 32 mutational steps (5.8% of 

divergence; average = 1.1%), while the other groups bare a closer relationship. FST for COI was 

very high (0.751) and decreased when calculated within each biome (Table 2). Pairwise FST 

values were mostly high, and TAC populations were responsible for the maximum values 

(Table S3). AMOVA using biomes as groups showed that nearly 50% of the genetic variability 

is organized among them (Table 3); when TAC populations were excluded from the analysis, 

the among-groups variation was reduced to ~38%. 

 H3a sequences presented lower genetic structure (FST = 0.243), but the value for ITS2 

was also high (FST = 0.716). These datasets did not recover the groups evidenced by the 

mitochondrial marker: for H3a, all TAC individuals presented the same exclusive haplotype, 

separated from the others by only one mutational step. For ITS2, TAC individuals also 

presented an exclusive haplotype separated from the others by 11 mutations (5.2% of 

divergence; average = 0.2%). For both nuclear markers, the remaining haplotypes were mostly 

shared among biomes. BAPS analysis for the nuclear dataset also evidenced that TAC 

represents a group distinct from the other biomes, showing a weaker structure in Brazilian 

samples. AMOVA results highlighted this trend, with about 10% of H3a variability found 

among biomes, while the majority was present within populations. For ITS2, most of the 

variability was present among biomes (70%); when TAC populations were not considered in 

the AMOVA, the among-groups variation strongly decreased in both datasets (non-significant 

values - Table 3). Pairwise FST values for the nuclear markers were low, but also presented TAC 

comparisons as the maximum values (Tables S4 and S5). 
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Phylogenetic inferences and divergence times 

 Divergence between N. clavipes and N. inaurata was estimated in the 

Pliocene/Miocene, around 5.6 Ma (95%HPD = 2.97-9.56, Fig. 3). TAC divergence from 

Brazilian and eastern Colombia samples was estimated around 3.39 Ma (95%HPD = 1.78-5.64, 

Fig. 3). All lineages that occur in Brazil diverged in the Pleistocene, in a short period of time 

(~ 0.3 Ma, from 0.342 to 0.045 Ma, Fig. 3). Groups indicated by BAPS are strongly supported 

in the mitochondrial tree (Fig. 3), but the relationships among groups are dubious as posterior 

probabilities are low. NAF individuals are disposed intertwined with SAF and DD individuals 

in Group I. SAF and DD individuals occur in groups I, III and IV, while AM individuals occur 

almost exclusively in Group II, with few individuals in Groups III and IV. TAC individuals 

belong exclusively to Group V. In the nuclear trees, the only well-defined group is TAC, while 

the clustering of the other individuals was not geographically informative (data not shown). 

The multilocus species tree (Fig. 3, left) show the great uncertainty among the gene trees, 

mainly among the four Brazilian lineages. 

 

Demographic patterns 

 Neutrality tests and mismatch distribution analyses for the mitochondrial marker 

presented signals of recent demographic expansion in the overall dataset, Groups I and II, and 

the biomes AM and SAF. Nuclear markers did not present significant results (Table 2, Fig. S2). 

 The multilocus EBSP analyses detected demographic changes for Groups I and IV, with 

evidence of recent expansion around 200 ka and 10 ka, respectively (Fig. 4). 

 

Reconstruction of ancestral areas 

 We could not infer with high posterior probability an ancestral location for all the 

individuals. Brazilian samples seem to coalesce somewhere between DD (43%) and SAF 

(35%), while TAC samples differentiated in western Colombia (95%). In Brazil, the ancestral 

area inferred for each lineage was the biome where they occur more frequently: SAF for Group 

I (65%), AM for Group II (99%) and DD for Groups III and IV (50 and 79%, respectively – 

Fig. 3, Table S6).  

 

Model Testing 

 When performed among scenarios, the model selection held model 10 as the best fit for 

our empiric data, with a strong posterior probability (0.7493). Therefore, the best demographic 
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scenario for our data comprises a split between TAC and the other samples around the time of 

CC final uplift (~10-6 Ma), a more ancient split between AM and AF+DD, and a final and more 

recent split between AF and DD. It also corroborates an exchange of migrants mainly between 

DD and each forest along the LGM (Table 4).  

 

DISCUSSION 

 Our genetic data and coalescence-based model testing revealed a scenario in which 

Neogene geological events and Quaternary climate fluctuations are responsible for 

diversification in the Neotropics. Moreover, our data support the occurrence of connections 

between AM and AF during LGM, possibly caused by shifts in biomes’ distribution due to 

climate changes in this period. DD seems to play an important role in this process, providing 

migrants for both forests. AF and DD present a closer relationship, possibly due to the exchange 

of individuals represented by a zone of secondary contact between the states of São Paulo and 

Minas Gerais (Fig. 1a, lower detail), as described for other organisms in the same region 

(D’Horta et al, 2011; Dantas et al, 2015).  

 

Phylogeographical patterns of Nephila clavipes 

The molecular markers presented adequate levels of genetic variation to unveil 

interesting patterns of diversification in this species. These levels are compatible with previous 

studies using Nephila in other continents (Su et al, 2007; Su et al, 2011), but strongly contrast 

with what was found for the other Neotropical species in the genus, Nephila sexpunctata 

(Bartoleti et al, 2017). However, low diversity levels for N. sexpunctata were associated with 

demographic events that decreased diversity, which are not likely to have occurred for N. 

clavipes. For both species, the diversification patterns in the mitochondrial dataset were not 

entirely reflected in neither nuclear marker. The discrepancies between nuclear and 

mitochondrial markers may be caused by differences in effective population size and 

evolutionary rates, incomplete lineage sorting, mtDNA introgression and/or differential 

dispersal between sexes (Toews & Brelsford, 2012). 

 Even though N. clavipes and N. sexpunctata are the only Nephila species in the 

Neotropics, they represent distinct lineages of the genus with independent evolutionary 

histories, as their ancestors supposedly arrived in South America through distinct long-distance 

dispersal events from Africa, Asia or Oceania (Kuntner et al, 2013). The estimated divergence 

between N. clavipes and the African N. inaurata in the Miocene/Pliocene supports the idea of 
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dispersal to the Neotropics (Kuntner et al, 2013), previously corroborated for N. sexpunctata 

(Bartoleti et al, 2017). These results endorse that Trans-Atlantic exchange of biota was common 

in the Neogene (Renner, 2004; Christenhusz & Chase, 2013). The forest-dweller Nephila 

lineage from which N. clavipes would emerge arrived in South America after DD settlement 

and established itself; since then, experienced several events that shaped its genetic structure. 

 

The Northern Andes as a driver for diversification 

We detected a conspicuous distinction between Trans-Andean populations and the other 

samples through our data. All markers presented only exclusive haplotypes for TAC 

populations, showing great genetic divergence from the other haplotypes, and the high indices 

of genetic structure seems to be due to the large difference between TAC and the other 

populations. 

The Northern Andes, region where our Colombian populations were sampled, are 

characterized by three Cordilleras with distinct geological histories: CC and WC had a more 

ancient final uplift in the Miocene, while EC reached its current height more recently, in the 

Pliocene (Gregory-Wodzicki, 2000). This asynchronous uplifting seems to have affected the 

genetic structure of vertebrate species, isolating different phylogroups in WC+CC and EC (e.g. 

Valderrama et al, 2014); however, the diversification time is not always congruent among 

studies. Rheobates frogs from CC and EC seem to have diverged in the Miocene (Muñoz-Ortiz 

et al, 2014). For the more vagile Metallura hummingbirds, divergence between WC+CC and 

EC dated to Pleistocene (Benham et al, 2015).  

The divergence between N. clavipes populations from both sides of the CC (Pacific and 

Cauca Valley in the west, and Magdalena Valley and Amazon in the east) was estimated in the 

Miocene/Pliocene, consistent with CC final uplift (as reinforced by the ABC), suggesting that 

it may be a barrier to dispersion in this species. This finding differs from a previous study with 

Nephila pilipes in southeastern Asia, in which the authors found that the Central Mountain 

Range (CMR) in Taiwan does not prevent gene flow between populations from different sides 

of the mountains (Lee et al, 2004). However, the CC in Colombia has an average height of 

almost 4,000 meters and several peaks above that height, while CRM is considerably lower, 

what may explain the diminished gene flow in this case. 

Despite the high elevations of EC, it does not seem to be a barrier for N. clavipes. The 

population from the Magdalena Valley is genetically similar to the others from Colombian and 

Brazilian Amazon. In a similar manner, some Rheobates frogs from the eastern and western 
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slopes of EC are closely related, what suggests that individuals may have crossed EC after the 

diversification of this lineage, dated to Pleistocene. The authors inferred that this crossing might 

have happened through the Paso de Andalucía, a depression in the southern portion of EC as 

low as 2,000m, possibly facilitated by Pleistocene climate fluctuations (Muñoz-Ortiz et al, 

2014). N. clavipes might have dispersed similarly, as the lineage that reached the Magdalena 

Valley (Group II) dates back to ~170 ka, in the Pleistocene. 

 

Pleistocene diversification in Brazilian biomes  

 Mitochondrial data for N. clavipes revealed the existence of four geographically 

associated lineages in Brazilian biomes (Fig. 1), with divergence times estimated in the 

Pleistocene. Therefore, the recent coalescence of our data indicates that DD settlement (~10 

Ma) was not a vicariant event for the species, suggesting some degree of connectivity between 

AM and AF up to the Quaternary. Divergences occurred mainly in the Middle-Pleistocene 

(~300 ka), marked by intense climate oscillations with increased amplitude (Head & Gibbard, 

2005). In this scenario, shifts in biome distribution (Sobral-Souza et al, 2015) might have 

isolated N. clavipes populations in disjoint stable areas that would allow populations to evolve 

independently (Carnaval & Moritz, 2008), originating the mitochondrial lineages. Moreover, 

three of the Brazilian lineages (Groups I, III and IV) seem to have emerged somewhere between 

DD and SAF in south-central Brazil, a region severely affected by climate fluctuations during 

Pleistocene (Morley, 2000). 

Even though these lineages occur together in some sampling locations, they present 

great genetic divergence and different ancestral areas, what suggests moments of isolation 

during the Quaternary with recent secondary contact caused by the species’ high dispersal 

ability. ABC results also supported differentiation among biomes with posterior migration 

among previously isolated populations. Recent works with widely distributed spiders in the 

Neotropics have also found geographically informative lineages with a Pleistocene divergence 

(Peres et al, 2017), suggesting that climate fluctuations may be responsible by the recent 

diversification.  

Demographic events for forest-dwellers Neotropical species have been discussed since 

the Refugia Theory (Haffer, 1969; Vanzolini & Williams, 1981), which suggested that wet 

forests would have retracted during glacial periods and expanded during interglacials. Even 

though some organisms present this expected pattern (e.g. De Ré et al, 2014), recent works 

have challenged this concept as several organisms display population stability (e.g. Batalha-
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Filho et al, 2012) or pre-LGM expansion (e.g. Peres et al, 2015). For N. clavipes, analyses 

evidenced demographic expansion in the lineages that preferably inhabit rain forests (Groups I 

and II, AF and AM – Fig. 4, Table 2). No dataset presented evidence of population retraction. 

The EBSP estimated a subtle demographic expansion for Group I (the most associated with AF) 

around 200 ka, before the LGM. This suggests that this lineage expanded or at least remained 

stable during the last glacial cycle, in opposition to the expected by Refugia Theory. The 

possibility of AF range expansion towards the continental shelf during the LGM (Leite et al, 

2016), together with N. clavipes capability of building webs in several different habitats 

(Moore, 1977) and handling a wide range of environmental conditions, might help explaining 

the demographic stability found throughout our data, as responses to climate fluctuations 

depend heavily on the species’ ecological and environmental tolerances (Prates et al, 2016). 

 

Putative connections between AM and AF 

 There is substantial evidence supporting the existence of AM-AF Pleistocene 

connections including palaeopalynogical, geological and phylogeographical data (Behling et 

al, 2000; Auler et al, 2004; Batalha-Filho et al, 2013; Peres et al, 2017). Hypothesized 

connections routes include i) a corridor through the north of Caatinga, linking eastern-AM to 

NAF; ii) a path linking western-AM and SAF through Chaco and Cerrado; iii)  a connection 

through central Brazil, as forest fragments can be currently found in Cerrado (Por, 1992; Costa, 

2003; Batalha-Filho et al, 2013). 

 The distribution of N. clavipes lineages is not restricted to biome boundaries, with three 

lineages (Groups I, III and IV) occurring in more than one biome. According to the ancestral 

area reconstruction, Group I was likely originated in SAF and then expanded to DD and NAF, 

while Groups III and IV were formed in the DD and reached SAF and AM (Figs. 1 and 3, Table 

S6). These data corroborate the “Central Cerrado” route (Por, 1992; Oliveira-Filho & Ratter, 

1995) following a corridor through the central part of Cerrado, reaching both AM and AF (Fig. 

1). The model testing also supported this hypothesis, showing that previously isolated biomes 

have exchanged migrants during LGM, with DD being the main source for both forests. Climate 

simulations have shown that central Brazil was more humid during LGM due to an expansion 

of SAF climate towards DD (Sobral-Souza et al, 2015), which may have created intermittent 

corridors connecting SAF-DD-AM. This pattern was presumably recurrent along the 

Quaternary as glacial cycles repeatedly changed climate conditions in central Brazil (Cheng et 

al, 2013).  As a species with high dispersal ability and environmental resilience, capable of 



39 

 

 

 

building webs at the borders of forest fragments (Moore, 1977), N. clavipes might have 

expanded its range through these corridors when climate conditions were adequate.  

Studies with several organisms (Batalha-Filho et al., 2013; Rodrigues et al., 2014; 

Prates et al, 2016) , including widespread rain forest-dweller spiders (Peres et al, 2017), support 

a close relationship between eastern-AM and NAF. This connection would have been 

established through the expansion of AM climate towards NAF (Sobral-Souza et al, 2015), and 

is corroborated by the existence of the “brejos de altitude”, rain forest fragments in the Caatinga 

highlands. However, N. clavipes did not presented haplotype sharing nor trans-occurrence 

between these biomes. All haplotypes present in NAF were also present in SAF. Studies 

encompassing NAF and SAF recurrently report the existence of different lineages in each 

counterpart, what has been associated with a region of climate turnover near of the Doce River 

(Cheng et al, 2013; Sobral-Souza et al, 2015; Peres et al, 2017). The great similarity between 

NAF and SAF haplotypes in this study indicates that N. clavipes populations in the AF maintain 

a great level of gene flow, therefore no phylogeographical breaks could be inferred for this 

biome.  

 

CONCLUSIONS 

 Our data support that both geological (Andean CC uplift) and climate (Pleistocene 

fluctuations) events were responsible for Neotropical diversification at different time frames 

(Neogene x Quaternary). We also elucidated that DD settlement was not a vicariant event for 

N. clavipes, as the coalescence of Brazilian samples took place in the Pleistocene, suggesting 

Quaternary connectivity between AF and AM. ABC results supported the hypothesis that AM-

AF connections happened during LGM with DD as a major source of migrants, and our data 

seem to fit the “Central Cerrado” route, following wetter areas in central Brazil. N. clavipes 

data do not support a northern connection through Caatinga, nor present exclusive lineages in 

NAF and SAF. Our findings indicate that, although common events might have affected the 

dynamics of rain forest-dwellers through the glacial cycles, the responses to these events are 

intrinsic of each species and strongly depends on environmental and ecological tolerances. 

Studying widely distributed species, which occur in more than one biome, has proven to be 

pivotal to a better understanding of diversification in highly complex regions. 
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TABLES 

Table 1: Sampling locations of Nephila clavipes with details on biome and number of 
sequences obtained for each marker, per population.  

Location Biome COI H3a ITS2 
Alcobaça /BA (ALC) NAF 8 10 10 
Alta Floresta/MT (AFL) AM 8 12 12 
Aracruz/ES (ARC) SAF 8 10 4 
Belém/PA (BLM) AM 8 - - 
Belo Horizonte/MG (BHR) DD 8 16 14 
Bragança/PA (BRG) AM 8 - - 
Brasília/DF (BRS) DD 8 14 14 
Campo Grande/MS (CGD) DD 1 - - 
Catalão/GO (CTL) DD 1 - - 
Colombia – Amazon (CLA) AM 1 2 2 
Colombia – V. del Magdalena (CLM) AM 6 12 12 
Colombia – Pacific (CLP) TAC 3 6 6 
Colombia – V. del Cauca (CLC) TAC 2 4 4 
Florestópolis/PR (FLO) SAF 8 - - 
Foz do Iguaçu/PR (FDI) SAF 8 8 8 
Goiânia/GO (GOI) DD 3 - - 
Gramado/RS (GRA) SAF 8 14 12 
Ibirama/SC (IBM) SAF 8 - - 
Ibitinga/SP (IBT) DD 8 - - 
Ilha do Cardoso/SP (IDC) SAF 8 - - 
Itaguaçu/ES (ITG) SAF 3 - - 
Juiz de Fora/MG (JDF) SAF 8 16 12 
Jundiaí/SP (JDI) SAF 8 - - 
Linhares/ES (LNH) SAF 8 - - 
Macapá/AP (MAC) AM 3 - - 
Manaus/AM (MAN) AM 8 10 6 
Mata de São João/BA (MSJ) NAF 8 10 6 
Moju/PA (MOJ) AM 8 10 8 
Monte Alegre do Sul/SP (MON) SAF 8 - - 
Paraty/RJ (PTY) SAF 7 10 2 
Passa Quatro/MG (PQT) SAF 8 - - 
Pinhalzinho/SP (PIN) SAF 8 14 12 
Pirenópolis/GO (PRN) DD 8 10 8 
Poços de Caldas/MG (PDC) SAF 8 - - 
Porangatu/GO (PRG) DD 8 10 2 
Porto Velho/RO (PVL) AM 6 - - 
Recife/PE (RCF) NAF 3 - - 
Rio Branco/AC (RBC) AM 8 10 8 
Rio Claro/SP (RCL) DD 8 - - 
Rio Preto do Eva/AM (RPE) AM 1 - - 
Santa Teresa/ES (STE) SAF 1 - - 
Santarém/PA (STM) AM 8 - - 
Santos/SP (STO) SAF 8 - - 
São Carlos/SP (SCA) DD 8 - - 
Sapiranga/RS (SPG) SAF 8 - - 
Silva Jardim/RS (SJD) SAF 7 - - 
Teodoro Sampaio (TDS) SAF 8 8 8 
Uberlândia/MG (UBE) DD 8 16 12 
Viçosa/MG (VIC) SAF 8 14 16 
Total  320 246 198 
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Table 2: Genetic diversity indices for Nephila clavipes, calculated according to genetic 
groups and biomes. N = number of sequences; h = number of haplotypes; ss = number of 
segregating sites; Hd = haplotype diversity; π = nucleotide diversity; FS = Fu’s FS; D = 
Tajima’s D; FST = fixation index, sd = standard deviation. * p < 0.05; ** p < 0.02. 

COI 
Location N h ss Hd (sd) π (sd) FS D FST 
Group I 140 27 30 0.7955 (0.0302) 0.0026 (0.0017) -23.56** -2.1045* - 
Group II 68 15 16 0.8292 (0.0296) 0.0028 (0.0018) -7.464** -1.4973* - 
Group III 58 9 11 0.7114 (0.0341) 0.0035 (0.0022) -0.7814 -0.3577 - 
Group IV 49 10 9 0.7185 (0.0575) 0.0023 (0.0016) -3.8365 -0.9371 - 
Group V 5 2 3 0.6000 (0.1753) 0.0030 (0.0024) 2.4290 1.5727 - 
AM 73 19 30 0.8516 (0.0272) 0.0044 (0.0026) -7.686** -1.8148* 0.349 
DD 69 23 25 0.9224 (0.0155) 0.0093 (0.0050) -4.7852 0.2064 0.344 
NAF 19 4 3 0.7076 (0.0739) 0.0014 (0.0012) -0.3321 0.0967 0.571 
SAF 154 31 40 0.8848 (0.0157) 0.0069 (0.0038) -10.63** -1.2593 0.540 
TAC 5 2 3 0.6000 (0.1753) 0.0030 (0.0024) 2.4290 1.5727 0.500 
Total 320 63 88 0.9375 (0.0068) 0.0111 (0.0058) -24.50** -1.5578* 0.751 
 
H3a 
Location N h ss Hd (sd) π (sd) FS D FST 
Group I 68 13 10 0.7204 (0.0480) 0.0092 (0.0057) -3.1941 0.17883 - 
Group II 48 11 7 0.7739 (0.0519) 0.0091 (0.0057) -2.4119 1.06402 - 
Group III 46 6 6 0.6300 (0.0633) 0.0081 (0.0052) 0.9730 1.14741 - 
Group IV 74 9 8 0.6716 (0.0341) 0.0071 (0.0046) -1.1094 0.14073 - 
Group V 10 1 0 0 0 - 0 - 
AM 56 12 7 0.8071 (0.0419) 0.0093 (0.0058) -2.7395 1.26448 0.071 
DD 66 8 6 0.6653 (0.0367) 0.0073 (0.0047) -0.4626 0.97257 -0.038 
NAF 20 4 5 0.7211 (0.0653) 0.0092 (0.0059) 2.13121 1.78515 0.080 
SAF 94 17 12 0.6882 (0.0431) 0.0084 (0.0053) -6.702** -0.34514 0.134 
TAC 10 1 0 0 0 - 0 0 
Total 246 24 14 0.7428 (0.0224) 0.0089 (0.0055) -10.01** -0.14754 0.243 
         
ITS2         
Location N h ss Hd (sd) π (sd) FS D FST 
Group I 48 5 3 0.6144 (0.0524) 0.0039 (0.0031) -0.6915 0.4445 - 
Group II 40 5 4 0.609 (0.0662) 0.0034 (0.0029) -1.2205 -0.568 - 
Group III 40 5 3 0.5936 (0.0724) 0.0038 (0.0031) -0.9054 0.3125 - 
Group IV 60 5 4 0.5158 (0.0515) 0.0029 (0.0026) -1.2442 -0.5985 - 
Group V 10 1 0 0 0 - 0 - 
AM 48 5 4 0.5895 (0.0592) 0.0032 (0.0028) -1.1846 -0.5555 0.111 
DD 50 6 4 0.591 (0.0579) 0.0035 (0.003) -1.9206 -0.3628 -0.025 
NAF 16 4 3 0.675 (0.0853) 0.0043 (0.0035) -0.4728 0.0136 0.099 
SAF 74 5 3 0.5424 (0.0494) 0.0034 (0.0029) -0.6647 0.3368 -0.106 
TAC 10 1 0 0 0 - 0 0 

Total 198 7 14 0.6132 (0.0294) 0.0090 (0.0057) 1.8787 -0.5131 0.716 
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Table 3: Results of the Analysis of Molecular Variance (AMOVA) for Nephila clavipes, for 
each molecular marker. We performed two analysis: one considering the five biomes (TAC, 
AM, DD, SAF and NAF), in the left column; other excluding TAC individuals from the 
analysis. * p < 0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 % of Variation 

Source of variation With TAC W/o TAC 

COI   

Among biomes 49.15* 38.62* 

Among populations within biomes 22.43* 27.09* 

Within populations 28.42* 34.29* 

   

H3a   

Among biomes 10.50* -1.21 

Among populations within biomes 10.19* 11.55* 

Within populations 79.31* 89.65* 

   

ITS2   

Among biomes 69.49* -2.5 

Among populations within biomes 2.37* 7.97* 

Within populations 28.13* 94.53* 
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Table 4: Results of the model selection performed through ABC. We present the Posterior 
Probability (PP) for each model within scenarios (third column), except for Scenarios 1 and 2, 
each presenting only one model. The best model in each scenario (in bold) was used to perform 
the analysis Among Scenarios (fourth column). The model with highest PP in this analysis (in 
bold) was considered the best-fitting model for our data.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Scenario Model 
Within 

scenarios 

Among 

scenarios 

1 1 - 0.0000 

2 2 - 0.0000 

3 

3 0.6435 0.0001 

4 0.0081 - 

5 0.3484 - 

4 

6 0.2275 - 

7 0.0072 - 

8 0.2538 - 

9 0.2146 - 

10 0.2969 0.7493 

5 

11 0.1876 - 

12 0.0019 - 

13 0.0317 - 

14 0.2239 - 

15 0.5549 0.2506 
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FIGURE LEGENDS 

Figure 1: (a) Map with Nephila clavipes sampling locations in Brazil and Colombia. The two 

boxes in the right show details in Colombia [above – displaying the sampling sites according 

to each of the three Cordilleras: Western Cordillera (WC), Central Cordillera (CC) and Eastern 

Cordillera (EC)] and in the Brazilian Southeastern Region (below – a transition zone between 

SAF and DD). Light gray areas in the map represent humid forests (highlighting AM and AF), 

and the hatched area represents Cerrado. Pie charts represent the frequency of mitochondrial 

lineages in each location. Circle size is proportional to the number of individuals in each 

location. (b) Haplotype networks for each molecular marker: COI (left), H3a (middle) and ITS2 

(right). In the COI network, colored polygons show the five mitochondrial lineages inferred by 

BAPS. The dashed line shows the distinction between Trans-Andean Colombia samples and 

the others. Circle size is proportional to the frequency of each haplotype, and dashes represent 

mutational events. Haplotypes in the networks are colored according to their occurrence in each 

biome. 

 

Figure 2: Demographic scenarios simulated for the evolutionary history of Nephila clavipes in 

South America. Scenario I presumes panmixia among all populations (model I); Scenario II 

assumes an ancient split from TAC samples coincident with the final uplift of the Andean 

Central Cordillera (model 2); In Scenario III, besides TAC separations, we also tested a recent 

divergence between AM and a supposedly panmictic population comprising AF+DD, and 

tested for absence of gene flow (model 3), current (model 4) or LGM migration (model 5); for 

Scenario IV, we considered that all biomes have diverged, with a more recent split between AF 

and DD, and tested for absence of gene flow (model 6), current uniform migration (model 7), 

current non-uniform migration (model 8), uniform migration in the LGM (model 9), and non-

uniform migration in the LGM (model 10); in Scenario 5, we tested the emergence of three 
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Brazilian lineages at the same time, and tested for absence (model 11), current uniform (model 

12), current non-uniform (model 13), LGM uniform (model 14) and LGM non-uniform (model 

15) migration.     

 

Figure 3: Bayesian phylogenetic inferences for Nephila clavipes individuals. In the box, the 

multilocus species tree showing the level of uncertainty among the three markers, mainly in the 

more recent Brazilian branches. In red, the most frequently recovered consensus tree. In the 

COI tree, we display the five mitochondrial lineages inferred by BAPS, with posterior 

probabilities for the main nodes. In the Group I, NAF individuals are highlighted with black 

lines in front of the tips. The circles show results from the biogeographical analysis of ancestral 

area reconstruction, representing the most likely biome of origin from each mitochondrial 

group. 

 

Figure 4: Results for the Extended Bayesian Skyline Plot analyses for Nephila clavipes. 

Analyses were performed jointly for the three markers. Continuous lines represent the medians, 

and the gray shadings display 95% HPD for each analysis.   
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APPENDIX S1.  DETAILS ON METHODOLOGY. 

 

Model Testing 

We used an Approximate Bayesian Computation (ABC; Beaumont, 2010; Csilléry et 

al, 2010; Sunnaker et al, 2013) framework to perform the model testing. We separated the 

individuals in the previously defined groups: TAC, AM, DD and AF (we kept NAF and SAF 

as one single population in this analysis due to genetic results) according to their geographical 

location. We constructed demographic models that represent biogeographical hypothesis 

concerning the evolutionary history of N. clavipes and the Neotropical region (Fig. 2). We 

grouped models in scenarios in order to first compare similar models (which represent 

alternatives for the same hypothesis) and then compare the best model of each scenario, to select 

which hypothesis was the best overall. We performed the analysis jointly for mitochondrial and 

nuclear markers.   

The first scenario presents only one model, representing a single panmictic population 

with no demographic changes over time (Model 1). In this hypothesis, all sampled populations 

are connected and there are no barriers to gene flow in the sampled area, therefore neither 

geological nor climate events would have promoted diversification (TAC+AM+DD+AF). 

The second scenario also presents only one model (Model 2); in this case, divergence in 

N. clavipes would have happened due to Neogene orogenic activity, mainly the Andean uplift. 

Therefore, the divergence between TAC individuals and the other samples would be coincident 

with the estimated time for the Central Cordillera final uplift (~10-6 Ma). The other individuals 

would constitute a single panmictic population (TAC(AM+DD+AF)). 

For scenarios 3-5 we considered that, besides the divergence due to the Andean Uplift 

in the Colombian samples, climate fluctuations promoted diversification among Brazilian 

biomes during Quaternary. In each of these scenarios, we tested three mutually exclusive 
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hypotheses: i) populations experienced no migration among Brazilian biomes after the 

diversification; ii) despite moments of isolation, Brazilian populations are connected in the 

present through the net of gallery forests in Cerrado, represented by multidirectional migration; 

iii) habitats shifts in the LGM would have promoted connections among biomes; therefore, 

migration among populations would have occurred mainly during this period due to biome 

expansion/retraction. 

In Scenario 3, Brazilian samples would present a split separating AM from DD and AF, 

the last two still constituting a panmictic population (TAC(AM(DD+AF))). We included three 

models in this scenario: Model 3 presents no gene flow among any of the populations; in Model 

4 we considered present-day migration between AM and DD+AF; in Model 5, we considered 

migration during LGM. 

In Scenario 4, AF and DD do not constitute a panmictic population, and diverged more 

recently than AM (TAC(AM(DD(AF)))). Model 6 represents absence of gene flow; Model 7 

includes multidirectional migration among AM, AF and DD in the present; in Model 8 we 

considered current non uniform migration among these biomes, as suggested by our genetic 

results (see Results): DD would serve as source of migrants for both AM and AF, and AF would 

send migrants only to DD; in Model 9, we considered multidirectional migration among 

Brazilian biomes dating from the LGM; and in Model 10, the connections among these biomes 

also would have occurred in the LGM but they would not have been uniform, similar to model 

8. 

In Scenario 5, we tested a fragmentation from a past widespread Brazilian lineage. 

Therefore, Brazilian populations (AM, DD and AF) would present divergence in the 

Pleistocene, with three distinct lineages emerging at the same time (TAC(AM/DD/AF)). The 

five models within this scenario are similar to those from scenario 4: no gene flow (Model 11); 

uniform multidirectional migration in the present for Brazilian biomes (Model 12); uneven 

migration in the present where DD is the main source of migrants (Model 13); multidirectional 

migration in the LGM (Model 14); uneven migration in the LGM (Model 15). 

We estimated Ne for the species through the formula Ne = θ/μ using the mitochondrial 

data (θ was estimated on DnaSP) with a substitution rate of 0.0112 substitutions/site/million 

years (Kuntner et al, 2013), as this is the more reliable substitution rate for any nephilid gene. 

This information was used to calculate the time of past events in units of 4N0 generations 

through the formula τ = Number of generations/4*Ne, considering the generational time as one 

year. 
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We performed 100,000 simulations per model on ms (Hudson, 2002) using custom 

Python scripts. We set parameters (θ and Migration) as flat uniform prior distributions to allow 

a wider prior sampling as an exploratory step. Time of divergence between TAC and the 

Brazilian samples (in scenarios 2-5) was given a uniform distribution that represented the 

Central Cordillera final uplift (10-6 Ma). Divergences between Brazilian samples in scenarios 

3-5 were given a uniform distribution which represented the Pleistocene period (2.588-0.011 

Ma). We then calculated the summary statistics [total nucleotide diversity, number of 

segregating sites, Tajima’s D, nucleotide diversity within and between populations (π, ss, D, 

πw, πb, respectively)] of the newly simulated data using a PERL script by N. Takebayashi 

(available at 

http://raven.iab.alaska.edu/~ntakebay/teaching/programming/coalsim/scripts/msSS.pl), 

grouped them in vectors and found the one that optimizes model selection through a rejection 

step performed with pseudo-observed data.  

We narrowed the parameters distribution using the summary statistics selected and the 

“abc” package (Csilléry et al, 2012) in R, using the 0.1% simulations that best fit the empirical 

data. We then used the posterior distribution obtained in these exploratory runs as priors for 

400,000 new simulations for each model. We performed model selection in R using the “abc” 

package, keeping the 0.01% of the sequences more similar to our empirical data based on a 

neural network rejection. We performed this procedure within scenarios 3-5, selected the best 

model within each scenario, then gathered these models with scenarios 1 and 2 and contrasted 

the five models to find the one with higher posterior probability to fit our empirical data. 
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Table S1: COI genetic diversity indices for Nephila clavipes populations. N = number of 
sequences; h = number of haplotypes; ss = number of segregating sites; Hd = haplotype 
diversity; π = nucleotide diversity; FS = Fu’s FS; D = Tajima’s D; FST = fixation index, sd = 
standard deviation. * p < 0.05; ** p < 0.02. 

 

 

 

COI 
Location N h ss Hd (sd) π (sd) FS D 
Alcobaça /BA (ALC) 8 4 3 0.821 (0.101) 0.0023 (0.0018) -0.569 0.839 
Alta Floresta/MT (AFL) 8 6 18 0.928 (0.084) 0.0124 (0.0074) 0.315 0.336 
Aracruz/ES (ARC) 8 1 0 0 0 - 0 
Belém/PA (BLM) 8 6 5 0.893 (0.111) 0.0024 (0.0018) -3.589* -1.175 
Belo Horizonte/MG (BHR) 8 4 9 0.75 (0.139) 0.0067 (0.0042) 1.631 0.696 
Bragança/PA (BRG) 8 2 1 0.25 (0.18) 0.0004 (0.0005) -0.182 -1.055 
Brasília/DF (BRS) 8 6 17 0.893 (0.111) 0.0115 (0.0069) 0.163 0.236 
Campo Grande/MS (CGD) 1 1 0 1 0 - 0 
Catalão/GO (CTL) 1 1 0 1 0 - 0 
Colombia – Amazon (CLA) 1 1 0 1 0 - 0 
Colombia – V. del Magdalena (CLM) 6 1 0 0 0 - 0 
Colombia – Pacific (CLP) 3 2 3 0.667 (0.314) 0.0034 (0.0032) 1.609 0 
Colombia – V. del Cauca (CLC) 2 1 0 0 0 - 0 
Florestópolis/PR (FLO) 8 3 5 0.679 (0.122) 0.0026 (0.0020) 1.018 -0.923 
Foz do Iguaçu/PR (FDI) 8 2 1 0.25 (0.18) 0.0004 (0.0005) -0.182 -1.055 
Goiânia/GO (GOI) 3 2 2 0.667 (0.314) 0.0022 (0.0023) 1.061 0 
Gramado/RS (GRA) 8 3 8 0.464 (0.2) 0.0034 (0.0024) 1.572 -1.701* 
Ibirama/SC (IBM) 8 1 0 0 0 - 0 
Ibitinga/SP (IBT) 8 4 7 0.786 (0.113) 0.0056 (0.0037) 1.25 1.158 
Ilha do Cardoso/SP (IDC) 8 4 4 0.643 (0.184) 0.0017 (0.0014) -1.236 -1.535* 
Itaguaçu/ES (ITG) 3 1 0 0 0 - 0 
Juiz de Fora/MG (JDF) 8 4 14 0.643 (0.184) 0.0074 (0.0046) 1.877 -0.949 
Jundiaí/SP (JDI) 8 5 9 0.857 (0.108) 0.0059 (0.0038) 0.059 0.091 
Linhares/ES (LNH) 8 3 3 0.679 (0.122) 0.0022 (0.0017) 0.723 0.585 
Macapá/AP (MAC) 3 1 0 0 0 - 0 
Manaus/AM (MAN) 8 2 2 0.429 (0.169) 0.0014 (0.0013) 1.653 0.414 
Mata de São João/BA (MSJ) 8 1 0 0 0 - 0 
Moju/PA (MOJ) 8 7 8 0.964 (0.077) 0.0042 (0.0028) -3.802* -0.917 
Monte Alegre do Sul/SP (MON) 8 4 7 0.643 (0.184) 0.0032 (0.0023) 0.081 -1.359 
Paraty/RJ (PTY) 7 3 4 0.667 (0.16) 0.0037 (0.0026) 1.508 1.633 
Passa Quatro/MG (PQT) 8 2 6 0.25 (0.18) 0.0025 (0.0019) 2.822 -1.64* 
Pinhalzinho/SP (PIN) 8 5 9 0.893 (0.086) 0.0071 (0.0045) 0.427 1.049 
Pirenópolis/GO (PRN) 8 5 5 0.893 (0.086) 0.0032 (0.0023) -1.232 0.0005 
Poços de Caldas/MG (PDC) 8 4 7 0.75 (0.14) 0.0047 (0.0032) 0.869 0.214 
Porangatu/GO (PRG) 8 3 2 0.464 (0.2) 0.0011 (0.0011) -0.478 -0.448 
Porto Velho/RO (PVL) 6 3 4 0.733 (0.155) 0.0031 (0.0024) 0.892 0.355 
Recife/PE (RCF) 3 1 0 0 0 - 0 
Rio Branco/AC (RBC) 8 6 6 0.929 (0.084) 0.0028 (0.0021) -3.114* -1.28 
Rio Claro/SP (RCL) 8 7 12 0.964 (0.077) 0.0074 (0.0046) -2.221 -0.256 
Rio Preto do Eva/AM (RPE) 1 1 0 1 0 - 0 
Santa Teresa/ES (STE) 1 1 0 1 0 - 0 
Santarém/PA (STM) 8 3 2 0.464 (0.2) 0.0008 (0.0009) -0.999 -1.310 
Santos/SP (STO) 8 5 4 0.857 (0.108) 0.0022 (0.0017) -2.169* -0.727 
São Carlos/SP (SCA) 8 5 12 0.857 (0.108) 0.0069 (0.0044) 0.373 -0.566 
Sapiranga/RS (SPG) 8 3 8 0.464 (0.2) 0.0034 (0.0024) 1.573 -1.701* 
Silva Jardim/RS (SJD) 7 4 10 0.714 (0.181) 0.0062 (0.0041) 1.092 -0.483 
Teodoro Sampaio (TDS) 8 3 7 0.464 (0.2) 0.0029 (0.0022) 1.286 -1.674* 
Uberlândia/MG (UBE) 8 4 14 0.821 (0.101) 0.01 (0.0061) 2.645 0.499 
Viçosa/MG (VIC) 8 3 11 0.464 (0.2) 0.0052 (0.0034) 2.631 -1.336 
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Table S2: H3a and ITS2 genetic diversity indices for Nephila clavipes populations. N = number 
of sequences; h = number of haplotypes; ss = number of segregating sites; Hd = haplotype 
diversity; π = nucleotide diversity; FS = Fu’s FS; D = Tajima’s D; FST = fixation index, sd = 
standard deviation. * p < 0.05; ** p < 0.02. 

 

H3a 
Location N h ss Hd (sd) π (sd) FS D 
Alcobaça /BA (ALC) 10 3 4 0.622 (0.138) 0.008 (0.0086) 1.927 1.471 
Alta Floresta/MT (AFL) 12 6 5 0.864 (0.072) 0.008 (0.0055) -1.412 0.632 
Aracruz/ES (ARC) 10 5 7 0.844 (0.08) 0.0122 (0.0079) 0.305 0.862 
Belo Horizonte/MG (BHR) 16 4 4 0.642 (0.081) 0.0068 (0.0047) 0.914 1.154 
Brasília/DF (BRS) 14 5 5 0.67 (0.126) 0.0091 (0.006) 0.323 1.402 
Colombia - Amazon (CLA) 2 2 3 1 (0.5) 0.0123 (0.0142) 1.099 0 
Colombia - V. del Magdalena (CLM) 12 3 3 0.318 (0.164) 0.0032 (0.0028) 0.18 -0.729 
Colombia - Pacific (CLP) 6 1 0 0 0 - 0 
Colombia - V. del Cauca (CLC) 4 1 0 0 0 - 0 
Foz do Iguaçu/PR (FDI) 8 2 3 0.25 (0.18) 0.0031 (0.0029) 1.415 -1.447 
Gramado/RS (GRA) 14 4 5 0.692 (0.094) 0.0083 (0.0056) 1.221 0.99 
Juiz de Fora/MG (JDF) 16 6 5 0.6167 (0.135) 0.0046 (0.0035) -2.337 -0.853 
Manaus/AM (MAN) 10 4 6 0.8 (0.089) 0.011 (0.0072) 1.257 1.064 
Mata de São João/BA (MSJ) 10 4 5 0.822 (0.072) 0.0095 (0.0064) 0.92 1.233 
Moju/PA (MOJ) 10 6 5 0.889 (0.075) 0.0079 (0.0055) -1.953 0.326 
Paraty/RJ (PTY) 10 6 6 0.778 (0.137) 0.0086 (0.0059) -1.718 -0.062 
Pinhalzinho/SP (PIN) 14 3 6 0.483 (0.142) 0.0094 (0.0061) 2.999 0.759 
Pirenópolis/GO (PRN) 10 4 4 0.733 (0.12) 0.0073 (0.0052) 0.334 0.988 
Porangatu/GO (PRG) 10 4 4 0.733 (0.1) 0.0075 (0.0053) 0.388 1.109 
Rio Branco/AC (RBC) 10 4 5 0.644 (0.152) 0.0092 (0.0063) 0.867 1.082 
Teodoro Sampaio (TDS) 8 3 3 0.607 (0.164) 0.0057 (0.0045) 0.825 0.839 
Uberlândia/MG (UBE) 16 3 4 0.575 (0.08) 0.0069 (0.0048) 2.286 1.218 
Viçosa/MG (VIC) 14 3 4 0.472 (0.136) 0.006 (0.0043) 1.728 0.533 
        
ITS2 
Location N h ss Hd (sd) π (sd) FS D 
Alcobaça /BA (ALC) 10 4 3 0.733 (0.12) 0.0048 (0.004) -0.83 -0.13 
Alta Floresta/MT (AFL) 12 2 1 0.53 (0.076) 0.0025 (0.0025) 1.152 1.381 
Aracruz/ES (ARC) 4 3 3 0.833 (0.222) 0.0079 (0.0069) -0.133 0.168 
Belo Horizonte/MG (BHR) 14 4 3 0.659 (0.09) 0.0043 (0.0035) -0.647 -0.137 
Brasília/DF (BRS) 14 4 3 0.626 (0.11) 0.004 (0.0034) -0.784 -0.315 
Colombia - Amazon (CLA) 2 2 1 1 (0.5) 0.0047 (0.0067) 0 0 
Colombia - V. del Magdalena (CLM) 12 2 1 0.303 (0.147) 0.0014 (0.0018) 0.297 -0.194 
Colombia - Pacific (CLP) 6 1 0 0 0 - 0 
Colombia - V. del Cauca (CLC) 4 1 0 0 0 - 0 
Foz do Iguaçu/PR (FDI) 8 3 2 0.464 (0.2) 0.0024 (0.0025) -0.999 -1.31 
Gramado/RS (GRA) 12 4 3 0.758 (0.081) 0.0062 (0.0047) -0.05 1.022 
Juiz de Fora/MG (JDF) 12 2 1 0.409 (0.133) 0.0019 (0.0021) 0.735 0.54 
Manaus/AM (MAN) 6 3 2 0.733 (0.155) 0.0044 (0.0040) -0.304 0.311 
Mata de São João/BA (MSJ) 6 2 1 0.6 (0.129) 0.0028 (0.003) 0.795 1.445 
Moju/PA (MOJ) 8 2 1 0.571 (0.094) 0.0027 (0.0028) 0.966 1.444 
Paraty/RJ (PTY) 2 2 3 1 (0.5) 0.0142 (0.0164) 1.099 0 
Pinhalzinho/SP (PIN) 12 2 1 0.485 (0.106) 0.0023 (0.0024) 1.003 1066 
Pirenópolis/GO (PRN) 8 2 1 0.429 (0.169) 0.002 (0.0023) 0.536 0.333 
Porangatu/GO (PRG) 2 2 2 1 (0.5) 0.0095 (0.0116) 0.693 0 
Rio Branco/AC (RBC) 8 5 1 0.571 (0.094) 0.0027 (0.0028) 0.966 1.444 
Teodoro Sampaio (TDS) 8 3 2 0.464 (0.2) 0.0024 (0.0025) -0.999 -1.31 
Uberlândia/MG (UBE) 12 3 2 0.53 (0.136) 0.0027 (0.0027) -0.362 -0.382 
Viçosa/MG (VIC) 16 2 1 0.458 (0.095) 0.0022 (0.0022) 1.096 1.034 
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Table S3-S5: Tables displaying pairwise FST values among populations for COI (S3), H3a 
(S4) and ITS2 (S5). Due to the large number of lines and columns, these tables are available as 
a .xlsx file on https://github.com/luizbartoleti/Nclavipes. 
 

Table S6: Results from the ancestral area reconstruction for Nephila clavipes. Lines display 
the mitochondrial lineages and the species’ root, and columns display the five discrete biomes 
considered. The most likely biome for each lineage origin is highlighted in bold. 

 

  

 TAC AM DD NAF SAF 
Group I 0.0006 0.0066 0.3223 0.0222 0.6483 
Group II 0.0001 0.9669 0.0267 0.0012 0.0051 
Group III 0.0008 0.0255 0.5045 0.0159 0.4533 
Group IV 0.0000 0.0278 0.7881 0.0031 0.1810 
Group V 0.9554 0.0017 0.0007 0.0414 0.0008 
Brazilian samples 0.0055 0.1659 0.4335 0.0488 0.3463 
N. clavipes 0.2648 0.1628 0.1865 0.1990 0.1869 
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Figure S1: Map showing the locations that constituted the nuclear subsample. 
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Figure S2: Results from the mismatch distribution analysis for the three markers separately – 
(a) COI, (b) H3a and (c) ITS2. The continuous lines represent the expected number of pairwise 
differences in a scenario of sudden expansion, and columns represent the actual number 
observed in our data. The analysis was performed in the overall dataset and for each 
mitochondrial group. Mismatch distributions were not calculated for Group V for the nuclear 
markers, as they presented only one haplotype. 
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ABSTRACT: 

 

Aim The Neotropical Dry Diagonal (DD) is a corridor of distinct dry environments in central 

South America. The main hypotheses suggest that these environments may have expanded 

during glacial cycles together with a retraction of rainforests, and then shrank when the climate 

became wetter and warmer. However, few studies have explicitly tested hypotheses on DD 

evolution. We conducted a phylogeographical study on Nephila sexpunctata, a spider endemic 

to Neotropical dry habitats, to enrich the understanding of DD evolutionary history. 

Location Southwestern portion of the DD (Cerrado and Chaco). 

Methods We sequenced two mitochondrial regions and one nuclear DNA region of 65 

individuals from 10 locations across the species’ range. We conducted analyses of genetic 

structure, variability, demography and inferred divergence times. We used an ecological niche 

modelling framework to generate hypotheses on the species’ distribution along the last glacial 

cycle and a model-based approach to test demographic scenarios that might explain the genetic 

patterns. 

Results Both markers presented low genetic diversity. Mitochondrial markers had high genetic 

structure, with specific geographical lineages within each biome, while the nuclear marker 

presented low genetic structure. Phylogeographical and demographic events encompass the last 

glacial cycle, with a strong post-Last Glacial Maximum (LGM) population and spatial 

expansion. Model testing corroborated the recent demographic expansion of N. sexpunctata.  

 Main Conclusions Our data suggest that Quaternary climate cycles, when moist forests 

periodically expanded towards the dry vegetation, influenced diversification of DD organisms 

by promoting demographic events. These events might explain the genetic structure observed 

in N. sexpunctata; differently from what was expected by the Pleistocene refugia model, some 

DD species may have experienced post-LGM expansion. Climate and geologic events have 

both affected DD-endemic organisms’ diversification. 

Keywords Cerrado, Chaco, dry diagonal, ecological niche modelling, Last Glacial Maximum, 

Neotropics, Nephila, phylogeography, Pleistocene refugia model 
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INTRODUCTION 

The Neotropics are the most diverse biogeographical region of the planet, presenting a 

great variety of ecoregions, from tropical rain forests to drier open formations. The largest 

continuous portion of dry vegetation in this region forms a northeast-southwest corridor that 

crosses South America, called the Dry Diagonal,  composed of three biomes: Caatinga, the 

largest Neotropical nucleus of Seasonally Dry Tropical Forests (SDTFs) in northeastern Brazil; 

Cerrado, a mosaic of phytophysiognomies predominantly covered by savannas in the central 

part of the continent; and Chaco, composed mainly of subtropical dry forests and open 

woodlands in northern Argentina, Paraguay and Bolivia (Fig. 1). Evidence suggests that in the 

Eocene, when the climate was wetter and warmer than today, this area was covered by wet 

forests; the Amazon and Atlantic Forest were connected, forming a rain forest belt through most 

of South America (Morley, 2000). The DD may have been formed during the Oligocene and 

Miocene periods of cooling and dryness that led to the expansion of grasslands and the origin 

of DD endemic lineages (Simon et al, 2009) 

Species broadly distributed in the DD frequently present distinct lineages in each biome 

(Werneck et al, 2012a; Fouquet et al, 2014), indicating putative isolation events. Diversification 

in this region has been associated with orogenic events along the Neogene, such as the uplift of 

the Brazilian Plateau with subsidence of Chaco and other lowlands around 5-7 Ma (Silva, 1995, 

Carvalho et al, 2013) and marine transgressions in the Chacoan region in the Late Miocene 

(Ruskin et al, 2011). Another hypothesis is that Quaternary climate oscillations promoted 

isolation within the DD, since independent data suggest that during glacial cycles the rain 

forests expanded through Chaco and Cerrado, scattering and reducing the range of these drier 

biomes (Nores, 1992; Sobral-Souza et al, 2015). If these biomes were primarily affected by 

orogenic events, species and lineage divergence would date to Neogene (Silva, 1995); however, 

if glacial cycles’ climate changes influenced the biomes more drastically, the taxa would show 

a Quaternary diversification (Silva, 1995).  

Even though there are hypotheses that predict the effects of Quaternary climate changes 

on Neotropical dry-vegetation dwellers, few studies have effectively tested them. The 

Pleistocene refugia model (PRM – Vanzolini & Williams, 1981), which was first proposed to 

explain diversity patterns in the Amazon Forest, asserts that Neotropical rainforests have 

presented range retraction during glacials with later recovery in interglacials; therefore, open 

and dry vegetation biomes would have undergone the opposite process, shrinking during wet 

and warm periods and reaching their maximum geographical distribution during glacials. 
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Palaeopalynological (Ledru, 2002) and niche modelling (Sobral-Souza et al, 2015) studies have 

agreed that shifts in biome distribution have allegedly occurred over time, but the effects on the 

demography and genetic structure of the dry-vegetation dwellers remains uncertain. 

In the past few years, phylogeography has become an important tool for exploring 

processes that drove biodiversity evolution in highly diverse regions. For the Neotropics, this 

approach has been used to test biogeographical hypotheses and make inferences on biome 

evolution. Despite the recent increase in phylogeographical studies in South America, surveys 

on open formations are scarce, and just a few studies have focused on organisms endemic to 

dry biomes (Turchetto-Zolet et al, 2013).  

Nephila sexpunctata Giebel, 1867 is a spider restricted to southwestern South America, 

mainly Cerrado, Chaco and adjacent dry forests, and is supposed to have speciated on the 

continent after a long-distance dispersal event from the Old World in the Miocene/Pliocene 

(Kuntner et al, 2013). It is accepted that Nephila species perform aerial dispersal (Lee et al, 

2015), which may promote connection among distant populations. Spiders have been 

successfully used as phylogeographical models (e.g. Su et al, 2007; Kuntner & Agnarsson, 

2011) but in the Neotropical region only two studies have hitherto used this group (Magalhaes 

et al, 2014; Peres et al, 2015).  

We investigated the recent evolutionary history of Cerrado and Chaco through a 

phylogeographical study of Nephila sexpunctata. Given the poor knowledge about this region’s 

diversification, phylogeographical studies with taxa endemic to these biomes may contribute to 

clarifying unsolved questions concerning its evolutionary history (Werneck, 2011).  

We used mitochondrial and nuclear genetic markers in the first phylogeographical study 

with an arachnid in this region. We conducted population genetic analyses and estimated 

divergence times among lineages to detect demographic events. We also used 

palaeodistribution modelling coupled with a model-based approach to test alternative scenarios 

for Cerrado and Chaco biogeographic history. Using an approximate Bayesian computation 

(ABC) framework, we first sought to elucidate when major diversification events took place 

for N. sexpunctata, so we contrasted four feasible scenarios [panmixia (maintenance of gene 

flow), post-LGM divergence, diversification in Quaternary or an older split in Neogene] to infer 

what the main factors were that led to the species diversification. Then we aimed to specifically 

test the predictions made by the PRM, so we contrasted mutually exclusive hypotheses for each 

scenario: i) N. sexpunctata presented no demographic variation in its recent evolutionary 

history; ii) a previously constant-size population underwent exponential growth; iii) following 
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the PRM, N. sexpunctata presented a demographic expansion from the Last Interglacial (LIG 

~120ka) to the Last Glacial Maximum (LGM ~21ka), a colder and drier period, and then 

experienced a population bottleneck from LGM to present day; iv) LGM conditions were harsh 

even for dry-vegetation species, so the species suffered a population decrease during the glacial, 

showing a recovery with exponential growth when the climate became warmer and wetter after 

LGM. This framework, associated with our ecological niche models and genetic analyses, can 

help to elucidate historical aspects of DD evolution. We compare the patterns found for N. 

sexpunctata with previous studies using other Nephila species as well as studies with co-

occurring species. We then proceed to make inferences on the evolution of Cerrado and Chaco 

based on our results, pinpointing some events that might have guided the organization of 

diversity as seen in the present.    

 

MATERIALS AND METHODS 

Sample collection; DNA extraction, amplification and sequencing 

We collected adults of N. sexpunctata in most of the species’ range, comprising 23 

individuals from four locations in the Brazilian Cerrado and 42 from six locations in the 

Argentinean Chaco and Espinal, herein referred as “Chaco” (Fig 1, Table 1). Opisthosomas and 

palps were stored in absolute ethanol for species confirmation and deposited in the Coleção 

Científica de Aracnídeos e Miriápodes of the Instituto Butantan (São Paulo, Brazil), Colección 

Aracnológica del IADIZA (Mendoza, Argentina) and Museo Argentino de Ciencias Naturales 

(Buenos Aires, Argentina). Genomic DNA was extracted from 1-8 legs using the Wizard 

Genomic DNA Purification kit (Promega) following the manufacturer’s protocol.  

We amplified two mitochondrial regions: for the cytochrome c Oxidase subunit I (COI) 

we used the universal primers for invertebrates, LCO1490 and HCO2198 (Folmer et al, 

1994).The PCR conditions were: a denaturation step of 3’ at 94ºC, 30 cycles of 94ºC for 45”, 

51ºC for 45” and 72ºC for 2’, and a final extension step at 72ºC for 3’. The mitochondrial region 

comprising the large ribosomal subunit gene 16S rRNA, the tRNA-Leu and the NADH-

ubiquinone oxidoreductase (16S-L1-ND1) was amplified using the primers 16S-ar (Palumbi et 

al, 1991) and SPID-ND1 (Hedin, 1997) following the conditions: 94ºC for 5’, 28 cycles of 94ºC 

for 1’30”, 53ºC for 1’50” and 72ºC for 2’30”, and an extension step at 72ºC for 10’. 

We also explored intronic regions of different spider genomes to find candidate markers 

for phylogeographical studies and developed primers for a novel marker named CHP2 which 

amplifies a ~300 bp fragment and can be used in other studies on spider phylogeography. Primer 
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sequences were: CHP2F (GTATCGCAAATGCCTTCAGC) and CHP2R 

(AACAAAGCAGGCTTCATTCG) and PCR conditions were: 95ºC for 1’, 35 cycles of 95ºC 

for 30”, 56ºC for 30”, 72ºC for 1’ and the final step at 72ºC for 7’. The PCR reactions consisted 

of 0.5-1μL of template DNA, 0.2μL of 5U Taq DNA Polymerase (Thermo-Fisher), 2-2.8μL of  

25mM MgCl2 (Thermo-Fisher), 2.5μL of 10X KCl Buffer (Thermo-Fisher), 0.5-1μL of 10mM 

dNTP mix (GE Healthcare), 0.5μL of each primer 10μM, and ddH2O to the volume of 25μL. 

The amplified products were analyzed in an automatic capillary sequencer ABI PRISM 3700 

DNA Analyzer (Applied Biosystems). 

 

Alignment, genetic diversity and haplotype reconstruction 

 The sequences were aligned in MEGA 7.0 (Kumar et al, 2016) and were visually 

inspected; we found the best fitting substitution model according to AIC on jMODELTEST 2.0 

(Darriba et al, 2012) and as both mitochondrial regions had the same best substitution model, 

they were concatenated for all the analyses. For the nuclear markers we used DnaSP (Librado 

& Rozas, 2009) to infer gametic phases, using a minimum posterior probability threshold of 

0.9. 

 Diversity indices were calculated on ARLEQUIN 3.5 (Excoffier & Lisher, 2010); 

pairwise genetic distances were estimated on MEGA 7. Relationships among haplotypes were 

visualized on median-joining networks (Bandelt et al, 1999) built on POPART 

(http://popart.otago.ac.nz). 

 

Population structure and demographic analyses 

 We assessed population structure with FST values calculated on ARLEQUIN 3.5. We 

also performed an analysis of molecular variance (AMOVA) using Cerrado and Chaco as 

separate groups, to test structure between these biomes. Population structure was also assessed 

on BAPS 6.0 (Corander et al, 2008), which determines the most likely number of clusters (k) 

within a given group of sequences. We allowed k to vary between 1 and 20 and performed 

separate runs for each dataset (mitochondrial and nuclear). 

To infer demographic patterns, we performed neutrality tests - Tajima’s D (Tajima, 

1989), Fu’s FS (Fu, 1997) and R2 (Ramos-Onsins & Rozas, 2002) - in DnaSP, mismatch 

distributions analyses in ARLEQUIN, and extended Bayesian skyline plot (EBSP – Heled & 

Drummond, 2008) in BEAST 1.8.0 (Drummond et al, 2012) for the whole dataset and for each 

mitochondrial group (see Results). Even though these tests have been widely used for 
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demographic inferences in phylogeographical studies, all of them presume neutrality. In this 

case, finding similar patterns for mitochondrial and nuclear markers is a stronger evidence for 

shared demographic changes rather than adaptive selection.  

 

Phylogenetic inferences and divergence times 

 We conducted a multilocus *BEAST analysis (Heled &Drummond, 2010) in BEAST 

1.8.0 in order to estimate divergence among major mitochondrial lineages (according to BAPS) 

taking into account incomplete lineage sorting. For the mtDNA we used a strict clock (see 

Results) with a substitution rate of 0.0112 (sd = 0.001) substitutions/site/million years. 

Bidegaray-Batista & Arnedo (2011) estimated this rate for the Dysderidae family based on the 

well resolved geochronology of the Mediterranean basin. Recently, Kuntner et al (2013) found 

that substitution rates estimated for the orbicularian families (which include Araneidae) 

overlapped with those from the Dysderidae, allowing these rates to be implemented to estimate 

divergence times for orbicularian taxa. For the nuclear marker, we used the phased sequences 

under a lognormal relaxed clock and estimated the substitution rate in the analysis. As the 

outgroup we chose Nephila edulis, an Australasian species, based on the phylogeny of Kuntner 

et al (2013). COI and 16S-L1-ND1 sequences for this species were obtained from GenBank 

(accession numbers KC849126 and KC849083, respectively). As no N. edulis sequences are 

available for the newly developed nuclear CHP2 marker, we treated nuclear outgroups 

sequences as missing data.  

 A single run was conducted with 200 million generations, sampling every 20000 

generations. Convergence with a stationary distribution was checked on TRACER 1.5 

(Rambaut et al, 2014) through values of Effective Sample Sizes >200 for each prior. We set the 

burn-in as 10%, discarding the first 1000 trees with TREEANNOTATOR 1.8.0. The resulting 

species and gene trees were visualized in FIGTREE 1.3.1 (Rambaut, 2012).  

 

Ecological Niche Modelling (ENM) 

In the framework applied to model the potential distribution of N. sexpunctata under 

present and past climate scenarios we used the 25 known points of present-day occurrence 

(Table S1) encompassing our sampling points, data available in SpeciesLink 

(http://splink.cria.org.br/) and GBIF (www.gbif.org), and points obtained from Instituto 

Butantan.  



77 

 

 

 

Besides the present time, models were projected to mid-Holocene (~6 ka), Last Glacial 

Maximum (~21ka) and Last Interglacial (~120ka) scenarios. As CCSM3 is the only source for 

climate data from LIG, we used only this climate database for all temporal scenarios. 

To infer potential species distribution, we used five algorithms that represent different 

modelling techniques (envelope, distance and background) and evaluated the models using the 

TSS value. We then created a consensus map for each climate scenario (full description of 

methodology in Appendix S1).  

 

Model Testing  

ABC was used for model testing. We performed a hierarchical approach in which we 

first tested models within four alternative scenarios that represent different phylogeographical 

hypotheses (Fig. 2) and then compared the best model for each scenario in order to obtain the 

model with highest posterior probability. This approach provides a reliable framework for 

testing multiple models (as performed by Peres et al, 2015). Scenario 1 (Fig. 2, first line) 

represents a single panmictic population; scenario 2 (Fig. 2, second line) simulates two 

populations, one in each biome, with a divergence event dated after the LGM; scenario 3 (Fig. 

2, third line) represents the two populations with a split dated in the Quaternary; Scenario 4 

(Fig. 2, fourth line) represents the two populations with a Neogene divergence. Within each 

scenario, four models were tested: i) constant population(s); ii) a constant size-population that 

experienced demographic expansion at some point in the past; iii) demographic expansion at 

LIG with a population bottleneck from LGM to the present; iv) a population bottleneck from 

LIG to LGM, and then a recent post-glacial expansion. For scenarios 2, 3 and 4, migration was 

also tested. This approach was performed jointly for both datasets. More details on the 

methodology can be assessed in Appendix S1. 

 

RESULTS 

Genetic diversity 

The concatenated mitochondrial dataset spanned 1501bp; HKY was the best fitting 

model for nucleotide substitution. The dataset presented nine haplotypes structured into two 

groups (Fig. 1) according to BAPS (see Genetic structure session). Cerrado populations 

presented five haplotypes, with four exclusive; Chaco populations also presented five 

haplotypes, four exclusive. 
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Diversity levels were very low (Table 2). Three out of ten populations were 

monomorphic, one in Cerrado and two in Chaco. The CHP2 fragment comprised 232bp and we 

found seven haplotypes. No indels were found in any of the sequences. TN93+G was the best 

fitting model for nucleotide substitution. Chaco populations presented all haplotypes while five 

were detected in Cerrado; only two haplotypes were exclusive, both in Chaco. No population 

was monomorphic. Diversity levels were also low (Table 3). Nuclear nucleotide diversity was 

about ten times higher than mitochondrial. 

 

Genetic structure 

 We found no signs of isolation by distance in either dataset (p = 0.319 for nuclear 

marker; p = 0.038 for mitochondrial dataset, but correlation premises were violated – see Fig. 

S1). The two BAPS mitochondrial groups are separated by only one mutational step. Group I 

occurs in Cerrado and Group II in Chaco, with some admixture (Fig. 1). The nuclear dataset 

showed no signs of subdivision in genetic/geographic groups. CHP2 network was highly 

unstructured (Fig. 1d); five nuclear haplotypes were shared between individuals from both 

mitochondrial groups.  

 FST value was higher for mtDNA (0.59) than for nDNA (0.09), showing a stronger 

structure. Pairwise values were high in the mitochondrial dataset mainly between populations 

from different biomes or populations from the same biome belonging to different genetic 

groups; most of the nuclear comparisons were not significant (Table S4). 

 AMOVA analyses using biomes as geographical groups (Cerrado x Chaco) were 

different for each marker; for mtDNA nearly a third of the variation was between groups, 

evidencing the strong structure between biomes; for the nuclear marker, over 90% of variation 

is within populations, with no structure pattern (Table 4).  

 

Demographic analyses 

 Neutrality tests presented non-significant values for mtDNA and nDNA datasets (Tables 

2 & 3). The only significant value was Fu’s FS for the population of Parque Nacional del Chaco 

in the nuclear dataset. Mismatch distribution analyses exhibited contrasting patterns between 

markers. For the mtDNA, we detected signs of expansion for the whole dataset and for Group 

II, as evidenced by the non-significant raggedness indexes and unimodal curves of pairwise 

differences (Fig. 3). The pattern for the nDNA was different, with Group I being the only one 

presenting evidence of recent expansion (Fig. 3).  Multilocus EBSPs pointed to strong and very 
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recent demographic expansion in all datasets. Given that the generation time for the species is 

one year, all expansion times were inferred to have taken place in the Holocene, around 10 ka 

(Fig. 4). 

 

Phylogenetic inferences and divergence times 

 The maximum likelihood test for molecular clocks implemented in MEGA7 did not 

reject the strict clock hypothesis for the mitochondrial dataset (p>0.999), nor did the path 

sampling and stepping-stone sampling (Baele et al, 2012; Baele et al, 2013) implemented in 

BEAST 1.8.0 (lnBF = 1.92 and 2.58 respectively). The gene trees obtained from the *BEAST 

analysis (Fig. 5) presented different patterns as the mitochondrial gene tree recovered the same 

groups inferred by BAPS and the nuclear gene tree presented a less structured, admixed 

topology. Nuclear diversification was inferred to be older than mitochondrial (0.157 and 0.045 

Ma, respectively) but confidence intervals overlapped.  The joint species tree analysis estimated 

the divergence between N. sexpunctata and the outgroup (N. edulis) around 4.13 Ma [95% of 

the highest posterior density (HPD) = 3.43-4.90 Ma]. We found high statistical support for the 

split of the two clusters inferred by BAPS and the divergence between these groups was very 

recent, estimated around 0.0117Ma (95% HPD = 0.003-0.028).  

 

Ecological Niche Modelling  

As TSS values for all algorithms were equal or higher than 0.5 (Table S3), we assumed 

that they generated reliable predictions. For the LIG scenario there was a very small suitable 

area for the species’ occurrence in the region today covered by Chaco. In the LGM, there were 

suitable areas in Cerrado, with a distribution disjointed from those in Chaco. Around 6 ka there 

was a strong expansion of suitable areas in both biomes with the formation of a single joined 

area of distribution. The current scenario shows an even larger distribution, suggesting recent 

expansion (Fig. 6). 

 

Model testing 

 For scenario 1, the most probable model was model 4, which includes a post-LGM 

expansion after a glacial bottleneck. For scenarios 2 and 3, the best models where those that 

considered constant populations that experienced exponential growth (models 6 and 10). For 

scenario 4, the best fit was model 15 (a glacial expansion with a post-LGM bottleneck). For 

scenarios 3 and 4, models that considered migration were strongly supported (Table 5).  
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 When the analysis was performed among scenarios to find the best overall model, the 

panmixia (model 4) was preferred, but the post-LGM divergence (model 6) also had a high 

posterior probability (Table 5). Quaternary and Neogene divergence were least supported. 

Parameter estimation for models 4 and 6 can be assessed in Appendix S2 (Table S5). Therefore, 

the results endorse a recent demographic expansion. 

 

DISCUSSION 

 

Phylogeographical patterns of N. sexpunctata  

 The ABC results showed as the best overall model one single population that 

experienced a bottleneck during the glacial with a post-LGM recovery, opposite to what was 

expected by the PRM. The fact that the panmixia model was the preferred is against our 

assumption that different lineages were isolated in each biome, as found for lizards and frogs 

(Werneck et al, 2012a; Recoder et al, 2014), but we could not discard a post-LGM divergence 

as model 6 also showed a high posterior probability. The significant genetic structure among 

N. sexpunctata populations coupled with the low genetic divergence among haplotypes and the 

strong dispersal in the species may have generated genetic patterns that fit similarly the two 

scenarios. In both cases, the results endorsed a scenario of recent demographic expansion, and 

against what was expected by the PRM. 

 The low genetic diversity of N. sexpunctata contrasts with the values reported for 

other Nephila species (Su et al, 2007; Su et al, 2011). Low levels of genetic diversity are 

common for Cerrado and Chaco species (Babb et al, 2011; Brito et al, 2013) and are frequently 

associated with bottlenecks due to the reduction of the suitable habitats of species adapted to 

dry conditions during the Quaternary (e.g. Bonatelli et al, 2014).   

 Discrepancies between nuclear and mitochondrial structuring patterns have been 

recurrently reported (Turchetto-Zolet et al, 2013) and are a likely product of multiple factors 

such as mtDNA introgression, incomplete lineage sorting, demographic asymmetries (Toews 

& Brelsford, 2012) and potential selection on the mitochondrial genome (Bazin et al, 2006). A 

slower rate of evolution, coupled with an effective population size four times higher for the 

nuclear genome compared to the mitochondrial genome, may also lead to the distinct structuring 

patterns observed. In N. sexpunctata, as for many other terrestrial invertebrates, these factors 

might help explaining the higher structure found on the mitochondrial markers. 
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 The mitochondrial dataset presented two main lineages almost entirely related to each 

biome (Cerrado/Chaco, Fig. 1), and indeed a significant part of the species’ diversity is 

organized between biomes (Table 4). As BAPS assigns groups for both genetic and geographic 

similarities, geography may play an important role in the characterization of the two clusters, 

since just one mutational step separated them. The admixture observed - represented by the 

occurrence of both mitochondrial lineages in some populations - may be due to the high 

dispersal ability of Nephila species (Kuntner & Agnarsson, 2011).  

 The signs of recent demographic expansion in N. sexpunctata after LGM (Figs. 3 and 

4) are congruent with the post-glacial habitat expansion inferred by ENMs and the results from 

ABC. Lack of significance for neutrality tests may be due to the very low genetic variability in 

our sample, leading to analyses’ low statistical power (Excoffier et al, 2009). Recent population 

and range expansions have been found for several DD species (e.g. Prado et al, 2012; Novaes 

et al, 2013), and are related to habitat expansion after the retraction of Cerrado vegetation 

during LGM (Ledru et al, 1996) due to extreme arid and cold conditions. Hence, the N. 

sexpunctata range would be reduced in LGM, expanding in the Holocene as climate conditions 

in southern Cerrado became warmer and wetter (Ledru, 2002), more suitable for the species’ 

occurrence. These results do not support the idea of interglacial refuges for dry-habitat adapted 

organisms as suggested for cactus species (Bonatelli et al, 2014) and indicate that species with 

different ecological requirements may respond differently to climate fluctuations, with distinct 

factors shaping each species distribution (Prado et al, 2012). 

 N. sexpunctata divergence from outgroup N. edulis was estimated on Pliocene, 

supporting speciation after a recent dispersal event of an Australasian Nephila lineage to the 

Neotropics, as suggested by Kuntner et al (2013). Studies using molecular dating have shown 

that dispersal events between the Palaeotropics and the Neotropics were frequent in the past 

few million years and are a good explanation for diversity patterns observed in many plants and 

animals (e.g. Blaimer, 2012; Christenhusz & Chase, 2013). Therefore, an open vegetation-

adapted Nephila lineage, ancestral of N. sexpunctata, would have arrived in the Neotropics after 

the settlement of the DD, where it established itself. Diversification within the species, on the 

other hand, is very recent; the coalescence of all N. sexpunctata sequences was estimated around 

11.7 ka, indicating that the extant diversity radiated during the Quaternary. This pattern is 

consistent with simulations for Cerrado range during the Quaternary, which suggests unstable 

distribution throughout the last glacial cycle (Terribile et al, 2012; Werneck et al, 2012b); these 
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data combined support the hypothesis that climate shifts may have played an important role in 

the diversification of Neotropical dry biomes (Silva, 1995).  

  

Effects of Quaternary climate fluctuations on DD diversification 

 Despite the growing interest in Neotropical open formations, there is still a scarcity 

of testable hypotheses concerning DD evolution. Whereas a substantial amount of work 

concerning rain forests has indicated that geomorphologic (Hoorn et al, 2010, Thomé et al, 

2014) and climate (Cheng et al, 2013; Sobral-Souza et al, 2015) events may have worked 

together to shape biodiversity evolution in the Amazon and Atlantic Forest, the evolution of 

DD organisms is frequently explained by geologic events such as the uplift of the Brazilian 

plateau (Werneck, 2011; Carvalho et al, 2013). Indeed, recent works have highlighted the role 

of Pleistocene climate oscillations in shaping current genetic variation, mainly through shifts in 

Cerrado range that caused changes in population size and bottlenecks (Diniz-Filho et al, 2016). 

 Ecological Niche Modelling for different DD biomes (Werneck et al, 2011; Terribile 

et al 2012; Werneck et al, 2012b) does not support the predictions of the PRM, which include 

range expansion of open formations towards rain forests during glacial periods. The models 

have shown that conditions were probably too cold and dry for large extents of these biomes 

during LGM, and they presumably presented smaller ranges in this period with later expansion 

in the Holocene/present-day. Genetic and paleodistributional data for N. sexpunctata show a 

post-LGM demographic and spatial expansion pattern that fits a scenario of post-glacial 

expansion of South American dry biomes. During LGM, the retraction of Chaco and Cerrado 

could have decreased habitat suitability for N. sexpunctata occurrence, leading to population 

bottlenecks (as reinforced by ABC results), causing the low levels of genetic diversity observed 

in the species nowadays. In a phylogeographical study with Sicarius cariri, a spider endemic 

to another counterpart of the DD (Caatinga), Magalhaes et al (2014) found evidence of 

demographic retraction during glacials with a Holocene recovery, in a pattern similar to what 

was found for N. sexpunctata and against that predicted by the PRM. This finding suggests that 

glaciations might have affected some DD species in a different way from what was expected 

by the PRM, possibly because of common mechanisms related to habitat retraction due to harsh 

climate conditions.  

 Even though the effects of savanna expansion towards moist forests have long been 

acknowledged (Brown & Ab’Saber, 1979), the role of rain forest invasions in the diversification 

of DD organisms has only recently been recognized. Expansion of the Amazon and Atlantic 
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Forest’s spatial ranges seems to have shaped the genetic diversity in Pleurodema, a genus of 

Caatinga-endemic frogs, by creating intermittent forest corridors that promoted recurrent 

isolation among populations (Thomé et al, 2016).  Likewise, expansion of the rain forests 

towards Cerrado and Chaco (Nores, 1992; Sobral-Souza et al, 2015) may have contributed to 

the structuring observed mainly in the mitochondrial dataset, the low genetic diversity indices 

and the demographic changes inferred.  

 In conclusion, our work reinforces the complexity of the diversification process in the 

Neotropical region. We demonstrated that Quaternary climate oscillations have affected 

Cerrado and Chaco, and consequently the diversification of DD organisms. This has to be taken 

into account, besides the frequently invoked main geological events. Our results also show that, 

unlike what was predicted by the PRM, some open-vegetation organisms have presented recent 

expansion, indicating that this period was too cold and dry even for their occurrence. The extent 

to which organisms from other Neotropical dry biomes were affected in a similar manner 

remains to be elucidated. 
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TABLES 

Table 1: List of Nephila sexpunctata sampling locations with details on biome and geospatial 

coordinates. 

 

 

 

 

 

 

 

 

 

 Table 2: Mitochondrial genetic diversity indices and neutrality tests for Nephila sexpunctata 

populations and genetic groups inferred by BAPS. N = number of sequences; h = number of 

haplotypes; ss = number of segregating sites; Hd = haplotype diversity; π = nucleotide 

diversity; FS = Fu’s FS; D = Tajima’s D; R2 = R2 statistic; FST = fixation index, sd = standard 

deviation. * p < 0.05; ** p < 0.02. 

 

 

Location Biome Latitude Longitude 

Brazil – Tupã (TP) Cerrado 21°55'01.8"S 50°30'04.6"W 

Brazil – Pirenópolis (PI) Cerrado 15°55'24.2"S 49°12'50.6"W 

Brazil – Catalão (CT) Cerrado 18°06'50.0"S 47°37'16.0"W 

Brazil – Campo Grande (CG) Cerrado 21°24'13.8"S 53°40'43.8"W 

Argentina – Paraná (PA) Espinal 31°43'32.1"S 60°17'58.1"W 

Argentina – Federal (FE) Espinal 30°56'01.0"S 58°43'44.9"W 

Argentina – Mercedes (ME) Espinal 29°05'44.6"S 58°19'46.5"W 

Argentina – Santa Maria (SM) Chaco 28°02'29.6"S 58°06'02.2"W 

Argentina – Pq. Nacional del Chaco (CH) Chaco 26°48'31.1"S 59°36'21.5"W 

Argentina – Basail (BA) Chaco 27°52'01.7"S 59°17'22.0"W 

Location N h ss Hd (sd) π (sd) F S D R2 FST 

TP 8 2 1 0.536 (0.123) 0.00036 (0.00037) 0.866 1.166 0.268 - 

PI 8 3 2 0.607 (0.164) 0.00045 (0.00044) -0.478 -0.448 0.197 - 

CT 3 1 0 0.000 (0.000) 0.00000 (0.00000) - 0.000 - - 

CG 4 2 2 0.500 (0.265) 0.00067 (0.00066) 1.099 -0.710 0.433 - 

PA 3 1 0 0.000 (0.000) 0.00000 (0.00000) - 0.000 - - 

FE 8 2 1 0.250 (0.180) 0.00017 (0.00024) -0.182 -1.055 0.331 - 

ME 8 2 2 0.429 (0.169) 0.00057 (0.00051) 1.653 0.414 0.214 - 

SM 8 1 0 0.000 (0.000) 0.00000 (0.00000) - 0.000 - - 

CH 7 4 4 0.809 (0.130) 0.00089 (0.00071) -0.914 -0.876 0.192 - 

BA 8 2 1 0.536 (0.536) 0.00036 (0.00037) 0.866 1.166 0.268 - 

Group I 32 4 3 0.599 (0.049) 0.00045 (0.00039) -0.451 -0.197 0.118 - 

Group II 33 5 4 0.481 (0.089) 0.00035 (0.00033) -2.252 -1.166 0.084 - 

Total 65 9 8 0.773 (0.027) 0.00081 (0.00058) -2.771 -0.732 0.074 0.59 
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Table 3: Nuclear genetic diversity indices and neutrality tests for Nephila sexpunctata 

populations and genetic groups inferred by BAPS. N = number of sequences; h = number of 

haplotypes; ss = number of segregating sites; Hd = haplotype diversity; π = nucleotide 

diversity; FS = Fu’s FS; D = Tajima’s D; R2 = R2 statistic; FST = fixation index, sd = standard 

deviation. * p < 0.05; ** p < 0.02. 

Location N h ss Hd (sd) π (sd) F S D R2 FST 

TP 16 4 3 0.517 (0.132) 0.00295 (0.0026) -1.098 -0.708 0.123 - 

PI 16 5 3 0.608 (0.130) 0.00366 (0.0031) -1.845 -0.173 0.145 - 

CT 6 3 3 0.733 (0.155) 0.00546 (0.0046) 0.209 -0.185 0.268 - 

CG 8 3 3 0.678 (0.122) 0.00570 (0.0045) 0.723 -0.585 0.210 - 

PA 6 2 2 0.333 (0.215) 0.00287 (0.0029) 0.952 -1.132 0.373 - 

FE 16 4 3 0.617 (0.096) 0.00305 (0.0027) -1.019 -0.628 0.134 - 

ME 16 5 4 0.808 (0.064) 0.00578 (0.0042) -0.689 0.353 0.168 - 

SM 16 4 3 0.642 (0.081) 0.00323 (0.0028) -0.893 -0.494 0.138 - 

CH 14 5 3 0.670 (0.126) 0.00384 (0.0032) -1.933** -0.173 0.148 - 

BA 16 2 1 0.533 (0.046) 0.00230 (0.0023) 1.362 1.529 0.267 - 

Group I 64 6 4 0.696 (0.044) 0.00467 (0.0034) -0.542 0.603 0.135 - 

Group II 66 6 4 0.602 (0.040) 0.00311 (0.0026) -1.754 -0.300 0.092 - 

Total 130 7 5 0.653 (0.031) 0.00399 (0.0031) -1.217 0.014 0.093 0.09 

 

Table 4: Results of the Analysis of Molecular Variance (AMOVA) for mitochondrial and 

nuclear datasets for Nephila sexpunctata considering biomes (Cerrado and Chaco) as groups. 

d.f. = degrees of freedom. 

Source of variation d. f. Variation (%) p-value 

mtDNA    

Among biomes 1 29.07 p = 0.047 

Among populations within biomes 8 33.14 p < 0.001 

Within populations 55 37.79 p < 0.001 

    

nDNA    

Among biomes 1 2.13 p = 0.171 

Among populations within biomes 8 6.36 p = 0.011 

Within populations 120 91.52 p = 0.006 
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Table 5: Results of the model selection performed for both datasets. For every scenario 

posterior probabilities (PP) of each model are displayed, including the most recurrently 

recovered model (in bold). The analyses were performed within and among scenarios. Details 

on each model can be found in Appendix S1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*For each scenario, we chose the best model and then contrasted it with a similar one that 

considered bidirectional migration, and performed a new selection between these two models. 

In this column, we show if the model with (Y) or without (N) migration was preferred, and the 

PP of this model. Panmixia models were not tested for migration as they assume a single 

population with random mating.  

 Within scenarios Among 
scenarios 

Scenario Model PP Migration 
(Y/N) – PP* 

PP 

1 

(panmixia) 

1 0.217 

Not tested 

- 

2 
0.308 

- 

3 
0.050 

- 

4 0.428 0.489 

2  

(post-LGM 

divergence) 

5 
0.307 

(N) 
0.503 

- 

6 
0.499 0.412 

7 
0.046 - 

8 
0.148 - 

3 

(Quaternary 

divergence) 

9 0.300 

(Y) 
0.663 

- 

10 0.571 0.096 

11 0.107 - 

12 0.022 - 

4 

(Neogene 

divergence) 

13 0.006 

(Y) 
0.999 

- 

14 0.002 - 

15 0.973 0.003 

16 0.019 - 
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FIGURE LEGENDS 

Figure 1: a) Map with Nephila sexpunctata sampling locations showing four sites in Brazilian 

Cerrado (dark gray) and six in Argentinean Dry Forests (Chaco and Espinal - lighter grays; 

Espinal populations are considered in the Chaco dataset). Pie charts for each population 

represent proportion of mitochondrial haplotypes (c) in given population. b) BAPS chart 

showing individual assignment to mitochondrial groups represented by different colors – Group 

I: red, Group II: blue. c) Mitochondrial network (COI + 16S-L1-ND1) highlighting nine 

haplotypes divided into two mitochondrial groups inferred by BAPS: Group I occurs 

predominantly in Cerrado and Group II in Chaco. Circle size is proportional to frequency, and 

dashes represent mutational events. d) Nuclear network (CHP2) coloured by the occurrence of 

each haplotype in Chaco or Cerrado. 

 

Figure 2: Demographic scenarios hypothesized for Nephila sexpunctata evolution in Cerrado 

and Chaco. Scenario 1: panmictic population; scenario 2: two populations, one in each biome, 

with a post-LGM divergence; scenario 3: two populations with a Quaternary divergence; 

scenario 4: two populations with a Neogene split. Within each scenario, four hypotheses were 

tested: i) no demographic changes along time (models 1, 5, 9 and 13); ii) exponential growth of 

a previous constant-size population (models 2, 6, 10 and 14); iii) glacial expansion followed by 

interglacial bottlenecks (as predicted by the PRM, models 3, 7, 11 and 15); iv) glacial 

bottlenecks with post-glacial recovery (models 4, 8, 12 and 16). The best overall model is 

highlighted. LGM = Last Glacial Maximum (~21ka); LIG = Last Interglacial (~120ka). 

 

Figure 3: Results of mismatch distribution analyses performed for Nephila sexpunctata 

sequences. mtDNA (above) and nDNA (below) were analyzed separately. Results were 

obtained for all sequences for each marker, and for each mitochondrial group separately. 
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Columns represent the observed pairwise comparisons between individuals, and the continuous 

line represents the expected comparison in a scenario of sudden expansion. r = Harpending's 

Raggedness index; p = p-value.  

 

Figure 4: Results of Extended Bayesian Skyline Plots performed for Nephila sexpunctata. 

Analyses were performed using both markers jointly. Continuous line represents the median, 

and the gray area represents 95% HPD. a) Results for the whole dataset, b) Result obtained only 

for Group I individuals. c) Result obtained only for Group II individuals. 

 

Figure 5: Bayesian gene trees inferred for Nephila sexpunctata mitochondrial (above) and 

nuclear (below) datasets. Branch colors represent the two mitochondrial groups inferred by 

BAPS. Black squares represent nodes with posterior probability > 0.95.  

 

Figure 6: Ecological Niche Modelling showing suitable areas for Nephila sexpunctata 

occurrence over the last glacial cycle. Top left – 120ka; Top right – 21ka; Bottom left – 6ka; 

Bottom right – present day. 



95 

 

 

 

 1 

Figure 1 2 



96 

 

 

 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

Figure 2  22 



97 

 

 

 

Figure 3 23 

 24 

Figure 425 



98 

 

 

 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

Figure 5 53 



99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6



100 

 

 

 

Journal of Biogeography 

SUPPORTING INFORMATION 
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APPENDIX S1.  DETAILS ON METHODOLOGY. 

 

Ecological Niche Modelling 

Occurrence points were all considered as single occurrences in a 2.5’ arc-resolution (5x5 

km grid cell resolution at Equator region). The models were run with South America as 

background to consider the whole available area to species dispersion throughout its 

evolutionary history (Barve et al, 2011). 

We used the 19 variables available on the WorldClim Database (Hijmans et al, 2005) 

and performed variables selection through a Jackkniffe procedure, using Maxent (Phillips & 

Dudik, 2008). Temperature Seasonality, Minimum Temperature of Coldest Month, Mean 

Temperature of Wettest Quarter and Precipitation of Warmest Quarter were the variables with 

highest contributions to model construction (Table S2) and therefore were selected for model 

calibration.  

To infer potential species distribution, we used five algorithms that represent different 

modelling techniques (envelope, distance and background): (1) Bioclim (Nix, 1986); (2) 

Mahalanobis Distance (Farber & Kadmon, 2003); (3) Domain (Gower distance; Carpenter et 

al. 1993). (4) Support Vector Machines (SVM) (Tax & Duin, 2004) and (5) Maximum Entropy 

(Phillips & Dudik, 2008). For each algorithm we used 75-25% of occurrence points for 

training/testing. We evaluated the models using the TSS value (acceptable models present TSS 

values >0.5 - Allouche et al, 2006). We repeated this procedure 20 times for each algorithm 

and used the Lowest Present Threshold values (Pearson et al, 2007) to transform each map in 

binary. We then used the ensemble approach (Araújo & New, 2007) for computing the 

frequency of prediction by grid cell to create a consensus map for each algorithm. The last step 

was to concatenate all consensus maps and then obtain a consensus map for each climatic 

scenario.  
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Model Testing 

Scenario 1 comprised four models: 

 a) A single panmictic population that presented no demographic variation over time, 

therefore with a constant size; b) a panmictic population with constant size that experienced 

exponential growth; c) a panmictic population that started to grow exponentially in the LIG and 

then experienced a strong bottleneck event in the LGM that extends to the present, as expected 

by the Pleistocene Refugia Model; d) a panmictic population that experienced a strong 

bottleneck event from LIG to LGM, and then displayed post-glacial exponential growth. 

 Scenario 2 represented two populations, one in Chaco and the other in Cerrado, with a 

divergence time estimated after the LGM (0.0-0.021Ma). In this scenario, the demographic 

events occurred before the populations diverge; therefore they experienced demographic 

fluctuations as a single population. The four models within this scenario correspond to the 

changes in population size before the split: a) a constant population; b) exponential growth of 

a previous constant-size population until the divergence; c) growth during the glacial with an 

interglacial bottleneck; d) glacial bottleneck with a post-glacial exponential growth. 

 Scenario 3 also represents two populations, but the divergence time between them was 

estimated in the Quaternary, before the LIG (0.120-2.588Ma). This scenario comprised four 

models similar to those from scenarios 1 and 2: a) constant populations; b) exponential growth 

of previous constant-size populations; c) exponential growth during the glacial with an 

interglacial bottleneck; d) glacial bottleneck with a post-glacial exponential growth. We 

considered that each population (Chaco and Cerrado) experienced demographic events 

independently, so each one had independent values for parameters like GrowthRate and 

population size after the bottleneck event, for instance.  

 For scenario 4, we also considered two populations but with a split estimated in the late 

Neogene (Pliocene/Miocene 2.588-23.03Ma). The models tested and the approach used were 

the same as for scenarios 2 and 3.  

For scenarios 2, 3 and 4, after selecting the best fitting model among the four models, 

we contrasted the chosen one with a similar model that also considered recent bidirectional 

migration between the two populations. The model selected between this two were considered 

as the best fitting model for this scenario. 
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We developed custom Python scripts in order to simulate data on ms (Hudson, 2002), 

and performed 400,000 data simulations per scenario using the same number of individuals as 

the empirical data, which were divided in two groups according to their geographical region 

(Cerrado or Chaco). For Scenario 1, in order to simulate a single panmictic population, we used 

the same two groups as in the others scenarios, but with a very recent divergence time (close to 

present-day). This approach allowed us to simulate a panmictic population and use the same 

summary statistics in all scenarios. 

We initially set all of the parameters (including θ for each marker) with flat prior 

uniform distributions in order to provide a wide range of prior sampling. Even though this 

approach increases computational work it is a safer exploratory step when there are 

uncertainties concerning prior distribution. We estimated times of the demographic events 

Scenario Model Nº populations Demography Migration? 

1 

1 

Panmictic population. 
 

No demographic events. 

Not tested. 

2 
Demographic expansion of 
a previous constant-size 
population. 

3 
Glacial expansion and 
interglacial retraction. 

4 
Glacial retraction and post-
LGM expansion. 

2 

5 

Two populations with a 
post-LGM divergence. 

No demographic events. The best among 
the four models 
was contrasted 
with a similar 
model that 
considered 
bidirectional 
migration. 

6 
Demographic expansion of 
a previous constant-size 
population. 

7 
Glacial expansion and 
interglacial retraction. 

8 
Glacial retraction and post-
LGM expansion. 

3 

9 

Two populations with a 
Quaternary divergence. 

No demographic events. The best among 
the four models 
was contrasted 
with a similar 
model that 
considered 
bidirectional 
migration. 

10 
Demographic expansion of 
a previous constant-size 
population. 

11 
Glacial expansion and 
interglacial retraction. 

12 
Glacial retraction and post-
LGM expansion. 

4 

13 

Two populations with a 
late Neogene (Pliocene/ 
Miocene) divergence. 

No demographic events. The best among 
the four models 
was contrasted 
with a similar 
model that 
considered 
bidirectional 
migration. 

14 
Demographic expansion of 
a previous constant-size 
population. 

15 Glacial expansion and 
interglacial retraction. 

16 Glacial retraction and post-
LGM expansion. 
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based on the formula τ = Number of generations/4*Ne. In this case, the generation time for N. 

sexpunctata was adopted as 1 year, and Ne was calculated through the formula Ne = θ/μ (for the 

mitochondrial marker), with θ being estimated on DnaSP and for μ we considered the rate 

estimated by Kuntner et al (2013) of 0.0112 substitutions/site/million years. We used this 

estimation of Ne for both mitochondrial and nuclear datasets due to the lack of information on 

the substitution rate of the nuclear marker.  

 Summary statistics of the simulated dataset were calculated using a PERL script written 

by Naoki Takebayashi (available at 

http://raven.iab.alaska.edu/~ntakebay/teaching/programming/coalsim/scripts/msSS.pl), [total 

nucleotide diversity, number of segregating sites, Tajima’s D, nucleotide diversity within and 

between populations (π, ss, D, πw, πb, respectively)]. We grouped these statistics in vectors in 

order to find the most informative set of summary statistics (i.e., which vector more accurately 

identifies the best model given the simulated data). We performed a rejection step with 10 

simulations for each model and used them as PODs (pseudo-observed data). The best vector of 

summary statistics would enhance the probability of choosing the true model over the average 

probability of choosing any other model (Tsai & Carstens, 2013). 

 After choosing the best set of summary statistics, we performed a parameter restriction 

in order to narrow their distributions and get a more reliable model choice. The restriction was 

made with the “abc” package in R with a threshold of 0.1% of the simulations. We then took 

the posterior distribution for each parameter of these exploratory runs and used them as priors 

for 1,600,000 new simulations comprising all the scenarios.  

Finally, we used these simulations to perform the model choice. We used msReject 

(Ross-Ibarra et al, 2008) to perform a simple rejection with a threshold of 0.01% and calculate 

posterior probabilities of the competing models to find the best model within each scenario. We 

then gathered the three best models, performed new simulations and once again applied a simple 

rejection step in order to find the best overall model. Parameter estimation for all models are 

displayed in Figures S3-S6. 
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APPENDIX S2. SUPPLEMENTARY TABLES 

 

Table S1: Occurrence points used for the Ecological Niche Modelling of Nephila sexpunctata. 

Here we grouped sampling points used in this work as well as occurrence points obtained on 

specieslink and GBIF. AR = Argentina, BR = Brazil, PAR = Paraguay. 

Locality Latitude Longitude Locality Latitude Longitude 
AR - Paraná -31.72559 -60.29947 BR -Tupã -21.917172 -50.501272 
AR - Federal -30.93362 -58.72915 BR - São José do Rio Pardo -21.595556 -46.888611 
AR - Mercedes -29.09571 -58.32959 BR - Campo Grande -20.509839 -53.678824 
AR - Santa Maria -28.04155 -58.1006 BR - Ribas do Rio Pardo -21.311625 -54.615461 
AR – PN del Chaco -26.80864 -59.60598 BR - Rancharia -22.229167 -50.893056 
AR - Basail -27.86713 -59.28944 BR - Presidente Epitácio -21.792760 -52.135545 
AR - Aguaray -22.242213 -63.736972 BR - Ribeirão Preto -21.177500 -47.810278 
AR - Corrientes -28.681721 -57.858095 BR - Ibitinga -21.757778 -48.828889 
BR - Pirenópolis -15.923383 -49.21405 BR - Lins -21.678611 -49.7425 
BR - Quaraí -30.2072 -57.5547 BR - Bauru -22.314722 -49.060556 
BR - Cuiabá -15.5961 -56.0967 BR - Três Lagoas -20.751111 -51.678333 
BR - Catalão -18.113889 -47.621111 PAR - Villeta -22.494 -58.012 

 

Table S2: The Jackknife analysis results for 19 Worldclim variables and their respective 

contribution to species occurrence. Variables in bold are those with highest contributions to 

model construction. 

Variable Percent contribution Permutation importance 

Temperature Seasonality 37.2 26.5 
Mean Temperature of Wettest Quarter 17.1 16.1 
Min Temperature of Coldest Month 15.1 0.6 
Precipitation of Warmest Quarter 13.6 7.1 
Precipitation of Coldest Quarter 7.8 19.6 
Precipitation of Wettest Quarter 3.6 7.8 
Precipitation Seasonality 2.7 0 
Mean Temperature of Coldest Quarter 2 14.5 
Precipitation of Driest Quarter 0.4 7.3 
Annual Mean Temperature 0.4 0.6 
Temperature Annual Range 0 0 
Annual Precipitation 0 0 
Precipitation of Driest Month 0 0 
Precipitation of Wettest Month 0 0 
Isothermality 0 0 
Max Temperature of Warmest Month 0 0 
Mean Temperature of Driest Quarter 0 0 
Mean Temperature of Warmest Quarter 0 0 
Mean Diurnal Range 0 0 

 

 

Table S3: TSS mean values for each algorithm used in the ENM for Nephila sexpunctata. sd 

= standard deviation. 

Algorithm TSS mean value (sd) 
BIOCLIM 0.5 (0.254) 
GOWER 0.683 (0.161) 
MAHALANOBIS DISTANCE 0.742 (0.148) 
MAXENT 0.658 (0.213) 
SVM 0.8 (0.167) 
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Table S4: Pairwise FST values between Nephila sexpunctata populations. Upper/right: 

Nuclear dataset. Lower/left: Mitochondrial dataset. * p < 0.05. 

 TP PI CT CG PA FE ME SM CH BA 
TP - 0.009 0.018 0.084 0.337* -0.024 0.003 -0.008 -0.036 0.11515 
PI 0.190 - 0.086 -0.041 0.413* 0.109 -0.016 0.110 -0.059 0.26222* 
CT 0.098 -0.088 - 0.028 -0.023 -0.023 -0.013 -0.078 0.012 -0.03849 
CG 0.171 0.069 -0.091 - 0.337* 0.176* -0.052 0.155* -0.022 0.3762* 
PA 0.415 0.645* 1.000 0.613* - 0.228 0.232* 0.162 0.339* 0.11545 
FE 0.738* 0.690* 0.833* 0.537* 0.910* - 0.063* -0.049 0.039 0.00667 
ME 0.143 0.442* 0.415* 0.336 -0.043 0.659* - 0.057 -0.026 0.16667* 
SM 0.805* 0.753* 1.000* 0.655* 1.000* 0.000 0.714* - 0.034 -0.02667 
CH 0.460* 0.450* 0.382 0.204 0.571* 0.072* 0.392* 0.089* - 0.17383* 
BA 0.732* 0.696* 0.757* 0.568* 0.846* 0.476* 0.672* 0.571* 0.058 - 

 

Table S5: Parameter estimation for the two overall highest supported models in the ABC 

analysis. In parenthesis, the minimum and maximum values of the posterior distribution. 

Parameter Model 4 (panmixia) Model 6 (post-LGM divergence) 
Θ COI 4.302 (0.8-13.406) 2.138 (0.472-7.228) 
Θ CHP2 2.17 (0.426-5.713) 0.913 (0.36-2.59) 
Growth Rate 30.06 (0.0-92.721) 3.503 (0.372-66.719) 
Size before bottleneck (compared to Ne) 8.356 (7.025-9.035) - 
Divergence Time (in million years) - 0.018 (0.012-0.021) 
Expansion Time (in million years) - 0.082 (0.012-0.117) 
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APPENDIX S3. SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Map showing the known distribution of N. sexpunctata along Cerrado, Chaco and 

Espinal. 

 

 

 

 

 

  

Cerrado 

Chaco 

Espinal 



109 

 

 

 

 

Figure S2: Genetic distance vs Geographic distance (km) graphs for Nephila sexpunctata 

populations. (a) Comparison using only the mitochondrial dataset (p = 0.038). (b) Comparison 

using the nuclear dataset (p = 0.319). 
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Figure S3: Prior and posterior distributions for each parameter within each model from 

Scenario 1 in the ABC analysis for N. sexpunctata. Absence of a chart in any model means that 

the parameter was not considered in that model. For each model, the left chart represents the 

prior distribution of the parameter (dashed line), while the right chart shows the posterior 

distribution by simple rejection (black line) and by neural network (red line), the last one was 

considered in this study. 
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Figure S4: Prior and posterior distributions for each parameter within each model from 

Scenario 2 in the ABC analysis for N. sexpunctata. Absence of a chart in any model means that 

the parameter was not considered in that model. For each model, the left chart represents the 

prior distribution of the parameter (dashed line), while the right chart shows the posterior 

distribution by simple rejection (black line) and by neural network (red line), the last one was 

considered in this study. 
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Figure S5: Prior and posterior distributions for each parameter within each model from 

Scenario 3 in the ABC analysis for N. sexpunctata. Absence of a chart in any model means that 

the parameter was not considered in that model. For each model, the left chart represents the 

prior distribution of the parameter (dashed line), while the right chart shows the posterior 

distribution by simple rejection (black line) and by neural network (red line), the last one was 

considered in this study. 
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Figure S6: Prior and posterior distributions for each parameter within each model from 

Scenario 4 in the ABC analysis for N. sexpunctata. Absence of a chart in any model means that 

the parameter was not considered in that model. For each model, the left chart represents the 

prior distribution of the parameter (dashed line), while the right chart shows the posterior 

distribution by simple rejection (black line) and by neural network (red line), the last one was 

considered in this study. 
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DISCUSSÃO GERAL 

 

Padrões filogeográficos das espécies de Nephila na América do Sul 

As duas espécies de Nephila puderam ser utilizadas com sucesso no presente estudo pois 

apresentaram sinais filogeográficos adequados para a inferência de eventos demográficos. Em 

ambos os casos, foram encontradas linhagens mitocondriais geograficamente informativas, 

enquanto os marcadores nucleares apresentaram estruturação genética consideravelmente mais 

baixa. A estruturação mais pronunciada no DNA mitocondrial, provavelmente, é devido à 

diferença de tamanho efetivo entre o genoma da mitocôndria e do núcleo (Moore, 1995), 

permitindo uma visualização mais clara da história evolutiva por meio dos marcadores 

mitocondriais (Zink & Barrowclough, 2008). Além disso, fatores como introgressão do genoma 

mitocondrial, a separação incompleta de linhagens, e a dispersão diferencial entre machos e 

fêmeas, também podem contribuir para os padrões observados (Toews & Brelsford, 2012). 

 A alta estruturação genética encontrada nas espécies Neotropicais contrasta com estudos 

prévios realizados com Nephila em outros continentes, que evidenciam boa manutenção de 

fluxo gênico mesmo em populações separadas por amplas distâncias ou por acidentes 

geográficos como cadeias montanhosas (Tso et al, 2002; Lee et al, 2004; Su et al, 2007; Su et 

al, 2011). Nossas análises indicam que, apesar da alta estruturação, N. clavipes e N. sexpuctata 

também apresentam grande capacidade de dispersão, pois diversos locais de amostragem 

apresentam mais de uma linhagem genética, indicando contato secundário entre grupos 

previamente isolados. Além disso, os testes de modelos ressaltaram a importância da dispersão 

nessas espécies, uma vez que modelos panmíticos ou que consideravam migração entre as 

populações foram os mais prováveis para ambas as espécies. Enquanto os estudos com espécies 

asiáticas utilizaram populações separadas, em sua maioria, por uma matriz oceânica numa 

dinâmica de ilhas, as espécies Neotropicais são separadas por diferentes biomas, que 

apresentam uma dinâmica complexa e ainda não muito bem elucidada. O fato de as espécies 

Neotropicais apresentarem estruturação e divergência genéticas maiores que as espécies 

asiáticas realça o importante papel das flutuações climáticas do Quaternário em promover 

isolamento e diversificação na região.  

 Os níveis de variabilidade genética nas duas espécies foram bastante discrepantes: para 

N. sexpunctata, a variabilidade dos marcadores mitocondriais foi muito mais baixa que o 

encontrado em trabalhos com outras espécies de Nephila que também utilizaram sequências de 

COI (Lee et al, 2004; Su et al, 2007; Su et al, 2011); já para N. clavipes, a variabilidade 
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mitocondrial foi alta, similar aos demais trabalhos. No caso de N. sexpunctata, a baixa 

variabilidade parece ser associada a eventos climáticos que restringiram a distribuição da 

espécie próximo ao último glacial (~21 mil anos atrás), que acarretaram em gargalos 

populacionais e consequente diminuição da variabilidade genética (Bonatelli et al, 2014). Já N. 

clavipes, que possui mais ampla distribuição e maior tolerância ambiental, apresentou 

estabilidade demográfica ao longo do último glacial, sem perda de variabilidade genética.  

 Ambas espécies divergiram dos outgroups utilizados nas análises (N. inaurata para N. 

clavipes, e N. edulis para N. sexpunctata) entre o Mioceno e o Plioceno. As estimativas de 

divergências são concordantes com o trabalho de Kuntner et al, 2013, que reconstruiu a 

filogenia do gênero e propôs que as Américas teriam sido colonizadas independentemente duas 

vezes – uma por uma linhagem oriunda da África (da qual fazem parte N. inaurata e N. clavipes) 

e por uma linhagem da Ásia/Oceania (que originou N. edulis e N. sexpunctata). As divergências 

relativamente recentes (<10 milhões de anos para ambos os casos), quando a América já se 

encontrava separada dos demais continentes, reforçam a ideia de colonização. Estudos com 

plantas (e.g. Pennington & Dick, 2004; Renner, 2004; Christenhusz & Chase, 2013) e animais 

(e.g. Carranza & Arnold, 2003; Blaimer, 2012) demonstraram que, ao contrário do que se 

imaginava, a biota sul-americana não se manteve isolada no período entre a separação do 

continente africano e o fechamento do istmo do Panamá, e que movimentações transoceânicas 

foram recorrentes para diversos grupos e explicam boa parte da diversidade existente no 

continente.  

 

História biogeográfica recente da América do Sul revelada pela filogeografia de N. 

clavipes e N. sexpunctata 

 A análise filogeográfica das duas espécies de Nephila permitiram a realização de 

interessantes inferências sobre a história recente dos biomas sul-americanos. No caso de N. 

clavipes, pode-se notar que tantos eventos geológicos quanto climáticos foram responsáveis por 

promover diversificação nos organismos que ocorrem em florestas úmidas. O soerguimento dos 

Andes colombianos, principalmente da Cordilheira Central (entre o Mioceno e o Plioceno) 

parece ter isolado diferentes linhagens de N. clavipes que desde então evoluem 

independentemente, como indicado pela reconstrução filogenética da espécie e pelo teste de 

modelos. Esse padrão também foi encontrado em outros organismos (e.g. Muñoz-Ortiz et al, 

2014), reforçando o soerguimento da Cordilheira Central como um importante evento 

vicariante. Além desse evento geológico, as flutuações climáticas do Pleistoceno parecem ter 
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ocasionado diversificação nos biomas brasileiros, com linhagens relacionadas à Amazônia, 

Cerrado e Mata Atlântica. Essas linhagens, entretanto, não se mantiveram isoladas em apenas 

um bioma, e uma possível rota de conexão entre Amazônia e Mata Atlântica durante o Último 

Máximo Glacial pelo centro do Cerrado foi corroborada pelos nossos dados genéticos e de teste 

de modelos, com o Cerrado sendo a principal fonte de migrantes para ambas florestas. Quanto 

à Mata Atlântica, as partes Norte e Sul (separadas por diferentes regimes climáticos) 

apresentaram grande similaridade genética, provavelmente ocasionada por boa manutenção do 

fluxo gênico entre as duas partes, ao contrário do que é encontrado para muitos organismos 

(e.g. Prates et al, 2016; Peres et al, 2017). 

 Para N. sexpunctata, a recente coalescência de todas as sequências indica o grande papel 

dos eventos climáticos do Quaternário na diversificação da espécie. O Último Máximo Glacial 

parece ter mantido as condições climáticas demasiadamente frias e secas, mesmo para 

organismos que ocorrem em formações abertas; dessa maneira, N. sexpunctata parece ter 

sofrido uma diminuição na sua área de ocorrência nesse período, o que levou à baixa 

variabilidade genética encontrada na espécie – também observada em outros organismos que 

ocorrem nessa região (Babb et al, 2011; Brito et al, 2013). A expansão demográfica pós-glacial 

detectada pelos dados genéticos e corroborada pelo teste de modelos também concorda com a 

expansão da área de ocorrência inferida pela modelagem de distribuição. Assim, as flutuações 

climáticas do Quaternário parecem ter sido responsáveis por eventos demográficos que 

afetaram as espécies que vivem na Diagonal Seca. 
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CONSIDERAÇÕES FINAIS 

 

Os trabalhos aqui apresentados corroboram pontos importantes sobre a diversificação 

da região Neotropical, ressaltando que eventos geológicos e climáticos foram responsáveis por 

esse processo em diversos tipos de vegetação no continente. Por outro lado, foram observadas 

particularidades em cada espécie que contrastaram com hipóteses previamente estabelecidas, o 

que indica que diferentes espécies podem ter respondido de maneiras distintas a esses eventos. 

Assim como observado em outros continentes, as espécies de Nephila da América do Sul 

constituíram adequados modelos filogeográficos, e o estudo de aranhas e outros invertebrados 

deve ser encorajado. A utilização de espécies amplamente distribuídas mostrou-se fundamental 

para a melhor compreensão da história evolutiva de regiões altamente diversas. Por fim, nossos 

dados corroboram que os biomas da região Neotropical possuem uma história complexa e 

intricada, e o aumento no número de estudos filogeográficos certamente colaborará para a 

melhor compreensão da biogeografia história da América do Sul. 
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