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Abstract 

Microscopically small solid particles and liquid droplets suspended in the air, known as 

particulate matter (PM), may significantly affect not only human health, but also urban, 

natural and agricultural systems. Therefore, it is imperative to keep the concentration 

levels of these pollutants below harmful thresholds. To do so, forecasting mechanisms 

are particularly relevant, as they may help public offices and environmental agencies 

define strategies to control PM concentration in the atmosphere. Forecasting tools based 

on Machine Learning have been used to estimate the concentration of PM and other 

pollutants in the atmosphere, as they are capable of learning from examples and 

identifying hidden insights in the data without being explicitly programmed. Nevertheless, 

most of these techniques were developed to learn from data with stationary probability 

distributions and, considering that PM data are uninterruptedly collected, thus producing 

a stream of data whose distribution may evolve over time, which is known as concept drift, 

such traditional machine learning techniques may offer limited accuracy. The overall goal 

of this work is to evaluate whether online sequential learning, combined with mechanisms 

and techniques to handle concept drift such as ensemble learning and sliding windows, 

can improve the estimation accuracy of PM forecasting. Online and offline algorithms 

based on Extreme Learning Machines (ELM) were compared, in order to evaluate their 

performance when applied to forecast daily concentrations of PM, specifically particles 

with aerodynamic diameter smaller than 10 μm (known as PM10). The experiments were 

performed using real world datasets of PM10 concentration from different cities of the State 

of São Paulo, Brazil. The obtained results indicate that PM data distributions slowly evolve 

over time, so new mechanisms were proposed to keep information of past concepts into 

ensembles, so they can adapt to new concepts. These new mechanisms have shown 

good performance in dynamic ensembles. 

Keywords: Particulate Matter, Machine Learning, Online Learning, Extreme Learning Machines, 

Ensembles. 

  



 

 

Resumo 

Partículas sólidas e gotículas microscópicas suspensas no ar, conhecidas como material 

particulado (MP), podem afetar significativamente não só a saúde humana, mas também 

os sistemas urbanos, naturais e agrícolas. Portanto, é imperativo manter os níveis de 

concentração destes poluentes abaixo de limiares nocivos. Para isso, os mecanismos de 

previsão são particularmente relevantes, pois podem ajudar os órgãos públicos e 

agências ambientais a definir estratégias para controlar a concentração de MP na 

atmosfera. As ferramentas de previsão baseadas em Aprendizagem de Máquinas têm 

sido usadas para estimar a concentração de MP e outros poluentes na atmosfera, devido 

à sua capacidade de aprender com exemplos e identificar relações nos dados, sem serem 

explicitamente programadas para isto. No entanto, a maioria destas técnicas foi 

desenvolvida para aprender à partir de dados com distribuições de probabilidade 

estacionárias e, como é provável que as distribuições dos dados de concentração de MP 

mudem ao longo do tempo, o que é conhecido como concept drift, tais técnicas podem 

oferecer acurácia limitada. O objetivo geral deste trabalho é avaliar se algoritmos online 

de aprendizado de máquina, combinados a técnicas de detecção de concept drift tais 

como ensembles e janelas deslizantes, podem melhorar a acurácia da estimativa de 

valores futuros de MP. Neste trabalho, foram comparados algoritmos online e offline 

baseados em Extreme Learning Machines (ELM), a fim de avaliar seu desempenho 

quando são aplicados para prever as concentrações diárias de MP, especificamente 

partículas com diâmetro aerodinâmico inferior a 10 μm (conhecidas como MP10). 

Experimentos foram realizados utilizando conjuntos de dados reais de concentração de 

MP10 de diferentes cidades do Estado de São Paulo, Brasil. Os resultados obtidos 

indicaram que os dados de concentração de MP evoluem lentamente com o passar do 

tempo, o que levou à proposição de novos mecanismos que permitem manter a 

informação de conceitos anteriores nos ensembles. Tais mecanismos têm mostrado bom 

desempenho em ensembles dinâmicos. 

Palavras-chave: Material Particulado, Aprendizagem de Máquina, Concept Drift, Máquinas de 
Aprendizado Extremo, Ensembles. 
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1 Introduction 

Advances in processing power, affordable data storage and the multiplication of data 

sensors have led to a significant growth in the overall volume of data produced. As a 

result, the demand for complex and automated data analysis tools, capable of dealing 

with bigger and more complex data and of delivering faster and more accurate results, 

have also increased. In order to satisfy this demand, machine learning and data mining 

techniques have evolved, becoming more reliable and accurate, allowing the creation of 

decision-making models in a wide variety of fields (Han, Kamber, & Pei, 2012).  

In some application fields, data is often generated as a timely ordered sequence of 

numerical data points, so it can be seen as a time series. This allows the application of 

machine learning-based techniques to build forecasting models capable of automatically 

identifying important insights and of predicting future behavior of the time series. Online 

learning algorithms are suitable for this task as, in practice, data becomes available 

sequentially (as a data stream) and online algorithms allow the update of the forecasting 

model whenever new data becomes available. This approach offers good performance 

even when the underlying data distribution changes over time, where traditional batch-

based models become less accurate (Cavalcante & Oliveira, 2015).  

Given the features mentioned above, many applications of online learning algorithms have 

been reported in the literature. Such algorithms have been applied, for example, to 

environmental monitoring. In these scenarios, the forecasting task is difficult due to the 

uncertainties involved in the behavior of the natural phenomena. Hence, it is imperative 

to update the forecasting model with the information introduced by new incoming data, as 

the accuracy of the model is critical for planning and implementing counter-measures to 

protect human lives. The capability of fast updating the forecasting model (without a 

significant increase in the computational times) makes online learning suitable for short 

term forecasting, as required in such scenarios (Yaday et al., 2016). 

Monitoring and forecasting systems have also been applied to predict the concentration 

of pollutants in the air. The aim of those systems is to support policies for the control of 

the concentration of various air pollutants that affect human health, such as ground-level 
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ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2). Results indicate the 

importance of considering data changes over time for real-time forecasting or air pollutants 

(Bashir et al., 2016), which can be achieved by online learning algorithms. In addition to 

the pollutants mentioned above, forecasting can be also applied to many other air 

pollutants, such as particulate matter (PM), which has drawn the attention of scientists 

and academics, given the high concentration levels of this pollutant in the air that have 

been observed in the last years. 

Fast growing population in urban regions has increased human-related activities such as 

agriculture, industry and transportation. These activities may lead to the increase of the 

concentration of different pollutants in the air (Calderón-Garcidueñas et al., 2015; Pozza, 

2009), including extremely small particles and liquid droplets known as particulate matter 

(PM).  

Breathable fractions of PM with aerodynamic diameter ø ≤ 2.5 µm and ø ≤ 10 µm (known 

as PM2.5 and PM10, respectively) have a greater impact on human health (Oprea et al., 

2015), as these particles easily enter through the airways up to the lungs, increasing the 

likelihood of respiratory diseases and even death (Souza et al., 2015). Besides affecting 

human health, these particles can cause environmental and crops damage. Therefore, 

real-time monitoring, forecasting and alert systems are helpful to environmental agencies 

and other authorities to manage air quality, in order to avoid that PM concentrations reach 

harmful levels. 

Given the nature of PM concentration data, they can also be seen as time series, since 

they correspond to a sequence of measures collected over time (Bell, Samet, & Dominici, 

2004).  Therefore, it is possible to apply Machine Learning techniques to forecast PM 

concentration (Oprea et al., 2015; Raimondo et al., 2007; Souza et al., 2015). 

Nevertheless, most of these approaches assume that the underlying distribution of data, 

from which the model learns, do not change over time (stationary environments). 

Considering that dynamic behavior is inherent to data streams, it is possible to say that 

the values to be predicted may depend on some hidden context that evolves over time 

(Gonçalves et al., 2014; Han et al., 2012). Therefore, it is likely that the data distribution 
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will change over time, thus compromising the accuracy of the forecasting system. This 

phenomenon is known as concept drift, and it implies an important challenge for online 

learning (Gonçalves et al., 2014). 

In conclusion, given the PM effects over human health and urban, natural and agricultural 

systems, real-time monitoring, forecasting and alert systems are needed to support 

control strategies and policies to keep the concentration of PM below the harmful 

thresholds for humans and environmental systems. Short-term exposures to high 

concentrations of PM10 demands immediate mitigation exposure actions to protect 

especially children and elders exposed to these episodes. Air quality monitoring systems 

can support these strategies to predict and anticipate several air pollution episodes. 

Nevertheless, this kind of data (data streams) may present dynamic behaviors (concept 

drifts) that can make this task difficult, so it is important to consider this issue to properly 

mine PM data.  

Online sequential learning capability of learning new data patterns over time enables 

models to handle concept drifts in an implicit way by updating the models with new arriving 

samples every time they are available. Additionally, Ensembles of Models has shown 

important results in dynamic scenarios, especially when the components of the ensemble 

are trained with different batches of data, thus, learning different concepts of the data 

stream. Such model’s outputs may be combined according to their accuracy in recent past 

predictions, ensuring that the most accurate models contribute to the ensemble output. 

Those approaches can be combined with Sliding Windows, which selects the most recent 

samples in a predefined window to update or re-train the models. This window acts like a 

limited memory, which retain information of the current drift in the most recent samples 

and forget old information. 

The aim of this work is to evaluate whether the use of techniques to handle concept drift 

together with online sequential learning forecasting models and online dynamic 

ensembles, improves the accuracy of estimations. Here, a first step to achieve this goal 

was made with a thorough analysis of a state-of-the-art online learner: Extreme Learning 

Machine (ELM)-based forecasting models trained to predict daily PM10 concentration were 
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evaluated and compared. Besides, such ELMs were also combined into ensembles, and 

two mechanisms to enhance the accuracy of dynamic ensembles were proposed: a 

ranking scheme, which was applied to the Ensemble of Online Sequential Learners (EOS) 

and to the Dynamic and Online Ensemble for Regression (DOER) algorithms (namely 

EOS-rank and DOER-rank, respectively), and a procedure of dynamic adaptation of 

models using weighted average, which was applied to EOS (named here EOS-D).  

Experiments were performed using real-world datasets of PM concentration from different 

cities of the State of São Paulo, Brazil. 

This document is organized into 6 chapters. Chapter 2 provides a theoretical background 

of the main concepts related to concept drift detection techniques and online learning 

algorithms. Chapter 3 resumes the literature review of pollutant concentration forecasting 

and techniques to handle concept drift. Chapter 4 presents detailed information and 

description of the algorithms evaluated in this work. The configuration of the algorithms, 

the datasets used in the experiments and the methodology adopted here, together with 

the obtained results are discussed in Chapter 5. Finally, Chapter 6 presents the 

conclusions and future steps of this research. 
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pollution effects on human health have been mainly linked to heart and respiratory 

diseases, and brain effects are not as broadly recognized in children, particulate matter 

pollution is a risk factor for the development of neuro-inflammation and neuro-

degeneration. Results showed that inflammation of the upper and lower respiratory tracts 

produce a natural inflammatory response based on inflammatory mediators. These 

mediators can ultra-pass the placental barrier and reach the brain of the embryo and fetus, 

affecting its development (Calderón-Garcidueñas et al., 2015). 

2.1.2  Air quality standards 

Given the negative effects mentioned above and considering that the concentration levels 

of PM have increased in most cities worldwide, PM has become a big concern for public 

health authorities and environmental agencies. It is necessary to create control strategies 

for PM concentrations in urban areas and to strengthen policies to keep the concentration 

of these particles below harmful thresholds, so damages to human health, human welfare 

and the environment can be mitigated. 

Usually, air quality standards are set by each country in order to protect its population 

from health diseases and are considered an important component of the national risk 

management and environmental policies. Those standards not only vary according to 

economic, political and social factors but also according to the level of development and 

air quality management capabilities. 

The World Health Organization air quality guidelines (AQGs) is one of the most widely 

accepted standards and guidelines for air quality management. The AQGs are designed 

to offer guidance in order to reduce the health impacts of air pollution. These guidelines 

are continuously updated based on expert evaluation of scientific evidence, incorporating 

new studies of effects of air pollution that have been published in the literature. The 

objective of these guidelines is to inform policy-makers, support actions to achieve air 

quality that protects public health and define appropriate targets in order to create 

environmental policies for air quality management around the world (WHO, 2005).  

It is important to highlight that there is not enough evidence to suggest a PM threshold 

below which no negative effects would be expected. Additionally, there are individual 
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factors that influence the response to a given exposure, making difficult to create a global 

guideline that leads to a complete protection for every individual against air pollution 

adverse health effects (WHO, 2005).  

The WHO AQGs defines short-term (24 hour) and long-term (annual mean) indicators of 

PM pollution. Long-term and short-term guideline values for PM10 and PM2.5 concentration 

are presented in Table 1. 

Table 1. World Health Organization Guideline values for PM10 and PM2.5 

Particulate matter size Term Concentration 

PM2.5 
Annual mean 10 𝜇𝑔/𝑚3 
Hour mean 25 𝜇𝑔/𝑚3 

PM10 
Annual mean 20 𝜇𝑔/𝑚3 
Hour mean 50 𝜇𝑔/𝑚3 

 

For PM2.5 and PM10, annual average concentrations of 10 𝜇𝑔/𝑚3 and 20 𝜇𝑔/𝑚3 were 

defined. Those values represent the lower limits over which significant effects on human 

health were observed in an American Cancer Society’s study (Pope III et al., 2002). The 

WHO AQGs warns that adverse health effects cannot be entirely ruled out below the levels 

defined above. These levels represent values of PM concentration that not only have been 

shown to be achievable by different cities in developed countries around the world, but 

also that allows significant reduction of adverse effects in human health. 

Besides the guideline values presented in Table 1, three interim targets (IT) are defined 

for PM2.5 and PM10 (Table 2). The interim targets present values that have been shown 

achievable through different air quality management policies in order to reduce population 

exposure and can be helpful to support progress evaluation of current policies over time. 

The guideline values of 24-hour mean, presented in Table 2, aim to protect populations 

against peaks of pollution that lead to a substantial increase in mortality.  Published risk 

coefficients from multi-center studies and meta-analyses were considered to determine 

each interim target.  
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as time series and can be considered as an particular case of data stream (Cavalcante & 

Oliveira, 2015). Since in many applications the data streams cannot be stored, due to the 

high volume of data and the speed that the samples arrive, the effective mining of data 

streams is not a trivial task. Therefore, the development of efficient methods for mining 

data streams has grown in different areas of data mining, including classification, 

clustering and online detection of rare events in data streams (Han et al., 2012).  

As the nature of data streams is dynamic, data patterns may evolve over time, which is a 

challenge to conventional batch learning algorithms. As the underlying data distribution 

may change over time, the accuracy of the forecasting models may also degrade. This 

problem is referred to as concept drift (Cavalcante & Oliveira, 2015). 

Most of the work in the machine learning literature assumes that the underlying 

distributions of training samples are stationary (Gama et al., 2004). However, the 

probabilistic distribution of the data can change over time, so the model learned may 

become less accurate after a period of time. This problem is known as concept drift, and 

it implies a big challenge to conventional batch learning algorithms (Cavalcante & Oliveira, 

2015). A concept drift is generally described as a modification in the relationship between 

input and output data over time (Elwell & Polikar, 2011; Gama et al., 2004).  

In order to explain concept drift, this document considers the following definitions. 

Forecasting can be seen as the task of making long or short-term predictions of future 

values of a time series, based on a mathematical model adjusted to approximately 

represent the historical patterns of the series (Han & Kamber, 2006). Environments where 

the underlying data distributions change over time are known as non-stationary 

environments. The objective variable for classification and forecasting models are known 

as classes and target values, respectively. 

According to the above terminology, concept drift can be formally described from the 

Bayesian posterior probability (Gama et al., 2014). According to Bayes’ theorem,  

𝑃(𝑦|𝑥) =  𝑃(𝑥|𝑦)𝑃(𝑦)𝑃(𝑥)     (1) 
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where a target variable 𝑦 ∈  ℜ1 must be predicted according to a set of inputs 𝑥 ∈  ℜ𝑃, 𝑃(𝑥) corresponds to the feature-based probability of the data, 𝑃(𝑦) defines the objective 

variable prior probability and 𝑃(𝑥|𝑦) describes the likelihood of 𝑥 within a particular set of 

possible outcomes. In this context, a concept drift can be defined as any scenario where 

the posterior probability changes, i.e., 𝑃𝑡+1(𝑦|𝑥) ≠  𝑃𝑡(𝑦|𝑥). 
2.2.1 Types of drift 

While a shift in 𝑃(𝑥) could indicate that the predictive decision can be shifting as well, the 

observation of a shift on 𝑃(𝑥) is not enough to indicate a concept drift, due to its 

independence from the objective variable. However, if the data distribution 𝑃(𝑦|𝑥) 
changes, the decision boundary is affected. Changes that affect the decision boundary 

are a concern both from forecasting and classification perspectives. 

In this context, it is possible to distinguish two types of drifts: 

1. Real concept drift, which refers to changes in 𝑃(𝑦|𝑥), thus representing a change 

in the decision boundary. Such change can occur either with or without a 

modification in the probabilities of the input data 𝑃(𝑥) (Elwell & Polikar, 2011). 

2. Virtual drift, which corresponds to changes in the distribution of the input data 𝑃(𝑥) 
that do not affect 𝑃(𝑦|𝑥) (Tysmbal, 2004; Gama, 2014). 

Some authors have characterized concept drift differently, according to the way the 

concept drift occurs. Such classification is based on the drift’s speed, randomness and 

cyclical nature. Drift speed is defined as the displacement rate between 𝑃𝑡(𝑦|𝑥) 
and 𝑃𝑡+1(𝑦|𝑥), from one time step to the next. Figure 2 shows the main patterns of concept 

drift, which can be: 

 Sudden drift, also known as abrupt drift, corresponds to a larger displacement 

within a time step and may occur by switching from one concept to another. This 

usually results in high prediction error.  

 Incremental drift presents smaller displacements, therefore results in lower 

prediction errors and is more difficult to detect. 
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Passive (or implicit) approaches, on the other hand, do not employ techniques to detect 

the beginning of a concept drift: a possible ongoing drift is constantly assumed, and the 

model is continuously updated with the most recent samples. Sample-based online 

learners are considered passive approaches, and these algorithms assure faster 

adaptation to changing environments, offering good performance in cases where the rate 

of incoming data is not very fast (Gomes Soares & Araújo, 2015). 

Within the passive approach, three methods for concept drift handling are widely used: 

sliding windows or instance selection, instance weighting and ensemble learning 

(Cavalcante & Oliveira, 2015; Fdez-Riverola et al., 2007; Liao, Member, & Carin, 2009).  

Sliding Window (or instance selection) approaches train or updated models from the most 

recent data in a predefined window, allowing the model to represent and predict the 

current concept. The window acts like a limited memory that forgets the older samples 

that are left out of the window. An important issue is to find the ideal window size, which 

should capture the rate of the concept drift. Small windows provide faster adaptation and 

large windows provide more stability, but also slower adaptation to drifts. The main 

disadvantage of this approach is the high computational cost of continuously training a 

new model whenever a new sample is available (Soares & Araújo, 2015). This approach 

is used to handle concept drifts since it allows models to represent and predict the current 

concept (Soares & Araújo, 2015).  

Instance Weighting assigns weights to data or part of the data, according to its age or 

utility. These weights reflect the importance of such samples for the 

classification/forecasting task (Tsymbal, 2004). Weights are useful in concept drift 

scenarios when only the new samples represent the current concept. Thus, weights can 

be determined according to the age of each sample: one approach is the exponential 

decrease of each weight according to the age of the sample. 

Finally, ensemble learning employs a set of models, usually trained from different sets of 

data, to forecast target variables. Predictions of each model could be combined using 

voting, weighted voting or selecting the most relevant model. Mechanisms to include and 

remove models in the ensemble are important factors to improve the prediction 

performance of the ensemble in concept drift scenarios. In this approach, new models 
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trained with the current concept data, can be added to the ensemble in order to adapt the 

ensemble to the current concept. On the other hand, the dynamic removal of inaccurate 

models, which are not able to predict the current concept, avoid degrading the ensemble’s 

performance (Soares & Araújo, 2015). 

2.2.3 Online Sequential Learning 

In machine learning can be identified two main learning approaches: offline learning and 

online learning. In offline learning, the whole training data set must be available for the 

training phase. Only when the model is completely trained, it is available for predicting. In 

contrast, online learning process data sequentially. In this approach, a model is produced 

and put into operation without having the complete training data set at the beginning. This 

model is continuously updated with the new incoming samples. The online learning 

algorithms are suited for scenarios where it is impossible to have the whole training data 

set at the beginning of the operation (Gama et al., 2010). 

While offline learning algorithms use past and new data in a complete retraining of the 

model, which can be computationally expensive, online learning only uses new data to 

update the model. In this context, linear regression models are more suitable for online 

learning, since they are generally easy to update even when updating with batches of 

data, linear models are not expensive computationally. This capability is not feasible for 

nonlinear methods, where frequent updating via batch/sample learning is too expensive 

to implement, as those models tend to have more parameters to train, making the process 

more slowly when compared with linear models (Peng et al., 2017). 

Online learning can be formally defined as follows. A forecasting model for regression 𝐹(𝑥) that maps a set of inputs 𝑥 into an output 𝑦 = 𝐹(𝑥) da for classification and regression 

tasks. The online learning procedure is the following: 

1. An unlabeled sample 𝑥𝑡  is received by the algorithm 

2. A prediction of �̂�𝑡 is made using 𝑥𝑡 
3. Receive the true label 𝑦𝑡 
4. Update the model using (𝑥𝑡, 𝑦𝑡) 
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where 𝛽 is the output weight vector and 𝑦 is the output vector. 𝐇 is the hidden layer output 

matrix, where the 𝑗-th column of 𝐇 represents the output vector of the 𝑗-th hidden node, 

with respect to all the inputs; and the 𝑗-th row of 𝐇 is the output vector of the hidden layer 

with respect to 𝑥𝑡. 
Since the weights and biases of the hidden layer are randomly assigned, the learning 

process in ELMs is based on finding the output weights 𝛽. This can be accomplished by: �̂� =𝐇†𝑦, (6) 
where 𝐇† is the Moore-Penrose generalized inverse (or pseudoinverse) of matrix 𝐇 (Liang 

et al., 2006). Which can be calculated as Eq. 7 if the inverse of 𝐇𝑇𝐇 exists. 𝐇† = (𝐇𝑇𝐇)−𝟏𝐇𝑇. (7) 
Substituting Eq. 7 into Eq. 6, 𝛽 becomes 𝛽 = (𝐇𝑇𝐇)−𝟏𝐇𝑇𝑦 (8) 
Therefore, the ELM algorithm can be summarized as in Algorithm 1. 

Algorithm 1. Extreme Learning Machine (ELM) algorithm  

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the size of training data 𝑁1; a number of 
hidden nodes 𝐿; 
1. Assign input weights 𝑎𝑗 and bias 𝑏𝑗 randomly, 𝑗 = 1,… . , 𝐿 ;  
2. Calculate 𝐇 with 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆;  and Eq. (4); 
3. Calculate the output weight 𝛽 through Eq. (8); 
end 

 

In many industrial applications, it is impossible to have all the training data available before 

the learning process, as the observations arrive sequentially to the learning algorithm, i.e., 

they arrive one-by-one or chunk-by-chunk (in batches). In these cases, traditional ELMs 

are not suitable. Hence, the OS-ELM was proposed to deal with online learning (Liu et al., 

2015). 

 



31 
 

 

2.3.2 Online Sequential Extreme Learning Machine 

Two phases compose the learning process in OS-ELMs. The initialization phase and the 

sequential learning phase. In the initial phase, a training dataset of size 𝑁1 < 𝑇 is used to 

build the initial ELM. In the sequential learning phase only the new one-by-one (or chunk-

by-chunk) arriving samples are used to update the ELM. Once the step is completed, 

those samples are discarded. For the initialization and update phases, the (𝑘 + 1)-th batch 

of new observations can be expressed as: 

𝐷𝑘+1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=(∑ 𝑁𝑙𝑘𝑙=0 )+1𝑡=∑ 𝑁𝑙𝑘+1𝑙=0  (9) 
where 𝑘 ≥ 0, 𝐷𝑘+1 represents the (𝑘 + 1)-th batch of observations, 𝑁𝑘+1 is the number of 

samples in the (𝑘 + 1)-th batch and 𝑁0 = 0.  

In the initialization phase of the OS-ELM, a training dataset 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆 is used 

to build the initial ELM. Then, the output weights 𝛽0 are determined as in Eq. 10. 𝛽0 = (𝐇𝟎𝑻𝐇𝟎)−𝟏𝐇𝟎𝑻𝑦0, (10) 
where 𝑦0 = [𝑦1, … , 𝑦𝑇]T is the output vector from 𝐷1 and 𝐇𝟎 is the initial hidden layer matrix 

obtained with 𝐷1 (Eq. 11). 

𝐇𝟎 = [ 𝑔(𝑎1, 𝑏1, 𝑥1) ⋯ 𝑔(𝑎𝐿 , 𝑏𝐿 , 𝑥1)⋮ ⋱ ⋮𝑔(𝑎1, 𝑏1, 𝑥𝑁1) ⋯ 𝑔(𝑎𝐿 , 𝑏𝐿 , 𝑥𝑁1)] (11) 
Equation 10 can be rewritten as 𝛽0 = 𝑃0𝐇0𝑇𝑦0, where 𝑃0 is the initial covariance matrix 𝑃0 = (𝐇0𝑇𝐇0)−𝟏.  
When a new batch of samples arrives, the new output weight vector 𝛽𝑘+1 is computed 

using concepts of the Recursive Least Squared algorithm (RLS) (Liang et al., 2006), as 

follows: 

𝛽𝑘+1 = 𝛽𝑘 + 𝑃𝑘+1𝐇𝑘+1T (𝑦𝑘+1 − 𝐇𝑘+1𝛽𝑘), (12) 
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𝑃𝑘+1 = 𝑃𝑘 −𝐇𝑘+1T (𝐼 + 𝐇𝑘+1𝑃𝑘𝐇𝑘+1T )−1𝐇𝑘+1𝑃𝑘, (13) 
𝐇𝑘+1 = [   

 𝑔 (𝑎1, 𝑏1, 𝑥(∑ 𝑁𝑙𝑘𝑙=0 )+1) ⋯ 𝑔 (𝑎1, 𝑏𝐿 , 𝑥(∑ 𝑁𝑙𝑘𝑙=0 )+1)⋮ ⋱ ⋮𝑔 (𝑎1, 𝑏1, 𝑥∑ 𝑁𝑙𝑘+1𝑙=0 ) ⋯ 𝑔 (𝑎1, 𝑏𝐿 , 𝑥∑ 𝑁𝑙𝑘+1𝑙=0 ) ]   
 , (14) 

𝑦𝑘+1 = [𝑦(∑ 𝑁𝑙𝑘𝑙=0 )+1, … , 𝑦∑ 𝑁𝑙𝑘+1𝑙=0 ]T (15) 
Liang et al., (2006) provide a detailed derivation of Eqs. 12 and 13. Therefore, the OS-

ELM algorithm in a sample-based scenario, where each sample from 𝑆 is provided 

sequentially, is depicted in Algorithm 2. 

Algorithm 2. Learning algorithm for the sample-based OS-ELM  

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the number of samples for initial training 
phase, 𝑁1; a number of hidden nodes 𝐿;  
1. Initialization: assign input weights 𝑎𝑗 and bias 𝑏𝑗 randomly, 𝑗 = 1,… . , 𝐿 ;  
2. Calculate the hidden layer matrix H0 with 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆 and 

Eq. 11; 
3. Calculate the output weight 𝛽0 through Eq. 10, where 𝑦0 = [𝑦1, … , 𝑦𝑁1]T 

and set 𝑘 = 1, 𝑡 = 𝑁1; 
4. while 𝑡 ≤ 𝑇 do: 

a. Present the (𝑘 + 1) −th batch 𝐷𝑘+1 ⊂ 𝑆 defined in Eq. 9; 
b. Obtain the matrix H𝑘+1 using  𝐷𝑘+1 and Eq. 14; 
c. Set y𝑘+1 using Eq. 15; 
d. Obtain 𝑃𝑘+1 and 𝛽𝑘+1 using Eqs. 13 and 12; 
e. Set 𝑘 ← 𝑘 + 1, 𝑡 ← 𝑡 + 𝑁𝑘+1 

5. end while 
end 

 

2.3.3 Ensemble of models 

Ensemble methods can be used to increase the overall prediction or classification 

accuracy. In this work, ensembles are studied in order to enhance the predictions of single 

OS-ELMs. An ensemble for prediction is a composite model made up of a combination of 
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learning has proven to be efficient in changing environments due to the capability to adapt 

the prediction model to new concepts through the sequential learning. Thus, the aim of 

this work is to combine those approaches together with the online sequential version of 

the ELM to forecast hourly concentrations of PM.  
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Statistical and machine learning approaches are based on identifying patterns of data that 

allow predicting future pollutant concentration. Usually, these approaches require less 

computational resources and offer results with considerable accuracy, compared with 

deterministic models. Among the most recent and widely used approaches for air pollution 

forecasting, multiple nonlinear regression, neural networks, neuro-fuzzy and hidden 

Markov models can be found (Peng et al., 2017). 

Monitoring and forecasting systems have been developed and applied to forecast PM 

concentration. In this context, information systems, especially those based on machine 

learning techniques, have shown promising results in PM forecasting. For example, Oprea 

et al., (2015) developed an intelligent system capable of performing 24-hour ahead 

forecasting of PM2.5 concentration levels and of sending early warnings to protect children 

with health problems. Raimondo et al., (2007) used Artificial Neural Networks (ANN) and 

Support Vector Machines (SVM) to forecast PM10 concentration, and Souza et al., (2015) 

proposed an ensemble of ANNs to forecast daily concentrations of PM10. In Souza et al. 

(2015),  the ensemble approach presented better performance compared to individual 

ANNs. Shaban et al., (2016) indicate the importance of considering data changes over 

time for real-time forecasting of air pollutants, which can be achieved by online sequential 

learning algorithms. Such algorithms constantly update their forecasting models with 

newly received data, either sample-by-sample or batch-by-batch (blocks of data). In 

contrast with off-line approaches, online learners do not require a full retraining of the 

forecasting model whenever new data is available, which speeds up the whole process.  

Mao et al., (2017) joined deterministic and machine learning approaches to forecast hourly 

PM2.5 concentrations. This approach used meteorological data as the input of a Multilayer 

Perceptron (MLP) together with data from a satellite remote sensing technique to monitor 

air quality: the Satellite-derived Aerosol Optical Depth (AOD). The resulting configuration 

presented good performance, predicting hourly PM2.5 concentrations in the south of China 

with a number of steps ahead. The incorporation of transport of “dirty” and “clean” air 

information, measured by the AOD, improved the accuracy of PM2.5 predictions.  

Biancofiore et al., (2017) evaluated the PM forecasting performance of three models: a 

Multiple Linear Regression Model (MLR), an ANN with recursive architecture and an ANN 
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without recurrent architecture. Meteorological parameters and PM10 concentration served 

as inputs of the models, which were developed to predict daily average PM10 

concentrations three days ahead. Data collected from 2011 to 2013 in the urban area of 

Pescara, Italy, was used in this work. Measurements included temperature, relative 

humidity, wind speed/direction, pressure, and concentration of PM10, CO, ozone and 

nitrogen oxide, among others. An analysis over PM10 data allowed the identification of an 

annual cycle pattern with higher concentrations during winters and lower concentrations 

during summers. This can be seen as an evidence of the strong influence of 

meteorological parameters, in this case determined by the seasons of the year, on the 

concentration of PM (Mao et al., 2017; Peng et al., 2017). Furthermore, a strong 

correlation between the concentration of PM10 and carbon monoxide (CO) was identified, 

suggesting common sources for PM10 and CO.  Results showed that the recursive neural 

network performed better in all the evaluated scenarios than MLR and the ANN without 

recurrent architecture. The inclusion of CO as an additional parameter improved the 

performance of all models. This may suggest that, in scenarios with a well-identified CO 

source (like emissions due to fossil fuel combustion in the case of Pescara), the 

concentration of this pollutant can be used as an additional input of models that forecast 

PM. 

Evaluation of online sequential learning approaches was conducted by Peng et al., (2017), 

in order to study the impact of online updating capabilities to air pollution forecasting 

models. Peng et al., (2017) evaluated MLRs, Multi-layer Perceptron Neural Networks 

(MLPNN) and ELMs. Online learning versions of MLR and ELM (OSMLR and OS-ELM 

respectively), updated with daily collected data, were compared with MLPNN updated 

seasonally and with the climatology model GEM-MACH15. Data from 2009 to 2014 of 

meteorological variables and air quality of six monitoring stations of Canadian cities were 

used in the experiments. The OS-ELM outperformed the other methods over the six 

stations, including the climatology model. The MLPNN, updated every 3 months due to its 

high computational cost, presented poorer performance than the daily updated 

approaches. This is an important issue, considering that all models were initially trained 

with the same data corresponding to the first 2 of the 5 years available. Results regarding 

the MLPNN may indicate that the initial training data did not provide enough statistical 
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(Gama et al., 2004). The early drift detection method (EDDM), proposed by Baena-García 

et al. (2006), offers an improvement over DDM, as its analysis is based on the distance 

between errors, instead of only considering the number of prediction errors. This method 

can be used with any learning algorithm. 

3.2.1 Ensemble based approaches to handle Concept drift 

The Incremental Local Learning Soft Sensing Algorithm (ILLSA) is an ensemble approach 

based on Recursive Partial Least Squares (RPLS). ILLSA divides historical data into 

partitions, which represent different states of the process. A model is built based on each 

dataset. The model’s weights on the new sample are calculated using the posterior 

probability obtained by a Bayesian framework. Experiments showed that ILLSA leads to 

better accuracy, when compared to traditional RPLS (Kadlec & Gabrys, 2010).  

Additive-Expert (AddExp) is an ensemble of predictive models (referred to as experts), 

each with an associated weight. The algorithm uses a weighted vote that considers the 

outputs of all experts. When a new sample arrives, the algorithm output is determined by 

the expert prediction with the greatest weight. The weights of the experts with low 

accuracy are decreased by a multiplicative constant β. If the overall prediction is incorrect, 

a new expert is added to the ensemble and all experts are re-trained with the sample. 

AddExp can be used with any online learner algorithm, such as least square regression 

learners and naïve Bayes for regression (Kolter & Maloof, 2005). Experimental results 

have shown better performance and faster adaptation of AddExp based on naïve Bayes, 

when compared to traditional naïve Bayes algorithm for regression. Similar results were 

found for AddExp based on the least squares regression algorithm. 

Online Ensemble using Ordered Aggregation (OEOA) is an ensemble proposed by 

Soares & Araújo, (2016), which uses a quality metric to produce a decreasing order of the 

best models for a given data. This approach is capable of providing online prediction in 

non-stationary environments. A data window of fixed size is kept and a new model is 

trained with the new incoming data when the ensemble’s performance is deteriorating. 

Artificial and real-world datasets were employed to evaluate the predictive performance 

of OEOA over state-of-the-art approaches. The results showed that OEOA delivers more 
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accurate estimations of output variables in industrial applications, when compared to other 

state-of-the-art ensembles in the literature such as AddExp and EOS-ELM. 

Learn++.NSE (Elwell & Polikar, 2011) is a batch-based ensemble learning algorithm that 

uses weighted majority voting. In this algorithm, the weights are updated based on the 

classification error on current and past environments. A drift detection mechanism is 

implemented and uses only current data for training. Learn++.NSE can handle a wide 

variety of drifts such as abrupt, gradual and cyclical. It only discards a classifier 

temporarily, which is particularly useful in cyclical environments. In order to evaluate the 

Learn++.NSE algorithm, several datasets that simulate different scenarios of non-

stationary environments, such as abrupt, gradual and cyclical drift, were evaluated. 

Learn++.NSE algorithm can be implemented using different base learners, such as Naïve 

Bayes, Support Vector Machines (SVM) and classification and regression trees (CART). 

The reported experiments allowed the comparison of Learn++.NSE with other concept drift 

ensemble approaches, such as SEA, DWM and AdaBoost weighting. The results showed 

the versatility of Learn++.NSE to adapt to a wide variety of drift scenarios and also its 

higher efficiency, since it uses existing knowledge by reactivating early classifiers when 

they are needed the most, and disabling them when they are not relevant. 

Soares & Araújo (2015) proposed an Online Weighted Ensemble of forecasting models 

(OWE), which is able to incrementally learn, sample by sample, in the presence of several 

types of changes, and simultaneously retain old information in recurring scenarios. OWE 

employs several adaptive mechanisms to deal with different types of drifts (Gomes Soares 

& Araújo, 2015). OWE was compared with state-of-the-art approaches, using two artificial 

datasets and two real-world industrial datasets, and the results show the ability of OWE 

to handle several types of drifts, such as abrupt, gradual and cyclic.  

The Dynamic and Online Ensemble Regression (DOER) offers fast adaptation capability 

for online prediction of variables measured at low sampling in non-stationary 

environments (Soares & Araújo, 2015). DOER is an online ensemble for regression with 

the following properties: 

 Online inclusion and removal of models to keep only the most accurate models; 

 Dynamic model weighting based on online predictions; 
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 Online adaptation of models’ parameters. 

Experiments were performed in scenarios that required faster adaptation capability and, 

when DOER was compared to four online strategies using the single model OS-ELM 

(Liang et al, 2016) algorithm and five online ensemble algorithms (EOS-ELM, AddExp, 

Online Bagging (OB), Learn++.NSE and OAUE – Soares & Araújo, 2015), it showed higher 

accuracy.  

3.2.2  Approaches that handle concept drift in an implicit way 

Online Sequential Extreme Learning Machine (OS-ELM) is the online variant of Extreme 

Learning Machines (ELMs) that can learn from samples or batches of data. It combines 

the ELM advantages as speed and generalization performance with the sequential 

learning process (Liang et al, 2006). When a new sample or batch is available, it is used 

to update the learning model. Due to its online nature, OS-ELM is able to handle concept 

drift in an implicit way (as mentioned before). However, since OS-ELM updates the model 

every time a new instance is available, the computational cost is high compared with the 

original ELM, especially when the rate of incoming data is high (Cavalcante & Oliveira, 

2015). Liang et al (2006) compared OS-ELM with other sequential learning algorithms 

(SGBP, RAN, RAEKF, MRAN, GAP-RBF– Liang et al., 2006) on real world datasets for 

regression, classification and time series forecast problems, and the results indicated that 

the OS-ELM achieves better generalization and requires lower training time. 

Cavalcante & Oliveira (2015) proposed a learning method, which behaves like an online 

and offline learner, switching the operation to react to changes in the data in order to 

reduce the computational resources, when compared with single OS-ELM. Their work 

implemented OS-ELMs combined with DDM and also OS-ELMs combined with 

Exponentially Weighed Moving Average Concept Drift Detection, known as ECDD (Ross 

et al., 2010). Two metrics, accuracy and processing time, were evaluated in the 

experiments, which used artificial and real-world datasets. The results showed that the 

combination of OS-ELM with ECDD reduces the processing time when compared with 

single OS-ELMs for time series forecast. 
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This chapter described current approaches for PM forecasting found in the literature. In 

this work are studied machine learning algorithms to forecast air pollution concentrations, 

since they do not require detailed knowledge about complex meteorological and 

atmospheric processes, and are easier to implement when compared to deterministic 

models. These approaches are good alternatives to sophisticated deterministic 

forecasting models, not only capable of presenting comparable performances but also 

requiring less computational resources (Peng et al., 2017).  

Although, ANNs and MLPNNs have been used to forecast PM concentrations in many 

scenarios, studies suggest that new patterns may appear in PM data, thus, making limited 

the capability of prediction of ANNs and MLPNNs, since they are not able to adapt to 

changes. On the other hand, OS-ELMs has proven to be better than traditional algorithms 

like MLPNNs in such scenarios, since they can adapt faster to new changes.  

 

The focus of this work is to improve the estimation accuracy of PM concentrations. 

Considering the dynamic behavior of PM data reported in the literature, online learning 

approach was chosen as the base strategy to handle concept drift presented in such data. 

The OS-ELM was selected the base algorithm of the experiments conducted in this work. 

Additionally, considering the results found in a previous work (Bueno et al., 2017), where 

an ensemble of OS-ELMs implementing the updating ensemble scheme proposed by 

Street and Kim (2001) improved the stability of the results when compared to single OS-

ELMs, this work builds on that work and propose new mechanisms to deal with concept 

drifts in order to improve the forecasting accuracy of ensembles. The proposed 

mechanisms studied here are incorporated and evaluated on EOS and DOER (Soares & 

Araújo, 2015), being the last chosen since it incorporates several concept drift handling 

strategies and shows good performance in concept drift scenarios.  
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approach through two ensemble learning algorithms: the Ensemble of Online Learners 

with Substitution of Models (EOS) and the Dynamic and On-line Ensemble Regression 

(DOER). 

4.1.1 The Ensemble of Online Learners with Substitution of Models 

The Ensemble of Online Learners with Substitution of Models (EOS) (Bueno et al., 2017) 

is an ensemble of online learners, which implements sliding windows and the ensemble 

updating scheme originally proposed by Street & Kim (2001). EOS was proposed as part 

of this dissertation and its application for PM10 forecasting in sample-based scenarios was 

published in Bueno et al., (2017). The EOS algorithm is described in Algorithm 3. 

Algorithm 3. Ensemble of Online Learners with Substitution of Models (EOS) 

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; window’s size, 𝑚; number of samples 
for initial training phase, 𝑁1; an online supervised learner 𝑓, maximum number 
of models in the ensemble 𝑅; an ensemble Σ; inclusion/replacement frequency 𝜆 
1. Initialization: set Σ ←  ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; 
2. 𝑓𝑘 ← obtain a model trained with 𝐷1, Σ ← Σ + 𝑓𝑘, 𝑘 = 1, and 𝑟 = 0; 
3. while 𝑡 ≤ 𝑇 do: 

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆; 
b. obtain the output prediction of Σ using 𝑥𝑡; 
c. retrain/update all models of Σ using 𝐷𝑡; 𝑡 ← 𝑡 + 1, 𝑟 = 𝑟 + 1; 
d. if 𝑡 𝑚𝑜𝑑 λ = 0 𝑓0 ← obtain a new model trained with 𝐷𝑡𝑒𝑚𝑝 = {(𝑥𝑡, 𝑦𝑡)}𝑡=𝑡−(λ−1)𝑡 ⊂ 𝑆;  

if 𝑘 < 𝑅 
a. include 𝑓𝑘 to Σ:  Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1; 

else  
b. obtain 𝑀𝑆𝐸𝑗 with 𝐷𝑡𝑒𝑚𝑝 for each model 𝑓𝑗  𝜖 𝛴,  

c. replace the model with the worst 𝑀𝑆𝐸𝑗: 𝑓𝑗 ← 𝑓0 
4. end while 
end 

EOS implements dynamic mechanisms for inclusion and exclusion of components at a 

fixed rate. This allows EOS to adapt to changing environments, through the incorporation 
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of new components trained with a batch of recent samples and the elimination of those 

old components with the worst performance over the past samples.  

The data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)|𝑥𝑡 ∈  ℝ𝑟𝑥1, 𝑦𝑡  ∈ ℝ, 𝑡 = 1,… , 𝑇} is used as input of the 

algorithm, according to the definition at the beginning of this chapter. EOS also requires 

the definition of the window size 𝑚; the online supervised learner 𝑓; the number of 

samples for the initial training phase 𝑁1; the maximum number of models in the ensemble 𝑅; the ensemble of online learners Σ; and the frequency of inclusion and substitution of 

components 𝜆.  

In Step 1 the initial training batch 𝐷1 is defined with the first samples of the data stream 

and Σ ←  ∅ denotes that the ensemble is initially empty. In the initialization phase (Step 

2), a component 𝑓𝑘 is trained with the samples in 𝐷1, and subsequently added to the 

ensemble Σ. The number of components in the ensemble 𝑘 is updated and the control 

variable that counts the number of iterations 𝑟 is initialized. From Steps 3 to 4, the SW is 

shifted along the data stream. Step 3a incorporates the new arriving sample to the window 

and discards the oldest sample, according to the defined window size 𝑚. The ensemble 

output 𝐹(𝑥𝑡) is calculated in Step 3b using simple average of the individual component’s 

outputs. All components of the ensemble are updated with the samples in the SW 𝐷𝑡 in 

Step 3c, then, in Step 3d, it is evaluated whether the current iteration is equal to 𝜆, the 

frequency of inclusion and substitution of models. If so, a new component 𝑓𝑘 is trained 

with the last samples in 𝐷𝑡𝑒𝑚𝑝, of size λ, and 𝑟 is restarted.  

If the current number of components in the ensemble 𝑘 is less than the maximum number 

of components in the ensemble 𝑅, 𝑓𝑘 is added to the ensemble directly and 𝑘 is updated. 

Otherwise, the 𝑀𝑆𝐸𝑗 of each component 𝑗 of the ensemble is calculated with the set of 

samples 𝐷𝑡𝑒𝑚𝑝 and the component with the worst performance (the highest 𝑀𝑆𝐸) is 

substituted by the new component trained from scratch (𝑓𝑘) with 𝐷𝑡𝑒𝑚𝑝. 

The EOS algorithm differs from others approaches in the inclusion exclusion scheme, 

which incorporate new models to the ensemble at a fixed rate without any implicit 

mechanism to determine if a drift is present. Another feature of the EOS is the size of the 



46 
 

 

window. EOS selects the most recent samples of the data stream in a window, to updated 

the components of the ensemble in each iteration. 

4.1.2 The Dynamic and on-line ensemble regression 

The Dynamic and On-line Ensemble Regression (DOER) approach (Soares & Araújo, 

2015) is an online sample-based ensemble of online learners, designed for regression in 

changing environments. The structure of DOER is presented in Algorithm 4. 

DOER offers dynamic adaptation of components’ weights according to the accuracy of 

components’ predictions on the most recent samples, assigning larger weights to the most 

accurate components, so inaccurate components would not degrade the ensemble’s 

performance. This approach also enables the inclusion and removal of components with 

bad performance. The pruning strategy of DOER removes the components with the worst 

accuracy evaluated in the most recent samples, by ensuring that just the most accurate 

components are used to predict new instances 

In order to adjust the ensemble to changes, DOER uses a sliding window with the most 

recent samples to train and incorporate new components when the ensemble’s 

performance is not satisfactory. It is important to highlight that the SW used in DOER 

differs from the SW used in the EOS algorithm, since EOS updates the ensemble’s 

components with the samples in the SW, while DOER uses the SW to train new 

components to be added to the ensemble.  

The data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)|𝑥𝑡 ∈  ℝ𝑟𝐱1, 𝑦𝑡  ∈ ℝ, 𝑡 = 1, … , 𝑇} and the size of the sliding 

window 𝑚 are defined as inputs. This SW is used to train the new components to be added 

to the ensemble. It must also be defined the online supervised learner 𝑓; the number of 

samples for the initial training phase 𝑁1; the factor 𝛼 that controls the inclusion of models 

and the maximum number 𝑅 of components in the ensemble. 
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Algorithm 4. Dynamic and on-line ensemble regression (DOER) 

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; window’s size, 𝑚; number of samples for 
initial training phase, 𝑁1; an online supervised learner 𝑓, factor of inclusion of new 
models 𝛼; maximum number of models in the ensemble 𝑅; an ensemble Σ;  
1. Initialization: set Σ ←  ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; 

2. 𝑓𝑘 ← obtain a model trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0, wk = 1, Σ ←Σ + 𝑓𝑘 and  𝑘 = 1;  
3. while 𝑡 ≤ 𝑇 do: 

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆 ; 
b. obtain the output prediction 𝐹(𝑥𝑡) of Σ as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1 ) ∑ 𝑤𝑗𝑘𝑗=1⁄ ; 

c. for all models 𝑓𝑗 ∈  Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1; 
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈  Σ using Eq. 17; 

e. calculate the weight for each model from Σ using Eq. 18; 
f. retrain all models of Σ using 𝐷𝑡; 
g. 𝑡 ← 𝑡 + 1 
h. if |(𝐹(𝑥𝑡) − 𝑦𝑡)/𝑦𝑡| > 𝛼 𝑓0 ← obtain a new model trained with 𝐷𝑡; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0; and 𝑤0 = 1; 

if 𝑘 < 𝑅 
a. include 𝑓𝑘 to Σ:   Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1; 

else   
b. replace the model 𝑓𝑗 by 𝑓0, where 𝑗 =min𝑣=1,…,𝑘(𝑀𝑆𝐸𝑣𝑡): 𝑓𝑗 ← 𝑓0 

4. end while 
end 

 

In the initialization phase, the number of models 𝑘 is set and batch 𝐷1 organized with the 

first 𝑁1 samples of the data stream. Step 2 trains the first component of the ensemble with 

the batch of samples in the SW and 𝑘 is updated. 

From Step 3 to Step 4, the SW is dislocated to add the new incoming sample to the window 

and remove the oldest one (Step 3a). The ensemble output is calculated using the 

weighted average of components’ outputs (Step 3b). The error of each component 𝑓𝑗 of 
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the ensemble Σ, (𝑗 = 1,… , 𝑘) is calculated in Step 3c, using the current sample (𝑥𝑡, 𝑦𝑡), 
according to Eq. 16. 𝑒𝑗𝑡 = (𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 (16) 
 

where 𝑓𝑗(𝑥𝑡) is the prediction of the component 𝑓𝑗.  Once the error is calculated, the 𝑙𝑖𝑓𝑒𝑗 
is incremented. Then, in Step 3d, the 𝑀𝑆𝐸𝑗𝑡 of the current window is calculated for each 

component of the ensemble, as given in Eq. 17. 

𝑀𝑆𝐸𝑗𝑡 = {  
  0,                                             if 𝑙𝑖𝑓𝑒𝑗 = 0,𝑙𝑖𝑓𝑒𝑗 − 1𝑙𝑖𝑓𝑒𝑗 . 𝑀𝑆𝐸𝑗𝑡−1 + 1𝑙𝑖𝑓𝑒𝑗 . 𝑒𝑗𝑡 , if 1 ≤ 𝑙𝑖𝑓𝑒𝑗 ≤ 𝑚,

𝑀𝑆𝐸𝑗𝑡−1 + 𝑒𝑗𝑡𝑚 − 𝑒𝑗𝑡−𝑚𝑚 ,       if 𝑙𝑖𝑓𝑒𝑗 > 𝑚  (17) 
 

The goal of Eq. 17 is to estimate the average error of each component 𝑓𝑗 on the last 𝑚 

samples using the mean squared error (MSE). This approach allows the estimation of the 

MSE of the current window, this is to say, a vector 𝑒𝑗 with the last 𝑚 prediction errors is 

considered in the calculation of the 𝑀𝑆𝐸𝐽𝑡. Step 3e calculates the weights 𝑤𝑗  of each 

component 𝑓𝑗 according to its error 𝑀𝑆𝐸𝑗𝑡 as in Eq. 18. 

𝑤𝑗 = exp (−𝑀𝑆𝐸𝑗𝑡 −med(𝑀𝑆𝐸𝑡)med(𝑀𝑆𝐸𝑡) ), (18) 
 

where 𝑀𝑆𝐸𝑡 = [𝑀𝑆𝐸1𝑡 , … ,𝑀𝑆𝐸𝑘𝑡] and med(𝑀𝑆𝐸𝑡) is the median value of the components’ 

errors, 𝑀𝑆𝐸𝑡. Equation 18 transforms the 𝑀𝑆𝐸𝑡 of each component in a way that the 

components with errors closer to the median obtain a weigh equal to 1, while components 

with 𝑀𝑆𝐸𝑡 lower or higher than the median obtain weights exponentially higher or lower, 

respectively. This approach avoids that components with low accuracy impact negatively 

the ensemble’s output. In Step 3f, all components are updated, and, after this, it is 

evaluated if a new component must be added according to 𝛼 (Step 3g). In that case, a 

new model is trained with the current window 𝐷𝑡 and weight equal to 1. If the current 
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number of components in the ensemble is smaller than the defined limit 𝑅, the new 

component is added directly; otherwise, the component 𝑓𝑗 with the worst 𝑀𝑆𝐸𝑗𝑡 is replaced 

by the new component 𝑓𝑘. 

Table 4 resumes the main features of the dynamic ensembles algorithms mentioned 

above. Both approaches incrementally add components in the initial phase of the 

operation, the main difference is the frequency those components are added to the 

ensemble: while EOS updates the ensemble at a predefined frequency, DOER calculates 

in every step if an update is required. Regarding the sliding window, the EOS uses a small 

window to update the components of the ensemble and DOER uses a larger window  to 

train the new components to be added to the ensemble. 

Table 4. Comparative table of the EOS and DOER dynamic ensembles approaches 

Features EOS DOER 

Initial training Incremental Incremental 

Sliding Window For updating the ensemble For training new components 

Ensemble’s Combination Strategy Simple average Weighted average 

Incorporation of new components Fixed frequency Dynamic frequency 

  

4.1.3 Proposed ensemble approaches based on DOER and EOS 

New mechanisms for online dynamic ensembles were proposed and evaluated in this 

work. These mechanisms were incorporated into DOER and EOS algorithms, and will be 

described here.  

4.1.3.1  Rank of components 

This approach incorporates a simple rank of components to the original DOER and EOS 

algorithms. The MSE of the component is used to rank the components of the ensemble 

at each iteration. This strategy selects the most accurate components of the ensemble in 𝑐 ⊂  Σ to predict the next sample, sorting the components of the ensemble with a simple 

ranking function according to the MSE (Step 3(g) of Algorithms 5 and 6). The structures 

of EOS-rank and DOER-rank are presented in Algorithms 5 and 6, respectively. The main 

features of the EOS-Rank and DOER-Rank dynamic ensembles are summarized in tables 

5 and 6 respectively. 
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Algorithm 5. The Ensemble of Online Learners with Substitution of Models 
with Ranking of Components (EOS-rank) 

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the window size, 𝑚; the number of 
samples for initial training phase, 𝑁1; an online supervised learner, 𝑓; the 
maximum number of models in the ensemble, 𝑅; an ensemble, Σ; the 
inclusion/replacement frequency, 𝜆;  the size of the subset of components, 𝑙. 
1. Initialization: set Σ ←  ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; 𝑡 = 𝑁1; 
2. obtain a model, 𝑓𝑘, trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0, wk = 1,Σ ← Σ + 𝑓𝑘 , 𝑘 = 1; and 𝑐 = Σ; 
3. while 𝑡 ≤ 𝑇 do: 

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆 ; 
b. obtain the output prediction 𝐹(𝑥𝑡) of 𝑐 as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1 ) ∑ 𝑤𝑗𝑘𝑗=1⁄ ; 

c. for all models 𝑓𝑗 ∈  Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1; 
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈  Σ using Eq. (14); 

e. calculate the weight for each model from Σ using Eq. (15); 
f. update all models of Σ using 𝐷𝑡; 𝑡 ← 𝑡 + 1; 
g. rank the components of the ensemble according to their 𝑀𝑆𝐸 

and obtain the subset 𝑐 = 𝑟𝑎𝑛𝑘(Σ, 𝑙), of size 𝑙; 
h. if 𝑡 𝑚𝑜𝑑 λ = 0 

obtain a new model, 𝑓0, trained with 𝐷𝑡𝑒𝑚𝑝 = {(𝑥𝑡, 𝑦𝑡)}𝑡=𝑡−(λ−1)𝑡 ⊂ 𝑆; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0; and 𝑤0 = 1; 

if 𝑘 < 𝑅 
a. include 𝑓𝑘 to Σ: , Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1; 

else  
b. obtain 𝑀𝑆𝐸𝑗 with 𝐷𝑡𝑒𝑚𝑝 for each model 𝑓𝑗  𝜖 𝛴; 

c. replace the model with the worst 𝑀𝑆𝐸𝑗: 𝑓𝑗 ← 𝑓0; 
4. end while 
end 
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Table 5. Comparative table of the EOS and EOS-Rank dynamic ensemble approaches 

Features EOS EOS-Rank 

Initial training Incremental Incremental 

Sliding Window For updating the ensemble For updating the ensemble 

Ensemble’s Combination Strategy Simple average Weighted average 

Incorporation of new components Fixed frequency Fixed frequency 

Dynamic Ensemble Mechanism  Rank of components 

The goal of this approach is to enable a faster inclusion of components that contribute to 

the ensemble’s final output, since only the predictions of components in 𝑐 are combined. 

This allows the ensemble to exclude more than one low accuracy component of the 

ensemble’s output at once, differently from DOER and EOS algorithms, where no more 

than one component can be replaced at once.This approach also allows that components 

with a relatively bad performance remain for a longer time into the ensemble, since those 

components can be kept out of 𝑐 until their individual performance improves and, then, 

included again into 𝑐, thus maintaining the previously acquired knowledge for more time. 

In changing environments, it can be risky to remove a component that may be important 

in the future, especially in scenarios with recurring drifts, where the knowledge of a 

component can be relevant when that concept is restored (Soares & Araújo, 2015).  

Table 6. Comparative table of the DOER and DOER-Rank dynamic ensemble approaches 

Features DOER DOER-Rank 

Initial training Incremental Incremental 

Sliding Window For training new components For training new components 

Ensemble’s Combination Strategy Weighted average Weighted average 

Incorporation of new components Dynamic frequency Dynamic frequency 

Dynamic Ensemble Mechanism  Rank of components 

EOS-rank incorporates the dynamic parameterization of components as in DOER 

algorithm. The 𝑀𝑆𝐸 calculated in each iteration for each component is used to rank the 

ensemble, in order to select the components with the lowest errors in the subset c, as 

described in Step 3(g) of Algorithm 5. DOER-rank also incorporates the ranking 

mechanism using the 𝑀𝑆𝐸 of each component. The rank is applied after updating the 

ensemble, as shown in Algorithm 5, Step 3(g). 
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Algorithm 6. The Dynamic and Online Ensemble Regression with Ranking of 
Components (DOER-rank); 

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the window size, 𝑚; the number of 
samples for initial training phase, 𝑁1; an online supervised learner, 𝑓; the 
factor of inclusion of new models, 𝛼; the maximum number of models in the 
ensemble, 𝑅; an ensemble Σ;  
1. Initialization: set Σ ←  ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; 𝑡 = 𝑁1; 
2. obtain a model, 𝑓𝑘,  trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0, wk = 1,Σ ← Σ + 𝑓𝑘, 𝑘 = 1; 
3. while 𝑡 ≤ 𝑇 do: 

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆 ; 
b. obtain the output prediction 𝐹(𝑥𝑡) of Σ as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1 ) ∑ 𝑤𝑗𝑘𝑗=1⁄ ; 

c. for all models 𝑓𝑗 ∈  Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1; 
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈  Σ using Eq. (14); 

e. calculate the weight for each model from Σ using Eq. (15); 
f. update all models of Σ using 𝐷𝑡; 
g. rank the components of the ensemble according to their 𝑀𝑆𝐸 and 

obtain the subset 𝑐 = 𝑟𝑎𝑛𝑘(Σ,𝑀𝑆𝐸, 𝑙), of size 𝑙; 𝑡 ← 𝑡 + 1; 
h. if |(𝐹(𝑥𝑡) − 𝑦𝑡)/𝑦𝑡| > 𝛼 

obtain a new model, 𝑓0,  trained with 𝐷𝑡; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0; 
and 𝑤0 = 1; 
if  𝑘 < 𝑅 

a. include 𝑓𝑘 to Σ:   Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1; 
else  

b. replace the model 𝑓𝑗 by 𝑓0, where 𝑗 =min𝑣=1,…,𝑘(𝑀𝑆𝐸𝑣𝑡): 𝑓𝑗 ← 𝑓0; 
4. end while 
end 
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4.1.3.2 Initial Ensemble and Weighted Average 

The original EOS incorporates components to the ensemble incrementally along its 

operation, until the limit of components is reached. Then, inaccurate components are 

substituted. This allows the ensemble to better adapt to changes, incorporating new data 

patterns that may emerge, through new components trained with the most recent samples.  

Nevertheless, in the early stages of EOS operation, low accuracy components may affect 

the ensemble’s accuracy if the number of components is small, thus affecting the overall 

performance of the algorithm. It is important to consider that EOS can operate for more 

time with fewer components than DOER, since the frequency of incorporation/substitution 

of components is lower in EOS than in DOER, as DOER evaluates, in each iteration, 

whether it is possible to incorporate a new component. In order to mitigate this effect, 

EOS-D is proposed. Algorithm 7 presents the structure of EOS-D. 

The original EOS was modified to incorporate an initial ensemble of components and 

DOER’s weighted average aggregation strategy. Hence, 𝑅 components are trained in the 

initial stage of this approach with 𝐷1, and the component’s weights are calculated 

according to Eq. (15). Components are also initialized with weights 𝑤𝑗 = 1 and 𝑙𝑖𝑓𝑒𝑗 = 0, 

as in DOER. The main features of the EOS-D are summarized in Table 7. 

Table 7. Comparative table of the EOS and EOS-D dynamic ensemble approaches 

Features EOS EOS-D 

Initial training Incremental 
All components trained at the 
beginning 

Sliding Window For updating the ensemble For updating the ensemble 

Ensemble’s Combination Strategy Simple average Weighted average 

Incorporation of new components Fixed frequency Dynamic frequency 

Dynamic Ensemble Mechanism  Rank of components 
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Algorithm 7. The Dynamic Ensemble of Online Learners with Substitution of 
Models using weighted average (EOS-D). 

input: a data stream 𝑆 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑇 ; the window size, 𝑚; the number of 
samples for initial training phase, 𝑁1; an online supervised learner, 𝑓; the 
maximum number of models in the ensemble, 𝑅; an ensemble Σ; the 
inclusion/replacement frequency, 𝜆; 
1. Initialization: set Σ ←  ∅, 𝑡 = 𝑁1 + 1, and the initial training data as 𝐷1 = {(𝑥𝑡, 𝑦𝑡)}𝑡=1𝑁1 ⊂ 𝑆; 
2. for k=1 to 𝑅 

a.  obtain a model, 𝑓𝑘 , trained with 𝐷1; set 𝑙𝑖𝑓𝑒𝑘 = 0, 𝑀𝑆𝐸𝑘𝑡 = 0,wk = 1, Σ ← Σ + 𝑓𝑘; 
3. while 𝑡 ≤ 𝑇 do: 

a. slide the window: 𝐷𝑡 = {(𝑥𝑡, 𝑦𝑡)}𝑡= 𝑡−(𝑚−1)𝑡 ⊂ 𝑆; 
b. obtain the output prediction 𝐹(𝑥𝑡) of 𝑐 as: 𝐹(𝑥𝑡) = (∑ 𝑤𝑗𝑓𝑗(𝑥𝑡)𝑘𝑗=1 ) ∑ 𝑤𝑗𝑘𝑗=1⁄ ; 

c. for all models 𝑓𝑗 ∈  Σ, obtain the prediction error 𝑒𝑗𝑡 on 𝑥𝑖 as 𝑒𝑗𝑡 =(𝑦𝑡 − 𝑓𝑗(𝑥𝑡))2 , and set 𝑙𝑖𝑓𝑒𝑗 = 𝑙𝑖𝑓𝑒𝑗 + 1; 
d. obtain 𝑀𝑆𝐸𝑗𝑡 for each 𝑓𝑗 ∈  Σ using Eq. (14); 

e. calculate the weight for each model from Σ using Eq. (15); 
f. update all models of Σ using 𝐷𝑡; 𝑡 ← 𝑡 + 1; 
g. if 𝑡 𝑚𝑜𝑑 λ = 0 𝑓0 ← obtain a new model trained with 𝐷𝑡𝑒𝑚𝑝 = {(𝑥𝑡, 𝑦𝑡)}𝑡=𝑡−(λ−1)𝑡 ⊂ 𝑆; set 𝑟 = 0; set 𝑙𝑖𝑓𝑒0 = 0; 𝑀𝑆𝐸0𝑡 = 0;  

if 𝑘 < 𝑅 
a. include 𝑓𝑘 to Σ: , Σ ← Σ ∪ 𝑓𝑘 and set 𝑘 = 𝑘 + 1; 

else  
b. obtain 𝑀𝑆𝐸𝑗 with 𝐷𝑡𝑒𝑚𝑝 for each model 𝑓𝑗  𝜖 𝛴, for 𝑗 =  1, … , 𝑅; 
c. replace the model with the worst 𝑀𝑆𝐸𝑗: 𝑓𝑗 ← 𝑓0, for 𝑗 =  1, … , 𝑅; 

4. end while 
end 
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The hyperplane dataset involves noise, gradual drifts and non-recurring drifts. It was 

created by Kolter (2005) to evaluate the AddExp algorithm for regression. Feature vectors 

consist of 10 input variables 𝑥 ∈ [0,1] with uniform distribution, the output variable 𝑦 ∈[0,1] and a number of samples 𝑇. Four target concepts [𝐶1; 𝐶2; 𝐶3; 𝐶4] are introduced, each 

one lasting 𝑇/4 samples. The output for each concept  𝑦𝑡 is given by: 

 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶1: 𝑦𝑡 = (𝑥1 + 𝑥2 + 𝑥3) 3⁄ , for 𝑡 = 1, … , 𝑇4 ; (19) 
 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶2: 𝑦𝑡 = (𝑥2 + 𝑥3 + 𝑥4) 3⁄ , for 𝑡 = (𝑇4 + 1) , … , 𝑇2 ; (20) 
 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶3: 𝑦𝑡 = (𝑥4 + 𝑥5 + 𝑥6) 3⁄ , for 𝑡 = (𝑇2 + 1) , … , 3𝑇4 ; (21) 
 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶4: 𝑦𝑡 = (𝑥7 + 𝑥8 + 𝑥9) 3⁄ , for 𝑡 = (3𝑇4 + 1) ,… , 𝑇; (22) 

where 𝑇 is the size of the dataset. As 𝑇 varies in each experiment with 𝑇 ∈[500, 1000, 2000, 3000 ], four datasets were obtained, as shown in Table 8. The smaller 

the value of 𝑇, the larger is the rate of concept drift. 

Friedmans’ dataset is generated from the Friedmans’ function. It contains 5 continuous 

features 𝑥 ∈ [0,1] independently distributed according to a uniform distribution. The target 

value is given by Eq. (23): 𝑦 = 10 ∗ sin(𝜋 ∗ 𝑥1 ∗ 𝑥2) + 20 ∗ (𝑥3 − 0.5)2 + 10 ∗ 𝑥4 + 5 ∗ 𝑥5 + 𝜎(0,1) (23) 
 

where 𝜎(0,1) is a random number generated from a normal distribution with mean 0 and 

variance 1.  

5.1.2 Real-world datasets 

Six real-world datasets were considered in the simulations; three corresponding to 

concentration values of PM10 from different cities and three associated with industrial 

processes. 

The Sulfur Recovery Unit (SRU) and Debutanizer Column datasets correspond to 

industrial processes. In the case of the SRU dataset, two outputs where considered; the 

H2O concentration (output 1) and S2O concentration (output 2), referred as SRU1 and 

SRU2 respectively. For the Debutanizer Column dataset, the output corresponds to the 
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frequency 𝜆. As described in Chapter 2, 𝜆 determines the frequency with which new 

components are incorporated into the ensemble or replaced, according to the size of the 

ensemble. This parameter also determines the number of samples used to train the new 

component, as a block composed of the last 𝜆 samples is used to train the new component 

to be incorporated into the ensemble. Results of the evaluation of different values of 𝜆 are 

presented in Figure 8. Finally, values of 𝜆 = 10 were assigned for real-world datasets 

(Debutanizer, SRU1 and SRU2), 𝜆 = 100 for the Friedman and Hyperplane 3000 datasets 

and 𝜆 = [40, 120, 50] for the Hyperplane 500, Hyperplane 1000 and Hyperplane 2000 

respectively. 

The inclusion and exclusion of models can be an important factor that influence the 

adaptation of the ensemble, thus affecting its prediction performance (Soares & Araújo, 

2015). An ideal high frequency inclusion of new components into the ensemble may 

indicate that the environment is changing rapidly, so the new components trained with the 

most recent samples represent the current state of the system to be predicted. Results 

presented in figures 7 and 8 seem to corroborate this behavior, as real-world datasets 

performed better with small window sizes and larger inclusion/replacement frequencies. 

In contrast, artificial datasets do not seem to be affected by this factor, nevertheless, it 

can be observed that the MSE tend to decrease when  𝜆 is increased. 

Regarding the DOER-based approaches (DOER and DOER-rank) two parameters where 

considered; the factor of inclusion of a new model 𝛼 and the sliding window size 𝑚. Notice 

that DOER sliding window is used to train the new models to be incorporated into the 

ensemble, and not to update the current components, as EOS-based approaches do. 

Here, 𝛼 = 0.04 was set for all the scenarios as proposed in (Soares & Araújo, 2015), since 

no further improvement was observed when 𝛼 increased or decreased. On the order hand, 

DOER algorithms used the same values of the frequency of inclusion/replacement of 

components 𝜆 of the EOS algorithms, that is, 𝑚 = 𝜆 for each corresponding dataset. This 

makes the comparisons between EOS and DOER fairer, since in both cases 𝜆 and 𝑚 

define the size of the batch of samples used to train the new component to be added to 

the ensemble. 
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5.5.1  Experimental results for the real-world and artificial datasets with 

known dynamic behaviors 

Results for of the real-world and artificial datasets with known dynamic behaviors are 

summarized in tables 9 and 10. The best results according to the MSE, are highlighted in 

bold. It can be seen, from tables 9 and 10, that DOER-based algorithms were superior for 

all real-world datasets (Debutanizer, SRU1 and SRU2) while EOS-based algorithms 

presented the best results for artificial datasets (Friedman and Hyperplane). 

Table 9. Performance comparison of the proposed approaches for the Debutanizer, Friedman, SRU1 and 
SRU2 datasets 

Dataset Algorithm 
Results 

Mean Squared Error Time [𝒔] 
Debutanizer 

DOER 0.00208 ± 0.00032 5.904 ± 0.15140 

DOER-rank 0.00205 ± 0.00005 10.97 ± 0.19840 

EOS 0.00563 ± 0.00010 5.856 ± 0.17130 

EOS-rank 0.00420 ± 0.00007 8.444 ± 0.10758 

EOS-D 0.00494 ± 0,00007 4.963 ± 0.07820 

OS-ELMsw 0.01317 ± 0.00076 0.402 ± 0.01355 

Friedman 

DOER 0.02751 ± 0.00006 8.325 ± 0.13097 

DOER-rank 0.02744 ± 0.00006 13.60 ± 1.04498 

EOS 0.02687 ± 0.00005 3.469 ± 0.05503 

EOS-rank 0.02682 ± 0.00003 6.557 ± 0.11528 

EOS-D 0.02688 ± 0.00003 4.493 ± 0.07195 

OS-ELMsw 0.02694 ± 0.00009 0.349 ± 0.01394 

SRU1 

DOER 0.00027 ± 0.00001 26.12 ± 1.43020 

DOER-rank 0.00027 ± 0.00000 47.25 ± 0.29920 

EOS 0.00042 ± 0.00000 25.82 ± 0.19807 

EOS-rank 0.00037 ± 0.00000 37.17 ± 0.38034 

EOS-D 0.00041 ± 0.00000 21.19 ± 0.19076 

OS-ELMsw 0.00067 ± 0.00001 1.531 ± 0.01771 

SRU2 

DOER 0.00057 ± 0.00001 25.41 ± 0.43370 

DOER-rank 0.00061 ± 0.00000 47.20 ± 0.18500 

EOS 0.00103 ± 0.00000 25.91 ± 0.37625 

EOS-rank 0.00089 ± 0.00001 37.07 ± 0.14109 

EOS-D 0.00098 ± 0.00001 21.37 ± 0.14662 

OS-ELMsw 0.00165 ± 0.00001 1.537 ± 0.03829 
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Ranking approaches implemented in DOER and EOS algorithms (DOER-rank and EOS-

rank) presented higher accuracies in most of the cases than their original approaches 

(DOER and EOS). EOS only performed better than EOS-rank for the Hyperplane 2000 

and Hyperplane 1000 datasets. On the other hand, DOER was superior to DOER-rank for 

Friedman and SRU2 datasets. Results also show that this method can reduce the 

standard deviation of the original approaches. 

Table 10. Performance comparison of the proposed approaches for the Hyperplane datasets.  

Dataset Algorithm 
Results 

Mean Squared Error Time [𝒔] 
Hyperplane 500 

DOER 0.03165 ± 0.00018 1.304 ± 0.02400 

DOER-rank 0.03124 ± 0.00015 2.266 ± 0.04660 

EOS 0.02967 ± 0.00016 0.410 ± 0.01708 

EOS-rank 0.02958 ± 0.00012 1.149 ± 0.03834 

EOS-D 0.02973 ± 0.00009 0.948  ± 0.03100 

OS-ELMsw 0.02976 ± 0.00037 0.074 ± 0.00774 

Hyperplane 1000 

DOER 0.02766 ± 0.00004 4.147 ± 0.09250 

DOER-rank 0.02764 ± 0.00011 6.457  ± 0.00007 

EOS 0.02725 ± 0.00016 0.733 ± 0.02605 

EOS-rank 0.02727 ±  0.00005 2.348 ± 0.03305 

EOS-D 0.02724 ±  0.00008 2.111 ± 0.08495 

OS-ELMsw 0.02750 ± 0.00045 0.167 ± 0.01069 

Hyperplane 2000 

DOER 0.03113 ± 0.00005 6.833 ± 0.10960 

DOER-rank 0.03102 ± 0.00008 11.76  ± 0.16910 

EOS 0.03002 ± 0.00004 4.499 ± 0.08797 

EOS-rank 0.03006 ± 0.00004 7.392 ± 0.14369 

EOS-D 0.03005 ± 0.00004 4.578 ± 0.00004 

OS-ELMsw 0.03016 ± 0.00023 0.342 ± 0.01719 

Hyperplane 3000 

DOER 0.02664 ± 0.00005 12.93 ± 0.19080 

DOER-rank 0.02654 ± 0.00005 20.40  ± 0.31410 

EOS 0.02605 ± 0.00002 6.242 ± 0.07685 

EOS-rank 0.02602 ± 0.00002 10.59 ± 0.12375 

EOS-D 0.02602 ± 0.00002 6.825 ± 0.07331 

OS-ELMsw 0.02627 ± 0.00045 0.489 ± 0.01731 

Although ranking approaches presented the more accurate results in almost all scenarios, 

when compared with the original ensemble algorithms, they required more processing 

time in all cases. DOER and EOS-based algorithms that implement ranking methods 
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led to the loss of important information about the current concept. This can explain why 

DOER-based algorithms perform slightly worse than EOS approaches.  

DOER operates with higher frequencies of inclusion/replacement of models, therefore, 

more modifications to the ensemble are made, compared with EOS-based approaches. 

Therefore, important information about the current concept may be lost when a 

component is replaced. This behavior is evidenced when DOER-rank is compared with 

DOER. DOER-rank outperforms DOER in all cases, maybe due to the fact that their 

components are kept for more time into the ensemble, since the ranking mechanism 

temporarily excludes a component of the ensemble’s output. 

For the Friedman dataset, all algorithms presented larger errors in the beginning of the 

dataset, then, the error was gradually decreased and kept stable until the end. EOS-rank 

outperformed the other approaches with respect to the accuracy and standard deviation. 

In general, EOS-based algorithms reported a similar performance over Hyperplane 

datasets. For Hyperplane 500, EOS-rank presented the best performance, followed by 

EOS-D, EOS and, finally, the OS-ELMsw. It is important to highlight that, for artificial 

datasets, OS-ELMsw performed relatively better compared with the results obtained for 

the real-world datasets. Nevertheless, as shown in figures 14 to 18, subplots (b) and (c), 

OS-ELMsw presents larger standard deviations, compared with the ensemble 

approaches. Ensembles of OS-ELMs present smaller standard deviations than single 

model approaches, which means that, ensemble approaches improve the stability of the 

predictions. This is an important issue considering the random nature of ELMs since it 

randomly assigns the parameters of the hidden nodes and input weights (Bueno et al., 

2016). 

For Hyperplane 1000, 2000 and 300 the results were similar. EOS-based algorithms 

performed better than DOER-based approaches. The EOS-D obtained the best 

performance for Hyperplane 1000 and Hyperplane 3000, where EOS-rank presented the 

same accuracy and standard deviation. For Hyperplane 2000, EOS outperformed the 

other approaches. In general, all EOS-based approaches obtained a similar performance 

for artificial datasets. 
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5.5.2 Experimental results for the Particulate Matter datasets 

Table 11 reports the experimental results obtained for the Particulate Matter datasets. In 

this stage, EOS was not considered in the evaluation, since EOS-D and EOS-rank showed 

better accuracy than EOS in most of the experiments presented in the previous section.  

Table 11. Performance comparison of the proposed approaches for the, Campinas, Jundiaí and São 
Caetano do Sul datasets 

Dataset Algorithm 
Results 

Mean Squared Error Time 

Campinas 

DOER 0.01540 ± 0.00230 25.35 ± 16.2550 

DOER-rank 0.01378 ± 0.00002 27.87 ± 17.6800 

EOS-rank 0.01155 ± 0.00001 51.79 ± 0.26186 

EOS-D 0.01168 ± 0.00001 17.64 ± 3.69608 

OS-ELMsw 0.01193 ± 0.00007 8.014 ± 0.16395 

Jundiaí 

DOER 0.04560 ± 0.03396 39.15 ± 8.63620 

DOER-rank 0.00834 ± 0.00003 24.33 ± 13.8520 

EOS-rank 0.00673 ± 0.00001 45.34 ± 11.7002 

EOS-D 0.00684 ± 0.00001 15.90 ± 4.14645 

OS-ELMsw 0.00685 ± 0.00000 7.953 ± 0.17596 

São Caetano do 
Sul 

DOER 0.01392 ± 0.00061 41.74 ± 8.88056 

DOER-rank 0.01301 ± 0.00004 34.96 ± 13.6878 

EOS-rank 0.01034 ± 0.00001 31.47 ± 19.5576 

EOS-D 0.01051 ± 0.00001 15.39 ± 0.77898 

OS-ELMsw 0.01050 ± 0.00002 7.962 ± 0.26436 

 

Results in Table 11 indicate that EOS-rank outperformed the other approaches in all 

scenarios. The second-best algorithm was EOS-D, followed by the single model OS-

ELMsw and, finally, DOER-rank and DOER respectively. 

Figures 19 to 21 present the online cumulative error and the box plots of the MSE for the 

PM datasets (Campinas, Jundiaí and São Caetano do Sul). As can be observed, EOS-

based approaches not only perform better than DOER-based algorithms, but were also 

more stable, since DOER-based approaches presented abrupt errors in all scenarios. 

Results obtained for PM datasets are similar with the results obtained for artificial datasets 

where the environment did not change too fast, so high frequencies of 

inclusion/replacement of models to adapt the model to new concepts (as DOER-based 
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Forecasting in PM scenarios is not a trivial task due to the complexity of the processes 

involved and the influence of many factors that affect the forecasting models’ performance 

(Bianco et al., 2017; Peng et al., 2017). Between those factors, meteorological parameters 

have shown to have a great influence over the concentrations of PM, especially those 

related with the seasons of the year, that may produce cyclical patterns on PM 

concentrations (Mao et al., 2017; Peng et al., 2017). 

Additionally, strong correlations between carbon monoxide (CO) and concentrations of 

PM10 have been found, suggesting common sources for PM10 and CO (Bianco et al., 

2017). The emissions of this pollutant can be related, for example, with fossil fuel 

combustion and may present different patterns according to the traffic in urban areas, 

which can be repeated along the time. That evidence, together with the results presented 

above, may indicate that recurring drifts with low rates of change are present in PM 

datasets. Therefore, approaches that slowly adapt to changes, and keep information of 

past concepts, as EOS-based algorithms and the OS-ELMsw, tend to perform better in 

such scenarios, as observed in the experimental results. 

The results presented in this section indicate that the frequency of inclusion/removal of 

components is an important issue in concept drift scenarios. Specifically, the results 

indicate that low frequencies of inclusion/removal of models, like in EOS-based 

approaches, tend to offer better results in scenarios where the underlying distributions do 

not change very fast. On the other hand, in scenarios when the underlying patterns evolve 

fast, high frequencies of inclusion/removal of models, like in DOER-based approaches, 

are more suitable. Regarding PM scenarios, the results showed better performances of 

EOS-based approaches, thus, indicating that those scenarios do not change very fast. 
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6 Conclusions 

The main contribution of this work is the incorporation of mechanisms to deal with concept 

drift in PM10 concentration forecasting. To do so, this work proposed an ensemble of online 

learners implementing the dynamic inclusion and exclusion of components scheme 

created by (Street & Kim, 2001), the Ensemble of Online Learners with Substitution of 

Models (EOS). This approach incorporates sliding windows to update the online learners 

that compose the ensemble, since those mechanisms (sliding windows, ensemble 

learning) have shown to be effective to deal with changing environments. Additionally, two 

derived approaches based on EOS were proposed; the EOS-rank, which adds a ranking 

mechanism for online selection of the best subset of components, and the EOS-D, which 

incorporates an initial ensemble of components and a weighted average aggregation 

strategy. 

The proposed approaches were evaluated and compared with artificial and real-world 

datasets and with one of the state-of-the-art algorithms for concept drift scenarios: the 

Dynamic and On-line Ensemble for Regression (DOER).  

Five artificial datasets that present long-lasting concepts, and three industrial application 

datasets with multiple concepts and high rate of drifts were used in the first part of the 

experiments. The results showed that DOER-based algorithms performed better in 

scenarios with high rates of drifts, due the high frequency of ensemble updates. On the 

other hand, the proposed EOS-based algorithms, together with the OS-ELMsw, 

performed better in scenarios with low rates of drifts, since they are capable of retaining 

information of past concepts for more time, which becomes useful when recurring 

concepts appear again. 

Real-world datasets collected by CETESB in three cities of the State of São Paulo, Brazil, 

were used to evaluate the behavior of the best approaches identified in the first part of the 

experiments when applied to forecast future concentration of PM10. The aim of these 

experiments was to determine if the incorporation of mechanisms to deal with concept 

drift could enhance PM10 concentration forecasting. The observed results indicate that 

particulate matter scenarios may present recurrent drifts with low rates of change. EOS-
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based approaches and OS-ELMsw presented the best performances in each PM 

scenario. EOS-rank obtained the best results in all cases.  

The obtained results are coherent with those reported in the literature, which suggest that 

meteorological factors, including those associated with seasons of the year, together with 

the concentration of other pollutants in the atmosphere, influence the behavior of 

particulate matter concentration. Thus, PM data patterns may evolve over time, making 

online approaches, such as OS-ELM, and techniques capable of dealing with concept drift 

(like all EOS and DOER variants considered here) more suitable to deal with this problem. 

As future works, the incorporation of meteorological information (i.e., wind speed and 

humidity) together with concentration values of other pollutants (i.e., CO and CO2), highly 

correlated with PM concentrations, is recommended. This approach has shown to be 

effective in works reported in the literature and can be enhanced using the mechanism 

proposed in this work. Another approach to be explored is the dynamic switch between 

DOER and EOS adaptation mechanisms. This will enable the predictor to use faster 

adaptation mechanism (DOER) when the environment is changing quickly, incorporating 

components at a faster frequency. On the other hand, when the environment is not 

changing fast, turn on the EOS adaptation mechanisms to retain the information of the 

environment for more time. To do so, Drift Detection Mechanism as proposed by Baena-

García et al. (2006) may support the dynamic selection of the adaptation mechanism 

according to the current behavior of the environment. 
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