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RESUMO 

Tem sido sugerido que florestas e savanas são estados alternativos da 

vegetação sob certos regimes de chuva e condições do solo. Uma série de 

feedbacks são responsáveis pela manutenção de cada estado, incluindo um 

feedback vegetação-fogo, que é de notável importância na manutenção das savanas 

em regiões tropicais úmidas ao redor do mundo. Em florestas, onde o subosque é 

pouco iluminado, o crescimento de gramíneas C4 intolerantes à sombra é inibido, e 

um microclima úmido é criado simultaneamente, impedindo a ocorrência de 

incêndios frequentes e intensos, permitindo a persistência de espécies susceptíveis 

ao fogo. Em savanas, a alta disponibilidade de luz no sistema permite o acúmulo de 

biomassa de gramíneas C4, o principal combustível do fogo, favorecendo incêndios 

frequentes e intensos que impedem o fechamento do dossel e promovem a 

persistência de espécies tolerantes ao fogo. Além do fogo, propriedades do solo e 

alguns distúrbios frequentemente afetam florestas e savanas, e suas dinâmicas de 

transição. Por exemplo, a disponibilidade de recursos no solo pode exercer um efeito 

na taxa de crescimento de árvores. Tal efeito afeta o tempo requerido para que a 

comunidade se feche o suficiente para resultar na supressão de espécies 

intolerantes à sombra e inibição do fogo. Este trabalho objetivou avaliar como fatores 

que influenciam transições floresta-savana (i.e. atividade do fogo, disponibilidade de 

recursos e suas interações) afetam sua dinâmica. Para avaliar tais influências, 

variações nas características funcionais de comunidades distribuídas ao longo de 

um gradiente floresta-savana foram analisadas e comparadas entre paisagens com 

diferentes regimes de fogo e recursos no solo. Encontramos fortes evidências de 

que distinções na atividade do fogo estão induzindo diferenças na estrutura de 

savanas, e que recursos do solo podem ter um papel indireto, através da modulação 

do fogo pela regulação na produtividade de gramíneas C4. Nossos resultados 

também indicam que diferenças na atividade do fogo podem provocar distinções na 

relação entre adensamento da comunidade e limiares funcionais entre florestas e 

savanas. Na paisagem que queimou mais frequentemente, o limiar funcional ocorreu 

em comunidades mais abertas. A magnitude da mudança em parâmetros funcionais 

também foi maior na área que apresentou atividade do fogo mais frequente e 

diferenças mais marcantes nos recursos do solo em cada estado da vegetação. A 

paisagem com períodos maiores sem incêndios e pouca diferença nos recursos do 



 

 

solo entre florestas e savanas apresentou menores magnitudes, sugerindo que a 

atividade do fogo e propriedades do solo estão agindo em conjunto para suavizar a 

transição. Nosso estudo evidenciou a importância do fogo e de recursos do solo 

para transições floresta-savana na escala de paisagem. O fogo age de maneira 

intensa e direta, resultando em savanas mais abertas e maior distinção nos atributos 

funcionais entre savanas e florestas onde sua ocorrência é mais frequente. Maiores 

diferenças na disponibilidade de recursos do solo entre savanas e florestas de uma 

paisagem resultam em diferenças mais acentuadas nos atributos funcionais das 

comunidades em cada estado. Sozinhos, eles podem afetar a dinâmica de 

comunidades, e suas interações podem acentuar ou amenizar a dinâmica da 

transição.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

Forests and savannas have been suggested to be alternative vegetation 

states under certain precipitation regimes and soil conditions. A series of feedbacks 

are responsible for maintaining each state, including a fire-vegetation feedback, 

which is of remarkable importance to maintain the savanna state in wet tropical 

regions worldwide. In closed canopy forests, the very shaded understory inhibits the 

growth of shade-intolerant C4 grasses while creating a moist microclimate, which 

prevents the occurrence of frequent and intense fires, permitting the persistence of 

fire-susceptible species. In open canopy savannas, the high light availability in the 

system promotes high levels of C4 grass biomass, which is fuel for fire, favoring the 

occurrence of frequent and intense fires, which prevent canopy closure and promote 

the persistence of fire-tolerant species. Besides fire, soil properties and some 

disturbances frequently affect forests and savannas, and their transition dynamics as 

well. Soil resource availability, for instance, can exert an effect on tree growth rate. 

This effect affects the time required for the community to reach a closure level that 

will result in the suppression of shade-intolerant species and fire inhibition. This work 

aimed to evaluate how the factors influencing forest-savanna transitions (i.e. fire 

activity, resources availability and their interactions) affect their dynamics. To 

evaluate such influences, we analyzed variations of the vegetation functional traits at 

the plant communities distributed along a forest-savanna gradient, and compared 

them between landscapes with distinct fire regimes and soil resource availability. We 

found strong evidence that distinct fire activity is inducing differences in savanna 

structure, and that soil resources may have an indirect role, by modulating fire 

through C4 grass productivity. Our results also indicated that different fire activity 

may be provoking distinction in the relationship of community densification and 

functional thresholds between savannas and forests. At the landscape that burned 

more often, the functional threshold occurred at more open communities. The 

magnitude of the functional traits change between forests and savannas was also 

larger in sites with more frequent fire activity and more marked differences in soil 

resources of each vegetation state. The landscape with longer fire-free intervals and 

little difference in soil resources between forests and savannas presented shorter 

magnitudes, suggesting that both fire activity and soil properties are acting together 

to smoothen the transition. Our study evidenced the importance of both fire and soil 



 

 

to forest-savanna transitions at the landscape scale. Fire acts directly and strongly, 

resulting in more open savannas and higher differences in the functional traits 

between forests and savannas, where it occurs more frequently. More marked 

differences in soil resource availability between forests and savannas within a 

landscape result in more accentuated differences in the functional traits of the 

communities at each state. Each one alone may affect community structure and 

dynamics, and their interactions may accentuate or mitigate the transition dynamic. 
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1. INTRODUCTION 

In a global scale, precipitation regulates biome distribution through direct 

influence over primary productivity (Rosenzweig 1968; Lieth 1973; Polis 1999). 

Regions with high levels of precipitation facilitate tree development, allowing them to 

occupy most of the open spaces and outcompete the herbaceous layer, and form  

closed canopies characteristic of forest communities (Walter 1971; Scholes & Archer 

1997). On the dry extreme, low mean annual precipitation (MAP) limits woody cover, 

preventing canopy closure and sometimes permitting tree-grass coexistence, 

resulting in savannas, grasslands and deserts (Scholes & Archer 1997; Sankaran et 

al. 2005). Seasonality also displays a fundamental role, as the length of the dry 

season may influence savanna distribution worldwide (Good & Caylor 2011; 

Lehmann et al. 2011). Wherever the MAP displays intermediate levels and 

seasonality is present, however, both savanna and forest landscapes are observable, 

suggesting that factors other than climate are driving tropical biome distribution 

(Staver et al. 2011a, 2011b). 

In some tropical regions where precipitation and soil nutrients are not 

limiting tree establishment, and a precipitation seasonality pattern that allows fire 

occurrence is present, there is a co-occurrence of forests and savannas (Hirota et al. 

2011; Staver et al. 2011a, 2011b; Hoffmann et al. 2012). Soil resources (i.e. nutrients 

and water availability) exert strong influence in vegetation distribution, particularly at 

local scales, and fire presence is also pointed as an important factor maintaining 

savannas where forests could happen (Bond et al. 2005; Hoffmann et al. 2012). The 

MAP range at which both forests and savannas can occur is not consensual among 

authors, ranging from 650 to 2500 mm in the least conservative estimates (Sankaran 

et al. 2005; Staver et al. 2011a, 2011b).  

Ecosystems are rarely static. Instead, they are always subjected to 

changes in conditions (e.g. precipitation level, soil nutrients) and to external 

disturbances (e.g. extremely intense fires, extreme droughts). These can result in 

gradual changes in the system state (e.g. decrease in tree cover), population 

fluctuation and other modifications in the system dynamics. Whilst the effects on 

ecosystem dynamics created by internal or external drivers are difficult to 

disassemble, temporal  variance is present, and a dynamical complex system is 
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rather more realistic than a stable one (Scheffer & Carpenter 2003). Thus, it would be 

better to substitute words such as “stable states” and “equilibrium” by “attractors”, for 

instance, when working with complex dynamic systems (Scheffer & Carpenter 2003). 

The multi-stability theory is a good way of explaining forest-savanna co-occurrence 

and transition dynamics in the tropics (Scheffer et al. 2009; Warman & Moles 2009). 

Following this theory, forests and savannas are alternative vegetation states (or 

attractors), which are maintained by a series of environmental conditions and 

feedbacks. If the conditions of the system changes extremely (e.g. precipitation level, 

soil nutrients), or if it is perturbed by an external and strong enough disturbance (e.g. 

extreme drought event, deforestation), the system may shift abruptly to another state, 

and then will start to be maintained by a series of different feedbacks. Regarding the 

forest-savanna case, soil resources and precipitation may influence the community 

structure dynamic (e.g. time to reach a sufficient canopy closure that inhibits fire), 

thus influencing fire-vegetation feedbacks, which in turn are constantly affecting the 

system equilibrium (Bond et al. 2005; Hoffmann et al. 2011, 2012). Some 

parameters, however, should be treated differently according to the system in 

question. Fire occurrence, for instance, is common in savanna ecosystems, and thus 

should be treated as a condition, which in turn is susceptible to variations (e.g. 

regarding frequency and intensity). In forests, however, fire is stochastic and 

frequently destructive, and thus should be treated as a disturbance (Bond et al. 2005; 

Ratnam et al. 2011).  

In savanna landscapes, the continuous C4 grass layer works as fuel to 

fires, commonly after the dry season. Fire top-kills fire-sensitive tree saplings, 

promoting communities with sparsely distributed woody plants (hereafter open 

communities; Bond et al. 2005; Bond 2008; Hoffmann et al. 2012). Individuals that 

are well adapted to fire occurrence will survive after fire and resprout (Hoffmann et al. 

2003, 2012). The resulting conditions, with high light availability, are favorable for 

shade-intolerant C4 grasses, which form a continuous layer as soon as soil water 

availability reaches propitious levels. This vegetation-fire feedback allows savanna 

occurrence in regions where precipitation and soil resources are high enough to 

allow the development of  forest communities (Bond et al. 2005; Staver et al. 2011a, 

2011b; Hoffmann et al. 2012). In contrast, forest communities are characterized by 

closed canopies and shaded understory, excluding C4 grasses and, therefore, 
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inhibiting fire occurrence. The resulting extremely low fire frequency allows the 

establishment and growth of shade-tolerant and fire-susceptible tree species, 

reinforcing canopy closure and the forest system resistance (Hoffmann et al. 2003, 

2012; Bond et al. 2005; Staver et al. 2011b).   

Several natural and anthropogenic factors can modulate fire frequency 

and intensity. In protected areas, fire suppression due to management practices may 

result in longer fire free periods. Humans can also trigger fires (on purpose or not, 

when clearing areas with vegetation or when activities involving fire run out of control, 

respectively), increasing fire frequency in some areas. Among the natural factors, 

precipitation regime and soil resources are of significant importance. Sites with low 

productivity due to low soil resources and/or low precipitation may limit fire spread  

through low fuel availability and continuity, while high productivity in places with 

higher rainfall is often associated with very high fuel moisture, inhibiting fire ignition 

and spread (Dantas & Pausas 2013; Pausas & Ribeiro 2013). Thus, fire activity in a 

global scale displays a humped relationship with productivity (Pausas & Ribeiro 

2013). At landscape scale, nutrient availability can also affect grass productivity, an 

important component of flammability, modulating the climate-fire relationship 

(Scholes 1990). In landscapes where productivity is high enough to create a 

continuous grass layer and a dry season is present, fire activity tends to be much 

more frequent and intense. In these landscapes, soil resources differences may 

result in fire regime differences (i.e. soils with more resources would increase the 

grass layer biomass and continuity, increasing fire frequency and intensity). Thus, in 

regions with higher fire frequency, fire should prevent the formation of a dense 

woodland savanna, and the transition from savanna to forest should be sharper and 

also limited by the occurrence of long fire-free periods or of patches with high soil 

nutrient availability (Rossatto et al. 2009; Hoffmann et al. 2012; Pausas & Ribeiro 

2013). 

Besides the indirect effect of nutrient availability on fire activity, soil 

resources exert a direct effect over the savanna-forest transition dynamics. Soil 

resource availability affects tree growth, and the likelihood of a transition from a 

savanna to a forest depends directly on this influence (Hoffmann et al. 2012; Murphy 

& Bowman 2012). As tree growth rates depends on soil resource availability, the 

probability of forest species invading a savanna community changes accordingly 
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(Hoffmann et al. 2012). Thus, the contrasting growth patterns of forest and savanna 

tree species may result in distinct structural features of forest-savanna transitions 

under soil with high and low resources (Falster & Westoby 2003; Hoffmann et al. 

2003; Lawes et al. 2011).  

The differences comprising forests and savanna are not only structural. 

Each state presents distinct functionality, as well, resulting from the contrasting 

functional traits of its species. Plant functional traits are easily measured 

characteristics that gives us insights on the individual performance and ecological 

role (Violle et al. 2007; Ratnam et al. 2011). Ratnam et al. (2011) suggested a set of 

morphological, physiological and life-history traits which can be used to distinguish 

forest and savanna communities. Some of these characteristic traits include greater 

stem height and higher specific leaf area in forest species, which suggests fast 

growth plant strategy. In other words, forest trees are able to establish and grow 

hastily if sufficient resources are available and can survive in the shaded understory 

of forest communities (Westoby 1998; Falster & Westoby 2003). Savanna individuals, 

in contrast, often  present higher investments in bark thickness instead of stem height 

(Ratnam et al. 2011). Thus, using individual functional information averaged to the 

community level (i.e. functional parameters; Violle et al. 2007) is a powerful way to 

study vegetation states transition and processes changes at the landscape scale 

(Ratnam et al. 2011; Dantas et al. 2013).   

 The coexistence of plants under a set of conditions is explained by a 

complex variety of traits, related to the ability that a plant posses of dealing with 

environmental variations and disturbances. This set of traits may reflect trade-offs 

between resistance and recovery to particular disturbances (Miller & Chesson 2009; 

Enright et al. 2014). While the investment of resistant species is concentrated in 

minimizing the effect of disturbances through persistence, resilient species tend to 

invest more in traits that help to recover from disturbances (Miller & Chesson 2009). 

Modeling the distribution of community functionality through functional traits along 

vegetation gradients, and relating these traits with resistance/resilience could help in 

the detection of critical points (thresholds) at which vegetation abruptly shifts to an 

alternate state, as well as in the understanding of mechanisms underlying the 

transition dynamics (Dantas et al. 2013). As savannas and forests are subjected to 

distinct environmental conditions and levels of disturbances at a local scale, it is 
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expected that the plants at each state present a very different set of traits. While 

trees that invest more in bark thickness than in other traits present an advantage in 

savanna landscapes, trees that are able to grow in height hastily present a better 

chance to survive in forest landscapes, for instance (Falster & Westoby 2003; Lawes 

et al. 2011; Ratnam et al. 2011). Thus, it is expected that a functional threshold 

occurs between savanna and forest communities, as the plant functional traits in 

them differ drastically (Ratnam et al. 2011; Dantas et al. 2013). As environmental 

conditions and disturbances affect directly the occurrence of plants with distinct 

functional traits and the presence of a threshold between states, differences in them 

should interfere in the characteristics of the community at which this threshold 

occurs. Understanding better this relationship is one of the objectives of our study.   

Studying the dynamics of forest-savanna transitions and how soil 

resources and fire activity interfere in these dynamics is of substantial importance for 

a better understanding of the ecology of these systems, and for their conservation in 

the tropics. The Cerrado (Brazilian savanna) is the second most extensive biome in 

South America. Springs of three of the most important watersheds of the continent 

are located inside the Cerrado domain, along with a global biodiversity hotspot 

recognized as the richest savanna of the world (Ratter et al. 1997; Myers et al. 2000; 

Silva & Bates 2002). The role of fire maintaining the Cerrado biome must be 

evidenced, and fire control policies must consider fire not only as a threat, but also as 

an ally, as the dynamics of Cerrado communities continually occur alongside wildfires 

through millions of years. Fire exclusion would lead to potential forest invasion in 

some regions, implying in loss of Cerrado biodiversity (Bond et al. 2005). In the 

context of a changing world climate, alterations in precipitation regimes (which 

directly affect fire activity) could lead to changes in the distribution of these two 

systems (Beier et al. 2012; IPCC 2014). Thus, understanding how distinct fire 

regimes interfere in the transition dynamics is critical. 

Our objective in this study was to better understand how fire and soil 

resources influence forest-savanna transitions. Therefore, we investigated plant 

functional traits and soil features thresholds, in savanna-forest structural gradients, in 

two landscapes with contrasting fire regimes. Specifically, we focused on evaluating 

the role of fire and soil resources, directly and/or indirectly, on the processes shaping 

forests and savannas and their transition dynamics. Thus, we assessed information 
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of community functionality in forests and savannas, in regions with contrasting soil 

resource availability and fire regimes, in order to correctly interpret the mechanisms 

influencing the spatial transition of these two systems and to answer the following 

questions: 

(1) How soil properties and fire activity affect the structure of 

savannas and forests at local scale? 

(2) How the location and magnitude of functional trait thresholds in 

savanna-forest gradients differ between sites with distinct fire regimes and 

soil resource availability? 

 

We hypothesized that (1) soil resources and fire activity directly influence 

forest-savanna structures and transitions, favoring distinct growth strategies 

according to resources availability, and promoting the persistence of individuals with 

distinct traits under different fire regimes. As high soil nutrient concentrations 

positively affect tree growth rates and favors species with a fast-growth strategy, we 

expected to find taller communities with thinner bark (lower bark development allows 

investment in other traits) and higher SLA, which are characteristic of fast-growing 

species (Poorter & Remkes 1990; Reich et al. 1992; Westoby 1998; King et al. 

2006). Fire, in turn, may exclude individuals with this kind of growth strategy, as they 

are not able to survive and resprout. Frequent fire may then favor the occurrence of 

tree species that invest more in bark thickness than in other traits (e.g. height, SLA, 

wood density), in order to grant protection from fires (Falster & Westoby 2003; 

Hoffmann et al. 2003; Lawes et al. 2011, 2013). Thus, we expected to find savannas 

and forests to be denser (higher community closure) and taller where resources 

availability is higher and fire intervals are longer, what would support our first 

hypothesis. However, in landscapes where fire activity is frequent and soil resource 

availability is high as well, we expected that fire negative influence would surpass soil 

resources positive influence on tree height and community closure, as longer time 

periods are needed to observe the latter.  

We also hypothesized that (2) regions that burn more frequently and 

present higher differences of soil resources between savannas and forests tend to 

present more accentuated transitions. Frequent fire activity will result in a stronger 

selective pressure exerted by fire. In places where fire occurs frequently, the 
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importance of having fire-protection traits well developed rises. This may result in 

more marked traits differences when comparing forest and savanna communities. 

Higher fire frequency may also interfere at the level of community closure at which 

the functional threshold happens, as landscapes with frequent fire will not allow 

further closure of savanna communities (Falster & Westoby 2003; Hoffmann et al. 

2003; Bond et al. 2005; Lawes et al. 2011, 2013; Staver et al. 2011a). Higher 

differences in soil resources between forest and savanna at a landscape may also 

interfere in traits distinctions between these two vegetation states. As high soil 

nutrient availability affects growth rates positively and shorten the fire-free period 

necessary for a community to become denser, landscapes where soil resources 

distinction is more marked between forests and savannas may present more marked 

community traits differences, as well (Reich et al. 1992; Westoby 1998; Hoffmann et 

al. 2012). We expected to find functional thresholds in more open communities, and 

a larger magnitude of trait changes at sites with more frequent fire activity and more 

marked differences in soil resources. These results would help to support our second 

hypothesis.  

 

2. MATERIAL AND METHODS 

2.1 Study Sites 

The present study was carried out at the ecological reserve of the 

“Instituto Brasileiro de Geografia e Estatística” (IBGE) (15°55’8” - 15°57’53”S and 

47°51’26” - 47°54’10”W) and at a preserved area of the Financial Administration 

School (ESAF) (15°51’38” - 15°52’22”S and 47°49’15” - 47°49’45”W), both located 

inside the environmental protection area “Gama-Cabeça de Veado” and being part of 

the same landscape (Fig. 1). This study site is located inside Distrito Federal, a 

Brazilian federative unit in the Midwest region, part of the Brazilian Central Plateau 

(Fig. 1A). According to Köppen (1931) classification, the climate is tropical humid 

(Aw), with a dry season from May to September, and a wet season from October to 

April. The mean annual precipitation of the region is around 1700 mm (Cardoso et al. 

2014). The mean monthly temperature of the warmest month (October) is 25.3 °C, 

while the temperature of the two coldest months (June and July) is 20.8 °C, being the 

mean annual temperature around 22 ºC (Pereira et al. n.d.; Cardoso et al. 2014). The 
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altitudes range from 1048 to 1150 meters, and the soil is characterized as a 

yellowish-red Oxisol with clay texture (IBGE 2004; Quesada et al. 2004).  

We also used data from Dantas et al. (2013) collected at Emas National 

Park (ENP), during the wet season from 2009 to 2011. ENP is located in the 

southwest of the state of Goiás (17°49’ - 18°28’S and 52°39’ - 53°10’W), and as the 

IBGE Reserve, is part of the Brazilian Central Plateau (Fig. 1A). Following Köppen 

(1931) classification, the climate is tropical humid (Aw) with two well defined seasons 

with intervals matching the ones of the IBGE Reserve and ESAF plot set. The mean 

annual precipitation of the region is around 1745 mm, and the mean temperature lies 

around 24.6 °C (Cianciaruso et al. 2005). The altitudes range from 720 to 888 

meters, and the prevalent soil type is a dystrophic Oxisol (Ramos-Neto & Pivello 

2000; Dantas et al. 2013). 

Inside the IBGE Reserve and ENP, the predominant vegetation is the 

Cerrado, which is composed by a mosaic of different vegetation types, varying from 

dense woody physiognomies with a closed or semi-closed canopy and low grass 

occurrence (forest-like structure), to physiognomies with sparse and less frequent 

woody plants and a continuous grass cover (savanna-like structure) (Oliveira-Filho & 

Ratter 2002; IBGE 2004; Dantas et al. 2013). The ESAF area is mainly composed of 

forest, with dominant tall woody vegetation, low grass cover and closed canopy. Fire 

suppression policies are being applied since the year of establishment of the IBGE 

Reserve (1978), although some fires, triggered by natural and anthropogenic 

sources, still occur. No fires were reported inside ESAF for more than 30 years. On 

the other hand, natural fires are allowed inside ENP since 1994, with a spread control 

policy done by annually burned firebreaks (Ramos-Neto and Pivello 2000; personal 

contact). Therefore, the landscapes are submitted to distinct fire regimes for 22 

years. The IBGE Reserve and ESAF plot set will be referred as “IBGE” from this point 

on. 

2.2 Field Campaign 

In each of the two landscapes we distributed plots comprising a forest-

savanna vegetation structure gradient (Figs. 1B, 1C, 1D). At ENP 100 plots of 5 x 5 

m were allocated whereas at IBGE 50 plots of 10 x 5 m were sampled. To ensure 

that a vegetation structure gradient was sampled, plots were distributed using a 
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stratified design based on classes of either time since last fire (ENP) or tree cover 

(IBGE). For this purpose, the tree cover classes used at IBGE were 100 - 60%, 59 - 

40%, 39 - 20% and 19 to 0%. Although the design was planned to include an equal 

number of plots within each class, for practical reasons, two savanna plots had to be 

discarded at ENP and only 98 plots were used. In addition, since all the plots which 

were unburned for more than 15 years ended up being small and dense forest 

fragments with difficult access, the 20 forest plots had to be distributed systematically 

along a trail (see Dantas et al. 2013 for more details). Finally, as we used four tree 

cover classes at the IBGE sampling and 50 plots, the lowest percent tree cover class 

included 14 plots while other classes included 12.  

The sampling took place during the wet season of 2014 - 2015 for IBGE 

and of 2009 - 2010 and 2010 - 2011 for ENP. In both cases it was possible to collect 

data from the whole forest-savanna structural gradient. Plots that were assigned to 

inaccessible areas (legal and natural issues) were replaced by other random plots 

respecting the sampling design. We also substituted plots that contained less than 

three woody individuals (perimeter at ground level < 10 cm) and less than two 

species. 

In each plot, we labeled and numbered every individual with at least 10 cm 

of ground-level perimeter. We measured functional traits of these individuals in the 

field (i.e. tree height, stem bark thickness and stem perimeter at ground level) as well 

as collected leaf and branch samples to measure other traits (i.e. specific leaf area 

and wood density; see item 2.3). We also collected soil samples (0 to 10 cm) in order 

to acquire physical and chemical characteristics for the soils at each plot. All of these 

attributes and parameters have let us test for the presence of breakpoints inside the 

forest-savanna gradients, which indicate critical transitions from one vegetation state 

to another (Dantas et al. 2013). 
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Figure 1: Location of the study sites inside Brazil and tree cover maps of the protected areas. 
The areas inside Distrito Federal, which are the IBGE Reserve and ESAF, are approximately 
10 kilometers apart (A). Protected area borders are represented by different colors, as stated 
by the figure legend (B, C, D). Tree cover maps obtained from Hansen et al. (2013). 

2.3 Laboratory Analysis 

We collected five leaf samples per individual to determine specific leaf 

area.  Following Pérez-Harguindeguy et al. (2013) the leaves were labeled and 

scanned, while still fresh, in order to obtain their area using the ImageJ software (US 

National Institutes of Health). The leaves were then oven dried at 70 °C for at least 

72 h, or until a constant weight was obtained (Pérez-Harguindeguy et al. 2013). 

Specific leaf area (SLA) was then calculated dividing the fresh area by the dry mass 

for each replicate, and then averaged, resulting in a single SLA per individual.  

To estimate wood density, we measured the diameter and the length of 

the collected branches while still fresh with a caliper. Two perpendicular diameter 

measurements were taken after removing the branches bark in the same location. 

We estimated branch volume considering that the branches were cylinder-shaped. 

After obtained the branch volume, the samples were oven dried at 70°C for at least 

72h, or until a constant weight was obtained (Pérez-Harguindeguy et al. 2013). Wood 

density for each individual was calculated dividing the sample mass by its volume.  
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Relative stem height and relative bark thickness were calculated by 

dividing stem absolute height and bark thickness by stem diameter, in order to get a 

view of plant strategies that is independent from ontogeny, reflecting inherent 

differences between species (Lawes et al. 2013). Therefore, the final analysis 

included four functional traits: relative height, relative stem bark thickness, SLA and 

wood density. Using functional traits was important to our analysis as they are 

relatively easy to measure attributes that reflect both ecological strategies and 

evolutionary history, give us insights of how plants and communities respond to 

environmental conditions, and how they influence ecosystem properties (Ratnam et 

al. 2011; Pérez-Harguindeguy et al. 2013). Thus, we could use them to test for 

changes in the functionality of the system in the forest-savanna boundary.  

The soil samples were oven dried like the leaves and branches, and then 

sent to the Soil Science Department of University of São Paulo (ESALQ/USP) for 

physical and chemical analysis (e.g. nitrogen, phosphorus, potassium, calcium, 

aluminum, magnesium, organic matter, sand, silt and clay concentration, and cation 

exchange capacity). 

2.4 Fire Activity 

In order to access IBGE fire history, we downloaded a Landsat time-series 

from 1985 to 2014 through the USGS Global Visualization Viewer website. Loading 

these images in ArcGIS 10.1 (ESRI Inc.) software and adding the coordinates of our 

plots made it possible to check for fire scars in each image and then get information 

about the exact month in which each plot burned. We then calculate fire frequency, 

time since last burn and mean fire interval (calculated as the inverse of fire 

frequency) for each plot. We assigned a 30-year fire interval (maximum obtained) for 

plots that did not burn during the observed period. For ENP, the methodology was 

similar, but the time series ranged from 1979 to 2010, and the maximum fire interval 

assigned for plots that did not burn during this period was of 32 years. Through fire 

history, we could test for significant differences in the fire regimes of the landscapes. 

2.5 Data Analysis 

To quantify the degree of closure in vegetation structure of each plot, we 

used the metric suggested by Dantas et al. (2013): the Community Closure Index 
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(CCI), as named by the authors. The CCI is calculated as the logarithm of the total 

volume occupied by all woody individuals inside the plot, that is, the sum of the 

volume occupied by individual trees, assuming that each tree has a cone shape. It 

was standardized to vary from zero (more open community) to one (more closed 

community). The CCI made it possible to check at which level of community closure 

the functional thresholds occurred at each landscape. 

To test for differences between the fire regimes of IBGE and ENP, we 

used a Wilcoxon test to compare the mean fire interval and time since last burn 

between sites.  We looked for structural modifications in the functional traits over the 

CCI gradient using the “strucchange” package of R Environment (Zeileis et al. 2002, 

2003; R Development Core Team 2015) to test for breakpoints in the data. When a 

breakpoint was found for a functional trait, we then fitted a linear regression, and a 

piecewise regression applying the breakpoint value found for the trait-CCI relation. 

The objective of fitting a piecewise regression is that it is a statistical way of 

identifying ecological thresholds (Toms & Lesperance 2003). To check which model 

fitted better, we compared the corrected Akaike information criterion (AICc) for each 

model. When a significant breakpoint occurred and the piecewise model fitted the 

data better than a linear model, showing lower AICc values, we interpreted as 

evidence of a true threshold relationship between the CCI and the parameter being 

tested. Finding a threshold relationship indicated an abrupt change in the 

functionality of the system, and checking at which CCI these thresholds occurred at 

each landscape made it possible to test for differences in soil resources and fire 

activity affecting the level of community closure at which the change occurred. We 

log-transformed the data when necessary to improve normality of the residuals. 

Finally, we calculated the confidence interval of the breakpoints to test whether their 

location significantly differed between the two landscapes. When the confidence 

intervals did not overlap, a significant difference was assumed. The same analysis 

methods were applied to test for breakpoints in soil traits.  

We also calculated the magnitudes of change for the breakpoints that 

presented a threshold relationship within the CCI gradient using the method 

suggested by Verbesselt et al. (2010). The magnitude was calculated as the 

difference between the parameter value for each segment at the CCI breakpoint in 

the fitted piecewise regression model. With the absolute values of magnitudes, we 
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tested for differences between landscapes using a Student’s t-Test, and then 

checked if fire and/or soil resource availability were influencing the magnitude of 

change of the traits. 

At each site, the mean breakpoint of all parameters (plant functional traits 

and soil properties) that presented a significant threshold relationship along the CCI 

gradient was used to separate forest plots from savanna plots. This separation made 

it possible to compare soil resource availability, plant functional traits and fire activity 

between vegetation states and landscapes. The comparison was made with an 

ANOVA followed by a Tukey’s honest significant difference test. Finally, we fitted a 

multiple regression in order to check which parameters were more strongly 

influencing the vegetation community structure at each site. All analyses were 

performed in R Environment (R Development Core Team 2015) with the packages 

“vegan”, “nlme”, “strucchange”, “segmented” and “AICcmodavg” (Zeileis et al. 2002, 

2003; Muggeo 2003, 2008; Oksanen et al. 2015; Mazerolle 2016; Pinheiros et al. 

2016). 

 

3 RESULTS 

The sampling at IBGE consisted of 548 individuals of 114 species, and at 

ENP 554 individuals of 88 species. 

3.1 Fire Activity 

As almost none of the forest plots at IBGE burned during the years of the 

analyzed time series (except two of them which burned once), the mean fire interval 

for these plots was 30 years. Due to a huge fire that occurred at the IBGE Reserve in 

2011, which burned almost the whole Reserve, including almost all the savanna  

area where we posteriorly set up plots to sample in 2015, the time since last burn 

was really short for the majority of IBGE plots (Fig. 2B). None of the forest plots at 

ENP burned during the examined period, but in general, considering both forest and 

savanna plots, the plots there burned more frequently when compared to IBGE plots 

(Fig. 2). 
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The Wilcoxon test showed the fire activity distinction between both studied 

areas (Fig. 2), as expected, making it possible for us to test the influence of distinct 

fire regimes to the transition dynamics. Even though the two areas are inside the 

same climate envelope, some other factor is modulating differently the fire regimes. 

Therefore, hereafter, we refer to these areas as High (HFL) and Low (LFL) Fire 

Landscapes, respectively for ENP and IBGE.  

 

Figure 2: Fire activity comparison between IBGE (Low Fire Landscape) and ENP (High Fire 
Landscape). The shorter mean fire interval (A) presented at ENP indicates a more frequent 
fire action when compared to IBGE. The low values of time since last burn at IBGE (B) are 
explained by a huge fire that burned almost the whole reserve in a recent year. Values of p 
and of the Wilcoxon test (W) presented in the figure. 

3.2 Functional Trait Breakpoints 

In general, we noticed that trees with high investment in height growth for 

a certain diameter (high relative height) are more common in more closed 

communities, while the opposite happens in more open communities (Figs. 3A, 3B). 

Trees in more open community plots (composed mostly by savannas) invest in other 

attributes instead, e.g. higher relative stem bark thickness (Figs. 3C, 3D). Higher 

values of specific leaf area (SLA) and wood density were also observed in more 

closed communities when compared to more open ones (Figs. 3E, 3F, 3G, 3H). 
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Figure 3: Functional traits thresholds in a Community Closure Index (CCI) gradient at the 
Low (LFL) and High (HFL) Fire Landscape. The parameters presented are relative height, 
relative stem bark thickness, specific leaf area and wood density for the LFL (A, C, E and G, 
respectively) and the HFL (B, D, F and H, respectively). The breakpoints are represented by 
solid red lines, and the confidence intervals by dashed black lines. It is observable how the 
threshold occurs in more closed communities at the LFL when compared to the HFL. All 
breakpoints were significant (p < 0.05). 
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For the relative height, relative stem bark thickness, SLA and wood 

density attributes the breakpoint was significant in both sites (Fig. 3; Table 1), and 

occurred in more closed communities at the LFL when compared to the HFL. In all 

cases, the piecewise model fitted better than the linear one (Table 2), indicating the 

existence of a functional threshold in the community closure gradient for all those 

parameters. The confidence interval for each trait breakpoint at the LFL did not 

overlap the ones at the HFL (Fig. 3; Table 1), showing evidence that the thresholds in 

fact occur at distinct levels of community closure when comparing both landscapes. 

Table 1: Functional traits breakpoints in a Community Closure Index (CCI) gradient at the 
Low (LFL) and High (HFL) Fire Landscape. When the confidence intervals do not overlap 
between sites, a distinction in the level of community closure where the threshold happens is 
observed. Values of SupF test, the breakpoint and the confidence intervals (CI) presented in 
the table. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 

  LFL   HFL 

Attribute sup(F) Breakpoint CI   sup(F) Breakpoint CI 

Relative Height 75.45*** 0.63 0.628 - 0.648 156.97*** 0.54 0.532 - 0.549 

Relative Stem Bark Thickness 79.2*** 0.63 0.628 - 0.648 82.71*** 0.52 0.505 - 0.532 

Specific Leaf Area 98.73*** 0.63 0.628 - 0.648 143.22*** 0.52 0.512 - 0.525 

Wood Density 16.13** 0.66 0.599 - 0.790 72.56*** 0.52 0.514 - 0.548 

Soil Organic Matter 26.92*** 0.68 0.633 - 0.707 39.88*** 0.52 0.501 - 0.549 

Soil Nitrogen 24.58*** 0.73 0.705 - 0.794 111.83*** 0.52 0.501 - 0.525 

Soil Phosphorus 55.01*** 0.68 0.635 - 0.687 65.81*** 0.52 0.477 - 0.525 

Soil Aluminum 29.81*** 0.54 0.488 - 0.617 19.04*** 0.62 0.486 - 0.673 

Soil Sum of Cations (K + Ca + Mg) 8.02 0.73 NA 148.64*** 0.54 0.525 - 0.548 

Soil Sand 3.24 0.54 NA 43.35*** 0.51 0.500 - 0.548 

Soil pH 30.39*** 0.58 0.489 - 0.628   36.6*** 0.62 0.505 - 0.630 
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Table 2: Comparison of fitted models for the functional traits that presented a significant 
breakpoint in the Community Closure Index (CCI) gradient at the Low (LFL) and High (HFL) 
Fire Landscape. R-squared values are presented for the linear (LM) and piecewise (PM) 
model. Whenever there were a significant breakpoint, and the piecewise model fitted better 
and presented a lower AICc value than the linear, we could affirm that there was a threshold 
relationship between CCI and the parameter being observed. An ANOVA test was used to 
help to compare the two models. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 

  LFL   HFL 

R² ANOVA ΔAICc R² ANOVA ΔAICc 

Attribute LM PM   F2.46   (LM - PM)   LM PM   F2,94   (LM - PM) 

Relative Height 0.44 0.57 7.96** 10.02 0.54 0.6 8.19*** 11.35 

Relative Stem Bark Thickness 0.47 0.63 11.40*** 15.29 0.33 0.48 14.81*** 22.46 

Specific Leaf Area 0.42 0.64 16.26*** 21.9 0.49 0.61 15.63*** 23.73 

Wood Density 0.01 0.16 5.06* 5.1 0.38 0.43 5.47** 6.4 

Soil Organic Matter 0.18 0.3 5.13** 5.23 0.14 0.22 6.05** 7.47 

Soil Nitrogen 0.14 0.24 4.00* 3.18 0.34 0.45 11.20*** 16.56 

Soil Phosphorus 0.32 0.54 12.33*** 16.62 0.29 0.38 7.50** 10.12 

Soil Aluminum 0.19 0.42 10.78*** 14.38 0.11 0.14 2.81 1.3 

Soil Sum of Cations (K + Ca + Mg) NA NA NA NA 0.48 0.59 14.22*** 21.43 

Soil Sand NA NA NA NA 0.24 0.27 3.24* 2.14 

Soil pH 0.15 0.37   9.29***   12.12   0.26 0.29   2.78   1.23 

 

3.3 Soil Breakpoints 

Some soil traits, just like the vegetation functional traits mentioned above, 

presented a threshold between more open and more closed communities. In general, 

communities with higher CCI presented higher levels of soil organic matter and 

nutrients. Breakpoints in the CCI gradient were significant at both sites for soil 

organic matter (OM), nitrogen (N), phosphorus (P; Fig. 4), aluminum (Al), pH and 

cation exchange capacity (CEC; Table 1). For the soil traits sum of cations (K + Ca + 

Mg) and sand content, the breakpoint was only significant at the HFL (Table 1). The 

piecewise model fitted better for all parameters which presented a significant 

breakpoint, except for Al and pH at the HFL, which was not significant when 

comparing both models with the ANOVA (Table 2), indicating the lack of a threshold 

relationship for these parameters.  
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Figure 4: Soil parameters thresholds in a Community Closure Index (CCI) gradient at the 
Low (LFL) and High (HFL) Fire Landscape. The parameters presented are organic matter 
(OM), nitrogen and phosphorus soil content for the LFL (A, B and C, respectively) and the 
HFL (D, E and F, respectively). Aluminum and sand content, soil sum of cations and pH did 
not present a threshold relationship and were not included in the figure. Breakpoints are 
represented by solid red lines and the confidence intervals by dashed black lines. Similar to 
what occurred with the plants functional traits, the threshold occurs in more closed 
communities at the LFL when compared to the HFL. All breakpoints were significant (p < 
0.05). 

The confidence intervals for all soil traits, except soil Al and pH (not 

shown), did not overlap when comparing the thresholds between the LFL and the 

HFL (Table 1), indicating again that there is a distinction in the level of community 

closure at which the threshold happens at each site. 

Taking into account only the vegetation attributes and soil traits that 

presented a significant breakpoint and a better fit with the piecewise model, we 

calculated a mean threshold for the CCI gradient at each site. For the LFL the mean 

threshold was located at CCI = 0.64 ± 0.055 and for the HFL at CCI = 0.52 ± 0.009. 

Through this separation of communities with two distinct vegetation states of 

contrasting attributes, we could compare the fire activity at each state (Fig. 5). We 

labeled plots with CCI higher or equal the mean breakpoint value as forest plots, and 

with lower CCI as savanna plots.  
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Figure 5: Fire activity of savannas and forests at the Low (LFL) and High (HFL) Fire 
Landscape. Savannas clearly burn more often than forests in both areas, and the more 
frequent fire activity at the HFL savanna plots is observable. This distinction between fire 
activity in the savannas of each site could be attributed to differences in soil resource 
availability (Fig. 6). In both forests, fire activity was similar. Different letters represent 
significant differences between variables (values of p < 0.05 considered significant).  

3.4 Magnitude of Change 

The vegetation traits that presented a threshold relationship, and therefore 

used for the magnitude of change analysis were relative height, relative stem bark 

thickness, SLA and wood density, while the soil traits were soil organic matter, N and 

P concentration, and soil cation exchange capacity. For all the traits analyzed, the 

magnitude of change was higher at the HFL when compared to the LFL (Table 3), 

and the Student’s t-Test result (t = -5.09; p < 0.001) indicated that the differences 

between sites were significant. 

Table 3: Magnitude of the breakpoints for traits and soil features showing significant 
threshold relationship at the Low (LFL) and High (HFL) Fire Landscape, respectively. The 
magnitudes differ between sites, and are larger at the HFL for all traits (t = -5.09; p < 0.001). 

  Site 

Attribute LFL HFL 

Relative Height 0.2570 0.5515 

Relative Stem Bark Thickness 0.1801 0.6863 

Specific Leaf Area 0.2040 0.4685 

Wood Density 0.1587 0.1701 

Soil Organic Matter 0.2142 0.4610 

Soil Nitrogen 0.1172 0.5285 

Soil Phosphorus 0.3009 0.5834 
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3.5 Soil Resources vs. Functional Traits 

When comparing soil resources between vegetation states at the LFL and 

the HFL, we observed no differences in N concentration between forests at both 

landscapes (Fig. 6A). We also observed higher concentrations of P at the HFL 

forests and savannas, when compared to the LFL forests and savannas, respectively 

(Fig. 6B). Forests at the HFL presented higher levels of the sum of cations (K + Ca + 

Mg) when compared with the LFL forests, although LFL savannas presented higher 

levels than the HFL ones (Fig. 6C). Concerning sand content, forests at the HFL 

presented lower levels than LFL forests, and HFL savannas presented lower levels 

than the LFL ones as well (Fig. 6D). As soil N is less limiting than soil P in old tropical 

ecosystem soils (Walker & Syers 1976; Elser et al. 2007), N concentrations were not 

considered when establishing a general soil resource availability comparison 

between landscapes (Table 4). Higher sand concentration is treated here as a 

reducer of soil resource availability, as better explained later in the discussion 

section. In general, the HFL soils presented higher resource availability in both 

forests and savannas when compared to the LFL, and also more accentuated 

differences between forests and savannas, while soils of LFL savannas and forests 

did not differ overall (Table 4).   
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Figure 6: Soil resources and functional traits variation in forests and savannas at the Low 
(LFL) and High (HFL) Fire Landscape. Soil resource availability was higher at the HFL, in 
general. Communities height apparently did not respond to this resources distinction in 
forests, and responded inversely in savannas. Different letters represent significant 
differences between variables (values of p < 0.05 considered significant). 
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When comparing functional trait variation between forests of each site and 

savannas of each site, we observed no differences in the relative and maximum 

height of forest communities, and taller communities at LFL savannas when 

compared do HFL ones (Fig. 6F, 6G), which is the opposite of the expected for high 

soil resources. Though no statistical analysis was made to prove it, relative stem bark 

thickness apparently does not respond to soil resources differences (Fig. 6H). For the 

SLA and wood density traits, however, higher values were found at HFL forest 

communities, where soil resources are more available, when compared to LFL 

forests (Fig. 6I, 6J).   

Table 4: General soil resource availability and fire activity at the Low (LFL) and High (HFL) 
Fire Landscape. The soil parameters considered for the resource availability comparison 
were phosphorus concentration, sum of cations and sand concentration. Forests and 
savannas at the HFL presented higher soil resource availability. Soil resources did not differ 
significantly between forests and savannas at the LFL. Forests at both sites burned with the 
same frequency, and savannas at the HFL burned more frequently than at the LFL. 

    Site 

    HFL LFL 

Forest > < 

Soil Resource Availability Savanna > < 

Forest vs. Savanna ≠ = 

Forest = = 

Fire Activity Savanna > < 

  Forest vs. Savanna ≠ ≠ 

 

Finally, to check which parameters better explained variations in 

community closure, we fitted a multiple regression using soil properties together with 

fire activity as explanatory variables. The model which best fitted for the HFL data 

included only mean fire interval (MFI) as explanatory variable (Eq. 1; R² = 0.57, p < 

0.001), and the one which best fitted for the LFL data included MFI and soil P 

concentration (Eq. 2; R² = 0.46, p < 0.001).  

Eq. (1)    CCI = 0.231 + 0.003 MFI 

Eq. (2)    CCI = 0.19 + 0.008 MFI + 0.076 P 
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4. DISCUSSION 

The functional traits studied differed significantly between forests and 

savannas, as well as almost all of the soil parameters. Almost all traits analyzed, 

including plant and soil traits, presented a significant breakpoint at some part of the 

community closure gradient and a threshold relationship, indicating strong evidence 

of an abrupt functional separation between two distinct vegetation states. These 

findings agree with other studies (Hoffmann et al. 2005, 2012; Rossatto et al. 2009). 

Fire activity is much more frequent in savannas than in forests. Thus, the 

vegetation structure is under constant disturbance, and plant traits are under the 

influence of a strong selective pressure exerted by fire in savannas (Bond et al. 2005; 

Staver et al. 2011a, 2011b). Savanna plots at both studied sites together presented a 

mean fire interval more than two times shorter when compared to forest plots, 

indicating frequent fire activity in savannas of our study sites as well.  

Taller woody plants were more commonly found in more closed 

communities, or forests. The selective advantages of growing in height to reach light 

above the closed canopy could explain this pattern. However, in more open 

communities (savannas) the high cost in construction and maintenance of the stem 

along with the low advantages brought by growth in height at this system (light is not 

limiting) could be selecting plants with lower heights and higher investment in other 

traits (Falster & Westoby 2003; Hoffmann et al. 2003; Lawes et al. 2011). As an 

example, we found a significant higher relative stem bark thickness for the vegetation 

in savanna plots, suggesting a higher investment in this trait for savanna trees. 

Lawes et al. (2013) proposed that investing in a relatively thick bark lowers the costs 

of acquiring an absolute thick bark, and at the same time grants protection for smaller 

stems against fire, while investing in bark at an early life stage would be really costly 

for forest trees in a light limited environment (Hoffmann et al. 2003), reinforcing the 

suggestions made from our results. However, the selective pressure exerted by other 

system conditions, and their relation with other functions of the bark cannot be 

ignored. The water storage function of the inner bark, which increases alongside bark 

thickness (Rosell et al. 2014), suggests that drier and warmer environments can 

favor the occurrence of thicker barks (Rosell 2016).  
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In turn, SLA and wood density traits behaved the opposite way: both were 

significantly higher in forested plots. SLA is a trait related to the photosynthetic rate 

per leaf mass unit, and as proposed by Westoby (1998), it is a trait that reflects return 

in investment, that is, high SLA results in a quick payback for the plant (Poorter & 

Remkes 1990; Reich et al. 1992). This could possibly explain the selective 

advantages that high SLA levels bring to forest tree species, which need to establish 

and grow rapidly in the closed canopy shaded communities. Wood density apparently 

presented a less accentuated variation along the CCI gradient. However, the 

statistical analysis resulted in a significant breakpoint, and indicated the presence of 

a threshold relationship between this trait and the CCI. This trait is commonly related 

to tree structure, that is, higher wood density supports a higher and wider crown 

(King et al. 2006), which is a common characteristic of forest trees. Another benefit 

brought by increasing levels of wood density is related to cavitation resistance. It is 

critical for tall trees to avoid cavitation in order to grow in height (Koch et al. 2004), 

and as proposed by Hacke et al. (2001), wood density is related to resistance to 

cavitation (although this relationship is not consensual among authors). This could in 

part explain the pattern we found at the studied sites, with tall and dense wooded 

trees occurring in forests, while the opposite happens in savannas. 

 All these abrupt shifts in the functional trait values along the CCI gradient 

clearly indicate the co-occurrence of savannas and forests as alternative vegetation 

states under the same climate envelop. The distinct fire activity between vegetation 

states lead us to think of fire as the main factor driving the observed differences in 

traits. Undoubtedly, fire exerts a strong selective pressure in plant populations in 

savannas, and as shown by Simon et al. (2009) some Cerrado lineages started to 

diversify four million years ago or less, at the same time of the flammable C4 grasses 

increased dominance. However, we cannot assume that fire is the only responsible, 

as species current occurring in Brazilian savannas are a result of millions of 

evolutionary years, and their traits could be also related to many other selective 

pressures acting over their populations over the years (Rosell 2016). 

Soils at the HFL, in general, presented higher resource availability in both 

forests and savannas, when compared to LFL forests and savannas, respectively. 

Comparing forests with savannas at the LFL resulted in similar levels of soil 

resources. Soil P concentration and sum of cations could be affecting primary 
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productivity and other plant growth processes (Porder et al. 2007; Vitousek et al. 

2010; Wright et al. 2011). Sand concentration in our case can be used as an 

indicator of water availability in the soil, as the mean annual precipitation (MAP) of 

both sites is similar. Thus, lower sand levels indicate more soil water retention. Low 

water availability interfere directly on plant functions, including carbon dioxide 

assimilation by leaves and roots nutrient uptake, affecting plant growth and 

development (Schulze 1991). Regarding soil organic matter, forests at the LFL 

presented higher levels when compared to the HFL forests, and the same was 

observed in savannas. This pattern was the opposite from what was observed for 

resource availability in general, indicating that organic matter may be contributing to 

soil resources, but is not the main factor determining it.  

Regarding our first question (1) how soil properties and fire activity affect 

the structure of savannas and forests at local scale?, no differences were found 

between community relative and maximum height of forests at the High and Low Fire 

Landscapes, indicating that soil is possible not affecting this community structure 

parameter. In savannas, however, tree height was higher for LFL communities, 

where soil resources were less available. These results indicate not only that soil 

properties are not influencing tree height in savannas, but that another factor is 

selecting for lower trees at the HFL. As fire activity is more frequent at HFL 

savannas, fire could be a possible answer, as frequent fires could be selecting woody 

trees with less investment in height growth and higher investment in fire-survival 

related traits (Williams et al. 1999; Hoffmann et al. 2003; Lawes et al. 2011).  

Specific leaf area (SLA) and wood density presented higher values at HFL 

forests when compared to LFL forests. As HFL forests presented higher soil 

resources as well, this could indicate a positive relation between soil attributes and 

these two traits in forests (Westoby 1998; Ordoñez et al. 2009). All plant functional 

traits differed when comparing forest and savanna communities of the LFL and the 

HFL. Even soil resources not differing between LFL forest and savanna communities, 

plant functional traits differed, indicating that some other factor is selecting for the 

distinction of these two traits likewise. As fire activity substantially differed between 

the two vegetation states at both sites, fire again is a possible candidate to explain 

these variations. 
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Finally, the multiple regression indicated mean fire interval as a good 

predictor variable explaining variations in community closure at both sites, and soil P 

as an important variable at the LFL, as well. All these results pointing to fire as the 

main reason of community structure shaping do not exclude soil resources 

importance. C4 grasses respond positively to soil P (Hetrick et al. 1990), other soil 

nutrients (Medina 2013) and water availability (Caldwell et al. 1977; Baruch & 

Fernández 1993). As C4 grasses are the main fuel used by fire, successful 

establishment and growth, and higher productivity of these grasses would allow the 

formation of a continuous grass layer and higher availability of fuel for fires. Thus, soil 

resource availability is, through direct and indirect processes, also shaping 

communities in forests and savannas. Human action cannot be excluded when trying 

to explain fire activity distinction between sites, as well. As the sampling was held 

inside two protected areas, it is possible that distinct management practices 

interfered differently in the fire activity of each site. 

The threshold relationship was found for all plant functional traits and 

almost all soil traits analyzed. As expected, we observed distinct threshold positions 

in the CCI gradient at each site, without overlaps in the confidence interval. The fire 

activity analysis also led us to distinguish fire regimes between the two landscapes, 

what could indicate fire as a responsible disturbance factor affecting the level of 

community closure where the threshold occurs. In response to our second question 

(2) how the location and magnitude of functional trait thresholds in savanna-forest 

gradients differ between sites with distinct fire regimes and soil resource availability?, 

our results suggest that the frequent fire activity at the HFL is further inhibiting the 

closure of savanna communities by top-killing woody trees not protected from fire 

and not permitting forest trees individuals to establish and grow (Hoffmann et al. 

2003, 2012; Lawes et al. 2011). In the meanwhile, longer fire-free periods at the LFL 

are permitting savanna woody tress to occupy open spaces and eventually become 

more closed communities, and that would explain lower CCI levels for savanna plots 

at the HFL and higher at the LFL. Forest expansion over savannas is not observable 

through the threshold between functional traits and the community closure gradient. 

This occurs because communities that shift to forests will present simultaneously 

higher CCI and individuals with characteristic forest traits. At the HFL, the presence 

of functional traits characteristic of forest species in lower CCI levels than expected (if 
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compared to the LFL), indicates that frequent fire action is possibly opening the 

communities there, reducing the CCI of forest plots but still leaving many forest trees 

alive. If this process continue to happen, it is possible that the opening in the canopy 

will permit the increase of C4 grasses in the understory, which in turn will increase 

fire frequency even more, possibly leading to a transition from a forest to a savanna 

state in the forest fragments found at the HFL (Bond et al. 2005; Bond 2008; 

Hoffmann et al. 2012). 

Regarding the magnitude of the change, we found strong evidence that 

both fire and soil resources are affecting it. The magnitude was larger for all HFL 

plant functional traits, indicating a more abrupt shift (spatial, not temporal) in the 

forest-savanna trait transition along de community closure gradient. Fire exerts a 

strong selective pressure in plant functional traits, favoring individuals that invest 

more in bark thickness instead of height and other traits (Hoffmann et al. 2003; 

Lawes et al. 2011, 2013). Forest tree individuals would be favored by traits that 

increase photosynthetic rate, allowing for a fast establishment and growth (like SLA), 

and traits that help to support greater heights (like wood density), in order to reach 

light in the canopy  (Poorter & Remkes 1990; Reich et al. 1992; Westoby 1998; King 

et al. 2006). The higher frequency of fire activity at the HFL may be accentuating this 

pressure exerted by fire, which together with more contrasting soil resource 

availability between savannas and forests is possibly causing the larger functional 

trait magnitude of change. Meanwhile, at the LFL, lower fire activity and almost no 

differences in soil resources when comparing savannas to forests could be 

smoothing the differences in functional traits of the two vegetation states. The 

transition is still abrupt, as shown by the threshold relationship between the traits and 

de CCI, but at the LFL it is slightly smoother.   
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6. APPENDICES 

6.1 Appendix A 

Table A1: Fitted logistic regression for functional traits and soil parameters that presented a 
significant breakpoint in the CCI gradient at the LFL and the HFL. McFadden’s Pseudo R-
squared and the differences of AICc values between the linear model (LM) and the piecewise 
model (PM) against the logistic model (LgtM) are presented. In most cases, AICc values 
were higher for the logistic model when compared to the linear and piecewise ones, 
indicating a worse fit. 

  LFL   HFL 

R²McFadden ΔAICc R²McFadden ΔAICc 

Attribute     (LM - LgtM) (PM - LgtM)       (LM - LgtM) (PM - LgtM) 

Relative Height 0.22 -32.43 -42.45 0.31 2.65 -8.7 

Relative Stem Bark Thickness 0.3 -5.16 -20.44 0.25 49.41 26.95 

Specific Leaf Area 0.28 -47.34 -69.24 0.23 -85.49 -109.23 

Wood Density -0.004 -110.45 -115.55 0.13 -207.91 -214.31 

Soil Organic Matter 0.08 -29 -34.23 -0.01 -9.98 -17.45 

Soil Nitrogen 0.05 -126.59 -129.78 0.18 -43.82 -58.26 

Soil Phosphorus 0.18 -31.5 -48.12 0.1 -6.24 -16.36 

Soil Aluminum 0.02 15.28 0.9 0.04 -70.47 -71.77 

Soil Sum of Cations (K + Ca + Mg) NA NA NA 0.37 84.8 63.37 

Soil Sand NA NA NA 0.13 48.14 46 

Soil pH 0.09   -216.33 -221.84   0.16   -321.59 -322.82 
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7. ATTACHMENTS 

7.1 Attachment A 
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7.2 Attachment B 

 


