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RESUMO 

Florestas tropicais nebulares (FTN) são um dos ecossistemas tropicais mais vulneráveis a 
mudanças climáticas. Esses ecossistemas possuem um grande número de espécies endêmicas 
que só podem sobreviver nas condições microclimáticas encontradas em FTN. Mudanças 
climáticas ameaçam a diversidade e funcionamento desses ecossistemas. Nessa tese eu 
investigo como mudanças em condições ambientais afetam as relações hídricas e o crescimento 
de árvores de FTN. No capítulo 1, eu investigo como absorção foliar de água (AFA) contribui 
para a manutenção do turgor foliar em árvores de TFN durante períodos de seca. Eu conduzi 
experimentos para avaliar diferenças na capacidade de AFA entre três espécies de árvores 
comuns em FTN. Eu também medi o efeito de exposição regular a neblina no potencial hídrico 
foliar de plantas expostas a seca, e usamos esses dados para modelar a resposta das espécies a 
secas de maior duração. Todas as espécies estudadas foram capazes de absorver água através 
de suas cutículas foliares e/ou tricomas, mas a taxa de AFA variou entre espécies. Durante o 
experimento de seca, as espécies com maior AFA mantiveram o turgor foliar por maior tempo 
quando expostas a neblina, enquanto espécies com menor AFA exerceram um maior controle 
estomático para manter o turgor foliar. Resultados do modelo ajustado aos dados do 
experimento de seca sugerem que, sem neblina, as espécies com maior AFA tem uma maior 
probabilidade de perder o turgor foliar durante secas sazonais. No capítulo 2, eu usei dois 
métodos de análise de dados dendrométricos distintos para medir o crescimento diário de 
árvores de FTN, e investigar como o crescimento de árvores com diferentes características 
funcionais responde a mudanças ambientais. Eu estimei o crescimento das árvores (c) 
diretamente de dados de mudanças de diâmetro da casca (dDb), e também com uma combinação 
de dDb e dados de velocidade de seiva no xilema para excluir o efeito da capacitância hidráulica 
da casca de dDb. Ambos os métodos usados para estimar c produziram resultados 
razoavelmente semelhantes em árvores de crescimento rápido (R2=0.46-0.81), mas produziram 
resultados bastante distintos em árvores de crescimento lento. Árvores de crescimento rápido 
foram capazes de crescer em um intervalo maior de condições de temperatura, radiação solar, 
disponibilidade de água no solo e tempo com folhas molhadas, do que espécies de crescimento 
lento. Entretanto, árvores de crescimento rápido também tiveram margens de segurança 
hidráulica menores e madeira menos densa. A maior parte das árvores aumentou seu c durante 
as condições mais quentes e nubladas da estação chuvosa. Nossos resultados mostram que as 
condições ambientais de FTN frequentemente limitam o crescimento das árvores e podem 
promover a perda de turgor foliar. Algumas árvores adotam estratégias hidraulicamente mais 
arriscadas para lidar com essas restrições ambientais, mantendo a transpiração e crescimento 
mesmo em condições ambientais desfavoráveis. Outras árvores adotam estratégias mais 
conservadoras e favorecem a manutenção de sua integridade hidráulica. Mudanças climáticas 
podem ameaçar particularmente árvores com alto AFA, que dependem de eventos de neblina 
para manutenção do turgor e crescimento durante secas.  

 

PALAVRAS-CHAVE: Seca; neblina; floresta nebular; mudanças climáticas; crescimento de 
árvores. 

 

 

 

 



 

 

 

 

ABSTRACT 

Tropical Montane Cloud Forests (TMCF) are considered one of the most vulnerable tropical 
ecosystems to climate change. These ecosystems possess a high number of endemic species 
that can only thrive on the particular environmental conditions found in TMCF. Increases in 
temperature and changes in the frequency of cloud immersion events might threaten the 
diversity and functioning of these ecosystems. In this thesis, I investigate how environmental 
conditions affect carbon and water relations of TMCF trees. In chapter 1, I investigated how 
foliar water uptake (FWU) helps TMCF trees to maintain leaf turgor during soil drought. I 
conducted several experiments using apoplastic tracers, deuterium labeling and leaf immersion 
in water to evaluate differences in FWU among three common TMCF tree species. I also 
measured the effect of regular fog exposure on the leaf water potential of plants subjected to 
soil drought and used these data to model species’ response to long-term drought. All the 
studied species were able to absorb water through their leaf cuticles and/or trichomes, although 
the capacity to do so differed between species.  During the drought experiment, the species 
with higher FWU capacity maintained leaf turgor for a longer period when exposed to fog, 
whereas the species with lower FWU exerted tighter stomatal regulation to maintain leaf turgor. 
The model fitted to the experimental data suggest that without fog, species with high FWU are 
more likely to lose turgor during seasonal droughts. In chapter 2, I used two different 
dendrometer techniques to measure daily growth of TMCF trees, and investigate how the 
growth of trees with different functional traits responds to changes in environmental conditions. 
I estimated tree growth (g) directly from bark diameter changes (dDb), and also using a 
combination of dDb and sap velocity measurements to exclude the bark capacitance effect from 
dDb. I measured tree functional traits such as xylem hydraulic safety margins, stomatal 
regulation strategies and wood density. Both methods to estimate g showed a medium to high 
agreement (R2=0.46-0.81) in fast-growing trees, but poor agreement in slow growing trees. 
Fast growing trees were able to grow in a wider range of temperature, irradiance, soil water 
availability and leaf-wetting conditions than slow growing trees. However, fast growing trees 
had narrower xylem safety margins and less dense wood. Most trees increased g during hotter 
and cloudy wet season conditions. These results show that environmental conditions in TMCF 
often limit tree growth and promote leaf turgor loss. The TMCF trees developed different 
strategies to deal with these environmental restrictions. Some trees adopt hydraulically riskier 
strategies favoring carbon uptake even during unfavorable periods; while others are more 
conservative and favor hydraulic safety. Climatic changes that alter fog events might threaten 
particularly trees with high FWU, which depend on leaf-wetting events for the maintenance of 
leaf turgor and growth during droughts.   

 

KEYWORDS: Drought; fog; cloud forest; climate change; tree growth. 
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GENERAL INTRODUCTION 

Tropical Montane Cloud Forests (TMCF) are unique, valuable and vulnerable tropical 

ecosystems (Bruijnzeel, 2004; Bubb et al., 2004; Foster, 2001). The main climatic 

characteristic of TMCF is the persistence of cloud-immersion events (i.e. fog; Scholl et al., 

2010; Bruijnzeel et al., 2011). These events create an environment with very peculiar 

hydroclimatic conditions that hosts a large diversity of species, many of these endemic to these 

sites (Gentry, 1992; Foster, 2001). The biological and climatic uniqueness of TMCF makes 

many processes from these ecosystems, including carbon and water fluxes, to be significantly 

different from lowland tropical forests (Bruijnzeel & Veneklaas, 1998; Girardin et al., 2010; 

Bruijnzeel et al., 2011; Oliveira et al., 2014; Hu & Riveros-Iregui, 2016). Despite comprising 

only about 2.5% of the world tropical forests (Fig. 1), TMCF are known to provide valuable 

ecosystem services in mountainous tropical regions (Bruijnzeel, 2004; Bubb et al., 2004). The 

generally smaller leaf area of TMCF vegetation (both leaf size and leaf area index; LAI) and 

its lower transpiratory rates, associated with the significant hydrological input from fog events 

(Fig. 2) makes TMCF very important to the regional hydrological cycle. These ecosystems 

contribute to the maintenance of streamflow and groundwater recharge, especially during dry 

seasons, which makes TMCF essential for the water supply of many mountainous tropical 

regions (Bruijnzeel, 2004; Bubb et al., 2004).  In addition, TMCF are known to decrease soil 

erosion, which improves water quality and decrease landslide risks (LaBastille & Pool, 1978; 

Bubb et al., 2004).  

Figure 1. Distribution of Tropical Montane Cloud Forests (TMCF) across the world. On the 
left chart, the potential TMCF area in relation to the total tropical forest area. On the right chart, 
the potential TMCF area by region. Data from Bubb et al., (2004).  
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Figure 2. Representation of the hydrological importance of Tropical Montane Cloud Forests 
(TMCF) in comparison with a typical lowland tropical forest.  Different arrow sizes indicates 
the relative magnitude of the flux. Different arrow colors in the lowland forest indicates 
changes in the flux magnitude in comparison with the TMCF flux (red indicates bigger flux 
and blue indicates smaller flux).  On the TMCF, the additional fog hydrological input in 
addition to the rain, which promotes sap flow reversals caused by foliar water uptake (FWU; 
see Eller et al., 2013) and enhances Throughfall with fog dripping. This additional water input 
coupled with the lower TMCF transpiration enables TMCF to contribute more to the regional 
streamflow and groundwater recharge than lowland forests. This illustration was based on 
Foster (2001).   

 

Climate change is one of the most serious threats to the structure and function of TMCF 

around the globe (Foster, 2001; Bubb et al., 2004). Many TMCF species are highly adapted to 

the specific environmental conditions found only in TMCF, and changes on these conditions, 

including changes in temperature and fog frequency, might induce the mortality of native 

TMCF species and promote the invasion of TMCF by lowland species (Pound et al., 1999; 

Foster, 2001). Observations around the globe indicate that earth temperature is increasing 

(Folland et al., 2001), and model simulations indicate that this trend will continue in the future 

(Solomon et al., 2009). Therefore, most ecosystems on earth will be subject to temperature 

increments in the future, including TMCF (Still et al., 1999; Karmalkar et al., 2008). Increases 

in the earth surface temperature might also increase the elevation of cloud formation in tropical 
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mountains (Still et al., 1999; Lawton et al., 2001; Karmalkar et al., 2008), which would 

decrease the frequency of cloud immersion events in TMCF. It is essential to understand how 

environmental conditions affects the functioning of TMCF species to make accurate 

predictions on how TMCF will respond to a hotter and less foggy climate.   

Fog events have two main impacts on the water relations of TMCF trees. The first 

impact is to suppress tree transpiration, due to the atmospheric vapor pressure being close to 

saturation during fog events, and because of the formation of a water film on the leaf surface 

(Smith & McClean, 1989; Letts & Mulligan, 2005). The second impact is to provide an 

additional hydrological input for TMCF trees, which might be indirect, through the interception 

of fog particles and subsequent dripping to the soil (Cavelier et al., 1996; Holder, 2004; Liu et 

al., 2004) or direct, through foliar water uptake (FWU; Eller et al., 2013; 2015; Goldsmith et 

al., 2013; Gotsch et al., 2014). Despite TMCF being widely considered mesic environments, 

they can occur at sites with annual rainfall as low as 600 mm (Jarvis & Mulligan, 2011) and 

with significant rainfall seasonality (Jarvis & Mulligan, 2011; Goldsmith et al., 2013; Eller et 

al., 2015). Therefore, the fog water input might be very ecologically important for some TMCF 

species.  

The water acquired by FWU is a particularly useful mechanism for some species to 

maintain physiological activities and growth during drought (Simonin et al., 2009; Eller et al., 

2013). Other studies also have shown that different species within a community may possess 

different FWU capabilities (Goldsmith et al., 2013; Limm et al., 2009), which implies that 

some TMCF species could be more vulnerable to the reduction in leaf-wetting events than 

others, as they would be more reliant on FWU water. I investigate this possibility in chapter 1 

of this thesis. I used anatomical data to visualize the different FWU pathways, and deuterium 

labelling and leaf immersion experiments to quantify differences in FWU capabilities among 

three abundant TMCF tree species. Then, I measured the effect of soil drought and FWU on 

the leaf water potential of each species in a glasshouse drought experiment. I coupled the 

experimental data with 32-years of TMCF meteorological data to understand the ecological 

importance of leaf-wetting events for these three species with different FWU capacity.  

   Carbon relations of TMCF are also an understudied topic, if compared with lowland 

forests (Bruijnzeel & Veneklaas, 1998). Tree growth in TMCF is frequently lower than in 

lowland tropical forests (Bruijnzeel & Veneklaas, 1998; Wilcke et al., 2008; Moser et al., 2008; 

Girardin et al., 2010). Low irradiance and wet leaves caused by the frequent fog events have 
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been proposed as possible causes for the low productivity of TMCF (Bruijnzeel & Veneklaas, 

1998; Letts & Mulligan, 2005). Other studies suggest that the low availability of soil nutrients, 

particularly nitrogen, also might limit tree growth in TMCF (Wilcke et al., 2008; Moser et al., 

2010; Fisher et al., 2013). There are limited data to support either of these views, and 

understanding what controls TMCF tree growth is of utmost importance to predict how these 

important ecosystems might respond to climate change.  

One of the main challenges of studying interactions between tree growth and climate is 

the difficulty of having accurate measurements of growth in short temporal scales. This 

difficulty exists because much of the changes in tree stem diameter are caused by radial water 

fluxes between bark and xylem, instead of actually cambium cells multiplication and expansion 

(Steppe et al., 2015; Zweifel, 2016). Recently some methods have been proposed to separate 

the cambial growth singal contained in dendrometer data from radial changes induced by radial 

water fluxes (Mencuccini et al., 2013; Zweifel et al., 2016). In chapter 2, I use these techniques 

to measure the growth of TMCF trees at a daily time scale, and investigate how the growth of 

trees with different functional traits responds to changes in environmental conditions. I 

monitored bark diameter changes, sap velocity and measured several functional traits in nine 

trees, which belonged to some of the more abundant species in a TMCF fragment located in 

southeastern Brazil (Fig. 3). I measured functional traits related to stomatal regulation, xylem 

hydraulic safety, size-related traits and growth rates (that were derived from dendrometer 

growth data). I also compare the two methods used to estimate growth (Mencuccini et al., 2013 

and Zweifel et al., 2016) for the different TMCF tree species. 

The overall goal for this thesis was to investigate the mechanisms subjacent to the 

interactions between TMCF trees and climate. Many aspects of the ecophysiology of TMCF 

species are currently not elucidated, and this thesis intend to fill the gaps on the knowledge 

about how carbon and water relations of TMCF trees respond to environmental conditions. 

This knowledge is very useful to make predictions on how climate change might affect the 

structure and function of TMCF, and consequently the important services provided by this 

ecosystem. In addition, understanding the response of TMCF trees to climate change might 

provide a useful theoretical basis for the creation of effective TMCF management strategies.  
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Figure 3. Upper left: High-resolution point dendrometer used to measure bark diameter 
changes. Upper right: Heat-ratio method sap flow sensor used to monitor tree sap velocity. 
Bottom: Aerial view of the tropical montane cloud forest fragment studied on this thesis. The 
fragment is located in Campos do Jordão, SP – Brazil at approximately 2000 m above sea level.  
Bottom picture by Vitor Barão.  
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CHAPTER 1 

Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more 

vulnerable to drought and climate change 

(Eller CB, Lima AL, Oliveira RS. 2016. New Phytologist 211:489-501) 
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Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more 

vulnerable to drought and climate change     

 

Summary 

 Many tropical montane cloud forests (TMCF) trees are capable of foliar water uptake 

(FWU) during leaf-wetting events. In this study, we tested the hypothesis that 

maintenance of leaf turgor during periods of fog exposure and soil drought is related to 

species’ FWU capacity. 

 We conducted several experiments using apoplastic tracers, deuterium labeling and leaf 

immersion in water to evaluate differences in FWU among three common TMCF tree 

species. We also measured the effect of regular fog exposure on the leaf water potential 

of plants subjected to soil drought and used these data to model species’ response to 

long-term drought. 

 All species were able to absorb water through their leaf cuticles and/or trichomes, 

although the capacity to do so differed between species.  During the drought 

experiment, the species with higher FWU capacity maintained leaf turgor for a longer 

period when exposed to fog, whereas the species with lower FWU exerted tighter 

stomatal regulation to maintain leaf turgor. Model results suggest that without fog, 

species with high FWU are more likely to lose turgor during seasonal droughts.  

 We show that leaf wetting events are essential for trees with high FWU, which tend to 

be more anisohydric, maintain leaf turgor during seasonal droughts. 

 

Key words: Foliar water uptake; stomatal regulation; drought; fog; tropical montane cloud 

forest; climate change; turgor loss point; apoplastic tracers. 
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Introduction 

Recent tree mortality events associated with drought (Breshears et al., 2005; 2009; 

Gitlin et al., 2006; Allen et al., 2010; Rowland et al., 2015), and predictions that extreme 

drought events are likely to increase worldwide (Sheffield & Wood, 2008), have led to 

recognition of the importance of the physiological mechanisms associated with drought 

induced tree mortality (McDowell et al., 2008; 2011). While there is still not a complete picture 

of these physiological mechanisms, some traits, such as stomatal behavior (McDowell et al., 

2008; 2011), are widely considered useful predictors of plant response to drought. Most plants 

fall somewhere in a continuum between two modes of stomatal regulation during drought: 

isohydric plants avoid reaching low leaf water potential (Ψl) by closing stomata during drought, 

while anisohydric tend to keep their stomata open and endure lower Ψl (Klein, 2014; Martínez-

Vilalta et al., 2014; Skelton et al., 2015).  In many species, stomatal regulation is related to 

another physiological trait of major relevance to plant drought tolerance, the turgor loss point 

(πTLP). This value is classically used as a threshold indicator of plant water stress, as it is often 

correlated with the hydration status when growth ceases, gas exchange declines sharply and 

leaves desiccate irreversibly (Brodribb et al., 2003; Blackman et al., 2010); which makes πTLP 

a useful trait for predicting plant drought tolerance (Bartlett et al., 2012).  

Despite considerable advances that have been made on the subject, it is still unclear 

how certain physiological traits influence plant survival during drought, especially in tropical 

ecosystems. A physiological trait that has been shown to favor plant performance during 

drought is foliar water uptake (FWU). The water absorbance of leaves during FWU might be 

facilitated by specialized structures, such as trichomes (Benzig et al., 1978; Fernández et al., 

2014) and hydathodes (Martin & Von Willert, 2000), but even leaves without specialized 

structures can be permeable to water either directly through the cuticle (Kerstiens, 1996, 2006; 

Riederer and Schreiber, 2001) or through the stomatal aperture (Burkhardt, 2010; Burkhardt et 

al., 2012). As there are multiple possible pathways for water entry in leaves, FWU seems to be 

a widespread water acquisition strategy and has been observed in plants from a variety of 

ecosystems (Martin & Von Willert, 2000; Gouvra & Gramatikopoulos, 2003; Oliveira et al., 

2005, Limm et al., 2008; Breshears et al., 2008; Eller et al., 2013; Goldsmith et al., 2013; Berry 

et al., 2014; Gotsch et al., 2014; Cassana et al., 2015). The water acquired by FWU is 

considered of particular ecological relevance in dry or seasonally dry environments in which 

leaf-wetting events occur frequently (Oliveira et al., 2014a), as it may facilitate physiological 
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activity and growth in plants during drought conditions (Simonin et al., 2009; Eller et al., 

2013). 

 The FWU capacity of plants from tropical montane cloud forests (TMCF) has been 

verified in recent studies (Eller et al., 2013; Goldsmith et al., 2013; Gotsch et al., 2014). These 

environments are characterized by frequent cloud immersion events (Bruijnzeel et al., 2011; 

Jarvis & Mulligan, 2011; Oliveira et al., 2014a), and despite being widely considered mesic 

environments, they can occur at sites with rainfall as low as 600 mm (Jarvis & Mulligan, 2011) 

and significant rainfall seasonality (Jarvis & Mulligan, 2011; Goldsmith et al., 2013; Eller et 

al., 2015). The FWU of fog water might be ecologically important for some TMCF species 

during seasonal droughts (Eller et al., 2013), and reductions in cloud-immersion events, which 

are predicted by some climate change models (Still et al., 1999; Williams et al., 2007), could 

threaten these species. However, it is known that different species within a community may 

possess different FWU capabilities (Goldsmith et al., 2013; Limm et al., 2008), raising the 

possibility that certain TMCF species could be more vulnerable to the reduction in leaf-wetting 

events than others, as they would be more reliant on FWU water.  

Our objectives in this study were: 1 - identify FWU pathways and quantify FWU 

capabilities of three common TMCF trees, 2 - investigate relationships between FWU and 

stomatal behavior and 3 - quantify FWU contribution for the maintenance of leaf turgor during 

soil drought in these species, and use this information to predict how these species would 

perform in a climate with less fog. We used anatomical data to visualize the different FWU 

pathways, and deuterium labelling and leaf immersion experiments to quantify differences in 

FWU capabilities among the species. The fog effect on drought tolerance for each species was 

assessed with a glasshouse drought experiment, and to understand the ecological relevance of 

our experiment, we coupled the glasshouse experiment results with 32-years of TMCF 

meteorological data. 

Material and Methods 

Study site and species 

The saplings used in the glasshouse experiment and samples used for the foliar water 

uptake experiments were collected in a TMCF close to Campos do Jordão State Park (CJSP; 

22°69′ S, 45° 52′ W), located in the Mantiqueira mountain range, SP, Brazil. The climate at the 

site often presents a distinct dry (<50 mm monthly rainfall) and cold period (mean of 10.3°C 

in the coldest month) during the middle of the year (June-September) but fog events are 
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common at the site during the entire year. More details about vegetation structure and climate 

at the site can be found in Safford (1999) and Eller et al (2013; 2015).  

The species chosen for this study were Drimys brasiliensis Miers (Winteraceae), 

Myrsine umbellata Mart. (Primulaceae) and Eremanthus erythropappus (DC.) MacLeish 

(Asteraceae). Drimys brasiliensis is a characteristic cloud forest tree species and its distribution 

is strongly associated with the occurrence of cloud forest sites in South and Southeast Brazil 

(Bertoncello et al., 2011). Myrsine umbellata and E. erythropappus are more widely 

distributed, and while they can be very abundant tree species in some montane forests (Ledru 

et al., 2007; Ávilla et al., 2014; Meireles et al., 2014; Freitas & Kinoshita, 2015), they are also 

found in lowland sites (Cândido, 1991; Ruggiero et al., 2002; Dantas & Batalha, 2011; Freitas 

& Kinoshita, 2015). We collected E. erythropappus and M. umbellata samples in altitudes of 

c. 1700 m (where these species were more common at the site), while the D. brasiliensis 

samples were collected closer to the top of the site (c. 2000 m).   

Foliar water uptake 

Anatomical assays 

To evaluate differences in FWU pathways among the three species we exposed fresh, 

mature leaves of saplings to a fluorescent apoplastic tracer solution (1% Lucifer Yellow 

carbohydrazide dilithium salt aqueous solution; LY; Sigma-Aldrich, St Louis, MO, USA) for 

24 h. Then, leaves were washed in distilled water, dried with filter paper, hand sectioned and 

prepared for microscopic observation in a 90% glycerol-phosphate buffer (Mastroberti and 

Mariath, 2008). Sections were observed using epifluorescence (Leica DFC500MR; Wetzlar, 

Germany), under intense blue excitation of 450 – 490 nm with a 515-nm barrier filter (Oparka 

& Read, 1994). We also conducted classical anatomical assays to identify hydrophilic 

compounds on leaf tissues. Mature leaves were fixed in 50% ethyl alcohol-formaldehyde-acetic 

acid (FAA) (Johansen, 1940), embedded in plastic resin (Historesin®, Leica Biosystems), and 

then sectioned. These sections were then stained with Periodic Acid Schiff reaction (PAS) to 

identify hydrophilic polysaccharide compounds such as mucilage, glycogen, glycolipids and 

glycoproteins (McManus, 1948). Scanning microscopy images of mature leaves were provided 

by Laboratory of Electron Microscopy – University of Campinas (Campinas, Brazil).  

Deuterium labelling experiment 
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To quantify the contribution of water derived from FWU on the leaf water content of 

each species, we exposed the shoots of 5-9 saplings of each species to deuterium-enriched fog 

during one night. These saplings were collected in CJSP and allowed to acclimate for one 

month in a glasshouse at University of Campinas (Campinas, SP, Brazil). The artificial fog was 

created using an ultrasonic device (model Waterclear Premium; Soniclear, São Paulo, Brazil) 

inside a fog chamber made with PVC and plastic (1.5 X 1.0 X 0.8 m).  

Before the fog treatment the irrigation was suspended for one week. Then we collected 

leaves, washed with tap water, dried with paper towels and kept sealed in vials with parafilm. 

The same procedure was performed the following day, after the plants had been exposed to fog 

for 12 h during the night. Using the standard delta notation (δD‰) to express the deuterium 

ratio of each source, we estimated the FWU contribution (fFWU; %) to leaf water content as a 

linear mixing model (Dawson et al., 2002) : 

𝑓𝐹𝑊𝑈 = (𝛿𝐷𝑎−𝛿𝐷𝑏𝛿𝐷𝑓− 𝛿𝐷𝑏) 100                                                                                                    (Eqn 1)                                                 

, where δDa is the observed leaf δD after the fog session, δDf is the fog δD (668‰) and δDb is 

the leaf water δD before the fog session. We used plastic bags and parafilm to prevent fog water 

from reaching the soil and roots of the plants and, because any enrichment in 2H of leaf water 

induced by transpiration inside the fog chamber was negligible, we expect that any increment 

in leaf δD originates from water derived from FWU. The Ψl of each species before the fog 

treatment was -0.54 MPa (SE±0.08) for D. brasiliensis, -0.97 MPa (SE±0.33) for M. umbellata 

and -0.9 MPa (SE±0.33) for E. erythropappus. 

Leaf immersion experiment 

We measured FWU contribution to leaf rehydration in a laboratory experiment in which 

fresh, mature, detached leaves of excised branches were immersed in distilled water for 3 hours 

and we measured the Ψl increment after the immersion (similar to Goldsmith et al., 2013). The 

branches were collected at CJSP one day prior to the experiment and were kept hydrated until 

they were used. We sealed the petioles with parafilm and kept them out of water to avoid water 

entry. We used a Scholander pressure chamber (Model 1000; PMS, Corvallis, OR, USA) to 

measure Ψl immediately before and after the immersion, after drying the leaf thoroughly with 

paper towel. We immersed the leaves in water for 3 hours. We used this time interval because 

leaf-wetting events in their natural environment rarely last less than 3 hours. The immersion of 

3 hours also allows for an increase in Ψl large enough to be easily detectable with the 
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Scholander pressure chamber. Leaving the leaves in the water for too much time, would allow 

all species to completely rehydrate and we would not be able to make meaningful FWU rates 

comparisons. We conducted these measurements along a range of initial Ψl as we expect the 

increase in Ψl after immersion (ΔΨl) to be related with the pre-immersion Ψl. To reach more 

negative initial Ψl, we allowed some of the leaves to bench dry before water immersion until 

they reached a Ψl close to -3 MPa. 

Glasshouse experiment 

We investigated how FWU would affect each species tolerance to soil drought by 

conducting an experiment with a total of 27-36 saplings (height of 20-60 cm) of each species 

in a glasshouse at the University of Campinas. After a one-month acclimation period, we 

exposed the saplings to a drought treatment (no soil irrigation) for 60 days, but 15-23 saplings 

of each species were exposed regularly to a fog treatment (artificial fog applied on sapling 

shoots three times per week for 12 hours during the night using the same protocol described 

above for the deuterium labeling experiment). The plants used in this experiment were in 34-l 

pots that contained a 2:1 (v/v) mixture of sand and commercial organic soil. The pots were 

irrigated until saturation before the beginning of the experiment. 

We measured predawn (PD) and midday (MD) Ψl and stomatal conductance (gs) eight 

times during the experiment. The destructive Ψl measurements were conducted in a different 

group of plants than the plants we used for gs measurements. The midday Ψl measurements 

were made with a Scholander pressure chamber in 3-8 random individuals of each species per 

treatment. The gs was measured in mature fully expanded leaves of 4-8 individuals of each 

species per treatment with an infrared gas analyzer (ADC BioScientific LCpro+; Analytical 

Development Company, Hoddesdon, Hertfordshire, UK) during the periods of maximum gas 

exchange activity (8-9:30 h for D. brasiliensis and 10-12 h for E. erythropappus and M. 

umbellata), which were assessed before the beginning of the experiment. We also measured 

the leaf area of the individuals used for gs measurements at the beginning and at the end of the 

experiment. To calculate the total leaf area, we used ImageJ 1.42 to measure the area of 25 

leaves of each species and fitted a linear regression to the measured leaf area as a function of 

the product between each leaf length and width. We used the regression equation of each 

species to predict the area of the other leaves from length and width measurements, and 

obtained the total leaf area by summing the areas of every leaf in a plant. At the end of the 

experiment we quantified the mortality rates of each species by considering plants with 
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completely desiccated leaves and branches as dead. During the experiment we monitored the 

glasshouse air temperature and humidity (model U23-001; Onset Computer Corporation, 

Bourne, MA, USA) and used these data to calculate air-to-air vapor pressure deficit (VPD). 

We estimated the πTLP of each species with the pressure-volume technique (Tyree and 

Hammel, 1972). The pressure-volume curves were constructed with leaves from detached 

rehydrated branches using the bench-dry method described in Sack et al (2011). We used the 

πTLP as a reference point to indicate significant drought stress (Bartlett et al., 2012; Blackman 

et al., 2010). 

Field meteorological data 

In order to understand how the studied species could respond under actual climatic 

conditions of a TMCF, we used a long time-series of rain and midday air temperature and 

humidity data collected by a meteorological station located close to the TMCF site where our 

research was conducted (22°45′ S, 45° 36′ W; 1642 m). This time-series contained data from 

1970 to 2010, but the years of 1971-1973, 1976, 1985, 2000-2001, 2008-2009 were excluded 

for having data gaps during the dry season. 

Data analysis 

Foliar water uptake experiments 

For the deuterium labelling experiment data, we used a linear generalized least squares 

model to compare fFWU among species.  In the leaf immersion experiment, we described the 

relationship between ΔΨ𝑙𝑖 of each leaf i and its initial Ψ𝑙𝑖 as a linear function: ΔΨ𝑙𝑖 =  𝛼 + 𝛽ΔΨ𝑙Ψ𝑙𝑖                                                                                                         (Eqn 2) 

, where the slope (βΔΨl) represents the ΔΨl increment per unit of initial Ψl and we believe it 

might be a useful parameter to compare among species to evaluate differences in FWU 

capacity. The βΔΨl should vary between 0 and -1 with βΔΨl = -1 representing complete 

rehydration. Another parameter of interest derived from the function (2) is the x-intercept (-

α/βΔΨl), as it represents the minimum Ψl necessary to produce a detectable ΔΨl, which might 

be related with the leaf permeability to water during FWU. Assuming that during FWU the 

water enters the leaf passively following a water potential gradient (Oliveira et al., 2014a), a 

more negative x-intercept value suggests that a bigger gradient is necessary to overcome the 
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leaf resistance to water entry. We used ordinary least squares regressions to estimate these 

parameters for each species.  

Glasshouse experiment 

 To measure the effects of drought length, VPD and fog treatment on each species MDΨl 

we used linear mixed effects models. We used a linear generalized least squares model to 

compare leaf area change among species (details on supporting information notes S1). 

 We used the logistic function described in Klein (2014) and Guyot et al (2011) to 

describe the relationship between gs and Ψl and estimate parameters of interest, such as gsmax, 

the maximum gs reached by the species, Ψg50 the Ψl value when gs drops to half of gsmax, and s 

which is related with the slope of the linear portion of the model (details on supporting 

information notes S1).  

We also used the approach described by Martinez-Vilalta et al (2014) to assess the plant 

conductivity loss during soil drought based on the linear relationship between MDΨl and PDΨl: 𝑀𝐷𝛹𝑙𝑖 =  𝛬 + (𝜎 + 𝜎𝑖)𝑃𝐷𝛹𝑙𝑖                                                                                          (Eqn 3) 

In this approach, the slope of the relationship (σ) represents the sensitivity of the plant hydraulic 

conductivity to soil drought, and the intercept (Λ) represents the maximum transpiration rate 

per unit of hydraulic conductivity (Martinez-Vilalta et al., 2014). We used linear mixed effects 

models to estimate these parameters for each species, with MDΨli as the response of each plant 

i, PDΨl as the fixed effect and a random slope structure (σi) that allowed each plant to have a 

different slope parameter (Zuur et al., 2009).   

Field meteorological data 

We used the mixed effects models fitted to the glasshouse data and the field 

meteorological data to predict how many days it would take for each species to reach πTLP 

under field conditions. We also calculated the probabilities of dry periods long enough to make 

the plants lose turgor occurring under three different scenarios: fog, no fog and no fog and high 

VPD. For a detailed explanation of each scenario and our analysis procedure see supporting 

information notes S1.    

 All analyses were conducted using the software R v.3.2.0 (R Core Team, 2015), and 

the packages “nlme” (Pinheiro et al., 2015), “lsmeans” (Lenth, 2015) and “MASS” (Venables 
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and Ripley, 2002). We used Efron’s pseudo-R2 (Efron, 1978) as a measurement of the 

explained variance by the mixed-effects and non-linear models used on this study.   

Results 

Foliar water uptake 

Anatomical assays 

Adaxial and abaxial leaf surfaces of all species showed fluorescence due to the presence 

of salt apoplastic tracer paths (Fig. 1, see Eller et al. 2013 for D. brasiliensis figures). In E. 

erythropappus, after permeating the cuticle, the tracer solution moved via apoplastic pathways 

through the epidermis and parenchyma and into the xylem (Fig. 1a, b). Tector trichomes are 

very abundant in the abaxial epidermis and may be an important pathway for FWU in this 

species (Fig. 1g), as a high concentration of solution with apoplastic tracers was observed in 

their cell walls (Fig. 1b-d). There was also a high concentration of salts in the apical cell walls 

and the contact regions between apical and basal cells of tector trichomes (Fig. 1c), in addition 

to its occurrence in the shallow depressions in the adaxial cuticle formed after the senescence 

of glandular trichomes (Fig. 1e, f). Despite the Lucifer yellow (LY) impregnation in E. 

erythropappus leaves, the abundance of hydrophilic polysaccharides on its leaves was 

substantially less than in the other species (Fig. 1h). 

In M. umbellata, we observed LY accumulation in cell walls throughout the entire leaf 

mesophyll (Fig. 1i, j). Direct diffusion through the adaxial and abaxial cuticle seems to be an 

important water entry pathway in this species also (Fig. 1i-l). We found high LY concentration 

throughout the middle of the mesophyll where collecting cells are located, suggesting a regular 

distribution of absorbed solution just below the palisade parenchyma (in linear aspect in cross 

section) (Fig. 1j). Collecting cells (Donato & Morretes, 2011; Donatini et al., 2013) are the 

layer of mesophyll cells that connect the palisade parenchyma and the spongy mesophyll. The 

cytoplasmic extensions of collecting cells can be involved on the transport of solution deposited 

on the adaxial surface (Fig. 1m). We also found a strong LY presence in peltate glandular 

trichomes in both leaf surfaces, which suggest that these structures might facilitate water entry 

into the leaves (Fig. 1n). Hydrophilic polysaccharides were particularly abundant in M. 

umbellata leaves (Fig. 1o). 

Deuterium labeling experiment 
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All three species had deuterium enriched water in their leaves following exposure to 

deuterium enriched fog, but the magnitude of the enrichment differed between species 

(generalized least squares model: F2, 17 = 4.92; p = 0.02). The leaves of D. brasiliensis had 

higher deuterated water content (37.02 %) than E. erythropappus (23.25 %), while M. 

umbellata showed intermediate fFWU levels (30.16 %; Fig. 2a). 

Leaf immersion experiment 

As we expected, ΔΨl was strongly and linearly related with initial Ψl in all species (Fig. 

2b). The βΔΨl (the slope of this linear relationship) was more negative in D. brasiliensis and M. 

umbellata (-0.93 and -0.87 MPa MPa-1, respectively) than in E. erythropappus (-0.72 MPa 

MPa-1), which indicates a higher rehydration capacity in the former species. The x-intercept of 

the linear relationship was also higher in D. brasiliensis and M. umbellata (-0.31 MPa in both 

species) than in E. erythropappus (-0.43 MPa), which suggests that D. brasiliensis and M. 

umbellata leaves are more permeable to water. 

Glasshouse experiment 

The fog treatment had a stronger effect in D. brasiliensis and M. umbellata saplings 

than in E. erythropappus saplings (Table 1; Fig. 3).  Drimys brasiliensis MDΨl in the control 

treatment (no fog) reduced, on average, by 0.026 MPa per day in relation to the fog treatment, 

which showed a slight increase throughout the experiment. The leaves of D. brasiliensis in the 

control treatment started losing turgor after 39-45 days of drought, while the leaves from plants 

in the fog treatment maintained their turgor until the end of the experiment (60 days). The PDΨl 

of D. brasiliensis in the control treatment also remained constant throughout the experiment, 

never dropping below 
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Figure 1. Evidence of foliar 
absorption through apoplastic 
pathways and leaf anatomy of 
Eremanthus erythropappus (a-h) 
and Myrsine umbellata (i-o). a) 
Autofluorescence of fresh leaf 
(control); b) Apoplastic 
fluorescent tracer Lucifer yellow 
(LY) accumulation on tector 
trichomes of abaxial surface, 
epidermis and parenchyma’s 
apoplastic pathways and xylem; c) 
Tector trichome detail with LY 
accumulation on apical cell wall, 
note the increase in intensity in the 
contact region with the basal cell; 
d) Apoplastic tracer solution 
applied on abaxial surface moved 
directly to xylem, and could even 
reach the opposite leaf surface; e) 
Autofluorescence of fresh abaxial 
leaf surface with a glandular 
trichome before senescence 
(control); f) Presence of LY in the 
adaxial cuticle especially in the 
depressions created by glandular 
trichomes senescence, recesses in 
the epidermis with LY in detail. 
The bars in a-f represent 5 mm. g) 
Abaxial surface with ramified 
tector trichomes. The bar 
represents 25 µm; h) Weak 
presence of polysaccharide 
hydrophilic compounds as 
indicated by PAS reaction (darker 
pink); top left panel is the control. 
The bar represents 50 µm. i) 
Autofluorescence of fresh leaf 
(control); j) Presence of LY in 
peltate glandular trichomes, 
throughout all parenchyma with 
more concentration in collector 
cells (after 24 hours of LY solution 

application on adaxial surface). k) Adaxial cuticle autofluorescence (control); l) Apoplastic tracer 
presence in the adaxial cuticle; m) Collecting cell detail showing cytoplasmical expansion between 
palisade cells (indicated by arrow) reaching the contact zone between epidermal cells (obtained after 
two hours in contact with 0.02% HPTS solution, pyranine (8-Hydroxypyrene-1,3,6-Trisulfonic Acid, 
Trisodium Salt)). n) Presence of LY in abaxial glandular trichomes (front view); top left panel is the 
autofluorescence of the trichomes (control). The bars in m-n represent 5 µm. o) Strong presence of 
polysaccharide hydrophilic compounds as indicated by PAS reaction (darker pink); top left panel is the 
control. The bar represents 50 µm. BC: Basal cell of tector trichome; Ct: Cuticle; CC: Collecting cell; 
Ep: Uniseriate epidermis; Ph: Phloem; PP: Palisade parenchyma; SP: Spongy parenchyma; TT: Tector 
trichome; Xy: Xylem. 
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Figure 2. a) Contribution of deuterium enriched 
water acquired via foliar water uptake to leaf water 
content (fFWU) after saplings being exposed to 
deuterium enriched fog for one night. Columns are 
the means of fFWU contribution in each species (Db 
= Drimys brasiliensis, Mu = Myrsine umbellata, Ee 
= Eremanthus erythropappus) and error bars are 
the standard error. Different letters indicates 
significant difference (α=0.05) based on 
comparisons made using the least-squares means 
95% confidence intervals estimated with a 
generalized least squares model. b-d) Relationship 
between leaf water potential increment (ΔΨl) after 
water immersion and initial Ψl for D. brasiliensis 
(b), M. umbellata (c) and E. erythropappus (d). The 
dashed line is a 1:1 reference line, which indicates 
complete rehydration. 
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Figure 3. Predawn (PDΨl; upper panel) and 
midday leaf water potential (MDΨl; lower 
panel) for the fog (black) and control (red) 
treatments for Drimys brasiliensis (a), Myrsine 
umbellata (b), and Eremanthus erythropappus 
(c) during the glasshouse experiment. The dots 
and error bars are the observed mean and 
standard errors, the lines represent the predicted 
means by the linear mixed effects model and the 
colored region is the standard error x 2, as an 
approximation for the 95% confidence interval 
for the fixed effects. The two last Ψl 
measurements were not made in the control 
treatment for Drimys brasiliensis as the petioles 
collapsed due to the low pressure. The black 
dashed line represents each species’ turgor loss 
point (πTLP). Upper panel in (a) modified from 
Eller et al., 2013. 
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Table 1. Coefficient estimates from the linear mixed effects models fitted to the glasshouse 
experiment data. The coefficient estimates are from the control treatment, with the Treatment 
and Drought:Treatment estimates indicating the difference in the Intercept and Drought length 
coefficient estimates between both treatments. Abbreviations used in the table are midday leaf 
water potential (MDΨl) and vapor pressure deficit (VPD). 

 

 

-0.5 MPa, while in the control treatment it dropped to values lower than -1 MPa (Fig. 3a). 

Myrsine umbellata MDΨl in the control treatment dropped 0.014 MPa per day in relation to the 

fog treatment, which, in contrast to D. brasiliensis, also dropped during the experiment, albeit 

slower than in the control treatment. Both treatments of Myrsine umbellata had leaves that 

reached πTLP, but the turgor loss occurred earlier in the control treatment. The PDΨl of M. 

umbellata showed a similar pattern, dropping faster in the control treatment than in the fog 

treatment at the end of the experiment (Fig. 3b). The patterns of MDΨl and PDΨl in E. 

erythropappus were very similar in both treatments, the MDΨl dropped only 0.004 MPa per 

day in relation to the fog treatment throughout the experiment. Leaves of E. erythropappus in 

both treatments only started reaching πTLP after more than 50 days of drought (Fig. 3c). The 

fog effect we observed in the experiment (i.e. the decrease in MDΨl per day in the control 

treatment relative to the fog treatment) was proportional to the species FWU capacity as 

measured by the deuterium labelling and leaf immersion experiment (Fig. 4). 

Response Predictors Coefficient Std. Error DF t-value p 

D. brasiliensis  (Intercept) - 0.682 0.156 48 -4.379 <0.01 

 MDΨl  log(VPD) -0.307 0.095 22 -3.223 <0.01 

 Treatment -0.481 0.018 48 -2.668 0.01 

 Drought length  -0.012 0.007 48 -1.652 0.10 

 Drought 
length:Treatment 

0.026 0.009 48 2.792 <0.01 

M. umbellata  (Intercept) -0.846 0.201 64 -4.021 <0.01 
MDΨl  log(VPD) -0.694 0.139 28 -4.980 <0.01 

 Treatment 0.189 0.239 64 0.789 0.43 

 Drought length  -0.023 0.005 64 -4.277 <0.01 

 Drought 
length:Treatment 

0.014 0.007 64 1.945 0.05 

E. erythropappus  (Intercept) -0.965 0.121 56 -7.975 <0.01 

MDΨl  log(VPD) -0.413 0.087 33 -4.741 <0.01 

 Treatment 0.028 0.136 56 0.206 0.84 

 Drought length  -0.005 0.003 56 -1.808 0.76 

 Drought 
length:Treatment 

0.004 0.004 56 1.030 0.30 
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Figure 4. Relationship between the fog effect size (mean difference in water potential per day 
from the fog treatment to the control treatment) and foliar water uptake, represented by the 
slope (βΔΨl) of the relationship between Ψl increment after water immersion (ΔΨl) and its initial 
Ψl (a); and by the contribution of deuterium enriched water to the leaf water content (fFWU) 
following exposure to deuterium enriched fog (b). The circles are the means and error bars the 
standard error (Db = Drimys brasiliensis, Mu = Myrsine umbellata, Ee = Eremanthus 
erythropappus). The lines were estimated using total least squares regressions. 

 

Looking at the drought response of each species, E. erythropappus was the species least 

affected, with the MDΨl dropping just 0.004 MPa per day throughout the experiment, in 

comparison with 0.012 and 0.023 MPa day-1 in D. brasiliensis and M. umbellata, respectively 

(Table 1). In E. erythropappus, the small response in MDΨl to drought length could be related 

to its more isohydric stomatal regulation in comparison with the other species (Fig. 5a, c, e). 

We classify E. erythropappus as more isohydric than the other species by following the 

definition proposed by Klein (2014): to compare the minimum Ψl reached by the species while 

still allowing for stomatal conductance. This minimum Ψl value was defined by Klein (2014) 

as the Ψl value in which the plant reaches 25% of its maximum gs (Ψg25), as it represents the 

minimum Ψl of the linear portion of the gs (Ψl) function. E. erythropappus has a less negative 

Ψg25 value (-1.31 MPa) than D. brasiliensis and M. umbellata (-1.48 and -1.76 Mpa, 

respectively). These results are consistent with the other approach we used to assess plant 

isohydric/anisohydric behavior: the plant conductivity loss analysis using PDΨl and MDΨl 

proposed by Martinez-Vilalta et al (2014) (Fig. 5b, d, f). The smaller slope (σ) of E. 

erythropappus (0.35 MPa MPa-1) indicates that this species is closer to a strict isohydric 

behavior than D. brasiliensis and M. umbellata, which has a slope closer to a strict anisohydric 

behavior (0.85 and 0.57 MPa MPa-1, respectively). Our results indicate that species with more 
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anisohydric behavior (D. brasiliensis and M. umbellata) generally had higher FWU capabilities 

than the more isohydric E. erythropappus (Fig. 6).  

Despite D. brasiliensis and M. umbellata showing more anisohydric behavior, D. 

brasiliensis has lower gsmax and a lower maximum transpiration rate per unit of hydraulic 

conductivity (Λ from equation 2) than the other species (Fig. 5). Another important distinction 

between D. brasiliensis and M. umbellata are the higher leaf loss rates of D. brasiliensis (Fig. 

7a, b). While both D. brasiliensis and M. umbellata shed more leaves in the control treatment 

than in fog treatment, D. brasiliensis also lost a considerable amount of leaf area in the fog 

treatment. The leaf loss on the fog treatment could have been triggered by the high VPD in the 

glasshouse (Fig. S1), which was higher than the values typically experienced by the plants in 

the field. There was no difference in leaf loss between treatments for E. erythropappus (Fig. 

7c). Most D. brasiliensis and M. umbellata saplings in the control treatment died at the end of 

the experiment, while those in the fog treatment had higher survival rates (Fig. 7d, e). No 

individuals of E. erythropappus died at the end of the experiment (Fig. 7f). 

Predictions based on field meteorological data 

The longest periods without rain observed at our TMCF site happened almost 

exclusively from June-September (data not shown). The most likely drought length (i.e. period 

without rain) at the site is 27 days assuming the drought length data follow an approximately 

log-normal probability distribution (Fig. 8). In the fog scenario (i.e. fog and VPD set at 0.9 

kPa) we predict that all the species can maintain leaf turgor for more than 70 days (the longest 

dry period we have in our dataset is 69 days). In this scenario, E. erythropappus would stay at 

least 0.51 MPa above its πTLP, D. brasiliensis 0.33 MPa and M. umbellata 0.27 MPa. In the no 

fog scenario (i.e. no fog and VPD set at 0.9 kPa), E. erythropappus would still not lose turgor 

and would stay at least 0.18 MPa above its πTLP. However the species with higher FWU, D. 

brasiliensis and M. umbellata, would reach their πTLP at 46 and 39 days, respectively. The 

probability of dry periods of this size or longer occurring in our site are 0.19 and 0.29, 

respectively. The no fog and high VPD scenario (when the VPD is set at 1.94 kPa) shows how 

high VPD could accentuate the effects of the lack of fog by decreasing the days required for 

D. brasiliensis and M. umbellata to lose leaf turgor to 37 and 20 days, respectively. The 

probability of dry periods equal or longer than the time necessary for D. brasiliensis and M. 

umbellata to lose leaf turgor increases to 0.39 and 0.87, respectively. In this scenario, E. 
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erythropappus would lose leaf turgor at 60 days, which is a drought length with a probability 

of 0.05 of occurring (Fig. 8).  

Figure 5. Relationship between stomatal conductance (gs) and midday leaf water potential 
(MDΨl) and between midday and predawn leaf water potential (PDΨl) for Drimys brasiliensis 
(a-b), Myrsine umbellata (c-d) and Eremanthus erythropappus (e-f). The continuous black lines 
are the predicted means of the models fitted to the data. For the panels in the left (a,c,e), the 
black and the red dashed lines are the point where the gs is reduced to 25% of its maximum 
value (Ψg25) and the turgor loss point (πTLP), respectively. For the panels on the right (b,d,f), 
the gray dashed lines are, respectively, the expected strict isohydric (the flat line with σ = 0) 
and the strict anisohydric (the inclined line with σ = 1) behavior (Martínez-Vilalta et al., 2014). 
The red line is the 1:1 line, which represents the point where PDΨl = MDΨl and transpiration 
ceases. The regression line becomes dashed after reaching the 1:1 line to represent the 
transpiration cessation.  
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Figure 6. Relationship between conductivity loss during drought of each species (σ) and their 
foliar water uptake (FWU) capacity, represented by the slope (βΔΨl) of the relationship between 
Ψl increment after water immersion (ΔΨl) and its initial Ψl (a); and by the contribution of 
deuterium enriched water to the leaf water content (fFWU) after the plant was exposed to 
deuterium enriched fog (b). The circles are the means and error bars the standard error (Db = 
Drimys brasiliensis, Mu = Myrsine umbellata, Ee = Eremanthus erythropappus). The lines 
were estimated using total least squares regressions. 

 

Figure 7. Leaf area 
change rates (a-c) and 
sapling survival rates at 
the end of experiment (d-
f) for each species in the 
fog (dark gray) and 
control (lighter gray) 
treatment. Asterisks 
indicate significant 
difference (α=0.05) 
based on pairwise 
comparisons made using 
the least-squares means 
95% confidence intervals 
estimated with a 
generalized least squares 
model. 
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Figure 8. Log-normal probability distribution (line) of the drought length (bars) observed 
during 32 years in a TMCF site. The dashed lines are the predicted drought length necessary 
for each species to lose leaf turgor if there was no fog (black line = Drimys brasiliensis, red 
line = Myrsine umbellata, blue line = Eremanthus erythropappus). The panel (a) illustrates the 
predictions using the mean VPD observed at the site during the dry periods (0.9 kPa), while 
the panel (b) are the predictions using the mean of the VPD values above the 95-percentile in 
our data (1.94 kPa). 

 

Discussion 

Our results indicate that, while some TMCF species might have specialized structures 

that facilitate FWU (i.e. peltate and tector trichomes), the main FWU pathway for the studied 

species seems to be direct diffusion through the leaf cuticle. We conclude this based both on 

the results of the apoplastic tracers and on the constant Ψl increment after water immersion in 

all species. We also verified that, among the studied species, those with higher FWU capacity 

(D. brasiliensis and M. umbellata) tend to be more anisohydric and rely more on FWU to 

maintain their leaf turgor during soil drought than species with lower FWU capacity (E. 

erythropappus), which tend to be more isohydric. 

Differences in FWU capacity and pathways 

The cuticle of all species showed some degree of permeability to water, enabling the 

diffusion of apoplastic fluorescent tracers (Fig. 1 and Eller et al., 2013). The leaves of E. 

erythropappus and M. umbellata also have trichomes that exhibited high concentrations of LY, 

which suggests they could function as preferential FWU pathways for these species. The 

enhanced water uptake capacity of these structures might be related to the formation of aqueous 
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pores at the base of trichomes when exposed to water (Schönherr, 2006).  Leaves of M. 

umbellata possessed specialized collecting cells in the mesophyll that could also function as 

preferential pathways, leading to reduced hydraulic resistance between the cuticle and the leaf 

xylem vessels (Fig. 1i-j, m). Despite the role that these specialized structures might have on 

FWU in E. erythropappus and M. umbellata, D. brasiliensis leaves have no trichomes or 

collector cells and still have high FWU rates (Fig. 1-2). However, our results show that the 

leaves of the species with the highest FWU rates (D. brasiliensis and M. umbellata) both had 

high concentrations of hydrophilic polysaccharide compounds in the mesophyll in comparison 

with E. erythropappus (Fig. 1h-o and Eller et al., 2013). As we suggested for M. umbellata 

collector cells, these hydrophilic polysaccharide compounds could create preferential pathways 

for water movement through the mesophyll, facilitating the transport of the water absorbed by 

the cuticle to the leaf xylem.  

The stomata can also be a pathway for FWU (Burkhardt, 2010; Burkhardt et al., 2012; 

Berry et al., 2014). We observed patterns of fluorescent tracers on the abaxial layer of D. 

brasiliensis leaves that suggests a possible role of the stomata on FWU for this species (Eller 

et al., 2013), but we could not find the same pattern for M. umbellata and E. erythropappus 

leaves (Fig. 1). Even though water could enter through stomatal pores during FWU, we believe 

that the bulk of water entry in the studied species happens through direct cuticle diffusion 

(which may be facilitated by specialized structures). The strong linear relationship between the 

Ψl increment after water immersion and pre-immersion Ψl in all species (Fig. 2b-d) suggests a 

relatively constant leaf permeability to water. If the stomata played a direct role in the amount 

of water acquired through FWU, we would expect lower FWU rates at more negative Ψl, when 

gs should be lower (Fig. 5). The hypothesis that FWU is driven mostly by the gradient of water 

potential between the water outside the leaf and Ψl is supported in the whole-plant scale by 

observations that reversals in stem sap flow during leaf-wetting increase under drier soil 

conditions (Eller et al., 2015; Cassana et al., 2015). 

Leaf turgor maintenance during drought and FWU 

Our glasshouse experiment showed that leaf-wetting events might be particularly 

important for the leaf turgor maintenance of species with high FWU capabilities. Our fog 

treatment could have also affected other aspects of the plant water balance, such as suppressing 

nocturnal transpiration (Eller et al., 2015). We assume these effects were similar among the 
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species and, therefore, the different effect of the fog treatment among species was mostly 

caused by the difference in FWU among species; this assumption is corroborated by Figure 4.   

Our results suggest that TMCF species with lower FWU capacity, e.g. E. 

erythropappus, would rely on alternative strategies, such as a more isohydric stomatal 

regulation (Fig. 5), to maintain leaf turgor during longer droughts. Tighter stomatal regulation 

allows E. erythropappus to maintain leaf turgor for longer than the other studied species, 

regardless of fog occurrence (Fig. 3, 8). Isohydric, however, could limit plant carbon 

assimilation during these dry periods, increasing the risk of non-structural carbohydrate 

depletion and death by carbon starvation (McDowell et al., 2008; 2011; Breshears et al., 2009; 

Mitchell et al., 2013; Oliveira et al., 2013; Oliveira et al., 2014b); although, in the time-scale 

of our experiment this strategy allowed E. erythropappus to have higher survival rates and leaf 

production during drought than the other species. 

The species with a more anisohydric behavior (D. brasiliensis and M. umbellata; Fig. 

5) showed higher FWU rates (Fig. 2) and benefitted more from fog during the glasshouse 

experiment (Fig. 3). Based on the assumption that FWU is driven by a water potential gradient 

(Fig. 2), it is reasonable to expect that anisohydric species would have higher FWU rates than 

isohydric species, as long as their leaves have similar water permeability (Fig. 6). The benefits 

of FWU might be particularly useful for species that are more anisohydric; the maintenance of 

stomatal conductance in these species may allow higher carbon assimilation during dry periods, 

but could pose more risks to the hydraulic integrity of the plant (McDowell et al., 2008; 2011; 

Breshears et al., 2009; Mitchell et al., 2013; Oliveira et al., 2013). The water provided by FWU 

could reduce these risks, as it can not only act as an ephemeral water source, but also have a 

role in the refilling of embolized vessels of leaves and branches (Laur & Hacke, 2014; Mayr et 

al., 2014). Additionally, some species, such as D. brasiliensis and Araucaria angustiolia (Bert.) 

O. Kuntze, are able to redistribute FWU water towards the soil (Eller et al., 2013; Cassana et 

al., 2015). We postulate that this redistributed water would have similar effects on root 

physiology to the ones observed in water redistribution between soil layers, mitigating root 

embolism (Domec et al., 2004, 2006) and prolonging root lifespan (Bauerle et al., 2008). 

 Despite D. brasiliensis and M. umbellata sharing some similarities (high FWU and 

anisohydric stomatal behavior), they respond to drought differently. D. brasiliensis has lower 

hydraulic conductivity rates (Fig. 5) and higher leaf loss rates, even in the fog treatment (Fig. 

7). These traits indicate that, even though D. brasiliensis shows some anisohydric traits, it 
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should use less water than the other species, and therefore would take more time to deplete its 

soil water supply during the experiment. This explanation is supported by the slower decrease 

of PDΨl in D. brasiliensis control treatment (Fig. 3). The leaf area adjustment showed by D. 

brasiliensis is a common response of plants to both atmospheric and soil drought (Mencuccini 

& Grace, 1994; Martínez-Vilalta et al., 2009; Limousin et al., 2012). While D. brasiliensis did 

not experience soil water deficit in the fog treatment (Fig. 3a), the glasshouse VPD reached 

values higher than those that typically occur in TMCF (Fig. 3d) and could have triggered the 

leaf-shedding response on this treatment. The relatively high VPD values in the glasshouse 

could also have been the cause of the mortality observed in some D. brasiliensis individuals in 

the fog treatment. The anisohydric behavior of D. brasiliensis associated with the narrow safety 

margin of the species (Oliveira et al., 2014) could be a risky strategy under dry atmospheric 

conditions, regardless of soil drought. In contrast, M. umbellata uses more water and depletes 

soil water faster (Fig. 3b), which, in association with its anisohydric behavior, exposes leaves 

to more negative water potentials than the other species and makes them lose turgor more 

rapidly (Fig. 3b). 

 Based on our greenhouse results, high FWU/more anisohydric species (D. brasiliensis 

and M. umbellata) are much more likely to lose leaf turgor in field conditions if there were no 

fog (Fig. 8). These predictions are based on two major assumptions that should to be taken into 

account. The first assumption is that the πTLP measured in well-hydrated branches will remain 

constant as drought progresses. There is evidence that many plants can show a moderate shift 

in their πTLP during drought (Bartlett et al., 2014), mostly caused by osmotic adjustment 

(Morgan 1984; Chen & Jiang, 2010) or developing new leaves with a more negative πTLP 

(Wright et al., 1992). However, as all the species we studied showed a sharp decline of gas 

exchange when close to πTLP (Fig. 5) and the highest leaf loss rates were observed in the species 

that lost turgor during the experiment (Fig. 7), we believe the possible πTLP shift experienced 

by the species we studied did not significantly interfere with our conclusions. Additionally, 

even if the species could maintain leaf turgor with an osmotic adjustment shift of the πTLP, the 

increased demand for carbohydrates to maintain leaf turgor might be considered a 

physiologically demanding strategy for the plant, as stored carbohydrates are a valuable 

resource during drought (Mcdowell et al., 2011; Mitchell et al., 2013). The second assumption 

we made was that these species would respond to drought in the field in a similar way to that 

observed in the glasshouse, although we are aware of a number of factors in the field that could 

affect this response. In the field, plants are usually exposed to conditions that can accentuate 
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drought effects, such as greater wind speed (which can increase leaf water loss, Huang et al., 

2015), competition for water with other plants, and damage by insects and pathogens 

(McDowell et al., 2008; 2011; Jactel et al., 2011; Anderegg et al., 2015). Another important 

point to note is that we used a fog exposure time of approximately 36 hours (3 nights) per week 

in our experiment and the fog occurrence in TMCF can be much higher than this (Holwerda et 

al., 2006; Jarvis & Mulligan, 2011; Nair et al., 2008). This difference implies that FWU in field 

conditions could play an even greater role in TMCF plant water relations than that detected in 

our experiment. 

Conclusions 

We show that FWU can be an important trait for some TMCF species to maintain leaf 

turgor during seasonal droughts. Plants that possess lower FWU capacity, can compensate for 

it with other strategies, such as a more conservative stomatal regulation strategy. The 

consequence of this reliance on FWU during drought is that species with high FWU are more 

likely to lose leaf turgor under conditions in which leaf-wetting events are infrequent. 

Therefore, we expect that TMCF trees that are more reliant on FWU will be more affected by 

any decrease in the incidence of fog events and increase in evapotranspiration, both of which 

are predicted for these ecosystems in some climate change scenarios (Still et al., 1999; 

Williams et al., 2007).  

The generality of our findings should be further tested in other species and ecosystems, 

but we believe that they enhance our understanding of how FWU interacts with other 

physiological traits in plants, and also have important implications to predict plant performance 

during drought and climate change. Considering how widespread FWU appears to be in TMCF 

(Goldsmith et al., 2013; Gotsch et al., 2014; Oliveira et al., 2014) we conclude that a climate 

with less fog could pose a serious threat to the integrity and biodiversity of these ecosystems. 

Acknowledgements 

We thank INMET for providing the field meteorological data we used on this study; 

the Graduate Program in Ecology and Plant Biology from University of Campinas 

(UNICAMP), São Paulo Forestry Institute; staff of the CJSP; research support and facilities 

offered by the Plant Anatomy and Physiology Laboratories of UNICAMP (Profs. Sandra 

Guerreiro, Marilia Castro, Paulo Mazzafera, Carlos Joly and their students) and Federal 

University of Rio Grande do Sul (Prof. Jorge Mariath, Alexandra Mastroberti and Carlos 

Widholzer); Isotope Ecology of Center for Nuclear Energy in Agriculture (Prof. Plinio 



42 

 

 

 

Camargo, Marcelo Moreira, Luiz Martinelli, Geraldo Arruda and Maria Antonia Perez); 

Geochronological Research Center of the University of São Paulo (Alyne Barros); Márcia 

Duarte for the electron scanning microscopy images; Prof. Maurizio Mencuccini and Oliver 

Binks for reviewing this manuscript. This work was supported by the São Paulo Research 

Foundation (FAPESP) (Grant no. 10/17204-0), FAPESP/Microsoft Research (Grant no. 

11/52072-0), both awarded to R.S.O., and the Higher Education Co-ordination Agency 

(CAPES/Brazil), National Counsel of Technological and Scientific Development (CNPq) and 

FAPESP (Grant no 13/19555-2) awarded scholarships to A.L.L. and C.B.E. 

References 

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, 

Kitzberger T, Rigling A, Breshears DD, Hogg ET et al. 2010. A global overview of drought 

and heat-induced tree mortality reveals emerging climate change risks for forests. Forest 

Ecology and Management 259: 660-684. 

Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein 

JW, Macalady AK, McDowell N et al. 2015. Tree mortality from drought, insects, and their 

interactions in a changing climate. New Phytologist 206: 674-683. 

Bartlett MK, Scoffoni C, Sack L. 2012. The determinants of leaf turgor loss point and 

prediction of drought tolerance of species and biomes: a global meta‐analysis. Ecology Letters 

15: 393-405. 

Bartlett MK, Zhang Y, Kreidler N, Sun S, Ardy R, Cao K, Sack, L. 2014. Global analysis 

of plasticity in turgor loss point, a key drought tolerance trait. Ecology letters 17: 1580-1590. 

Bauerle TL, Richard JH, Smart DR, Eissenstat DM. 2008. Importance of internal hydraulic 

redistribution for prolonging the lifespan of roots in dry soil. Plant, Cell & Environment 31: 

177-186. 

Benzing DH, Seemann J, Renfrow A. 1978. Foliar epidermis in Tillandsioideae 

(Bromeliaceae) and its role in habitat selection. American Journal of Botany 65: 359–365. 

Berry ZC, White JC, Smith WK. 2014. Foliar uptake, carbon fluxes and water status are 

affected by the timing of daily fog in saplings from a threatened cloud forest. Tree physiology 

34: 459-470. 



43 

 

 

 

Bertoncello R, Yamamoto K, Meireles LD, Shepherd GJ. 2011. A phytogeographic analysis 

of cloud forests and other forest subtypes amidst the Atlantic forests in south and southeast 

Brazil. Biodiversity and Conservation 20: 3413–3433. 

Blackman CJ, Brodribb TJ, Jordan GJ. 2010. Leaf hydraulic vulnerability is related to 

conduit dimensions and drought resistance across a diverse range of woody angiosperms. New 

Phytologist 188: 1113–1123. 

Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens 

JH, Floyd ML, Belnap J et al. 2005. Regional vegetation die-off in response to global-change 

type drought. Proceedings of the National Academy of Sciences 102: 15144–15148. 

Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown 

KM. 2008. Foliar absorption of intercepted rainfall improves woody plant water status most 

during drought. Ecology 89: 41–47. 

Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, 

Pockman WT. 2009. Tree die-off in response to global-change-type drought: mortality 

insights from a decade of plant water potential measurements. Frontiers in Ecology and the 

Environment 7: 185–189. 

Brodribb T, Holbrook NM, Edwards EJ, Gutierrez, MV. 2003. Relations between stomatal 

closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell & 

Environment 26: 443–450. 

Bruijnzeel LA, Mulligan M, Scatena FN. 2011. Hydrometeorology of tropical montane cloud 

forests: emerging patterns. Hydrological Processes 25: 465-498. 

Burgess SSO, Dawson TE. 2004. The contribution of fog to the water relations of Sequoia 

sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell & 

Environment 27: 1023–1034. 

Burkhardt M. 2010. Hygroscopic particles on leaves: nutrients or desiccants? Ecological 

monographs 80: 369–399. 

Burkhardt J, Basi S, Pariyar S, Hunsche M. 2012. Stomatal penetration by aqueous 

solutions – an update involving leaf surface particles. New Phytologist 196: 774–787. 

Cândido JF. 1991. Cultura da candeia (Vanillosmopsis erythropappa Sch.Bip.). Boletim de 



44 

 

 

 

Extensão, Viçosa: UFV.  

Cassana FF, Eller CB, Oliveira RS, Dillenburg LR. 2015. Effects of soil water availability 

on foliar water uptake of Araucaria angustifolia. Plant and Soil 399:147-157. 

Chen H, Jiang J-G. 2010. Osmotic adjustment and plant adaptation to environmental changes 

related to drought and salinity. Environmental Reviews 18: 309–319. 

Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. 2002. Stable isotopes in 

plant ecology. Annual Review of Ecology and Systematics 33: 507–559.  

Dantas VL, Batalha MA. 2011. Vegetation structure: fine scale relationships with soil in a 

cerrado site. Flora-Morphology, Distribution, Functional Ecology of Plants 206: 341-346. 

Domec JC, Warren JM, Meinzer FC. 2004. Native root xylem embolism and stomatal 

closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. 

Oecologia 14: 7-16. 

Domec JC, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R. 2006. 

Diurnal and seasonal changes in root xylem embolism in Neotropical savanna woody species: 

impact on stomatal control of plant water status. Plant, Cell & Environment 29: 26-35. 

Donato AM, Morretes BL. 2009. Foliar anatomy of Eugenia florida DC. (Myrtaceae). 

Brazilian Journal of Pharmacognosy 19: 759-770. 

Donatini RS, Kato ETM, Ohara MT, Bacchi EM. 2013. Morphoanatomy and Antimicrobial 

Study of Syzygium jambos (L.) Alston (Myrtaceae) Leaves. Latin American Journal of 

Pharmacy 32: 518-23 

Efron B. 1978. Regression and ANOVA with Zero-One Data: Measures of Residual Variation, 

Journal of the American Statistical Association 73: 113-121.  

Eller CB, Lima AL, Oliveira RS. 2013. Foliar uptake of fog water and transport belowground 

alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). 

New Phytologist 199: 151–162. 

Eller CB, Burgess SSO, Oliveira RS. 2015. Environmental controls in the water use patterns 

of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree physiology 35: 

387-399. 



45 

 

 

 

Fernández V, Sancho-Knapik D, Guzmán P, Peguero-Pina JJ, Gil L, Karabourniotis G, 

Khayet M, Fasseas C, Heredia-Guerrero JA, Heredia A et al. 2014. Wettability, polarity, 

and water absorption of holm oak leaves: Effect of leaf side and age. Plant physiology 166: 

168-180. 

Freitas MDF, Kinoshita LS. 2015. Myrsine (Myrsinoideae-Primulaceae) in Southeastern and 

Southern Brazil. Rodriguésia 66: 167-189. 

Gitlin AR, Sthultz CM, Bowker MA, Stumpf S, Paxton KL, Kennedy K, Munoz A, Bailey 

JA, Whitham TG. 2006. Mortality gradients within and among dominant plant populations as 

barometers of ecosystem change during extreme drought. Conservation Biology 20: 1477–

1486. 

Goldsmith GR. 2013. Changing directions: the atmosphere–plant–soil continuum. New 

Phytologist 199: 4-6. 

Goldsmith GR, Matzke NJ, Dawson TE. 2013. The incidence and implications of clouds for 

cloud forest plant water relations. Ecology Letters 16: 307–314. 

Gotsch SG, Asbjornsen H, Holwerda F, Goldsmith GR, Weintraub AE, Dawson TE. 

2013. Foggy days and dry nights determine crown-level water balance in a seasonal tropical 

montane cloud forest. Plant, Cell & Environment 37: 261-272. 

Gouvra E, Grammatikopoulos G. 2003. Beneficial effects of direct foliar water uptake on 

shoot water potential of five chasmophytes. Canadian Journal of Botany 81:1280–1286. 

Guyot G, Scoffoni C, Sack L. 2011. Combined impacts of irradiance and dehydration on leaf 

hydraulic conductance: insights into vulnerability and stomatal control. Plant, Cell & 

Environment 35: 857–871. 

Holwerda F, Burkard R, Eugster W, Scatena FN, Meesters  AGCA, Bruijnzeel LA. 2006. 

Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water 

budget and eddy covariance methods. Hydrological Processes 20: 2669-2692. 

Huang CW, Chu CR, Hsieh CI, Palmroth S, Katul GG. 2015. Wind-induced leaf 

transpiration. Advances in Water Resources 86: 240-255. 

Jactel H, Petit J, Desprez‐Loustau ML, Delzon S, Piou D, Battisti A, Koricheva, J. 2012. 

Drought effects on damage by forest insects and pathogens: a meta‐analysis. Global Change 

Biology 18: 267-276. 



46 

 

 

 

Jarvis A, Mulligan M. 2011. The climate of cloud forests. Hydrological Processes 25: 327-

343. 

Johansen DA. 1940. Plant microtechnique. New York, NY, USA: McGraw-Hill Book Co. 

Kerstiens G. 1996. Cuticular water permeability and its physiological significance. Journal of 

Experimental Botany 47:1813-1832. 

Kerstiens G. 2006. Water transport in plant cuticles: an update. Journal of Experimental 

Botany 57: 2493-2499. 

Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species 

indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology 28: 

1313-1320. 

Laur J, Hacke UG. 2014. Exploring Picea glauca aquaporins in the context of needle water 

uptake and xylem refilling. New Phytologist 203: 388–400. 

Ledru MP, Salatino MLF, Ceccantini G, Salatino A, Pinheiro F, Pintaud JC. 2007. 

Regional assessment of the impact of climatic change on the distribution of a tropical conifer 

in the lowlands of South America. Diversity and Distributions 13: 761–771. 

Limm E, Simonin K, Bothman A, Dawson T. 2009. Foliar water uptake: a common water 

acquisition strategy for plants of the redwood forest. Oecologia 161: 449–459. 

Limousin JM, Rambal S, Ourcival JM, Rodríguez-Calcerrada J, Pérez-Ramos I M, 

Rodríguez-Cortina, Misson L, Joffre R. 2012. Morphological and phenological shoot 

plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 

169: 565-577. 

Martin CE, von Willert DJ. 2000. Leaf epidermal hydathodes and the ecophysiological 

consequences of foliar water uptake in species of Crassula from the Namib Desert in southern 

Africa. Plant Biology 2: 229–242. 

Martinez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, 

Llorens P, Nikinmaa E, Nole` A, Poyatos R, Ripullone F, Sass-Klaassen U, Zweifel R. 

2009. Hydraulic adjustment of Scots pine across Europe. New Phytologist 184: 353–364. 

Martínez‐Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M. 2014. A new look at 

water transport regulation in plants. New Phytologist 204: 105-115. 



47 

 

 

 

Mastroberti AA, Mariath JEA. 2008. Development of mucilage cells of Araucaria 

angustifolia (Araucariaceae). Protoplasma 232: 222–245. 

Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Dämon B, Hacke UG. 2014. 

Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. 

Plant Physiology 164: 1731-1740. 

McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry 

J, West A, Willians DG, Yepez EA. 2008. Mechanisms of plant survival and mortality during 

drought: why do some plants survive while others succumb to drought? New Phytologist 178: 

719-739. 

McDowell NG, Beerling,DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M. 2011. The 

interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in 

Ecology & Evolution 26: 523-532. 

McManus JFA. 1948. Histological and histochemical uses of period acid. Stain Technology 

23: 99–108. 

Meireles LD, Kinoshita LS, Shepherd GJ. 2014. Floristic composition of high-montane 

vegetation in the district of Monte Verde (Camanducaia, Minas Gerais), Serra da Mantiqueira 

Meridional, Southeast Brasil. Rodriguésia 65: 831-859. 

Mencuccini M, Grace J. 1994. Climate influences the leaf area/sapwood area ratio in Scots 

pine. Tree Physiology 15: 1-10. 

Mitchell PJ, O'Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. 2013. 

Drought response strategies define the relative contributions of hydraulic dysfunction and 

carbohydrate depletion during tree mortality. New Phytologist 197:862–872. 

Morgan JM. 1984. Osmoregulation and water stress in higher plants. Annual Reviews of Plant 

Physiology 35: 299–319. 

Nair US, Asefi S, Welch RM, Ray DK, Lawton RO, Manoharan VS, Mulligan M, Sever 

TL, Irwin D, Pounds JA. 2008. Biogeography of tropical montane cloud forests. Part II: 

Mapping of orographic cloud immersion. Journal of Applied Meteorology and Climatology 47: 

2183-2197. 



48 

 

 

 

Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesar M, Gartner K,  

Leitgeb E, Nadezhdin V, Čermak J et al. 2010. Trees never rest: the multiple facets of 

hydraulic redistribution. Ecohydrology 3: 431-444. 

Oliveira RS, Dawson TE, Burgess SSO. 2005. Evidence for direct water absorption by the 

shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil. 

Journal of Tropical Ecology 21: 585-588. 

Oliveira RS. 2013. Can hydraulic traits be used to predict sensitivity of drought-prone forests 

to crown decline and tree mortality? Plant and Soil 364: 1-3. 

Oliveira RS, Eller CB, Bittencourt P, Mulligan M. 2014. The hydroclimatic and 

ecophysiological basis of cloud forests distributions under current and projected climates. 

Annals of Botany 113: 909-920. 

Oliveira RS, Christoffersen BO, Barros FV, Teodoro GS, Bittencourt P, Brum-Jr M, 

Viani RAG. 2014. Changing precipitation regimes and the water and carbon economies of 

trees. Theoretical and Experimental Plant Physiology 26: 65-82. 

Oparka KJ, Read ED. 1994. The use of fluorescent probes for studies of living plant cells. 

In: Harris N, Oparka KJ eds. Plant Cell Biology: a practical approach. Oxford: Oxford 

University Press, 27–50. 

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2015. nlme: linear and nonlinear 

mixed effects models. R package version 3.1-122.  

Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species 

indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology 28: 

1313-1320. 

Lenth R. 2015. Lsmeans: least-squares means. R Package version 2.20-23. 

R Core Team. 2015. R: a language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. 

Riederer M, Schreiber L. 2001. Protecting against water loss: analysis of the barrier 

properties of plant cuticles. Journal of experimental botany 52: 2023-2032. 



49 

 

 

 

Rowland L, Da Costa AC, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AA, Pullen AM, 

Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV. 2015. Death from drought in 

tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119-22.  

Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST. 2002. Soil-vegetation relationships 

in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecology 

160: 1-16. 

Sack L, Pasquet-Kok J, PrometheusWiki contributors. 2011. Leaf pressure-volume curve 

parameters. PrometheusWiki. [WWW document] URL 

http://www.publish.csiro.au/prometheuswiki/tiki-pagehistory.php?page=Leaf pressure-

volume curve parameters&preview=16 [accessed June 22, 2015]. 

Safford HD. 1999. Brazilian Paramos I. An introduction to the physical environment and 

vegetation of the campos de altitude. Journal of Biogeography 26: 693–712. 

Schönherr J. 2006. Characterization of aqueous pores in plant cuticles and permeation of ionic 

solutes. Journal of Experimental Botany 57: 2471-2491. 

Sheffield J, Wood EF. 2008. Global trends and variability in soil moisture and drought 

characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic 

cycle. Journal of Climate 21: 432–458. 

Simonin KA, Santiago LS, Dawson TE. 2009. Fog interception by Sequoia sempervirens (D. 

Don) crowns decouples physiology from soil water deficit. Plant, Cell & Environment 32: 882–

892. 

Skelton RP, West AG, Dawson TE. 2015. Predicting plant vulnerability to drought in 

biodiverse regions using functional traits. Proceedings of the National Academy of Sciences 

112: 5744-5749. 

Still CJ, Foster PN, Schneider SH. 1999. Simulating the effects of climate change on tropical 

montane cloud forests. Nature 398: 608–610. 

Tyree MT, Hammel HT. 1972. The measurement of the turgor pressure and the water 

relations of plants by the pressure-bomb technique. Journal of Experimental Botany 23: 267–

282. 

Venables WN, Ripley BD. 2002. Modern Applied Statistics with S. Fourth Edition. Springer, 

New York. ISBN 0-387-95457-0. 



50 

 

 

 

Williams JW, Jackson ST, Kutzbach JE. 2007. Projected distributions of novel and 

disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences 104: 

5738-5742. 

Wright SJ, Machado JL, Mulkey SS, Smith AP. 1992. Drought acclimation among tropical 

forest shrubs (Psychotria, Rubiaceae). Oecologia 89: 457–463. 

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effect models and 

extensions in ecology in R. Berlin, Germany: Springer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

 

 

Supporting information 

Notes S1. Detailed description of the statistical analysis conducted on the glasshouse experiment data 

and on the field meteorological data. 

Glasshouse data analysis 

Preliminary data analysis of the glasshouse experiment data indicated that the MDΨl data for 

all species had an approximately linear response to drought length after we controlled for the VPD 

effect on MDΨl. The VPD effect on MDΨl could be linearized with a natural logarithmic transformation. 

Therefore, we used one linear mixed effects model for each species with MDΨl as response variable, 

and drought length, fog treatment and log-transformed VPD as fixed effects: 

𝑀𝐷Ψ𝑙𝑖𝑗 = 𝛼𝑗 +  (𝛽1 + 𝑏𝑖)𝐷𝑟𝑜𝑢𝑔𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 + 𝛽3 𝐷𝑟𝑜𝑢𝑔𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖: 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 + 𝛽4 log(𝑉𝑃𝐷)𝑖 + 𝜀𝑖𝑗    (Eqn S1)                                                                                     

, where the MDΨlij of plant i at treatment j changes as a function of the intercept (αj), which is the mean 

MDΨl at treatment j at the beginning of the experiment (drought length = 0) and VPD = 1; and βn, which 

is the effect size estimated for each fixed effect. We included the interaction between drought length 

and fog treatment in the model, as we expected the fog treatment response would change as the drought 

progressed. The model random slope structure (bi) allowed each plant MDΨl to vary through the 

experiment time (i.e. drought length) and was selected using Akaike Information Criterion (AIC) 

comparison and likelihood-ratio tests following Zuur et al (2009). The term εij is the residual error of 

the model.  

 For the leaf area change data from the glasshouse experiment, we used a linear generalized least 

squares model to compare leaf area change among species. We used a variance structure in the model 

that allows each species to have a different spread (Zuur et al., 2009). We conducted comparisons 

among species using the least square means and 95% confidence intervals from the generalized least 

squares model.  

We described the relationship between 𝑔𝑠𝑖 of each plant i and its Ψ𝑙𝑖 using the logistic function 

(Klein, 2014; Guyot et al., 2011): 

𝑔𝑠𝑖 = 𝑔𝑠𝑚𝑎𝑥[1+ ( Ψ𝑙𝑖Ψ𝑔50)𝑠]                                   (Eqn 

S2)                                                                                                    

, where gsmax is the maximum gs reached by the species, Ψg50 is the Ψl value when gs drops to half of 

gsmax, and s is a parameter related with the slope of the linear portion of the model. We constrained the 

parameter gsmax to the maximum values observed during the experiment for each species to facilitate 
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model convergence. As we conducted gas exchange and Ψl measurements in different plants, we 

assumed that the Ψ𝑙𝑖would be similar to the mean Ψl of its treatment in a given time. 

Field meteorological data analysis 

 We used the mixed effects models fitted to the glasshouse data and the field meteorological 

data to predict how many days it would take for each species to reach its πTLP under TMCF field 

conditions. In order to do that, first we selected the longest periods without rain from each year from 

32 years of rain data at the site. We disregarded very weak rain events (<0.5 mm) when selecting the 

drought periods (the maximum amount of summed weak rain events we detected on our selected periods 

was 2 mm). We fitted a log-normal probability density distribution on the field drought length data, as 

it had the lowest AIC value among the probability distributions tested on the data (Log-normal, Normal, 

Weibull and Gamma). Then, we used this probability distribution to estimate the probabilities for each 

species losing turgor under three different scenarios. The scenarios we tested were: 1 - fog: we used the 

predictions of the model fitted to the greenhouse data for the fog treatment group and we set the VPD 

constant at the mean value observed in the field during the dry periods from our dataset (0.9 kPa). 2 – 

no fog: we used the predictions of the model for the control (without fog) treatment and also set the 

VPD at 0.9kPa. 3 – no fog and high VPD: we used the predictions of the model for the control treatment 

and set the VPD constant at 1.94 kPa; which is the mean of the more extreme VPD values in our dataset 

(values higher than the 95-percentile). We considered that the plant would lose turgor when the 

predicted lower boundary of its 95% confidence interval (approximated by 2xSE) reached the species 

πTLP. 
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Figure S1. Vapor-pressure deficit (VPD) 
variation at the glasshouse during the 
experiment. 
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CHAPTER 2 

Fast growing cloud forest trees grow in a wider range of environmental conditions and are 

more prone to hydraulic failure than slow growing trees 

(Eller CB, Barros FV, Mencuccini M, Oliveira RS) 
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Fast growing cloud forest trees grow in a wider range of environmental conditions and are 

more prone to hydraulic failure than slow growing trees 

 

Summary 

 Tree growth is an important but poorly understood process, especially in short time 

scales. We used two distinct techniques to estimate daily stem growth of tropical 

montane cloud forests (TMCF) trees, and investigate how the growth of trees with 

different functional traits responds to changes in environmental conditions.  

 We estimated stem radial growth (g) directly from bark diameter changes (dDb), and 

also using a combination of dDb and sap velocity measurements to exclude the bark 

capacitance effect from dDb. We measured tree functional traits such as hydraulic safety 

margins, stomatal behavior and wood density. 

 Both methods to estimate g showed a medium to high agreement (R2=0.46-0.81) in fast-

growing trees, but poor agreement in slow growing trees. Fast growing trees were able 

to grow in a wider range of temperature, irradiance, soil water availability and leaf-

wetting conditions than slow growing trees. However, fast growing trees had a narrower 

hydraulic safety margins and less dense wood. Most trees increased g during hotter and 

cloudy wet season conditions. 

 We show that environmental conditions in TMCF are rarely optimal for tree growth; 

but fast-growing trees can sustain g in a wider range of conditions at the cost of 

hydraulic safety.  

Keywords: Tree growth; cloud forests; fog; climate change; stem diameter variations; xylem 

safety margin; plant models; carbon.   
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Introduction 

Tree growth is a widely studied process in plant ecology due to its enormous importance 

to forest function and carbon cycle (Luyssaert et al., 2008; Beer et al., 2010). Despite its 

importance, there are many gaps in our current knowledge of the physiological mechanisms 

behind tree growth and how it responds to changes in environmental conditions (Steppe et al., 

2015; Zuidema et al., 2013; Zweifel, 2016). Tree growth is often studied by monitoring 

increments in stem diameter (or perimeter) through time, however, much of the changes in tree 

stem diameter are caused by radial water fluxes between bark and xylem, instead of actually 

cambium cells multiplication and expansion (Steppe et al., 2015; Zweifel, 2016). This 

precludes the use of raw stem diameter changes as an accurate measurement of tree growth, 

especially in short time scales. Recently, some methods have been proposed to separate the 

cambial growth signal (g) from stem changes induced by radial water fluxes (Mencuccini et 

al., 2013; Zweifel et al., 2016). These methods allows us to investigate how microclimate 

controls tree growth in a daily temporal scale (Chan et al., 2016), and improve our 

understanding of the physiological mechanisms controlling tree growth and how they might 

respond to climate change.  

Tropical montane cloud forests (TMCF) are ecosystems very vulnerable to climate 

change (Hamilton, 1995; Loope & Giambelluca, 1998; Foster, 2001; Oliveira et al., 2014; Hu 

& Riveros-Iregui, 2016). The high degree of endemism of these ecosystems (Gentry, 1992; 

Foster, 2001) suggests that many species are only able to thrive in the particular environmental 

conditions found in TMCF. Climatic changes threaten to change several aspects of the TMCF 

climate, such as temperature and cloud immersion frequency (Still et al., 1999; Lawton et al., 

2001; Karmalkar et al., 2008). Several studies have already shown that cloud immersion events 

are an important component of the water relations of TMCF trees (Eller et al., 2013; 2015; 

2016; Goldsmith et al., 2013; Gotsch et al., 2014). However, carbon relations of TMCF trees 

and how they interact with climate are a less studied topic (Bruijnzeel & Veneklaas, 1998).  

Tree growth in TMCF is often lower than in lowland tropical forests (Bruijnzeel & 

Veneklaas, 1998; Wilcke et al., 2008; Moser et al., 2008; Girardin et al., 2010). Low irradiance 

and wet leaves caused by the frequent fog events have been proposed as possible causes for the 

TMCF low growth rates (Bruijnzeel & Veneklaas, 1998; Letts & Mulligan, 2005). Other 

studies have suggested that the low availability of soil nutrients, particularly nitrogen, also 

might limit TMCF growth (Wilcke et al., 2008; Moser et al., 2010; Fisher et al., 2013). There 



57 

 

 

 

are limited data supporting both of these views, and a deeper understanding of what controls 

TMCF tree growth is of utmost importance to predict how these important ecosystems might 

respond to climate change.  

In our study, we used the recently proposed techniques of Mencuccini et al (2013) and 

Zweifel et al (2016) to obtain daily scale g estimates for TMCF trees, and use it to answer the 

following questions: 1 - How environmental conditions control TMCF tree growth? 2 - How 

ecological and physiological traits affect tree growth responses to microclimatic changes? We 

monitored bark diameter changes (dDb), sap velocity (vs) and measured several plant traits of 

9 trees, which represent some of the more abundant species in a TMCF fragment located in 

southeast Brazil. The traits we measured were related with stomatal regulation, xylem 

hydraulic safety, size-related traits and growing rates (that were derived from the g data). We 

also compared the two methods we used to estimate g (Mencuccini et al., 2013 and Zweifel et 

al., 2016) of the different TMCF tree species. 

Material and Methods 

Study area and species 

We conducted our research in a TMCF fragment located c. 2000 m above sea level in 

the Mantiqueira mountain range, SP, Brazil (22°41’50”S 45°25’17”W). The climate at the site 

is characterized by a dry and cold winter and a hotter and rainy summer. Fog events are 

common during the entire year (Eller et al., 2015). The site climate data from 2015 (when our 

research was conducted) can be found on Fig. S1 and additional details on the site climate can 

be found in Safford (1999) and Eller et al (2015; 2016).    

We measured stem radial growth and ecophysiological traits in 9 of the most abundant 

tree species at the site. The studied species were: Croton piptocalyx M. Arg, Drimys 

brasiliensis Miers, Macropeplus dentatus Perkins, Myrceugenia cucullata D. Legrant, 

Myrceugenia ovalifolia O. Berg, Myrceugenia ovata Legrand, Psychotria vellosiana Benth, 

Symplocos falcata Brand, Weinmannia organensis Gardner (Table 1). The total basal area 

percentage of each species in Table 1 was based on a floristic survey and DBH measurements 

we conducted in 15 plots of 225 m2 in the study area.    

Bark diameter measurements 

We dDb with automated high-precision point dendrometers (model ZN12-T-2IP, Natkon, 

Oetwil am See, ZH, Switzerland) mounted c. 1.5 m on the stem. In trees with a very loose or 
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thick outer bark, we removed the dead outer bark and installed the dendrometer on the inner 

bark. Most of the studied trees were located on a subtle northwest-southeast slope, so we placed 

the dendrometer either on the northeast or the southwest side of the stem, to avoid 

compression/tension wood regions. The dendrometers measured bark diameter every 5 min and 

these values were averaged every 30 min. The dendrometer data were corrected for temperature 

induced changes based on temperature changes in the steel rods that attach the dendrometer 

frame to the tree and the steel linear thermal expansion coefficient (details in Notes S1 and Fig. 

S2).  

Table 1. Diameter at breast height (DBH), height, crown exposition (following Clark & 
Clark 1992) and the total basal area of each study species. 

 

Extracting the growth component from bark diameter changes 

We used two distinct methods to extract g from the bark diameter data: the zero-growth 

method (ZG; Zweifel et al., 2016), which extracts g directly from the bark diameter data; and 

a modification of the method created by Mencuccini et al (2013), in which we exclude the bark 

capacitance effect of the dDb before extracting g. We will call the modified Mencuccini et al 

(2013) method of bark capacitance method (BC) in this paper.  

Zero-growth method 

 In the ZG method we assume that g ceases completely when bark diameter starts to 

decrease (Zweifel et al., 2016). Based on this concept, cambial growth predicted by the ZG 

method (gZG) can be written as: 
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Species Family DBH(cm) Height (m) Crown 

exposition 

Species total 

basal area (%) 

Myrceugenia cucullata Myrtaceae 49.65 14.5 4 11.98 
Myrceugenia ovalifolia Myrtaceae 41.92 17.5 5 10.86 
Weinmannia organensis Cunoniaceae 51.56 22 5 7.07 
Drimys brasiliensis Winteraceae 22.44 9 3 6.84 
Psychothria vellosiana Rubiaceae 21.07 11.5 5 6.28 
Macropeplus dentatus Monimiaceae 25.68 10 4 6.18 
Cróton piptocalyx Euphorbiaceae 18.46 12 4 4.57 
Symplocos falcata Symplocaceae 14.48 11.7 5 2.07 
Myrceugenia ovata Myrtaceae 8.75 5.1 2 1.39 
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where Db(t) is bark diameter at time t, and max[Db(< t)] refers to the maximum bark diameter 

value measured before t. The remaining variation observed in dDb can be attributed to radial 

water fluxes between xylem and bark (mostly related to bark capacitance). This variation is 

called Tree Water Deficit (TWD) by Zweifel et al (2016) and can be calculated as: 







 


dt

dgdD

dt

dTWD ZGb          (2) 

where dt is the time interval when the changes in TWD (dTWD), Db (dDb) and gZG (dgZG) are 

happening. 

Bark-capacitance method 

 In the BC method we first treat the bark as an water reservoir for the xylem with 

constant osmotic potential, and model bark diameter changes induced by capacitance-related 

radial water fluxes using xylem water potential (Mencuccini et al., 2013). Once we extract the 

bark signal without capacitance induced changes, we can separate the osmotic induced 

diameter changes from g (Chan et al., 2015). 

Initially we tried to obtain an estimate of xylem water potential (Ψx) by mounting an 

additional linear displacement differential transformer on the frame of each dendrometer to 

monitor xylem diameter changes (dDx) simultaneously with dDb. We intended to use dDx as a 

proxy for Ψx, based on Hooke’s law (Irvine & Grace, 1997; Perämäki et al., 2001): 

dt

d

E

D

dt

dD x

xr

xx 


,

*

           (3) 

where dDx/dt refers to the xylem diameter changes (dDx) over a time interval t; 𝐷𝑥∗ is the initial 

xylem diameter (at reference pressure); Er,x is the radial elastic modulus of the xylem tissue 

and dΨx/dt refers to the xylem water pressure changes (dΨx) over a time interval t. However 

the dDx we observed in most trees were too small (less than 2-3μm), probably due to a small 𝐷𝑥∗ (i.e. small active xylem cross sectional area) or large Er,x , which prevented us from using it 

reliably as a dΨx proxy. This limitation led us to derive a new method to model bark capacitance 

using vs,, that we had readily available for all study trees, based on the same principles of the 

method created by Mencuccini et al (2013), but we also incorporate concepts from the ZG 

method (Zweifel et al 2016). We begin by applying the same Hooke’s law principle to dDb: 
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                       (4) 

where dDb/dt refers to the bark diameter changes (dDb) over a time interval t; 𝐷𝑏∗ is the initial 

bark diameter (at reference pressure); Er,b is the radial elastic modulus of the bark tissue and 

dPb/dt refers to the bark tissue-averaged turgor pressure over a time interval t. Note that 

equation (4) does not include cambial growth and represents only dDb caused by pressure 

changes.  

The change in the inner bark pressure due to the water potential difference between the 

xylem and the inner bark can be written as:  

  bbx

b

br

b

brb PAL
V

E

V

JE

dt

dP
 *

,
*

,                (5) 

where *
bV  (m3) is the inner bark volume at a reference pressure; J is the water flux (m3 s-1) 

between bark and xylem; L (m MPa−1 s−1) is the hydraulic conductance of the cross-sectional 

area A (m2) of contact between bark and xylem; Π (MPa) is the osmotic pressure of the inner 

bark. Substituting equation (5) into (4) we have:  

  bbx

b

bb PAL
V

D

dt

dD
 *

*

                    (6) 

We now express the pressure terms at the same reference time when *
bD  and *

bV  are 

also calculated: 

  ***
*

**

bbx

b

bb PAL
V

D

dt

dD
          (7) 

where all variables labelled with the * symbol are determined at this reference time. In our 

study we used the first midnight of the data as reference time. Subtracting (7) from (6) side by 

side and re-arranging, yields:  

  
dt

dD
PAL

V

D

dt

dD b
bbx

b

bb
*

*

*

)(         (8) 

where 
*
xxx                       (8a) 

*
bbb PPP                             (8b)  

*
bb                      (8c) 

We now express the bark pressure term as a function of the measured diameter 

differences from the reference state: 
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where  
*
bbb dDdDD            (9a) 

As explained at the beginning, we assume for the moment that changes in osmotic 

pressure do not occur. Therefore, the term   vanishes. Substituting equation (9) into (8), 

rearranging and simplifying, one obtains: 
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                 (10) 

Let’s assume now that estimates of xylem water potential x can be obtained using an 

Ohm’s law analogy, i.e. 

pl

s
sx

K

v
                     (11) 

where vs is the measured sap velocity, and s and 
plK are soil water potential and plant 

hydraulic conductance, respectively. Expressing the quantities at a reference time using the 

usual * symbol and substituting (11) into (10) yields: 
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where the Kpl and s indicate parameters for the coefficient for sap velocity and for the 

intercept which are not constant but can vary from day to day to reflect dynamic changes in 

soil water potential and plant hydraulic conductance. Equation (12) equates to: 

    bs
b Dv

dt

dD
                   (13) 

where: 
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                             (13a)
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                  (13c) 

Equation (13) describes changes in dDb caused only by bark capacitance. Therefore, we 

cannot estimate the parameters , and γ directly from the dDb, as a large portion of the 

changes in dDb are actually being caused by cambium growth (g). If we include an estimate of 

cambium growth in equation (4), and follow the same derivation process we did to achieve 

(13), we have (complete derivation in Notes S2):  

    TWDv
dt

dTWD
s

                  (14) 

We can now use equation (14) to estimate the parameters , and γ from dTWD, without most 

of the cambium growth influence. In this approach, the BC and ZG are not fully independent; 

instead, we use BC as a follow-up technique to detect any residual growth signal that was not 

detected by the ZG method (i.e. growth when stem cells are not completely saturated). 

Effectively, we are assuming that the portion of TWD changes that are not related with vs and 

ΔTWD are actually growth or osmotic related changes that were not detected by the ZG 

method. We used mixed effects models (Bates et al., 2015) to fit equation (14), which allowed 

us to represent the parameters , and γ with unique values for each day. Therefore our model 

accounts for daily changes in plant radial hydraulic conductance between bark and xylem, plant 

axial hydraulic conductance and soil water potential. The parameter estimates from equation 

(14) are then used in equation (13) to simulate bark thickness changes caused only by bark 

capacitance (�̂�𝐷𝑏): 

    )(ˆ)()(ˆ)(ˆ tDtvtDdttD bsbb
                (15) 

where �̂�𝐷𝑏 is the bark thickness change from time t to dt, which is estimated from the previous 

bark thickness value at time t. We use the vinculum notation in the parameters �̅�, �̅�and �̅� to 

denote the time-dependent nature of these parameters on the equation. The difference between 

the measured Δ𝐷𝑏 and the predicted �̂�𝐷𝑏  reveals a signal (�̂�𝐺𝑚) that contains the growth signal 

of the BC method (gBC) and osmotic induced changes: �̂�𝐺𝑚 = 𝛥𝐷𝑏 − �̂�𝐷𝑏                                   (16) 

Finally, gBC can be extracted from �̂�𝐺𝑚 by excluding the osmotic induced changes of 

this signal. This can be done by calculating gBC as the difference between consecutive minimum 
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values of �̂�𝐺𝑚 (Chan et al., 2015), which can be written similarly to equation (1) for the ZG 

method: 













)](ˆmin[)(ˆ
)](ˆmin[)(ˆ

,0

)],(ˆmin[)(ˆ
)(

tGtG

tGtGtGtG
tg

mm

mmmm
BC               (17) 

where �̂�𝐺𝑚(t) is the �̂�𝐺𝑚 value at time t, and min[�̂�𝐺𝑚 (< t)] refers to the minimum �̂�𝐺𝑚 value 

measured before t.    

Sap velocity measurements  

 We used the heat-ratio method (HRM; Burgess et al., 2001) to measure vs. We installed 

HRM sensors (model SFM1, ICT International Pty Ltd., Armidale, NSW, Australia) at the tree 

stem c. 10 cm from the point dendrometers. The sensors emitted 15 J heat pulses and measured 

the heat pulse velocity (vh; cm hr-1) each 30 minutes as: 

3600ln
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x
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vh

                    (18) 

where k is the sapwood thermal wood diffusivity using the method proposed by Vandegehuchte 

and Steppe (2012); v1 and v2 are the temperature increment after the heat pulse in the probes 

located x cm (x equals to 0.5 in our case) above and below the heater. After correcting vh for 

wound effects and needle misalignment following Burgess et al (2001) we calculated vs as: 

ss

scwbh
s
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
 )( 

                                (19) 

where ρb is the basic density of dry wood; cw is the specific heat capacity of dry wood; cs the 

specific heat capacity of water; mc is the moisture content of fresh wood and ρs is the water 

density. All these properties were measured from wood samples collected with an increment 

borer at breast height, and using the standard protocol to measure wood density (Osazuwa-

Peters & Zanne, 2011).  

Environmental conditions measurements 

We mounted an air temperature (T; °C) sensor (model HOBO U-23 Pro v2, Onset 

Computer Corp., Pocasset, MA, USA) and a leaf wetness (%) sensor (model LWS, Libelium 

Comunicaciones Distribuidas S.L., Zaragoza, Spain) at the top of a 15 m tower located in front 

of the forest fragment with the study trees (less than 150 m from the farthest study tree). We 

had an automated rainfall gauge (model TB4MM-L, Hydrological Services America, Lake 
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Worth, FL, USA) and a photosynthetic active radiation (PAR; μmol m-2 s-1) sensor (model SQ-

110, Apogee instruments, Inc., Logan, UT, USA) located c. 500m from the study site. For the 

more understory study trees (M. ovata and D. brasiliensis, see Table 1) we also had PAR and 

T sensors located in the forest understory c. 10 m from the trees. All these sensors collected 

data at 30 minutes intervals. The data from the leaf wetness sensors were transformed in daily 

leaf wetness time (LWt) which we defined as the daily sum of the 30-minutes intervals in which 

more than 90% of the sensor surface was wet.  

We used frequency domain reflectometry soil moisture probes (model 5TM, Decagon 

Devices Inc, Pullman, WA, USA) to measure soil volumetric water content (VWC; cm3 water 

cm-3 soil) at three different depths (10, 50 and 100 cm). Probes were installed at c. 10 m from 

each study tree and collected data each 30 minutes. We used the averaged soil VWC of all 

depths to calculate relative soil water deficit (SWD; %) as: 

100
VWC

VWC
SWD

f                                (20) 

where VWCf is soil VWC at soil field capacity. We estimated soil field capacity as the mean 

soil VWC three days after rain events during the wet season (March-April). When SWD values 

are higher than 100%, it indicates periods when the soil is oversaturated with water due to 

recent water input, while values smaller than 100% indicates water deficit in relation to the soil 

field capacity.   

Tree physiological traits measurements 

To identify the stomatal behavior of the study species we used the relationship between 

midday leaf water potential (MDΨl) and pre-dawn leaf water potential (PDΨl), following 

Martinez-Vilalta et al (2014): 

ll PDMD                                 (21) 

where the intercept (Λ) represents the tree maximum transpiration rate per unit of hydraulic 

conductance; and the slope (σ) the stomatal sensitivity to Ψs (represented by PDΨl in the 

model). On this approach a high σ indicates a more anisohydric plant, while a smaller σ 

indicates a more isohydric plant (Martinez-Vilalta et al., 2014). The leaf water potential 

measurements were conducted in 3-6 trees for each species using a Scholander pressure 

chamber (model 500D, PMS Instrument Co., Corvallis, OR, USA). 
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We measured xylem vulnerability to cavitation in detached branches of all the studied 

species using bench dehydration (n=4-5 trees per species; Sperry et al., 1988). Xylem 

percentage of conductance loss (PLC) was assessed with the traditional hydraulic method 

(Sperry et al., 1988) for C. piptocalyx, D. brasiliensis, M. cucullata, M. ovalifolia, M. ovata, S. 

falcata, W. organensis. For M. dentatus we used the pneumatic method (Pereira et al., 2016). 

We could not measure the PLC in P. vellosiana with any of the methods. The curve fitting was 

done with the Pammenter & Vander Willigen (1998) model: 

)))50(exp(1(
100

Ps
PLC

x 
                              (22) 

where s is related with the slope of the linear portion of the curve, and P50 is the Ψx value when 

PLC reaches 50%. We used the P50 parameter of the model and the Ψx value when PLC reaches 

88% (P88) to calculate the hydraulic safety margin (SM50/88) of each species:  

88
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


                               (23) 

where Ψmin is the minimum water potential reached by the plant during our observations.  

Data analysis 

Implementing and comparing growth models  

 Both growth models and all the subsequent analyses were implemented on the software 

R version 3.2.2 (R Core Team, 2015). The equations (1) and (2) were implemented to calculate 

gZG and TWD, respectively. We fitted equation (14) to the dTWD data of each study tree using 

mixed effects models with the lmer library (Bates et al., 2015), and then we implemented 

equations (15), (16) and (17) to calculate gBC. To compare gBC with gZG we used ordinary least 

square regressions, and used the R2 and the slope of the regressions to indicate the agreement 

between methods and the departure from a 1:1 linear relationship. We used nonlinear least-

squares (NLS) to describe the R2 and slopes of the regressions between gBC with gZG as a 

Michaelis-Menten function of the daily maximum growth rates (gbas max) of each species: 

max

max2

bas

bas
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Vg
methodsslopesormethodsR


                 (24) 
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where V is the asymptote of the model and K the gbas max value when the response variable (R2 

or slopes) is V/2. We used Efron’s pseudo-R2 (Efron, 1978) as an indicative of the variance 

explained by the NLS models used in this study.  

Growth rates  

For the subsequent growth rates and environmental drivers analysis we used only gBC, 

as it should produce more accurate growth estimates than gZG in most cases (an in depth 

explanation for this can found at the discussion). The gBC represents tree linear growth (μm), 

and this measurement might lead to misleading conclusions when comparing trees with very 

different DBH, as the same linear growth means a much smaller carbon investment for a small 

tree than for a large tree. Therefore, we assumed growth was homogenous throughout the stem 

and transformed gBC in basal area growth (gbas; μm2) using the initial DBH of the trees: 


2

2






  BCbas g

DBH
g                               (25) 

where we approximated π to 3.14. We still used the linear growth data (gBC) to compare our 

results with other results found in literature. We used gbas to calculate gbas max and daily middle 

growth rates (gbas mid) for each species. We defined gbas max as the mean of the values higher 

than the 95 percentile of the daily gbas data; and it represents the maximum possible growth 

rates reached by the tree during our observations. While gbas mid is the mean of the values 

between 25 and 75 percentiles of the daily gbas data; and represents the growth rates that were 

frequently reached by the tree. The gbas mid value is influenced by the period which the daily 

gbas data covers; if we restrict the gbas data to a period of unfavorable growth conditions the 

estimated gbas mid value would be lower than if we select a larger period which includes 

favorable and unfavorable growth conditions. This is relevant for our dataset as our study trees 

have different temporal intervals of data (see in Fig. 1 and Table 2). To avoid this bias, we 

restricted our gbas mid calculations to a period where all trees had data during most of it (from 

01/September to 30/November). The gbas max value is less influenced by the period selection; as 

long as you have data during favorable growth conditions, including less favorable growth 

periods in the dataset only have a small effect on gbas max. So we did not subset our dataset for 

the gbas max calculations.  

 Plant physiological traits 
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 To estimate the parameters from equation (21) we used mixed-effects models (lmer; 

Bates et al., 2015) with random slopes and intercepts for each individual tree. We used NLS 

regressions to fit PLC data to equation (22) and estimate P50/P88.  To measure the effect of 

plant physiological traits on growth rates we used generalized linear models (GLM) with a 

Gamma error distribution and a log link function; we used this kind of model because the gbas 

max data was always positive and had a heavily right skewed distribution. We use the deviance 

explained by the models (D2), calculated following Guisan & Zimmerman (2000), as an 

indicative of the goodness-of-fit for the GLMs used in this study. 

Environmental drivers 

The gbas data for all study trees contained many days when growth was zero, which 

makes difficult to use traditional statistical tools to model gbas in function of environmental 

conditions. We dealt with this by adopting a two-step modelling approach: 1- We first treat the 

gbas data as a binary variable: growth days (when gbas>0) versus no growth days (when gbas=0). 

We use the growth|no growth data to estimate the effects of environmental conditions on the 

probability of the tree growing or not using logistic regressions. 2 – Then, we used GLMs with 

Gamma or Gaussian error distribution and a log link function on the non-zero gbas data to 

estimate the effects of environmental conditions on the tree growth magnitude. We choose the 

error distribution for the GLM based on the analysis of the model residuals. 

We estimated the effect of the following environmental conditions on gbas: mean daily 

T, mean daily PAR (only data from 06:00 to 18:00), mean daily SWD and LWt. The structure 

of the models we fitted to the tree growth data (both for the logistic regressions and for the 

GLMs) can be written generically as: 

  ttbas LWfSWDeLWdSWDcPARbTagorgrowthnogrowth :)0ln(|logit        (26) 

where logit(growth|no growth) is the logit transformation (i.e. log of the odds) of the growth|no 

growth data (for the logistic regression) and ln(gbas > 0) are the log transformed means of the 

positive gbas data (for the GLM). On the right side, a is the intercept and b to f are the 

coefficients of each parameter. We included the interaction SWD:LWt in the model because 

we expect a different gbas response to LWt depending on SWD levels: if SWD is high, too much 

LWt might impair tree gas exchange and compromise growth, but if SWD is low the water 

input and turgor improvements caused by longer LWt might favor growth.  

Results 
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Growth signal comparison 

The ZG and the BC methods predicted different g from the bark diameter data, but the 

magnitude of this difference varied among species (Fig. 1). In most species both methods had 

a medium to high agreement (R2 = 0.46-0.81; slopes=0.8-1; Table 2; Fig. S3), but in species 

such as M. ovata and M. dentatus, gZG and gBC showed very different patterns (R2 = 0.04-0.16; 

slopes=0.22-0.5; Table 2; Fig. S3). We have found that the agreement between methods was 

asymptotically related with the species gbas max (Fig. 2). The R2 from the linear regressions fitted 

between methods starts reaching its estimated asymptote (V=0.85) when gbas max is c. 5000 μm2 

day-1 (Fig. 2a). The slope of the linear regressions fitted between methods has an asymptote 

value very close to 1 (V=0.96) and starts reaching it when gbas max is c. 850 μm2 day-1 (Fig. 2b). 

Growth rates and physiological traits 

The studied species showed a variety of gbas max (Fig. 3a-b), ranging from very fast 

growing species like C. piptocalyx to slow growing species like M. ovata and M. ovalifolia. 

The average middle linear growth rate of all study trees, weighted by their respective basal area 

percentages, was 4.88 μm day-1 (Fig. 3a). The species with higher gbas max generally also showed 

higher gbas mid (Fig. 3c). There were some exceptions to this trend though, like D. brasiliensis 

which had a higher gbas mid than what it would be expected from its gbas max. 

The gbas max was not related with plant stomatal behavior, as indicated by the slope (σ; 

Fig. 4a) or the intercept (Λ; Fig. 4b) of the relationship between MDΨl and PDΨl. We also 

found no relationship between gbas max and size related traits, such as DBH (Fig. 4c) and tree 

height (Fig. 4d). However, we have found that trees with higher gbas max tended to have narrower 

xylem safety margins, but only when the safety margins are calculated using the P88 (SM88; 

Fig. 4e). Wood density was also strongly negatively related with gbas max (Fig. 4f).  

Growth environmental drivers 

 Our analysis indicates that fast growing species were more likely to grow in a 

wider range of environmental conditions than slow growing species (Table 3; Fig. 5). In fig. 

5a we can see that most of the slower growing species were unlikely to grow in the colder 

temperatures from the dry season. Slow growing species were more likely to grow during the 

hotter wet season, with the exception of M. ovata which prefers colder temperatures. Slow 

growing species are also more likely to grow in conditions of PAR, SWD and LWt found during 

the wet season (Fig. 5b-d), with the exception of M. ovalifolia and M. ovata. The M. ovalifolia 
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tree was more likely to grow in a wider range of PAR, SWD and LWt than the other slow 

growing species, however its growth probabilities were always lower than 0.5. The M. ovata 

tree always had very low growth probabilities (< 0.3), regardless of environmental conditions, 

but it was more likely to grow in T, SWD and LWt conditions that are more common in the dry 

season (Fig. 5b-d). 

 

 

Figure 1. Growth patterns of the study trees. The black line is the bark diameter change data, 
the blue line is the cambial growth signal predicted by the zero-growth method (gZG), and the 
red line is the signal predicted by the bark-capacitance method (gBC).    
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Table 2. Number of growth days predicted using the zero-growth method (ZG) and the bark-
capacitance method (BC).  

Obs. Values inside brackets are the percentage of growth days in relation to the total number 
of days. The R2 refers to the linear relationship between the growth signals predicted by both 
methods. Common growth days are the number of days when both methods predict growth.  

 

Figure 2. Asymptotic relationships between the species maximum basal growth rate (gbas max) 
and the R2 (a) and slope (b) of the linear regressions fitted to the growth signal predicted by the 
zero-growth method and the bark-capacitance method. The black lines are the predicted values 
by the Michaelis-Menten models fitted to the data, and V and K are the model parameters 
estimated by nonlinear least squares. The red line indicates complete agreement between 
methods (i.e. 1). The abbreviations used for the species are: Cp: Croton piptocalyx, Db: Drimys 
brasiliensis, Md: Macropeplus dentatus, Mc: Myrceugenia cucullata, Mo: Myrceugenia 
ovalifolia, Mova:    Myrceugenia ovata, Pv: Psychotria vellosiana, Sf: Symplocos falcata, Wo: 
Weinmannia organensis.    

Species Total days Growth days ZG Growth days BC R2 Common growth days 

C. piptocalyx 189 132 (69%) 142 (75%) 0.81 119 
D. brasiliensis 209 85 (40%) 84 (40%) 0.72 58 
M. dentatus 150 51(34%) 33 (22%) 0.16 20 
M .cucullata 145 52 (36%) 50 (34%) 0.46 41 
M. ovalifolia 82 62 (76%) 44 (53%) 0.59 41 
M. ovata 132 8 (6%) 10 (7%) 0.04 3 
P. vellosiana 65 55 (84%) 50 (77%) 0.65 49 
S. falcata 225 134 (59%) 149 (66%) 0.69 112 
W. organensis 145 118 (81%) 121 (83%) 0.72 107 
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Figure 3. Growth rates of the study 
trees. (a) Linear growth calculated by 
the bark capacitance method (gBC). 
The lighter gray bars are the 
maximum linear growth rates, 
estimated as the mean of the values 
above the 95 percentile of the gBC 
data. The darker gray bars are the 
middle linear growth rates, estimated 
as the mean of the values between 25 
and 75 percentile of the gBC data from 
September to December/2015. The 
gray dashed lines are the mean stem 
increment from Amazon lowland 
tropical forests (LF; Vieira et al., 
2004) and Jamaican montane tropical 
forests (MF; Bellingham & Tanner, 
2000). The black dashed line is the 
average of the middle growth rates of 
our data weighted by the basal area 
percentage of each species. (b) Basal 
growth rates (gbas) calculated using 
equation 25 (see text). The lighter 
gray bars are the maximum basal 
growth rates (gbas max) and the darker 
bars are middle basal growth rates 
(gbas mid). The error bars in (a) and (b) 
are the standard error. (c) Linear 
relationship between gbas mid and gbas 

max. The abbreviations used for the 
species are: Cp: Croton piptocalyx, 
Db: Drimys brasiliensis, Md: 
Macropeplus dentatus, Mc: 
Myrceugenia cucullata, Mo: 
Myrceugenia ovalifolia, Mova:    
Myrceugenia ovata, Pv: Psychotria 
vellosiana, Sf: Symplocos falcata, 
Wo: Weinmannia organensis.       
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Figure 4. Relationships between maximum basal growth rates (gbas max) and stomatal behavior 
(σ; a); maximum transpiration rate per unit of hydraulic conductivity (Λ; b); stem diameter at 
breast height (DBH; c); tree height (d); xylem safety margin based on the loss of 50% of xylem 
conductivity (SM50; gray) and 88% of xylem conductivity (SM88; black; c); and wood density 
(d). The lines are the predicted values by the generalized linear model fitted to the data, and the 
p-values refer to the significance of the coefficient estimated for the independent variable. The 
abbreviations used for the species are: Cp: Croton piptocalyx, Db: Drimys brasiliensis, Md: 
Macropeplus dentatus, Mc: Myrceugenia cucullata, Mo: Myrceugenia ovalifolia, Mova:    
Myrceugenia ovata, Pv: Psychotria vellosiana, Sf: Symplocos falcata, Wo: Weinmannia 
organensis.    
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Figure 5.  Predicted growth probability of the study trees in a range of environmental 
conditions. The species are sorted from the faster growing (to the left) to the slower growing 
(to the right). The red and blue regions represent the conditions during the wet (November-
December) and dry season (August-September), respectively, and they comprise the values 
between the 25 and 75 percentile of the data. (a) Air temperature (T), (b) Photosynthetic active 
radiation (PAR), (c) Soil water deficit (SWD), (d) Leaf wetness time (LWt). The abbreviations 
used for the species are: Cp: Croton piptocalyx, Db: Drimys brasiliensis, Md: Macropeplus 
dentatus, Mc: Myrceugenia cucullata, Mo: Myrceugenia ovalifolia, Mova:    Myrceugenia 
ovata, Pv: Psychotria vellosiana, Sf: Symplocos falcata, Wo: Weinmannia organensis. 
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Table 3. Parameter estimates for the logistic regressions and generalized linear models fitted 
to the daily basal growth data. 

Obs. T = Air temperature; PAR = Photosynthetic active radiation; SWD = Soil water deficit; 
LWt = Leaf wetness time. P-values lower than 0.05 marked in bold.  

 

    We calculated the ratio of the probability of growth with and without leaf wetting events 

(i.e. setting the LWt constant at zero in the logistic regression models) during the dry and the 

wet season (Fig. 6). Removing leaf wetting events during the wet season clearly decreases the 

probability of growth in some species (S. falcata, D. brasiliensis, M. dentatus and M. 

ovalifolia), while other species are not affected (C. piptocalyx, P. vellosiana and W. 

organensis) or are favored by it (M. ovata and M. cucullata). The average probability ratio 

weighted by each species basal area is 0.94, which indicates that the removal of leaf wetting 

events during the wet season have only a small negative effect on TMCF growth (Fig. 6a). The 

removal of leaf wetting events during the dry season has a stronger negative effect on the 

growth probability of most species (Fig. 6b), and consequently, the weighted average growth 

Logistic regressions 

Species T PAR SWD LWt SWD:LWt 

 Coef z-val p Coef z-val p Coef z-val p Coef z-val p Coef z-val p 

C. piptocalyx 0.29 2.81 <0.01 -0.01 -1.21 0.23 0.02 0.15 0.88 0.54 0.75 0.88 -0.01 -0.72 0.47 

P. vellosiana -0.01 -0.03 0.97 -0.01 -3.04 <0.01 0.03 0.61 0.54 0.32 0.78 0.43 -0.01 -0.76 0.45 

S. falcata 0.22 3.38 <0.01 -0.01 -3.89 <0.01 -0.01 -0.28 0.77 0.12 0.47 0.63 -0.01 -0.09 0.92 

W. organensis -0.09 -0.87 0.38 -0.01 -3.41 <0.01 0.12 1.59 0.53 -0.06 -0.09 0.92 0.01 0.08 0.93 

D. brasiliensis 0.17 3.48 <0.01 -0.01 -0.70 0.48 0.05 2.24 0.02 0.30 1.42 0.15 -0.01 -1.18 0.48 

M .cucullata 0.66 3.04 <0.01 -0.01 -1.58 0.11 0.30 3.05 <0.01 2.26 3.13 <0.01 -0.02 -2.90 <0.01 

M. dentatus 0.30 2.74 <0.01 -0.01 -1.36 0.17 0.06 0.93 0.35 -0.07 -0.12 0.90 0.01 0.24 0.81 

M. ovalifolia 0.23 1.04 0.30 -0.01 -1.18 0.24 -0.02 -0.51 0.61 -0.14 -0.34 0.73 0.02 0.61 0.54 

M. ovata -0.17 -0.88 0.37 -0.01 -1.90 0.06 -0.03 -0.25 0.80 0.03 0.03 0.97 -0.01 -0.04 0.96 

Generalized linear models 

Species T PAR SWD LWt SWD:LWt 

 Coef t-val p Coef t-val p Coef t-val p Coef t-val p Coef t-val p 

C. piptocalyx 0.32 6.31 <0.01 -0.01 -4.33 <0.01 -0.03 -0.58 0.56 0.01 0.01 0.98 0.01 0.17 0.86 

P. vellosiana 0.13 1.12 0.26 -0.01 -2.52 0.01 -0.02 -0.92 0.36 0.22 1.51 0.14 -0.01 -1.39 0.17 

S. falcata 0.32 7.17 <0.01 -0.01 -3.70 <0.01 -0.01 -0.37 0.71 0.51 3.02 <0.01 -0.01 -3.01 <0.01 

W. organensis -0.01 -0.35 0.72 -0.01 -7.11 <0.01 0.02 0.83 0.41 1.10 0.83 0.41 -0.01 -3.94 <0.01 

D. brasiliensis 0.46 4.64 <0.01 -0.01 -3.15 <0.01 0.07 2.41 0.02 1.30 4.50 <0.01 -0.01 -4.25 <0.01 

M .cucullata 0.28 2.43 0.02 -0.01 -3.22 <0.01 -0.01 -0.08 0.93 0.31 0.61 0.54 -0.01 -0.62 0.53 

M. dentatus 0.26 0.56 0.58 -0.01 -1.27 0.21 -0.41 -1.33 0.19 -1.98 -0.69 0.49 0.02 0.72 0.47 

M. ovalifolia 0.62 4.68 <0.01 -0.01 -3.99 <0.01 0.06 2.25 0.03 1.30 4.95 <0.01 -0.01 -4.45 <0.01 

M. ovata 0.07 1.17 0.33 -0.01 -0.30 0.78 1.24 3.51 0.04 7.82 3.27 0.04 -0.08 -3.39 0.04 
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probability ratio during the dry season winter is 0.88.  This indicates leaf-wetting events are 

more important for the growth of TMCF trees during drier conditions.  

 

Figure 6. Probability ratio between the 
probability of the trees growing with 
and without leaf wetting events, during 
the wet (a) and the dry (b) seasons. The 
black dashed line indicates the ratio of 
1 (absence of leaf-wetting does not 
affect tree growth probability), values 
above 1 indicate that the probability of 
tree growth increases with the absence 
of leaf wetting events, and values 
below 1 indicate that absence of leaf 
wetting events decreases the 
probability of tree growth. The gray 
dashed line is the weighted average 
probability ratio for all the study 
species, calculated using their total 
basal area percentage. The species are 
sorted from the faster growing (to the 
left) to the slower growing (to the 
right). The bars represent the standard 
errors. The abbreviations used for the 
species are: Cp: Croton piptocalyx, Db: 
Drimys brasiliensis, Md: Macropeplus 
dentatus, Mc: Myrceugenia cucullata, 
Mo: Myrceugenia ovalifolia, Mova:    
Myrceugenia ovata, Pv: Psychotria 
vellosiana, Sf: Symplocos falcata, Wo: 
Weinmannia organensis.   

 

  Regarding the magnitude of tree growth, we found that most of the study trees are able 

to grow more at higher temperatures (T weighted t-value for all species = 2.9±0.9; Fig. 7a-b), 

and have their growth inhibited by high radiation (PAR weighted t-value for all species = -

3.6±0.6; Fig. 7c). The interaction between SWD and LWt was generally more important at 

regulating the growth magnitude than it was at regulating growth probability (SWD:LWt 

weighted t-value for all species = -2.2±0.6; Table 3, Fig. 7d). As we can see in Fig. 7 and Table 

3, many species had their growth enhanced by LWt during low SWD conditions, and inhibited 

during high SWD conditions.   
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Figure 7. Environmental drivers of the study trees 
growth magnitude. (a) Weighted average of the t-
values estimated by the generalized linear model 
fitted to the data for all the species. The t-values 
were weighted based on the total basal area 
percentage of each species. Response of tree growth 
magnitude to air temperature (T; b), photosynthetic 
active radiation (PAR; c), and the soil water deficit 
(SWD) and leaf wetness time (LWt) interaction (d). 
On the panels (b) and (c) we show the predicted 
growth response of each species to T and PAR, if 
we hold all the other variables constant at their 
median values. The color of the line that represents 
each species is proportional to the growth speed of 
the species, so that darker colors represent faster 
growing species. In (d) we show the predicted 
growth response to LWt at medium SWD (SWD= 
90%; black line), low SWD (SWD=60%; blue line), 
and high SWD (SWD=120%; red line). On the left 
panel of (d) we show a species with a strong 
response (Db) and on the right, we show a species 
with a weak response (Cp). The red and blue regions 
represent the conditions during the wet (November-
December) and dry season (August-September), 
respectively, and they comprise the values between 
the 25 and 75 percentile of the data. The 
abbreviations used for the species are: Cp: Croton 
piptocalyx, Db: Drimys brasiliensis, Md: 
Macropeplus dentatus, Mc: Myrceugenia cucullata, 
Mo: Myrceugenia ovalifolia, Mova:    Myrceugenia 
ovata, Pv: Psychotria vellosiana, Sf: Symplocos 
falcata, Wo: Weinmannia organensis.    
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Discussion 

Our results show that the hotter, more humid and lower irradiance environmental 

conditions of the wet season are more favorable to TMCF tree growth than the dry season 

conditions (Fig. 5, 7). However, fast growing trees, such as C. pyptocalyx, P. velloziana, S. 

falcata and W. organensis, are able to grow even during the dry season. Growing during the 

dry season appears to be a more hydraulically risky strategy, as faster growing trees operate 

under narrower xylem safety margins than slower growing trees (Fig. 4e). During the dry 

season leaf wetting events become particularly important for most trees to enhance or sustain 

growth (Fig. 6, 7). We also show that the BC method (Mencuccini et al., 2013) for extracting 

g derived from bark diameter measurements and sap velocity data produces similar results to 

the ZG method (Zweifel et al., 2016) in fast growing species (Fig. 2). The greater differences 

between methods in slow growing species might be related to the principles behind each 

method and will be discussed below.  

Methods for extracting the growth signal 

 The methods proposed by Mencuccini et al., (2013) and Zweifel et al., (2016) are both 

based on theoretical assumptions about tree physiology, and we do not have enough data to test 

these assumptions and judge which method is more accurate. This is why in this study we tried 

to combine and take advantage of both methods. Both methods agree that bark capacitance is 

an important component of dDb data (Zweifel et al., 2016; Mencuccini et al., 2013), but they 

differ at the point where bark capacitance is calculated. In the ZG method, bark capacitance 

related changes (TWD) are calculated after gZG is extracted from dDb, as the difference between 

the raw dDb and the estimated gZG (equation 2). In other words, it assumes that cambial growth 

only happens when the tree tissues are completely saturated, consequently, capacitance-related 

changes cannot directly influence gZG. As stated in Zweifel et al (2016), this premise might be 

too rigorous, since some growth is still possible under non-saturated conditions (Lockhart, 

1965; Ruts et al., 2012). In the form we implemented the BC method, it uses the theoretical 

relationship that bark diameter changes induced by capacitance should have with xylem water 

potential (Mencuccini et al., 2013), to separate the residual growth and osmotic related 

changes, left in the TWD data by the ZG method, from the actual bark capacitance signal. After 

that, we exclude the “pure” bark capacitance signal from dDb
 before extracting gBC. The high 

agreement between methods on fast-growing trees suggests that the TWD data of these trees 

have a smaller proportion of residual growth and osmotic changes (i.e. TWD is close to actual 
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bark capacitance). This might be caused by the difference in the relative importance of g and 

the capacitance signal in the dDb data between fast and slow-growing trees. We believe that in 

fast growing trees, g comprises a large portion of the dDb data in relation to bark capacitance 

and osmotic related processes. Therefore, the ZG method can detect most of the g in the dDb 

data, without needing to account for bark capacitance.  

The ZG method have the practical advantage of needing only dDb data for providing  

estimates of tree growth, especially accurate for faster growing trees with low bark capacitance. 

The BC method can be used as a complement to the ZG method, to estimate tree growth in 

trees with lower g (i.e. slow growing and/or high bark capacitance). In addition, the BC also 

provides coefficient estimates that have a potentially useful physiological meaning (see 

equation 13 and Mencuccini et al., 2013) and an estimate of the osmotic component of dDb 

(Mencuccini et al., 2013; Chan et al., 2016).  The main disadvantage of BC is needing either 

direct xylem water potential measurements or data to be used as a proxy for it, such as xylem 

diameter variation (Mencuccini et al., 2013; Chan et al., 2016), or sap velocity as we used in 

this study.   

  Growth rates and tree hydraulic risk 

 The BC method allowed us to estimate for the first time the growth of TMCF trees at a 

daily time scale.  While cloud forests are usually considered low productivity environments 

with slow growing trees (Weaver et al., 1986; Bruijnzeel & Veneklaas, 1998; Bellingham & 

Tanner, 2000; Wilcke et al., 2008; Moser et al., 2010), we have found some trees with very 

fast growth rates, such as C. pyptocalyx and P. vellosiana (Fig. 3). However, the slower 

growing species, like M. cucullata and M. ovalifolia, comprised a bigger fraction of the study 

site basal area (Table 1). Therefore, the weighted average of all study species was relatively 

low, in comparison for example with the average stem increment commonly found in lowland 

Atlantic tropical forests (Fig. 3; Vieira et al., 2004). Our daily scale measurements also allowed 

us to show that TMCF trees were capable of high daily growth rates, but they rarely reach their 

maximum growth potential; especially the slower growing trees (Fig. 3c). Even the faster 

growing trees like, C. pyptocalyx usually only reach c. 27% of their maximum observed growth 

rates in the field (Fig. 3). This might indicate that during most of the time the climatic 

conditions in TMCF are not optimal for tree growth.  

The relationship between maximum growth rates and xylem safety margin we observed 

(Fig. 4e) suggests that faster growing species are more likely to keep growing even under non-
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optimal climatic conditions and, consequently, subject their hydraulic system to more risk than 

slow growing species. This relationship was only significant when using the xylem P88, which 

provides further evidence that the xylem hydraulic safety margin estimated using the P88 

(SM88) possess a greater ecological significance for angiosperms than SM50 (Choat, 2013; Urli 

et al., 2013; Delzon & Cochard, 2014). The narrower SM88 in fast growing trees implies that 

these trees favor carbon gain over cavitation avoidance (Tyree & Sperry, 1989; Choat et al., 

2012). Considering that fast growing trees also have lower wood density (Fig. 4f), which is 

cheaper for the plant (i.e. lower energetic investment), these trees could compensate for the 

high percentage of embolized vessels by frequently producing newer vessels (Brodribb, 2010; 

Delzon & Cochard, 2014). If we consider the P88 as an indicative of the threshold for hydraulic 

failure induced mortality in angiosperms (McDowell, 2011; Choat, 2013; Urli et al., 2013; 

Delzon & Cochard, 2014), this fast growing-narrow safety margin strategy is riskier than a 

slow growing-wide safety margin strategy. Therefore, our results suggests that plant hydraulics 

could be one of the mechanisms subjacent to the classical trade-off between growth and 

mortality risk often observed in tropical forest trees (Lawton, 1984; King et al., 2006; Wright 

et al., 2010). The negative relationship between growth rates and wood density (Fig. 4f) also 

supports the idea that fast growing TMCF trees are subjected to higher mortality risks; as trees 

with less dense wood are more prone to suffer wind damage (Lawton, 1984; King et al., 2006).   

Environmental drivers of growth 

Temperature had an important role on the growth of our study trees; higher 

temperatures had a positive effect in the growth of almost all trees (Fig. 5, 7). We believe this 

effect might be attributed to the influence that temperature might have on net photosynthesis 

and on phloem transport of photoassimilates. The radial conductivity between phloem and 

xylem increases at higher temperatures due to aquaporin activity (Steppe et al., 2012; 

Mencuccini et al., 2013), which might facilitate phloem loading. Lower temperatures also 

decrease phloem viscosity and difficult long-distance transport of carbohydrates (Cavender-

Bares, 2005). The response of net photosynthesis to temperature follows a parabolic trajectory 

(Berry & Björkman, 1980). Higher temperatures increase photorespiration and respiration, 

which leads to reductions in net photosynthesis (Berry & Björkman, 1980). On the other hand, 

lower temperatures decrease the efficiency of the photosynthetic reactions (Berry & Björkman, 

1980); even artic species adapted to extreme cold only reach their optimum photosynthetic 

levels at c. 15°C (Billings et al., 1971). Our results suggest that TMCF trees are on the lower 

end of their optimum temperature for growth and, contrary to lowland tropical forests (Clark, 
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2004; Doughty & Goulden, 2008; Way & Oren, 2010); increments in temperature could 

possibly favor growth in these ecosystems.  

The inhibitory effect that PAR had on tree growth was an unexpected result, as 

irradiance is often considered a strong factor limiting TMCF productivity due the persistence 

of clouds (Bruijnzeel & Veneklaas, 1998; Letts & Mulligan, 2005). We propose two possible 

explanations for this result. The first is that the frequent cloudiness of these environments could 

have acclimated TMCF trees to low irradiance conditions. Plants acclimated to low irradiance 

conditions are more vulnerable to light induced damage on the photosystem II (PSII) reaction 

center, a process often called photoinhibition (Powles, 1984; Aro et al., 1994). Trees can also 

adapt to low irradiance conditions by increasing leaf area in relation to root area (Poorter & 

Nagel, 2000), so they can maintain an optimum amount of transpiration rate per unit of root 

mass (Sims & Pearcy, 1994). When a low irradiance adapted plant is exposed to high irradiance 

it has to either close its stomata, or sustain a higher transpiration demand that could damage 

the plant hydraulic system (i.e. cavitation). As we observed that faster growing species are 

more likely to grow during high PAR (Fig. 5), it is possible that these species often experience 

higher transpiration rates than they are optimized to sustain, and because of this they are more 

prone to hydraulic damage (Fig. 4e). While this explanation appears plausible based on our 

data, other studies suggests that some TMCF have a higher belowground/aboveground biomass 

ratio than lowland forests (Moser et al., 2010; Girardin et al., 2010). This implies that in some 

TMCF nutrient limitation might play a more important role than adaptations for low irradiance 

conditions.  

The second possible explanation is that there was a temporal decoupling between 

assimilation and growth on TMCF trees. The TMCF trees could favor carbon assimilation 

during the relatively rare periods of high PAR, and only transport and use the photoassimilates 

for cambial growth during low PAR periods (i.e. cloudy or rainy periods). This temporal 

decoupling is thought to be important in a diel scale (Steppe et al., 2015), but it could also play 

a role between sunny and cloudy or rainy days. In a sunny day, the plant would spend a large 

fraction of the day assimilating carbon, but due to cell turgor limitation (Steppe et al., 2015; 

Hsiao, 1973); its growth would be restricted to nocturnal periods. In contrast, in a cloudy or 

rainy day, the plant could use its carbon reserves to grow during a large fraction of the day. 

That explanation gives a mechanistic basis for the effect that LWt had on tree growth (Fig. 6, 

7).     
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Soil water availability only had a small direct effect on tree growth, but its interaction 

with LWt was important for many trees (Fig. 6, 7). The LWt data we used included both fog 

and rain events, but much of the LWt during the dry season is caused by fog, as rainfall is low 

during this period (Fig. S1). The increase in tree growth observed during leaf wetting events, 

especially at low SWD, can be attributed to cell turgor improvements caused by tree 

rehydration (Steppe et al., 2015; Hsiao, 1973). We postulate that this rehydration could be 

induced by three non-exclusive processes: 1- direct foliar water uptake (FWU; Eller et al., 

2013; 2016; Goldsmith et al., 2013); 2- the transpiration reduction caused by low atmospheric 

vapor pressure deficit and wet leaves (Smith & McClean, 1989; Letts & Mulligan, 2005); 3- 

the increase in soil moisture caused by throughfall of either fog or rain. Considering that many 

trees responded differently to LWt (Fig. 6, 7), we believe that these differences are more likely 

to be caused by differences in FWU between trees. Trees in TMCF are known to possess 

different FWU capabilities, which affects the rate which leaves can rehydrate when they are 

wet and also have consequences for plant turgor maintenance during drought (Eller et al., 

2016). Some study trees had almost no response or even a negative response to leaf-wetting 

events (Table 3; Fig. 6, 7). We postulate that these trees have very low FWU capability and 

their growth could be impaired by the reduction in gas exchange caused by wet leaves (Smith 

& McClean, 1989; Letts & Mulligan, 2005; Oliveira et al., 2014). 

Conclusion 

 The methods proposed by Mencuccini et al (2013) and Zweifel et al (2016) to extract 

the growth signal from dDb data are very promising tools that allow us to investigate factors 

controlling tree growth at a time scale that was not possible before (Zweifel, 2016). Using the 

BC method, we could observe that the microclimatic conditions of TMCF might present several 

difficulties for tree growth, such as low temperatures and high irradiance. Fast growing TMCF 

trees can grow in wide range of environmental conditions by maintaining a narrow xylem 

hydraulic safety margin. Slow growing TMCF trees generally maintain their xylem hydraulic 

safety, growing only when environmental conditions are favorable. Some climate change 

scenarios predict that TMCF might experience higher temperatures in the future (Still et al., 

1999; Karmalkar et al., 2008). While this could favor TMCF tree growth, it could also favor 

the upward migration of lowland tropical species populations that would become more 

competitive at these new temperatures (Hillyer & Silman, 2010; Feeley et al., 2011; Corllet & 

Wetcott, 2013). In addition, earth surface temperature increments are associated with increases 

in the height of clouds formation in tropical mountains (Still et al., 1999), and consequently, 
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the decrease of leaf-wetting events in TMCF. As leaf-wetting events favor the growth of most 

TMCF trees, especially during the dry season, the overall effect of temperature increments 

might threaten TMCF trees more than benefit them.   
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Supporting information 

Notes S1.   Temperature correction procedures: We measured the temperature of 3 stainless 

steel rods that attach the point dendrometer to the tree with a thermistor (precision of ±0.25°C; 

model 3950 NTC Epoxy thermistor, adafruit.com, NY, USA). Then, we fitted a linear ordinary 

least squares regression between the stainless steel rods temperature (Tsr) and the air 

temperature measured (T) by a sensor located on the forest understory c. 10 m to the 

dendrometers. We used this relationship (R2 = 0.76; Tsr=2.25+0.87T) to predict the Tsr for the 

dendrometers of the other trees. Based on the predicted Tsr we calculated the linear thermal 

expansion of the steel rods (ΔL) as: 

LTL sr                     (S1) 

where α is the linear thermal expansion coefficient for steel (0.00001 m m-1 °C-1) and L is the 

initial length of the steel rod. We considered L the distance from the tip of the steel rod inside 

the wood to the point where the frame was fastened with screws (see Fig. S2). We subtracted 

ΔL from the raw dDb to remove the temperature effects from our data.  

Notes S2. Derivation of bark diameter changes including cambium growth:  We use the same 

Hooke’s law principle to dDb, but now we also add the changes in Db caused by cambium 

growth (g): 

dt

dg

dt

dP

E

D

dt

dD ZGb

br

bb 
,

*

                                 (S2) 

where dDb/dt refers to the bark diameter changes (dDb) over a time interval t; 𝐷𝑏∗ is the initial 

bark diameter (at reference pressure); Er,b is the radial elastic modulus of the bark tissue and 

dPb/dt refers to the bark tissue-averaged turgor pressure over a time interval t. We now are 

using gZG as a first approximation of g. 

The change in the inner bark pressure due to the water potential difference between the 

xylem and the inner bark can be written as:  

  bbx

b

br

b

brb PAL
V

E

V

JE

dt

dP
 *

,
*

,                                   (S3) 

where *
bV  (m3) is the inner bark volume at a reference pressure; J is the water flux (m3 s-1) 

between bark and xylem; L (m MPa−1 s−1) is the hydraulic conductance of the cross-sectional 

area A (m2) of contact between bark and xylem; Π (MPa) is the osmotic pressure of the inner 

bark. Substituting equations (S3) and equation (2; from the main text) into (S2) we have:  
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  bbx

b

b PAL
V

D

dt

dTWD
 *

*

                  (S4) 

whereas now we will be deriving a model for tree water deficit changes over time (dTWD/dt) 

instead of total bark diameter changes over time (dDb/dt).   

We now express the pressure terms at the same reference time when *
bD  and *

bV  are 

also calculated: 

  ***
*

**

bbx

b

b PAL
V

D

dt

dTWD
                              (S5) 

where all variables labelled with the * symbol are determined at this reference time. Subtracting 

(S5) from (S4) side by side and re-arranging, yields:  

  
dt

dTWD
PAL

V

D

dt

dTWD
bbx

b

b

*

*

*

)(                  (S6) 

where 
*
xxx                     (S6a) 

*
bbb PPP                           (S6b)  

*
bb                    (S6c) 

We now express the bark pressure term as a function of the TWD differences from the 

reference state: 

TWD
D

E
P

b

br
b  *

,                    (S7) 

where  

*dTWDdTWDTWD                   (S7a) 

As explained at the beginning, we assume for the moment that changes in osmotic 

pressure do not occur. Therefore, the term   vanishes. Substituting equation (S7) into (S6), 

rearranging and simplifying, one obtains: 

 

dt

dTWD
TWD
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D
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EAL

dt

dTWD

dt
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TWDED
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dt
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*
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,
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


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



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


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




                (S8) 

Let’s assume now that estimates of xylem water potential x can be obtained using an 
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Ohm’s law analogy, i.e. 

pl

s
sx

K

v
                     (S9) 

where vs is the measured sap velocity, and s and 
plK are soil water potential and plant 

hydraulic conductance, respectively. Expressing the quantities at a reference time using the 

usual * symbol and substituting (S9) into (S8) yields: 

*

*

*

*
*
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s
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,

*

*
,

           

     

where the Kpl and s indicate parameters for the coefficient for sap velocity and for the 

intercept which are not constant but can vary from day to day to reflect dynamic changes in 

soil water potential and plant hydraulic conductance. Equation (S10) equates to: 

    TWDv
dt

dTWD
s

       (S11 or Eqn. 14 in the main text) 
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Figure S1. Climate data 

from the study site at 

Mantiqueira mountain 

range during 2015. The 

gray bars are total monthly 

rainfall, the red bars are the 

potential 

evapotranspiration 

calculated using 

Hargreaves equations 

(Hargreaves & Samani, 

1982) and the red line is 

the mean monthly 

temperature.  

 

 

 

 

 

Figure S2. Schematic 

representation of the point 

dendrometers used in our 

study. The additional linear 

variable differential 

transformer installed on 

xylem is not represented in 

the figure.  
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Figure S3. Linear relationships between the growth signal predicted by the zero-growth (gZG) method 

and bark-capacitance method (gBC). The black line is the line predicted by the linear regression and the 

red line is a 1:1 reference line.  
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Table S1. List of the abbreviations and symbols used in this study 

Abbreviation Definition 

A Cross-sectional area between bark and xylem 
BC Bark capacitance method 
cw Specific heat capacity of dry wood 
cs Specific heat capacity of water 

dDb Bark diameter changes 
dDx Xylem diameter changes 
dPb Bark pressure changes 
dt Time interval 

dΨx Xylem water potential changes 
dTWD Tree water deficit changes 

Db Bark diameter 
Dx Xylem diameter 

DBH Diameter at breast height 
Er,b Radial elastic modulus of the bark 
Er,x Radial elastic modulus of the xylem tissue 

FWU Foliar Water Uptake 
g Cambial growth 

gbas Radial cambial growth 
gbas max Daily maximum radial cambial growth 
gbas mid Daily middle radial cambial growth 

gBC Linear growth predicted by the Bark capacitance method 
gZG Linear growth predicted by the Zero-growth method 

GLM Generalized linear model 
HRM Heat-ration method 

J Water flux between bark and xylem 
k Sapwood thermal diffusivity 
K x value when the y variable reaches 50% of the asymptote in the Michaelis-Menten function 
Kpl Plant hydraulic conductance 
L Hydraulic conductance between bark and xylem 

LWt Leaf wetness time 
mc Moisture content of fresh wood 

MDΨl Mid-day leaf water potential 
NLS Nonlinear least squares 
P50 Water potential value when the xylem loses 50% of its conductance 
P88 Water potential value when the xylem loses 88% of its conductance 
PAR Photosynthetic active radiation 
PDΨl Pre-dawn leaf water potential 
PLC Xylem percentage of conductance loss 

s Parameter related with the slope of the xylem vulnerability curve 
SM50 Minimum xylem water potential minus P50 
SM88 Minimum xylem water potential minus P88   
SWD Soil water deficit 

t Time 
T Air temperature 

TMCF Tropical Montane Cloud Forest 
TWD Tree water deficit 

v1 Temperature increment in the sap flow probe above the heater 
v2 Temperature increment in the sap flow probe below the heater 
vh Heat pulse velocity 
vs Sap velocity 
V Asymptote of the Michaelis-Menten function 
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𝑽𝒃∗  Bark volume at reference pressure 
VWC Volumetric water content 
VWCf Volumetric water content at soil field capacity 

x Distance between heater and sap flow temperature probes 
ZG Zero-growth method 
α Parameter related with the radial conductivity between xylem and bark 
β Parameter related with the plant axial hydraulic conductance  
γ Parameter related with the soil water potential �̂�𝑮𝒎 Signal that contains cambial growth and osmotic induced changes  𝜟𝑫𝒃 Bark diameter change in relation to bark diameter at reference pressure �̂�𝑫𝒃 Predicted bark diameter change in relation to bark diameter at reference pressure excluding 

bark capacitance effects 𝜟𝑻𝑾𝑫 Tree water deficit change in relation to tree water deficit at reference pressure 
Λ Parameter representing the maximum transpiration rate per unit of hydraulic conductance 
Π Bark osmotic pressure 
π Number pi (approximated to 3.14 in the study) 
ρb Basic wood density 
ρs Water density 
σ Parameter representing the stomatal sensitivity to soil water availability 

Ψmin Minimum xylem water potential 
Ψs Soil water potential 
Ψx Xylem water potential 
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GENERAL CONCLUSION 

The climatic conditions of Tropical Montane Cloud Forests (TMCF) houses a large 

diversity of species, many of which could not to exist elsewhere (Foster, 2001). In this thesis, 

I investigated how TMCF trees function on this environment, and used this knowledge to 

predict how they would respond to changes on TMCF environmental conditions that could be 

caused by climate change. TMCF trees have different strategies to thrive in the particular 

climatic conditions of TMCF, and many TMCF trees appear to function close to their 

physiological limits, which suggests that changes on TMCF environmental conditions could 

threaten water transport, leaf turgor maintenance and growth of these trees. Reduced fog 

frequency can compromise leaf turgor maintenance in TMCF trees with high foliar water 

uptake capacity, which rely more on leaf wetting events and foliar water uptake to maintain 

leaf turgor. The results from chapter 1 indicates that leaves from species with high FWU have 

a probability ranging from 0.2 to 0.9 of losing leaf turgor if there were no leaf wetting events 

in TMCF.  Species with low FWU can maintain turgor regardless of leaf wetting events, 

because of their more strict stomatal regulation (i.e. more isohydric). However, this 

conservative strategy also might have its own drawbacks, as a strong stomatal regulation often 

results in lower carbon assimilation rates and higher risks of carbon starvation (McDowell et 

al., 2008).  

The drawbacks of a more conservative strategy are illustrated on chapter 2, where I 

found a clear trade-off between growth rates and xylem hydraulic safety in TMCF trees. Fast 

growing TMCF trees grow in a wider range of environmental conditions, but to do so their 

xylem conductivity reaches levels close to the threshold of hydraulic failure (i.e. the water 

potential value where the xylem loses 88% of its conductivity, see Choat, 2013; Urli et al., 

2013; Delzon & Cochard, 2014). Because fast-growing TMCF trees are so close to their 

hydraulic failure threshold, a drier and hotter TMCF could push these trees over this threshold 

and induce the mortality of fast-growing TMCF trees. However, most trees in the studied 

TMCF possessed slower growing rates; over 65% of the basal area among the studied trees 

were from species that never reached growing rates higher than 5000 μm2 per day (for 

comparison, some fast growing species such as Croton pyptocalyx could grow more than 25000 

μm2 per day). These slower-growing TMCF trees restricted its growth to periods of very 

favorable climatic conditions, which were generally days with more humid days, with higher 

temperature and lower radiation. This more conservative growth strategy allowed these trees 

to maintain larger xylem safety margins, and might make these species more resistant to a 



97 

 

 

 

hotter and drier climate. In fact, as the growth of most TMCF trees appear to be strongly 

constrained by lower temperatures, increases in TMCF temperatures could, in theory, even 

increase TMCF tree growth. However, higher temperatures and less fog could turn TMCF into 

a more suitable environment for lowland tropical species, and favor the upward migration of 

lowland tropical trees populations (Foster, 2001; Hillyer & Silman, 2010; Feeley et al., 2011; 

Corlett & Wetcott, 2013). On this scenario, slower growing TMCF trees, despite having higher 

xylem hydraulic safety margins, could be more easily outcompeted by fast growing lowland 

species (Roy, 1990).  

The results of this thesis provides some novel ecophysiological basis for the 

vulnerability of TMCF to climate change, which have important implications for management 

of these important and vulnerable ecosystems. Contrary to many lowland tropical species, 

TMCF species are not expected to shift to a new location in response to climate change 

(Colinvaux et al., 1997, 2000; Foster, 2001), instead many TMCF species are likely to go 

extinct, as they would have no suitable environment to migrate (Walker & Flenley, 1979; 

Foster 2001). This would cause an irreparable loss of biodiversity due to the high biodiversity 

and endemism rates of TMCF (Gentry, 1992; Leon & Young, 1996). Changes in TMCF 

structure and function would also have a direct impact on human populations, as it would 

compromise the many ecosystem services provided by TMCF, such as maintenance of water 

supply and quality, and soil stability (Sidle et al., 2006; Tognetti et al., 2010; Bruinzeel et al., 

2011). Mountainous tropical regions that depend on TMCF for the maintenance of their water 

supply, which might include large cities in South America, Africa and Asia (Bruijnzeel, 2004; 

Bubb et al., 2004), will be seriously threatened by loss of TMCF.  

The increase in atmospheric carbon dioxide and consequent increments in earth 

temperature are considered largely irreversible (Solomon et al., 2009). Therefore, the only way 

to minimize the effects of climate change on many ecosystems and on the services provided by 

them is to understand how and why ecosystems will respond to climate change, and use this 

knowledge to elaborate effective management strategies. The results of this thesis illustrate 

how some key functional traits, such as foliar water uptake capability, stomatal regulation 

strategy and growth rates can determine the response of TMCF tree species to climate change. 

This knowledge can be incorporated in process-based vegetation models, to improve model 

predictions regarding the vegetation responses to climate. Currently most vegetation models 

have very simplistic representations of vegetation processes that constrains the predictive 

power of these models (Powell et al., 2013; Xu et al., 2016). In addition, the results from this 
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thesis could contribute for building a theoretical basis for TMCF management strategies. These 

strategies could be based on species key functional traits, such as the traits studied on this 

thesis, and the specific vulnerabilities associated with each trait.  
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