
 
 

          
 
 
 
 
 

 
 
 
 

UNIVERSIDADE ESTADUAL DE CAMPINAS 

INSTITUTO DE BIOLOGIA 
 

 

FELIPE EDUARDO CIAMPONI 
 

 

IDENTIFICATION OF BIOLOGICAL CHARACTERISTICS 

ASSOCIATED WITH RNA-BINDING PROTEINS (RBPs) 

TARGET SITES 

 

IDENTIFICAÇÃO DE CARACTERÍSTICAS BIOLÓGICAS 

ASSOCIADAS A SÍTIOS-ALVO DE PROTEÍNAS DE LIGAÇÃO 

AO RNA (RBPs) 

 
 

 

 

 

 

CAMPINAS 
 

2018 
Capa 



 
 

 
FELIPE EDUARDO CIAMPONI 

 

IDENTIFICATION OF BIOLOGICAL CHARACTERISTICS 
ASSOCIATED WITH RNA-BINDING PROTEINS (RBPs) TARGET 

SITES 
 

IDENTIFICAÇÃO DE CARACTERÍSTICAS BIOLÓGICAS 
ASSOCIADAS A SÍTIOS-ALVO DE PROTEÍNAS DE LIGAÇÃO AO 

RNA (RBPs) 
 
 

Dissertation presented to the Institute of 
Biology of the University of Campinas in 
partial fulfillment of the requirements for 
the degree of Master in Genetics and 
Molecular Biology in the field of Animal 
Genetics and Evolution 

 
Dissertação apresentada ao Instituto de 
Biologia da Universidade Estadual de 
Campinas como parte dos requisitos 
exigidos para a obtenção do Título de 
Mestre em Genética e Biologia 
Molecular na área de Genética Animal e 
Evolução 
 

 
 
 
 
 
 
 
 
 
 
 

Orientador: Katlin Brauer Massirer 
Folha de rosto 

 
CAMPINAS 

 
2018  

ESTE ARQUIVO DIGITAL CORRESPONDE À 

VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA 

PELO ALUNO FELIPE EDUARDO CIAMPONI E 

ORIENTADO PELA DRA. KATLIN BRAUER 

MASSIRER. 



 
 

 
Ficha catalográfica 
  



 
 

Campinas, 16/02/2018. 
 

 
 
 

COMISSÃO EXAMINADORA 
 
 
 

 
 

Profa. Dra. Katlin Brauer Massirer 
 
 

Prof. Dr. Marcelo Alves da Silva Mori 
 
 

Prof. Dr. Paulo Sérgio Lopes de Oliveira 
 
 
 
 
Os membros da Comissão Examinadora acima assinaram a Ata de defesa, que se 
encontra no processo de vida acadêmica do aluno. 
 
Comissão examinadora 
  



 
 

Dedicatory 
 
I dedicate this work to my family and friends, specially to my recently 

deceased grandfather, Durval Ciamponi, who was one of my greatest inspirations for 

becoming a scientist and always encouraged me to be the best that I could, both as a 

person and as professional. Wherever you are now, know that if I’m standing here 

today, it is in large part due to your guidance and support. Thank you. 

  



 
 

Acknowledgments 
 

I would like to thank my family and friend for all the support in this journey. 

Always by my side, crying and celebrating with me at every step. I would not have 

accomplished this work without your support and dedication. You helped me through 

a lot of bad times and also cheered with me at the good times. Thank you all for 

everything. 

 

To my supervisor, Dra. Katlin Brauer Massirer, for the opportunity, patience 

and guidance during my 5 years in her lab. 

 

To my lab colleagues, who became my second family during these years. 

With special thanks to Laura Alonso, Natacha Migita and Pedro Cruz who worked 

directly with me in projects presented here. 

 

To Prof. Dr. Mário Henrique Bengtson and Prof. Dr. Marcelo Mendes 

Brandão, who provided valuable insights during several discussions. 

 

To Prof. Dr. Marcelo Alves da Silva Mori, Dr. Michel Yamagishi and Prof. 

Dr. Henrique Marques-Souza for valuable feedback and ideas provided during my 

qualification exam. 

 

I would like to extend a special thanks to my co-supervisor Michael Thomas 

Lovci, who was more than a scientific advisor. Mike was not only a friend but also my 

mentor during the first steps as a bioinformatician, teaching me how to write my first 

lines of code and how to “think big picture without losing focus on the small details”. 

This work would not exist without him.  

 

Lastly, I would also like to thanks the funding agencies CAPES and 

FAPESP for the fellowships and financial support to carry out this study (process nº 

2016/25521-1, Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)). 

  



 
 

Resumo 
 

Grânulos de stress são agregados de proteínas e RNAs encontrados no 

citoplasma das células, em geral produzidos em resposta uma forma de stress (ex. 

Hipóxia, infecções virais, privação de nutrientes e choques térmicos). No entanto, 

diversas doenças neurodegenerativas, como esclerose lateral amiotrófica e 

Alzheimer, já foram associadas com inclusões patogênicas desses agregados que 

geram consequências nocivas para a célula. Dentre as proteínas presentes no granulo 

de stress o complexo G3BP1-CAPRIN1-USP10 é essencial para a condensação do 

granulo e sua associação com subunidades ribossomais, sendo que a expressão 

ectópica de CAPRIN1 é suficiente para induzir a formação desses agregados. Apesar 

dos mecanismos moleculares associados aos grânulos não estarem completamente 

elucidados, as principais funções propostas para estas estruturas são: a proteção dos 

RNAs de situações danosas, degradação de mRNAs alvo, seleção da tradução de 

mRNAs de resposta a stress e reprogramação da expressão gênica (transcriptoma). 

Para caracterizar os mRNAs-alvo de Caprin-1 nos grânulos de stress, 

utilizamos da combinação de técnicas de CLIP-seq, RIP-seq e RNA-seq para 

determinar os sítios de ligação que Caprin-1 apresenta nos alvos, bem como quais 

classes funcionais de transcritos estão enriquecidas nesse tipo de amostra. Nossas 

análises revelaram que Caprin-1 apresenta uma preferência de ligação por regiões 

organizadas em forma de “stemloops” na estrutura secundária do mRNA. 

Adicionalmente, essas regiões estão enriquecidas em repetições “GG”, que podem 

sugerir a formação de estruturas secundárias do tipo G-quadruplex, sendo mais 

estáveis para o nosso modelo encontrado que os loops. Do ponto de vista funcional, 

encontramos que os alvos identificados pelo CLIP-seq estão enriquecidos em 

transcritos codantes para proteínas da ligação ao RNA, associadas principalmente 

com processos catabólicos e controle do ciclo celular. Adicionalmente, comparamos 

as categorias enriquecidas com alterações preditas nas vias metabólicas obtidas a 

partir do RNA-seq, encontrando 19 vias que estão simultaneamente alteradas após 

expressão ectópica de Caprin-1 e enriquecidas nos alvos ligados a proteína nos 

grânulos de stress. Por fim, identificamos que sítios de ligação associados a Caprin-

1, encontramos que estes apresentam uma tendência a apresentarem mais sítios de 



 
 

ligação microRNAs e estão associados também a outra proteina de ligação ao RNA 

chamada PUM2. 

Em conjunto, esses dados nos permitiram coletar informações importantes 

em relação ao papel da Caprin-1 nos grânulos de stress, tanto no campo de seleção 

de alvos de ligação bem como nas alterações funcionais decorrentes da expressão 

ectópica desta proteína. Nossos achados corroboram, com novas abordagens, alguns 

dados já sugeridos anteriormente pela literatura bem como propondo novos 

mecanismos que não haviam sido descritos previamente para esse modelo. 

  



 
 

Abstract 

 
Stress granules are protein and RNA aggregates found in the cytoplasm of 

cells, in general are produced in response to a source of stress (ex. Hypoxia, viral 

infections, nutriente deprivation and heat shock). However, several neurodegenerative 

diseases, such as amyotrophic lateral sclerosis and Alzheimer’s disease, have already 

been associated with pathogenic inclusions of these aggregates with harmful 

consequences for the cells. Amongst the proteins presente in the stress granule, the 

complex G3BP1-CAPRIN1-USP10 is essential for the condensation fo the granule and 

it’s association with ribosomal subunits, with the ectopic expression of CAPRIN1 being 

suufficient to induce the formation of these aggregates. Although the molecular 

mechanisms associated with stress granules are not completely elucidated, the main 

functions postulated for these structures are: protection of RNAs from harmful 

situations, degradation of target mRNAs, selection of stress-response mRNAs for 

translation and reprogamming of overall gene expression. 

In order to characterize the mRNA-targets of Caprin-1 in stress granules, 

we used a combination of eCLIP-seq, RIP-seq and RNA-seq techiniques to identify the 

RNA binding sites for Caprin-1, as well as identifying which functional classes of 

transcripts are enriched in these samples. Our analysis revealed that Caprin-1 

posesses a preference for binding to stemloops RNA secondary structures, 

additionally these regions were also enriched in GG repeats, which might suggest the 

formation of secondary structures known as G-quadruplexes, which are more stable 

than the stemloop model. From the functional standpoint, we found that targets 

identified by eCLIP-seq are enriched in transcripts coding for other RNA-binding 

proteins, associated mostly with catabolic processes and cell cycle control. 

Additionally, we compared the enriched categories with predicted alterations in 

metabolic pathways obtained from RNA-seq data. Overall, we found 19 pathways 

which are simultaneously enriched in eCLIP-seq targets and had significant alterations 

in their activation after CAPRIN1 ectopic expression. Lastly, we identified that Caprin-

1 binding are also enriched in target sites for microRNAs and are associated with 

PUM2, another RNA binding protein.  

Taken together, our data allowed us to gather important information on the 

role of Caprin-1 in the stress granules, both for the selection of binding targets as well 



 
 

as the functional alterations resulting from the ectopic expression of this protein. Our 

finds corroborate, with new approaches, data previously suggested in the literature as 

well as propose novel mechanisms previously unreported for this model. 
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Introduction 
 

Stress granules (SGs) are cytoplasmic aggregates composed of protein and 

RNA complexes commonly found in cells exposed to stress conditions, such as heat, 

UV radiation exposure, presence of reactive oxygen species, starvation and hypoxia 

[1,2]. Amongst suggested mechanisms for assembly of these aggregates, one of the 

is the hyperphosphorylation of the translation factor eIF2α by kinases as PERK, HCN2, 

Z-DNAk, PKR and HRI. This phosphorylation cascade causes the blockage of the 

translation initiation machinery, dismantling the polysomes and recruiting RNAs and 

proteins to the cytoplasmic granules, one example is the reduction of assembly viability 

of the eIF2α-GTP-tRNAiMET complex [1–3]. In healthy cells, specially neurons, stress 

granules assemble and disassemble regularly in response to temporary factors, 

however in some neurodegenerative diseases (ALS, Alzheimer’s and FTD) occurs the 

appearance of pathogenic inclusions of these granules. These processes have already 

been associated with alterations in the FUS and TARDBP proteins, when they leave 

the cell nucleus and are included in the stress granules present in the cytoplasm. It has 

been suggested that, once in contact with these aggregates, the proteins can undergo 

modification processes, as phosphorylation, ubiquitination and partial proteolysis, by 

other proteins already present in the SGs and inhibit their return to the nucleus. The 

abnormal accumulation of these cytoplasmic aggregates, catalyzed by the stress 

granules, appear to be related to neurodegenerative process associated with neuronal 

diseases [4–7]. However, there is still a clear deficiency in the comprehension of the 

impact that the stress granules cause in the transcriptome of the cells. It is fundamental 

that we explore the molecular dynamics involved in the RNA regulatory process 

involved in these granules, which will also lead to better an understanding of the 

biological processes involved in neurodegenerative diseases associated with SG 

formation and aberrant behavior. Understanding the molecular regulatory involved in 

these granules is the first step in the development of new alternatives for treatment 

and prevention of diseases which are currently still untreatable or incurable, such as 

ALS and Alzheimer’s. 

Among the diverse proteins found in stress granules, the RNA binding 

protein Caprin-1 is part of the activation complex of the PKR kinase and, consequently, 

phosphorylation of the eIF2α, an essential protein in the assembly of the aggregate. In 

addition, it was shown that the ectopic expression of Caprin-1 is sufficient to induce 
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the formation of cytoplasmic stress granules. It was also demonstrated that Caprin-1 

binding to the G3BP1 complex is responsible for promoting the assembly and 

condensation of the granules, with G3BP1 being capable of associating to the 40S 

subunit of the ribosome after the formation of the granules [8–12]. Caprin-1 is important 

protein for embryonic development in mice, capable of inducing the formation of stress 

granules upon it’s overexpression [13] and is also related to cellular proliferation 

processes and some forms of cancer [14]. 

Initially it has been proposed that stress granules act as global repressor of 

cellular translation, although more recent works suggest that mRNA translation levels 

are more associated with the mRNP context it is inserted. However, other works 

revealed that RNAs which are preferentially transcribed during stress situations 

present internal ribosomal entry sites (IRES), with estimations suggesting that 10 to 

15% of transcripts, from multiple cell lines, are capable of presenting these sites. With 

that in consideration, there is a possibility the existence of stress granules is associated 

with the creation of an optimal cellular condition for the expression of stress-response 

mRNAs [15–17]. Studies performed in yeast demonstrate that mutations which affect 

the assembly of stress granules lead to transcriptomic alterations that impair the stress 

response to glucose deprivation, generating a less effective response and also 

suggesting that the absence of stress granules can be lethal to cells exposed to stress 

conditions [18]. A second study, also in yeast, showed that 10 to 15% of transcriptional 

processes are regulated by stress conditions, with the storage capacity of stress 

granules and subsequent direction of transcripts to either translation or degradation is 

essential to generate phenotypical variability in a genetically identical population, 

increasing the ability to survive under stress conditions [19]. Lastly, a third study 

performed in human HEK293T cells, the same model used in this work, showed that 

proteins associated with stress granules (FUS, EWSR1 and TAF-15) can modulate the 

expression of target transcripts in stress conditions [20]. 

Among the diverse strategies used by the cells in order to alter their 

transcriptome and increase the chances of survival in stress conditions, the modulation 

of the splicing process of pre-mRNAs poses a role of significant importance. An 

example is the assembly inhibition of the U4-U5-U6 trisnRNP complex due to 

inactivation of the HSLF splicing factor, which occurs in heat stress [21,22]. In general, 

stress conditions are capable of modulate splicing event in a context-dependent 

manner, since signaling pathways and stress response modulate the activity of RNA-
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binding proteins and promoting alterations in the pre-mRNA processing steps [23,24]. 

One such example is the alteration on the activity of the TIA-1 protein, which is present 

in stress granules. Not only this protein is bound to transcripts in the cytoplasmic 

granules, but it also has the function of regulating the splicing of FAS and FGFR2 

genes. With alterations in TIA-1 being capable of leading to the production of the 

apoptotic isoform of the FAS gene, while TIA-1 depletion in HeLa cells leads to an 

increase in cell proliferation [25]. Another example of the action of stress conditions in 

splicing regulation is the hyperphosphorylation of the hnRNPA1 RNA-binding protein. 

This process induces the exit of hnRNPA1 from the nucleus to the cytoplasm, where it 

irreversibly aggregates in stress granules, leading to splicing alterations in multiple 

transcripts [17,26]. Another alteration found in the splicing process as part of stress 

response is the production of non-functional isoforms as a means of protection. As an 

example, there is the occurrence of multiple processes of “exon skipping” in the MDM2 

gene in response to exposure to genotoxic agents. This process leads the transcript to 

the nonsense-mediated decay machinery and favors the p53 response [27].  

In general, the alternative splicing process is fundamental for the response 

to environmental pressures, conferring the proteins the ability to modulate their 

domains, modifying their functions without radically altering their structure of global 

functions [28], or leading transcripts to degradation processes. Due to the vast amount 

of isoforms produced by eukaryotic genes, the application of computational 

methodologies is imperative in the search and characterization of these events in 

global scale [29]. Studies performed in plants have already shown the importance of a 

global analysis of the production of alternative isoform as a mechanism of stress 

response and the presence of cytoplasmic granules [30,31]. Additionally, studies from 

human cancer samples have also shown the existence of thousands of splicing 

alterations detected by high-throughput RNA sequencing, evidencing the capabilities 

of this technique in identifying such events and provide a better understanding the 

cellular processes associated to a phenotype [32]. 

Our study has an exploratory characteristic, with the objective in acting in 

two approaches related to the role of the Caprin-1 in RNA-regulatory processes under 

induction of stress granules. Our experimental model is cultured human HEK293T 

cells, which is one of the mostly widespread cellular models both in academic and 

industrial environments. Considering those observations, we wanted to understanding 
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of how these cells respond to stress conditions, especially in the case of transcriptomic 

alterations induced by the appearance of cytoplasmic stress granules. 

 
Objectives 
 

1. Characterize the RNAs associate with Caprin-1 in HEK293T cell cultures, under 

induction of stress granules, and identify the binding sites preferentially used in 

the target RNA to bind this RBP. 

 

2. Identify functional groups (Gene ontology, metabolic pathways, protein domains 

and others) enriched in RNA targets associated with Caprin-1 

 

3. Identify biological characteristics associated with Caprin-1 binding regions, 

comparing these results with other regions of the transcriptome 

 

4. Identification of the set of splicing alterations in human HEK293T cell cultures 

under induction of stress granules via ectopic expression of Caprin-1 

 

5. Analyze and characterize the splicing alterations found in functional categories 

 

6. Evaluate the existence of new transcripts and/or alterations associated with 

stress conditions. 

 

Material and Methods 
 

Preparation of RNA-seq and eCLIP-seq libraries 
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The RNA libraries used in this project were 

prepared by the student Natacha Azussa Migita during 

her MSc project (projeto FAPESP 2014/20174-6) [33]. 

eCLIP-seq libraries were generated in accordance with 

the protocol described by Van Nostrand et al, 2016 [34] 

(Supplementary Protocol 1: eCLIP-seq Experimental 

Procedures).  

 

Computational pipeline for analysis of Caprin-1 
eCLIP-seq and RNA-seq 
 

The computational analyzes were 

performed in accordance with the protocol described 

by Van Nostrand et al., 2016 [34] (Supplementary 

Protocol 2: eCLIP-seq Processing Pipeline), that are 

summarized in the Figure 1. In a more detailed 

description, the steps performed were:  

 

1. Assessment of the quality of the reads obtained 

from the sequencing platform Illumina HiSeq 

3500 using FastQC [35] package. 

 

2. Adapter removal, trimming and removal of low-quality and duplicated reads 

performed with the cutadapt [36] and trimmomatic [37] softwares. 

 

3. Alignment of remaining reads to human GRCh37.p13 genome using STAR v. 

2.4.0 [38] aligner. 

 

4. Characterization of binding peaks, signal normalization, target identification and 

motif prediction with the packages: CLIPPER [39] and GraphProt [40].  

5. Complementary analysis of data using StringDB v10.5 [41] (for enrichment of 

biological groups), SPIA v2.30 [42] (for pathway impact analysis) and microRNA 

Figure 1: Summary of the 
computational pipeline 

Input reads 

Quality check 
Read trimming 

Filtering 
Alignment 

Aligned reads 

Peak calling 
Signal normalization 

Peak locations 

Merge replicates 
Annotate targets 
Motiff prediction 
Gene ontology 
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targets sites from microRNA.org 2010 [43]. These complementary analysis 

were done using Python 2.7 [44] e R 3.2.3 [45] 

 

6. RNA-seq reads were aligned to the human GRCh37.p13 genome using STAR 

v.2.4.0, with the GENCODE [46] V19 comprehensive annotation as reference.  

 

7. Differential gene expression was calculated using edgeR v3.12.1 [47], 

alternative splicing events at exon-level were identified using rMATS v3.2.5 [48], 

isoform quantification and characterization was done using stringitie v1.3.1 [49]. 

 

Unless specifically stated, all quality assessment, filtering, treatment, 

alignment and post-processing of the data was performed in accordance with 

ENCODE’s guidelines and best practices for RNA-seq of human samples [50]. 

 

Results and Discussion 
 

Quality assessment and alignment of the reads 
 

The reads obtained from the 6 experimental 

libraries were processed for adapter removal and 

general quality controls (including removal of 

duplicated and repetitive reads, in the case of eCLIP-

seq) was performed using FastQC, cutadapt and 

trimmomatic. The amount of aligned reads obtained 

from eCLIP-seq for Caprin-1 were approximately 9.8 

times higher than those obtained for eCLIP-seq for 

GFP and approximately 1.3 times higher than the size-

matched control from HEK293T cells (Table 1). In 

general, the reads presented a high sequencing quality 

after processing for removal of low-quality entries 

(Figure 2A), with the majority of reads achieving a 

score between 38 and 41 in Phred scale (Figure 2B). 

The resulting bam files, after alignment with the GRCh37.p13 human genome, were 

Individual libraries 

Library Mapped Reads 

CAPRIN1.1 10856410 

CAPRIN1.2 12893987 

GFP.1 1695382 

GFP.2 713459 

HEK293T.1 7693677 

  

HEK293T.2 9593415 

Caprin1 eCLIP-seq vs others 

Comparison Fold 

CAP1 vs GFP 9,86 

CAP1 vs HEK 1,37 

Table 1: Number of mapped 
reads for eCLIP-seq libraries 
(upper) and fold ratios (lower) 
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concatenated by condition and then converted to bedGraph  format and uploaded to a 

UCSC Genome Browser session [51], for visual exploration of the data. 

 
 

Identification and filtering of RNA binding sites by peak calling approach. 
 

After treatment of aligned reads, we used the CLIPper package [39] to 

identify the binding site peaks in each eCLIP-seq replicate separately, which represent 

potential binding sites for the Caprin-1 protein. In summary, the peaks were quantified 

those against background, normalizing peak signal strength when compared to GFP 

eCLIP-seq and size-matched input from HEK293T, in order to obtain both pValues and 

foldEnrichment (fE) values, as described by the supplementary protocol 2 in Van 

Nostrand et al, 2016 [34]. Both of these values (pValue and FE) were used to filter 

significant peaks, with cutoff values of pValue ≤ 10-5 and FE ≥ 8 used for significance 

threshold (Figure 3A). For the first replicate (R1) we identified 2836 significant peaks 

(~1.97% of total peaks) and for the second replicate (R2) we found 2426 significant 

peaks (~1.59% of total peaks) (Figure 3B). When analyzing the overlap between the 

peaks found in the two samples, from the total of significant peaks found in both 

samples (5262) we observed that 1470 were found in both replicates, 1366 only in R1 

and 956 only in R2 (Figure 3C), these peaks were distributed in 1724 different genes. 

Although the raw number of significant peaks and their intersection might appear small, 

 
Figure 2: eCLIP-seq sequenced libraries show high quality scores per-base. (A) Histogram 
showing average per-base quality scores after removal of low-quality sequences in Caprin-1 eCLIP-
seq library. The X-axis show the position of the base in each read and the Y-axis show the quality 
of the sequencing in Phred scale. The error bars show the standard deviation found for scores at 
each position. (B) Graph showing the distribution of average quality scores by read found in the 
Caprin-1 eCLIP-seq library. The X-axis show the quality score in Phred scale and the Y-axis show 
the number of reads found with that score. 
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it is consistent with previously published studies using this technique [34,52]. Along 

with the final alignment results (in bedGraph format), the peak positions were uploaded 

to a UCSC Genome Browser session in BED format, allowing for a visual 

representation and comparison of identified significant peaks with the genome 

coverage observed from the alignment (Figure 4). 

 

 
Figure 3: Prediction of Caprin-1 binding sites through significant peaks from eCLIP-seq. (A) 
Simplified schematic representation for the process of peak calling from reads aligned to a reference 
genome (chr17 chosen randomly for representation, not to be considered). In the image, the black 
bar represents a generic DNA fragmented, the red bar represents the background noise threshold 
for foldEnrichment, the dashed lines represent the theoretical extremities of the peaks and the green 
represent the short RNA reads. The numbers in green show the theoretical height of the peak, as an 
example for the read density in the region. (B) Pie chart representing the quantity of significant peaks 
(red slice) found in each replicate. For replicate 1 we found a total of 143896 peaks, with 2836 
(~1.97% of the total) deemed significant. For replicate 2, we found 152360 peaks with 2426 (~1.59% 
of the total) labeled as significant. (C) Venn diagram showing the overlap between significant peaks 
found in both replicates, with 1470 peaks found in both replicates (minimum of 50% of bases), while 
1366 peaks were identified only um replicate 1 and 956 only in replicate 2. 
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Analysis and annotation of significant peaks 
 

For the following analysis, the significant peaks found in each replicate were 

concatenated in a single BED file and processed with the script “clip_analysis.py”, 

which is part of the CLIPper package. Initially, the peaks that have any degree of 

overlap were aggregated in form of “clusters” (being considered a single region), and 

approximately 16.5% of peaks were aggregated in this manner. Both peaks and 

clusters were then characterized as their position in the transcript, distribution between 

mRNA and pre-mRNA, read identity from the central point and average length of the 

clusters/peaks. The results obtained revealed that Caprin-1 binds mostly to 50 

nucleotide regions in exons of mRNAs, with a preference for coding regions (CDS), 

with 44.15% of clusters and peaks in this region, and 3’UTR with 50.8%. Other 

identified binding regions were: 5’UTR (2.2%), distal intron (more than 500nt in 

distance from exon, 2.02%) and proximal intron (less than 500nt of distance from exon, 

0.78%) (Figure 5). 

 
Figure 4: UCSC Genome Browser graphical visualization of genome coverage from alignment 
and significant peaks identified by CLIPper. The figure shows a region of the HNRNPH3 gene, 
in which we detected a significant peak in our analyses. The figure shows the bedGraph track 
containing the genome coverage for the experimental conditions in our experiment: Caprin-1 eCLIP 
(blue), GFP eCLIP (green), and size-matched input from HEK293T (red). In black is the BED track 
containing the genomic coordinates for the significant peaks. 
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In order to evaluate the identified regions and verify/filter possible technical 

artifacts in a broader scope, we analyzed the foldEnrichment (fE) of the whole regions 

(CDS, 3’UTR, 5’UTR an intron) of the transcripts in which the clusters were identified 

and compare the results from both replicates. We found that the CDS and 3’UTR 

regions both show high correlations of fE values found in R1 and R2 (Pearson’s R² of 

0.83 and 0.80, respectively), as well as the majority of sample fractions showing 

positive fE values. The 5’UTR region, although it has the majority of its sample with 

positive fE, showed smaller correlation scores between replicates (Pearson’s R² 0.51), 

indicating a degree of discordance among the results obtained for R1 and R2. The 

intronic regions, however, showed high correlation between R1 and R2 (Pearson’s R² 

0.86), but few regions with positive fE (Figure 6). These results suggest that the CDS 

and 3’UTRare the real binding regions of the protein, while the presence of peaks in 

the intronic and 5’UTR regions could be due to unspecific interactions, non-coding 

RNAs or other technical artifacts. 

 
Figure 5: Caprin1 binds primarily to exons in the 3’UTR and CDS of mRNAs. (A) Pie chart 
showing the distribution of peaks within transcript regions. The two most abundant regions found in 
the analysis were 3’UTR, with 50.8% of peaks, and CD, with 44.15% of peaks. (B) Graph showing 
the relation between the fraction of regions found bound to Caprin-1 (X-axis) and the frequency of 
their localization in pre-mRNA (in red) and in mRNA (in blue). (C) Graph showing the normalized 
signal for read density obtained in identified peaks. The X-axis represents the distance (in 
nucleotides) from the central point of the peaks and the Y-axis shows the normalized signal intensity. 
The blue line represents the signal obtained from Caprin-1 eCLIP-seq and the red line from size-
matched HEK293T control.  
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In order to perform a functional analysis of Caprin-1 binding the targets, we 

used the STRINGdb dabatase to identify GO classes, metabolic pathways, protein 

domains and phenotypical associations which could be enriched in our dataset (Figure 

7). We observed statistically significant results in all categories, however the most 

enriched class was poly(A) RNA-binding proteins (Gene Ontology – Molecular 

Function, GO:0044822; -log10(BH) > 50). It is also worth noting the presence of 

enrichment in classes related to cell cycle, viral carcinogenesis, miRNAs in cancer and 

retinoblastoma. Caprin-1 is a protein known to be related to cell cycle control in both 

humans and in D. melanogaster [53–56], additionally the association between Caprin-

1 and the proliferation of certain types of tumors has already been suggested by 

previous works [8,14,57]. 

 
Figure 6: CDS and 3’UTR regions bound to Caprin-1 show high correlation between replicates 
and positive enrichment at region-level. (A-D) Scatter plots showing the foldEnrichment values 
for transcript regions found in Caprin-1 eCLIP-seq (CDS [A, red], 3UTR [B, green], 5’UTR [C, blue] 
and intron [D, orange]). The fE values for replicate 1 (R1) are on the X-axis and the fE values for 
replicate 2 (R2) are on the Y-axis. The solid line represents the trendline associated with the graph 
values. (E-H) Histograms showing the distribution of fE values in log2 scale (X-axis) for both 
replicates (R1 in red and R2 in blue) and the frequency which they were found (Y-axis). The solid 
lines represent the 0 log2 value, separating positive and negative values, while the dashed line 
represents the log2 = 2 threshold (fE >= 4). 
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Considering that the molecular mechanism involving the biological role of 

Caprin-1 is still poorly understood, our results can contribute significantly to the 

understanding of how Caprin-1 relates to cell cycle control and its biological importance 

in the context of severe human diseases, such as cancer.  

 

 

 

 
Figure 7: Enrichment analysis for biological categories of targets bound to Caprin-1. The 
horizontal bar charts correspond to the biologically functional categories used for enrichment 
analysis. The X-axis represents the p-value corrected by the Benjamini-Hochberg method (BH), in -
log10 scale, and the Y-axis represent the 5 most enriched classes found in each category: (A) Celular 
component (GO); (B) Molecular function (GO); (C) Biological process (GO); (D) Metabolic pathway 
(KEGG); (E) Protein domains (PFAM) and (F) Phenotypes (OMIM, ICD). 
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Analysis of alterations in metabolic pathways from RNA-seq data and 
comparison with enriched classes in eCLIP-seq 
 

To better comprehend the impact of Caprin-1 in the cellular context involving 

stress granules, we focused on analyzing the eCLIP-seq peaks/clusters which were 

found in the 3’UTR and CDS regions, since they account for more than 95% of total 

peaks (Figura 8A). When analyzing the overlap between genes bound at the CDS and 

genes bound at the 3UTR, we observed a small degree of overlap between the groups 

(genes targeted at both their CDS and 3UTR regions), however the majority of genes 

are either bound by either their CDS or 3’UTR regions (Figure 8B). This suggests that 

there might be separate post-transcriptional regulatory mechanisms associated with 

Caprin-1 in the stress granules, since it has already been shown that binding sites in 

the CDS are capable of repressing the translation process [58], while binding sites in 

the 3’UTR region might be more associated with stability of the target mRNA [59]. 

Subsequently, we select the genes found in these regions and performed enrichment 

analysis for KEGG pathways within these two classes (3’UTR-bound and CDS-bound). 

Overall, were found a total of 73 enriched terms in CDS targets and 93 terms enriched 

for 3’UTR targets, with 55 terms being shared between the groups. This indicates that, 

although Caprin-1 binds to different sets of genes, there is a convergence of enriched 

KEGG pathways in eCLIP-seq targets. When comparing these enriched terms with 

affected metabolic pathways, obtained from differential gene expression data derived 

from RNA-seq libraries [33], we found 25 altered metabolic pathways, with 19 of those 

also present in the enriched groups found for eCLIP-seq targets, 13 being in the 

CDS/3’UTR shared targets and 6 for targets enriched only in the 3’UTR group (Figure 

8C). The majority of altered pathways found are related to cell cycle control processes, 

immunological response and cancer, with 7 pathways being activated and 12 being 

repressed after ectopic expression of Caprin-1 and stress granule induction (Figure 

8D). The pathway which showed the biggest alteration was small-cell lung cancer, 

enriched only for targets in the 3’UTR, while the most enriched pathways was 

microRNAs in cancer, which was enriched in targets in both CDS and 3’UTR. 
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Since one of the suggested roles for Caprin-1 is the stabilization of RNAs in 

the stress granules, which is more commonly attributed to binding in the 3’UTR regions, 

we selected the 6 affected pathways which are also enriched in 3’UTR targets: Small 

cell lung cancer, Huntington’s disease, TGF-β signaling, transcriptional misregulation 

in cancer, NOD-like receptor signaling and Toll-like receptor signaling. We then filtered 

 
Figure 8: Caprin-1 binds to exons in the CDS and 3’UTR of targets associated with altered 
metabolic pathways associated with cell cycle control, immunological response and cancer 
(A) The majority of eCLIP-seq defined clusters (3998) are located in either the 3’UTR (2091, 
~50.08%) or at the CDS (1765, ~ 44.15%) of target genes. (B) We identified 1105 genes which are 
bound to Caprin-1 by their 3’UTR and 930 genes that are bound by their CDS region. From the total 
of 1634 different genes, 398 (~24.30%) are bound by both CDS and 3’UTR regions. (C) Venn 
diagram showing the overlap between enrichment analysis for 3’UTR targets (green), CDS targets 
(red) and altered pathways (blue). We found a total of 105 KEGG pathways enriched, with 55 being 
shared by both 3’UTR and CDS targets, 12 enriched only in CDS targets and 38 enriched only in 
3’UTR targets. We also identified 25 altered pathways, from those 13 were also enriched for targets 
in both CDS- and 3’UTR-bound groups and 6 were enriched only for targets bound only by their 
3’UTR region. (D) Horizontal bar chart showing the 19 affected and enriched pathways found in (C). 
The black bars represent significance value (in -log10(BH)) for enrichment of these pathways in the 
3’UTR group. The gray bars indicate the significance value (in -log10(BH)) for pathway alteration. 
The activated pathways are labeled in red, while the repressed pathways are labeled in blue, an 
asterisk is used to highlight the ones found enriched only in 3’UTR-bound targets. 
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the genes found in eCLIP-seq which were present in any of these pathways and filtered 

them by their expression levels in the RIP-seq (TPM ≥ 1) and differential expression in 

the RNA-seq (FDR ≤ 0.05 e log2(FoldChange) ≥ 0.5). Using these criteria, we 

narrowed down our list to 13 candidate genes which might be associated with the 

biological processes mentioned above (Table 2). 

Gene CLIP-seq clusters RIP-seq TPM RNA-seq log2(FC)  
SESN1 7 52,63 0,94 

GADD45A 4 123,75 0,64 
PIK3R3 4 32,06 1,07 
EP300 4 31,02 0,66 

PHLPP2 3 24,98 0,73 
CREBBP 3 35,91 0,74 
CASP7 3 24,65 0,61 
RBL1 3 54,04 0,50 
BBC3 2 13,30 0,60 

SMURF1 1 6,75 0,65 
NFKBIA 1 14,53 0,73 
FADD 1 14,53 0,67 

CDKN1A 1 32,97 0,66 
Table 2: Candidate genes associated with Caprin-1. The table shows the 13 
selected genes from the combined analysis of eCLP-, RNA- and RIP-seq . 

 

Prediction of binding site motif and RNA-recognition sequences 
 

Once the peak positions were accurately placed in regions on the genome, 

it was possible to use this information to extract the nucleotide sequence of the region. 

These sequences were then used to predict binding site motifs, which are over-

represented sequences of “k” nucleotides (called k-mers) in the sample which might 

be associated with the RNA-recognition sequences of the protein. Due to the fact that 

Caprin-1 presents clusters of 50 nucleotides in length both in the CDS and 3’UTR 

regions, these might contain both sequence-specific information as well as RNA 

secondary structure information. Therefore, we initially searched for a wider range of 

k-mers, including repetitions of: 6, 8, 10, 12, 14, 16, 18 and 20 nucleotides. As 

background for our analysis, we used randomized sequences drawn from the same 

regions without overlap with Caprin-1 binding sites. The CLIPper package uses as 

basis the algorithm Hypergeometric Optimization of Motif EnRichment (HOMER, [60] ⁠) 
for motif prediction. 
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The results from our analysis show that the most enriched motif, present in 

69.99% of Caprin-1 peaks, is a sequence of 14 nucleotides rich in GG repeats, with 

the most common repetitions is the 3-mer CGG and the consensus sequence is 

“GCGGCGGCGGCGGC” (Figure 9A). Being a relatively long sequence for simple 

sequence-specific RNA recognition, we considered the possibility of this particular 

sequence assembly itself in a stable RNA secondary structure. For this, we used the 

RNAfold tool from the Vienna RNA package, using as basis the consensus sequence 

indentified by CLIPper. We considered both simple base-pairing as well as G-

quadruplexes (due to the GG repetitions present), when using the RNAfold algorithm. 

Our results for the analysis of RNA secondary structure, based on the minimum free 

energy model (MFE), show that the formation of G-quadruplex structures is more 

stable for this particular motif. The secondary structure formed by simple base pairing 

achieved a MFE of -5 kcal/mol, while the G-quadruplex structure showed a MFE of -

18 kcal/mol, which is 3.6 times lower (Figure 9B). As an additional analysis, we also 

calculated the occurrence of non-overlapping G-quaruplex in both Caprin-1 binding 

sites and background regions using QGRS Mapper, requiring at least 2 tetrads and a 

maximum of 1 mismatch for formation of the G-quadruplex. We found that Caprin-1 

bound regions have statistically significant higher occurrences of G-quadruplexes (o-

value < 0.05, T-test for population mean vs sample) when compared to randomized 

background regions, the 5’UTR showed the highest frequency of G-quadruplex with 

an average of 1.2 G-quadruplex per binding site, while remaining regions exhibited 

smaller frequencies (~0.54 by CDS site and ~0.52 by 3’UTR site). If we considered an 

average for all sites (independent of region), we obtain an average of 0.57 G-

quadruplex per binding site (Figure 9C) It is important to note that although the 

association between Caprin-1 and G-quadruplex structure is novel, there are other 

RBPs from the same protein family [61] (RG/RGG RNA-binding proteins) which have 

already been shown to bind to these types of structures [62–64]. Additionally, there 

are other publications associating this type of RNA structure to translational regulation 
[65] and neurodegenerative diseases such as ALS or FTD [66], both characteristics 
have also been linked to biological processes involving stress granules. 
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In order to analyze with more detail the structural relationships found previously in 

Carpin-1 eCLIP peaks, we used the GraphProt [40] algorithm to evaluate the binding 

preferences of the protein in relation to its binding nucleotide sequence and secondary 

RNA structure. This software uses a different approach than CLIPper, using graphs 

created from the eCLIP defined RNA-binding regions (CLIP peaks + 150 flanking 

nucleotides at both directions) and comparing against randomized unbound regions. 

This graph model is then used to evaluate binding preferences, both to nucleotide 

sequences and RNA structure, and also to predict the binding potential of the RBP to 

target transcripts. 

For Caprin-1 binding sites, this analysis did not reveal a specific nucleotide 

K-mer (unlike CLIPper), but the GraphProt model found an enrichment for degenerate 

sequences rich in GG repetitions (Figure 10A). When evaluating the structural 

composition of the predicted model, it is possible to observe that Caprin-1 binding 

regions are associated with structured RNA regions in the form of “stem loops”, binding 

mostly to regions near the boundary between the stem and the hairpin portions of this 

 
Figure 9: Caprin-1 binds to G-quadruplex regions formed by CGG repeats (A) Predicted binding 
motif by CLIPper shows that 69.99% of binding sites are enriched with a 14 nucleotide sequence 
rich in CGG repeats. In the graph, the X-axis represents the position of each nucleotide and the Y-
axis is the probability of occurrancce of each base in that position. (B) The predicted binding motif 
assembles in a G-quadruplex secondary RNA structure via two towards created by the Gs in 
positions [3,6,9,12] and [4,7,10,13] with a MFE of -18 kcal/mol. In contrast, the same motif when 
assembled in a simpler base-pairing model achieves only a MFE value of -5 kcal/mol. (C) Bar chart 
showing the enrichment analysis for the distribution of G-quadruplex structures shows a significant 
increase in this type of structures in Caprin-1 binding sites (real, in black) when compared to 
randomized background regions (random, in white). The X-axis shows each region and the Y-axis 
the average number of non-overlapping G-quadruplex, asterisks indicate regions with statistically 
significant differences (All, p-value = 5.16e-16, foldEnrichment [fE] = 2.17), CDS (p-value = 1.61e-
13, fE = 2.06), 3’UTR (p-value = 1.14e-11, fE = 1.90) e 5’UTR (p-value = 2.43e-12, fE = 4.81). 
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secondary RNA structure (Figure 10B). Among the identified nucleotide sequences, 

the most common K-mer (a 14nt repetition of GGU) also shows increased stability 

when associated in a G-quadruplex secondary RNA structure, with a minimum free 

energy (MFE) value of -9.69 kcal/mol (Figure 10C)  

 
Comparing these results with previously published studies [40], which also 

performed analysis of Caprin-1 binding sites from another dataset, we observed that 

there is a clear difference in the predicted nucleotide sequence, however the structural 

model prediction is also composed of stem loop regions associated with hairpins. This 

comparison increases the credibility of our findings, with Caprin-1 being a protein that 

recognizes primarily a particular type of RNA secondary structure. 

 

Characterization of microRNA target sites inside Caprin-1 eCLIP-seq peaks 
 

In addition to the main structural motif described above, we also found 

several other secondary motifs, which are shorter (between 6 and 8 nt) and less 

frequent (enrichment values vary between 46.65% and 21.02%) in Caprin-1 binding 

sites. However, these secondary motifs correspond do possible binding sites for 

microRNAs with similarity scores for miRNA target sequences above 0.7 (Figure 11). 

Although the regulatory mechanisms of miRNAs in coding sequences is still a 

underexplored and highly controversial field, there is evidence in the literature that 

 
Figure 10: Caprin-1 binds to structured mRNA regions. (A) Nucleotide binding preference 
predicted by the computational model for Caprin-1 eCLIP-seq. (B) RNA structure binding preference 
predicted by the computational model for Caprin-1 eCLIP-seq. S = stem; H = hairpin loop; E = 
external region; I = internal loop; M = multiloop; B = bulge loop. (C) The most common binding motif 
predicted assembles in a G-quadruplex secondary RNA structure via 2 tetrads created by Gs in the 
positions [3,6,10,13] and [4,7,11,14], with an MFE (Minnimum Free Energy) of -9.69 kcal/mol. 
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show the action of these regulatory RNAs in transcript  coding regions [67–70], with a 

particular work suggesting that they are actively responsible for translation inhibition of 

the target transcript [71] and another publication showing post-transcriptional 

regulation of the BRAC1 gene by action of microRNA group miR-15/107 in its coding 

sequence [72]. 

 
In order to further explore this possibility, we downloaded the miRNA target 

site predictions from microrna.org [43], which uses a combination of miRanda [73] and 

mirSVR [74] algorithms to identify both canonical and non-canonical binding sites for 

microRNAs in the human transcriptome. We extracted all target sites for the miRNAs 

identified in Figure 11 (hsa-miR-3201, hsa-miR-1275, hsa-miR-let7a/e, hsa-miR-30c 

and has-miR-18b) and compared their target genes with both Caprin-1 eCLIP-seq 

targets and also differentially expressed genes drawn from RNA-seq after ectopic 

expression of Caprin-1. Overall, our results identified 411 target genes that are, at the 

same time, targeted by at least 1 of these microRNAs, bound to Caprin-1 by either 

 
Figure 11: Secondary binding motifs for Caprin-1 show similarities with miRNA target sites. 
The figure above shows secondary binding site motifs identified in Caprin-1 binding sites. The 
percentage values indicate the frequency of occurrence of the motif and their associated p-value for 
enrichment. Below, there is the microRNA identification and the similarity score, in parenthesis, found 
for the extracted motif. In the logos, the X-axis represents the nucleotide position in the sequence 
and the Y-axis represents the probability of occurrence of the base in that position. 
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CDS or 3’UTR and significantly upregulated in the RNA-seq (FDR ≤ 0.05 e 

log2(FoldChange) ≥ 0.5). In contrast, we identified only 21 significantly downregulated 

genes (FDR ≤ 0.05 e log2(FoldChange) ≤ -0.5) which are at the same targeted by 

Caprin-1 and the microRNAs (Figure 12). We then selected all genes that were 

differentially expressed and targeted by microRNAs, then used a chi-squared test to 

compare the results for targets up/downregulated and bound/unbound to Caprin-1 

(Table 3). Our results showed a statistically significant relationship between the 

variables (x² = 161.40; pvalue = 9,15E-35), with unbound targets skewed to 

downregulation (Observed: 533, Expected: 427.44), which is consistent with known 

microRNA regulatory mechanisms [75–77]. However, our results also show that 

microRNA target genes that are bound to Caprin-1 are skewed towards upregulation 

(Observed: 411; Expected: 305.44), which could indicate a protective effect of Caprin-

1. We theorize that Caprin-1 binding mRNAs blocks the access of these microRNAs to 

their target sites which, in turn, leads to and increased abundance of these transcripts, 

possibly increasing their half-life and/or overall stability. 

 

 
 

 
Figure 12: microRNA targets bound to Caprin-1 are upregulated. 3-way Venn diagrams showing 

the overlaps between genes bound to Caprin-1 (dotted circle), targeted by at least one of the 

microRNAs (dashed circle) and differentially expressed (solid circle) after Caprin-1 ectopic 

expression. The comparison shows both upregulated (A) and downregulated genes (B). 

microRNA targets Upregulated Downregulated 
eCLIP targets 411   (305.44)   [36.48] 21   (126.56)   [88.05] 

Not eCLIP targets 926   (1031.56)   [10.8] 533   (427.44)   [26.07] 

Table 3: microRNA targets bound to Caprin-1 are more likely to be upregulated. Table 
displaying the number of observed targets in each class, the expected result (in parenthesis) and 
the associated x² value for each class (in brackets).  
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Identification of biological characteristics associated with exons bound to 
Caprin-1 
 

In order to further explore the characteristics of regions bound to Caprin-1, 

we searched biological characteristics (such as: gc content, length, protein-binding 

sites, microRNA sites, CpG islands, SNPs, methylation marks and others) associated 

with the exons bound do Caprin-1 that could explain differences between these regions 

and the remaining exons encountered in the transcriptome. In order to perform this 

analysis, we developed an algorithm based on machine learning and big data 

approaches that is capable of analyzing sets of genomic/transcriptomic regions (in this 

case, exons bound to Caprin-1) and estimate which features are most important for 

separating those from the other parts of the genome/transcriptome (see Part 1: 

BioFeatureFinder: Flexible, unbiased analysis of biological characteristics associated 

with genomic regions). For this analysis, the final datamatrix was comprised of, in total 

(input and background), 20971 lines (exons) e 724 columns (features). For all 

biological features we applied a Kolmogorov-Smirnov test and filtered a total of 88 

statistically significant features (q-value ≤ 0.05).  Amongst the most significant features 

for exons bound to Caprin-1, we identified that the length of the exons, the presence 

of microRNA target sites, binding sites for PUM2 RNA-binding protein and exon 

conservation among primates are the most important features (Figure 13A). Due to the 

large number of background regions and the biological variability encountered in 

exons, we used 500 classification runs to calculate the final average scores for feature 

importance and their associated standard deviations (STD). The final quality scores for 

our classifier were: accuracy (86.9%, STD=1.0), positive predictive value (PPV, 90.5%, 

STD=1.3), negative predictive value (NPV, 83.3%, STD=1.3), sensibility 

(84.4%,STD=1.5), specificity (89.7%, STD=1.4) and area under curves (AUCs) for 

ROC (0.938, STD=0.007) and Precision-Recall (0.927, STD=0.011) (Figures 13B-D). 
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When analyzing the differences found in the curves for the cumulative 

distribution functions of the exons bound to Caprin-1 and comparing with background 

unbound exons, it was possible to observe that exons associated with Caprin-1 have 

a tendency to be longer (Figure 14A), more conserved among primates (Figure 14B) 

and with a higher number of microRNA target sites (Figure 14C). This is in accordance 

to our previous findings regarding the occurrence of microRNA target sites in Caprin-

 
Figure 13: Length, conservation, microRNA and PUM2 binding sites are the most important 
features of exons bound to Caprin-1. (A) Horizontal barchart showing the 5 highest socring 
features for classification of Caprin-1 exons. The gray bar representes the values obtained for the 
Kolmogorov-Smirnov test and the white bars represent the variable importance values for each 
feature. (B) Bar charts for mean classifier performance scores for RBFOX2 eCLIP sites (P.P.V.: 
Positive predictive value, N.P.V.: Negative predictive value). (C-D) Graphs showing the ROC (C) and 
Precision-Recall (D) curves obtained for the classifier performance, the mean values for área under 
curve (AUC) and their associated standard deviation (STD) are represented in the legends. 
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1 binding sites and the enrichment of upregulated microRNA targets that are bound to 

Caprin-1. Additionally, we also identified that exons bound to Caprin-1 have a high 

occurrence of binding sites for PUM2, another RNA-binding protein, with approximately 

50% of Caprin-1 exons also having at least 1 binding site for this RBP (Figure 14D). 

This last result is particularly interesting due to the fact that PUM2 has been associated 

with cell cycle control and translational regulation [78–81], which are biological 

functions also associated with Caprin-1. 

 

 
Figure 14: Exons bound to Caprin-1 are longer, highly conserved and possess higher number 
of microRNA and PUM2 target sites. (A-D) Cumulative distribution function graphs comparing the 
exons bound to Caprin-1 (group 1, dashed line), with exons not bound to Caprin-1 (group 0, solid 
line). The cumulative distribution is represented in the Y-axis and the values for each characteristic 
is represented in the X-axis. The graphs show the comparisons for exon length (A), conservation 
among primates (B), microRNA target sites (C) and PUM2 binding sites (D). 
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However, it did not escape our attention the possible correlation between 

the exon length and the higher occurrence of microRNA target sites (i.e. longer exons 

can have a tendency to accumulate more microRNA target sites). In order to assess 

this possibility, we used linear regression with the values encountered for these two 

characteristics in the exons bound to Caprin-1, obtaining a R² value of 0.25 (Figure 

15). We also performed pairwise correlation assessments for the 10 most important 

features, however no combination achieved a R² score higher than 0.2. 

 
 

Characterization of splicing events after Caprin-1 ectopic expression 
 

Data was obtained from the RNAseq libraries generated during Natacha 

Azussa Migita MSc project (FAPESP project 2014/20174-6) [33]. In summary, the 

experiment is comprised 2 experimental conditions, with a total of 6 samples: 3 controls 

and 3 ectopic expression of Caprin-1, upon induction of stress granules. In total, these 

libraries offer a coverage of 1,90E+4 gigabases (190.091.292 million reads of 100 

bases). These reads were aligned to the reference genome GRCh38.p5 (hg38) and 

 
Figure 15: Exons bound to Caprin-1 do not have 
direct correlation between their length and the 
number of microRNA target sites. Scatter plot 
showing the correlation between exon length (X-axis) 
and the number of microRNA target sites (Y-axis). 
Each blue dot on the graph represents one exon 
bound to Caprin-1, with the diagonal (dashed) and 
trend (solid) lines also represented. The Pearson’s R² 
value for correlation is 0.25. 
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the comprehensive annotation, both obtained from Gencode Release 24 [46], with the 

STAR v2.5.1 [38] aligner with the options:  
–outSAMstrandField intronMotif 

--outFilterIntronMotifs RemoveNoncanonical 

--twopassMode Basic 

The resulting alignments were processed by the rMATS v3.2.5 [48] software  

for the identification of splicing events at exon-level. Our results indicate the presence 

of 1058 differential splicing events between the Caprin-1 e 

GFP conditions (Table 4), with the most common class being 

the exon-skipping type of splicing event (652 events 

identified), but we also identified a high incidence of intron 

retention events (191). Other events were also identified, 

albeit in smaller number. The same alignments were also 

used as input for the StringTie [49,82], which allows the 

reconstruction of potential transcripts existing in the analyzed 

libraries. For this step, we used the reference guided 

assembly approach (-G option), using as basis the 

comprehensive annotation from Gencode Release 24. We 

then proceeded to compare the resulting transcripts from the 

StringTie assembly with the reference annotation using the 

gffcompare algorithm. Our results indicate that, from the 

199,169 transcripts existing in the reference, we were able to 

recover 199.103 with our assembly using “exact match”. 

Additionally, we also identified 12,484 potential novel 

isoforms and 875 unknown transcripts (Table 5), both which 

could represent novel isoform/transcripts specific to stress 

response and/or stress granule induction. Manual 

assessment via visualization on UCSC’s GenomeBrowser 

revealed that some of those isoforms showed and elongation 

in their 5’UTR (Figure 16), which can be related to the 

formation of structures of the IRES (internal ribosome entry 

site) which would affect the translational regulation of the 

Table 4. Number of splicing 
events identified by rMATS 
The number of alternative 
splicing events at exon-level 
identified by rMATS divided 
by class  

Table 5: Total number of 
transcripts assembled by 
StringTie divided by class. 
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transcript within the stress granules, as has been previously demonstrated in the 

literature [15]. 

 
 

Conclusions 
 

In summary, our results show that Caprin-1 is an RNA-binding protein that 

has a preference for binding to exonic regions of processed messenger RNAs 

(mRNAs) located primarily in the coding sequence (CDS) and 3’ untranslated (3’UTR) 

portions of the transcript. Furthermore, Caprin-1 target genes in stress granules are 

enriched in transcripts coding for other RBPs which are, in turn, associated with protein 

complexes responsible for regulation metabolic pathways and control of cellular cycle. 

In addition, we also identified key genes targeted by Caprin-1 that are located within 

major metabolic pathways (such as cell cycle control, cancer -related pathways and 

immunological response pathways) that are either activated or repressed after 

induction of stress granules by ectopic expression of Caprin-1. 

Our results for the prediction of the binding motif revealed that Caprin-1 has 

a preference for binding to structured RNA regions rich in GG repeats, which are 

capable of assembling in secondary RNA structures called G-quadruplex. We also 

identified that Caprin-1 binding sites are enriched in target sites for a group of 6 

 
Figure 16: Comparison between the transcripts assembled by StringTie and the Gencode V24 
comprehensive annotation. The image represents a portion of the 5’UTR region of the SAMD11 
gene. At the top, in black, are the transcripts assembled by StringTie from the Caprin-1 and GFP 
libraries. At the bottom, in blue, are the transcripts annotated by the Gencode V24 comprehensive 
gene annotation. All the known isoforms were found by StringTie (with the corresponding ENST 
annotation), with the addition of 2 novel isoforms (MSTRG.173.1 and MSTRG.173.2), both of which 
show an elongated 5’UTR. 
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microRNAs, which at the same time are bound to Caprin-1 and are upregulated in the 

RNA-seq. When taken together, these results suggest that Caprin-1 binds to specific 

RNA structures in its targets, blocking the access of the microRNA to mRNA target site 

and, therefore, promoting an increase in the overall mRNA abundance and stability 

(Figure 17). However, our results cannot define the actual effects of Caprin-1 blockage 

of the microRNA target sites, requiring further experiments and more in-depth 

exploration of this possible regulatory mechanism in order to fully comprehend the 

biological process by which Caprin-1 regulate its target mRNAs. 

 

 
Figure 17: Proposed mechanism for Caprin-1 RNA-regulatory mechanism. Schematic drawing 
of the Caprin-1 regulatory mechanism for mRNAs that can be inferred from the results presented in 
the current study. (A) In physiological conditions, the microRNAs target the intended transcripts and 
promote mRNA cleavage and/or translational inhibition. (B) When Caprin-1 is present, however, it 
can recognize specific RNA secondary structures (G-quadruplexes) in the target transcripts and 
binds to its target, blocking the access of the microRNA to the target site and increasing the overall 
abundance of the mRNA. This could lead to either increased stability of the target, a long-term 
storage of the mRNA in the stress granule or a step in the transcript triage and production of stress-
response proteins. 
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Appendix 1 (Article) - BioFeatureFinder: Flexible, unbiased analysis of 
biological characteristics associated with genomic regions 
 

Abstract 
 

BioFeatureFinder (BFF) interrogates interesting genomic landmarks 

(including alternatively spliced exons, DNA/RNA-binding protein binding sites, and 

gene/transcript functional elements) to identify distinguishing biological features 

(nucleotide content, conservation, k-mers, secondary structure, protein binding sites 

and others). BFF uses a flexible underlying model, combining classical statistical tests 

with big data machine learning strategies, that uses thousands of biological 

characteristics (features) to interpret category labels in genomic ranges or numerical 

scales from genome graphs. Our results show that BFF provides a reliable analysis 

platform for large-scale datasets, capable of recovering several well-known features 

from the literature for RNA-binding proteins as well as uncovering novel associations 

for 112 eCLIP-seq datasets. BioFeatureFinder is freely available at 

https://github.com/kbmlab/BioFeatureFinder/. 

 

Background 
 

The emergence of high-throughput sequencing technologies led to an 

increase in the magnitude of datasets available for researchers, and multiple types of 

analysis were built based on these technologies [83]. These strategies can be applied 

to identify protein binding sites (ex. ChIP [84]/CLIP-seq [85]), alternative splicing (AS) 

events [86], differentially expressed genes [87], detection of SNPs [88] and a multitude 

of other applications [89,90], resulting in large sets of genomic coordinates (ex. Binding 

sites, AS exons, polymorphisms). This type of result is particularly challenging to 

interpret from a biological perspective and is time-consuming. Several approaches 

have been used for characterization of sets of genomic coordinates and for the 

identification of enriched characteristics (features) in these datasets, especially when 

dealing with results of ChIP-seq or CLIP-seq experiments [90–94]. However, several 

of the most commonly used tools in these analyses focus on particular aspect of the 

target regions in their process, such as structure models or sequence motifs [40,91,93]. 

Although these tools provide valuable insight in which characteristics are enriched in 
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the genomic regions associated with these datasets, there is a clear deficiency in 

computational tools capable of performing more comprehensive analyses and 

integrate multiple types of sources of variation. 

From previous studies, specific features were shown as contributors:  GC 

content [95–97], nucleotide composition [95], length [95,97], CpG islands [97,98], 

conservation [99], microRNA [70,100] and protein-binding [101] target sites, 

methylation sites [102], single nucleotide polymorphisms (SNPs) [103], microssatellite 

regions [104] and also the aforementioned sequence motifs and structural 

characteristics of these regions. However, due to the biological variability occurring 

within the genome sequences [105–107], we must also consider that sets of genomic 

regions are also composed of a heterogeneous population of sequences, each with its 

unique profile of characteristics. While not all these characteristics are enriched and/or 

important for creating a profile for the whole region groups, it is possible that a 

combination of many factors is responsible for separating groups of genomic regions 

and/or determining the binding of a protein to that particular region. 

In addition to the identification of enriched features in a set of genomic 

coordinates, BioFeatureFinder can help discover how these characteristics interact 

with each other. This is useful to create an accurate map of which feature are more 

important for explaining differences between the input genomic regions and the 

remaining regions of the genome. In order to achieve that, we applied machine-

learning strategies, which are already widely used in other transcriptomic, genomics 

and system biology studies [101,108–111]. Instead of analyzing the genomic regions 

as individual data-points, we analyzed the cumulative distribution functions that are 

drawn from the population of regions for each of the features described above, then 

proceed to apply binary classification algorithms in order to identify which 

characteristics are more important for group separation. This type of strategy has 

already been applied in other studies [112], but it is applied for the first time in the 

context of classification of feature associated with groups of genomic regions in this 

scale. Furthermore, we also aimed at developing a widely flexible tool that can use 

data available from multiple public databases such as UCSC GenomeBroswer [51], 

Ensembl [113], GENCODE [46], ENCODE [114] and others, as well as capable of 

performing in an unsupervised and unbiased way. 
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Results and Discussion 
 

We present BioFeatureFinder (BFF), a flexible and unbiased algorithm for 

discovery of distinguishing biological features associated with groups of genomic 

regions. We define “biological features” as the set of characteristics that can be used 

to distinguish regions from other sections of the genome. These features can include, 

but are not limited to: nucleotide content, length, conservation, k-mer occurance, 

presence of SNPs, protein-binding sites, microRNA target sites, methylation sites, 

microsatellite, CpG islands, repeating elements, protein domains and others.  

Our algorithm is capable of analyzing the distribution of values for each of 

those features in a set of genomic regions of interest, then the algorithm compares this 

distribution with a randomized background in order to identify which features represent 

the most distinguishing characteristics associated with the input dataset and ranks 

them by importance values. This tool can be used as an important information source 

for scientists, using the data provided to generate new and more accurate hypothesis 

and also guide wet-lab experiments more efficiently. Also, BFF can be used in large-

scale computational projects, being capable of analyzing hundreds of datasets with 

ease and produce consistent results. 

For the first time, we apply big data strategies in an unbiased way, 

effectively reducing observer bias, to take advantage of the large amounts of data 

produced by high-throughput experiments, such as CLIP/CHIP/RNA/DNA-seq, and 

data deposited on publicly available databases (UCSC GenomeBroswer [51], Ensembl 

[113], GENCODE [46], ENCODE [114] and others) to extract a set of significant 

informations from genomic regions in order to uncover latent relationships inside 

datasets. First, we present the framework used by BFF in its analytic process, with an 

overview of the input data types, workflow and output. Second, as a control, we applied 

BFF to the RBP (RNA-binding protein) RBFOX2 eCLIP-seq (enhanced crosslink 

immunoprecipitation RNA-sequencig) data, since this protein is widely studied and it’s 

binding sites are well-characterized in the literature [34,39,115,116]. Finally, to 

showcase potential applications of the algorithm, we analyzed 112 eCLIP datasets 

obtained from human cell lines, which are available from ENCODE database, 

identifying biological features associated with binding sites of all RBPs and their 

respective importance scores.  
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The BioFeatureFinder workflow 
 

BioFeatureFinder focuses on flexibility, consistency and scalability. It is 

python-based with scalable multi-thread capabilities, being memory-friendly and 

compatible with most commonly used UNIX-based systems (such as CentOS, Ubuntu, 

openSUSE and macOS) it can be used with a wide-range of hardware, ranging from 

notebooks to HPC clusters. In Figure 1 we show a schematic representation of the 

BFF workflow. The kinds of inputs required for using the algorithm are: a set of BED 

coordinates with genomic regions of interest (ex. CLIP/CHIP-seq binding sites, 

promoter regions for differentially expressed genes, splice sites for alternatively spliced 

exons/introns and others), compatible fasta files with sequences (ex. Reference 

genomeranscriptome), for increased accuracy it is also possible to use a GTF/GFF file 

with regions annotations (exons, introns, CDS, UTR and others). Optionally, to 

increase the number of features analyzed by using BED files with genomic regions of 

biological features (ex. microRNA sites, methylation sites, CpG islands, protein binding 

sites, SNPs and mutations, repeating elements and multiple bigWig files with 

phastCons scores for multiple alignment.   

 
The analytic process of the algorithm is divided in 2 sub-sections: Build 

/datamatrix and Analyze features. Building the datamatrix starts with selecting an 

appropriate background for comparison of the input regions of interest, which is 

obtained using the shuffle function of bedtools. Although not required, the usage of a 

reference annotation improves accuracy of the algorithm by guiding the 

included/excluded background regions. The total number of background regions (B) is 

 
Figure 1: Schematic overview of the BioFeatureFinder workflow. 
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proportional to the number of regions in the input list (I) of bed coordinates, which can 

be represented by the following formula: � = � ∗ �, where N is an integer variable that 

can be set as one of the options (default = 3, i.e. The number of background regions 

is 3 times the number of input regions). These two sets of regions are then used to 

produce a datamatrix. Each bed entry in the regions is converted into a line in the 

matrix, and each feature corresponds to a column. Every feature is represented as 

numeric value, which can be a continuous, discrete or boolean variable. For obtaining 

these values, BFF uses multiple freely available tools such as bedtools [117], for 

nucleotide content and counting intersections with features in bed format, 

bigWigAverageOverBed [118], for extraction of conservation scores, EMBOSS 

wordcount [119] for k-mer counting, Vienna’s RNAfold [120] for RNA secondary 

structure MFE (minimum free energy) values and QRGS Mapper [121] for G-

quadruplex scoring. Designed with a modular concept, new functions and sources of 

data can be easily added by researchers to answer project-specific questions. 

Once the matrix is created, the algorithm applies a two-step analysis for 

identifying important features in the dataset. The first step is to analyze each feature 

in the matrix with a two-sample Kolmogorov-Smirnov test (KST) implementation by 

SciPy [122], comparing the distribution of values of the regions of interest (group 1) 

with background regions (group 0). Aside from a statistical tool for identification of 

significant features, it’s also possible to use KST as a tool for feature selection, 

extracting statistically significant features which are correlated with differences 

between the groups, a strategy which has been shown to improve classification 

performance on high-dimensional data [123–125]. As an additional benefit, filtering the 

features by KST p-values also reduces the size of the datamatrix used in the following 

classification step, which can be helpful in reducing both computational time and 

resources used in the analyses. The second step involves the usage of a Stochastic 

GradientBoost Classifier (St-GBCLF) from Scikit-learn [126], which is capable of 

naturally handling mixed datatypes, is fairly robust to outliers and possesses reliable 

predicitive power. Additionally, this method has been shown to be preferable for high-

dimensional two-class prediction [127,128]. Also, as other ensemble methods, St-

GBCLF is less likely to suffer from overfitting [129]. This stage will use the feature 

values extracted from the matrix (which can be filtered, or not, by KST) for each group 

(0, background, and 1, input) and calculate feature importance, a score which 

measures how valuable each feature was in the decision-making process of the trees 
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[130]. Higher importance values indicate that the feature considered to make key 

decisions and, therefore, can be inferred to have more biological significance. In order 

to address the issue of class imbalance problems that are inherent to these types of 

analysis [128,131], our algorithm draws a random sample from the background (group 

0) that is the same size as the input dataset (group 1), increasing the overall accuracy 

of the classifier. However, in order to address the biological variability, our algorithm 

performs multiple classification runs, with each time drawing a new sample of 

background regions. The final classification score, then, is calculated as an average of 

importance values obtained in each classification run. 

Both classification and statistical results are compiled into a table, which 

allows easy interpretation. Additionally, graphical representations of each feature are 

outputted in both cumulative distribution function (CDF) and kernel density estimation 

(KDE) plots. This allows visualization of the distributions found in the input and 

background, and leads to conclusions on how the distribution is shifted from the 

reference. Additionally, classifier importance and KS test values are output in 

barcharts. Lastly, the classifier performance is measured by several parameters: 

accuracy, sensitivity, sensibility, positive predictive value, negative predictive value, 

adjusted mutual information (aMI), mean squared error (MSE) values and receiver 

operating characteristic (ROC) and precision-recall (P-R) area under curve. These 

metrics are outputted in both table (with scores) and graphical (barcharts and curves) 

formats. Taken together, these outputs can be used for exploration of the data and 

identification of features which can be of significance in a biological context. 

 

Analysis of RBFOX2 eCLIP dataset 
 

In order to evaluate the performance of our algorithm, we analyzed the 

binding sites in the group of targets RNAs for the RNA binding protein RBFOX2, 

available from eCLIP experiments deposited in ENCODE database. We found 922 

statistically significant biological features by the KS test, which were used in the 

classification step. The classification algorithm achieved a satisfactory performance, 

with an overall 91% mean accuracy score, 88% positive predictive value (P.P.V.), 93% 

negative predictive value (N.P.V.), 93% sensitivity, and 89% specificity. Overall this 

means that, in average, our classifier provides accurate predictions 9 out of 10 times. 

Also, we’ve obtained average scores for adjusted mutual information (aMI) and mean 
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squared error (MSE) of 0.56 and 0.09 respectively. Both receiver operating 

characteristic (ROC) and Precision-Recall (P-R) area under curve (AUC) were 

measured at 0.97 (Figure 2A, Additional File 1). Among all statically significant 

features, our approach identified 16 features which had a relative importance score of 

at least 10% (i.e. 1/10 of the importance score of the highest scoring feature), 

containing both known features from the literature, such as conservation of the binding 

site and an enrichment for the GCAUG k-mer, which is the known binding motif for this 

protein, but we also identified novel features, such as higher GC-content of binding 

sites, lower MFE for RNA secondary structure, higher G-quadruplex score and overlap 

of binding sites with RPS5 and other RBPs (Figure 2B, Additional File 2). 

 
We identified the enrichment of the GCAUG 5-mer as one of the major 

features that characterized the RBFOX2 eCLIP binding sites by both KS test (p-value 

< 0.001) and variable importance in classification. Our analysis indicated that 32.83% 

of binding sites identified in RBFOX2 eCLIP contained at least 1 repetition of the 

GCAUG motif, while only 5.69% randomized background regions exhibited at least 1 

instance of this motif (Figure 3A). Additionally, we also found significant enrichment for 

the UGCAUG 6-mer, which occurred in 21.87% of binding sites in contrast with 1.67% 

of background regions (Figure 3B). Both of these results are consistent with RBFOX2 

 
Figure 2: BioFeatureFinder accurately identifies biological features associated with RBFOX2 
binding sites. A. Bar charts for mean classifier performance scores for RBFOX2 eCLIP sites (P.P.V.: 
Positive predictive value, N.P.V.: Negative predictive value, aMI: Adjusted mutual information, MSE: 
Mean squared error, ROC AUC: Receiver operating characteristic area under curve, P-R AUC: 
Precision-Recall area under curve).; B. Horizontal bar chart showing the importance score (white) and 
Kolmogorov-Smirnov test value (grey) for the top 10 features associated with RBFOX2 sites. The 
black bars represent the standard deviation found in each scoring parameter. 
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nucleotide sequence motif enrichment and occurrence in binding sites [39,116], 

indicating that our algorithm successfully recovered known features. 

 

 
Interestingly, we identified several major components associated with RNA 

secondary structure among the important features for RBFOX2 binding sites. GC 

content had the second highest importance value from all features, with RBFOX2 

binding sites exhibiting a higher distribution of GC than randomized background 

regions, with the majority of binding sites having a range of 50% to 80% GC content in 

their sequences while background regions were more evenly distributed between 20% 

to 60% (Figure 4A). It is known that RNA regions with higher GC content tend to have 

a more stable secondary RNA structure than regions with lower GC content [132], also 

GC content has already been associated with alterations in splicing patterns by 

affecting pre-mRNA secondary structure [133], which is a known mechanism for 

RBFOX2 splicing regulation [39]. Although the importance of RNA secondary structure 

as a guiding factor for RBP binding has already been determined by previous studies 

[40,134,135], our finding shows this association occurs in RBFOX2, since we identified 

that minimum free energy (MFE) for RNA folding is a major feature for distinguishing 

the protein binding sites from randomized background. We identified that 70.31% of 

binding sites had a MFE lower than 0, indicating the possible existence of a localized 

secondary structure, while only 47.52% of background regions exhibited similar 

 
Figure 3: RBFOX2 binding sites are enriched for the (U)GCAUG motif. A-B. Cumulative 
distribution function curves for GCAUG (A) and UGCAUG (B) k-mer sequences. The Y-axis shows 
the cumulative distribution of samples and the X-axis indicates the number of occurrences for each 
k-mer. The solid lines represent randomized background regions while dashed lines represent 
RBFOX2 binding sites.  
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behavior (Figure 4B). Additionally, we also identified that the presence of G-

quadruplexes, a specific type of secondary structure, appears to be enriched in this 

protein’s binding sites. Our analysis indicates that 53.29% of RBFOX2 binding sites 

had a positive score for their presence, in contrast with only 15.10% of background 

regions (Figure 4C). 

 
This result is particularly interesting because, although this feature was not 

previously associated with RBFOX2, it can be supported extensively by literature 

evidence. First, RBFOX2 has been described as a member of the RG/RGG family of 

  
 
Figure 4: RBFOX2 binds preferentially to structured RNA regions enriched in GC content. A-C. 
Cumulative distribution function curves for GC content (A), Minnimum Free Energy (MFE, B) and 
maximum G-quadruplex score (C). The Y-axis shows the cumulative distribution of samples and the 
X-axis indicates the values obtained for each feature. The solid lines represent randomized 
background regions while dashed lines represent RBFOX2 binding sites. D. 2-way Venn diagram 
showing the overlap between the number of peaks identified with the GCAUG k-mer and the ones 
with positive G-quadruplex score. 
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RNA-binding proteins, with arginine-glycine rich regions, known as RGG-box, which is 

responsible for RNA recognition [61]. Second, other proteins from this family have 

been shown to bind to RNA G-quadruplex by their RG/RGG regions [64]. Third, the 

existence of G-quadruplexes in intronic regions can have impacts on alternative 

splicing regulation [136,137]. Taken together, these results indicate that secondary 

RNA structure may play a bigger role in RBFOX2 targeting for binding sites than 

previously assumed, combining with the existence of the GCAUG motif for increased 

accuracy in target selection. This is further evidenced by the fact that 50.22% of binding 

sites containing GCAUG are also positive for the presence of G-quadruplexes (Figure 

4D). 

Lastly, the most important feature had not been shown previously and 

represents to overlap of RBFOX2 binding sites with RPS5 binding sites. We identified 

that 35.93% of RBFOX2 peaks had at least 1 nucleotide position in common with RPS5 

binding sites, which is significantly higher than the value of obtained for randomized 

background regions that scored less than 0.01% of overlap (Figure 5A). Although this 

association is novel, it can also be observed in another study which showed that 

CELF2-repressed exons were not only enriched for RBFOX2 in their downstream 

intron but also for RPS5 in HepG2 cell lines [138]. We also identified several other 

RPBs which had significant overlap with RBFOX2, including known splicing regulators 

and/or components of the spliceosome such as HNRNPM, EFTUD2, PRPF8, QKI, 

HNRNPK and PCBP2 (Additional File 2). Using data available from BioGrid 3.4 [139] 

and STRINGdb 10.5 [41], we found that these targets were associated to RBFOX2 by 

a curated protein-protein interaction network (Figure 5B), with RBFOX2 directly 

interacting with QKI [140–143] and HNRNPK [143], the latter, in turn, has been shown 

to interact with RPS5 [144]. Furthermore, when analyzing the eCLIP data for RPS5 

with our algorithm we identified that 67.17% of binding sites showing overlap with 

RBFOX2 binding sites, 29.5% of them had at least 1 repetition for the GCAUG motif 

and 21.14% at least 1 instance of the UGCAUG motif, however we found little 

indication of RPS5 having preferences for binding to any type of secondary RNA 

structure (Additional Files 2, 3 and 4). 
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Taken together, our results indicate the existence of a combinatorial 

mechanism of both RNA structure and nucleotide sequence to direct binding specificity 

to either RBFOX2 or RPS5, especially since the former is a RBP associated with 

regulation of alternative splicing and the latter is a component of the small subunit of 

the ribosome associated with translational regulation. However, our analysis is limited 

to identifying the similar and diverging characteristics of their binding sites. For a more 

complete understanding of the relationship between RBFOX2 and RPS5, further 

experiments would be required to determine if they indeed have different molecular 

mechanisms and the differences on the target sequence is what determine the binding 

specificity or if there are novel biological functions for either RBFOX2 or RPS5 yet to 

be discovered. 

 

Identification of important features for 112 RNA-binding proteins binding sites 
from ENCODE 

 
To showcase potential applications of BioFeatureFinder in high-throughput 

studies, we applied our algorithm to 112 eCLIP-seq datasets available at ENCODE. 

First, we identified the preferential binding regions for each RNA Binding Protein (RBP) 

  
 
Figure 5: Overlapping RBPs identified as important features are connected to RBFOX2 via a 
protein-protein interaction (PPI) network. A.Cumulative distribution function curves for RPS5 
overlapping binding sites with RBFOX2. The Y-axis shows the cumulative distribution of samples and 
the X-axis indicates the number of occurrences for each overlap. The solid lines represent randomized 
background regions while dashed lines represent RBFOX2 binding sites. B. PPI network created 
based on interactions drawn from BioGrid 3.4 and StringDB 10.5. Each node represents a different 
RBP and the lines represent known protein-protein interactions between them. 
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in the dataset (Figure 6A, Additional File 6), with our results indicating that 59.8% of 

the proteins analyzed had preferential binding to the intronic regions. The second most 

frequent region was 3’UTR (15.2%), followed by CDS (14.3%), 3’ splice site (7.1%), 5’ 

splice site (1.8%) and 5’UTR (1.8%). Among the identified preferential regions for the 

RBPs, some were already known from the literature (such as U2AF1 [145], U2AF2 

[145], SF3A3 [146], PRPF8 [147], FMR1 [148], PUM2 [149], TIA1 [150], TARDBP [151] 

and RBFOX2 [39]), which demonstrates that our algorithm correctly identified their 

binding region preferences. We used this information to generate the appropriate 

background for each RBP. Overall, our algorithm performed consistently with an 

average accuracy of 0.9 and average ROC and Precision-Recall AUCs of 0.95. The 

biggest variance encountered was with the aMI (adjusted mutual information) scores, 

with an average of 0.57 and standard deviation of 0.16 (Figure 6B, Additional File 2). 

We also observed a strong correlation (Pearson’s R² ≥ 0.95) between aMI scores and 

Accuracy (Figure 7A) and MSE (Mean Squared Error, Figure 7B), indicating that RBPs 

with higher aMI scores tend to reach a higher degree of resolution of the binding site 

features. This can be inferred to be a consequence of the binding characteristics of the 

RBPs, with some proteins, as TARDBP, possessing a strict set of characteristics that 

guide their binding to specific targets, while other RBPs, as SF3B1, appear to have a 

higher degree of flexibility in their binding target selection (Additional File 2). 

 

  

Figure 6: BioFeatureFinder performs consistently and accurately for 112 RBPs that bind to 
multiple transcript regions. A. Pie chart showing the percentage of RBPs that had preferential 
binding to each transcriptomic region. Each slice of the chart corresponds to a different region (Intron, 
3’UTR, CDS, 3’SpliceSite, 5’UTR, 5’SpliceSite) and the percentages correspond to the number of 
RBPs which had higher number of binding sites to that region. B. Bar charts for mean classifier 
performance scores for 112 eCLIP sites (P.P.V.: Positive predictive value, N.P.V.: Negative predictive 
value, aMI: Adjusted mutual information, MSE: Mean squared error, ROC AUC: Receiver operating 
characteristic area under curve, P-R AUC: Precision-Recall area under curve).The black bars 
represent the standard deviation found in each scoring parameter. 
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Overall, we identified 3 major classes of features that were important for 

determination of binding site selection for this group of RBPs: K-mer enrichment 

(motifs), existence of secondary RNA structure and overlap with other RBPs (Figure 

8A, Additional File 7). All the 112 RBPs have at least one of these as an important 

feature for classification of their binding site with 10% or more relative importance. 

Furthermore, we also identified that the majority of RBPs (56.25%) have a combination 

of these three factors as important features for determination of binding site specificity. 

We identified that 109 (out of 112) RBPs showed some degree of overlap with at least 

1 other RBP, which reflects the characteristic of RBPs working in protein complexes to 

perform biological functions [152,153]. We recovered information for known protein 

complexes, such as FMR1-FXR1-FXR2 [62,141] (Figure 8B), identifying that 68.32% 

of FXR1 binding sites overlap with FXR2 binding sites and 58.30% overlap with FMR1 

binding sites. Interestingly the reciprocal did not hold true, with only 19.3% of FMR1 

and 21.64% of FXR2 binding sites having overlap with FXR1 (See Additional File 4), 

which might reflect the molecular dynamics involved in the formation of the complex 

[62]. In addition, we also identified overlaps in the binding sites of RBPs without any 

previous association reported, such as the the case of AGGF1 which had 40.20% and 

40.32% of overlap with TNRC6A and GTF2F1, respectively (See Additional File 4). 

While this information may indicate that they are only binding to the same targets in 

 
Figure 7: Classifier overall accuracy significantly improves for RBPs with strict set of 
characteristics defining their binding sites. A-B. Scatter plot showing the relationship observed 

between aMI scores (X-axis) and overall Accuracy (A) and MSE (B, Y-axis). In both cases, a high 

degree of correlation was identified by Pearson’s R² (>= 0.95). 
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similar positions, it could also suggest the existence of some biological relationship 

between these proteins which is yet to be uncovered. 

 
Analysis of K-mer enrichment revealed that 74 RBPs had at least 1 K-mer 

with 10% or more relative importance (See Additional File 7), although that is an 

expressive number (66.07%) it also shows that the existence of a nucleotide sequence 

is not a requirement for directing the binding of an RBP to its target. We managed to 

recover several well-known examples from the literature, such as TARDBP’s GUGU 

repeats [154] which are present in 88.31% of binding sites (Figure 8C). Other known 

examples include: QKI [155] (ACUAA in 56.72% and UAAC in 67.93% of binding sites), 

PUM2 [75] (UGUA in 72.82% of binding sites), PTBP1 [156] (UCUU, 80.20%), 

HNRNPC [157] (UUUU, 62.80%), HNRNPK [158] (CCCC, 87.01%), KHDRBS1 [159] 

 
Figure 8: RNA-target selection by RNA-binding proteins is a multi-factorial biological process 
requiring cis- and trans-regulatory factors. (A) 3-way Venn diagram showing the overlap between 
RBPs identified with at least 1 K-mer enrichment (solid line), secondary RNA structure (dotted) and 
overlap of the binding site with other RBPs (dashed) as an important feature for characterization and 
group classification of their binding sites. B-D. Cumulative distribution function curves for FXR1 
binding site overlaps with FMR1 and FXR2 (B), GUGU k-mer enrichment in TARDBP binding sites 
(C) and EWSR1 binding sites maximum G-quadruplex score (D). The Y-axis shows the cumulative 
distribution of samples and the X-axis indicates the values obtained for each feature. The solid lines 
represent randomized background regions while dashed lines represent RBPs binding sites. 
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RBP Motif Binding sites (%) Background (%) Difference
FKBP4 GGGG 72.19 16.89 55.30
DDX42 GGGG 70.55 17.61 52.94
NKRF GGGG 71.31 19.36 51.95
XRN2 GGGG 70.04 18.37 51.67

TRA2A GAAGA 60.51 11.25 49.26
DDX59 CCCC 66.73 19.12 47.61
SRSF7 GUGUG 53.35 6.95 46.40
PCBP2 CCCU 72.58 26.28 46.30
GRSF1 GGGG 64.55 18.44 46.11
EIF4G2 GUGUG 52.05 6.73 45.32
SRSF9 GGAG 74.40 31.73 42.67

SERBP1 CGCC 54.26 11.74 42.52
KHSRP UUGU 68.85 26.43 42.42
SLTM GGGC 62.28 20.34 41.94
FUBP3 UUGU 66.28 24.52 41.76

AKAP8L GGGG 59.15 18.42 40.73
GEMIN5 GCCG 47.84 8.72 39.12

FASTKD2 GGGG 54.44 16.66 37.78
DKC1 GUGUG 41.66 4.32 37.34

SRSF1 GGAG 69.00 31.84 37.16
TAF15 GAGG 63.55 28.59 34.96
DDX3X GCGG 54.13 22.04 32.09

HNRNPM UGUG 56.56 24.54 32.02
HNRNPA1 UUAG 49.01 17.26 31.75
SUPV3L1 GGGG 45.77 14.67 31.10
ZRANB2 GGUG 50.04 19.95 30.09
CPSF6 GAAGA 41.02 11.68 29.34
AARS GGGG 44.32 15.54 28.78
RPS11 GCGG 31.60 3.16 28.44
U2AF2 UUUC 60.54 32.92 27.62

HNRNPU GGGG 44.03 16.45 27.58
AGGF1 CACAC 32.67 5.73 26.94
DDX6 GGGG 41.61 16.99 24.62
HLTF GAAA 50.00 25.64 24.36

SAFB2 GAAG 50.00 26.87 23.13
SFPQ UGUG 50.94 28.25 22.69
CDC40 GGGG 40.11 17.55 22.56
SUGP2 UCUU 48.95 27.03 21.92
SUB1 UGUG 43.66 22.33 21.33

DGCR8 GGGG 31.91 10.76 21.15
XRCC6 CUGG 50.21 29.39 20.82
PRPF8 AGGU 46.67 26.34 20.33
SLBP GAGC 32.06 11.85 20.21
LSM11 GCUG 43.18 23.89 19.29  

Table1. Nucleotide motifs identified by BioFeatureFinder for 48 RNA-binding proteins. RBPs 
which had nucleotide sequences (motifs) identified as important features were analyzed for 
percentage of binding sites (BS) which had the identified motif in comparison with amount sampled 
from background (BG). The differences (Diff) in percentage percentage points (Diff = BS% – BG%) 
are also represented. 
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 (UAAA, 80.08%) and TIA1 [160] (UUUU, 41.78%). Also, our algorithm identified 
motifs for other 47 RBPs, which were found in ~30% of binding sites and had at least 
15% difference when compared to the background (Table 1, See Additional File 3). 

Lastly, our algorithm also identified 74 RBPs which had secondary RNA 

structure (either by lower Minimum Free Energy, MFE, calculated by Vienna’s 

RNAfold, or by a higher G-quadruplex score, from QGRS Mapper) as an important 

feature for classification (See Additional File 7). As an example, our algorithm identified 

an increased G-quadruplex score for EWSR1 binding sites, which is a known RBP that 

binds to these types of RNA structures [161], with 61.95% of the sites exhibiting a 

positive score while only 15.79% of background regions showed the same behavior 

(Figure 8D). Another RBP we identified as a binding to secondary RNA structure is 

XRN2, which had 86.12% of binding sites possessing an MFE score lower than 0, while 

only 51.09% of background regions had values lower than 0. This particular RBP has 

been shown to bind to R-loop structures formed by G-rich pause sites associated with 

transcription termination [162], which is also in accordance to our findings for motif 

enrichment, as we found that XRN2 had 70.04% of binding sites containing a GGGG 

4-mer, while only 18.37% of background regions had the same 4-mer (Table 1). Other 

known examples from the literature we recovered include: FMR1, also known to bind 

to G-quadruplexes [64,163] and DDX3X, 

DDX6, DDX24 and DHX30, which are 

RNA-helicases. In addition, we also 

identified 34 RBPs which had positive G-

quadruplexes and 15 percentage points 

or more of difference when comparing 

against the background. From those, 20 

RBPs also exhibited an enrichment of GG 

repeats in their binding sites (Figure 9, 

Table 1, Additional File 5), which is a 

known characteristic for these structures 

[164], they are: AARS, AKAP8L, CDC40, 

DDX3X, DDX42, DDX6, DGCR8, 

FASTKD2, FKBP4, GRSF1, HNRNP, 

NKRF, SLTM, SRSF1, SRSF9, 

SUPV3L1, TAF15, XRCC6, XRN2, ZRANB2. 

 
Figure 9: RBPs with enrichment for GG 
repeats in their motifs also have higher G-
quadruplex scores. 2-way Venn diagram 
showing the overlap between the number of 
RBPs identified with the GG repeats in their 
enriched K-mers (dashed) and the RBPs with 
positive maximum G-quadruplex score (solid) 
as important features for group classification. 
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Conclusion 
 

Our results show that BioFeatureFinder represents an accurate, flexible and 

reliable analysis platform for large-scale datasets, while at the same time providing a 

way to control observer bias and uncover latent relationships in biological datasets. By 

considering each genomic landmark as a separate data point in a distribution, we 

developed a novel implementation, combining both statistical analysis and big-data 

machine learning approaches, to provide accurate representations of differences in 

sets of genomic regions and identify which characteristics contribute more for 

separating these groups. As demonstrated by our analysis of the RBFOX2 dataset, 

our algorithm managed to recover multiple characteristics known from the literature, 

including nucleotide sequences for binding motifs and infer protein-protein interaction 

from overlaps between binding sites. In addition, we also uncovered new associations 

that might link RBFOX2 to targeting specific RNA secondary structures to increase 

RBFOX2 binding specificity, a hypothesis that is strengthened by inferences from the 

literature from multiple sources.  

Furthermore, our analysis of 112 RNA-binding proteins CLIP-seq data from 

ENCODE also recovered several well-known features from the literature major 

characteristics that influence the targeting of these proteins. The results for this dataset 

indicate that RNA-target selection by RNA-binding proteins as a multi-factorial 

mechanism, demanding the existence of both cis- and trans-regulatory factors for 

increasing RBP affinity to target site. Amongst those features there are important 

factors as: existence of a particular set of nucleotide sequences (binding motif), 

accessibility of the target site via RNA secondary structure and also the neighboring 

RBP context (i.e. other proteins binding to neighboring/same region) contribute to 

determining if a particular RBP will bind to its target site. Additionally, our results 

suggest that the binding of RBPs to their targets is heavily dependent of the cellular 

context, with some proteins relying on fewer features for directing their binding 

specificity (i.e. the presence of a sequence is enough for recognition by the RBP), while 

other proteins require a more complex targeting context with multiple features involved 

in the binding of the RBP (i.e. requiring a specific sequence, accessory proteins nearby 

and a specific RNA structure). Taken together, our results not only deepen the 

knowledge of how these proteins select their targets in a broader scenario, but also 



80 

 

demonstrate how our approach can be applied to large-scale datasets from high-

throughput experiments with a high degree of reproducibility.  

Although the present study focused on the applications of BioFeatureFinder 

for RNA-binding proteins, our algorithm can be applied for any type of genomic 

landmark. Some examples of regions that could be analyzed when using BFF include: 

splicing sites for alternatively spliced exons (or whole exons), target sites for 

microRNAs, binding sites for DNA-binding proteins (for example, ChIP-seq data), 

promoter regions from differentially expressed genes, microsatellite/genomic markers, 

SNPs, whole transcript regions (5’UTR, 3’UTR and CDS) and any type of dataset that 

could be converted into a BED format. 

 

Materials and methods 
 

Extraction of information on biological features and RNA-binding proteins 
binding sites 

 

We downloaded tracks from biological features associated with genomic 

features from UCSC Genome Browser [51] for human genome hg19, downloading 

tracks for conservation scores (phastCon scores in bigWig format), benign and 

pathological CNVs, common and flagged SNPs, TS microRNA target sites, CpG 

islands, layered H3K4Me1/3 and H3K27Ac and microsatellites. Additionally, we 

obtained data for 112 RNA-binding proteins (RBP) available from ENCODE [114] 

eCLIP experiments (Additional File 8: Table S1), downloading the bed files containing 

the narrowPeaks obtained for hg19 (Additional File 8: Table S2). Additionally, our 

algorithm is integrated with BedTools [117] (intersect, getfasta and nuc functions), 

UCSC’s bigWigAverageOverBed [118], EMBOSS wordcount [119], Vienna’s RNAfold 

[120] and QRGS Mapper [121]. Otherwise stated, all tracks were either downloaded or 

converted into BED format. We used GENCODE’s [46] GRCh37.p13 as reference 

genomic sequence along with release 19 of the comprehensive annotation.  

 

Preferential region identification and background selection 
 

To identify preferential binding regions for each dataset analyzed, we 

separated the transcripts in 6 major regions: 5’UTR, 3’UTR, CDS, introns, 5’ splice 
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sites and 3’ splice sites. We then used bedtools intersect to count how many 

occurrences of RBP binding sites appeared in each of these regions. These values 

were normalized by Z-score and the highest scoring was selected as the preferential 

binding region. Randomized background was generated using bedtools shuffle (with -

excl, -incl, -chrom and -noOverlapping options), using the GTF reference containing 

the preferential binding region (or regions) to guide the selection of regions, excluding 

overlaps with input regions (binding sites) and other randomized background regions. 

In cases of RBPs which had low difference in binding site z-scores (less than 10%) in 

their highest scoring regions, we selected the 2 highest scoring regions and used both 

as references for background generation. For each RBP dataset, we generate a 

randomized background regions 3 times the number of input regions (binding sites). 

 

Assembly of a data matrix with biological features 
 

The genomic regions (binding sites and background) and their associated 

biological features are converted in a numerical matrix, where each line is one region 

and each column is one of the biological features associated with that position. To 

convert biological features in numerical data, we used a combination of multiple 

freely available software. For most features we use BedTools intersect (-s and -c 

options) to count the number of occurrences of that feature in the corresponding 

region. For obtaining nucleotide sequence information we used a combination of 

BedTools getfasta and nucBed (both with -s option). For conservation score we used 

the tool bigWigAverageOverBed to obtain the average conservation score of covered 

bases in the region. For k-mer analysis, we used EMBOSS wordcount for counting 

the number of occurrences of each 4-mer, 5-mer and 6-mer in each region. For RNA 

structure analysis, we used both Vienna’s RNAfold to calculate the lowest possible 

MFE (with -g option) and QGRS Mapper to calculate the maximum non-overlapping 

G-quadruplex score for each region. All operations were performed taking 

strandedness into consideration. 

 

Group selection and statistical analysis of features 
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For the analysis process, input and background regions are separated in 

groups (1 and 0, respectively). This is done by using the unique identifier created 

during the datamatrix assembly and stored as the “name” field in the BED file 

generated. For all features in the matrix, we performed Kolmogorov-Smirnov 

comparing the cumulative distribution function of the input regions (group 1) with the 

background (group 0) to filter out the non-significant features between the groups. 

Features with a q-value ≤ 0.05, adjusted by Bonferroni, were selected for further 

analysis using the classification algorithm. This filtering aims to provide significantly 

different features between the two groups. Additionally, to minimize the noise 

introduced by non-significant features, while at the same time reducing the 

computational time required for the classification step and the overall required time for 

the analysis. 

 
Classifier and feature importance estimation 

 

To evaluate the importance of each feature’s ability in separating the 

genomic region groups we chose to use a stochastic gradient boost classifier python 

implementation from Scikit-learn [126]. The classifier was used with the following 

parameters: number of estimators = ‘1000’; learning rate = ‘0.01’; max depth = ‘8’; loss 

= ‘deviance’; max features = ‘sqrt’; minimum number of samples in each leaf = ‘0.001’; 

minimum number of samples to split = ‘0.01’; random state = ‘1’; subsample = ‘0.8’. 

Importance values for each feature are calculated at every run, with the final value 

representing the mean scores and their corresponding standard deviation. The same 

scoring strategy is employed for relative importance score (percentage in relation to 

the most important feature), accuracy, positive predictive value, negative predictive 

value, sensitivity, sensibility, ROC and Precision-Recall AUCs. 

 

Availability 
 

The BioFeatureFinder software is available for download at GitHub [165] 

and is also included as Additional file 9 for archival purposes. 
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Supplementary material 
 

Additional File 1: Deviance, ROC and PR curves for RBFOX2 

 

Additional File 2: Classifier Metrics and Results for all 112 RBPs 

 

Additional File 3: K-mer enrichment scores and percentages 

 

Additional File 4: Overlap percentages 

 

Additional File 5: Structure percentages 

 

Additional File 6: Heatmap with Z-score for binding region preference 

 

Additional File 7: RBP classification for Kmer/Struct/Overlap and combinations 

 

Additional File 8: List of accession numbers for RBPs from ENCODE 

 

Additional File 9: BioFeatureFinder v1.0 algorithm  

 

All files are available at: 

https://drive.google.com/open?id=1lL6KC6BMwUN2xfP9XVZfgOf20-97jEAa 
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Annexes 

 
Declaração de bioética e biossegurança 
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