

RENATO MILANI

MAPEAMENTO DE VIAS DE SINALIZAÇÃO ENVOLVIDAS NA RESISTÊNCIA A QUIMIOTERÁPICOS EM CÉLULAS LEUCÊMICAS: UMA ABORDAGEM COMPUTACIONAL

Campinas 2014

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA

RENATO MILANI

MAPEAMENTO DE VIAS DE SINALIZAÇÃO ENVOLVIDAS NA RESISTÊNCIA A QUIMIOTERÁPICOS EM CÉLULAS LEUCÊMICAS: UMA ABORDAGEM COMPUTACIONAL

Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor, em Biologia Funcional e Molecular, na área de Bioquímica.

Orientador: Prof. Dr. Eduardo Galembeck Coorientadora: Prof^a. Dr^a. Carmen Verissima Ferreira Halder

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO RENATO MILANI, E ORIENTADA PELO PROF. DR. EDUARDO GALEMBECK.

Campinas 2014

Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972

 Milani, Renato, 1985-Mapeamento de vias de sinalização envolvidas na resistência a quimioterápicos em células leucêmicas : uma abordagem computacional / Renato Milani. – Campinas, SP : [s.n.], 2014.
Orientador: Eduardo Galembeck. Coorientador: Carmen Verissima Ferreira Halder. Tese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia.
Bioinformática. 2. Leucemia. 3. Sinalização celular. 4. Resistência a quimioterápicos. I. Galembeck, Eduardo,1968-. II. Ferreira, Carmen Veríssima,1969-. III. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Mapping signaling pathways related to chemoresistance in leukemic cells : a computational approach

Palavras-chave em inglês: Bioinformatics Leukemia Cell signaling Chemotherapics resistance Área de concentração: Bioquímica Titulação: Doutor em Biologia Funcional e Molecular Banca examinadora: Eduardo Galembeck [Orientador] Claudio Chrysostomo Werneck Luciana de Campos Leite Medeiros Willian Fernando Zambuzzi José Mauro Granjeiro Data de defesa: 11-08-2014 Programa de Pós-Graduação: Biologia Funcional e Molecular Campinas, 11 de agosto de 2014

BANCA EXAMINADORA

Prof. Dr. Eduardo Galembeck (Orientador)

Dr. José Mauro Granjeiro

Prof. Dr. Willian Fernando Zambuzzi

Dr^a. Luciana de Campos Leite Medeiros

Prof. Dr. Claudio Chrysostomo Werneck

Dr^a. Karla Cristiana de Souza Queiroz

Prof. Dr. Daniel Martins de Souza

Prof. Dr. Hiroshi Aoyama

Assinatura

natur

Assinatura

Assinatura

to a

Assinatura

Assinatura

Assinatura

Assinatura

RESUMO

A leucemia mieloide crônica, caracterizada principalmente pelo gene de fusão BCR-ABL, ainda necessita de novos tratamentos aos pacientes, como ocorre com outros tipos de câncer. A resistência a quimioterápicos é um dos principais obstáculos a serem superados para o sucesso em seu tratamento. Assim, a identificação dos mecanismos moleculares que promovem e mantêm o fenótipo resistente a múltiplas drogas (MDR) é de extrema importância para a evolução dos protocolos terapêuticos. Contudo, ainda pouco se sabe sobre as vias de sinalização envolvidas nestes eventos. O mapeamento das vias de sinalização nas células resistentes pode gerar informações para o entendimento da resistência, bem como apontar alvos para a intervenção farmacológica. Neste trabalho, apresentamos uma análise comparativa do proteoma e fosfoproteoma das células K562 (célula leucêmica não resistente) e Lucena-1 (célula leucêmica resistente a múltiplas drogas). Diversas ferramentas biocomputacionais foram criadas para auxiliar na análise dos dados, com destaque para uma ferramenta, batizada de PhosphoActivity, capaz de enriquecer conjuntos de dados obtidos a partir de fosfoproteomas com os sítios responsáveis pela ativação e pela inibição das proteínas associadas a cada fragmento fosforilado. Estas ferramentas foram empregadas para reduzir o conjunto de 2209 proteínas e 4257 peptídios fosforilados correspondentes a 2053 fosfoproteínas identificadas por espectrometria de massas. Através da combinação de dados experimentais com predições baseadas em aprendizado de máquina, foram selecionadas 145 proteínas e fosfoproteínas para validação. A seleção inclui fatores de transcrição e proteínas estruturais, como βcatenina, HDAC6 e o filamento intermediário vimentina. As proteínas e fosfoproteínas identificadas e validadas através de métodos computacionais e experimentais apontaram o envolvimento de vias como a reorganização do citoesqueleto, a proliferação celular e o metabolismo de carboidratos na quimiorresistência de Lucena-1. Além disso, a identificação da proteína tirosina fosfatase LMW-PTP como tendo um papel central na resistência em Lucena-1 aponta a natureza complexa e multifatorial deste processo.

Palavras-chave: Bioinformática; Leucemia; Sinalização celular; Resistência a quimioterápicos.

ABSTRACT

Chronic myeloid leukemia, characterized by the BCR-ABL fusion gene, still poses challenges to patient treatment. One of them is chemoresistance, a major barrier for successful therapy approaches. Still, the molecular mechanisms responsible for promoting and keeping the multiple drug resistance (MDR) phenotype are largely unknown. The mapping of phosphorylation events in resistant cells may improve disease understanding at the cellular level and suggest new targets for pharmacological intervention. Here we present a comparative analysis of the proteome and phosphoproteome in K562, a chronic myeloid leukemia cell line, and Lucena-1, a K562-derived chemoresistant line. We developed several bioinformatics tools to help analyze the data, such as a phosphoproteomics dataset enrichment tool, titled *PhosphoActivity*, that is able to retrieve documented sites responsible for the activation or inhibition of the proteins related to each phosphorylated fragment. These tools were employed to sift through 2290 proteins and 4257 phosphorylated peptides corresponding to 2053 phosphoproteins previously identified by mass spectrometry. Combining experimental data with support vector machine-based predictions, we selected 145 proteins and phosphoproteins for validation. The selection includes transcription regulators and structural proteins, such as β -catenin, HDAC6 and the intermediary filament vimentin. Proteins and phosphoproteins identified and validated through computational and epxerimental methods suggest the involvement of pathways such as cytoskeleton rearrangement, cell lproliferation and carbohydrate metabolism in the chemoresistance of Lucena-1. Furthermore, the identification of LMW-PTP, a protein tyrosine phosphatase, as having a pivotal role in the resistance process in Lucena-1, suggests it as a complex and multifactorial process.

Keywords: Bioinformatics; Leukemia; Cell signaling; Chemoresistance.

SUMÁRIO

1 INTRODUÇÃO		
1.1 O Câncer e a Bioinformática		
1.2 A Leucemia Mieloide Crônica		
1.2.1 Leucemias no Brasil	05	
1.3 A Resistência à Múltiplas Drogas		
1.3.1 Modelo Experimental	08	
1.4 A Sinalização Celular por Fosforilação	08	
1.5 A Biologia Sistêmica e a Geração de Dados Massivos	12	
1.5.1 Algumas ferramentas da Biologia Sistêmica	13	
2 OBJETIVO	21	
2.1 Objetivos Específicos	21	
2.2 Visão Geral do Trabalho	22	
3 MATERIAL E MÉTODOS	23	
3.1 Cultura de Células	23	
3.2 Obtenção do Extrato Celular	23	
3.3 Western Blotting	23	
3.4 Análise Computacional	24	
4 RESULTADOS E DISCUSSÃO	27	
4.1 Avaliação Bioinformática do Conjunto de Dados	27	
4.1.1 Determinação do Efeito da Fosforilação sobre a Atividade de uma		
Proteína	27	
4.1.2 Normalização dos Dados de Fosforilação pela Expressão Proteica	29	
4.1.3 Geração de Listas com Base na Expressão e Fosforilação Diferencial	30	

4.1.4 Determinação de Vias pelo Pathway Interaction Database (PID)	
4.1.5 Criação de Lista Independente de Alvos Relacionados à Resistência a	
Quimioterápicos através de Support Vector Machines (SVM)	46
4.1.6 Cruzamento das Listas	53
4.1.7 Redes de Interação	55
4.1.8 Lista Selecionada	58
4.1.9 Determinação de Processos Biológicos pelo Gene Ontology (GO)	62
4.2 Validação por Ensaios in vitro	64
4.2.1 Estudo da Expressão e Fosforilação Proteica	64
4.2.2 Análise Sistêmica	86
5 CONCLUSÕES	91
6 REFERÊNCIAS BIBLIOGRÁFICAS	93
7 APÊNDICE	103
7.1 Participação no Kinome Profiling Consensus Meeting	103
7.2 Trabalhos Submetidos	103
7.3 Trabalhos Aceitos Para Publicação	103
7.4 Trabalhos Publicados	103
7.4.1 Artigos em Periódicos	103
7.4.2 Capítulos de Livro	104
7.4 Apresentações em Congressos	105
7.5 Cursos de Curta Duração	106

"Nós não precisamos mais recorrer à superstição quando confrontados com as grandes questões."

Richard Dawkins

Aos meus pais, Jair e Rosângela, fontes de todo o apoio e compreensão que sempre recebi.

Também dedico esta dissertação aos meus avós, alguns dos quais não tive a felicidade de conhecer.

E a toda a minha família

pelo incentivo a continuar por esse caminho.

Dedico todo este trabalho àquela sem a qual ele não existiria. Dani, você foi responsável por tantas mudanças fantásticas em minha vida que seriam necessárias várias dissertações como essa para narrá-las todas. Amo você!

AGRADECIMENTOS

A todos os meus amigos, que sempre fizeram parte dos momentos realmente importantes de minha vida. Caso não tenha mencionado especificamente alguém, não há dúvida de que essa pessoa se encaixa aqui.

Aos professores que contribuíram para construir o conhecimento que tenho hoje, com a paciência necessária a esse tipo de tarefa. Também agradeço àqueles que a perderam, já que me ensinaram não ser uma boa ideia bagunçar na sala de aula.

Especialmente aos meus orientadores, Carmen e Eduardo, por terem acreditado em mim desde o início, em 2005 e já me dar dicas nas aulas em 2004. Mas, principalmente, pelo estímulo em chegar mais longe, mesmo que isso significasse afastamento. Obrigado de coração. Muito obrigado por estarem presentes nos momentos mais importantes de minha vida e pela empolgação de realizar qualquer trabalho em conjunto numa relação em que amizade é a palavra mais adequada. Espero que eu sempre possa continuar aprendendo com eles a ter ótimas ideias.

Ao Vinícius, meu parceiro de todas as ideias, que sempre acreditou na importância da formação acadêmica e me estimulou como ninguém a finalizar este trabalho e a enxergar o futuro depois dele. Tamo junto!

Aos meus amigos de Americana, Everton, Fabio, Gustavo, Ricardo, Rodrigo e Adriano. O povão sempre se reunirá!

Aos meus amigos de Campinas, Mateus, Victor e Melissa.

Ao meu primo Márcio, por toda a confiança depositada, além dos ensinamentos cujo valor é impossível mensurar.

xvii

Ao Willian, que mostrou-se um grande e valiosíssimo amigo ao compartilhar de seu fascínio pela Ciência e me inspirar a realizar grandes feitos, mesmo que pareçam pequenos aos olhos dos outros.

À Luli, por todas as lições que uma pós-doc pode ensinar, na academia, na empresa e no exame de qualificação.

Ao Professor Hiroshi, que com sua impressionante habilidade didática e experiência de laboratório foi capaz de fazer com que eu vivesse a Bioquímica ainda mais intensamente. Ao professor do Laboratório de Proteômica Claudio Werneck, pelas discussões, oportunidades e colocações no exame de qualificação.

Ao pessoal do Laboratório de Tecnologia Educacional, Thanuci e Cia., por tornar os dias mais alegres e menos gelados de coração.

Ao pessoal do Laboratório de Transdução de Sinal e Bioensaios, que me deu as boas-vindas e sempre esteve à disposição para qualquer dificuldade que eu tive. Agradeço também ao Bispo, Karin, Thaís, Denise e Cláudia e todos mais que acreditaram que colocar um biólogo metido a programador no laboratório seria uma boa ideia. Sem o apoio de vocês este trabalho jamais teria acontecido.

À secretária do programa de pós-graduação, Andréia, por todo o trabalho que dei.

À Fapesp, pela oportunidade financiada de desenvolver o projeto.

E, finalmente, agradeço a todos os que se dispuseram a gerar artes e tecnologias que foram capazes de me fascinar e entreter durante todos os anos de minha vida e que, sem dúvida, continuarão trabalhando e conseguindo isso ao longo de toda ela.

AGRADECIMENTOS ESPECIAIS

Financiamento:

ABREVIATURAS

ABC	ATP-binding cassette transporter
ABL	Abelson tyrosine-protein kinase
ADP	Adenosina difosfato
АКТ	Proteína quinase B
aPK	Proteína quinase atípica
Arg	Arginina
ATP	Adenosina trifosfato
BCR	Breakpoint cluster region protein
BCR-ABL	Proteína de fusão BCR-ABL
c-Kit	Receptor do fator de crescimento de células tronco Kit
CML	Leucemia mieloide crônica
DDBJ	DNA Data Bank of Japan
DNA	Ácido desoxirribonucleico
EDTA	Ácido tetra-acético etileno diamina
EGFR	Receptor do fator de crescimento epidérmico
EGTA	Ácido tetra-acético etileno glicol
EMBL	European Molecular Biology Laboratory
ePK	Proteína quinase eucariótica
ERK2	Quinase regulada por sinal extracelular 2
FABP	Proteína ligante de ácido graxo
FAK	Quinase de adesão focal
GMPc	guanosina monofosfato cíclico
GO	Gene Ontology
GRID	General Repository for Interaction Datasets
GSK3a	Glicogênio-sintase quinase alfa
GSK3β	Glicogênio-sintase quinase beta
HDAC	Histona desacetilase

НМОХ	Heme oxigenase
HPRD	Human Protein Reference Database
INCA	Instituto Nacional do Câncer José Alencar Gomes da Silva
KEGG	Kyoto Encyclopedia of Genes and Genomes
LMW-PTP	Proteína tirosina quinase de baixo peso molecular
Lys	Lisina
МАРК	Proteína quinase ativada por mitógeno
MDR	Resistência à múltiplas drogas
MiMI	Michigan Molecular Interactions
MRP	Proteínas relacionadas à MDR
mRNA	Ácido ribonucleico mensageiro
NCBI	Centro Nacional para Informação Biotecnológica (EUA)
NCI	National Cancer Institute (EUA)
NIH	National Institutes of Health (EUA)
NLM	National Library of Medicine (EUA)
P-gp	P-glicoproteína
PBS	Tampão fosfato-salino
рН	Potencial hidrogeniônico
PDGFR	Receptor do fator de crescimento derivado de plaquetas
PID	Protein Interaction Database
PRKG	Proteína quinase dependente de GMPc
РТР	Proteína tirosina fosfatase
PVDF	Difluoreto de polivinilideno
RPMI	Roswell Park Memorial Institute (meio de cultura)
SILAC	Marcação de aminoácidos em cultura celular por isótopos estáveis
SRC	Proteína tirosina quinase Src (sarcoma)
STRING	Search Tool for Retrieval of INteracting Genes/Proteins
SVM	Máquinas de vetores de suporte
ТАР	Proteína transportadora de peptídeos antigênicos

1. INTRODUÇÃO

1.1 O CÂNCER E A BIOINFORMÁTICA

O câncer é um processo de múltiplos passos envolvendo anormalidades na expressão ou função de proteínas codificadas por uma variedade de genes pertencentes a uma mesma célula. Tais anormalidades afetam o balanço entre proliferação celular, apoptose e diferenciação, e nas malignidades hematopoiéticas levam a uma expansão anormal de clones de células tronco (JOHN et al., 2004). Observa-se que a total transformação celular para a malignidade exige mudança em diversos genes e apenas anormalidades que desencadeiam proliferação anormal não são suficientes para a gênese da célula maligna. Assim, alterações em vários genes das células tronco são necessárias para desregular a proliferação celular e, também, ocasionar o desvio dos controles que poderiam normalmente desencadear apoptose, diferenciação ou senescência (WONG; SEGAL; CHANG, 2008).

Com o aumento das evidências de que os mecanismos moleculares associados ao câncer dependem de interações entre proteínas, tornou-se necessária a integração de diferentes metodologias para a investigação desses processos (WU; RICE; WANG, 2012). A Bioinformática é uma ciência multidisciplinar que envolve conceitos matemáticos, físicos, estatísticos e computacionais na análise de informações biológicas num contexto sistêmico, que geralmente envolve grandes quantidades de dados.

Em sistemas biológicos complexos como o que permeia a carcinogênese, proteínas são capazes de desempenhar diferentes funções e regular diversos processos biológicos através de interações com outras proteínas (LIU et al., 2009). O estudo de como um conjunto de proteínas atua em um determinado processo biológico é, assim, fundamental para a elucidação dos mecanismos responsáveis. A Bioinformática deve ser, portanto, considerada como uma ferramenta indispensável para a investigação dos mecanismos moleculares do câncer no contexto da Biologia Sistêmica.

1.2 A LEUCEMIA MIELOIDE CRÔNICA

A leucemia mieloide crônica (CML) é uma doença mieloproliferativa resultante da expansão clonal de uma célula-tronco hematopoiética multipotente. A CML é um dos primeiros exemplos de alteração cromossomal adquirida ligada a um tumor maligno humano. Em 1960, Rudkin e colaboradores identificaram uma alteração consistente e característica de pacientes com

CML, que foi denominada cromossomo Philadelphia (RUDKIN; HUNGERFORD; NOWELL, 1964). Esta alteração é decorrente de uma translocação recíproca que envolve o proto-oncogene *ABL* no cromossomo 9 e o gene *BCR* no cromossomo 22. A translocação t(9;22)(q34;q11) gera um gene de fusão BCR-ABL. A proteína derivada desta fusão gênica é uma tirosina quinase citoplasmática constitutivamente ativa (QUINTÁS-CARDAMA; CORTES, 2009) capaz de modular positivamente muitas vias de sinalização que levam ao aumento da proliferação e à inibição da morte celular (DRUKER, 2008; THIELEN et al., 2011). A Figura 1 ilustra a translocação que gera o cromossomo Philadelphia.

A CML era fatal até a introdução do fármaco mesilato de imatinib (nome comercial Gleevec[®], Novartis), revolucionando a terapia associada a ela e transformando-a numa doença crônica (TRELA; GLOWACKI; BŁASIAK, 2014). O imatinib é um dos primeiros produtos obtidos a partir do desenvolvimento racional de fármacos (JOSKE, 2008), atuando como um inibidor de proteína tirosina quinases. No caso de BCR-ABL, o imatinib compete com ATP em sítios específicos de ligação, impedindo sua autofosforilação no resíduo Y177 (WEISBERG et al., 2007) e, consequentemente, impedindo sua ativação e posterior fosforilação de seus substratos (Figura 2). Inicialmente acreditava-se que a ação antileucêmica do imatinib era devida exclusivamente à inibição da proteína quinase BCR-ABL. No entanto, atualmente sabe-se que o mesmo pode inibir um amplo espectro de quinases (GOLDMAN; MELO, 2003; MILOJKOVIC; APPERLEY, 2009; TAUCHI; OHYASHIKI, 2004). Apesar da aparente eficácia terapêutica do imatinib, alguns pacientes se tornam mais susceptíveis aos efeitos colaterais associados a seu uso, como dermatites e edema (MUGHAL; SCHRIEBER, 2010). Além disso, as células leucêmicas podem adquirir resistência ao imatinib (APPERLEY, 2007a, 2007b; TAUCHI; OHYASHIKI, 2008).

A aquisição de resistência pelas células leucêmicas ao imatinib se deve, superficialmente, à superexpressão do gene *BCR-ABL* e às mutações no gene que promovem alterações no sítio de ligação da quinase ao imatinib e nas propriedades cinéticas da enzima (GRISWOLD et al., 2006). O fenômeno de resistência levou ao desenvolvimento de inibidores de segunda geração, dentre os quais o dasatinib (nome comercial Tasigna[®], Novartis), e nilotinib (nome comercial Sprycel[®], Bristol-Myers Squibb), são os mais estudados (Figura 3). Eles também se ligam ao sítio de BCR-ABL que se liga ao ATP (LE COUTRE; SCHWARZ; KIM, 2010).

2

Figura 1. Diagrama da translocação geradora do cromossomo Philadelphia, com a indicação da localização dos genes BCR e ABL nos cromossomos 22 e 9, respectivamente, e do gene de fusão BCR-ABL formado no cromossomo Philadelphia.

O dasatinib é por volta de trezentas vezes mais potente que o imatinib em inibir a proteína quinase BCR-ABL *in vitro*, principalmente por se ligar à quinase tanto na conformação ativa quanto na inativa. Além da BCR-ABL, o dasatinib também inibe outras quinases que podem estar relacionadas à doença tais como c-Kit, PDGFR e c-Src (TALPAZ et al., 2006; WARMUTH et al., 2003). Esta inibição, no entanto, acaba aumentando a possibilidade de efeitos adversos como mielossupressão severa, devido à interrupção das funções normais dessas quinases (ANDRAE; GALLINI; BETSHOLTZ, 2008; GNONI et al., 2011; KIM et al., 2011; THOMAS; BRUGGE, 1997).

O nilotinib, por sua vez, é por volta de trinta vezes mais potente que o imatinib em inibir BCR-ABL *in vitro*. Além disso, é altamente específico para BCR-ABL em relação às quinases da família Src. Essa especificidade ajuda a explicar a menor incidência de mielossupressão severa com o uso de nilotinib (CORTES et al., 2011; KANTARJIAN et al., 2007).

Apesar da potência de inibição destes dois fármacos de segunda geração, existem relatos na literatura sobre a aquisição de resistência também a eles (JABBOUR et al., 2009; O'HARE et al., 2008). Portanto, tem sido sugeridos tratamentos diferenciados envolvendo o uso combinado de nilotinib ou dasatinib com fármacos inibidores de formas mutantes específicas de BCR-ABL (O'HARE et al., 2008). Adicionalmente, uma combinação de dasatinib com

vorinostat, um inibidor de histona desacetilases foi capaz de reduzir o número de células que expressam BCR-ABL (FISKUS et al., 2006).

Figura 2. Representação esquemática do mecanismo de atuação do imatinib. (A) A atividade de tirosina quinase da enzima BCR-ABL constitutivamente ativa leva à fosforilação de seus substratos, levando à leucemia mieloide crônica. (B) O imatinib atua impedindo a atividade de fosforilação de BCR-ABL, impedindo consequentemente que os substratos dessa enzima sejam fosforilados e levem à proliferação descontrolada de células mieloides.

Além disso, uma nova geração de inibidores tem surgido, tanto para BCR-ABL quanto para outras quinases: o MK-0457 é um inibidor da aurora quinase, afetando a formação do fuso mitótico e, portanto, induzindo apoptose (GILES et al., 2013); já o ponatinib é um inibidor de BCR-ABL capaz de atuar em diversas versões mutadas da enzima (CASSUTO et al., 2012), além de inibir outras quinases como PDGFR, FGFR, KIT, RET e FLT3 (DE FALCO et al., 2013; LIERMAN et al., 2012).

Com novos relatos de resistência sendo apresentados continuamente, fica evidente que os fatores que contribuem para a resistência não se restringem às mutações de BCR-ABL (DRUKER et al., 2002; MILOJKOVIC; APPERLEY, 2009) e que a resistência à quimioterápicos no caso da CML é um processo multifatorial, como já sugerido no início do ciclo de desenvolvimento dos fármacos (WEISBERG; GRIFFIN, 2000). Existem evidências demonstrando que o fenótipo resistente resulta tanto de anormalidades genéticas quanto de modificações epigenéticas, que alteram os padrões de expressão gênica sem modificar a sequência de DNA (BOULTWOOD; WAINSCOAT, 2007; JELINEK et al., 2011).

Outros estudos mostram que a resistência pode estar relacionada a diferenças na regulação de genes apoptóticos e antiapoptóticos, genes relacionados ao estresse oxidativo e de reparo do DNA (FRANK et al., 2006), e ainda genes envolvidos na adesão celular, metabolismo de drogas e regulação da sinalização celular (VILLUENDAS et al., 2006). Estes dados sugerem que a resistência a quimioterápicos é mediada por mecanismos complexos, sendo que muitos são independentes da atividade de BCR-ABL.

Figura 3. Fórmulas estruturais planas do fármaco de primeira geração usado na CML (A) e dos dois principais fármacos da segunda geração (B e C).

1.2.1 Leucemias no Brasil

Segundo dados da Organização Mundial da Saúde, o ano de 2012 apresentou mais de 14 milhões de novos casos de câncer ao redor do mundo. No Brasil, segundo o Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), as estimativas para o ano de 2014 apontam aproximadamente 576 mil novos casos de câncer (100 mil a mais do que em 2007), acompanhando os níveis observados no mundo e a mudança do perfil etário da população.

As estimativas apontam, também, o aumento no número de casos de leucemias, sendo esperado um total de 11.370 novos casos no Brasil, dos quais 6.050 afetarão indivíduos do sexo masculino e 5.320 indivíduos do sexo feminino, um aumento de 2 mil casos em relação a 2007.

Ainda tomando como base estas estimativas, as leucemias contribuirão com significativa parcela de novos casos de câncer no Brasil, atingindo principalmente as populações dos maiores centros urbanos, reconhecidamente detentores de precários sistemas de saúde e de recursos econômicos insuficientes para o adequado atendimento do grande número de usuários. Desta maneira, terapias mais eficientes no tratamento da leucemia reduziriam não somente o número de óbitos, mas também o tempo e recursos gastos durante o tratamento dos pacientes. Os tratamentos quimio e radioterápicos são bastante custosos para o sistema público de saúde devido ao relativo alto custo dos fármacos e equipamentos utilizados e, também, a mão-de-obra especializada necessária ao acompanhamento do paciente durante os períodos de internação. Uma terapia mais efetiva, que proporcione melhor prognóstico para os pacientes e menores gastos para o Estado, será de grande interesse e vantagem para o Brasil, fato que justificaria maiores investimentos na área de pesquisas básicas e desenvolvimento de medicamentos.

1.3 A RESISTÊNCIA A MÚLTIPLAS DROGAS

O processo de resistência de células tumorais a quimioterápicos é considerado um mecanismo multifatorial, cujos detalhes moleculares ainda são poucos conhecidos (ZHANG et al., 2009). A resistência a quimioterápicos é um dos principais obstáculos no tratamento de pacientes com câncer, especialmente nos casos de neoplasias hematológicas em que, ao contrário dos tumores sólidos, o tratamento cirúrgico é pouco viável, fazendo com que a quimioterapia ainda seja a principal opção terapêutica. Por esta razão, a elucidação dos mecanismos que conferem resistência a fármacos e o desenvolvimento de tratamentos mais eficazes para o tratamento do câncer têm sido as principais metas dos pesquisadores da área (O'CONNOR, 2007). A resistência a drogas quimioterápicas pode se manifestar clinicamente logo nos estágios iniciais de tratamento ou ser induzida durante a quimioterapia, quando são selecionadas células resistentes ao tratamento. Desse modo, observa-se que a resistência genética pode ser induzida tanto pelo próprio tratamento com agentes antineoplásicos ou surgir como um evento espontâneo (KAPPELMAYER et al., 2004; NOBILI et al., 2006).

Como um mecanismo de caráter multifatorial, o fenótipo MDR (resistência à múltiplas drogas) tem sido associado a uma série de alterações celulares incluindo aberrações no ciclo celular, aumento na eficiência de reparo do DNA, redução de apoptose e/ou autofagia, modificações no metabolismo de xenobióticos, aumento do tráfego de vesículas intracelulares e mutações que alteram a sensibilidade de enzimas a inibidores (GRISWOLD et al., 2006; KONDO et al., 2005; SZAKÁCS et al., 2006). Dentre os possíveis processos de aquisição de

resistência identificados, o mais frequente envolve o aumento do efluxo de drogas citotóxicas hidrofóbicas. Isso ocorre através de um sistema dependente de energia, mediado por membros da família de transportadores ABC (ATP-binding cassete transporters). Primeiramente descritos na década de 70, vários membros da família de transportadores ABC têm se mostrado potentes indutores de MDR, destacando-se o papel da glicoproteína-P (P-gp), proteínas MDR relacionadas (MRPs) e a proteína transportadora de peptídeos antigênicos (TAP) (AL-SHAWI; OMOTE, 2005; HIGGINS, 2007; HIROSE, 2009; KRUH; BELINSKY, 2003; KUO, 2009; OZBEN, 2006; SZAKÁCS et al., 2006). O aumento na expressão de P-gp, produto gênico de MDR1, tem mostrado, historicamente, ser um fator suficiente para a aquisição do fenótipo MDR e, consequentemente, causar resistência frente ao tratamento com várias drogas lipossolúveis, incluindo antraciclinas (doxorubicina) (FRUEHAUF et al., 2002), alcalóides da vinca (vinblastina, vincristina) (KOBAYASHI; TAKEMURA; MIYACHI, 2001), antibióticos (dactinomicina) (NIELSEN; SKOVSGAARD, 1992) e outras, incluindo inibidores de BCR-ABL, como o imatinib (CLARK et al., 2008). De fato, células com alta expressão de P-gp são capazes de expulsar uma grande variedade de drogas estruturalmente diversas, impedindo que níveis intracelulares tóxicos sejam alcançados (RUMJANEK et al., 2001) e contribuindo para a resistência por mecanismos dependentes e independentes de BCR-ABL (RUMJANEK; VIDAL; MAIA, 2013).

Os esforços feitos ao longo das últimas décadas para a superação da resistência à múltiplas drogas em pacientes levaram a resultados relativamente decepcionantes (HIGGINS, 2007). O primeiro tipo de abordagem foi a tentativa de modificar a estrutura química de drogas de modo a reduzir a afinidade de P-gp por elas. No entanto, a ausência de informações sobre o mecanismo de ligação desses transportadores e o fato de que pequenas mudanças na molécula raramente resultam em alterações significativas na afinidade pelo transportador impediram o sucesso dessa abordagem. A segunda abordagem envolve o desenvolvimento de inibidores específicos para os transportadores. No entanto, é frequente a presença de mais de um transportador que possa conferir resistência a uma determinada droga. No caso da P-gp humana, diversos inibidores específicos foram desenvolvidos, apresentando resultados satisfatórios *in vitro*. No entanto, *in vivo*, o surgimento de efeitos colaterais devido à interrupção do funcionamento da P-gp em tecidos normais também impediu resultados bem-sucedidos através dessa abordagem (GOTTESMAN; FOJO; BATES, 2002; HIGGINS, 2007).

1.3.1 Modelo experimental

A fim de melhor entender os mecanismos relacionados ao fenótipo MDR, vários estudos têm sido conduzidos através de análises em linhagens tumorais previamente selecionadas e caracterizadas por insensibilidade ao tratamento com múltiplas drogas. Lucena-1 foi caracterizada por Rumjanek e colaboradores (2001) como uma linhagem celular resistente a múltiplas drogas derivada da linhagem eritroleucêmica humana K562 (CML), sendo originalmente selecionada pela resistência ao alcalóide vincristina. Lucena-1 caracteriza-se pela alta expressão de P-gp e tem sua resistência revertida por quimiosensibilizadores como verapamil, trifluorperazina e pelas ciclosporinas A, D e G. Também foi demonstrada a capacidade do azul de metileno em reverter parcialmente a resistência nessas células (Rumjanek *et al.*, 2001).

Apesar desses inibidores das bombas de efluxo apresentarem uma relativa eficiência *in vitro*, o mesmo não se observa *in vivo*. Além dos problemas relacionados à farmacocinética, muitos destes inibidores apresentam efeitos tóxicos, o que compromete a utilização dos mesmos na clínica. Desta forma, há uma contínua busca pelo desenvolvimento de fármacos que possam inibir a bomba e que também modifiquem vias de transdução de sinal relacionadas à resistência (Shukla et al., 2008).

Neste trabalho, foram determinadas e analisadas proteínas envolvidas em vias de sinalização por fosforilação que potencialmente apresentam relação com o mecanismo de resistência apresentado por Lucena-1.

1.4 A SINALIZAÇÃO CELULAR MEDIADA POR FOSFORILAÇÃO: BALANÇO ENTRE QUINASES E FOSFATASES

A capacidade celular de receber e reagir a estímulos externos é fundamental para a vida. Sinais provenientes de proteínas de membrana, como, por exemplo, condições de pH, salinidade, presença de nutrientes, oxigênio e substâncias tóxicas, desencadeiam respostas apropriadas tanto em organismos unicelulares como em organismos multicelulares (NELSON; COX, 2008). Nestes últimos, células com diferentes funções trocam uma grande quantidade de sinais entre si. Enquanto células vegetais respondem a hormônios de crescimento e a variações luminosas, células animais trocam informações sobre a concentração de íons e de glicose em

fluidos extracelulares, sobre atividades metabólicas ocorrendo em diferentes tecidos e sobre o correto posicionamento de cada uma durante o desenvolvimento de um embrião. Em todos esses casos, o sinal representa informação, detectada por receptores e convertida numa resposta celular, sempre envolvendo um sinal químico (KOOLMAN; RÖHM, 2005). A conversão de informação em um sinal químico é chamada de transdução de sinal, uma propriedade universal das células (Figura 4).

O número de sinais biológicos a que as células respondem é grande, bem como a quantidade de respostas celulares a cada um deles. Contudo, alguns mecanismos são conservados para a detecção de sinais extracelulares e para a sua transdução em modificações intracelulares. Frequentemente, esses mecanismos resultam na fosforilação de proteínas que fazem parte de uma cascata de sinalização (NELSON; COX, 2008). As proteínas capazes de transferir o grupo fosforil do ATP para resíduos de aminoácidos de outras proteínas são denominadas proteínas quinases, sendo que o balanço entre a fosforilação e desfosforilação, esta última mediada por proteínas fosfatases, é um eficiente e o mais disseminado meio de regulação da atividade proteica em eucariotos (BERG; TYMOCZKO; STRYER, 2010; CARVALHO; RECCO-PIMENTEL, 2013; MARZZOCO; TORRES, 2007). A fosforilação de resíduos de tirosina, serina e treonina mediada pelo balanço entre a ação de proteínas quinases e proteínas fosfatases é reconhecida como fator crucial na geração e na regulação de sinais necessários para processos como sobrevivência, proliferação, diferenciação e morte celular. A fosforilação e a desfosforilação de uma proteína pode controlar as interações entre proteínas, a estabilidade proteica, a localização celular e sobretudo pode regular a atividade enzimática (FERREIRA et al., 2013).

Ao conjunto de proteínas quinases codificadas pelo genoma de um organismo dá-se o nome de quinoma (GOMASE; TAGORE, 2008). No caso do genoma humano, existem 518 genes que codificam proteínas contendo domínios catalíticos que caracterizam proteínas quinases (MANNING et al., 2002). Esses genes foram classificados em duas famílias principais: ePK e aPK. A primeira agrupa todas as enzimas que possuem o domínio catalítico das quinases de eucariotos, correspondendo a 478 genes. A segunda família contém todas as quinases que não possuem esse domínio mas que apresentam atividade quinásica, sendo portanto chamadas de atípicas e totalizando 40 genes.

Em contraste, o genoma humano possui aproximadamente 200 genes que codificam proteínas fosfatases. Eles também são classificados em duas famílias, de acordo com a estrutura

e a especificidade pelo substrato apresentada pelas fosfatases. Uma delas é a das proteínas serina/treonina fosfatases, com aproximadamente 30 membros, enquanto a outra é a família das proteínas tirosina fosfatases, com 107 membros (ALONSO et al., 2004; SHI, 2009).

Como cada proteína quinase e proteína fosfatase catalisa a fosforilação ou desfosforilação de um conjunto distinto de substratos, é possível construir redes complexas interligando suas atividades a toda uma cascata de reações e a uma resposta celular. Para isso, existem duas questões principais: quais substratos e sítios cada quinase é capaz de fosforilar e qual quinase é responsável pela fosforilação de um sítio sabidamente fosforilado? O mesmo vale para as fosfatases no caso da desfosforilação. Além disso, é importante determinar o efeito que a fosforilação em um determinado sítio tem sobre uma proteína. A adição do grupo fosforil pode alterar a estrutura tridimensional da proteína de modo a aumentar ou diminuir sua atividade. Isso pode acontecer, inclusive, na mesma proteína, quando fosforilada em sítios diferentes.

Figura 4. Exemplo de atuação de um receptor de sinal celular de membrana. Ao interagir com um sinal específico que pode ser físico (impulsos elétricos, estímulos mecânicos etc.) ou químico (metabólitos, hormônios, neurotransmissores etc.), o receptor é capaz de transmitir, através da sua ativação, a informação recebida até um domínio efetor, que por sua vez pode ativar proteínas mediadoras (levando a uma cascata de sinalização), culminando na resposta celular, que frequentemente envolve alteração da expressão de genes específicos e, consequentemente, modificação do fenótipo celular.

A determinação das respostas para essas perguntas permite o estabelecimento do fosfoproteoma, que se refere ao conjunto de proteínas fosforiladas em um determinado momento celular. Classicamente, as reações de fosforilação são estudadas por métodos bioquímicos bastante laboriosos, como mapeamento de peptídios, análise de fosfoaminoácidos e purificação de quinases. Apesar dessas técnicas terem permitido a obtenção de informações previamente indisponíveis e que ainda hoje apresentam utilidade, o desafio que se apresenta na determinação do fosfoproteoma possui uma escala que demanda o uso combinado de diferentes técnicas.

Uma dessas técnicas, chamada de SILAC (Marcação de aminoácidos em cultura celular por isótopos estáveis) (ONG et al., 2002), acoplada à espectrometria de massas para quantificação, é capaz de trazer informações sobre quais sítios e quanto esses sítios estão fosforilados em todas as proteínas presentes numa célula, em determinado momento, e comparálas com outra célula ou condição (Figura 5). Essa informação permite associar as vias de sinalização ativas numa célula com os processos biológicos apresentados por ela através de ferramentas biocomputacionais e bancos de dados. Tal abordagem busca integrar vários eventos celulares envolvendo quinases considerando que o conjunto deles é responsável pelo fenótipo celular, culminando numa abordagem sistêmica da sinalização celular.

Quantificação por espectrometria de massas

Figura 5. Esquema ilustrando a estratégia de marcação de aminoácidos em cultura celular por isótopos estáveis, conhecida como SILAC usada para obter o proteoma e o fosfoproteoma das duas linhagens de CML, K562 e Lucena-1. Adaptado de (ONG et al., 2002).

Neste trabalho, foi usado um conjunto de informações de proteoma e fosfoproteoma obtidas em colaboração com o Max Planck Institute for Biochemistry. Ambos os conjuntos de

dados foram obtidos para cada uma das linhagens de CML: K562, a linhagem não resistente, e Lucena-1, a linhagem resistente.

1.5 A BIOLOGIA SISTÊMICA E A GERAÇÃO DE DADOS MASSIVOS

A definição de Biologia Sistêmica (também conhecida como Biologia de Sistemas) envolve o estudo de redes gênicas, proteicas, metabólicas e assim por diante, de modo a compreender os princípios de funcionamento de sistemas biológicos complexos. Esses estudos podem focar tanto em pequenos subcircuitos de uma rede de sinalização ou em redes em larga escala, formadas por proteomas inteiros, gerando uma quantidade massiva de dados que só pode ser analisada, em um tempo plausível, através de ferramentas biocomputacionais. A Biologia de Sistemas começa com um fenômeno biológico complexo, visando um arcabouço explicativo simples e lógico, evidenciando o mecanismo por trás da ocorrência dos eventos que compõem o fenômeno estudado, de modo a gerar um conjunto de dados capaz de descrever processos biológicos e identificar interações entre seus componentes (Figura 6).

A Biologia Sistêmica não é a antítese do reducionismo, que, por sua vez, é uma abordagem para o entendimento da complexidade através do estudo específico de suas partes. Muitas vezes os componentes individuais de um evento já foram descritos através de abordagens reducionistas e é sobre essa fundação que a abordagem sistêmica se apoia. As propriedades de sistemas complexos são diferentes das propriedades de proteínas individuais. Essas propriedades, chamadas emergentes, são o objeto de estudo da Biologia Sistêmica (FERRELL, 2009). No caso da análise do fosfoproteoma, o objetivo é exatamente partir dos eventos individuais de fosforilação e analisá-los em conjunto, visando compreender como a ocorrência deles é capaz de regular um processo biológico complexo como a resistência à quimioterápicos em linhagens de CML.

Em contraponto aos microarranjos de DNA, que analisam os níveis de expressão de milhares de genes ao mesmo tempo, a análise do fosfoproteoma permite uma análise ampla das vias metabólicas e de sinalização ao verificar os níveis de fosforilação de milhares de proteínas ao mesmo tempo. Biologicamente, é mais importante o foco na atividade enzimática do que na concentração de metabólitos ou na expressão gênica (ANAMIKA; SRINIVASAN, 2007; DIKS et al., 2004; IRISH et al., 2004; VAN BAAL et al., 2006), justamente por conta de que a presença de um metabólito ou do produto da expressão de um gene na célula não garante que

uma determinada proteína esteja ativa, uma vez que a o desempenho da função de uma proteína depende também de modificações pós-traducionais.

Figura 6. Exemplo extremo de rede de interações entre proteínas humanas, obtida a partir de um estudo na área de Biologia de Sistemas. Cada ponto corresponde a uma proteína, enquanto as retas correspondem a interações entre proteínas obtidas a partir de um estudo de duplo-híbrido. Adaptado de (RUAL et al., 2005).

1.5.1 Algumas ferramentas da Biologia Sistêmica

1.5.1.1 Cytoscape (http://www.cytoscape.org)

A ferramenta Cytoscape (SMOOT et al., 2011) permite a visualização de redes biológicas e a integração de dados a essas redes. Cada rede pode ser constituída por itens como genes, proteínas, células, pacientes etc. Cada item é representado por um nó e as interações entre elas são representadas por arestas. Dados externos podem ser integrados a cada nó e aresta através de atributos, que mapeiam informações como níveis de expressão gênica ou funções proteicas. Os valores de atributos podem ser usados para controlar aspectos visuais dos nós e arestas (ex.: formato, cor, tamanho etc.), ao mesmo tempo em que permitem buscas complexas, o estabelecimento de filtros e outras análises.

Uma das vantagens do Cytoscape é que ele pode ter suas funcionalidades ampliadas através do uso de plugins. O plugin MiMI (GAO et al., 2009), por exemplo, permite a importação de dados de interação proteica provenientes de múltiplas fontes, facilitando a seleção individual de cada uma. Entre as fontes possíveis estão *Gene Ontology*, MeSH, PubMed e HPRD (*Human Protein Reference Database*), o que ajuda a discriminar entre informações curadas e não curadas: o HPRD, por exemplo, contém apenas informações manualmente extraídas da literatura e analisadas antes de serem incorporadas ao banco de dados. A Figura 7 mostra a obtenção de dados de interação entre proteínas provenientes do HPRD para a proteína GSK3α.

Figura 7. Rede de interação retornada pelo Cytoscape e obtida através do plugin MiMI com dados extraídos do HPRD para GSK3 α , proteína codificada pelo gene GSK3A. Nesta visualização, que pode ser modificada, cada proteína é representada por um círculo contendo o símbolo do gene responsável por codificá-la. As interações com GSK3 α e entre seus interatores são representadas por retas.

1.5.1.2 STRING (http://string.embl.de)

O recurso STRING (VON MERING et al., 2007), acrônimo de Search Tool for the Retrieval of Interacting Genes/Proteins, é um banco de dados que generaliza o acesso à informação sobre interações entre proteínas, integrando interações conhecidas e preditas oriundas de diversos bancos de dados de Biologia Molecular. Ao receber uma proteína ou um conjunto delas como input, o STRING busca pelas relações documentadas presentes em seu banco de dados. O resultado oferecido é um mapa contendo *nós* representando a(s) proteína(s) de
interesse e algumas proteínas com as quais existem relações estabelecidas, estas últimas representadas por traços unindo os nós. Cada traço possui uma cor específica, indicando a natureza da interação, que pode ser uma ou mais dentre as seguintes: fusões gênicas; co-ocorrência entre genomas; co-expressão; conjunto de dados experimentais/bioquímicos; associação em bancos de dados curados; presença em resumos do PubMed.

O STRING aceita nomes ou sequências proteicas, realizando buscas em todos os organismos de seu banco de dados, também oferecendo ao usuário a possibilidade de escolha do organismo de interesse. Esse recurso, aliado às ferramentas de alinhamento integradas, torna bastante prática a utilização visando estudos comparativos e de evolução.

Este banco é um recurso bastante útil no contexto da Biologia de Sistemas, na medida em que provê informações cruzadas sobre as proteínas obtidas nos perfis apresentados. Uma grande funcionalidade é observar a interação de uma determinada proteína com outras presentes em diversos bancos de dados ou então observar as interações registradas entre um conjunto pessoal de proteínas. As interações não se limitam a fusões gênicas etc., expandindo-se, também, para citações conjuntas em trabalhos e aparições nos mesmos mapas de vias metabólicas ou de sinalização celular.

Ao contrário do Cytoscape, que permite a construção de uma rede a partir de um banco de dados específico e a adição de novas proteínas a ela, além de permitir também a personalização dessa rede de acordo com diferentes necessidades de visualização, o STRING é mais restrito nesses aspectos, funcionando melhor como uma ferramenta de consulta unificada a diversos bancos para a rápida visualização de redes de interação.

Como teste preliminar (Figura 8), o STRING identificou a interação entre Ret e PRKG1 através de SRC e GJA1 (Conexina 43) com base na interação mostrada pelo mapa da via GAP JUNCTION, do banco de dados KEGG (*Kyoto Encyclopedia of Genes and Genomes*), um banco de dados especializado em vias metabólicas e de sinalização. Por outro lado, uma outra ferramenta não utilizada, chamada Osprey, não conseguiu estabelecer a relação, uma vez que baseia-se apenas no banco de dados GRID (CHATR-ARYAMONTRI et al., 2013), apenas um dos vários bancos de interações entre proteínas que compõem o espectro de buscas do STRING. Este teste indica a eficácia do STRING devido à sua natureza como recurso de meta-busca.

15

Figura 8. Rede de interações entre proteínas retornada pelo recurso STRING, obtida através da integração entre as redes das proteínas codificadas pelos genes PRKG1 e RET, em destaque. No detalhe, a mesma rede de interações construída na ferramenta Osprey, um software voltado à representação de redes biológicas. O Osprey não conseguiu estabelecer uma relação entre PRKG1 e RET usando somente o banco de dados GRID, padrão da ferramenta.

1.5.1.3 UniProt (Universal Protein Resource) (http://www.uniprot.org)

O UniProt (UNIPROT CONSORTIUM, 2014) é um banco de dados voltado à sequências e anotações proteicas. As sequências são obtidas a partir de recursos como EMBL (European Molecular Biology Laboratory) (KULIKOVA et al., 2007), GenBank (BENSON et al., 2014) e DDBJ (DNA Data Bank of Japan) (KODAMA et al., 2012), entre outros, e é dividido em duas partes: uma manualmente anotada (SwissProt) e a outra contendo apenas anotações automáticas (TrEMBL), devido ao grande número de sequências geradas nos últimos anos ter inviabilizado a anotação manual de todas elas no mesmo ritmo em que eram depositadas. A anotação manual é a compilação de informações sobre uma determinada proteína através de experimentos presentes na literatura, em contraponto à anotação automática, em que as informações de uma proteína são inferidas com base na similaridade de sequência entre ela e outras proteínas já anotadas. O UniProt é extremamente confiável e útil no sentido de prover informações gerais sobre uma proteína de interesse durante a análise de listas de proteínas.

UniProt → UniPr	otKB							
Search	Blast *	Align	Retrieve	ID Mapping *				
Search in		Query						
Protein Knowledgeb	ase (UniProtKB)	▼			Search	Advanced	Search »	Clear
P31749 (AKT1_HU Last modified March 19	IMAN) 🚖 Review	ed, UniProtKB/S	wiss-Prot					
Clusters with 100%	%, 90%, 50% identity	y 👘 Documents (7	') 🗐 Third-party dat	a				
Names Attribut	tes · General ann	otation · Ontologie	es · Interactions · S	Sequence annot	ation ← Se	equences ·	References -	Web links ·
Names and origi	n							
Protein names	Rec R I A/te P P P R	commended name: CAC-alpha serine/th EC=2.7.11.1 Imative name(s): Irotein kinase B Short name=PKB Short name=PKB alpha roto-oncogene c-Akt AC-PK-alpha	reonine-protein kin a	lase				
Gene names	Nar Syr	me: AKT1 10nyms:PKB, RAC						
Organism	Hor	no sapiens (Humar	1) [Reference proteon	ne]				

Figura 9. Parte da tela principal da proteína humana codificada pelo gene AKT1 no UniProt.

1.5.1.4 HPRD (Human Protein Reference Database) (http://www.hprd.org)

O HPRD (MISHRA et al., 2006) é uma plataforma centralizada voltada à visualização integrada de informações protéicas referentes à arquitetura de domínios, modificações pós-traducionais, redes de interação, associações a doenças, locais de expressão etc. para cada proteína presente no proteoma humano. Toda a informação contida nesse banco foi manualmente extraída da literatura e analisada antes de ser incorporada. Além de oferecer informação confiável diretamente referenciada no PubMed, o HPRD permite fácil identificação de moléculas que interagem com uma determinada proteína: no caso de uma proteína quinase, pode-se observar quais são seus substratos-alvos de fosforilação e quais as modificações (ex.: fosforilação, acetilação etc.) sofridas por ela, bem como quais são as moléculas responsáveis por tais modificações, ao contrário do UniProt, que compila informações sobre modificações pós-traducionais de forma mais genérica do que o HPRD.

TERNATE	NAMES	DISEASES	PTMs & SUBSTRATES EXTERNAL LINKS				
PTMs	5.0010705557117418			Substrates			
Residue	Туре	Site	Upstream Enzymes	Title	Residue	Туре	Sit
М	Acetylation	1		Estrogen receptor alpha	Y	Dephosphorylation	<u>537</u>
Y	Phosphorylation	152	Insulin receptor	Insulin receptor	Y	Dephosphorylation	118
Y	Phosphorylation	<u>153</u>	Insulin receptor	Insulin receptor	Y	Dephosphorylation	118
Y	Phosphorylation	20		Insulin receptor	Y	Dephosphorylation	119
С	Glutathionylation	215	Glutaredoxin	BCR	Y	Dephosphorylation	177
S	Phosphorylation	242	CDC like kinase 2:CDC like kinase 1	PDGF receptor, beta	Y	Dephosphorylation	771
S	Phosphorylation	243	CDC like kinase 2:CDC like kinase 1	ERK2	Y	Dephosphorylation	187
S	Phosphorylation	295		<u>c-Src</u>	γ	Dephosphorylation	419
S	Phosphorylation	352	Casein kinase II, alpha 1;Casein kinase II, alpha 2	<u>c-Src</u>	Y	Dephosphorylation	530
S	Phosphorylation	378	Casein kinase II, alpha 1;Casein kinase II, alpha 2	STAT5A	Y	Dephosphorylation	694
S	Phosphorylation	386	Casein kinase II, alpha 1:Casein kinase II, alpha 2:CDC2	STAT5B	γ	Dephosphorylation	699
S	Phosphorylation	<u>50</u>	AKT1:CDC like kinase 2:CDC like kinase 1				
Y	Phosphorylation	66	EGF receptor;Insulin receptor				

Figura 10. Lista obtida na página da proteína codificada pelo gene PTP1B do HPRD. À esquerda, pode-se ver as modificações pós-traducionais sofridas pela proteína e quem é responsável pela modificação. À direita, estão listados todos os substratos que são desfosforilados por essa fosfatase.

1.5.1.5 PhosphoSitePlus (http://www.phosphosite.org)

O *PhosphoSite* (HORNBECK et al., 2012) é um recurso manualmente curado dedicado ao estudo de modificações pós-traducionais em proteínas humanas e de camundongos. Seu banco de dados contém centenas de milhares sítios de modificações pós-traducionais, principalmente fosforilação, ubiquitinação e acetilação, além de localização em domínios, links para outros bancos de dados e outras funcionalidades. A principal utilidade deste banco de dados reside na facilidade de se obter informações sobre o efeito que uma modificação pós-traducional em determinado sítio tem sobre uma proteína.

1.5.1.6 Pathway Interaction Database (http://pid.nci.nih.gov/PID)

O PID é uma coleção altamente estruturada e manualmente verificada de interações biomoleculares e processos celulares organizados em vias de sinalização. Criado pelo National Cancer Institute (NCI) em colaboração com o Nature Publishing Group (SCHAEFER et al., 2009), pode ser usado como uma enciclopédia online ou como um recurso para análises computacionais. Além das vias pré-definidas, mantidas por especialistas, o PID é capaz de encontrar vias relacionadas a listas de proteínas previamente determinadas e submetidas a seu algoritmo de busca.

Figura 11. Lista de sítios que sofrem modificação pós-traducional na proteína AKT humana, obtida pelo PhosphoSite.

Figura 12. Parte da via do fator de transcrição c-Myc, apresentada no formato do PID. Os nomes independentes indicam proteínas, enquanto os nomes presentes em caixas indicam a formação de complexos. Os quadrados pretos indicam interações entre dois ou mais componentes, indicados pelas setas. As setas partindo de SKP2 e do grupo que contém Gsk3beta indicam reguladores positivos.

1.5.1.7 KEGG (http://www.kegg.com)

O KEGG (*Kyoto Encyclopedia of Genes and Genomes*) (KANEHISA et al., 2008) é uma ferramenta web para análise de interações moleculares baseada em sequências de genomas completos. Mantém uma base de dados de vias que é dividida em uma seção de vias metabólicas e outra de vias de regulação. Atualmente, estão disponíveis 344 vias metabólicas de referência, a partir das quais são gerados mapas metabólicos específicos para cada organismo. Atualmente, há

12.688.364 genes de 3.025 organismos sequenciados e 9.571 reações químicas envolvendo 17.207 compostos, gerando 290.748 vias metabólicas presentes no banco (Abr/2014). Todos estes dados estão disponíveis via FTP para *download*. Ao contrário do PID, cujo principal atrativo é a possibilidade de encontrar vias relacionadas a um conjunto de proteínas, o KEGG se mostra ideal para estudos evolutivos, uma vez que permite a comparação entre vias de diferentes espécies. No entanto, o grande conjunto de vias presente neste banco o tornam também uma excelente referência para consultas, assim como o PID.

Figura 13. Parte de uma via de regulação armazenada pelo KEGG. Cada retângulo pequeno representa uma proteína, enquanto os retângulos grandes representam processos biológicos ou outras vias. Todas as proteínas mostradas são codificadas pelo genoma humano.

No contexto da Biologia Sistêmica, as ferramentas da Bioinformática permitem realizar a contextualização biológica de proteínas de interesse encontradas em estudos que geram dados massivos, oferecendo uma maneira prévia de inferir possíveis vias e interações entre essas proteínas e validar, em laboratório, apenas as que se mostram com maior potencial. A inferência computacional funciona como uma maneira de reduzir os caminhos possíveis para validação, de modo a permitir que ela seja feita em tempo hábil e de maneira mais eficiente.

2. OBJETIVO

O objetivo deste trabalho foi analisar *in silico*, à luz da Biologia Sistêmica, conjuntos de dados de proteoma e fosfoproteoma de modo a comparar o fenótipo molecular das linhagens de leucemia mieloide crônica K562, não resistente e Lucena-1, resistente, buscando alvos para validação *in vitro* e visando aumentar o conhecimento existente sobre o mecanismo de resistência à múltiplas drogas.

2.1 OBJETIVOS ESPECÍFICOS

- Determinar quais proteínas com atividade e/ou expressão alteradas entre as linhagens resistente e não resistente têm maior potencial de estarem relacionadas ao processo de resistência;
- Construir e adotar ferramentas computacionais que constituam uma metodologia de análise capaz de realizar a determinação acima, de acordo com os conjuntos de dados disponíveis;
- Validar os alvos apontados pelas etapas anteriores utilizando técnicas mais específicas;
- Analisar os alvos validados e suas redes de interações no contexto da Biologia Sistêmica, de modo a contribuir para o conhecimento sobre o mecanismo de resistência.

2.2 VISÃO GERAL DO TRABALHO

Figura 14. Visão geral do trabalho, ilustrando a análise computacional realizada no início e culminando em proteínas validadas por metodologias específicas como o *Western blotting*. O número de proteínas presentes na análise em suas diferentes etapas está indicado junto à respectiva etapa. A proteína codificada pelo gene ACP1 foi sugerida como potencialmente relacionada com o mecanismo de resistência após a análise dos parceiros de interação das proteínas codificadas pelos genes PTPN1, HDAC6, ACTB, SRC, PTPN11, VIM e CTNNB1. O "p" antes do símbolo de um gene indica a versão fosforilada da proteína codificada por ele.

3. MATERIAL E MÉTODOS

3.1 CULTURA DE CÉLULAS

As linhagens K562 e Lucena-1 foram cultivadas em atmosfera umidificada com 5% de CO₂ a 37°C. O meio de cultura utilizado foi o RPMI, suplementado com 10% de soro fetal bovino (Gibco, Grand Island, NY, USA) e antibióticos (100 μ g/mL de penicilina e 100 μ g/mL de sulfato de estreptomicina). Lucena-1 foi mantida em meio com 60nM de vincristina.

3.2 OBTENÇÃO DO EXTRATO CELULAR

As células foram coletadas, lavadas com PBS e centrifugadas por 5 minutos a 14000 rpm. O *pellet* foi coletado e ressuspendido em tampão de lise 50 mM Tris-HCl (pH 7,4), 1% Tween 20, 0,25% deoxicolato de sódio, 150mM NaCl, 1mM EDTA, 1 mM O-Vanadato, 1mM NaF e inibidores de proteases (1 µg/mL de aprotinina, 10 µg/mL de leupeptina e 1 mM de 4- (cloridrato de fluoreto aminoetil benzosulfonila)) por 2h em gelo. Os extratos proteicos foram centrifugados e a concentração de proteínas foi determinada pelo método de Bradford. Aos extratos foi adicionado tampão de amostra (2X dodecil sulfato de sódio (SDS), 100 mM Tris-HCl (pH 6,8), 200 mM de ditiotreitol (DTT), 4% SDS, 0,1% de azul de bromofenol e 20% de glicerol) na proporção 1:1.

3.3 WESTERN BLOTTING

Os extratos celulares foram resolvidos por eletroforese em gel de SDS-poliacrilamida (PAGE) 12% a 160V por 60 minutos em cubas Amersham ECL Gel Box e depois transferidos para membranas de PVDF (400 mA por 90 minutos). As membranas foram, então, bloqueadas em 2,5% de leite desnatado em tampão salino Tris (TBS)-Tween 20 (0,1%) (TBS-T) por 60 minutos e incubados *overnight* a 4°C com anticorpos primários diluídos na proporção 1:1000. Após 3 lavagens de 5 minutos em TBS-T, as membranas foram incubadas com anticorpos secundários conjugados com peroxidase (diluição 1:5000) por uma hora, sendo depois lavadas em TBS-T. A detecção das bandas foi realizada através de quimioluminescência, através da exposição das membranas a uma solução de detecção (GE Healthcare ECL Prime) e obtenção das imagens em fotodocumentador (Bio-Rad Chemidoc XRS).

3.4 CONJUNTOS DE DADOS

A análise computacional envolveu algumas ferramentas e bancos de dados descritos no tópico 1.5.1 e outras descritas no momento apropriado mais abaixo. A metodologia empregada foi descrita em detalhes na seção de resultados.

Os conjuntos de dados analisados consistem em três tabelas, uma referente ao proteoma das linhagens K562 e Lucena-1 enquanto as outras duas se referem ao fosfoproteoma dessas linhagens. O fosfoproteoma foi subdividido em dois conjuntos: serina/treonina e tirosina. Tanto o proteoma quanto o fosfoproteoma foram obtidos pela técnica SILAC acoplada à espectrometria de massas. A Figura 15 mostra a metodologia empregada na obtenção desses conjuntos de dados.

Figura 15. Metodologia empregada na obtenção do proteoma (A) e do fosfoproteoma de serina/treonina (B) e de tirosina (C) das linhagens K562 e Lucena-1.

O conjunto de dados do proteoma contém 2290 proteínas cuja expressão foi quantificada nas linhagens K562 e Lucena-1. A lista contém informações como o nome e o identificador da proteína, o nome do gene associado a ela e a razão entre a expressão da proteína em Lucena-1 e K562 (Tabela 1). Da mesma forma, as duas tabelas do fosfoproteoma contêm informações similares, substituindo a razão entre a expressão pela razão entre a fosforilação do fragmento encontrado nas duas linhagens. Especificamente no fosfoproteoma, também há informações sobre o sítio de fosforilação (Tabela 2). O fosfoproteoma em serina/treonina contém 4164 eventos de fosforilação correspondentes a 1984 proteínas, enquanto o fosfoproteoma em tirosina contém 93 eventos de fosforilação correspondentes a 69 proteínas.

Tabela 1. Excerto dos dados contidos no proteoma. As proteínas estão distribuídas nas linhas, enquanto as colunas mostram os nomes de cada proteína (*Protein Names*) e do gene associado (*Gene Names*), a descrição de cada proteína (*Protein Descriptions*), o identificador UniProt (*Uniprot*) e a razão entre a expressão de cada proteína em Lucena-1 e K562 (*Ratio lucena/wt mean*, em destaque), entre outras informações.

Protein Names	Gene Names	Protein Descriptions	Uniprot	log2 mean	Ratio lucena/wt mean	p-value
Protein S100-A6	S100A6;CAC	Protein S100-A6	P06703	5,801	55,77	0,000
Carbonic anhydra	CA2	Carbonic anhydrase	P00918	5,744	53,59	0,000
Carbonic anhydra	CA1	Carbonic anhydrase	P00915	5,422	42,88	0,000
GRB2-related ad	GRAP2;GADS	GRB2-related adapted	075791	5,188	36,46	0,000
Hemoglobin subu	HBE1;HBE	Hemoglobin subunit	P02100	5,048	33,09	0,000
A-kinase anchor	AKAP12;AKA	Isoform 1 of A-kinas	Q02952	4,872	29,28	0,000
Proteasome sub	PSMB9;LMP2	Isoform LMP2.L of F	P28065	4,714	26,25	0,000
Calbindin;Vitamir	CALB1;CAB2	Calbindin	P05937	4,697	25,93	0,000
Melanoma-assoc	MAGEA9;MAC	Melanoma-associate	P43362	4,557	23,54	0,000

Tabela 2. Excerto dos dados contidos no fosfoproteoma de tirosina. As proteínas estão distribuídas nas linhas, enquanto as colunas mostram os nomes de cada proteína (*Protein Names*) e do gene associado (*Gene Names*), a descrição de cada proteína (*Protein Descriptions*, abreviado), o identificador UniProt (*Uniprot*), as probabilidades de fosforilação de cada sítio do fragmento encontrado por espectrometria de massas (*Phospho (STY) Probabilities*) e a razão entre a fosforilação em Lucena-1 e K562 (*Ratio lucena/wt mean*, em destaque), entre outras informações.

Protein Names	Gene Names	Protein Descr	Uniprot	Phospho (STY) Probabilities	Ratio lucena/wt mean	p-value	log2 ratio mean
Tyrosine-protein	CSK	Tyrosine-prot	P41240;A8K3E	VMEGTVAAQDEFY(1)R	2,84	0,217	1,51
Tyrosine-protein	PTPN11;PTP20	Isoform 1 of T	Q06124-1;Q06	GHEY(0.963)T(0.037)NIK	3,39	0,165	1,76
Mitogen-activate	MAPK3;ERK1;	Mitogen-activ	P27361;Q7Z3F	(0.017)EY(0.982)VAT(0.001)R	4,41	0,099	2,14
Mitogen-activate	MAPK1;ERK2;	Mitogen-activ	P28482;Q1HB.	T(0.009)EY(0.99)VAT(0.001)R	2,62	0,242	1,39
Heterogeneous	HNRNPA0;HN	Heterogeneo	Q13151;Q6IB1	EDIY(0.92)S(0.08)GGGGGGSR	2,48	0,258	1,31
Catenin delta-1;	CTNND1;KIAA	Isoform 1ABC	060716-1;060	Y(0.936)S(0.06)T(0.005)PNER	1,48	0,367	0,57
Ubiquitin-like m	UBA1;A1S9T;L	Ubiquitin-acti	P22314;Q5JRR	SEADIDEGLY(0.998)S(0.002)R	2,98	0,203	1,57
Peptidyl-prolyl c	PPIL2;PPIL2	Isoform 2 of P	Q13356-2;Q13	LNAAHY(0.967)S(0.033)TGK	1,05	0,355	0,07
Eukaryotic transl	EIF4H;KIAA00	Isoform Long	Q15056-1;Q15	105)Y(0.895)DDRAYSSFGGGR	1,16	0,367	0,22

4. RESULTADOS E DISCUSSÃO

4.1 AVALIAÇÃO BIOINFORMÁTICA DO CONJUNTO DE DADOS

4.1.1 Determinação do efeito da fosforilação sobre a atividade de uma proteína

Levando em consideração as dificuldades relacionadas à análise de um grande volume de dados, principalmente a impossibilidade de validação experimental de cada entrada numa tabela com milhares de proteínas, é de suma importância o desenvolvimento de metodologias de classificação e filtragem que sejam capazes de retornar resultados relevantes para posterior validação em laboratório.

No caso da sinalização celular, principal objeto de investigação para a determinação do mecanismo de quimiorresistência em células leucêmicas, a fosforilação e desfosforilação de proteínas tem um papel protagonista na determinação da atividade proteica. Por conta disso, a análise dos conjuntos de dados de quinoma e fosfoproteoma e a determinação da ativação ou inibição de proteínas através de fosforilação é um passo fundamental para uma filtragem adequada desse tipo de informação.

A busca pela informação de ativação ou inibição de uma proteína através de fosforilação é geralmente feita de forma manual, na literatura científica. No entanto, existem muitos problemas associados a esse tipo de coleta: dificuldades de automação; artigos científicos que não oferecem a informação requerida de maneira precisa; lentidão, causando um gargalo temporal na análise; entre outros. Após uma revisão em bancos de dados disponíveis na *internet*, foi encontrado um banco criado pela *Cell Signaling Technology* com apoio do *National Institutes of Health* (NIH) e do *National Cancer Institute* (NCI) (SCHAEFER et al., 2009), livremente disponível, cuja função é catalogar diversas informações sobre proteínas envolvidas na sinalização celular, incluindo quais sítios são responsáveis por ativar ou inibir uma determinada proteína quando fosforilados. Contudo, este banco, chamado *PhosphoSite* (HORNBECK et al., 2012), oferece a informação numa interface *web*, sem a opção de *download* de um arquivo em formato texto contendo todo o seu conteúdo. Além disso, a busca precisa ser feita proteína por proteína, mantendo a lentidão no processo.

Por conta disso, a primeira providência tomada na análise bioinformática dos dados de fosfoproteoma foi a criação de um *software*, batizado de *PhosphoActivity*, que é capaz de tomar como base uma lista de proteínas derivada dos estudos *high-throughput* e realizar a busca para todas elas no banco *PhosphoSite*, retornando uma lista com os sítios responsáveis pela

ativação e pela inibição de cada entrada na lista. A adição dessa informação nas tabelas de fosfoproteoma facilita a seleção de alvos relacionados a quimiorresistência para a validação *in vitro*. Ao coletar e apresentar de forma automática uma informação de difícil acesso, permite a rápida visualização e tomada de decisão a respeito do papel de uma proteína no processo de resistência a quimioterápicos.

Cada conjunto de dados diferente, no entanto, demanda adaptações para que as informações sejam coletadas corretamente. Estas adaptações são feitas no mesmo momento em que novas ideias são implementadas em sua funcionalidade, como, além de informar qual é o resíduo de aminoácido responsável pela ativação ou inibição da proteína em questão, também verificar se o resíduo fosforilado no experimento *in vitro* está relacionado à ativação ou inibição. A Tabela 3 apresenta os resultados do *PhosphoActivity* para o fosfoproteoma de tirosina de células leucêmicas. O *PhosphoActivity* foi aplicado com sucesso tanto para o fosfoproteoma de tirosina (93 eventos de fosforilação) bem como para o fosfoproteoma de serina/treonina (4164 eventos de fosforilação). No caso deste último, a ferramenta levou aproximadamente 25 horas para obter as informações para todas as 4164 entradas. Um excerto dos dados é apresentado na Tabela 3. Além disso, o *PhosphoActivity* foi concebido de forma que as informações obtidas fossem salvas imediatamente após sua obtenção, prevenindo perdas devido às quedas de energia ou de conexão. O *PhosphoActivity* atua através das seguintes etapas:

1. Obtenção dos símbolos de cada gene e seu respectivo identificador UniProt para cada proteína;

2. Busca pela página *web* referente à proteína no phosphosite.org, com verificação adicional pelo identificador UniProt;

3. Extração da informação sobre ativação e inibição;

4. Incorporação dos resultados finais aos conjuntos de dados relevantes.

A verificação pelo identificador UniProt é fundamental para garantir que a página buscada seja realmente aquela referente à proteína de interesse. Existem muitas proteínas com nomes ambíguos e o mesmo nome aplicado para proteínas de organismos diferentes. Por isso, o identificador certifica que a página em questão corresponde à proteína presente no conjunto de dados original. Contudo, os identificadores UniProt não estão disponíveis para todas as proteínas nos conjuntos de dados originais. Para resolver essa questão, foi criada uma tabela cruzada contendo os nomes das proteínas de cada conjunto de dados e seus respectivos identificadores UniProt. Os identificadores podem ser observados na coluna "UniProt" das Tabelas 4 a 9. Tabela 3. Sítios de ativação (coluna Activation Sites) e de inibição (coluna Inhibition Sites) por fosforilação de proteínas diferencialmente fosforiladas em tirosina de células leucêmicas quimiorresistentes. A coluna Position indica a posição do sítio fosforilado encontrado no fosfoproteoma. A obtenção em grande escala dessa informação foi feita pelo software PhosphoActivity, desenvolvido neste trabalho.

Protein Names	Gene Name Protein Descriptions	Uniprot	Activation Sites - from Phopshosite.org	Inhibition Sites - from Phosphosite.org	Position	Phospho (STY) Probabilities
Uncharacterized protei	SAMD4A;SA Uncharacterized prote	in A8MPZ5;Q9UPU9;Q0VA96	No activation sites found for SAMD4A	No inhibition sites found for SAMD4A	599	QY(1)QIPSR
GRB2-related adapter p	GRAP2;GAD GRB2-related adapter	pi 075791;Q6FHA6;Q6FI14;0	No activation sites found for GRAP2	No inhibition sites found for GRAP2	222	Y(1)LQHHHFHQER
CUB domain-containing	CDCP1;TRA: Isoform 1 of CUB doma	aii Q9H5V8-1;Q9H5V8;Q9H5	No activation sites found for CDCP1	No inhibition sites found for CDCP1	707	GPAVGIY(1)NGNINTEMPR
Hemogen;Hemopoietic	HEMGN;ED/Hemogen	Q9BXL5;A8K8S6	No activation sites found for HEMGN	No inhibition sites found for HEMGN	177	MY(1)QEISVLQDNSSK
Protein kinase C delta t	PRKCD;PRK(Protein kinase C delta	ty Q05655;Q86XJ6	T141,T295,T507,	Y52,Y64,Y187,	334	SVAGEDMQDNS(0.001)GT(0.017)Y(0.981)GK
Protein kinase C delta t	PRKCD;PRK(Protein kinase C delta	ty Q05655;Q86XJ6	T141,T295,T507,	Y52,Y64,Y187,	313	RSDSASSEPVGIY(1)QGFEK
Mitogen-activated prot	MAPK3;ERK Mitogen-activated pro	te P27361;Q7Z3H5;Q8NHX1;	T202,Y204,T202,Y204,	No inhibition sites found for MAPK3	204	DPEHDHTGFLT(0.017)EY(0.982)VAT(0.001)R
Docking protein 1;Down	DOK1 Isoform 1 of Docking p	rc Q99704-1;Q99704;Q14CB	Y146,	No inhibition sites found for DOK1	449	SHNSALY(0.999)S(0.001)QVQK
E3 ubiquitin-protein liga	CBLB;RNF5€ Isoform Long of E3 ubi	qi Q13191-1;Q13191;A8K95	No activation sites found for CBLB	No inhibition sites found for CBLB	709	TRDPVEEDDDEY(1)K
E3 ubiquitin-protein ligi	CBLB;RNF5E Isoform Long of E3 ubi	qi Q13191-1;Q13191;A8K95	No activation sites found for CBLB	No inhibition sites found for CBLB	763	SNIPDLSIY(1)LK
Tyrosine-protein phosp	PTPN11;PTF Isoform 1 of Tyrosine-	or Q06124-1;Q06124;Q0612	·Y546,Y584,	No inhibition sites found for PTPN11	546	GHEY(0.963)T(0.037)NIK
Tyrosine-protein kinase	SGK269;KIA Tyrosine-protein kinas	e Q9H792	No results matched ProteinID for SGK269	No results matched ProteinID for SGK269	635	VPIVINPNAY(1)DNLAIYK
Tyrosine-protein kinase	SGK269;KIA Tyrosine-protein kinas	e Q9H792	No results matched ProteinID for SGK269	No results matched ProteinID for SGK269	641	VPIVINPNAY(0.001)DNLAIY(0.999)K
GRB2-associated-bindir	GAB2;KIAAC Isoform 2 of GRB2-ass	oc Q9UQC2-2;Q9UQC2;Q9U0	No activation sites found for GAB2	S210,T391,	650	VDY(1)VQVDK
Ubiquitin-like modifier-	UBA1;A1S9 Ubiquitin-activating en	z P22314;Q5JRR8;Q5JRS0;Q	No activation sites found for UBA1	No inhibition sites found for UBA1	55	NGSEADIDEGLY(0.998)S(0.002)R
Tyrosine-protein kinase	CSK Tyrosine-protein kinas	e P41240;A8K3B6;Q53EL3	\$364,	No inhibition sites found for CSK	184	VMEGTVAAQDEFY(1)R
PER3 protein;Period 3;F	PER3;PER3; Period homolog 3;peri	o(A6H8X0;Q5H8X5;A2I2N5;	No activation sites found for PER3	No inhibition sites found for PER3	1128	ILMT(0.005)Y(0.995)QVPER
GRB2-associated-bindir	GAB2;KIAAC Isoform 2 of GRB2-ass	c Q9UQC2-2;Q9UQC2;Q9U0	No activation sites found for GAB2	S210,T391,	621	STGS(0.003)VDY(0.997)LALDFQPSSPSPHR
GRB2-associated-bindir	GAB2;KIAAC Isoform 2 of GRB2-ass	c Q9UQC2-2;Q9UQC2;Q9U0	No activation sites found for GAB2	S210,T391,	300	GSLTGSETDNEDVY(0.998)T(0.002)FK
Mitogen-activated prot	MAPK1;ERK Mitogen-activated pro	t€ P28482;Q1HBJ4;Q499G7;	T185,Y187,S29,T185,Y187,T190,	No inhibition sites found for MAPK1	187	ADPDHDHTGFLT(0.009)EY(0.99)VAT(0.001)R
CD2-associated protein	CD2AP;CD2, Uncharacterized prote	in A6NL34;Q9Y5K6;Q5VYA3	No activation sites found for CD2AP	No inhibition sites found for CD2AP	402	Y(0.999)FS(0.001)LKPEEK
Heterogeneous nuclear	HNRNPA0; Heterogeneous nuclea	r Q13151;Q6IB18	No activation sites found for HNRNPA0	No inhibition sites found for HNRNPA0	180	EDIY(0.92)S(0.08)GGGGGGSR
Intersectin-2;SH3 doma	ITSN2;KIAA: Intersectin-2 (SH3 dom	na Q9NZM3-1;Q9NZM3;Q53	No activation sites found for ITSN2	No inhibition sites found for ITSN2	968	REEPEALY(1)AAVNK
GRB2-associated-bindir	GAB2;KIAAC Isoform 2 of GRB2-ass	oc Q9UQC2-2;Q9UQC2;Q9U0	No activation sites found for GAB2	S210,T391,	331	GDLLVDNMDVPATPLS(0.104)AY(0.896)QIPR
Phosphatidylinositol-3,4	INPPL1;SHIF Isoform 1 of Phosphati	d 015357-1;015357;01535	No activation sites found for INPPL1	No inhibition sites found for INPPL1	1135	TLSEVDY(1)APAGPAR
Phosphatidylinositol-3,4	INPPL1;SHIF Isoform 1 of Phosphati	d 015357-1;015357;01535	No activation sites found for INPPL1	No inhibition sites found for INPPL1	1162	GLPS(0.001)DY(0.999)GR
SHC-transforming prote	SHC1;SHC;S SHC (Src homology 2 d	oi P29353-1;P29353;Q5T183	No activation sites found for SHC1	No inhibition sites found for SHC1	428	ELFDDPS(0.032)Y(0.968)VNVQNLDK
SNW domain-containin	SNW1;SKIIP SNW domain-containing	ng Q13573;A8K8A9;Q0D2M5	No activation sites found for SNW1	No inhibition sites found for SNW1	448	DMAQS(0.005)IY(0.995)RPSK
Activated CDC42 kinase	TNK2;ACK1 tyrosine kinase, non-re	ec Q07912-3;Q07912	Y284,	No inhibition sites found for TNK2	905	Y(0.975)AT(0.025)PQVIQAPGPR
Rho guanine nucleotide	ARHGEF10; I Isoform 1 of Rho guani	in O15013-1;O15013;A8MS9	No activation sites found for ARHGEF10	No inhibition sites found for ARHGEF10	1307	SEDS(0.003)T(0.003)IY(0.993)DLLK
PDZ and LIM domain pr	PDLIM5;ENI PDZ and LIM domain p	rc Q96HC4;A8K6F9;Q4W5K9	No activation sites found for PDLIM5	No inhibition sites found for PDLIM5	251	YTEFY(1)HVPTHSDASK
SNW domain-containin	SNW1;SKIIP SNW domain-containing	ng Q13573;A8K8A9;Q0D2M5	No activation sites found for SNW1	No inhibition sites found for SNW1	176	LAPAQY(1)IR

4.1.2 Normalização dos dados de fosforilação pela expressão proteica

A quantificação do nível de fosforilação de uma proteína é também uma medida indireta de sua abundância na célula. Por conta disso, quando se analisam os níveis de fosforilação proteicos, é importante considerar também seus níveis de expressão, uma vez que um aumento verificado na fosforilação pode apenas indicar um aumento na quantidade de proteína na célula.

Para isso, os 4164 fragmentos fosforilados em serina/treonina e os 93 fragmentos fosforilados em tirosina tiveram seus níveis de fosforilação normalizados pelos níveis de expressão aferidos pelo proteoma.

Foi realizado um cruzamento em banco de dados relacional entre os dados de fosforilação e de expressão utilizando como identificador comum o acesso UniProt, de modo a garantir a confiabilidade da operação.

Dos 4164 fragmentos fosforilados em serina/treonina, 1542 estavam relacionados à proteínas também identificadas no proteoma e tiveram as razões de fosforilação entre a célula resistente e a célula não-resistente normalizadas pela expressão. O mesmo ocorreu para 42 fragmentos fosforilados em tirosina, dentre os 93 identificados originalmente.

As análises subsequentes levaram em consideração apenas os fragmentos fosforilados relacionados a proteínas também presentes no proteoma e que, portanto, puderam ser normalizados pela expressão proteica.

4.1.3 Geração de listas com base na expressão e fosforilação diferencial

A seleção das proteínas a partir da lista de 2290 proteínas quantificadas no proteoma seguiu o critério de expressão proteica pelo menos duas vezes alterada na célula resistente em relação à célula não-resistente, tanto para um aumento da expressão quanto para a diminuição. Esta é uma prática comum em estudos de expressão em larga escala (BERMEJO-ALVAREZ et al., 2010; MAGEE et al., 2012; MEDJKANE et al., 2004).

No caso do fosfoproteoma, os 1542 fragmentos fosforilados encontrados no fosfoproteoma de serina/treonina e os 42 fragmentos no fosfoproteoma de tirosina normalizados pela expressão no proteoma foram submetidos ao mesmo filtro.

As Tabelas de 4 até 9 contêm as 469 proteínas assim selecionadas para todos os conjuntos de dados. Pode-se observar, no fosfoproteoma, casos em que a normalização pela expressão trouxe novas informações sobre a diferença observada: KRT8, uma proteína relacionada ao citoesqueleto, cuja fosforilação em serina aumenta durante o ciclo celular, estresse celular e apoptose (DAUB et al., 2008; HE et al., 2002; KU; AZHAR; OMARY, 2002; LIAO; KU; OMARY, 1997; WANG et al., 2008), havia apresentado dois fragmentos no fosfoproteoma com redução em mais da metade na fosforilação na célula resistente em relação à célula não resistente (*fold change - FC* ou razão entre as duas condições igual a 0,41). No entanto, após a normalização, verifica-se que houve uma redução ainda mais acentuada na expressão da proteína, indicando que, na verdade, houve um aumento nos níveis de fosforilação na célula resistente, levando a um *fold change* de 4,53. Da mesma forma, proteínas que apresentaram aumento expressivo na fosforilação na célula resistente, como ABCB1 (FC = 74,57), bomba de efluxo que caracteriza a linhagem resistente, quando normalizadas pela expressão, apresentaram um aumento mais modesto, de 4,32 vezes, indicando que o aumento na fosforilação verificado se deve, em grande parte, ao aumento na expressão da proteína.

Gene	Nome da proteína	UniProt	FC
S100A6	Protein S100-A6	P06703	55.77
CA2	Carbonic anhydrase 2	P00918	53.59
CA1	Carbonic anhydrase 1	P00915	42.88
GRAP2	GRB2-related adapter protein 2	075791	36.46
HBE1	Hemoglobin subunit epsilon	P02100	33.09
AKAP12	Isoform 1 of A-kinase anchor protein 12	Q02952	29.28
PSMB9	Isoform LMP2.L of Proteasome subunit beta type-9 precursor	P28065	26.25
CALB1	Calbindin	P05937	25.93
MAGEA9	Melanoma-associated antigen 9	P43362	23.54
AKR1B1	Aldose reductase	P15121	21.89
KIAA1324L	Protein KIAA1324-like	Q17RI6	17.45
ABCB1	Multidrug resistance protein 1	P08183	17.27
SAMD9	Isoform 1 of Sterile alpha motif domain-containing protein 9	Q5K651	17.14
GDF15	Growth/differentiation factor 15 precursor	Q99988	15.62
TEX11	Isoform 1 of Testis-expressed sequence 11 protein	Q8IYF3	15.01
ASMTL	Uncharacterized protein ASMTL	095671	13.84
CT45-5	Cancer/testis antigen 45-5	Q6NSH3	13.37
EEF1A2	Elongation factor 1-alpha 2	Q05639	13.16
AKR1C3	aldo-keto reductase family 1, member C3	A8K2V0	8.11
DDX24	ATP-dependent RNA helicase DDX24	Q9GZR7	7.58
SRI	Sorcin	P30626	7.52
UBR7	Uncharacterized protein C14orf130	Q8N806	6.68
AKR1C2	Aldo-keto reductase family 1 member C2	P52895	6.35
STAR	Steroidogenic acute regulatory protein, mitochondrial precursor	P49675	5.78
MAGEB2	Melanoma-associated antigen B2	015479	5.46
NIPSNAP1	Protein NipSnap1	Q9BPW8	4.88
DUSP3	23 kDa protein	P51452	4.37
SDSL	Serine dehydratase-like	Q96GA7	4.35
PES1	Isoform 1 of Pescadillo homolog 1	000541	4.06
CAT	Catalase	P04040	3.91
DHRS7	Isoform 1 of Dehydrogenase/reductase SDR family member 7 precursor	Q9Y394	3.91
SPTB	spectrin beta isoform b	P11277	3.8
SLC25A40	Solute carrier family 25 member 40	Q8TBP6	3.61
DICER1	dicer1	Q9UPY3	3.58
EIF4A2	Isoform 2 of Eukaryotic initiation factor 4A-II	Q14240	3.54
TRIP11	Thyroid receptor-interacting protein 11	Q15643	3.53
NAGK	N-acetylglucosamine kinase	Q9UJ70	3.52
LANCL1	LanC-like protein 1	043813	3.52
PMVK	Phosphomevalonate kinase	Q15126	3.52

Tabela 4. Lista de 123 proteínas selecionadas com base na expressão diferencial positiva. O critério utilizado foi uma variação (FoldChange – FC) de pelo menos duas vezes na expressão na célula resistente em relação à célula não-resistente (p<0,05). A coluna UniProt contém o identificador deste banco de dados de proteínas. A tabela está na ordem decrescente pela coluna FC.

MAGEC1	Melanoma-associated antigen C1	АОРКОЗ	3.46
ISG15	Interferon-induced 17 kDa protein precursor	P05161	3.41
MTP18	Mitochondrial 18 kDa protein	Q9UDX5	3.27
PDCD4	Programmed cell death protein 4	Q53EL6	3.27
CDK6	Cell division protein kinase 6	Q00534	3.26
RAB27A	Isoform Long of Ras-related protein Rab-27A	P51159	3.2
FABP5	Fatty acid-binding protein, epidermal	Q01469	3.13
SPTAN1	Isoform 1 of Spectrin alpha chain, brain	Q13813	3.06
PYCRL	Pyrroline-5-carboxylate reductase-like protein (Fragment)	Q53H96	2.95
NEK9	Serine/threonine-protein kinase Nek9	Q8TD19	2.91
LYSMD2	Isoform 1 of LysM and putative peptidoglycan-binding domain-containing protein 2	Q8IV50	2.9
RFC1	Isoform 1 of Replication factor C subunit 1	P35251	2.89
LACTB2	Lactamase beta-2	A8K2D6	2.87
CYP51A1	cytochrome P450, family 51	Q16850	2.85
PAPOLA	Isoform 1 of Poly(A) polymerase alpha	P51003	2.83
ACSM3	Isoform 1 of Acyl-coenzyme A synthetase ACSM3, mitochondrial precursor	Q53FZ2	2.8
PEPD	Xaa-Pro dipeptidase	P12955	2.75
TP53I3	Isoform 1 of Putative quinone oxidoreductase	Q53FA7	2.75
REEP6	Uncharacterized protein REEP6	A8MWX0	2.7
SH3BGRL	SH3 domain-binding glutamic acid-rich-like protein	075368	2.7
CIRBP	Cold-inducible RNA-binding protein	Q14011	2.7
AMMECR1	Isoform 1 of AMME syndrome candidate gene 1 protein	Q9Y4X0	2.69
UBAC1	Ubiquitin-associated domain-containing protein 1	Q9BSL1	2.68
MAP1B	Microtubule-associated protein 1B	P46821	2.65
CLIC2	Chloride intracellular channel protein 2	015247	2.62
SORD	Sorbitol dehydrogenase	Q00796	2.61
STAT1	Isoform Alpha of Signal transducer and activator of transcription 1-alpha/beta	P42224	2.61
SMEK1	Isoform 1 of SMEK homolog 1	Q6IN85	2.56
SPRYD4	SPRY domain-containing protein 4	Q8WW59	2.56
ACYP1	Acylphosphatase-1	P07311	2.56
ARPC5L	Actin-related protein 2/3 complex subunit 5-like protein	Q9BPX5	2.51
LTA4H	Isoform 1 of Leukotriene A-4 hydrolase	P09960	2.51
TST	Thiosulfate sulfurtransferase	Q16762	2.48
ARPC2	Actin-related protein 2/3 complex subunit 2	015144	2.46
GTPBP10	Isoform 1 of GTP-binding protein 10	A4D1E9	2.45
ΙΤΡΚ1	Inositol-tetrakisphosphate 1-kinase	Q13572	2.44
EHD2	EH domain-containing protein 2	Q9NZN4	2.44
SPTA1	Uncharacterized protein SPTA1	P02549	2.44
PCK2	Phosphoenolpyruvate carboxykinase [GTP], mitochondrial precursor	Q16822	2.44
CHD7	Isoform 1 of Chromodomain-helicase-DNA-binding protein 7	Q9P2D1	2.41
HMBS	Isoform 1 of Porphobilinogen deaminase	P08397	2.4
MLL	Isoform 1 of Zinc finger protein HRX	Q03164	2.38
FTL	Ferritin light chain	P02792	2.32

RDH11	Isoform 1 of Retinol dehydrogenase 11	Q8TC12	2.32
DECR1	2,4-dienoyl-CoA reductase, mitochondrial precursor	Q16698	2.31
CEP170	Centrosomal protein 170kDa	Q5SW80	2.3
RAPTOR	Isoform 1 of Regulatory-associated protein of mTOR	Q8N122	2.29
PRKCA	Protein kinase C alpha type	P17252	2.29
TBPL1	TATA box-binding protein-like protein 1	P62380	2.29
BAT2D1	HBxAg transactivated protein 2	Q9HA05	2.29
GPD1L	Glycerol-3-phosphate dehydrogenase 1-like protein	Q8N335	2.28
FIP1L1	Isoform 2 of Pre-mRNA 3'-end-processing factor FIP1	Q6UN15	2.28
MAP1LC3B	Uncharacterized protein ENSP00000305059	A6NCE7	2.25
HIST2H2AA3	Histone H2A type 2-A	Q6FI13	2.25
THG1L	Probable tRNA(His) guanylyltransferase	Q9NWX6	2.24
ACTN1	Actinin alpha 1 isoform b	A1L0V1	2.23
HPCAL1	Hippocalcin-like protein 1	P37235	2.21
MTA1	Isoform Long of Metastasis-associated protein MTA1	Q13330	2.19
PGLS	6-phosphogluconolactonase	O95336	2.19
ATXN2L	114 kDa protein	Q8WWM7	2.19
EPB41L2	Band 4.1-like protein 2	O43491	2.17
ARPC3	Uncharacterized protein ARPC3 (Fragment)	A8MYY8	2.15
OPA1	Isoform 3 of Dynamin-like 120 kDa protein, mitochondrial precursor	060313	2.14
ARPC4	Actin-related protein 2/3 complex subunit 4	P59998	2.13
HMGCL	Hydroxymethylglutaryl-CoA lyase, mitochondrial precursor	P35914	2.12
M6PRBP1	Isoform B of Mannose-6-phosphate receptor-binding protein 1	O60664	2.08
TRMT6	Isoform 1 of tRNA	Q9UJA5	2.07
INPPL1	Isoform 1 of Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2	015357	2.06
REEP5	Receptor expression-enhancing protein 5	Q00765	2.06
ERCC6L	excision repair protein ERCC6-like	Q2NKX8	2.05
GBE1	1,4-alpha-glucan-branching enzyme	Q04446	2.05
HIST1H2BN	Histone H2B.d	Q99877	2.05
SLC6A6	Sodium- and chloride-dependent taurine transporter	P31641	2.04
ACTR3	Actin-related protein 3	P61158	2.04
AK3L1	Adenylate kinase isoenzyme 4, mitochondrial	P27144	2.04
RPL7L1	Ribosomal protein L7-like 1	Q6DKI1	2.04
NDUFS5	NADH dehydrogenase [ubiquinone] iron-sulfur protein 5	O43920	2.04
PDHX	Pyruvate dehydrogenase protein X component, mitochondrial precursor	O00330	2.01
ZNF687	Isoform 1 of Zinc finger protein 687	Q8N1G0	2.01
GDI1	Rab GDP dissociation inhibitor alpha	P31150	2.01
HTRA2	Isoform 1 of Serine protease HTRA2, mitochondrial precursor	O43464	2
SATB2	DNA-binding protein SATB2	Q9UPW6	2
DHCR24	24-dehydrocholesterol reductase precursor	Q15392	2
FARSB	Phenylalanyl-tRNA synthetase beta chain	Q9NSD9	2

Tabela 5. Lista de 107 proteínas selecionadas com base na expressão diferencial negativa. O critério utilizado foi uma variação (FoldChange – FC) de pelo menos duas vezes na expressão na célula resistente em relação à célula não-resistente (p<0,05). A coluna UniProt contém o identificador deste banco de dados de proteínas. A tabela está na ordem crescente pela coluna FC.

Gene	Nome da proteína	UniProt	FC
EPPK1	Epiplakin	P58107	0.06
OXCT1	Succinyl-CoA:3-ketoacid-coenzyme A transferase 1, mitochondrial precursor	P55809	0.06
UNC13D	Isoform 1 of Protein unc-13 homolog D	Q70J99-1	0.08
KRT8	Keratin, type II cytoskeletal 8	P05787	0.09
ALDH1A2	Isoform 1 of Retinal dehydrogenase 2	094788-1	0.1
DOCK11	Uncharacterized protein DOCK11	A6NFX0	0.1
KRT18	Uncharacterized protein KRT18	P05783	0.1
FLNC	Isoform 1 of Filamin-C	Q14315-1	0.11
ALDH2	Aldehyde dehydrogenase, mitochondrial precursor	P05091	0.11
HBD	Hemoglobin subunit delta	P02042	0.12
FERMT3	Isoform 1 of Unc-112-related protein 2	Q86UX7-1	0.13
SLC2A14	Isoform 1 of Solute carrier family 2, facilitated glucose transporter member 14	Q8TDB8-1	0.15
SMCHD1	structural maintenance of chromosomes flexible hinge domain containing 1	075141	0.15
IFITM1	Interferon-induced transmembrane protein 1	P13164	0.17
MACF1	Isoform 2 of Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5	Q9UPN3-2	0.17
LNPEP	124 kDa protein	Q9UIQ6-1	0.18
KIF14	Kinesin-like protein KIF14	Q15058	0.18
MYO18A	Isoform 1 of Myosin-XVIIIa	Q92614-1	0.19
TXNDC5	Thioredoxin domain-containing protein 5 precursor	Q8NBS9	0.19
EPHX2	Epoxide hydrolase 2	P34913	0.2
SERPINB9	Serpin B9	P50453	0.22
ACY1	Aminoacylase-1	Q03154	0.22
DOCK8	Isoform 1 of Dedicator of cytokinesis protein 8	Q8NF50-1	0.24
TLN1	Uncharacterized protein TLN1	Q9Y490	0.24
GSTK1	GSTK1 protein	Q6P4H0	0.24
PPP1R14A	Isoform 1 of Protein phosphatase 1 regulatory subunit 14A	Q96A00-1	0.24
CDK5	Cell division protein kinase 5	Q00535	0.26
AGK	Isoform 1 of Acylglycerol kinase, mitochondrial precursor	Q53H12-1	0.27
TMUB1	Transmembrane and ubiquitin-like domain-containing protein 1	Q9BVT8	0.28
PRAME	Melanoma antigen preferentially expressed in tumors	P78395	0.3
CTSC	Dipeptidyl-peptidase 1 precursor	P53634	0.32
BYSL	Bystin	Q13895	0.32
SACS	Isoform 1 of Sacsin	Q9NZJ4-1	0.32
IMPDH1	inosine monophosphate dehydrogenase 1 isoform a	A4D0Z6	0.32
SEC63	Translocation protein SEC63 homolog	Q9UGP8	0.32

PDIA4	Protein disulfide-isomerase A4 precursor	P13667	0.32
TFB2M	Mitochondrial dimethyladenosine transferase 2, mitochondrial precursor	Q9H5Q4	0.33
PPP2R5A	Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform	Q15172	0.33
LTV1	Protein LTV1 homolog	Q96GA3	0.33
SSR1	Isoform 1 of Translocon-associated protein subunit alpha precursor	P43307-1	0.34
TTC19	tetratricopeptide repeat domain 19	Q6DKK2	0.34
EPHX1	Epoxide hydrolase 1	P07099	0.34
PCYOX1	Prenylcysteine oxidase 1 precursor	Q9UHG3	0.35
ABHD14B	Isoform 1 of Abhydrolase domain-containing protein 14B	Q96IU4-1	0.35
CMBL	Carboxymethylenebutenolidase homolog	Q96DG6	0.35
PNO1	RNA-binding protein PNO1	Q9NRX1	0.35
LCP1	Plastin-2	P13796	0.35
TNPO3	Isoform 2 of Transportin-3	Q9Y5L0-2	0.36
GORASP2	Isoform 1 of Golgi reassembly-stacking protein 2	Q9H8Y8-1	0.36
FLOT2	Flotillin-2	Q14254	0.36
MACF1	Microtubule-actin cross-linking factor 1, isoform 4	Q96PK2	0.36
QPRT	34 kDa protein	Q15274	0.37
DIP2B	DIP2 disco-interacting protein 2 homolog B	Q8N1L5	0.37
SLC2A1	Solute carrier family 2, facilitated glucose transporter member 1	P11166	0.39
PDLIM1	PDZ and LIM domain protein 1	000151	0.39
IGF2R	Cation-independent mannose-6-phosphate receptor precursor	P11717	0.4
РВК	Lymphokine-activated killer T-cell-originated protein kinase	Q96KB5	0.41
ACO1	Iron-responsive element-binding protein 1	P21399	0.41
COPG2	Coatomer subunit gamma-2	Q9UBF2	0.41
RNPEP	Aminopeptidase B	Q9H4A4	0.41
GCLM	Glutamatecysteine ligase regulatory subunit	P48507	0.41
SORT1	Sortilin precursor	Q99523	0.41
ABCB10	ATP-binding cassette sub-family B member 10, mitochondrial precursor	Q9NRK6	0.42
NOB1	RNA-binding protein NOB1	Q9ULX3	0.42
HBZ	Hemoglobin subunit zeta	P02008	0.42
RHEB	GTP-binding protein Rheb precursor	Q15382	0.42
MPG	Isoform 1 of DNA-3-methyladenine glycosylase	P29372-1	0.43
LUC7L2	Isoform 1 of Putative RNA-binding protein Luc7-like 2	Q9Y383-1	0.43
LSM8	U6 snRNA-associated Sm-like protein LSm8	095777	0.44
GALM	Aldose 1-epimerase	Q96C23	0.44
MTPN	Myotrophin	P58546	0.44
ZC3HC1	Isoform 1 of Nuclear-interacting partner of ALK	Q86WB0-1	0.44
PLXNA1	Plexin-A1 precursor	Q9UIW2	0.44
TBC1D4	TBC1D4 protein	O60343	0.45

SLC25A24	solute carrier family 25 member 24 isoform 1	Q6NUK1	0.45
TALDO1	Transaldolase	P37837	0.45
CAPZA2	F-actin-capping protein subunit alpha-2	P47755	0.45
CCBL2	Isoform 1 of Kynurenineoxoglutarate transaminase 3	Q6YP21-1	0.45
LBR	Lamin-B receptor	Q14739	0.46
ZNF294	Zinc finger protein 294	O94822	0.46
RCC1	regulator of chromosome condensation 1 isoform a	Q16269	0.46
ATAD3B	Isoform 1 of ATPase family AAA domain-containing protein 3B	Q5T9A4-1	0.46
TRPV2	Uncharacterized protein TRPV2	Q9Y5S1	0.47
VAPB	Isoform 1 of Vesicle-associated membrane protein-associated protein B/C	095292-1	0.47
PCYT2	Ethanolamine-phosphate cytidylyltransferase	Q99447	0.47
SUPT6H	Isoform 1 of Transcription elongation factor SPT6	Q7KZ85-1	0.47
PMPCA	Mitochondrial-processing peptidase subunit alpha, mitochondrial precursor	Q10713	0.47
IK	Protein Red	Q13123	0.47
PLOD3	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 precursor	O60568	0.48
MDN1	Midasin	Q9NU22	0.48
CACYBP	Isoform 1 of Calcyclin-binding protein	Q9HB71-1	0.48
WRN	Werner syndrome ATP-dependent helicase	Q14191	0.48
HIST1H1E	Histone H1.4	P10412	0.48
NBEAL2	neurobeachin-like 2	O60288	0.49
AGL	Uncharacterized protein AGL (Fragment)	A6NEK2	0.49
MYO6	Isoform 3 of Myosin-VI	Q9UM54-3	0.49
SERPINB1	Leukocyte elastase inhibitor	P30740	0.49
STAU1	Isoform Long of Double-stranded RNA-binding protein Staufen homolog 1	095793-1	0.49
NSUN5	Isoform 2 of Putative methyltransferase NSUN5	Q96P11-2	0.49
ASPM	Uncharacterized protein ASPM	Q8IZT6-1	0.49
ACAA1	3-ketoacyl-CoA thiolase, peroxisomal precursor	P09110	0.5
NQO1	NAD/NAD(P)H menadione oxidoreductase 1, dioxin-inducible isoform b	P15559	0.5
RCL1	RNA 3'-terminal phosphate cyclase-like protein	Q9Y2P8	0.5
ATG5	Isoform Long of Autophagy protein 5	Q9H1Y0-1	0.5
SLC25A21	Mitochondrial 2-oxodicarboxylate carrier	Q9BQT8	0.5
CASP6	Isoform Alpha of Caspase-6 precursor	P55212-1	0.5
SDF2L1	Dihydropyrimidinase-like 2	Q9HCN8	0.5

Tabela 6. Lista de 99 proteínas selecionadas com base na fosforilação de serina/treonina diferencial positiva. O critério utilizado foi uma variação (FoldChange – FC) de pelo menos duas vezes na fosforilação na célula resistente em relação à célula não-resistente (p<0,05). A coluna UniProt contém o identificador deste banco de dados de proteínas. A coluna FC-N indica o valor de FoldChange da fosforilação normalizado pela expressão proteica. A tabela está na ordem decrescente pela coluna FC-N.

Gene	Nome da proteína	UniProt	FC	FC-N
KHSRP	Isoform 1 of Far upstream element-binding protein 2	Q92945-1	20.25	21.8
EIF5B	Eukaryotic translation initiation factor 5B	O60841	17.74	16.46
PDHA1	Mitochondrial PDHA1	P08559	15.3	10.41
VIM	Vimentin	P08670	13.5	9.91
VIM	Vimentin	P08670	13.06	9.59
CACYBP	Isoform 1 of Calcyclin-binding protein	Q9HB71-1	4.19	8.7
PSMB5	Putative uncharacterized protein DKFZp686I0180 (Fragment)	Q7Z3B5	4.59	5.87
HNRNPM	Isoform 1 of Heterogeneous nuclear ribonucleoprotein M	P52272-1	6.53	5.77
KRT8	Keratin, type II cytoskeletal 8	P05787	0.41	4.53
KRT8	Keratin, type II cytoskeletal 8	P05787	0.41	4.53
PTPN1	Tyrosine-protein phosphatase non-receptor type 1	P18031	2.31	4.47
ABCB1	Multidrug resistance protein 1	P08183	74.57	4.32
FUNDC2	FUN14 domain containing 2	A6NCT3	2.57	4.23
SUB1	Activated RNA polymerase II transcriptional coactivator p15	P53999	3.4	4.1
PRPF40A	Isoform 1 of Pre-mRNA-processing factor 40 homolog A	075400-1	3.23	4.08
GSK3A	Glycogen synthase kinase-3 alpha	P49840	3.26	4.05
VAPB	Isoform 1 of Vesicle-associated membrane protein-associated protein B/C	095292-1	1.88	3.98
MPP1	55 kDa erythrocyte membrane protein	Q00013	5.11	3.84
PDHA1	Mitochondrial PDHA1	P08559	5.62	3.82
KRT8	Keratin, type II cytoskeletal 8	P05787	0.34	3.76
PRPF40A	Isoform 1 of Pre-mRNA-processing factor 40 homolog A	075400-1	2.92	3.69
ALDOA	45 kDa protein	P04075	3.83	3.65
FASTKD2	Isoform 1 of FAST kinase domain-containing protein 2	Q9NYY8-1	4.6	3.45
EXOSC7	Exosome complex exonuclease RRP42	Q15024	4.42	3.29
MYH10	Isoform 3 of Myosin-10	P35580-3	1.94	3.26
WARS	Tryptophanyl-tRNA synthetase, cytoplasmic	P23381	5.93	3.25
TPI1	Isoform 1 of Triosephosphate isomerase	P60174-1	4.33	3.25
NUP85	CDNA FLJ12549 fis, clone NT2RM4000689	Q9H9U1	2.84	3.1
KRT8	Keratin, type II cytoskeletal 8	P05787	0.28	3.1
GSK3A	Glycogen synthase kinase-3 alpha	P49840	2.48	3.08
ACSL3	Long-chain-fatty-acidCoA ligase 3	095573	4.1	2.99
RAB7A	Ras-related protein Rab-7a	P51149	2.96	2.98
EPB41L2	Band 4.1-like protein 2	043491	6.36	2.93
SAMSN1	Similar to SAM domain, SH3 domain and nuclear localization signals, 1	A6NI78	1.68	2.85
NCAPD2	Condensin complex subunit 1	Q15021	3.71	2.84
CDC42BPA	Isoform 2 of Serine/threonine-protein kinase MRCK alpha	Q5VT25-2	3.21	2.84
TFRC	Transferrin receptor protein 1	P02786	1.62	2.79
TNKS1BP1	tankyrase 1-binding protein 1	A7E2F8	4.09	2.77

EPB41L2	Band 4.1-like protein 2	043491	5.9	2.72
ACTL6A	Isoform 1 of Actin-like protein 6A	096019-1	2.47	2.72
TPD52L2	tumor protein D52-like 2 isoform a	Q5JWU6	2.39	2.68
VIM	Vimentin	P08670	3.65	2.68
UBR4	Isoform 2 of Zinc finger UBR1-type protein 1	Q5T4S7-2	2.88	2.68
DDX20	Probable ATP-dependent RNA helicase DDX20	Q9UHI6	2.73	2.68
SRRM1	Serine/arginine repetitive matrix 1	Q8IYB3-2	2.02	2.66
CDC42BPA	Isoform 2 of Serine/threonine-protein kinase MRCK alpha	Q5VT25-2	2.99	2.65
SRRM1	Serine/arginine repetitive matrix 1	Q8IYB3-2	1.99	2.62
TRIM28	Isoform 1 of Transcription intermediary factor 1-beta	Q13263-1	2.01	2.61
TXNDC1	Thioredoxin domain-containing protein 1 precursor	Q9H3N1	2.75	2.59
RBM14	Isoform 1 of RNA-binding protein 14	Q96PK6-1	3.62	2.58
SRRM1	Serine/arginine repetitive matrix 1	Q8IYB3-2	1.95	2.58
M6PRBP1	Isoform B of Mannose-6-phosphate receptor-binding protein 1	060664-1	5.34	2.57
CDC2L5	Isoform 1 of Cell division cycle 2-like protein kinase 5	Q14004-1	2.63	2.57
USP32	186 kDa protein	Q8NFA0	4.04	2.57
MSN	Moesin	P26038	1.81	2.57
ARHGEF2	Rho/rac guanine nucleotide exchange factor 2	Q9H023	2.32	2.53
SNRP70	Isoform 1 of U1 small nuclear ribonucleoprotein 70 kDa	P08621-1	2.2	2.53
PTPN11	Isoform 1 of Tyrosine-protein phosphatase non-receptor type 11	Q06124-1	2.91	2.5
SFRS7	Isoform 1 of Splicing factor, arginine/serine-rich 7	Q16629-1	4.97	2.49
PCNA	Proliferating cell nuclear antigen	P12004	4.55	2.49
NAP1L4	Nucleosome assembly protein 1-like 4	Q99733	1.6	2.45
ARHGEF2	Rho/rac guanine nucleotide exchange factor 2	Q9H023	2.2	2.4
RCC1	regulator of chromosome condensation 1 isoform a	Q16269	1.09	2.39
CDC2L5	Isoform 1 of Cell division cycle 2-like protein kinase 5	Q14004-1	2.41	2.36
NF1	Isoform 2 of Neurofibromin	P21359-1	2.08	2.35
SRRM1	Serine/arginine repetitive matrix 1	Q8IYB3-2	1.78	2.35
PSMA3	Isoform 1 of Proteasome subunit alpha type-3	P25788-1	2.02	2.35
VIM	Vimentin	P08670	3.09	2.27
DDX21	Isoform 1 of Nucleolar RNA helicase 2	Q9NR30-1	1.28	2.26
VCP	Transitional endoplasmic reticulum ATPase	P55072	1.58	2.24
SFRS14	cDNA FLJ76836	A8K5G0	1.7	2.23
TXNDC9	Thioredoxin domain-containing protein 9	014530	1.71	2.23
KPNA2	Importin subunit alpha-2	P52292	1.64	2.23
ARHGEF2	Rho/rac guanine nucleotide exchange factor 2	Q9H023	2.02	2.21
SRRM2	Isoform 1 of Serine/arginine repetitive matrix protein 2	Q9UQ35-1	2.08	2.16
ARHGEF2	Rho/rac guanine nucleotide exchange factor 2	Q9H023	1.97	2.15
SAMSN1	Similar to SAM domain, SH3 domain and nuclear localization signals, 1	A6NI78	1.24	2.12
FSCN1	Uncharacterized protein FSCN1	A6NI89	1.59	2.11
GNL1	Isoform 1 of Guanine nucleotide-binding protein-like 1	P36915-1	3.4	2.1
SPAG9	Isoform 3 of C-jun-amino-terminal kinase-interacting protein 4	060271-3	2.49	2.1
PRKAR2B	cAMP-dependent protein kinase type II-beta regulatory subunit	P31323	2.74	2.1

PRKAA1	protein kinase, AMP-activated, alpha 1 catalytic subunit isoform 2	Q86VS1	1.56	2.1
PRKAA1	protein kinase, AMP-activated, alpha 1 catalytic subunit isoform 2	Q86VS1	1.56	2.1
VIM	Vimentin	P08670	2.85	2.1
TOMM22	Mitochondrial import receptor subunit TOM22 homolog	Q9NS69	1.91	2.09
CDC42BPA	Isoform 2 of Serine/threonine-protein kinase MRCK alpha	Q5VT25-2	2.35	2.08
KRT8	Keratin, type II cytoskeletal 8	P05787	0.19	2.07
EIF4H	Isoform Long of Eukaryotic translation initiation factor 4H	Q15056-1	1.67	2.07
SPAG9	Isoform 3 of C-jun-amino-terminal kinase-interacting protein 4	060271-3	2.45	2.07
UBA1	Ubiquitin-activating enzyme E1	P22314	3.49	2.06
CDC2L5	Isoform 1 of Cell division cycle 2-like protein kinase 5	Q14004-1	2.1	2.06
CDC2L5	Isoform 1 of Cell division cycle 2-like protein kinase 5	Q14004-1	2.1	2.06
VIM	Vimentin	P08670	2.8	2.06
NAP1L1	Nucleosome assembly protein 1-like 1	P55209	3.17	2.06
LMNB1	Lamin-B1	P20700	1.53	2.05
MCM4	DNA replication licensing factor MCM4	P33991	2.52	2.04
USP32	186 kDa protein	Q8NFA0	3.18	2.02
RPLP2	60S acidic ribosomal protein P2	P05387	2.03	2.02
HISPPD1	Uncharacterized protein HISPPD1	A6NGS8	2.4	2.01

Tabela 7. Lista de 134 proteínas selecionadas com base na fosforilação de serina/treonina diferencial negativa. O critério utilizado foi uma variação (FoldChange – FC) de pelo menos duas vezes na fosforilação na célula resistente em relação à célula não-resistente (p<0,05). A coluna UniProt contém o identificador deste banco de dados de proteínas. A coluna FC-N indica o valor de FoldChange da fosforilação normalizado pela expressão proteica. A tabela está na ordem crescente pela coluna FC-N.

Gene	Nome da proteína	UniProt	FC	FC-N
DOCK8	Isoform 1 of Dedicator of cytokinesis protein 8	Q8NF50-1	0.01	0.04
SUPT5H	Isoform 1 of Transcription elongation factor SPT5	000267-1	0.15	0.09
EIF3A	Eukaryotic translation initiation factor 3 subunit A	Q14152	0.09	0.1
UNC13D	Isoform 1 of Protein unc-13 homolog D	Q70J99-1	0.01	0.12
SPAG9	Isoform 3 of C-jun-amino-terminal kinase-interacting protein 4	060271-3	0.15	0.13
MRPL19	39S ribosomal protein L19, mitochondrial precursor	P49406	0.17	0.16
RANBP2	E3 SUMO-protein ligase RanBP2	P49792	0.16	0.16
RANBP2	E3 SUMO-protein ligase RanBP2	P49792	0.17	0.17
HNRNPH1	HNRPH1 protein	Q6IBM4	0.14	0.18
SUPT5H	Isoform 1 of Transcription elongation factor SPT5	O00267-1	0.35	0.21
NASP	nuclear autoantigenic sperm protein isoform 1	Q53H03	0.29	0.23
BAT2D1	HBxAg transactivated protein 2	Q9HA05	0.52	0.23
INPPL1	Isoform 1 of Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2	015357-1	0.47	0.23
DHX9	ATP-dependent RNA helicase A	Q08211	0.23	0.24
CAD	CAD protein	P27708	0.24	0.24
GSE1	Isoform 1 of Genetic suppressor element 1	Q14687-1	0.26	0.25
UBR4	Isoform 2 of Zinc finger UBR1-type protein 1	Q5T4S7-2	0.28	0.26

PNN	cDNA FLJ75071	A8K964	0.25	0.27
HSPB1	Heat shock protein beta-1	P04792	0.39	0.27
NUP153	Nuclear pore complex protein Nup153	P49790	0.41	0.28
STMN1	Stathmin	P16949	0.29	0.28
BAT2D1	HBxAg transactivated protein 2	Q9HA05	0.67	0.29
UBAP2L	Isoform 1 of Ubiquitin-associated protein 2-like	Q14157-2	0.42	0.29
FHOD1	FH1/FH2 domain-containing protein 1	Q9Y613	0.41	0.3
MAP4	Isoform 1 of Microtubule-associated protein 4	P27816-1	0.36	0.31
RAB3GAP2	Isoform 1 of Rab3 GTPase-activating protein non-catalytic subunit	Q9H2M9-1	0.35	0.31
NUP153	Nuclear pore complex protein Nup153	P49790	0.47	0.32
LSM1	U6 snRNA-associated Sm-like protein LSm1	015116	0.44	0.32
MLL2	myeloid/lymphoid or mixed-lineage leukemia 2	Q59FG6	0.35	0.32
ANKRD17	Isoform 1 of Ankyrin repeat domain-containing protein 17	075179-1	0.41	0.32
EEF1D	eukaryotic translation elongation factor 1 delta isoform 1	Q71RH4	0.4	0.33
MLL	Isoform 1 of Zinc finger protein HRX	Q03164-1	0.82	0.34
MAP4	Isoform 1 of Microtubule-associated protein 4	P27816-1	0.39	0.34
NCOR1	Isoform 2 of Nuclear receptor corepressor 1	075376-2	0.42	0.34
CEP170	Centrosomal protein 170kDa	Q5SW80	0.81	0.35
CEP170	Centrosomal protein 170kDa	Q5SW80	0.81	0.35
BAT2	Isoform 1 of Large proline-rich protein BAT2	P48634-1	0.58	0.36
BAT2	Isoform 1 of Large proline-rich protein BAT2	P48634-1	0.58	0.36
FKBP15	Isoform 1 of FK506-binding protein 15	Q5T1M5-1	0.62	0.36
ACIN1	Isoform 1 of Apoptotic chromatin condensation inducer in the nucleus	Q9UKV3-1	0.4	0.36
NUP153	Nuclear pore complex protein Nup153	P49790	0.51	0.36
EPB41	Isoform 1 of Protein 4.1	P11171-1	0.25	0.37
RANBP2	E3 SUMO-protein ligase RanBP2	P49792	0.37	0.37
AKAP12	Isoform 1 of A-kinase anchor protein 12	Q02952-1	10.91	0.37
RBM7	31 kDa protein	Q9Y580	0.33	0.38
UBAP2L	Isoform 1 of Ubiquitin-associated protein 2-like	Q14157-2	0.56	0.38
SLC16A1	Monocarboxylate transporter 1	P53985	0.27	0.38
RANBP2	E3 SUMO-protein ligase RanBP2	P49792	0.37	0.38
ANKHD1	ANKHD1-EIF4EBP3 protein	Q8IWZ2	0.53	0.38
RSL1D1	Ribosomal L1 domain-containing protein 1	076021	0.52	0.38
BCR	Isoform 1 of Breakpoint cluster region protein	P11274-1	0.3	0.38
WNK1	Isoform 1 of Serine/threonine-protein kinase WNK1	Q9H4A3-1	0.55	0.38
RIF1	Uncharacterized protein RIF1	Q5UIP0-1	0.47	0.39
EIF3C	Eukaryotic translation initiation factor 3 subunit C	Q99613	0.37	0.39
PCM1	Isoform 3 of Pericentriolar material 1 protein	Q15154-3	0.46	0.39
HDAC6	Histone deacetylase 6	Q9UBN7	0.4	0.39

SUPT5H	Isoform 1 of Transcription elongation factor SPT5	000267-1	0.66	0.39
NCOR1	Isoform 2 of Nuclear receptor corepressor 1	075376-2	0.48	0.39
SRRM2	Isoform 1 of Serine/arginine repetitive matrix protein 2	Q9UQ35-1	0.39	0.4
MAP1A	331 kDa protein	P78559	0.54	0.4
DDB1	DNA damage-binding protein 1	Q16531	0.44	0.4
ZC3HAV1	Isoform 1 of Zinc finger CCCH type antiviral protein 1	Q7Z2W4-1	0.35	0.4
YTHDC2	YTH domain containing 2	Q9H6S0	0.6	0.4
CEP170	Centrosomal protein 170kDa	Q5SW80	0.92	0.4
MAP4	Isoform 1 of Microtubule-associated protein 4	P27816-1	0.46	0.4
RIF1	Uncharacterized protein RIF1	Q5UIP0-1	0.5	0.41
TRRAP	Isoform 1 of Transformation/transcription domain-associated protein	Q9Y4A5-1	0.39	0.41
SNAPIN	SNARE-associated protein Snapin	095295	0.56	0.41
FHOD1	FH1/FH2 domain-containing protein 1	Q9Y613	0.58	0.41
GIGYF2	Isoform 3 of PERQ amino acid-rich with GYF domain-containing protein 2	Q6Y7W6-3	0.43	0.41
PSMA1	Isoform Long of Proteasome subunit alpha type-1	P25786-2	0.31	0.41
TP53BP1	Isoform 2 of Tumor suppressor p53-binding protein 1	Q12888-2	0.57	0.42
MLL	Isoform 1 of Zinc finger protein HRX	Q03164-1	1	0.42
WDR77	Methylosome protein 50	Q9BQA1	0.37	0.42
NUP214	Nuclear pore complex protein Nup214	P35658	0.34	0.42
ARID1A	Isoform 1 of AT-rich interactive domain-containing protein 1A	014497-1	0.49	0.43
ARID1A	Isoform 1 of AT-rich interactive domain-containing protein 1A	014497-1	0.49	0.43
MAP4	Isoform 1 of Microtubule-associated protein 4	P27816-1	0.5	0.43
FKBP15	Isoform 1 of FK506-binding protein 15	Q5T1M5-1	0.73	0.43
BAT2D1	HBxAg transactivated protein 2	Q9HA05	0.97	0.43
TP53BP1	Isoform 2 of Tumor suppressor p53-binding protein 1	Q12888-2	0.59	0.44
MTDH	Protein LYRIC	Q86UE4	0.67	0.44
NCOR1	Isoform 2 of Nuclear receptor corepressor 1	075376-2	0.56	0.45
RIF1	Uncharacterized protein RIF1	Q5UIP0-1	0.54	0.45
ZMYND8	RACK7 isoform e	Q9ULU4-7	0.43	0.45
HNRNPA2	Isoform B1 of Heterogeneous nuclear ribonucleoproteins A2/B1	P22626-1	0.41	0.45
BCLAF1	Isoform 1 of Bcl-2-associated transcription factor 1	Q9NYF8-1	0.53	0.45
GOLGA2	Golgin subfamily A member 2	Q08379-1	0.63	0.45
RIF1	Uncharacterized protein RIF1	Q5UIP0-1	0.54	0.45
SRRM2	Isoform 1 of Serine/arginine repetitive matrix protein 2	Q9UQ35-1	0.45	0.46
NUP153	Nuclear pore complex protein Nup153	P49790	0.67	0.46
NUP153	Nuclear pore complex protein Nup153	P49790	0.67	0.46
LARP1	Isoform 1 of La-related protein 1	Q6PKG0-1	0.42	0.46
EIF4G3	Isoform 1 of Eukaryotic translation initiation factor 4 gamma 3	043432-1	0.56	0.46
NCAPD3	Uncharacterized protein NCAPD3	P42695	0.44	0.47
		-		

SRRM2	Isoform 1 of Serine/arginine repetitive matrix protein 2	Q9UQ35-1	0.45	0.47
WDR33	WD repeat-containing protein 33	Q9C0J8	0.63	0.47
NOL5	Nucleolar protein 5	Q9Y2X3	0.6	0.47
THRAP3	Thyroid hormone receptor-associated protein 3	Q9Y2W1	0.6	0.47
AIFM1	Isoform 1 of Apoptosis-inducing factor 1, mitochondrial precursor	095831-1	0.47	0.47
UBXD7	Isoform 1 of UBX domain-containing protein 7	094888-1	0.83	0.47
NOL6	Isoform 1 of Nucleolar protein 6	Q9H6R4-1	0.32	0.48
RANBP2	E3 SUMO-protein ligase RanBP2	P49792	0.48	0.48
SNAPIN	SNARE-associated protein Snapin	095295	0.66	0.48
SRRM2	Isoform 1 of Serine/arginine repetitive matrix protein 2	Q9UQ35-1	0.46	0.48
NCOR1	Isoform 2 of Nuclear receptor corepressor 1	075376-2	0.6	0.48
AHNAK	Neuroblast differentiation-associated protein AHNAK	Q09666	0.27	0.48
CENPF	Centromere protein F	P49454	0.29	0.48
RANBP2	E3 SUMO-protein ligase RanBP2	P49792	0.47	0.48
FHOD1	FH1/FH2 domain-containing protein 1	Q9Y613	0.67	0.48
MCM3	DNA replication licensing factor MCM3	P25205	0.61	0.48
KIF4A	Isoform 1 of Chromosome-associated kinesin KIF4A	095239-1	0.52	0.48
SRRM2	Isoform 1 of Serine/arginine repetitive matrix protein 2	Q9UQ35-1	0.46	0.48
MAP3K7IP1	Mitogen-activated protein kinase kinase kinase 7-interacting protein 1	Q15750	0.37	0.49
SYMPK	Isoform 1 of Symplekin	Q92797-1	0.82	0.49
PSIP1	Isoform 1 of PC4 and SFRS1-interacting protein	075475-1	0.31	0.49
RIF1	Uncharacterized protein RIF1	Q5UIP0-1	0.59	0.49
NCOR1	Isoform 2 of Nuclear receptor corepressor 1	075376-2	0.61	0.49
ACIN1	Isoform 1 of Apoptotic chromatin condensation inducer in the nucleus	Q9UKV3-1	0.54	0.49
AHCTF1P	Uncharacterized protein AHCTF1	A6NP09	0.36	0.49
BCLAF1	Isoform 1 of BcI-2-associated transcription factor 1	Q9NYF8-1	0.58	0.49
PNN	cDNA FLJ75071	A8K964	0.46	0.49
NAP1L4	Nucleosome assembly protein 1-like 4	Q99733	0.32	0.49
EPB41	Isoform 1 of Protein 4.1	P11171-1	0.32	0.49
VCL	Isoform 2 of Vinculin	P18206-1	0.29	0.49
NUP153	Nuclear pore complex protein Nup153	P49790	0.7	0.49
PCM1	Isoform 3 of Pericentriolar material 1 protein	Q15154-3	0.58	0.49
RANBP2	E3 SUMO-protein ligase RanBP2	P49792	0.5	0.5
MSH6	Isoform GTBP-N of DNA mismatch repair protein MSH6	P52701-1	0.7	0.5
MSH6	Isoform GTBP-N of DNA mismatch repair protein MSH6	P52701-1	0.7	0.5
UBAP2L	Isoform 1 of Ubiquitin-associated protein 2-like	Q14157-2	0.73	0.5
MKI67	Isoform Long of Antigen KI-67	P46013-1	0.6	0.5
MKI67	Isoform Long of Antigen KI-67	P46013-1	0.6	0.5
RAVER1	RAVER1	Q8IY67-2	0.54	0.5

Tabela 8. Lista de 5 proteínas selecionadas com base na fosforilação de tirosina diferencial positiva. O critério utilizado foi uma variação (FoldChange – FC) de pelo menos duas vezes na fosforilação na célula resistente em relação à célula não-resistente (p<0,05). A coluna UniProt contém o identificador deste banco de dados de proteínas. A coluna FC-N indica o valor de FoldChange da fosforilação normalizado pela expressão proteica. A tabela está na ordem decrescente pela coluna FC-N.

Gene	Nome da proteína	UniProt	FC	FC-N
CSK	Tyrosine-protein kinase CSK	P41240	2.84	4.01
PTPN11	Isoform 1 of Tyrosine-protein phosphatase non-receptor type 11	Q06124-1	3.39	2.91
МАРКЗ	Mitogen-activated protein kinase 3	P27361	4.41	2.7
MAPK1	Mitogen-activated protein kinase 1	P28482	2.62	2.46
HNRPA0	Heterogeneous nuclear ribonucleoprotein A0	Q13151	2.48	2.15

Tabela 9. Única proteína selecionada com base na fosforilação de tirosina diferencial negativa. O critério utilizado foi uma variação (FoldChange – FC) de pelo menos duas vezes na fosforilação na célula resistente em relação à célula não-resistente (p<0,05). A coluna UniProt contém o identificador deste banco de dados de proteínas. A coluna FC-N indica o valor de FoldChange da fosforilação normalizado pela expressão proteica.

Gene	Nome da proteína	UniProt	FC	FC-N
GRAP2	GRB2-related adapter protein 2	075791	16.03	0.44

4.1.4 Determinação de vias pelo Pathway Interaction Database (PID)

O Pathway Interaction Database (PID) (Schaefer et al., 2009) é uma iniciativa conjunta do National Cancer Institute e da editora Nature que oferece diversas vias biológicas manualmente verificadas por especialistas. Também é possível obter vias relevantes a um determinado conjunto de proteínas. Este recurso foi empregado de modo a filtrar as listas de proteínas diferencialmente expressas e fosforiladas pela sua presença em conjunto em uma determinada via. Utilizou-se um limite de *p-value* (p<0,01) para a seleção das vias mais relevantes.

Esta análise visa atuar como um filtro para indicar potenciais vias alteradas que possam ter contribuído para a aquisição do fenótipo resistente na célula Lucena. As vias abaixo nortearam, ainda que de forma indireta, os passos seguintes do trabalho, apontando a importância de vias centradas em proteínas como c-Myc (codificada pelo gene MYC), PTP1B (codificada pelo gene PTPN1) e Shp2 (codificada pelo gene PTPN11). As Tabelas 10 a 13 contém as vias e respectivas proteínas classificadas a partir das proteínas selecionadas na etapa anterior.

Tabela 10. Lista de 40 vias selecionadas com base na expressão diferencial positiva. O critério utilizado para inclusão da via foi um p-value < 0,01 obtido pela busca em *batch* no recurso Pathway Interaction Database (PID). A lista contém, no total, 21 proteínas, representadas pelos genes que as codificam.

Nome da via	Genes
PDGFR-beta signaling pathway	ACTR3, ARPC2, ARPC3, ARPC4, PRKCA, STAT1, STAT5A, STAT5B
RAC1 signaling pathway	ACTR3, ARPC2, ARPC3, ARPC4, STAT5A
ErbB1 downstream signaling	ACTR3, ARPC2, ARPC3, ARPC4, PRKCA, STAT1
GMCSF-mediated signaling events	PRKACA, STAT1, STAT5A, STAT5B
Signaling events mediated by TCPTP	STAT1, STAT5A, STAT5B, STAT6
Glucocorticoid receptor regulatory network	PCK2, PRKACA, STAT1, STAT5A, STAT5B
IL3-mediated signaling events	PRKACA, STAT5A, STAT5B
IL2 signaling events mediated by STAT5	STAT5A, STAT5B
CDC42 signaling events	ACTR3, ARPC2, ARPC3, ARPC4
EPO signaling pathway	STAT1, STAT5A, STAT5B
IL5-mediated signaling events	STAT5A, STAT5B
Signaling events mediated by Stem cell factor receptor (c-Kit)	GRAP2, STAT1, STAT5A
IL2-mediated signaling events	STAT1, STAT5A, STAT5B
Validated transcriptional targets of Tap63 isoforms	DICER, GDF15, TP53I3
IL4-mediated signaling events	STAT5A, STAT5B, STAT6
IL12-mediated signaling events	STAT1, STAT5A, STAT6
mTOR signaling pathway	PDCD4, PRKCA, RPTOR
IL27-mediated signaling	STAT1, STAT5A
p73 transcription factor network	CDK6, GDF15, TP53I3
VEGFR1 specific signals	PRKACA, PRKCA
Retinoic acid receptors-mediated signaling	PRKACA, PRKCA
Syndecan-4-mediated signaling events	ACTN1, PRKCA
IL23-mediated signaling events	STAT1, STAT5A
ErbB4 signaling events	STAT5A, STAT5B
CXCR4 ⁻ -mediated signaling events	STAT1, STAT5A, STAT5B
Signaling events regulated by Ret tyrosine kinase	PRKACA, PRKCA
LKB1 signaling events	PRKACA, RPTOR
Angiopoietin receptor Tie2-mediated signaling	STAT5A, STAT5B
Signaling events mediated by PTP1B	STAT5A, STAT5B
Thromboxane A2 receptor signaling	PRKACA, PRKCA
TCR signaling in naive CD8+ T cells	GRAP2, PRKCA
FGF signaling pathway	STAT1, STAT5B
Role of calcineurin-dependent NFAT signaling in lymphocytes	PRKACA, PRKCA
TCR signaling in naive CD4+ T cells	GRAP2, PRKCA
Signaling events mediated b VEGFR1 and VEGFR2	PRKACA, PRKCA
Signaling events mediated by Hepatocyte Growth Factor (c-Met)	INPPL1, RPTOR
JNK signaling in the CD4+ TCR pathway	GRAP2
Ras signaling in the CD4+ TCR pathway	PRKCA
C-MYB transcription factor network	CA1, CDK6

LPA4-mediated signaling events	PRKACA

Tabela 11. Lista de 8 vias selecionadas com base na expressão diferencial negativa. O critério utilizado para inclusão da via foi um p-value < 0,01 obtido pela busca em *batch* no recurso Pathway Interaction Database (PID). A lista contém, no total, 10 proteínas, representadas pelos genes que as codificam.

Nome da via	Genes
Insulin-mediated glucose transport	LNPEP, TBC1D4
Caspase cascade in apoptosis	CASP6, KRT18
P75(NTR)-mediated signaling	CASP6, SORT1
Validated targets of C-MYC transcriptional activation	RCC1, SLC2A1
Canonical Wnt signaling pathway	PPP2R5A
C-MYC pathway	PPP2R5A
Reelin signaling pathway	CDK5
Nectin adhesion pathway	TLN1

Tabela 12. Lista de 20 vias selecionadas com base na fosforilação em serina/treonina diferencial positiva. O critério utilizado para inclusão da via foi um p-value < 0,01 obtido pela busca em batch no recurso Pathway Interaction Database (PID). A lista contém, no total, 16 proteínas, representadas pelos genes que as codificam.

Nome da via	Genes
Aurora B signaling	NCAPD2, PSMA3, VIM
HIF-1-alpha transcription factor network	ABCB1, ALDOA, TFRC
IGF1 pathway	PTPN1, PTPN11
EGF receptor (ErbB1) signaling pathway	PTPN1, PTPN11
N-cadherin signaling events	PTPN1, PTPN11
Signaling events mediated by TCPTP	KPNA2, PTPN1
Insulin pathway	PTPN1, PTPN11
FOXA2 and FOXA3 transcription factor networks	NF1, TFRC
Posttranslational regulation of adherens junction	PTPN1, RAB7A
Caspase cascade in apoptosis	LMNB1, VIM
Signaling events mediated by c-Met	PTPN1, PTPN11
C-MYC transcription factor network	MCM4, TRIM28
Validated targets of C-MYC transcriptional activation	ACTL6A, TFRC
IL5-mediated signaling events	PTPN11
Degradation of beta catenin	GSK3A
Regulation of cytoplasmic and nuclear SMAD2/3 signaling	KPNA2
Canonical Wnt signaling pathway	GSK3A
PDGFR-beta signaling pathway	PTPN1, PTPN11
C-MYC pathway	ACTL6A
IL3-mediated signaling events	PTPN11

Tabela 13. Lista de 15 vias selecionadas com base na fosforilação em serina/treonina diferencial negativa. O critério utilizado para inclusão da via foi um p-value < 0,01 obtido pela busca em batch no recurso Pathway Interaction Database (PID). A lista contém, no total, 18 proteínas, representadas pelos genes que as codificam.

Nome da via	Proteínas
Signaling events mediated by HDAC Class I	HDAC6, NCOR1, NCOR2, NUP153, NUP214, RANBP2, WDR77
Signaling events mediated by HDAC Class II	HDAC6, NCOR2, NUP153, NUP214, RANBP2
Sumoylation by RanBP2 regulates transcriptional repression	NUP153, NUP214, RANBP2
Regulation of cytoplasmic and nuclear SMAD2/3 signaling	NUP153, NUP214
Validated targets of C-MYC transcriptional activation	CAD, MTDH, TRRAP
BMP receptor signaling	NUP214, TAB1
Notch-mediated HES/HEY network	NCOR1, NCOR2
Ceramide signaling pathway	AIFM1, TXNDC12
Notch signaling pathway	NCOR1, NCOR2
Effects of Botulinum toxin	RAB3GAP2
E2F transcription factor network	MCM3, TRRAP
Signaling mediated by p38-gamma and p38-delta	STMN1
C-MYB transcription factor network	NCOR1, TAB1
EPHA2 forward signaling	INPPL1
P38 signaling mediated by MAPKAP kinases	HSPB1

O subconjunto de proteínas fosforiladas em tirosina foi submetido ao algoritmo do PID mas não retornou nenhuma via dentro do limite estabelecido, possivelmente por número insuficiente de proteínas para a busca por vias.

4.1.5 Criação de lista independente de alvos relacionados à resistência à quimioterápicos através de *Support Vector Machines* (SVM)

Support Vector Machines (SVM) é uma técnica de Aprendizado de Máquina utilizada no reconhecimento de padrões e análise de dados. SVMs vem sendo utilizados recentemente para diversas aplicações nas Ciências Biológicas, desde diagnósticos clínicos (FRANCIS; PEPPER; STRONG, 2011; IORDANESCU; VENKATASUBRAMANIAN; WYRWICZ, 2012; O'DWYER et al., 2012) até pesquisas bioquímicas (PEREZ-RIVEROL et al., 2012; ZHOU; YAN, 2011) e de biologia molecular com grandes conjuntos de dados (CHEN et al., 2011; FERNÁNDEZ; MIRANDA-SAAVEDRA, 2012; JIANG; CHING, 2011). Um SVM padrão é um classificador binário que toma como entrada um determinado dado e prediz a qual de duas possíveis classes o dado pertence, após um treinamento com exemplos que pertencem às cada uma das duas categorias. Um modelo SVM representa cada entrada como pontos no espaço mapeados de tal forma que as duas categorias sejam claramente separadas pela maior distância possível (Figura 16). Novos dados são então mapeados no mesmo espaço e classificados de acordo com o domínio em que melhor se ajustaram (VAPNIK, 1995).

Figura 16. Representação de pontos no espaço correspondendo a dados de duas categorias diferentes (círculos preenchidos e círculos vazios). O plano H_3 não separa corretamente os dois conjuntos de dados. Os planos H_1 e H_2 separam adequadamente os conjuntos, sendo que H_2 representa o plano com a maior distância possível entre os dois conjuntos.

Um modelo SVM capaz de classificar os genes humanos de acordo com a probabilidade de ter relação com o processo de quimiorresistência em células leucêmicas foi criado. Para isso, foi utilizada uma plataforma denominada PILGRM (GREENE; TROYANSKAYA, 2011). Esta plataforma combina o poder de predição de SVMs com coleções experimentais de expressão gênica obtidas por microarranjos e incorporadas a partir do *Gene Expression Omnibus* (GEO), recurso do *National Center for Biotechnology Information* (NCBI). O GEO é um repositório público que agrega informações na forma de microarranjos, sequenciamentos e outras formas de informação genômica em larga-escala. A plataforma PILGRM, assim, permite que um conjunto de dados positivos (relacionados ao processo que se deseja estudar) e um conjunto de dados negativos seja submetido e, com base nos dados de expressão incorporados do GEO, classifique os genes presentes no genoma humano com base na probabilidade de estarem relacionados ao conjunto positivo e não ao conjunto negativo. Os conjuntos positivo e negativo podem ser criados manualmente a partir da literatura ou podem ser recuperados de bancos classificadores de processos biológicos, como o *Gene Ontology* (GO)

(ASHBURNER et al., 2000) e o *Human Protein Reference Database* (HPRD) (MISHRA et al., 2006).

O conjunto de proteínas submetido à plataforma PILGRM como conjunto positivo foi obtido a partir de uma seleção na literatura de 11 proteínas reguladas por fosforilação relacionadas à quimiorresistência na leucemia crônica mieloide, para posterior cruzamento com as listas de proteínas que apresentaram fosforilação diferencial apresentadas nas Tabelas 6 a 9 (Tabela 14). Da mesma forma, o conjunto positivo submetido para cruzamento com as proteínas que apresentaram expressão diferencial foi criado a partir de uma compilação de 59 proteínas relacionadas ao transporte e resposta a drogas, conforme as seguintes classificações GO: GO:0006855 drug transmembrane transport; GO:0015238 drug transmembrane transporter activity; GO: 0015893 drug transport; GO:0012493 response to drug; GO:0046618 drug export. Esta abordagem visou levar em consideração na análise não somente proteínas envolvidas em cascatas de sinalização por fosforilação mas também proteínas envolvidas no transporte e efluxo de drogas através da membrana, como a própria P-gp, característica marcante da linhagem Lucena-1. A P-gp e seus polimorfismos (DULUCQ et al., 2008) foram incluídos como conjunto positivo na análise.

Como conjunto de dados negativos para as duas situações, foi utilizado o conjunto de 92 proteínas expressas em granulócitos normais, tipo celular do qual fazem parte as linhagens K562 e Lucena, obtido do banco de dados HPRD, de modo a evitar proteínas que pareçam relevantes para o processo de resistência porque são expressas normalmente, mas de forma específica, nas células estudadas, que tem origem na série celular granulocítica (KLEIN et al., 1976). Tabela 14. Lista de 11 proteínas, representadas pelos genes que as codificam, selecionadas manualmente na literatura por sua relação à quimiorresistência em células leucêmicas e a respectiva publicação associada. Estas proteínas foram utilizadas como conjunto positivo no treinamento de um modelo SVM utilizado para cruzamento com as proteínas com fosforilação diferencial na linhagem resistente em relação à linhagem não-resistente.

Genes	Publicação
CDKN1A	Ferrandiz N, Caraballo JM, Albajar M, Gomez-Casares MT, Lopez-Jorge CE, Blanco R, Delgado MD, Leon J (2010). p21(Cip1) confers resistance toimatinib in human chronic myeloid leukemia cells <i>Cancer Lett.</i> .292, 133-139.
HMOX1	Mayerhofer M, Gleixner KV, Mayerhofer J, Hoermann G, Jaeger E, Aichberger KJ, Ott RG, Greish K, Nakamura H, Derdak S, Samorapoompichit P, Pickl WF, Sexl V, Esterbauer H, Schwarzinger I, Sillaber C, Maeda H, Valent P (2008). Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib <i>Blood</i> .111, 2200-2210.
LYN	Gioia R, Leroy C, Drullion C, Lagarde V, Etienne G, Dulucq S, Lippert E, Roche S, Mahon FX, Pasquet JM (2011). Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells <i>Blood</i> .118, 2211-2221.
ABCB1	Weide R, Dowding C, Paulsen W, Goldman J (1990). The role of the MDR-1/P-170 mechanism in the development of multidrug resistance in chronic myeloid leukemia. <i>Leukemia</i> . 4, 695-699.
	Dulucq S, Bouchet S, Turcq B, Lippert E, Etienne G, Reiffers J, Molimard M, Krajinovic M, Mahon FX (2008). Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia <i>Blood</i> . 112, 2024-2027.
PLK1	Gleixner KV, Ferenc V, Peter B, Gruze A, Meyer RA, Hadzijusufovic E, Cerny-Reiterer S, Mayerhofer M, Pickl WF, Sillaber C, Valent P (2010). Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor Bl 2536 <i>Cancer Res.</i> 70, 1513-1523.
MAPK1	Nambu T, Araki N, Nakagawa A, Kuniyasu A, Kawaguchi T, Hamada A, Saito H (2010). Contribution of BCR-ABL-independent activation of ERK1/2 to acquired imatinib resistance in K562 chronic myeloid leukemia cells <i>Cancer Sci.</i> 101, 137-142.
МАРКЗ	Nambu T, Araki N, Nakagawa A, Kuniyasu A, Kawaguchi T, Hamada A, Saito H (2010). Contribution of BCR-ABL-independent activation of ERK1/2 to acquired imatinib resistance in K562 chronic myeloid leukemia cells <i>Cancer Sci.</i> 101, 137-142.
PTPN6	Esposito N, Colavita I, Quintarelli C, Sica AR, Peluso AL, Luciano L, Picardi M, Del Vecchio L, Buonomo T, Hughes TP, White D, Radich JP, Russo D, Branford S, Saglio G, Melo JV, Martinelli R, Ruoppolo M, Kalebic T, Martinelli G, Pane F (2011). SHP1 expression accounts for resistance to imatinib treatment in Philadelphia chromosome-positive cells derived from patients with chronic myeloid leukemia <i>Blood.</i> 118, 3634-3644.
PTPN11	Zhu XZ, Yu YZ, Fang YM, Liang Y, Lü QH, Xu RZ (2005). [Overexpression of Shp-2 is associated with the unlimited growth and apoptosis resistance of p210 bcr-abl-mediated chronic myeloid leukemia] <i>Zhonghua Yi Xue Za Zhi</i> . 85, 1903-1906.
SRC	O'Hare T, Walters DK, Stoffregen EP, Sherbenou DW, Heinrich MC, Deininger MW, Druker BJ (2005). Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib <i>Clin Cancer Res.</i> 11 , 6987-6993.
SYK	Gioia R, Leroy C, Drullion C, Lagarde V, Etienne G, Dulucq S, Lippert E, Roche S, Mahon FX, Pasquet JM (2011). Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells <i>Blood</i> . 118, 2211-2221.

Os resultados retornados pela plataforma PILGRM consistem em listas contendo todos os genes presentes no genoma humano (exceto aqueles presentes nos conjuntos positivo ou negativo) classificados por um *score* que indica a probabilidade de que um determinado gene

esteja relacionado, através de indicadores de coexpressão, com os genes presentes no conjunto positivo e não com os genes presentes no conjunto negativo.

A ferramenta se baseia na determinação das condições que melhor diferenciam os genes presentes no conjunto positivo daqueles presentes no conjunto negativo, para então buscar genes fora dos dois conjuntos que são expressos de maneira similar aos genes presentes no conjunto positivo.

As Figuras 17 e 18 representam o *score* atribuído em função da posição de cada gene classificado em relação aos dois conjuntos positivos de genes utilizados.

Figura 17. Gráfico indicando o *score* de cada gene humano de acordo com a probabilidade de que esteja relacionado com o conjunto de genes manualmente selecionado na literatura devido a sua relação com a quimiorresistência em células leucêmicas e pela proteína codificada por ele ser regulada por fosforilação (LR+). O eixo horizontal *Rank* representa a posição em que cada gene foi classificado. O conjunto negativo utilizado foi o HPRD: Granulocyte.

Figura 18. Gráfico indicando o *score* de cada gene humano de acordo com a probabilidade de que esteja relacionado com o conjunto de genes compilado a partir de grupos GO relacionados ao transporte e resposta a drogas. O eixo horizontal *Rank* representa a posição em que cada gene foi classificado. O conjunto negativo utilizado foi o HPRD: Granulocyte.

As Figuras 19 e 20 indicam as curvas ROC (*Receiver Operating Characteristic*) para cada conjunto positivo utilizado. Elas indicam a performance do classificador binário SVM calculado com diferentes parâmetros (ex.: diferentes maneiras de separar o conjunto positivo do conjunto negativo). A eficiência da predição, medida pela área abaixo da curva (AUC), não foi muito superior ao acaso ao se utilizar o conjunto de 11 proteínas manualmente selecionadas a

partir da literatura, provavelmente devido ao pequeno tamanho do conjunto positivo, mas foi satisfatória para o conjunto de proteínas relacionadas ao transporte e resposta a drogas.

Figura 19. Curva ROC indicando a eficiência da predição SVM para o conjunto de 11 genes que codificam proteínas reguladas por fosforilação e relacionadas à quimiorresistência obtidas na literatura. A área abaixo da curva é 0,5305. *True Positive Rate* indica a taxa de verdadeiros positivos, enquanto *False Positive Rate* indica a taxa de falsos positivos na análise ROC.

Figura 20. Curva ROC indicando a eficiência da predição SVM para o conjunto de 59 genes que codificam proteínas relacionadas ao transporte e resposta a drogas obtidos através do Gene Ontology. A área abaixo da curva é 0,7883. *True Positive Rate* indica a taxa de verdadeiros positivos, enquanto *False Positive Rate* indica a taxa de falsos positivos na análise ROC.

As listas geradas contém 19050 genes ordenados de acordo com seus respectivos *scores*. A baixa eficiência de predição em relação ao acaso observada na Figura 19 não foi considerada um impedimento à continuidade da análise, uma vez que as listas geradas pela análise SVM não foram utilizadas como predições únicas e exclusivas. Ao contrário, foram cruzadas com dados experimentais prévios antes de serem levadas à validação em laboratório. Além disso, a robustez dos modelos SVM foi verificada contra os dados experimentais através da geração de conjuntos de genes randômicos, conforme explicado mais adiante.

4.1.6 Cruzamento das listas

Como forma de validação *in silico* das listas contendo uma grande quantidade de genes que codificam proteínas diferencialmente expressas ou fosforiladas obtidas experimentalmente através de espectrometria de massas das linhagens K562 e Lucena, optou-se pelo cruzamento destes conjuntos de dados com as listas geradas independentemente a partir de dados de expressão gênica obtidos a partir de um modelo SVM implementado na plataforma PILGRM. Assim, espera-se desenvolver um filtro de modo que apenas as proteínas codificadas pelos genes presentes em ambos os conjuntos de dados sejam levadas à validação em laboratório.

Para o cruzamento com os genes das Tabelas 4 a 9, foram selecionados 10% dos genes obtidos pelo modelo SVM com os *scores* mais elevados, totalizando 1905 genes para cada conjunto positivo utilizado. A lista gerada a partir do conjunto positivo contendo 11 genes que codificam proteínas reguladas por fosforilação e envolvidas na quimiorresistência em células leucêmicas foi cruzada individualmente com os genes que codificam as proteínas das Tabelas 6, 7, 8 e 9, referentes ao conjunto diferencialmente fosforilado. A lista gerada a partir do conjunto positivo com 59 genes que codificam proteínas envolvidas no transporte e resposta a drogas foi cruzada individualmente com os genes que codificam as proteínas das Tabelas 4 e 5, referentes ao conjunto diferencialmente expresso.

Os cruzamentos foram realizados através de um banco de dados relacional (MySQL), utilizando como identificador principal o nome de cada gene. Os resultados de cada cruzamento estão sumarizados na Tabela 15.

A robustez do modelo SVM foi testada através da geração de 3 modelos criados a partir de conjuntos de dados positivos e negativos randomizados, cujas listas de genes com os maiores *scores* foram cruzadas com os genes correspondentes presentes nas Tabelas 4 a 9. Os resultados estão ilustrados na Figura 21, que mostra que o total de correspondências entre as

tabelas geradas experimentalmente e as geradas através do modelo SVM, em seu conjunto, constituem mais do que o dobro de correspondências encontradas quando quaisquer dos modelos SVM randomizados é utilizado, sugerindo que a abordagem proposta é válida.

Tabela 15: Resultados dos cruzamentos entre os conjuntos de dados obtidos experimentalmente e os conjuntos de dados obtidos pelo modelo SVM. pST indica o conjunto de dados referentes à fosforilação diferencial em serina/treonina (Tabelas 6 e 7). pY indica o conjunto de dados referentes à fosforilação diferencial em tirosina (Tabelas 8 e 9). Prot indica o conjunto de dados com expressão diferencial (tabelas 4 e 5). Os sinais (+) e (-) indicam, respectivamente, positivo e negativo na primeira coluna. SVM1 corresponde à seleção na literatura de proteínas reguladas por fosforilação e envolvidas no processo de quimiorresistência enquanto SVM2 corresponde ao conjunto positivo GO referente à proteínas envolvidas no transporte e resposta à drogas.

pST+ SVM 1	pST-SVM 1	pY+ SVM1	pY- SVM1	Prot+ SVM2	Prot- SVM2
ALDOA	ACIN1	CSK		ACYP1	AGK
ARHGEF2	AHNAK			AKAP12	AGL
EPB41L2	ANKRD17			AMMECR1	ATG5
FSCN1	ARID1A			CIRBP	САСҮВР
GSK3A	BCR			CYP51A1	CASP6
HNRNPM	CAD			DDX24	GORASP2
MCM4	DDB1			EIF4A2	IK
MSN	DHX9			EPB41L2	LUC7L2
NCAPD2	EIF3A			GPD1L	MACF1
NF1	EPB41			LACTB2	MYO6
PTPN1	FKBP15			LANCL1	OXCT1
RAB7A	GOLGA2			MAP1B	PCYOX1
RBM14	HDAC6			OPA1	SACS
SPAG9	INPPL1			PAPOLA	SEC63
TOMM22	LARP1			PDCD4	STAU1
TPD52L2	MAP4			PDHX	TBC1D4
TPI1	MCM3			RDH11	TFB2M
TRIM28	MKI67			RFC1	TTC19
UBA1	MLL			SPTAN1	WRN
UBR4	MLL2			SRI	
VCP	NCOR1			TBPL1	
VIM	SPAG9			UBR7	
WARS	SUPT5H				
	SYMPK				
	THRAP3				
	TRRAP				
	UBAP2L				
	UBR4				
	WNK1				

Figura 21. Correspondências encontradas após o cruzamento dos modelos SVM originais (SVM teste) e as listas obtidas experimentalmente comparadas às correspondências encontradas quando modelos SVM randomizados (SVM R1, SVM R2 e SVM R3) foram utilizados nos cruzamentos. As siglas seguem o padrão da Tabela 15. PID indica que a lista de proteínas considerada foi filtrada pela análise PID (Tabelas 10 a 13). A. Correspondências do conjunto completo de listas. B. Correspondências por conjunto individual.

4.1.7 Redes de interação

Após a obtenção da lista ilustrada na Tabela 15, surgiu o seguinte questionamento: as proteínas presentes em um determinado conjunto podem interagir entre si? Caso a resposta seja positiva, elas interagem diretamente ou existe uma cadeia de outras proteínas intermediando a

interação? Quais são essas proteínas? Para responder a essas perguntas, a abordagem utilizada envolveu o *software* Cytoscape, versão 2.8.2 (SMOOT et al., 2011) e o *plugin* MiMI, versão 3.11 (GAO et al., 2009).

O Cytoscape é uma plataforma *open source* utilizada para visualizar redes moleculares de interação e vias biológicas e integrar, a essas redes e vias, a informação armazenada em bancos de dados através do uso de *plugins*. O MiMI é um *plugin* que permite a busca de moléculas biológicas como proteínas, mRNA etc. em diferentes bancos de dados (curados e não-curados manualmente).

Para obter as redes de interação de cada proteína listada na Tabela 15, utilizou-se o MiMI com os parâmetros "espécie = *Homo sapiens*", "tipo de molécula = proteína" e "fonte de dados = HPRD". O HPRD é ideal, neste caso, porque armazena apenas interações validadas experimentalmente, publicadas e indexadas no PubMed. Por fim, obteve-se todos os parceiros de interação individuais para cada proteína da Tabela 15 e essa informação foi levada ao Cytoscape (Figura 22). Esta análise foi realizada individualmente para cada grupo representado na tabela.

O Cytoscape, então, foi utilizado para unir todas as redes de interação individuais numa única rede (Figura 23), de modo a permitir a visualização de todas as proteínas da Tabela 15 e de parceiros de interação diretos para duas ou mais dessas proteínas, indicando uma potencial via ou cascata de sinalização. Dessa forma é possível, por exemplo, encontrar proteínas que apresentaram um aumento em sua expressão e que atuam num determinado processo biológico, sugerindo, portanto, um aumento na ocorrência do processo.

Figura 22. Tela do *software* Cytoscape ilustrando a obtenção de dados de interações individuais para cada proteína listada na Tabela 15 através do *plugin* MiMI. Na imagem, pode-se ver duas das proteínas presentes na lista (Vimentina, representada pelo gene VIM e a TER ATPase, representada pelo gene VCP) e suas respectivas redes de interação. A visualização foi alterada de modo que o tamanho do nó seja proporcional ao número de interações realizadas.

Assim, foi possível observar as redes criadas para cada conjunto de dados (fosforilação em serina/treonina aumentada, expressão aumentada etc.) e listar parceiros de

interação mútuos para proteínas presentes na Tabela 15, privilegiando a atuação sistêmica das proteínas ao invés de considerar que proteínas individuais, sem relação, são responsáveis pela aquisição do fenótipo resistente. Todas as interações extraídas a partir desta análise estão listadas na Tabela 16.

Figura 23. União de todas as redes de interação individuais obtidas para as proteínas que apresentaram aumento na fosforilação em serina/treonina e foram selecionadas pela análise descrita. Pode-se observar uma grande rede na parte superior da imagem, e redes menores na parte inferior. As redes menores são constituídas por proteínas presentes na Tabela 15 que não possuem nenhum parceiro de interação em comum com as outras proteínas da tabela. O quadro em destaque está ampliado na Figura 24.

Figura 24. Ampliação da figura anterior ilustrando duas proteínas que apresentaram aumento na fosforilação em serina/treonina (GSK3A e ARHGEF2) e foram selecionadas a partir do cruzamento com a lista gerada pelo modelo SVM. Pode-se ver que uma outra proteína, 14-3-3 gama, codificada pelo gene YWHAG, interage diretamente tanto com GSK3A como com ARHGEF2, sugerindo uma potencial cascata da qual essas proteínas fazem parte.

Tabela 16. Lista de todas as possíveis redes de interação extraídas a partir da análise com o *software* Cytoscape. Em negrito estão as proteínas presentes na Tabela 15, ou seja, proteínas que foram identificadas no cruzamento entre proteínas diferencialmente expressas ou fosforiladas pelo fosfoproteoma e proteínas que foram apontadas como relevantes para o processo de resistência pelo modelo SVM. Sem negrito estão representadas proteínas que foram apontadas como parceiras de interação mútuas das proteínas presentes na Tabela 15.

Interações pST+	Interações pST-
VCP - JAK2 - PTPN1 - CDC2	NCOR1 - GPS2 - GOLGA2
AKT1 - GSK3A - YWHAG - ARHGEF2	NCOR1 - HTT - SYMPK
PTPN1 - ESR1 - TRIM28 - CHD3 - VIM	NCOR1 - ZBTB16 - HDAC6
GSK3A - AKT1 - PTPN1 - JAK2 - VCP	NCOR1 - DDX20 - DHX9 - POL2RA - MCM3
EPB41L2 - ACTA1 - FSCN1 - CTNNB1 - PTPN1	NCOR1 - DDX20 - DHX9 - POL2RA - SUPT5H
VIM - SETDB1 - TRIM28 - ESR1 - PTPN1	NCOR1 - ESR1 - TRRAP - TAF9 – MLL
MSN - ROCK1 - VIM - CDC2 - UBA1	NCOR1 - ESR1 - TRRAP - BRCA1 - DHX9
VIM - YWHAZ - ARHGEF2	TRRAP - MYC - SPAG9 - YWHAG - BCR - YWHAQ - EPB41 - PRKCB1 - MKI67
VCP - NFKBIA - PTPN1	INPPL1 - ABL1 - BCR - YWHAG - ACIN1/SPAG9/WNK1/THRAP3/LARP1
RAB7A - RABAC1 - VIM	INPPL1 - EGFR - LARP1
GSK3A - AKT1 - PTPN1 - SRC	MCM3 - POLR2A - SUPT5H
GSK3A - AKT1 - PTPN1 - FAK(PTK2)	MAP4 - CDC2 - GOLGA2
PTPN1 - IRS1	MAP4 - TUBB - HDAC6
TRIM28 - VIM	MAP4 - TUBB2A - HDAC6
VIM - SETDB1 - TPI1	BCR - ABL1 - DDB1
	CAD - CASP3 - ACIN1
	AHNAK - AKT1 - WNK1
Interações prot+	Interações prot-
PDHX - DDX24 - SPTAN1 - ACTB - MAP1B	STAU1 - MAPT - CASP6 - CHD3 - LUC7L2 - ATF7IP - MACF1 - ACTA1 - MYO6
PDHX - DDX24 - SPTAN1 - EPB41L2	STAU1 - MAPT - CASP6 - CHD3 - LUC7L2 - YWHAG - TBC1D4
PDHX - DDX24 - SPTAN1 - CASP3 - RFC1 - RELA - PAPOLA - SMAD2 – SRI	STAU1 - MAPT - CASP6 - CHD3 - IK - NUP62 - GORASP2 - TSC22D4 - SACS
PDCD4 - EIF4AG1 - EIF4A2	

4.1.8 Lista selecionada

A Tabela 17 lista todas as proteínas selecionadas a partir de todas as análises descritas, com seus nomes e respectivos genes, de modo a permitirem o cruzamento com as outras tabelas presentes nesta tese. Todas as proteínas desta lista tem potencial para validação por sua possível relevância no processo de quimiorresistência. No entanto, de acordo com a disponibilidade de anticorpos para *Western blotting*, somente algumas delas chegaram a ser validadas.

Tabela 17: Lista de 145 alvos selecionados para posterior validação *in vitro*. pST indica proteínas que apresentaram aumento (+) ou diminuição (-) na fosforilação em serina/treonina. pY indica proteínas que apresentaram aumento (+) na fosforilação em tirosina. Prot indica proteínas que apresentaram aumento (+) ou diminuição (-) na expressão.

GENE	NOME DA PROTEÍNA
	pST+
ALDOA	Fructose-bisphosphate aldolase A
ARHGEF2	Rho guanine nucleotide exchange factor 2
EPB41L2	Band 4.1-like protein 2
FSCN1	Fascin
GSK3A	Glycogen synthase kinase-3 alpha
HNRNPM	Heterogeneous nuclear ribonucleoprotein M
MCM4	DNA replication licensing factor MCM4
MSN	Moesin
NCAPD2	Condensin complex subunit 1
NF1	Neurofibromin
PTPN1	Tyrosine-protein phosphatase non-receptor type 1
RAB7A	Ras-related protein Rab-7a
RBM14	RNA-binding protein 14
SPAG9	c-Jun-amino-terminal kinase-interacting protein 4
TOMM22	Mitochondrial import receptor subunit TOM22 homolog
TPD52L2	Tumor protein D54
TPI1	Iriosephosphate isomerase
TRIM28	I ranscription intermediary factor 1-beta
UBA1	Ubiquitin-like modifier-activating enzyme 1
UBR4	E3 ubiquitin-protein ligase UBR4
VCP	Vimentin
	Vimenum Truntanhanyi tBNA sunthatasa, sutanlasmis
WARS	
	pST-
ACIN1	Apoptotic chromatin condensation inducer in the nucleus
AHNAK	Neuroblast differentiation-associated protein AHNAK
ANKRD17	Ankyrin repeat domain-containing protein 17
ARID1A	AT-rich interactive domain-containing protein 1A
BCR	Breakpoint cluster region protein
CAD	CAD protein
DDB1	DNA damage-binding protein 1
DHX9	ATP-dependent RNA helicase A
EIF3A	Eukaryotic translation initiation factor 3 subunit A
EPB41	Protein 4.1
FKBP15	FK506-binding protein 15
GOLGA2	Golgin subfamily A member 2
HDAC6	HISTONE GEACETYIASE 6
	Phosphatiayiinositoi-3,4,5-trisphosphate 5-phosphatase 2
	LA-related protein 1
	IVIICTOLUDUIE-ASSOCIATED PROTEIN 4
IVICIVI3	DNA replication licensing factor INCINIS

MKI67	Antigen KI-67
MLL	Histone-lysine N-methyltransferase MLL
MLL2	Histone-lysine N-methyltransferase MLL2
NCOR1	Nuclear receptor corepressor 1
SPAG9	c-Jun-amino-terminal kinase-interacting protein 4
SUPT5H	Transcription elongation factor SPT5
SYMPK	Symplekin
THRAP3	Thyroid hormone receptor-associated protein 3
TRRAP	Transformation/transcription domain-associated protein
UBAP2L	Ubiquitin-associated protein 2-like
UBR4	E3 ubiquitin-protein ligase UBR4
WNK1	Serine/threonine-protein kinase WNK1

Tyrosine-protein kinase CSK

pY+

CSK

LUC7L2

Prot+

ACYP1	Acylphosphatase-1
AKAP12	A-kinase anchor protein 12
AMMECR1	AMME syndrome candidate gene 1 protein
CIRBP	Cold-inducible RNA-binding protein
CYP51A1	Lanosterol 14-alpha demethylase
DDX24	ATP-dependent RNA helicase DDX24
EIF4A2	Eukaryotic initiation factor 4A-II
EPB41L2	Band 4.1-like protein 2
GPD1L	Glycerol-3-phosphate dehydrogenase 1-like protein
LACTB2	Beta-lactamase-like protein 2
LANCL1	LanC-like protein 1
MAP1B	Microtubule-associated protein 1B
OPA1	Dynamin-like 120kDa protein, mitochondrial
PAPOLA	Poly(A) polymerase alpha
PDCD4	Programmed cell death protein 4
PDHX	Pyruvate dehydrogenase protein X component, mitochondrial
RDH11	Retinol dehydrogenase 11
RFC1	Replication factor C subunit 1
SPTAN1	Spectrin alpha chain, brain
SRI	Sorcin
TBPL1	TATA box-binding protein-like protein 1
UBR7	Putative E3 ubiquitin-protein ligase UBR7
	Prot-
AGK	Acylglycerol kinase, mitochondrial
AGL	Glycogen debranching enzyme
ATG5	Autophagy protein 5
CACYBP	Calcyclin-binding protein
CASP6	Caspase-6
GORASP2	Golgi reassembly-stacking protein 2
IK	Protein Red

Putative RNA-binding protein Luc7-like 2

MACF1	Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5
MYO6	Myosin-VI
OXCT1	Succinyl-CoA:3-ketoacid-coenzyme A transferase 1, mitochondrial
PCYOX1	Prenycysteine oxidase 1
SACS	Sacsin
SEC63	Translocation protein SEC63 homolog
STAU1	Double-stranded RNA-binding protein Staufen homolog 1
TBC1D4	TBC1 domain family member 4
TFB2M	Dimethyladenosine transferase 2, mitochondrial
TTC19	Tetratricopeptide repeat protein 19, mitochondrial
WRN	Werner syndrome ATP-dependent helicase
In	termediários associados a pST+ (via HPRD)
JAK2	Tyrosine-protein kinase JAK2
CDC2	Cyclin-dependent kinase 1
AKT1	RAC-alpha serine/threonine-protein kinase
YWHAG	14-3-3 protein gamma
ESR1	Estrogen receptor
CHD3	Chromodomain-helicase-DNA-binding protein 3
ACTA1	Actin, alpha skeletal muscle
CTNNB1	Catenin beta-1
SETDB1	Histone-lysine N-methyltransferase SETDB1
ROCK1	Rho-associated protein kinase 1
YWHAZ	14-3-3 protein zeta/delta
NFKBIA	NF-kappa-B inhibitor alpha
RABAC1	Prenylated Rab acceptor protein 1
CASP3	Caspase-3
YWHAE	14-3-3 protein epsilon
SRC	Proto-oncogene tyrosine-protein kinase Src
PTK2	Focal adhesion kinase 1
IRS1	Insulin receptor substrate 1
Int	ermediários associados a pST- (via HPRD)
GPS2	G protein pathway suppressor 2
НТТ	Huntingtin
ZBTB16	Zinc finger and BTB domain-containing protein 16
DDX20	Probable ATP-dependent RNA helicase DDX20
POLR2A	DNA-directed RNA polymerase II subunit RPB1
ESR1	Estrogen receptor
TAF9	Transcription initiation factor TFIID subunit 9
BRCA1	Breast cancer type 1 susceptibility protein
MYC	Myc proto-oncogene protein
YWHAG	14-3-3 protein gamma
YWHAQ	14-3-3 protein theta
PRKCB1	Protein kinase C beta type
ABL1	Tyrosine-protein kinase ABL1
EGFR	Epidermal growth factor receptor
CDC2	Cyclin-dependent kinase 1
TUBB	Tubulin beta chain

TUBB2A	Tubulin beta-2A chain
CASP3	Caspase-3
PPP1CA	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit
PPP2CA	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform
AKT1	RAC-alpha serine/threonine-protein kinase
Int	ermediários associados a Prot+ (via HPRD)
ACTB	Actin, cytoplasmic 1
CASP3	Caspase-3
RELA	Transcription factor p65
SMAD2	Mothers against decapentaplegic homolog 2
EIF4G1	Eukaryotic translation initiation factor 4 gamma 1
Int	ermediários associados a Prot- (via HPRD)
MAPT	Microtubule-associated protein tau
CHD3	Chromodomain-helicase-DNA-binding protein 3
ATF7IP	Activating transcription factor 7-interacting protein 1
ACTA1	Actin, alpha skeletal muscle
YWHAG	14-3-3 protein gamma
NUP62	Nuclear pore glycoprotein p62
TSC22D4	TSC22 domain family protein 4

4.1.9 Determinação de processos biológicos pelo Gene Ontology (GO)

O *Gene Ontology* (GO) (ASHBURNER et al., 2000) é um banco classificador de proteínas com base na sua localização subcelular, processos biológicos que participam e na sua função molecular. Ele foi usado para a obtenção dos processos biológicos referentes a cada proteína presente na Tabela 17, de modo a identificar padrões no metabolismo e na sinalização celular que apontassem para processos diferencialmente regulados e potencialmente envolvidos no mecanismo de resistência a múltiplas drogas em K562 e Lucena-1. As proteínas intermediárias foram agrupadas com seus respectivos grupos e quatro categorias de processos foram criadas: proteínas mais fosforiladas em Lucena-1; proteínas mais expressas em Lucena-1 e proteínas menos expressas em Lucena-1, sempre em relação à K562 (Figura 25).

No caso das proteínas mais fosforiladas, os principais processos biológicos são: transdução de sinal (30%); reorganização do citoesqueleto (17%) e regulação da proliferação celular (9%). No caso das proteínas menos fosforiladas, os principais processos são: regulação da transcrição (30%); proteólise mediada por ubiquitina (10%) e ciclo celular (7%).

Já no caso das proteínas mais expressas, os processos biológicos mais relevantes são: transdução de sinal (14%); reorganização do citoesqueleto (14%) e regulação da expressão gênica (14%). Para as proteínas menos expressas, os principais processos são: transdução de sinal (16%); apoptose (16%) e enovelamento de proteínas (11%).

Figura 25. Classificação das proteínas selecionadas de acordo com os processos biológicos de que participam. Todas as proteínas foram classificadas em categorias através do *Gene Ontology* (GO). Os gráficos representam os processos biológicos mais frequentes em cada grupo: (A) proteínas mais fosforiladas, (B) proteínas menos fosforiladas, (C) proteínas mais expressas e (D) proteínas menos expressas, todas referentes à Lucena-1 em relação a K562. Uma mesma proteína pode ser classificada em mais de um processo.

4.2 VALIDAÇÃO POR ENSAIOS IN VITRO

4.2.1 Estudo da expressão e fosforilação proteica

As proteínas presentes na Tabela 17 que foram validadas experimentalmente foram *AKT1, pAKT1, CASP3, c-MYC, \beta-CAT, SRC, pSRC, PTPN11, pPTPN11, HDAC6, ABCB1, pGSK3A, pGSK3B, PTPN1, pPTPN1, ACTB e VIM.* Para facilitar a leitura, os resultados são apresentados de forma específica para cada proteína discutida e seu conjunto de interatores. Por conta disso, algumas imagens de *Western blotting* se repetem ao longo das figuras.

AKT1 e pAKT1

A AKT, codificada pelo gene AKT1, é uma serina/treonina proteína quinase envolvida na regulação de processos como proliferação, sobrevivência, crescimento celular e angiogênese. Essa regulação é mediada via fosforilação em resíduos de serina e/ou treonina em mais de 100 substratos (MANNING; CANTLEY, 2007).

AKT1 é ativada mediante a fosforilação de pelo menos dois resíduos: T308 e S473. No entanto, existem evidências que apontam a fosforilação em resíduos de tirosina mediada por SRC como essencial para a função biológica da AKT1 (CHEN et al., 2001). SRC também é capaz de interagir com a proteína fosfoinositídeo-3-quinase (PI3K), ativando-a e, novamente, contribuindo para a ativação de AKT1 (GENTILI; MORELLI; RUSSO DE BOLAND, 2002). SRC, por sua vez, é regulada positivamente pela atividade da fosfatase PTP1B, que desfosforila um resíduo no domínio carboxi-terminal de SRC e aumenta sua atividade (BJORGE; PANG; FUJITA, 2000).

A fosforilação da proteína PTPN1 (PTP1B) no resíduo serina 50 pela AKT1 modula negativamente sua atividade de fosfatase, inibindo, entre outras consequências, a desfosforilação do receptor de insulina e a atenuação da via de sinalização da insulina (CHEN et al., 2001).

AKT1 também é capaz de fosforilar ambas as formas da glicogênio sintase quinase (GSK3), inibindo suas funções de quinase. A fosforilação da forma *alpha* se dá no resíduo S21, enquanto na forma *beta* ocorre no resíduo S9 (CROSS et al., 1995).

Dudek e colaboradores demonstram que AKT1 é ativada por fosforilação por PI3K (DUDEK et al., 1997). Esta ativação é responsável pela mediação de vários fatores de crescimento como PDGF (fator de crescimento derivado de plaquetas), EGF (fator de crescimento epidermal) e IGF-I (fator de crescimento similar à insulina I).

Os ensaios de *Western blotting* para AKT1 não revelaram alterações significativas na expressão dessa proteína entre as linhagens K562 e Lucena-1. No entanto, a atividade dela, conforme evidenciado pelos níveis de fosforilação em T308 e S473, parece estar significativamente reduzida na linhagem resistente, conforme pode ser observado pela Figura 26.

A redução na atividade de AKT1 sugere um aumento na atividade de GSK3A e PTPN1, proteínas presentes na seleção de alvos gerada pela etapa computacional do trabalho. A redução encontrada na expressão de SRC e na fosforilação de seu resíduo ativador (Y419) na linhagem resistente corrobora a redução na atividade de AKT1. A Figura 27 revela a rede de interações para a proteína AKT1.

Figura 26. Ensaios de *Western blotting* para determinação dos níveis de expressão de AKT1 e de algumas proteínas capazes de interagir com esta quinase. As formas fosforiladas, indicadas por um "p" antes do nome, foram avaliadas para determinação da atividade conforme apropriado. Nesses casos, o resíduo fosforilado é indicado abaixo do nome. GAPDH foi usada como controle interno.

Figura 27. Rede de interações da proteína codificada pelo gene AKT1. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de AKT1. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

CASP3 e VIM

A caspase-3, codificada pelo gene CASP3, é uma proteína envolvida na cascata de ativação de caspases que leva à apoptose (NICHOLSON et al., 1995). Sua interação com proteínas responsáveis pela organização do citoesqueleto é reportada na literatura.

A vimentina, codificada pelo gene VIM, é um tipo de filamento intermediário encontrado principalmente em células mesenquimais. Os filamentos de vimentina são polímeros de unidades tetraméricas de vimentina e estão envolvidos na motilidade e manutenção do formato celular (CLARKE; ALLAN, 2002).

A caspase-3 é capaz de clivar proteínas como a beta-catenina (CTNNB1) e a vimentina, causando a desestruturação do citoesqueleto de actina e dos filamentos intermediários (BRANCOLINI et al., 1997; BYUN et al., 2001).

Os ensaios de *Western blotting* revelaram a redução dos níveis de expressão de CASP3 não-clivada (pró-caspase) em Lucena-1, sugerindo a ativação da CASP3, o que é consistente com a redução observada nos níveis de vimentina e beta-catenina na linhagem resistente, conforme pode ser observado na Figura 28. Vimentina é um dos alvos encontrados na análise computacional, sendo que sua diminuição é apontada por um estudo, conduzido por Nicholson e colaboradores, como fundamental na resistência a drogas que interferem com microtúbulos (NICHOLSON et al., 1995). A linhagem Lucena-1 é notadamente resistente à droga vincristina, que interfere na montagem dos filamentos de microtúbulos (MAIA et al., 1996), sugerindo que a super-expressão da bomba de efluxo P-glicoproteína não é o único mecanismo pelo qual a linhagem Lucena-1 exibe o fenótipo quimiorresistente.

A Figura 29 revela a rede de interações para a proteína CASP3, enquanto a Figura 30 mostra a rede de interações para a vimentina.

Figura 28. Ensaios de *Western blotting* para determinação dos níveis de expressão de CASP3, além de beta-catenina e vimentina, capazes de interagir com elas. GAPDH foi usada como controle interno.

Figura 29. Rede de interações da proteína codificada pelo gene CASP3. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de CASP3. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

Figura 30. Rede de interações da proteína codificada pelo gene VIM. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de VIM. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

c-Myc

A proteína c-Myc, codificada pelo gene MYC, é um fator de transcrição encontrado em níveis elevados em diversos tumores, especialmente os de origem hematopoiética. A superexpressão de c-Myc leva à expressão descontrolada de diversos genes envolvidos com a proliferação e inibindo a diferenciação celular, o que acaba sendo a principal causa do tumor. No entanto, em células-tronco embrionárias, esta proteína se comporta de maneira completamente diferente, estimulando a apoptose e a diferenciação celular (GEARHART; PASHOS; PRASAD, 2007).

A atividade de c-Myc é regulada por fosforilação realizada por várias proteínas quinases, como ERK1 e GSK3beta, levando ao aumento de sua atividade (DAVIS, 1993) e a subsequente ubiquitinação e degradação pelo proteassomo (YADA et al., 2004).

GSK3beta, assim como sua isoforma GSK3alpha, é uma serina/treonina quinase envolvida em processos como o controle hormonal da homeostase da glicose, a via de sinalização Wnt, a regulação de microtúbulos e de fatores de transcrição. Esta última função está relacionada à fosforilação de c-Myc (NICHOLSON et al., 1995).

Os níveis de expressão de c-Myc encontrados na linhagem Lucena-1 foram significativamente menores do que na linhagem K562 (Figura 31). No entanto, duas das quinases capazes de fosforilar c-Myc, as isoformas da proteína GSK3, apresentaram resultados opostos quanto à fosforilação em seus sítios de ativação: GSK3alpha mostrou redução de fosforilação no resíduo Y216, enquanto GSK3beta teve um aumento na fosforilação no resíduo Y279 na linhagem resistente (Figura 31). Diante disso, é difícil afirmar se existe ou não um efeito regulatório mediado por fosforilação atuando na redução dos níveis de c-Myc.

Um outro fator que pode estar envolvido na alteração observada é o fato de a linhagem Lucena-1 apresentar marcadores para células-tronco (MARQUES et al., 2010), sugerindo uma reversão do fenótipo diferenciado na linhagem acompanhado de alterações na expressão de proteínas como c-Myc. A Figura 32 revela a rede de interações para a proteína c-Myc.

Figura 31. Ensaios de *Western blotting* para determinação dos níveis de expressão de c-Myc e os níveis de fosforilação de GSK3B, capaz de interagir com ela. As formas fosforiladas, indicadas por um "p" antes do nome, foram avaliadas para determinação da atividade conforme apropriado. Nesses casos, o resíduo fosforilado é indicado abaixo do nome. GAPDH foi usada como controle interno.

Figura 32. Rede de interações da proteína codificada pelo gene MYC. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de MYC. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

PTPN11 e pPTPN11

SHP-2, codificada pelo gene PTPN11, é uma proteína tirosina fosfatase que é capaz de desfosforilar o resíduo Y419 de SRC, inativando-a (NICHOLSON et al., 1995). SHP-2 está

em sua forma ativa quando fosforilada no resíduo Y546. No entanto, quando fosforilada por ERK1 (MAPK3), sua atividade diminui (PERALDI et al., 1994). Ela também é capaz de interagir diretamente com a proteína BCR-ABL *in vivo* (ZHU et al., 1999).

Nos ensaios de *Western blotting*, a linhagem Lucena-1 apresentou níveis reduzidos de SHP-2, tanto em relação à expressão quanto em relação à fosforilação no resíduo ativador. Isso sugere que SHP-2 não está relacionada à redução nos níveis de fosforilação em Y419 observados em SRC, conforme a Figura 33. A Figura 34 mostra a rede de interações da proteína.

Figura 33. Ensaios de *Western blotting* para determinação dos níveis de expressão de PTPN11 e de algumas proteínas capazes de interagir com ela. As formas fosforiladas, indicadas por um "p" antes do nome, foram avaliadas para determinação da atividade conforme apropriado. Nesses casos, o resíduo fosforilado é indicado abaixo do nome. GAPDH foi usada como controle interno.

β -catenina, SRC e pSRC

A proteína beta-catenina, codificada pelo gene CTNNB1, é uma proteína regulatória da adesão celular e um efetor da via de sinalização Wnt, que está envolvida com o desenvolvimento, a proliferação e a diferenciação celular. Através da via Wnt, a beta-catenina citoplasmática é translocada para o núcleo, onde atua como um coativador transcricional, estimulando a expressão de genes como c-Myc (KIKUCHI, 2000).

SRC é uma proteína capaz de fosforilar beta-catenina no resíduo Y654, favorecendo sua atividade na transcrição (PIEDRA et al., 2001). PTPN1, por outro lado, é uma fosfatase identificada como essencial para que a beta-catenina desempenhe sua função na adesão celular (XU et al., 2002). A fosforilação em tirosina de beta-catenina tem sido associada à agressividade de tumores, levando à metástase (CHEN et al., 2001).

Figura 34. Rede de interações da proteína codificada pelo gene PTPN11. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de PTPN11. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

Além disso, beta-catenina é capaz de interagir com FSCN1 (WONG et al., 1999), uma proteína importante na organização de filamentos de actina e, consequentemente, na estruturação do citoesqueleto. FSCN1 é um dos alvos encontrados na seleção computacional.

Uma outra proteína capaz de interagir com beta-catenina é LMW-PTP, codificada pelo gene ACP1. Ela é uma proteína tirosina fosfatase implicada na regulação de processos como o ciclo celular e o rearranjo do citoesqueleto (CHIARUGI et al., 1997, 2002). LMW-PTP é capaz de se associar à beta-catenina e desfosforilá-la, direcionando-a para a membrana celular, de onde controla a estabilidade de junções aderentes e a interação delas com o citoesqueleto de actina (TADDEI et al., 2002).

Nos ensaios de *Western blotting*, os níveis de expressão de beta-catenina diminuíram na linhagem Lucena-1 em relação à linhagem K562 (Figura 35). Os níveis de SRC e de SRC fosforilada no resíduo ativador Y419 também diminuíram, sugerindo uma redução na função transcricional de beta-catenina, o que é corroborado pelos níveis menores de c-Myc encontrados na linhagem Lucena-1. Já os níveis de LMW-PTP se apresentaram significativamente maiores em Lucena-1 do que em K562, sugerindo um papel relevante na resistência.

Os níveis de PTPN1 e de sua forma fosforilada no resíduo S50 (ativa) não sofreram alterações significativas, sugerindo não desempenhar um papel relevante na atividade de betacatenina nestas linhagens. A Figura 36 mostra a rede de interações da proteína beta-catenina, enquanto a Figura 37 mostra a rede de interações da proteína SRC.

Figura 35. Ensaios de *Western blotting* para determinação dos níveis de expressão de beta-catenina, SRC e de algumas proteínas capazes de interagir com elas. As formas fosforiladas, indicadas por um "p" antes do nome, foram avaliadas para determinação da atividade conforme apropriado. Nesses casos, o resíduo fosforilado é indicado abaixo do nome. GAPDH foi usada como controle interno em dois experimentos diferentes.

Figura 36. Rede de interações da proteína codificada pelo gene CTNNB1. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de CTNNB1. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

Figura 37. Rede de interações da proteína codificada pelo gene SRC. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de SRC. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

PTPN1 e pPTPN1

A proteína PTP1B, codificada pelo gene PTPN1, é uma proteína tirosina fosfatase que atua como um regulador negativo de diversas vias de sinalização desencadeadas por receptores tirosina quinases, como insulina (BOURDEAU; DUBÉ; TREMBLAY, 2005) e PDGF (HAJ et al., 2003). Sua superexpressão inibe a transformação celular por oncogenes que promovem o aumento da fosforilação em resíduos de tirosina, como SRC (WOODFORD-THOMAS; RHODES; DIXON, 1992). Além disso, LaMontagne e colaboradores demonstraram que PTP1B pode atuar como um regulador negativo de BCR-ABL *in vivo* (LAMONTAGNE et al., 1998).

A associação de PTP1B com beta-catenina é essencial para que a beta-catenina desempenhe sua função na adesão celular (XU et al., 2002), conforme mencionado anteriormente. Além disso, a proteína SRC é regulada positivamente pela atividade de PTP1B, que desfosforila o resíduo Y530 de SRC e aumenta sua atividade (YAMAMOTO et al., 2002).

PTP1B também é capaz de interagir com as duas isoformas de GSK3, desfosforilando os resíduos Y279 no caso de GSK3alpha e Y216 no caso de GSK3beta (WANG et al., 1994). Estes são resíduos responsáveis pela atividade de GSK3 e, portanto, a atividade de PTP1B reduz a atividade de GSK3. A Figura 38 apresenta a rede de interações de PTP1B.

Os níveis de expressão e de fosforilação no resíduo ativador de PTP1B (S50) encontrados nos ensaios de *Western blotting* não revelaram alteração entre as linhagens K562 e Lucena-1 (Figura 39), o que sugere que ela não possui relação direta com as alterações observadas em SRC, beta-catenina e GSK3. Apesar disso, ela foi apontada como um alvo potencial na análise computacional. Isso pode se dever ao fato de diversas proteínas que interagem com PTP1B terem apresentado alterações de expressão e de atividade entre as duas linhagens.

Figura 38. Rede de interações da proteína codificada pelo gene PTPN1. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de PTPN1. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

Figura 39. Ensaios de *Western blotting* para determinação dos níveis de expressão de PTPN1 e de algumas proteínas capazes de interagir com ela. As formas fosforiladas, indicadas por um "p" antes do nome, foram avaliadas para determinação da atividade conforme apropriado. Nesses casos, o resíduo fosforilado é indicado abaixo do nome. GAPDH foi usada como controle interno em dois experimentos diferentes.

HDAC6

Histona desacetilases, grupo de enzimas da qual HDAC6 faz parte, são responsáveis pela desacetilação de resíduos de lisina de histonas. A desacetilação funciona como um marcador de repressão epigenético, tendo um importante papel na regulação da transcrição (WADE; PRUSS; WOLFFE, 1997).

No entanto, HDAC6 está localizada exclusivamente no citoplasma, tendo uma função diferenciada como desacetilase associada a microtúbulos. A desacetilação de microtúbulos é uma importante modificação pós-traducional que controla a estabilidade do citoesqueleto (DUDEK et al., 1997). Existem estudos mostrando que a estabilidade de microtúbulos afeta eventos de membrana dependentes de actina, como invaginações de membrana (KAVERINA; KRYLYSHKINA; SMALL, 1999; WATERMAN-STORER; SALMON, 1999). HDAC6, portanto, atua na interface entre as redes de actina e de microtúbulos, com um papel fundamental na estruturação do citoesqueleto. Existem, ainda, evidências de que a alteração da expressão de diversas histona desacetilases, incluindo HDAC6, em células leucêmicas resistentes ao imatinib leva a padrões aberrantes de acetilação de proteínas como p53, Ku70 e Hsp90, sugerindo a importância da acetilação no processo de resistência. Um estudo apontou que HDAC6, especificamente, apresentou níveis de expressão significativamente reduzidos nas células resistentes, levando à acetilação de Hsp90 e prejudicando suas funções de chaperona, o que resultou na poliubiquitinação e consequente redução de proteínas como BCR-ABL (LEE et al., 2007).

Os ensaios de *Western blotting* revelaram uma redução na expressão de HDAC6 na linhagem resistente em relação à linhagem K562 (Figura 40), sugerindo alterações na regulação da estabilidade do citoesqueleto e alterações na regulação por acetilação de proteínas como p53 e Hsp90 entre as duas linhagens. A Figura 41 mostra a rede de interações de HDAC6.

Figura 40. Ensaios de *Western blotting* para determinação dos níveis de expressão de HDAC6. GAPDH foi usada como controle interno.

Figura 41. Rede de interações da proteína codificada pelo gene HDAC6. Em destaque estão as tubulinas, proteínas do citoesqueleto desacetiladas por HDAC6. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

GSK3A, GSK3B e suas formas fosforiladas

GSK3beta, assim como sua isoforma GSK3alpha, é uma serina/treonina quinase envolvida em processos como o controle hormonal da homeostase da glicose, a via de sinalização Wnt, a regulação de microtúbulos e de fatores de transcrição. Suas isoformas são ativadas pela fosforilação em tirosina: Y279 na isoforma alpha e Y216 na isoforma beta; e são inibidas por fosforilação em serina: S21 na isoforma alpha e S9 na isoforma beta (ALI; HOEFLICH; WOODGETT, 2001).

Como já mencionado, as isoformas de GSK3 são capazes de interagir com PTP1B, AKT1, c-Myc e beta-catenina. Além disso, as isoformas de GSK3 são capazes de fosforilar proteínas relacionadas à reorganização do citoesqueleto, como a proteína associada a microtúbulos tau (MAPT) (ZHU et al., 1999) e a proteína associada a microtúbulos 1B (MAP1B) (LUCAS et al., 1998). Esta última também é capaz de se ligar à actina (TOGEL; WICHE; PROPST, 1998). A fosforilação das proteínas associadas a microtúbulos inibe a capacidade delas de promover a montagem de filamentos de microtúbulos (WANG et al., 1998a).

Os ensaios de *Western blotting* evidenciaram uma redução na fosforilação do resíduo ativador da isoforma alpha de GSK3 (Figura 42), indicando uma possível alteração na regulação da rede de microtúbulos. A Figura 43 apresenta a rede de interações para a proteína GSK3B, enquanto a Figura 44 ilustra a rede de interações para a proteína MAP1B.

Figura 42. Ensaios de *Western blotting* para determinação dos níveis de fosforilação das duas isoformas de GSK3. Os resíduos fosforilados se encontram abaixo do nome. GAPDH foi usada como controle interno.

Figura 43. Rede de interações da proteína codificada pelo gene GSK3B. A rede de interação de GSK3A é similar. Em destaque estão proteínas que estão presentes na seleção computacional de alvos e/ou proteínas relevantes para a atividade de GSK3B. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

Figura 44. Rede de interações da proteína codificada pelo gene MAP1B. Em destaque estão GSK3B, responsável por sua fosforilação, e beta-actina, proteína com a qual forma o citoesqueleto. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

ACTB

As actinas são proteínas extremamente conservadas e expressas em todas as células eucarióticas. A beta-actina, codificada pelo gene ACTB, está envolvida na estruturação do citoesqueleto e em vários tipos de motilidade celular (PONTE et al., 1984).

Devido às alterações em proteínas envolvidas com o citoesqueleto observadas entre as linhagens K562 e Lucena-1, foi realizado o ensaio de *Western blotting* para a proteína ACTB, que revelou uma redução dos níveis dessa proteína na linhagem Lucena-1 (Figura 45), o que sugere a reorganização do citoesqueleto entre as linhagens.

Além disso, ACTB interage com SPTAN1 (alpha-II espectrina) (NICOLAS et al., 2002), proteína envolvida na secreção e reorganização do esqueleto da membrana, formando um suporte formado por espectrina e actina localizado abaixo da bicamada lipídica. Esta proteína é um dos alvos apontados pela seleção computacional.

A alpha-II espectrina é capaz de interagir também com a LMW-PTP, sendo desfosforilada por ela no resíduo Y1176. A região que contém este sítio é importante, pois a clivagem da espectrina por calpaínas está envolvida na reorganização do citoesqueleto. O sítio Y1176 pode ser fosforilado por SRC e desfosforilado por LMW-PTP. Enquanto fosforilada, a alpha-II espectrina é menos sensível à calpaína *in vitro*, sugerindo que o balanço entre a fosforilação e desfosforilação de alpha-II espectrina por SRC e LMW-PTP tem um papel relevante durante a reorganização do citoesqueleto (NICOLAS et al., 2002).

A Figura 46 apresenta a rede de interações da proteína actina, enquanto a Figura 47 ilustra a rede de interações da proteína alpha-II espectrina.

Figura 45. Ensaios de Western blotting para determinação dos níveis de expressão de ACTB. GAPDH foi usada como controle interno.

Figura 46. Rede de interações da proteína codificada pelo gene ACTB. Em destaque estão as proteínas MAP1B e SPTAN1, importantes parceiros de interação de ACTB na estruturação do citoesqueleto. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

Figura 47. Rede de interações da proteína codificada pelo gene SPTAN1. Em destaque estão ACTB, proteína com a qual interage na formação do citoesqueleto, e ACP1 e SRC, responsáveis pelo balanço de fosforilação que regula a sua degradação por calpaínas. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

ABCB1

A P-glicoproteína (P-gp), codificada pelo gene ABCB1, é uma bomba de efluxo dependente de energia, responsável por evitar o acúmulo de fármacos em células resistentes a múltiplas drogas que foi descrita há mais de 30 anos (BELLAMY, 1996; JULIANO; LING, 1976). Desde então, descobriu-se que ela é apenas uma de uma família de mais de 40 proteínas e que não é a única causa da quimiorresistência (FLETCHER et al., 2010; HEANEY; HOLYOAKE, 2007; STEINBACH; LEGRAND, 2007).

A linhagem Lucena-1, obtida a partir da linhagem de leucemia mieloide crônica K562 (MAIA et al., 1996), tem como uma de suas características a super-expressão da P-glicoproteína (Figura 48). No entanto, este estudo tem determinado que existem diversas outras diferenças entre as duas linhagens que podem ter um papel determinante na resistência, podendo ser utilizadas como alvos em futuros fármacos. ABCB1 foi usada como controle positivo na análise computacional e sua expressão foi usada como controle positivo para as linhagens K562 e Lucena-1 utilizadas neste estudo. A Figura 49 ilustra a rede de interações da proteína P-gp.

Figura 48. Ensaios de *Western blotting* para determinação dos níveis de expressão de ABCB1. GAPDH foi usada como controle interno.

Figura 49. Rede de interações da proteína codificada pelo gene ABCB1. Sua rede de interação proteica é limitada a apenas dois parceiros conhecidos, sugerindo ser improvável a existência de mecanismos regulatórios que envolvam modificações póstraducionais. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

4.2.2 Análise sistêmica

Após a análise dos resultados dos ensaios de *Western blotting* na etapa anterior e da consequente análise de seus respectivos interactomas, chamou a atenção o fato de a fosfatase LMW-PTP, codificada pelo gene ACP1, ser capaz de interagir diretamente com beta-catenina e alpha-II espectrina, dois dos alvos apontados pela análise computacional envolvidos com a reorganização do citoesqueleto, um dos processos biológicos mais frequentes na determinação de processos relacionados às proteínas selecionadas. Uma busca pelos parceiros de interação diretos e indiretos dessa fosfatase apontou relações com outras proteínas que se mostraram alteradas na linhagem Lucena-1 em relação à K562 (Figura 50). Com isso, chegou-se à conclusão de que a proteína tirosina fosfatase de baixo peso molecular, apesar de não ter sido apontada diretamente pela análise anterior, pode estar relacionada com o mecanismo de resistência em Lucena-1. A Tabela 18 mostra algumas proteínas que participaram da seleção computacional capazes de interagir com LMW-PTP.

A proteína tirosina fosfatase de baixo peso molecular (LMW-PTP) é uma família de proteínas codificadas pelo gene ACP1. Existem diversas isoformas que localizam-se em diferentes compartimentos celulares, sendo duas principais: a isoforma rápida e a isoforma lenta, nomeadas com base em sua mobilidade eletroforética. Estas isoformas são funcionalmente
distintas, com a isoforma rápida localizando-se na fração associada ao citoesqueleto, enquanto a isoforma lenta situa-se na fração citossólica (CHIARUGI et al., 1997, 2002).

A LMW-PTP está envolvida na regulação de processos como o ciclo celular e o rearranjo do citoesqueleto, sendo amplamente expressa em diferentes tipos celulares (CHIARUGI et al., 1997, 2002).

A regulação da atividade da LMW-PTP ocorre principalmente através de dois processos: fosforilação e desfosforilação em tirosina (Y131 e Y132) e oxidação e redução de cisteínas no sítio ativo. Os dois sítios de tirosina são fosforilados por tirosina quinases como as da família Src. No entanto, somente a fosforilação no sítio Y131 leva à ativação da LMW-PTP (CHIARUGI et al., 1997, 2002). A LMW-PTP ativa é capaz de desfosforilar proteínas como p190Rho-GAP, inibindo-a e, consequentemente, promovendo o rearranjo do citoesqueleto (CHIARUGI et al., 2000). A regulação redox da LMW-PTP pode ser útil para a proliferação e sobrevivência de células de câncer através da regulação da atividade das proteínas EphA2, JAK2 e STAT5 (MAIA et al., 1996).

LMW-PTP é capaz de interagir com beta-catenina (CTNNB1), desfosforilando e direcionando-a para a membrana celular, de onde controla a estabilidade de junções aderentes e a interação delas com o citoesqueleto de actina (TADDEI et al., 2002).

LMW-PTP também pode apresentar uma relação indireta com vimentina (VIM). LMW-PTP é capaz de desfosforilar a proteína FABP4 (fatty acid binding protein 4), envolvida no tráfego de ácidos graxos e sinalização de insulina (LIU et al., 2006; WANG et al., 1998b). FABP4, por sua vez, foi encontrada como parceiro de interação de VIM num estudo amplo de interactoma obtido por ensaios de duplo-híbrido (STELZL et al., 2005).

LMW-PTP também é capaz de desfosforilar e estimular a degradação da alpha-II espectrina, proteína que interage com actina (ACTB) para formar uma rede de suporte abaixo da membrana celular (NICOLAS et al., 2002).

PTPN1 é capaz de, indiretamente, regular a atividade de LMW-PTP através de SRC. A proteína SRC é regulada positivamente pela atividade de PTPN1, que desfosforila o resíduo Y530 de SRC e aumenta sua atividade (YAMAMOTO et al., 2002). SRC, no estado ativo, fosforila os resíduos de tirosina Y131 e Y132 em LMW-PTP, aumentando sua atividade.

PTPN11, por outro lado, é capaz de regular negativamente a atividade de LMW-PTP, também de forma indireta, através da desfosforilação do resíduo Y419 de SRC (DOAN et al., 2004), levando à sua inativação e consequente inativação de LMW-PTP.

Interator	Natureza	Efeito	Referência
VIM	Indireta	Desconhecido	Shekels et al., 1992;
			Stelzl et al., 2005
PTPN11	Indireta	Redução da atividade de LMW-PTP	Doan et al., 2004
CTNNB1	Direta	Controle da estabilidade de junções e do citoesqueleto	Taddei et al., 2002
SRC	Direta	Aumento da atividade de LMW-PTP	Chiarugi et al., 2000
PTPN1	Indireta	Aumento da atividade de LMW-PTP	Yamamoto et al., 2002
HDAC6	Indireta	Desconhecido	Hubbert et al., 2002;
			Kim et al., 2005;
			Viatour et al., 2004
ACTB	Indireta	Rearranjo do citoesqueleto	Nicolas et al., 2002

Tabela 18. Proteínas validadas que são direta ou indiretamente relacionadas à ACP1.

HDAC6 pode ter um papel relacionado à ACP1 devido a seu envolvimento com o citoesqueleto. HDAC6 é uma desacetilase de microtúbulos, controlando a estabilidade do citoesqueleto (HUBBERT et al., 2002). Também existe evidência de interação indireta de HDAC6 com beta-catenina através de BCL-3, um fator de transcrição que ativa alvos da via NF-kappaB. Beta-catenina forma complexos com BCL-3 (CHEN et al., 2001), enquanto BCL-3 é capaz de interagir com diversas histona desacetilases, incluindo HDAC6 (BRANCOLINI et al., 1997; BYUN et al., 2001), com um papel que pode ser o de aumentar a eficiência de transcrição no caso de outras desacetilases, mas não de HDAC6, uma desacetilase exclusivamente citossólica (HUBBERT et al., 2002).

A Figura 50 ilustra os parceiros de interação de LMW-PTP.

Figura 50. Parceiros de interação de LMW-PTP (ACP1). Em destaque estão algumas das proteínas que foram validadas por *Western blotting* na etapa anterior. A rede foi obtida pelo *software* Cytoscape com dados do banco HPRD.

Após a análise sistêmica, procedeu-se à determinação da expressão de LMW-PTP nas linhagens K562 e Lucena-1 via *Western blotting*. Este ensaio confirmou que LMW-PTP está mais expressa em Lucena-1 em relação a K562, conforme a Figura 51.

Figura 51. Ensaios de *Western blotting* para determinação dos níveis de expressão de ACP1 nas linhagens K562 e Lucena-1. GAPDH foi usada como controle interno.

A Figura 52 mostra a rede de sinalização de LMW-PTP e suas interações com as proteínas presentes na Tabela 18, indicando eventos que podem estar relacionados à quimiorresistência em Lucena-1.

Figura 52. A possível rede de sinalização de LMW-PTP ilustra proteínas que tem fosforilação ou expressão diferencial entre K562 e Lucena-1 e que tem potencial relação com o processo de resistência à quimioterápicos.

5 CONCLUSÕES

Este trabalho contribuiu para o estabelecimento de uma metodologia de análise que permitiu a organização e o planejamento de estratégias *in vitro* para validação de resultados de experimentos em larga escala.

Diferentes tipos de informações podem ser integrados, cruzados e empregados para uma compreensão sistêmica dos processos biológicos, antes e depois dos experimentos *in vitro*. A partir destas informações e de listas com milhares de proteínas, chegou-se a um subgrupo de alvos de tamanho gerenciável. A análise das proteínas desse grupo revelou diversos alvos, dos quais um, a LMW-PTP, foi apontado como um alvo com grande potencial para investigações futuras.

Este estudo revelou que a quimiorresistência a múltiplas drogas na linhagem Lucena-1 é um processo complexo, apontando diversas proteínas e suas respectivas redes de interação que podem ter um papel relevante para o desenvolvimento e a manutenção do fenótipo resistente. Os tópicos abaixo sumarizam as conclusões deste trabalho:

- A análise de dados experimentais em larga escala em conjunto com dados obtidos a partir de simulações resultou em um subconjunto de alvos que puderam ser validados por técnicas mais específicas.
- A análise de vias e de processos biológicos apontou que a reorganização do citoesqueleto, a proliferação celular e o metabolismo de carboidratos são processos com regulação alterada entre as duas linhagens;
 - Lucena-1 apresenta uma marcada redução na expressão do filamento intermediário vimentina, bem como das proteínas

91

beta-catenina e caspase-3 em comparação com K562;

- A análise dos parceiros de interação das proteínas com expressão e/ou atividade alteradas na linhagem Lucena-1 resultou na identificação de LMW-PTP como um potencial alvo para estudos subsequentes;
 - LMW-PTP interage com proteínas como SRC, VIM, HDAC6, CTNNB1, entre outras;
 - LMW-PTP se apresenta significativamente mais expressa em Lucena-1 em relação à K562.

O desenvolvimento deste projeto contribuiu com a geração de novos conhecimentos sobre a biologia da resistência de células leucêmicas e trouxe grande contribuição para ambos os grupos envolvidos: Laboratório de Bioensaios *in vitro* e Transdução de Sinal e o grupo de Bioinformática do Laboratório de Proteômica da Universidade Estadual de Campinas, tanto em termos de novas perspectivas quanto na racionalização da análise de dados em larga escala.

Para o futuro, os resultados deste trabalho oferecem toda uma rede de proteínas com potencial relação ao processo de quimiorresistência, o que demanda investigações posteriores mais específicas em relação a cada proteína.

6 REFERÊNCIAS BIBLIOGRÁFICAS

AL-SHAWI, M. K.; OMOTE, H. The remarkable transport mechanism of P-glycoprotein: a multidrug transporter. **Journal of bioenergetics and biomembranes**, v. 37, n. 6, p. 489–496, dez. 2005.

ALI, A.; HOEFLICH, K. P.; WOODGETT, J. R. Glycogen Synthase Kinase-3: Properties, Functions, and Regulation. **Chemical Reviews**, v. 101, n. 8, p. 2527–2540, 1 ago. 2001.

ALONSO, A. et al. Protein tyrosine phosphatases in the human genome. **Cell**, v. 117, n. 6, p. 699–711, jun. 2004.

ANAMIKA, K.; SRINIVASAN, N. Comparative kinomics of Plasmodium organisms: unity in diversity. **Protein Pept Lett**, v. 14, n. 6, p. 509–517, 2007.

ANDRAE, J.; GALLINI, R.; BETSHOLTZ, C. Role of platelet-derived growth factors in physiology and medicine. Genes & Development, v. 22, n. 10, p. 1276–1312, 15 maio 2008.

APPERLEY, J. F. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. **The lancet oncology**, v. 8, n. 11, p. 1018–1029, nov. 2007a.

APPERLEY, J. F. Part II: management of resistance to imatinib in chronic myeloid leukaemia. **The lancet oncology**, v. 8, n. 12, p. 1116–1128, dez. 2007b.

ASHBURNER, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. **Nature genetics**, v. 25, n. 1, p. 25–29, maio 2000.

BELLAMY, W. T. P-Glycoproteins and Multidrug Resistance. Annual Review of Pharmacology and Toxicology, v. 36, n. 1, p. 161–183, 1996.

BENSON, D. A. et al. GenBank. Nucleic Acids Research, v. 42, n. Database issue, p. D32-37, jan. 2014.

BERG, J.; TYMOCZKO, J.; STRYER, L. Biochemistry. 7. ed. New York: W. H. Freeman, 2010.

BERMEJO-ALVAREZ, P. et al. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. **Proceedings of the National Academy of Sciences of the United States of America**, v. 107, n. 8, p. 3394–3399, 23 fev. 2010.

BJORGE, J. D.; PANG, A.; FUJITA, D. J. Identification of Protein-tyrosine Phosphatase 1B as the Major Tyrosine Phosphatase Activity Capable of Dephosphorylating and Activating c-Src in Several Human Breast Cancer Cell Lines. **Journal of Biological Chemistry**, v. 275, n. 52, p. 41439–41446, 29 dez. 2000.

BOULTWOOD, J.; WAINSCOAT, J. S. Gene silencing by DNA methylation in haematological malignancies. **British journal of haematology**, v. 138, n. 1, p. 3–11, jul. 2007.

BOURDEAU, A.; DUBÉ, N.; TREMBLAY, M. L. Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. **Current Opinion in Cell Biology**, v. 17, n. 2, p. 203–209, abr. 2005.

BRANCOLINI, C. et al. Dismantling Cell–Cell Contacts during Apoptosis Is Coupled to a Caspasedependent Proteolytic Cleavage of β -Catenin. **The Journal of Cell Biology**, v. 139, n. 3, p. 759–771, 3 nov. 1997. BYUN, Y. et al. Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. **Cell death and differentiation**, v. 8, n. 5, p. 443–450, maio 2001.

CARVALHO, H. F.; RECCO-PIMENTEL, S. M. A Célula. 3rd. ed. [s.l.] Manole, 2013.

CASSUTO, O. et al. All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to ponatinib. **Oncotarget**, v. 3, n. 12, p. 1557–1565, dez. 2012.

CHATR-ARYAMONTRI, A. et al. The BioGRID interaction database: 2013 update. Nucleic Acids Research, v. 41, n. Database issue, p. D816–823, jan. 2013.

CHEN, L. et al. Identifying cancer biomarkers by network-constrained support vector machines. **BMC** systems biology, v. 5, p. 161, 2011.

CHEN, R. et al. Regulation of Akt/PKB Activation by Tyrosine Phosphorylation. Journal of Biological Chemistry, v. 276, n. 34, p. 31858–31862, 24 ago. 2001.

CHIARUGI, P. et al. LMW-PTP Is a Negative Regulator of Insulin-Mediated Mitotic and Metabolic Signalling. **Biochemical and Biophysical Research Communications**, v. 238, n. 2, p. 676–682, 18 set. 1997.

CHIARUGI, P. et al. The Low M r Protein-tyrosine Phosphatase Is Involved in Rho-mediated Cytoskeleton Rearrangement after Integrin and Platelet-derived Growth Factor Stimulation. Journal of Biological Chemistry, v. 275, n. 7, p. 4640–4646, 18 fev. 2000.

CHIARUGI, P. et al. Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. **The Journal of biological chemistry**, v. 277, n. 40, p. 37331–37338, 4 out. 2002.

CLARK, R. E. et al. Pharmacologic markers and predictors of responses to imatinib therapy in patients with chronic myeloid leukemia. **Leukemia & lymphoma**, v. 49, n. 4, p. 639–642, abr. 2008.

CLARKE, E. J.; ALLAN, V. Intermediate filaments: vimentin moves in. **Current biology: CB**, v. 12, n. 17, p. R596–598, 3 set. 2002.

CORTES, J. E. et al. Minimal cross-intolerance with nilotinib in patients with chronic myeloid leukemia in chronic or accelerated phase who are intolerant to imatinib. **Blood**, v. 117, n. 21, p. 5600–5606, 26 maio 2011.

CROSS, D. A. E. et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. **Nature**, v. 378, n. 6559, p. 785–789, 28 dez. 1995.

DAUB, H. et al. Kinase-Selective Enrichment Enables Quantitative Phosphoproteomics of the Kinome across the Cell Cycle. **Molecular Cell**, v. 31, n. 3, p. 438–448, ago. 2008.

DAVIS, R. J. The mitogen-activated protein kinase signal transduction pathway. **Journal of Biological Chemistry**, v. 268, n. 20, p. 14553–14556, 15 jul. 1993.

DE FALCO, V. et al. Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. **The Journal of clinical endocrinology and metabolism**, v. 98, n. 5, p. E811–819, maio 2013.

DIKS, S. H. et al. Kinome Profiling for Studying Lipopolysaccharide Signal Transduction in Human Peripheral Blood Mononuclear Cells. J. Biol. Chem., v. 279, n. 47, p. 49206–49213, nov. 2004.

DOAN, T. et al. Selective down-regulation of angiotensin II receptor type 1A signaling by protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells. **Cellular signalling**, v. 16, n. 3, p. 301–311, mar. 2004.

DRUKER, B. J. et al. Chronic myelogenous leukemia. **Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program**, p. 111–135, 2002.

DRUKER, B. J. Translation of the Philadelphia chromosome into therapy for CML. **Blood**, v. 112, n. 13, p. 4808–4817, 15 dez. 2008.

DUDEK, H. et al. Regulation of Neuronal Survival by the Serine-Threonine Protein Kinase Akt. Science, v. 275, n. 5300, p. 661–665, 31 jan. 1997.

DULUCQ, S. et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. **Blood**, v. 112, n. 5, p. 2024–2027, 1 set. 2008.

FERNÁNDEZ, M.; MIRANDA-SAAVEDRA, D. Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. **Nucleic acids research**, v. 40, n. 10, p. e77, maio 2012.

FERREIRA, C. V. et al. Transdução de sinal. In: A Célula. 3rd. ed. [s.l.] Manole, 2013. p. 590.

FERRELL, J. E. Q&A: systems biology. Journal of biology, v. 8, n. 1, p. 2+, jan. 2009.

FISKUS, W. et al. Cotreatment with vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells. Clinical cancer research: an official journal of the American Association for Cancer Research, v. 12, n. 19, p. 5869–5878, 1 out. 2006.

FLETCHER, J. I. et al. ABC transporters in cancer: more than just drug efflux pumps. **Nature reviews. Cancer**, v. 10, n. 2, p. 147–156, fev. 2010.

FRANCIS, C.; PEPPER, N.; STRONG, H. Using support vector machines to detect medical fraud and abuse. **Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference**, v. 2011, p. 8291–8294, 2011.

FRANK, O. et al. Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients. **Leukemia**, v. 20, n. 8, p. 1400–1407, ago. 2006.

FRUEHAUF, S. et al. Gene therapy for sarcoma. Cells, tissues, organs, v. 172, n. 2, p. 133–144, 2002.

GAO, J. et al. Integrating and annotating the interactome using the MiMI plugin for cytoscape. **Bioinformatics (Oxford, England)**, v. 25, n. 1, p. 137–138, 1 jan. 2009.

GEARHART, J.; PASHOS, E. E.; PRASAD, M. K. Pluripotency Redux — Advances in Stem-Cell Research. **New England Journal of Medicine**, v. 357, n. 15, p. 1469–1472, 2007.

GENTILI, C.; MORELLI, S.; RUSSO DE BOLAND, A. Involvement of PI3-kinase and its association with c-Src in PTH-stimulated rat enterocytes. **Journal of cellular biochemistry**, v. 86, n. 4, p. 773–783, 2002.

GILES, F. J. et al. MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia. Leukemia, v. 27, n. 1, p. 113–117, jan. 2013.

GNONI, A. et al. Dasatinib: An Anti-Tumour Agent via Src Inhibition. **Current Drug Targets**, v. 12, n. 4, p. 563–578, 1 abr. 2011.

GOLDMAN, J. M.; MELO, J. V. Chronic myeloid leukemia--advances in biology and new approaches to treatment. **The New England journal of medicine**, v. 349, n. 15, p. 1451–1464, 9 out. 2003.

GOMASE, V. S.; TAGORE, S. Kinomics. Current drug metabolism, v. 9, n. 3, p. 255-258, mar. 2008.

GOTTESMAN, M. M.; FOJO, T.; BATES, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. **Nature reviews. Cancer**, v. 2, n. 1, p. 48–58, jan. 2002.

GREENE, C. S.; TROYANSKAYA, O. G. PILGRM: an interactive data-driven discovery platform for expert biologists. **Nucleic acids research**, v. 39, n. Web Server issue, p. W368–W374, jul. 2011.

GRISWOLD, I. J. et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. **Molecular and cellular biology**, v. 26, n. 16, p. 6082–6093, ago. 2006.

HAJ, F. G. et al. Regulation of Receptor Tyrosine Kinase Signaling by Protein Tyrosine Phosphatase-1B. **Journal of Biological Chemistry**, v. 278, n. 2, p. 739–744, 10 jan. 2003.

HE, T. et al. The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. **The Journal of biological chemistry**, v. 277, n. 13, p. 10767–10774, 29 mar. 2002.

HEANEY, N. B.; HOLYOAKE, T. L. Therapeutic targets in chronic myeloid leukaemia. **Hematological** oncology, v. 25, n. 2, p. 66–75, jun. 2007.

HIGGINS, C. F. Multiple molecular mechanisms for multidrug resistance transporters. **Nature**, v. 446, n. 7137, p. 749–757, 12 abr. 2007.

HIROSE, M. The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma. **Anticancer research**, v. 29, n. 4, p. 1073–1077, abr. 2009.

HORNBECK, P. V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. **Nucleic acids research**, v. 40, n. Database issue, p. D261–270, jan. 2012.

HUBBERT, C. et al. HDAC6 is a microtubule-associated deacetylase. **Nature**, v. 417, n. 6887, p. 455–458, 23 maio 2002.

IORDANESCU, G.; VENKATASUBRAMANIAN, P. N.; WYRWICZ, A. M. Automatic segmentation of amyloid plaques in MR images using unsupervised support vector machines. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, v. 67, n. 6, p. 1794–1802, jun. 2012.

IRISH, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. **Cell**, v. 118, n. 2, p. 217–228, jul. 2004.

JABBOUR, E. et al. Long-term outcome of patients with chronic myeloid leukemia treated with secondgeneration tyrosine kinase inhibitors after imatinib failure is predicted by the in vitro sensitivity of BCR-ABL kinase domain mutations. **Blood**, v. 114, n. 10, p. 2037–2043, 3 set. 2009.

JELINEK, J. et al. Aberrant DNA methylation is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. **PloS one**, v. 6, n. 7, p. e22110, 2011.

JIANG, H.; CHING, W.-K. Classifying DNA repair genes by kernel-based support vector machines. **Bioinformation**, v. 7, n. 5, p. 257–263, 2011.

JOHN, A. M. et al. Targeted therapies in myeloid leukemia. **Seminars in cancer biology**, v. 14, n. 1, p. 41–62, fev. 2004.

JOSKE, D. J. L. Chronic myeloid leukaemia: the evolution of gene-targeted therapy. **The Medical journal of Australia**, v. 189, n. 5, p. 277–282, 1 set. 2008.

JULIANO, R. L.; LING, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. **Biochimica et Biophysica Acta (BBA) - Biomembranes**, v. 455, n. 1, p. 152–162, 11 nov. 1976.

KANEHISA, M. et al. KEGG for linking genomes to life and the environment. **Nucleic acids research**, v. 36, n. Database issue, p. D480–484, jan. 2008.

KANTARJIAN, H. M. et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. **Blood**, v. 110, n. 10, p. 3540–3546, 15 nov. 2007.

KAPPELMAYER, J. et al. Progress in defining multidrug resistance in leukemia. **Expert review of molecular diagnostics**, v. 4, n. 2, p. 209–217, mar. 2004.

KAVERINA, I.; KRYLYSHKINA, O.; SMALL, J. V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. **The Journal of cell biology**, v. 146, n. 5, p. 1033–1044, 6 set. 1999.

KIKUCHI, A. Regulation of β-Catenin Signaling in the Wnt Pathway. **Biochemical and Biophysical Research Communications**, v. 268, n. 2, p. 243–248, 16 fev. 2000.

KIM, S. Y. et al. Mechanism of activation of human c-KIT kinase by internal tandem duplications of the juxtamembrane domain and point mutations at aspartic acid 816. **Biochemical and Biophysical Research Communications**, v. 410, n. 2, p. 224–228, 1 jul. 2011.

KLEIN, E. et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. **International Journal of Cancer. Journal International Du Cancer**, v. 18, n. 4, p. 421–431, 15 out. 1976.

KOBAYASHI, H.; TAKEMURA, Y.; MIYACHI, H. Novel approaches to reversing anti-cancer drug resistance using gene-specific therapeutics. **Human cell**, v. 14, n. 3, p. 172–184, set. 2001.

KODAMA, Y. et al. The DNA Data Bank of Japan launches a new resource, the DDBJ Omics Archive of functional genomics experiments. **Nucleic Acids Research**, v. 40, n. Database issue, p. D38–42, jan. 2012.

KONDO, Y. et al. The role of autophagy in cancer development and response to therapy. **Nature reviews. Cancer**, v. 5, n. 9, p. 726–734, set. 2005.

KOOLMAN, J.; RÖHM, K.-H. Color Atlas of Biochemistry. 2nd. ed. [s.l.] Thieme, 2005.

KRUH, G. D.; BELINSKY, M. G. The MRP family of drug efflux pumps. **Oncogene**, v. 22, n. 47, p. 7537–7552, 20 out. 2003.

KU, N.-O.; AZHAR, S.; OMARY, M. B. Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. **The Journal of biological chemistry**, v. 277, n. 13, p. 10775–10782, 29 mar. 2002.

KULIKOVA, T. et al. EMBL Nucleotide Sequence Database in 2006. Nucleic Acids Research, v. 35, n. Database issue, p. D16–20, jan. 2007.

KUO, M. T. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. **Antioxidants & redox signaling**, v. 11, n. 1, p. 99–133, jan. 2009.

LAMONTAGNE, K. R., Jr et al. Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. **Molecular and cellular biology**, v. 18, n. 5, p. 2965–2975, maio 1998.

LE COUTRE, P.; SCHWARZ, M.; KIM, T. D. New developments in tyrosine kinase inhibitor therapy for newly diagnosed chronic myeloid leukemia. **Clinical cancer research: an official journal of the American Association for Cancer Research**, v. 16, n. 6, p. 1771–1780, 15 mar. 2010.

LEE, S. M. et al. Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. **The Journal of Pharmacology and Experimental Therapeutics**, v. 322, n. 3, p. 1084–1092, set. 2007.

LIAO, J.; KU, N. O.; OMARY, M. B. Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. **The Journal of biological chemistry**, v. 272, n. 28, p. 17565–17573, 11 jul. 1997.

LIERMAN, E. et al. Ponatinib is active against imatinib-resistant mutants of FIP1L1-PDGFRA and KIT, and against FGFR1-derived fusion kinases. Leukemia, v. 26, n. 7, p. 1693–1695, jul. 2012.

LIU, F. et al. PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. **FEBS letters**, v. 580, n. 26, p. 6269–6274, 13 nov. 2006.

LIU, Z. et al. Computational Data Mining in Cancer Bioinformatics and Cancer Epidemiology. Journal of Biomedicine and Biotechnology, v. 2009, 2009.

LUCAS, F. R. et al. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. **Journal of cell science**, v. 111 (Pt 10), p. 1351–1361, maio 1998.

MAGEE, D. A. et al. Global gene expression and systems biology analysis of bovine monocyte-derived macrophages in response to in vitro challenge with Mycobacterium bovis. **PloS one**, v. 7, n. 2, p. e32034, 2012.

MAIA, R. C. et al. Sensitivity of vincristine-sensitive K562 and vincristine-resistant K562-Lucena 1 cells to anthracyclines and reversal of multidrug resistance. **Brazilian journal of medical and biological research = Revista brasileira de pesquisas médicas e biológicas / Sociedade Brasileira de Biofísica ... [et al.]**, v. 29, n. 4, p. 467–472, abr. 1996.

MANNING, B. D.; CANTLEY, L. C. AKT/PKB Signaling: Navigating Downstream. Cell, v. 129, n. 7, p. 1261–1274, 29 jun. 2007.

MANNING, G. et al. The Protein Kinase Complement of the Human Genome. Science, v. 298, n. 5600, p. 1912–1934, dez. 2002.

MARQUES, D. S. et al. Relationships between multidrug resistance (MDR) and stem cell markers in human chronic myeloid leukemia cell lines. Leukemia Research, v. 34, n. 6, p. 757–762, jun. 2010.

MARZZOCO, A.; TORRES, B. Bioquímica Básica. 3. ed. São Paulo: Guanabara Koogan, 2007.

MEDJKANE, S. et al. The tumor suppressor hSNF5/INI1 modulates cell growth and actin cytoskeleton organization. **Cancer research**, v. 64, n. 10, p. 3406–3413, 15 maio 2004.

MILOJKOVIC, D.; APPERLEY, J. Mechanisms of Resistance to Imatinib and Second-Generation Tyrosine Inhibitors in Chronic Myeloid Leukemia. **Clinical cancer research: an official journal of the American Association for Cancer Research**, v. 15, n. 24, p. 7519–7527, 15 dez. 2009.

MISHRA, G. R. et al. Human protein reference database--2006 update. Nucleic acids research, v. 34, n. Database issue, p. D411–414, 1 jan. 2006.

MUGHAL, T. I.; SCHRIEBER, A. Principal long-term adverse effects of imatinib in patients with chronic myeloid leukemia in chronic phase. **Biologics : Targets & Therapy**, v. 4, p. 315–323, 2010.

NELSON, D. L.; COX, M. M. Lehninger principles of biochemistry. [s.l.] Wh Freeman, 2008.

NICHOLSON, D. W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. **Nature**, v. 376, n. 6535, p. 37–43, 6 jul. 1995.

NICOLAS, G. et al. Tyrosine Phosphorylation Regulates Alpha II Spectrin Cleavage by Calpain. **Molecular and Cellular Biology**, v. 22, n. 10, p. 3527–3536, 15 maio 2002.

NIELSEN, D.; SKOVSGAARD, T. P-glycoprotein as multidrug transporter: a critical review of current multidrug resistant cell lines. **Biochimica et biophysica acta**, v. 1139, n. 3, p. 169–183, 7 jul. 1992.

NOBILI, S. et al. Pharmacological strategies for overcoming multidrug resistance. Current drug targets, v. 7, n. 7, p. 861–879, jul. 2006.

O'CONNOR, R. The pharmacology of cancer resistance. **Anticancer research**, v. 27, n. 3A, p. 1267–1272, jun. 2007.

O'DWYER, L. et al. Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. **PloS one**, v. 7, n. 2, p. e32441, 2012.

O'HARE, T. et al. SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib. **Proceedings of the National Academy of Sciences of the United States of America**, v. 105, n. 14, p. 5507–5512, 8 abr. 2008.

ONG, S.-E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. **Molecular & cellular proteomics: MCP**, v. 1, n. 5, p. 376–386, maio 2002.

OZBEN, T. Mechanisms and strategies to overcome multiple drug resistance in cancer. **FEBS letters**, v. 580, n. 12, p. 2903–2909, 22 maio 2006.

PERALDI, P. et al. Protein-tyrosine-phosphatase 2C is phosphorylated and inhibited by 44-kDa mitogenactivated protein kinase. **Proceedings of the National Academy of Sciences of the United States of America**, v. 91, n. 11, p. 5002–5006, 24 maio 1994.

PEREZ-RIVEROL, Y. et al. Isoelectric point optimization using peptide descriptors and support vector machines. **Journal of proteomics**, v. 75, n. 7, p. 2269–2274, 3 abr. 2012.

PIEDRA, J. et al. Regulation of β -Catenin Structure and Activity by Tyrosine Phosphorylation. Journal of Biological Chemistry, v. 276, n. 23, p. 20436–20443, 8 jun. 2001.

PONTE, P. et al. Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. **Nucleic acids research**, v. 12, n. 3, p. 1687–1696, 10 fev. 1984.

QUINTÁS-CARDAMA, A.; CORTES, J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. **Blood**, v. 113, n. 8, p. 1619–1630, 19 fev. 2009.

RUAL, J.-F. et al. Towards a proteome-scale map of the human protein-protein interaction network. **Nature**, v. 437, n. 7062, p. 1173–1178, 20 out. 2005.

RUDKIN, C. T.; HUNGERFORD, D. A.; NOWELL, P. C. DNA CONTENTS OF CHROMOSOME PH1 AND CHROMOSOME 21 IN HUMAN CHRONIC GRANULOCYTIC LEUKEMIA. Science (New York, N.Y.), v. 144, n. 3623, p. 1229–1231, 5 jun. 1964.

RUMJANEK, V. M. et al. Multidrug resistance in tumour cells: characterization of the multidrug resistant cell line K562-Lucena 1. Anais da Academia Brasileira de Ciências, v. 73, n. 1, p. 57–69, mar. 2001.

RUMJANEK, V. M.; VIDAL, R. S.; MAIA, R. C. Multidrug resistance in chronic myeloid leukaemia: how much can we learn from MDR-CML cell lines? **Bioscience reports**, v. 33, n. 6, 2013.

SCHAEFER, C. F. et al. PID: the Pathway Interaction Database. Nucleic acids research, v. 37, n. Database issue, p. D674–679, jan. 2009.

SHI, Y. Serine/threonine phosphatases: mechanism through structure. **Cell**, v. 139, n. 3, p. 468–484, 30 out. 2009.

SMOOT, M. E. et al. Cytoscape 2.8: new features for data integration and network visualization. **Bioinformatics (Oxford, England)**, v. 27, n. 3, p. 431–432, 1 fev. 2011.

STEINBACH, D.; LEGRAND, O. ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, v. 21, n. 6, p. 1172–1176, jun. 2007.

STELZL, U. et al. A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome. **Cell**, v. 122, n. 6, p. 957–968, 23 set. 2005.

SZAKÁCS, G. et al. Targeting multidrug resistance in cancer. **Nature reviews. Drug discovery**, v. 5, n. 3, p. 219–234, mar. 2006.

TADDEI, M. L. et al. β -Catenin Interacts with Low-Molecular-Weight Protein Tyrosine Phosphatase Leading to Cadherin-mediated Cell-Cell Adhesion Increase. **Cancer Research**, v. 62, n. 22, p. 6489–6499, 15 nov. 2002.

TALPAZ, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. **The New England journal of medicine**, v. 354, n. 24, p. 2531–2541, 15 jun. 2006.

TAUCHI, T.; OHYASHIKI, K. Molecular mechanisms of resistance of leukemia to imatinib mesylate. Leukemia research, v. 28 Suppl 1, p. S39–45, maio 2004.

THIELEN, N. et al. New insights into the pathogenesis of chronic myeloid leukaemia: towards a path to cure. **The Netherlands journal of medicine**, v. 69, n. 10, p. 430–440, out. 2011.

THOMAS, S. M.; BRUGGE, J. S. Cellular functions regulated by Src family kinases. Annual review of cell and developmental biology, v. 13, p. 513–609, 1997.

TOGEL, M.; WICHE, G.; PROPST, F. Novel features of the light chain of microtubule-associated protein MAP1B: microtubule stabilization, self interaction, actin filament binding, and regulation by the heavy chain. **The Journal of cell biology**, v. 143, n. 3, p. 695–707, 2 nov. 1998.

TRELA, E.; GLOWACKI, S.; BŁASIAK, J. Therapy of Chronic Myeloid Leukemia: Twilight of the Imatinib Era? **ISRN oncology**, v. 2014, p. 596483, 2014.

UNIPROT CONSORTIUM. Activities at the Universal Protein Resource (UniProt). Nucleic acids research, v. 42, n. Database issue, p. D191–198, jan. 2014.

VALENT, P. Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease. **British journal of haematology**, v. 142, n. 3, p. 361–378, jul. 2008.

VAN BAAL, J. W. et al. Comparison of Kinome Profiles of Barrett's Esophagus with Normal Squamous Esophagus and Normal Gastric Cardia. **Cancer Res**, v. 66, n. 24, p. 11605–11612, dez. 2006.

VAPNIK, V. The Nature of Statistical Learning Theory. Berlin: Springer-Verlag GmbH, 1995.

VILLUENDAS, R. et al. Identification of genes involved in imatinib resistance in CML: a gene-expression profiling approach. **Leukemia**, v. 20, n. 6, p. 1047–1054, jun. 2006.

VON MERING, C. et al. STRING 7-recent developments in the integration and prediction of protein interactions. **Nucleic acids research**, v. 35, n. Database issue, jan. 2007.

WADE, P. A.; PRUSS, D.; WOLFFE, A. P. Histone acetylation: chromatin in action. **Trends in Biochemical Sciences**, v. 22, n. 4, p. 128–132, abr. 1997.

WANG, B. et al. Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis. **Analytical chemistry**, v. 80, n. 24, p. 9526–9533, 15 dez. 2008.

WANG, J. Z. et al. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. **FEBS letters**, v. 436, n. 1, p. 28–34, 25 set. 1998a.

WANG, Q. M. et al. Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. **The Journal of biological chemistry**, v. 269, n. 20, p. 14566–14574, 20 maio 1994.

WANG, X. Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. **The EMBO** journal, v. 17, n. 19, p. 5708–5717, 1 out. 1998b.

WARMUTH, M. et al. SRC family kinases: potential targets for the treatment of human cancer and leukemia. **Current pharmaceutical design**, v. 9, n. 25, p. 2043–2059, 2003.

WATERMAN-STORER, C. M.; SALMON, E. Positive feedback interactions between microtubule and actin dynamics during cell motility. **Current Opinion in Cell Biology**, v. 11, n. 1, p. 61–67, 1 fev. 1999.

WEISBERG, E. et al. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. **Nat Rev Cancer**, v. 7, n. 5, p. 345–356, maio 2007.

WEISBERG, E.; GRIFFIN, J. D. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. **Blood**, v. 95, n. 11, p. 3498–3505, 1 jun. 2000.

WONG, D. J.; SEGAL, E.; CHANG, H. Y. Stemness, cancer and cancer stem cells. Cell cycle (Georgetown, Tex.), v. 7, n. 23, p. 3622–3624, dez. 2008.

WONG, V. et al. Glucocorticoid down-regulation of fascin protein expression is required for the steroidinduced formation of tight junctions and cell-cell interactions in rat mammary epithelial tumor cells. **The Journal of biological chemistry**, v. 274, n. 9, p. 5443–5453, 26 fev. 1999.

WOODFORD-THOMAS, T. A.; RHODES, J. D.; DIXON, J. E. Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. **The Journal of Cell Biology**, v. 117, n. 2, p. 401–414, 15 abr. 1992.

WU, D.; RICE, C. M.; WANG, X. Cancer bioinformatics: A new approach to systems clinical medicine. **BMC Bioinformatics**, v. 13, p. 71, 1 maio 2012.

XU, G. et al. PTP1B Modulates the Association of β -Catenin with N-cadherin through Binding to an Adjacent and Partially Overlapping Target Site. **Journal of Biological Chemistry**, v. 277, n. 51, p. 49989–49997, 20 dez. 2002.

YADA, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. **The EMBO Journal**, v. 23, n. 10, p. 2116–2125, 19 maio 2004.

YAMAMOTO, Y. et al. Expression and subcellular distribution of the active form of c-Src tyrosine kinase in differentiating human endometrial stromal cells. **Molecular human reproduction**, v. 8, n. 12, p. 1117–1124, dez. 2002.

ZHANG, W. W. et al. Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, v. 27, n. 22, p. 3642–3649, 1 ago. 2009.

ZHOU, W.; YAN, H. Prediction of DNA-binding protein based on statistical and geometric features and support vector machines. **Proteome science**, v. 9 Suppl 1, p. S1, 2011.

ZHU, K. et al. Syp Y279, Y304 Can Mediate the Binding of Bcr-Abl to Grb2 and Other Proteins. **Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica**, v. 31, n. 4, p. 448–450, 1999.

7 APÊNDICE

7.1 PARTICIPAÇÃO NO KINOME PROFILING CONSENSUS MEETING

Participei como convidado no encontro *Kinome Profiling Consensus Meeting*, realizado nos dias 10 e 11 de novembro de 2010 no Erasmus Medical Center, em Rotterdam, Holanda. O encontro foi realizado para discutir diferentes formas de análise de grandes conjuntos de dados, mais especificamente o quinoma, e foi organizado pelo Dr. Maikel Peppelenbosch.

7.2 TRABALHOS SUBMETIDOS

1. MILANI R, MERTINS P, GALEMBECK E, FERREIRA-HALDER CV. Comparative proteome and phosphoproteome analysis of K562 and Lucena-1 chronic myeloid leukemia cells. Submetido para Molecular BioSystems em 30/04/2014.

7.3 TRABALHOS ACEITOS PARA PUBLICAÇÃO

1. ABRANTES JLF, TORNATORE TF, PELIZZARO-ROCHA KJ, DE JESUS MB, CARTAXO RT, MILANI R, FERREIRA-HALDER C. Crosstalk between kinases, phosphatases and microRNAs in cancer. Aceito para publicação em Biochimie, 04/09/2014.

7.4 TRABALHOS PUBLICADOS

7.4.1 Artigos em periódicos

1. PIPERNI, S. G. ; MILANI, R. ; BERTAZZO, S. ; PEPPELENBOSCH, M. ; TAKAMORI, E. R. ; GRANJEIRO, J. M. ; FERREIRA, C. V. ; TETI, A. ; ZAMBUZZI, W. Kinome Profiling of Osteoblasts on Hydroxyapatite Opens New Avenues on Biomaterial Cell Signaling. Biotechnology and Bioengineering. Epub ahead of print. doi: 10.1002/bit.25246, 2014.

2. QUEIROZ, KARLA ; MILANI, R. ; Queiroz, Karla C. S. ; Ruela-de-Sousa, Roberta R. ; Fuhler, Gwenny M. ; JUSTO, GISELLE Z. ; ZAMBUZZI, WILLIAN F. ; DURAN, NELSON ; DIKS, SANDER H. ; Spek, C. Arnold ; Ferreira, Carmen V. ; Peppelenbosch, Maikel P. . Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse. Plos One, v. 7, p. e45362, 2012.

3. FERREIRA, PAULA A. ; Ruela-de-Sousa, Roberta R. ; QUEIROZ, KARLA ; Queiroz, Karla C. S. ; MILANI, R. ; SOUZA, ANA CAROLINA S. ; PILLI, RONALDO ALOISE ; Peppelenbosch, Maikel P. ; HERTOG, JEROEN DEN ; Ferreira, Carmen V. . Knocking Down Low Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP) Reverts Chemoresistance through Inactivation of Src and Bcr-Abl Proteins. Plos One, v. 7, p. e44312, 2012.

4. CHAVES NETO, ANTONIO HERNANDES ; QUEIROZ, KARLA CRISTIANA ; MILANI, RENATO ; PAREDES-GAMERO, EDGAR JULIAN ; JUSTO, GISELLE ZENKER ; PEPPELENBOSCH, MAIKEL P. ; FERREIRA, CARMEN VERÍSSIMA . Profiling the changes in signaling pathways in ascorbic acid/?-glycerophosphate-induced osteoblastic differentiation. Journal of Cellular Biochemistry (Print), v. 112, p. 71-77, 2011.

5. MILANI, R.; FERREIRA, C. V.; GRANJEIRO, J. M.; PAREDES-GAMERO, E. J.; SILVA, R. A.; JUSTO, G. Z.; NADER, H. B.; GALEMBECK, E.; PEPPELENBOSCH, M. P.; AOYAMA, H.; ZAMBUZZI, W. F. . Phosphoproteome Reveals an Atlas of Protein Signaling Networks During Osteoblast Adhesion. Journal of Cellular Biochemistry (Print), v. 109, p. 957-966, 2010.

6. ZAMBUZZI, W. F. ; MILANI, R. ; TETI, A. . Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: Lessons from mice. Biochimie (Paris. Print), v. 92, p. 327-332, 2010.

7.4.2 Capítulos de livro

1. FERREIRA, C. V. ; MILANI, R. ; ZAMBUZZI, W. F. . Enzimas. In: Hernandes F. Carvalho, Shirlei M. Recco-Pimentel. (Org.). A Célula. 3ed.Barueri: Manole, v. 1, p. 401-410, 2012.

2. FERREIRA, C. V. ; MILANI, R. ; ZAMBUZZI, W. F. ; CARVALHO, H. F. . Transdução de Sinal. In: Hernandes F. Carvalho; Shirlei M. Recco-Pimentel. (Org.). A Célula. 3ed.Barueri: Manole, v. 1, p. 3001-3012, 2012.

3. FERREIRA, C. V.; MILANI, R. ; ZAMBUZZI, W. F.; HALDER, T. M.; GALEMBECK, E.; AOYAMA, H. Prostate cancer dephosphorylation atlas. In: Philippe E. Spiess. (Org.). Prostate Cancer - From Bench to Bedside. 1 ed. Rijeka: InTech, v. 1, p. 173-190, 2011.

7.5 APRESENTAÇÕES EM CONGRESSOS

1. MILANI, R. ; FERREIRA, C. V. ; GALEMBECK, E. . High-Throughput Data Mining: How Well-Hidden Is the Needle in the Haystack?. In: XL Annual Meeting of SBBq, 2011, Foz do Iguaçu-PR. Proceedings of the XL Annual Meeting of SBBq, 2011.

2. MILANI, R. ; FERREIRA, C. V. ; GALEMBECK, E. . Data mining on a leukemia phosphoproteome dataset: insights on chemoresistant cell signaling. In: 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology, 2011, Vienna. Proceedings of the 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology, 2011, Vienna. Proceedings of the 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology, 2011.

3. LOPES, G.O. ; MILANI, R. ; QUEIROZ, K. C. S. ; PAREDES-GAMERO, E. J. ; FERREIRA, C. V. ; GALEMBECK, E. ; PEPPELENBOSCH, M. P. ; JUSTO, G. Z. . Phosphokinome profiling of chronic myeloid leukemia cells treated with violacein demonstrates involvement of Ca2+ signaling in cell death. In: International Cell Death Society Symposium 2011, 2011, Mairiporã. Proceedings of the International Cell Death Society Symposium 2011, 2011.

4. JUSTO, G. Z.; QUEIROZ, K. C. S.; MILANI, R.; LOPES, G.O.; PAREDES-GAMERO, E. J.; FERREIRA, C. V.; PEPPELENBOSCH, M. P. . Kinome Profiling Reveals a Role for Ca2+ Signaling in Violacein-Induced Erythroleukemia Cell Death. In: ISEH Society for Hematology and Stem Cells 40th Annual Scientific Meeting, 2011, Vancouver. Experimental Hematology. NEW YORK : ELSEVIER SCIENCE INC, v. 39. p. S1-S122, 2011.

5. MORAES, F. R. ; ANJOS, E. F. ; FERREIRA, P. A. ; FATIMA, A. ; REIS, F. S. ; MILANI, R. ; AOYAMA, H. ; FERREIRA, C. V. ; NESHICH, G. . Molecular dynamics study of the interaction between Low Molecular Weight Protein Tyrosine Phosphatase and Calix[6]arene. In: I Escola Brasileira de Modelagem Molecular, 2011, Santo André. Anais da I Escola Brasileira de Modelagem Molecular, 2011.

6. MILANI, R.; FERREIRA, C. V.; GRANJEIRO, J. M.; PAREDES-GAMERO, E. J.; SILVA, R. A.; JUSTO, G. Z.; NADER, H. B.; GALEMBECK, E.; PEPPELENBOSCH, M. P.; AOYAMA, H.; ZAMBUZZI, W. F. Kinome Analysis Reveals Protein Signaling Networks During Osteoblast Adhesion. In: Brazil Deutschland Systems Biology Meeting, 2010, Ouro Preto - MG. Proceedings of the Brazil Deutschland Systems Biology Meeting, 2010.

7. FERREIRA, C. V. ; MILANI, R. ; QUEIROZ, K. C. S. ; GALEMBECK, E. ; PEPPELENBOSCH, M. P. . Profiling of the Leukaemia Kinome: a Novel Approach to

Identify Protein Kinases Involved in Chemotherapy Resistance. In: Brazil Deutschland Systems Biology Meeting, 2010, Ouro Preto - MG. Proceedings of the Brazil Deutschland Systems Biology Meeting, 2010.

8. ANJOS, E. F.; FERREIRA, P. A.; FATIMA, A.; REIS, F. S.; MORAES, F. R.; NESHICH, G.; MILANI, R.; AOYAMA, H.; FERREIRA, C. V. Calix[6]arene, a Novel Compound Acting as a Strong Inhibitor of the Low Molecular Weight Protein Tyrosine Phosphatase. In: XXXIX Annual Meeting of SBBq, 2010, Foz do Iguaçu - PR. Proceedings of the XXXIX Annual Meeting of SBBq, 2010.

9. HALDER, T. M. ; MILANI, R. ; ZAMBUZZI, W. F. . Phosphoproteomics and Phosphokinome Approaches for Monitoring Osteoblast Behavior. In: XXXIX Annual Meeting of SBBq, 2010, Foz do Iguaçu - PR. Proceedings of the XXXIX Annual Meeting of SBBq, 2010.

7.6 CURSOS DE CURTA DURAÇÃO

1. OLGA VITEK, Purdue University and LUKAS KÄLL, Stockhold University. An insight into computational and statistical mass spectrometry-based proteomics. 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology, 2011.

2. JOHN MORRIS, UCSF; ALLAN KUCHINSKY, Agilent Laboratories and ALEX PICO, UCSF. Biological Networks: Integrating, Analysing and Visualizing 'omics Data in Cytoscape. 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology, 2011.