

Dynamic Ensemble Mechanisms to improve Particulate Matter

Forecasting

Mecanismos para Ensemble Dinâmicos aplicados para a Previsão

de Material Particulado

Orientador: Prof. Dr. Guilherme Palermo Coelho

.

Limeira

2018

Dissertação apresentada à Faculdade de

Tecnologia da Universidade Estadual de

Campinas como parte dos requisitos exigidos para

a obtenção do título de Mestre em Tecnologia na

área de Sistemas de Informação e Comunicação.

Presented to the School of Technology (FT) of the

University of Campinas (Unicamp), in partial

fulfillment of the requirements for the Degree of

Master of Technology.

ESTE EXEMPLAR CORRESPONDE À

VERSÃO FINAL DA DISSERTAÇÃO

DEFENDIDA PELO ALUNO JORGE

ANDRÉS BUENO BARAJAS, E ORIENTADA

PELO PROF. DR GUILHERME PALERMO

COELHO.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Faculdade de Tecnologia
Felipe de Souza Bueno - CRB 8/8577

Bueno Barajas, Jorge Andrés, 1991-
B862d Dynamic ensemble mechanisms to improve particulate matter

forecasting / Jorge Andrés Bueno Barajas. – Limeira, SP : [s.n.],
2018.

Orientador: Guilherme Palermo Coelho.
Dissertação (mestrado) – Universidade Estadual de Campinas,
Faculdade de Tecnologia.

1. Mineração de dados (Computação). 2. Aprendizado de máquina. I.
Coelho, Guilherme Palermo, 1980-. II. Universidade Estadual de
Campinas. Faculdade de Tecnologia. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Mecanismos para Ensemble Dinâmicos aplicados para a Previsão
de Material Particulado
Palavras-chave em inglês:
Data mining
Machine Learning
Área de concentração: Sistemas de Informação e Comunicação
Titulação: Mestre em Tecnologia
Banca examinadora:
Guilherme Palermo Coelho [Orientador]
Leandro Nunes de Castro Silva
Ana Estela Antunes da Silva
Data de defesa: 10-05-2018
Programa de Pós-Graduação: Tecnologia

FOLHA DE APROVAÇÃO

Abaixo se apresentam os membros da comissão julgadora da sessão pública de defesa

de dissertação para o Título de Mestre em Tecnologia na área de concentração de

Sistema de Informação e Comunicação, a que submeteu a (o) aluna (o) Jorge Andrés

Bueno Barajas, em 10 de maio de 2018 na Faculdade de Tecnologia- FT/ UNICAMP, em

Limeira/SP.

Prof. (a). Dr (a)

Guilherme Palermo Coelho

Prof. Dr.

Leandro Nunes de Castro Silva

Prof. Dr.

Ana Estela Antunes da Silva

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no processo

de vida acadêmica da aluna na Universidade.

Abstract

Microscopically small solid particles and liquid droplets suspended in the air, known as

particulate matter (PM), may significantly affect not only human health, but also urban,

natural and agricultural systems. Therefore, it is imperative to keep the concentration

levels of these pollutants below harmful thresholds. To do so, forecasting mechanisms

are particularly relevant, as they may help public offices and environmental agencies

define strategies to control PM concentration in the atmosphere. Forecasting tools based

on Machine Learning have been used to estimate the concentration of PM and other

pollutants in the atmosphere, as they are capable of learning from examples and

identifying hidden insights in the data without being explicitly programmed. Nevertheless,

most of these techniques were developed to learn from data with stationary probability

distributions and, considering that PM data are uninterruptedly collected, thus producing

a stream of data whose distribution may evolve over time, which is known as concept drift,

such traditional machine learning techniques may offer limited accuracy. The overall goal

of this work is to evaluate whether online sequential learning, combined with mechanisms

and techniques to handle concept drift such as ensemble learning and sliding windows,

can improve the estimation accuracy of PM forecasting. Online and offline algorithms

based on Extreme Learning Machines (ELM) were compared, in order to evaluate their

performance when applied to forecast daily concentrations of PM, specifically particles

with aerodynamic diameter smaller than 10 μm (known as PM10). The experiments were

performed using real world datasets of PM10 concentration from different cities of the State

of São Paulo, Brazil. The obtained results indicate that PM data distributions slowly evolve

over time, so new mechanisms were proposed to keep information of past concepts into

ensembles, so they can adapt to new concepts. These new mechanisms have shown

good performance in dynamic ensembles.

Keywords: Particulate Matter, Machine Learning, Online Learning, Extreme Learning Machines,

Ensembles.

Resumo

Partículas sólidas e gotículas microscópicas suspensas no ar, conhecidas como material

particulado (MP), podem afetar significativamente não só a saúde humana, mas também

os sistemas urbanos, naturais e agrícolas. Portanto, é imperativo manter os níveis de

concentração destes poluentes abaixo de limiares nocivos. Para isso, os mecanismos de

previsão são particularmente relevantes, pois podem ajudar os órgãos públicos e

agências ambientais a definir estratégias para controlar a concentração de MP na

atmosfera. As ferramentas de previsão baseadas em Aprendizagem de Máquinas têm

sido usadas para estimar a concentração de MP e outros poluentes na atmosfera, devido

à sua capacidade de aprender com exemplos e identificar relações nos dados, sem serem

explicitamente programadas para isto. No entanto, a maioria destas técnicas foi

desenvolvida para aprender à partir de dados com distribuições de probabilidade

estacionárias e, como é provável que as distribuições dos dados de concentração de MP

mudem ao longo do tempo, o que é conhecido como concept drift, tais técnicas podem

oferecer acurácia limitada. O objetivo geral deste trabalho é avaliar se algoritmos online

de aprendizado de máquina, combinados a técnicas de detecção de concept drift tais

como ensembles e janelas deslizantes, podem melhorar a acurácia da estimativa de

valores futuros de MP. Neste trabalho, foram comparados algoritmos online e offline

baseados em Extreme Learning Machines (ELM), a fim de avaliar seu desempenho

quando são aplicados para prever as concentrações diárias de MP, especificamente

partículas com diâmetro aerodinâmico inferior a 10 μm (conhecidas como MP10).

Experimentos foram realizados utilizando conjuntos de dados reais de concentração de

MP10 de diferentes cidades do Estado de São Paulo, Brasil. Os resultados obtidos

indicaram que os dados de concentração de MP evoluem lentamente com o passar do

tempo, o que levou à proposição de novos mecanismos que permitem manter a

informação de conceitos anteriores nos ensembles. Tais mecanismos têm mostrado bom

desempenho em ensembles dinâmicos.

Palavras-chave: Material Particulado, Aprendizagem de Máquina, Concept Drift, Máquinas de
Aprendizado Extremo, Ensembles.

List of figures

Figure 1. Relative Particle Sizes .. 19

Figure 2. Main patterns of concept drift ... 25

Figure 3. Structure of an ELM ... 29

Figure 4. General structure of an Ensemble of models ... 33

Figure 5. Geographical locations of the cities of the State of São Paulo whose data

were employed in the experiments ... 58

Figure 6. Hampel filter applied to Debutanizer Column and different values of k 60

Figure 7. Errors of the OS-ELM algorithm on artificial and real-world datasets using

different values of sliding window and hidden neurons .. 63

Figure 8. Errors of the EOS Algorithm varying the inclusion/replacement frequency λ on

artificial and real-world datasets ... 64

Figure 9. Errors of the OS-ELM algorithm on all particulate matter datasets using

different values of sliding window and hidden neurons .. 66

Figure 10. Errors of the EOS Algorithm varying the inclusion/replacement frequency λ

on particulate matter datasets .. 67

Figure 11. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Debutanizer dataset ... 68

Figure 12. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for SRU1 dataset ... 71

Figure 13. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for SRU2 dataset ... 72

Figure 14. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Friedman dataset .. 73

Figure 15. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Hyperplane 500 dataset ... 74

Figure 16. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Hyperplane 1000 dataset ... 75

Figure 17. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Hyperplane 2000 dataset ... 76

Figure 18. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Hyperplane 3000 dataset ... 77

Figure 19. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Campinas dataset ... 80

Figure 20. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for São Caetano dataset .. 81

Figure 21. Online cumulative error and box plots of the Mean Squared Errors of each

algorithm, for Jundiaí dataset ... 82

List of Tables

Table 1. World Health Organization Guideline values for PM10 and PM2.5 21

Table 2. WHO air quality guidelines and interim targets for particulate matter: 24-hour

concentrations. Adapted from (WHO, 2005)... 22

Table 3. Main concept drift detection approaches based on machine learning 25

Table 4. Comparative table of the EOS and DOER dynamic ensembles approaches ... 49

Table 5. Comparative table of the EOS and EOS-Rank dynamic ensemble approaches

 ... 51

Table 6. Comparative table of the DOER and DOER-Rank dynamic ensemble

approaches... 51

Table 7. Comparative table of the EOS and EOS-D dynamic ensemble approaches 53

Table 8. Specifications of datasets used in the experiments.. 56

Table 9. Performance comparison of the proposed approaches for the Debutanizer,

Friedman, SRU1 and SRU2 datasets ... 69

Table 10. Performance comparison of the proposed approaches for the Hyperplane

datasets. ... 70

Table 11. Performance comparison of the proposed approaches for the, Campinas,

Jundiaí and São Caetano do Sul datasets ... 79

List of Symbols

PM: Particulate Matter

PM10: PM with aerodynamic diameter ø ≤ 10 µm

PM2.5: PM with aerodynamic diameter ø ≤ 2.5 µm

CO: Carbon Monoxide

CO2: Carbon Dioxide

SW: Sliding Window

ELM: Extreme Learning Machine

OS-ELM: Online Sequential Extreme Learning Machine

OS-ELMsw: The Online Sequential Extreme Learning Machine with Sliding Window 𝑁1: Initial training data set 𝑆: An idealized data stream 𝐿: Number of hidden neurons 𝑇: Number of samples of the data stream

ANN: Artificial Neural Network

SVM: Support Vector Machine

MLP: Multilayer Perceptron

MLR: Multiple Linear Regression Model

MLPNN: Multi-layer Perceptron Neural Networks

DOER: The Dynamic and Online Ensemble Regression

EOS: Ensemble of Online Learners with Substitution of Models

EOS-rank: The Ensemble of Online Learners with Substitution of Models with ranking
of components

DOER-rank: The Dynamic and on-line ensemble regression with ranking of
components

EOS-D: The Dynamic Ensemble of Online Learners with Substitution of Models using
weighted average Σ: Ensemble 𝐷t: Batch of samples

𝑓: An online supervised learner 𝑚: Window’s size 𝑅: maximum number of models in the ensemble 𝜆: inclusion/replacement frequency of EOS-base approaches 𝛼: Factor of inclusion of new models of DOER-base approaches

MSE: Mean Squared Error 𝑙𝑖𝑓𝑒: The age of a component of the ensemble 𝑐: Subset of the most accurate components of the ensemble 𝑙: The size of the subset of components

SRU1: Sulfur Recovery Unit Output 1

SRU2: Sulfur Recovery Unit Output 2 PM𝑚𝑎𝑥: Maximum value of particulate matter concentration reported by CETESB for
each city

SGBP: Stochastic Gradient Descent Back-Propagation

RAN: Resource Allocation Network

RAEKF: Resource Allocation Network via Extended Kalman Filte

MRAM: Minimal Resource Allocation Network

GAP-RBF: Growing and Pruning RBF Network

14

1 Introduction

Advances in processing power, affordable data storage and the multiplication of data

sensors have led to a significant growth in the overall volume of data produced. As a

result, the demand for complex and automated data analysis tools, capable of dealing

with bigger and more complex data and of delivering faster and more accurate results,

have also increased. In order to satisfy this demand, machine learning and data mining

techniques have evolved, becoming more reliable and accurate, allowing the creation of

decision-making models in a wide variety of fields (Han, Kamber, & Pei, 2012).

In some application fields, data is often generated as a timely ordered sequence of

numerical data points, so it can be seen as a time series. This allows the application of

machine learning-based techniques to build forecasting models capable of automatically

identifying important insights and of predicting future behavior of the time series. Online

learning algorithms are suitable for this task as, in practice, data becomes available

sequentially (as a data stream) and online algorithms allow the update of the forecasting

model whenever new data becomes available. This approach offers good performance

even when the underlying data distribution changes over time, where traditional batch-

based models become less accurate (Cavalcante & Oliveira, 2015).

Given the features mentioned above, many applications of online learning algorithms have

been reported in the literature. Such algorithms have been applied, for example, to

environmental monitoring. In these scenarios, the forecasting task is difficult due to the

uncertainties involved in the behavior of the natural phenomena. Hence, it is imperative

to update the forecasting model with the information introduced by new incoming data, as

the accuracy of the model is critical for planning and implementing counter-measures to

protect human lives. The capability of fast updating the forecasting model (without a

significant increase in the computational times) makes online learning suitable for short

term forecasting, as required in such scenarios (Yaday et al., 2016).

Monitoring and forecasting systems have also been applied to predict the concentration

of pollutants in the air. The aim of those systems is to support policies for the control of

the concentration of various air pollutants that affect human health, such as ground-level

15

ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2). Results indicate the

importance of considering data changes over time for real-time forecasting or air pollutants

(Bashir et al., 2016), which can be achieved by online learning algorithms. In addition to

the pollutants mentioned above, forecasting can be also applied to many other air

pollutants, such as particulate matter (PM), which has drawn the attention of scientists

and academics, given the high concentration levels of this pollutant in the air that have

been observed in the last years.

Fast growing population in urban regions has increased human-related activities such as

agriculture, industry and transportation. These activities may lead to the increase of the

concentration of different pollutants in the air (Calderón-Garcidueñas et al., 2015; Pozza,

2009), including extremely small particles and liquid droplets known as particulate matter

(PM).

Breathable fractions of PM with aerodynamic diameter ø ≤ 2.5 µm and ø ≤ 10 µm (known

as PM2.5 and PM10, respectively) have a greater impact on human health (Oprea et al.,

2015), as these particles easily enter through the airways up to the lungs, increasing the

likelihood of respiratory diseases and even death (Souza et al., 2015). Besides affecting

human health, these particles can cause environmental and crops damage. Therefore,

real-time monitoring, forecasting and alert systems are helpful to environmental agencies

and other authorities to manage air quality, in order to avoid that PM concentrations reach

harmful levels.

Given the nature of PM concentration data, they can also be seen as time series, since

they correspond to a sequence of measures collected over time (Bell, Samet, & Dominici,

2004). Therefore, it is possible to apply Machine Learning techniques to forecast PM

concentration (Oprea et al., 2015; Raimondo et al., 2007; Souza et al., 2015).

Nevertheless, most of these approaches assume that the underlying distribution of data,

from which the model learns, do not change over time (stationary environments).

Considering that dynamic behavior is inherent to data streams, it is possible to say that

the values to be predicted may depend on some hidden context that evolves over time

(Gonçalves et al., 2014; Han et al., 2012). Therefore, it is likely that the data distribution

16

will change over time, thus compromising the accuracy of the forecasting system. This

phenomenon is known as concept drift, and it implies an important challenge for online

learning (Gonçalves et al., 2014).

In conclusion, given the PM effects over human health and urban, natural and agricultural

systems, real-time monitoring, forecasting and alert systems are needed to support

control strategies and policies to keep the concentration of PM below the harmful

thresholds for humans and environmental systems. Short-term exposures to high

concentrations of PM10 demands immediate mitigation exposure actions to protect

especially children and elders exposed to these episodes. Air quality monitoring systems

can support these strategies to predict and anticipate several air pollution episodes.

Nevertheless, this kind of data (data streams) may present dynamic behaviors (concept

drifts) that can make this task difficult, so it is important to consider this issue to properly

mine PM data.

Online sequential learning capability of learning new data patterns over time enables

models to handle concept drifts in an implicit way by updating the models with new arriving

samples every time they are available. Additionally, Ensembles of Models has shown

important results in dynamic scenarios, especially when the components of the ensemble

are trained with different batches of data, thus, learning different concepts of the data

stream. Such model’s outputs may be combined according to their accuracy in recent past

predictions, ensuring that the most accurate models contribute to the ensemble output.

Those approaches can be combined with Sliding Windows, which selects the most recent

samples in a predefined window to update or re-train the models. This window acts like a

limited memory, which retain information of the current drift in the most recent samples

and forget old information.

The aim of this work is to evaluate whether the use of techniques to handle concept drift

together with online sequential learning forecasting models and online dynamic

ensembles, improves the accuracy of estimations. Here, a first step to achieve this goal

was made with a thorough analysis of a state-of-the-art online learner: Extreme Learning

Machine (ELM)-based forecasting models trained to predict daily PM10 concentration were

17

evaluated and compared. Besides, such ELMs were also combined into ensembles, and

two mechanisms to enhance the accuracy of dynamic ensembles were proposed: a

ranking scheme, which was applied to the Ensemble of Online Sequential Learners (EOS)

and to the Dynamic and Online Ensemble for Regression (DOER) algorithms (namely

EOS-rank and DOER-rank, respectively), and a procedure of dynamic adaptation of

models using weighted average, which was applied to EOS (named here EOS-D).

Experiments were performed using real-world datasets of PM concentration from different

cities of the State of São Paulo, Brazil.

This document is organized into 6 chapters. Chapter 2 provides a theoretical background

of the main concepts related to concept drift detection techniques and online learning

algorithms. Chapter 3 resumes the literature review of pollutant concentration forecasting

and techniques to handle concept drift. Chapter 4 presents detailed information and

description of the algorithms evaluated in this work. The configuration of the algorithms,

the datasets used in the experiments and the methodology adopted here, together with

the obtained results are discussed in Chapter 5. Finally, Chapter 6 presents the

conclusions and future steps of this research.

20

pollution effects on human health have been mainly linked to heart and respiratory

diseases, and brain effects are not as broadly recognized in children, particulate matter

pollution is a risk factor for the development of neuro-inflammation and neuro-

degeneration. Results showed that inflammation of the upper and lower respiratory tracts

produce a natural inflammatory response based on inflammatory mediators. These

mediators can ultra-pass the placental barrier and reach the brain of the embryo and fetus,

affecting its development (Calderón-Garcidueñas et al., 2015).

2.1.2 Air quality standards

Given the negative effects mentioned above and considering that the concentration levels

of PM have increased in most cities worldwide, PM has become a big concern for public

health authorities and environmental agencies. It is necessary to create control strategies

for PM concentrations in urban areas and to strengthen policies to keep the concentration

of these particles below harmful thresholds, so damages to human health, human welfare

and the environment can be mitigated.

Usually, air quality standards are set by each country in order to protect its population

from health diseases and are considered an important component of the national risk

management and environmental policies. Those standards not only vary according to

economic, political and social factors but also according to the level of development and

air quality management capabilities.

The World Health Organization air quality guidelines (AQGs) is one of the most widely

accepted standards and guidelines for air quality management. The AQGs are designed

to offer guidance in order to reduce the health impacts of air pollution. These guidelines

are continuously updated based on expert evaluation of scientific evidence, incorporating

new studies of effects of air pollution that have been published in the literature. The

objective of these guidelines is to inform policy-makers, support actions to achieve air

quality that protects public health and define appropriate targets in order to create

environmental policies for air quality management around the world (WHO, 2005).

It is important to highlight that there is not enough evidence to suggest a PM threshold

below which no negative effects would be expected. Additionally, there are individual

21

factors that influence the response to a given exposure, making difficult to create a global

guideline that leads to a complete protection for every individual against air pollution

adverse health effects (WHO, 2005).

The WHO AQGs defines short-term (24 hour) and long-term (annual mean) indicators of

PM pollution. Long-term and short-term guideline values for PM10 and PM2.5 concentration

are presented in Table 1.

Table 1. World Health Organization Guideline values for PM10 and PM2.5

Particulate matter size Term Concentration

PM2.5
Annual mean 10 𝜇𝑔/𝑚3
Hour mean 25 𝜇𝑔/𝑚3

PM10
Annual mean 20 𝜇𝑔/𝑚3
Hour mean 50 𝜇𝑔/𝑚3

For PM2.5 and PM10, annual average concentrations of 10 𝜇𝑔/𝑚3 and 20 𝜇𝑔/𝑚3 were

defined. Those values represent the lower limits over which significant effects on human

health were observed in an American Cancer Society’s study (Pope III et al., 2002). The

WHO AQGs warns that adverse health effects cannot be entirely ruled out below the levels

defined above. These levels represent values of PM concentration that not only have been

shown to be achievable by different cities in developed countries around the world, but

also that allows significant reduction of adverse effects in human health.

Besides the guideline values presented in Table 1, three interim targets (IT) are defined

for PM2.5 and PM10 (Table 2). The interim targets present values that have been shown

achievable through different air quality management policies in order to reduce population

exposure and can be helpful to support progress evaluation of current policies over time.

The guideline values of 24-hour mean, presented in Table 2, aim to protect populations

against peaks of pollution that lead to a substantial increase in mortality. Published risk

coefficients from multi-center studies and meta-analyses were considered to determine

each interim target.

23

as time series and can be considered as an particular case of data stream (Cavalcante &

Oliveira, 2015). Since in many applications the data streams cannot be stored, due to the

high volume of data and the speed that the samples arrive, the effective mining of data

streams is not a trivial task. Therefore, the development of efficient methods for mining

data streams has grown in different areas of data mining, including classification,

clustering and online detection of rare events in data streams (Han et al., 2012).

As the nature of data streams is dynamic, data patterns may evolve over time, which is a

challenge to conventional batch learning algorithms. As the underlying data distribution

may change over time, the accuracy of the forecasting models may also degrade. This

problem is referred to as concept drift (Cavalcante & Oliveira, 2015).

Most of the work in the machine learning literature assumes that the underlying

distributions of training samples are stationary (Gama et al., 2004). However, the

probabilistic distribution of the data can change over time, so the model learned may

become less accurate after a period of time. This problem is known as concept drift, and

it implies a big challenge to conventional batch learning algorithms (Cavalcante & Oliveira,

2015). A concept drift is generally described as a modification in the relationship between

input and output data over time (Elwell & Polikar, 2011; Gama et al., 2004).

In order to explain concept drift, this document considers the following definitions.

Forecasting can be seen as the task of making long or short-term predictions of future

values of a time series, based on a mathematical model adjusted to approximately

represent the historical patterns of the series (Han & Kamber, 2006). Environments where

the underlying data distributions change over time are known as non-stationary

environments. The objective variable for classification and forecasting models are known

as classes and target values, respectively.

According to the above terminology, concept drift can be formally described from the

Bayesian posterior probability (Gama et al., 2014). According to Bayes’ theorem,

𝑃(𝑦|𝑥) = 𝑃(𝑥|𝑦)𝑃(𝑦)𝑃(𝑥) (1)

24

where a target variable 𝑦 ∈ ℜ1 must be predicted according to a set of inputs 𝑥 ∈ ℜ𝑃, 𝑃(𝑥) corresponds to the feature-based probability of the data, 𝑃(𝑦) defines the objective

variable prior probability and 𝑃(𝑥|𝑦) describes the likelihood of 𝑥 within a particular set of

possible outcomes. In this context, a concept drift can be defined as any scenario where

the posterior probability changes, i.e., 𝑃𝑡+1(𝑦|𝑥) ≠ 𝑃𝑡(𝑦|𝑥).
2.2.1 Types of drift

While a shift in 𝑃(𝑥) could indicate that the predictive decision can be shifting as well, the

observation of a shift on 𝑃(𝑥) is not enough to indicate a concept drift, due to its

independence from the objective variable. However, if the data distribution 𝑃(𝑦|𝑥)
changes, the decision boundary is affected. Changes that affect the decision boundary

are a concern both from forecasting and classification perspectives.

In this context, it is possible to distinguish two types of drifts:

1. Real concept drift, which refers to changes in 𝑃(𝑦|𝑥), thus representing a change

in the decision boundary. Such change can occur either with or without a

modification in the probabilities of the input data 𝑃(𝑥) (Elwell & Polikar, 2011).

2. Virtual drift, which corresponds to changes in the distribution of the input data 𝑃(𝑥)
that do not affect 𝑃(𝑦|𝑥) (Tysmbal, 2004; Gama, 2014).

Some authors have characterized concept drift differently, according to the way the

concept drift occurs. Such classification is based on the drift’s speed, randomness and

cyclical nature. Drift speed is defined as the displacement rate between 𝑃𝑡(𝑦|𝑥)
and 𝑃𝑡+1(𝑦|𝑥), from one time step to the next. Figure 2 shows the main patterns of concept

drift, which can be:

 Sudden drift, also known as abrupt drift, corresponds to a larger displacement

within a time step and may occur by switching from one concept to another. This

usually results in high prediction error.

 Incremental drift presents smaller displacements, therefore results in lower

prediction errors and is more difficult to detect.

26

Passive (or implicit) approaches, on the other hand, do not employ techniques to detect

the beginning of a concept drift: a possible ongoing drift is constantly assumed, and the

model is continuously updated with the most recent samples. Sample-based online

learners are considered passive approaches, and these algorithms assure faster

adaptation to changing environments, offering good performance in cases where the rate

of incoming data is not very fast (Gomes Soares & Araújo, 2015).

Within the passive approach, three methods for concept drift handling are widely used:

sliding windows or instance selection, instance weighting and ensemble learning

(Cavalcante & Oliveira, 2015; Fdez-Riverola et al., 2007; Liao, Member, & Carin, 2009).

Sliding Window (or instance selection) approaches train or updated models from the most

recent data in a predefined window, allowing the model to represent and predict the

current concept. The window acts like a limited memory that forgets the older samples

that are left out of the window. An important issue is to find the ideal window size, which

should capture the rate of the concept drift. Small windows provide faster adaptation and

large windows provide more stability, but also slower adaptation to drifts. The main

disadvantage of this approach is the high computational cost of continuously training a

new model whenever a new sample is available (Soares & Araújo, 2015). This approach

is used to handle concept drifts since it allows models to represent and predict the current

concept (Soares & Araújo, 2015).

Instance Weighting assigns weights to data or part of the data, according to its age or

utility. These weights reflect the importance of such samples for the

classification/forecasting task (Tsymbal, 2004). Weights are useful in concept drift

scenarios when only the new samples represent the current concept. Thus, weights can

be determined according to the age of each sample: one approach is the exponential

decrease of each weight according to the age of the sample.

Finally, ensemble learning employs a set of models, usually trained from different sets of

data, to forecast target variables. Predictions of each model could be combined using

voting, weighted voting or selecting the most relevant model. Mechanisms to include and

remove models in the ensemble are important factors to improve the prediction

performance of the ensemble in concept drift scenarios. In this approach, new models

27

trained with the current concept data, can be added to the ensemble in order to adapt the

ensemble to the current concept. On the other hand, the dynamic removal of inaccurate

models, which are not able to predict the current concept, avoid degrading the ensemble’s

performance (Soares & Araújo, 2015).

2.2.3 Online Sequential Learning

In machine learning can be identified two main learning approaches: offline learning and

online learning. In offline learning, the whole training data set must be available for the

training phase. Only when the model is completely trained, it is available for predicting. In

contrast, online learning process data sequentially. In this approach, a model is produced

and put into operation without having the complete training data set at the beginning. This

model is continuously updated with the new incoming samples. The online learning

algorithms are suited for scenarios where it is impossible to have the whole training data

set at the beginning of the operation (Gama et al., 2010).

While offline learning algorithms use past and new data in a complete retraining of the

model, which can be computationally expensive, online learning only uses new data to

update the model. In this context, linear regression models are more suitable for online

learning, since they are generally easy to update even when updating with batches of

data, linear models are not expensive computationally. This capability is not feasible for

nonlinear methods, where frequent updating via batch/sample learning is too expensive

to implement, as those models tend to have more parameters to train, making the process

more slowly when compared with linear models (Peng et al., 2017).

Online learning can be formally defined as follows. A forecasting model for regression 𝐹(𝑥) that maps a set of inputs 𝑥 into an output 𝑦 = 𝐹(𝑥) da for classification and regression

tasks. The online learning procedure is the following:

1. An unlabeled sample 𝑥𝑡 is received by the algorithm

2. A prediction of �̂�𝑡 is made using 𝑥𝑡
3. Receive the true label 𝑦𝑡
4. Update the model using (𝑥𝑡, 𝑦𝑡)

30

where 𝛽 is the output weight vector and 𝑦 is the output vector. 𝐇 is the hidden layer output

matrix, where the 𝑗-th column of 𝐇 represents the output vector of the 𝑗-th hidden node,

with respect to all the inputs; and the 𝑗-th row of 𝐇 is the output vector of the hidden layer

with respect to 𝑥𝑡.
Since the weights and biases of the hidden layer are randomly assigned, the learning

process in ELMs is based on finding the output weights 𝛽. This can be accomplished by: �̂� =𝐇†𝑦, (6)
where 𝐇† is the Moore-Penrose generalized inverse (or pseudoinverse) of matrix 𝐇 (Liang

et al., 2006). Which can be calculated as Eq. 7 if the inverse of 𝐇𝑇𝐇 exists. 𝐇† = (𝐇𝑇𝐇)−𝟏𝐇𝑇. (7)
Substituting Eq. 7 into Eq. 6, 𝛽 becomes 𝛽 = (𝐇𝑇𝐇)−𝟏𝐇𝑇𝑦 (8)
Therefore, the ELM algorithm can be summarized as in Algorithm 1.

Algorithm 1. Extreme Learning Machine (ELM) algorithm

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the size of training data 𝑁1; a number of
hidden nodes 𝐿;
1. Assign input weights 𝑎𝑗 and bias 𝑏𝑗 randomly, 𝑗 = 1,… . , 𝐿 ;
2. Calculate 𝐇 with 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; and Eq. (4);
3. Calculate the output weight 𝛽 through Eq. (8);
end

In many industrial applications, it is impossible to have all the training data available before

the learning process, as the observations arrive sequentially to the learning algorithm, i.e.,

they arrive one-by-one or chunk-by-chunk (in batches). In these cases, traditional ELMs

are not suitable. Hence, the OS-ELM was proposed to deal with online learning (Liu et al.,

2015).

31

2.3.2 Online Sequential Extreme Learning Machine

Two phases compose the learning process in OS-ELMs. The initialization phase and the

sequential learning phase. In the initial phase, a training dataset of size 𝑁1 < 𝑇 is used to

build the initial ELM. In the sequential learning phase only the new one-by-one (or chunk-

by-chunk) arriving samples are used to update the ELM. Once the step is completed,

those samples are discarded. For the initialization and update phases, the (𝑘 + 1)-th batch

of new observations can be expressed as:

𝐷𝑘+1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=(∑ 𝑁𝑙𝑘𝑙=0)+1𝑡=∑ 𝑁𝑙𝑘+1𝑙=0 (9)
where 𝑘 ≥ 0, 𝐷𝑘+1 represents the (𝑘 + 1)-th batch of observations, 𝑁𝑘+1 is the number of

samples in the (𝑘 + 1)-th batch and 𝑁0 = 0.

In the initialization phase of the OS-ELM, a training dataset 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆 is used

to build the initial ELM. Then, the output weights 𝛽0 are determined as in Eq. 10. 𝛽0 = (𝐇𝟎𝑻𝐇𝟎)−𝟏𝐇𝟎𝑻𝑦0, (10)
where 𝑦0 = [𝑦1, … , 𝑦𝑇]T is the output vector from 𝐷1 and 𝐇𝟎 is the initial hidden layer matrix

obtained with 𝐷1 (Eq. 11).

𝐇𝟎 = [𝑔(𝑎1, 𝑏1, 𝑥1) ⋯ 𝑔(𝑎𝐿 , 𝑏𝐿 , 𝑥1)⋮ ⋱ ⋮𝑔(𝑎1, 𝑏1, 𝑥𝑁1) ⋯ 𝑔(𝑎𝐿 , 𝑏𝐿 , 𝑥𝑁1)] (11)
Equation 10 can be rewritten as 𝛽0 = 𝑃0𝐇0𝑇𝑦0, where 𝑃0 is the initial covariance matrix 𝑃0 = (𝐇0𝑇𝐇0)−𝟏.
When a new batch of samples arrives, the new output weight vector 𝛽𝑘+1 is computed

using concepts of the Recursive Least Squared algorithm (RLS) (Liang et al., 2006), as

follows:

𝛽𝑘+1 = 𝛽𝑘 + 𝑃𝑘+1𝐇𝑘+1T (𝑦𝑘+1 − 𝐇𝑘+1𝛽𝑘), (12)

32

𝑃𝑘+1 = 𝑃𝑘 −𝐇𝑘+1T (𝐼 + 𝐇𝑘+1𝑃𝑘𝐇𝑘+1T)−1𝐇𝑘+1𝑃𝑘, (13)
𝐇𝑘+1 = [

 𝑔 (𝑎1, 𝑏1, 𝑥(∑ 𝑁𝑙𝑘𝑙=0)+1) ⋯ 𝑔 (𝑎1, 𝑏𝐿 , 𝑥(∑ 𝑁𝑙𝑘𝑙=0)+1)⋮ ⋱ ⋮𝑔 (𝑎1, 𝑏1, 𝑥∑ 𝑁𝑙𝑘+1𝑙=0) ⋯ 𝑔 (𝑎1, 𝑏𝐿 , 𝑥∑ 𝑁𝑙𝑘+1𝑙=0)]
 , (14)

𝑦𝑘+1 = [𝑦(∑ 𝑁𝑙𝑘𝑙=0)+1, … , 𝑦∑ 𝑁𝑙𝑘+1𝑙=0]T (15)
Liang et al., (2006) provide a detailed derivation of Eqs. 12 and 13. Therefore, the OS-

ELM algorithm in a sample-based scenario, where each sample from 𝑆 is provided

sequentially, is depicted in Algorithm 2.

Algorithm 2. Learning algorithm for the sample-based OS-ELM

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the number of samples for initial training
phase, 𝑁1; a number of hidden nodes 𝐿;
1. Initialization: assign input weights 𝑎𝑗 and bias 𝑏𝑗 randomly, 𝑗 = 1,… . , 𝐿 ;
2. Calculate the hidden layer matrix H0 with 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆 and

Eq. 11;
3. Calculate the output weight 𝛽0 through Eq. 10, where 𝑦0 = [𝑦1, … , 𝑦𝑁1]T

and set 𝑘 = 1, 𝑡 = 𝑁1;
4. while 𝑡 ≤ 𝑇 do:

a. Present the (𝑘 + 1) −th batch 𝐷𝑘+1 ⊂ 𝑆 defined in Eq. 9;
b. Obtain the matrix H𝑘+1 using 𝐷𝑘+1 and Eq. 14;
c. Set y𝑘+1 using Eq. 15;
d. Obtain 𝑃𝑘+1 and 𝛽𝑘+1 using Eqs. 13 and 12;
e. Set 𝑘 ← 𝑘 + 1, 𝑡 ← 𝑡 + 𝑁𝑘+1

5. end while
end

2.3.3 Ensemble of models

Ensemble methods can be used to increase the overall prediction or classification

accuracy. In this work, ensembles are studied in order to enhance the predictions of single

OS-ELMs. An ensemble for prediction is a composite model made up of a combination of

34

learning has proven to be efficient in changing environments due to the capability to adapt

the prediction model to new concepts through the sequential learning. Thus, the aim of

this work is to combine those approaches together with the online sequential version of

the ELM to forecast hourly concentrations of PM.

36

Statistical and machine learning approaches are based on identifying patterns of data that

allow predicting future pollutant concentration. Usually, these approaches require less

computational resources and offer results with considerable accuracy, compared with

deterministic models. Among the most recent and widely used approaches for air pollution

forecasting, multiple nonlinear regression, neural networks, neuro-fuzzy and hidden

Markov models can be found (Peng et al., 2017).

Monitoring and forecasting systems have been developed and applied to forecast PM

concentration. In this context, information systems, especially those based on machine

learning techniques, have shown promising results in PM forecasting. For example, Oprea

et al., (2015) developed an intelligent system capable of performing 24-hour ahead

forecasting of PM2.5 concentration levels and of sending early warnings to protect children

with health problems. Raimondo et al., (2007) used Artificial Neural Networks (ANN) and

Support Vector Machines (SVM) to forecast PM10 concentration, and Souza et al., (2015)

proposed an ensemble of ANNs to forecast daily concentrations of PM10. In Souza et al.

(2015), the ensemble approach presented better performance compared to individual

ANNs. Shaban et al., (2016) indicate the importance of considering data changes over

time for real-time forecasting of air pollutants, which can be achieved by online sequential

learning algorithms. Such algorithms constantly update their forecasting models with

newly received data, either sample-by-sample or batch-by-batch (blocks of data). In

contrast with off-line approaches, online learners do not require a full retraining of the

forecasting model whenever new data is available, which speeds up the whole process.

Mao et al., (2017) joined deterministic and machine learning approaches to forecast hourly

PM2.5 concentrations. This approach used meteorological data as the input of a Multilayer

Perceptron (MLP) together with data from a satellite remote sensing technique to monitor

air quality: the Satellite-derived Aerosol Optical Depth (AOD). The resulting configuration

presented good performance, predicting hourly PM2.5 concentrations in the south of China

with a number of steps ahead. The incorporation of transport of “dirty” and “clean” air

information, measured by the AOD, improved the accuracy of PM2.5 predictions.

Biancofiore et al., (2017) evaluated the PM forecasting performance of three models: a

Multiple Linear Regression Model (MLR), an ANN with recursive architecture and an ANN

37

without recurrent architecture. Meteorological parameters and PM10 concentration served

as inputs of the models, which were developed to predict daily average PM10

concentrations three days ahead. Data collected from 2011 to 2013 in the urban area of

Pescara, Italy, was used in this work. Measurements included temperature, relative

humidity, wind speed/direction, pressure, and concentration of PM10, CO, ozone and

nitrogen oxide, among others. An analysis over PM10 data allowed the identification of an

annual cycle pattern with higher concentrations during winters and lower concentrations

during summers. This can be seen as an evidence of the strong influence of

meteorological parameters, in this case determined by the seasons of the year, on the

concentration of PM (Mao et al., 2017; Peng et al., 2017). Furthermore, a strong

correlation between the concentration of PM10 and carbon monoxide (CO) was identified,

suggesting common sources for PM10 and CO. Results showed that the recursive neural

network performed better in all the evaluated scenarios than MLR and the ANN without

recurrent architecture. The inclusion of CO as an additional parameter improved the

performance of all models. This may suggest that, in scenarios with a well-identified CO

source (like emissions due to fossil fuel combustion in the case of Pescara), the

concentration of this pollutant can be used as an additional input of models that forecast

PM.

Evaluation of online sequential learning approaches was conducted by Peng et al., (2017),

in order to study the impact of online updating capabilities to air pollution forecasting

models. Peng et al., (2017) evaluated MLRs, Multi-layer Perceptron Neural Networks

(MLPNN) and ELMs. Online learning versions of MLR and ELM (OSMLR and OS-ELM

respectively), updated with daily collected data, were compared with MLPNN updated

seasonally and with the climatology model GEM-MACH15. Data from 2009 to 2014 of

meteorological variables and air quality of six monitoring stations of Canadian cities were

used in the experiments. The OS-ELM outperformed the other methods over the six

stations, including the climatology model. The MLPNN, updated every 3 months due to its

high computational cost, presented poorer performance than the daily updated

approaches. This is an important issue, considering that all models were initially trained

with the same data corresponding to the first 2 of the 5 years available. Results regarding

the MLPNN may indicate that the initial training data did not provide enough statistical

39

(Gama et al., 2004). The early drift detection method (EDDM), proposed by Baena-García

et al. (2006), offers an improvement over DDM, as its analysis is based on the distance

between errors, instead of only considering the number of prediction errors. This method

can be used with any learning algorithm.

3.2.1 Ensemble based approaches to handle Concept drift

The Incremental Local Learning Soft Sensing Algorithm (ILLSA) is an ensemble approach

based on Recursive Partial Least Squares (RPLS). ILLSA divides historical data into

partitions, which represent different states of the process. A model is built based on each

dataset. The model’s weights on the new sample are calculated using the posterior

probability obtained by a Bayesian framework. Experiments showed that ILLSA leads to

better accuracy, when compared to traditional RPLS (Kadlec & Gabrys, 2010).

Additive-Expert (AddExp) is an ensemble of predictive models (referred to as experts),

each with an associated weight. The algorithm uses a weighted vote that considers the

outputs of all experts. When a new sample arrives, the algorithm output is determined by

the expert prediction with the greatest weight. The weights of the experts with low

accuracy are decreased by a multiplicative constant β. If the overall prediction is incorrect,

a new expert is added to the ensemble and all experts are re-trained with the sample.

AddExp can be used with any online learner algorithm, such as least square regression

learners and naïve Bayes for regression (Kolter & Maloof, 2005). Experimental results

have shown better performance and faster adaptation of AddExp based on naïve Bayes,

when compared to traditional naïve Bayes algorithm for regression. Similar results were

found for AddExp based on the least squares regression algorithm.

Online Ensemble using Ordered Aggregation (OEOA) is an ensemble proposed by

Soares & Araújo, (2016), which uses a quality metric to produce a decreasing order of the

best models for a given data. This approach is capable of providing online prediction in

non-stationary environments. A data window of fixed size is kept and a new model is

trained with the new incoming data when the ensemble’s performance is deteriorating.

Artificial and real-world datasets were employed to evaluate the predictive performance

of OEOA over state-of-the-art approaches. The results showed that OEOA delivers more

40

accurate estimations of output variables in industrial applications, when compared to other

state-of-the-art ensembles in the literature such as AddExp and EOS-ELM.

Learn++.NSE (Elwell & Polikar, 2011) is a batch-based ensemble learning algorithm that

uses weighted majority voting. In this algorithm, the weights are updated based on the

classification error on current and past environments. A drift detection mechanism is

implemented and uses only current data for training. Learn++.NSE can handle a wide

variety of drifts such as abrupt, gradual and cyclical. It only discards a classifier

temporarily, which is particularly useful in cyclical environments. In order to evaluate the

Learn++.NSE algorithm, several datasets that simulate different scenarios of non-

stationary environments, such as abrupt, gradual and cyclical drift, were evaluated.

Learn++.NSE algorithm can be implemented using different base learners, such as Naïve

Bayes, Support Vector Machines (SVM) and classification and regression trees (CART).

The reported experiments allowed the comparison of Learn++.NSE with other concept drift

ensemble approaches, such as SEA, DWM and AdaBoost weighting. The results showed

the versatility of Learn++.NSE to adapt to a wide variety of drift scenarios and also its

higher efficiency, since it uses existing knowledge by reactivating early classifiers when

they are needed the most, and disabling them when they are not relevant.

Soares & Araújo (2015) proposed an Online Weighted Ensemble of forecasting models

(OWE), which is able to incrementally learn, sample by sample, in the presence of several

types of changes, and simultaneously retain old information in recurring scenarios. OWE

employs several adaptive mechanisms to deal with different types of drifts (Gomes Soares

& Araújo, 2015). OWE was compared with state-of-the-art approaches, using two artificial

datasets and two real-world industrial datasets, and the results show the ability of OWE

to handle several types of drifts, such as abrupt, gradual and cyclic.

The Dynamic and Online Ensemble Regression (DOER) offers fast adaptation capability

for online prediction of variables measured at low sampling in non-stationary

environments (Soares & Araújo, 2015). DOER is an online ensemble for regression with

the following properties:

 Online inclusion and removal of models to keep only the most accurate models;

 Dynamic model weighting based on online predictions;

41

 Online adaptation of models’ parameters.

Experiments were performed in scenarios that required faster adaptation capability and,

when DOER was compared to four online strategies using the single model OS-ELM

(Liang et al, 2016) algorithm and five online ensemble algorithms (EOS-ELM, AddExp,

Online Bagging (OB), Learn++.NSE and OAUE – Soares & Araújo, 2015), it showed higher

accuracy.

3.2.2 Approaches that handle concept drift in an implicit way

Online Sequential Extreme Learning Machine (OS-ELM) is the online variant of Extreme

Learning Machines (ELMs) that can learn from samples or batches of data. It combines

the ELM advantages as speed and generalization performance with the sequential

learning process (Liang et al, 2006). When a new sample or batch is available, it is used

to update the learning model. Due to its online nature, OS-ELM is able to handle concept

drift in an implicit way (as mentioned before). However, since OS-ELM updates the model

every time a new instance is available, the computational cost is high compared with the

original ELM, especially when the rate of incoming data is high (Cavalcante & Oliveira,

2015). Liang et al (2006) compared OS-ELM with other sequential learning algorithms

(SGBP, RAN, RAEKF, MRAN, GAP-RBF– Liang et al., 2006) on real world datasets for

regression, classification and time series forecast problems, and the results indicated that

the OS-ELM achieves better generalization and requires lower training time.

Cavalcante & Oliveira (2015) proposed a learning method, which behaves like an online

and offline learner, switching the operation to react to changes in the data in order to

reduce the computational resources, when compared with single OS-ELM. Their work

implemented OS-ELMs combined with DDM and also OS-ELMs combined with

Exponentially Weighed Moving Average Concept Drift Detection, known as ECDD (Ross

et al., 2010). Two metrics, accuracy and processing time, were evaluated in the

experiments, which used artificial and real-world datasets. The results showed that the

combination of OS-ELM with ECDD reduces the processing time when compared with

single OS-ELMs for time series forecast.

42

This chapter described current approaches for PM forecasting found in the literature. In

this work are studied machine learning algorithms to forecast air pollution concentrations,

since they do not require detailed knowledge about complex meteorological and

atmospheric processes, and are easier to implement when compared to deterministic

models. These approaches are good alternatives to sophisticated deterministic

forecasting models, not only capable of presenting comparable performances but also

requiring less computational resources (Peng et al., 2017).

Although, ANNs and MLPNNs have been used to forecast PM concentrations in many

scenarios, studies suggest that new patterns may appear in PM data, thus, making limited

the capability of prediction of ANNs and MLPNNs, since they are not able to adapt to

changes. On the other hand, OS-ELMs has proven to be better than traditional algorithms

like MLPNNs in such scenarios, since they can adapt faster to new changes.

The focus of this work is to improve the estimation accuracy of PM concentrations.

Considering the dynamic behavior of PM data reported in the literature, online learning

approach was chosen as the base strategy to handle concept drift presented in such data.

The OS-ELM was selected the base algorithm of the experiments conducted in this work.

Additionally, considering the results found in a previous work (Bueno et al., 2017), where

an ensemble of OS-ELMs implementing the updating ensemble scheme proposed by

Street and Kim (2001) improved the stability of the results when compared to single OS-

ELMs, this work builds on that work and propose new mechanisms to deal with concept

drifts in order to improve the forecasting accuracy of ensembles. The proposed

mechanisms studied here are incorporated and evaluated on EOS and DOER (Soares &

Araújo, 2015), being the last chosen since it incorporates several concept drift handling

strategies and shows good performance in concept drift scenarios.

44

approach through two ensemble learning algorithms: the Ensemble of Online Learners

with Substitution of Models (EOS) and the Dynamic and On-line Ensemble Regression

(DOER).

4.1.1 The Ensemble of Online Learners with Substitution of Models

The Ensemble of Online Learners with Substitution of Models (EOS) (Bueno et al., 2017)

is an ensemble of online learners, which implements sliding windows and the ensemble

updating scheme originally proposed by Street & Kim (2001). EOS was proposed as part

of this dissertation and its application for PM10 forecasting in sample-based scenarios was

published in Bueno et al., (2017). The EOS algorithm is described in Algorithm 3.

Algorithm 3. Ensemble of Online Learners with Substitution of Models (EOS)

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; window’s size, 𝑚; number of samples
for initial training phase, 𝑁1; an online supervised learner 𝑓, maximum number
of models in the ensemble 𝑅; an ensemble Σ; inclusion/replacement frequency 𝜆
1. Initialization: set Σ ← ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆;
2. 𝑓𝑘 ← obtain a model trained with 𝐷1, Σ ← Σ + 𝑓𝑘, 𝑘 = 1, and 𝑟 = 0;
3. while 𝑡 ≤ 𝑇 do:

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆;
b. obtain the output prediction of Σ using 𝑥𝑡;
c. retrain/update all models of Σ using 𝐷𝑡; 𝑡 ← 𝑡 + 1, 𝑟 = 𝑟 + 1;
d. if 𝑡 𝑚𝑜𝑑 λ = 0 𝑓0 ← obtain a new model trained with 𝐷𝑡𝑒𝑚𝑝 = {(𝑥𝑡, 𝑦𝑡)}𝑡=𝑡−(λ−1)𝑡 ⊂ 𝑆;

if 𝑘 < 𝑅
a. include 𝑓𝑘 to Σ: Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1;

else
b. obtain 𝑀𝑆𝐸𝑗 with 𝐷𝑡𝑒𝑚𝑝 for each model 𝑓𝑗 𝜖 𝛴,

c. replace the model with the worst 𝑀𝑆𝐸𝑗: 𝑓𝑗 ← 𝑓0
4. end while
end

EOS implements dynamic mechanisms for inclusion and exclusion of components at a

fixed rate. This allows EOS to adapt to changing environments, through the incorporation

45

of new components trained with a batch of recent samples and the elimination of those

old components with the worst performance over the past samples.

The data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)|𝑥𝑡 ∈ ℝ𝑟𝑥1, 𝑦𝑡 ∈ ℝ, 𝑡 = 1,… , 𝑇} is used as input of the

algorithm, according to the definition at the beginning of this chapter. EOS also requires

the definition of the window size 𝑚; the online supervised learner 𝑓; the number of

samples for the initial training phase 𝑁1; the maximum number of models in the ensemble 𝑅; the ensemble of online learners Σ; and the frequency of inclusion and substitution of

components 𝜆.

In Step 1 the initial training batch 𝐷1 is defined with the first samples of the data stream

and Σ ← ∅ denotes that the ensemble is initially empty. In the initialization phase (Step

2), a component 𝑓𝑘 is trained with the samples in 𝐷1, and subsequently added to the

ensemble Σ. The number of components in the ensemble 𝑘 is updated and the control

variable that counts the number of iterations 𝑟 is initialized. From Steps 3 to 4, the SW is

shifted along the data stream. Step 3a incorporates the new arriving sample to the window

and discards the oldest sample, according to the defined window size 𝑚. The ensemble

output 𝐹(𝑥𝑡) is calculated in Step 3b using simple average of the individual component’s

outputs. All components of the ensemble are updated with the samples in the SW 𝐷𝑡 in

Step 3c, then, in Step 3d, it is evaluated whether the current iteration is equal to 𝜆, the

frequency of inclusion and substitution of models. If so, a new component 𝑓𝑘 is trained

with the last samples in 𝐷𝑡𝑒𝑚𝑝, of size λ, and 𝑟 is restarted.

If the current number of components in the ensemble 𝑘 is less than the maximum number

of components in the ensemble 𝑅, 𝑓𝑘 is added to the ensemble directly and 𝑘 is updated.

Otherwise, the 𝑀𝑆𝐸𝑗 of each component 𝑗 of the ensemble is calculated with the set of

samples 𝐷𝑡𝑒𝑚𝑝 and the component with the worst performance (the highest 𝑀𝑆𝐸) is

substituted by the new component trained from scratch (𝑓𝑘) with 𝐷𝑡𝑒𝑚𝑝.

The EOS algorithm differs from others approaches in the inclusion exclusion scheme,

which incorporate new models to the ensemble at a fixed rate without any implicit

mechanism to determine if a drift is present. Another feature of the EOS is the size of the

46

window. EOS selects the most recent samples of the data stream in a window, to updated

the components of the ensemble in each iteration.

4.1.2 The Dynamic and on-line ensemble regression

The Dynamic and On-line Ensemble Regression (DOER) approach (Soares & Araújo,

2015) is an online sample-based ensemble of online learners, designed for regression in

changing environments. The structure of DOER is presented in Algorithm 4.

DOER offers dynamic adaptation of components’ weights according to the accuracy of

components’ predictions on the most recent samples, assigning larger weights to the most

accurate components, so inaccurate components would not degrade the ensemble’s

performance. This approach also enables the inclusion and removal of components with

bad performance. The pruning strategy of DOER removes the components with the worst

accuracy evaluated in the most recent samples, by ensuring that just the most accurate

components are used to predict new instances

In order to adjust the ensemble to changes, DOER uses a sliding window with the most

recent samples to train and incorporate new components when the ensemble’s

performance is not satisfactory. It is important to highlight that the SW used in DOER

differs from the SW used in the EOS algorithm, since EOS updates the ensemble’s

components with the samples in the SW, while DOER uses the SW to train new

components to be added to the ensemble.

The data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)|𝑥𝑡 ∈ ℝ𝑟𝐱1, 𝑦𝑡 ∈ ℝ, 𝑡 = 1, … , 𝑇} and the size of the sliding

window 𝑚 are defined as inputs. This SW is used to train the new components to be added

to the ensemble. It must also be defined the online supervised learner 𝑓; the number of

samples for the initial training phase 𝑁1; the factor 𝛼 that controls the inclusion of models

and the maximum number 𝑅 of components in the ensemble.

47

Algorithm 4. Dynamic and on-line ensemble regression (DOER)

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; window’s size, 𝑚; number of samples for
initial training phase, 𝑁1; an online supervised learner 𝑓, factor of inclusion of new
models 𝛼; maximum number of models in the ensemble 𝑅; an ensemble Σ;
1. Initialization: set Σ ← ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆;

2. 𝑓𝑘 ← obtain a model trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0, wk = 1, Σ ←Σ + 𝑓𝑘 and 𝑘 = 1;
3. while 𝑡 ≤ 𝑇 do:

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆 ;
b. obtain the output prediction 𝐹(𝑥𝑡) of Σ as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1) ∑ 𝑤𝑗𝑘𝑗=1⁄ ;

c. for all models 𝑓𝑗 ∈ Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1;
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈ Σ using Eq. 17;

e. calculate the weight for each model from Σ using Eq. 18;
f. retrain all models of Σ using 𝐷𝑡;
g. 𝑡 ← 𝑡 + 1
h. if |(𝐹(𝑥𝑡) − 𝑦𝑡)/𝑦𝑡| > 𝛼 𝑓0 ← obtain a new model trained with 𝐷𝑡; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0; and 𝑤0 = 1;

if 𝑘 < 𝑅
a. include 𝑓𝑘 to Σ: Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1;

else
b. replace the model 𝑓𝑗 by 𝑓0, where 𝑗 =min𝑣=1,…,𝑘(𝑀𝑆𝐸𝑣𝑡): 𝑓𝑗 ← 𝑓0

4. end while
end

In the initialization phase, the number of models 𝑘 is set and batch 𝐷1 organized with the

first 𝑁1 samples of the data stream. Step 2 trains the first component of the ensemble with

the batch of samples in the SW and 𝑘 is updated.

From Step 3 to Step 4, the SW is dislocated to add the new incoming sample to the window

and remove the oldest one (Step 3a). The ensemble output is calculated using the

weighted average of components’ outputs (Step 3b). The error of each component 𝑓𝑗 of

48

the ensemble Σ, (𝑗 = 1,… , 𝑘) is calculated in Step 3c, using the current sample (𝑥𝑡, 𝑦𝑡),
according to Eq. 16. 𝑒𝑗𝑡 = (𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 (16)

where 𝑓𝑗(𝑥𝑡) is the prediction of the component 𝑓𝑗. Once the error is calculated, the 𝑙𝑖𝑓𝑒𝑗
is incremented. Then, in Step 3d, the 𝑀𝑆𝐸𝑗𝑡 of the current window is calculated for each

component of the ensemble, as given in Eq. 17.

𝑀𝑆𝐸𝑗𝑡 = {
 0, if 𝑙𝑖𝑓𝑒𝑗 = 0,𝑙𝑖𝑓𝑒𝑗 − 1𝑙𝑖𝑓𝑒𝑗 . 𝑀𝑆𝐸𝑗𝑡−1 + 1𝑙𝑖𝑓𝑒𝑗 . 𝑒𝑗𝑡 , if 1 ≤ 𝑙𝑖𝑓𝑒𝑗 ≤ 𝑚,

𝑀𝑆𝐸𝑗𝑡−1 + 𝑒𝑗𝑡𝑚 − 𝑒𝑗𝑡−𝑚𝑚 , if 𝑙𝑖𝑓𝑒𝑗 > 𝑚 (17)

The goal of Eq. 17 is to estimate the average error of each component 𝑓𝑗 on the last 𝑚

samples using the mean squared error (MSE). This approach allows the estimation of the

MSE of the current window, this is to say, a vector 𝑒𝑗 with the last 𝑚 prediction errors is

considered in the calculation of the 𝑀𝑆𝐸𝐽𝑡. Step 3e calculates the weights 𝑤𝑗 of each

component 𝑓𝑗 according to its error 𝑀𝑆𝐸𝑗𝑡 as in Eq. 18.

𝑤𝑗 = exp (−𝑀𝑆𝐸𝑗𝑡 −med(𝑀𝑆𝐸𝑡)med(𝑀𝑆𝐸𝑡)), (18)

where 𝑀𝑆𝐸𝑡 = [𝑀𝑆𝐸1𝑡 , … ,𝑀𝑆𝐸𝑘𝑡] and med(𝑀𝑆𝐸𝑡) is the median value of the components’

errors, 𝑀𝑆𝐸𝑡. Equation 18 transforms the 𝑀𝑆𝐸𝑡 of each component in a way that the

components with errors closer to the median obtain a weigh equal to 1, while components

with 𝑀𝑆𝐸𝑡 lower or higher than the median obtain weights exponentially higher or lower,

respectively. This approach avoids that components with low accuracy impact negatively

the ensemble’s output. In Step 3f, all components are updated, and, after this, it is

evaluated if a new component must be added according to 𝛼 (Step 3g). In that case, a

new model is trained with the current window 𝐷𝑡 and weight equal to 1. If the current

49

number of components in the ensemble is smaller than the defined limit 𝑅, the new

component is added directly; otherwise, the component 𝑓𝑗 with the worst 𝑀𝑆𝐸𝑗𝑡 is replaced

by the new component 𝑓𝑘.

Table 4 resumes the main features of the dynamic ensembles algorithms mentioned

above. Both approaches incrementally add components in the initial phase of the

operation, the main difference is the frequency those components are added to the

ensemble: while EOS updates the ensemble at a predefined frequency, DOER calculates

in every step if an update is required. Regarding the sliding window, the EOS uses a small

window to update the components of the ensemble and DOER uses a larger window to

train the new components to be added to the ensemble.

Table 4. Comparative table of the EOS and DOER dynamic ensembles approaches

Features EOS DOER

Initial training Incremental Incremental

Sliding Window For updating the ensemble For training new components

Ensemble’s Combination Strategy Simple average Weighted average

Incorporation of new components Fixed frequency Dynamic frequency

4.1.3 Proposed ensemble approaches based on DOER and EOS

New mechanisms for online dynamic ensembles were proposed and evaluated in this

work. These mechanisms were incorporated into DOER and EOS algorithms, and will be

described here.

4.1.3.1 Rank of components

This approach incorporates a simple rank of components to the original DOER and EOS

algorithms. The MSE of the component is used to rank the components of the ensemble

at each iteration. This strategy selects the most accurate components of the ensemble in 𝑐 ⊂ Σ to predict the next sample, sorting the components of the ensemble with a simple

ranking function according to the MSE (Step 3(g) of Algorithms 5 and 6). The structures

of EOS-rank and DOER-rank are presented in Algorithms 5 and 6, respectively. The main

features of the EOS-Rank and DOER-Rank dynamic ensembles are summarized in tables

5 and 6 respectively.

50

Algorithm 5. The Ensemble of Online Learners with Substitution of Models
with Ranking of Components (EOS-rank)

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the window size, 𝑚; the number of
samples for initial training phase, 𝑁1; an online supervised learner, 𝑓; the
maximum number of models in the ensemble, 𝑅; an ensemble, Σ; the
inclusion/replacement frequency, 𝜆; the size of the subset of components, 𝑙.
1. Initialization: set Σ ← ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; 𝑡 = 𝑁1;
2. obtain a model, 𝑓𝑘, trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0, wk = 1,Σ ← Σ + 𝑓𝑘 , 𝑘 = 1; and 𝑐 = Σ;
3. while 𝑡 ≤ 𝑇 do:

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆 ;
b. obtain the output prediction 𝐹(𝑥𝑡) of 𝑐 as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1) ∑ 𝑤𝑗𝑘𝑗=1⁄ ;

c. for all models 𝑓𝑗 ∈ Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1;
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈ Σ using Eq. (14);

e. calculate the weight for each model from Σ using Eq. (15);
f. update all models of Σ using 𝐷𝑡; 𝑡 ← 𝑡 + 1;
g. rank the components of the ensemble according to their 𝑀𝑆𝐸

and obtain the subset 𝑐 = 𝑟𝑎𝑛𝑘(Σ, 𝑙), of size 𝑙;
h. if 𝑡 𝑚𝑜𝑑 λ = 0

obtain a new model, 𝑓0, trained with 𝐷𝑡𝑒𝑚𝑝 = {(𝑥𝑡, 𝑦𝑡)}𝑡=𝑡−(λ−1)𝑡 ⊂ 𝑆; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0; and 𝑤0 = 1;

if 𝑘 < 𝑅
a. include 𝑓𝑘 to Σ: , Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1;

else
b. obtain 𝑀𝑆𝐸𝑗 with 𝐷𝑡𝑒𝑚𝑝 for each model 𝑓𝑗 𝜖 𝛴;

c. replace the model with the worst 𝑀𝑆𝐸𝑗: 𝑓𝑗 ← 𝑓0;
4. end while
end

51

Table 5. Comparative table of the EOS and EOS-Rank dynamic ensemble approaches

Features EOS EOS-Rank

Initial training Incremental Incremental

Sliding Window For updating the ensemble For updating the ensemble

Ensemble’s Combination Strategy Simple average Weighted average

Incorporation of new components Fixed frequency Fixed frequency

Dynamic Ensemble Mechanism Rank of components

The goal of this approach is to enable a faster inclusion of components that contribute to

the ensemble’s final output, since only the predictions of components in 𝑐 are combined.

This allows the ensemble to exclude more than one low accuracy component of the

ensemble’s output at once, differently from DOER and EOS algorithms, where no more

than one component can be replaced at once.This approach also allows that components

with a relatively bad performance remain for a longer time into the ensemble, since those

components can be kept out of 𝑐 until their individual performance improves and, then,

included again into 𝑐, thus maintaining the previously acquired knowledge for more time.

In changing environments, it can be risky to remove a component that may be important

in the future, especially in scenarios with recurring drifts, where the knowledge of a

component can be relevant when that concept is restored (Soares & Araújo, 2015).

Table 6. Comparative table of the DOER and DOER-Rank dynamic ensemble approaches

Features DOER DOER-Rank

Initial training Incremental Incremental

Sliding Window For training new components For training new components

Ensemble’s Combination Strategy Weighted average Weighted average

Incorporation of new components Dynamic frequency Dynamic frequency

Dynamic Ensemble Mechanism Rank of components

EOS-rank incorporates the dynamic parameterization of components as in DOER

algorithm. The 𝑀𝑆𝐸 calculated in each iteration for each component is used to rank the

ensemble, in order to select the components with the lowest errors in the subset c, as

described in Step 3(g) of Algorithm 5. DOER-rank also incorporates the ranking

mechanism using the 𝑀𝑆𝐸 of each component. The rank is applied after updating the

ensemble, as shown in Algorithm 5, Step 3(g).

52

Algorithm 6. The Dynamic and Online Ensemble Regression with Ranking of
Components (DOER-rank);

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the window size, 𝑚; the number of
samples for initial training phase, 𝑁1; an online supervised learner, 𝑓; the
factor of inclusion of new models, 𝛼; the maximum number of models in the
ensemble, 𝑅; an ensemble Σ;
1. Initialization: set Σ ← ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; 𝑡 = 𝑁1;
2. obtain a model, 𝑓𝑘, trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0, wk = 1,Σ ← Σ + 𝑓𝑘, 𝑘 = 1;
3. while 𝑡 ≤ 𝑇 do:

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆 ;
b. obtain the output prediction 𝐹(𝑥𝑡) of Σ as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1) ∑ 𝑤𝑗𝑘𝑗=1⁄ ;

c. for all models 𝑓𝑗 ∈ Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1;
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈ Σ using Eq. (14);

e. calculate the weight for each model from Σ using Eq. (15);
f. update all models of Σ using 𝐷𝑡;
g. rank the components of the ensemble according to their 𝑀𝑆𝐸 and

obtain the subset 𝑐 = 𝑟𝑎𝑛𝑘(Σ,𝑀𝑆𝐸, 𝑙), of size 𝑙; 𝑡 ← 𝑡 + 1;
h. if |(𝐹(𝑥𝑡) − 𝑦𝑡)/𝑦𝑡| > 𝛼

obtain a new model, 𝑓0, trained with 𝐷𝑡; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0;
and 𝑤0 = 1;
if 𝑘 < 𝑅

a. include 𝑓𝑘 to Σ: Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1;
else

b. replace the model 𝑓𝑗 by 𝑓0, where 𝑗 =min𝑣=1,…,𝑘(𝑀𝑆𝐸𝑣𝑡): 𝑓𝑗 ← 𝑓0;
4. end while
end

53

4.1.3.2 Initial Ensemble and Weighted Average

The original EOS incorporates components to the ensemble incrementally along its

operation, until the limit of components is reached. Then, inaccurate components are

substituted. This allows the ensemble to better adapt to changes, incorporating new data

patterns that may emerge, through new components trained with the most recent samples.

Nevertheless, in the early stages of EOS operation, low accuracy components may affect

the ensemble’s accuracy if the number of components is small, thus affecting the overall

performance of the algorithm. It is important to consider that EOS can operate for more

time with fewer components than DOER, since the frequency of incorporation/substitution

of components is lower in EOS than in DOER, as DOER evaluates, in each iteration,

whether it is possible to incorporate a new component. In order to mitigate this effect,

EOS-D is proposed. Algorithm 7 presents the structure of EOS-D.

The original EOS was modified to incorporate an initial ensemble of components and

DOER’s weighted average aggregation strategy. Hence, 𝑅 components are trained in the

initial stage of this approach with 𝐷1, and the component’s weights are calculated

according to Eq. (15). Components are also initialized with weights 𝑤𝑗 = 1 and 𝑙𝑖𝑓𝑒𝑗 = 0,

as in DOER. The main features of the EOS-D are summarized in Table 7.

Table 7. Comparative table of the EOS and EOS-D dynamic ensemble approaches

Features EOS EOS-D

Initial training Incremental
All components trained at the
beginning

Sliding Window For updating the ensemble For updating the ensemble

Ensemble’s Combination Strategy Simple average Weighted average

Incorporation of new components Fixed frequency Dynamic frequency

Dynamic Ensemble Mechanism Rank of components

54

Algorithm 7. The Dynamic Ensemble of Online Learners with Substitution of
Models using weighted average (EOS-D).

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the window size, 𝑚; the number of
samples for initial training phase, 𝑁1; an online supervised learner, 𝑓; the
maximum number of models in the ensemble, 𝑅; an ensemble Σ; the
inclusion/replacement frequency, 𝜆;
1. Initialization: set Σ ← ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆;
2. for k=1 to 𝑅

a. obtain a model, 𝑓𝑘 , trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0,wk = 1, Σ ← Σ + 𝑓𝑘;
3. while 𝑡 ≤ 𝑇 do:

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆;
b. obtain the output prediction 𝐹(𝑥𝑡) of 𝑐 as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1) ∑ 𝑤𝑗𝑘𝑗=1⁄ ;

c. for all models 𝑓𝑗 ∈ Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1;
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈ Σ using Eq. (14);

e. calculate the weight for each model from Σ using Eq. (15);
f. update all models of Σ using 𝐷𝑡; 𝑡 ← 𝑡 + 1;
g. if 𝑡 𝑚𝑜𝑑 λ = 0 𝑓0 ← obtain a new model trained with 𝐷𝑡𝑒𝑚𝑝 = {(𝑥𝑡, 𝑦𝑡)}𝑡=𝑡−(λ−1)𝑡 ⊂ 𝑆; set 𝑟 = 0; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0;

if 𝑘 < 𝑅
a. include 𝑓𝑘 to Σ: , Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1;

else
b. obtain 𝑀𝑆𝐸𝑗 with 𝐷𝑡𝑒𝑚𝑝 for each model 𝑓𝑗 𝜖 𝛴, for 𝑗 = 1, … , 𝑅;
c. replace the model with the worst 𝑀𝑆𝐸𝑗: 𝑓𝑗 ← 𝑓0, for 𝑗 = 1, … , 𝑅;

4. end while
end

57

The hyperplane dataset involves noise, gradual drifts and non-recurring drifts. It was

created by Kolter (2005) to evaluate the AddExp algorithm for regression. Feature vectors

consist of 10 input variables 𝑥 ∈ [0,1] with uniform distribution, the output variable 𝑦 ∈[0,1] and a number of samples 𝑇. Four target concepts [𝐶1; 𝐶2; 𝐶3; 𝐶4] are introduced, each

one lasting 𝑇/4 samples. The output for each concept 𝑦𝑡 is given by:

 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶1: 𝑦𝑡 = (𝑥1 + 𝑥2 + 𝑥3) 3⁄ , for 𝑡 = 1, … , 𝑇4 ; (19)
 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶2: 𝑦𝑡 = (𝑥2 + 𝑥3 + 𝑥4) 3⁄ , for 𝑡 = (𝑇4 + 1) , … , 𝑇2 ; (20)
 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶3: 𝑦𝑡 = (𝑥4 + 𝑥5 + 𝑥6) 3⁄ , for 𝑡 = (𝑇2 + 1) , … , 3𝑇4 ; (21)
 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶4: 𝑦𝑡 = (𝑥7 + 𝑥8 + 𝑥9) 3⁄ , for 𝑡 = (3𝑇4 + 1) ,… , 𝑇; (22)

where 𝑇 is the size of the dataset. As 𝑇 varies in each experiment with 𝑇 ∈[500, 1000, 2000, 3000], four datasets were obtained, as shown in Table 8. The smaller

the value of 𝑇, the larger is the rate of concept drift.

Friedmans’ dataset is generated from the Friedmans’ function. It contains 5 continuous

features 𝑥 ∈ [0,1] independently distributed according to a uniform distribution. The target

value is given by Eq. (23): 𝑦 = 10 ∗ sin(𝜋 ∗ 𝑥1 ∗ 𝑥2) + 20 ∗ (𝑥3 − 0.5)2 + 10 ∗ 𝑥4 + 5 ∗ 𝑥5 + 𝜎(0,1) (23)

where 𝜎(0,1) is a random number generated from a normal distribution with mean 0 and

variance 1.

5.1.2 Real-world datasets

Six real-world datasets were considered in the simulations; three corresponding to

concentration values of PM10 from different cities and three associated with industrial

processes.

The Sulfur Recovery Unit (SRU) and Debutanizer Column datasets correspond to

industrial processes. In the case of the SRU dataset, two outputs where considered; the

H2O concentration (output 1) and S2O concentration (output 2), referred as SRU1 and

SRU2 respectively. For the Debutanizer Column dataset, the output corresponds to the

65

frequency 𝜆. As described in Chapter 2, 𝜆 determines the frequency with which new

components are incorporated into the ensemble or replaced, according to the size of the

ensemble. This parameter also determines the number of samples used to train the new

component, as a block composed of the last 𝜆 samples is used to train the new component

to be incorporated into the ensemble. Results of the evaluation of different values of 𝜆 are

presented in Figure 8. Finally, values of 𝜆 = 10 were assigned for real-world datasets

(Debutanizer, SRU1 and SRU2), 𝜆 = 100 for the Friedman and Hyperplane 3000 datasets

and 𝜆 = [40, 120, 50] for the Hyperplane 500, Hyperplane 1000 and Hyperplane 2000

respectively.

The inclusion and exclusion of models can be an important factor that influence the

adaptation of the ensemble, thus affecting its prediction performance (Soares & Araújo,

2015). An ideal high frequency inclusion of new components into the ensemble may

indicate that the environment is changing rapidly, so the new components trained with the

most recent samples represent the current state of the system to be predicted. Results

presented in figures 7 and 8 seem to corroborate this behavior, as real-world datasets

performed better with small window sizes and larger inclusion/replacement frequencies.

In contrast, artificial datasets do not seem to be affected by this factor, nevertheless, it

can be observed that the MSE tend to decrease when 𝜆 is increased.

Regarding the DOER-based approaches (DOER and DOER-rank) two parameters where

considered; the factor of inclusion of a new model 𝛼 and the sliding window size 𝑚. Notice

that DOER sliding window is used to train the new models to be incorporated into the

ensemble, and not to update the current components, as EOS-based approaches do.

Here, 𝛼 = 0.04 was set for all the scenarios as proposed in (Soares & Araújo, 2015), since

no further improvement was observed when 𝛼 increased or decreased. On the order hand,

DOER algorithms used the same values of the frequency of inclusion/replacement of

components 𝜆 of the EOS algorithms, that is, 𝑚 = 𝜆 for each corresponding dataset. This

makes the comparisons between EOS and DOER fairer, since in both cases 𝜆 and 𝑚

define the size of the batch of samples used to train the new component to be added to

the ensemble.

69

5.5.1 Experimental results for the real-world and artificial datasets with

known dynamic behaviors

Results for of the real-world and artificial datasets with known dynamic behaviors are

summarized in tables 9 and 10. The best results according to the MSE, are highlighted in

bold. It can be seen, from tables 9 and 10, that DOER-based algorithms were superior for

all real-world datasets (Debutanizer, SRU1 and SRU2) while EOS-based algorithms

presented the best results for artificial datasets (Friedman and Hyperplane).

Table 9. Performance comparison of the proposed approaches for the Debutanizer, Friedman, SRU1 and
SRU2 datasets

Dataset Algorithm
Results

Mean Squared Error Time [𝒔]
Debutanizer

DOER 0.00208 ± 0.00032 5.904 ± 0.15140

DOER-rank 0.00205 ± 0.00005 10.97 ± 0.19840

EOS 0.00563 ± 0.00010 5.856 ± 0.17130

EOS-rank 0.00420 ± 0.00007 8.444 ± 0.10758

EOS-D 0.00494 ± 0,00007 4.963 ± 0.07820

OS-ELMsw 0.01317 ± 0.00076 0.402 ± 0.01355

Friedman

DOER 0.02751 ± 0.00006 8.325 ± 0.13097

DOER-rank 0.02744 ± 0.00006 13.60 ± 1.04498

EOS 0.02687 ± 0.00005 3.469 ± 0.05503

EOS-rank 0.02682 ± 0.00003 6.557 ± 0.11528

EOS-D 0.02688 ± 0.00003 4.493 ± 0.07195

OS-ELMsw 0.02694 ± 0.00009 0.349 ± 0.01394

SRU1

DOER 0.00027 ± 0.00001 26.12 ± 1.43020

DOER-rank 0.00027 ± 0.00000 47.25 ± 0.29920

EOS 0.00042 ± 0.00000 25.82 ± 0.19807

EOS-rank 0.00037 ± 0.00000 37.17 ± 0.38034

EOS-D 0.00041 ± 0.00000 21.19 ± 0.19076

OS-ELMsw 0.00067 ± 0.00001 1.531 ± 0.01771

SRU2

DOER 0.00057 ± 0.00001 25.41 ± 0.43370

DOER-rank 0.00061 ± 0.00000 47.20 ± 0.18500

EOS 0.00103 ± 0.00000 25.91 ± 0.37625

EOS-rank 0.00089 ± 0.00001 37.07 ± 0.14109

EOS-D 0.00098 ± 0.00001 21.37 ± 0.14662

OS-ELMsw 0.00165 ± 0.00001 1.537 ± 0.03829

70

Ranking approaches implemented in DOER and EOS algorithms (DOER-rank and EOS-

rank) presented higher accuracies in most of the cases than their original approaches

(DOER and EOS). EOS only performed better than EOS-rank for the Hyperplane 2000

and Hyperplane 1000 datasets. On the other hand, DOER was superior to DOER-rank for

Friedman and SRU2 datasets. Results also show that this method can reduce the

standard deviation of the original approaches.

Table 10. Performance comparison of the proposed approaches for the Hyperplane datasets.

Dataset Algorithm
Results

Mean Squared Error Time [𝒔]
Hyperplane 500

DOER 0.03165 ± 0.00018 1.304 ± 0.02400

DOER-rank 0.03124 ± 0.00015 2.266 ± 0.04660

EOS 0.02967 ± 0.00016 0.410 ± 0.01708

EOS-rank 0.02958 ± 0.00012 1.149 ± 0.03834

EOS-D 0.02973 ± 0.00009 0.948 ± 0.03100

OS-ELMsw 0.02976 ± 0.00037 0.074 ± 0.00774

Hyperplane 1000

DOER 0.02766 ± 0.00004 4.147 ± 0.09250

DOER-rank 0.02764 ± 0.00011 6.457 ± 0.00007

EOS 0.02725 ± 0.00016 0.733 ± 0.02605

EOS-rank 0.02727 ± 0.00005 2.348 ± 0.03305

EOS-D 0.02724 ± 0.00008 2.111 ± 0.08495

OS-ELMsw 0.02750 ± 0.00045 0.167 ± 0.01069

Hyperplane 2000

DOER 0.03113 ± 0.00005 6.833 ± 0.10960

DOER-rank 0.03102 ± 0.00008 11.76 ± 0.16910

EOS 0.03002 ± 0.00004 4.499 ± 0.08797

EOS-rank 0.03006 ± 0.00004 7.392 ± 0.14369

EOS-D 0.03005 ± 0.00004 4.578 ± 0.00004

OS-ELMsw 0.03016 ± 0.00023 0.342 ± 0.01719

Hyperplane 3000

DOER 0.02664 ± 0.00005 12.93 ± 0.19080

DOER-rank 0.02654 ± 0.00005 20.40 ± 0.31410

EOS 0.02605 ± 0.00002 6.242 ± 0.07685

EOS-rank 0.02602 ± 0.00002 10.59 ± 0.12375

EOS-D 0.02602 ± 0.00002 6.825 ± 0.07331

OS-ELMsw 0.02627 ± 0.00045 0.489 ± 0.01731

Although ranking approaches presented the more accurate results in almost all scenarios,

when compared with the original ensemble algorithms, they required more processing

time in all cases. DOER and EOS-based algorithms that implement ranking methods

78

led to the loss of important information about the current concept. This can explain why

DOER-based algorithms perform slightly worse than EOS approaches.

DOER operates with higher frequencies of inclusion/replacement of models, therefore,

more modifications to the ensemble are made, compared with EOS-based approaches.

Therefore, important information about the current concept may be lost when a

component is replaced. This behavior is evidenced when DOER-rank is compared with

DOER. DOER-rank outperforms DOER in all cases, maybe due to the fact that their

components are kept for more time into the ensemble, since the ranking mechanism

temporarily excludes a component of the ensemble’s output.

For the Friedman dataset, all algorithms presented larger errors in the beginning of the

dataset, then, the error was gradually decreased and kept stable until the end. EOS-rank

outperformed the other approaches with respect to the accuracy and standard deviation.

In general, EOS-based algorithms reported a similar performance over Hyperplane

datasets. For Hyperplane 500, EOS-rank presented the best performance, followed by

EOS-D, EOS and, finally, the OS-ELMsw. It is important to highlight that, for artificial

datasets, OS-ELMsw performed relatively better compared with the results obtained for

the real-world datasets. Nevertheless, as shown in figures 14 to 18, subplots (b) and (c),

OS-ELMsw presents larger standard deviations, compared with the ensemble

approaches. Ensembles of OS-ELMs present smaller standard deviations than single

model approaches, which means that, ensemble approaches improve the stability of the

predictions. This is an important issue considering the random nature of ELMs since it

randomly assigns the parameters of the hidden nodes and input weights (Bueno et al.,

2016).

For Hyperplane 1000, 2000 and 300 the results were similar. EOS-based algorithms

performed better than DOER-based approaches. The EOS-D obtained the best

performance for Hyperplane 1000 and Hyperplane 3000, where EOS-rank presented the

same accuracy and standard deviation. For Hyperplane 2000, EOS outperformed the

other approaches. In general, all EOS-based approaches obtained a similar performance

for artificial datasets.

79

5.5.2 Experimental results for the Particulate Matter datasets

Table 11 reports the experimental results obtained for the Particulate Matter datasets. In

this stage, EOS was not considered in the evaluation, since EOS-D and EOS-rank showed

better accuracy than EOS in most of the experiments presented in the previous section.

Table 11. Performance comparison of the proposed approaches for the, Campinas, Jundiaí and São
Caetano do Sul datasets

Dataset Algorithm
Results

Mean Squared Error Time

Campinas

DOER 0.01540 ± 0.00230 25.35 ± 16.2550

DOER-rank 0.01378 ± 0.00002 27.87 ± 17.6800

EOS-rank 0.01155 ± 0.00001 51.79 ± 0.26186

EOS-D 0.01168 ± 0.00001 17.64 ± 3.69608

OS-ELMsw 0.01193 ± 0.00007 8.014 ± 0.16395

Jundiaí

DOER 0.04560 ± 0.03396 39.15 ± 8.63620

DOER-rank 0.00834 ± 0.00003 24.33 ± 13.8520

EOS-rank 0.00673 ± 0.00001 45.34 ± 11.7002

EOS-D 0.00684 ± 0.00001 15.90 ± 4.14645

OS-ELMsw 0.00685 ± 0.00000 7.953 ± 0.17596

São Caetano do
Sul

DOER 0.01392 ± 0.00061 41.74 ± 8.88056

DOER-rank 0.01301 ± 0.00004 34.96 ± 13.6878

EOS-rank 0.01034 ± 0.00001 31.47 ± 19.5576

EOS-D 0.01051 ± 0.00001 15.39 ± 0.77898

OS-ELMsw 0.01050 ± 0.00002 7.962 ± 0.26436

Results in Table 11 indicate that EOS-rank outperformed the other approaches in all

scenarios. The second-best algorithm was EOS-D, followed by the single model OS-

ELMsw and, finally, DOER-rank and DOER respectively.

Figures 19 to 21 present the online cumulative error and the box plots of the MSE for the

PM datasets (Campinas, Jundiaí and São Caetano do Sul). As can be observed, EOS-

based approaches not only perform better than DOER-based algorithms, but were also

more stable, since DOER-based approaches presented abrupt errors in all scenarios.

Results obtained for PM datasets are similar with the results obtained for artificial datasets

where the environment did not change too fast, so high frequencies of

inclusion/replacement of models to adapt the model to new concepts (as DOER-based

83

Forecasting in PM scenarios is not a trivial task due to the complexity of the processes

involved and the influence of many factors that affect the forecasting models’ performance

(Bianco et al., 2017; Peng et al., 2017). Between those factors, meteorological parameters

have shown to have a great influence over the concentrations of PM, especially those

related with the seasons of the year, that may produce cyclical patterns on PM

concentrations (Mao et al., 2017; Peng et al., 2017).

Additionally, strong correlations between carbon monoxide (CO) and concentrations of

PM10 have been found, suggesting common sources for PM10 and CO (Bianco et al.,

2017). The emissions of this pollutant can be related, for example, with fossil fuel

combustion and may present different patterns according to the traffic in urban areas,

which can be repeated along the time. That evidence, together with the results presented

above, may indicate that recurring drifts with low rates of change are present in PM

datasets. Therefore, approaches that slowly adapt to changes, and keep information of

past concepts, as EOS-based algorithms and the OS-ELMsw, tend to perform better in

such scenarios, as observed in the experimental results.

The results presented in this section indicate that the frequency of inclusion/removal of

components is an important issue in concept drift scenarios. Specifically, the results

indicate that low frequencies of inclusion/removal of models, like in EOS-based

approaches, tend to offer better results in scenarios where the underlying distributions do

not change very fast. On the other hand, in scenarios when the underlying patterns evolve

fast, high frequencies of inclusion/removal of models, like in DOER-based approaches,

are more suitable. Regarding PM scenarios, the results showed better performances of

EOS-based approaches, thus, indicating that those scenarios do not change very fast.

84

6 Conclusions

The main contribution of this work is the incorporation of mechanisms to deal with concept

drift in PM10 concentration forecasting. To do so, this work proposed an ensemble of online

learners implementing the dynamic inclusion and exclusion of components scheme

created by (Street & Kim, 2001), the Ensemble of Online Learners with Substitution of

Models (EOS). This approach incorporates sliding windows to update the online learners

that compose the ensemble, since those mechanisms (sliding windows, ensemble

learning) have shown to be effective to deal with changing environments. Additionally, two

derived approaches based on EOS were proposed; the EOS-rank, which adds a ranking

mechanism for online selection of the best subset of components, and the EOS-D, which

incorporates an initial ensemble of components and a weighted average aggregation

strategy.

The proposed approaches were evaluated and compared with artificial and real-world

datasets and with one of the state-of-the-art algorithms for concept drift scenarios: the

Dynamic and On-line Ensemble for Regression (DOER).

Five artificial datasets that present long-lasting concepts, and three industrial application

datasets with multiple concepts and high rate of drifts were used in the first part of the

experiments. The results showed that DOER-based algorithms performed better in

scenarios with high rates of drifts, due the high frequency of ensemble updates. On the

other hand, the proposed EOS-based algorithms, together with the OS-ELMsw,

performed better in scenarios with low rates of drifts, since they are capable of retaining

information of past concepts for more time, which becomes useful when recurring

concepts appear again.

Real-world datasets collected by CETESB in three cities of the State of São Paulo, Brazil,

were used to evaluate the behavior of the best approaches identified in the first part of the

experiments when applied to forecast future concentration of PM10. The aim of these

experiments was to determine if the incorporation of mechanisms to deal with concept

drift could enhance PM10 concentration forecasting. The observed results indicate that

particulate matter scenarios may present recurrent drifts with low rates of change. EOS-

85

based approaches and OS-ELMsw presented the best performances in each PM

scenario. EOS-rank obtained the best results in all cases.

The obtained results are coherent with those reported in the literature, which suggest that

meteorological factors, including those associated with seasons of the year, together with

the concentration of other pollutants in the atmosphere, influence the behavior of

particulate matter concentration. Thus, PM data patterns may evolve over time, making

online approaches, such as OS-ELM, and techniques capable of dealing with concept drift

(like all EOS and DOER variants considered here) more suitable to deal with this problem.

As future works, the incorporation of meteorological information (i.e., wind speed and

humidity) together with concentration values of other pollutants (i.e., CO and CO2), highly

correlated with PM concentrations, is recommended. This approach has shown to be

effective in works reported in the literature and can be enhanced using the mechanism

proposed in this work. Another approach to be explored is the dynamic switch between

DOER and EOS adaptation mechanisms. This will enable the predictor to use faster

adaptation mechanism (DOER) when the environment is changing quickly, incorporating

components at a faster frequency. On the other hand, when the environment is not

changing fast, turn on the EOS adaptation mechanisms to retain the information of the

environment for more time. To do so, Drift Detection Mechanism as proposed by Baena-

García et al. (2006) may support the dynamic selection of the adaptation mechanism

according to the current behavior of the environment.

86

References

Baena-García, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gadalvà, R., & Morales-

Bueno, R. (2006). Early drift detection method. In Proceedings of 4th International

Workshop on Knowledge Discovery from Data Streams (pp. 77–86). Palo Alto, CA.

Bell, M. L., Samet, J. M., & Dominici, F. (2004). Time-series studies of particulate matter.

Annual Review of Public Health, 25, 247–280.

http://doi.org/10.1146/annurev.publhealth.25.102802.124329

Bhattacharjee, H., Drescher, M., Good, T., Hartley, Z., Leza, J., Lin, B., Moss, J., Massey,

R., Nishino, T., Ryder, S., Sachs, N., Tozan, Y., Taylor, C., Wu, D. (1999).

Environmental effects of particulate matter. In Particulate Matter in New Jersey (5-1,

- 5-25). Princeton, NJ: Princeton University.

Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., & Bianco, S.

et al. (2017). Recursive neural network model for analysis and forecast of PM10 and

PM2.5. Atmospheric Pollution Research, 8(4), 652-659.

http://dx.doi.org/10.1016/j.apr.2016.12.014

Bueno, A., Coelho, G. P., & Bertini, J. R. (2017). Online Sequential Learning Based on

Extreme Learning Machines for Particulate Matter Forecasting. In 2017 Brazilian

Conference on Intelligent Systems (BRACIS) (pp. 169–174). IEEE.

http://doi.org/10.1109/BRACIS.2017.25

Calderón-Garcidueñas, L., Kulesza, R. J., Doty, R. L., D’Angiulli, A., & Torres-Jardón, R.

(2015). Megacities air pollution problems: Mexico City Metropolitan Area critical

issues on the central nervous system pediatric impact. Environmental Research, 137,

157–169. http://doi.org/10.1016/j.envres.2014.12.012

Cavalcante, R. C., & Oliveira, A. L. I. (2015). An approach to handle concept drift in

financial time series based on Extreme Learning Machines and explicit Drift

Detection. Proceedings of the International Joint Conference on Neural Networks,

2015–Septe. http://doi.org/10.1109/IJCNN.2015.7280721

87

CETESB - Publications / Reports Environmental Agency of the State of São Paulo -

CETESB, Air Quality. [in Portuguese]. http://ar.cetesb.sp.gov.br/publicacoes-

relatorios/. 2017 (Accessed: 26 December 2017).

CETESB – São Paulo Environmental Agency, 2014, 2013 Air Quality Report

<www.cetesb.sp.gov.br/ar/qualidade- do-ar/31-publicacoes-e-relatorios>, accessed

in 24.10.2016

Elwell, R., & Polikar, R. (2011). Incremental Learning of Concept Drift in Nonstationary

Environments. IEEE Transactions on Neural Networks, 22(10), 1517–1531.

http://doi.org/10.1109/TNN.2011.2160459

Fdez-Riverola, F., Iglesias, E. L., Díaz, F., Méndez, J. R., & Corchado, J. M. (2007).

Applying lazy learning algorithms to tackle concept drift in spam filtering. Expert

Systems with Applications, 33(1), 36–48. http://doi.org/10.1016/j.eswa.2006.04.011

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection.

Advances in Artificial Intelligence–SBIA 2004, (October 2017), 286–295.

http://doi.org/10.1007/978-3-540-28645-5_29

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on

concept drift adaptation. ACM Computing Surveys, 46(4), 1–37.

http://doi.org/10.1145/2523813

Gomes Soares, S., & Araújo, R. (2015). An on-line weighted ensemble of regressor

models to handle concept drifts. Engineering Applications of Artificial Intelligence, 37,

392–406. http://doi.org/10.1016/j.engappai.2014.10.003

Gonçalves, P. M., De Carvalho Santos, S. G. T., Barros, R. S. M., & Vieira, D. C. L. (2014).

A comparative study on concept drift detectors. Expert Systems with Applications,

41(18), 8144–8156. http://doi.org/10.1016/j.eswa.2014.07.019

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques. (Morgan

Kaufmann Publishers, Ed.) (Vol. 3). Waltham, Mass. http://doi.org/10.1088/1751-

8113/44/8/085201

Huang G., Qin-Yu Zhu, & Chee-Kheong Siew. Extreme learning machine: a new learning

88

scheme of feedforward neural networks. 2004 IEEE International Joint Conference

On Neural Networks (IEEE Cat. No.04CH37541).

http://dx.doi.org/10.1109/ijcnn.2004.1380068

IBGE : Instituto Brasileiro de Geografia e Estatística. (2017). Ibge.gov.br. Retrieved 24

October 2016, from http://www.ibge.gov.br/home/

Ikonomovska, E. (2012). Algorithms for Learning Regression Trees and Ensembles on

Evolving Data Streams (Phd’s thesis). Ljubljana, Slovenia: Jo_zef Stefan

International Postgraduate School.

Kadlec, P. & Gabrys, B. (2010). Local learning-based adaptive soft sensor for catalyst

activation prediction. Aiche Journal, 57(5), 1288-1301.

http://dx.doi.org/10.1002/aic.12346

Kolter, J. & Maloof, M. (2005). Using additive expert ensembles to cope with concept drift.

Proceedings Of The 22Nd International Conference On Machine Learning - ICML '05.

http://dx.doi.org/10.1145/1102351.1102408

Liang, C. S., Duan, F. K., He, K. Bin, & Ma, Y. L. (2016). Review on recent progress in

observations, source identifications and countermeasures of PM2.5. Environment

International, 86, 150–170. http://doi.org/10.1016/j.envint.2015.10.016

Liang, N.-Y., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2006). A fast and

accurate online sequential learning algorithm for feedforward networks. IEEE

Transactions on Neural Networks / a Publication of the IEEE Neural Networks

Council, 17(6), 1411–1423. http://doi.org/10.1109/TNN.2006.880583

Liao, X., Member, S., & Carin, L. (2009). Concept Drift Between Two Data Sets With

Application to UXO Sensing, 47(5), 1454–1466.

Liu, Y., He, B., Dong, D., Shen, Y., & Yan, T. (2015). ROS-ELM: A Robust Online

Sequential Extreme Learning Machine for Big Data Analytics. Proceedings of ELM-

2014 Volume 1, Algorthims and Theories, 3, 325–344. http://doi.org/10.1007/978-3-

319-14063-6

89

Mao, X., Shen, T., & Feng, X. (2017). Prediction of hourly ground-level PM 2 . 5

concentrations 3 days in advance using neural networks with satellite data in eastern

China. Atmospheric Pollution Research. http://doi.org/10.1016/j.apr.2017.04.002

Oprea, M., Ianache, C., Mihalache, S. F., Dragomir, E. G., Dunea, D., Iordache, S., &

Savu, T. (2015). On the development of an intelligent system for particulate matter

air pollution monitoring, analysis and forecasting in urban regions. In 2015 19th

International Conference on System Theory, Control and Computing (ICSTCC) (pp.

711–716). IEEE. http://doi.org/10.1109/ICSTCC.2015.7321377

Pearson, R. K., Neuvo, Y., Astola, J., & Gabbouj, M. (2015). The class of generalized

hampel filters. 2015 23rd European Signal Processing Conference, EUSIPCO 2015,

2501–2505. http://doi.org/10.1109/EUSIPCO.2015.7362835

Peng, H., Lima, A. R., Teakles, A., Jin, J., Cannon, A. J., & Hsieh, W. W. (2017).

Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine

learning methods, 195–211. http://doi.org/10.1007/s11869-016-0414-3

Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., & Thurston, G. D.

(2002). Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine

Particulate Air Pollution. The Journal of the American Medical Association, 287(9),

1132–1141. http://doi.org/10.1001/jama.287.9.1132

Pozza, S. A. (2009). Características Temporais da Concentração de Material Particulado

na Atmosfera da Cidade de São Carlos – SP. (Thesis Doctoral). São Carlos – SP.

Universidade Federal de São Carlos.

Qualar. (2013). Qualidade do Ar. Retrieved 24 October 2016, from

http://ar.cetesb.sp.gov.br/qualar/

Raimondo, G., Montuori, A., Moniaci, W., Pasero, E., & Almkvist, E. (2007). Data-driven

models to forecast PM10 concentration. IEEE International Conference on Neural

Networks - Conference Proceedings, 190–194.

http://doi.org/10.1109/IJCNN.2007.4370953

Ross, G. J., Adams, N. M., Tasoulis, D. K., & Hand, D. J. (2012). Exponentially weighted

90

moving average charts for detecting concept drift. Pattern Recognition Letters, 33(2),

191–198. http://doi.org/10.1016/j.patrec.2011.08.019

Shaban, K. B., Kadri, A., & Rezk, E. (2016). Urban Air Pollution Monitoring System With

Forecasting Models. IEEE Sensors Journal, 16(8), 2598–2606.

http://doi.org/10.1109/JSEN.2016.2514378

Soares, S. G., & Araújo, R. (2015). A dynamic and on-line ensemble regression for

changing environments. Expert Systems with Applications, 42(6), 2935–2948.

http://doi.org/10.1016/j.eswa.2014.11.053

Soares, S. G., & Araújo, R. (2016). An adaptive ensemble of on-line Extreme Learning

Machines with variable forgetting factor for dynamic system prediction.

Neurocomputing, 171, 693–707. http://doi.org/10.1016/j.neucom.2015.07.035

Souza, R. M. S., Coelho, G. P., Estela, A., Silva, A., & Simone, A. (2015). Using

Ensembles of Artificial Neural Networks to Improve PM 10 Forecasts. Chemical

Engineering Transactions, 43, 2161–2166. http://doi.org/10.3303/CET1543361

Street, W. N., & Kim, Y. (2001). A streaming ensemble algorithm (SEA) for large-scale

classification. Proceedings of the Seventh ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining - KDD ’01, 377–382.

http://doi.org/10.1145/502512.502568

Taylor, P. (2008). Airborne Particulate Matter and Human Health : Toxicological

Assessment and Importance of Size and Composition of Particles for Oxidative

Damage and Carcinogenic Mechanisms, (October 2015), 37–41.

http://doi.org/10.1080/10590500802494538

Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Computer

Science Department, Trinity College Dublin, 4(C), 2004–15.

http://doi.org/10.1.1.58.9085

WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur

dioxide : global update 2005 : summary of risk assessment. (2018). Apps.who.int.

Retrieved 25 March 2018, from http://apps.who.int/iris/handle/10665/69477

91

Xuejun Liao, & Carin, L. (2009). Migratory Logistic Regression for Learning Concept Drift

Between Two Data Sets With Application to UXO Sensing.IEEE Trans. Geosci.

Remote Sensing, 47(5), 1454-1466. http://dx.doi.org/10.1109/tgrs.2008.2005268

Yadav, B., Ch, S., Mathur, S., & Adamowski, J. (2016). Discharge forecasting using an

Online Sequential Extreme Learning Machine (OS-ELM) model: A case study in

Neckar River, Germany. Measurement, 92, 433-445.

http://dx.doi.org/10.1016/j.measurement.2016.06.042

