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RESUMO 

Ecossistemas costeiros fornecem bens e serviços essenciais e sustentam uma grande 

variabilidade genética e taxonômica. Entretanto, apesar de sua importância, esses 

ecossistemas encontram-se entre os mais impactados e ameaçados ao redor do globo. Para que 

esses ecossistemas sejam preservados é fundamental o conhecimento sobre os processos que 

determinam suas caraterísticas ecológicas. Nesse contexto, essa tese teve como objetivo 

investigar as comunidades bentônicas macro- e meiofaunais que habitam os sedimentos da 

baía do Araçá, São Sebastião, SP, e as suas relações com o ambiente. Diferentes métodos de 

coletas foram utilizados e a fauna foi coletada desde a região entremarés até mais de 20 m de 

profundidade. Foi constatado que eventos de larga escala relacionados às mudanças climáticas 

podem provocar significativas mudanças nas características ecológicas da baía (capítulo 1). 

Também foi observado que a influência de processos espaciais pode ser preponderante nessas 

comunidades e que essa influência é dependente da capacidade de dispersão das espécies 

(capítulo 2). A análise conjunta da macro- e meiofauna mostrou que os dois grupos possuem 

padrões similares em suas comunidades e que são estruturados por variáveis ambientais 

semelhantes (capítulo 3). Entretanto, o padrão de riqueza de espécies e abundância de 

indivíduos nessas comunidades foi contrastante, o que destaca que estratégias de conservação 

e manejo não devem ser baseadas apenas em um desses grupos. De maneira geral, os 

resultados apresentados nessa tese complementam diversos trabalhos que destacaram a 

influência de variáveis físico-químicas na fauna bentônica marinha de substratos não-

consolidados e  demonstram que processos espaciais e eventos extremos podem exercer 

grande influência na estruturação e manutenção dessas comunidades. 

 

  



 

 

ABSTRACT 

Coastal ecosystems provide essential goods and services and maintain a large biodiversity. 

However, despite their importance, these ecosystems are among the most threatened around 

the globe. To preserve these ecosystems is essential to understand the processes that 

determine their ecological characteristics. In this regard, this thesis aimed to investigate the 

macro- and meiofaunal benthic communities inhabiting the soft-bottom of Araçá Bay, São 

Sebastão, SP, as well as their relationship with the environment. Different sampling methods 

were used and fauna was collected from the intertidal zone to more than 20 m deep. It was 

observed that large-scale events related to climate change can cause significant changes in the 

ecological features of the bay (Chapter 1). It was also observed that the influence of spatial 

processes can be predominant in these communities, and that this influence is dependent on 

the dispersal abilities of species (Chapter 2). The analysis of macro- and meiofauna showed 

that the two groups have similar patterns and are structured by similar environmental 

variables (Chapter 3). Their patterns of species richness and abundance, however, were 

contrasting, which highlights that conservation and management strategies should not be 

based on only one of these groups. Overall, the findings of this thesis complement several 

works that highlighted the influence of physical and chemical variables in the marine benthic 

fauna inhabiting soft-bottom coastal ecosystems, and demonstrate that spatial processes and 

extreme events can exert great influence on the assembling and maintenance of these 

communities.  
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Introdução 

 

Comunidades ecológicas são heterogêneas no tempo e espaço, e estruturadas pela ação 

combinada de diferentes variáveis (Menge and Olson 1990, Levin 1992, Leibold et al. 2004). 

Variáveis ambientais como temperatura, altitude e profundidade, por exemplo, determinam a 

ocorrência de espécies em uma escala mais ampla, enquanto o tipo de sedimento e interações 

biológicas podem sobrepor essas variáveis em uma escala mais local (Defeo and McLachlan 

2005).  A isso, soma-se a influência da história evolutiva e de variáveis espaciais, as últimas 

principalmente relacionadas à capacidade de dispersão das espécies (Holyoak et al. 2005). 

Entender como essas variáveis atuam na formação e manutenção dos padrões de 

biodiversidade é um dos principais objetivos em estudos ecológicos (MacArthur et al. 1967, 

Levin 1992, Hubbell 2001). Esse conhecimento é essencial para a compreensão da dinâmica 

dos ecossistemas (Spruzen et al. 2007) e elemento chave para a implementação de programas 

de monitoramento e manejo (Thrush et al. 1997, Ysebaert and Herman 2002, Soares-Gomes 

and Pires-Vanin 2003). Somente por meio dessas informações podemos elaborar melhores 

previsões sobre futuras mudanças ambientais oriundas da ação humana, assim como preservar 

bem e serviços ecossistêmicos fundamentais. No entanto, a compreensão dos processos 

responsáveis pelos padrões de biodiversidade é ainda um dos desafios centrais na ecologia de 

comunidades (Leibold et al. 2004, Mason et al. 2013, Heino et al. 2014). 

Esse desafio é ainda maior em ecossistemas marinhos, sobretudo devido à menor 

disponibilidade de informação sobre esses ambientes. Esse menor conhecimento resulta em 

baixa representatividade em discussões sobre temas fundamentais, como respostas biológicas 

às mudanças climáticas e quais áreas seriam adequadas para preservação (Hoegh-Guldberg 

and Bruno 2010, Webb and Poloczanska 2011, Schoeman et al. 2014). Consequentemente, 

observam-se falhas na conservação desses ecossistemas, colocando em perigo a sua 

biodiversidade e bens e serviços (Costello et al. 2010, Tittensor et al. 2010, Poloczanska et al. 

2013).  

Entre os ambientes marinhos, os ecossistemas costeiros, caracterizados pela interação 

entre terra e mar, fornecem uma ampla gama de serviços ecossistêmicos, como filtragem de 

água, ciclagem de nutrientes, proteção da linha de costa e conservação da biodiversidade, 

além de sustentar uma grande variabilidade genética e taxonômica (Defeo et al. 2009, Barbier 

et al. 2011). Entretanto, esses ecossistemas encontram-se entre os mais impactados e 

ameaçados ao redor do globo (Halpern et al. 2007, Barbier et al. 2011).  
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Nesse contexto, essa tese tem como objetivo caracterizar a estrutura das comunidades 

presentes em um ecossistema costeiro complexo, assim como tentar compreender as variáveis 

e processos que as influenciam. Especificamente, o foco está nas comunidades 

macrobentônicas que habitam os sedimentos (fundo não consolidado) da baía do Araçá, São 

Sebastião, SP, um dos ecossistemas mais ricos em diversidade biológica da costa de São 

Paulo (Amaral et al. 2010, Amaral et al. 2015).  

O que é conhecido sobre comunidades bentônicas de fundo raso não consolidado? 

Comunidades bentônicas marinhas de fundo raso não consolidado são parte 

fundamental dos ecossistemas costeiros, sendo um dos elementos estruturais da teia alimentar 

(Ysebaert and Herman 2002, Spruzen et al. 2007). Essas comunidades são caracteristicamente 

heterogêneas em distribuição e abundância (Defeo and McLachlan 2005, Gray and Elliott 

2009) e, de maneira geral, estruturadas por variáveis físico-químicas, como tipo de sedimento, 

teor de oxigênio e hidrodinâmica. Interações biológicas exercem menor influencia nessas 

comunidades, entretanto, sua importância é aumentada em ambientes onde a ação de ondas e 

correntes é mais amena, como praias dissipativas e planícies de marés (ambientes planos, com 

sedimento mais fino e que sofre menor influência da energia das ondas) (Defeo and 

McLachlan 2005).  

 Em consequência da forte influência de variáveis ambientais nas comunidades 

bentônicas marinhas de fundo raso não consolidado, variações ambientais podem ocasionar 

mudanças significativas em sua estrutura. Assim, perturbações que modifiquem as 

características sedimentares, como alterações na linha de costa e ondas de maior energia 

associadas às tempestades, podem afetar a fauna bentônica e modificar o padrão de 

dominância das espécies (Schlacher et al. 2007, Defeo et al. 2009). Contaminação por 

poluentes químicos e orgânicos também pode alterar essas comunidades, muitas vezes 

ocasionando a extinção local de várias espécies e fazendo com que apenas espécies tolerantes 

consigam habitar a área contaminada. 

 

O que é pouco conhecido sobre comunidades bentônicas de fundo raso não consolidado? 

Ainda há muito a se compreender sobre as comunidades bentônicas que habitam os 

sedimentos das regiões costeiras. Embora seja conhecido que essas comunidades serão 

afetadas por mudanças climáticas, pouco se sabe sobre os reais efeitos dessas mudanças. A 

maior parte das pesquisas relacionadas aos efeitos das mudanças climáticas em regiões 
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costeiras investiga tolerância de espécies individuais às mudanças no regime de temperatura e 

pH (Schoeman et al. 2014). Distúrbios em grandes escalas como tempestades, por exemplo, 

são difíceis de serem replicados e, por isso, são pouco investigados.  Sabe-se que a ação de 

ondas de maior energia associadas às tempestades podem aumentar os processos erosivos e 

modificar as características morfodinâmicas das regiões costeiras (Short 2000, Alves and 

Pezzuto 2009). Entretanto, poucas informações sobre sua influência na fauna estão 

disponíveis, o que impossibilita um melhor entendimento dos seus efeitos e a elaboração de 

previsões mais realistas. 

A influência de variáveis espaciais relacionadas à dispersão das espécies que habitam os 

sedimentos costeiros é outra importante lacuna a ser preenchida. O conhecimento das taxas de 

dispersão e padrões de colonização é fundamental para compreender como as comunidades se 

desenvolvem, bem como para entender a dinâmica de recuperação após distúrbios ou avaliar a 

resiliência de comunidades ecológicas (Pilditch et al. 2015). Durante muito tempo, acreditou-

se que ecossistemas marinhos pudessem ser considerados ambientes abertos por que o 

ambiente é conectado pela coluna d’água (Gray and Elliott 2009). Entretanto, estudos têm 

mostrado que as taxas de trocas larvais podem ser limitadas e os níveis de auto-recrutamento 

elevados em ecossistemas marinhos, favorecendo a influência de variáveis espaciais na 

estruturação dessas comunidades (Lundquist et al. 2004, Quillien et al. 2015, Gerwing et al. 

2016). Estudos recentes também têm demonstrado que a dispersão na fase adulta pode ser tão 

ou mais eficiente que a dispersão larval (Valanko et al. 2010a, b, Pilditch et al. 2015).  

Estudos conjuntos que investiguem a fauna bentônica de maneira mais holística também 

são encontrados em número reduzido. A maioria dos estudos sobre a fauna em sedimentos 

marinhos, especialmente no Brasil, é realizada de maneira compartimentalizada, analisando 

separadamente a fauna da região entremarés e do sublitoral, ou somente grupos específicos, 

como a macro ou a meiofauna. Dessa maneira, é necessário que mais trabalhos examinem a 

biodiversidade bentônica de maneira integrada e qual a influencia do ambiente sobre eles.  
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Estrutura da tese 

A partir das informações apresentadas, essa tese foi estruturada em três capítulos mais 

considerações gerais. Cada capítulo buscou investigar um dos tópicos destacados na seção 

anterior. Assim, o capítulo 1 investiga como processos de larga escala associados às 

mudanças climáticas podem afetar as comunidades macrofaunais da região entremarés. 

Especificamente, o capítulo trata da influência de tempestades sobre essa fauna. No segundo 

capítulo é examinada a influência de variáveis ambientais, bióticas e espaciais na estruturação 

das comunidades macrofaunais. Buscou-se entender quais as variáveis são mais importantes e 

se esse padrão é constante no tempo e dependente da capacidade de dispersão das espécies. O 

capítulo três analisa os padrões de distribuição da macro e meiofauna da Baía do Araçá, desde 

a região entremarés até a profundidade de 25 m. A congruência entre os dois grupos foi 

examinada com o intuito de investigar se um grupo pode ser usado como substituto para o 

outro em estudos de conservação e manejo. Por fim, os resultados dos três capítulos são 

explorados de maneira sucinta nas considerações finais.      
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Capítulo 1 

Effects of storms on habitat heterogeneity and beta diversity in marine soft-sediments  

 

Abstract 

Storms can result in strong modifications in coastal soft-sediments, with powerful waves 

increasing erosive processes and changing the habitat features. Climate change projections 

highlight that storms might have their frequency and intensity increased in the near future. 

Thus, it is necessary to understand ecological responses to severe storms in order to avoid or 

mitigate harmful effects on coastal ecosystems. Here, we combine hydrographic, sediment 

and biological data to test a set of hypothesis and predictions about the ecological impacts of 

storms on macrobenthic assemblages inhabiting intertidal soft-sediments of Araçá Bay, a 

sheltered tidal flat in Southeast Brazil. We found that storms reduced species richness, 

abundance and biomass of macrobenthic assemblages. We also found that β diversity is 

higher after storms; however, local contribution to β diversity is lower, indicating that areas 

within the bay are less unique in their biological composition. Overall, our results suggest that 

storms may affect biodiversity and ecosystem services of coastal soft-sediment ecosystems. 

Future studies should test our hypothesis and predictions in different areas in order to advance 

the knowledge of how future climate change will impact coastal ecosystems. 
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Introduction 

Human-induced climate change is now firmly established as a scientific reality 

(McMichael et al. 2006, IPCC 2014). Many of the observed changes since the 1950s are 

unprecedented over decades to millennia, and global temperature is projected to rise over the 

21st century under all assessed scenarios (IPCC 2014). Impacts from recent climate-related 

extremes, such as heat waves, droughts, floods and cyclones, are observed across all 

continents and oceans, and it is very likely that these will become more intense and frequent 

in many regions (Baker et al. 2008, IPCC 2014). Nevertheless, impacts of climate change on 

ecosystems are still underinvestigated, and there is a clear research need to understand these 

impacts and identify strategies to mitigate harmful effects (Hulme 2009, IPCC 2014, 

Schoeman et al. 2014). 

The need for studies about climate-change impacts is further enhanced for marine 

ecosystems, where the effects of climate change are still largely overlooked relatively to 

terrestrial systems (Dugan et al. 2010, Hoegh-Guldberg and Bruno 2010, Poloczanska et al. 

2013, Schoeman et al. 2014). Besides the reduced number of studies, much of the climate-

related research in marine systems has focused on the responses of individual species to 

changes in ocean temperature and chemistry (Baker et al. 2008, Schoeman et al. 2014, Ortega 

et al. 2016).  To some degree, this focus is appropriate since these factors may alter the 

physiological functioning, behaviour, and demographic traits of organisms (Defeo et al. 

2009).  However, a growing body of work is demonstrating that relationships between 

environmental changes and individual species, although important, are not enough to predict 

many important aspects of future biological and ecosystem functioning changes (Doney et al. 

2012, Schoeman et al. 2014, Sydeman et al. 2014, Stuart-Smith et al. 2015). In this regard, 

variation of abundances or biomass in species assemblages related to environmental 

conditions would be the best response variable available to estimate the impact of changes in 

ecosystems (Legendre et al. 2010, Doney et al. 2012, Legendre and Gauthier 2014). 

Among the natural disturbances related to climate change, large-scale extreme events, 

such as storms, can result in strong modifications in marine coastal ecosystems (Jaramillo et 

al. 1987, Schlacher et al. 2007, Defeo et al. 2009, Harris et al. 2011). Although storms are 

short in duration, they are considered a dominant process along many shores and can exert 

broad and long-term impacts on benthic assemblages (Jaramillo et al. 1987, Posey et al. 1996, 

Rakocinski et al. 2000). Storms are usually accompanied by increases in sea level, allowing 

waves to continue towards the coast unaffected by structures that usually reduce coastal 

erosion, such as reefs and longshore sand bars. As a consequence, large amounts of sediment 



18 

 

 

and associated benthic invertebrates can be removed during storm events (Commito et al. 

1995, Norkko et al. 2001, Alves and Pezzuto 2009). Additionally, storms can also change 

coastal soft-sediments by carrying sediment from the continent to the sea.  Climate change 

projections highlight that storms will likely increase in frequency and intensity (IPCC 2014), 

resulting in changes in ecosystems service and biodiversity at coastal ecosystems (Defeo et al. 

2009, Dugan et al. 2010, Schoeman et al. 2014). Nevertheless, our knowledge about the 

ecological implications of storm impacts is still limited, precluding actions to mitigate 

harmful effects. It is therefore essential to investigate ecological responses to severe storms in 

order to preserve coastal ecosystems (Walker et al. 2008, Alves and Pezzuto 2009, Harris et 

al. 2011).    

The unpredictable nature of storms, however, often precludes a rigorous experimental 

design to specifically tests for their effects (Harris et al. 2011). This is especially true for 

intertidal soft-sediments, which have a very restricted time frame for sampling since field 

work needs to be done at spring tides to avoid contamination by tidal migrants (Schlacher et 

al. 2008).  Due to these difficulties, studies on the general influence of storms on soft-

sediments benthic communities are often hampered by a lack of information on community 

composition before or for long periods after the storm event (Posey et al. 1996). Moreover, 

the large extent of storms usually prevents the designation of appropriate control areas. As an 

alternative, one effective approach to advance the knowledge of the ecological implications of 

the disturbance related to severe storms on soft-sediments benthic communities is to refine a 

priori conceptual predictions and hypotheses against field data (Harris et al. 2011). This 

research strategy offers an opportunity to identify trends in ecosystem response, and 

maximizes the accuracy of updated forecasts (Baker et al. 2008, Schoeman et al. 2014). 

Here, we combined hydrographic, physical and biological data to assess the ecological 

impacts of storms on macrobenthic assemblages inhabiting intertidal soft-sediments of Araçá 

Bay, a sheltered tidal flat in Southeast Brazil. Specifically, we aim to test a set of a priori 

hypotheses and predictions against field observations gathered in periods before and after the 

study area was struck by severe storms.   

Our first hypothesis is that wave action associated with storms would transport and 

mix large volumes of sediments, resulting in homogenization of sediment features. We 

therefore predict that habitat heterogeneity (i.e. environmental variability among sampling 

stations) would be reduced (prediction 1) and macrobenthic assemblages would be influenced 

by different environmental variables after storms (prediction 2). Further, as observed for 

different groups (e.g. tropical trees, Condit et al. (2002); sublittoral macrofauna, Hewitt et al. 
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(2005); birds, Veech and Crist (2007)), we predict that a reduction in habitat heterogeneity 

would result in reduction of β diversity in macrobenthic assemblages (i.e., more homogeneous 

environment would result in more homogeneous assemblages) (prediction 3). We also predict 

that disturbances related to storms would result in mass-mortality events and, consequently, 

decrease of biomass and number of species and individuals (prediction 4). Moreover, due to 

the expected mass-mortality events, the changes in β diversity should be more related to loss 

of species richness than to turnover of species (prediction 5). Since we are analyzing only one 

site over a short temporal scale, we recognise that it is not possible to test these predictions 

unequivocally. However, given the unpredictable nature and large extent of storms, as well as 

the likely increase in their frequency and intensity, we consider necessary to advance the 

understanding of storms effects by identifying trends in ecosystem response.  

 

Material and Methods 

Study area and sampling 

This work was done at Araçá Bay (23º 49’S, 45º 24’W), a heterogeneous and 

biodiverse rich environment (with more than 1300 invertebrates and vertebrates registered) 

located in the Marine Protected Area of the Northern coast of São Paulo State, Southeast 

Brazil (Amaral et al. 2015). Araçá bay is very sheltered, situated in the central area of the São 

Sebastião Channel. In this area, currents are highly influenced by the wind, and 

meteorological frontal systems may increase the speed of currents eightfold (Kvinge 1967, Fo 

1990, Castro and Miranda 1998). With large part of its area being flooded and dried due to 

tidal oscillations, Dottori et al. (2015) also show the influence of subtidal oscillations 

controlling the physical properties and the quality of waters that reach the Araçá Bay. 
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Fig. 1 - Map showing the location of the study area and the spatial distribution of sampling sites in the intertidal 

area of Araçá Bay. 

 

Sampling was performed on four occasions, 25 September 2011, 5 February 2012, 7 

May 2012 and 29 July 2012, in the intertidal area of Araçá Bay. At the first sampling 

occasion, 34 locations (hereafter sampling stations) were selected attempting to cover the 

greatest diversity of habitats (i.e. different sediment types in different depth zones of the tidal 

flat). The position of all sampling stations was registered and the same locations were 

sampled on next three sampling events. At each sampling station, we collected three sediment 

samples using a 20-cm diameter core until 20 cm deep for biological data, and one sediment 

sample using a 3 cm diameter core to a depth of 20 cm for grain size analyses.   

On 6 May 2012 and 18 July 2012, unusually large storms - reported as a tornado by 

the Brazilian media in May (Monteiro 2012, Torrezan 2012) -  hit São Sebastião. Torrential 

rain and strong winds flooded roads and damaged many houses and tourist amenities nearby 

Araçá Bay in both periods. We sampled the study area on the first spring tide following both 

storms (one day interval in May and 11 days in July). These two sampling events are hereafter 

referred as “after storm” samplings, whereas the first two are called “no storm”.  

 

Biological and environmental data 

Each biological sample was immediately sieved through a 0.3 mm mesh. The fauna 

retained was sorted into taxonomic groups and fixed in 70% ethanol. Subsequently, all 

individuals were identified to the lowest taxonomic level possible.  

The sediment samples were oven-dried at 60°C and passed through a series of sieves 

to determine the mean grain size (Folk and Ward 1957). Organic matter content was 

determined by the weight differences between samples that were dried at 60°C for 24 h and 

then incinerated at 550°C for 6 h. Calcium carbonate content was obtained by HCl 10% 

treatment. The sediment temperature and interstitial water salinity were measured in situ with 

a digital thermometer and a refractometer, respectively. Daily sea temperature data were 

obtained from CEBIMar, the Marine Biology Center from University of São Paulo, situated 2 

km from Araçá.  

 

Data on waves 

The height, period and power of the local waves were estimated daily for the entire 

sampling period (September 1, 2011 to October 31, 2012) based on the regional offshore 
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wave information extracted from the global wave generation model WaveWatch III 

(NCEP/NOAA) (Tolman 1997). With the aim of assessing storm conditions for the area, 

wave information for the period of interest has been extracted at a point over the continental 

shelf south of the São Sebastião channel (24.5 S; 45.5 W).  

The daily mean wave height and period were calculated from eight daily values. In 

order to account for the synergy of wave height and period, the wave power P was estimated 

by: P = ρ g2H2T/32π, where ρ is water density (1,027 kg/m3 ), g the acceleration due to 

gravity (9.81 m/s2), H the wave height (m), and T the wave period (s). P is given in watts per 

meter (W/m) (Herbich 2000).  

 

Data analysis 

Prediction 1: Habitat heterogeneity would be reduced after storms 

  To investigate changes in habitat heterogeneity among sampling periods, we computed 

the multivariate dispersions among sampling stations in terms of the environmental variables 

based on Euclidean distances to centroids for normalized data. In this analysis, higher 

heterogeneity among sampling stations would result in higher multivariate dispersions 

(Anderson 2006). Then, we used a test for homogeneity of multivariate dispersions (Anderson 

and Walsh 2013) to check if habitat heterogeneity varied among sampling periods. We also 

performed a principal component  analysis  (PCA)  on normalised environmental data to  

evaluate  how  environmental features varied trough time. PCA and tests for homogeneity of 

multivariate dispersions (PERMDISP routine) were done in Primer 6 (Anderson et al. 2008). 

  

Prediction 2: macrobenthic communities are influence by different environmental 

variables after storms 

To determine which environmental variables were the most significant to explain 

variation in macobenthic communities in each sampling period, we regressed the community 

matrix on the environmental dataset through a Redundancy Analisys with stepwise selection 

procedure. We used sediment fractions (mud, fine sand, coarse sand and pebble), mean 

diameter, sorting, calcium carbonate and organic matter content, salinity and depth as 

explanatory variables. Mean diameter, coarse sand and pebble percentages were excluded 

from the analysis to keep the variation inflation factor lower than 3 (Zuur et al. 2010). Before 

analyses, fractions were logit transformed (Warton and Hu) and sorting, salinity and depth 

were standardized. The Hellinger transformation was used in the community matrix to reduce 



22 

 

 

the importance of large abundances (Legendre and Gallagher 2001).  RDA analyses were 

done in the R environment using the package vegan (Oksanen et al. 2013). 

 

Prediction 3: reduction in habitat heterogeneity affects β diversity in macrobenthic 

communities 

We used two different approaches to determine β diversity: (1) the multivariate 

dispersion considering the average dissimilarity from individual observation units to their 

group centroid (Anderson 2006, Anderson et al. 2011), and (2) directly calculating the total 

variance of the site-by-species community data matrix (Legendre and De Caceres 2013).  The 

first method is useful to test for differences among areas or times through a multivariate test 

for homogeneity in dispersions (i.e. higher dispersions would be related to higher β diversity) 

(Anderson et al. 2011). The second approach has the advantage of allowing the partition of 

the total variance of the community composition data into additive components: (i) Species 

Contribution to β Diversity (SCBD), which indicates which species exhibit large variations 

across the study area, and (ii) Local Contribution to β Diversity (LCBD), which represents the 

contribution of individual sampling units to the overall β diversity (i.e. the degree of 

uniqueness of the sampling units in terms of community composition sensu Legendre and De 

Cáceres 2013). Here, large LCBD values indicate sites that have strongly different species 

compositions.  

To test if the β diversity varied in time, differences in β-diversity among the sampling 

periods were tested using a test for homogeneity of multivariate dispersions (Anderson et al. 

2008). Tests were done on the basis of Bray-Curtis (abundance, forth root transformed) 

resemblance measuresusing the PERMDISP routine, Permanova+ add-on in Primer 6 

(Anderson et al. 2008). The total variance of the site-by-species community data and SCBD 

and LCBD were calculated in the R environment using the function beta.div (Legendre and 

De Cáceres 2013).  

 

Prediction 4: Storms result in mass-mortality events  

We inferred mass-mortality from declines in species richness, abundance and biomass. 

Species richness and abundance were analyzed using two expressions: (1) the cumulative α 

diversity, which is the total number of species recorded in the total number of sampling 

stations per sampling period (cumulative alfa diversity can be viewed as the gamma (�) 

diversity for each period); and (2) the average α diversity (��), which is the which is the mean 
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number of species (individuals) per sampling station in each period. The same approach was 

used to calculate the cumulative and average abundance. To investigate changes in biomass, 

we selected twenty-four species which corresponded to more than 95% of the total of 

individuals collected in all sampling events (Annex 1). At each sampling occasion, about one 

third of the individuals of each one of those species were randomly selected. Larger 

individuals (mainly molluscs and crustaceans) were weighed individually, whereas biomass 

of small species was determined by pooling all individuals of the same species per sampling 

date. The soft tissue of individuals was thus dried at 80°C until it reached a constant weight, 

yielding the shell-free dry mass (SFDM). The SFDM was then ignited in a muffle furnace at 

550°C for 5 h to estimate the ash-free dry mass (AFDM) (Urban and Campos 1994). Mean 

individual biomass (��) was determined dividing the AFDM by the number of individuals 

weighed. Thus, the number of individuals of each species in each sampling station was 

multiplied by their mean individual biomass to achieve biomass values per sampling station.   

Temporal variability on species richness, abundance and biomass of macrobenthic 

assemblages were assessed through generalized linear models (Bolker et al., 2009).  We tested 

for differences between sampling periods considering time as a fixed factor and sampling 

stations as replicates. Candidate models using zero-inflated negative binomial and Poisson 

distribution were adjusted  (Zuur et al. 2009). Model parameters were estimated by Markov 

Chain Monte Carlo (MCMC) simulation, using package glmmADMB (Fournier et al. 2012, 

Skaug et al. 2012) of the R Program. Corrected Akaike information criteria (AICc), 

LogLikelihood scores and Akaike weights (AICw) were used in model inferences (Burnham 

and Anderson 2002). We also used the R package mvabund (Wang et al. 2012) to test for 

months differences on the multivariate abundances using generalised linear models (GLM) 

with Poisson distribution. The same package was used to produce a plot to visualize 

differences. 

 

Prediction 5: changes in β diversity should be more related to loss of species than to 

turnover of species. 

To test this prediction, we used the partitioning framework developed by Podani and 

Schmera (2011) and Carvalho et al. (2012), where β diversity (βtotal) is partitioned in β 

diversity explained by replacement (turnover) of species alone (βrepl) and β diversity 

explained by species loss/gain (richness differences, βrich). This analysis was done with the R 

package BAT– Biodiversity Assessment Tool (Cardoso et al. 2015). 
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Results 

Environmental characterization 

Environmental characteristics for the four sampling periods are presented in Table 1. 

Seawater temperature varied seasonally, with warmer waters during summer (February 2012) 

and cooler waters in winter (July 2012).  Salinity was higher in September 2011 and lower in 

July 2012. Within each period, salinity was more variable in February 2012. No great 

variation in organic matter content was recorded. Sediment features varied throughout the 

study period, and the content of silt and clay and fine sand in the sediment increased from 

September 2011 to July 2012, whereas the coarser fractions of sediment decreased (Table 1, 

Figure 2).  

 

Table 1. Environmental variables across the sampling periods. Numbers in parenthesis correspond to standard 

deviation. 

 September/11 February/12 May/12 July/12 

Temperature (oC) 21.91 (±1.40) 27.24 (±1.03) 25.04 (±1.22) 20.35 (±0.54) 

Salinity 32.26 (±1.96) 31.68 (±5.01) 30.59 (±3.92) 29.94 (±3.55) 

Mean diameter (phi) 2.47 (±0.70) 2.68 (±0.69) 2.72 (±0.54) 2.79 (±0.64) 

Silt and clay (%) 4.18 (±3.66) 4.73 (±3.37) 4.80 (±3.65) 5.71 (±5.29) 

Fine sand (%) 68.49 (±18.65) 73.47 (±19.49) 74.09 (±16.36) 74.73 (±17.77) 

Coarse sand (%) 16.83 (±16.85) 12.88 (±15.43) 11.10 (±11.89) 10.46 (±14.93) 

Peebles (%) 6.18 (±8.60) 3.73 (±6.84) 3.19 (±5.21) 3.16 (±6.07) 

Organica matter (%) 1.63 (±0.75) 1.68 (±1.20) 1.72 (±0.89) 1.86 (±1.28) 

CaCO3 (%) 4.88 (±2.52) 4.43 (±2.59) 3.76 (±2.73) 3.48 (±1.86) 

Power of waves (3 days) 19.7 (±0.09) 16.0 (±0.10) 32.1 (±0.06) 29.3 (±0.06) 

                            (7 days) 13.2 (±0.15) 13.9 (±0.32) 47.8 (±0.21) 20.0 (±0.21) 

                            (14 days) 31.5 (±0.15) 14.8 (±0.30) 52.0 (±0.19) 47.5 (±0.19) 

Height of waves (3 days) 1.48 (±0.31) 1.60 (±0.10) 1.87 (±0.21) 1.64 (±0.06) 

                            (7 days) 1.85 (±0.44) 1.39 (±0.31) 2.27 (±0.49) 1.35 (±0.45) 

                            (14 days) 1.79  (±0.43) 1.48 (±0.30) 2.26 (±0.38) 1.91 (±0.81) 

Power of waves (KW/s); Height of waves (m)  
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Figure 2 - Biplot of PCA analysis using environmental variables from the Araçá Bay. (FINE) fine sand 

percentage, (MD) mean diameter, (SAL) salinity, (MUD) mud, (OM) organic matter content, (CaCO3) calcium 

carbonate content, (DEPTH) depth, (MEDIUM) medium sand percentage, (TEMP) temperature, (SOR) sorting 

coefficient, (COARSE) coarse sand percentage, (PEEBLE) peeble percentage. 

 

Because macrobenthic communities may show a delayed response to a change in 

environmental conditions, we analysed the wave data from time windows of three, seven and 

14 days before each sampling period. For all time wondows, waves were more powerful 

before samplings in May and July 2012 (Table 1, Figure 3). These values are related to the 

offshore wave climate and are an indication of energetic events in the region of Araçá Bay. 
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Fig. 3 – Wave height and wave power from 30 days before the first sampling period until 15 days after the last 

sampling period. 

 

 Prediction 1: Habitat heterogeneity would be reduced after storms 

Sediment was slightly more homogeneous among sampling stations in May and July 

2012, as showed by the more clustered pattern in the ordination axis (Figure 3) and the lower 

mean distance to centroid in the multivariate dispersion analyses (�̅: September 2011 = 29.6, 

February 2012 = 30.4; May 2012 = 25.8; July 12 = 27.6). These differences, however, were 

not enough to be detected in the multivariate dispersion analysis (Table 2).  

 

Tab. 2 – Pairwise comparisons of environmental and biotic characteristics of each month. 

 Environment Biological 

Groups t P t P 

Sept x Feb 0.26 0.83 0.21 0.86 

Sept x May 12.84 0.24 23.41 0.03 

Sept x Jul 0.61 0.60 0.95 0.419 

Feb x May 15.02 0.22 19.58 0.07 

Feb x Jul 0.82 0.52 11.27 0.289 

May x Jul 0.54 0.66 37.68 0.001 
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Prediction 2: macrobenthic communities are influence by different environmental variables 

after storms 

Overall, macrobenthic communities were influenced by similar environmental 

variables on periods before and after storms. Depth was important in all four periods 

analysed, whereas sediment features was relevant in three periods (Table 3). 

 

Table 3. Results of forward selection in RDA performed on macrofaunal and meiofaunal datasets. 

Month Selected variable AIC F P 

  September 2011     
    Macrofauna (11.89%; P = 0.008) Fine sand -19.91 2.69 0.01 
       Depth -20.69 2.64 0.01 

  February 2012     
    Macrofauna (12.82%; P = 0.001) Salinity -20.96 2.55 0.005 
     Depth -21.31 2.22 0.01 
 Fine sand -21.26 1.77 0.04 

  May 2012     
    Macrofauna (13.90%; P = 0.002) Depth -14.44 4.14 0.005 
 Fine sand -14.61 2.04 0.04 

  July 2012     
    Macrofauna (16.99%; P = 0.001) Depth -18.16 2.82 0.01 

 

Prediction 3: reduction in habitat heterogeneity reduces β diversity in macrobenthic 

communities 

Contrary to our expectation, total β diversity was higher in May 2012 (Tables 2 and 4) 

and no pattern in β diversity changes could be related to the influence of storms. Nonetheless, 

β diversity values depended on the method used. The multivariate dispersion to the group 

centroid (Anderson 2006, Anderson et al. 2011) indicated that β diversity was lower in July 

2012, however, the direct calculation of the total variance of the site-by-species community 

data matrix (Legendre and De Caceres 2013) showed that β diversity was lower in February 

2012. An inverse relationship was observed between β diversity and the LCBD values, which 

were lower in May 2012 (Table 4, Figure 4). The crustacean Monokalliapseudes schubarti, 

the polychaetes Capitella spp, Armandia hossfeldi, Scoloplos sp. and Laeonereis culveri, and 

the gastropod Olivella minuta were the species that had higher SCBD values. 

 

 

 

 

 



28 

 

 

Table 4. Total number of individuals (Ind) and diversity indices in all sampling periods. A: total abundance; 
̅: 

average number of individuals per sampling station; γ: gamma diversity;  α�: average alpha diversity; �̅: 

multivariate dispersion to the group centroid; β (SS): β diversity according the total variance community 

data;LCDB: local contribution to β diversity; B: biomass 

 
A 
̅ γ �� �̅ β (SS) LCBD B 

Sep 11 9606 280.6 (±358.5) 83 14.4 (±5.4) 44.2 0.55 1.39-6.97 20.7 (±0.7) 

Feb 12 13228 389.1 (±343.4) 79 11.9 (±5.1) 44.8 0.38 0.72-11.96 14.2 (±0.4) 

May 12 3828 112.6 (±233.2) 65 9.8 (±3.9) 49.6 0.68 1.68-3.99 11.1 (±0.5) 

Jul 12 6722 197.7 (±245.4) 66 12.4 (±3.9) 41.9 0.58 1.86-4.60 16.6 (±0.4) 

B: gAFDM per 3.2 m2 (total area sampled per month) 

 

 

Fig. 4 – Local contribution to β diversity (LCBD) in all sampling events. Circles correspond to the proportion of 

LCBD of each sampling station. Sum of all circles in each period correspond to 100%. 

 

Prediction 4: Storms would result in mass-mortality events  

From differences in species richness, abundance and biomass (Tables 4 and 5, Figure 

5), we inferred that mass-mortality event might have occurred in May 2012, when was 

observed a reduction of more than 70% of individuals from the sampling before (Annex 1). 

Differences on the multivariate abundances were also detected, with lower values in May and 
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July (Wald test (3, 132) = 110.1; P<0.001). The declines in abundance and biomass reductions 

were greatly influenced by changes in the population of the crustacean Monokalliapseudes 

schubart, which had a decrease of almost 95% of infividuals between February and May 2012 

(Figure 6 - Annex 2). 

 

 

Table 5 - Results from generalized linear models fitted for species richness, abundance and biomass of 

macrobenthic assemblages of Araçá Bay. 

Estimate SE Z-Value P-value 

Richness     
(Intercept) 2.66 0.06 44.88 
February -0.19 0.08 -2.21 0.03 

May -0.37 0.09 -3.99 <0.001 

July -0.13 0.09 -1.55 0.12 
Abundance     

(Intercept) 5.62 0.14 39.24  
February 0.16 0.18 0.85 0.40 
May -0.58 0.20 -2.87 <0.01 

July -0.18 0.19 -0.93 0.36 
Biomass     

(Intercept) 6.41 0.16 39.49  
February -0.37 0.23 -1.64 0.10 
May -0.62 0.23 -2.71 <0.001 

July -0.21 0.23 -0.96 0.34 
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Fig. 5 - Boxplot of number of species, abundance and biomass of macrobenthic organisms in 

Araçá Bay during the study period. 

 

Prediction 5: changes in β diversity should be more related to loss of species  than to 

turnover of species. 

The analysis of β diversity between months showed that strong differences were 

observed between periods, and these differences were stronger between periods no storm and 

after storms. Moreover, as expected, most of this variation was related to loss of species loss 

(Table 4).  
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Tab. 4 – Β diversity among different sampling envents (months). Values inside the brackets correspond to the 

fraction of β diversty related to species replacement (Brepl) and species loss/gain (Brich). 

 Sep Feb May 

Feb Bt = 0.45; Brepl = 0.20; Brich = 0.25   

May Bt = 0.83; Brepl = 0.33; Brich = 0.50 Bt = 0.79; Brepl = 0.13; Brich = 0.66  

Jul Bt = 0.72; Brepl = 0.50; Brich = 0.22 Bt = 0.73; Brepl = 0.32; Brich = 0.41 Bt = 0.47; Brepl = 0.05; Brich = 0.42 

 

Discussion 

Most of previous works about the influence of storms on coastal soft-sediment ecosystems 

have showed that storms may have stronger impacts on environmental characteristics than on 

macrobenthic assemblages (Saloman and Naughton 1977, Cochôa et al. 2006, Alves and 

Pezzuto 2009, Harris et al. 2011).  Our results, however, suggest the opposite trend. As 

observed by Sola and Paiva (2001) in a sheltered sandy beach in Rio de Janeiro, Brazil, we 

found that storms did not deeply affected the habitat features of Araçá Bay, but changed its 

biodiversity patterns.  

Overall, two of our five a priori predictions were supported. We found that species 

richness, abundance and biomass of macrobenthic organisms declined after the first storm 

(predictions 4 and 5). However, we did not find strong evidence for the hypothesis that storms 

would reduce habitat heterogeneity (prediction 1). Furthermore, the prediction that 

macrobenthic assemblages would be influenced by different environmental variables after 

storms (prediction 2) was not supported. Since we did not find strong evidence for changes in 

habitat heterogeneity, our third prediction, i.e. reduction in habitat heterogeneity reduces β 

diversity, was also not confirmed.  

The lack of strong modifications in environmental features of Araçá Bay in periods 

after storm is likely related to the sheltered characteristics of the area. The magnitude of 

erosive processes related to storms depends on the morphodynamic state of the environment, 

and the same wave climate acting on different morphodynamic conditions produces different 

responses in terms of morphological changes (Short 2000). In this regard, exposed-reflective 

environments are more susceptible to enhanced hydrodynamic processes, whereas a much 

higher amount of wave energy is necessary to affect sheltered environments with wide and 

flat intertidal areas where a larger amount of wave energy is dissipated (Short 2000, Di 

Domenico et al. 2014). In this regard, the characteristics of Araçá Bay (i.e. a wide tidal flat 
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and sheltered by São Sebastião Island) are likely to protect the area from wave action, 

therefore preventing the occurrence of strong changes in its habitat features. Notwithstanding, 

a slightly homogenization of sediment was observed in periods after storms, as well as an 

increase of the fraction of fine sand. Similar results were reported by Sola and Paiva (2001) 

and Gallucci and Netto (2004) after the passage of cold fronts over coastal soft-sediment 

ecosystems in Southeast and South Brazil, respectively.  

Although changes in habitat heterogeneity after storms were not sufficient to be 

detected by statistical analyses, β diversity was higher in May. Despite the increased β 

diversity, the LCBD values were more similar in May, which indicates that different sites 

within the bay contributed more evenly to total beta diversity after storms. This result implies 

that assemblages varied in a constant way, and none of them had strongly different species 

compositions. Therefore, macrobenthic assemblages were more similar in periods after storm 

probably a consequence of increased hydrodynamic processes which may directly influence 

macrobenthic assemblages (Sola and Paiva 2001). In tidal systems such as Araçá Bay, 

dispersion of individuals is promoted by regular tide-mediated currents and also by stochastic 

wave-driven resuspension events (Valanko et al. 2010). When these conditions are present, 

coastal environments become more turbulent and variable, with intense offshore-directed 

currents and high rates of cross-shore sediment transport (Delgado and Defeo 2004, 

Masselink and Puleo 2006). Thus, it is reasonable to infer that larger waves and faster currents 

associated to storms might have changed the spatial patterns and homogenized macrobenthic 

communities. Additionally, it is also possible that the increased hydrodynamic related to 

storms may have washed away many individuals, resulting in the observed decrease of 

abundance, species richness and biomass in May. Transportation of sediment and associated 

fauna due to wind-induced waves or tidal currents has been reported as a likely determinant of 

short-term temporal variations in local community composition (Armonies 2000). 

Shifts in the abundance of species also reinforce the hypothesis that many macrofaunal 

individuals were washed away due to increased waves and water circulation. Decrease in the 

number of less mobile and shallow burrower species, such as the polychaete Isolda pulchella 

and the bivalve Anomalocardia brasiliana, after the first storm suggest that they might have 

be removed with the top layer of sediment. Furthermore, the most impressive change in 

abundance is related to the tanaidacean Monokalliapseudes schubarti (a decrease of 95% in 

abundance in May 2012), which usually builds shallow tubes and is very sensitive to 

environmental changes (Nucci et al. 2001, Pagliosa and Barbosa 2006). Similar result was 

registered by Sola and Paiva (2001), which reported a significant decrease of tanaidaceans 
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after the passage of storms in Rio de Janeiro, Brazil. Monokalliapseudes schubarti – and 

tanaidaceans in general - is an important component of macrobethic soft-bottom intertidal and 

shallow water communities in South America and, due to its high abundance and continuous 

reproduction, is an important food resource to higher thropic levels (Leite et al. 2003, Fonseca 

and D'Incao 2006). The significant reduction of this species resulted in decreases in biomass, 

and suggests that storms may affect the trophic status of marine coastal ecosystems.  

It is important to highlight, however, that many factors can contribute to the mortality 

of macrofaunal organisms. Besides episodic events such as storms, which induce an increase 

of mortality due to physical disturbances, mortality may be natural due to ageing process, 

death of animals after spawning and high rate of natural mortality among recent recruits to the 

benthos (Brey 1999). Moreover mortality may be enhanced by seasonal changes in the 

environmental (e.g., temperature, organic matter, salinity) and biotic features (e.g. seasonal 

changes in number of predators, parasites and diseases) (Brey and Gage 1997). Due to the 

lack of replication at the temporal scale, we cannot unequivocally disentangle storms effects 

from seasonal effects. To hinder this situation, the austral fall and winter are usually 

associated to an increase in the occurrence of extra-tropical cyclones in the Southern 

hemisphere. These cyclones are accompanied by frontal systems, commonly known as cold 

fronts, which form extensive regions on oceans with uniform winds over 10 m/s (Stech and 

Lorenzzetti 1992). These winds are usually associated with precipitation and produce high 

energy waves which usually hit the West coast of continents, including South America (Stech 

and Lorenzzetti 1992, Castro and Miranda 1998, Cochôa et al. 2006). In this scenario, storms 

may be an additional seasonal factor that shape coastal ecosystems and contribute to their 

dynamic nature.  

Regardless of being a major influence or one additional variable shaping coastal 

ecosystems and their assemblages, storms seems to cause more pronounced changes on 

macrobenthic biodiversity in the short-term. Even though we have sampled Araçá Bay on the 

first spring tide following two storms, differences in environmental and biotic characteristics 

were stronger after the first storm, when the sampling was done after a one day interval. 

Moreover, very strong waves hit São Sebastião in November 2011, but no difference in 

macrobenthic assemblages were detected between samplings done on September 2011 and 

February 2012. In a coastal soft-sediment ecosystem in South Brazil, Gallucci and Netto 

(2004) found that abundance and number of species of macrobenthic organisms declined 

during the passage of a cold front, but all values were back to pre-frontal conditions 24 h later. 

Similarly, Schlacher and Thompson (2013) observed that wave height and maximum wave 
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height had a better correlation with changes in macrobenthic assemblages on a very short time 

window (up to 1 day). Taken together, these results indicate that intertidal macrobenthic 

assemblages show high resilience and may quickly recover from short-term and unpredictable 

environmental disturbances related to storms.  

Even though soft-sediment macrobenthic communities may show strong resilience, it 

is important to consider that this property of ecological systems is dependent on the biological 

organization, as well as the frequency and intensity of disturbances (Thrush et al. 2008). On 

the past decades, theoretical and empirical evidence suggests that declines in diversity is 

expected to reduce ecosystem stability (i.e. resistence and resilience) because less diverse 

communities are less likely to contain species, or functional groups, that are capable of 

differential response which could act as buffers against dramatic changes in population 

dynamics (Hutchinson 1959, Tilman 1996, McCann 2000). Moreover, a growing body of 

evidence has been showing that cumulative or multiple stressor effects can lead to the loss of 

resilience and an increased risk of regime shift (Thrush et al. 2008, Thrush et al. 2009). The 

partition of beta diversity and the temporal analysis of species richness showed that changes 

after storms are mainly a consequence of species loss. These results suggest important 

implications for management and conservation of coastal ecosystems, with frequent and 

intense storms being likely to reduce diversity and also the resilience of marine soft-

sediments.  

Despite the limitations of this study associated to the unpredictable nature and large 

extent of storms, our results suggest that storms have a direct impact on macrobenthic 

assemblages and, in a less extent, may also change habitat features of a sheltered coastal 

ecosystem. The magnitude of those effects, however, probably depends on the 

morphodynamic characteristics of the environment and the cumulative impact of storms. 

Since climate change projections highlights that storms will likely have their frequency and 

intensity increased in the near future (Baker et al. 2008, IPCC 2014), to properly investigate 

these phenomenon and how they influence the organization of ecological assemblages is of 

great importance for conservation and management purposes (Harris et al. 2011).  In this 

regard, to investigate our set of a priori hypotheses and predictions in other areas can be 

important for the development of a forecasting ability to identify storm effects. This approach 

would allow the anticipation or prevention of unwanted regime shifts which may compromise 

the ecological importance, multiple uses and economic values of coastal ecosystems.  
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Annex 1 
 

Table 5. Total number of individuals and relative proportion of species registered at each sampling. Species 

written in bold correspond to those used in biomass analysis.  

September 2011 February 2012 May 2012 July 2012 

N ind Freq (%) N ind Freq (%) N ind Freq (%) N ind Freq (%) 

Edwardisia  0 0.00 0 0.00 19 0.50 2 0.03 

Neritina virginea 11 0.12 5 0.04 14 0.37 14 0.21 

Cerithium atratum 85 0.89 14 0.11 43 1.12 41 0.61 

Nassarius vibex 4 0.04 5 0.04 1 0.03 0 0.00 

Olivella minuta 176 1.84 34 0.26 99 2.59 103 1.53 

Bulla striata 0 0.00 5 0.04 0 0.00 0 0.00 

Nucula semiornata 2 0.02 4 0.03 2 0.05 1 0.01 

Phacoides pectinata 1 0.01 0 0.00 1 0.03 1 0.01 

Diplodonta punctata 1 0.01 0 0.00 1 0.03 5 0.07 

Diplodonta patagonica 0 0.00 1 0.01 0 0.00 0 0.00 

Solen tehuelchus 0 0.00 1 0.01 0 0.00 0 0.00 

Eurytellina lineata 50 0.52 15 0.11 6 0.16 20 0.30 

Tellina sp 1 2 0.02 0 0.00 0 0.00 1 0.01 

Tellina sp 2 1 0.01 0 0.00 0 0.00 1 0.01 

Strigilla pisiformis 3 0.03 1 0.01 3 0.08 1 0.01 

Macoma sp  7 0.07 2 0.02 2 0.05 1 0.01 

Semele sp 1 0 0.00 0 0.00 2 0.05 0 0.00 

Abra sp1 1 0.01 0 0.00 0 0.00 1 0.01 

Ervilia nitens 3 0.03 0 0.00 0 0.00 0 0.00 

Tagelus plebeius 1 0.01 3 0.02 0 0.00 1 0.01 

Tagelus divisus 4 0.04 2 0.02 1 0.03 0 0.00 

Donax gemmula 1 0.01 0 0.00 0 0.00 0 0.00 

Iphigenia brasiliana 0 0.00 0 0.00 0 0.00 1 0.01 

Gouldia cerina 2 0.02 0 0.00 0 0.00 0 0.00 

Chione cancellata 2 0.02 1 0.01 2 0.05 0 0.00 

Chione subrostrata 0 0.00 1 0.01 0 0.00 0 0.00 

Anomalocardia brasiliana 91 0.95 91 0.69 74 1.93 94 1.40 

Protothaca pectorina 0 0.00 0 0.00 1 0.03 0 0.00 

Tivela mactroides 0 0.00 0 0.00 0 0.00 1 0.01 

Pitar fulminatus 0 0.00 1 0.01 0 0.00 0 0.00 

Clyclinella tenuis 5 0.05 0 0.00 0 0.00 0 0.00 

Corbula caribaea 13 0.14 5 0.04 0 0.00 4 0.06 

Corbula sp 1 9 0.09 6 0.05 2 0.05 7 0.10 

Sphenia antillensis 0 0.00 1 0.01 0 0.00 0 0.00 

Periploma ovata 0 0.00 3 0.02 0 0.00 0 0.00 

Nemertinea sp 1 25 0.26 0 0.00 12 0.31 1 0.01 

Sipuncula sp 1 3 0.03 0 0.00 1 0.03 0 0.00 

        (cont.) 



40 

 

 

(cont.)         

Phyllodoce mucosa 5 0.05 3 0.02 0 0.00 0 0.00 

Eteone alba 2 0.02 0 0.00 0 0.00 0 0.00 

Hermundura tricuspis 47 0.49 53 0.40 34 0.89 54 0.80 

Sigambra grubii 6 0.06 1 0.01 3 0.08 10 0.15 

Sigambra tentaculata 2 0.02 0 0.00 1 0.03 1 0.01 

Ancistrosyllis jonesi 0 0.00 0 0.00 0 0.00 2 0.03 

Syllis sp 1 113 1.18 126 0.95 29 0.76 14 0.21 

Laeonereis culveri 391 4.10 128 0.97 51 1.33 392 5.83 

Glycinde multidens 46 0.48 25 0.19 18 0.47 36 0.54 

Goniada litorea 3 0.03 6 0.05 2 0.05 3 0.04 

Hemipodia simplex 0 0.00 1 0.01 1 0.03 1 0.01 

Diopatra dexiognatha 1 0.01 0 0.00 0 0.00 0 0.00 

Diopatra aciculata 7 0.07 6 0.05 2 0.05 0 0.00 

Mooreonuphis lineata 0 0.00 2 0.02 0 0.00 2 0.03 

Onuphis eremita oculata 0 0.00 1 0.01 0 0.00 0 0.00 

Dorvillea sp 0 2 0.02 1 0.01 0 0.00 0 0.00 

Marphysa sebastiana 52 0.54 36 0.27 36 0.94 32 0.48 

Nematonereis hebes 0 0.00 3 0.02 0 0.00 3 0.04 

Scoletoma tetraura 3 0.03 13 0.10 5 0.13 0 0.00 

Scoloplos (leodamas) sp 1 359 3.76 201 1.52 111 2.90 278 4.14 

Haploscoloplos sp 1 215 2.25 6 0.05 5 0.13 33 0.49 

Naineris setosa 14 0.15 71 0.54 4 0.10 10 0.15 

Protoaricia sp 1 38 0.40 55 0.42 18 0.47 2 0.03 

Aricidea (Aricidea) fragilis 16 0.17 3 0.02 6 0.16 6 0.09 

Aricidea (Allia) albatrossae 0 0.00 1 0.01 0 0.00 0 0.00 

Aricidea cf wassi 0 0.00 0 0.00 0 0.00 18 0.27 

Scolelepis squamata 55 0.58 122 0.01 48 1.25 148 2.20 

Scolelepis texana 0 0.00 0 0.00 1 0.03 0 0.00 

Dispio uncinata 1 0.01 0 0.00 0 0.00 1 0.01 

Dispio remanei 0 0.00 1 0.01 2 0.05 0 0.00 

Prionospio steenstrupi 0 0.00 0 0.00 5 0.13 19 0.28 

Paraprionospio pinnata 1 0.01 0 0.00 0 0.00 0 0.00 

Boccardia polybranchia 2 0.02 1 0.01 0 0.00 0 0.00 

Bocardiella ligerica 0 0.00 2 0.02 0 0.00 0 0.00 

Polydora nuchalis 2 0.02 38 0.29 0 0.00 1 0.01 

Polydora websteri 4 0.04 4 0.03 0 0.00 0 0.00 

Polydora sp 1 0 0.00 3 0.02 0 0.00 0 0.00 

Polydora sp 2 0 0.00 1 0.01 0 0.00 0 0.00 

Magelona nonatoi 1 0.01 0 0.00 0 0.00 0 0.00 

Magelona californica 2 0.02 0 0.00 0 0.00 0 0.00 

Magelona papilicornis 2 0.02 4 0.03 14 0.37 33 0.49 

Magelona variolamellata 1 0.01 0 0.00 1 0.03 1 0.01 

        (cont.) 
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(cont.)         

Poecilochaetus perequensis 0 0.00 0 0.00 1 0.03 2 0.03 

Poecilochaetus australis 1 0.01 1 0.01 4 0.10 1 0.01 

Poecilochaetus sp 1 0 0.00 5 0.04 0 0.00 0 0.00 

Sternaspis capilata 0 0.00 0 0.00 35 0.91 3 0.04 

Cirriformia tentaculata 26 0.27 4 0.03 0 0.00 0 0.00 

Cirriformia filigera 6 0.06 32 0.24 0 0.00 10 0.15 

Cirriformia punctata 2 0.02 0 0.00 0 0.00 0 0.00 

Armandia hossfeldi 182 1.91 20 0.15 144 3.76 686 10.21 

Armandia agilis 7 0.07 0 0.00 5 0.13 14 0.21 

Armandia polyophtalama 6 0.06 0 0.00 0 0.00 0 0.00 

Capitella spp 364 3.81 1670 12.62 2136 55.80 2460 36.60 

Heteromastus filiformis 69 0.72 99 0.75 145 3.79 406 6.04 

Mediomastus californiensis 136 1.43 51 0.39 59 1.54 39 0.58 

Notomastus hemipodus 3 0.03 3 0.02 6 0.16 4 0.06 

Notomastus lobatus 1 0.01 1 0.01 0 0.00 0 0.00 

Scyphoproctus sp 1 13 0.14 38 0.29 0 0.00 0 0.00 

Clymenella dalesi 2 0.02 2 0.02 0 0.00 1 0.01 

Owenia fusiformis 3 0.03 2 0.02 1 0.03 3 0.04 

Owenia brasiliensis 0 0.00 0 0.00 1 0.03 0 0.00 

Isolda pulchella 199 2.09 114 0.86 36 0.94 27 0.40 

Lioimia medusa 0 0.00 1 0.01 0 0.00 0 0.00 

Nicolea uspiana 0 0.00 0 0.00 0 0.00 1 0.01 

Terebellides anguicomus 1 0.01 5 0.04 1 0.03 1 0.01 

Oligochaeta 0 0.00 20 0.15 11 0.29 0 0.00 

Alpheus nittingi 0 0.00 1 0.01 0 0.00 0 0.00 

Upogebia brasiliensis 0 0.00 0 0.00 0 0.00 1 0.01 

Upogebia vasquezi 0 0.00 0 0.00 1 0.03 0 0.00 

Upogebia paraffins 0 0.00 1 0.01 0 0.00 0 0.00 

Ogyrides alphaerostris 1 0.01 0 0.00 0 0.00 0 0.00 

Caridae sp 1 5 0.05 0 0.00 0 0.00 0 0.00 

Dendobranchiata 0 0.00 0 0.00 0 0.00 1 0.01 

Processa bermudensis 1 0.01 0 0.00 2 0.05 0 0.00 

Pagurus criniticornis 4 0.04 4 0.03 4 0.10 8 0.12 

Clibanarius vittatus 0 0.00 0 0.00 1 0.03 0 0.00 

Clibanarius antillensis 0 0.00 1 0.01 0 0.00 4 0.06 

Pinnixa chaetopterana 0 0.00 2 0.02 0 0.00 1 0.01 

Callinectes danae 4 0.04 1 0.01 1 0.03 1 0.01 

Panopeus occidentalis 1 0.01 2 0.02 1 0.03 0 0.00 

Ocypodidae 1 0.01 0 0.00 0 0.00 0 0.00 

Uca leptodactyla 1 0.01 0 0.00 0 0.00 0 0.00 

Amphipoda sp 1 0 0.00 1 0.01 0 0.00 0 0.00 

Monokalliapseudes schubartii 6583 68.99 9988 75.51 541 14.13 1647 24.50 

        (cont.) 
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(cont.)         

Ophiuroidea sp 1 4 0.04 0 0.00 2 0.05 0 0.00 

Holothuroidea sp 1 10 0.10 0 0.00 0 0.00 0 0.00 

Cephalochordata sp 1 10 0.10 0 0.00 5 0.13 0 0.00 

Total 9542 100 13227 99 3828 100 6722 100 
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Capítulo 2 

 

Dispersal ability affects the relative importance of environmental and spatial processes 
on marine macrobenthic communities  

 

Abstract 

 

Community ecology has traditionally assumed that the distribution of species is mainly 

influenced by environmental processes. There is however, growing evidence that 

environmental (habitat characteristics and biotic interactions) and spatial processes (factors 

that affect a local assemblage regardless of environmental conditions - typically related to 

dispersal and movement of species) interactively shape biological assemblages. A 

metacommunity, which is a set of local assemblages connected by dispersal of individuals, is 

spatial in nature and can be used as a straightforward approach for investigating the 

interactive and independent effects of both environmental and spatial processes. Here, we 

examined (i) how environmental and spatial processes affect the metacommunity structure of 

marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse sandy-muddy 

tidal flat, and (ii) whether these effects are constant through time. We also investigated (iii) 

whether the relative importance of those processes depends on the dispersal abilities of 

organisms. We found that these macrobenthic assemblages are influenced by each of 

environmental and spatial variables; however, this influence changes through time and may be 

affected by stochastic events, such as storms. Moreover, we found that the influence of 

environmental and spatial processes varied according to the dispersal capabilities of 

organisms, and less effective dispersers, i.e. species with non-planktonic larvae and adults 

with reduced mobility, are more affected by spatial processes. These findings highlight that 

accounting for spatial processes and differences in species life histories is important to better 

understand species distribution and coexistence patterns in intertidal soft-sediments. 
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Introduction 

 

Community ecology has historically focused on a single spatial scale assuming that 

biological assemblages are mainly structured by local interactions (Paine 1969, Connell 1980, 

1983) and environmental features (Janzen 1967, Pianka 1981, Logue et al. 2011). On the past 

decades, however, an increasing body of work has been showing that spatial processes, which 

includes all factors that affect a local assemblage regardless of environmental conditions - 

typically related to dispersal and movement of species (Leibold et al. 2004, Heino et al. 2015), 

may also strongly influence local assemblages (e.g. Underwood 1994, Goncalves-Souza et al. 

2014, Leibold and Loeuille 2015).  

The metacommunity approach is an effective conceptual tool to investigate the 

interplay of environmental and spatial processes driving the composition and distribution of 

species (Cottenie 2005, Holyoak et al. 2005). A metacommunity is defined as a set of local 

assemblages that are linked by dispersal of potentially interacting species and is regulated by 

both environmental and spatial processes (Wilson 1992, Leibold et al. 2004).  Although it is a 

straightforward approach to evaluate the interactive way these processes affect biological 

communities, there are few broad generalizations because most investigations around 

metacommunity processes were done in freshwater habitats (Logue et al. 2011), with few or 

no tests for other systems. Accordingly, the results until now are likely contingent to the 

system and the spatial extent studied. As dispersal is the fuel supplying organisms to local 

assemblages, the dispersal ability of organisms is also a central issue for deriving general 

theoretical predictions (Hájek et al. 2011, Grönroos et al. 2013, Heino 2013, Landeiro et al. 

2014).  

It has been suggested that the relative role of spatial processes increase with increasing 

spatial extent because fewer species are able to disperse across broad geographical scales 

(Cottenie 2005, Árva et al. 2015). Moreover, organisms with efficient and active dispersal can 

be less limited by spatial processes because of their higher ability to track environmental 

variability. On the other hand, spatial processes should be more important for poor and 

passive dispersers because of their reduced dispersal capacity. Therefore, a crucial element in 

metacommunity theory is the interaction between dispersal and environmental variability. As 

a consequence, the relative role of environmental and spatial processes may change over time 

due to seasonal changes in the environmental variables (Thrush et al. 2010, Datry et al. 2015) 

or to stochastic factors such as disturbance events and random supply of individuals 



46 

 

 

(Vanschoenwinkel et al. 2013, Gerwing et al. 2016). Notwithstanding, temporal changes in 

the metacommunity dynamics is still largely overlooked (Heino et al. 2015). 

The application of the metacommunity approach can be especially useful in marine 

systems (Heino et al. 2015), where (1) all the patches are characterized as open systems, and 

thus they are virtually linked to each other via dispersal (Gray and Elliott 2009), and (2) 

species have different dispersal capabilities, varying from organisms able to disperse only a 

few centimeters to other that disperse thousands of kilometres (Shanks 2009, Pilditch et al. 

2015). Macrobenthic invertebrates, for example, disperse across all life-history stages, 

ranging from species with reduced dispersal rates (absence of pelagic larval stages and adults 

with reduced mobility), to species that can reach great distances from their parents (with long-

lived planktonic larval stages and high motile adults) (Thorson 1950, Whitlatch et al. 1998, 

Valanko et al. 2010). Nevertheless, very few studies have applied the metacommunity 

approach to marine systems (Heino et al. 2015), where most studies investigated the 

responses of organisms to physicochemical variables (de Juan and Hewitt 2011, Quillien et al. 

2015).  

In intertidal marine soft-sediments, considerable research has shown the influence of 

environmental variables, such as sediment type, salinity, wave action, tide, and exposure time 

to air on the distribution of benthic macrofauna (e.g. Lercari and Defeo 1999, Gray 2002, 

Thrush et al. 2005a). As a consequence, most models explaining patterns of intertidal marine 

soft-sediment assemblages assume that they are driven mainly by environmental processes 

(e.g. McLachlan 1990, McLachlan et al. 1993, Defeo and McLachlan 2005). Moritz et al. 

(2013) and Heino et al. (2015), however, argue that the high dispersal rates observed in 

marine ecosystems may homogenise assemblages at neighbouring localities, therefore, 

favoring spatial variables. Recently, Quillien et al. (2015) and Gerwing et al. (2016) supported 

this hypothesis by showing that spatial processes were important in structuring soft-sediment 

intertidal assemblages. These studies also showed that patterns of intertidal soft-sediment 

assemblages vary through time, reflecting changes in habitat heterogeneity, species 

population dynamics and disturbances. 

We examined the relative importance of environmental and spatial processes on 

marine macrobenthic invertebrates inhabiting the intertidal sediments of a biodiverse and 

environmentally heterogeneous sandy-muddy tidal flat. The data set consisted of 34 locations 

distributed over approximately 0.22 Km2 (largest distance between two locations about 850 

m), a small scale when compared to other studies which investigated the role of spatial and 

environmental processes in coastal ecosystems (e.g. Moritz et al. (2013) investigated 
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polychaete subtidal assemblages in approximately 15,400 km2, whereas Gerwing et al. (2016) 

studied tidal flats with up to 56 Km distance in between). Due to the high influence of 

environmental variables and the high dispersal rates expected for macrobenthic fauna, as well 

as the relatively small scale analysed, we expected that environmental processes should exert 

a major control in the metacommunity dynamics (prediction 1). We also accounted for 

differences in species life histories and investigated whether the influence of spatial and 

environmental variables in marine macrobenthic communities are contingent on the dispersal 

abilities of organisms. As observed in other systems (e.g. fens, Hájek et al. 2011; lakes, Heino 

2013; streams, Grönroos et al. 2013), we expected that the relative importance of 

environmental processes should decrease (and spatial processes increase) from stronger 

(species with planktonic larvae and motile adults) to weaker dispersers (species with 

nonplanktonic larvae and sessile or discretely motile adults) (prediction 2).  

 

Methods 

Study area and sampling 

This work was done at Araçá Bay (23º 49’S, 45º 24’W), located in the Marine 

Protected Area of the Northern coast of São Paulo State, Southeast Brazil (Figure 1). Araçá 

Bay has a wide intertidal area (approximately 300 m wide) and is characterized as a 

heterogeneous and biodiverse rich environment, with more than 300 species of marine 

macroinvertebrates (Amaral et al. 2015). These features provide an ideal test system to 

investigate the relative contribution of spatial and environmental processes to community 

variation. 
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Fig. 1. Map showing the location of the study area and the spatial distribution of sampling sites in the intertidal 

area of Araçá Bay. 

 

To avoid inconsistent conclusions about the metacommunity dynamics based on a single point 

in time, we sampled the tidal flat four times during a whole year and analyzed the influence of 

environmental and spatial processes for each period. Sampling was done in September 2011 

and February, May and July 2012 in the intertidal area of Araçá Bay. As a measure of 

metacommunity structure, we used the species composition of assemblages inhabiting 

different locations in the whole intertidal area of Araçá Bay. This is typically a measure of 

beta-diversity that is defined as the variation in the identities (and their abundances, when 

considered) of species among sites (sensu Anderson et al. 2011). Any effect of environmental 

and spatial processes on metacommunity structure means that the variation in species 

composition is associated with either (or both) processes (see definitions below). We selected 

34 locations (hereafter sampling sites) attempting to cover the greatest diversity of habitats 

(i.e. different sediment types in different depth zones of the tidal flat); the same locations were 

sampled at each period. At each sampling site, three sediment samples using a 20 cm diameter 

core of 20 cm depth were collected for biological data. An additional sediment sample was 

collected using a 3 cm diameter core until 20 cm deep for sediment analyses.  Each biological 

sample was placed in a plastic bag and taken to the laboratory, where they were immediately 

sieved with a 0.3 mm mesh. The fauna retained were sorted in taxonomic groups and fixed in 
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70% ethanol. Subsequently, all individuals were further identified to the lowest taxonomic 

level possible. Since we were interested in spatial processes occurring at regional scale (i.e. 

within the bay), for each sampling period, all biological samples from a location were pooled 

for the analyses. 

 

Dispersal ability groups 

To investigate if the influence of environmental and spatial variables on macrobenthic 

assemblages depend on their  dispersal abilities we divided the species in 4 dispersal ability 

groups (DAG) according to their development mode and motility in juvenile and adult phases: 

(1) species with planktonic larvae and motile adults (DAG1), (2) planktonic larvae and 

discretely motile adults (e.g. tube builders, DAG2), (3) non-planktonic larvae and motile 

adults (DAG3), and non-planktonic larvae and discretely motile adults (DAG4) (Appendix 1).  

We used Fauchald & Jumars’ (1979) and Jumars’ et al. (2014) ordinal scheme of motile and 

discretely motile focused on feeding biology. In this scheme, a motile species moves to eat, 

whereas a discretely motile species may feed without moving (often with the help of 

extensible siphons, tentacles or palps and ambient sediment transport) and can stay in place 

indefinitely, but remains capable of moving. We considered species with planktonic larvae 

and adults with reduced mobility (DAG2) as more effective dispersers than species with 

nonplanktonic larvae and motile adults (DAG3); Whitlatch et al. (1998) have showed that 

movement of juvenile and/or adult life-stages across the seabed usually occurs at smaller 

scales than before settlement. Therefore, we expected the importance of the spatial variables 

to increase from DAG1 to DAG4. It is important to highlight, however, that the importance of 

larval and adult dispersal in marine sediments has been subject of a constant debate and some 

authors argue that the post-settlement dispersal can be even more important than pre-

settlement dispersal (see Pilditch et al. (2015) and references therein). Within each DAGs, 

there is probably much among-species variation (e.g. lecitotrophic and planktotrophic larvae 

were both considered planktonic even though they may differ in time spent in water column, 

and there is obvious differences in the locomotion way of several species considered motile). 

Nevertheless, due to the relatively small scale of this study, these variations should not be 

strong enough to cause differences in dispersal routes and the ability to actively search for 

environmentally suitable sites among species of the same group.   

Information about the development mode and mobility of species was thus gathered 

from expert knowledge, peer-reviewed literature and publicly available databases (Appendix 
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1). When the information about some species was not available, we relied on information 

from higher taxonomic levels. 

 

Environmental variables  

We used sediment characteristics (percentages of silt and clay, fine sand, coarse sand, 

pebble, organic matter and CaCO3), temperature, depth and interstitial water salinity of each 

location as environmental variables. Coarse sand and pebble content were highly correlated to 

each other and inversely correlated with fine sandy particles. Therefore, they were excluded 

from the analysis to keep the variation inflation factor lower than 3 (Zuur et al. 2010). The 

particle size distribution was determined by sieving sediment, (oven-dried at 60°C) through a 

series of sieves (Folk and Ward 1957). Organic matter content was determined by the weight 

differences between samples that were dried at 60°C for 24 h and then incinerated at 550°C 

for 6 h. Calcium carbonate content was obtained by HCl 10% attack. Interstitial water salinity 

and temperature were measured in situ with a refractometer and a digital thermometer, 

respectively. All variables were standardized to mean of zero and unit variance (z-

transformation) to account for their different scales of measurement that can affect some 

statistical analysis.  

 

 Statistical analysis 

We used Principal Coordinates of Neighbor Matrices (PCNM eigenfunctions; Borcard 

and Legendre 2002) to generate spatial variables (proxy for spatial processes) used as 

explanatory variables in Canonical models (Dray et al. 2006). PCNM are a form of Moran’s 

eigenvector maps (Legendre et al. 2010) and were generated following the procedures 

described in Borcard and Legendre (2002) and Dray et al. (2006). We computed PCNM 

eigenvectors from a pairwise Euclidean (geographic) distance matrix between the 34 sampling 

locations. The longest distance connecting two locations in a minimum spanning tree was 

used as a threshold to truncate the distance matrix. Whereas locations separated by distances 

lower than the threshold were connected, those more distant than the threshold were 

disconnected in a neighbor matrix.  

After we generate the spatial variables, we assessed the importance of spatial and 

environmental variables on metacommunity structure by applying permutation tests (10000 

permutations) on redundancy analysis (RDA) model. We implemented a forward selection 

procedure with double stopping criteria (Blanchet et al. 2008, Legendre and Legendre 2012) 

to select only the environmental and spatial variables (PCNMs) that significantly explained 
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the variance in the metacommunity structure. Further, we used a variation partitioning 

procedure (Peres-Neto et al. 2006) applied to the redundancy analysis (partial RDA) to 

disentangle species response to environmental and spatial variables (retained PCNMs) 

(Legendre and Legendre 2012). In this analyses, the total percentage of variation in the 

species data is decomposed into pure (independent) and shared (interactive) contributions of 

two sets of predictors (i.e., environmental and spatial variables) and can be attributed to 

different fractions based on adjusted fractions of variation (Radj
2 ): total explained variation [a 

+ b + c], environmental variation [a + b], spatial variation [b + c], environmental variation 

without the spatial fraction [a], spatial variation without the environmental fraction [c], the 

common fraction of variation [b] shared by environmental (E) and spatial predictors (S), and 

the residual fraction of variation not explained by E and S [d] (Peres-Neto et al. 2006). 

Despite some recent criticism (Gilbert and Bennett 2010, Smith and Lundholm 2010), this 

analytical technique remains valuable to identify common and unique contributions to model 

prediction and hence better address the question of the relative influences of the groups of 

independent variables considered in a regression model (P. Peres-Neto, pers. comm., 5 

September 2015). 

The partial RDAs were run for each dispersal mode group and for the whole 

community together for the four sampling periods. We transformed the total counts of species 

using the Hellinger transformation (Legendre and Legendre 2012) to homogenize variation 

among species abundances and make data more appropriate to be analyzed by linear 

ordination methods (Peres-Neto et al. 2006). To investigate temporal differences, all analyses 

were done separately for each sampling event. All analyses were undertaken in the R 

environment using vegan (Oksanen et al. 2013) and fields (Furrer et al. 2009) packages. 

 

Results 

Environmental characterization 

Seawater temperature varied seasonally, with warmer waters (27.2°C) during summer 

(February 2012) and cooler waters (20.4°C) in winter (July 2012).  Salinity was greater in 

September 2011 and lower in July 2012. No great variation in organic matter content was 

recorded. Sediment features varied throughout the study period, and the content of silt and 

clay and fine sand in the sediment increased from September 2011 to July 2012, whereas the 

coarser fractions of sediment decreased (Appendix 2).  

Biotic characterization 
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One hundred and twenty four macrobenthic species were recorded in this study 

(Appendix 1).  Polychaetes, molluscs and crustaceans made up 94% of the total number of 

species (polychaetes: 67 species, molluscs: 34 species, crustaceans: 18 species). Species with 

planktonic larvae and sessile adults (DAG2) were the most representative group (n = 54), 

followed by species with planktonic larvae and motile adults (DAG1; n = 47), species with 

non-planktonic larvae and sessile adults (DAG 4, n = 12) and species with non-planktonic 

larvae and motile adults (DAG 3, n = 4) (Table 2). Seven species were not included in the 

analysis because we could not properly include them in a DAG.  

 

Relative importance of environmental and spatial processes on metacommunity structure 

When all species were analyzed together, both environmental and spatial processes 

significantly affected the macrobenthic metacommunity structure. Nevertheless, a stronger 

spatial pattern was observed in three of the four periods analysed (Figure 2). Sediment type, 

depth and salinity were the three environmental variables that most influenced species 

composition. The number of spatial variables retained for the partial RDA model ranged from 

2 in September 2011 to 8 in May 2012. The shared variation by environmental and spatial 

predictors [b] was higher in May (Figure 2).  
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* P < 0.05; ** P< 0.01; *** P < 0.001 

Figure 2. Variation partitioning results for macrobenthic assemblages considering all species. Results based on a 

partial redundancy analysis. Values shown are adjusted R2. 

 

The relative importance of environmental and spatial processes, however, was highly 

dependent on the dispersal ability of each group (Table 2). The group of the strongest 
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dispersers (i.e. species with high motility in larval and adult stages, DAG 1) showed 

significant pure environmental control in three of the four samplings. In contrast, assemblages 

with reduced dispersal capabilities (i.e. nonplanktonic larvae and discretely motile adults, 

DAG 4) were only influenced by spatial variables (Table 1).  Groups with intermediate 

dispersal capabilities (i.e., DAG 2 and DAG 3) did not show a clear pattern, being 

significantly influenced by spatial and/or environmental variables in only one period.  

 

Table 1. Number of species and percentage of variation attributable to different fractions in 

each dispersal ability group  

 DAG1 DAG2 DAG3 DAG4 

September     
Species 39 32 4 8 
Environment 11.5 - 06.2 - 
Shared 09.1 - 18.6 - 
Space 16.8 - 21.4 - 
Unexplained 62.6 - 53.8 - 

February     
Species 33 31 5 10 
Environment 05.2 16.1 - - 
Shared 00.9 06.1 - - 
Space 19.0 04.8 - - 
Unexplained 74.9 73.0 - - 

May     
Species 33 27 4 3 
Environment 00.6 - - 0.00 
Shared 11.5 - - 02.3 
Space 10.2 - - 54.0 
Unexplained 77.7 - - 43.7 

July     
Species 29 27 4 7 
Environment 02.8 - - 0.00 
Shared 05.9 - - 02.6 
Space 10.2 - - 48.7 
Unexplained 81.1 - - 49.7 

Environment:  pure environmental variation; Shared: spatially-structured environmental 
variation; Space: pure spatial variation; Unexplained: variation not explained by any set of 
explanatory variables. (DAG1) species with planktonic larvae and motile adults, (DAG2) 
planktonic larvae and discretely motile adults, (DAG3) nonplanktonic larvae and motile 
adults, and (DAG4) nonplanktonic larvae and discretely motile adults.Bold numbers 
correspond to statistically significant (P<0.05) values. (-) indicates that no environmental or 
spatial variable significantly explained the variance in the species composition matrix, 
therefore the variation partitioning procedure was not applied. 
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Discussion 

Each of environmental and spatial processes affected the soft sediment macrobenthic 

assemblages. Nonetheless, contrary to our first prediction, spatial variables were better 

predictors (i.e., they explained higher variance) of metacommunity structure. This pattern, 

however, changed through time and was contingent on the dispersal ability of each group. 

Supporting our second prediction, environmental processes were more important for stronger 

disperses, whereas spatial processes were more relevant for weaker disperses. 

The observed low importance of the independent environmental effect on the soft-

sediment macrobenthic assemblages of Araçá Bay is novel. Metacommunity theory assumes 

that the relative role of environmental and spatial processes in the assembly of local 

communities depends on the spatial scale investigated. Because dispersal of species are not 

expected to be limited at small spatial scales, it is predicted that fine-scale (e.g. within a bay) 

spatial distributions of species are primarily determined by environmental processes (Cottenie 

2005, Meutter et al. 2007, Árva et al. 2015). This would be expected for macrobenthic 

invertebrates inhabiting intertidal soft-sediments because most species can disperse during 

larval and adult phases, and several studies have documented that their species composition 

and abundances respond mainly to physical and biotic characteristics of the environment 

(McLachlan 1990, Defeo and McLachlan 2005, de Juan and Hewitt 2014). Our results, 

however, show some divergence from these findings. Although we observed that 

environmental processes are indeed important in structuring macrobenthic assemblages, we 

also revealed that the most substantial part of spatial distribution of macrobenthic organisms 

in Araçá Bay was related to spatial processes. Similarly, Quillien et al. (2015) and Gerwing et 

al. (2016) also found that spatial processes are relevant in structuring marine soft sediment 

assemblages, whereas Shanks (2009) found that many marine species larvae can disperse a 

short distance only (< 1 km), and Becker et al. (2007) showed that coastal mussel larvae, 

previously thought to dispersed hundreds of kilometers, are retained within a few kilometers 

of their natal origin.  

Several authors have pointed out that the variation accounted by spatial processes may 

arise from two main sources: it can be attributed either to some spatially structured 

unmeasured environmental variables or pure spatial processes related to dispersion (e.g. 

Legendre and Legendre 2012, Landeiro et al. 2014, Provete et al. 2014). Although we 

included most environmental variables that are commonly found to affect the species 

distribution of soft sediment macrobenthic assemblages (i.e., sediment, depth and salinity), 

many others were not considered. Physical forces such as local currents and small-scale 
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turbulent processes in the water column are known to affect recruitment of marine 

invertebrates (Abelson and Denny 1997, Lundquist et al. 2004) and, therefore, may contribute 

significantly to their spatial patterns. Oxygen and nitrogen content in the sediment is also 

another important environmental factor that was not considered here.  Thus, it is likely that 

the environmental control observed here is underestimated and is important that future studies 

on macrobenthic assemblages include other variables than sediment type, depth and salinity. 

Nevertheless, the low percentage of variation explained by the common fraction of variation 

shared by environmental and spatial predictors (fraction b) is an indicative that spatial 

processes are indeed an important structuring factor in this system. 

 The importance of spatial processes on the macrobenthic assemblages of Araçá Bay is 

further supported by the different influence of environmental and spatial variables on 

organisms with different dispersal abilities (DAGs). As expected in the second prediction, 

stronger disperses responded strongly to environmental processes, whereas weaker disperses 

were more influenced by spatial processes. In this regard, our results show that dispersal 

capabilities vary depending on species traits, suggesting that species with planktonic larvae 

and mobile adults are better able to track environmental variability than species with 

nonplanktonic larvae and adults with reduced mobility. Since stronger dispersers may spread 

over extended area, they may also have larger and more evenly dispersed stock of potential 

colonizers than species with reduced dispersal capabilities. Consequently, it can be expected 

that better dispersers are less sensitive to habitat loss. On the other hand, species with 

nonplanktonic larvae and less mobile adults would be more impacted by habitat degradation 

due to its reduced mobility (Landeiro and Magnusson 2011, Siqueira et al. 2012).  

 The lack of a strong spatial or environmental signature in the DAG2 and DAG3 in 

three of four periods suggests that these groups do not show strong dispersal limitation, but 

also that their dispersal characteristics are too weak to track environmental variability. 

Historically, marine ecologists have emphasized the importance of pelagic larvae as the 

primary agents of dispersal for macrobenthic invertebrates (Whitlatch et al. 1998, Becker et 

al. 2007, Pilditch et al. 2015). This view stems from the fact that these larvae can disperse in 

very high numbers, and through large areas, with currents before settling. In soft-sediment 

systems, however, dispersal continues after larval settlement, and recent investigations have 

been showing that post-settlement dispersal are likely to be similar to pelagic larval dispersal 

because of continued, frequent, small-scale dispersal over longer periods (Pilditch et al. 

2015). Our results do not show which dispersal strategy (pre- or post-settlement) is more 
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efficient, but clearly demonstrate that both are relevant to structure soft- sediment 

macrobenthic assemblages.  

 Although development mode and adult mobility seem to be decisively important to 

dispersal capabilities of macrobenthic species, other traits may also exert strong influence. 

Number and size of eggs and/or larvae have been pointed as a determinant for distance 

traveled and potential of recolonization (Lundquist et al. 2004). Whereas large number of 

larvae is expected to reach greater distances due to random processes, small larvae (or eggs) 

are expected to have reduced fall velocity and stay more time within the water column, thus 

being transported long distances to colonize far away habitats. Larval behavior may also have 

exert strong importance on structure of marine macrobenthic metacommunities, as studies are 

accumulating that demonstrate that many larvae are capable of swimming to orient 

themselves (Metaxas 2001, Kingsford et al. 2002, Shanks 2009). It can be speculated that 

these larvae/species can actively search for suitable habitats, thus favoring environmental 

processes, or staying close to the bottom where currents are much slower, therefore favoring 

spatial processes (Shanks 2009). Information on these topics, however, is still lacking and 

should be addressed in future studies.   

We also found that the relative importance of spatial and environmental processes 

changed through time. The temporal changes in metacommunity dynamic observed at Araçá 

Bay were mainly related to the importance of spatial processes. The percentage of variation 

explained by spatial processes increased in the last two samplings, which can be related to 

seasonal changes in biotic features (e.g. seasonal changes in recruitment patterns or number of 

predators) or to stochastic events which induce physical disturbances in the environment. 

Days before the last two samplings, Araçá Bay was struck by unusually large storms, which 

increased waves height and power (Corte et al. in prep). In tidal systems as our study area, 

dispersion of individuals is promoted by regular tidal-mediated currents and also by wave-

driven resuspension events (Valanko et al. 2010). Therefore, it is reasonable to infer that the 

storms that affected the study area in May and July 2012 increased dispersal rates in 

macrobenthic assemblages. This increased dispersal, in turn, might have changed spatial 

patterns of abundance and affected the metacommunity dynamic of macrobenthic species. 

These findings suggest that storms might change spatial patterns of abundance of 

macrobenthic species and exert significant impacts on the metacommunity dynamic of 

intertidal soft-sediments. However, the limitations of this study (only one area investigated) 

preclude a rigorous test for storm impacts on metacommunity dynamics of soft-sediment 

assemblages, and our results may be viewed as insights for future studies.  
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Marine macrobenthic organisms are considered good dispersers because their dispersal 

happens before and after larval settlement (Whitlatch et al. 1998, Pilditch et al. 2015). It was 

expected therefore that environmental processes would exert a major role on their 

metacommunity structure. Our results, however, show that macrobenthic asssemblages may 

be primarily influenced by spatial processes even at small scales (less than 1 Km2). In this 

regard, it is evident that broader consideration of the roles of spatial processes should enhance 

understanding the ways macrobenthic assemblages are structured (Thrush et al. 2005b, Zajac 

et al. 2013). This can be especially important for coastal ecosystems, where alongshore 

currents with reduced velocities and changes in the wind direction can keep the larvae closer 

to shore (Shanks 2009). By comparing groups of species varying in dispersal ability, we 

found that the relative influence of environmental and spatial variables is dependent of species 

dispersal capabilities. Therefore, accounting for differences in species life histories, 

specifically mode of species development, is important to better understand species 

distribution and coexistence patterns in intertidal soft-sediments. Since we showed that the 

influence of spatial and environmental processes is not consistent through time, it is also 

important that future studies replicate sampling in time so the influence of seasonal and 

stochastic factors on macrobenthic metacommunities can be unveiled.  
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Annex 1 

 

Species investigated in this study and their dispersal ability group (DAG). 

Species Adult Motility 
Larval 

Motility 
DAG Reference 

Cnidaria 

Edwardsia sp. 1 sessile planktonic 2 Brusca et al. (2003). 
Nemertea 

Nemertea sp. 1 - - - - 
Mollusca 

Abra sp.1 mobile planktonic 1 (1) 
Anomalocardia brasiliana sessile planktonic 2 Mouëza et al. (1999) 
Bulla striata mobile nonplanktonic 3 Berrill (1931) 
Cerithium atratum mobile planktonic 1 Houbrick (1971) 
Chione cancellata sessile planktonic 2 Morsan and Kroeck (2005) 
Chione subrostrata sessile planktonic 2 Morsan and Kroeck (2005) 
Corbula caribaea sessile plankfeed 2 (1) 
Corbula sp.1 sessile plankfeed 2 (1) 
Cyclinella tenuis sessile planktonic 2 Morsan and Kroeck (2005) 
Diplodonta patagonica sessile planktonic 2 Raven (2013) 
Diplodonta punctata sessile planktonic 2 Raven (2013) 
Donax gemmula mobile plankfeed 1 Carstensen et al. (2010) 
Ervilia nitens sessile planktonic 2 Raven (2013) 
Eurytellina lineata sessile planktonic 2 Webb (1986) 
Gouldia cerina sessile planktonic 2 Morsan and Kroeck (2005) 
Iphigenia brasiliana sessile plankfeed 2 Webb (1986) 
Macoma sp. sessile planktonic 2 Webb (1986); Carstensen et al. (2010) 
Nassarius vibex mobile planktonic 1 Scheltema (1965) 
Neritina virginea mobile planktonic 1 Crandall (1999) 
Nucula semiornata sessile planktonic 2 (1) 
Olivella minuta mobile planktonic 1 Edwards (1968) 
Periploma ovata sessile planktonic 2 Raven (2013) 
Phacoides pectinata sessile planktonic 2 Raven (2013) 
Pitar fulminatus sessile planktonic 2 Morsan and Kroeck (2005) 
Protothaca pectorina sessile planktonic 2 Morsan and Kroeck (2005) 
Semele sp. 1 sessile planktonic 2 Raven (2013) 
Solen tehuelchus sessile planktonic 2 Raven (2013) 
Sphenia antillensis sessile planktonic 2 (1) 
Strigilla pisiformis sessile planktonic 2 Webb (1986) 
Tagelus divisus sessile planktonic 2 Morsan and Kroeck (2005) 
Tagelus plebeius sessile planktonic 2 Morsan and Kroeck (2005) 
Tellina sp. 1 sessile planktonic 2 Webb (1986) 
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Tellina sp. 2 sessile planktonic 2 Webb (1986) 
Tivela mactroides sessile planktonic 2 Morsan and Kroeck (2005) 
Oligocaheta 

Oligochaeta - - - - 
Polychaeta 

Ancistrosyllis jonesi mobile planktonic 1 Blake (1975) 
Aricidea (Allia) albatrossae mobile planktonic 1 (2) 
Aricidea (Aricidea) fragilis mobile planktonic 1 (2) 

Aricidea cf. wassi mobile planktonic 1 (2) 

Armandia agilis mobile planktonic 1 (1) 

Armandia hossfeldi mobile planktonic 1 (1) 

Armandia polyophtalama mobile planktonic 1 (1) 

Boccardia polybranchia sessile planktonic 2 (1) 

Boccardiella ligerica sessile planktonic 2 (1) 

Capitella spp mobile planktonic 1 Rouse and Pleijel (2001) 

Cirriformia filigera sessile planktonic 4 (1) 

Cirriformia punctata sessile planktonic 4 (1) 

Cirriformia tentaculata sessile planktonic 4 (1) 

Clymenella dalesi sessile planktonic 2 (1) 

Diopatra aciculata sessile nonplanktonic 4 Rouse and Pleijel (2001) ; (3) 

Diopatra dexiognatha sessile nonplanktonic 4 Rouse and Pleijel (2001) ; (3) 

Dispio remanei sessile planktonic 2 (1) 

Dispio uncinata sessile planktonic 2 (1) 

Dorvillea sp. mobile planktonic 1 (1) 

Eteone alba mobile planktonic 1 (1) 

Glycinde multidens mobile planktonic 1 (1) 

Goniada litorea mobile planktonic 1 (1) 

Haploscoloplos sp. 1 mobile planktonic 1 Giese and Pearse (2012) 

Hemipodia simplex mobile planktonic 1 (3) 

Hermundura tricuspis mobile planktonic 1 Jumars et al. (2015) 

Heteromastus filiformis mobile planktonic 1 (1) 

Isolda pulchella sessile planktonic 2 
Hernández-Alcántara and Solís-Weiss 

(2009) 
Laeonereis culveri mobile planktonic 1 Mazurkiewicz (1975) 
Loimia medusa sessile nonplanktonic 4 Rouse and Pleijel (2001); (3) 

Magelona californica sessile planktonic 2 (1) 

Magelona nonatoi sessile planktonic 2 (1) 

Magelona papilicornis sessile planktonic 2 (1) 

Magelona variolamellata sessile planktonic 2 (1) 

Marphysa sebastiana sessile planktonic 2 (1) 

Mediomastus californiensis mobile planktonic 1 (3) 



64 

 

 

Mooreonuphis lineata sessile planktonic 4 Rouse and Pleijel (2001); (3) 

Naineris setosa mobile planktonic 1 Giangrande and Petraroli (1991) 
Nematonereis hebes mobile nonplanktonic 3 Rouse and Pleijel (2001); (3) 

Nicolea uspiana sessile nonplanktonic 4 (3) 

Notomastus hemipodus mobile planktonic 1 (1) 

Notomastus lobatus mobile planktonic 1 (1) 

Onuphis eremita oculata sessile nonplanktonic 4 (3) 

Owenia brasiliensis sessile planktonic 2 Brusca et al. (2003) 

Owenia fusiformis sessile planktonic 2 Brusca et al. (2003) 

Paraprionospio pinnata sessile planktonic 2 (1) 

Phyllodoce mucosa mobile planktonic 1 Brusca et al. (2003) 

Poecilochaetus australis sessile planktonic 2 (1) 

Poecilochaetus perequensis sessile planktonic 2 (1) 

Poecilochaetus sp. 1 sessile planktonic 2 (1) 

Polydora nuchalis sessile planktonic 2 (1) 

Polydora sp.1 sessile planktonic 2 (1) 

Polydora sp.2 sessile planktonic 2 (1) 

Polydora websteri sessile planktonic 2 (1) 

Prionospio steenstrupi sessile planktonic 2 (1) 

Protoaricia sp. 1 mobile nonplanktonic 3 Rouse and Pleijel (2001); (3) 

Scolelepis sp.1 sessile planktonic 1 (1) 

Scolelepis squamata sessile planktonic 1 (1) 

Scolelepis texana sessile planktonic 1 (1) 

Scoletoma tetraura mobile planktonic 1 Ghodrati Shojaei et al. (2015) 

Scoloplos (leodamas) sp. 1 mobile nonplanktonic 1 (1) 

Scyphoproctus sp. 1 - - - - 

Sigambra grubii mobile planktonic 1 Achari (1975) 
Sigambra tentaculata mobile planktonic 1 Achari (1975) 
Sternaspis capilata mobile planktonic 1 (3) 

Syllis sp.1 mobile nonplanktonic 3 Rouse and Pleijel (2001); (3) 

Terebellides anguicomus sessile nonplanktonic 4 Rouse and Pleijel (2001); (3) 

Sipuncula 

Sipuncula sp. 1 sessile planktonic 2 Brusca et al. (2003) 

Crustacea 

Alpheus nuttingi mobile planktonic 1 Brusca et al. (2003) 

Amphipoda sp.1 sessile nonplanktonic 4 Lopes and Masunari (2004); Leite (1996) 

Callinectes danae mobile planktonic 1 Branco and Masunari (2000) 
Caridae sp.1 mobile planktonic 1 Brusca et al. (2003) 

Clibanarius antillensis mobile planktonic 1 
Varadarajan and Subramoniam (1982); 

Sant'Anna et al. (2009) 

 

Clibanarius vittatus mobile planktonic 1 
Varadarajan and Subramoniam (1982); 

Sant'Anna et al. (2009) 
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Dendobranchiata mobile planktonic 1 Rupert et al. (2004) 

Monokalliapseudes schubartii sessile nonplanktonic 4 
Pennafirme and Soares-Gomes (2009); 

Leite et al. (2003) 
Ocypodidae mobile - - - 

Ogyrides alphaerostris mobile planktonic 1 Packer (1985) 
Pagurus criniticornis mobile planktonic 1 Negreiros-Fransozo and Hebling (1987) 
Panopeus occidentalis mobile planktonic 1 Harvey and Epifanio (1997) 
Pinnixa chaetopterana sessile planktonic 

Processa bermudensis mobile planktonic 1 
Martínez-Mayén and Román-Contreras 

(2013) 
Uca leptodactyla mobile planktonic 1 Yamaguchi (2001) 
Upogebia brasiliensis sessile planktonic 2 De Oliveira et al. (2014) 
Upogebia paraffins sessile planktonic 2 De Oliveira et al. (2014) 
Upogebia vasquezi sessile planktonic 2 De Oliveira et al. (2014) 
Echinodermata 

Holothuroidea sp. 1 - - - 

Ophiuroidea sp. 1 - - - 

Chordata 

Cephalochordata sp. 1 - - - 

(1) www.genustraithandbook.org.uk 
(2)  http://www.sealifebase.org 
(3) http://polychaetes.lifewatchgreece.eu/ 
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Annex 2 

 

Table 1. Species richness, abundance of individuals and selected environmental variables 
across the sampling periods (±SD). 

 
September 

2011 
February 2012 May 2012 July 2012 

Richness (S) 80 81 65 64 
Abundance  9606 13.228 3.828 6.722 
Temperature (oC) 21.91 (±1.40) 27.24 (±1.03) 25.04 (±1.22) 20.35 (±0.54) 
Salinity 32.26 (±1.96) 31.68 (±5.01) 30.59 (±3.92) 29.94 (±3.55) 
Silt and clay (%) 4.18 (±3.66) 4.73 (±3.37) 4.80 (±3.65) 5.71 (±5.29) 
Fine sand (%) 68.49 (±18.65) 73.47 (±19.49) 74.09 (±16.36) 74.73 (±17.77) 
Coarse sand (%) 16.83 (±16.85) 12.88 (±15.43) 11.10 (±11.89) 10.46 (±14.93) 
Peebles (%) 6.18 (±8.60) 3.73 (±6.84) 3.19 (±5.21) 3.16 (±6.07) 
Organica matter (%) 1.63 (±0.75) 1.68 (±1.20) 1.72 (±0.89) 1.86 (±1.28) 
CaCO3 (%) 4.88 (±2.52) 4.43 (±2.59) 3.76 (±2.73) 3.48 (±1.86) 
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Capítulo 3 

 

Strong cross-taxon congruence does not imply in similar responses to environmental 
variables in marine benthic communities.  

Abstract  

Cross-taxon congruence, i.e. the degree to which patterns in assemblage structure in a set of 

sites are similar among different taxonomic groups, has being suggested as an important tool 

in conservation planning and biodiversity monitoring. In spite of its importance and potential 

applicability, the effectiveness of this approach is still largely overlooked and no consensus 

has been achieved thus far. Here, we assessed if macro- and meiofaunal communities 

inhabiting marine soft-sediments show concordant variation in a biodiverse coastal 

ecosystem. Patterns of assemblages’ structure of the two groups were strongly correlated, and 

both assemblages were influenced by similar environmental variables. Nevertheless, the 

direction of this influence was different for each group and macro- and meiofauna taxonomic 

richness and abundance were inversely correlated. These opposing patterns of abundance and 

richness between the assemblages show that strong concordance may emerge even when 

different taxonomic groups show contrasting trends and highlight that caution should be take 

when using cross-taxon congruence in biodiversity assessment and conservation planning.  
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Introduction 

Biodiversity loss is currently a major threat to the structure and functioning of 

ecosystems (Chapin III et al. 2000, Larsen et al. 2012). Over the past few decades, the 

accelerating extinction rates have induced an increasing effort into assessing biodiversity. The 

limited funding for conservation, the lack of taxonomic specialists and the time-consuming 

work to sample and identify organisms (Myers et al. 2000, Heino 2010, Vieira et al. 2015), 

however, usually preclude a complete biodiversity assessment. To reconcile the opposite 

forces of complexity and practicality, it is therefore necessary a reduction of  the multiplicity 

associated with biodiversity into fast and cost effective measures that can be used for 

biodiversity conservation and monitoring (Siqueira et al. 2012). 

  One alternative to provide practical, less costly, and more quickly obtainable measures 

for biodiversity is to base broad-scale assessments on a well-known surrogate taxa whereby 

an indicator group is used to indicate the condition of the overall biodiversity of an ecosystem 

(Paavola et al. 2006, Dolph et al. 2011). Studies testing the effectiveness of surrogate groups 

have generally been based on indicator species, genera or familes (Dufrêne and Legendre 

1997, Sánchez-Fernández et al. 2006, Heino 2010). More recently, however, researches 

started to investigate cross-taxon congruence based on community structure as an alternative 

for predicting variation in the biodiversity (Jackson and Harvey 1993, Paavola et al. 2006, 

Bini et al. 2007a, Vieira et al. 2015).  

Cross-taxon congruence (also known as community concordance) corresponds to the 

degree to which different communities show similar patterns across varied environments. This 

is expected to happen when different communities respond to the same ecological processes, 

and is an indicative of the validity of surrogate taxa for conservation planning and monitoring 

purposes (Jackson and Harvey 1993, Bini et al. 2007b).  In spite of its importance and 

potential applicability, cross-taxon congruence is still largely overlooked (Siqueira et al. 2012, 

Vieira et al. 2015). As a consequence, no consensus has been achieved thus far for this 

approach. While some studies have found that cross-taxon congruence  bears great promise 

for bioassessment (Paavola et al. 2006, Sánchez-Fernández et al. 2006, Bini et al. 2007b), 

others have not found strong concordance between different taxonomic groups, suggesting a 

lack of support for this approach (Heino 2010, Vieira et al. 2015).  

In aquatic ecosystems, studies evaluating cross-taxon congruence have been mostly 

realized with freshwater communities inhabiting streams, lakes and ponds (e.g.: (Jackson and 

Harvey 1993, Heino et al. 2003, Larsen et al. 2012). Marine ecosystems, despite their large 

biodiversity and endangered situation (Halpern et al. 2007, Defeo et al. 2009), have been 
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neglected and the number of studies that investigated suitable surrogates for mapping and 

predicting marine biodiversity is very restricted. For instance no study has investigated the 

community concordance among marine benthic assemblages thus far. 

In marine soft-bottom ecosystems, benthic species are composed from a wide 

taxonomic and functional diversity. This fauna is commonly divided based on size, being 

macrofauna (> 0.5 mm) and meiofauna (> 0.044 mm, < 0.5 mm) essential for ecosystems 

services such as nutrient cycling, as well as relevant food source for higher thropic levels 

(Danovaro et al. 2007, Bonaglia et al. 2014). These groups interact in soft-sediments (e.g. 

predation, facilitation process) and some meiofaunal organisms are early stages of 

macrofaunal ones (referred to as temporary meiofauna; (Hentschel and Jumars 1994, Zeppilli 

et al. 2015). The study of marine benthic communities, however, has traditionally been 

conducted independently, focusing on only one of their components (Fonseca and Netto 

2006), and there are rarely data for multiple taxa in the same area to allow comparisons 

(Sutcliffe et al. 2012).   

To evaluate the efficacy of the surrogacy approach for marine benthic fauna and to 

provide useful information that can be used to design effective biological monitoring 

programmes in coastal marine ecosystems, we studied a biodiverse marine soft-bottom 

ecosystem and investigated whether macro- and meiofaunal assemblages exhibit concordant 

patterns of community structure in three different periods. Further, we inspected whether both 

groups show similar patterns of abundance and species richness. Since a reliable surrogate 

group should also respond to similar processes that maintain other taxonomic groups (Heino 

2010, Vieira et al. 2015), we also investigated the influence of environmental variables on 

macro- and meiofaunal assemblages.  

 

Material and Methods 

Study area  

This work was done at Araçá Bay (23º 49’S, 45º 24’W), a wide intertidal flat (534.500 

m2) located in the central area of the São Sebastião Channel, state of São Paulo, Southeast 

Brazil (Fig. 1).  This area has a gentle slope reaching a maximum depth of 30 meters onwards 

the channel. The tides range from average levels of 2.06 m (maximum) to -0.04 m (minimum) 

(Gubitoso et al. 2008).  
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Fig.1 – Study Area. Map of the sampling sites in Araçá Bay, state of São Paulo – Brazil. 

 

Sampling 

Sampling was performed on October 2012, February 2013 and June 2013. Samples 

were taken during the low tide from thirty-seven geo-referenced sites arranged on an irregular 

sampling grid, from the intertidal to  approximately 30 m deep (Fig. 1).  At each sampling 

site, samples were collected simultaneously for the investigation of macrofauna, meiofauna, 

microphytobenthos, microbiota and granulometry.  

For macrofauna analysis, four sediment samples were taken using a PCV corer of 10 

cm diameter and 20 cm deep. Each sample was placed in a plastic bag and taken to the 

laboratory, where they were sieved with a 0.3 mm mesh. The fauna retained was sorted in 

taxonomic groups and fixed in 70% ethanol. Posteriorly, all individuals were identified to the 

species level.  

For meiofauna analysis, one sediment sample was taken using a PVC corer of 2.5 cm 

in diameter and 5 cm deep. Samples were immediately fixed in 4% formaldehyde. In the 

laboratory, samples were washed through a 45 µM mesh sieve and extracted by flotation with 

Ludox TM 50 (specific density 1.18) (Heip et al. 1985). The retained material was stored in 

formaldehyde 4% and stained with Rose Bengal. Meiofauna was counted and identified under 

a stereomicroscope. Copepoda, Kinorhynca and Tardigrada were grouped into higher taxa, 

whereas Nematoda was identified to genus level and further separated into morphospecies. 

From each sample, a total of 100 nematodes were randomly picked, evaporated slowly in 
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anhydrous glycerol and mounted on permanent slides for identification.  After identification, 

the proportion of each taxon per sample was multiplied by the total number of individuals per 

sample to achieve the total number of individuals of each species.  

For microphytobenthic analyses, five samples of the top 1cm of the sediment were 

taken using a corer measuring 2 cm in diameter and conditioned in dark bottles. These 

samples were kept on ice and stored at -20°C. Microphytobenthic analyses were performed 

from the estimate biomass of phaeopigments. These pigments were extracted from each 

sample with 10mL 100% acetone together with 0.07g MgCO3 for 24h in the dark at 4° C. 

Absorbance was read at optical densities of 750, 665 and 430nm in a spectrophotometer, 

before and after acidification with 1N HCl, according to Plante-Cuny (1978). The calculation 

to obtain the content of phaeopigments were performed by using the equations of Plante-Cuny 

(1973). The microbiota analyses were performed from the direct count of heterotrophic 

bacteria, cyanobacteria and heterotrophic nanoflagellates (larger than 8.0 µm, see Caron et al. 

(1991)). In the lab, 20g of each sediment samples were diluted 10-fold with sterile seawater 

and vortexed during 5 minutes. The supernatant was stored in sterile flasks containing 5% 

formaldehyde (final concentration) and kept under refrigeration (Hobbie et al. 1977). For 

heterotrophic bacteria and cyanobacteria, aliquots were filtered onto 0.2-µm Nucleopore 

Black membrane, stained with DAPI (Porter and Feig 1980) and counted under 

epifluorescence microscope using ultraviolet and green lights, respectively. Aliquots for 

heterotrophic nanoflagellates were filtered onto 8µm Nucleopore Black (Caron et al. 1991), 

stained with DAP for six hours and then filtered onto 2µm Nucleopore black.  Nanoflagellates 

were quantified by epifluorecence microscopy under ultraviolet light. 

One additional sample of sediment was taken for granulometric analysis using a corer 

of 3 cm diameter and 20 cm deep. The granulometric analysis of the sediment collected was 

carried out using the routine sieving and pipetting techniques described by Suguio 1973 and 

sediment parameters were obtained using SysGran software, version 3.0 (Camargo 2006) in 

accordance with the classifications of Folk and Ward (1957).  

 

Data analysis 

To evaluate the similarity in distribution (spatial) patterns of community composition 

between macro- and meiofaunal assemblages (biological datasets), we first applied a log (y + 

1) transformation to abundance data of each assemblage to minimize the effect of extreme 

values. We then computed a Principal Coordinates Analyses (PCoA) for each assemblage 

using the Bray-Curtis dissimilarity as the distance measure. Then, we compared the ordination 
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patterns generated with a Procrustes Rotation Analysis (Jackson and Harvey 1993, Peres-Neto 

and Jackson 2001). Briefly, Procrustes Analysis tries to match the position of each sampling 

station in one multivariate space (defined here by the first three CA axes of the macrofauna 

data) to the position of the same sampling station in a second multivariate space (the first 

three CA axes of the meiofauna data), thereby assessing the degree to which both assemblages 

have similar patterns. The resultant statistic (residual sum-of-squares statistics - m2) is then 

transformed into the r statistic (
 = √1 −���
), which is a measure of the community 

congruence. The statistical significance of r was assessed with a Monte Carlo randomization 

method, using 10000 permutations.  We also performed a Principal Coordinates Analyses 

(PCoA) for the environmental data using the Euclidean dissimilarity as the distance measure. 

Sediment parameters (coarse sand, fine sand and mud), orbital velocity of waves, depth, total 

organic carbon, microphytobenthos (phaeopigments), microbiota (heterotrophic bacteria, 

cyanobacteria and nanoflagellates), and the number of species and individuals of the 'other' 

taxonomic group (i.e. macrofauna data for the meiofauna analysis and vice versa) were used 

as environmental variables. Orbital velocity of waves was highly correlated with depth. 

Therefore, orbital velocity was excluded from the analysis to keep the variation inflation 

factor lower than 3 (Zuur et al. 2010).   

 The vector residuals given by the Procrustes Analysis represents the lack of fit of 

ordination scores for an individual sample, with low values indicating strong concordance 

(Paavola 2006). To inspect whether the congruence between macro- and meiofaunal 

assemblages is influenced by explanatory variables, we related the residuals of the Procrustes 

Analysis between the macro-and meiofaunal datasets to the variables measured with Pearson 

correlation coefficients.  

 We used generalized additive models (Zuur 2009) to investigate the effect of time and 

environmental variables on species richness and abundance of macro- and meiofaunal 

assemblages. Time was considered a fixed factor with three levels accounting for the three 

sampling periods. As environmental variables, we used the same used in Procrustes analyses 

in addition to the number of species and individuals of the 'other' taxonomic group (i.e. 

macrofauna data for the meiofauna analysis and vice versa). Candidate models using negative 

binomial and Poisson distribution, with correction for zero inflation, were adjusted using 

penalized cubic regression splines (Zuur et al., 2009). Models were validated following the 

protocol proposed by Zuur et al. (2009). 

We used principles from theoretic information (Burnham and Anderson 2002) to 

select the best model predicting species richness and abundance of macro- and meiofauna. 
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First, we ran models comprising all combinations of predictors (excluding interactions) 

totaling 4096 possible candidate models. Then, we compared multiple models using corrected 

Akaike Information Criteria (AICc), logLikelihood scores and Akaike weights (AICw). 

Akaike weights measure the relative likelihood of a model being the best for the given data 

(Cardoso et al. 2016), which is a straight-forward procedure in a multimodel inference routine 

(Burnham and Anderson 2002). For inferences, we excluded models with dAICc scores 

(AICc value from the best model – AICc value of a candidate model) >4. We used the 

evidence ratio, the ratio of Akaike weights between the best model and a candidate model, as 

a measure of support for each individual model (Burnham and Anderson 2002). The evidence 

ration can be understood as the difference in the likelihood of different models in explaining 

the variation in the data. In this regard, an evidence ratio equal to 5 means that one model is 

five times more likely to explain variation in the data than the other. On the other hand, an 

evidence ratio close to one means that both models have similar probability to explain 

variation in the data.    

If a variable was not included in the best model, this should not suggest that it is of no 

importance (Cardoso et al. 2016). The relative importance of each variable used to estimate 

species richness and abundance of macro- and meiofauna abundance was calculated as the 

sum of the AICw over all of the models in which the variable appears (Burnham and 

Anderson 2002).  

All analyses were undertaken in the R environment (R Development Core Team 2013) 

using vegan (Oksanen et al. 2013), mgcv (Wood 2012) and MuMin (Barton and Barton 2015) 

packages.  

 

Results 

We recorded a total of 359 taxa (161 macrofauna and 198 meiofauna). The crustacean 

Monokalliapseudes schubarti and the polychaetes Capitella spp and Armandia hosfeldi were 

the most abundant macrofaunal species, whereas copepods and nematodes Terschellingia 

spp., Dorylaimopsis spp. and Comesoma spp. were the most abundant meiofaunal taxa.  

Significant and strong (>0.8) concordance between macrofaunal and meiofaunal 

assemblages was recorded in all three periods (Table 1).  
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Table 1. Results of the Procrustes analyses evaluating the relationships between macro- and meiofaunal assemblages 
and between these assemblages and the environmental variables. P values are given in brackets. 

 Macro 

 Oct/12 Feb/13 Jun/13 

Meio 0.83 (<0.001) 0.83 (<0.001) 0.81 (<0.001) 

 

 

The residuals of the Procrustes Analysis between the macro-and meiofaunal datasets 

were positively correlated with coarse sand and gravel, and negatively correlated with depth, 

total organic carbon and heterotrophic bacteria content (Table 2).  

 

Table 2. Correlation between residuals of the Procrustes Analyses between macro- and meiofaunal datasets and 

the variables analysed. Significant values (<0.05) are in bold. 

 r P 

Environmental   

Depth -0.27 <0.01 

Gravel (%) 0.21 0.03 

Coarse sand (%) 0.21 0.03 

Fine sand (%) 0.01 0.95 

Mud (%) 0.19 0.05 

Sorting 0.06 0.52 

Phaeopigments -0.06 0.58 

Het. bacteria  -0.15 0.13 

Cyanobacteria   -0.22 0.03 

Nanoflagellates -0.03 0.78 

Organic carbon -0.22 0.02 

 

The number of species of macrofauna within Araçá Bay was better predicted using a 

generalized additive model of water depth, fine sand and abundance of meiofauna (Annex). 

The model explained 60.1 % of the variance in benthic samples (adjusted r2 = 0.469). The 

results of the model showed no difference among sampling time. Depth and fine sand were 

included in all models selected, and thus had an importance of 1.0. Abundance of meiofauna 

was the third most important predictor, with importance value of 0.45. The evidence ratio 



77 

 

 

(1.19) between the best model and a model containing only depth and fine sand (rank = 3) 

indicated that both have virtually the same probability of being the best model. 

Depth was also an important predictor for number of macrofaunal individuals with 

importance of 1.0. The second predictor was number of meiofaunal species (importance of 

0.64), followed by nanoflagellates and fine sand (importance of 0.46 and 0.39, respectively) 

(Annex). The additive model regression explained 65.7% of the variance in meiofauna 

richness whitin Araçá Bay (adjusted r2 = 0.251). The results of the additive model showed 

that time was not important for explaining variance in abundance of macrofauna.  The 

evidence ratio (1.11) between the best model and a model containing only depth and 

meiofaunal species (rank = 3) indicated that both have the same probability to explain 

variation in the data. 

The best model for predicting meiofaunal species richness included depth and coarse 

sand, with importance of 0.97 and 0.32, respectively (Annex). The model explained 61.2% of 

the variance in meiofauna richness whitin Araçá Bay (adjusted r2 = 0.517). No difference 

among sampling time was recorded. The evidence ratio (1.27) between the best model and a 

model containing only depth (rank = 4) indicated that both have similar probability of being 

the best model, and highlights the importance of depth in explaining meiofaunal species 

richness. 

Meiofauna abundance showed the most complex model. It was best predicted by 

depth, fine sand, nanoflagellates, number of macrofaunal species, coarse sand and mud 

content. The additive model regression explained 41.5 % of the variance in meiofauna 

richness whitin Araçá Bay (adjusted r2 = 0.258). Depth, fine sand and nanoflagellates were 

included in all models selected, and thus had an importance of 1.0 (Annex). Number of 

macrofaunal species was also included in almost all models (importance 0.97). Coarse sand 

and mud content also showed high importance (0.77 and 0.72, respectively). As observed for 

macrofauna, the results of the additive model showed that time was not important for 

explaining variance in number of individuals of meiofauna.   

Relationships between the species richness and abundance of macro and meiofaunal 

assemblages and the selected predictors (variables with an importance > 0.3) are shown in 

Fig. 2 and 3. 
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Figure 2 - Smoothers curves (S) showing the relationship (solid line) between species richness (top row) and 
abundance (bottom row) of macrofaunal assemblages and the variables with an importance value greater than 0.3 
in models predictions. Dashed lines indicate standard errors of the smooth curve. The ‘rug plots’ on the x-axis 
indicate the range of variables over which measurements were taken. Numbers after the variable name on the y-
axis represent estimated degrees of freedom. 
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Figure 3 - Smoothers (S) curves showing the relationship (solid line) between species richness (top row) and 
abundance (middle and bottom row) of meiofaunal assemblages and the variables with an importance value 
greater than 0.3 in models predictions. Dashed lines indicate standard errors of the smooth curve. The ‘rug plots’ 
on the x-axis indicate the range of variables over which measurements were taken. Numbers after the variable 
name on the y-axis represent estimated degrees of freedom. 
 

Discussion 

Our results bring important implications for the use of the surrogacy approach in 

biodiversity assessments. Several studies have pointed out that strong and time-invariant 

congruence between different taxonomic groups might be an indicative that surrogate groups 

are relevant for biodiversity surveys (e.g. (Paavola et al. 2006, Bini et al. 2007b, Lopes et al. 

2011). The logic behind it is that strong cross-taxon congruence implies that different groups 

exhibit very similar patterns; therefore, it would be reasonable to expect that all groups show 

similar trends in community parameters, and conservation programs could be based in a 

single taxonomic group. Our results, however, clearly demonstrate that strong concordance 

patterns may emerge even when different taxonomic groups exhibit contrasting trends in 

species richness and abundance, and suggests that cross-taxon congruence should be used 

with caution for conservation planning and monitoring purposes. 
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Macro- and meiofaunal assemblages were influenced by the same set of environmental 

variables, a result that help to understand the strong concordance between both groups. Depth 

and sediment type were the most important variables structuring both assemblages. The 

importance of these variables on community structure of marine benthic fauna is well-know 

and has been shown by several authors (e.g. (Flach et al. 2002, Defeo and McLachlan 2005, 

Pusceddu et al. 2014). Depth is a potentially important variable because it is associated with 

wave disturbance on sediment and determines other factors such as the amount and nature of 

light and phytoplankton-derived food reaching the seabed, sediment type and the stability of 

physico-chemical factors (Vanaverbeke et al. 2011). Sediment type, in turn, directly affects 

the spatial and structural conditions of the interstitial matrix and indirectly determines the 

physical and chemical environment of the sediment. Using the site-specific residuals from the 

ProTest analyses, we were able to reinforce the influence of depth and sediment type. Since a 

large amount of residuals imply weaker concordance, stronger concordance between macro- 

and meiofaunal assemblages is expected to occur at deeper areas with higher food availability 

and fine sediments. 

It is important to stress, however, that although macro- and meiofaunal assemblages 

were influenced by similar environmental variables, the direction of this influence was 

different for each group. This was especially true for the depth gradient, where the two groups 

showed opposed trends. Macrofaunal assemblages had lower numbers of species and 

individuals in areas of 5 m depth and 15-20 m depth, whereas these areas had higher number 

of species and abundance of meiofaunal organisms.The non-linear nature of the relationships 

might be explained by hydrodinamic processes. A noticeable decrease in macrofauna 

abundance is expected on the shallow areas of the sublitoral due to the hydrodynamic stress 

on the surf zone (Janssen and Mulder 2005, Dolbeth et al. 2007). In this area, the wave action 

constant rework and move the sediment, limiting the residence of macrobenthos (Janssen and 

Mulder 2005). On the other hand, McIntyre (1971) and McLachlan et al. (1981) suggested 

that meiofauna is not so negatively affected by the increases in hydrodynamic stress than the 

macrofauna. The decrease in macrofaunal abundance and richnessin depth between 15 and 20 

m is probably related to the  stronger currents observed most frequently in the bottom layer of 

the São Sebastião Channel (Dottori et al. 2015). Sediment type is also an important factor in 

the establishment of benthic communities andt macro- and meiofaunal assemblages may show 

different responses to this variable (Fonseca and Netto (2006). Our results suggest that macro- 

and meiofauna are affected in different ways by the physical processes controlling coastal 
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soft-bottom environments and may show contrasting distribution patterns in a depth gradient, 

especially at the surf zone of shallow sublitoral. 

In addition to the environmental variables, biological interactions may also be 

important in structuring these assemblages and determining their congruence. Taxonomic 

composition and abundance of the other group was important in explaining macro and 

meiofaunal. The potential importance of biological interactions in structuring macro- and 

meiofauna assemblages has been discussed for a long time (McIntyre 1968, Watzin 1983, 

Warwick and Gee 1984) and it is not surprising.  Macro- and meiofaunal species are closely 

connected to each other in soft-sediments and several authors have pointed out that direct 

interactions such as predation and competition exert a strong influence on their patterns and 

result on inverse relationships (Peterson 1982, Tita et al. 2000, Danovaro et al. 2007). 

Usually, meiofaunal assemblages are positively linked to the local bacterial production and 

organic matter content, but negatively affected by macrofaunal activity (Albertelli et al. 1999, 

Flach et al. 2002, Zeppilli et al. 2015). Meiofaunal organisms such as predator nematodes, in 

turn, are also expected to adversely affect macrofaunal assemblages by predating their larvae 

(especially polychaete) and inhibiting macrofaunal settlement (Watzin 1983, Danovaro et al. 

1995, Dahms et al. 2004).  

Taking into account the relatively small scale investigated here (less than 1 km2), the 

strong concordance registered between macro- and meiofauna is rather surprising. Most 

studies that investigated congruence between different taxonomic groups at more local scales 

did not find solid concordance, mainly due to the lack of pronounced environmental gradients 

(Heino 2010, Dolph et al. 2011). According to Paavola et al. (2006), studies confined at small 

scales would imply strongly concordant patterns only if the environment is controlled by a 

single dominant gradient. In terrestrial environments, such dominant gradient would be 

observed in function of altitude, which would originate parallel shifts in the community 

composition of all taxonomic groups involved (Ormerod et al. 1994, Paavola et al. 2006). In 

marine ecosystems, such predominant gradients are likely to emerge from a depth gradient, 

and this fact can help to explain the strong concordance observed in this study. Even though 

our study area do not comprises a large extent, it encompasses a gradient from 0 to more than 

20 m in depth. This gradient includes a wide range of habitats such as areas that are exposed 

to air during low tide, areas more influenced by wave action, and more stable habitats which 

are constantly submerged. Therefore, it is possible that stronger environmental gradients 

occur in smaller spatial scales in marine coastal ecosystems than in other aquatic 

environments, fact that would enhance community concordance.  
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Our results have important consequences to management and conservation strategies 

and programs. We showed that macro- and meiofaunal assemblages exhibited significant and 

strong concordance in spatial distribution in all periods analysed. Additionally, we found that 

both groups were influenced by the same set of explanatory variables. Therefore, an 

interpretation of our results based only on the cross-congruence approach suggests a high 

potential for the use of macrofauna as a surrogate for meiofauna (and vice-versa). However, a 

quick look at abundance and species distribution patterns of both groups reveals that, despite 

their strong concordance, macro- and meio fauna showed opposite diversity trends. These 

results are likely due to an interaction between biotic interactions and different responses to 

environmental gradient. Thus, we strongly recommend that studies evaluating community 

concordance investigate not only the congruence results but also the nature of the 

relationships of each assemblage with environmental variables and among assemblages.  
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Annex 

 

Top models adjusted for the species richness and abundance of macro- and meiofauna ordered 
by AICc value. All remaining models have dAIC  >  4  and AICw  <  0.001. Fine sand (fine), 
coarse sand (coarse), mud, heterotrophic bacteria (bact), cyanobacteria (cyan), total organic 
carbon (toc),  phaeopigments (phaeop), number of macrofaunal species (s.macro), number of 
macrofaunal individuals (n.macro), number of meiofaunal species (s.meio), number of 
meiofaunal individuals (n.meio), depth, nanoflagellates (nanof), time (sampling period). 
Estimated degrees  of  freedom  of  each  model  (df),  loglikehood  (loglik),  corrected  
Akaike  value  (cAIC),  Delta  Akaike  (dAIC)  and  Akaike  weights  (AICw). 

 

Rank Model df logLik AICc dAIC AICw 

Number of species of macrofauna 

1 fine + n.meio + depth 11 -234.643 494.8 0 0.051 

2 fine + cyan + n.meio + depth 12 -233.679 495 0.28 0.045 

3 fine + depth 7 -239.120 495.1 0.35 0.043 

4 fine + mud + depth 9 -236.995 495.6 0.8 0.034 

5 fine + toc + depth 8 -238.104 495.6 0.85 0.033 

6 fine + cyan + depth 8 -238.311 495.8 1.01 0.031 

7 fine + mud + toc + depth 10 -235.859 496 1.21 0.028 

8 fine + toc + n.meio + depth 12 -234.004 496.1 1.39 0.026 

9 fine + depth + s.meio 9 -237.415 496.2 1.48 0.024 

10 fine + bact + depth 8 -238.594 496.3 1.54 0.024 

11 fine + mud + n.meio + depth 12 -233.195 496.3 1.56 0.023 

12 fine + cyan +toc + depth 9 -237.315 496.4 1.6 0.023 

13 fine + cyan + toc + n.meio + depth 13 -233.087 496.6 1.83 0.021 

14 fine + bact + n.meio + depth 12 -234.420 496.7 1.9 0.02 

15 fine + mud + depth + s.meio 11 -235.647 496.7 1.95 0.019 

16 fine + mud + cyan + depth 10 -236.587 496.8 2 0.019 

17 fine + n.meio + depth + s.meio 12 -234.516 497 2.21 0.017 

18 fine + n.meio + nanof + depth 12 -233.911 497 2.22 0.017 

19 fine + mud + bact + depth 10 -236.646 497 2.24 0.017 

20 fine + n.meio + depth + time 13 -233.265 497 2.25 0.017 

21 fine + bact + toc + n.meio + depth 9 -237.662 497 2.27 0.016 

22 fine + phaeop + n.meio + depth 12 -234.566 497.2 2.4 0.015 

23 fine + mud + cyan + n.meio + depth 13 -232.710 497.2 2.41 0.015 

24 fine + mud + toc + n.meio + depth 13 -232.292 497.2 2.49 0.015 

25 fine + cyan + depth + s.meio 10 -236.718 497.3 2.51 0.015 

26 fine + depth + time 9 -237.812 497.3 2.56 0.014 

27 fine + cyan + phaeop + n.meio + depth 13 -233.568 497.4 2.61 0.014 

28 fine + phaeop + depth 8 -239.111 497.4 2.68 0.013 

29 fine + bact + cyan + n.meio + depth 13 -233.629 497.4 2.68 0.013 

30 fine + cyan + n.meio + depth + s.meio 13 -233.648 497.5 2.72 0.013 

31 fine + toc + depth + s.meio 10 -236.713 497.5 2.77 0.013 

32 fine + cyan + toc + depth 9 -238.030 497.6 2.81 0.013 

33 fine + mud + n.meio + depth + s.meio 13 -233.243 497.6 2.85 0.012 
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34 fine + mud + bact + toc + depth 11 -235.621 497.7 2.95 0.012 

35 fine + coarse + depth 11 -235.735 497.7 2.97 0.012 

36 fine + cyan + n.meio + nanof + depth 13 -232.932 497.7 2.99 0.012 

37 fine + mud + cyan + toc + depth 11 -235.685 497.8 3.03 0.011 

38 fine + nanof + depth 9 -238.501 497.8 3.04 0.011 

39 fine + mud + toc + depth + s.meio 12 -234.983 497.9 3.14 0.011 

40 fine + cyan + nanof + depth 10 -237.287 497.9 3.16 0.011 

41 fine + bact + depth + time 10 -236.781 497.9 3.16 0.011 

42 fine + bact + depth + s.meio 10 -237.174 497.9 3.18 0.01 

43 fine + mud + phaeop + depth 10 -237.009 498 3.21 0.01 

44 fine + toc + phaeop + depth 9 -238.105 498 3.25 0.01 

45 fine + cyan + phaeop + depth 9 -238.286 498.1 3.36 0.01 

46 fine + bact + toc + n.meio + depth 13 -233.814 498.2 3.42 0.009 

47 fine + coarse + toc + depth 12 -234.880 498.2 3.49 0.009 

48 fine + mud + bact + n.meio + depth 13 -233.118 498.3 3.56 0.009 

49 fine + bact + cyan + toc + depth 10 -237.094 498.3 3.57 0.009 

50 fine + coarse + cyan + n.meio + depth 13 -233.168 498.4 3.61 0.008 

51 fine + mud + nanof + depth 11 -236.557 498.4 3.65 0.008 

52 fine + mud + toc +phaeop + depth 11 -235.866 498.4 3.67 0.008 

53 fine + mud + cyan + depth + s.meio 12 -235.283 498.5 3.73 0.008 

54 fine + bact + depth + time 10 -237.225 498.5 3.76 0.008 

55 fine + toc + n.meio + depth + time 14 -232.609 498.5 3.77 0.008 

56 fine + cyan + toc + depth + s.meio  11 -235.992 498.6 3.82 0.008 

57 fine + mud + bact + depth + s.meio 12 -235.535 498.6 3.84 0.008 

58 fine + toc + n.meio + depth + s.meio 13 -233.983 498.6 3.86 0.007 

59 fine + toc + phaeop + n.meio + depth 13 -233.947 498.6 3.88 0.007 

60 fine + mud + bact + cyan + depth 11 -236.359 498.7 3.9 0.007 

61 fine + cyan + toc + nanof + depth 11 -236.277 498.7 3.91 0.007 

62 fine + phaeop + depth + s.meio 10 -237.419 498.7 3.92 0.007 

63 fine + toc + n.meio + nanof + depth 13 -233.287 498.7 3.93 0.007 

64 fine + bact + phaeop + depth 9 -238.598 498.7 3.94 0.007 

65 fine + mud + cyan + toc + n.meio + depth 14 -232.052 498.7 3.97 0.007 
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Rank Model df logLik AICc dAIC AICw 

Number of individuals of macrofauna 

1 fine + depth + s.meio 8 -468.286 955.9 0 0.03 

2 nanof + depth + s.meio 7 -469.369 956.1 0.16 0.028 

3 depth + s.meio 6 -470.544 956.1 0.19 0.027 

4 fine + depth 7 -469.876 956.8 0.9 0.019 

5 cyan + depth + s.meio + time 12 -463.921 956.9 0.98 0.018 

6 mud + nanof + depth + s.meio 9 -467.966 957 1.08 0.017 

7 fine + nanof + depth + s.meio 9 -467.800 957.1 1.2 0.016 

8 fine + depth + s.meio + time 10 -466.439 957.2 1.28 0.016 

9 cyan + depth + time 11 -465.610 957.3 1.36 0.015 

10 nanof + depth 6 -471.198 957.4 1.5 0.014 

11 depth 5 -472.344 957.4 1.52 0.014 

12 toc + nanof + depth + s.meio 9 -467.711 957.6 1.67 0.013 

13 cyan + nanof + depth + s.meio 8 -468.971 957.7 1.78 0.012 

14 toc + nanof + depth 8 -468.996 957.7 1.84 0.012 

15 mud + depth + s.meio 8 -469.635 957.8 1.87 0.012 

16 fine + phaeop + depth + s.meio 9 -468.068 957.8 1.93 0.011 

17 fine + nanof + depth + s.meio + time 11 -465.777 957.8 1.95 0.011 

18 cyan + nanof + depth + time 12 -464.749 957.8 1.95 0.011 

19 fine + mud + depth + s.meio 9 -467.843 957.9 1.98 0.011 

20 n.meio + nanof + depth + s.meio 8 -469.088 957.9 2.01 0.011 

21 nanof + depth + s.meio + time 9 -467.853 957.9 2.01 0.011 

22 toc + depth + s.meio 8 -469.554 958 2.06 0.011 

23 phaeop + depth + s.meio 7 -470.329 958 2.08 0.011 

24 phaeop + nanof + depth + s.meio 8 -469.150 958 2.08 0.011 

25 fine + mud + nanof + depth + s.meio 10 -466.806 958 2.11 0.01 

26 toc + depth 7 -470.633 958.1 2.17 0.01 

27 fine + toc + depth 9 -468.483 958.1 2.17 0.01 

28 mud + nanof + depth + s.meio + time 11 -465.869 958.1 2.2 0.01 

29 toc + nanof + depth + s.meio + time 11 -465.321 958.1 2.2 0.01 

30 fine + nanof + depth 8 -469.476 958.1 2.21 0.01 

31 fine + toc + depth + s.meio 10 -467.457 958.1 2.24 0.01 

32 fine + phaeop + depth 8 -469.417 958.2 2.26 0.01 

33 mud + nanof + depth 8 -469.711 958.2 2.34 0.009 

34 fine + bact + depth + s.meio 9 -468.234 958.3 2.36 0.009 

35 fine + cyan + depth + s.meio 9 -468.276 958.3 2.38 0.009 

36 fine + n.meio + depth + s.meio 9 -468.282 958.3 2.41 0.009 

37 fine + depth + time 9 -468.247 958.3 2.43 0.009 

38 fine + coarse + depth + s.meio 9 -468.314 958.3 2.45 0.009 

39 fine + cyan + depth + time 13 -464.036 958.4 2.46 0.009 

40 fine + toc + depth + s.meio + time 12 -464.594 958.4 2.48 0.009 

41 n.meio + depth + s.meio 7 -470.524 958.4 2.49 0.009 

42 cyan + depth + s.meio 7 -470.534 958.4 2.52 0.008 

43 coarse + depth + s.meio 7 -470.479 958.4 2.53 0.008 

44 bact + depth + s.meio 7 -470.545 958.4 2.54 0.008 
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45 coarse + nanof + depth + s.meio 8 -469.389 958.4 2.55 0.008 

46 bact + nanof + fine + nanof + s.meio 8 -469.367 958.4 2.55 0.008 

47 toc + nanof + depth + time 10 -466.857 958.5 2.59 0.008 

48 fine + toc + nanof + depth + s.meio + time 13 -463.462 958.5 2.59 0.008 

49 fine + toc + nanof + depth + time 12 -464.845 958.5 2.6 0.008 

50 fine + toc + depth + time 11 -465.944 958.5 2.62 0.008 

51 phaeop + nanof + depth 7 -470.664 958.6 2.74 0.008 

52 phaeop + depth 6 -471.772 958.6 2.75 0.008 

53 cyan + nanof + depth 7 -470.638 958.6 2.75 0.008 

54 nanof + depth + time 8 -469.462 958.7 2.81 0.007 

55 fine + bact + depth 8 -469.636 958.8 2.89 0.007 

56 mud + phaeop + nanof + depth + s.meio 10 -467.671 958.9 2.97 0.007 

57 fine + n.meio + depth 8 -469.714 958.9 2.97 0.007 

58 fine + toc + nanof + depth + s.meio 11 -466.347 958.9 2.98 0.007 

59 mud + toc + nanof + depth 10 -468.183 958.9 3 0.007 

60 depth + s.meio + time 8 -469.570 958.9 3.01 0.007 

61 mud + depth 7 -471.346 959 3.06 0.006 

62 mud + toc + nanof + depth + s.meio 10 -467.302 959 3.07 0.006 

63 fine + nanof + depth + time 10 -467.654 959 3.08 0.006 

64 fine + mud + depth 9 -469.527 959 3.13 0.006 

65 fine + toc + nanof + depth 10 -467.674 959 3.14 0.006 

66 fine + mud + nanof + depth + s.meio + time 12 -464.663 959.1 3.16 0.006 

67 fine + phaeop + nanof + depth 10 -467.570 959.1 3.16 0.006 

68 toc + phaeop + nanof + depth 9 -468.481 959.1 3.18 0.006 

69 fine + cyan + depth 8 -469.858 959.1 3.19 0.006 

70 mud + cyan + nanof + depth + s.meio 10 -467.744 959.1 3.2 0.006 

71 bact + cyan + depth + s.meio + time 13 -463.731 959.1 3.23 0.006 

72 cyan + toc + depth + time 13 -464.443 959.1 3.23 0.006 

73 n.meio + nanof + depth + s.meio + time 10 -467.207 959.1 3.24 0.006 

74 fine + cyan + nanof + depth + s.meio 10 -467.735 959.1 3.24 0.006 

75 mud + n.meio + nanof + depth + s.meio 10 -467.884 959.2 3.26 0.006 

76 fine + coarse + depth 8 -469.893 959.2 3.28 0.006 

77 fine + bact + depth + s.meio + time 11 -466.312 959.3 3.37 0.006 

78 fine + mud + depth + s.meio + time 11 -466.050 959.3 3.42 0.005 

79 mud + nanof + depth 10 -467.550 959.3 3.44 0.005 

80 fine + cyan + depth + s.meio 11 -466.249 959.4 3.47 0.005 

81 mud + phaeop + nanof + depth 9 -469.054 959.4 3.48 0.005 

82 coarse + mud + nanof + depth + s.meio 10 -467.970 959.4 3.49 0.005 

83 cyan + n.meio + depth + s.meio + time 13 -463.843 959.4 3.51 0.005 

84 toc + phaeop + nanof + depth + s.meio 10 -467.420 959.4 3.52 0.005 

85 fine + phaeop + depth + s.meio + time 11 -466.317 959.4 3.52 0.005 

86 bact + cyan + nanof + depth + s.meio 10 -467.948 959.4 3.53 0.005 

87 fine + n.meio + nanof + depth + s.meio 10 -467.794 959.4 3.53 0.005 

88 fine + phaeop + nanof + depth 9 -468.992 959.5 3.57 0.005 

89 fine + toc + phaeop + depth 10 -467.991 959.5 3.6 0.005 

90 fine + bact + nanof + depth + s.meio 10 -467.737 959.5 3.6 0.005 
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91 cyan + phaeop + depth + time 12 -464.991 959.5 3.61 0.005 

92 toc + phaeop + fine + nanof 8 -470.197 959.5 3.62 0.005 

93 bact + nanof + depth 7 -471.090 959.5 3.63 0.005 

94 fine + bact + nanof + depth + s.meio + time 12 -465.579 959.5 3.64 0.005 

95 cyan + phaeop + nanof + depth + s.meio 9 -468.692 959.5 3.64 0.005 

96 bact + nanof + depth + s.meio + time 10 -467.414 959.5 3.65 0.005 

97 bact + depth 6 -472.269 959.6 3.67 0.005 

98 cyan + phaeop + depth + s.meio + time 13 -463.586 959.6 3.67 0.005 

99 mud + toc + depth 8 -469.993 959.6 3.68 0.005 

100 fine + mud + phaeop + depth + s.meio 11 -467.266 959.6 3.68 0.005 

101 fine + coarse + nanof + depth + s.meio 10 -467.833 959.6 3.69 0.005 

102 toc + depth + s.meio + time 10 -467.562 959.6 3.71 0.005 

103 mud + toc + depth + s.meio 9 -469.156 959.6 3.71 0.005 

104 cyan + depth 6 -472.290 959.6 3.72 0.005 

105 coarse + cyan depth + s.meio + time 13 -463.768 959.6 3.72 0.005 

106 cyan + toc + nanof + depth 9 -468.896 959.6 3.74 0.005 

107 n.meio + depth 6 -472.324 959.7 3.76 0.005 

108 fine + mud + phaeop + nanof + depth + s.meio 11 -466.351 959.7 3.76 0.005 

109 mud + phaeop + depth + s.meio 9 -469.159 959.7 3.77 0.005 

110 n.meio + nanof + depth 7 -471.161 959.7 3.77 0.005 

111 cyan + toc + nanof + depth + s.meio 10 -467.733 959.7 3.77 0.005 

112 coarse + depth 7 -472.191 959.7 3.8 0.004 

113 cyan + n.meio + nanof + depth + s.meio 9 -468.759 959.7 3.82 0.004 

114 coarse + nanof + depth 7 -471.211 959.7 3.84 0.004 

115 coarse + cyan + depth + time 12 -465.591 959.8 3.88 0.004 

116 toc + n.meio + nanof + depth + s.meio 11 -467.335 959.8 3.88 0.004 

117 depth + time 7 -471.206 959.8 3.92 0.004 

118 cyan + phaeop + nanof + depth 8 -470.043 959.8 3.92 0.004 

119 mud + cyan + depth + time 12 -465.618 959.8 3.93 0.004 

120 phaeop + n.meio + nanof + depth + s.meio 9 -468.840 959.8 3.93 0.004 

121 cyan + n.meio + nanof + depth + s.meio + time 12 -464.973 959.8 3.95 0.004 

122 cyan + toc + depth + s.meio 9 -469.277 959.8 3.95 0.004 

123 fine + coarse + depth + s.meio + time 11 -466.518 959.8 3.95 0.004 

124 bact + cyan + depth + time 12 -465.649 959.9 3.97 0.004 

125 fine + n.meio + depth + s.meio + time 11 -466.526 959.9 3.98 0.004 

126 bact + toc + nanof + depth + s.meio + time 13 -464.564 959.9 3.99 0.004 
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Rank Model df logLik AICc dAIC AICw 

Number of species of meiofauna 

1 coarse + depth 9 -327.736 676.5 0 0.076 

2 n.macro + depth 5 -332.366 676.5 0.04 0.075 

3 toc + depth 6 -330.942 676.8 0.35 0.064 

4 depth 5 -332.179 677 0.47 0.06 

5 phaeop + depth 6 -331.761 678.3 1.85 0.03 

6 coarse + toc + depth 10 -327.009 678.4 1.92 0.029 

7 coarse + bact + depth 10 -327.467 678.4 1.95 0.029 

8 fine + n.macro + depth 6 -332.290 678.6 2.06 0.027 

9 coarse + cyan + depth 10 -327.513 678.6 2.09 0.027 

10 n.macro + nanof + depth 6 -332.263 678.7 2.16 0.026 

11 coarse + nanof + depth 10 -327.573 678.7 2.2 0.025 

12 bact + depth 6 -331.940 678.8 2.28 0.024 

13 mud + n.macro + depth 6 -332.352 678.8 2.31 0.024 

14 fine + coarse + depth 10 -327.680 678.9 2.36 0.024 

15 bact + depth + depth 6 -333.003 678.9 2.41 0.023 

16 coarse + mud + depth 10 -327.737 679 2.47 0.022 

17 toc + phaeop + depth 8 -330.447 679 2.47 0.022 

18 mud + depth 6 -332.029 679 2.49 0.022 

19 cyan + depth 7 -331.906 679 2.53 0.022 

20 toc + n.macro + depth 8 -330.228 679.1 2.58 0.021 

21 fine + toc + depth 7 -330.888 679.1 2.6 0.021 

22 toc + nanof + depth 7 -330.920 679.2 2.66 0.02 

23 fine + depth 6 -332.128 679.2 2.67 0.02 

24 mud + toc + depth 7 -330.938 679.2 2.68 0.02 

25 nanof + depth 6 -332.157 679.2 2.73 0.02 

26 coarse + n.macro + depth 11 -327.257 679.6 3.1 0.016 

27 cyan + toc + depth 8 -330.466 679.6 3.14 0.016 

28 n.macro + depth + s.macro 7 -331.623 679.6 3.14 0.016 

29 bact + toc + depth 8 -330.467 679.8 3.26 0.015 

30 phaeop + depth + s.macro 7 -331.997 679.9 3.39 0.014 

31 coarse + mud + n.macro 8 -330.465 680 3.46 0.014 

32 coarse + mud + phaeop 7 -331.922 680.1 3.56 0.013 

33 cyan + phaeop + depth 7 -331.454 680.1 3.61 0.013 

34 fine + coarse + n.macro + depth 10 -328.800 680.2 3.67 0.012 

35 fine + bact + n.macro + depth 7 -331.982 680.2 3.71 0.012 

36 coarse + cyan + toc + depth 11 -326.859 680.3 3.78 0.012 

37 bact + cyan + depth 7 -331.992 680.4 3.88 0.011 

38 coarse + depth + time 11 -327.104 680.4 3.9 0.011 

39 phaeop + n.macro + depth 8 -331.153 680.4 3.95 0.011 

40 coarse + toc + nanof + depth 11 -326.917 680.4 3.95 0.011 

41 mud + bact + n.macro + depth 7 -332.032 680.5 3.96 0.011 

42 cyan + n.macro + depth 8 -331.056 680.5 3.97 0.011 

43 bact + n.macro + depth 8 -331.012 680.5 3.99 0.01 
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Rank Model df logLik AICc dAIC AICw 

Number of individuals of meiofauna 

1 fine + coarse + mud + nanof + depth + s.macro 10 -777.025 1578.5 0 0.193 

2 fine + coarse + mud + n.macro + nanof + depth + s.macro 11 -776.745 1580.5 1.92 0.074 

3 fine + mud + nanof + depth + s.macro 9 -779.197 1580.6 2.04 0.07 

4 fine + coarse + mud + cyan + nanof + depth + s.macro 11 -776.674 1580.7 2.2 0.064 

5 fine + coarse + mud + phaeop + nanof + depth + s.macro 11 -776.872 1580.8 2.27 0.062 

6 fine + coarse + mud + toc + nanof + depth + s.macro 11 -776.945 1580.9 2.38 0.059 

7 fine + coarse + mud + bact + nanof + depth + s.macro 11 -777.039 1581.1 2.57 0.053 

8 fine + coarse + nanof + depth + s.macro 9 -779.656 1581.2 2.64 0.052 

9 fine + nanof + depth + s.macro 8 -780.928 1581.6 3.01 0.043 

10 fine + coarse + cyan + nanof + depth + s.macro 10 -778.602 1581.6 3.04 0.042 

11 fine + coarse + nanof + depth + s.macro + time 11 -777.374 1581.7 3.2 0.039 

12 fine + cyan + nanof + depth + s.macro 9 -779.871 1581.9 3.35 0.036 

13 fine + coarse + toc + nanof + depth + s.macro 11 -778.451 1582 3.5 0.034 

14 fine + coarse + mud + nanof + depth + s.macro + time 12 -776.189 1582.1 3.5 0.033 

15 fine + mud + phaeop + nanof + depth + s.macro 10 -778.762 1582.2 3.69 0.03 

16 fine + coarse + cyan + toc + nanof + depth + s.macro 11 -777.396 1582.2 3.69 0.03 

17 fine + coarse + mud + nanof + depth 9 -780.406 1582.3 3.8 0.029 

18 fine + mud + cyan + nanof + depth + s.macro 10 -778.849 1582.4 3.84 0.028 

19 fine + mud + n.macro + nanof + depth + s.macro 10 -778.895 1582.5 3.91 0.027 
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Considerações finais  

Esta tese investigou como diferentes processos e variáveis estruturam comunidades 

bentônicas que habitam os sedimentos de regiões costeiras. Por meio de coletas realizadas na 

região entremarés e sublitoral, foi comprovada a influência de variáveis ambientais, como tipo 

de sedimento e profundidade, algo já bastante conhecido. Entretanto, foi observado também 

que eventos de larga escala relacionados às mudanças climáticas podem provocar 

significativas mudanças nas características ecológicas de ambientes costeiros (capítulo 1), e 

que a influência de variáveis espaciais pode ser preponderante nessas comunidades (capítulos 

2 e 3).  

Possivelmente, a forte influência de eventos climáticos extremos e de variáveis 

espaciais em comunidades bentônicas de fundo não consolidado deve-se ao caráter móvel 

dessa fauna. Diferente do observado em outros sistemas, uma propriedade importante dessas 

comunidades é que as espécies que as constituem não são permanentemente fixas ao substrato 

e muitas ocorrem em grande abundância, o que pode resultar em maiores taxas de dispersão 

(capítulo 2). Além disso, a dispersão dessas espécies é facilitada pela ação de ondas e 

correntes de maior intensidade, variáveis que podem alterar o padrão de diversidade nesses 

ambientes (capítulo 1).  

O fato das espécies bentônicas de fundo não-consolidado não se fixarem 

permanentemente no substrato, entretanto, não significa que essas espécies tem capacidade 

similar de dispersão. Os resultados obtidos no capítulo 2 demonstram que a estrutura espacial 

da fauna macrobentônica é contingente da capacidade de dispersão de cada espécie, sendo que 

espécies com maior mobilidade (dispersão larval e adultos móveis) sofrem menos influência 

de variáveis espaciais, i.e. são mais influenciadas pelo ambiente por que essas espécies podem 

se mover por distâncias maiores e, consequentemente, têm mais chances de se estabelecer em 

locais com características mais favoráveis.  Os resultados do capítulo 2 também 

demonstraram que a estrutura espacial e a influência do ambiente são variáveis no tempo. Tal 

resultado não pode ser considerado surpreendente, uma vez que ecossistemas costeiros sofrem 

a constante influência de ondas e marés e estão entre os mais dinâmicos. Entretanto, esses 

resultados destacam que caracterizações desses ecossistemas não devem ser baseadas em 

coletas pontuais.   

Enquanto os resultados apresentados nos capítulos 1 e 2 destacam como as 

comunidades bentônicas podem ser variáveis, o capítulo 3 aborda a estabilidade na 

concordância entre comunidades macro- e meiofaunais. Os resultados obtidos demonstram 

que a macro- e a maiofauna possuem padrões similares em suas comunidades e que os dois 
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grupos são estruturados por variáveis ambientais semelhantes. Esses resultados podem ter 

implicação para estudos de manejo e conservação, sugerindo que um grupo pode ser usado 

como substituto para o outro. Entretanto, o padrão de riqueza e abundância nessas 

comunidades foi contrastante, o que destaca que a identificação de locais de maior valor em 

biodiversidade não deve ser realizada levando em consideração apenas um desses grupos. 

De maneira geral, os resultados apresentados nessa tese destacam que processos 

espaciais e eventos extremos podem exercer grande influência na fauna bentônica marinha de 

substratos não-consolidados. Esses tópicos têm recebido mais atenção nos últimos anos, 

entretanto, o número de estudos é ainda bastante reduzido. A congruência entre diferentes 

grupos bentônicos é outro assunto pouco explorado e que deve ser mais investigado, 

sobretudo devido a sua potencial aplicabilidade em planos de conservação e manejo. Outro 

tópico ainda pouco explorado, porém essencial para compreender dos padrões da fauna 

bentônica, é a real conectividade em ambientes marinhos. Em ecologia, a validação empírica 

da capacidade de dispersão das espécies é fundamental, entretanto, informações precisas sobre 

a capacidade de dispersão das espécies bentônicas é extremamente reduzida. Dessa maneira, 

futuro estudos devem investigar a real capacidade de dispersão das espécies marinhas.  Tal 

conhecimento proporcionará uma melhor compreensão da dinâmica desses ecossistemas e, 

consequentemente, que sejam tomadas medidas mais efetivas contra impactos, e planos de 

manejo mais eficientes sejam estabelecidos.  
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