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Resumo

O Sol possui uma atmosfera ativa, apresentando diversos fenômenos que afetam diretamente
todos os corpos do sistema solar. O clima espacial refere-se aos eventos do Sol, incluindo o
vento solar, o espaço próximo à Terra e a atmosfera terrestre. Perturbações no clima espacial
podem prejudicar diversas áreas, incluindo aviação e espaço aéreo, satélites, indústrias de óleo e
gás e sistemas elétricos, levando a perdas econômicas. Explosões solares – um dos eventos mais
significantes – compreendem liberações repentinas de radiação que podem afetar a atmosfera
terrestre em poucos minutos após a ocorrência. Deste modo, é de extrema importância a criação
de sistemas para predizê-las. Embora diversas abordagens de predição ad hoc foram propostas
na literatura nos últimos anos, poucos autores focaram-se em criar um processo de design
automatizado para projetar tais sistemas com flexibilidade e desempenho otimizado. Assim,
nesta tese, é proposta uma metodologia automatizada para projetar classificadores de explosões
solares usando o framework Scikit-learn, baseado em Python. Esta metodologia objetiva
oferecer um arranjo compreensivo de processos de aprendizagem de máquina baseados em boas
práticas para o clima espacial. Basicamente, tal metodologia compreende: (i) divisão apropriada
de dados; (ii) seleção de modelos; (iii) seleção de atributos; (iv) otimização de parâmetros;
(v) análise da função de custo dos classificadores; (vi) reamostragem de dados; (vii) ajuste do
ponto de corte dos classificadores; (viii) e avaliação sobre conjuntos de dados de validação/teste.
Para validar esta metodologia, foram propostos alguns estudos de caso objetivando projetar
classificadores de explosões de classe ≥ C e ≥ M (eventos acima ou iguais à classe C e M,
respectivamente) para até 3 dias a frente. Resultados destes classificadores mostraram-se estar
de acordo com as abordagens de predição da literatura de maiores desempenhos. Assim, para
eventos ≥ C, os modelos otimizados pontuaram escores de true skill statistics (TSS) de 0.69
(próximas 24 h), 0.70 (próximas 48 h) e 0.73 (próximas 72 h), em consonância com seus altos
escores de true positive rates (TPR) de 0.86 (próximas 24 h) and 0.89 (próximas 48 and 72 h).
Por sua vez, para eventos ≥M, os modelos pontuaram TSS = 0.53 (próximas 24 e 72 h) e 0.55
(próximas 48 h), também em consonância com seus altos TPRs de 0.83 (próximas 24 h), 0.85
(próximas 48 h) e 0.80 (próximas 72 h). Além disso, resultados da área sobre a curva (AUC)
dos modelos confirmaram a potencial utilidade das predições positivas: AUC = 0.93 (próximas
24 h) e 0.94 (próximas 48 e 72 h), para eventos ≥ C, e AUC = 0.84 (próximas 24 h) e 0.85
(próximas 48 e 72 h), para eventos ≥ M. Aprendizagem de máquina automatizada pode ser útil
para oferecer métodos do estado-da-arte e processos de design para pesquisadores interessados
em aplicar conceitos ao invés de conhecer algoritmos detalhadamente. Isso permite projetar
automaticamente modelos de predição com desempenho otimizado ao mesmo tempo em que
poupa tempo e dinheiro, pois especialistas em aprendizagem de máquina podem ser caros ou
difíceis de encontrar. Acredita-se que, especificamente para o clima espacial, automatizar a
aprendizagem de máquina pode ser consideravelmente útil, uma vez que nem todos os físicos
são especialistas no domínio da inteligência artificial.



Abstract

The Sun has a highly active atmosphere, featuring several events that directly affect all solar
system bodies. The space weather refers to any conditions and events in the Sun, including the
solar wind, impacting on the space near Earth, and the Earth’s atmosphere. Disturbances in
space weather can damage several fields, including aviation and aerospace, satellites, oil and
gas industries, and electrical systems, leading to economic and commercial losses. Solar flares –
one of the most significant events – comprehend sudden releases of radiation and particles
affecting the Earth’s atmosphere in a few minutes after occurrence. As such, it is imperative to
create systems to forecast them. Although many ad hoc forecast approaches have been
proposed in the literature in recent years, few authors have focused their research on
establishing an automated design process to develop such predictors with flexibility and
optimized performance. Accordingly, in this thesis, we propose an automated novel
methodology for designing solar flare classifiers under Python’s Scikit-learn framework. Our
methodology intends to offer a comprehensive pipeline of machine learning processes relying
on good practices for space weather forecasting. Overall, such methodology comprehends: (i)
proper data splitting; (ii) model selection; (iii) feature selection; (iv) hyperparameter
optimization; (v) analysis of classifiers’ cost function; (vi) data resampling; (vii) adjustment of
cut-off point of classifiers; and (viii) evaluation of validation and test data. We investigated
some distinct case studies to design classifiers for forecasting ≥ C- and ≥M-class flare events
(higher than or equal to C- and M-class, respectively) up to three days ahead to validate our
methodology. The designed classifiers’ results agreed with the best performing forecast
approaches in the literature. Accordingly, for ≥ C events, our models scored true skill statistics
(TSS) scores of 0.69 (next 24 h), 0.70 (next 48 h), and 0.73 (next 72 h), agreeing with their high
corresponding true positive rates (TPR) of 0.86 (next 24 h) and 0.89 (next 48 and 72 h). On the
other hand, for ≥ M events, our models scored TSS = 0.53 (next 24 and 72 h) and 0.55 (next
48 h), also agreeing with their high corresponding TPRs of 0.83 (next 24 h), 0.85 (next 48 h),
and 0.80 (next 72 h). Besides, results from our models’ area under the curve (AUC) scores have
confirmed the usefulness of the positive forecasts: AUC = 0.93 (next 24 h) and 0.94 (next 48 and
72 h), for ≥ C flares, and AUC = 0.84 (next 24 h) and 0.85 (next 48 and 72 h). Automated
machine learning efforts can be useful to provide state-of-the-art learning methods and design
processes to researchers interested in applying concepts rather than knowing the technologies
in their in-depth details. That allows automatically designing forecast models with improved
performance while saving a considerable amount of time and money as experts in machine
learning can sometimes be expensive or hard to find. We believe that automating machine
learning, specifically in space weather research, can be rather valuable as not all solar
physicists are experts in the artificial intelligence domain.
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We can divide the Sun into distinct layers: the core, radiation zone, convection zone,

photosphere, chromosphere, and the corona (Figure 1.1). Its most internal part – the core – is

responsible for generating and transporting light energy towards space. The chromosphere

and corona represent the Sun’s atmosphere, whereas the photosphere is the surface. The Sun’s

atmosphere produces the events affecting the space weather (MOLDWIN, 2008).

In addition to the events mentioned earlier, the Sun also produces some structures often

influencing the space weather, that is, the sunspots (MOLDWIN, 2008) and active regions (AR)

(CANFIELD, 2001). ARs have their bases in the photosphere – in the form of sunspots and

groups of sunspots –, but spread along the solar atmosphere through arcs and configurations of

magnetic fields connecting distinct sunspots’ and ARs’ magnetic polarities from the photosphere.

Those phenomena often create conditions for solar flare releases (CANFIELD, 2001).

Solar flares comprehend sudden releases of electromagnetic radiation. Depending on their

intensities, they can associate with CMEs and SEPs eventually. Their electromagnetic radiation

has a broad spectra, including X- and 
 -rays. The energy associated with flares ranges on

[1024, 1032] erg. Flares can last for dozens of seconds to a few hours, depending on their

intensities and characteristics.

There are many initiatives to monitor the Sun’s events. Taking flares as an example, they

are constantly recorded by the Geostationary Operational Environmental Satellites’ (GOES)

X-ray instruments, linked to the Space Weather Prediction Center (SWPC) of the National

Oceanic and Atmospheric Administration (NOAA)1, in the United States of America.

The X-ray instruments aboard the GOES satellites measure solar flare’s fluxes (W/m2) into

two bands, namely the 0.5–4 Ångström (Å) and 1–8 Å. The latter band is used to classify solar

flares’ intensity into five distinct classes, as described next (CANFIELD, 2001).

Solar physicists classify solar flares through a labeled scale ranging between A- (the smallest

events), B- (as tiny as A, usually called subflares), C- (cause few noticeable consequences on

Earth), M- (medium-sized events often accompanying CMEs), and X-class (the largest events,

causing major radio blackouts and long-lasting radiation storms in the Earth’s atmosphere).

Taking the strongest flare type (X-class) as an example, composed of X-rays releases > 10−4W/m2,

each class has its X-ray peak flux ten times higher than its predecessor.

Overall, disturbances in space weather can negatively affect several fields, including aviation

and aerospace, satellites, Global Positioning System (GPS), oil and gas industries, and electrical

1http://www.swpc.noaa.gov
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systems, leading to economic and commercial losses (NRC, 2009). Because of the several known

solar flare effects, it is imperative to employ efforts to forecast them. Accordingly, this thesis

investigates a novel automated methodology to design classifiers for such events.

In this sense, forecasting – accurately – solar flare events allows a series of mitigation

actions, including warning astronauts in deep space that they are likely to be hit by radiation

and powering off electronic equipments to avoid their risk of burning out. On the other hand,

the consequences of mispredicting solar flares can be severe, depending on the associated event

class (RABOONIK et al., 2016). We are facing a hot topic which became recurrent in research

agendas (LEKA; BARNES, 2018).

Several SWPCs exist in an attempt to mitigate solar flare effects (CROWN, 2012; DEVOS;

VERBEECK; ROBBRECHT, 2014; MURRAY et al., 2017; KUBO; DEN; ISHII, 2017; INPE, 2020).

Such centers often employ human-based hybrid forecasts, such as in NOAA/SWPC (CROWN,

2012), which uses an expert system outputting cadenced forecasts, further confirmed or adjusted

by solar physicists.

On the other hand, many researchers have also been employing efforts on system-based

forecast approaches. Whereas some authors propose using photospheric magnetic data to

investigate ARs and their relationship with solar activity (MCATEER; GALLAGHER, P. T.;

CONLON, 2010), others focus on the research of the photospheric features (MCINTOSH, 1990)

and magnetic topologies (HALE et al., 1919) of ARs concerning their association with solar flare

productivity. Regardless of such data nature, researchers have been proposing many methods

to forecast solar flare events. To name some, we can cite those listed in Table 1.1.

Table 1.1: Solar flare forecasting efforts.

Method Authorship

AdaBoost Lan et al. (2012)

Bayesian statistics Díscola Jr. et al. (2018a,b), X. Zhang, J. Liu, and Q. Wang (2011),

Yu, Huang, H. Wang, Cui, et al. (2010) and Wheatland (2005)

DecisionTrees
Díscola Jr. et al. (2019, 2018a,b), Huang and H.-N. Wang (2013),

X. Zhang, J. Liu, and Q. Wang (2011), Huang, Yu, et al. (2010), Yu,

Huang, Q. Hu, et al. (2010) and Yu, Huang, H. Wang, and Cui

(2009)
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Ensembles
Lim et al. (2019), Díscola Jr. et al. (2019), Guerra, Pulkkinen, and

Uritsky (2015) and Huang, Yu, et al. (2010)

Expert systems McIntosh (1990) and Miller (1988)

Extremely

randomized trees

(ERT)

Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017)

Image-case-based

prediction
J.-F. Liu, F. Li, H.-P. Zhang, et al. (2017)

k-Nearest Neighbors

(k-NN)

Díscola Jr. et al. (2019, 2018a,b), Nishizuka, Sugiura, Kubo, Den,

Watari, et al. (2017), Winter and Balasubramaniam (2015), Huang

and H.-N. Wang (2013) and R. Li, Cui, et al. (2008)

Linear classifiers Jonas et al. (2018)

Linear discriminant

analysis
Leka, Barnes, and Wagner (2018)

Learning vector

quantization
R. Li and Zhu (2013) and Yu, Huang, H. Wang, and Cui (2009)

Long-short term

memory network

(LSTM)

Jiao et al. (2020), X. Wang et al. (2020) and H. Liu et al. (2019)

Multi-model

prediction
J.-F. Liu, F. Li, Wan, et al. (2017)

Multiple linear

regression
Shin et al. (2016)

OneR Díscola Jr. et al. (2018a,b)
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Neural networks

X. Li et al. (2020), Domijan, Bloomfield, and Pitié (2019), Zheng,

X. Li, and X. Wang (2019), Nishizuka, Sugiura, Kubo, Den, and

Ishii (2018), Inceoglu et al. (2018), Florios et al. (2018), Huang, H.

Wang, Xu, et al. (2018), E. Park et al. (2018), Hada-Muranushi et al.

(2016), Shin et al. (2016), Ahmed et al. (2013), R. Li and Zhu (2013),

Colak and Qahwaji (2009), H.N. Wang et al. (2008), Qahwaji and

Colak (2007), Colak and Qahwaji (2007) and Qahwaji and Colak

(2006)

Poisson statistics

McCloskey, P. T. Gallagher, and Bloomfield (2018), D. A. Falconer

et al. (2014), Bloomfield et al. (2012), D. Falconer et al. (2011) and

P.T. Gallagher, Moon, and H. Wang (2002)

Radial basis

functions

Colak and Qahwaji (2007) and Qahwaji and Colak (2007, 2006)

RandomForests
Domijan, Bloomfield, and Pitié (2019), C. Liu et al. (2017) and

Florios et al. (2018)

Regression models
Anastasiadis et al. (2017), Muranushi et al. (2015), Yuan et al.

(2010), H. Song et al. (2009) and J.-Y. Lee et al. (2007)

Relevance-vector

machine (RVM)

Al-Ghraibah, Boucheron, and McAteer (2015)

The least absolute

shrinkage and

selection operator

(LASSO)

Benvenuto et al. (2018) and Jonas et al. (2018)

Superposed epoch

analysis
Mason and Hoeksema (2010)
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Support-vector

machines (SVM)

Domijan, Bloomfield, and Pitié (2019), Alipour, Mohammadi, and

Safari (2019), Díscola Jr. et al. (2019, 2018a,b), Florios et al. (2018),

Inceoglu et al. (2018), Sadykov and Kosovichev (2017), Nishizuka,

Sugiura, Kubo, Den, Watari, et al. (2017), Raboonik et al. (2016),

Bobra and Couvidat (2015), Muranushi et al. (2015), Yang et al.

(2013), Yuan et al. (2010), R. Li, Cui, et al. (2008) and Qahwaji and

Colak (2007)

Support-vector

machine regressor

(SVR)

Boucheron, Al-Ghraibah, and McAteer (2015)

Unsupervised fuzzy

clustering
Benvenuto et al. (2018)

Unsupervised

learning vector

quantization

R. Li, H. Wang, et al. (2011)

Usually, the approaches mentioned earlier aimed to improve some reference performance

score, find new promising features associated with flare occurrence or increase how far in

advance solar flares could be forecast. Despite most times succeeding in achieving those goals,

most of them share a common aspect: using statistical or machine learning techniques to design

their classifiers (CAMPOREALE, 2019). Machine learning is a recurrent research branch of

Computer Science whose techniques we use to learn from historical data and forecast future

observations (HAN; KAMBER, 2006).

1.1 Motivation

In the past decade, a plethora of machine learning methods has emerged along with their

corresponding applications. However, a notable barrier for new users comprehends the

performance of those methods as they are very sensitive to design decisions (HUTTER;

KOTTHOF; VANSCHOREN, 2019).

Efficient decision-making is paramount in the machine learning domain, where engineers

urge to design correct algorithms’ architectures, training procedures, input features, and
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hyperparameters to leverage their expected forecast performance. Accordingly, the design

of classifiers comprehends a repeated process, often leading experts to be stuck into tedious

trial-and-error episodes until they reach a reasonable set of choices for a particular dataset

(HUTTER; KOTTHOF; VANSCHOREN, 2019).

Within this context, a new research branch of machine learning has emerged to support the

decisions mentioned earlier, that is, a domain in which algorithms make decisions through an

automated, data-driven, and objective way. As such, users can simply provide their input data,

and the automated machine learning process fully determines the best performing forecast

approach for that particular case. Besides, automated machine learning provides state-of-the-

art learning methods to researchers interested in applying concepts rather than knowing the

technologies in their details (HUTTER; KOTTHOF; VANSCHOREN, 2019).

Accordingly, automated machine learning approaches aim to automatically design

classifiers with improved performance while saving a considerable amount of time and money,

as experts in machine learning can sometimes be expensive or hard to find (HUTTER;

KOTTHOF; VANSCHOREN, 2019). Overall, various automated machine learning frameworks

have been proposed. The most remarkable examples include: Auto-WEKA (KOTTHOFF et al.,

2019), Hyperopt-Sklearn (KOMER; BERGSTRA; ELIASMITH, 2019), Auto-sklearn (FEURER;

KLEIN, et al., 2019), Auto-net (Auto-PyTorch) (MENDONZA et al., 2019; ZIMMER; LINDAUER;

HUTTER, 2020), Tree-Based Pipeline Optimization Tool (TPOT) (OLSON; MOORE, 2019),

Auto-keras (JIN; SONG, Q.; HU, X., 2018), RoBO (KLEIN et al., 2017), H2O AutoML (LEDELL;

POIRIER, 2020), and AutoGluon-Tabular (ERICKSON et al., 2020). At this point, it is worth

noting that they did not hold a design process adhering to the most recurrent and worth

considering aspects authors deal with when designing classifiers for solar flare forecasting (we

shall discuss all the aspects constituting an effective space weather forecasting project in

Chapter 3).

However, the space weather field also needs the automation provided by such tools. The

solar flare forecasting efforts mentioned earlier often had tailor-made methodologies, that is,

authors proposed them for their particular ad hoc scenarios. Ad hoc decisions and processes

prevent the creation of generic design pipelines to produce flare forecasting classifiers with

flexibility and optimized performance – and general space weather approaches for events other

than solar flares (i. e., CMEs and solar wind).
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In fact, to date, some proposals attempted to create tools to automate the design of classifiers

for space weather events. To illustrate, we can mention the researches by Muranushi et al.

(2015), Leka, Barnes, and Wagner (2018), Massone and Piana (2018), Engell et al. (2017), Garciá-

Rigo et al. (2016), and Anastasiadis et al. (2017). However, once more, it is worth noting that

they could not fulfill all the premises we envisioned for an optimized design process, and

presented several design restrictions (as we shall further discuss in Chapter 3). By an optimized

design, we meant to design classifiers not incurring in most negative aspects authors of ad hoc

proposals usually encompassed.

1.2 Aims and scope

Aware of the benefits of automating the design of machine learning classifiers and the space

weather needs, we proposed in this thesis a comprehensive pipeline of machine learning

processes focused on the design optimization of solar flare classifiers. Accordingly, we proposed

a novel general methodology (framework) to design, train, and evaluate flare forecasting systems

with flexibility and optimized performance. We aimed to create a flexible pipeline of processes

relying on good practices for space weather. Besides, to ease the classifiers’ design, we fully

automated this methodology under Python’s Scikit-learn framework.

To validate the proposed methodology, we employed it in three case studies focused on

solar flare forecasting. We defined the processes comprehending it after an in-depth look at the

literature state-of-the-art, that is, what issues researchers often encompassed when designing

solar flare predictors – for instance, leveraging the performance while reducing false alarms,

dealing with imbalanced data, discarding useless features, adjusting hyperparameters to avoid

over-fitting, among others. Besides, we also deployed the classifiers from those case studies

into a real-time forecasting environment, namely the Guaraci system.

1.2.1 Target audience

Noteworthily, space weather data comprehend a compendium of multimission and

multidisciplinary data sources to monitor the heliosphere. That turns the Sun’s regions and

the near-Earth space of particular interest to space weather forecasters.

In this sense, a needed milestone is the capability to supply data acquisition systems at

strategic points of near-Earth regions to provide real-time data to evaluate the space weather.
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Accordingly, we have several instruments continuously monitoring the space weather on one

hand – such as the GOES satellites with tools for X-ray imaging and recording. On the other

hand, recorded big data analysis requires complex techniques and algorithms – not rarely,

machine learning-based ones.

Provided that the community can better understand those algorithms, it would certainly

produce better solutions for solar physics. Such an audience – and especially solar physicists

working with solar flare forecasting – is the target audience of this research.

In fact, the advances in machine learning achieved in the last decade – and particularly the

ability to train very deep and complex neural networks more recently – can greatly improve

the performance when forecasting solar flares (NISHIZUKA; SUGIURA; KUBO; DEN; ISHII,

2018). However, one must bear in mind that not all solar physicists can naturally transit

between the artificial intelligence domain and physics. In this sense, we believe that providing

a self-contained tool for physicists to design forecast systems with performance and flexibility

would shorten the gap between them and the desired artificial intelligence knowledge. That is

what we intend with this thesis.

1.3 Thesis organization

We divided this thesis into seven regular chapters, and three appendices. In Chapter 2, we

provide a theoretical reference of concepts needed for better understanding the content

discussed in this thesis. In Chapter 3, we further detail the literature state-of-the-art of solar

flare forecasting efforts. In Chapter 4, we explain the proposed methodology, providing details

of each stage, and employed techniques. Chapter 5 discusses the datasets employed in our case

studies, as well as our flare catalogs and features. In Chapter 6, we underlie the results of case

studies I, II, and III, and show how the methodology has improved the performance of

forecasting systems, comparing results to the specialized literature. Finally, in Chapter 7, we

underlie the conclusions of this research and comment on future work. Regarding the

supporting content of this thesis, Appendix A further discusses the scores employed for

assessing the classifiers’ performance. In turn, appendixes B and C present the detailed tables

of our case studies’ results and the Guaraci system, respectively.
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Chapter 2

Theoretical reference

This chapter discusses some supporting concepts for this thesis. First and foremost, we shall

introduce the machine learning domain under a data mining perspective, underlying the

concepts comprehending how learning algorithms learn from and represent historical data.

Within such a perspective, we shall consider the classification learning task specifically. We

will then move our focus to further explanations of the most recurrent Sun’s events affecting

the space weather, namely the sunspots, ARs, and solar flares.

2.1 Machine learning and data classification

As stated by Fayyad, Piatetsky-Shapiro, and Smyth (1996), the Knowledge Discovery in

Databases (KDD) domain comprehends a non-trivial process to extract implicit, previously

unknown, and potentially useful information from data stored in a wide range of data sources.

The KDD process encompasses a well-defined pipeline of actions (HAN; KAMBER, 2006):

1. Data cleaning: noise and inconsistency removal;

2. Data integration: integration of data from multiple sources;

3. Data selection: a selection of only relevant data for analysis;

4. Data transformation: data transformation into proper formats;

5. Data mining: mining data to discover hidden patterns (use of learning algorithms);

6. Pattern evaluation: discover useful patterns representing the desired knowledge;



Chapter 2. Theoretical reference 25

7. Knowledge representation: use of techniques to present and represent the extracted

knowledge.

During data mining, the idea is to build computer programs that automatically analyze

databases and seek regularities or patterns. Whether the algorithms find strong patterns, they

will likely learn better and shall be able to make better generalizations (accurate predictions)

on future data (WITTEN; FRANK; HALL, 2011). To carry out data mining, KDD often borrows

techniques and methods intersecting between distinct domains, including (ZAKI; MEIRA JR.,

2013):

• Machine learning: supervised, unsupervised, and by reinforcement methods;

• Relational databases: Data Warehousing (DW) and Online Analytical Processing (OLAP);

• Statistics;

• Knowledge engineering;

• Data visualization.

Not rarely, data mining will find issues in data. Many patterns can be banal or not interesting.

In turn, others can be spurious or contingent on accidental coincidences within a particular

dataset. Moreover, some parts of the data can be garbled or even missing, as well as exceptions

to the generalization rules can be encountered. As such, algorithms must be robust enough to

cope with such imperfect data (WITTEN; FRANK; HALL, 2011).

Because of its broad applicability, machine learning often provides alone the technical basis

for data mining. Usually, the kind of descriptions found in data mining can be used to predict

future events (i. e., the classification task – employing supervised machine learning algorithms)

or explain/understand historical data (i. e., the clustering task – employing unsupervised

machine learning algorithms) (WITTEN; FRANK; HALL, 2011). This thesis focused on the

classification task, mostly using supervised techniques.

The classification task assign items in a collection to their corresponding classes (categories).

As such, its goal relies on accurately predicting the target class of new cases of data. For instance,

a typical classification problem would be to fit an algorithm to classify the credit risk of new

loan applicants (i. e., low, medium, or high) (HAN; KAMBER, 2006).
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The most straightforward classification problem is binary. In binary classification, the

target assumes two possible classes (i. e., in case of flares, “yes” or “no” for occurring events).

On the other hand, multi-class targets have distinct categories (i. e., in the case of flares, the

class of each event) (HAN; KAMBER, 2006).

During the design process (training), a classification algorithm uses data to find relationships

between the input features and the target values. Machine learning algorithms differ in their

techniques when seeking such relationships. After training, the algorithm summarizes the

relationships it found into a forecast model, which can be employed later into a different dataset,

that is, a new set of records in which we do not know the class assignments (ZAKI; MEIRA JR.,

2013).

We test the trained classification model by comparing the predicted values to the test data’s

known values. We usually divide the historical data from a classification project into two parts:

one for training and the remaining for testing (ZAKI; MEIRA JR., 2013).

To design machine learning based prediction models, we must first provide them with

training tuples and their corresponding classes (labels) representing the existence of some

specific event. We define a tuple X as a n-dimensional array, X = [x1, x2,… , xn], referring to n

measures from n attributes A1, A2,… , An (features). Each tuple belongs to a predefined target

class, which assigns meaning to the measures from n attributes. During testing, the trained

model acts as a function y = f (X ), thus forecasting the class y of a given test tuple X (ZAKI;

MEIRA JR., 2013).

The output of most classification models comprehends the class assignments and,

additionally, the probabilities for each class. For instance, the model forecasting the occurrence

of flares as “yes” or “no” would also predict the probability of each assignment. Not rarely,

outputting the class probabilities allows the thresholding of answers. By default, we calculate

the class assignments with a threshold of 0.5 (i. e., probabilities higher than or equal to 0.5

belong to the “yes” class). However, such a default threshold might not yield the best

performance regarding the number of false alarms, which turns the threshold correcting an

activity worth performing (i. e., to adjust the precision-recall trade-off) (ZAKI; MEIRA JR.,

2013).
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• Beta-gamma: a group of bipolar spots; however, complex enough in such a way it is not

possible to draw a dividing line to separate the spots with opposite polarities;

• Gamma-delta: a group of spots mostly represented by the gamma class; however, there

is also at least one delta class spot;

• Beta-delta: a group of spots mostly represented by the beta class; however, with at least

one delta class spot;

• Beta-gamma-delta: a group of spots mostly represented by the beta-gamma class; however,

with at least one delta class spot.

On the other hand, the McIntosh taxonomy describes ARs’ forms through three distinct

components (Zpc) (MCINTOSH, 1990):

• Also known as the modified Zurich class, the first component (Z) describes whether a

penumbra is present, how it is distributed, and the length of the group. It draws values

from the following scale:

– A: unipolar group containing no penumbra (it represents the final or formative

stage of evolution within a group);

– B: bipolar group holding no penumbra on any spot;

– C: bipolar group with penumbra on one end of the group;

– D: bipolar group with length ≤ 10°, containing penumbra on spots at both ends of

the group;

– E: bipolar group with 10° < length ≤ 15°, containing penumbra on spots at both ends

of the group;

– F : bipolar group with length > 15°, containing penumbra on spots at both ends of

the group;

– H : unipolar group holding penumbra.

• Also known as the penumbral class, the second component (p) describes the type of the

largest spot in a group along with the type, size, symmetry, and umbra of its penumbra.

It draws values from the following scale:

– x: the penumbra does not exist;
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– r : a rudimentary (incomplete, granular, and brighter) penumbra partially surrounds

the largest spot;

– s: the largest spot has a mature, dark, and filamentary penumbra with no

irregularities on its borders, which have elliptical or circular shape – its

North-South diameter is ≤ 2.5°;

– a: the penumbra of the largest spot is irregular in outline and its North-South

diameter is ≤ 2.5°;

– h: the penumbra has the same structure as type s, but its North-South diameter is

> 2.5°;

– k: the penumbra has the same structure as type a, but its North-South diameter is

> 2.5°.

• Also known as the compactness class, the last component (c) describes the interior spot

distribution inside a sunspot group. It draws values from the following scale:

– x: undefined for unipolar groups;

– o: there are only few spots between the leader and follower (the interior of spots

are of very small size);

– i: there are numerous spots lying between the leading and following portions of

the group (none of them has a mature penumbra);

– c: many strong spots populate the area between the leading and following ends of

the spot group (at least one spot possesses a mature penumbra).

2.2.3 Solar flares

Mostly related to ARs, solar flares comprehend sudden releases of electromagnetic radiation

– including X-rays in the 1–8 Å wavelength, whose intensities we represent in W/m2. Such

events can reach temperatures between 10 – 20 million Kelvin. They can affect the Earth’s

atmosphere in a few minutes/hours and are considered one of the most powerful phenomena

in the solar system (CANFIELD, 2001). Figure 2.3 shows a solar flare in an extreme ultraviolet

MDI image.

The frequency of solar flares can vary over time, which means that several events can

occur in a short period, or weeks to months can pass without their occurrence (MOLDWIN,
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literature survey in Chapter 3, when we introduce and analyze state-of-the-art solar flare

forecasting systems, their underlying characteristics, and behavioral aspects.
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Chapter 3

Literature survey

This chapter shall give an in-depth look at the literature state-of-the-art solar flare forecasting

systems, as well as some automated machine learning approaches. In the beginning, this

chapter introduces a comprehensive number of forecast models for space weather whose

design processes have not focused on constant reproducing, i. e., ad hoc proposals. Our focus

then moves to the presentation of several systems proposed to automate and ease the design of

general machine learning forecast models, not forgetting to include some approaches specifically

created for space weather’s needs.

3.1 Solar flare forecasting efforts

To detail the forecast models relying on ad hocmethodologies, we shall describe how researchers

designed them, emphasizing how they assembled their datasets and features, and estimated

their prediction errors.

To report systems’ performance, we shall use some well-known machine learning scores

borrowed from binary deterministic-based forecast scenarios (i. e., forecasting whether flares

shall happen or not within some given period), such as the True Skill Statistics (TSS)1. The TSS

ranks the performance of learning models over a scale lying on [−1 , 1]: values next to -1 mean

a majority of incorrect predictions, whereas near 1, a majority of correct predictions.

Most scores could not represent two outcome scores simultaneously. However, TSS

successfully holds in its calculation two components for individually assessing the forecast

success rates of the positive (True Positive Rate (TPR); Han and Kamber (2006)) and negative

1For the mathematical formulation, see Appendix A.10 and the article from Jolliffe and Stephenson (2003).
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(True Negative Rate (TNR); Han and Kamber (2006)) outcome classes at once (see appendixes

A.4 and A.5 for further details involving TPR and TNR, respectively).

Roughly speaking, TPR accounts for the number of positive samples correctly forecast,

whereas TNR is the number of negative ones (HAN; KAMBER, 2006). As such, we shall also

include both individual hit rates while analyzing literature. Besides, we will detail the Accuracy

(ACC) (see Appendix A.3; Han and Kamber (2006)) of systems and ratios of predicted false

alarms (False Alarm Ratio (FAR), Appendix A.6) (JOLLIFFE; STEPHENSON, 2003).

As argued in Barnes and Leka (2008)’s, Barnes, Leka, et al. (2016)’s, Leka, S.-H. Park, et al.

(2019b)’s, and Leka, S.-H. Park, et al. (2019a)’s researches, unless the datasets of two distinct

forecasting efforts are identical, directly comparing their metrics is meaningless. As such,

characteristics preventing direct comparisons involve distinct splitting approaches for training,

validating, and testing data, how researchers designed their target features (forecasts), the type

of prediction (for instance, whether systems analyze the Sun’s full-disk or provide forecasts for

each observed AR at some period in time, that is, AR-by-AR), among others.

The characteristics, as mentioned earlier, introduce uncertainty when directly comparing

scores from distinct learning models. In fact, it is not clear whether comparing differences

occur in response to the methods used (i. e., performance merit) or to the underlying differences

of datasets (i. e., sets of data easier to classify) (BARNES; LEKA, 2008; BARNES; LEKA, et al.,

2016). Accordingly, results commented herein should not by any means be considered direct

comparisons of scores between distinct forecasting approaches.

Overall, for scope definition purposes, we included in our literature research learning

models relying on the following criteria:

• Systems able to forecast ≥ C- (events of C-class and above) and ≥M-class flares (events

of M-class and above).

• Systems designed to forecast events in the next 24 h, 24 h – 48 h, and 48 h – 72 h. Besides,

we also sought overlapping forecasting horizons, that is, forecasting events in the next

48 and 72 h.

• Systems relying on features of mixed origin (i. e., photospheric magnetic data, ARs’

photospheric features, among others).

• Systems relying on algorithms of mixed nature (i. e., SVMs, ensembles, DecisionTrees,

statistical predictors, among others).
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• Systems outputting AR-by-AR or full-disk forecasts.

• Literature focusing on the period between 2010 and 2020 July. Our aim is not to disregard

the literature of longer periods. However, our focus is an in-depth look at the state-of-

the-art, instead. Nevertheless, we may also include some seminal articles.

• In addition to system forecasts, we shall also include human-based ones from prediction

centers.

Besides, while analyzing the literature, we managed to distinguish systems between two

distinct groups: systems posing biased results or not. Biased results link to systems holding

some bias in their reported performance.

In fact, biased results are not wrong. However, they represent systems evaluated in

scenarios that would mask, to some extent, their generalization skills in real operational

settings. Henceforth, let us acknowledge the following four criteria to distinguish between

biased and unbiased results:

1. Evaluation with truly unseen data: as posited in Ahmed et al. (2013)’s research, removing

samples from the training process gives a true estimate of systems’ performance while

forecasting real test data, i. e., unseen samples. They proposed to yearly split their dataset

into training and testing data, thus reserving some years for designing models and others

to validate them as if they were forecast in a real operational environment. Accordingly,

articles not explicitly using unseen data to report their results shall be classified as biased.

2. Availability of enough data for model design: some authors do not include enough examples

to fit their models, thus incurring in under-fitting. Learning models relying on less

representative datasets can have their generalization skills over unseen samples negatively

affected. Within this context, increasing datasets’ size allows finer discrimination between

input features, positively leveraging their generalization skills (PYLE, 1999). As such,

articles lacking enough data shall be classified as biased.

3. Use of ARs’ data near the disk center only: many researchers discard magnetograms with

ARs far from the disk center when designing models, that is, beyond a defined radius.

However, as posited in Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017)’s research,

their reported scores raise uncertainty and weaken results interpretation for operational

purposes since, in real operational environments, their systems would have to behave



Chapter 3. Literature survey 37

with ARs at any location in the disk. Therefore, those proposals shall also be classified as

biased.

4. Use of ARs’ data linked to ≥ C1.0 flares only when forecasting ≥ M-class events: many

researchers only handle magnetograms with ARs producing ≥ C1.0 flares and distinguish

samples linked to ≥ M1.0 events as the positive class. However, as posited in Bloomfield

et al. (2012)’s research, their reported scores also raise uncertainty and weaken results

interpretation for operational purposes, since in real operational environments, their

systems would have to behave with ARs not linked to any type of flare. Hence, we shall

classify those proposals as biased.

3.1.1 ≥ C-class flare forecasting

Table 3.1 shows our literature survey involving ≥ C-class flares forecasting approaches. We

divided this table into three parts: the upper-hand part represents biased models, the middle-

hand has the unbiased ones, and the lower-hand includes human-based forecasts from space

weather prediction centers.

Biased results

By sampling Helioseismic and Magnetic Imager (HMI) magnetograms (BOBRA; SUN, et al.,

2014) with a one-hour cadence from the period between 2011 and 2012, Muranushi et al. (2015)

processed the Sun images to create some scalar time series using wavelet analysis. They then

attached labels to their data samples for predicting ≥ C-, ≥M-, and X-class flares in the next

24 h based on GOES soft x-ray measures.

Concerning ≥ C flare forecasting, the linear regressor from Muranushi et al. (2015) scored a

TSS of 0.63 (FAR = 0.07). Despite the positive results (both TPR and TNR trespassed 0.80), the

authors only chose samples of magnetograms with ARs within 69° of the solar disk center, and

thus we classified their results as biased.

For only choosing magnetograms with ARs within 30° of the solar disk center, we also

classified Huang, H. Wang, Xu, et al. (2018)’s study as biased. They aimed to propose a novel

forecasting approach based on a proxy dataset combining data from MDI magnetograms

(SCHERRER et al., 1995) and HMI images. Accordingly, they designed a convolutional neural
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Table 3.1: ≥ C-class flare forecasting models.

Forecasting time Authorship Grouping ACC TPR TNR TSS FAR

next 24 h Muranushi et al. (2015)a biased results 0.81 0.80 0.83 0.63 0.07

next 24 h Huang, H. Wang, Xu, et al. (2018)b biased results 0.76 0.73 0.76 0.49 0.65

next 48 h Huang, H. Wang, Xu, et al. (2018)b biased results 0.81 0.81 0.81 0.62 0.84

next 24 h Ahmed et al. (2013)c biased results 0.96 0.52 0.98 0.53 0.25

next 24 h Yang et al. (2013)d biased results 0.76 0.61 0.84 0.47 -

next 24 h Domijan, Bloomfield, and Pitié (2019)e biased results 0.89 0.95 0.89 0.84 -

next 24 h Domijan, Bloomfield, and Pitié (2019)f biased results 0.81 0.87 0.80 0.67 -

next 24 h H. Liu et al. (2019)g biased results 0.82 0.76 0.84 0.60 -

next 24 h Florios et al. (2018)h biased results 0.84 - - 0.60 -

next 24 h X. Wang et al. (2020)i biased results 0.88 0.63 0.93 0.56 0.36

next 24 h X. Li et al. (2020)j biased results 0.86 0.88 0.79 0.67 0.09

next 24 h Anastasiadis et al. (2017)k biased results - - - 0.25 -

next 24 h Nishizuka, Sugiura, Kubo, Den, and Ishii (2018)l unbiased results 0.82 0.81 0.82 0.63 0.47

next 24 h Hada-Muranushi et al. (2016)m unbiased results 0.66 0.72 0.57 0.30 0.30

next 24 h Colak and Qahwaji (2009)n unbiased results 0.81 0.81 - - 0.30

next 24 h Leka, Barnes, and Wagner (2018)o unbiased results 0.75 0.69 0.82 0.51 0.17

24 h – 48 h Leka, Barnes, and Wagner (2018)o unbiased results 0.77 0.71 0.83 0.55 0.16

48 h – 72 h Leka, Barnes, and Wagner (2018)o unbiased results 0.71 0.60 0.85 0.45 0.17

next 24 h Leka, Barnes, and Wagner (2018)p unbiased results 0.92 0.30 0.99 0.29 0.30

24 h – 48 h Leka, Barnes, and Wagner (2018)p unbiased results 0.93 0.27 0.99 0.26 0.25

48 h – 72 h Leka, Barnes, and Wagner (2018)p unbiased results 0.94 0.27 0.99 0.26 0.30

next 24 h Bloomfield et al. (2012)q unbiased results 0.71 0.75 0.70 0.45 0.64

next 24 h E. Park et al. (2018)r unbiased results 0.82 0.85 0.78 0.63 0.17

next 24 h Benvenuto et al. (2018)s unbiased results 0.83 0.53 0.89 0.43 0.47

next 24 h Díscola Jr. et al. (2018a)t unbiased results 0.72 0.70 0.79 0.49 -

next 24 h Díscola Jr. et al. (2018b)u unbiased results 0.91 0.94 0.86 0.80 -

next 24 h Crown (2012)v human-based forecasts 0.90 0.63 0.94 0.57 0.40

a Scores calculated over the confusion matrix of Table 5. Although Muranushi et al. (2015) proposed an automated space weather
design approach (as we shall discuss in Section 3.2.1, such scores correspond to a reported case study.
b Scores calculated over the confusion matrix of Table 4 (HUANG; WANG, H.; XU, et al., 2018).
c Scores collected from Table 6 (training and testing columns: operational set up). TSS calculated over TPR and TNR (AHMED
et al., 2013).
d Scores collected from Table 4 (YANG et al., 2013).
e Scores collected from Table 4 (DOMIJAN; BLOOMFIELD; PITIÉ, 2019) (p = 0.05).
f Scores collected from Table 7 (DOMIJAN; BLOOMFIELD; PITIÉ, 2019) (p = 0.20).
g Scores collected from Table 3. Results refer to the LSTM entry. TNR calculated over TPR and TSS (LIU, H. et al., 2019).
h Scores collected from the conclusions of page 27 (FLORIOS et al., 2018).
i Results computed over the confusion matrix of Table 5. Results refer to the LSTM-15_18 model (WANG, X. et al., 2020).
j Results collected from Table 2. TNR computer over TPR and TSS (LI, X. et al., 2020).
k Approximated TSS and TPR values from the graph of Figure 8 (TSS peak at a threshold of 0.40). Although Anastasiadis et al.
(2017) proposed an automated space weather design approach (as we shall discuss in Section 3.2.1, such TSS and TPR correspond
to a reported case study.
l Scores calculated over the confusion matrix of Figure 5 (NISHIZUKA; SUGIURA; KUBO; DEN; ISHII, 2018).
m Scores calculated over the confusion matrix of Table 5 (HADA-MURANUSHI et al., 2016).
n Scores collected from Table 3 (COLAK; QAHWAJI, 2009).
o Scores calculated over the confusion matrix of Fig. 13 (full-disk forecasts). Although Leka, Barnes, and Wagner (2018) proposed
an automated space weather design approach (as we shall discuss in Section 3.2.1, such scores correspond to a reported case
study.
p Scores calculated over the confusion matrix of Fig. 13 (active-region-based forecasts). Although Leka, Barnes, and Wagner
(2018) proposed an automated space weather design approach (as we shall discuss in Section 3.2.1, such scores correspond to a
reported case study.
q Scores collected from Table 4. TNR calculated over TPR and TSS (BLOOMFIELD et al., 2012).
r Scores collected from Table 3 (Model 3). TNR calculated over TPR and TSS (PARK, E. et al., 2018).
s Scores calculated over the confusion matrix of Table 1 (Hybrid entry) (BENVENUTO et al., 2018).
t TSS calculated over TPR and TNR. Results collected from Fig. 60.2 and 60.3 (DÍSCOLA JR. et al., 2018a).
u TSS calculated over TPR and TNR. Scores collected from page 13 (DÍSCOLA JR. et al., 2018b).
v Scores calculated over the confusion matrix of Table 4 (CROWN, 2012).

network (CNN) over MDI data from 1996 to 2010 and used HMI data from 2010 to 2015 for

testing.
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Although Huang, H. Wang, Xu, et al. (2018) have proposed several forecasting horizons

(the next 6, 12, 24, and 48 h) and flare importance thresholds (C-, M-, and X-class events), we

only considered the scenarios adhering to this study, namely predicting ≥ C flares in the next

24 and 48 h. For those cases, their model scored TSS = 0.49 (FAR = 0.65) and 0.62 (FAR = 0.84),

respectively for 24 and 48 h.

Another research whose authors also included only MDI samples of magnetograms within a

defined radius (45°) is the one by Ahmed et al. (2013). They aimed to assess the flare-prediction

potential of what they defined as MF properties, i. e., sets of magnetic features automatically

tracked and extracted fromMDI images by their Solar Monitor Active Region Tracker (SMART).

Ahmed et al. (2013) proposed two strategies for defining positive events for their cascade

correlation neural network: segmented and operational. They classified segmented samples

as flaring if they produced at least one C-, M-, or X-class flare in the following 24 h, and

non-flaring if they did not produce any of those events in the following 48 h. On the other hand,

they defined operational samples – the scenario we are referencing in Table 3.1 – as positive

exactly in the same way as segmented ones. However, the non-flaring flag was attached to MF

properties not producing any flare in the following 24 h.

To evaluate their model, Ahmed et al. (2013) divided their samples into years of training

(1996 April to 2000 December, and 2003 January to 2008 December) and testing data (2001

January to 2002 December, and 2009 January to 2010 December). Despite the identified bias of

filtering ARs far from the disk center, they scored TSS = 0.53 at the expense of forecasting false

alarms one-fourth of the time.

Based on data from the Solar Magnetic Field Telescope located at the Huairou Solar

Observing Station in China, Yang et al. (2013) chose several photospheric magnetic features,

including the mean planar magnetic shear angle, the vector magnetic field mean shear angle

and the mean absolute vertical current density. They then proposed a support vector classifier

with tenfold cross-validation to assess their forecasting performance. Since in this research the

authors only used ARs samples locating within 30° from the disk center, we treated their

results as biased, despite their TSS = 0.47.

More recently, Florios et al. (2018) presented an approach for investigating the forecast

performance with ≥ C-class events using multi-layer perceptrons, support vector machines, and

random forests. As such, they based their predictive features on near-real-time HMI data from

2012 to 2016, with all calendar days within this period included in the sample. The cadence of
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predictors in the chosen days was three hours. For each AR record, they verified whether it

flared within the next 24 h.

Their whole set of data comprised more than 23,100 observations. To investigate their

algorithms, they repeated split at random this set into training (50%) and test (50%) samples and

applied the same subsets for them. Besides, they assessed the effects of varying the prediction

threshold of algorithms within 200 evaluations. They chose their best model – random forest –

considering the algorithm peaking its TSS at some particular threshold. As they used test data

for decision-making, we considered their approach biased, despite scoring TSS = 0.60.

Aiming a direct comparison with Ahmed et al. (2013)’s research, Domijan, Bloomfield,

and Pitié (2019) used the same data period of MF properties as the former, including the year

segments for training and testing. Hence, from 1996 April to 2010 December, they assembled

two datasets: a full set of MF properties and a filtered one, comprehending only MF properties

linked to NOAA ARs (SMART did not associate every MF detection with a valid NOAA AR

number; Ahmed et al. (2013)).

Despite Domijan, Bloomfield, and Pitié (2019) had two datasets, both of them only included

MF properties tracked within 45° of the disk center. In addition, they treated positive events

exactly in the same way as in Ahmed et al. (2013)’s article, i. e., they deemed each MF property

as positive whether it did produce C-class events or above within the following 24 h after

observation.

Besides two datasets, Domijan, Bloomfield, and Pitié (2019) also carried some feature

selection studies with distinct prediction algorithms, namely linear regression, random forest,

and SVM. They defined the high-gradient neutral-line length, maximum gradient along polarity

inversion line, and neutral-line length as the top three features for both full (TSS = 0.84) and

filtered datasets (TSS = 0.67).

In turn, H. Liu et al. (2019) employed custom long-short term memory networks (LSTM) to

forecast whether ARs would flare in the next 24 h. The essence of their research was to model

AR records as time series and use such networks to capture their temporal information. Each

AR sample held 40 features, including the 25 HMI parameters proposed by Bobra and Couvidat

(2015) and 15 features to represent the flare history of ARs.

Within this context, H. Liu et al. (2019) surveyed flare events occurring from 2010 May

to 2018 May in the GOES X-ray flare catalogs provided by the NCEI, selecting events linked

to their ARs samples – that is, the ones representing ≥ M- and X-class events. To avoid the
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bias of mixing data during the design of their models, they used disjoint periods: data samples

collected from 2010 to 2013 comprehended the training set, the year of 2014 composed their

validation set, and the period between 2015 – 2018 was their test set. However, they included

ARs samples only within 70° to the central meridian, as suggested by Bobra and Couvidat

(2015). Nevertheless, for ≥ C-class forecasting, their biased TSS equaled 0.60.

More recently and also using disjoint periods for designing their classifier – a LSTM – to

forecast ≥ C- and M-class events within the next 24 h, X. Wang et al. (2020) have split their HMI

AR data from 2011 to 2014 and from 2015 to 2018 for training and test, respectively. As of H. Liu

et al. (2019) mostly based their features on Bobra and Couvidat (2015)’s set, so did X. Wang

et al. (2020). However, despite their TSS = 0.56, they discarded ARs with records beyond 68°

from the disk center.

The remainder of articles for ≥ C flare forecasting including only AR samples near the disk

center comprehends the research by X. Li et al. (2020) (45°, TSS = 0.67) and Anastasiadis et al.

(2017) (70°, TSS = 0.25).

Unbiased results

Conversely to the previous articles, from 300,000 HMI images between 2010 and 2015 taken

by the Solar Dynamic Observatory (SDO), Nishizuka, Sugiura, Kubo, Den, and Ishii (2018)

calculated 79 features for each sunspot and attached labels of X-, M-, and C-class flares based

on GOES X-ray measures.

For each sunspot, Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) included features proposed

by Bobra and Couvidat (2015) and Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017), along

with the coronal hot brightening at 131 Å and the X-ray intensity data linked to 1 and 2 h

before images. To evaluate their convolutional neural network, they split their database into

years of training and testing data. They used data between 2010 and 2014 for training, and

2015 for testing.

Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) aimed to calculate the flare probabilities of

each region involving the occurrence of ≥ C and ≥ M events in the next 24 h after images. For

≥ C flare forecasting, their model scored TSS = 0.63 (FAR = 0.47).

Although we previously classified Muranushi et al. (2015)’s results as biased for only

choosing samples of magnetograms with ARs near the disk center, recently, there has been

a proposal to deploy an operational system designed by their tool to design forecast models
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(HADA-MURANUSHI et al., 2016). Instead of a regression classifier, authors designed a LSTM

based on wavelet features calculated from HMI images (TSS = 0.30).

As Nishizuka, Sugiura, Kubo, Den, and Ishii (2018), Hada-Muranushi et al. (2016) also aimed

to calculate the probabilities of ≥ C-, ≥M-, and X-class events occurring in the next 24 h. For

predicting ≥ C events, their LSTM scored 0.30 for both TSS and FAR.

Colak and Qahwaji (2009) introduced an operational system for flare forecasting named

Automated Solar Activity Prediction (ASAP), which integrated machine learning, solar physics,

and image processing to make forecasts based on descriptive characteristics of sunspots. They

composed their system of two modules, namely a neural network to predict the flaring

probability of ≥ C events and another neural network to specify the class of events when

needed.

For designing their models, Colak and Qahwaji (2009) used MDI magnetograms from 1982 to

2006. Within this period, they reserved the years between 1999 and 2002 for testing. Accordingly,

their models processed such images and provided automated tracking and classification of

sunspots according to their McIntosh (1990)’s classes prior to making forecasts, which led them

to score TPR = 0.81 and FAR = 0.30.

In turn, Leka, Barnes, and Wagner (2018) designed some linear discriminant models to

forecast ≥ C flares within the next 24 h, 24 h – 48 h, and 48 h – 72 h based on full-disk and

AR-by-AR analysis. Then, they deployed those models into a real forecasting environment.

Concerning full-disk forecasts, they scored TSS values of 0.51, 0.55, and 0.45 for the next 24 h,

24 h – 48 h, and 48 h – 72 h, respectively. Not only they achieved positive TSS results, but also

low FAR measures, noticeably 0.17 (next 24 h and 48 h – 72 h) and 0.16 (24 h – 48 h).

On the other hand, for the AR-by-AR strategy, Leka, Barnes, and Wagner (2018) did score

more limited results, notably TSS = 0.29 (next 24 h and 24 h – 48 h) and 0.26 (48 h – 72 h).

Conversely, unlike the full-disk scenario, their FAR almost doubled: 0.30 (next 24 h and 48 h –

72 h) and 0.25 (24 h – 48 h).

Finally, by using SRS data from NOAA/SWPC in their study, Bloomfield et al. (2012) handled

Poisson statistics to calculate the flaring probabilities of each McIntosh (1990)’s class. To

evaluate their model, they split their dataset into years of training (1988 – 1996) and test (1996 –

2010) data. For ≥ C1.0 flare forecasting in the next 24 h, their model scored TSS = 0.45 and FAR

= 0.64.
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E. Park et al. (2018) proposed another strategy to yearly segmenting their data to evaluate

classifiers implemented as convolutional neural networks. They picked MDI magnetograms

from 1996 May to 2010 December for every 00:00 UTC and HMI images from 2011 January

to 2017 June also at this time. On the one hand, they processed images to calculate their

pixel-based input features. On the other hand, their target feature comprehended a binary

forecast from 00:00 UTC to 24:00 UTC based on GOES X-ray flux data: “no-flare” (weaker than

C1.0) and “flare” (stronger than or equal to C1.0).

To evaluate their models, E. Park et al. (2018) chronologically separated their data into

training and test sets. For training, they used images spanning from 1996 to 2008 (the solar cycle

23). For tests, they employed images from 2009 to 2017 (the solar cycle 24 partially represented).

In this sense, their best model scored TSS = 0.63.

In addition to Bloomfield et al. (2012) and E. Park et al. (2018), who have split their data by

years, Benvenuto et al. (2018) and Díscola Jr. et al. (2018a) also used such strategy. Following,

the former authors assembled a dataset based on AR records tracked in the SRS repository.

By considering the categorical classes of McIntosh (1990)’s components (Z, p, and c) and the

magnetic classes of Mt. Wilson, authors computed the occurrence frequencies with which

variables occurred or not linked to flares – ≥ C and ≥ M. On the other hand, the latter authors

designed a Naïve Bayes-based classifier on X-ray time series data of 2014 and tested it on 2015

(TSS = 0.49).

To evaluate the performance of their model, namely a hybrid algorithm composed of a

regularization method for regression and fuzzy C-means, they used the time range between

1996 August and 2010 December as the test set, whereas employing data collected between

1988 December and 1996 June as the training set. Consequently, they scored TSS = 0.43 for

C-class events and above at the cost of somehow leveraging their false alarms (FAR = 0.47).

Human-based forecasts

Finally, we also included human-based forecasts from space weather prediction centers in

Table 3.1. Here, we considered one proposal we have found, namely the one by Crown (2012).

Their TSS was 0.57 for predicting C-class flares and higher in the next 24 h at NOAA/SWPC in

the period between 1996 May and 2008 December (the solar cycle 23). On the other hand, they

scored TPR = 0.63 and TNR = 0.94 (FAR = 0.40).
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3.1.2 ≥ M-class flare forecasting

Conversely, tables 3.2 and 3.3 show our literature research involving ≥M-class flare forecasting

approaches. For better readability, the former contains biased results, whereas the latter includes

unbiased and forecasts from prediction centers.

Biased results

In their research, Yang et al. (2013) employed ARs’ vector magnetic data from the Solar Magnetic

Field Telescope located at the Huairou Solar Observing Station in China. Their input features

included the mean planar magnetic shear angle, vector magnetic field mean shear angle, and

the mean absolute vertical current density. To forecast flares, Yang et al. (2013) designed a

support-vector classifier relying on tenfold cross-validation.

For only including magnetograms with ARs within 30° from the disk center, we did classify

Yang et al. (2013)’s research as biased. Nonetheless, they scored TSS = 0.48 and 0.53, and TPR =

0.41 and 0.43 respectively for predicting events within the next 24 and 48 h.

In turn, J.-F. Liu, F. Li, Wan, et al. (2017) proposed another forecasting approach only

including ARs within 30° from the center. By using a mixed scenario of input features, the

authors included several magnetic field data from MDI magnetograms on one hand, such as

the singular points number, neutral line length, and maximum horizontal gradient. On the

other hand, they analyzed the McIntosh (1990)’s classes of ARs in the catalog by the National

Geophysical Data Center (NGDC).

J.-F. Liu, F. Li, Wan, et al. (2017) then designed a multi-model integrated learner by fitting

and integrating neural networks, naïve classifiers, and SVMs as base learners. They merged

their outputs with the linear sum, adjusting weights by a genetic algorithm. As of Yang et al.

(2013), J.-F. Liu, F. Li, Wan, et al. (2017) also employed tenfold cross-validation to assess their

model performance (TSS = 0.47).

In comparison to J.-F. Liu, F. Li, Wan, et al. (2017)’s methodology, J.-F. Liu, F. Li, H.-P. Zhang,

et al. (2017) employed the same filter to select magnetogram samples, that is, they only reserved

ARs locating 30° near the disk center. Instead of a multi-model learner, to forecast events within

48 h, they used image-case-based reasoning (TSS = 0.5).

In turn, C. Liu et al. (2017)’s article focused on evaluating the performance of a random

forest model to forecast M- and X-class events over HMI magnetograms recorded at midnight

with 24 h in advance. As they encountered an imbalanced set of data (only 24% of positive
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Table 3.2: ≥ M-class flare forecasting models: biased results.

Forecasting Time Authorship Grouping ACC TPR TNR TSS FAR

next 24 h Yang et al. (2013)a biased results 0.90 0.41 0.96 0.48 -

next 48 h Yang et al. (2013)a biased results 0.86 0.43 0.95 0.53 -

next 48 h J.-F. Liu, F. Li, Wan, et al. (2017)b biased results - 0.64 0.83 0.47 -

next 48 h J.-F. Liu, F. Li, H.-P. Zhang, et al. (2017)c biased results 0.75 0.76 0.74 0.50 -

next 24 h C. Liu et al. (2017)d biased results 0.76 0.74 0.78 0.53 -

next 48 h R. Li and Zhu (2013)e biased results 0.82 0.69 0.83 0.52 -

next 48 h R. Li, H. Wang, et al. (2011)f biased results 0.74 0.69 0.75 0.44 -

next 48 h Huang and H.-N. Wang (2013)g biased results 0.72 0.72 0.71 0.71 0.70

next 48 h X. Zhang, J. Liu, and Q. Wang (2011)h biased results - 0.75 - - -

next 48 h Yu, Huang, H. Wang, and Cui (2009)i biased results - 0.82 0.84 0.66 -

next 48 h Yu, Huang, Q. Hu, et al. (2010)j biased results 0.92 0.94 0.91 0.86 0.28

next 48 h Yu, Huang, H. Wang, Cui, et al. (2010)k biased results - 0.85 0.87 0.72 0.28

exact 24 h Bobra and Couvidat (2015)l biased results 0.92 0.83 0.92 0.76 -

exact 48 h Bobra and Couvidat (2015)l biased results 0.94 0.86 0.94 0.81 -

next 48 h Raboonik et al. (2016)m biased results 0.94 0.97 0.88 0.85 0.05

next 24 h Muranushi et al. (2015)n biased results 0.7 0.85 0.67 0.52 0.35

next 24 h Jonas et al. (2018)o biased results - - - 0.81 -

next 48 h Huang, Yu, et al. (2010)p biased results - 0.91 0.87 0.78 -

next 24 h Huang, H. Wang, Xu, et al. (2018)q biased results 0.81 0.85 0.81 0.66 0.90

next 48 h Huang, H. Wang, Xu, et al. (2018)q biased results 0.81 0.81 0.81 0.62 0.84

next 24 h Sadykov and Kosovichev (2017)r biased results 0.87 0.89 0.86 0.76 0.77

next 24 h Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017)s biased results 0.99 0.90 0.99 0.90 0.07

next 24 h H. Liu et al. (2019)t biased results 0.90 0.88 0.91 0.79 -

next 24 h Florios et al. (2018)u biased results 0.93 - - 0.74 -

next 24 h Alipour, Mohammadi, and Safari (2019)v biased results - - - 0.95 -

next 24 h X. Wang et al. (2020)w biased results 0.94 0.73 0.95 0.68 0.72

next 24 h X. Li et al. (2020)y biased results 0.89 0.81 0.93 0.74 0.11

next 24 h Anastasiadis et al. (2017)x biased results - - - 0.30 -

next 24 h Jiao et al. (2020)z biased results - 0.54 0.97 0.51 -

a Results collected from Table 4. TPR treated as frequency of hits (FOH). TNR defined as frequency of correct nulls forecasts (FOCN) (YANG
et al., 2013).
b Results collected from Tables 3 and 4. Authors did not inform the ACC. TSS calculated over TPR and TNR (LIU, J.-F.; LI, F.; WAN, et al.,
2017).
c Scores collected from Table 6. TSS calculated over TPR and TNR (LIU, J.-F.; LI, F.; ZHANG, H.-P., et al., 2017).
d Results collected from Table 4 (LIU, C. et al., 2017).
e Results collected from Table 2. ACC is treated as CORR. Results refer to the w = 0 column. TSS calculated over TPR and TNR (LI, R.; ZHU,
2013).
f Results collected from Table 3. ACC is treated as correctness. Results refer to the KM-LVQ column. TSS calculated over TPR and
TNR (LI, R.; WANG, H., et al., 2011).
g Scores computed over the confusion matrix of Table 3 (HUANG; WANG, H.-N., 2013).
h Score gathered from Table III. Authors did not inform the TSS, TNR, and ACC. Results refer to the C4.5 column (ZHANG, X.; LIU, J.;
WANG, Q., 2011).
i Scores gathered from Table 3. TSS computed over TPR and TNR. Results refer to the LVQ (w = 45) column (YU; HUANG; WANG, H.; CUI,
2009).
j Scores computed over the confusion matrix of Table 4. Results refer the MODWT_DB2_Red model (YU; HUANG; HU, Q., et al., 2010).
k Scores computed over the confusion matrix of Table 4. Results refer to the BN_F column (YU; HUANG; WANG, H.; CUI, et al., 2010).
l Results collected from Table 3 (BOBRA; COUVIDAT, 2015).
m Results collected from Table 3 (RABOONIK et al., 2016).
n Scores calculated over the confusion matrix of Figure 5. Although Muranushi et al. (2015) proposed an automated space weather design
approach (as we shall discuss in Section 3.2.1, such scores correspond to a reported case study.
o The TSS refers to the highest score of Figure 14 (24 h prediction task, features included: HMI and flare hist). Authors did not inform ACC,
TPR, and TNR (JONAS et al., 2018).
p Approximated scores from Figure 5 (in the graph, refer to the number of base prediction models equals 11). TSS calculated over TPR and
TNR. Authors did not provide ACC (HUANG; YU, et al., 2010).
q Scores calculated over the confusion matrix of Table 4 (HUANG; WANG, H.; XU, et al., 2018).
r Scores computed from the TP, TN, FP, and FN values available at page 7 (SADYKOV; KOSOVICHEV, 2017).
s Results computed over the confusion matrix of Table 3. Results refer to the k-NN model (NISHIZUKA; SUGIURA; KUBO; DEN; WATARI,
et al., 2017).
t Scores collected from Table 3. Results refer to the LSTM entry. TNR calculated over TPR and TSS (LIU, H. et al., 2019).
u Scores collected from the conclusions of page 27 (FLORIOS et al., 2018).
v Scores collected from the conclusions of page 12 (ALIPOUR; MOHAMMADI; SAFARI, 2019).
w Results computed over the confusion matrix of Table 4. Results refer to the LSTM-15_18 model (WANG, X. et al., 2020).
y Results collected from Table 2 of X. Li et al. (2020). TNR computed over TSS and TPR.
x Approximated TSS and TPR values from the graph of Figure 8 (TSS peak at a threshold of 0.15). Although Anastasiadis et al. (2017)
proposed an automated space weather design approach (as we shall discuss in Section 3.2.1, such scores correspond to a reported case
study.
z Results collected from Table B3 of Jiao et al. (2020) (metrics entry: 12-06). TNR computed over TSS and TPR.
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Table 3.3: ≥M-class flare forecasting models: unbiased and human-based results (continued).

Forecasting Time Authorship Grouping ACC TPR TNR TSS FAR

next 24 h Bloomfield et al. (2012)a unbiased results 0.83 0.70 0.83 0.53 0.85

next 24 h Shin et al. (2016)b unbiased results - 0.61 0.76 0.37 0.78

next 24 h Leka, Barnes, and Wagner (2018)c unbiased results 0.89 0.20 0.99 0.19 0.21

24 h – 48 h Leka, Barnes, and Wagner (2018)c unbiased results 0.87 0.03 1.00 0.03 0.20

48 h – 72 h Leka, Barnes, and Wagner (2018)c unbiased results 0.87 0.06 1.00 0.05 0.13

next 24 h Nishizuka, Sugiura, Kubo, Den, and Ishii (2018)d unbiased results 0.86 0.95 0.86 0.80 0.82

next 24 h Hada-Muranushi et al. (2016)e unbiased results 0.82 0.39 0.88 0.27 0.68

next 24 h McCloskey, P. T. Gallagher, and Bloomfield (2018)f unbiased results - - - 0.47 -

next 24 h D. Falconer et al. (2011) and D. A. Falconer et al. (2014)g unbiased results 0.95 0.31 - 0.47 0.50

next 24 h D. A. Falconer et al. (2014)h unbiased results 0.95 0.38 - 0.49 0.48

next 24 h Benvenuto et al. (2018)i unbiased results 0.91 0.53 0.92 0.45 0.77

next 24 h Kubo, Den, and Ishii (2017)j human-based forecasts 0.84 0.60 0.90 0.50 -

next 48 h Devos, Verbeeck, and Robbrecht (2014)k human-based forecasts 0.88 0.37 0.97 0.34 -

next 24 h Crown (2012)l human-based forecasts 0.97 0.56 0.98 0.53 -

a Scores collected from Table 4. TNR computed over TSS and TPR. Results refer to the optimum TSS entry (BLOOMFIELD et al., 2012).
b Scores collected from Tables 6 and 10. Results refer to the MLR1 model. TNR calculated over TPR and TSS (SHIN et al., 2016).
c In Figure 13, those results refer to the full-disk performance. Although Leka, Barnes, and Wagner (2018) proposed an automated space
weather design approach (as we shall discuss in Section 3.2.1, such results correspond to a case study reported.
d Scores calculated over the confusion matrix of Figure 5 (NISHIZUKA; SUGIURA; KUBO; DEN; ISHII, 2018).
e Scores calculated over the confusion matrix of Table 5 (HADA-MURANUSHI et al., 2016).
f TSS collected from the graph of Figure A.1 (p = 0.08 in the evolution line). Author did not inform TPR, TNR, ACC, and FAR (MCCLOSKEY;
GALLAGHER, P. T.; BLOOMFIELD, 2018).
g Scores collected from the Table 2 of D. A. Falconer et al. (2014) (Present MAG4 entry).
h Scores collected from the Table 2 of D. A. Falconer et al. (2014) (Next MAG4 entry).
i Scores calculated over the confusion matrix of Table 2 (Hybrid entry) (BENVENUTO et al., 2018).
j Results collected from Table 4. TNR calculated over TSS and TPR (KUBO; DEN; ISHII, 2017).
k Results collected from Table 3. TNR calculated over TSS and TPR (DEVOS; VERBEECK; ROBBRECHT, 2014).
l Scores calculated over the confusion matrix of Table 4 (CROWN, 2012).

samples), the authors downsampled a hundred times their majority data part. They then

combined it with the minority samples, thus creating 100 distinct subsets.

Accordingly, C. Liu et al. (2017) repeated tenfold cross-validation in each downsampled

subset. This approach output a mean TNR = 0.78 and TPR = 0.74 (TSS = 0.53). Not only did

they not properly reserve test sets, but they also only employed AR samples near the Sun’s

central meridian (70°), which made us classify their article as biased.

Similarly to J.-F. Liu, F. Li, Wan, et al. (2017)’s research, R. Li and Zhu (2013) also used

tenfold cross-validation to evaluate the performance of their multi-layer perceptron model. For

forecasting within the next 48 h, their dataset held samples spreading from 1996 April to 2008

December. By designing their features through a sliding time window schema, they included

descriptive features like the sunspots area, ARs’ magnetic classes, and X-ray fluxes.

However, due to their long records period, R. Li and Zhu (2013)’s dataset naturally held

imbalanced class ratios. To cope with this nature, the authors carried out a k-means-based

undersample – further explained by R. Li, H. Wang, et al. (2011). In fact, they performed

undersampling before reserving the tenfold testing data segments, which made us treat their

results as biased – despite their TPR = 0.69 and TSS = 0.52.
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R. Li, H. Wang, et al. (2011)’s article detailed the under-sampling algorithm borrowed by

R. Li and Zhu (2013). R. Li, H. Wang, et al. (2011)’s also aimed to design a flare forecasting

model, that is, a learning vector quantization classifier (TSS = 0.44). To under-sample their data,

the authors divided the dataset into negative and positive samples and inputted the negative

set into a k-means algorithm – they set the k-means’ k value to be the number of the flaring

samples.

Then, R. Li, H. Wang, et al. (2011) reserved the clusters’ centroids and appended them in

the positive samples set (before performing their model’s tenfold cross-validation). As R. Li

and Zhu (2013) held some bias in results for not properly reserving test data in the beginning,

so did R. Li, H. Wang, et al. (2011).

Besides using only magnetograms with ARs near the Sun’s central meridian, the articles

by J.-F. Liu, F. Li, H.-P. Zhang, et al. (2017), J.-F. Liu, F. Li, Wan, et al. (2017), R. Li, H. Wang,

et al. (2011), and R. Li and Zhu (2013) also matched the fourth criterion of biased models. They

designed their data to have only ARs linked to C-class events comprehending negative samples,

thus excluding A- and B-class flares and their non-existence – in their case, ARs linked to ≥ M

flares accounted for the positive class.

Analogously, Huang and H.-N. Wang (2013) also matched the third and fourth criteria for

predicting ≥ M1.0 flares with a single decision tree in the next 48 h (TSS = 0.71). Not only

Huang and H.-N. Wang (2013), but also X. Zhang, J. Liu, and Q. Wang (2011) have matched

them with their C4.5 decision tree while analyzing features such as the magnetic field and

texture distribution, and the largest sunspot group fractal dimensional to forecast events 48 h

ahead (TPR = 0.75). In comparison, Huang, Yu, et al. (2010) pointed out to use the same data

selection criteria as X. Zhang, J. Liu, and Q. Wang (2011) and Huang and H.-N. Wang (2013) for

picking ARs samples for their ensemble and predictor teams (TSS = 0.78).

On the other hand, Yu, Huang, Q. Hu, et al. (2010), Yu, Huang, H. Wang, Cui, et al. (2010),

and Yu, Huang, H. Wang, and Cui (2009) presented other forecasting approaches only including

ARs linked to ≥ C1.0 flares in their datasets and discarded samples beyond the central radius.

Accordingly, the authors calculated the maximum horizontal gradient, the neutral line length,

and the singular points number over ARs from MDI magnetograms and used them as features

for all articles.

Besides, the articles mentioned earlier employed sliding time window schemas to represent

their evolutionary data streams. However, they diverged about the algorithms: Yu, Huang,
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H. Wang, and Cui (2009) used a learning vector quantization classifier (TSS = 0.66), Yu, Huang,

Q. Hu, et al. (2010) employed a C4.5 tree (TSS = 0.86), and in Yu, Huang, H. Wang, Cui, et al.

(2010), the model was a Bayesian network (TSS = 0.72).

Conversely, Bobra and Couvidat (2015)’s article coped with positive and negative classes

differently from J.-F. Liu, F. Li, Wan, et al. (2017), J.-F. Liu, F. Li, H.-P. Zhang, et al. (2017), Yu,

Huang, H. Wang, and Cui (2009), Yu, Huang, Q. Hu, et al. (2010), R. Li and Zhu (2013), R. Li,

H. Wang, et al. (2011), Huang and H.-N. Wang (2013), and Yu, Huang, H. Wang, Cui, et al. (2010).

They employed ≥ M1.0 X-ray measures to flag positive AR samples exactly 24 (TSS = 0.76) and

48 h (TSS = 0.81) after a given instant and defined both C-class flares and the non-existence

of events as the negative class. As such, their dataset held about 300 positive samples and

5,000 negative AR cases selected at random from HMI magnetograms, notably comprehending

imbalanced class ratios.

By using the cost function of an SVM classifier, Bobra and Couvidat (2015) coped with their

class ratio imbalanced nature. Accordingly, they sought ideal weights for both of their classes

in an attempt to guarantee that the classifier would not have given much emphasis to majority

samples. As the validation strategy, they employed repeated subsampling (hold-out), randomly

splitting their data into training (70%) and testing (30%) sets at each iteration.

As a matter of fact, Bobra and Couvidat (2015) investigated how their TSS varied over test

sets as weights of positive and negative classes changed. In this context, they picked optimal

weight values to optimize the TSS in the test sets.

However, Bobra and Couvidat (2015)’s TSS adjustment strategy incurred in some bias for

outputting tailored results concerning sampled test sets, that is, they did not use true unseen

data to evaluate their final model. Their results could have underestimated their real test

error substantially (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). In their case, they also risked

statistical flukes, i. e., test sets too easy to forecast. Besides, because their dataset only held

about 300 positive examples – within 68° from the central meridian –, this could affect their

model generalization skill in real operational settings, thus also incurring in some bias for

lacking enough data.

By using the same HMI data period as in Bobra and Couvidat (2015)’s research, Jonas et al.

(2018) designed some linear classifiers upon time series to predict M- and X-class flares in the

next 24 h (TSS = 0.81). To evaluate classifiers, the authors investigated distinct combinations of

features also using repeated random subsampling (training (80%) vs. test (20%) data).



Chapter 3. Literature survey 49

Jonas et al. (2018) aimed to report the best subset of features, i. e., the one that best increased

TSS upon test sets. Since the authors employed test data during decision-making instead of

assessing generalization error over real unseen data, we classified their results as biased. In

fact, they treated test samples as validation data (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

Another forecast approach for M-class events and above employing test data within a validation

scenario is the one by Florios et al. (2018) (TSS = 0.74), for varying the prediction threshold

within several hold-out iterations and choosing the threshold that peaked some model’s TSS.

Raboonik et al. (2016) proposed another classifier lacking enough data during training.

Despite scoring high results with their SVM for predicting flares in the next 48 h (TSS = 0.85),

their dataset only held 85 positive and 208 negative class samples. As previously mentioned,

reduced datasets can weaken results interpretation involving how systems would behave in

real operational environments, that is, models probably would not generalize well because of

the small number of analyzed samples (under-fitting) (PYLE, 1999).

In turn, Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017) were the first researchers

analyzing ARs beyond the limb with their models (beyond any defined radius from the disk

center). Accordingly, they calculated about 60 features from HMI magnetograms from 2010 to

2015, including those proposed by Bobra and Couvidat (2015) and some others related to UV

brightening and flare history. Then, to find the best algorithm regarding its mean TSS, they

carried out a comparison between some distinct models, such as SVM, extremely randomized

trees, and k-NN, through repeated random subsampling (training (70%) versus testing (30%)

data).

However, Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017)’s rationale for picking the

best model was similar to Bobra, Sun, et al. (2014)’s and Jonas et al. (2018)’s, who employed

test sets for decision-making. Hence, we also treated their results as biased for not reserving

real unseen data and keeping them aside while fitting their models. Despite that, their best

model – the k-NN – scored TSS = 0.90.

The remainder of articles for ≥ M flare forecasting including only AR samples near the

disk center comprehends the researches by Muranushi et al. (2015) (69°, TSS = 0.52), Huang,

H. Wang, Xu, et al. (2018) (30°, TSS = 0.66 and 0.62 respectively for 24 and 48 h), X. Wang et al.

(2020) (68°, TSS = 0.68), X. Li et al. (2020) (45°, TSS = 0.74), Sadykov and Kosovichev (2017) (68°,

TSS = 0.76), H. Liu et al. (2019) (70°, TSS = 0.79), Alipour, Mohammadi, and Safari (2019) (60°,

TSS = 0.95), Anastasiadis et al. (2017) (70°, TSS = 0.30), and Jiao et al. (2020) (0.68°, TSS = 0.51).
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Unbiased results

Conversely to the articles mentioned earlier, Bloomfield et al. (2012)’s approach presented a

methodology that employs data from the summaries of sunspots from NOAA/SWPC and

calculates the flaring probabilities of McIntosh (1990)’s classes using Poisson statistics.

Accordingly, they distinguished their dataset by years during their model evaluation: whereas

they used the period between 1988 and 1996 for training, data from 1996 to 2010 accounted for

the test samples. To forecast ≥ M1.0 events in the next 24 h, they scored TSS = 0.53 (FAR =

0.85).

Analogously to Bloomfield et al. (2012), McCloskey, P. T. Gallagher, and Bloomfield (2018)

employed Poisson statistics with McIntosh (1990)’s classes too (TSS = 0.47). However, they

analyzed how such elements evolve within sunspot groups instead of dealing with static

observations leading to flares. Their training period comprehended 1988 and 1996, whereas

their test data accounted for 1996 to 2008.

In turn, Shin et al. (2016) designed a prediction schema with a focus on each AR employing

multiple linear regression. In comparison to the articles mentioned earlier, from the sunspot

summaries by NOAA/SWPC, they calculated the Weighted Mean Flare Rate (WMFR) of

McIntosh (1990)’s classes and magnetic configurations, and the weighted total flare flux of

previous flaring days. They sampled at random records of ≥ M-class events from 1996 January

to 2004 December to train their model. On the other hand, they employed the years between

2005 January to 2013 November for testing, scoring TSS = 0.37 (FAR = 0.78).

Besides ≥ C-class flare forecasting, Leka, Barnes, and Wagner (2018) also designed some

linear discriminant models for ≥ M events. As such, within the next 24 h, 24 h – 48 h, and

48 h – 72 h, they respectively scored TSS = 0.19 (FAR = 0.21), 0.03 (FAR = 0.20), and 0.05 (FAR =

0.13). Those results refer to a full-disk scenario of prediction.

Even though we previously considered Muranushi et al. (2015)’s results for ≥ M events as

biased for only using ARs near the disk center during training, more recently, there was an

attempt to deploy an operational system by their time series design engine

(HADA-MURANUSHI et al., 2016). As of Muranushi et al. (2015)’s results for ≥ C events, the

authors adjusted their engine to design an LSTM learning model upon wavelet features

calculated over HMI images. For forecasting ≥ M-class events within the 24 h, they scored TSS

= 0.27 (FAR = 0.68).



Chapter 3. Literature survey 51

On the other hand, D. Falconer et al. (2011) proposed another approach already deployed

into a real operational forecast environment, namely the Magnetogram Forecast Forecasting

Tool (MAG4). Their algorithm aimed to monitor and predict astronauts’ radiation exposure

levels by forecasting the occurrence of ≥M-class flares, solar energetic particles, and coronal

mass ejections (TSS = 0.47). As such, they designed MAG4 upon a set of data comprehending

40,000 MDI magnetograms from 1,300 ARs.

Recently, by employing the same data as in D. Falconer et al. (2011)’s research, D. A. Falconer

et al. (2014) tried to improve MAG4 performance using modeling of previous flare history with

features characterizing free-energy in ARs. This new forecast approach scored TSS = 0.49 (FAR

= 0.48).

Although both D. Falconer et al. (2011)’s and D. A. Falconer et al. (2014)’s researches have

used MAG4 within a deployment environment, their dataset only included ARs within 30°

of the solar disk center. For predicting with ARs beyond this limit, the tool warned reduced

performance, as pointed out by their authors. This scenario raises uncertainty about the

reported scores, despite MAG4 did forecast operationally.

By employing the same period of data and features from Nishizuka, Sugiura, Kubo, Den,

Watari, et al. (2017), Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) reserved the period between

2010 to 2014 for training and 2015 for testing. Through yearly splitting data instead of repeatedly

subsampling, their convolutional neural network scored TSS = 0.80 (FAR = 0.82).

As of Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017) and Nishizuka, Sugiura, Kubo,

Den, and Ishii (2018), which have used disjoint periods for evaluating their classifiers, so did

Benvenuto et al. (2018). The period between 1996 August and 2010 December was the test set,

whereas data collected between 1988 December and 1996 June comprehended the training set.

Following, their hybrid model scored TSS = 0.45.

Human-based forecasts

Finally, we also included in Table 3.3 articles comprehending human-based forecasts from space

weather prediction centers. Accordingly, we quoted the prediction centers by Crown (2012),

Kubo, Den, and Ishii (2017), and Devos, Verbeeck, and Robbrecht (2014). At NOAA, they scored

TSS = 0.49 (FAR = 0.57) for predicting ≥ M events within the next 24 h in the solar cycle 23

(1996 May to 2008 December), as pointed out by Crown (2012). In turn, their ACC, TPR, and

TNR respectively equaled 0.97, 0.56, and 0.98.
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On the other hand, at the SWPC of the Japan National Institute of Information and

Communications Technology (NICT), human-based forecasters scored TSS = 0.50 (FAR = 0.42)

for a time horizon of 24 h in the period between 2000 and 2015. Their ACC and TPR, in turn,

respectively equalled 0.84 and 0.60 (KUBO; DEN; ISHII, 2017).

Finally, at the prediction center of the Solar Influences Data Center (SIDC) of the Royal

Observatory of Belgium (ROB), they scored TSS = 0.34 (FAR = 0.35) for forecasting in the next

48 h during the period between 2004 June to 2012 December. Regarding both positive and

negative hit rates, they reached TPR = 0.37 and TNR = 0.97 (DEVOS; VERBEECK; ROBBRECHT,

2014).

3.2 Automated machine learning efforts

As we previously commented, the classifiers mentioned earlier in this chapter held ad hoc

design methodologies, thus not focusing on constant reproducing. Aware of the benefits of

automated design pipelines, which mostly comprehend methodologies that make decisions

through an automatic, data-driven, and objective way to determine the best performing forecast

model fully, it is worth further discussing such automated solutions’ capabilities.

To date, several tools have been proposed to automate the design of general basis classifiers.

As initial examples, we can cite the Auto-WEKA (KOTTHOFF et al., 2019), Hyperopt-Sklearn

(KOMER; BERGSTRA; ELIASMITH, 2019), Auto-sklearn (FEURER; KLEIN, et al., 2019), Auto-

net (Auto-PyTorch) (MENDONZA et al., 2019; ZIMMER; LINDAUER; HUTTER, 2020), TPOT

(OLSON; MOORE, 2019), Auto-keras (JIN; SONG, Q.; HU, X., 2018), RoBO (KLEIN et al., 2017),

H2O AutoML (LEDELL; POIRIER, 2020), and AutoGluon-Tabular (ERICKSON et al., 2020).

Based on the Waikato Environment for Knowledge Analysis (WEKA) machine learning

toolkit (WITTEN; FRANK; HALL, 2011), Auto-WEKA comprehends a system for automatically

searching over the available options of WEKA for model selection, feature selection, and

hyperparameter optimization. As such, Auto-WEKA can investigate 10 meta-methods

(algorithms using or combining multiple algorithms), 28 base learners (machine learning

algorithms), and the hyperparameters of each learner in an attempt to output a learning model

with improved performance (KOTTHOFF et al., 2019).

On the other hand, Komer, Bergstra, and Eliasmith (2019) designed Hyperopt-Sklearn to

automate the design of classifiers in Python’s Scikit-learn framework (PEDREGOSA et al., 2011).



Chapter 3. Literature survey 53

In an attempt to fit custom classifiers, Hyperopt-Sklearn allows users to configure some distinct

design aspects, such as the search domain, objective function, optimization algorithm, and

learning algorithm (i. e., a standard algorithm of the Scikit-learn, such as the RandomForest,

SVM, k-NN, or Principal Component Analysis – PCA). The tool then uses those elements in a

search process, seeking the best performing model along with its hyperparameters (KOMER;

BERGSTRA; ELIASMITH, 2019).

Also designed upon the Scikit-learn environment, Auto-sklearn relies on similar

optimization techniques as in Auto-WEKA’s research. However, it holds some improvements

compared to the latter, such as meta-learning, automatic ensembling (automatic design of

ensembles from optimized models), and feature preprocessing (FEURER; KLEIN, et al., 2019).

Authors proposed not to discard all models trained during the automated investigation but

rather to store and combine them to use within an efficient post-processing method, that is, to

design an ensemble with them.

In turn, Mendonza et al. (2019) and Zimmer, Lindauer, and Hutter (2020) focused their

automated design processes – Auto-net (Auto-PyTorch) – upon some specific feed-forward

neural networks, that is, they proposed a system for automated deep learning aimed to select

both the architecture and hyperparameters of deep neural networks. The rationale for restricting

Auto-net to feed-forward neural networks relied on their applicability to a wide range of

different datasets.

Noteworthily, another tool for automated deep learning allowing automatic search for deep

neural networks’ architectures and hyperparameters is Auto-Keras (JIN; SONG, Q.; HU, X.,

2018). However, instead of relying on Python’s PyTorch deep learning toolkit – as Auto-net

(Auto-PyTorch) does –, Auto-keras was designed under Python’s Keras deep learning toolkit.

As such, Auto-keras employs network morphisms guided by Bayesian optimization.

More recently, Olson and Moore (2019) presented the TPOT approach to automatically

build and optimize tree-based machine learning algorithms (i. e., DecisionTree, RandomForest,

ExtremeGradientBoosting – XGBoost, among others). Conversely to the approaches mentioned

earlier, TPOT explicitly includes automated feature selection. Analogously to Hyperopt and

Auto-sklearn, their authors conceived it upon the Scikit-learn environment.

Also written in Python, RoBO (KLEIN et al., 2017) is a framework for Bayesian

optimization aimed to create custom forecast models. Its core comprehends modular

components designed to add and exchange components of Bayesian optimization easily.
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However, due to its nature, RoBO restricts itself to regression models naturally, such as

Gaussian processes, RandomForests, and Bayesian neural networks. Specifically, it aims to

optimize different acquisition functions, such as expected improvement, probability of

improvement, lower confidence bound, or information gain.

In turn, LeDell and Poirier (2020) proposed the H2O AutoML tool as a fully automated

supervised algorithm for H2O, the open source, scalable, and distributed machine learning

framework. Such a tool mostly relies on the automatic training and optimization – through

random search – of a stacked ensemble from a set of defined algorithms (i. e., XGBoost,

GradientTreeBoosting, RandomForest, and deep neural networks). For preprocessing input

data, H2O AutoML provides some distinct methods, such as automatic imputation,

normalization, and one-hot encoding for XGBoost models. On the other hand, H2O AutoML’s

tree-based models support group-splits on categorical variables.

Also relying on automatic ensembling, AutoGluon-Tabular (ERICKSON et al., 2020) is

another automated design tool for Python based on the Scikit-learn. Similar to H2O AutoML,

AutoGluon-Tabular includes several capabilities for input data preprocessing. In fact, Erickson

et al. (2020) highlighted data preprocessing as a differential of AutoGluon-Tabular, as a few

frameworks can robustly process raw data and deliver high-quality predictions without user

interventions. After preparing data, AutoGluon-Tabular then fits some distinct models from

a defined set (i. e., neural networks, XGBoost, RandomForests, ExtremelyRandomizedTrees,

and k-NN), and ensembles them in a novel way in the end (it stacks them into multiple layers,

which are trained through a layer-wise manner).

Other automated machine learning platforms worth mentioning include: auto-xgboost

(THOMAS; COORS; BISCHL, 2018), AutoFolio (LINDAUER et al., 2015), Python’s auto_ml

package (PARRY, 2016), and tuneRanger (PROBST; WRIGHT; BOULESTEIX, 2018).

Despite their notable flexible aspects, we observed those general basis systems do not hold

a comprehensive pipeline to cope with solar flare forecasting, as we propose in this thesis. To

exemplify, we can cite some encountered drawbacks:

• Hyperopt-Sklearn, Auto-sklearn, and Auto-keras lack an automated feature selection

process for selecting only relevant input data for their classifiers;

• Most of them restrict their design processes to some learning algorithms, thus missing a

generic algorithm selection process: Auto-sklearn (ensembles), Auto-net (neural

networks), TPOT (tree-based learners), H2O AutoML (tree-based algorithms, deep
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neural networks, and stacked ensembles), AutoGluon-Tabular (tree-based algorithms,

deep neural networks, k-NN, and stacked ensembles), RoBO (regression models),

tuneRanger (RandomForests), and auto-xgboost (XGBoost);

• Some tools restrict their hyperparameter optimization methods to predefined algorithms:

Auto-WEKA and Auto-sklearn (Bayesian optimization), H2O AutoML (random search),

and TPOT (genetic programming);

• Neither of those approaches report how they could deal with imbalanced class ratios,

thus not coping with data resampling or cost-sensitive learning;

• Neither of those approaches report how they could adjust the cut-off points (prediction

thresholds) of their classifiers to leverage the expected performance while reducing the

number of false alarms.

In fact, because of their broader nature, we could not expect such general basis approaches

to fulfill all space weather needs satisfactorily. This naturally led us to seek proposals focused

on space weather in the specialized literature, which we shall discuss next.

3.2.1 Automated space weather forecast

As we previously mentioned in Chapter 1, the automated design processes for space weather

mostly comprehended one capability of fully integrated services focusing on the automatic

computation of big data. Such proposals included the researches by Muranushi et al. (2015),

Leka, Barnes, and Wagner (2018), Massone and Piana (2018), Engell et al. (2017), Garciá-Rigo

et al. (2016), and Anastasiadis et al. (2017).

For emphasizing big data computation, such approaches mostly plugged their design

pipelines into some previously defined data sources. To name the sources, we can cite those

providing HMI images (LEKA; BARNES; WAGNER, 2018; MASSONE; PIANA, 2018; ENGELL

et al., 2017; GARCIÁ-RIGO et al., 2016), MDI magnetograms (LEKA; BARNES; WAGNER, 2018),

summaries of ARs from NOAA (MASSONE; PIANA, 2018; ENGELL et al., 2017; GARCIÁ-RIGO

et al., 2016), the catalog of events also from NOAA (LEKA; BARNES; WAGNER, 2018), and

users feeding data into the platform (i. e., crowd-sourcing) (ENGELL et al., 2017). They then

allowed users to train custom classifiers to some extent, comprehending the adjustment of

some flexible forecast aspects, as described next.
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By employing the machine learning’s regression task, Muranushi et al. (2015) proposed the

Universal Forecast Constructor by Optimized Regression of Inputs (UFCORIN). Using linear

classifiers, their system comprehended a generic time series predictor, which could be set to

forecast generic time series features from arbitrary input data sets.

Hence, UFCORIN provided users with the flexibility to easily change the input and output

target features when new data became available, or new models were needed. In fact, UFCORIN

was a general automated space weather approach since it allowed the prediction of events not

restricted to flares (i. e., mass and speed of CMEs, and total flux and power indices of SEPs).

Muranushi et al. (2015) designed UFCORIN to accept a fixed number of time series data and

output another time series. All the input and output data had to be features globally defined at

any given moment of the Sun (i. e., supporting full-disk forecasts), thus excluding the possibility

to process features defined per sunspot or active regions.

In turn, Leka, Barnes, and Wagner (2018) proposed the Discriminant Analysis Flare

Forecasting System (DAFFS). DAFFS comprehended a fully integrated solar flare prediction

system for analyzing the Sun’s magnetic fields with an embedded automated design process.

When designing new models, DAFFS always used as much data as possible (i. e., it used to

employ the period between 2012 and the most recent month at the time of its execution).

Besides, DAFFS provided some custom options for their models, including adjusting the type

of prediction (i. e., whether it would consider a full-disk or AR-by-AR forecast scenario),

threshold for the size of events (i. e., ≥ C-, M-, and X-class events), forecasting horizon, latency

of forecasts, and the performance optimization strategy against either of the two error types

(i. e., false alarms or missed events).

On the other hand, Massone and Piana (2018) presented another fully integrated

technological service allowing automatic computation of a big data amount of observations,

namely the Flare Likelihood and Region Eruption foreCASTing (FLARECAST). As pointed out

by their authors, FLARECAST was a project aiming to develop an advanced solar flare

prediction system based on automatically extracted physical properties of ARs, along with

state-of-the-art prediction algorithms – basically, linear classifiers or neural networks.

Besides, FLARECAST explicitly employed its data input into a feature selection process.

Despite providing flexibility to some extent, Massone and Piana (2018) acknowledged that

FLARECAST restricted the design of their classifiers to a predefined set of algorithms and
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data sources – in fact, they intended to allow users to plug in their classifiers (or already

preprocessed features) into the FLARECAST’s pipeline in the future.

Engell et al. (2017) introduced the Space Radiation Intelligence System (SPRINTS), which

also comprehended a fully integrated service for automatic computation and big data forecast.

SPRINTS has improved the MAG4 tool for solar flare forecasting by D. A. Falconer et al. (2014)

with SEP forecasting. It also provided components to ingest data from external data sources

using the Hadoop tool for big data (WHITE, 2009).

Hence, SPRINTS used processes to Extract, Transform, and Load (ETL) data to pull contents

into its transactional database. For data arriving every minute, the tool supported near real-time

loading. With a particular emphasis on the interpretability of forecast models, SPRINTS focused

their models on tree-based algorithms, or the k-NN.

Similarly to the SPRINTS, the platform by Garciá-Rigo et al. (2016) – Solar Events Prediction

System for Space Launch Risk Estimation (SEPsFLAREs) – also has been created by integrating

two distinct tools, namely the ASAP by Colak and Qahwaji (2009), for flare forecasting, and the

UMASEP by Nunez (2011), for SEP forecasting. Regarding the former, it was a neural network

based system developed to automate the extraction of sunspot data from solar images (i. e.,

McIntosh (1990)’s class and areas) directly and provide flare forecasts in near real-time.

Noteworthily, ASAP was initially developed to operate on MDI solar data, but then their

authors redesigned it to process HMI records to operate along with UMASEP. Besides,

SEPsFLAREs provided a set of defined forecasting horizons to customize (i. e., users could

change between forecasts within the next 6, 12, 24, and 48 h) (GARCIÁ-RIGO et al., 2016).

In addition to flare and SEP forecasting, Anastasiadis et al. (2017) also provided capabilities

for anticipating CMEs with their tool, namely The Forecasting Solar Particle Events and Flares

(FORSPEF). FORSPEF provided two modes of operation: forecasting and nowcasting. The

former worked only on the analysis of ARs before the occurrence of some event. In turn, the

latter corresponded to the analysis of flares and CMEs that happened and their relation with

future SEPs. Another approach considering such modes of operation was Garciá-Rigo et al.

(2016)’s. Concerning flare forecasting, FORSPEF restricted its data processing cadence to a 3 h

interval, as well as provided custom forecasts for ≥ C-, M-, and X-class events (always within

the next 24 h).

It is worth mentioning that we have also found a similar approach to flexibilize the design

of solar flare classifiers (despite its authors did not define it as an automated process), i. e.,
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the sequence miner (SeMiner) by Díscola Jr. et al. (2018b). SeMiner’s authors acknowledged

that the specialist’s knowledge is determinant to the success of forecasting methods based on

data mining. In this sense, to help physicists, they envisioned a design process focused on the

preprocessing of X-ray time series input data, that is, the adjustment of some custom aspects of

such series, such as the selection of the most relevant features, the most relevant sub-series, the

characteristics of the time series evolution most significantly affecting the forecasting results,

periods for training and test subsets, and both sliding time window’s and forecasting horizon’s

length.

Accordingly, in the beginning, SeMiner processes solar X-ray time series and transforms

them into sequences. It then maps the sequence’s records to their corresponding occurred

events. At this point, the specialist can adjust the custom aspects mentioned earlier. Then,

SeMiner submits their sequences to a feature selection method (which can be the Starminer or

relief attribute evaluation) to determine the features most affecting the forecast performance.

Finally, it employs the prepared sequences to train a classifier (such as a decision tree, k-NN,

Naïve Bayes, OneR, or SVM) and use test data to evaluate it.

3.3 Optimized design for solar flare classifiers

Regardless of the flexible aspects discussed earlier, empowering an optimized design (automated

or not) for solar flare classifiers may not comprehend a straightforward process at all. By an

optimized design, we meant training forecast models not incurring in most negative issues we

observed authors usually encompassed in their design processes (automated or not).

Within this context, it was not clear how the space weather automated approaches could

deal with some design aspects worth improving in their output models (i. e., Leka, Barnes, and

Wagner (2018) produced classifiers that did not equally deal with both positive and negative

classes, and Garciá-Rigo et al. (2016) produced classifiers forecasting a great number of false

alarms, sometimes trespassing the 90% level). Besides, due to their nature, such systems did not

seem to easily expand their functionalities to accommodate more data sources or algorithms.

Not only dealing with those issues in the classifiers or design processes but also

accommodating more custom aspects to satisfy users’ needs in constant change is worth

considering. For instance, some authors reported a fixed cadence for analyzing data in their
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tools, namely Anastasiadis et al. (2017), for processing data always at a 3 h interval (for flares)

and 6 h (for CMEs).

Another example would be allowing the forecast of events other than solar flares, that is,

Garciá-Rigo et al. (2016) restricted their tools to SEP and flare forecasting, whereas Massone

and Piana (2018), and Leka, Barnes, and Wagner (2018) only coped with flares. Alternatively,

Anastasiadis et al. (2017) provided flare, SEP, and CME forecasting. Those examples may not

yield enough flexibility for general space weather forecasting.

Bearing such restrictions in mind, Muranushi et al. (2015) were the only authors reporting

to have proposed a system adhering to any space weather event. As such, they remarkably

managed to provide a generic data input, thus not restricting to only one or a few data sources.

However, Muranushi et al. (2015)’s drawback concerned their engine’s data input nature:

they only accepted data designed upon a time-series format, and that was globally defined at

any given moment of the Sun, excluding features that were defined per sunspots, or ARs. Their

approach suggested an automated pipeline to design space weather models – as the tools for

general machine learning – instead of a fully integrated system mostly focused on big data

processing from default sources.

3.3.1 Good practices for space weather design

Noteworthily, the issues mentioned earlier would naturally lead us to the following question:

what aspects do constitute a positive – yet effective – design process for solar flare classifiers?

Camporeale (2019) summarized eight distinct premises one must consider when applying

machine learning to space weather effectively: algorithm and data selection, tuning

hyperparameters, proper data splitting, cross-validation, testing data, specialized metrics, and

bias-variance decomposition (we shall discuss his motivation soon).

Camporeale (2019) did not aim to provide a strict and rigid set of rules, but a general pipeline

for good practices. Despite presenting some remarkable aspects, we believed that his list was

not sufficiently comprehensive, as it lacked some other equally important aspects.

However, we considered Camporeale (2019)’s list as a starting point for proposing a novel

comprehensive pipeline, that is, a new one extending the original proposal and including other

aspects we observed authors often need when designing flare classifiers. This new proposal

naturally led us to include the following elements into their his list: data resampling, cost-
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sensitive learning, and cut-off point adjustment. We comment on such an extended collection

of premises as follows.

Algorithm selection

A straightforward taxonomy to classify supervised algorithms distinguishes them between

parametric and non-parametric approaches. Whereas the former are usually faster to train

and handle larger data sets (i. e., linear discriminant analysis, logistic regression, and neural

networks) – sometimes making unappropriated assumptions due to their input bias –, the latter

often make milder assumptions on data but are computationally expensive for larger datasets

(i. e., SVMs, k-NNs, and DecisionTrees) (CAMPOREALE, 2019).

Choosing a promising algorithm for solar flare forecasting – and also other domains – may

depend on several factors, such as performance, training time and complexity. Other factors

may include whether algorithms need to be retrained when new data income, how fast they

make their predictions, and their scalability when increasing the data size (KUHN; JOHNSON,

2013).

Machine learning employed in space weather must rely on processes following the

selection criteria mentioned earlier to select between distinct algorithms. The set of available

algorithms in the automated space weather tools comprehended SVMs, and linear regression

(MURANUSHI et al., 2015); penalized logistic regressors, SVMs, and multi-layer perceptrons

(MASSONE; PIANA, 2018); DecisionTrees, RandomForests, and k-NN (ENGELL et al., 2017);

linear discriminant analysis (LEKA; BARNES; WAGNER, 2018); neural networks

(GARCIÁ-RIGO et al., 2016); and statistical models (ANASTASIADIS et al., 2017).

Data selection

The quality and subset of input data certainly affect the performance of machine learning

algorithms. Hence, discarding useless or redundant features is an imperative task to perform.

Not only selecting relevant features but also providing means to preprocess data is rather useful

(HAN; KAMBER, 2006).

Within this context, discarding input features must adhere to some measure of dependence

between them. For instance, the entropy’s well-known concept can be used to describe mutual

information shared between input data, and infer their casual dependence concerning a target

feature. This approach allows to rank features in terms of their importance and defines the
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extent which the causal relationship between inputs and outputs is significant. Not only

entropy, but several other metrics can also be used to measure mutual information, such as

some correlation-based or univariate metric (CAMPOREALE, 2019).

The techniques available to select input data in the automated space weather tools

comprehended L1-logit and LASSO (MASSONE; PIANA, 2018); and computing the skill scores

for all possible 2-variable combinations (LEKA; BARNES; WAGNER, 2018). Besides, Leka,

Barnes, and Wagner (2018) also provided automated treatment for missing data. In turn, the

remainder articles did not report whether either of such capabilities were available.

Tuning hyperparameters

Machine learning algorithms often provide parameters that are free to choose to control how

they behave (i. e., in tree-based classifiers, how deep the inner nodes can be). Not rarely,

hyperparameters can also be used in an attempt to control over-fitting – provided that the

algorithm employs parameters for regularization (i. e., in tree-based ensembles, controlling the

early stopping aspect when training the inner base learners) (CAMPOREALE, 2019).

Appropriately tuning hyperparameters may incur in a non-negligible impact on the

performance and computational cost of forecast models (FEURER; HUTTER, 2019). Muranushi

et al. (2015) reported to cope with automated hyperparameter optimization in their design

pipeline directly. Once more, the remainder of authors did not report whether such capability

was available.

Proper data splitting

Besides selecting algorithms and appropriate data for them, as well as adjusting

hyperparameters, it is worth caring about how to split data to train machine learning

algorithms. Using the entire set of data when training algorithms could be the first choice

sometimes, but not the best. There are various strategies for splitting data, but not all of them

may incur in results assessed without bias (CAMPOREALE, 2019).

Overall, it is a good practice to divide records into three subsets, namely for training

(for fitting models), validating (for decision-making), and testing (for predicting real unseen

data) models (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). Examples of splitting techniques

employed in the automated space weather tools comprehended repeatedly splitting data into

training and test sets (MURANUSHI et al., 2015); yearly splitting data into training and test
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sets (GARCIÁ-RIGO et al., 2016); employing the Monte Carlo strategy2 (MASSONE; PIANA,

2018; ANASTASIADIS et al., 2017); and using the training/test sets of an ordinary k-fold

cross-validation (LEKA; BARNES; WAGNER, 2018). Noteworthily, neither of those tools used

validation sets for decision-making in their processes as suggested by Hastie, Tibshirani, and

Friedman (2009).

Cross-validation

Finding ways to avoid sets of data outputting positive performance due to good luck (risking

statistical flukes) is worth considering (CAMPOREALE, 2019). This aspect involves cross-

validation procedures, mostly known for dividing original data into k disjoint subsets and

using k − 1 of them for training and the remaining one for test. Accordingly, the permutation

between training and test sets produces k different models, whose results are draw by their

average performance (JAMES et al., 2013).

Examples of techniques based on cross-validation in the automated space weather tools

included iteratively splitting data into training/test sets (MURANUSHI et al., 2015); and

empowering an ordinary k-fold cross-validation method (LEKA; BARNES; WAGNER, 2018).

On the other hand, as both Massone and Piana (2018) and Anastasiadis et al. (2017) repeatedly

employed the Monte Carlo approach, they could not guarantee that each data sample would

participate in the test set at least once. The other automated proposals did not provide enough

details for allowing us to identify how they managed to avoid such flukes.

Testing data

Ideally, test data should play the role of “fresh” unseen evidences. The test concept gives a true

estimate of models’ performance when forecasting as if they were executed in a real deployment

environment (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). However, some researchers may be

tempted to use information gained during the evaluation of models over the test sets to improve

or correct design decisions or even assess which model performed better, clearly representing a

bias of tailoring results for the test sets, i. e., Bobra and Couvidat (2015) and Nishizuka, Sugiura,

Kubo, Den, Watari, et al. (2017), and Jonas et al. (2018).

Besides, one must also consider some pitfalls while reserving data for space weather sets,

such as performing data reservation at random or temporally – whether the aim is to focus on

2Such a strategy relies on repeated random subsampling.
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the periodicity of the time series (i. e., the solar cycle dependence) (CAMPOREALE, 2019). An

automated space weather tool clearly employing test data truly unseen was Garciá-Rigo et al.

(2016)’s, for empowering data from 1981 December to 2013 December for designing the forecast

models, and testing their performance on a dataset from 2014 January to 2015 December.

Specialized metrics

The performance of learning algorithms is represented in terms of metrics. As classifiers may

have different aspects in which they output their results, it is a good practice to assess how

they perform with individual scores regardless of the nature of metrics, which can comprehend

deterministic (i. e., class-specific recalls, precision, quality skill scores, among others), or

probabilistic (i. e., area under the curve) indexes (BARNES; LEKA, et al., 2016).

Not only assessing various scores but also employing them in comparisons with baseline

forecasts is worth carrying out. Baseline references allow a broad view of the achieved

improvements (if any) (CAMPOREALE, 2019). However, not all space weather platforms

empowered a broader view of performance for their classifiers. Some of them focused only on

deterministic scores, such as:

• TSS (MURANUSHI et al., 2015);

• ACC, Probability of Detection (POD), FAR, Heidke Skill Score (HSS), and TSS (MASSONE;

PIANA, 2018);

• Critical Success Index (CSI), Percent Correct (PC), ACC, POD, FAR, HSS, and TSS

(ANASTASIADIS et al., 2017);

• POD, FAR, and HSS (ENGELL et al., 2017).

On the other hand, the remaining proposals managed to use both deterministic and

probabilistic scores:

• Brier Skill Score (BSS), The Receiver Operating Characteristic (ROC) curve, and Appleman

Skill Score (ApSS) (LEKA; BARNES; WAGNER, 2018);

• Reliability plots, Quadratic Score (QS), POD, FAR, HSS, and TSS (GARCIÁ-RIGO et al.,

2016).
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Bias-variance decomposition

The bias of learning algorithms represents the extent to which the average prediction over all

data sets differs from the desired outcome. In turn, the variance measures the extent to which

the solutions for individual data vary around their average. Both concepts usually encompass a

trade-off that must be adjusted during design (JAMES et al., 2013).

Many techniques exist to deal with the assumptions from bias and variance, so one must

ideally include them during the design process. For instance, removing irrelevant features

with feature selection (LEKA; BARNES; WAGNER, 2018; MASSONE; PIANA, 2018) naturally

contributes to reducing the input bias. On the other hand, repeatedly carrying out the k-fold

cross validation (MURANUSHI et al., 2015) gives an estimate of how sensitive a model is to a

particular choice of data (standard deviation).

Data resampling

Real-world datasets often have imbalanced class ratios, and so does space weather. Positive

events are rarer, thus often incurring in over-fitted performance whether the class ratios are not

properly corrected (BATISTA; PRATI; MONARD, 2004). To deal with imbalanced class ratios,

Camporeale (2019) suggested using data augmentation within the practice of data selection.

However, as data augmentation usually restricts to image processing – i. e., increasing

image samples under different perspectives (rotating, scaling, cropping, etc.) (SHORTEN;

KHOSHGOFTAAR, 2019) –, we believe that the imbalance issue must encompass a broader

view, thus comprehending the resampling of data (which can lead samples to be over- and

under-sampled, or a mixture of both) (BATISTA; PRATI; MONARD, 2004). The reason is that

not all forecast models rely on image processing, and their design also often involves the

processing of physical features from images or other sources. Examples of ad hoc forecast

models using data resampling included, but not restricted to, the researches by J.-F. Liu, F. Li,

H.-P. Zhang, et al. (2017), C. Liu et al. (2017), Yu, Huang, Q. Hu, et al. (2010), Yu, Huang, H.

Wang, Cui, et al. (2010), Zheng, X. Li, and X. Wang (2019) and R. Li, H. Wang, et al. (2011), and

R. Li and Zhu (2013).

Cost-sensitive learning

Whether the design issue once more comprehends the imbalanced class ratios mentioned earlier,

but now the size of data significantly matters – a rather common scenario for space weather
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big data –, employing cost-sensitive learning may reduce the computational cost (provided

that the chosen algorithm supports such learning scheme) (ELKAN, 2001; HUANG; WANG, H.;

DAI, 2012). The only automated tool supporting cost-sensitive learning was Muranushi et al.

(2015)’s (i. e., by allowing the automated adjustment of the penalty parameters of their SVM).

On the other hand, several ad hoc forecast models have used such penalized learning, such as

those by Bobra and Couvidat (2015) and Florios et al. (2018), and H. Liu et al. (2019).

Cut-off point adjustment

The default threshold (0.5) for probabilistic classifiers may not yield the desired performance

concerning the two possible error types (false alarms and missed events). Adjusting the

prediction threshold of flare classifiers strictly depends on the users’ needs. They can set the

error type to be minimized (i. e., notably the Leka, Barnes, and Wagner (2018)’s approach), or

some desired skill score to optimize. We observed that most automated space weather tools

provided custom threshold adjusting.

3.4 Concluding remarks

This chapter gave an in-depth look at the literature state-of-the-art of solar flare forecasting

systems, as well as some automated machine learning approaches. It introduced a

comprehensive number of forecast models for space weather whose design processes have not

been thought focusing on reproducibility, i. e., ad hoc proposals. Besides describing several

aspects of those approaches (i. e., distinct algorithms, types of prediction, input features, and

time horizons), we also managed to distinguish between biased and unbiased results following

some predefined criteria. The articles discussed at this point shall be used again during the

results and discussion of our case studies (Chapter 6), when they shall serve as a referenced

performance for our designed models.

Our focus then moved to the presentation of several systems proposed to automate the

design of general machine learning forecast models. Besides, we also further discussed the

automated approaches specifically created for space weather’s needs, detailing most of their

positive aspects and drawbacks. Aware of the importance of creating an optimized and

automated design process for solar flare classifiers, we managed to envision a comprehensive

theoretical collection of good practices for supporting space weather’s needs. Those practices
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shall serve as the basis for the novel automated space weather methodology we propose in

Chapter 4.
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Chapter 4

A methodology to automate the design

of solar flare classifiers

Space weather data comprehend a compendium of multimission and multidisciplinary data

sources to monitor the heliosphere. As such, regions comprehending the Sun and the near-

Earth space are of particular interest to space weather forecasters. The NOAA/SWPC and

other international partners work under the premises of monitoring and forecasting solar

events to provide space weather products, services, and alerts, such as the Australia Bureau

of Meteorology (BoM) (BALA; REIFF, 2018), Korean Meteorological Administration (KMA)

(BALA; REIFF, 2018), UK Meteorology Office (UKMO) (BALA; REIFF, 2018), and the Programa

de Estudo e Monitoramento Brasileiro de Clima Espacial (EMBRACE) (INPE, 2020).

A needed milestone comprehends the capability to supply data acquisition systems at

strategic points of near-Earth regions to provide real-time data to evaluate the space weather.

If, on one hand, we may have several instruments continuously monitoring the space weather –

such as the GOES satellites holding tools for X-ray imaging, recording, and monitoring extreme

ultraviolet –, on the other hand, such capabilities must have a tolerance to space’s potential

radiation hazards. Hence, it is necessary to provide short-term hazardous event forecasting

to satisfy the needs of such satellites and various other users (i. e., power grid operators and

crewed space flights) (BALA; REIFF, 2018).

Solar flare forecasting comprehends one of the most active research in space weather due

to the associated technological consequences. As argued by Massone and Piana (2018), the

research of solar flare forecasting must rely on three fundamental pillars:
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i. At an experimental level, the observation of ARs and their capability to host flare events.

Such observation includes, but is not restricted to, ARs properties and magnetic fields

information. Such pillar mainly refers to the compendium of multidisciplinary data.

ii. At a computational level, the observation mentioned in the first pillar must encapsulate in

parameters, further used as input data for learning algorithms realizing binary (yes/no) or

probabilistic ([0 , 1]) forecasts.

iii. At a technological level, one must provide modern software platforms realizing services for

input and output big data, and automatic and user-friendly design of forecasting models.

This pillar includes the platforms by Muranushi et al. (2015) (UFCORIN), Leka, Barnes, and

Wagner (2018) (DAFFS), Massone and Piana (2018) (FLARECAST), Anastasiadis et al. (2017)

(FORSPEF), and Engell et al. (2017) (SPRINTS).

However, at a first look, as the pillars mentioned earlier suggest, the lack of care with the

methodology when designing the forecasting models can incur in several drawbacks with the

reported performance. Accordingly, also at a computational level, the methodology can be

thought of as a fourth pillar. Not employing a well-defined and well-thought methodology

when designing forecasting models can certainly lead to several issues in classifiers, as those

further commented in our literature survey in Chapter 3 (i. e., bias, under-fitting, over-fitting,

classifiers over-performing with general quality scores but lacking performance with several

others, and so forth).

Typical examples of the fourth pillar would include the majority of authors employing

computational approaches belonging to the family of machine learning in the literature survey

– especially using supervised methods (MASSONE; PIANA, 2018). Regardless of their learning

algorithms (i. e., SVMs, neural networks, linear regressors, tree-based learners, among others),

most of them have employed ad hoc methodologies to tailor the processes for their needs.

Within this context, the collection of good practices from Chapter 3 represented theoretical

aspects worth considering in an optimized design process for flare classifiers. In this chapter,

we shall present how we conceived our automated methodology based on such a collection.

Noteworthily, we envisioned several requirements for the collection’s items, mostly focused on

guiding their implementation into the automated methodology:

• Algorithm selection: provide an investigation process for automatically searching

learning algorithms from a predefined custom and flexible set.
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• Feature selection: provide means for automating the selection of relevant features, thus

avoiding some undesirable issues such as redundancy and co-linearity. We do not intend

to create another rigid process for big data processing, but instead to concentrate on the

automation of a generic feature selection process adhering to any type of data (and not

to data only from sources plugged by default).

• Hyperparameter optimization: define a process in which algorithms can

automatically adjust their behaviors, thus minimizing excessive complexity or

over-fitting.

• Proper data splitting: while designing classifiers, provide data for training, validating,

and testing, thus properly evaluating them without bias in results.

• Cross-validation: not only properly splitting data but also accommodating evaluations

not incurring in statistical flukes (due to chance) shall be persecuted.

• Test data: empower true unseen samples as test data to assess classifiers’ performance

as if they forecast operationally, thus not incurring in the use of test records for decision-

making.

• Specialized metrics: empower metrics for analyzing space weather classifiers in both

points of view, deterministic and probabilistic.

• Bias-variance decomposition: provide techniques for minimizing the variance on data

while reducing – to some extent – the input bias of algorithms, so that the bias-variance

trade-off can be adjusted.

• Data resampling: employ unbiased resampling of data when class ratios do not match.

• Cost-sensitive learning: whether the size of data must be taken into account, provide

adjustment of the cost function of classifiers (if possible).

• Cut-off point adjustment: as flare classifiers hold distinct misprediction costs mostly

depending on the users’ needs, provide adjustments for classifiers’ prediction threshold.
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4.1 Methodology overview

The proposed methodology follows, by default, the pipeline of processes presented in the

scheme of Figure 4.1. The design of a classifier for flare forecasting under such methodology’s

assumptions starts with an initial splitting of data into training, validation, and test subsets. It

then proceeds with the model and feature selection processes, hyperparameter optimization,

data resampling, cost function analysis, cut-off point adjustment, and evaluation of validation

and test sets.

Figure 4.1: Methodology overview.

Besides the initial data splitting, we summarize the processes comprehending our

methodology as follows:

• Model selection1: the focus here is to evaluate a generic set of custom learning

algorithms and choose the one that minimizes the training error of some particular

performance score without major adjustments or refinements (i. e., keep that algorithm

that most increased such a score). Noteworthily, the methodology does not restrict the

model selection to a specific performance score, which means that the user must choose

the score satisfying his needs. Despite that, we used the TSS for our case studies (we will

present the reason for this choice in Section 4.3).

1For the “model” word, we meant a classification model created by a machine learning algorithm over some
appropriate set of data. Henceforth, such a term should not be confused with a physics model of solar flares.
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• Feature selection: such a process intends to discard irrelevant or redundant features,

thus selecting a subset that can maximize some particular performance score. As of model

selection, the methodology does not restrict the feature selection to a specific performance

score. Once more, the user must ideally opt for the desired metric. Nevertheless, we also

opted for the TSS for the case studies discussed in Chapter 6.

• Hyperparameter optimization: not only selecting an algorithm and its input data, but

also adjusting its hyperparameters for a better system behavior is needed – the aim of

hyperparameter optimization. Here, the methodology seeks the set of parameters most

increasing a particular performance score – in our case studies, the Area Under the ROC

Curve (AUC) (we will present the reason for this choice in Section 4.5).

• Data resampling: real-world datasets often suffer from imbalanced class ratios, and so

do those related to space weather. Positive samples can be less common than negative

ones and vice versa. Aiming at not outputting over-fitted classifiers in favor of the

majority class, data resampling works with training samples for correcting skewed class

ratios (we shall describe how we employed resampling techniques in Section 4.6.1).

• Cost function analysis: as data resampling, cost function analysis tries to correct

imbalanced class ratios. However, the classifiers’ cost functions are not always available,

which strictly depends on the chosen learning algorithm. Both data resampling and cost

function analysis start concurrently (in case of both availability) and the methodology

relies on the process outputting the lowest difference |TPR−TNR|2 to continue its pipeline

(we will detail the reason for this choice in Section 4.7).

• Cut-off point adjustment: most learning algorithms output posterior probabilities as

their forecasts. For binary problems, classifiers convert those probabilities into yes/no

forecasts using a predefined threshold t (cut-off point). This threshold is often assumed

as t = 0.5. However, such default value for t might not always yield the best performance

for predicting positive events concerning the expected number of false alarms – indeed,

it is necessary to adjust t so that a balance point for false alarms can be found (the aim

of this process). The criterion here is to choose the custom cut-off point outputting the

lowest difference |TPR − PPV| (we will explain the reason for this choice in Section 4.8).

2To keep both hit rates simultaneously at a close level, and consequently reduce the class skew.
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• Evaluation of validation sets: at this point, the methodology trains some models of the

same type in the training sets, that is, the chosen algorithm, features, hyperparameters,

resampling method (if any), and cut-off point. It then uses such models to forecast their

corresponding validation sets. Besides, it also trains some baseline models over the

training sets and forecasts their corresponding validation sets. For baseline models, we

mean the set-ups found in model selection. We use both baseline and methodology-

outputted models to verify the pipeline’s effectiveness before assessing the generalization

error with test data3

• Evaluation of test sets: finally, provided that themethodology confirmed improvements

in the classifier during the evaluation of validation sets, it can now assess its generalization

error over unseen data – the aim with the evaluation of test tests.

At this point, it is worth mentioning that we have conceived the complete pipeline

mentioned earlier by combining two initial design processes for automating flare forecasting

already published in the literature, that is, the articles by Cinto et al. (2020a) and Cinto et al.

(2020b). Accordingly, whereas the former accounted for a pipeline comprehending model

selection, feature selection, hyperparameter optimization, data resampling, and evaluation of

test sets, the latter encompassed feature selection, hyperparameter optimization, cost function

analysis, cut-off point adjustment, and evaluation of validation and test sets. We discussed case

studies designed to validate those two initial processes in Cinto et al. (2020a) and Cinto et al.

(2020b).

4.1.1 Pipeline arrangement

Noteworthily, we have empirically defined the pipeline order of Figure 4.1. As such, we

are aware that the output model may not comprehend the optimal classifier because our

methodology does not carry out an exhaustive search over all choices available (i. e., the

Cartesian product of possible choices). For instance, changing the order of feature selection,

hyperparameter optimization, and data resampling might somehow alter the output model.

However, the proposed arrangement leads to a high-quality classifier (as observed in the case

studies).

3The methodology reserves samples of data for distinct purposes in the beginning. It uses training samples to
fit the learning algorithm. In turn, it employs validation samples for decision-making. Finally, it uses test samples
for performance assessment over real unseen data. Section 4.2 presents further details of such concepts.
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Provided that we try all possible pipeline arrangements, obtaining the optimal classifier

could be possible. However, this search’s nature would be exhaustive and probably unfeasible

in practice depending on the kind and size of data.

In this sense, the rationale explaining data resampling in the middle refers to the techniques

we have chosen for data resampling, which create a lot of synthetic samples and this significantly

increases the dataset size. If we have considered resampling in the beginning, other processes

could become significantly slower.

Besides, as we treat our processes as blocks with well-defined inputs and outputs, changing

the proposed pipeline order to other desired arrangements could be done with little effort (i. e.,

that corresponds to a custom option within the methodology implementation). To justify this

rationale, we can cite the research by C. Zhang, Bi, and Soda (2017), which investigated what

happens when machine-learning processes are inverted.

C. Zhang, Bi, and Soda (2017) observed the effects of using a resampling approach – in

their case, under- and over-sampling – before feature selection and vice versa. They designed

experiments comprehending nine feature selection methods, six resampling approaches, three

classifiers, and 35 datasets.

Then C. Zhang, Bi, and Soda (2017) compared the performance of models regarding their

overall and balanced accuracies and F-measures. Overall, they found that there was not any

winner between both orders. They pointed out that researchers may try both to investigate

the best classifier (sometimes an earlier usage of feature selection outperforms a later data

resampling and vice versa). This conclusion corroborates our argument for suggesting other

pipeline arrangements if needed.

4.2 Data splitting

In the beginning, our methodology splits a piece of provided data into macro-training and

five test segments. It then performs a new split with the macro-training portion, dividing its

samples into validation and training sets, as we show in Figure 4.2. Henceforth, let us explain

the concepts of training, validation, and test data as follows.

At first, our methodology reserves through random subsampling without replacement

about 365 samples for each test segment (this number of samples refer to our case studies). It
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Figure 4.2: Data splitting scheme.

performs this splitting in a stratified fashioned way, which guarantees an equally distributed

ratio of positive and negative classes within the macro-training and test sets.

The method then keeps test sets aside until the end, when it assesses the output model

prediction error, that is, the model’s generalization error over real unseen data (HASTIE;

TIBSHIRANI; FRIEDMAN, 2009). Accordingly, the methodology uses test data to forecast with

its output model in a “simulated” operational environment.

After retaining test sets, the methodology resplits the macro-training data portion into

fivefolds through a stratified cross-validated manner, which separates five training sets from

their corresponding validation portions. It employs training data during model designing for

fitting and optimizing the learning algorithm.

Noteworthily, the rationale for proposing fivefold-based splittings within our methodology

is solely related to our case studies. Depending on the number of available data samples or the

expected impact of variance on features, one may consider another n-fold scheme. Despite,

splitting data in a fivefold cross-validated manner is rather common in literature since it
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helps to reduce the model’s variance, thus leveraging its performance (HASTIE; TIBSHIRANI;

FRIEDMAN, 2009).

Similarly to test sets, which the pipeline reserves and only brings them back at the end of

the process, the methodology also keeps validation sets and prevents their use during model

design. However, the purpose of validation data differs from that of test data: whereas test

samples support generalization error assessment, the methodology uses the latter for the final

decision-making process, i. e., for verifying if the output model is ready to forecast the test

samples. Despite that, their samples are suitably pure, i. e., we do not treat nor modify them in

any form during model designing.

Alternatively, our method also supports time segmented data, such as reserving the oldest

period for training, the intermediate for validating, and the most recent for testing (or some

other criteria based on periods as pointed out in Ahmed et al. (2013)’s and Colak and Qahwaji

(2009)’s researches). However, for brevity, we only included in this section the description to

illustrate the k-fold-based splitting.

At the end of those data splittings, our methodology performs several well-defined

machine learning-based processes over each training set, namely: model selection, feature

selection, hyperparameter optimization, data resampling, cost function analysis, and cut-off

point adjustment. Starting with model selection, as we show in Figure 4.2, we shall further

discuss all of them in the next sections.

To validate our pipeline, we assembled data for our case studies I and II from two distinct

NOAA/SWPC’s repositories, namely the Daily Solar Data (DSD) and Sunspot Region Summary

(SRS). Whereas the former comprises the Sun’s behaviors as daily aggregated records, the

latter further details the ARs of DSD’s records, i. e., it provides their magnetic types, locations,

corresponding areas etc. Briefly, we assembled data from the following features (for a detailed

reference of them, see Chapter 5):

• Sunspot area (NOAA/SWPC, 2011);

• Radio flux (NOAA/SWPC, 2011);

• Sunspot number (NOAA/SWPC, 2011);

• X-ray background flux (NOAA/SWPC, 2011);

• Daily Weighted Mean Flare Rate (WMFR) of magnetic classes (SHIN et al., 2016);
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• Daily WMFRs of Zpc components from McIntosh (1990)’s classes.

On the other hand, for Case Study III, we borrowed data from C. Liu et al. (2017)’s research.

We did not modify or assemble any feature. Instead, we only processed their records through

our pipeline to train the classifiers. The features involved HMI magnetograms magnetic data

proposed in Bobra and Couvidat (2015)’s article at first, such as the total unsigned current

helicity, total unsigned flux, total magnitude of Lorentz force, area of strong field pixels in the

AR, among others (for a complete reference of features, refer to Chapter 5).

4.3 Model selection

The focus of model selection relies on choosing a model that best fits data and minimizes

the training error without major adjustments or refinements. Accordingly, the proposed

methodology evaluates some provided machine learning algorithms – one at a time – over

each training set, as we show in Figure 4.3.

Figure 4.3: Model selection scheme.

Themethod carries out the performance assessment of learning algorithms through repeated

randomized, stratified fivefold cross-validation evaluations. It repeats the k-fold cross-validation

evaluations to output more reliable estimates of performance, thus attempting to minimize
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data variance (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). The criterion for choosing the

representative model relies on keeping the algorithm that maximized some custom performance

score among all training sets – in our case, the TSS (see Appendix A.10). By representative

model, wemeant picking the best performingmodel concerning the chosen score and discarding

others. In our case studies, the rationale for a decision-making process based on TSS refers to

its nature, particularly its skill to represent both class-specific hit rates. However, choosing

a score to optimize during model selection must consider the requirements of the expected

output forecast model.

Most scores could not represent two outcome scores simultaneously. However, TSS can

overcome this restriction by including in its calculation two components for individually

assessing the success rates of positive and negative outcome classes at once (see appendices

A.4 and A.5 for further details involving TPR and TNR, respectively).

Accordingly, employing efforts to boost TSS naturally leads to higher TPRs and TNRs at

once. Examples of researchers whose focus relied on optimizing their TSSs include Nishizuka,

Sugiura, Kubo, Den, Watari, et al. (2017), Bobra and Couvidat (2015), and Bloomfield et al.

(2012).

Noteworthily, because of TSS’s categorical nature, the proposed methodology keeps models’

prediction thresholds4 at the default level (0.5) during model selection to calculate confusion

matrices and assess scores mentioned earlier. However, in later stages, the pipeline shall adjust

those thresholds, as described in Section 4.8.

4.3.1 DecisionTree ensembles

We used DecisionTree ensembles in model selection as our case studies, that is, algorithms that

merge the output of several models (base learners) to boost their overall predictive

performance. Depending on the forecast scenario, some learning algorithms might outperform

others. Therefore, it is rather important to establish some sort of cooperation between them in

an attempt to reduce the noise of weak models (WITTEN; FRANK; HALL, 2011).

The reason for employing DecisionTrees instead of more complex algorithms like SVMs

(ZAKI; MEIRA JR., 2013) or neural networks (WITTEN; FRANK; HALL, 2011) is solely related

to our case studies. In fact, DecisionTrees are naturally able to handle outlier data and features

4Probabilistic classifiers use prediction thresholds to make their forecasts: predictions higher than or equal to
the thresholds output positive answers, whereas the rest, negative.
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with mixed nature (HASTIE; TIBSHIRANI; FRIEDMAN, 2009), as observed with our case

studies’ records, further commented on in Chapter 5.

Besides, whereas the predictive performance of trees may be slightly worse than other

techniques, we manage to overcome this disadvantage using ensembles. However, the proposed

methodology is not restricted to such type of algorithm and surely can handle other learning

alternatives provided that Python’s Scikit-learn supports them.

Ensembles help to reduce data variance when combined with the bagging strategy, which

represents a complement to the k-fold cross-validation in mitigating variance (JAMES et al.,

2013). As a sampling approach for training multiple inner models within an ensemble, the

bagging strategy creates several base learners for such an ensemble by training each of them

on a different sampling of data (with replacement).

Accordingly, we assessed the raw performance (without any adjust) of three DecisionTree

ensembles using bagging for sampling data while training: RandomForest (JAMES et al., 2013),

AdaBoost (ZAKI; MEIRA JR., 2013), and GradientTreeBoosting (HASTIE; TIBSHIRANI;

FRIEDMAN, 2009). The base learners used – i. e., each component of the ensembles –

comprehended Classification and Regression DecisionTrees (CART) models (BREIMAN et al.,

1984).

A RandomForest classifier resembles an algorithm fitting several DecisionTree models

(base learners) on distinct subsets drew from training data. It uses soft voting5 to aggregate

their outputs (JAMES et al., 2013). Other authors efficiently using the RandomForest for flare

forecasting include C. Liu et al. (2017).

Unlike the RandomForest that independently fits several models and aggregates their results

in the end without emphasizing any base learner, boosting is a strategy by which each model

drives the samples next models will focus on. The AdaBoost algorithm introduced this strategy

(ZAKI; MEIRA JR., 2013).

AdaBoost is an algorithm that begins by fitting a single learner on the original dataset. It

then sequentially fits more models focusing on the mispredicted samples from previous models.

Accordingly, AdaBoost highlights the most challenging samples in its design process (ZAKI;

MEIRA JR., 2013). Other authors efficiently using AdaBoost to forecast flares include Lan et al.

(2012).

5Soft voting means to average the probabilities of base learners within an ensemble (HAN; KAMBER, 2006).
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The GradientTreeBoosting algorithm, in turn, also relies on the boosting strategy while

training several base learners gradually and sequentially. However, conversely to the

AdaBoost, which identifies the weakness of base learners by adjusting weights of samples hard

to predict, GradientTreeBoosting employs efforts to boost its loss function (HASTIE;

TIBSHIRANI; FRIEDMAN, 2009).

4.4 Feature selection

When designing learning systems, one must take extreme care of input data. The existence

of noise or useless features in the input of classifiers can certainly incur in poor system

performance (HAN; KAMBER, 2006).

Not only noise but also high data input dimensionality can become an undesirable issue for

classifiers. By dimensionality, we mean classifiers’ input sets leading to redundancy between

elements or negatively affecting training time.

In this context, feature selection (HAN; KAMBER, 2006) involves a powerful machine

learning method for letting us distinguish between suitable and useless features. Aware of the

benefits, we managed to provide feature selection within our methodology.

Accordingly, our method seeks an effective set of features during the feature selection stage

to use along with the previously chosen model. Hence, it evaluates the randomly initialized

baseline algorithm of model selection with the full set of features over each training set using

repeated randomized, stratified fivefold cross-validation. Also, it distinguishes between useful

and useless features in each training segment.

Our pipeline performs two distinct methods, filtering and wrapper-based schemes, to rank

the usefulness of features and support their discarding (GUYON; ELISSEEFF, 2003). Whereas

the former ranks each feature using some proxy metric – such as Pearson correlation analysis –

to provide an ordered list of their importance in the end, the latter uses an ordinary learning

model to evaluate several predefined feature subsets.

Discarding features only with a filter method solely depends on the proxy’s rank, that is,

we discard features with lowest scores. On the other hand, to discard features using a wrapper

technique, we assess the learning model performance among the predefined feature subsets

and pick the set that best increased some desired performance score.
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Within this research, we employed both filter and wrapper methods. As the filter, we

designed an univariate feature selection method – provided with the F-score proxy

measure (BOBRA; COUVIDAT, 2015) – combined to the model selection chosen algorithm

(wrapper).

Univariate feature selection methods do not consider the correlation between features.

Alternatively, they assume features are independent and evaluate their complementary nature,

if any (GUYON; ELISSEEFF, 2003).

Within this context, arbitrary features may incur in poor performance when predicting

alone a target. However, they may turn out to be good predictors when combined, without

necessarily possessing a high correlation coefficient (GUYON; ELISSEEFF, 2003).

Accordingly, the flare forecasting literature had already pointed out several benefits of

employing univariate methods linked to the F-score measure for feature selection (BOBRA;

COUVIDAT, 2015). In Equation 4.1, we show how to calculate the F-score (CHANG; LIN, 2008):
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i − x̄i)
2 + (x̄−

i − x̄i)
2

1
n+−1

∑n+

k=1(x
+
k,i − x̄i)2 +

1
n−−1

∑n−

k=1(x
−
k,i − x̄i)2

, (4.1)

where the denominator comprehends the variance sum within each class; the numerator

comprehends the inter-class variance; x̄+
i and x̄−

i correspond to the average values of positive

and negative samples, respectively; n+ and n− represent the number of positive and negative

samples, respectively; and x̄i accounts for the average of the feature.

Over each training segment – one at a time –, our methodology calculates the F-score

of all elements in the full features set, outputting a ranked features list in descendant order

(Figure 4.4). Then, it picks the two best features and assesses their performance when used as

the input for the previously chosen ensemble through repeated randomized, stratified fivefold

cross-validation.

Subsequently, we increase the number of chosen best features by one and re-evaluates the

model with them. The method continues this pipeline from the two best features to their total

number, always recording the desired custom score of each iteration – in our case, TSS.

By using this approach, in the end, our methodology maintains only the five best feature

sets, that is, those linked to the highest TSS training scores (one for each training set). Then, it

keeps only the set associated with the highest TSS and re-evaluates the ensemble using it in all

training sets.
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Figure 4.4: Feature selection scheme.

4.5 Hyperparameter optimization

While optimizing the hyperparameters of a given learning algorithm, the aim relies on fitting a

model () and reducing its loss function ((X (val);)) in validation data samples (X (val)). As

such,  is fit by an algorithm () in training data samples X (tr) (CLAESEN; DE MOOR, 2015).

Within this context, usually possesses a hyperparameters set (�, = (X (tr); �)), which
must be optimized (adjusted) to reduce . Besides, requires an affordable level of complexity

to avoid poorly generalizing unseen data, which can lead it to overfit. Thus, provides � to

allow the adjustment of its complexity (CLAESEN; DE MOOR, 2015).

Consequently, hyperparameters are employed within a search process to look for a set (�⋆)

yielding an optimal model, as Equation 4.2 defines (CLAESEN; DE MOOR, 2015):

�⋆ = � arg min (X (val);(X (tr); �)) = � arg min  (�;, X (tr), X (val),), (4.2)

where the function  uses a set of hyperparameters and outputs the loss value provided that

X (tr), X (val) and  are given.

Aware of the hyperparameter optimization theory and its benefits, we designed a process

in the methodology comprehending it. As such, the aim is to adjust how the ensemble behaves

and better leverages its generalization skills.
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4.5.1 Randomized search for hyperparameters

The two most common techniques usually employed for hyperparameter optimization refer to

grid search and random search. In the former, the user provides a finite set of values for each

hyperparameter and the algorithm evaluates the Cartesian product between them. Inevitably,

this can lead to a significant computational burden since the number of required evaluations

can grow exponentially according to the input space’s size (FEURER; HUTTER, 2019).

On the other hand, a random search is also fed with the set of values mentioned earlier.

However, the algorithm randomly samples combinations until a stop criterion is met. This

approach can be as effective as the grid-based, especially when not all parameters are equally

important to adjust (FEURER; HUTTER, 2019).

Besides, we believe that random search is a useful method to start the search process for

hyperparameters. It evaluates almost the entire input space and finds parameters settings with

reasonable results. Those results are arbitrarily close to the optimum ones found with the

exhaustive grid search (FEURER; HUTTER, 2019).

However, when choosing between the grid and random approach in practical scenarios,

it is worth taking care of the trade-off between the performance of models and resource

consumption (FEURER; HUTTER, 2019). As our methodology needs to fit most of the data

scenarios, hyperparameters, and grids, we judged random search a more suitable approach –

to avoid evaluations growing exponentially –, thus providing it within the proposed pipeline.

Our case studies included the following grid of hyperparameters to be used along with our

random search implementation:

• the number of base learners;

• the maximum depth of base learners;

• the number of samples used to fit each base learner (for GradientTreeBoosting);

• the rate driving how much each base learner contributes to the loss gradient (for

GradientTreeBoosting and AdaBoost);

• the number of features used to fit each base learner;

• the number of samples needed to split an internal node;

• the number of samples needed for a leaf node;
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• the threshold used to stop the growth of base learners – each inner node continues to

grow whether its impurity remains above this threshold; otherwise, it is turned into a

leaf (for RandomForest).

As we show in Figure 4.5, our method performs a randomized search in each training set to

seek the hyperparameters set up that most increases some chosen custom score – in our case,

the AUC (WITTEN; FRANK; HALL, 2011) (see Appendix A.8 for a concise reference for AUC).

Furthermore, after those searches, the methodology picks the representative set of parameters,

that is, the one increasing the most the AUC among all training segments.

Figure 4.5: Hyperparameter optimization scheme.

Binary classifiers – as those of our case studies – output posterior probabilities for

distinguishing between their classes. Often, those classifiers rely on some custom prediction

threshold t to classify their predictions: all samples above t are from the positive class,

whereas the remainder belongs to the negative class. However, choosing arbitrary t values
might not yield the best performance for classifiers.

Within this context, the ROC (WITTEN; FRANK; HALL, 2011) analysis assesses the

classifiers’ performance at increasing prediction thresholds. It plots the TPRs versus the

probabilities of false detections (False Positive Rate (FPR); see the Appendix A.8) concerning

the range of increasing thresholds (i. e., t = 0.1, 0.2, and so on).

Besides, the ROC analysis creates a curve by interpolating between the points TPRs versus

FPRs as mentioned earlier. The area underneath this curve is the AUC. The closer a classifier
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scores its TPR from 1 and FPR from 0, the better the classifier (AUC = 1, the ideal case). This

classifier has a increased probability of detecting a random positive sample over a negative one.

Accordingly, the AUC score represents a measure of potential usefulness for classifiers.

We proposed AUC here instead of the earlier TSS since we want to guarantee that our model

will have increased probabilities for detecting random positive samples over negative ones at

different prediction thresholds. As such, we seek a parameters set up that score high TPRs at

increasing prediction thresholds without incurring in high FPRs, thus leading to high AUCs.

Not only AUC but also other scores may be optimized in this process (that depends on the

requirements of the expected output forecast model).

4.6 Data resampling

Frequently, real-world datasets suffer from imbalanced class ratios. Positive samples can be less

common than negative ones and vice versa. Fitting models on imbalanced data can be costly

and end up outputting over-fitted classifiers concerning the majority class, that is, classifiers

poorly generalizing minority samples (CHAWLA et al., 2002).

A straightforward – yet effective – way to cope with imbalanced data relies on changing how

classifiers report their performance. Accordingly, reporting only the biased overall accuracy

may not be enough to measure the classifier’s effectiveness. Instead, one can use individual

metrics to verify performance when forecasting individual classes (for instance, both class hit

rates) (BATISTA; PRATI; MONARD, 2004).

However, provided that the aim is also to increase classifiers’ performance, only reporting

individual scores may not be enough. In this sense, the literature also addresses the class

imbalance issue in some other ways, such as by using cost-sensitive learning (BOBRA;

COUVIDAT, 2015) and resampling the dataset (CHAWLA et al., 2002) – both approaches

provided in our pipeline.

4.6.1 Methods for data resampling

Our methodology employs data resampling and cost-sensitive learning concurrently (i. e., it

carries them out at the same time). Depending on their results, the pipeline shall proceed using

the former or the latter approach afterwards.
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For data resampling, themethodology evaluates at least three distinct techniques to resample

data before fitting the learning model and evaluating its performance: SMOTE (CHAWLA

et al., 2002), SMOTE-Tomek (BATISTA; PRATI; MONARD, 2004), and SMOTE-ENN (BATISTA;

PRATI; MONARD, 2004). The rationale for employing some distinct resampling techniques

is to have diversity in results, i. e., some approaches can outperform others depending on the

data’s design.

SMOTE is an over-sampling technique that creates synthetic minority samples by

interpolating between original minority samples close to each other (CHAWLA et al., 2002).

Such an interpolation incurs in the spread of the minority class decision boundary over the

majority class space, reducing the risk of over-fitting with minority samples duplicated at

random with replacement, that is, an ordinary random over-sampling (BATISTA; PRATI;

MONARD, 2004).

On the other hand, as of combined methods, both SMOTE-ENN and SMOTE-Tomek over-

samples minority class data with SMOTE at first. They then employ two distinct undersampling

techniques over the majority data. Whereas ENN removes samples from the training set

that are misclassified by its three-nearest-neighbors algorithm, Tomek removes examples

comprehending Tomek-links6 (BATISTA; PRATI; MONARD, 2004).

The use of SMOTE, SMOTE-ENN, and SMOTE-Tomek relates to our case studies. As we

have more skewed classes in the shortest forecasting horizons (see Chapter 5 for a complete

view of our data), we chose over-sampling techniques to reduce the potential loss of data

compared to pure under-sampling approaches.

Concerning our methodology, as Figure 4.6 shows, it assesses the model’s performance

over each training set through resampled repeated stratified, fivefold cross-validation. Hence,

repeatedly, it splits each training set into fivefolds and resamples only the subsets used for

fitting the model (the remainder validation subset remains unaffected).

The process mentioned earlier continues until the pipeline uses all training samples of

each training segment for validation purposes. Finally, the method chooses the representative

resamplingmethod and discard others, that is, the one scoring the lowest difference |TPR − TNR|
to keep both hit rates simultaneously at a close level, and consequently reduce the class skew.

6We define Tomek-links as follows: given two examples Ei and Ej belonging to different classes, and d(Ei , Ej )
is the distance between the two examples. A (Ei , Ej ) pair represents a Tomek-link if there is not any example
El , such that d(Ei , El ) < d(Ei , Ej ), or d(Ej , El ) < d(Ei , Ej ). If two examples form a Tomek-link, then they can be
considered noise (BATISTA; PRATI; MONARD, 2004).
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Figure 4.6: Data resampling scheme.

4.7 Cost function analysis

Approaches other than resampling and changing how classifiers report their performance

involve the use of cost-sensitive learning. Instead of creating minority synthetic samples at

some defined criterion, this approach assigns a misclassification cost to each predicted sample.

Then, the classifier must try to reduce the total cost (ELKAN, 2001).

Whereas both data resampling and cost-sensitive learning approaches may reach similar

results, the latter usually outperforms the former regarding resource consumption. That is,

since cost-sensitive learning does not explicitly create synthetic samples, it can represent a

better choice for bigger sets of data. Other authors effectively using cost-sensitive learning

include Bobra and Couvidat (2015). Besides, as argued by Huang, H. Wang, and Dai (2012),

cost-sensitive learning must be used to adjust classifiers’ performance when authors use custom

prediction thresholds, as our case (discussed in Section 4.8).

Usually, learning algorithms have a feature offering a practical implementation of cost-

sensitive learning7. Those algorithms provide two cost functions (functionalities) referring to

7Regarding our case studies’ models, except for the GradientTreeBoosting – here, our method only copes with
data resampling – , RandomForest and AdaBoost provide cost-sensitive learning.



Chapter 4. A methodology to automate the design of solar flare classifiers 87

weighted multiplications to samples of positive and negative class. For majority negative data,

the minority class weight often must assume 1 as its cost on one hand.

On the other hand, the majority class weight must employ the ratio of positive examples

over the negative ones as a rule of thumb, that is, Cp/Cn – where Cp and Cn are the numbers of

positive and negative class samples, respectively. Analogously, for majority positive data, the

negative weight is now expected to be 1 and the positive one assumes Cn/Cp .

However, the ratio Cp/Cn might not yield the perfect balance for classifiers’ data when

it comes to keeping both TPR and TNR at a close level. By perfect balance, we mean ratios

that output the lowest difference |TPR − TNR|. Hence, as the ratio Cp/Cn lies around [0 , 1],
it is worth seeking in such an entire interval the value incurring in the perfect balancing

performance8.

Accordingly, as we show in Figure 4.7, the methodology seeks the ratio Cp/Cn of each

training set (one at a time) linked to the lowest difference |TPR − TNR| to keep both hit rates

simultaneously at a close level. Besides, as we show in Figure 4.89 for a hypothetical training

segment, the methodology investigates at a 0.1 step-based increment how TPR and TNR change

as the ratio Cp/Cn varies along its interval, that is, from Cp/Cn = 0.1 to 1. In the end, the pipeline

picks the ratio Cp/Cn that output the lowest difference between hit rates as the representative

one and re-evaluate the model through all training sets.

Figure 4.7: Cost function analysis scheme.

8Analogously, for majority positive data, the ratio Cn/Cp also lies around [0 , 1] and a desired point must be
sought.

9We interpolated points in this graph to ease visualization.
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Figure 4.8: Class ratio graphical plot for a hypothetical training segment.

Depending on the majority data nature, cost function analysis may somehow end up

decreasing TNR (for majority negative data) or TPR (for majority positive data). However,

despite those decreases, their complementary scores shall consequently increase. Given that

both hit rates directly influence TSS (the higher the class-specific scores, the higher the TSS

is), choosing the ratio Cp/Cn (or Cn/Cp) that makes the latter scores to come close indirectly

increases the former.

4.8 Cut-off point adjustment

Most learning algorithms output posterior probabilities as their forecasts – and so do the models

of our case studies. For binary problems, classifiers convert those probabilities into yes or no

forecasts using predefined thresholds t .

Overall, usually t = 0.5 – that is, provided that classifiers’ probabilities are greater or equal

0.5, they output positive answers as their forecasts. Also known as the cut-off point of classifiers,

t = 0.5 might not yield the best performance for predicting positive events concerning the

expected number of false alarms.

Directly related to the TPR (recall), the Positive Predictive Value (PPV) (precision, see

Appendix A.1) represents the accuracy with which we predict positive events (ZAKI; MEIRA

JR., 2013). The former, in turn, accounts for the number of positive events correctly predicted.

This rationale is analogous to the TNR and Negative Predictive Value (NPV).
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The relation between TPR and PPV – or TNR and NPV – is directly linked to the classifiers’

cut-off points. As such, there are two trade-offs between the class-specific recall and precision

scores. For instance, it would be rather easy to score TPR = 1, as we predicted that all testing

samples were positive. However, positive precision would be rather low (ZAKI; MEIRA JR.,

2013). Consequently, the number of false alarms would increase a lot.

On the other hand, the positive precision would be highly increased provided that we predict

only a few testing samples as positive (for instance, the samples in which our classifier is the

most confident). Conversely, now the positive recall would be rather low. As a consequence,

the number of false alarms would decrease a lot.

An optimal cut-off point must be encountered in such a way that both recall and precision

are high at once (ZAKI; MEIRA JR., 2013) – the aim of the last design process in the pipeline. As

such, for each training set (one at a time), from t = 0.1 to t = 0.9 at a 0.1 step-based increment,

we seek the t value linked to the lowest difference |TPR − PPV| (Figure 4.910). As an example, in

Figure 4.10, we show how TPR and PPV vary in relation to t in a hypothetical training segment.

Subsequently, our method keeps the t value that maintains TPR closer to PPV over all

training sets as the representative one. By using the rationale mentioned earlier, we can reach

an optimal balance point between recall and precision at the same time we take care of the

number of false alarms.

Figure 4.9: Adjustment of the cut-off point scheme.

10We interpolated points in this graph to ease visualization.
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Figure 4.10: Decision threshold graphical plot for a hypothetical training segment.

4.9 Evaluation of validation sets

During the evaluation of validation sets, the pipeline trains five optimized models of the same

type in each training set, that is, the same chosen algorithm, selected features, optimized

hyperparameters, custom Cp/Cn ratio/data resampling method, and adjusted cut-off point. It

then uses those models to forecast their corresponding validation sets.

Besides forecasting the validation sets with optimized models, the method also fits five

baseline models over each training set and forecast their corresponding validation sets. As

of the optimized models, baseline models also have the same configuration. However, this

configuration comprehends the algorithm of model selection, noticeably a model designed with

parameters initialized at random and using the full set of features.

The methodology uses both classes of models – baseline and optimized – to assess the

improvements before assessing the generalization error. This means that it verifies whether

some custom score increases from baseline to optimized results and, if so, it proceeds with the

evaluation of test sets. In our case studies, the methodology checks the TSS performance.

4.10 Evaluation of test sets

Finally, provided that the methodology confirmed improvements in the forecast performance

during Section 4.9, it can now assess the optimized models’ generalization errors over unseen

data. Accordingly, it uses the previously trained baseline and optimized models to forecast

their corresponding test sets.
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4.11 Concluding remarks

This chapter presented the proposed methodology11 envisioning an optimized automated design

process for solar flare classifiers. We based this methodology in the collection of good practices

specifically designed for space weather’s needs, further discussed in Chapter 3.

Overall, such methodology has encompassed the automation of the following machine

learning based pipeline of processes: (i) data splitting; (ii) model selection; (iii) feature selection;

(iv) hyperparameter optimization; (v) data resampling; (vi) cost function analysis; (vii) cut-off

point adjustment; and (viii) evaluation of validation, and (ix) test sets. We shall present the

classifiers designed under this methodology’s premises in Chapter 6, further commenting on

how the pipeline affected their performance, gains, and drawbacks.

Although the methodology allows an “operational” assessment of performance in a portion

of data, we have also deployed the experimental forecast models designed for case studies I and

II into a real forecast environment12. This implementation is further detailed on the Appendix C

and shall serve as one basis for the future work discussed in Chapter 7.

11The full source code comprehending the methodology automation is available at: https://github.com/
tiagocinto/guaraci-toolkit.

12The full source code for the deployment of the forecast models is available at: https://github.com/
tiagocinto/guaraci-forecast.
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Chapter 5

Datasets

This chapter shall present the datasets used to evaluate the methodology presented in Chapter 4.

Overall, we employed two major datasets, one comprehending full-disk forecasts – used in case

studies I and II –, and other supporting AR-by-AR-based processing – for Case Study III. Case

Study I aimed to forecast ≥ C flares, while case studies II and III employed ≥M flare forecasting.

5.1 Dataset for Case Study I and II

The dataset employed in case studies I and II used data from NOAA/SWPC1. That prediction

center provides real-time monitoring of solar events affecting navigation, telecommunications,

and satellites. As the official source for space weather alerts in the USA, NOAA/SWPC freely

provides their data for study and research purposes2.

Data from NOAA/SWPC feed distinct repositories, such as the DSD and SRS. The former

comprises the Sun’s behaviors as daily aggregated records (i. e., X-ray background measures,

the total number of sunspots etc.), the latter further details the ARs of DSD’s records (i. e., it

provides their magnetic types, locations, corresponding areas, etc).

NOAA/SWPC regularly issues data from DSD at 02:30 AM, 08:30 AM, 02:30 PM, and 08:30

PM UTC (NOAA/SWPC, 2011). On the other hand, the SRS repository is daily updated always

at 00:30 UTC (NOAA/SWPC, 2008).

Since data issued in SRS at 00:30 refer to previous days, it was worth using this time as a

reference for assembling our dataset (with data from DSD previously issued at 20:30). To link

between DSD and SRS data, we used their available compilation dates (month, day, and year).

1http://www.swpc.noaa.gov
2ftp://ftp.swpc.noaa.gov/pub/warehouse/
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Accordingly, we assembled data from the period comprehending 1997 January 01 to 2017

January 15, that is, records involving almost two entire solar cycles (23 and 24). Each sample

of our dataset corresponds to one record of DSD, combined with its corresponding SRS data.

Thus, we managed to compile 7,320 records comprising data from several distinct features:

• C-class flares: daily observed C-class events (to design the target variable) (NOAA/SWPC,

2011).

• M-class flares: daily observedM-class events (to design the target variable) (NOAA/SWPC,

2011).

• X-class flares: daily observed X-class events (to design the target variable) (NOAA/SWPC,

2011).

• Sunspot area: the daily sum of all sunspot areas (measured in millionth units of the solar

hemisphere) (NOAA/SWPC, 2011).

• Radio flux: also known as the F10.7 index, the solar radio flux at 10.7 cm is an index

of daily solar activity reported by the Dominion Radio Astrophysical Observatory at

Penticton, Canada (NOAA/SWPC, 2011).

• Sunspot number : the daily aggregated number of sunspots. Also known as Wolf’s sunspot

number, it is calculated by R = k(10g + s), where k is a variable scaling factor that

represents the observation conditions, g is the number of active regions, and s is the

number of sunspots inside active regions (NOAA/SWPC, 2011).

• X-ray background flux: the daily average background X-ray flux. To achieve this value,

NOAA/SWPC primary GOES satellite sensors hourly records 24 X-ray measures for each

day and split them into three groups of 8 hours. The lowest flux measure of each group

is kept, and the average between the first and third minimal measures is also calculated.

Then, NOAA/SWPC compares this average measure with the second group minimal flux,

and reports the lowest value as the X-ray background flux (NOAA/SWPC, 2011).

• Daily WMFRs of magnetic classes: The WMFR calculates the weighted mean rate that each

Mt. Wilson class occurs along with C-, M-, and X-class flares, defined as in Equation 5.1

(SHIN et al., 2016):

wmfrdaily =
y

∑
i=1

nc + 10nm + 100nx
n

, (5.1)
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where n refers to how many classes were observed regardless of being linked to any sort

of flare and nc , nm, and nx correspond to the number of classes linked to C-, M-, and

X-class events, respectively. The constants 10 and 100, in turn, are the weights for flare

importance. Noteworthily, as our data refer to solar behaviors aggregated daily, several

sunspots with different WMFRs are often recorded every day. We treat the daily WMFR

as the sum of all observed WMFRs, i. e., y refers to the daily number of sunspots and i

accounts for the WMFRs of their magnetic classes3

• Daily WMFRs of Zpc components from McIntosh classes: Some authors argue that Zpc

components can be interpreted as proxies to represent magnetic fluxes emergence or

decay inside sunspot groups (KILCIK et al., 2018; EREN et al., 2017; MCCLOSKEY;

GALLAGHER, P. T.; BLOOMFIELD, 2016; LEE, K. et al., 2012). Within this context, some

cases of flux emergence may incur in higher flare amounts, that is, they can represent

correlations between individual Zpc components and flares. Accordingly, we calculate

the daily WMFR of McIntosh classes as mentioned earlier in Equation 5.1. However,

we treat each Zpc component independently, thus creating three daily WMFRs for each

sunspot.

5.1.1 Data preprocessing

Data from this dataset needed two distinct preprocessing techniques: data standardization and

missing data imputation (HAN; KAMBER, 2006). Examples of missing data issues included:

DSD records without their corresponding SRS data, sunspot area and number with absent

values, and features with noisy data (for instance, X-ray background flux with zeroed measures).

To input missing data, we used a k-NN based imputation (HAN; KAMBER, 2006). Usually,

missing data are treated with the deletion at random of the entire record, leading to data loss.

However, k-NN provides a more suitable alternative, that is, it inputs missing data considering

the similarity between data records. Hence, to input missing feature values, the k-NN uses the

most predominant value among the k closest neighbors to the record with missing data.

Accordingly, the k-NN defines its similarity in terms of a general distance metric – in this

research, the ordinary Euclidean score. Equation 5.2 defines the Euclidean distance between

two records X1 = (x11, x12,… , x1n) and X2 = (x21, x22,… , x2n) (ZAKI; MEIRA JR., 2013).

3We included the WMFRs of the most frequent magnetic classes based on Jaeggli and Norton (2016)’s. findings:
they researched the years between 1992 and 2015 highlighting the most frequent cases (almost the entire period
we are using).
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dist(X1,X2) =

√
n

∑
i=1

(x1i − x2i)2, (5.2)

where n is the number of features; x1i is the ith feature of the first record; and x2i is the ith

feature of the second record.

Some solar physicists suggest not using any type of data imputation to reduce the

probability of distorting data behavior in the solar cycle. However, we believe that inputting

values considering the similarities of the k nearest tuples avoid such distortions. As such,

simply inputting values by the feature mean value or through feature constants does not

necessarily reflect the solar cycle, which we avoided. Nevertheless, by using the k-NN, we

tried to approximate the tuples with missing data to their most similar days, which would

naturally reduce the effects of inputting wrong values.

Besides missing data, we also encountered dissimilar data ranges among features. For

instance, whereas the sunspot number and area, and radio flux respectively ranged between

[0 , 401], [0 , 5690], and [65 , 298], the X-ray background flux lied in a shorter interval, namely

[10−7 , 2 × 10−5]. Those dissimilar data ranges are known to highly affect the performance of

machine learning predictors. In this sense, we used the z-score to normalize features (HAN;

KAMBER, 2006).

The z-score – also known as the standard score – is an algorithm for reducing data ranges

to � = 0 and � = 1. Z-score is highly recommended for solar flare forecasting models since it

positively affects the classifiers’ predictive performance (NISHIZUKA; SUGIURA; KUBO; DEN;

WATARI, et al., 2017). In Equation 5.3, we show how to calculate the z-score.

z =
x − �

�
, (5.3)

where � is the feature mean; � is the feature standard deviation; x is an arbitrary feature value;

and z is the standardized value of x .

5.1.2 Sliding time window

Forecasting models that cope with the evolution of data over some period and predict events

in a supervised and sequential fashioned way are called short-term predictors (YU; HUANG;

WANG, H.; CUI, 2009). To properly provide data input for them, one must design data through
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the sliding time window scheme. This scheme represents the evolution of data n days before

the existence of some event. Many authors argue in favor of using this time window combined

with solar flare forecastings, such as Yu, Huang, H. Wang, and Cui (2009) and Huang, Yu, et al.

(2010).

As such, within a sliding time window, solar data are observed at the t instant –

corresponding to an arbitrary day – and some days before t , that is, [t − Δt]. This interval
between t and [t − Δt] corresponds to the window.

When designing data through a sliding time window, one must carefully choose a reasonable

window length. Long windows may lead to redundancy with data. On the other hand, data

may not be enough when someone designs extremely short windows.

By trying to include only enough data, we defined our window length based on the ARs’

lifetime. As argued by Canfield (2001), ARs are born when magnetic flux strands become visible

into the photosphere from the solar interior. Not rarely, this flux lasts for at least five days, that

is, the period in which ARs grow to larger sizes before quickly stops emerging until vanishing.

Hence, our data stream comprehended five days of evolutionary data features, i. e., we aimed

to cover ARs during their entire life cycles:

• xray_background_flux [t − 4d, t − 3d, t − 2d, t − 1d, t];
• radio_flux [t − 4d, t − 3d, t − 2d, t − 1d, t];
• sunspot_area [t − 4d, t − 3d, t − 2d, t − 1d, t];
• sunspot_number [t − 4d, t − 3d, t − 2d, t − 1d, t];
• daily_magnetic_class_wmfr [t − 4d, t − 3d, t − 2d, t − 1d, t];
• daily_z_component_wmfr [t − 4d, t − 3d, t − 2d, t − 1d, t];
• daily_p_component_wmfr [t − 4d, t − 3d, t − 2d, t − 1d, t];
• daily_c_component_wmfr [t − 4d, t − 3d, t − 2d, t − 1d, t].
At this point, it is worth noting that some solar physicists suggest not employing k-fold

cross-validation with solar time series data. Otherwise, sampled folds may distort the behavior

of data in the solar cycle. However, we carried out the splitting after designing the sliding time

window, which means we managed to guarantee that each observed event always succeeded

its corresponding five days of evolutionary data, thus not causing distortions due to sampling.
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Nevertheless, our methodology also supports time segmented data, such as reserving the

oldest period for training, the intermediate for validating, and the most recent for testing (or

some other criteria based on periods as pointed out on Ahmed et al. (2013)’s and Colak and

Qahwaji (2009)’s researches). However, for brevity, we only included in this thesis the case

study to illustrate the k-fold-based splitting.

5.1.3 Event definition and forecasting horizons

To design our forecasting horizons, we used the counts found in DSD’s records for each flare

class. As such, we transformed those counts into binary flags for representing the occurrence

of ≥ C (Case Study I), and ≥M (Case Study II) flare events within 24, 48, and 72 h ahead of the t
instant.

After designing the target features, our datasets presented some skewed distributions for

class ratios. For ≥ C-class events forecasting, we observed the class ratios as follows – in all the

cases, we could note imbalanced classes:

• the next 24 h: 4,225 (58%, positive samples) versus 3,095 (42%, negative samples);

• the next 48 h: 4,783 (65%, positive samples) versus 2,531 (35%, negative samples);

• the next 72 h: 5,122 (70%, positive samples) versus 2,191 (30%, negative samples).

On the other hand, for ≥M-class events forecasting, the class ratios had been distributed

by – for Case Study II, we could also notice imbalanced classes:

• the next 24 h: 1,279 (18%, positive samples) versus 6,033 (82%, negative samples);

• the next 48 h: 1,894 (26%, positive samples) versus 4,418 (74%, negative samples);

• the next 72 h: 2,322 (32%, positive samples) versus 4,990 (68%, negative samples).

Conversely to The Met Office Space Weather Operations Centre (MOSWOC) in the United

Kingdom (MURRAY et al., 2017) and NOAA/SWPC (CROWN, 2012), which both employed a

hybrid human-based approach for making full-disk forecasts in the next 24 h, 24 h – 48 h, and
48 h – 72 h ahead of a given t instant, we designed overlapping time horizons, that is, flare

forecasting in the next 24, 48, and 72 h. Other researchers effectively using overlapping time

horizons included Colak and Qahwaji (2009), Yu, Huang, H. Wang, and Cui (2009) and Huang,

H. Wang, Xu, et al. (2018).
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MOSWOC/SWPC provided forecasts for specific classes of flares. In contrast, NOAA/SWPC

made forecasts for events higher than or equal to some magnitude thresholds, namely ≥ C and

≥ M. In this sense, we adhered to NOAA’s approach for predicting above a threshold while

modeling our target features.

The reason for assembling the dataset as such is merely related to our case study. We do not

restrict the methodology proposed herein to those types of input and target features. Hence,

one can use the method along with other features with only a few or no adjustments.

5.2 Dataset for Case Study III

Conversely to the case studies I and II, in which we authored the dataset, we used data assembled

in C. Liu et al. (2017)’s research in Case Study III. As described in Chapter 3, directly comparing

scores from studies employing different datasets can be meaningless due to the several distinct

underlying data characteristics, that is, reliable forecast approach comparisons comprehend

those made upon the same set of data (BARNES; LEKA, et al., 2016). Bearing this in mind, we

used C. Liu et al. (2017)’s dataset to design a classifier with our method in Case Study III and

compared its output with the classifier designed by them4.

In C. Liu et al. (2017)’s article, the authors used HMI vector magnetic data to forecast the

magnitude of flares in terms of their specific GOES classes – B-, C-, M-, and X-class – occurring

in a given AR in the next 24 h. In addition, they also designed a binary scenario for forecasting,

namely by grouping B- with C-class events (negative class), and M- with X-class flares (positive

class). For Case Study III, we only employed data from the binary scenario, that is, we only

designed experiments for ≥ M-class AR-by-AR forecasting, thus not considering the prediction

of specific classes of flares. We designed Case Study III to allow a direct comparison of results

with other literature approaches.5

To assemble their data, C. Liu et al. (2017) surveyed flares – and also ARs in which they

occurred – in the X-ray flare catalogs from the National Centers for Environment Information

(NCEI)/NGDC. The period investigated comprehended 2010 May and 2016 December (the main

peak of solar cycle 24).

4For reproducibility, the authors provided their complete dataset and source code of experiments in https:
//web.njit.edu/cl45/Fpredict/.

5Although we used data from other authors, we prepared their samples differently. As such, to fit our classifier,
we prepared samples through our methodology pipeline instead of the method C. Liu et al. (2017) defined.
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To select flaring AR samples, C. Liu et al. (2017) assured that: (i) they tracked ARs within

70° from the disk center; (ii) flaring AR samples had valid values for their 13 HMI magnetic

parameters at the beginning of the flaring days; (iii) they counted only one event when a flaring

AR produced multiple events of the same type on a given day; (iv) they counted multiple events

for flaring ARs producing multiple flares on different days.

Overall, C. Liu et al. (2017) selected 845 AR samples, comprehending 23 X-class, 142 M-class,

552 C-class, and 128 B-class ARs. Then, to integrate with vector magnetic data to detail the

complexity of magnetic fields, they surveyed the Joint Science Operations Center (JSOC)/HMI

data products – namely hmi.sharp and cgem.Lorentz – for the magnetic parameters6 proposed

by Bobra and Couvidat (2015) (they processed such magnetic parameters always at 00:12 AM

UTC and verified the existence of flares 24 h ahead of this time):

• Total unsigned current helicity (TOTUSJH);

• Total magnitude of Lorentz force (TOTBSQ);

• Total photospheric magnetic free energy density (TOTPOT);

• Total unsigned vertical current (TOTUSJZ);

• Absolute value of the net current helicity (ABSNJZH);

• Sum of the modulus of the net current per polarity (SAVNCPP);

• Total unsigned flux (USFLUX);

• Area of strong field pixels in the active region (AREA_ACR);

• Sum of z-component of Lorentz force (TOTFZ);

• Mean photospheric magnetic free energy (MEANPOT);

• Sum of flux near the polarity inversion line (R_VALUE);

• Sum of the z-component of normalized Lorentz force (EPSZ);

• Fraction of area with shear >45° (SHRGT45).
6For the complete mathematical formulae of the parameters, refer to Bobra and Couvidat (2015)’s and C. Liu

et al. (2017)’s articles.
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5.3 Concluding remarks

This chapter presented the datasets employed in the case studies discussed in Chapter 6. Not

only we assembled our own datasets but also used data from third parties to allow direct and

more reliable comparisons of performance. As such, we shall employ those datasets to design

classifiers under the concepts of the methodology proposed in Chapter 4.
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Chapter 6

Results and discussion

This chapter shall discuss the results of carrying out the methodology as previously defined

in Chapter 4 and agreeing with data from Chapter 5. Hence, it presents the performance of

models designed to forecast ≥ C- (Case Study I) and ≥M-class events (case studies II and III) up

to three days ahead.

To avoid mixing results from different case studies, we shall group them into three distinct

main sections, namely 6.1, 6.2, and 6.3 (one for each scenario). Within each section, we will

roughly organize the content into two main parts (subsections), one for discussing results from

the methodology, and the remainder for comparing such results to the literature.

6.1 Case Study I: ≥ C-class flare forecasting

This section contains the analysis for Case Study I. Specifically in Case Study I, we shall dive a

bit deeper into the results analysis and present the detailed discussion of the methodology’s

inner results for a particular forecasting horizon, that is, the model designed to forecast in the

next 24 h1. In this sense, Section 6.1.1 shall discuss how the performance has changed between

the methodology’s inner processes for the shortest horizon.

1For presenting the detailed methodology’s inner results of longer forecasting horizons within Case Study I
and other cases, refer to Appendix B.
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6.1.1 Forecasts within the next 24 h

To verify the significance of the herein reported increases/decreases, we will use a paired

two-tailed Wilcoxon Signed-Rank Test (WILCOXON, 1945)2. For instance, at model selection,

when directly comparing the highest TSS to the second highest, the observed difference must

be statistically significant, i. e., it shall pass such test.

The Wilcoxon Signed-Rank Test compares whether the difference between two paired

dependent observations equals zero. This comparison comprehends its H0 hypothesis and
checks against some predefined confidence intervals (i. e., the � values), outputting a p-value.

Whether the test affirms the observed effect significantly differs from zero – that is, its p < � –,

the methodology can then proceed within its pipeline.

Noteworthily, the methodology checks the observed differences against the Wilcoxon

Signed-Rank Test using two distinct confidence intervals: � = 0.05 and � = 0.1. Passing either

of those allows the pipeline to proceed. For instance, some score difference outputting p < 0.1
means a small chance of Type-1 statistical error (i.e., rejecting a correct H0), notably 10%. The

same reasoning is valid for p < 0.05, but the chance of a Type-1 error decreases to 5%.

Model selection results

Table 6.1 shows the results for ≥ C-class flare forecasting in the next 24 h within Case Study I

for each training set. The intermediate lines – denoted by the “avg” notation – refer to the

averaged score values among all training sets. On the other hand, the remainder lines refer to

the learning algorithms cross-validated over all training sets (refer to the a note in Table 6.1).

Overall, we can see fair scores with all models. For instance, their TPR and TNR results

ranged on [0.81 , 0.88] and [0.75 , 0.80], respectively, which consequently increased their TSSs

([0.59 , 0.64]). Not only TPRs, TNRs, and TSSs had positive results, but also FARs ([0.15 , 0.18])
and AUCs ([0.85 , 0.90]). In addition, PPVs ([0.82 , 0.85]) and NPVs ([0.76 , 0.82]) also reached

high levels.

However, to forecast in the next 24 h, the methodology maintained the RandomForest

model and discarded the others. It has achieved the highest TSS concerning the second highest,

GradientTreeBoosting (refer to the b note in Table 6.1): p < 0.05 – and indirectly p < 0.1.
2The literature suggests the use of the Wilcoxon Signed-Rank Test instead of the Student’s T test as we have a

few values to test due to the 5-fold split schema from case studies (i. e., for reliability purposes).
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Table 6.1: Case Study I, ≥ C flares, the next 24 h: model selection results.

Model/Train.Seta ACCacc TPRtpr TNRtnr PPV ppv NPV npv FARfar TSStss HSShss AUCauc

AdaBoost/1 0.802 0.836 0.755 0.824 0.771 0.176 0.591 0.592 0.882

AdaBoost/2 0.803 0.838 0.755 0.825 0.773 0.175 0.593 0.595 0.882

AdaBoost/3 0.804 0.842 0.752 0.823 0.777 0.177 0.594 0.596 0.882

AdaBoost/4 0.808 0.846 0.755 0.826 0.783 0.174 0.601 0.604 0.884

AdaBoost/5 0.800 0.838 0.749 0.821 0.772 0.179 0.587 0.589 0.877

avg(AdaBoost) 0.80 0.84 0.75 0.82 0.78 0.18 0.59 0.60 0.88

RandomForest/1 0.825 0.879 0.750 0.829 0.820 0.171 0.630 0.637 0.907

RandomForest/2 0.828 0.883 0.754 0.831 0.825 0.169 0.636 0.644 0.911

RandomForest/3 0.828 0.885 0.748 0.828 0.827 0.172 0.634 0.642 0.907

RandomForest/4 0.829 0.881 0.758 0.833 0.823 0.167 0.638 0.645 0.908

RandomForest/5 0.834 0.883 0.766 0.838 0.828 0.162 0.649 0.656 0.909

avg(RandomForest) 0.83 0.88 0.76 0.83 0.82 0.17 0.64b 0.64 0.91

GradientTreeBoosting/1 0.804 0.803 0.804 0.851 0.752 0.149 0.607 0.601 0.855

GradientTreeBoosting/2 0.801 0.807 0.793 0.844 0.753 0.156 0.600 0.595 0.854

GradientTreeBoosting/3 0.804 0.808 0.799 0.849 0.756 0.151 0.607 0.602 0.853

GradientTreeBoosting/4 0.808 0.826 0.784 0.842 0.771 0.158 0.610 0.608 0.857

GradientTreeBoosting/5 0.802 0.804 0.799 0.848 0.753 0.152 0.603 0.597 0.853

avg(GradientTreeBoosting)c 0.80 0.81 0.80 0.85 0.76 0.15 0.61b 0.60 0.85
a The Model/Train.Set notation means a particular learning algorithm cross-validated over some
specific training set.
b TSSRandomForest > TSSGradientTreeBoosting (p < 0.05). As the RandomForest outputs the highest TSS, the
methodology chose it to proceed in the pipeline. Although such a difference may suggest a small
improvement (+0.03), we managed to statistically confirm it with 95% of confidence – i. e., through
the Wilcoxon-signed rank test described earlier.
c Although the GradientTreeBoosting may suggest a reasonable classifier (i. e., reduced class skew
and FAR), the criteria used in our case studies’s model selection processes only considered the TSS.
acc ACC lies around [0 , 1]: the higher the score, the better the classifier (HAN; KAMBER, 2006).
tpr TPR lies around [0 , 1], where higher values represent better classifiers (HAN; KAMBER, 2006).
tnr We measure and analyze TNR results the way as that of TPR (HAN; KAMBER, 2006).
ppv PPV ranges on [0 , 1]: the higher the values, the better the classifier (ZAKI; MEIRA JR., 2013).
npv NPV ranges on [0 , 1]: the higher the values, the better the classifier (ZAKI; MEIRA JR., 2013).
far FAR scores on [0 , 1]: the lower the score, the better the classifier (JOLLIFFE; STEPHENSON,
2003).
tss The TSS ranks a model over a scale lying on [−1 , 1]. Results close to −1 mean all predictions
incorrect (positive and negative), and those close to 1 mean all predictions correct – zeroed results
refer to no-skilled classifiers (JOLLIFFE; STEPHENSON, 2003).
hss HSS ranks classifiers over [−1 , 1], where results close to -1 mean all predictions incorrect
(positive and negative) and close to 1 mean all predictions correct – zeroed results refer to classifiers’
forecast skills equal to random chance (JOLLIFFE; STEPHENSON, 2003).
auc The AUC is always positive and should be greater than 0.5 ideally. Best classifiers score AUCs
next to 1 (WITTEN; FRANK; HALL, 2011).
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Since the p-value mentioned earlier was less than both of our defined confidence intervals,

we could successfully reject our Wilcoxon Signed-Rank Test H0 hypothesis (the difference
between two paired dependent observations equals zero). It means that the chance of a

Type-1 statistical error (i. e., rejecting a correct H0) is small (5% and 10% for � = 0.05 and

0.1, respectively). Hence, we could affirm that the difference between the averaged TSSs of

RandomForest and GradientTreeBoosting was statistically significant.

Regardless of the positive results previously commented, there was still room for further

improvements. For instance, taking the chosen RandomForest model as a reference, we could

note a scenario of slightly imbalanced class ratios. Bearing in mind its ACC = 0.83, whereas the

TPR reached 0.88, the TNR only scored 0.76.

In fact, the RandomForest model was not able to correctly forecast the negative class as

well as it performed with the positive one. Not only coping with the imbalance issue, but the

methodology shall also persecute increases in other scores next.

Feature selection results

Table 6.2 shows the detailed results3 from the Case Study I’s feature selection for each training

set (for forecasts within the next 24 h). These results refer to the representative set of features

selected through univariate analysis re-evaluated over all training sets. Such representative set

comprehended the features as listed below:

• radio_flux_10.7cm_t2 (F-score = 2599.78);

• radio_flux_10.7cm_t1 (F-score = 2770.28);

• radio_flux_10.7cm_t (F-score = 2974.9);

• sesc_sunspot_number_t (F-score = 3130.42);

• c_component_wmfr_t (F-score = 3308.50).

Regardless of those features being linked to flare occurrence (as suggested by the univariate

analysis), their selection also agreed with the specialized literature. For instance, the WMFR

for the McIntosh (1990)’s c component agreed with the findings of Eren et al. (2017) and Kilcik

et al. (2018), who suggested that it could be used to represent magnetic flux emergence inside

3From now on, we shall use the ±n notation of the averaged results in Table 6.2 to denote how scores changed
by n concerning their previous – confirmed – results.
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ARs leading to higher flare amounts. In turn, the radio flux derived features agreed with NOAA

(2020)’s observations of the F10.7 index – i. e., by analyzing the NOAA (2020)’s graph, we could

observe a radio flux movement roughly following the solar cycle, whose majority of flares

occurred in the peaks.

Table 6.2: Case Study I, ≥ C flares, the next 24 h: feature selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.844 0.881 0.792 0.854 0.831 0.147 0.674 0.678 0.902

RandomForest/2 0.848 0.882 0.802 0.860 0.833 0.140 0.684 0.687 0.900

RandomForest/3 0.845 0.876 0.803 0.860 0.826 0.140 0.679 0.682 0.904

RandomForest/4 0.843 0.881 0.789 0.852 0.830 0.148 0.671 0.675 0.905

RandomForest/5 0.846 0.882 0.798 0.857 0.832 0.143 0.680 0.683 0.904

avg(RandomForest) 0.85a,acc0.88b 0.80tnr 0.86ppv 0.83npv 0.14far 0.68tss 0.68hss 0.90c,auc

a Scores marked in bold represent positive results (increases/decreases) concerning the
previous process, confirmed with p < 0.05 or p < 0.1.
b Scores not marked with any different style mean they remained unaffected concerning the
previous process, confirmed with p > 0.05 and p > 0.1. Such scores can also be interpreted
as positive results, since they did not increase nor even decrease.
c Underlined scores represent negative results (increases/decreases) concerning the previous
process, confirmed with p < 0.05 or p < 0.1.
acc +0.02 (p < 0.05).
tnr +0.04 (p < 0.05).
ppv +0.03 (p < 0.05).
npv +0.01 (p < 0.1).
far -0.03 (p < 0.05).
tss +0.04 (p < 0.05).
hss +0.04 (p < 0.05).
auc -0.01 (p < 0.05).

Noteworthily, we are aware that some features mentioned earlier may suggest similarity

to each other – i. e., the correlated nature of the radio flux sliding time window –, which can

somehow directly lead to redundancy in the input of RandomForest (i. e., features co-linearity).

However, we are using a method to test the complementary nature of features instead of their

correlation – that is, we aimed at identifying independent features that led to good predictors

when combined, regardless of their correlation.

Compared to the model selection results shown in Table 6.1, we could note a single negative

result, namely with AUC, which decreased by 0.01 (p < 0.05). In turn, other scores positively
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increased (ACC, TNR, PPV, NPV, TSS, and HSS) or decreased (FAR)4. Despite the AUC decrease,

the methodology shall manage to increase it again with the hyperparameter optimization.

Concerning positive results, ACC, TNR, PPV, NPV, FAR, TSS, and HSS changed by 0.02

(p < 0.05), 0.04 (p < 0.05), 0.03 (p < 0.05), 0.01 (p < 0.05), -0.03 (p < 0.05), 0.04 (p < 0.05),
and 0.04 (p < 0.05), respectively. In turn, the TPR remained the same as of model selection

(confirmed with a p-value higher than our confidence intervals), which can also be interpreted

as a positive result, since the score did not increase nor even decrease.

Hyperparameter optimization results

Table 6.3 shows the detailed results from the hyperparameter optimization of Case Study I for

each training set (for forecasts within the next 24 h). These results refer to the parameter set

up of RandomForest that most increased AUC in some particular training set re-evaluated over

all training sets. Such set comprehended the following parameters:

• number of base learners: 300;

• maximum depth for base learners: 15;

• number of features used to fit each base learner: 4;

• number of samples needed to split an internal node: 100;

• number of samples needed for a leaf node: 40;

• threshold to stop the growth of base learners: 0.001.

Compared to the feature selection results shown in Table 6.2, we could notice two negative

results, namely with TPR and NPV, which decreased by 0.01 (p < 0.05 – compared to model

selection) and 0.01 (p < 0.05), respectively. In turn, other scores positively increased (TNR, PPV,

HSS, and AUC) or remained at the same level as of feature selection (ACC, FAR, TSS).

Although small, we expected the decreases in TPR and NPV. Those changes were directly

related to the precision-recall trade-off (ZAKI; MEIRA JR., 2013). This trade-off states that

increasing recall scores – positive or negative – naturally decreases the corresponding precision

scores and vice versa. In fact, it suggests that we may have found a parameter set up that

4Refer to the a,b,c notes in Table 6.2 for further information on styling and highlighting table results.
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Table 6.3: Case Study I, ≥ C flares, the next 24 h: hyperparameter optimization results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.848 0.870 0.818 0.868 0.822 0.132 0.688 0.688 0.930

RandomForest/2 0.850 0.872 0.819 0.869 0.824 0.131 0.691 0.691 0.929

RandomForest/3 0.846 0.871 0.812 0.864 0.822 0.136 0.683 0.684 0.928

RandomForest/4 0.842 0.872 0.802 0.858 0.821 0.142 0.674 0.676 0.929

RandomForest/5 0.848 0.873 0.814 0.865 0.824 0.135 0.686 0.687 0.929

avg(RandomForest) 0.85 0.87tpr 0.81tnr 0.87ppv 0.82npv 0.14 0.68 0.69hss 0.93auc

tpr -0.01 (p < 0.05) – compared to model selection.
tnr +0.01 (p < 0.05).
ppv +0.01 (p < 0.05).
npv -0.01 (p < 0.05).
hss +0.01 (p < 0.05).
auc +0.03 (p < 0.05).

caused minor changes to the prediction threshold (cut-off point) of the RandomForest – directly

related to controlling TPR vs. PPV and TNR vs. NPV.

Concerning positive results, TNR, PPV, and HSS increased by 0.01 (p < 0.05), as well as
AUC, by 0.03 (p < 0.05). In turn, ACC, FAR, and TSS remained the same as feature selection,

which we can interpret as positive results since they did not increase or decrease.

Data resampling results

Both data resampling and the cost function analysis are independent processes carried out

concurrently after the hyperparameter optimization. Whether both are available5, the

methodology chooses only one to proceed in the pipeline – the one outputting the lowest

difference |TPR − TNR|. To certify which process has been chosen, refer to their corresponding

table of results (tables 6.4 and 6.5).

Table 6.4 shows the detailed results after the data resampling of Case Study I for forecasts in

the next 24 h. These results refer to the RandomForest model re-evaluated over the resampled

training sets with fine-tuned parameters, and features previously selected.

For each training set, themethodology assessed the performance of three distinct resampling

techniques used before the RandomForest’s re-evaluations, namely SMOTE, SMOTE-ENN, and

SMOTE-Tomek. Noteworthily, the methodology only opts for some data resampling method

5Not all learning algorithms support cost-sensitive learning.
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provided that it scored the lowest difference |TPR − TNR| (i. e., the a,b,c notes in Table 6.4)

compared to the cost function analysis.

Table 6.4: Case Study I, ≥ C flares, the next 24 h: data resampling results.

Method/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

SMOTE/1 0.820 0.751 0.915 0.924 0.729 0.076 0.666 0.643 0.927

SMOTE/2 0.824 0.761 0.910 0.921 0.736 0.079 0.671 0.650 0.927

SMOTE/3 0.819 0.754 0.907 0.918 0.730 0.083 0.661 0.640 0.925

SMOTE/4 0.830 0.772 0.909 0.921 0.744 0.079 0.681 0.661 0.928

SMOTE/5 0.824 0.753 0.921 0.929 0.731 0.071 0.674 0.651 0.928

avg(SMOTE) 0.82 0.76a 0.91a 0.92 0.73 0.08 0.67 0.65 0.93

SMOTE-ENN/1 0.835 0.801 0.881 0.902 0.764 0.098 0.681 0.668 0.922

SMOTE-ENN/2 0.833 0.807 0.869 0.895 0.768 0.106 0.676 0.664 0.918

SMOTE-ENN/3 0.840 0.822 0.864 0.893 0.781 0.107 0.686 0.676 0.920

SMOTE-ENN/4 0.837 0.800 0.888 0.908 0.765 0.092 0.689 0.674 0.921

SMOTE-ENN/5 0.843 0.829 0.863 0.893 0.787 0.108 0.692 0.683 0.922

avg(SMOTE-ENN) 0.84 0.81b 0.87b 0.90 0.77 0.10 0.68 0.67 0.92

SMOTE-Tomek/1 0.841 0.833 0.852 0.885 0.789 0.115 0.685 0.677 0.928

SMOTE-Tomek/2 0.844 0.836 0.855 0.888 0.793 0.112 0.691 0.684 0.929

SMOTE-Tomek/3 0.843 0.837 0.851 0.885 0.793 0.115 0.688 0.681 0.927

SMOTE-Tomek/4 0.846 0.837 0.859 0.891 0.794 0.109 0.696 0.689 0.929

SMOTE-Tomek/5 0.850 0.843 0.859 0.891 0.801 0.109 0.702 0.695 0.929

avg(SMOTE-Tomek) 0.84 0.84c 0.86c 0.89 0.79 0.11 0.69 0.69 0.93
a |TPR − TNR| = |0.76 − 0.91| = 0.15.
b |TPR − TNR| = |0.81 − 0.87| = 0.06.
c |TPR − TNR| = |0.84 − 0.86| = 0.02.

Overall, except for the SMOTE, which inverted the trend TPR/TNR and was not able

to make them reach close levels, and SMOTE-ENN, which only inverted the TPR and TNR,

SMOTE-Tomek succeeded when making the positive recall come close to the negative one:

|TPR − TNR| = 0.02. Bearing this difference in mind, let us assess the performance of the cost

function analysis next.

Cost function analysis results

Table 6.5 shows the results from the Case Study I’s cost function analysis for forecasts in the

next 24 h. These results refer to the Cp/Cn ratio that most led the TPR come close to the TNR

in the majority of training sets re-evaluated over all training sets.
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Table 6.5: Case Study I, ≥ C flares, the next 24 h: cost function analysis results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.845 0.844 0.847 0.883 0.799 0.117 0.691 0.685 0.929

RandomForest/2 0.842 0.839 0.846 0.882 0.794 0.118 0.686 0.680 0.929

RandomForest/3 0.847 0.840 0.855 0.888 0.797 0.112 0.695 0.689 0.930

RandomForest/4 0.844 0.843 0.846 0.882 0.798 0.118 0.689 0.683 0.928

RandomForest/5 0.851 0.848 0.856 0.890 0.804 0.111 0.703 0.697 0.930

avg(RandomForest) 0.85 0.84a,tpr0.85a,tnr0.89ppv 0.80npv 0.11far 0.69tss 0.69 0.93
a |TPR − TNR| = |0.84 − 0.85| = 0.01. As the cost function scored the lowest difference, the
pipeline shall proceed with it instead of data resampling.
tpr -0.03 (p < 0.05).
tnr +0.04 (p < 0.05).
ppv +0.02 (p < 0.05).
npv -0.02 (p < 0.05).
far -0.03 (p < 0.05) – compared to feature selection.
tss +0.01 (p > 0.05 and 0.1) – compared to feature selection.

Compared to the SMOTE-Tomek from Table 6.4, the cost function analysis scored the lowest

difference |TPR − TNR|, noticeably, 0.01. Henceforth, the methodology shall use cost-sensitive

learning instead of data resampling to cope with the imbalanced class ratios. Accordingly, it

will employ Cp/Cn = 0.78 since this custom ratio made the TPR come close to the TNR in two

training sets.

Overall, we had two negative results during the cost function analysis, namely with the TPR

and NPV, which decreased by 0.03 (p < 0.05) and 0.02 (p < 0.05), respectively. In turn, other

scores positively changed (TNR, PPV, and FAR) or remained the same as of hyperparameter

optimization or feature selection (HSS, AUC, and ACC).

Regarding positive results, the TNR, PPV, and FAR changed by 0.04 (p < 0.05), 0.02 (p < 0.05),
and -0.03 (p < 0.05 – compared to feature selection), respectively. Since we had increases with

the TNR and PPV scores, we suggest the decreasing TPR and NPV as directly related to the

precision-recall trade-off mentioned earlier. Besides, by maintaining the HSS, AUC, and ACC at

the high levels of the hyperparameter optimization (HSS and AUC) or feature selection (ACC),

the methodology managed to keep fair results here.

Last but not least, concerning the TSS, although this process increased it by about 0.01 –

compared to feature selection –, we had to reject the significance of this change (p > 0.05 and
p > 0.1). Nevertheless, the TSS = 0.68 yet remained at the high level of feature selection.
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Cut-off point adjustment results

Table 6.6 shows the results from the cut-off point adjustment of Case Study I for forecasts in

the next 24 h. These results refer to the prediction threshold t that most led the TPR come

close to the PPV in the majority of training sets re-evaluated over all training sets – in this

case, t = 0.45 (it made the TPR come close to the PPV in all training sets).

Table 6.6: Case Study I, ≥ C flares, the next 24 h: cut-off point adjustment results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.847 0.869 0.818 0.867 0.820 0.133 0.687 0.687 0.929

RandomForest/2 0.848 0.866 0.824 0.871 0.818 0.129 0.690 0.689 0.930

RandomForest/3 0.846 0.868 0.816 0.866 0.819 0.134 0.684 0.684 0.928

RandomForest/4 0.843 0.867 0.810 0.862 0.817 0.138 0.677 0.678 0.929

RandomForest/5 0.850 0.867 0.826 0.872 0.820 0.128 0.693 0.692 0.930

avg(RandomForest) 0.85 0.87tpr 0.82tnr 0.87ppv 0.82npv 0.13far 0.69 0.69 0.93
tpr +0.03 (p < 0.05).
tnr -0.03 (p < 0.05).
ppv -0.02 (p < 0.05).
npv +0.02 (p < 0.05).
far +0.02 (p < 0.05).

Compared to the cost function results shown in Table 6.5, we could notice three negative

results, namely with the TNR, PPV, and FAR. The TNR and PPV decreased by 0.03 (p < 0.05)
and 0.02 (p < 0.05), respectively. In turn, the FAR negatively increased by 0.02 (p < 0.05). On
the other hand, other scores positively increased (TPR and NPV) or remained at the same level

as previously observed (ACC, TSS, HSS, and AUC).

Since we aimed to adjust the RandomForest’s cut-off point to find a balanced t , i. e., a
prediction threshold that would boost the TPR to higher levels while controlling false alarms,

we expected the decreases of TNR and NPV, as well as the increases of TPR and NPV. Once

more, we argue that those changes refer to the precision-recall trade-off. Nevertheless, the TPR

and NPV positively increased by 0.03 (p < 0.05) and 0.02 (p < 0.05), respectively.

Evaluation of validation sets

Provided with the set of selected features, optimized set of parameters, custom Cp/Cn ratio,

and adjusted prediction threshold, we could then fit five RandomForest models over training
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sets and forecast their corresponding validation sets. Besides, we also fit five baseline models6

over training sets and also forecast their corresponding validation sets. Table 6.7 shows the

results of the baseline (BaselineRandomForest entries in the table) and methodology-supported

predictions (OptimizedRandomForest entries in the table).

Table 6.7: Case Study I, ≥ C flares, the next 24 h: evaluation of validation sets.

Pred.Type/Val.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineRandomForest/1 0.829 0.887 0.751 0.830 0.829 0.170 0.638 0.646 0.906

BaselineRandomForest/2 0.827 0.865 0.774 0.840 0.807 0.160 0.639 0.643 0.910

BaselineRandomForest/3 0.847 0.914 0.755 0.836 0.865 0.164 0.669 0.680 0.921

BaselineRandomForest/4 0.819 0.867 0.753 0.828 0.805 0.172 0.619 0.625 0.902

BaselineRandomForest/5 0.830 0.855 0.796 0.851 0.801 0.149 0.651 0.652 0.912

avg(BaselineRandomForest) 0.83 0.88 0.77 0.84 0.82 0.16 0.64 0.65 0.91

OptimizedRandomForest/1 0.859 0.878 0.834 0.879 0.833 0.121 0.712 0.712 0.931

OptimizedRandomForest/2 0.844 0.848 0.839 0.878 0.801 0.122 0.686 0.682 0.929

OptimizedRandomForest/3 0.852 0.884 0.809 0.864 0.836 0.137 0.692 0.696 0.936

OptimizedRandomForest/4 0.830 0.854 0.798 0.853 0.800 0.147 0.652 0.652 0.926

OptimizedRandomForest/5 0.843 0.844 0.841 0.879 0.798 0.121 0.685 0.680 0.928

avg(OptimizedRandomForest) 0.85acc 0.86tpr 0.82tnr 0.87ppv 0.81npv 0.13far 0.69tss 0.68hss 0.93auc

acc +0.02 (p < 0.05).
tpr -0.02 (p < 0.05).
tnr +0.05 (p < 0.05).
ppv +0.03 (p < 0.05).
npv -0.01 (p > 0.05 and 0.1).
far -0.03 (p < 0.05).
tss +0.05 (p < 0.05).
auc +0.02 (p < 0.05).

Overall, except for the TPR, which decreased by 0.02 (p < 0.05) concerning the baseline

models, other scores have been positively affected (ACC, TNR, PPV, FAR, TSS, HSS, and AUC).

Regarding NPV, although the methodology decreased it by 0.01, we could not confirm the

significance of this change (p > 0.05 and 0.1). Concerning ACC, TNR, PPV, FAR, TSS, HSS, and

AUC, the methodology made them improve by 0.02 (p < 0.05), 0.05 (p < 0.05), 0.03 (p < 0.05),
-0.03 (p < 0.05), 0.05 (p < 0.05), 0.03 (p < 0.05), and 0.02 (p < 0.05), respectively. This scenario
of positive effects over almost all scores – and specially the TSS increase – made the pipeline

proceed with the evaluation over test sets.

6Baseline models refer to the RandomForest algorithm provided with a randomly initialized set of values for
their parameters used in feature selection and the full set of features. Also, we did not use any custom Cp/Cn
ratio, data resampling method, or adjusted prediction threshold.
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Evaluation of test sets

Provided that the methodology confirmed positive forecasts during the evaluation of validation

sets, it could then assess the generalization error of RandomForest over unseen data. Table 6.8

shows the results of baseline and method-supported predictions over test sets.

Table 6.8: Case Study I, ≥ C flares, the next 24 h: evaluation of test sets.

Pred.Type/Test Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineRandomForest/1 0.809 0.863 0.736 0.816 0.797 0.184 0.598 0.604 0.899

BaselineRandomForest/2 0.800 0.834 0.753 0.822 0.768 0.178 0.587 0.589 0.883

BaselineRandomForest/3 0.809 0.880 0.712 0.807 0.813 0.193 0.593 0.603 0.912

BaselineRandomForest/4 0.866 0.870 0.861 0.896 0.828 0.105 0.731 0.727 0.920

BaselineRandomForest/5 0.830 0.862 0.785 0.845 0.807 0.155 0.647 0.650 0.901

avg(BaselineRandomForest) 0.82 0.86 0.77 0.84 0.80 0.16 0.63 0.63 0.90

OptimizedRandomForest/1 0.831 0.877 0.768 0.837 0.821 0.163 0.645 0.650 0.928

OptimizedRandomForest/2 0.825 0.834 0.812 0.859 0.781 0.142 0.646 0.642 0.916

OptimizedRandomForest/3 0.851 0.857 0.843 0.882 0.811 0.118 0.700 0.696 0.935

OptimizedRandomForest/4 0.874 0.855 0.901 0.922 0.819 0.078 0.756 0.746 0.946

OptimizedRandomForest/5 0.872 0.882 0.859 0.895 0.842 0.105 0.741 0.739 0.933

avg(OptimizedRandomForest) 0.85acc 0.86 0.84tnr 0.88ppv 0.81npv 0.12far 0.70tss 0.69hss 0.93auc

acc +0.03 (p < 0.05).
tnr +0.07 (p < 0.05).
ppv +0.04 (p < 0.05).
npv +0.01 (p > 0.05 and 0.1).
far -0.04 (p < 0.05).
tss +0.07 (p < 0.05).
auc +0.03 (p < 0.05).

As we could observe a majority of positive results during the evaluation of validation sets,

so did we during the evaluation of test sets. Despite the unchanged TPR and NPV, which

increased by 0.01 but we could not confirm the significance, other scores have been positively

affected. In this sense, ACC, TNR, PPV, FAR, TSS, HSS, and AUC have been changed by 0.03

(p < 0.05), 0.07 (p < 0.05), 0.04 (p < 0.05), -0.04 (p < 0.05), 0.07 (p < 0.05), 0.06 (p < 0.05), and
0.03 (p < 0.05), respectively.

6.1.2 Forecasts in longer horizons

The results of inner processes for longer forecasting horizons within Case Study I followed

the trend of changes observed during the next 24 h. Overall, we could observe that some

longer horizons have achieved some scores slightly better than their predecessors (i. e., the
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optimized test results for TPR and FAR concerning forecasts in the next 48 and 72 h). As pointed

out by Colak and Qahwaji (2009), this happens when working with overlapping forecasting

horizons since, in longer horizons, the amount of positive events tends to positively increase,

consequently minimizing the associated imbalance issue with data.

Within this context, for brevity and in an attempt to avoid discussing redundant changes in

results, we only included in this chapter the detailed discussion for forecasts in the next 24 h

for Case Study I. However, we provided detailed tables as mentioned earlier in this chapter for

the remainder forecasts of Case Study I and other case studies in Appendix B, including the

statistical analysis for significance. Henceforth, we shall comment on the summary of results

presented in Table 6.97 for the remainder forecasting horizons of Case Study I.

Table 6.9: Case Study I, ≥ C flares, the next 48 and 72 h: summary of results.

Process Forecasting Time ACC TPR TNR PPV NPV FAR AUC TSS HSS

Model selection
next 48 h 0.85 0.94 0.69 0.85 0.85 0.15 0.90 0.62 0.65

next 72 h 0.86 0.92 0.72 0.88 0.79 0.12 0.89 0.63 0.65

Feature selection
next 48 h 0.87 0.92 0.76 0.88 0.84 0.12 0.89 0.68 0.69

next 72 h 0.88 0.93 0.77 0.90 0.83 0.10 0.93 0.70 0.72

Hyperparameter optimization
next 48 h 0.87 0.92 0.77 0.88 0.83 0.12 0.94 0.69 0.70

next 72 h 0.89 0.94 0.76 0.90 0.84 0.10 0.94 0.70 0.72

Cost function analysis
next 48 h 0.86 0.85 0.86 0.92 0.76 0.08 0.94 0.72 0.69

next 72 h 0.87 0.87 0.87 0.94 0.74 0.06 0.94 0.74 0.70

Cut-off point adjustment
next 48 h 0.87 0.90 0.81 0.90 0.81 0.10 0.94 0.70 0.70

next 72 h 0.88 0.90 0.83 0.93 0.78 0.07 0.94 0.73 0.71

Evaluation of validation sets (baseline)
next 48 h 0.85 0.94 0.69 0.85 0.86 0.15 0.91 0.63 0.66

next 72 h 0.85 0.93 0.68 0.87 0.81 0.13 0.89 0.61 0.64

Evaluation of validation sets (optimized)
next 48 h 0.87 0.90 0.81 0.90 0.81 0.10 0.94 0.70 0.70

next 72 h 0.88 0.90 0.83 0.93 0.78 0.07 0.94 0.73 0.72

Evaluation of test sets (baseline)
next 48 h 0.84 0.93 0.66 0.84 0.84 0.16 0.90 0.59 0.62

next 72 h 0.85 0.92 0.68 0.87 0.79 0.13 0.90 0.60 0.62

Evaluation of test sets (optimized)
next 48 h 0.86 0.89 0.80 0.90 0.80 0.10 0.94 0.70 0.69

next 72 h 0.86 0.89 0.80 0.91 0.75 0.09 0.94 0.69 0.68

For forecasting the next 48 and 72 h, our method has designed models relying on the

RandomForest and AdaBoost algorithms, respectively. Overall, from the model selection to

cut-off point adjustments of such models, we could observe TSS increases in both horizons,

notably +0.08 and +0.10 for the next 48 and 72 h, respectively. Those increases in the TSS scores

agreed with the improvements for HSS results: +0.05 and +0.06 respectively for the next 48 and

72 h.

7For the statistical tests of significance, refer to Appendix B.
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Besides, we could observe the HSSs scoring higher results than TSSs in the earlier processes

(i. e., model selection). Those behaviors have been inverted by the time the class skew was

corrected (i. e., cut-off point adjustment).

Bloomfield et al. (2012) argued that the HSS has a biased nature when data are imbalanced –

as our class ratios in earlier processes –, thus tending to output higher results than TSS. Results

observed in the TPRs of model selection (0.94 and 0.92 respectively for the next 48 and 72 h)

and TNRs (0.69 and 0.71 respectively for the next 48 and 72 h) confirmed that models somehow

coped with skewed class ratios.

Not only the TSSs and HSSs have incurred in benefits from the model selection to cut-off

point adjustments, but also AUCs and FARs. Whereas the former scores have been improved by

+0.04 (next 48 h) and +0.05 (next 72 h), the latter positively improved by -0.05 in both horizons.

It is worth emphasizing that models scoring AUCs ≥ 0.9 possess increased probabilities for

forecasting random samples as positive instead of negative (ZAKI; MEIRA JR., 2013). The low

FAR ratios have confirmed our positive forecasts’ potential usefulness suggested by the high

AUCs in both horizons.

Concerning our imbalanced class ratios, by the cut-off point adjustments, the differences

|TPR − TNR| have been positively decreased by -0.16 (next 48 h) and -0.14 (next 72 h) – in

comparison to model selection. Following, the TPRs have been adjusted by -0.04 (next 48 h)

and -0.02 (next 72 h), as well as the TNRs by +0.12 in both horizons.

Despite those TPR decreases, the TSSs have been positively affected, as mentioned earlier.

In response to the changes observed on the TPRs and TNRs, the PPVs and NPVs have been

affected to some extent by the precision-recall trade-off (ZAKI; MEIRA JR., 2013): the positive

precision scores have been affected by +0.05 in both horizons, as well as the negative ones by

-0.04 (next 48 h) and -0.01 (next 72 h).

As the final decision-making performed in Case Study I, our methodology assessed the

improvements (if any) in both models’ forecast performance – using their cut-off point

adjustment designs – while forecasting the validation sets. Noticeably, it confirmed some

positive effects, such as the increasing TSSs (+0.07 and +0.12 respectively for the next 48 and

72 h) and HSSs (+0.04 and +0.08 respectively for the next 48 and 72 h)8.

8For the complete analysis of improved/harmed validation scores of Case Study I, refer to Appendix B.
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Since the pipeline identified increases in the validation TSSs, it then proceeded with the

generalization error assessment of both models over the test sets. Overall, we could notice

these remarkable effects in the test results of all forecasting horizons of Case Study I:

1. The model’s test AUCs have been increased to 0.93 (the next 24 h) and 0.94 (the remainder

horizons), that is, next to the AUC’s ideal case (AUC = 1). The AUC refers essentially to

the probability that a classifier shall rank a positive sample higher than a negative one

(ZAKI; MEIRA JR., 2013). Classifiers scoring their AUCs next to the maximum value have

their TPRs and FPRs, respectively, next to 1 and 0 in the ROC plot. Accordingly, such

classifiers do not forecast many false negatives and effectively forecast the true positives

(consequently, they also correctly forecast almost all samples of the negative class).

2. Results observed for the test FARs (0.12, 0.10, and 0.09, for the next 24, 48, and 72 h,

respectively), TPRs (0.86, for the next 24 h, and 0.89, for the next 48 and 72 h), and TNRs

(0.84, for the next 24 h, and 0.80, for the next 48 and 72 h) corroborate what we have just

affirmed for the AUC: both TPR and TNR are simultaneously high, as well as the FAR

reached a low level.

3. Both test skill scores (TSS and HSS) comprehending the quality of forecasts – positive

and negative – are high, equaling about two-thirds of their ideal cases (TSS = 1 and HSS

= 1) for the next 24 and 48 h (TSS = 0.70 and HSS = 0.69), and 72 h (TSS = 0.69 and HSS =

0.68). Besides, the achieved HSSs suggest that our models are far from random guessing

(i. e., HSS = 0) or outputting wrong forecasts (i. e., HSS < 0) (JOLLIFFE; STEPHENSON,

2003). Accordingly, because of our high TPR and TNR results in all horizons, our TSSs

reached reasonably high levels, namely TSSs ≥ 0.69.

4. By observing the differences between the test TPRs and TNRs over all horizons compared

to the baseline, we could notice the methodology successfully corrected their class skew.

Noticeably, our method scored the absolute differences of recalls by 0.02 (-0.07, for the

next 24 h) and 0.09 (-0.18, for the next 48 h; and -0.24, for the next 72 h).

6.1.3 Literature comparison

Table 6.10 shows the literature results along with our designed models. As previously

commented in Chapter 3, the models differ a lot concerning their data segmentation strategies
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(training and test sets), target features, type of prediction, and data sources, even though their

main goal is to predict ≥ C-class events. Unless the datasets are identical, there is not enough

meaning in comparing metrics from different methods, as argued by Barnes and Leka (2008)

and Barnes, Leka, et al. (2016). It is not clear whether the observed differences are merit or

because of the different datasets.

Hence, the scores mentioned in Table 6.10 should not be by any means directly judged

one against the other, that is, results commented herein should not be considered direct

comparisons of scores between different systems. Instead, we shall analyze systems according

to some identified interplay effects involving accuracy, recall, precision, and the number of false

alarms, seeking over-fitted systems. Besides, for better visualization and understanding of score

levels, we shall group systems according to their TSSs, which roughly serve as a benchmark

for distinct forecast approaches (BLOOMFIELD et al., 2012).

Remarks from the literature comparison of biased results

Overall, we could not analyze all results posing some bias in Table 6.10 in a similar manner.

We found no similar article comprehending our longest time horizon. On the other hand,

some articles lacked enough data for analysis, such as the ones by Florios et al. (2018) and

Anastasiadis et al. (2017). For the rest of the approaches, we managed to distinguish them

between forecasts in the next 24 and 48 h.

Regarding flare forecasting within the next 24 h, the first group of articles scored

0.65 ≤ TSS < 0.85, namely the researches by Domijan, Bloomfield, and Pitié (2019) (TSS = 0.67

and 0.84), X. Li et al. (2020) (TSS = 0.67), and our model (TSS = 0.69). By achieving TSS scores

in this interval, they were able to keep their TPR and TNR scores at close levels. Noticeably,

their TPRs lied on [0.86 , 0.95], whereas their TNRs, [0.79 , 0.89]. As they scored ACC results

([0.81 , 0.89]) close to the TPRs and TNRs, we could not suggest over-fitted systems here (i. e.,

increased ACCs and TNRs along with decreased TPRs).

However, the remainder of models for forecasting within the next 24 h scored

0.45 ≤ TSS < 0.65, that is, the researches by Yang et al. (2013) (TSS = 0.47), Huang, H. Wang,

Xu, et al. (2018) (TSS = 0.49), Ahmed et al. (2013) (TSS = 0.53), X. Wang et al. (2020) (TSS = 0.56),

H. Liu et al. (2019) (TSS = 0.60), and Muranushi et al. (2015) (TSS = 0.63). Despite scoring TSS

results at lower levels, they scored TPRs and TNRs most of the time without a specific class
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Table 6.10: Comparison of models for ≥ C-class flare forecasting.

Forecasting time Authorship Grouping ACC TPR TNR TSS FAR

next 24 h Our RandomForest modela biased results 0.85 0.86 0.82 0.69 0.16

next 48 h Our RandomForest model biased results 0.87 0.90 0.81 0.70 0.10

next 72 h Our AdaBoost model biased results 0.88 0.90 0.83 0.73 0.07

next 24 h Muranushi et al. (2015) biased results 0.81 0.80 0.83 0.63 0.07

next 24 h Huang, H. Wang, Xu, et al. (2018) biased results 0.76 0.73 0.76 0.49 0.65

next 48 h Huang, H. Wang, Xu, et al. (2018) biased results 0.81 0.81 0.81 0.62 0.84

next 24 h Ahmed et al. (2013) biased results 0.96 0.52 0.98 0.53 0.25

next 24 h Yang et al. (2013) biased results 0.76 0.61 0.84 0.47 -

next 24 h Domijan, Bloomfield, and Pitié (2019) biased results 0.89 0.95 0.89 0.84 -

next 24 h Domijan, Bloomfield, and Pitié (2019) biased results 0.81 0.87 0.80 0.67 -

next 24 h H. Liu et al. (2019) biased results 0.82 0.76 0.84 0.60 -

next 24 h Florios et al. (2018) biased results 0.84 - - 0.60 -

next 24 h X. Wang et al. (2020) biased results 0.88 0.63 0.93 0.56 0.36

next 24 h X. Li et al. (2020) biased results 0.86 0.88 0.79 0.67 0.09

next 24 h Anastasiadis et al. (2017) biased results - - - 0.25 -

next 24 h Our RandomForest modelb unbiased results 0.85 0.86 0.84 0.70 0.12

next 48 h Our RandomForest model unbiased results 0.86 0.89 0.80 0.70 0.10

next 72 h Our AdaBoost model unbiased results 0.85 0.89 0.80 0.69 0.09

next 24 h Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) unbiased results 0.82 0.81 0.82 0.63 0.47

next 24 h Hada-Muranushi et al. (2016) unbiased results 0.66 0.72 0.57 0.30 0.30

next 24 h Colak and Qahwaji (2009) unbiased results 0.81 0.81 - - 0.30

next 24 h Leka, Barnes, and Wagner (2018) unbiased results 0.75 0.69 0.82 0.51 0.17

24 h – 48 h Leka, Barnes, and Wagner (2018) unbiased results 0.77 0.71 0.83 0.55 0.16

48 h – 72 h Leka, Barnes, and Wagner (2018) unbiased results 0.71 0.60 0.85 0.45 0.17

next 24 h Leka, Barnes, and Wagner (2018) unbiased results 0.92 0.30 0.99 0.29 0.30

24 h – 48 h Leka, Barnes, and Wagner (2018) unbiased results 0.93 0.27 0.99 0.26 0.25

48 h – 72 h Leka, Barnes, and Wagner (2018) unbiased results 0.94 0.27 0.99 0.26 0.30

next 24 h Bloomfield et al. (2012) unbiased results 0.71 0.75 0.70 0.45 0.64

next 24 h E. Park et al. (2018) unbiased results 0.82 0.85 0.78 0.63 0.17

next 24 h Benvenuto et al. (2018) unbiased results 0.83 0.53 0.89 0.43 0.47

next 24 h Díscola Jr. et al. (2018a) unbiased results 0.72 0.70 0.79 0.49 -

next 24 h Díscola Jr. et al. (2018b) unbiased results 0.91 0.94 0.86 0.80 -

a Biased results of our model refer to those from the evaluation of validation sets.
b Unbiased results of our model refer to those from the evaluation of test sets.

preference. Whereas their positive hit rates ranged on [0.52 , 0.80], the negative ones lied on

[0.76 , 0.98].
By most of the time in the last paragraph, we meant we could identify Ahmed et al. (2013)’s

and X. Wang et al. (2020)’s models as potential over-fitted systems in favor of their negative

classes. As such, Ahmed et al. (2013) scored a high ACC (0.96) and TNR (0.98), but their TPR

only equaled 0.52, that is, their model was not able to generalize well positive samples. In turn,

X. Wang et al. (2020) scored ACC = 0.88, TPR = 0.63, and TNR = 0.93.

Besides, except for Yang et al. (2013), which did not inform their false alarm ratio or positive

precision, Huang, H. Wang, Xu, et al. (2018) somehow output a high FAR (0.65). We argue here
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that by trying to improve their TPRs, those authors may have harmed the precision of their

systems (i. e., the precision-recall trade-off), thus increasing their FAR. Huang, H. Wang, Xu,

et al. (2018)’s precision corroborate this statement, for it only equaled FAR = 0.35.
Other articles suffering to some extent from false alarms are those by H. Liu et al. (2019)

and X. Wang et al. (2020). Although H. Liu et al. (2019) did not provide their FAR, their PPV

equaled 0.54. On the other hand, X. Wang et al. (2020) scored FAR = 0.36 – which corroborated

their PPV = 0.63.

On the other hand, in the group of forecasting models within the next 48 h, there exists

only our model (TSS = 0.70) and Huang, H. Wang, Xu, et al. (2018)’s (TSS = 0.62). As those

approaches scored high ACCs (0.87 and 0.81, respectively), TPRs (0.90 and 0.81, respectively),

and TNRs (both equaled 0.81), none of them incurred in over-fitting. However, as of Huang,

H. Wang, Xu, et al. (2018)’s model for the next 24 h, their forecasting approach in the next 48 h

may also have had the precision harmed by the precision-recall trade-off, that is, their FAR

equaled 0.84 here.

Remarks from the literature comparison of unbiased results

In turn, while posing unbiased results when forecasting within the next 24 h, the first group

of articles scored 0.50 ≤ TSS ≤ 0.80 and comprehended the researches by Leka, Barnes, and

Wagner (2018) (TSS = 0.51), Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) (TSS = 0.63), E. Park

et al. (2018) (TSS = 0.63), our model (TSS = 0.70), and Díscola Jr. et al. (2018b) (TSS = 0.80). Their

TPRs ranged over [0.69 , 0.94] and TNRs [0.78 , 0.86], with ACCs varying over [0.75 , 0.91].
Hence, we could not suggest over-fitted systems.

However, we could observe some harmed precision scores, which somehow leveraged the

number of false alarms, such as with Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) (FAR =

0.47). Their PPV corroborates the FAR number, for having equaled only PPV = 0.53.
In turn, the remainder of models for forecasting within the next 24 h scored

0.25 ≤ TSS < 0.50, that is, the researches by Leka, Barnes, and Wagner (2018) (TSS = 0.29),

Hada-Muranushi et al. (2016) (TSS = 0.30), Benvenuto et al. (2018) (TSS = 0.43), Bloomfield et al.

(2012) (TSS = 0.45), and Díscola Jr. et al. (2018a) (TSS = 0.49). For this group, TPRs varied over

[0.30 , 0.75] and TNRs in [0.57 , 0.99]. As their ACCs lied around higher levels, [0.66 , 0.92], we
could infer over-fitted systems in Leka, Barnes, and Wagner (2018)’s and Benvenuto et al.
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(2018)’s approaches, i. e., they had high TNRs (0.99 and 0.89, respectively) and ACCs (0.92 and

0.83, respectively), along with low TPRs (0.30 and 0.53, respectively).

Besides, we could also observe a high false alarm ratio with Bloomfield et al. (2012)’s

approach (FAR = 0.64). Although we could not identify their PPV, we may also suggest this

high ratio as directly related to the precision-recall trade-off, i. e., their decision threshold might

have been shifted to a position where both TPR and FAR increased at once.

6.2 Case Study II: ≥M-class flare forecasting

This section introduces and discusses Case Study II’s results, namely the one aimed at forecasting

≥M flares up to three days ahead. Following the content organization introduced in Section 6.1,

we will summarize results in Section 6.2.19 and compare them to the specialized literature in

Section 6.2.2.

6.2.1 Results analysis

As in Case Study I’s horizons, those from Case Study II followed similar trends in results, as the

summary of results in Table 6.1110 shows. Accordingly, some longer horizons have achieved

some scores slightly better than their predecessors (i. e., the TSS and AUC of both model and

feature selection for the next 24, 48, and 72 h). Once more, this may have happened because

of the overlapping forecasting horizons (COLAK; QAHWAJI, 2009): the number of positive

events tended to positively increase while increasing the length of our horizons for ≥M flares,

thus consequently minimizing the associated data skew.

For all forecasting horizons, our method has designed models relying on the

GradientTreeBoosting algorithm. We could observe TSS increases over all horizons from the

model selection to cut-off point adjustments of such models, notably by +0.22 (for the next

24 h) and +0.13 (for the next 48 and 72 h). Not only the TSSs, but also the HSSs have been

improved: +0.10, +0.07, and +0.11 respectively for the next 24, 48, and 72 h.

Results observed in the TPRs of model selection (0.53, 0.64, and 0.67 respectively for the

next 24, 48, and 72 h) and their corresponding TNRs (0.79, 0.75, and 0.75) suggest that models

somehow coped with skewed class ratios in the beginning. However, by the resampling of data,

9Tables containing the detailed results for the validation/test sets of Case Study II are in Appendix B, including
their statistical significance analysis.

10For the statistical tests for significance, refer to Appendix B.
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Table 6.11: Case Study II, ≥M flares, the next 24, 48 and 72 h: summary of results.

Process Forecasting Time ACC TPR TNR PPV NPV FAR AUC TSS HSS

Model selection

next 24 h 0.74 0.53 0.79 0.36 0.89 0.64 0.67 0.32 0.27

next 48 h 0.72 0.64 0.75 0.48 0.86 0.52 0.72 0.39 0.35

next 72 h 0.72 0.67 0.75 0.56 0.83 0.44 0.73 0.42 0.39

Feature selection

next 24 h 0.74 0.56 0.78 0.36 0.89 0.64 0.69 0.34 0.27

next 48 h 0.73 0.66 0.75 0.48 0.87 0.52 0.73 0.41 0.36

next 72 h 0.73 0.71 0.74 0.56 0.85 0.44 0.75 0.45 0.42

Hyperparameter optimization

next 24 h 0.85 0.27 0.97 0.66 0.86 0.34 0.85 0.24 0.32

next 48 h 0.81 0.52 0.91 0.67 0.84 0.33 0.85 0.43 0.46

next 72 h 0.80 0.61 0.88 0.71 0.83 0.29 0.86 0.50 0.51

Data resampling

next 24 h 0.77 0.75 0.78 0.42 0.94 0.58 0.85 0.53 0.40

next 48 h 0.76 0.73 0.78 0.53 0.89 0.47 0.84 0.50 0.45

next 72 h 0.78 0.76 0.79 0.62 0.88 0.38 0.86 0.55 0.52

Cut-off point adjust

next 24 h 0.74 0.82 0.72 0.38 0.95 0.62 0.85 0.54 0.37

next 48 h 0.73 0.83 0.69 0.48 0.92 0.52 0.84 0.52 0.42

next 72 h 0.77 0.80 0.75 0.60 0.89 0.40 0.86 0.55 0.50

Evaluation of validation sets (baseline)

next 24 h 0.74 0.51 0.79 0.35 0.89 0.65 0.64 0.30 0.25

next 48 h 0.75 0.60 0.80 0.51 0.86 0.49 0.73 0.40 0.38

next 72 h 0.75 0.69 0.78 0.59 0.84 0.41 0.78 0.47 0.45

Evaluation of validation sets (optimized)

next 24 h 0.74 0.82 0.72 0.39 0.95 0.61 0.85 0.55 0.38

next 48 h 0.73 0.83 0.69 0.48 0.92 0.52 0.85 0.52 0.42

next 72 h 0.77 0.81 0.75 0.60 0.89 0.40 0.86 0.56 0.51

Evaluation of test sets (baseline)

next 24 h 0.75 0.54 0.80 0.38 0.89 0.62 0.66 0.34 0.29

next 48 h 0.75 0.59 0.81 0.52 0.85 0.48 0.85 0.55 0.38

next 72 h 0.73 0.70 0.75 0.56 0.84 0.44 0.78 0.44 0.42

Evaluation of test sets (optimized)

next 24 h 0.72 0.83 0.70 0.37 0.95 0.63 0.84 0.53 0.36

next 48 h 0.74 0.85 0.70 0.50 0.93 0.50 0.85 0.55 0.45

next 72 h 0.75 0.80 0.73 0.58 0.89 0.42 0.85 0.53 0.48

the absolute differences between both recalls have been positively affected, thus scoring 0.03

(-0.23, next 24 h), 0.05 (-0.06, next 48 h), and 0.03 (-0.05, next 72 h).

In agreement with the reduced absolute differences mentioned earlier, our methodology

scored TPRs ≥ 0.80 over all horizons by their cut-off point adjustments, which comprehended

improvements in the positive recall by +0.29 (TPR = 0.82, next 24 h), +0.19 (TPR = 0.83, next

48 h), and +0.13 (TPR = 0.80, next 72 h). As a measure of potential usefulness for the positive

forecasts (ZAKI; MEIRA JR., 2013), the AUCs have increased by +0.18 (AUC= 0.85, next 24 h),

+0.12 (AUC = 0.84, next 48 h), and +0.13 (AUC = 0.86, next 72 h).

Conversely to Case Study I, when we had reasonable low FAR levels by the cut-off point

adjustment of classifiers, our methodology could not decrease such score in the same manner

when forecasting ≥ M classes. Whereas the ratios for false alarms lay on [0.44 , 0.64] in the

beginning, they slightly decreased to [0.40 , 0.62] during the search for prediction thresholds.
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It is worth noting that, despite not decreasing FAR significantly, our methodology could

maintain it lying close to the level of its beginning by the time of models had their thresholds

adjusted. For instance, for forecasting in the next 24 h, from the model selection to cut-off

point adjustment, both TPR (0.82) and TSS (0.53) significantly increased by +0.22 and +0.29,

respectively, whereas the FAR remained with minor effects (FAR = 0.62, -0.02). The remainder

horizons followed those change trends with the TSS, TPR, and FAR.

To complete the design processes of Case Study II, the methodology assessed the

improvements in all models’ forecast performance while forecasting the validation sets (using

their cut-off point adjustment designs). Remarkably, it confirmed some positive effects, such as

with the increasing TSSs (+0.25, +0.12, and +0.09 respectively for the next 24, 48, and 72 h) and

HSSs (+0.13 and +0.06 respectively for the next 24 and 72 h)11.

As the pipeline confirmed increases with the validation TSSs, it then proceeded with the

generalization error assessment of models over the test sets. Overall, we could notice these

remarkable effects in the test results of all forecasting horizons of Case Study II:

1. The methodology has minimized the class skew successfully in most horizons, thus

reducing the absolute differences between both recalls: |TPR − TNR| = 0.07 (-0.19, next
24 h) and 0.05 (-0.17, next 48 h). The difference for the next 72 h was already short in the

test baseline.

2. Our method managed to score test TSSs ≥ 0.53, that is, competing to the literature, thus

consequently keeping both TPR (0.83, 0.85, and 0.80 respectively for the next 24, 48, and

72 h) and TNR (0.70, for the next 24 and 48 h, and 0.73, for the next 72 h) at high levels.

As a reference, the highest results in the literature for unbiased ≥ M flare forecasts in the

next 24 h scored 0.53 ≤ TSS ≤ 0.83, 0.70 ≤ TPR ≤ 0.95, and 0.70 ≤ TNR ≤ 0.86 (we shall
focus on the comparison to the literature in Section 6.2.2).

3. All test AUCs scored [0.84 , 0.85] – close to the score’s optimum level (AUC = 1), thus

increasing the probability of forecasting a random positive sample over a negative one

and suggesting potential useful positive forecasts.

Conversely to ≥ C forecasts, in which models scored TSSs ≥ 0.69, the TSSs for ≥ M-class

flares scored ≥ 0.53, results about 0.2 less than the former. Noteworthily, forecasting M-class

11For the complete analysis of improved/harmed/unaffected validation scores of Case Study II, refer to
Appendix B.



Chapter 6. Results and discussion 122

flares is a more challenging task than C events. As such, the decision boundaries of positive

and negative ≥M instances might have been overlapped to some extent, which increased the

difficulty to classify them. Analogously, the decision boundaries of ≥ C events might have

been more well-defined, which decreased the classification difficulty level, thus consequently

increasing the performance of classifiers.

6.2.2 Literature comparison

Table 6.12 shows the indirect comparison of results for ≥ M-class forecasting between our

models and the specialized literature. As for ≥ C-class events, we included research posing

some bias in their results on the upper hand part and used our validation results as a reference.

On the other hand, we included unbiased results in the lower hand table part aside with our

test scores.

Remarks from the literature comparison of biased results

Overall, we could not analyze all results posing some bias in Table 6.12 in a similar manner.

There were cases of insufficient data, such as the articles by X. Zhang, J. Liu, and Q. Wang (2011),

Jonas et al. (2018), Florios et al. (2018), Anastasiadis et al. (2017) and Alipour, Mohammadi, and

Safari (2019) – which turned the analysis unavailable –, or with less frequent time horizons. For

instance, our model for the next 72 h and Bobra and Couvidat (2015)’s approaches for forecasting

24 and 48 h exactly after a t instant. For the rest of articles, we managed to distinguish them

between forecasts for the next 24 and 48 h.

Regarding events forecasting within the next 24 h, the first group of articles scored

0.40 < TSS ≤ 0.65, namely the researches by Yang et al. (2013) (TSS = 0.48), Muranushi et al.

(2015) (TSS = 0.52), C. Liu et al. (2017) (TSS = 0.53), Jiao et al. (2020) (TSS = 0.51), and our model

(TSS = 0.55). By achieving TSS scores in this interval, they were able to keep their TPR and

TNR scores most of the time at close levels (without preference for a specific class). Noticeably,

their TPRs lied on [0.41 , 0.85], whereas their TNRs varied over [0.67 , 0.97].
By most of the time in the last paragraph, we meant we could identify Yang et al. (2013)’s

model as a potential over-fitted system in favor of the negative class. As such, they scored a

high ACC = 0.90 and TNR = 0.96, but their TPR only equaled 0.41, that is, their model was not

able to generalize well positive samples.
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Table 6.12: Comparison of models for ≥M-class flare forecasting.

Forecasting Time Authorship Grouping ACC TPR TNR TSS FAR

next 24 h Our GradientTreeBoosting model biased results 0.74 0.82 0.79 0.55 0.65

next 48 h Our GradientTreeBoosting model biased results 0.73 0.83 0.69 0.52 0.52

next 72 h Our GradientTreeBoosting model biased results 0.77 0.81 0.78 0.56 0.41

next 24 h Yang et al. (2013) biased results 0.90 0.41 0.96 0.48 -

next 48 h Yang et al. (2013) biased results 0.86 0.43 0.95 0.53 -

next 48 h J.-F. Liu, F. Li, Wan, et al. (2017) biased results - 0.64 0.83 0.47 -

next 48 h J.-F. Liu, F. Li, H.-P. Zhang, et al. (2017) biased results 0.75 0.76 0.74 0.50 -

next 24 h C. Liu et al. (2017) biased results 0.76 0.74 0.78 0.53 -

next 48 h R. Li and Zhu (2013) biased results 0.82 0.69 0.83 0.52 -

next 48 h R. Li, H. Wang, et al. (2011) biased results 0.74 0.69 0.75 0.44 -

next 48 h Huang and H.-N. Wang (2013) biased results 0.72 0.72 0.71 0.71 0.70

next 48 h X. Zhang, J. Liu, and Q. Wang (2011) biased results - 0.75 - - -

next 48 h Yu, Huang, H. Wang, and Cui (2009) biased results - 0.82 0.84 0.66 -

next 48 h Yu, Huang, Q. Hu, et al. (2010) biased results 0.92 0.94 0.91 0.86 0.28

next 48 h Yu, Huang, H. Wang, Cui, et al. (2010) biased results - 0.85 0.87 0.72 0.28

exact 24 h Bobra and Couvidat (2015) biased results 0.92 0.83 0.92 0.76 -

exact 48 h Bobra and Couvidat (2015) biased results 0.94 0.86 0.94 0.81 -

next 48 h Raboonik et al. (2016) biased results 0.94 0.97 0.88 0.85 0.05

next 24 h Muranushi et al. (2015) biased results 0.7 0.85 0.67 0.52 0.35

next 24 h Jonas et al. (2018) biased results - - - 0.81 -

next 48 h Huang, Yu, et al. (2010) biased results - 0.91 0.87 0.78 -

next 24 h Huang, H. Wang, Xu, et al. (2018) biased results 0.81 0.85 0.81 0.66 0.90

next 48 h Huang, H. Wang, Xu, et al. (2018) biased results 0.81 0.81 0.81 0.62 0.84

next 24 h Sadykov and Kosovichev (2017) biased results 0.87 0.89 0.86 0.76 0.77

next 24 h Nishizuka, Sugiura, Kubo, Den, Watari, et al. (2017) biased results 0.99 0.90 0.99 0.90 0.07

next 24 h H. Liu et al. (2019) biased results 0.90 0.88 0.91 0.79 -

next 24 h Florios et al. (2018) biased results 0.93 - - 0.74 -

next 24 h Alipour, Mohammadi, and Safari (2019) biased results - - - 0.95 -

next 24 h X. Wang et al. (2020) biased results 0.94 0.73 0.95 0.68 0.72

next 24 h X. Li et al. (2020) biased results 0.89 0.81 0.93 0.74 0.11

next 24 h Anastasiadis et al. (2017) biased results - - - 0.30 -

next 24 h Jiao et al. (2020) biased results - 0.54 0.97 0.51 -

next 24 h Our GradientTreeBoosting model unbiased results 0.75 0.83 0.70 0.53 0.63

next 48 h Our GradientTreeBoosting model unbiased results 0.75 0.85 0.70 0.55 0.48

next 72 h Our GradientTreeBoosting model unbiased results 0.73 0.80 0.75 0.53 0.44

next 24 h Bloomfield et al. (2012) unbiased results 0.83 0.70 0.83 0.53 0.85

next 24 h Shin et al. (2016) unbiased results - 0.61 0.76 0.37 0.78

next 24 h Leka, Barnes, and Wagner (2018) unbiased results 0.89 0.20 0.99 0.19 0.21

24 h – 48 h Leka, Barnes, and Wagner (2018) unbiased results 0.87 0.03 1.00 0.03 0.20

48 h – 72 h Leka, Barnes, and Wagner (2018) unbiased results 0.87 0.06 1.00 0.05 0.13

next 24 h Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) unbiased results 0.86 0.95 0.86 0.80 0.82

next 24 h Hada-Muranushi et al. (2016) unbiased results 0.82 0.39 0.88 0.27 0.68

next 24 h McCloskey, P. T. Gallagher, and Bloomfield (2018) unbiased results - - - 0.47 -

next 24 h D. Falconer et al. (2011) and D. A. Falconer et al. (2014) unbiased results 0.95 0.31 - 0.47 0.50

next 24 h D. A. Falconer et al. (2014) unbiased results 0.95 0.38 - 0.49 0.48

next 24 h Benvenuto et al. (2018) unbiased results 0.91 0.53 0.92 0.45 0.77

However, the remainder of models for forecasting within the next 24 h scored

0.65 < TSS ≤ 0.90, that is, the researches by Huang, H. Wang, Xu, et al. (2018) (TSS = 0.66),

X. Wang et al. (2020) (TSS = 0.68), X. Li et al. (2020) (TSS = 0.74), Sadykov and Kosovichev

(2017) (TSS = 0.76), H. Liu et al. (2019) (TSS = 0.79), and Nishizuka, Sugiura, Kubo, Den, Watari,

et al. (2017) (TSS = 0.90). Besides scoring TSSs at higher levels, they also managed to reach
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close levels with their TPRs ([0.81 , 0.90]) and TNRs ([0.81 , 0.99]). As they scored increased

ACCs ([0.81 , 0.99]), we could not suggest over-fitted systems here.

Noteworthily, within the next 24 h, some models suffered from the precision-recall trade-off,

thus incurring in the forecasting of increased numbers of false alarms: the proposals by Huang,

H. Wang, Xu, et al. (2018) (FAR = 0.90), Sadykov and Kosovichev (2017) (FAR = 0.77), and X.

Wang et al. (2020) (FAR = 0.72). In comparison, our model in this time horizon also increased

this ratio. However, this issue became less evident than the previous articles. Nevertheless, FAR

comprehends a worth caring aspect for future work in our dataset: leveraging the precision to

decrease the occurrence of false alarms consequently.

Not only with Huang, H. Wang, Xu, et al. (2018)’s, Sadykov and Kosovichev (2017)’s, and

X. Wang et al. (2020)’s researches, but also with Bobra and Couvidat (2015)’s the trade-off

mentioned earlier was evident. Despite not providing the model’s FAR for their exact 24 h time

horizon, we could suggest an increased ratio here, as they under-performed with the positive

precision (PPV = 0.41). Besides, other articles under-performing with their precision scores

were H. Liu et al. (2019)’s (PPV = 0.22) and X. Wang et al. (2020) (PPV = 0.27).

On the other hand, regarding flare forecasting within the next 48 h, the first group of articles

also scored 0.40 < TSS ≤ 0.65: R. Li, H. Wang, et al. (2011) (TSS = 0.44), J.-F. Liu, F. Li, Wan,

et al. (2017) (TSS = 0.47), J.-F. Liu, F. Li, H.-P. Zhang, et al. (2017) (TSS = 0.50), R. Li and Zhu

(2013) (TSS = 0.52), our model (TSS = 0.52), Yang et al. (2013) (TSS = 0.53), Huang, H. Wang, Xu,

et al. (2018) (TSS = 0.62), and X. Wang et al. (2020) (TSS = 0.68). By achieving TSS scores at a

fair interval, they were able to keep their TPR and TNR scores most of the time at close levels,

which means without preference for a specific class. Noticeably, their TPRs lied on [0.43 , 0.83],
whereas their TNRs [0.69 , 0.95].

Once more, by most of the time in the last paragraph, we meant we could identify Yang

et al. (2013)’s model as a potential over-fitted system in favor of the negative class. As such,

they scored a high ACC = 0.86 and TNR = 0.95, but their TPR only equaled 0.43, that is, their

model was not able to generalize well positive samples. Besides, R. Li and Zhu (2013) also

seemed to present a slightly over-fitted classifier – yet less evident than Yang et al. (2013)’s

approach. In this sense, their model scored ACC = 0.82, TPR = 0.69, and TNR = 0.83.

The remainder of models for forecasting within the next 48 h scored 0.65 < TSS ≤ 0.90: Yu,
Huang, H. Wang, and Cui (2009) (TSS = 0.66), Huang and H.-N. Wang (2013) (TSS = 0.71), Yu,

Huang, H. Wang, Cui, et al. (2010) (TSS = 0.72), Huang, Yu, et al. (2010) (TSS = 0.78), Raboonik
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et al. (2016) (TSS = 0.85), and Yu, Huang, Q. Hu, et al. (2010) (TSS = 0.86). Besides scoring

TSSs at higher levels, those approaches also managed to reach close levels with their TPRs

([0.72 , 0.97]) and TNRs ([0.71 , 0.91]). However, only Raboonik et al. (2016) (ACC = 0.94), Huang

and H.-N. Wang (2013) (ACC = 0.72), and Yu, Huang, Q. Hu, et al. (2010) (ACC = 0.92) provided

their accuracies, which showed classifiers not over-fitting to any class.

Noteworthily, within the next 48 h, the model by Huang and H.-N. Wang (2013) suffered

from the precision-recall trade-off, which incurred in the forecasting of an increased number

of false alarms (FAR = 0.70). In comparison, our model in this time horizon also increased

this ratio (FAR = 0.52). However, once more, this issue became less evident than the former.

Besides, this issue was also less evident than for the next 24 h. Nevertheless, FAR comprehends

a worth caring aspect for future work in our dataset, i. e., leveraging the precision to decrease

the occurrence of false alarms consequently.

Remarks from the literature comparison of unbiased results

In turn, while posing unbiased results in Table 6.12, articles mainly focused on the next 24 h time

horizon. However, there were also proposals lacking enough data (MCCLOSKEY; GALLAGHER,

P. T.; BLOOMFIELD, 2018) or with less frequent time horizons, such as the researches by Leka,

Barnes, and Wagner (2018) (24 h – 48 h and 48 h – 72 h) and our models designed for the next

48 and 72 h.

Among Leka, Barnes, and Wagner (2018)’s results, we could identify reasonably high

imbalanced class ratio scenarios for both 24 h – 48 h and 48 h – 72 h. As such, they have only

reached hit rates of 0.03 (24 h – 48 h) and 0.06 (48 h – 72 h), whereas scoring perfect TNRs of a

hundred percent in both time horizons. As such, ACC reached 0.87 in both horizons.

On the other hand, regarding ≥ M-class events forecasting within the next 24 h, papers

mostly managed to score TSSs < 0.5 (seven approaches) and also ≥ 0.5 (three approaches). The
latter case included our model (TSS = 0.53) and the papers by Bloomfield et al. (2012) (TSS =

0.53) and Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) (TSS = 0.80).

The approaches scoring TSSs ≥ 0.5 varied their TPRs over [0.70 , 0.95] and TNRs [0.70 , 0.86].
For having achieved ACCs lying on [0.75 , 0.86], we could not suggest over-fit proposals here.

However, all of them suffered from false alarms in their positive forecasts – probably because of

prediction thresholds worth better adjusting that harmed their precision indexes –, especially
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Nishizuka, Sugiura, Kubo, Den, and Ishii (2018) (FAR = 0.82) and Bloomfield et al. (2012) (FAR =

0.85).

In turn, concerning the remainder of models – the ones scoring TSS < 0.5 –, except for the
proposal lacking enough data to analyze (MCCLOSKEY; GALLAGHER, P. T.; BLOOMFIELD,

2018), the TPRs and TNRs varied on [0.20 , 0.61] and [0.76 , 0.99], respectively (SHIN et al.,

2016; LEKA; BARNES; WAGNER, 2018; HADA-MURANUSHI et al., 2016; FALCONER, D. et al.,

2011; FALCONER, D. A. et al., 2014; BENVENUTO et al., 2018). As their ACCs have reached

high levels ([0.82 , 0.95]), we could suggest over-fitted systems here because of the discrepancy

between score ranges.

Noticeably, the articles by Leka, Barnes, and Wagner (2018), Shin et al. (2016), Hada-

Muranushi et al. (2016), D. Falconer et al. (2011), D. A. Falconer et al. (2014) and Benvenuto et al.

(2018) over-performed with the negative class, thus poorly generalizing with the positive score.

Besides, as of models scoring TSS ≥ 0.5, almost all approaches also suffered from prediction

thresholds worth better adjusting, thus outputting decreased precision scores: Hada-Muranushi

et al. (2016) (FAR = 0.68), D. Falconer et al. (2011) (FAR = 0.50), D. A. Falconer et al. (2014) (FAR

= 0.48), Benvenuto et al. (2018) (FAR = 0.77), and Shin et al. (2016) (FAR = 0.78).

6.3 Case Study III: ≥ M-class flare forecasting with C. Liu

et al. (2017)’s dataset

This section will present the results from Case Study III, namely the one designed for ≥M flare

forecasting in the next 24 h using the dataset proposed by C. Liu et al. (2017).

6.3.1 Results analysis

Table 6.13 shows the summary of results for the methodology inner processes of Case Study III.

Tables containing the detailed results from the validation/test sets of such case study are in

Appendix B.

As in the Case Study I for the next 24 and 48 h, the model optimized in Case Study III

was based on the RandomForest algorithm – the original research from C. Liu et al. (2017)

also comprehended such algorithm. Concerning its input data, although we initialized the

feature selection with the full set borrowed from C. Liu et al. (2017) – that is, TOTUSJH,

TOTBSQ, TOTPOT, TOTUSJZ, ABSNJZH, SAVNCPP, USFLUX, AREA_ACR, TOTFZ,MEANPOT,
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Table 6.13: Case Study III, ≥M flares, the next 24 h: summary of results.

Process ACC TPR TNR PPV NPV FAR AUC TSS HSS

Model selection 0.84 0.29 0.97 0.75 0.85 0.25 0.79 0.26 0.33

Feature selection 0.84 0.35 0.96 0.70 0.86 0.30 0.78 0.31 0.38

Hyperparameter optimization 0.84 0.35 0.96 0.69 0.86 0.31 0.83 0.31 0.38

Cost function analysis 0.76 0.76 0.76 0.44 0.93 0.56 0.83 0.52 0.40

Cut-off point adjustment 0.80 0.66 0.83 0.50 0.91 0.50 0.83 0.50 0.44

Evaluation of validation sets (baseline) 0.84 0.26 0.98 0.75 0.84 0.25 0.77 0.23 0.31

Evaluation of validation sets (optimized) 0.79 0.69 0.82 0.49 0.91 0.51 0.82 0.51 0.44

Evaluation of test sets (baseline) 0.87 0.35 0.99 0.76 0.87 0.04 0.86 0.34 0.43

Evaluation of test sets (optimized) 0.81 0.78 0.81 0.50 0.94 0.50 0.87 0.59 0.49

R_VALUE, EPSZ, and SHRGT45 – our method discarded most of them, thus maintaining only

data from the TOTUSJH, ABSNJZH, SAVNCPP, and R_VALUE attributes.

The differing sets of features mentioned earlier may be linked to the nature of the feature

selection methods: whereas C. Liu et al. (2017) have analyzed their feature importance through

the Gini impurity score, we tested them for a complementary nature incurring in flare

occurrence. Not surprisingly, Bobra and Couvidat (2015) also selected the same set of C. Liu

et al. (2017) after working over a broader collection of attributes. However, their article

employed the C. Liu et al. (2017)’s features on a different dataset.

Overall, we could observe HSSs higher than TSSs in both model and feature selection of

Table 6.13. Those higher HSSs suggest the existence of imbalanced class ratios, which we

confirmed by observing the ACCs, TPRs, and TNRs of both processes (i. e., ACC = 0.84, TPR

= 0.29, and TNR = 0.97 and ACC = 0.84, TPR = 0.35, and TNR = 0.96, for model and feature

selection, respectively).

Bloomfield et al. (2012) argued that the drawback with the HSS comprehends its biased

output toward an increased score when the classifier is over-fitting – as the RandomForest by

both model and feature selection. This is another reason why we used both HSS and TSS as

the skill scores and not only HSS in addition to the rationale described in Chapter 4.

In hyperparameter optimization, we observed that the methodology could effectively boost

the RandomForest’s AUC to 0.83 (+0.05). As a measure of potential usefulness for positive

forecasts, the AUC value is essentially the probability that classifiers shall rank a random

positive sample higher than a random negative one (ZAKI; MEIRA JR., 2013).

Hence, classifiers outputting their AUCs next to 1 have an increased probability of ranking

a random sample as positive – equal to 0.5 is equivalent to random guessing and below 0.5 is
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the anti-learning (worst than random guessing) (ZAKI; MEIRA JR., 2013). In response to the

adjusted AUC, other scores remained at the same level as in feature selection or incurred in

minor effects (i. e., FAR and PPV).

Besides, it is worth noting that the AUC was insensitive to class skew: from the model

selection to cut-off point adjustment, the AUC varied over [0.78 , 0.83], which intuitively

can be interpreted as a high interval. That happened because both TPR – understood as the

probability of predicting a positive sample as positive – and FPR – understood as the probability

of predicting a negative sample as positive – do not depend on the class ratio size of positive

and negative samples (ZAKI; MEIRA JR., 2013).

The AUC’s insensitivity to the class skew is a desirable property in imbalanced domains

since such score shall essentially vary on close levels whether the classes are balanced (i. e.,

cost function analysis/data resampling and cut-off point adjustment) or skewed (i. e., model

and feature selection). That is another reason for using AUC during the hyperparameter

optimization in addition to the rationale described in Chapter 4.

To correct the imbalanced class ratios of Case Study III in Table 6.13, our method has

used the RandomForest’s cost function, which remarkably zeroed the difference between both

positive and negative recalls compared to the data resampling methods. At the cost function

analysis, the TPR and NPV increased, as well as the TNR and PPV decreased, probably as a

direct response to the precision-recall trade-off.

As a consequence of the PPV decrease mentioned earlier, the FAR increased by about a

quarter compared to model selection. However, although we observed an increasing FAR (the

methodology shall attempt to minimize it next), the TSS increased by exactly a quarter of its

original value in model selection.

Within the solar flare forecasting domain, the costs with false alarms (false positives) are

lower than with missed events (false negatives) (BOBRA; COUVIDAT, 2015; RABOONIK et al.,

2016). However, one must employ efforts to reduce the false alarms ratio so this metric can

come close to its optimum level, i. e., FAR = 0 (JOLLIFFE; STEPHENSON, 2003), which our

method attempted to perform when adjusting the RandomForest’s prediction threshold.

During the adjustment of the cut-off point in Table 6.13, in response to the shifting of both

TPR and PPV scores so they could come to close levels, the FAR positively decreased by -0.06,

as well as the PPV consequently increased (+0.06). Noteworthily, the TSS decreased by only

-0.02 at this point.
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As the final decision-making performed in Case Study III, our methodology assessed the

improvements in the forecast performance of RandomForest while forecasting the validation

sets (if any). Noticeably, we confirmed some positive effects, such as with the increasing TPR

(+0.43) and TSS (+0.28)12. Since the pipeline identified an increase with the TSS, it then proceeded

with the generalization error assessment over the test sets, whose observed improvements we

summarized below:

1. Our method has shortened the distance between the test TPR and TNR successfully, thus

consequently minimizing the over-fitted baseline test performance. Accordingly, the

difference |TPR − TNR| has been positively improved by -0.61, decreasing from 0.64 to

0.03.

2. Our method managed to score both test TSS (0.59) and HSS (0.49) quality skill scores at

reasonable levels (compared to the literature), thus consequently keeping both test TPR =

0.78 and TNR = 0.81 at high levels. As a reference, the results in the literature for biased

≥ M-class flare forecasts13 in the next 24 h scored 0.40 < TSS ≤ 0.65, 0.41 ≤ TPR ≤ 0.85,
and 0.67 ≤ TNR ≤ 0.97.

3. The RandomForest scored a test AUC = 0.87, that is, next to the score’s optimum level

(AUC = 1). As the AUC is a measure of potential usefulness for the positive forecasts, we

can affirm the positive forecasts were effective.

Finally, it is worth commenting on the observed decrease of the test PPV leading to an

increase of FAR, as they are related one to each other. From the baseline test performance to

the optimized one, the PPV has been decreased by about a quarter of its original value. This

certainly made our RandomForest forecast a higher number of false alarms (i. e., FAR +0.46).

As a reference, C. Liu et al. (2017) scored a PPV (0.77) close to our baseline test precision

(0.76). In this sense, we can assume they also produced false alarms to some extent (regardless

of not providing this ratio). However, whereas C. Liu et al. (2017) scored its PPV over the full set

of records, our method was fed with a decreased number of available samples while designing

its RandomForest (because of the test sets reserved in the beginning).

Within this context, we suggest that the decrease in our test PPV may be related to the

decreased number of samples used during our training. This scenario may somehow have

12For a complete analysis of improved/harmed/unaffected scores refer to Appendix B.
13Although we are discussing test scores, for conciseness, we referenced the literature’s biased forecast

performance because C. Liu et al. (2017) only included AR records near the Sun’s central meridian.
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harmed our RandomForest’s generalization skill since it did not have as many available samples

as C. Liu et al. (2017) allowing a finer discriminating between features and events.

Classifiers designed with lower numbers of samples do not generalize as well as those using

higher numbers (PYLE, 1999). In fact, C. Liu et al. (2017) used 845 samples while designing

their model, whereas our method employed only 634 samples for design and the remainder 210

for the test (about 42 – 5% – for each test set). Nevertheless, we believe that employing only

845 samples represents a small and restricted dataset, that is, one should consider increasing

the dataset size whether the aim is to reach better performance levels in Case Study III.

6.3.2 Literature comparison

In C. Liu et al. (2017)’s dataset, we could notice that there were more C-class events (n = 552)

in comparison to M (n = 142), X (n = 23), and the absence of them (n = 128). They binarized

the events to design their target feature, thus grouping non-flare samples with C-class ones

(negative class) and M-class events with X ones (positive class).

In an attempt to minimize their imbalanced class ratios, they repeatedly and randomly

selected 100 times 165 negative samples to couple with the M/X-class ones, thus creating 100

distinct downsampled subsets. To evaluate the performance of their RandomForest model,

C. Liu et al. (2017) carried out a tenfold cross-validation strategy.

For each downsampled subset, they performed stratified tenfold partitioning, that is, they

divided their samples into ten groups of nearly equal sizes and with a balanced distribution of

AR classes. They then trained their model using nine folds and used the fold left out for tests.

The average of the 100 cross-validation iterations for each of the 100 downsampled data sets

yielded their final results, as presented in Table 6.14:

Table 6.14: Results comparison with C. Liu et al. (2017)’s model.

Authorship ACC TPR TNR PPV NPV TSS

C. Liu et al. (2017) 0.76 0.74 0.78 0.77 0.75 0.53

our RandomForest model 0.81 0.78 0.81 0.50 0.94 0.59

Our methodology produced a RandomForest model outperforming C. Liu et al. (2017)’s in

the following aspects: ACC (+0.05), TPR (+0.04), TNR (+0.03), NPV (+0.19), and TSS (+0.06).

On the other hand, despite not outperforming the remainder PPV, our model scored about a

quarter less than the reference.
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Noteworthily, our method managed to score most of the time the highest results using

only four features – out of the 13 total – lasting from our feature selection: the total unsigned

current helicity, the absolute value of the net current helicity, the sum of the modulus of the

net current per polarity, and the sum of the flux near the polarity inversion line. In comparison,

C. Liu et al. (2017) scored their results with the full set of them.

Finally, it is worth saying that C. Liu et al. (2017) did not explicitly reserve test sets in

the beginning. Instead, by undersampling before the cross-validations, they created synthetic

subsets not fully representing their samples’ original composition (i. e., due to the discarding

nature at random of their undersampling approach, they may have missed important records of

the original dataset in the subsets used for evaluations). In comparison, our method achieved

the results mentioned earlier while forecasting samples never saw during its model’s design,

not to say also holding a representative nature concerning the original dataset (i. e., through

the stratified random reservation of test sets).

6.4 Concluding remarks

This chapter discussed the performance of our optimized models while forecasting ≥ C (Case

Study I) and ≥M (Case Study II and III) flare events up to three days ahead. Overall, designed

classifiers’ results showed agreement with the best performing forecast approaches in the

literature.

For instance, for ≥ C events in the next 24 h, whereas the literature ranged on 0.50 < TSS ≤

0.80, our methodology output a model scoring a test TSS = 0.69. On the other hand, for ≥M

events – also in the next 24 h –, whereas the literature ranged on 0.53 ≤ TSS ≤ 0.83, our model

scored a test TSS = 0.53.

Besides, results from our models’ test AUCs have confirmed the usefulness of their positive

forecasts – TPR = 0.86 and 0.83 respectively for ≥ C and ≥ M flares – as they reached 0.93 and

0.84 respectively for ≥ C and ≥ M flares. When directly compared to the literature of C. Liu

et al. (2017), by using fewer resources and notably forecasting on a more challenging scenario,

our optimized model outperformed the reference performance in the following aspects: ACC

(+0.05), TPR (+0.04), TNR (+0.03), NPV (+0.19), and TSS (+0.06).
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Chapter 7

Conclusions

Aiming at proposing some standardization and flexibility to support the design of flare

forecasting systems, we proposed a novel methodology to cope with most of the aspects with

which the literature is concerned while developing such models. To validate our methodology,

we assembled a dataset based on daily aggregated solar data provided by the NOAA/SWPC,

including the measures for the radio flux, x-ray background flux, sunspot number and area,

and the WMFR of magnetic and McIntosh (1990)’s classes. We employed such data in two case

studies for ≥ C- and ≥ M-class events up to 3 days ahead, namely forecasting them in the next

24, 48, and 72 h. Besides, we designed a third case study with C. Liu et al. (2017)’s dataset for ≥
M flares within 24 h, focusing on a direct comparison to other literature approaches.

One of the themes that emerged from this research involved the aspects constituting an

optimized design process for flare classifiers. Anchored in some good practices already discussed

in the literature and a reasonable number of observations from related proposals in the last ten

years, we proposed a comprehensive pipeline of machine learning methods to use in such an

optimized process, that is, the one not incurring in the negative design issues authors usually

encompassed with their systems. Our pipeline comprehended:

i. Searching for distinct learning algorithms from a custom and flexible set (model selection).

ii. A selection of only relevant features (feature selection).

iii. Adjusting the behavior of algorithms (hyperparameter optimization).

iv. Providing proper unbiased data splitting (training, validation, and test sets).
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v. Accommodating evaluations not incurring in statistical flukes or due to chance (repeated

and stratified cross-validations).

vi. Empowering a broad specialized performance score analysis (deterministic and probabilistic

metrics).

vii. Carrying out operational evaluations of models (true unseen records).

viii. Providing methods for minimizing the variance on data while reducing the input bias of

algorithms (adjust the bias-variance trade-off).

ix. Employing unbiased resampling of data (imbalanced class ratios treatment).

x. Adjusting the cost function of classifiers.

xi. Adjusting the prediction threshold (configuring the costs from error types).

Aware of the benefits of automating machine learning classifiers’ design and the absence of

such tools for flare forecasting, we automated the methodology mentioned earlier under

Python’s Scikit-learn framework. The findings with our case studies showed that our

methodology was able to produce models with scores consistent with previous research.

For instance, for forecasting ≥ C-class events within the next 24 h, our model scored a

test TSS = 0.69, as high as the approaches reaching the highest results of this metric (0.50 <
TSS ≤ 0.80). By reaching this score level, other related metrics, such as the TPR = 0.86 and

TNR = 0.82, also consequently increased in line with the literature (i. e., 0.78 ≤ TNR ≤ 0.86
and 0.69 ≤ TPR ≤ 0.94). Besides, as our model scored a high ACC = 0.85 – also agreeing

with the best performing models from literature (0.75 ≤ ACC ≤ 0.91) – we did not notice any

over-fitting. For longer forecasting horizons, we found no similar unbiased approach as a

reference. However, our methodology produced models with scores as high as those for the

next 24 h: TSS = 0.70 and 0.69 for the next 48 and 72 h, respectively.

Our results also agreed with the literature for ≥ M flares in the next 24 h. Accordingly,

our test TSS = 0.53 has pushed its corresponding TPR = 0.83 and TNR = 0.70 to higher levels

– the best performing models in literature scored 0.53 ≤ TSS ≤ 0.83, 0.70 ≤ TPR ≤ 0.95, and
0.70 ≤ TNR ≤ 0.86, thus avoiding over-fitting with 0.75 ≤ ACC ≤ 0.86. However, all those
models – including ours – did somehow forecast false alarms, namely scoring FARs ≥ 0.63.
For longer forecasting horizons, the methodology optimized models with scores as high as for
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the next 24 h: TSS = 0.55 and 0.53 for the next 48 and 72 h, respectively (we found no similar

unbiased approach as a reference).

The summarized referenced performance mentioned earlier has been taken as indirect

comparisons as we could not surely assume whether the observed underlying differences

in performance could be associate with classifiers’ merit. On the other hand, when directly

compared to the literature (i. e., by using the same dataset of a reference), our optimized

model outperformed the reference performance (i. e., the TSS, TPR, and TNR of C. Liu et al.

(2017)) using fewer resources (i. e., a reduced set of features) and notably forecasting on a more

challenging scenario (that is, true unseen data).

Although the overview of results mentioned earlier was generally compatible with the

literature, we argue that the findings with the performance of our case studies should not be

taken as absolute references for future optimized models. Accordingly, one should not expect

the same magnitude of increases/decreases when using the proposed methodology within other

forecast scenarios. The effects on scores may depend on distinct aspects, such as the type of

learning algorithm, data input features, hyperparameter set, optimized scores, among others.

Noteworthily, this research has coded its proposed automated methodology on the Scikit-

learn framework. It means that if, on the one hand, the methodology can only expand itself

under the premises of such platform (i. e., it restricts to what the platform offers), on the other

hand, the Scikit-learn framework has a very comprehensive collection of capabilities1.

For instance, besides the tree-based ensembles, the Scitkit-learn framework currently offers

a broad range of learning algorithms, such as SVMs, multi-layer perceptron neural networks,

linear classifiers (i. e., logistic regressors, LASSO, multi-task LASSO, elastic-nets etc.), linear

discriminant analysis, k-NN, naïve classifiers (for instance, Gaussian Naïve Bayes, Bernoulli

Naïve Bayes etc.), general basis ensembles (e. g., stacking the available learning algorithms

through hard- or soft-voting), among others. If needed, one can include all those learning

algorithms during the model selection.

Not only the learning algorithms but also several other aspects can be customized within

our methodology (once more, some of them are directly related to the Scikit-learn’s related

capabilities). The list comprehending the methodology custom aspects includes:

i. Event type or magnitude: we set the event definition to represent ≥ C- and ≥ M-class

events in our case studies. However, depending on the input data design, one can design

1https://scikit-learn.org/stable/user_guide.html.
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the target feature to accommodate multi-class flare forecasts or other flare thresholds. This

aspect grants to the methodology a broader application in solar weather research.

ii. Feature selection method: although we based our feature selection method in the case

studies on a univariate schema provided with the F-score, one can add other algorithms in

the methodology pipeline, such as the Pearson correlation analysis, variance thresholding,

recursive feature elimination, and tree-based feature selection using impurity-based feature

importance. The Scikit-learn framework currently offers all those methods.

iii. Inner validation scores: the TSS and AUC should not be considered the only available

options for optimizing through methodology inner processes. The cross-cutting decisions

between inner processes can comprise the boosting of several other performance scores,

such as these directly offered in the Scikit-learn framework: accuracy, balanced accuracy,

F1-score, recall and precision, among others. Whether the available scores are not enough,

one can provide the calculation of its performance score within the methodology pipeline

as it provides a custom capability for processing user-defined metrics2.

iv. Hyperparameter optimization method: the random-based approach for tuning the

hyperparameters opted in the case studies can be changed to the grid-based method. The

Scikit-learn framework offers both methods.

v. Resampling method: the methodology does not restrict itself to those three SMOTE

variations of our case studies for resampling data. As such, it currently borrows the

capabilities of Python’s imbalanced-learn toolkit3 for correcting data skew. Such a library

currently offers 11 distinct under-sampling methods (e. g., TomekLinks, OneSidedSelection,

InstanceHardnessThreshold, RandomUnderSampler, among others), seven over-sampling

approaches (for instance, Adasyn, RandomOverSampler, KMeans-SMOTE, among others),

two combining methods for under- and over-sampling (i. e., both SMOTE-ENN and

SMOTE-Tomek used in the case studies), and six ensemble resampling techniques (e. g.,

BalancedBaggingClassifier, BalancedRandomForest, among others) for correcting skewed

class ratios. One can use all of them within the methodology pipeline.

2The Scikit-learn framework did not code TSS and HSS directly. However, we provided them as user-defined
metrics in the pipeline.

3https://imbalanced-learn.readthedocs.io/.
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vi. Cut-off point adjustment criterion: minimizing the absolute difference between recall

and precision to adjust the classifiers’ cut-off point solely related to our case studies. In

fact, the methodology supports user-defined criteria to drive the prediction threshold

adjustment, such as choosing the point with which some performance score peaked

(BOBRA; COUVIDAT, 2015; NISHIZUKA; SUGIURA; KUBO; DEN; WATARI, et al., 2017).

vii. Cost function analysis decision criterion: the same reasoning from the previous item is

valid here. Accordingly, minimizing the absolute difference between both recalls in the cost

function analysis solely related to our case studies. At this point, the methodology also

supports user-defined criteria, such as choosing the ratio with which some performance

scores peaked.

It is worth mentioning that we believe our optimizedmodels could support hybrid prediction

schemes, such as the approach by the NOAA/SWPC, according to which an expert system

estimates the predictions at first, and then human experts adjust them (CROWN, 2012). As

Murray et al. (2017) argues, hybrid forecasts are helpful to reduce some climatology effects that

certainly affect predictions made over longer forecasting horizons (for instance, which ARs

may leave or return to the solar disk within the next few days or how the ARs evolve while

crossing the disk).

However, before employing the optimized models into a hybrid forecast approach, one must

think of assessing their real operational forecast performance, that is, how they would perform

as they forecast NOAA/SWPC’s daily assembled data in a real-time sense. In this context,

we deployed the optimized experimental models from Case Study I and II into a real forecast

environment providing daily forecasts at a fixed-cadence for up to three days ahead, namely

the Guaraci system4 (refer to Appendix C for further explanations on the Guaraci system).

Guaraci regularly connects to the NOAA/SWPC’s database – always at 00:30 AM UTC –

and dynamically calculates the features described in Chapter 5. Guaraci then uses such input

to forecast ≥ C- and ≥ M-class events in the next 24, 48, and 72 h. As potential future research,

we plan to study and assess our optimized models’ true real-time forecast performance.

Besides assessing models’ true operational performance, we can also think of other potential

future research proposals. To date, our methodology lacks a comprehensive pipeline to tackle

data preprocessing. Although there is an automated feature selection process, we did not

envision other input data preprocessing methods, such as missing data treatment or data

4The Guaraci system is currently available at: https://highpids.ft.unicamp.br/guaraci.
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standardization5. Automating a broad range of design processes grants the methodology to

expand its capabilities, such as in Leka, Barnes, and Wagner (2018)’s research, whose authors

reported automated missing data treatment in their design process.

In addition, we suggest adjusting our methodology to design interpretable models as future

research. To date, our forecasts are designed through simple thresholded probabilities, as shown

with Guaraci (Appendix C). However, as argued by Molnar (2020), interpretability in machine

learning means the degree to which a human can understand the cause of decisions.

Accordingly, the higher the interpretability of a machine learning model, the easier it is for

users to comprehend its decisions (i. e., why certain predictions have been made). This would

be rather useful to cope with our methodology to improve the usability of designed models,

especially for our end users, which are not always experts in machine learning.

For instance, as argued by Molnar (2020), machine learning predictions must employ

contrastive explanations, that is, why positive forecasts have been made instead of the

negative ones and vice versa (i. e., which features or phenomenon has been observed that most

contributed/affected the forecasts). Other rules of thumb for designing interpretable models

shall be sought in future research, such as including short sentences explaining the forecasts or

the object of interest (MOLNAR, 2020).

Other interesting proposal for future work would be to design meta-learning (a research

branch of automated machine learning) capabilities in our methodology. Vanschoren (2019)

states that the concept of meta-learning comprehends the science of observing how different

machine learning approaches perform on a wide range of learning tasks. Meta-learning

algorithms then learn from this experience (meta-data) and suggest learning algorithms to use.

Accordingly, Vanschoren (2019) comments on several meta-features usually employed for

meta-learning, such as the number of classes, missing values, features, and outliers. Depending

on the values observed from those features, decision rules can be inferred to suggest which

learning algorithms might outperform others in certain datasets. We believe that meta-learning

would contribute to the ease of use of our methodology, as users would be released to define a

set of learning algorithms manually.

Noteworthily, the domain of automated machine learning has emerged in the last years to

support the design decisions through an automated, data-driven, and objective way. As we

5Despite treating missing feature values and standardizing our case studies’ data, we processed our data set’s
records through ad hoc processes outside the methodology pipeline, which made data be inputted as is in the
methodology.
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could notice, users could simply provide their input data, and the automated machine learning

process would fully determine the best performing forecast approach for that particular case.

Also, automated machine learning can be envisioned to provide state-of-the-art learning

methods (i. e., deep learning) and design processes to researchers interested in applying concepts

rather than knowing the technologies in their details. This scenario aims to automatically

design forecast models with improved performance while saving a considerable amount of

time and money, as experts in machine learning can sometimes be expensive or hard to find.

Specifically in space weather research, automating machine learning can be rather valuable as

not all solar physicists are experts in the artificial intelligence domain.

To contribute to this research’s reproducibility, we made the methodology source code fully

available to the community at GitHub6. We believe that opening our source code will let other

researchers improve and use it with their forecast projects.

6https://github.com/tiagocinto/guaraci-toolkit.
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Appendix A

Performance assessment

In this thesis, we used some well-defined scores to guide the proposed framework during its

decision-making process. This appendix shall describe all of them, namely the PPV (ZAKI;

MEIRA JR., 2013), NPV (ZAKI; MEIRA JR., 2013), ACC (HAN; KAMBER, 2006), TPR (HAN;

KAMBER, 2006), TNR (HAN; KAMBER, 2006), FAR (JOLLIFFE; STEPHENSON, 2003), AUC

(WITTEN; FRANK; HALL, 2011), FPR (WITTEN; FRANK; HALL, 2011), HSS (JOLLIFFE;

STEPHENSON, 2003), and TSS (JOLLIFFE; STEPHENSON, 2003; YOUDEN, 1950).

To calculate those scores, we employed confusion matrices. We use such representations to

observe classifiers’ performance regarding their outcomes (i. e., correct vs. incorrect forecasts).

To n-class based problems, the confusion matrices have the form of n × n – in our case, several

2 × 2 matrices. Cells [i, j] of a confusion matrix refer to samples of class i classified as that of

class j (Table A.1). Accordingly, we define their cells as follows:

• TP: positive samples predicted as positive;

• TN: negative samples predicted as negative;

• FP: negative samples incorrectly classified;

• FN: positive samples incorrectly classified.

Table A.1: Confusion matrix.

Predicted Class

Cpositive Cnegative

Correct Class Cpositive True Positives (TP) False Negatives (FN)

Cnegative False Positives (FP) True Negatives (TN)



Appendix A. Performance assessment 151

A.1 Positive predictive value

Also known as the classifier’s class-specific accuracy scores, both PPV and NPV refer to the

classifier precision scores regarding the individual outcome classes. The positive precision

measures the fraction of true positives over all samples predicted as positive (true and false

positives). We measure PPV on the scale [0 , 1], in which the higher the values, the better the

classifier. In Equation A.1, we show how to calculate PPV (ZAKI; MEIRA JR., 2013):

PPV = TP
TP + FP , (A.1)

where TP and FP are the cells of a confusion matrix.

A.2 Negative predictive value

The negative precision, in turn, measures the fraction of true negatives over all samples

predicted as negative (true and false negatives). Similarly to the PPV, NPV also ranges on [0 , 1]
(once more, the higher this score, the better the classifier). In Equation A.2, we show how to

calculate NPV (ZAKI; MEIRA JR., 2013):

NPV = TN
TN + FN , (A.2)

where TN and FN are the cells of a confusion matrix.

A.3 Accuracy

The overall accuracy is a global score for representing classifiers’ performance concerning the

fraction of true positives and negatives over all predictions made. In this sense, ACC also lies

around [0 , 1] (the higher the score, the better the classifier). In fact, this rank corresponds to

the weighted mean between the class-specific accuracy scores mentioned earlier, as we show

in Equation A.3 (HAN; KAMBER, 2006):

ACC =
TP + TN

TP + FN + FP + TN
, (A.3)

where TP, TN, FN, and FP are the cells of a confusion matrix.
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Noteworthily, in imbalanced class ratio scenarios, ACC cannot be used by itself, since it

would certainly mask the real hit rates of individual classes. For instance, an elevated ACC

may suggest a quite accurate classifier. However, this would certainly harm the interpretation

of this score, whether only a few portions of training samples are from the positive class, i. e.,

we cannot distinguish how well our classifier recognizes the positive or negative class. Still, we

decided to keep such rank in our study for completeness purposes, since most authors use it.

A.4 True positive rate

Also defined as the positive recall, TPR corresponds to the fraction of true positives over all

samples of the positive class (true positives and false negatives). As the scores mentioned earlier,

TPR also lies around [0 , 1], where higher values represent better classifiers. In Equation A.4,

we show how to calculate TPR (HAN; KAMBER, 2006):

TPR = TP
TP + FN , (A.4)

where TP and FN are the cells of a confusion matrix.

A.5 True negative rate

On the other hand, also defined as the negative recall, TNR corresponds to the fraction of true

negatives over all samples of the negative class (true negatives and false positives). We measure

and analyze TNR results the way as that of TPR, as we show in Equation A.5 (HAN; KAMBER,

2006):

TNR = TN
TN + FP , (A.5)

where TN and FP are the cells of a confusion matrix.

A.6 False alarm ratio

In turn, the false alarm ratio (or false positive ratio) accounts for the proportion of positive

forecasts that are not followed by a true occurrence. Given that it has a complementary

nature, we must analyze it in conjunction with the positive recall of classifiers to allow a better



Appendix A. Performance assessment 153

understanding involving the quality of their TPR results. As scores mentioned earlier, FAR also

ranges around [0 , 1]. However, the lower the score, the better the classifier. In Equation A.6,

we show how to calculate FAR (JOLLIFFE; STEPHENSON, 2003):

FAR = FP
TP + FP , (A.6)

where FP and TP are the cells of a confusion matrix.

A.7 False positive rate

Also known as the probability of a false detection (POFD), the FPR calculates the rate of false

alarms among negative predictions, as we show in Equation A.7 (WITTEN; FRANK; HALL,

2011):

FPR = FP
TN + FP , (A.7)

where FP and TN are the cells of a confusion matrix.

A.8 Area under the curve

The AUC measures the two-dimensional area underneath the ROC curve. Accordingly, it

graphically analyzes the TPR scores (y-axis) vs. the FPRs (x-axis) for a set of increasing

probability thresholds to make the yes/no decisions, i. e., 0.1, 0.2, 0.3, and so on (refer to

Figure A.1 for an example).

Best classifiers score the AUC next to the graph left-hand corner (FPR = 0 and TPR = 1). On

the other hand, the worst classifiers score next to the graph bottom right-hand corner (FPR = 1

and TPR = 0). The AUC is always positive and, ideally, should be greater than 0.5.

A.9 Heidke skill score

Conversely to the scores mentioned earlier for assessing individual classifiers’ behaviors (PPV,

NPV, TPR, TNR, FAR, and FPR) or their probabilistic skill (AUC), both HSS and TSS refer to

generalized quality skill scores for them. Regarding HSS, it measures the fraction of correct

forecasts after eliminating those forecasts, which would be correct due to random chance. As
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Figure A.1: Example of ROC curve graphical plot.

such, it assesses the improvement of forecasts over the random chance. For reporting purposes,

HSS ranks classifiers over [−1 , 1], where results close to -1 mean all predictions incorrect

(positive and negative) and close to 1 mean all predictions correct – zeroed results refer to

classifiers’ forecast skills equal to random chance. In Equation A.8, we show a simplified form

to calculate HSS (JOLLIFFE; STEPHENSON, 2003):

HSS =
2 × [(TP × TN) − (FN × FP)]

(TP + FN) × (FN + TN) + (TP + FP) × (FP + TN) , (A.8)

where TP, TN, FN, and FP are the cells of a confusion matrix.

A.10 True skill statistics

Finally, as a generalized quality skill score similar to HSS, the TSS score also ranks a model

performance over a scale lying on [−1 , 1]. Hence, results close to −1 mean all incorrect

predictions (positive and negative), and those close to 1 mean all correct predictions – zeroed

results refer to no-skilled classifiers. Conversely to HSS, TSS is not affected by imbalanced class

ratios (BLOOMFIELD et al., 2012). In Equation A.9, we show how to calculate TSS (JOLLIFFE;

STEPHENSON, 2003; YOUDEN, 1950):

TSS = TPR + TNR − 1, (A.9)

where TPR and TNR are the corresponding scores mentioned earlier.
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Appendix B

Detailed case study results

Chapter 6 discussed the results of carrying out the methodology as defined in Chapter 4 , thus

presenting the performance of models designed to forecast ≥ C- (Case Study I) and M-class

flares (case studies II and III) up to three days ahead.

Specifically for Case Study I, Chapter 6 dove deeper into the analysis and presented the

detailed discussion ofmethodology’s inner results for flare forecasting in the next 24 h, excluding

this detailed text for longer forecasting horizons in such case and all horizons of others.

This appendix is a complement for Chapter 6 since it presents the tables of detailed results

showing how the performance has changed between the methodology inner processes of the

remainder forecasting horizons of Case Study I and other cases1.

1The notation used in tables shown herein is further explained in Chapter 6, specifically in Page 105.
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Table B.1: Case Study I, ≥ C flares, the next 48 h: model selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.83 0.887 0.720 0.857 0.773 0.143 0.608 0.617 0.888

AdaBoost/2 0.829 0.885 0.723 0.858 0.769 0.142 0.607 0.616 0.891

AdaBoost/3 0.835 0.888 0.733 0.863 0.777 0.137 0.621 0.630 0.894

AdaBoost/4 0.829 0.884 0.723 0.858 0.768 0.142 0.608 0.616 0.892

AdaBoost/5 0.832 0.895 0.714 0.856 0.783 0.145 0.608 0.621 0.893

avg(AdaBoost) 0.83 0.89 0.72 0.86 0.77 0.14 0.61a 0.62 0.89

RandomForest/1 0.853 0.937 0.693 0.853 0.854 0.147 0.630 0.659 0.903

RandomForest/2 0.850 0.937 0.685 0.849 0.853 0.151 0.622 0.652 0.903

RandomForest/3 0.851 0.937 0.687 0.850 0.854 0.150 0.624 0.654 0.905

RandomForest/4 0.848 0.933 0.687 0.850 0.845 0.150 0.620 0.648 0.906

RandomForest/5 0.851 0.936 0.688 0.851 0.852 0.149 0.625 0.654 0.905

avg(RandomForest) 0.85 0.94 0.69 0.85 0.85 0.15 0.62a 0.65 0.90

GradientTreeBoosting/1 0.810 0.806 0.817 0.896 0.699 0.104 0.623 0.598 0.861

GradientTreeBoosting/2 0.811 0.837 0.762 0.872 0.718 0.128 0.599 0.589 0.838

GradientTreeBoosting/3 0.811 0.834 0.768 0.875 0.716 0.125 0.601 0.590 0.841

GradientTreeBoosting/4 0.822 0.850 0.769 0.876 0.735 0.124 0.619 0.611 0.850

GradientTreeBoosting/5 0.810 0.817 0.798 0.887 0.710 0.113 0.615 0.597 0.847

avg(GradientTreeBoosting) 0.81 0.83 0.78 0.88 0.72 0.12 0.61a 0.60 0.85
a TSSRandomForest > TSSAdaBoost and TSSGradientTreeBoosting (p < 0.05). As the RandomForest output the highest TSS, the methodology has chosen it
to proceed in the pipeline.

Table B.2: Case Study I, ≥ C flares, the next 48 h: feature selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.866 0.925 0.753 0.877 0.843 0.124 0.678 0.695 0.892

RandomForest/2 0.864 0.917 0.765 0.881 0.831 0.119 0.682 0.694 0.898

RandomForest/3 0.865 0.917 0.766 0.882 0.831 0.119 0.683 0.696 0.891

RandomForest/4 0.863 0.925 0.745 0.873 0.841 0.127 0.670 0.688 0.887

RandomForest/5 0.868 0.932 0.748 0.875 0.853 0.125 0.680 0.700 0.886

avg(RandomForest) 0.87acc 0.92tpr 0.76tnr 0.88ppv 0.84npv 0.12far 0.68tss 0.69hss 0.89auc

acc +0.02 (p < 0.05).
tpr -0.02 (p < 0.05).

tnr +0.07 (p < 0.05).
ppv +0.03 (p < 0.05).

npv -0.01 (p < 0.1).
far -0.03 (p < 0.05).

tss +0.06 (p < 0.05).
hss +0.04 (p < 0.05).

auc -0.01 (p < 0.05).
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Table B.3: Case Study I, ≥ C flares, the next 48 h: hyperparameter optimization results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.869 0.922 0.770 0.884 0.839 0.116 0.692 0.705 0.941

RandomForest/2 0.866 0.912 0.777 0.886 0.825 0.114 0.689 0.699 0.940

RandomForest/3 0.866 0.921 0.761 0.880 0.835 0.120 0.682 0.696 0.939

RandomForest/4 0.865 0.918 0.767 0.882 0.832 0.118 0.684 0.697 0.942

RandomForest/5 0.865 0.909 0.781 0.887 0.820 0.113 0.690 0.698 0.940

avg(RandomForest) 0.87 0.92 0.77tnr 0.88 0.83npv 0.12 0.69tss 0.70 0.94auc

tnr +0.01 (p < 0.1). npv -0.01 (p > 0.05 and 0.1). tss +0.01 (p < 0.1). auc +0.05 (p < 0.05).

Table B.4: Case Study I, ≥ C flares, the next 48 h: data resampling results.

Method/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

SMOTE/1 0.810 0.743 0.935 0.956 0.659 0.044 0.678 0.617 0.937

SMOTE/2 0.803 0.730 0.942 0.960 0.649 0.040 0.672 0.607 0.938

SMOTE/3 0.802 0.729 0.941 0.959 0.648 0.041 0.670 0.605 0.937

SMOTE/4 0.798 0.721 0.945 0.961 0.642 0.039 0.666 0.599 0.937

SMOTE/5 0.803 0.728 0.943 0.961 0.647 0.039 0.671 0.606 0.935

avg(SMOTE) 0.80 0.73a 0.94a 0.96 0.65 0.04 0.67 0.61 0.94

SMOTE-ENN/1 0.851 0.835 0.882 0.931 0.739 0.069 0.717 0.686 0.936

SMOTE-ENN/2 0.854 0.837 0.886 0.933 0.743 0.067 0.723 0.692 0.936

SMOTE-ENN/3 0.854 0.838 0.883 0.932 0.743 0.068 0.721 0.690 0.938

SMOTE-ENN/4 0.847 0.828 0.884 0.931 0.731 0.069 0.712 0.678 0.938

SMOTE-ENN/5 0.844 0.821 0.888 0.933 0.725 0.067 0.709 0.673 0.936

avg(SMOTE-ENN) 0.85 0.83b 0.88b 0.93 0.74 0.07 0.72 0.68 0.94

SMOTE-Tomek/1 0.858 0.849 0.875 0.928 0.755 0.072 0.724 0.698 0.940

SMOTE-Tomek/2 0.857 0.850 0.870 0.925 0.755 0.075 0.720 0.695 0.941

SMOTE-Tomek/3 0.857 0.855 0.861 0.921 0.759 0.079 0.716 0.694 0.939

SMOTE-Tomek/4 0.856 0.856 0.857 0.919 0.759 0.081 0.713 0.692 0.941

SMOTE-Tomek/5 0.849 0.841 0.864 0.922 0.742 0.079 0.705 0.678 0.938

avg(SMOTE-Tomek) 0.86 0.85c 0.87c 0.92 0.75 0.08 0.72 0.69 0.94
a |TPR − TNR| = |0.73 − 0.94| = 0.21. b |TPR − TNR| = |0.83 − 0.88| = 0.05. c |TPR − TNR| = |0.85 − 0.87| = 0.02.
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Table B.5: Case Study I, ≥ C flares, the next 48 h: cost function analysis results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.859 0.852 0.874 0.927 0.758 0.073 0.725 0.700 0.940

RandomForest/2 0.850 0.843 0.862 0.921 0.744 0.079 0.705 0.680 0.939

RandomForest/3 0.858 0.858 0.856 0.919 0.762 0.081 0.715 0.694 0.941

RandomForest/4 0.857 0.856 0.861 0.921 0.759 0.079 0.716 0.694 0.940

RandomForest/5 0.856 0.848 0.870 0.925 0.752 0.075 0.718 0.692 0.941

avg(RandomForest) 0.86acc 0.85a,tpr0.86a,tnr0.92ppv 0.76npv 0.08far 0.72tss 0.69 0.94
a |TPR − TNR| = |0.85 − 0.86| = 0.01. As the cost function output the lowest difference, the methodology has chosen it to proceed in the
pipeline.
acc -0.01 (p < 0.05) – compared to feature selection.
tpr -0.07 (p < 0.05) – compared to feature selection.
tnr +0.09 (p < 0.05).
ppv +0.04 (p < 0.05) – compared to feature selection.

npv -0.08 (p < 0.05) – compared to feature selection.
far -0.04 (p < 0.05) – compared to feature selection.
tss +0.03 (p < 0.05).

Table B.6: Case Study I, ≥ C flares, the next 48 h: cut-off point adjustment results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.864 0.895 0.806 0.897 0.803 0.103 0.701 0.700 0.941

RandomForest/2 0.863 0.902 0.789 0.890 0.811 0.110 0.692 0.696 0.939

RandomForest/3 0.866 0.894 0.815 0.901 0.802 0.099 0.709 0.706 0.940

RandomForest/4 0.867 0.904 0.798 0.895 0.814 0.105 0.702 0.705 0.941

RandomForest/5 0.865 0.888 0.820 0.903 0.796 0.097 0.708 0.703 0.940

avg(RandomForest) 0.87acc 0.90tpr 0.81tnr 0.90ppv 0.81npv 0.10far 0.70tss 0.70hss 0.94
acc +0.01 (p < 0.05).
tpr +0.05 (p < 0.05).

tnr -0.04 (p < 0.05).
ppv -0.02 (p < 0.05).

npv +0.05 (p < 0.05).
far +0.02 (p < 0.05).

tss -0.02 (p < 0.05).
tss +0.01 (p < 0.05).

Table B.7: Case Study I, ≥ C flares, the next 48 h: evaluation of validation sets.

Pred.Type/Val.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineRandomForest/1 0.850 0.935 0.690 0.851 0.848 0.149 0.625 0.654 0.887

BaselineRandomForest/2 0.848 0.931 0.690 0.850 0.840 0.150 0.621 0.648 0.922

BaselineRandomForest/3 0.868 0.958 0.698 0.857 0.899 0.143 0.657 0.693 0.927

BaselineRandomForest/4 0.848 0.925 0.701 0.854 0.832 0.146 0.626 0.650 0.897

BaselineRandomForest/5 0.847 0.947 0.659 0.840 0.869 0.160 0.606 0.643 0.912

avg(BaselineRandomForest) 0.85 0.94 0.69 0.85 0.86 0.15 0.63 0.66 0.91

OptimizedRandomForest/1 0.863 0.900 0.793 0.892 0.808 0.109 0.693 0.696 0.936

OptimizedRandomForest/2 0.866 0.896 0.808 0.899 0.804 0.102 0.704 0.704 0.940

OptimizedRandomForest/3 0.870 0.922 0.772 0.884 0.840 0.116 0.694 0.708 0.947

OptimizedRandomForest/4 0.858 0.864 0.845 0.914 0.767 0.087 0.709 0.693 0.942

OptimizedRandomForest/5 0.869 0.897 0.816 0.902 0.808 0.098 0.714 0.712 0.936

avg(OptimizedRandomForest) 0.87acc 0.90tpr 0.81tnr 0.90ppv 0.81npv 0.10far 0.70tss 0.70hss 0.94auc

acc +0.02 (p < 0.05).
tpr -0.04 (p < 0.05).

tnr +0.12 (p < 0.05).
ppv +0.05 (p < 0.05).

npv -0.05 (p < 0.05).
far -0.05 (p < 0.05).

tss +0.07 (p < 0.05).
hss +0.04 (p < 0.05).

auc +0.03 (p < 0.05).
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Table B.8: Case Study I, ≥ C flares, the next 48 h: evaluation of test sets.

Pred.Type/Test Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineRandomForest/1 0.858 0.937 0.709 0.858 0.857 0.142 0.646 0.673 0.914

BaselineRandomForest/2 0.833 0.921 0.667 0.840 0.816 0.160 0.587 0.614 0.891

BaselineRandomForest/3 0.809 0.907 0.624 0.821 0.780 0.179 0.531 0.558 0.897

BaselineRandomForest/4 0.827 0.944 0.605 0.819 0.852 0.182 0.549 0.590 0.880

BaselineRandomForest/5 0.861 0.948 0.697 0.855 0.876 0.145 0.645 0.677 0.929

avg(BaselineRandomForest) 0.84 0.93 0.66 0.84 0.84 0.16 0.59 0.62 0.90

OptimizedRandomForest/1 0.888 0.916 0.835 0.913 0.841 0.088 0.751 0.752 0.949

OptimizedRandomForest/2 0.841 0.866 0.794 0.888 0.758 0.112 0.660 0.652 0.925

OptimizedRandomForest/3 0.837 0.878 0.760 0.874 0.766 0.126 0.638 0.639 0.918

OptimizedRandomForest/4 0.877 0.902 0.831 0.910 0.818 0.091 0.732 0.730 0.942

OptimizedRandomForest/5 0.864 0.896 0.803 0.896 0.803 0.104 0.699 0.699 0.954

avg(OptimizedRandomForest) 0.86 0.89 0.80 0.90 0.80 0.10 0.70 0.69 0.94
acc +0.02 (p < 0.05).
tpr -0.04 (p < 0.05).

tnr +0.14 (p < 0.05).
ppv +0.06 (p < 0.05).

npv -0.04 (p < 0.05).
far -0.06 (p < 0.05).

tss +0.11 (p < 0.05).
hss +0.07 (p < 0.05).

auc +0.04 (p < 0.05).

Table B.9: Case Study I, ≥ C flares, the next 72 h: model selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.854 0.924 0.691 0.875 0.796 0.125 0.615 0.639 0.896

AdaBoost/2 0.854 0.920 0.700 0.878 0.790 0.122 0.620 0.641 0.889

AdaBoost/3 0.857 0.918 0.714 0.883 0.789 0.118 0.632 0.649 0.893

AdaBoost/4 0.857 0.918 0.712 0.882 0.790 0.118 0.631 0.649 0.894

AdaBoost/5 0.858 0.921 0.713 0.883 0.794 0.118 0.634 0.652 0.894

avg(AdaBoost) 0.86 0.92 0.71 0.88 0.79 0.12 0.63a 0.65 0.89

RandomForest/1 0.863 0.950 0.660 0.867 0.850 0.133 0.610 0.651 0.901

RandomForest/2 0.865 0.949 0.669 0.870 0.849 0.130 0.618 0.658 0.899

RandomForest/3 0.864 0.947 0.670 0.870 0.844 0.130 0.617 0.655 0.905

RandomForest/4 0.863 0.948 0.664 0.868 0.845 0.132 0.612 0.652 0.900

RandomForest/5 0.863 0.949 0.662 0.868 0.847 0.132 0.610 0.651 0.898

avg(RandomForest) 0.86 0.95 0.66 0.87 0.85 0.13 0.61a 0.65 0.90

GradientTreeBoosting/1 0.830 0.885 0.703 0.877 0.723 0.123 0.588 0.589 0.820

GradientTreeBoosting/2 0.818 0.853 0.736 0.886 0.687 0.114 0.589 0.574 0.815

GradientTreeBoosting/3 0.825 0.841 0.787 0.905 0.689 0.096 0.628 0.602 0.840

GradientTreeBoosting/4 0.830 0.862 0.754 0.893 0.708 0.107 0.616 0.603 0.825

GradientTreeBoosting/5 0.815 0.855 0.721 0.882 0.687 0.118 0.576 0.565 0.806

avg(GradientTreeBoosting) 0.82 0.86 0.74 0.89 0.70 0.11 0.60 0.59 0.82
a TSSAdaBoost > TSSRandomForest (p < 0.05). As the AdaBoost output the highest TSS, the methodology has chosen it to proceed in the pipeline.
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Table B.10: Case Study I, ≥ C flares, the next 72 h: feature selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.883 0.934 0.762 0.902 0.834 0.098 0.696 0.713 0.928

AdaBoost/2 0.885 0.929 0.784 0.910 0.827 0.090 0.712 0.723 0.934

AdaBoost/3 0.885 0.937 0.765 0.903 0.839 0.097 0.702 0.719 0.930

AdaBoost/4 0.882 0.927 0.776 0.907 0.822 0.093 0.703 0.714 0.932

AdaBoost/5 0.883 0.936 0.760 0.901 0.837 0.099 0.696 0.715 0.928

avg(AdaBoost) 0.88acc 0.93tpr 0.77tnr 0.90ppv 0.83npv 0.10far 0.70tss 0.72hss 0.93auc

acc +0.02 (p < 0.05).
tpr +0.01 (p < 0.05).

tnr +0.06 (p < 0.05).
ppv +0.02 (p < 0.05).

npv +0.04 (p < 0.05).
far -0.02 (p < 0.05).

tss +0.07 (p < 0.05).
hss +0.07 (p < 0.05).

auc +0.04 (p < 0.05).

Table B.11: Case Study I, ≥ C flares, the next 72 h: hyperparameter optimization results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.888 0.936 0.774 0.907 0.840 0.093 0.711 0.727 0.946

AdaBoost/2 0.883 0.941 0.747 0.897 0.846 0.103 0.688 0.712 0.943

AdaBoost/3 0.886 0.939 0.762 0.902 0.844 0.098 0.701 0.721 0.943

AdaBoost/4 0.885 0.942 0.753 0.899 0.847 0.101 0.695 0.717 0.945

AdaBoost/5 0.885 0.939 0.760 0.901 0.842 0.099 0.698 0.718 0.943

avg(AdaBoost) 0.89acc 0.94tpr 0.76tnr 0.90 0.84npv 0.10 0.70 0.72 0.94auc

acc +0.01 (p > 0.05 and 0.1).
tpr +0.01 (p < 0.05).
tnr -0.01 (p > 0.05 and 0.1).

npv +0.01 (p < 0.05).
auc +0.01 (p < 0.05).
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Table B.12: Case Study I, ≥ C flares, the next 72 h: data resampling results.

Method/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

SMOTE/1 0.818 0.769 0.932 0.964 0.634 0.036 0.701 0.618 0.939

SMOTE/2 0.812 0.762 0.928 0.961 0.626 0.039 0.690 0.606 0.935

SMOTE/3 0.814 0.764 0.930 0.963 0.628 0.038 0.694 0.610 0.938

SMOTE/4 0.814 0.764 0.931 0.963 0.628 0.037 0.695 0.611 0.937

SMOTE/5 0.813 0.764 0.927 0.961 0.628 0.039 0.691 0.608 0.937

avg(SMOTE) 0.81 0.76a 0.93a 0.96 0.63 0.04 0.69 0.61 0.94

SMOTE-ENN/1 0.855 0.853 0.862 0.935 0.716 0.065 0.714 0.675 0.938

SMOTE-ENN/2 0.863 0.863 0.863 0.936 0.730 0.064 0.725 0.689 0.940

SMOTE-ENN/3 0.865 0.866 0.862 0.937 0.735 0.064 0.728 0.694 0.939

SMOTE-ENN/4 0.865 0.866 0.863 0.937 0.735 0.063 0.730 0.695 0.941

SMOTE-ENN/5 0.861 0.862 0.859 0.935 0.728 0.065 0.722 0.686 0.938

avg(SMOTE-ENN) 0.86 0.86b 0.86b 0.94 0.73 0.06 0.72 0.69 0.94

SMOTE-Tomek/1 0.863 0.863 0.864 0.937 0.730 0.063 0.727 0.691 0.942

SMOTE-Tomek/2 0.869 0.872 0.862 0.937 0.743 0.063 0.734 0.702 0.944

SMOTE-Tomek/3 0.871 0.874 0.863 0.937 0.746 0.063 0.737 0.705 0.945

SMOTE-Tomek/4 0.870 0.872 0.864 0.938 0.744 0.062 0.736 0.704 0.942

SMOTE-Tomek/5 0.866 0.868 0.861 0.936 0.737 0.064 0.729 0.695 0.942

avg(SMOTE-Tomek) 0.87 0.87c 0.86c 0.94 0.74 0.06 0.73 0.70 0.94
a |TPR − TNR| = |0.76 − 0.93| = 0.17. b |TPR − TNR| = |0.86 − 0.86| = 0. c |TPR − TNR| = |0.87 − 0.86| = 0.01.

Table B.13: Case Study I, ≥ C flares, the next 72 h: cost function analysis results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.870 0.871 0.869 0.940 0.742 0.060 0.740 0.705 0.945

AdaBoost/2 0.864 0.862 0.869 0.939 0.729 0.061 0.731 0.693 0.943

AdaBoost/3 0.866 0.867 0.865 0.938 0.736 0.062 0.732 0.697 0.943

AdaBoost/4 0.868 0.869 0.867 0.938 0.739 0.062 0.735 0.700 0.945

AdaBoost/5 0.871 0.873 0.866 0.938 0.745 0.062 0.739 0.706 0.943

avg(AdaBoost) 0.87acc 0.87a,tpr0.87a,tnr0.94ppv 0.74npv 0.06far 0.74tss 0.70hss 0.94
a |0.87 − 0.87| = 0. Noteworthily, both SMOTE-ENN and the cost function zeroed the difference |TPR − TNR|. However, we
maintained the latter for outputting the highest TSS (0.74, p < 0.05) – compared to feature selection.
acc -0.01 (p < 0.05) – compared to feature selection.
tpr -0.07 (p < 0.05).
tnr +0.10 (p < 0.05) – compared to feature selection.
ppv +0.04 (p < 0.05) – compared to feature selection.

npv -0.10 (p < 0.05).
far -0.04 (p < 0.05) – compared to feature selection.
tss +0.04 (p < 0.05) – compared to feature selection.
hss -0.02 (p < 0.05) – compared to feature selection.
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Table B.14: Case Study I, ≥ C flares, the next 72 h: cut-off point adjustment results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.882 0.905 0.829 0.926 0.790 0.075 0.734 0.724 0.945

AdaBoost/2 0.873 0.893 0.826 0.923 0.769 0.077 0.719 0.704 0.943

AdaBoost/3 0.875 0.897 0.825 0.923 0.775 0.077 0.722 0.709 0.943

AdaBoost/4 0.877 0.893 0.840 0.929 0.771 0.071 0.733 0.715 0.943

AdaBoost/5 0.881 0.901 0.834 0.927 0.784 0.073 0.735 0.722 0.945

avg(AdaBoost) 0.88acc 0.90tpr 0.83tnr 0.93ppv 0.78npv 0.07far 0.73tss 0.71hss 0.94
acc +0.01 (p < 0.05).
tpr +0.03 (p < 0.1).

tnr -0.04 (p < 0.05).
ppv -0.01 (p < 0.05).

npv +0.04 (p < 0.05).
far +0.01 (p < 0.05).

tss -0.01 (p < 0.05).
hss +0.01 (p < 0.05).

Table B.15: Case Study I, ≥ C flares, the next 72 h: evaluation of validation sets.

Pred.Type/Val.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineAdaBoost/1 0.845 0.934 0.638 0.857 0.805 0.143 0.571 0.608 0.888

BaselineAdaBoost/2 0.858 0.928 0.694 0.876 0.804 0.124 0.621 0.647 0.910

BaselineAdaBoost/3 0.852 0.917 0.700 0.877 0.783 0.123 0.617 0.636 0.867

BaselineAdaBoost/4 0.861 0.942 0.673 0.871 0.832 0.130 0.614 0.650 0.891

BaselineAdaBoost/5 0.856 0.933 0.676 0.871 0.811 0.130 0.608 0.639 0.893

avg(BaselineAdaBoost) 0.85 0.93 0.68 0.87 0.81 0.13 0.61 0.64 0.89

OptimizedAdaBoost/1 0.892 0.912 0.846 0.933 0.805 0.068 0.758 0.747 0.947

OptimizedAdaBoost/2 0.869 0.873 0.861 0.936 0.744 0.064 0.734 0.702 0.947

OptimizedAdaBoost/3 0.870 0.890 0.824 0.922 0.762 0.078 0.714 0.698 0.939

OptimizedAdaBoost/4 0.888 0.914 0.827 0.925 0.805 0.075 0.742 0.736 0.949

OptimizedAdaBoost/5 0.874 0.904 0.803 0.915 0.782 0.085 0.707 0.702 0.940

avg(OptimizedAdaBoost) 0.88acc 0.90tpr 0.83tnr 0.93ppv 0.78npv 0.07far 0.73tss 0.72hss 0.94auc

acc +0.03 (p < 0.05).
tpr -0.03 (p < 0.1).

tnr +0.15 (p < 0.05).
ppv +0.06 (p < 0.05).

npv -0.03 (p > 0.05 and 0.1).
far -0.06 (p < 0.05).

tss +0.12 (p < 0.05).
hss +0.08 (p < 0.05).

auc +0.05 (p < 0.05).
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Table B.16: Case Study I, ≥ C flares, the next 72 h: evaluation of test sets.

Pred.Type/Test Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineAdaBoost/1 0.839 0.910 0.673 0.866 0.763 0.134 0.583 0.603 0.903

BaselineAdaBoost/2 0.858 0.910 0.734 0.889 0.777 0.111 0.644 0.654 0.914

BaselineAdaBoost/3 0.854 0.941 0.648 0.863 0.824 0.137 0.589 0.628 0.884

BaselineAdaBoost/4 0.838 0.920 0.645 0.859 0.775 0.141 0.565 0.594 0.874

BaselineAdaBoost/5 0.852 0.923 0.686 0.874 0.791 0.126 0.609 0.633 0.911

avg(BaselineAdaBoost) 0.85 0.92 0.68 0.87 0.79 0.13 0.60 0.62 0.90

OptimizedAdaBoost/1 0.866 0.891 0.809 0.916 0.761 0.084 0.700 0.687 0.945

OptimizedAdaBoost/2 0.833 0.836 0.826 0.919 0.682 0.082 0.662 0.624 0.934

OptimizedAdaBoost/3 0.881 0.906 0.824 0.924 0.788 0.076 0.730 0.720 0.951

OptimizedAdaBoost/4 0.869 0.885 0.832 0.925 0.754 0.075 0.716 0.696 0.946

OptimizedAdaBoost/5 0.858 0.911 0.733 0.889 0.778 0.111 0.644 0.655 0.946

avg(OptimizedAdaBoost) 0.86acc 0.89tpr 0.80tnr 0.91ppv 0.75npv 0.09far 0.69tss 0.68hss 0.94auc

acc +0.01 (p > 0.05 and 0.1).
tpr -0.03 (p < 0.1).

tnr +0.12 (p < 0.05).
ppv +0.04 (p < 0.05).

npv -0.04 (p < 0.1).
far -0.04 (p < 0.05).

tss +0.09 (p < 0.05).
hss +0.06 (p > 0.05 and 0.1).

auc +0.04 (p < 0.05).

Table B.17: Case Study II, ≥M flares, the next 24 h: model selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.823 0.207 0.953 0.483 0.850 0.517 0.160 0.205 0.766

AdaBoost/2 0.821 0.207 0.951 0.471 0.850 0.529 0.157 0.201 0.756

AdaBoost/3 0.821 0.195 0.954 0.471 0.849 0.529 0.149 0.193 0.760

AdaBoost/4 0.822 0.221 0.950 0.483 0.852 0.517 0.171 0.216 0.770

AdaBoost/5 0.824 0.229 0.950 0.492 0.853 0.508 0.179 0.224 0.765

avg(AdaBoost) 0.82 0.21 0.95 0.48 0.85 0.52 0.16a 0.21 0.76

RandomForest/1 0.834 0.146 0.980 0.620 0.844 0.380 0.126 0.180 0.787

RandomForest/2 0.835 0.156 0.979 0.617 0.846 0.383 0.135 0.190 0.786

RandomForest/3 0.837 0.146 0.984 0.659 0.845 0.341 0.130 0.186 0.797

RandomForest/4 0.837 0.153 0.982 0.649 0.846 0.352 0.135 0.192 0.787

RandomForest/5 0.836 0.149 0.982 0.647 0.845 0.353 0.131 0.188 0.792

avg(RandomForest) 0.84 0.15 0.98 0.64 0.85 0.36 0.13 0.19 0.79

GradientTreeBoosting/1 0.740 0.543 0.782 0.350 0.891 0.650 0.325 0.265 0.679

GradientTreeBoosting/2 0.747 0.525 0.794 0.358 0.889 0.642 0.319 0.266 0.665

GradientTreeBoosting/3 0.743 0.531 0.788 0.354 0.890 0.646 0.319 0.262 0.670

GradientTreeBoosting/4 0.751 0.542 0.795 0.368 0.893 0.633 0.337 0.280 0.687

GradientTreeBoosting/5 0.738 0.533 0.782 0.351 0.890 0.649 0.315 0.257 0.664

avg(GradientTreeBoosting) 0.74 0.53 0.79 0.36 0.89 0.64 0.32a 0.27 0.67
a TSSGradientTreeBoosting > TSSAdaBoost (p < 0.05). As the GradientTreeBoosting output the highest TSS, the methodology has chosen it to proceed
in the pipeline.



Appendix B. Detailed case study results 164

Table B.18: Case Study II, ≥M flares, the next 24 h: feature selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.740 0.570 0.776 0.363 0.898 0.637 0.346 0.280 0.695

GradientTreeBoosting/2 0.750 0.514 0.800 0.361 0.888 0.639 0.314 0.266 0.672

GradientTreeBoosting/3 0.734 0.570 0.769 0.351 0.896 0.649 0.339 0.269 0.695

GradientTreeBoosting/4 0.741 0.553 0.781 0.355 0.894 0.645 0.334 0.271 0.699

GradientTreeBoosting/5 0.741 0.573 0.777 0.359 0.897 0.642 0.350 0.281 0.702

avg(GradientTreeBoosting) 0.74 0.56tpr 0.78tnr 0.36 0.89 0.64 0.34tss 0.27 0.69auc

tpr +0.03 (p < 0.1).
tnr -0.01 (p > 0.05 and 0.1).

tss +0.02 (p > 0.05 and 0.1).
auc +0.02 (p < 0.05).

Table B.19: Case Study II, ≥M flares, the next 24 h: hyperparameter optimization results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.851 0.279 0.972 0.678 0.864 0.322 0.251 0.325 0.854

GradientTreeBoosting/2 0.851 0.288 0.970 0.671 0.866 0.329 0.258 0.332 0.861

GradientTreeBoosting/3 0.848 0.274 0.970 0.659 0.863 0.341 0.244 0.316 0.855

GradientTreeBoosting/4 0.847 0.270 0.969 0.651 0.863 0.349 0.239 0.310 0.853

GradientTreeBoosting/5 0.845 0.254 0.970 0.643 0.860 0.357 0.224 0.293 0.851

avg(GradientTreeBoosting) 0.85acc 0.27tpr 0.97tnr 0.66ppv 0.86npv 0.34far 0.24tss 0.32hss 0.85auc

acc +0.11 (p < 0.05) – compared to model selection.
tpr -0.29 (p < 0.05).
tnr +0.18 (p < 0.05) – compared to model selection.
ppv +0.30 (p < 0.05) – compared to model selection.
npv -0.03 (p < 0.05) – compared to model selection.

far -0.30 (p < 0.05) – compared to model selection.
tss -0.08 (p < 0.05) – compared to model selection.
hss +0.05 (p < 0.05) – compared to model selection.
auc +0.16 (p < 0.05).
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Table B.20: Case Study II, ≥M flares, the next 24 h: data resampling results.

Method/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

SMOTE/1 0.741 0.806 0.728 0.386 0.947 0.614 0.534 0.373 0.843

SMOTE/2 0.739 0.799 0.726 0.382 0.945 0.618 0.525 0.367 0.841

SMOTE/3 0.740 0.799 0.728 0.384 0.945 0.616 0.527 0.370 0.843

SMOTE/4 0.744 0.821 0.728 0.390 0.951 0.610 0.548 0.382 0.849

SMOTE/5 0.746 0.814 0.732 0.392 0.949 0.608 0.546 0.383 0.841

avg(SMOTE) 0.74 0.81a 0.73a 0.39 0.95 0.61 0.54 0.38 0.84

SMOTE-ENN/1 0.671 0.893 0.624 0.335 0.965 0.665 0.517 0.312 0.841

SMOTE-ENN/2 0.677 0.884 0.634 0.339 0.963 0.661 0.518 0.317 0.842

SMOTE-ENN/3 0.664 0.889 0.616 0.329 0.963 0.671 0.505 0.302 0.839

SMOTE-ENN/4 0.671 0.884 0.626 0.334 0.962 0.666 0.510 0.309 0.843

SMOTE-ENN/5 0.685 0.893 0.640 0.345 0.966 0.655 0.533 0.328 0.846

avg(SMOTE-ENN) 0.67 0.89b 0.63b 0.34 0.96 0.66 0.52 0.31 0.84

SMOTE-Tomek/1 0.771 0.749 0.776 0.415 0.936 0.585 0.525 0.399 0.851

SMOTE-Tomek/2 0.771 0.743 0.777 0.414 0.935 0.586 0.520 0.396 0.848

SMOTE-Tomek/3 0.771 0.744 0.777 0.415 0.935 0.586 0.521 0.397 0.850

SMOTE-Tomek/4 0.770 0.759 0.772 0.415 0.938 0.586 0.532 0.400 0.848

SMOTE-Tomek/5 0.774 0.764 0.776 0.419 0.940 0.581 0.540 0.408 0.857

avg(SMOTE-Tomek) 0.77acc 0.75c,tpr 0.78c,tnr 0.42ppv 0.94npv 0.58far 0.53tss 0.40hss 0.85auc

a |TPR − TNR| = |0.81 − 0.73| = 0.08.
b |TPR − TNR| = |0.89 − 0.63| = 0.26.
c |TPR − TNR| = |0.75 − 0.78| = 0.03. As the SMOTE-Tomek output the lowest difference, the methodology has chosen it to proceed in
the pipeline (GradientTreeBoosting does not support cost-sensitive learning).
acc -0.08 (p < 0.05).
tpr +0.48 (p < 0.05).
tnr -0.19 (p < 0.05).

ppv -0.24 (p < 0.05).
npv +0.08 (p < 0.05).
far +0.24 (p < 0.05).

tss +0.29 (p < 0.05).
hss +0.08 (p < 0.05).
auc -0.01 (p > 0.05 and 0.1).

Table B.21: Case Study II, ≥M flares, the next 24 h: cut-off point adjustment results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.731 0.812 0.714 0.376 0.947 0.624 0.527 0.361 0.848

GradientTreeBoosting/2 0.737 0.810 0.722 0.382 0.947 0.618 0.532 0.369 0.850

GradientTreeBoosting/3 0.744 0.832 0.725 0.391 0.953 0.609 0.557 0.385 0.857

GradientTreeBoosting/4 0.739 0.813 0.723 0.384 0.948 0.616 0.536 0.372 0.852

GradientTreeBoosting/5 0.737 0.823 0.719 0.384 0.951 0.617 0.542 0.374 0.848

avg(GradientTreeBoosting) 0.74acc 0.82tpr 0.72tnr 0.38ppv 0.95npv 0.62far 0.54tss 0.37hss 0.85
acc -0.03 (p < 0.05).
tpr +0.07 (p < 0.05).

tnr -0.06 (p < 0.05).
ppv -0.04 (p < 0.05).

npv +0.01 (p < 0.05).
far +0.04 (p < 0.05).

tss +0.01 (p < 0.05).
hss -0.03 (p < 0.05).
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Table B.22: Case Study II, ≥M flares, the next 24 h: evaluation of validation sets.

Pred.Type/Val.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineGradientTreeBoosting/1 0.651 0.720 0.636 0.296 0.915 0.704 0.357 0.228 0.687

BaselineGradientTreeBoosting/2 0.796 0.482 0.863 0.427 0.887 0.573 0.344 0.328 0.631

BaselineGradientTreeBoosting/3 0.741 0.534 0.784 0.345 0.888 0.656 0.318 0.262 0.611

BaselineGradientTreeBoosting/4 0.782 0.318 0.880 0.359 0.859 0.641 0.198 0.207 0.559

BaselineGradientTreeBoosting/5 0.747 0.495 0.800 0.343 0.882 0.657 0.295 0.251 0.690

avg(BaselineGradientTreeBoosting) 0.74 0.51 0.79 0.35 0.89 0.65 0.30 0.25 0.64

OptimizedGradientTreeBoosting/1 0.732 0.788 0.720 0.374 0.941 0.627 0.507 0.353 0.833

OptimizedGradientTreeBoosting/2 0.739 0.855 0.714 0.388 0.959 0.612 0.569 0.386 0.852

OptimizedGradientTreeBoosting/3 0.747 0.839 0.727 0.395 0.955 0.605 0.567 0.393 0.866

OptimizedGradientTreeBoosting/4 0.738 0.823 0.720 0.383 0.951 0.617 0.542 0.373 0.854

OptimizedGradientTreeBoosting/5 0.748 0.818 0.733 0.393 0.950 0.608 0.550 0.386 0.845

avg(OptimizedGradientTreeBoosting) 0.74 0.82tpr 0.72tnr 0.39ppv 0.95npv 0.61far 0.55tss 0.38hss 0.85auc

tpr +0.31 (p < 0.05).
tnr -0.09 (p > 0.05 and 0.1).

ppv +0.04 (p > 0.05 and 0.1).
npv +0.06 (p < 0.05).

far -0.04 (p > 0.05 and 0.1).
tss +0.25 (p < 0.05).

hss +0.13 (p < 0.05).
auc +0.21 (p < 0.05).

Table B.23: Case Study II, ≥M flares, the next 24 h: evaluation of test sets.

Pred.Type/Test Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineGradientTreeBoosting/1 0.664 0.719 0.652 0.305 0.916 0.695 0.371 0.242 0.701

BaselineGradientTreeBoosting/2 0.825 0.500 0.894 0.500 0.894 0.500 0.394 0.394 0.648

BaselineGradientTreeBoosting/3 0.743 0.603 0.773 0.359 0.902 0.642 0.376 0.296 0.647

BaselineGradientTreeBoosting/4 0.774 0.381 0.858 0.364 0.866 0.636 0.239 0.234 0.595

BaselineGradientTreeBoosting/5 0.767 0.484 0.828 0.375 0.882 0.625 0.312 0.280 0.691

avg(BaselineGradientTreeBoosting) 0.75 0.54 0.80 0.38 0.89 0.62 0.34 0.29 0.66

OptimizedGradientTreeBoosting/1 0.702 0.797 0.682 0.347 0.941 0.653 0.479 0.317 0.822

OptimizedGradientTreeBoosting/2 0.743 0.844 0.721 0.391 0.956 0.609 0.565 0.388 0.827

OptimizedGradientTreeBoosting/3 0.713 0.810 0.692 0.357 0.945 0.643 0.502 0.334 0.856

OptimizedGradientTreeBoosting/4 0.749 0.905 0.715 0.404 0.972 0.596 0.620 0.417 0.883

OptimizedGradientTreeBoosting/5 0.716 0.807 0.697 0.362 0.944 0.638 0.503 0.339 0.826

avg(OptimizedGradientTreeBoosting) 0.72acc 0.83tpr 0.70tnr 0.37ppv 0.95npv 0.63far 0.53tss 0.36hss 0.84auc

acc -0.03 (p > 0.05 and 0.1).
tpr +0.29 (p < 0.05).
tnr -0.10 (p < 0.1).

ppv -0.01 (p > 0.05 and 0.1).
npv +0.06 (p < 0.05).
far +0.01 (p > 0.05 and 0.1).

tss +0.19 (p < 0.05).
hss +0.07 (p < 0.1).
auc +0.18 (p < 0.05).
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Table B.24: Case Study II, ≥M flares, the next 48 h: model selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.773 0.409 0.900 0.589 0.814 0.411 0.309 0.343 0.786

AdaBoost/2 0.766 0.393 0.897 0.573 0.809 0.427 0.289 0.321 0.776

AdaBoost/3 0.763 0.378 0.897 0.565 0.805 0.435 0.275 0.307 0.774

AdaBoost/4 0.769 0.408 0.894 0.576 0.812 0.424 0.302 0.334 0.783

AdaBoost/5 0.763 0.377 0.897 0.562 0.805 0.438 0.274 0.306 0.775

avg(AdaBoost) 0.77 0.39 0.90 0.57 0.81 0.43 0.29a 0.32 0.78

RandomForest/1 0.784 0.319 0.946 0.677 0.799 0.324 0.265 0.319 0.801

RandomForest/2 0.789 0.344 0.945 0.687 0.805 0.313 0.289 0.345 0.804

RandomForest/3 0.783 0.333 0.941 0.664 0.802 0.336 0.274 0.326 0.801

RandomForest/4 0.786 0.336 0.943 0.675 0.803 0.325 0.279 0.333 0.801

RandomForest/5 0.781 0.324 0.941 0.659 0.799 0.341 0.264 0.316 0.796

avg(RandomForest) 0.78 0.33 0.94 0.67 0.80 0.33 0.27 0.33 0.80

GradientTreeBoosting/1 0.711 0.667 0.727 0.466 0.864 0.534 0.394 0.345 0.724

GradientTreeBoosting/2 0.718 0.643 0.745 0.473 0.859 0.527 0.388 0.346 0.723

GradientTreeBoosting/3 0.725 0.618 0.763 0.480 0.853 0.520 0.380 0.346 0.706

GradientTreeBoosting/4 0.730 0.624 0.767 0.489 0.857 0.511 0.391 0.356 0.724

GradientTreeBoosting/5 0.725 0.634 0.757 0.482 0.858 0.518 0.391 0.352 0.727

avg(GradientTreeBoosting) 0.72 0.64 0.75 0.48 0.86 0.52 0.39a 0.35 0.72
a TSSGradientTreeBoosting > TSSAdaBoost (p < 0.05). As the GradientTreeBoosting output the highest TSS, the methodology has chosen it to proceed
in the pipeline.

Table B.25: Case Study II, ≥M flares, the next 48 h: feature selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.727 0.699 0.737 0.484 0.877 0.516 0.436 0.379 0.746

GradientTreeBoosting/2 0.724 0.633 0.756 0.480 0.857 0.520 0.389 0.351 0.724

GradientTreeBoosting/3 0.732 0.690 0.747 0.490 0.875 0.510 0.437 0.385 0.736

GradientTreeBoosting/4 0.721 0.642 0.749 0.477 0.859 0.523 0.391 0.350 0.732

GradientTreeBoosting/5 0.722 0.645 0.749 0.478 0.860 0.522 0.395 0.353 0.735

avg(GradientTreeBoosting) 0.73acc 0.66tpr 0.75 0.48 0.87npv 0.52 0.41tss 0.36hss 0.73auc

acc +0.01 (p > 0.05 and 0.1).
tpr +0.02 (p < 0.1).

npv +0.01 (p > 0.05 and 0.1).
tss +0.02 (p < 0.1).

hss +0.01 (p > 0.05 and 0.1).
auc +0.01 (p < 0.05).
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Table B.26: Case Study II, ≥M flares, the next 48 h: hyperparameter optimization results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.814 0.531 0.913 0.681 0.848 0.319 0.444 0.478 0.860

GradientTreeBoosting/2 0.802 0.503 0.906 0.652 0.839 0.348 0.409 0.442 0.849

GradientTreeBoosting/3 0.808 0.515 0.910 0.667 0.843 0.333 0.425 0.459 0.852

GradientTreeBoosting/4 0.808 0.519 0.909 0.666 0.844 0.334 0.428 0.461 0.854

GradientTreeBoosting/5 0.808 0.526 0.906 0.663 0.846 0.337 0.433 0.463 0.854

avg(GradientTreeBoosting) 0.81acc 0.52tpr 0.91tnr 0.67ppv 0.84npv 0.33far 0.43tss 0.46hss 0.85auc

acc +0.09 (p < 0.05) – compared to model selection.
tpr -0.14 (p < 0.05).
tnr +0.16 (p < 0.05) – compared to model selection.
ppv +0.19 (p < 0.05) – compared to model selection.
npv -0.02 (p < 0.05) – compared to model selection.

far -0.19 (p < 0.05) – compared to model selection.
tss +0.02 (p > 0.05 and 0.1).
hss +0.11 (p < 0.05) – compared to model selection.
auc +0.12 (p < 0.05).

Table B.27: Case Study II, ≥M flares, the next 48 h: data resampling results.

Method/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

SMOTE-ENN/1 0.723 0.832 0.684 0.480 0.921 0.520 0.516 0.417 0.846

SMOTE-ENN/2 0.720 0.844 0.677 0.477 0.926 0.523 0.521 0.417 0.842

SMOTE-ENN/3 0.724 0.835 0.686 0.482 0.922 0.518 0.520 0.420 0.842

SMOTE-ENN/4 0.725 0.841 0.685 0.483 0.925 0.517 0.526 0.424 0.846

SMOTE-ENN/5 0.723 0.843 0.681 0.480 0.926 0.520 0.524 0.421 0.843

avg(SMOTE-ENN) 0.72 0.84a 0.68a 0.48 0.92 0.52 0.52 0.42 0.84

SMOTE-Tomek/1 0.789 0.683 0.826 0.579 0.882 0.421 0.509 0.481 0.854

SMOTE-Tomek/2 0.777 0.674 0.813 0.558 0.877 0.442 0.487 0.456 0.844

SMOTE-Tomek/3 0.780 0.677 0.816 0.563 0.879 0.437 0.493 0.462 0.849

SMOTE-Tomek/4 0.782 0.676 0.819 0.567 0.879 0.433 0.495 0.466 0.848

SMOTE-Tomek/5 0.780 0.675 0.817 0.563 0.878 0.437 0.492 0.462 0.848

avg(SMOTE-Tomek) 0.78 0.68b 0.82b 0.57 0.88 0.43 0.50 0.47 0.85

SMOTE/1 0.768 0.736 0.779 0.538 0.894 0.462 0.514 0.459 0.849

SMOTE/2 0.758 0.727 0.769 0.524 0.890 0.476 0.496 0.441 0.839

SMOTE/3 0.763 0.731 0.774 0.531 0.892 0.469 0.505 0.450 0.844

SMOTE/4 0.766 0.725 0.780 0.536 0.891 0.464 0.505 0.453 0.844

SMOTE/5 0.762 0.723 0.776 0.530 0.889 0.470 0.499 0.446 0.842

avg(SMOTE) 0.76acc 0.73c,tpr 0.78c,tnr 0.53ppv 0.89npv 0.47far 0.50tss 0.45hss 0.84auc

a |TPR − TNR| = |0.84 − 0.68| = 0.16.
b |TPR − TNR| = |0.68 − 0.82| = 0.14.
c |TPR−TNR| = |0.73−0.78| = 0.05. As the SMOTE output the lowest difference, the methodology has chosen it to proceed in the pipeline
(GradientTreeBoosting does not support cost-sensitive learning).
acc -0.05 (p < 0.05).
tpr +0.21 (p < 0.05).
tnr -0.13 (p < 0.05).
ppv -0.14 (p < 0.05).
npv +0.05 (p < 0.05).

far +0.14 (p < 0.05).
tss +0.09 (p < 0.05) – compared to feature selection.
hss -0.01 (p < 0.05).
auc -0.01 (p < 0.05).
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Table B.28: Case Study II, ≥M flares, the next 48 h: cut-off point adjustment results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.724 0.827 0.688 0.481 0.920 0.519 0.515 0.417 0.839

GradientTreeBoosting/2 0.729 0.823 0.696 0.486 0.918 0.514 0.518 0.423 0.843

GradientTreeBoosting/3 0.727 0.828 0.692 0.485 0.920 0.515 0.520 0.423 0.844

GradientTreeBoosting/4 0.724 0.826 0.689 0.481 0.919 0.519 0.514 0.417 0.843

GradientTreeBoosting/5 0.730 0.829 0.695 0.487 0.921 0.513 0.524 0.426 0.850

avg(GradientTreeBoosting) 0.73acc 0.83tpr 0.69tnr 0.48ppv 0.92npv 0.52far 0.52tss 0.42hss 0.84
acc -0.03 (p < 0.05).
tpr +0.10 (p < 0.05).

tnr -0.09 (p < 0.05).
ppv -0.05 (p < 0.05).

npv +0.03 (p < 0.05).
far +0.05 (p < 0.05).

tss +0.02 (p < 0.05).
hss -0.03 (p < 0.05).

Table B.29: Case Study II, ≥M flares, the next 48 h: evaluation of validation sets.

Pred.Type/Val.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineGradientTreeBoosting/1 0.755 0.717 0.769 0.520 0.886 0.480 0.485 0.432 0.746

BaselineGradientTreeBoosting/2 0.790 0.709 0.818 0.576 0.890 0.425 0.526 0.490 0.823

BaselineGradientTreeBoosting/3 0.721 0.691 0.731 0.472 0.872 0.528 0.422 0.367 0.788

BaselineGradientTreeBoosting/4 0.737 0.442 0.840 0.490 0.812 0.510 0.282 0.291 0.636

BaselineGradientTreeBoosting/5 0.745 0.456 0.846 0.508 0.817 0.492 0.302 0.312 0.644

avg(BaselineGradientTreeBoosting) 0.75 0.60 0.80 0.51 0.86 0.49 0.40 0.38 0.73

OptimizedGradientTreeBoosting/1 0.730 0.839 0.692 0.488 0.925 0.512 0.531 0.430 0.856

OptimizedGradientTreeBoosting/2 0.738 0.811 0.712 0.496 0.915 0.504 0.523 0.433 0.850

OptimizedGradientTreeBoosting/3 0.727 0.846 0.685 0.484 0.927 0.516 0.531 0.427 0.851

OptimizedGradientTreeBoosting/4 0.715 0.842 0.670 0.472 0.924 0.529 0.512 0.408 0.839

OptimizedGradientTreeBoosting/5 0.727 0.804 0.700 0.483 0.911 0.517 0.503 0.414 0.848

avg(OptimizedGradientTreeBoosting) 0.73acc 0.83tpr 0.69tnr 0.48ppv 0.92npv 0.52far 0.52tss 0.42hss 0.85auc

acc -0.02 (p < 0.05).
tpr +0.23 (p < 0.05).

tnr -0.11 (p < 0.05).
ppv -0.03 (p < 0.05).

npv +0.06 (p < 0.05).
far +0.03 (p < 0.1).

tss +0.12 (p < 0.1).
hss +0.04 (p > 0.05 and 0.1).

auc +0.12 (p < 0.05).

Table B.30: Case Study II, ≥M flares, the next 48 h: evaluation of test sets.

Pred.Type/Test Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineGradientTreeBoosting/1 0.762 0.642 0.804 0.535 0.865 0.465 0.447 0.419 0.671

BaselineGradientTreeBoosting/2 0.781 0.663 0.822 0.568 0.874 0.432 0.485 0.460 0.829

BaselineGradientTreeBoosting/3 0.724 0.660 0.746 0.477 0.862 0.523 0.406 0.361 0.790

BaselineGradientTreeBoosting/4 0.740 0.441 0.845 0.500 0.812 0.500 0.286 0.298 0.623

BaselineGradientTreeBoosting/5 0.753 0.539 0.828 0.521 0.837 0.479 0.366 0.362 0.697

avg(BaselineGradientTreeBoosting) 0.75 0.59 0.81 0.52 0.85 0.48 0.40 0.38 0.72

OptimizedGradientTreeBoosting/1 0.749 0.863 0.709 0.509 0.937 0.491 0.572 0.466 0.861

OptimizedGradientTreeBoosting/2 0.748 0.884 0.700 0.509 0.945 0.491 0.584 0.472 0.858

OptimizedGradientTreeBoosting/3 0.743 0.798 0.724 0.503 0.911 0.497 0.522 0.439 0.835

OptimizedGradientTreeBoosting/4 0.721 0.807 0.691 0.478 0.910 0.522 0.497 0.406 0.835

OptimizedGradientTreeBoosting/5 0.742 0.890 0.690 0.500 0.947 0.500 0.580 0.462 0.882

avg(OptimizedGradientTreeBoosting) 0.74acc 0.85tpr 0.70tnr 0.50ppv 0.93npv 0.50far 0.55tss 0.45hss 0.85auc

acc -0.01 (p > 0.05 and 0.1).
tpr +0.26 (p < 0.05).
tnr -0.11 (p < 0.05).

ppv -0.02 (p > 0.05 and 0.1).
npv +0.08 (p < 0.05).
far +0.02 (p > 0.05 and 0.1).

tss +0.15 (p < 0.05).
hss +0.07 (p < 0.05).
auc +0.13 (p < 0.05).
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Table B.31: Case Study II, ≥M flares, the next 72 h: model selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.747 0.544 0.842 0.616 0.799 0.384 0.386 0.398 0.791

AdaBoost/2 0.749 0.540 0.846 0.620 0.798 0.380 0.386 0.399 0.794

AdaBoost/3 0.754 0.572 0.838 0.623 0.808 0.378 0.410 0.419 0.794

AdaBoost/4 0.750 0.539 0.847 0.622 0.799 0.378 0.387 0.400 0.794

AdaBoost/5 0.746 0.527 0.848 0.617 0.794 0.383 0.374 0.389 0.791

avg(AdaBoost) 0.75 0.54 0.84 0.62 0.80 0.38 0.39 0.40 0.79

RandomForest/1 0.763 0.522 0.875 0.662 0.798 0.338 0.397 0.420 0.819

RandomForest/2 0.766 0.504 0.888 0.679 0.794 0.321 0.392 0.421 0.821

RandomForest/3 0.767 0.515 0.884 0.675 0.797 0.325 0.398 0.425 0.822

RandomForest/4 0.771 0.526 0.885 0.682 0.801 0.318 0.411 0.437 0.821

RandomForest/5 0.763 0.515 0.878 0.664 0.796 0.336 0.393 0.417 0.816

avg(RandomForest) 0.77 0.52 0.88 0.67 0.80 0.33 0.40a 0.42 0.82

GradientTreeBoosting/1 0.718 0.697 0.728 0.547 0.840 0.453 0.425 0.395 0.739

GradientTreeBoosting/2 0.719 0.661 0.746 0.552 0.829 0.448 0.407 0.385 0.734

GradientTreeBoosting/3 0.723 0.662 0.752 0.558 0.830 0.442 0.414 0.393 0.738

GradientTreeBoosting/4 0.724 0.670 0.748 0.556 0.833 0.444 0.419 0.395 0.734

GradientTreeBoosting/5 0.731 0.639 0.773 0.569 0.824 0.431 0.413 0.398 0.725

avg(GradientTreeBoosting) 0.72 0.67 0.75 0.56 0.83 0.44 0.42a 0.39 0.73
a TSSGradientTreeBoosting > TSSRandomForest (p < 0.05). As the GradientTreeBoosting output the highest TSS, the methodology has chosen it to proceed
in the pipeline.

Table B.32: Case Study II, ≥M flares, the next 72 h: feature selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.728 0.693 0.744 0.561 0.841 0.439 0.438 0.411 0.744

GradientTreeBoosting/2 0.730 0.703 0.742 0.563 0.846 0.437 0.445 0.416 0.750

GradientTreeBoosting/3 0.729 0.699 0.743 0.561 0.844 0.439 0.442 0.414 0.750

GradientTreeBoosting/4 0.721 0.738 0.713 0.549 0.856 0.451 0.451 0.413 0.761

GradientTreeBoosting/5 0.743 0.694 0.765 0.582 0.845 0.418 0.459 0.436 0.761

avg(GradientTreeBoosting) 0.73acc 0.71tpr 0.74tnr 0.56 0.85npv 0.44 0.45tss 0.42hss 0.75auc

acc +0.01 (p < 0.1).
tpr +0.04 (p < 0.1).
tnr -0.01 (p > 0.05 and 0.1).

npv +0.02 (p < 0.05).
tss +0.03 (p < 0.05).
hss +0.03 (p < 0.05).

auc +0.02 (p < 0.05).
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Table B.33: Case Study II, ≥M flares, the next 72 h: hyperparameter optimization results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.797 0.614 0.883 0.710 0.831 0.290 0.497 0.515 0.863

GradientTreeBoosting/2 0.804 0.620 0.890 0.724 0.835 0.276 0.510 0.530 0.869

GradientTreeBoosting/3 0.795 0.612 0.880 0.705 0.830 0.295 0.492 0.510 0.861

GradientTreeBoosting/4 0.798 0.619 0.882 0.709 0.833 0.291 0.501 0.518 0.865

GradientTreeBoosting/5 0.791 0.609 0.876 0.695 0.828 0.305 0.485 0.501 0.861

avg(GradientTreeBoosting) 0.80acc 0.61tpr 0.88tnr 0.71ppv 0.83npv 0.29far 0.50tss 0.51hss 0.86auc

acc +0.07 (p < 0.05).
tpr -0.10 (p < 0.05).
tnr +0.13 (p < 0.05) – compared to model selection.
ppv +0.15 (p < 0.05) – compared to model selection.
npv -0.02 (p < 0.05).

far -0.15 (p < 0.05) – compared to model selection.
tss +0.05 (p < 0.05).
hss +0.09 (p < 0.05).
auc +0.11 (p < 0.05).

Table B.34: Case Study II, ≥M flares, the next 72 h: data resampling results.

Method/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

SMOTE/1 0.757 0.819 0.728 0.584 0.897 0.416 0.547 0.494 0.857

SMOTE/2 0.760 0.813 0.736 0.589 0.894 0.411 0.548 0.498 0.861

SMOTE/3 0.753 0.817 0.723 0.579 0.895 0.421 0.540 0.487 0.855

SMOTE/4 0.761 0.814 0.737 0.591 0.895 0.410 0.551 0.500 0.863

SMOTE/5 0.756 0.818 0.727 0.582 0.896 0.418 0.545 0.492 0.856

avg(SMOTE) 0.76 0.82a 0.73a 0.58 0.90 0.42 0.55 0.49 0.86

SMOTE-ENN/1 0.737 0.862 0.679 0.556 0.914 0.444 0.541 0.471 0.852

SMOTE-ENN/2 0.730 0.859 0.671 0.548 0.911 0.452 0.530 0.460 0.846

SMOTE-ENN/3 0.739 0.860 0.683 0.558 0.913 0.442 0.543 0.474 0.854

SMOTE-ENN/4 0.738 0.849 0.687 0.558 0.907 0.442 0.536 0.470 0.851

SMOTE-ENN/5 0.733 0.869 0.669 0.550 0.917 0.450 0.538 0.466 0.849

avg(SMOTE-ENN) 0.74 0.86b 0.68b 0.55 0.91 0.45 0.54 0.47 0.85

SMOTE-Tomek/1 0.778 0.763 0.784 0.623 0.877 0.378 0.547 0.516 0.861

SMOTE-Tomek/2 0.775 0.763 0.781 0.619 0.876 0.381 0.544 0.512 0.859

SMOTE-Tomek/3 0.783 0.757 0.795 0.633 0.876 0.367 0.553 0.525 0.867

SMOTE-Tomek/4 0.779 0.754 0.791 0.627 0.874 0.373 0.545 0.517 0.864

SMOTE-Tomek/5 0.773 0.759 0.779 0.615 0.875 0.385 0.538 0.507 0.860

avg(SMOTE-Tomek) 0.78acc 0.76c,tpr 0.79c,tnr 0.62ppv 0.88npv 0.38far 0.55tss 0.52hss 0.86
a |TPR − TNR| = |0.82 − 0.73| = 0.09
b |TPR − TNR| = |0.86 − 0.68| = 0.18
c |TPR − TNR| = |0.76 − 0.79| = 0.03. As the SMOTE-Tomek output the lowest difference, the methodology has chosen it to proceed in
the pipeline (GradientTreeBoosting does not support cost-sensitive learning).
acc -0.02 (p < 0.05).
tpr +0.15 (p < 0.05).
tnr -0.09 (p < 0.05).

ppv -0.09 (p < 0.05).
npv +0.05 (p < 0.05).
far +0.09 (p < 0.05).

tss +0.05 (p < 0.05).
hss +0.01 (p > 0.05 and 0.1).
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Table B.35: Case Study II, ≥M flares, the next 72 h: cut-off point adjustment results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

GradientTreeBoosting/1 0.773 0.799 0.760 0.608 0.891 0.392 0.559 0.516 0.867

GradientTreeBoosting/2 0.763 0.800 0.745 0.594 0.889 0.406 0.545 0.499 0.859

GradientTreeBoosting/3 0.762 0.802 0.743 0.592 0.890 0.408 0.545 0.498 0.860

GradientTreeBoosting/4 0.766 0.801 0.750 0.599 0.890 0.401 0.551 0.506 0.861

GradientTreeBoosting/5 0.768 0.794 0.755 0.602 0.888 0.398 0.550 0.507 0.864

avg(GradientTreeBoosting) 0.77acc 0.80tpr 0.75tnr 0.60ppv 0.89npv 0.40far 0.55 0.50hss 0.86
acc -0.01 (p < 0.05).
tpr +0.04 (p < 0.05).

tnr -0.04 (p < 0.05).
ppv -0.02 (p < 0.05).

npv +0.01 (p < 0.05).
far +0.02 (p < 0.05).

hss -0.02 (p > 0.05 and 0.1).

Table B.36: Case Study II, ≥M flares, the next 72 h: evaluation of validation sets.

Pred.Type/Val.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineGradientTreeBoosting/1 0.769 0.711 0.795 0.618 0.856 0.382 0.507 0.487 0.809

BaselineGradientTreeBoosting/2 0.751 0.669 0.789 0.595 0.836 0.405 0.457 0.443 0.797

BaselineGradientTreeBoosting/3 0.768 0.669 0.814 0.626 0.841 0.374 0.482 0.474 0.805

BaselineGradientTreeBoosting/4 0.743 0.769 0.731 0.571 0.872 0.429 0.500 0.458 0.795

BaselineGradientTreeBoosting/5 0.716 0.619 0.761 0.546 0.811 0.455 0.380 0.366 0.708

avg(BaselineGradientTreeBoosting) 0.75 0.69 0.78 0.59 0.84 0.41 0.47 0.45 0.78

OptimizedGradientTreeBoosting/1 0.777 0.820 0.757 0.611 0.900 0.389 0.577 0.528 0.874

OptimizedGradientTreeBoosting/2 0.751 0.800 0.727 0.577 0.887 0.423 0.527 0.478 0.849

OptimizedGradientTreeBoosting/3 0.784 0.797 0.778 0.626 0.892 0.374 0.575 0.536 0.870

OptimizedGradientTreeBoosting/4 0.771 0.811 0.753 0.604 0.896 0.396 0.564 0.517 0.863

OptimizedGradientTreeBoosting/5 0.762 0.811 0.739 0.591 0.894 0.409 0.550 0.500 0.861

avg(OptimizedGradientTreeBoosting) 0.77acc 0.81tpr 0.75tnr 0.60ppv 0.89npv 0.40far 0.56tss 0.51hss 0.86auc

acc +0.02 (p < 0.1).
tpr +0.12 (p < 0.05).
tnr -0.03 (p > 0.05 and 0.1).

ppv +0.01 (p > 0.05 and 0.1).
npv +0.05 (p < 0.05).
far -0.01 (p < 0.05).

tss +0.09 (p < 0.05).
hss +0.06 (p < 0.05).
auc +0.08 (p < 0.05).

Table B.37: Case Study II, ≥M flares, the next 72 h: evaluation of test sets.

Pred.Type/Test Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineGradientTreeBoosting/1 0.762 0.750 0.768 0.600 0.869 0.400 0.518 0.486 0.819

BaselineGradientTreeBoosting/2 0.764 0.750 0.771 0.604 0.869 0.396 0.521 0.490 0.833

BaselineGradientTreeBoosting/3 0.716 0.644 0.749 0.544 0.819 0.456 0.393 0.374 0.774

BaselineGradientTreeBoosting/4 0.732 0.719 0.738 0.562 0.849 0.438 0.457 0.425 0.790

BaselineGradientTreeBoosting/5 0.676 0.625 0.700 0.493 0.800 0.507 0.325 0.303 0.699

avg(BaselineGradientTreeBoosting) 0.73 0.70 0.75 0.56 0.84 0.44 0.44 0.42 0.78

OptimizedGradientTreeBoosting/1 0.801 0.871 0.768 0.635 0.928 0.365 0.639 0.581 0.889

OptimizedGradientTreeBoosting/2 0.770 0.828 0.743 0.600 0.902 0.400 0.571 0.518 0.870

OptimizedGradientTreeBoosting/3 0.702 0.765 0.672 0.521 0.860 0.479 0.437 0.389 0.829

OptimizedGradientTreeBoosting/4 0.757 0.772 0.750 0.591 0.876 0.409 0.522 0.483 0.852

OptimizedGradientTreeBoosting/5 0.739 0.768 0.725 0.566 0.870 0.434 0.493 0.450 0.830

avg(OptimizedGradientTreeBoosting) 0.75acc 0.80tpr 0.73tnr 0.58ppv 0.89npv 0.42far 0.53tss 0.48hss 0.85auc

acc +0.02 (p > 0.05 and 0.1).
tpr +0.10 (p < 0.05).
tnr -0.02 (p > 0.05 and 0.1).

ppv +0.02 (p > 0.05 and 0.1).
npv +0.05 (p < 0.05).
far -0.02 (p > 0.05 and 0.1).

tss +0.09 (p < 0.05).
hss +0.06 (p < 0.05).
auc +0.07 (p < 0.05).
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Table B.38: Case Study III, ≥M flares, the next 24 h: model selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

AdaBoost/1 0.811 0.397 0.913 0.546 0.861 0.454 0.310 0.34 0.735

AdaBoost/2 0.808 0.320 0.928 0.547 0.848 0.453 0.248 0.287 0.690

AdaBoost/3 0.819 0.361 0.932 0.579 0.857 0.421 0.293 0.335 0.712

AdaBoost/4 0.822 0.400 0.926 0.583 0.863 0.417 0.326 0.365 0.731

AdaBoost/5 0.810 0.369 0.918 0.537 0.856 0.463 0.286 0.320 0.710

avg(AdaBoost) 0.81 0.37 0.92 0.56 0.86 0.44 0.29a 0.33 0.72b

RandomForest/1 0.838 0.293 0.972 0.751 0.849 0.249 0.265 0.335 0.801

RandomForest/2 0.839 0.303 0.971 0.737 0.850 0.263 0.273 0.344 0.779

RandomForest/3 0.831 0.260 0.972 0.710 0.843 0.290 0.232 0.297 0.780

RandomForest/4 0.842 0.278 0.980 0.783 0.847 0.217 0.258 0.334 0.784

RandomForest/5 0.842 0.294 0.976 0.757 0.850 0.243 0.270 0.3445 0.793

avg(RandomForest) 0.84 0.29 0.97 0.75 0.85 0.25 0.26a 0.33 0.79b

GradientTreeBoosting/1 0.699 0.494 0.750 0.380 0.850 0.620 0.244 0.230 0.605

GradientTreeBoosting/2 0.697 0.443 0.760 0.351 0.842 0.639 0.203 0.194 0.583

GradientTreeBoosting/3 0.709 0.466 0.768 0.368 0.852 0.632 0.234 0.218 0.620

GradientTreeBoosting/4 0.701 0.444 0.764 0.356 0.847 0.644 0.208 0.197 0.579

GradientTreeBoosting/5 0.713 0.499 0.766 0.398 0.857 0.602 0.264 0.249 0.628

avg(GradientTreeBoosting) 0.70 0.47 0.76 0.37 0.85 0.63 0.23 0.22 0.60
a TSSAdaBoost > TSSRandomForest (p > 0.05 and 0.1).
b AUCRandomForest > AUCAdaBoost (p < 0.05). Noteworthily, as we could not confirm the significance of TSSAdaBoost > TSSRandomForest, we checked a
second criteria, namely the AUCs. We then chose RandomForest to proceed in the pipeline.

Table B.39: Case Study III, ≥M flares, the next 24 h: feature selection results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.841 0.355 0.960 0.705 0.859 0.295 0.315 0.382 0.762

RandomForest/2 0.846 0.386 0.959 0.708 0.865 0.292 0.345 0.411 0.806

RandomForest/3 0.844 0.383 0.957 0.708 0.864 0.292 0.340 0.404 0.795

RandomForest/4 0.842 0.329 0.967 0.724 0.855 0.276 0.296 0.367 0.782

RandomForest/5 0.828 0.319 0.952 0.645 0.851 0.355 0.271 0.330 0.772

avg(RandomForest) 0.84 0.35tpr 0.96tnr 0.70ppv 0.86npv 0.30far 0.31tss 0.38hss 0.78auc

tpr +0.06 (p < 0.05).
tnr -0.01 (p < 0.05).
ppv -0.05 (p < 0.05).

npv +0.01 (p < 0.05).
far +0.30 (p < 0.05).
tss +0.05 (p < 0.05).

hss +0.05 (p < 0.1).
auc -0.01 (p > 0.05 and 0.1).
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Table B.40: Case Study III, ≥M flares, the next 24 h: hyperparameter optimization results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.837 0.326 0.962 0.680 0.854 0.310 0.288 0.355 0.833

RandomForest/2 0.844 0.380 0.958 0.694 0.863 0.306 0.338 0.403 0.848

RandomForest/3 0.830 0.298 0.960 0.674 0.848 0.327 0.258 0.323 0.819

RandomForest/4 0.850 0.402 0.960 0.722 0.868 0.278 0.362 0.429 0.840

RandomForest/5 0.839 0.352 0.958 0.691 0.858 0.309 0.310 0.377 0.816

avg(RandomForest) 0.84 0.35 0.96 0.69ppv 0.86 0.31far 0.31 0.38 0.83auc

ppv -0.01 (p > 0.05 and 0.1).
far +0.01 (p > 0.05 and 0.1).

auc +0.04 (p < 0.05) – compared to model selection.

Table B.41: Case Study III, ≥M flares, the next 24 h: data resampling results.

Method/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

SMOTE/1 0.745 0.776 0.737 0.425 0.931 0.575 0.513 0.391 0.833

SMOTE/2 0.730 0.736 0.729 0.405 0.919 0.595 0.465 0.355 0.808

SMOTE/3 0.744 0.760 0.740 0.422 0.927 0.578 0.500 0.384 0.822

SMOTE/4 0.739 0.773 0.730 0.419 0.930 0.581 0.503 0.382 0.833

SMOTE/5 0.725 0.756 0.717 0.402 0.924 0.598 0.473 0.355 0.814

avg(SMOTE) 0.74 0.76a 0.73a 0.41 0.93 0.59 0.49 0.37 0.82

SMOTE-ENN/1 0.757 0.783 0.751 0.440 0.935 0.560 0.533 0.412 0.837

SMOTE-ENN/2 0.733 0.774 0.723 0.411 0.929 0.589 0.497 0.373 0.811

SMOTE-ENN/3 0.746 0.759 0.743 0.424 0.927 0.576 0.502 0.386 0.829

SMOTE-ENN/4 0.727 0.799 0.710 0.407 0.936 0.594 0.508 0.372 0.822

SMOTE-ENN/5 0.727 0.770 0.717 0.404 0.929 0.596 0.487 0.362 0.811

avg(SMOTE-ENN) 0.74 0.78b 0.73b 0.42 0.93 0.58 0.51 0.38 0.82

SMOTE-Tomek/1 0.757 0.711 0.768 0.434 0.916 0.566 0.479 0.386 0.813

SMOTE-Tomek/2 0.783 0.747 0.792 0.474 0.928 0.526 0.539 0.442 0.845

SMOTE-Tomek/3 0.767 0.745 0.773 0.449 0.926 0.551 0.518 0.413 0.827

SMOTE-Tomek/4 0.770 0.725 0.781 0.453 0.922 0.547 0.506 0.411 0.838

SMOTE-Tomek/5 0.750 0.730 0.755 0.427 0.921 0.573 0.485 0.382 0.815

avg(SMOTE-Tomek) 0.77 0.73c 0.77c 0.45 0.92 0.55 0.51 0.41 0.83
a |TPR − TNR| = |0.76 − 0.73| = 0.03.
b |TPR − TNR| = |0.78 − 0.73| = 0.05.
c |TPR − TNR| = |0.73 − 0.77| = 0.04.
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Table B.42: Case Study III, ≥M flares, the next 24 h: cost function analysis results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.753 0.770 0.749 0.432 0.931 0.568 0.519 0.400 0.828

RandomForest/2 0.739 0.759 0.734 0.417 0.927 0.584 0.492 0.375 0.818

RandomForest/3 0.763 0.761 0.764 0.446 0.929 0.554 0.524 0.414 0.839

RandomForest/4 0.755 0.734 0.761 0.433 0.921 0.567 0.494 0.392 0.815

RandomForest/5 0.774 0.773 0.775 0.461 0.934 0.539 0.548 0.436 0.845

avg(RandomForest) 0.76acc 0.76a,tpr0.76a,tnr 0.44ppv 0.93npv 0.56far 0.52tss 0.40hss 0.83
a |TPR − TNR| = |0.76 − 0.76| = 0. As the cost function output the lowest difference, the methodology has chosen it to proceed in the
pipeline.
acc -0.08 (p < 0.05) – compared to model selection.
tpr +0.41 (p < 0.05) – compared to feature selection.
tnr -0.20 (p < 0.05) – compared to feature selection.
ppv -0.26 (p < 0.05) – compared to feature selection.

npv +0.07 (p < 0.05) – compared to feature selection.
far +0.26 (p < 0.05) – compared to feature selection.
tss +0.21 (p < 0.05) – compared to feature selection.
hss +0.02 (p > 0.05 and 0.1) – compared to feature selection.

Table B.43: Case Study III, ≥ M flares, the next 24 h: cut-off point adjustment results.

Model/Train.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

RandomForest/1 0.795 0.676 0.824 0.489 0.913 0.511 0.500 0.436 0.828

RandomForest/2 0.819 0.658 0.858 0.539 0.911 0.461 0.516 0.475 0.839

RandomForest/3 0.790 0.647 0.825 0.483 0.906 0.517 0.472 0.417 0.815

RandomForest/4 0.807 0.695 0.835 0.515 0.918 0.486 0.530 0.467 0.845

RandomForest/5 0.795 0.642 0.833 0.493 0.905 0.507 0.474 0.424 0.818

avg(RandomForest) 0.80acc 0.66tpr 0.83tnr 0.50ppv 0.91npv 0.50far 0.50tss 0.44hss 0.83
acc +0.04 (p < 0.05).
tpr -0.10 (p < 0.05).
tnr +0.07 (p < 0.05).
ppv +0.06 (p < 0.05).

npv -0.02 (p < 0.05).
far -0.06 (p < 0.05).
tss -0.02 (p > 0.05 and 0.1)
hss +0.06 (p < 0.05) – compared to feature selection.

Table B.44: Case Study III, ≥M flares, the next 24 h: evaluation of validation sets.

Pred.Type/Val.Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineRandomForest/1 0.819 0.120 0.990 0.750 0.821 0.250 0.110 0.161 0.706

BaselineRandomForest/2 0.819 0.160 0.980 0.667 0.826 0.333 0.140 0.197 0.787

BaselineRandomForest/3 0.858 0.320 0.990 0.889 0.856 0.111 0.310 0.409 0.741

BaselineRandomForest/4 0.858 0.360 0.980 0.818 0.862 0.182 0.340 0.432 0.808

BaselineRandomForest/5 0.825 0.320 0.951 0.615 0.850 0.385 0.271 0.330 0.812

avg(BaselineRandomForest) 0.84 0.26 0.98 0.75 0.84 0.25 0.23 0.31 0.77

OptimizedRandomForest/1 0.756 0.640 0.784 0.421 0.899 0.579 0.424 0.355 0.769

OptimizedRandomForest/2 0.827 0.760 0.843 0.543 0.935 0.457 0.603 0.524 0.881

OptimizedRandomForest/3 0.748 0.600 0.784 0.405 0.889 0.595 0.384 0.325 0.782

OptimizedRandomForest/4 0.819 0.760 0.833 0.528 0.934 0.472 0.593 0.509 0.867

OptimizedRandomForest/5 0.818 0.680 0.852 0.531 0.915 0.469 0.532 0.481 0.814

avg(OptimizedRandomForest) 0.79acc 0.69tpr 0.82tnr 0.49ppv 0.91npv 0.51far 0.51tss 0.44hss 0.82
acc -0.05 (p > 0.05 and 0.1).
tpr +0.43 (p < 0.05).
tnr -0.16 (p < 0.05).
ppv -0.26 (p < 0.05).

npv +0.07 (p < 0.05).
far +0.26 (p < 0.05).
tss +0.28 (p < 0.05).
hss +0.13 (p > 0.05 and 0.1).
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Table B.45: Case Study III, ≥M flares, the next 24 h: evaluation of test sets.

Pred.Type/Test Set ACC TPR TNR PPV NPV FAR TSS HSS AUC

BaselineRandomForest/1 0.907 0.500 1 1 0.897 0 0.500 0.620 0.836

BaselineRandomForest/2 0.814 0 1 0 0.814 0 0 0 0.884

BaselineRandomForest/3 0.881 0.375 1 1 0.872 0 0.375 0.493 0.809

BaselineRandomForest/4 0.881 0.500 0.970 0.800 0.892 0.200 0.471 0.549 0.925

BaselineRandomForest/5 0.878 0.375 1 1 0.868 0 0.375 0.491 0.839

avg(BaselineRandomForest) 0.87 0.35 0.99 0.76 0.87 0.04 0.34 0.43 0.86

OptimizedRandomForest/1 0.767 0.875 0.743 0.438 0.963 0.563 0.618 0.446 0.866

OptimizedRandomForest/2 0.883 0.875 0.886 0.636 0.969 0.364 0.761 0.665 0.911

OptimizedRandomForest/3 0.785 0.625 0.824 0.455 0.903 0.546 0.449 0.392 0.829

OptimizedRandomForest/4 0.881 0.875 0.882 0.636 0.968 0.364 0.757 0.662 0.965

OptimizedRandomForest/5 0.707 0.625 0.727 0.357 0.889 0.643 0.352 0.274 0.765

avg(OptimizedRandomForest) 0.81acc 0.78tpr 0.81tnr 0.50ppv 0.94ppv 0.50far 0.59tss 0.49hss 0.87auc

acc -0.06 (p > 0.05 and 0.1).
tpr +0.43 (p < 0.05).
tnr -0.18 (p < 0.05).

ppv -0.26 (p > 0.05 and 0.1).
npv +0.07 (p < 0.05).
far +0.49 (p < 0.05).

tss +0.25 (p < 0.1).
hss +0.06 (p > 0.05 and 0.1).
auc +0.01 (p > 0.05 and 0.1).
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Appendix C

The Guaraci forecast system

We deployed the experimental models from case studies I and II into a real forecast

environment providing daily forecasts at a fixed-cadence for up to three days ahead, namely

the Guaraci1 forecast system. We aim to evaluate such experimental models’ performance in a

true operational sense, as suggested in Chapter 7.

To provide forecasts, Guaraci regularly assembles data2 from the repositories of

NOAA/SWPC, namely the DSD and SRS data products. As NOAA/SWPC regularly issues data

for DSD at 02:30 AM, 08:30 AM, 02:30 PM, and 08:30 PM UTC (NOAA/SWPC, 2011), and the

SRS repository is daily updated always at 00:30 AM UTC (NOAA/SWPC, 2008), Guaraci runs

daily at 01:00 AM UTC.

The system then gathers data from the SRS at 00:30 AM UTC – referring to the previous

day – and from the DSD – previously issued at 08:30 PM UTC. To link between DSD and SRS

data, Guaraci uses the compilation dates of records (month, day, and year).

Accordingly, we designed the Guaraci system under the layered architecture shown in

Figure C.1. Overall, the Guaraci3 comprehends an Ubuntu-based Amazon EC2 instance running

a Python virtual machine prepared for machine learning, namely with the Scikit-learn4, NumPy5,

Pandas6, and imbalanced-learn7 toolkits – the Artificial Intelligence (AI) layer.

1In the Guaraní mythology, Guaraci is the god of the Sun.
2Such data assembling involves the dynamic calculation of features as stated in Chapter 5.
3The Guaraci system is currently available at: https://highpids.ft.unicamp.br/guaraci.
4The Scikit-learn toolkit is available at: https://scikit-learn.org/.
5The NumPy toolkit is available at: https://numpy.org/.
6The Pandas toolkit is available at: https://pandas.pydata.org/.
7The imbalanced-learn toolkit is available at: https://imbalanced-learn.readthedocs.io/en/

stable/.
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Figure C.2: Guaraci’s daily M+X forecasts.

Figure C.3: Guaraci’s two-week M+X flare forecasts.
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table holds “True” and “Forecast” columns representing whether flares happened (NOAA/SWPC

confirmations), and the probabilities of flares by Guaraci, respectively. Each new entry in this

table always keeps the “True” column as “Not available” until the next 24 h period closes, when

the system confirms with NOAA/SWPC whether some event occurred.

Figure C.4: Guaraci’s forecast history.

Finally, the full source code for implementing both forecasting models comprehending

Guaraci is currently available at GitHub8. Not only Guaraci’s source code, but also the code

for the automated methodology we turned available to the community in GitHub9. Opening

both tool’s codes will let other researchers improve and use them with their own datasets and

projects.

8https://github.com/tiagocinto/guaraci-forecast.
9https://github.com/tiagocinto/guaraci-toolkit.
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