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RESUMO  

Streptococcus mutans (SM) é uma espécie bacteriana comum da cavidade bucal de humanos envolvida 

na patogênese da cárie dental, a qual pode promover infecções sistêmicas ao atingir e persistir na 

corrente sanguínea (Nomura et al., 2006). Para persistir nos nichos do hospedeiro, SM utiliza sistemas 

reguladores transcricionais de dois componentes (SDCs). Os SDCs CovR e VicRK de SM regulam 

genes de virulência associados à ligação a polissacarídeos extracelulares (PEC) produzidos a partir da 

sacarose (gbpB, gbpC e epsC) e/ou na interação da parede celular com a matriz de biofilmes (wapE, 

lysM, 2146c, smaA). A inativação destes SDCs promove resistência à fagocitose por PMN na presença 

de sangue (Negrini et al.,2012), indicando papel da regulação de funções de escape a opsoninas do 

sangue, como o sistema complemento. O objetivo deste trabalho foi identificar os mecanismos 

moleculares através dos quais CovR e VicRK modulam a susceptibilidade de SM à imunidade mediada 

pelo sistema complemento e a sobrevivência em sangue. Os resultados obtidos foram incluídos em três 

artigos científicos apresentados em capítulos. No capítulo I, caracterizamos o perfil de susceptibilidade 

ao complemento na espécie SM. Análises de citometria de fluxo e de RT-PCRq revelaram que cepas 

isoladas de infecções sistêmicas têm menor susceptibilidade à opsonização pelo complemento e 

expressão reduzida de covR comparadas a isolados bucais. A inativação de covR em SM UA159 

aumentou a resistência à opsonofagocitose por PMN mediada pelo complemento, de forma dependente 

da ligação a PEC, e aumentou a sobrevivência em sangue humano ex vivo e na corrente sanguínea de 

ratos. Isolados de sangue mostraram expressão significativamente maior de genes reprimidos por CovR 

(gbpC e epsC) e a maior ligação a PEC. Consistentemente, a inativação de gbpC e epsC reduziu a ligação 

a PEC e aumentou a susceptibilidade ao complemento, estabelecendo a função destes genes no escape 

à opsonofagocitose. No capítulo II, mostramos que VicRK regula a susceptibilidade de SM ao 

complemento de forma independente de PECs. A inativação de vicK promoveu resistência à 

opsonização pelo complemento. Análises transcricionais indicaram que VicR reprime a expressão de 

proteases Smu.399 e PepO e de proteínas enolase e gliceraldeído-3-fosfato desidrogenase de superfície 

(GAPDH), implicadas na virulência de estreptococos. A inativação de smu.399 e pepO aumentou a 

susceptibilidade ao complemento, revelando papel na virulência. No capítulo III, demonstramos que 

CovR e VicRK regulam a proteína ligadora de colágeno Cnm, associada com à virulência por 

mecanismos não completamente conhecidos. Análises transcricionais e de interação entre proteínas 

recombinantes rVicR e rCovR com a região promotora de cnm demonstraram que CovR e VicR atuam 

respectivamente, como indutor e repressor de cnm. Os mutantes covR e vicK demonstraram diversos 

 



fenótipos compatíveis com as alterações na expressão de cnm. Assim, estabelecemos que os SDCs CovR 

e VicRK regulam múltiplos fatores de escape à opsonização pelo sistema complemento e/ou na 

sobrevivência em sangue. Estes resultados contribuem para a definição de alvos terapêuticos para 

controle das infecções sistêmicas por esta espécie.  

 

 
Palavras-chave: Streptococcus mutans, Endocardite bacteriana, Proteínas do Sistema Complemento.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



ABSTRACT  

Streptococcus mutans (SM) is a common bacterial species of the oral cavity of humans involved in the 

pathogenesis of dental caries, which can promote systemic infections once reaching and persisting in 

the bloodstream (Nomura et al., 2006). To persist in the host niches, SM applies two-component 

transcriptional regulatory systems (TCS). The TCS CovR and VicRK of SM regulate virulence genes 

associated with SM-binding to extracellular polysaccharides (EPS) produced from sucrose (gpbB, gbpC 

and epsC) and /or involved in the interaction of the cell wall with the biofilm matrix (wapE, lysM, 2146c, 

smaA). Inactivation of this TCS promotes resistance to phagocytosis by PMN when in the presence of 

blood (Negrini et al., 2012), indicating that these systems regulate genes for evasion to blood opsonins, 

such as the complement system. The aim of this study was to identify the molecular mechanisms through 

CovR and VicRK modulate the susceptibility of S. mutans to complement mediated immunity and 

survival in the bloodstream. The results obtained were included in three scientific articles which are 

presented as chapters. In chapter I, we characterize the profile of SM strains susceptibilities to the 

complement. Flow cytometry and RT-PCR analysis revealed that strains isolated from systemic 

infections show lower susceptibility to complement deposition and reduced expression of covR 

compared to oral isolates. Inactivation of covR in SM UA159 increased resistance to complement 

mediated opsonophagocytosis by PMN in a way dependent on binding to EPS, ex vivo survival in human 

blood and in the bloodstream of rats. Blood isolates showed significantly higher expression of CovR-

repressed genes (gbpC and epsC) and, consistently, increased binding to EPS. Consistently, inactivation 

of gbpC or epsC reduced binding to EPS and increased susceptibility to complement. In Chapter II, we 

show that VicRK regulates SM susceptibility to complement-mediated immunity, in a EPS-independent 

way. Inactivation of vicK increased resistance to complement opsonization. VicRK was shown to 

directly or indirectly repress the expression of Smu.399 and PepO complement proteases and the enolase 

and surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins implicated in systemic 

virulence in other streptococci. Finally, in Chapter III, we established that CovR and VicRK directly 

regulate the Cnm protein, a which is important for systemic virulence in a sub-set of strains harboring 

cnm gene. Transcriptional analyses and assessment of interaction of recombinant proteins rCovR and 

rVicR with the cnm promoter region established that CovR acts as an inducer of cnm, whereas vicR acts 

as a repressor. Cnm-mediated virulence phenotypes were significantly associated with lower and higher 

cnm expression in the covR and vicK mutants, respectively. Thus, we showed that the TCSs CovR and 

VicRK regulate several systemic virulence factors dependent and independent of the interaction with 

 



EPS, involved in evasion to complement-mediated immunity and survival in blood. These results further 

confirm the importance of SM in systemic infections and contribute to the definition of therapeutic 

targets for controlling these infections. 

 

Keywords: Streptococcus mutans, Bacterial endocarditis, Complement system proteins. 
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1 INTROODUÇÃO 

 

Streptococcus mutans é uma espécie comum da microbiota bucal envolvida na patogenia 

da cárie dentária (Mattos-Graner et al., 2014; Klein et al., 2015). Esta espécie expressa diversos 

genes de virulência envolvidos no aumento da biomassa do biofilme dentário (a placa dental), 

através da síntese de polissacarídeos extracelulares (PEC) altamente estáveis a partir da sacarose 

e por promover quedas duradouras de pH local. Estas funções favorecem a emergência de 

microrganismos acidogênicos e ácido-tolerantes no biofilme, cuja capacidade de produzir a 

desmineralização dos dentes é aumentada (Koo et al., 2013).  

Além de seu importante papel na patogênese da cárie, S. mutans também são reconhecidos 

como importantes patógenos oportunistas de infecções sistêmicas, incluindo-se bacteremias, 

ateromatose e endocardites infecciosas (EI) (Nakano et al., 2009). Embora diversos mecanismos 

de virulência implicados na cariogenicidade de S. mutans tenham sido identificados (Banas et al., 

2011; Lemos et al., 2013; Klein et al., 2015), pouco se sabe ainda sobre os mecanismos implicados 

na capacidade destes microrganismos causar infecções sistêmicas (Nakano et al., 2009; Abranches 

et al., 2011). Entretanto, estudos em diferentes populações indicam que S. mutans é uma das 

espécies bucais mais prevalentemente encontradas em espécimes de válvulas cardíacas de 

pacientes com endocardite infecciosa e em ateromas (Nakano et al., 2006; Fernandes et al., 2014). 

O DNA de S. mutans foi detectado em mais de 68,6% de espécimes de válvula cardíaca de 

pacientes com EI e em 74,1% de ateromas removidos em cirurgias cardiovasculares, sendo estes 

porcentuais significativamente superiores aos de outras espécies de estreptococos comuns da 

cavidade bucal e de periodontopatógenos, como Porphyromonas gingivalis e Treponema denticola 

(Nakano et al., 2006). Mais recentemente no Brasil, S. mutans foi detectado em 100% das amostras 

de ateromas obtidas de 13 pacientes submetidos a cirurgias cardiovasculares, prevalência 

significativamente superior às de P. gingivalis e T. denticola (Fernandes et al., 2014). Estes dados 

indicam que S. mutans não apenas tem frequente acesso à corrente sanguínea a partir de nichos 

bucais, mas é capaz de resistir a mecanismos de defesa presentes na corrente sanguínea, para se 

estabelecer nos tecidos cardiovasculares.  

S. mutans são classificados nos sorotipos c, e, f, e k, os quais refletem a composição dos 

polissacarídeos de ramnose-glicose ancorados à parede celular (Nakano & Ooshima, 2009). A 

maioria dos isolados de S. mutans da cavidade bucal é do sorotipo c (70-80%), sendo os sorotipos 
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e, f e k encontrados em menor frequência (20, 5 e 2-5%, respectivamente). O sorotipo k e outros 

sorotipos diferentes de c aumentam em proporção entre isolados de tecido cardíaco, mas o sorotipo 

c é ainda predominante em amostras de EI (Nakano & Ooshima, 2009). Cepas de S. mutans do 

sorotipo c foram detectadas em cerca de 30,3 e 65,6% dos espécimes de válvula cardíaca e 

ateromas de pacientes submetidos a cirurgias cardiovasculares. Entre os isolados do sorotipo k, 

estas prevalências foram 9,1 e 25%, respectivamente (Nakano & Ooshima, 2009). Além disto, 

cepas de S. mutans apresentam a proteína Cnm (detectada em 20% de 102 isolados clínicos 

analisados), a qual é encontrada com maior frequência entre os sorotipos f e k (81,3 e 41,7%, 

respectivamente) e em apenas 7% no sorotipo c (Nakano et al., 2007). Cnm (collagen binding 

protein of S. mutans) é reconhecida como importante fator de virulência sistêmica em S. mutans e 

medeia a ligação a componentes da matriz extracelular, como colágeno e laminina. Ainda, Cnm 

está envolvida na invasão de células endoteliais (Abranches et al., 2011; Nomura et al., 2014), na 

agregação plaquetária e formação de vegetações em válvulas cardíacas em modelo animal (Nakano 

et al., 2007). Cnm é, portanto, um fator de virulência cepa- e sorotipo-específico na espécie S. 

mutans. Embora a frequência de cnm seja rara no sorotipo c (Nakano et al., 2007), este é 

frequentemente isolados de amostras cardíacas (Nakano & Ooshima, 2009), sugerindo que S. 

mutans apresentam proteínas adicionais de virulência sistêmicas e independentes de Cnm. Assim, 

identificamos no genoma de S. mutans UA159 (sorotipo c) os genes smu.399 e pepO (smu.2036) 

e, as proteínas moonlight enolase (smu.1247) e a gliceraldeído-3 fosfato desidrogenase (GAPDH) 

de superfície (smu.360). Em outras espécies de estreptococos, com exceção da Smu.399, as 

proteínas PepO, enolase e GAPDH, quando presentes na superfície celular, estão envolvidas na 

interação com componentes do hospedeiro, como plasminogênio e fibronectina (Pancholi, 2001; 

Bergmann et al., 2004; Madureira et al., 2007; Agarwal et al., 2013). Estes genes também foram 

identificados no genoma de todas as cepas S. mutans com genoma conhecido (Cornejo et al., 

2013), indicando importância biológica. Os mecanismos e sistemas envolvidos na regulação de 

fatores dependentes e independentes de Cnm ainda não foram investigados em S. mutans.  

 Durante o processo de invasão e colonização do hospedeiro, as bactérias se adaptam 

rapidamente a estresses ambientais, os quais incluem inúmeros fatores de defesa do hospedeiro 

(Stephenson & Hoch, 2002). Para isto, empregam sistemas de transdução de sinal designados 

Sistemas de Dois Componentes (SDCs) (Raghavan & Groisman, 2010; Capra & Laub, 2012). Um 

SDC típico é formado por uma proteína sensora de membrana histidina quinase (K) e uma proteína 
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intracelular cognata capaz de se ligar a regiões reguladoras dos genes alvo (regulador de resposta, 

R). Ao detectar um estímulo ambiental, comumente localizado no meio externo ou na membrana 

citoplasmática, a proteína sensora sofre auto-fosforilação em um resíduo conservado de histidina 

localizada na porção intracelular. O grupo fosfato adquirido é subsequentemente transferido ao 

regulador de resposta cognato, o qual sofre alterações na sua conformação, ligando-se a sequências 

consenso das regiões promotoras dos genes alvo, os quais têm sua transcrição induzida ou 

reprimida (Capra & Laub, 2012). 

 Os genomas de cepas S. mutans apresentam entre 13 e 14 SDC e pelo menos um R órfão, 

designado CovR, cuja proteína sensora cognata não foi identificada nesta espécie. Há grande 

interesse no estudo dos SDCs VicRK e CovR em S. mutans, porque estes sistemas regulam 

diretamente genes de virulência associados à formação de biofilmes cariogênicos (Mattos-Graner 

& Duncan, 2017). Dentre estes, VicRK induz os genes que codificam enzimas glucosiltranferases 

B (gtfB) e C (gtfC), frutosiltransferase (ftf), assim como a proteína ligadora de glucano B (gbpB), 

a qual está envolvida na capacidade de S. mutans se ligar à matriz extracelular de glucano 

(Senadheera et al., 2005; Duque et al., 2011; Stipp et al., 2013). O SDC VicRK regula ainda 

diveras hidrolases de peptideoglicano (mureína), as quais aparentemente estão envolvidas em 

diversos processos fisiológicos importantes para o crescimento em fase planctônica e em 

biofilmes, como a divisão da parede celular, liberação de DNA genômico para o meio externo e a 

manutenção da homeostase de parede celular (Senadheera et al., 2012; Stipp et al., 2013). Uma 

vez que a parede celular de bactérias Gram-positivas é o principal alvo dos mecanismos de defesa 

inato e adaptativo do hospedeiro, é possível que o SDC VicRK desempenhe papel importante para 

a sobrevivência de S. mutans nos nichos do hospedeiro. Estudos do nosso grupo demonstraram 

ainda que a proteína reguladora VicR deste sistema é capaz de se ligar à sequências promotoras 

dos seus genes alvo juntamente com o regulador órfão CovR (Stipp et al., 2013).  

CovR é um regulador conservado em diversas espécies de patógenos do gênero 

estreptococos como parte do SDC CovRS. Entretanto em S. mutans CovR é um regulador órfão 

pois não foi identificada a proteína sensora cognata CovS (Mattos-Graner & Duncan, 2017). CovR 

atua como um regulador atípico, pois diferente das maioria dos R que induzem a transcrição dos 

genes alvo, CovR funciona como uma regulador negativo (repressor). A proteína reguladora CovR 

foi originalmente identificada em Streptococcus pyogenes como um repressor de genes para a 

síntese de cápsula da ácido hialurônico (Levin & Wessels, 1998) cuja composição é 
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molecularmente idêntica ao ácido hialurônico dos tecidos do hospedeiro, e a qual tem função 

crucial no escape de S. pyogenes à fagocitose por neutrófilos mediada por opsoninas da imunidade 

inata (por exemplo o sistema complemento) e adapativa (anticorpos IgG e IgM). A designação 

CovR (cov de control of virulence) foi proposta com base em dados posteriores de que CovR 

reprime diretamente diversos genes de virulência de S. pyogenes envolvidos no escape ao sistema 

complemento, à fagocitose e na conversão do plasminogênio em plasmina (Federle et al., 1999). 

Em S. mutans, CovR foi originalmente identificado como um repressor do gene que codifica a 

proteína ligadora de glucano C (GbpC), uma proteína ancorada à parede celular requerida para a 

ligação de S. mutans a glucanos (Sato et al., 2000). Posteriormente, estabeleceu-se que CovR 

reprime diretamente os genes gtfB/C, ftf, gpbB assim como os genes epsC e lysM envolvidos na 

interação de S. mutans à matriz extracelular polissacarídica de biofilmes e na homeostase da parede 

celular (Biswas et al., 2006; Dimitriev et al., 2011; Stipp et al., 2013).  

Portanto, ambos os SDCs VicRK e CovR parecem atuar conjuntamente na regulação da 

transcrição de diversos genes de S. mutans envolvidos na síntese e interação com polissacarídeos 

extracelulares sintetizados a partir da sacarose (gtfB/C, ftf, gbpB), o primeiro atuando como indutor 

e outro como repressor destes genes. Além disto, ambos os sistemas regulam diversos genes 

envolvidos na biogênese e homeostase da parede celular, os quais codificam enzimas com 

atividades líticas de parede celular incluindo-se os genes que codificam as proteínas WapE, SmaA, 

Smu.2146c, LysM e/ou EpsC (Stipp et al., 2013). A inativação de cada um destes genes em S. 

mutans promoveu defeitos na formação de biofilmes na presença de sacarose e/ou prejudicou a 

integridade da parede celular durante o crescimento planctônico, com liberação de DNA para o 

meio extracelular (Stipp et al., 2013). Assim, iremos investigar também neste trabalho, a hipótese 

de que estes genes estejam envolvidos no escape de S. mutans a fatores de defesa do hospedeiro 

que interagem com a parede celular.  

Em S. mutans, a inativação dos sistemas CovR e VicRK promove resistência à fagocitose 

por PMN de sangue periférico humano, de forma dependente da presença de sangue (Negrini et 

al., 2012), indicando que estes sistemas regulam genes de escape a opsoninas presentes no sangue. 

O sistema complemento consiste numa das principais defesas da imunidade inata presente nos 

fluidos corpóreos para a rápida eliminação de microrganismos e potencializa também funções 

efetoras mediadas por anticorpos (Walport, 2001). Este sistema é composto por aproximadamente 

30 proteínas, incluindo proteínas solúveis e de membrana. As proteínas solúveis são 
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imediatamente ativadas após o contato com a superfície bacteriana, gerando uma cascata 

proteolítica de ativação, que culmina nas suas funções efetoras, as quais incluem opsonização e 

fagocitose, citólise mediada pelo complemento (formação do complexo de ataque à membrana – 

CAM) e produção de mediadores inflamatórios (Merle et al., 2015). As proteínas solúveis do 

complemento compõem as diferentes cascatas proteolíticas que ativam as proteínas do CAM (C5 

a C9), os fatores opsonizantes (C3b/iC3b, C4b) e fatores quimiotáticos/inflamatórios (C3a, C4a, 

C5a). Além disto, o sistema complemento inclui receptores expressos por fagócitos e outras células 

(incluíndo-se CR1 e CR3 em PMN) e proteínas reguladoras (inibidoras) solúveis de fase fluída 

(por exemplo, Fator H e C4BP) ou de membrana (por exemplo, DAF e MCP), as quais impedem 

a ativação e/ou funções efetoras do complemento sobre células próprias (Holers et al., 2014). Há 

três principais formas de ativação da cascata proteolítica do complemento, as quais envolvem 

diferentes proteínas iniciais, a via clássica (proteínas C1q (C1r/C1s) e/ou CRP/petraxinas, C4, C2), 

a via das lectinas (MBL, Ficolinas (FCN): FCN1 (Ficolina-M), FCN2 (Ficolina-L) e FCN3 

(Ficolina-H), C4, C2) e a via alternativa (C3, fator B e D) (Walport, 2001; Ricklin & Lambris, 

2007).  

A ativação da via clássica ocorre pela ligação da proteína C1q às regiões Fc dos anticorpos 

IgM ou IgG (Kang et al., 2006), sendo esta via denominada com frequência como depedente de 

anticorpos. As vias alternativas e da lectina são ativadas na ausência de anticorpos, fazendo parte 

da imunidade inespecífica (inata) do organismo. Na via alternativa, basta a presença no patógeno 

e de determinadas características químicas, como a ausência de ácido siálico e de proteínas 

reguladoras de superfície, para que a via alternativa seja desencadeada. Um dos resultados mais 

importantes da ativação destas cascatas para a eliminação de bactérias Gram-positivas, como S. 

mutans, é a geração das enzimas convertases de C3 das vias clássica/lectina (convertase C4b2b) 

ou alternativa (convertase C3bBb), as quais amplificam a clivagem de C3 para ligação covalente 

do fragmento C3b (ativo ou inativo: iC3b) à parede celular bacteriana. C3b/iC3b atuam como 

opsoninas, favorecendo o rápido reconhecimento e eliminação destas bactérias por fagócitos, 

através dos seus receptores CR1/CR3 de C3b/iC3b (processo designado opsonofagocitose).  

Tipicamente, espécies bacterianas patogênicas expressam um conjunto de fatores de 

escape ao sistema complemento (Lambris et al., 2008; Zipfel & Skerka, 2009). Estudos em 

Streptococcus pneumoniae, indicam que hidrolases de mureína estão envolvidas no escape ao 

sistema complemento e à opsonofagocitose através de diversos mecanismos, como a interferência 
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na ligação de fatores ativadores do sistema complemento à superfície bacteriana (por exemplo, 

proteína C-reativa), clivagem de C3b do complemento ou ainda ligação a proteínas reguladoras do 

complemento de fase fluída (Ramos-Sevillano et al., 2011; Ramos-Sevillano et al., 2015). A 

síntese de cápsula é outro importante fator  inibidor da opsonização por C3b (Yuste et al., 2008; 

Hyams et al., 2013). Em S. mutans, os SDCs VicRK e CovR regulam a síntese e interação com 

polissacarídeos extracelulares a partir da sacarose (glucanos) durante a formação de biofilme 

(Duque et al., 2011; Stipp et al., 2013). Outras proteínas de superfície que interagem com 

componentes do hospedeiro ou com polissacarídeos extracelulares podem ainda participar do 

escape ao complemento, como as proteínas PAc (proteína antígeno c: protein antigen c) e Gbps 

(proteínas ligadoras de glucano: Glucan-binding proteins), as quais são consideradas fatores 

potenciais de resistência à fagocitose por PMNs, por mecanismos não conhecidos (Nomura et al., 

2004; Nakano et al., 2006). Como mencionado anteriormente, os SDCs CovR e VicRK também 

estão envolvidos na regulação das Gbps (Stipp et al., 2013). 

Como primeira etapa para investigar a capacidade de S. mutans em escapar do sistema 

complemento, verificamos que a inativação de covR e vicK reduz a deposição de C3b sobre a 

superfície de S. mutans (Alves, 2014 – dissertação de mestrado). Estes dados indicaram que genes 

regulados por estes sistemas devem ser importantes para o escape de S. mutans à opsonofagocitose 

e consequentemente para sua sobrevivência na corrente sanguínea e/o estabelecimento em tecidos 

internos. Assim, o objetivo geral deste trabalho de doutorado foi identificar os mecanismos 

moleculares através dos quais VicRK e CovR modulam a susceptibilidade de S. mutans à 

imunidade mediada pelo sistema complemento, opsonofagocitose e a sobrevivência na corrente 

sanguínea.  

 Resultados deste trabalho de doutorado foram publicados em dois artigos científicos 

(Alves et al., 2016; Alves et al., 2017) e mais um artigo submetido (Alves et al., 2017b). Os três 

primeiros artigos serão apresentados em capítulos. No capítulo I, caracterizamos os fatores 

regulados por CovR que interferem na susceptibilidade de S. mutans ao sistema complemento e 

sobrevivência em sangue humano (Alves et al, 2016). No capítulo II, os fatores regulados pelo 

sistema VicRK que afetam a susceptibilidade de S. mutans à imunidade mediada pelo sistema 

complemento (Alves et al., 2017). Por fim, no capítulo III, mostramos que os SDCs CovR e 

VicRK regulam também a proteína Cnm, associada à virulência sistêmica de S. mutans.  
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CovR Regulates Streptococcus mutans Susceptibility To Complement
Immunity and Survival in Blood

Lívia A. Alves,a Ryota Nomura,b Flávia S. Mariano,a Erika N. Harth-Chu,a Rafael N. Stipp,a Kazuhiko Nakano,b

Renata O. Mattos-Granera

Department of Oral Diagnosis, Piracicaba Dental School-State University of Campinas, Piracicaba, SP, Brazila; Department of Pediatric Dentistry, Osaka University, Graduate

School of Dentistry, Osaka, Japanb

Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from

oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regula-

tor CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates

showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was

associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC,

gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind

glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive

protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in

mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted se-

rum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing me-

dium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b depo-

sition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-

dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased

ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions

affecting S. mutans susceptibility to complement opsonization.

S
treptococcus mutans is a common species of the oral cavity of
humans involved in the pathogenesis of dental caries, which

can promote infective endocarditis and other systemic infections
after gaining access to the bloodstream (1–4). However, factors
involved in S. mutans survival in the bloodstream are unknown
but likely include mechanisms to evade host immunity. S. mutans
expresses the orphan response regulator CovR (CovRSm) (also
known as GcrR) (5–8), which is an orthologue of the CovR protein
of the two-component regulatory system (TCS) CovRS (also
known as CsrRS) of the pathogenic species Streptococcus pyogenes
(group A Streptococcus [GAS]) and Streptococcus agalactiae (group
B Streptococcus [GBS]). In GAS, S. pyogenes CovR (CovRSpy) typ-
ically functions as a repressor of a panel of virulence genes in-
volved in the evasion of host immunity and tissue invasiveness (9).
In S. mutans, CovRSm represses virulence factors involved in the
establishment of S. mutans in dental biofilms (7, 8, 10, 11), but its
role in systemic virulence is unknown. Genes directly repressed by
CovRSm include gtfB and gtfC, which encode glucosyltransferases
B and C, respectively, required for the extracellular synthesis of
glucans from sucrose (7), major structural exopolysaccharides
(EPS) of cariogenic biofilms (1, 2). CovRSm also inhibits the ex-
pression of several genes involved in cell wall biogenesis and sur-
face interactions with EPS, including GbpB (glucan-binding pro-
tein B), GbpC (glucan-binding protein C), EpsC (enzyme for
exopolysaccharide synthesis [UDP-N-acetylglucosamine 2-epi-
merase]), LysM (lysine motif protein), and WapE (cell wall pro-
tein E) (8, 10–12).

An isogenic mutant of covRSm obtained from UA159 (serotype
c) shows impaired susceptibility to phagocytosis by human poly-
morphonuclear leukocytes (PMNs) in a blood-dependent man-
ner (13). Among the four known S. mutans serotypes (serotypes c,

e, f, and k), serotype c is the most prominent serotype in the oral
cavity (�70 to 80% of strains) and is frequently associated with
systemic infections, being detected in 30.3 and 65.5% of S.
mutans-positive specimens of cardiac valves and atheromatous
plaques, respectively, from patients subjected to cardiac surgeries
(14, 15). Serotype c strain MT8148 survives during 1 to 2 days in
the bloodstream of rats (16), further suggesting mechanisms of
evasion of blood immunity. In this study, we investigated the roles
of CovRSm in the susceptibility of S. mutans strains to complement
immunity mediated by C3b, a major opsonin present in blood and
other host fluids (17, 18). Profiles of C3b deposition on strains
isolated from blood of patients with bacteremia and/or infective
endocarditis and on strains from the oral cavity were compared to
assess diversity in susceptibility to complement immunity. The
low susceptibility to C3b deposition observed for blood isolates
was then compared to transcript levels of covRSm and of CovRSm-
repressed genes. Effects of covRSm deletion in strain UA159 (sero-
type c) on the binding of C3b, IgG antibodies, and C-reactive
protein (CRP) and on phagocytosis mediated by C3b/iC3b or IgG
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receptors and killing by human neutrophils (PMNs) were deter-
mined. Mechanisms of CovRSm regulation of S. mutans suscepti-
bility to complement immunity were then investigated by assess-
ing the effects of the deletion of CovRSm-regulated genes (gtfB,
gtfC, gbpC, epsC, lysM, and wapE) on C3b- and antibody-medi-

ated immunity in the presence or absence of sucrose-derived EPS.
Finally, strains were compared regarding ex vivo survival in hu-
man blood and in a rat model of bacteremia and infective endo-
carditis.

MATERIALS AND METHODS

Studied strains and culture conditions. Strains used in this study are
described in Table 1. Strains were grown (37°C with 10% CO2) from
frozen stocks in brain heart infusion (BHI) agar (Difco). BHI agar or
chemically defined medium (CDM) (10) with or without sucrose (0.01
and 0.1%) was used in the experiments. Erythromycin (10 �g/ml), spec-
tinomycin (200 �g/ml), or kanamycin (500 �g/ml) (Merck Labs, Ger-
many) was added to media for cultivation of deletion and complemented
mutants.

Construction of gbpC deletion and complemented mutants. The
nonpolar gbpC deletion mutant was obtained from strain UA159
(UAgbpC) by double-crossover recombination with a null allele (of 2,315
bp) constructed by PCR ligation (23). In the recombinant allele, an inter-
nal sequence of 1,455 bp of the encoding region of gbpC was replaced by an
erythromycin resistance cassette (Ermr) obtained from plasmid pVA838.
The complemented gbpC mutant (UAgbpC�) was obtained by trans-
forming UAgbpC with plasmid pDL278 containing an intact copy of gbpC
and the spectinomycin resistance gene. Primers used for the construction
of mutants are shown in Table 2.

RNA isolation, reverse transcription, and qPCR. RNA was purified
from strains at the mid-log phase of growth (A550 of 0.3) by using an
RNeasy kit (Qiagen, Germany) and treated with Turbo DNase (Ambion,
USA), as described previously (11). The cDNA was obtained from 1 �g of
RNA by using random primers (24) and SuperScript III (Life Technolo-
gies, USA), according to the manufacturer’s instructions. Quantitative
PCR (qPCR) was performed with a StepOne real-time PCR system (Life
Technologies) with cDNA (10 ng), 10 �M each primer, and 1� Power
SYBR green PCR master mix (Lifetech) in a total volume of 10 �l. The
cycling conditions were 95°C for 10 min, followed by 40 cycles of 95°C for
15 s, the optimal temperature for primer annealing (Table 2) for 15 s, and
72°C for 30 s. Tenfold serial dilutions of genomic DNA (300 ng to 0.003
ng) were used to generate standard curves for the absolute quantification
of RNA expression levels. Melting curves were obtained for each primer
set. Results were normalized against S. mutans 16S rRNA gene expression
values (24). Assays were performed in duplicate with at least two indepen-
dent RNA samples.

S. mutans interaction with EPS. Cell aggregation mediated by su-
crose-derived EPS was assessed as described previously (25). Briefly,
strains were grown in BHI medium (37°C with 10% CO2 for 18 h), and an
equal number of cells was transferred to fresh BHI medium supplemented
with 0.1% sucrose and incubated for 24 h (37°C with 10% CO2). Cell
aggregation was then visually inspected.

Surface-associated EPS was analyzed by scanning electron microscopy
(SEM) in strains grown in BHI medium or CDM with or without 0.1%
sucrose. Briefly, cultures grown during 18 h in BHI medium or CDM were
100-fold diluted with fresh medium containing or not containing 0.1%

TABLE 1 Strains used in this study

Strain Relevant characteristic(s)

Source or

reference

UA159 Oral isolate, caries-affected child; Erms

Specs Kans

ATCC

UAcovR �covR::Ermr 13

UAwapE �wapE::Ermr 11

UAlysM �lysM::Ermr 11

UAepsC �epsC::Ermr 11

UAgbpC �gbpC::Ermr This study

UAcovR� �covR::Ermr pDL278::SMU.1924; Specr 13

UAwapE� �wapE::Ermr pDL278::SMU.1091; Specr 11

UAlysM� �lysM::Ermr pDL278::SMU.2147c; Specr 11

UAepsC� �epsC::Ermr pDL278::SMU.1437c; Specr 11

UAgbpC� �gbpC::Ermr; pDL278::SMU.1396; Specr This study

MT8148 Oral isolate, healthy Japanese child 19

C1 �gbpC::Kanr; mutant of MT8148 19

S5 �gtfBC::Ermr; double mutant of MT8148 20

BC7s �gtfD::Ermr �gtfBC::Kanr; triple mutant

of MT8148

20

2ST1 Oral isolate, caries-affected child 21

2VS1 Oral isolate, caries-affected child 21

3SN1 Oral isolate, caries-free child 21

4SM1 Oral isolate, caries-free child 21

4VF1 Oral isolate, caries-affected child 21

5SM3 Oral isolate, caries-free child 21

8ID3 Oral isolate, caries-free child 21

11A1 Oral isolate, caries-free child 21

11SSST2 Oral isolate, caries-free child 21

11VS1 Oral isolate, caries-free child 21

15JP3 Oral isolate, caries-free child 21

15VF2 Oral isolate, caries-affected child 21

SA12 Blood, infective endocarditis 22

SA13 Blood, bacteremia 22

SA14 Blood, infective endocarditis 22

SA15 Blood, bacteremia 22

SA16 Blood, infective endocarditis 22

SA17 Blood, bacteremia 22

SA18 Blood, infective endocarditis 22

D39 Streptococcus pneumoniae serotype 2

(NCTC 7466)

NCTC

TIGR4 Streptococcus pneumoniae serotype 4

(ATCC BAA-334)

ATCC

TABLE 2 Oligonucleotides used in this study

Oligonucleotide Sequence (5=–3=)a Product size; positions or relevant characteristicb

ermE1-AscI TTGGCGCGCCTGGCGGAAACGTAAAAGAAG 998 bp; amplicon containing the Ermr gene from pVA838

ermE2-XhoI TTCTCGAGGGCTCCTTGGAAGCTGTCAGT

gbpCP1 CCCTCAACACACTCTGCTAA 473 bp; 323 bp upstream to 150 bp downstream of the gbpC ORF

gbpCP2-AscI TTGGCGCGCCCGGTTCTGATGCTTGTGTAT

gbpCP3-XhoI TTCTCGAGGGAGAAATGCGTGTTAGAGA 387 bp; 1,605 bp upstream to 240 bp downstream of the encoding region of gbpC

gbpCP4 CTTACCCATCACAAAAACCA

C1-SacI GGGAGCTCCCCTCAACACACTCTGCTAA 2,139 bp; amplicon containing the encoding region of gbpC for mutant complementation

C2-SphI GGGCATGCAACAAGAACTGCTGCTCAAG

a Underlined sequences indicate restriction enzyme linkers.
b ORF, open reading frame.
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sucrose and incubated to reach an A550 of 0.3. Cells from volumes of 500

�l were then harvested by centrifugation, washed with phosphate-buff-

ered saline (PBS), and processed for SEM analysis, as previously described

(12). Samples were analyzed with a scanning electron microscope (JSM

5600LV; JEOL, Japan).

Volunteers, sera, and blood samples. Blood samples from six healthy

subjects (three males and three females; mean age, 30 years [range, 25 to

45 years]) were collected by venipuncture in heparin vacuum tubes (BD

Vacutainer), according to standard protocols previously approved by the

Ethical Committee of the Piracicaba Dental School, State University of

Campinas (protocol number 031/2012). Serum samples were stored in

aliquots at �70°C until use. Levels of C3 in serum samples were deter-

mined as described below and were within normal levels in all volunteers

(mean, 1.91 mg/ml; standard deviation [SD], 0.68 mg/ml; range, 1.18 to

2.88 mg/ml) (26). Mean levels of IgG and IgM in the same samples were

also determined and were, respectively, 11.68 (�1.82) mg/ml and 1.35

(�0.64) mg/ml. Serum samples from one volunteer, which were repre-

sentative of C3, IgG, and IgM levels, were used as controls. Commercial

human serum depleted of C1q was obtained from Calbiochem (MA,

USA). The Calbiochem C1q-depleted serum is free of EDTA and retains

alternative pathway activity (27). As a control for integrity, C1q-depleted

serum was supplemented with purified human C1q (Calbiochem) to a

physiological concentration range (75 �g/ml in 100% serum). Heat-inac-

tivated sera (56°C for 20 min) were also used as negative controls in pre-

liminary experiments and showed minimal effects on comparative analy-

ses of C3b deposition between strains.

Determination of total levels of C3, IgG, and IgM antibodies in se-

rum. The serum concentrations of C3, IgG, and IgM antibodies were

determined by enzyme-linked immunosorbent assays (ELISAs) using

commercial systems for the quantification of human complement C3

(Molecular Innovations, MI, USA), human IgG, and human IgM (Bethyl

Laboratories, Inc., TX, USA), respectively. Briefly, 100 �l of serum sam-

ples diluted in dilution buffer (1:100,000, 1:500,000, and 1:10,000, respec-

tively) was added to 96-well plates coated with anti-C3, anti-IgG, or anti-

IgM and then incubated for 30 min at room temperature (RT). After a

series of three washes with wash buffer, 100-�l aliquots of antibodies

specific to C3, human IgG, or human IgM were added per well, and plates

were incubated (RT) for 1 h. After a new series of washes, 100 �l per

well of secondary horseradish peroxidase (HRP)-conjugated antibod-

ies (1:50,000) was added, and incubation continued for 30 min. After a

new series of washes, 100 �l per well of a chromogenic HRP substrate

(3,3=,5,5=-tetramethylbenzidine) was added, and plates were incubated

for 30 min. Reactions were stopped by the addition of 1 N H2SO4 to the

mixture. Absorbances (A450) were measured in a microtiter plate reader

(Versa Max) and converted to micrograms per milliliter using standard

curves for C3 (0.02 to 10 ng/ml), IgG (0.69 to 167 ng/ml), or IgM (1.03 to

250 ng/ml) antibodies.

C3b deposition on S. mutans. Deposition of C3b on the surface of

serum-treated S. mutans strains was determined as described previously

(27, 28), with some modifications. Briefly, �107 CFU of strains at the

mid-log phase of growth (A550 of 0.3) were harvested by centrifugation

(10,000 � g at 4°C), washed two times with PBS (pH 7.4), and suspended

in 20 �l of 20% serum (diluted in PBS). Samples were then incubated

(37°C for 30 min) and washed twice with PBS– 0.05% Tween (PBST).

Cells were then incubated on ice (40 min) with fluorescein isothiocyanate

(FITC)-conjugated polyclonal goat anti-human C3 IgG antibody (ICN,

CA, USA) (1:300 in PBST). After two washes with PBST, bacterial cells

were fixed in 3% paraformaldehyde in PBS and analyzed on a FACSCali-

bur flow cytometer (BD Biosciences) using forward- and side-scatter pa-

rameters to gate at least 25,000 bacteria. Results were expressed as the

geometric mean fluorescence intensity (MFI) of C3b-positive cells or as

the mean fluorescence index (FI) (percentage of positive cells multiplied

by the MFI) (29, 30). Control samples included bacteria treated only with

PBS instead of serum.

PMN isolation, opsonophagocytosis, and killing assays. Human

PMNs were isolated from fresh heparinized blood samples from one refer-

ence volunteer by centrifugation over a double gradient composed of His-

topaque-1119 and Histopaque-1083 (Sigma-Aldrich), as previously de-

scribed, with modifications (31). Red blood cells were eliminated by

hypotonic lysis. Isolated PMNs were suspended in RPMI 1640 medium

(Gibco, Life Technologies, NY, USA) supplemented with inactivated 10%

fetal bovine serum. Cell viability (	98%) was monitored by trypan blue ex-

clusion. Cell purity (	95%) was monitored by May-Grunwald-Giemsa

staining.

For opsonophagocytosis assays, bacteria were previously labeled with

FITC as described previously (32), with some modifications. Briefly, 500

�l of bacterial strains (A550 of 0.3) was washed two times with PBS, sus-

pended in 600 �l of carbonate buffer (0.15 M Na2CO3, 0.9% NaCl [pH 9])

with 1.7 mg/ml of FITC (Sigma), and incubated for 1 h (with shaking at

RT in the dark). Cells were then harvested and washed three times with

PBST, and aliquots were stored overnight in 10% glycerol at �70°C. Bac-

terial labeling was analyzed with a fluorescence microscope (Leica) and by

flow cytometry (FACSCalibur; BD).

For C3b deposition, aliquots containing 107 CFU of FITC-labeled bac-

teria were incubated with 20% serum and added to wells of 96-well plates

containing 2 � 105 PMNs in 50 �l of RPMI medium to a multiplicity of

infection (MOI) of 200 bacteria per PMN. After incubation (37°C and

10% CO2 with gentle shaking) for 5 or 30 min, reaction mixtures were

fixed by the addition of 100 �l of 3% of paraformaldehyde. PMNs were
then analyzed by using a FACSCalibur instrument (BD Biosciences), and
the frequency of phagocytosis was expressed as the number of PMN cells
with intracellular bacteria, within a total of 10,000 PMNs analyzed (33).
The MOI was determined in preliminary experiments testing MOIs of 20
to 200 bacteria per PMN, after 5 to 60 min of incubation. Data from flow
cytometry analysis was compared to data from light microscopy analysis
of samples stained by using May-Grunwald-Giemsa stain, as previously
described (13). These comparisons confirmed that most of the PMN-
associated bacteria were internalized.

To assess phagocytosis by PMNs through C3b/iC3b receptors, similar
assays were performed with PMNs previously incubated (37°C for 30
min) with mouse anti-CD35 monoclonal antibodies (MAbs) (BioLegend,
CA, USA) or anti-CD11b/CD18 MAbs to block CR1 or CR3 receptors
(34, 35), respectively. As a reference, PMNs incubated with anti-CD32
(Fc
RII) (eBioscience, CA, USA) or anti-C16 (Fc
RIII) (BioLegend, CA,

USA) MAbs were also tested.
Opsonophagocytic killing was assessed as previously described (36,

37), with modifications. Briefly, preopsonized bacteria (20% human se-
rum for 30 min at 37°C) were added to samples of human PMNs in RPMI
with 10% human serum at an MOI of 200:1. After incubation (37°C for 10
and 30 min) with shaking, reactions were stopped at 4°C. PMNs were
harvested by centrifugation (500 � g for 8 min at 4°C), washed twice with
PBS (pH 7.2), and lysed with 2% saponin (12 min at 37°C), and viable

counts of intracellular bacteria were determined by plating serial dilutions
onto BHI agar. Bacterial counts were also determined in control wells with
identically treated samples without PMNs. Viable bacteria were counted

in culture supernatants of PMN samples to monitor the number of extra-
cellular bacteria. Percent intracellular survival was calculated as follows:
(CFU ml�1 test well)/(CFU ml�1 control well) � 100.

Determination of binding of serum IgG, IgM, and CRP to S. mutans.

Binding of serum IgG, IgM, or CRP to S. mutans was determined as pre-
viously described (27, 38), with some modifications. Briefly, bacterial
strains were harvested from 500 �l of cultures of UA159 (A550 of 0.3),
washed twice with PBS (pH 7.0), incubated with 20% serum, and washed
with PBST. To assess surface levels of IgG, IgM, or CRP, cells were then
incubated with polyclonal goat IgG anti-human IgG Fc conjugated
with FITC (Novus Biological, USA) (1:900), polyclonal mouse IgG
anti-human IgM Fc conjugated with allophycocyanin (APC) (1:1,000)
(BioLegend, USA), or goat IgG anti-human CRP conjugated with
FITC (GeneTex, USA) (1:100), respectively. Streptococcus pneumoniae
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strains D39 and TIGR4 were used as controls for CRP binding, because the

S. pneumoniae cell wall contains known CRP ligands (phosphorylcholine

[PCho]) (39).

After 40 min of incubation on ice, bacterial cells were washed twice

with 300 �l of PBST, harvested (16,000 � g for 2 min), and suspended in

300 �l of 3% paraformaldehyde. Flow cytometry analyses were performed

as described above, using forward- and side-scatter parameters to gate at

least 25,000 bacteria. Bacterial samples treated with PBS instead of serum

were used as negative controls.

Ex vivo survival of S. mutans strains in human blood. Bacteria from

cultures grown in BHI medium (A550 of 0.3) were harvested (11,000 �

g for 2 min), washed twice in PBS, and resuspended in 1 ml of fresh

whole human blood. Samples were then incubated (37°C and 5% CO2

with gentle agitation), and aliquots were collected at different time

points (5, 30, 60, 120, and 240 min), serially diluted, and plated onto

BHI agar for determination of bacterial counts. Aliquots collected just

after bacterial suspension in blood were used for initial measurements

of CFU per milliliter (time zero). Changes in numbers of viable bac-

teria were then calculated in relation to counts at time zero to reduce

the influence of variations in blood-mediated aggregation between

strains on the numbers of CFU per milliliter. Three independent ex-

periments were performed in duplicate with blood samples from one

volunteer with reference levels of C3, IgG, and IgM (2.8, 14.6, and 1.5

�g/ml of serum, respectively).

Survival of S. mutans strains in a rat model of bacteremia and infec-

tive endocarditis. Protocols for the animal experiments were approved by

the institutional animal care and use committee of the Osaka University

Graduate School of Dentistry (approval number 24-019). All rats were

treated humanely in accordance with the National Institute of Health and

AERI-BBRI Animal Care and Use Committee guidelines. The rat infective

endocarditis model was used according to methods described previously,

with some modifications (40). In brief, 21 Sprague-Dawley male rats (400

to 500 g each) were anesthetized with a mixture of xylazine and midazo-

lam (0.1 ml–100 g). A sterile polyethylene catheter with a guide wire was

surgically placed across the aortic valve of each animal via the right carotid

artery, and the tip was positioned and placed at the aortic valve in the left

ventricle. A bacterial suspension (109 cells per body, from cultures in BHI

medium) in PBS was intravenously administered through the jugular

vein. Bacterial clearance was examined by measuring the numbers of bac-

teria in blood samples from the jugular veins, which were taken at 1, 3, 6,

and 24 h and 7 days after the initial infection. The blood samples were

placed onto Mitis-Salivarius agar (Difco Laboratories, Detroit, MI, USA)

plates containing bacitracin (0.2 U/ml; Sigma Chemical Co., St. Louis,

MO, USA) and 15% (wt/vol) sucrose (MSB agar) and incubated at 37°C

for 48 h. Seven days after bacterial infection, the rats were sacrificed by an

overdose of anesthesia, and the aortic valves were extirpated, transversely

sectioned, and subjected to Gram staining and to bacterial recovery for

microbial counting.

Statistical analyses. Flow cytometry data (percentages of positive bac-

teria or PMNs and MFI or FI values) were analyzed by comparing means

of data from at least three independent experiments using a nonparamet-

ric Kruskal-Wallis test with Dunn’s post hoc test. Comparisons of the

mean MFI or FI values for surface-bound C3b between oral and blood

isolates were performed by using a Mann-Whitney U test. Spearman’s

rank correlation was applied to analyze associations between MFI values

of surface C3b and those of surface IgG. Ex vivo survival in blood was

compared between strains by testing differences in relative bacterial

counts (log CFU per milliliter) at each time point of incubation in relation

to initial counts in blood suspensions. Bacterial counts in the rat blood-

stream were also compared between strains. Relative or absolute bacterial

counts were compared between strains at each time point by using a

Kruskal-Wallis test with Dunn’s post hoc test, using correction for re-

peated measures (30).

RESULTS

S. mutans strains isolated from blood show reduced suscepti-
bility to C3b deposition compared to oral isolates. Although
complement immunity is recognized as an important blood de-
fense against streptococcal species (18, 28, 41), the profiles of
S. mutans susceptibility to complement-mediated opsonization
were unknown. Thus, we compared patterns of C3b deposition on
strains isolated from the bloodstream of patients with bacteremia
associated or not with infective endocarditis (n � 7) and isolates
of the oral cavity (n � 13), including reference strain UA159. As
shown in Fig. 1, blood isolates showed reduced levels of C3b de-
position compared to oral isolates. Two blood serotype c strains
(SA13 and SA18) showed the lowest MFI values for C3b (mean
MFI values, 148.9 � 65.8 and 215.7 � 112.0, respectively) and low
FI values (mean FI values, 2,069.0 � 802.8 and 3,019.9 � 1,056.4,
respectively). Mean MFI and FI values of strain UA159 were 623.2
(�100.3) and 17,678.4 (�2,908.7), respectively.

FIG 1 Box plot comparisons of C3b depositions between S. mutans strains iso-
lated from blood samples and those of strains isolated from the oral cavity. C3b
bound to serum-treated strains was probed with anti-C3 antibody conjugated
with FITC for flow cytometry analysis. (A) Levels of C3b bound to S. mutans
strains are expressed as geometric mean fluorescence intensity (MFI) values. (B)
Fluorescence index (FI) values were obtained by multiplying the percentage of
C3b-positive cells by MFI values for C3b. MFI and FI data are means of results
from three independent experiments. Asterisks indicate significant differences be-
tween groups (P � 0.05 as determined by a Mann-Whitney U test).
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S. mutans blood strains show reduced activity of covRSm and
increased transcription of CovRSm target genes required for sur-
face interaction with EPS. To investigate the role of CovRSm in
strain susceptibilities to C3b deposition, transcript levels of
covRSm and downstream genes of four blood strains showing the
lowest levels of C3b deposition (SA13, SA15, SA16, and SA18)
were compared with those of four oral isolates with the highest
levels of binding to C3b (2VS1, 11A1, 11SSST2, and 8ID3) and
reference strain UA159. The CovRSm-repressed genes selected
were those affecting S. mutans cell surface properties, including
lysM, wapE, epsC, gbpB, gbpC, gtfB, gtfC, and gtfD (glucosyltrans-
ferase D-encoding gene) (7, 11, 42). As shown in Fig. 2, blood
strains showed lower levels of covRSm transcripts than did the oral
isolates. Consistently, blood isolates showed increased transcrip-
tion of epsC, gbpC, and gbpB, which are genes involved in S. mu-
tans surface interactions with EPS (11, 12, 43). No significant dif-
ferences in transcript levels of lysM, wapE, gtfB, gtfC, or gtfD were
detected (Fig. 2). Levels of C3b deposition in the analyzed strains
negatively correlated with transcript levels of epsC (Spearman cor-
relation [r], �0.45; P � 0.05), gbpB (r, �0.21; P � 0.05), and gbpC
(r, �0.35; P � 0.05). Thus, diversity in the transcriptional activi-
ties of covRSm and of CovRSm-repressed genes is associated with
differences in levels of C3b deposition in S. mutans strains.

S. mutans blood strains show an increased capacity to bind
EPS produced in the presence of sucrose, similarly to the covRSm

isogenic mutant. Because gbpB, gbpC, and epsC encode proteins
for S. mutans binding to sucrose-derived EPS (glucan) (11, 12,
43), we compared the capacities of aggregation in the presence of
sucrose of blood and oral isolates. Isogenic mutants of covRSm and
of CovRSm-repressed genes (gbpC, epsC, gtfB, gtfC, lysM, and
wapE) were also tested, except for gbpB, which is essential for S.
mutans viability (12). As shown in Fig. 3A, blood isolates showed
a higher capacity to aggregate in BHI medium containing 0.1%
sucrose than did oral isolates. Blood strains SA13 and SA18
showed aggregation phenotypes similar to that of the UAcov
strain (Fig. 3B). As anticipated, the gbpC isogenic mutant did not
aggregate, while only weak aggregation was detected in the epsC
mutant (Fig. 3C). In addition, because gtfB, gtfC, and gtfD are
required for the synthesis of glucan from sucrose, mutants of these

genes obtained from strain MT8148 did not aggregate (Fig. 3C).
The aggregation phenotypes of the gbpC mutants obtained from
MT8148 (Fig. 3C) and UA159 (Fig. 3B) were similar. SEM analysis
supported data from a previous report (11) on the increased in-
teraction of UAcov with sucrose-derived EPS in biofilms and con-
firmed the strain capacities to bind sucrose-derived EPS under the
growth conditions applied in the C3b binding assays (data not
shown).

FIG 2 Reverse transcription-qPCR comparisons of transcript levels of covRSm and CovRSm-regulated genes (lysM, wapE, epsC, gbpC, gbpB, gtfB, and gtfC) in
blood (n � 4) and oral (n � 5) strains of S. mutans. The gtfD gene, which is not regulated by CovRSm, was tested as a control. Asterisks indicate significant
differences in mean levels of transcripts between groups (P � 0.05 as determined by analysis of variance with Tukey’s post hoc test).

FIG 3 Comparisons of S. mutans capacities to aggregate in the presence of
sucrose-derived EPS. Strains were incubated in BHI medium supplemented
with 0.1% sucrose during 24 h for visual analysis of clump formation. Inten-
sities of cell aggregation were determined by a blind examiner and are indi-
cated below the respective images. (A) Comparisons between blood and oral
strains. (B) Comparisons between parent strain UA159 and the respective
knockout mutants. (C) Comparisons of parent strain MT8148 with the respec-
tive knockout mutants.
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Inactivation of covRSm impairs deposition of C3b, phagocy-
tosis mediated by C3b/iC3b receptors, and opsonophagocytic
killing by human PMNs. UAcov shows low susceptibility to
phagocytosis by human PMNs in a serum-dependent way (13),
suggesting that CovRSm regulates surface components affecting
serum opsonization. As shown in Fig. 4A, deposition of C3b was
impaired in UAcov. This phenotype was completely restored in
the complemented UAcov� mutant. Significant reductions in the
frequencies of phagocytosis of UAcov in the presence of 20% se-
rum were also observed in comparison to parental strain UA159
or UAcov� (Fig. 4B). Importantly, blocking of CR1 and/or CR3
receptors of PMNs with anti-CD35 (CR1) or anti-CD11b/CD18
(CR3) antibodies reduced differences in the frequencies of phago-
cytosis between UA159 and UAcov (Fig. 4B). Additionally, the
simultaneous blockage of CR1 and CR3 receptors abolished dif-
ferences in the frequencies of phagocytosis between these strains
(Fig. 4B), reflecting the multiple and cooperative functions of CR1
and CR3 in bacterial phagocytosis mediated by C3b/iC3b (44).
Treatment of PMNs with anti-CD32 (Fc
RII) or anti-CD16
(Fc
RIII) antibodies also reduced the phagocytosis of UA159, al-
though blockage of both Fc
 receptors did not eliminate differ-
ences in the frequencies of phagocytosis between UA159 and
UAcov (Fig. 4B).

To examine if the reduced phagocytosis of UAcov was associ-
ated with reduced killing by PMNs, strains were compared in op-
sonophagocytic killing assays. As shown in Fig. 4C, UAcov showed
increased survival to PMN during 10 min of incubation. Similar
results were obtained after exposure of PMNs to the tested strains
during 30 min (data not shown). Viable bacteria in PMN culture
supernatants were monitored, confirming the reduced phagocy-
tosis of UAcov compared to UA159; mean counts of UAcov bac-

teria in culture fluids were significantly higher than UA159 counts
(P � 0.05). These data establish the strong influence of C3b/iC3b
deposition on S. mutans phagocytosis and imply that reduced de-
position of C3b/iC3b on UAcov not only impairs phagocytosis
mediated by C3b/iC3b receptors but also is associated with re-
duced killing by PMNs.

C3b deposition on S. mutans is strongly dependent on C1q of
the classical pathway of complement activation. We hypothe-
sized that EPS bound to the S. mutans surface could compromise
antibody recognition of immunogenic surface proteins, thus af-
fecting the classical pathway of complement activation. In this
pathway, the proteolytic cascade initiates with C1q binding to
different host components bound to the bacterial surface, most
prominently IgG or IgM antibodies but also acute-phase proteins
of innate immunity, e.g., CRP (17, 18). Therefore, we analyzed the
effect of covRSm inactivation on levels of antibodies bound to S.
mutans (from pools of sera from six volunteers) and investigated
the effect of the classical pathway on binding of C3b to S. mutans.
Because the classical pathway can also be activated by CRP bound
to the surface of streptococcal species containing CRP ligands (27,
45), we additionally assessed the binding of this acute-phase pro-
tein to S. mutans. As shown in Fig. 5A, significant reductions in the
binding of IgG antibodies were observed for UAcov compared to
the parent strain. In addition, although levels of CRP bound to S.
mutans UA159 were low compared to those for the S. pneumoniae
control strains, UAcov showed reduced binding to CRP compared
to UA159 (Fig. 5B). Importantly, levels of surface-bound IgG and
CRP were restored in complemented mutant strain UAcov� (Fig.
5A and B). No significant changes in the binding of IgM antibod-
ies to S. mutans were observed (data not shown).

C3b deposition was minimal when strains were treated with

FIG 4 Comparisons of C3b deposition, opsonophagocytosis, and killing by PMNs between covR mutant (UAcov), parent (UA159), and complemented (�)
strains. (A) Intensities of C3b deposition (MFI) in strains treated with a reference serum or pools of sera obtained from six volunteers were determined by flow
cytometry. (B) Percentages of PMNs with associated bacteria were assessed after 5 min of exposure of PMNs to FITC-labeled bacteria in the presence of 20%
serum. Untreated PMNs and PMNs treated with MAbs to block CR1 (CD35), CR3 (CD11b/CD18), Fc
RII (CD32), and/or Fc
RIII (CD16) receptors were
tested. (C) Percentages of intracellular survival in PMNs after 10 min of incubation with preopsonized bacteria were calculated in relation to bacterial counts of
no-PMN control samples. Columns represent means of data from three independent experiments. Bars indicate standard deviations. Asterisks indicate signif-
icant differences in relation to UA159 under the same conditions (P � 0.05 as determined by a Kruskal-Wallis test with Dunn’s post hoc test).
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C1q-depleted serum compared to normal serum. Supplementa-
tion of C1q-depleted serum with purified C1q (to physiological
levels) restored C3b deposition (Fig. 5C). These data indicate that
most of the C3b bound to the S. mutans surface resulted from the
activation of the C1 component of the classical pathway. Thus,
covRSm inactivation impairs S. mutans surface binding of serum
IgG antibodies and CRP, serum components that trigger the clas-
sical pathway of complement activation, a major pathway in-
volved in C3b deposition on S. mutans.

C3b deposition on S. mutans is affected by interaction with
sucrose-derived EPS. S. mutans accesses the bloodstream from
oral niches, where it is exposed to dietary sucrose to synthesize
EPS, including glucan. covRSm inactivation in serotype c strains
upregulates not only genes for the synthesis of sucrose-derived
glucan (gtfB, gtfC, and gtfD) but also genes encoding glucan-bind-
ing proteins (gbpB and gbpC) and EpsC (epsC), which are involved
in surface binding to these polymers (7, 8, 10, 11, 43). Therefore,
to address whether sucrose-derived EPS on the S. mutans surface
influences C3b deposition, we compared levels of C3b binding of
the parent strain to those of isogenic covRSm, gtfBCD, gbpC, and
epsC mutants previously grown in medium with different concen-
trations of sucrose, which were then harvested, washed, and ex-
posed to serum. As shown in Fig. 6A, the parent and covRSm strains
grown in the presence of sucrose showed reduced levels of C3b
compared to those of the same strain grown in medium without
sucrose. C3b deposition was more intensely reduced in UAcov in
the presence of sucrose. When grown in CDM supplemented with
0.1% sucrose, mean levels of C3b (MFI) in UAcov were 4-fold
lower than those in the parent strain UA159 (82.3 versus 326.4). In
sucrose-free CDM, levels of C3b in UAcov were only 1.9-fold
lower than C3b levels in the parent strain UA159 (507.4 versus

991.5). In BHI medium, UAcov showed a 4-fold reduction in C3b
deposition, but in BHI medium with 0.1% sucrose, UAcov
showed a 9.4-fold reduction in C3b deposition compared to that
of the parent strain (33.4 versus 315.4). Although the level of C3b
binding was higher in strains grown in sucrose-free CDM than in
strains grown in BHI medium (Fig. 6A), the addition of 0.01%
sucrose to CDM was sufficient to eliminate these differences. This
result suggests that there may be trace amounts of sucrose in com-
plex BHI medium, although we can not rule out that unknown
BHI medium components adsorbed to the S. mutans surface
could also influence C3b deposition.

Because sucrose-derived glucans are synthesized by GtfB,
GtfC, and GtfD, we further confirmed if deletion of multiple gtf
genes (double gtfBC and triple gtfBCD mutants) would eliminate
the effect of previous exposure to sucrose on S. mutans suscepti-
bility to C3b deposition. GtfB synthesizes insoluble glucan (rich in

1-3 linkages), while GtfC synthesizes a mixture of insoluble and
soluble (rich in 
1-6 linkages) glucans, and GtfD synthesizes only
soluble glucan (1). As expected, significant increases in C3b depo-
sition were observed for the gtfBC and gtfBCD mutants compared
to parent strain MT8148 under all culture conditions (P � 0.05 as
determined by a Kruskal-Wallis test with Dunn’s post hoc test).
Supplementation of growth medium with sucrose did not signif-
icantly affect C3b deposition on these mutants (Fig. 6B). There-
fore, sucrose-derived EPS impacts C3b deposition on the S. mu-
tans surface. Of note, analyses of the effects of gtfBCD on C3b
opsonization were performed with mutants previously obtained
from strain MT8148, because gbpC inactivation affected C3b de-
position on MT8148 in a fashion similar to that observed for
UA159 (see below).

Because levels of sucrose in the bloodstream seem to be mini-

FIG 5 Binding of serum IgG, CRP, and C3b to S. mutans strains in the presence of serum. (A and B) Strains were treated with 20% human serum, and levels of
surface IgG (A) and CRP (B) were determined by flow cytometry (MFI). S. pneumoniae strains D39 and TIGR4 were used as controls for CRP binding. (C) Levels
of C3b binding were measured after treatment of bacteria with reference serum, serum depleted of C1q (C1q�), or serum depleted of C1q and supplemented with
purified C1q (C1q�). Columns represent means of results from three independent experiments; bars represent standard deviations. Strains were compared by
using a Kruskal-Wallis test with Dunn’s post hoc test. Asterisks indicate significant differences in relation to UA159 under the same conditions (P � 0.05).
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mal (46), we assessed whether the capacity of S. mutans to bind
sucrose-derived EPS influences C3b deposition. Thus, levels of
C3b in the gbpC mutant (UAgbpC) were compared to those in
parent strain UA159 previously grown in the presence or absence
of sucrose. As shown in Fig. 6C, deletion of gbpC promoted a
significant increase in C3b deposition compared to the parent
strain, especially when strains were recovered from sucrose-con-
taining medium: BHI medium containing 0.1% sucrose (mean
4.6-fold increase in the C3b MFI) and CDM containing 0.1% su-
crose (mean 3.2-fold increase in the C3b MFI) (P � 0.05 as deter-
mined by a Kruskal-Wallis test with a post hoc test). These results
are compatible with the inability of UAgbpC to bind EPS pro-
duced from sucrose (Fig. 3B and SEM analysis data not shown).
Similar results were observed for the gbpC mutant obtained from
strain MT8148 (data not shown). The influence of sucrose-de-
rived products on C3b deposition was further analyzed in the epsC
mutant. Previous growth of the epsC mutant in the presence of
sucrose reduced C3b deposition (Fig. 6C), which is compatible
with the finding that UAepsC retained some capacity to bind
EPS (Fig. 3B). Thus, the expression of proteins that bind su-
crose-derived EPS significantly affects S. mutans susceptibility
to C3b deposition. Of note, wild-type strain MT8148 showed
lower levels of binding to C3b than did the UA159 strain (Fig.
6A and B), consistent with its higher capacity to interact with
sucrose-derived EPS than UA159 (Fig. 3C).

Finally, to confirm that the reduced susceptibility of blood iso-
lates to C3b deposition was promoted by sucrose-derived EPS, we
compared levels of C3b deposition on blood strains SA13 and
SA18 grown in the four growth media. As a reference, oral strain
2VS1 (with reduced binding to sucrose-derived EPS) (Fig. 3A) was
also tested. As expected, levels of C3b deposition on SA13 and

SA18 were increased when the strains were grown in sucrose-free
CDM (Fig. 6D). Levels of C3b deposition on 2VS1 were signifi-
cantly higher than those observed for the blood strains under all
growth conditions (P � 0.05 as determined by a Kruskal-Wallis
test), but the addition of sucrose to media did not significantly
affect C3b binding to this strain (Fig. 6D). Thus, the low suscep-
tibility of blood strains to C3b deposition is influenced by sucrose-
derived EPS in a fashion similar to that observed for the covR
mutant.

Influence of sucrose-derived EPS on binding of serum IgG to
the S. mutans surface and on frequencies of opsonophagocyto-
sis and killing by human PMNs. Because complement activation
on S. mutans was found to be strongly dependent on the classical
pathway, we investigated whether changes in C3b deposition in S.
mutans promoted by previous growth in the presence of sucrose
could be associated with reduced binding to serum IgG. As shown
in Fig. 7A, levels of IgG bound to UA159 and UAcov were im-
paired when these strains were grown in medium with added
sucrose. In addition, exposure to sucrose significantly reduced
phagocytosis and killing by PMNs, especially in UAcov (Fig. 7B
and C). Consistent with data from flow cytometry analyses of
phagocytosis (Fig. 7B), mean counts of extracellular UAcov bac-
teria in the supernatants of PMNs analyzed in killing assays were
1.6- and 6.3-fold higher than those of extracellular UA159 bacteria
when strains were respectively grown in CDM and CDM with
0.1% sucrose (data not shown). In addition, similarly to UAcov,
the growth of blood strains SA13 and SA18 in medium supple-
mented with sucrose impaired the binding of serum IgG (Fig. 7D),
reduced the frequency of phagocytosis (Fig. 7E), and increased
resistance to killing by PMNs (Fig. 7F). In contrast, medium
supplementation with sucrose promoted limited effects on IgG

FIG 6 Effects of previous growth in medium supplemented with sucrose on strain susceptibilities to C3b deposition. Strains grown in BHI medium or CDM
supplemented or not with 0.01 or 0.1% sucrose were harvested, washed with PBS, and treated with human serum for C3b deposition. Columns represent mean
MFI values for C3b determined by flow cytometry in three independent experiments. Bars represent standard deviations. Asterisks indicate significant differences
between groups (P � 0.05 as determined by a Kruskal-Wallis test with Dunn’s post hoc test).
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binding and phagocytosis in 2VS1 (Fig. 7D and E). These re-
sults support the role of surface-associated EPS in the evasion
of opsonophagocytosis and killing by PMNs.

Binding of serum IgG to the S. mutans surface and rates of
serum-mediated phagocytosis were also assessed in mutants of
CovRSm-repressed genes involved in the synthesis of and/or inter-
action with EPS (Fig. 8). Significant increases in IgG binding to the
S. mutans surface were promoted by the inactivation of epsC, gbpC
(Fig. 8A), and gtfBCD (Fig. 8C). The inactivation of lysM and
wapE had modest effects on IgG binding (Fig. 8A), compatible
with the limited effects of these genes on binding to sucrose-de-
rived EPS (Fig. 3B). Increases in phagocytosis were also observed
for the epsC, gbpC, and gtfBCD mutants (Fig. 8B and D). As ob-
served for C3b deposition, complementation of the gbpC and epsC
mutants restored levels of IgG binding and phagocytosis (Fig. 8A
and B). These findings strengthen the influence of S. mutans in-
teractions with sucrose-derived EPS on strain susceptibilities to
opsonic phagocytosis by human PMNs.

Inactivation of covRSm and of the CovRSm-repressed genes
gbpC and epsC affects survival of S. mutans in human blood and
systemic virulence. Because complement immunity is an impor-
tant mechanism of blood clearance of streptococcal pathogens
(28, 30, 47), we investigated the effects of the inactivation of
covRSm and downstream genes on the ex vivo survival of S. mutans
in human blood. The UAcov mutant showed an increased capac-
ity to survive in human blood, which was completely restored in
the UAcov� complemented mutant (Fig. 9A). Consistent with the
role of CovRSm as a direct repressor of gbpC and epsC, the UAgbpC
and UAepsC mutants showed reduced survival in blood com-
pared to the parent strain and the respective complemented mu-

tants (Fig. 9B and C). To further confirm the effects of EPS on the
increased ex vivo survival of UAcov in blood, assays were per-
formed with strains grown in sucrose-free CDM and in CDM with
0.1% sucrose. As shown in Fig. 9D, differences in survival in blood
between UAcov and UA159 were eliminated when strains were
grown in CDM, whereas CDM supplementation with sucrose in-
creased differences between UAcov and parent strains (Fig. 9E).
Thus, sucrose-derived EPS are involved in the increased survival
of UAcov in human blood.

Comparisons of bacterial counts in the bloodstream of rats
confirmed the findings of ex vivo survival in human blood for
UAcov. As shown in Table 3, the UAcov mutant survives for lon-
ger periods and at higher counts in the rat bloodstream than the
parent or complemented strains. Two rats infected with UAcov
died during the experiment, while no deaths occurred in the
UA159-infected group. Higher S. mutans counts were found in
valves of UAcov-infected rats (mean, 20,090 � 44,467 CFU/ml;
median, 40 CFU/ml) than in valves of UA159-infected animals
(mean, 1,352 � 2,723 CFU/ml; median, 0 CFU/ml), although dif-
ferences between strains did not reach statistical significance (P 	
0.05 as determined by a Kruskal-Wallis test with Dunn’s post hoc
test).

DISCUSSION

The complement system plays multiple roles in the elimination of
microorganisms, both as part of the innate immune system and by
augmenting antibody-mediated immunity (17, 18). The reduced
susceptibilities to C3b deposition found in S. mutans blood strains
(Fig. 1) indicate that evasion of complement immunity is impor-
tant for the systemic virulence of S. mutans. In GAS, natural mu-

FIG 7 Effects of previous growth of S. mutans strains in medium supplemented with sucrose on binding to serum IgG, susceptibility to phagocytosis by PMNs,
and killing by PMNs. (A and D) Strains grown in BHI medium or CDM supplemented or not with 0.01 or 0.1% sucrose were harvested, washed with PBS, and
treated with human serum for IgG binding. Levels of IgG binding were determined by flow cytometry and are expressed as MFI values. (B and E) FITC-labeled
strains grown in different media were incubated with PMNs isolated from human peripheral blood in the presence of 20% serum during 5 min. (C and F) Strains
grown in CDM supplemented or not with 0.1% sucrose were preopsonized and incubated with PMNs (10 min). Percentages of intracellular survival were
calculated in relation to viable counts determined for the no-PMN control samples. Columns represent means of data from three independent experiments. Bars
indicate standard deviations. Asterisks indicate significant differences in comparison to the parent strain (P � 0.05 as determined by a Kruskal-Wallis test with
Dunn’s post hoc test).
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tations in covRSpy were detected in strains involved in human in-
fections, and inactivation of the CovRSSpy TCS enhanced strain
virulence in murine models (48–50). Virulence genes repressed by
CovRSpy include genes involved in complement evasion (e.g., has
operon for hyaluronic acid capsule synthesis) (50–52), which are
not present in S. mutans genomes (53, 54). Reduced transcript
levels of covRSm in blood isolates associated with increased tran-
scription of CovRSm-repressed genes (gbpC, gbpB, and epsC) sug-
gest that the diversity in covRSm activities influences the capacities
of S. mutans strains to survive in the bloodstream.

In GAS and GBS, the CovRSSpy/S. agalactiae CovRS (CovRSSag)
regulons show strain specificity (55, 56). The CovRSm regulon was
assessed in serotype c strain UA159 (8, 11), but its diversity re-
mains to be investigated in strains associated with systemic infec-
tions. S. mutans serotype c was detected with higher frequencies in
S. mutans-positive specimens of heart valves and atheromatous
plaques from patients subjected to cardiovascular surgeries (30.3
and 65.5% of specimens, respectively) than serotype k (detected in
9.1 and 25% of these specimens, respectively) (14), which was
previously implicated in systemic infections (57). Interestingly,
77% of serotype k-positive specimens were also positive for sero-
type c (41), suggesting synergy of S. mutans serotypes for systemic
virulence. The systemic virulence of serotype k is associated with
the expression of the collagen-binding proteins Cnm and Cbm,
which are involved in the capacity of S. mutans to invade endo-

thelial cells in vitro (40, 58–60) and to form vegetations on injured
heart valves in a rat model of infective endocarditis (40). However,
serotype c strains rarely harbor these genes (22), and there is no
report that CovRSm regulates cnm or cbm.

A major function of complement immunity against Gram-
positive bacteria is to covalently bind C3b/iC3b opsonins on the
bacterial surface through the activity of C3 convertases on C3 (17,
18). C3 convertases result from proteolytic cascades initiated by
different mechanisms, known as the classical, mannan-binding
lectin, and alternative pathways (17). Functions of each pathway
in complement immunity against streptococci seem to be species
specific (27, 28, 30, 45) and are usually circumvented by multiple
evasion mechanisms (41, 61, 62). Here, we show that the classical
pathway plays a major role in complement deposition on S. mu-
tans (Fig. 5C), which is consistent with the reduced binding of IgG
antibodies to UAcov (Fig. 5A). Because C1q is activated through
its binding to IgG on the bacterial surface, assessing individual
roles of complement and IgG in S. mutans opsonization is diffi-
cult. In addition, although S. mutans seems to not have prototyp-
ical CRP ligands (63), covRSm inactivation also reduced binding to
CRP (Fig. 5B). CRP levels are increased in the bloodstream of
subjects with biofilm-dependent oral diseases, e.g., gingivitis and
periodontitis (64); thus, the role of acute-phase proteins in S. mu-
tans blood clearance needs to be investigated.

The major known role of CovRSm in S. mutans biology is to

FIG 8 Comparisons of binding to serum IgG (A and C) and of phagocytosis by human PMNs (B and D) between mutants of genes regulated by CovRSm. Mutant
or complemented strains were compared with the respective parent strains (UA159 or MT8148). Columns represent means of data from three independent
experiments; bars indicate standard deviations. Asterisks indicate significant differences in relation to the parent strain (P � 0.05 as determined by a Kruskal-
Wallis test with Dunn’s post hoc test).
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regulate the expression of secreted enzymes for the synthesis of EPS
from sucrose and cell surface components involved in interactions
with EPS (5, 6, 10, 11). Some of these genes, e.g., gtfBC, ftf, and wapE,
are controlled by a complex regulatory circuit (11, 65–67), which
might explain the lack of associations between gtfBC transcription
and profiles of covRSm expression among the tested strains (Fig. 2).
Because the secreted GtfBC enzymes are stable in saliva and bind
to several oral bacteria (2), strains with increased binding to EPS
could benefit from Gtf-producing members of the same ecological
niche. Thus, an increased capacity to bind EPS would be more
significant for systemic virulence than the ability to produce Gtfs
itself. In serotype c strain V403, the deletion of multiple genes
required for the synthesis of EPS from sucrose (gtfB, gtfC, and ftf)
increased S. mutans phagocytosis by human granulocytes and re-
duced virulence in an animal model of infectious endocarditis
(68). Consistently, our gtfBC and gtfBCD mutants showed high
susceptibility to C3b opsonization even when grown in the pres-
ence of sucrose (Fig. 6). However, the production of sucrose-de-
rived EPS impaired C3b deposition only in strains that were able
to bind these polymers; the gbpC mutant was susceptible to C3b
deposition even when grown in the presence of sucrose (Fig. 6).
Thus, the expression of gbpC, and perhaps other glucan-binding
proteins upregulated in blood isolates, e.g., GbpB (Fig. 2), might
be critical for EPS-mediated complement evasion.

The increased binding of the gbpC mutant to serum IgG (Fig. 6)

further indicates that surface EPS may impair antibody-mediated

activation of complement in a way analogous to that of capsules of

S. pneumoniae (45, 47, 69). Besides GbpC, EpsC showed a prom-

inent influence on complement opsonization (Fig. 6 and 8). In

Gram-positive bacteria, EpsC is required for the production of

UDP-ManNAc, an intermediate for the synthesis of EPS which is

also required for the attachment of teichoic acids to the cell wall

(70–73). The epsC mutant retained some degree of binding to

sucrose-derived EPS (Fig. 3B), which might explain, at least in

part, the remaining influence of sucrose on the binding of C3b to

this mutant (Fig. 6). Alternatively, EpsC could also affect sucrose-

independent mechanisms of S. mutans evasion of complement

immunity. Functional analyses of EpsC might shed new light on

its roles in complement susceptibility.

Although the effects of the covR deletion on C3b opsonization

were more clearly observed when strains were grown in sucrose-

containing media, reductions in levels of C3b binding to UAcov

were still observed in sucrose-free CDM (Fig. 6), which suggests

that CovRSm regulates additional functions of complement eva-

sion. The lower levels of C3b binding to blood strains grown in

sucrose-free CDM (especially in SA13) (Fig. 6) account for the

hypothesis that S. mutans strains apply multiple mechanisms of

complement evasion. In GAS strains, CovRSpy plays multiple roles

in complement evasion besides regulating capsule production (50,

FIG 9 Ex vivo viability in human blood. Numbers of viable bacteria (log CFU per milliliter) were expressed in relation to initial counts in blood suspensions (time
zero). Strains were grown in BHI medium (A to C), CDM (D), or CDM supplemented with 0.1% sucrose (E). Data represent means of results from triplicates of
one representative experiment. Bars indicate standard deviations. Differences in relation to the parent strain at each time point were tested by a Kruskal-Wallis
test with Dunn’s post hoc test (*, P � 0.05).

TABLE 3 Bacterial counts in blood of rats (n � 7)

Infecting strain

Mean CFU/ml of blood � SD (no. of rats with bacteria recovered)a

1 h 3 h 6 h 24 h 7 days

UA159 1,627 � 1,029 (7) 247 � 135 (7) 19 � 19 (4) 0 (0) 0 (0)

UAcov 1,767 � 1,053 (7) 194 � 147 (7) 119 � 98* (6) 0 (0) 16 � 36* (5)

UAcov� 2,501 � 2,309 (7) 104 � 64* (7) 16 � 15 (4) 3 � 5 (2) 0 (0)
a Asterisks indicate significant differences in relation to the parent strain at the same time period (P � 0.05 as determined by a Kruskal-Wallis test with Dunn’s post hoc test).

Alves et al.

iai.asm.org November 2016 Volume 84 Number 11Infection and Immunity

32



52, 74). Studies are under way to identify additional factors affect-
ing S. mutans susceptibility to complement immunity.

The increased persistence of UAcov in human blood mediated
by sucrose-derived EPS (Fig. 9) and its ability to cause bacteremia
in rats (Table 3) further strengthen the role of CovRSm in systemic
virulence. Reduced C3b/IgG opsonization of UAcov is, at least in
part, explained by the upregulation of epsC and gbpC, because the
inactivation of these genes reduced survival in human blood (Fig.
9A and B). Different from this study, no reduction in survival in
the bloodstream of rats was observed for a gbpC mutant (C1)
obtained from MT8148 compared to a streptomycin-resistant
MT8148 variant (MT8148R) (75). Although we found that C1 has
an increased susceptibility to C3b deposition compared to the
MT8148 parent strain (data not shown), C3b deposition in the
MT8148R variant is unknown. As shown in this study, differences
in growth media can affect S. mutans susceptibility to complement
opsonization. Furthermore, bacterial aggregation mediated by
blood components could affect bacterial counts in blood suspen-
sions. UAcov shows increased aggregation in blood compared to
UA159 (data not shown), which could explain the initial reduc-
tions in UAcov counts in the ex vivo assays, although bacterial
loads were normalized by initial blood counts (Fig. 9). Increased
aggregation of UAcov could occur in the rat bloodstream; thus,
survival rates of UAcov (Table 3) might be underestimated.

There may also be differences between human blood and rat
blood in complement activation on S. mutans. S. mutans is an
exclusive species of humans; thus, levels and epitope specificities
of IgG antibodies to S. mutans may differ in human and rat sera.
There are further differences in the production and structure of
CRP between rats and humans (76). In addition, CR1, shown to be
important for S. mutans opsonophagocytosis, is also involved in
blood clearance by human erythrocytes through immune adher-
ence (77). Because rodent erythrocytes do not express CR1 (77), a
more complete analysis of the influence of C3b deposition on
blood clearance of S. mutans would require animal models de-
signed to assess CR1-mediated immune adherence (78). Apart
from the limitations of our model, significant increases in viable
counts of UAcov bacteria in the rat bloodstream compared to
those of UA159 bacteria were detected (Table 3). At 6 h postinfec-
tion, the counts of UAcov mutant bacteria were 6.3-fold higher
(detected in 85.7% of the animals) than those of the parent strain
(detected in 57.1% of animals). Although UAcov counts in heart
valves were higher than UA159 counts, these differences did not
reach significance. Because only the numbers of viable bacteria
were assessed, we cannot exclude the possibility that increased
differences in tissue infection between strains might have been
observed if total levels of bacteria in heart valve specimens were
measured by using culture-independent methods. In addition,
survival of UAcov in the rat bloodstream would likely increase if
strains were previously grown in medium with 0.1% sucrose
added. Therefore, studies are required to improve in vivo models
for assessing the influence of complement evasion on the systemic
virulence of S. mutans.

In summary, this study provides evidence that systemic viru-
lence of S. mutans strains involves reduced susceptibility to com-
plement-mediated opsonization. Roles of CovRSm in resistance to
complement immunity involves regulation of the capacity of S.
mutans to interact with EPS, which in turn affects complement
activation. Two CovRSm-repressed genes, gbpC and epsC, were
identified as playing important roles in resistance to complement

immunity and survival in blood, as revealed by transcriptional
profiles of these genes in isolates from systemic infections and by
molecular analyses of isogenic mutants.
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Summary
Streptococcus mutans, a dental caries pathogen, can promote systemic infections 

upon reaching the bloodstream. The two- component system (TCS) VicRK
Sm

 of 

S.  mutans regulates the synthesis of and interaction with sucrose- derived exopoly-

saccharides (EPS), processes associated with oral and systemic virulence. In this

study, we investigated the mechanisms by which VicRK
Sm

 affects S. mutans suscepti-

bility to blood- mediated immunity. Compared with parent strain UA159, the vicK
Sm

isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of com-

plement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/

IgG- mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-

independent way (P<.05). Reverse transcriptase quantitative polymerase chain reac-

tion analysis comparing gene expression in UA159 and UAvic revealed that genes

encoding putative peptidases of the complement (pepO and smu.399) were upregu-

lated in UAvic in the presence of serum, although genes encoding murein hydrolases

(SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interac-

tions with host components (enolase, GAPDH) were mostly affected in a serum- 

independent way. Among vicK
Sm

-downstream genes (smaA, smu.2146c, lysM, atlA,

pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; 

deletion of both genes in UA159 significantly enhanced levels of C3b deposition and 

opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin- binding func-

tion of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced 

susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence 

of UAvic in blood, which was associated with growth defects of this mutant under 

limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms 

of complement evasion through peptidases, which are controlled by VicRK
Sm.

K E Y W O R D S

bacteremia, complement system, Streptococcus mutans, two-component system
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1  | INTRODUCTION

Streptococcus mutans plays important functions in the assembly of cario-

genic biofilms, which include secretion of glucosyltransferases required 

for the synthesis of insoluble exopolysaccharides (EPS) from sucrose.1 

Sucrose- derived EPS bound to glucan- binding proteins expressed on the 

S. mutans surface further reduces bacterial susceptibility to blood immu-

nity, so accounting for the capacity of this microorganism to promote

bacteremia.2,3 During the processes of host colonization or infection,

S. mutans uses two- component systems (TCS) to sense and respond to

environmental challenges. These transductional systems are typically

composed by a sensor histidine kinase membrane protein and an intra-

cellular response regulator. Thirteen or 14 TCS as well as the orphan re-

sponse regulator called CovR (also known as GcrR) were identified in the 

available genomes of S. mutans.4-6 The TCS VicRK
Sm

 is of special interest

because it regulates functions required for S. mutans cariogenicity and 

cell wall integrity. VicRK
Sm

- induced genes include those encoding the 

glucosyltransferases B (GtfB) and C (GtfC) (gtfB and gtfC, respectively) 

for the synthesis of glucan EPS from sucrose, the glucan- binding protein 

B (GbpB) (gbpB) and the murein hydrolases LysM and SMU.2146c (lysM 

and smu2146c, respectively), which are involved in S. mutans interactions 

with EPS.7-10 On the other hand, VicRK
Sm

 also strongly represses smaA,

which encodes the murein hydrolase SmaA.10

The general role of VicRK
Sm

 as a modulator of cell division, cell wall 

biogenesis and interaction with EPS might explain the essentiality of this 

TCS for S. mutans viability,8,9,11 increasing the interest in VicRK
Sm

 as a

therapeutic target to control S. mutans infections.12,13 However, we have 

previously observed that deletion of the gene encoding the VicK
Sm

 sen-

sor protein (vicK
Sm

) in S. mutans strains impaired bacterial phagocytosis 

by polymorphonuclear cells (PMN) in samples of human blood.14 These 

findings indicate that VicRK
Sm

 downstream genes could be involved in 

S. mutans evasion of blood- mediated opsonophagocytosis and hence, in

systemic virulence. Therefore, it is important to identify gene functions that 

account for the resistance of vicK
Sm

 mutants to opsophagocytosis by PMN.

The aim of this study was to investigate the molecular mechanisms 

by which deletion of vicK
Sm

 affects S. mutans susceptibility to blood- 

mediated immunity. Here, we assessed the effects of vicK deletion on 

S. mutans binding to major blood opsonins [C3b of the complement

system and immunoglobulin G (IgG) antibodies], and on its suscepti-

bility to opsonophagocytosis by PMN isolated from peripheral blood.

Also, interactions with plasma fibronectin, and ex vivo persistence in

human blood were investigated. We then determined the contribution 

of VicRK
Sm

 downstream genes (smaA, smu.2146c, smu.399, and pepO), 

known to be involved in functions previously associated with comple-

ment evasion in other streptococci, to the vicK mutant phenotypes.

2  | METHODS

2.1 | Studied strains, culture conditions, 
oligonucleotides, and construction of mutants

The studied strains are depicted in Table 1. Strains were grown from 

frozen stocks in brain–heart infusion (BHI) agar (Difco) (37°C; 10% 

CO2, 24 hours). Colonies were then inoculated in BHI, and incubated 

for 18 hours. Inocula of BHI cultures with adjusted absorbance (A550nm) 

were then transferred to fresh BHI, chemically defined medium (CDM)15 

supplemented or not with sucrose (0.01% or 0.1%), or RPMI- 1640 

(Gibco, Life Technologies, Grand Island, NY). The non- polar isogenic mu-

tants of pepO (UApepO) and smu.399 (UA399) were obtained in strain 

UA159 by double cross- over recombination with null alleles, which were 

constructed using a polymerase chain reaction (PCR) ligation strategy 

as previously described.9,14 Briefly, pepO and smu.399 mutants were 

 obtained by replacing the internal sequences of the encoding regions of 

pepO [1432 base pairs (bp)] or smu.399 (405 bp) with an erythromycin- 

resistance gene (amplified from plasmid pVA838). To obtain the com-

plemented strains (+), UApepO and UA399 mutants were transformed 

with plasmid pDL278 (which harbors a spectinomycin- resistance gene) 

containing the intact copy of the respective deleted gene. Erythromycin 

(10 μg mL−1) and spectinomycin (200 μg mL−1) (Merck Labs, Darmstadt,

Germany) were added to growth medium for the maintenance of mutant 

and complemented strains, respectively. Oligonucleotides used for con-

struction of mutants and transcriptional analyses are shown in Table 2.

2.2 | Volunteers, sera, and blood samples

Blood samples were collected by venepuncture in heparin vacuum 

tubes (BD Vacutainer®) from six healthy subjects (three men, three 

women; mean age 30 years, range 25- 45 years), who were enrolled 

in a previous study,3 according to standard protocols previously ap-

proved by the Ethics Committee of the Piracicaba Dental School, 

State University of Campinas (proc. no. 031/2012). Serum samples 

were	stored	in	aliquots	at	−70°C	until	use.	Serum	samples	from	one	
volunteer were used as reference. Commercial human serum depleted 

of C1q and purified human C1q were obtained from Calbiochem (San 

Diego, CA). Heat- inactivated sera (56°C during 20 minutes) were also 

TABLE  1 Strains used in this study

Strains Relevant characteristics

Source or 
reference

UA159 Erms, Specs ATCC

UAvic ∆vicK::Ermr 9

UAsmaA ∆smaA::Ermr 10

UA2146c ∆smu.2146c::Ermr 10

UA399 ∆smu.399::Ermr This study

UApepO ∆pepO::Ermr This study

UAvic+ UAvic with pDL278::SMU.1516; 

Specr

9

UAsmaA+ UAsmaA with pDL278::smu.609; 

Specr

10

UA2146c+ UA2146c with pDL278::smu.2146c; 

Specr

10

UA399+ UA399 with pDL278::smu.399; 

Specr

This study

UApepO+ UA2146c with pDL278::smu.2146c; 

Specr

This study
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used as negative control in preliminary experiments, and showed 

 minimal effects on comparative analyses of C3b deposition between 

mutant and parent strains.

2.3 | C3b deposition on S. mutans strains

Deposition of C3b on the surface of serum- treated strains was 

 determined as previously described16 with some modifications.3 

Briefly, approximately 107 colony- forming units (CFU) of S. mutans 

strains harvested (10 000 g, 4°C) from BHI cultures at mid- log growth 

phase (A550nm 0.3) were washed twice with phosphate- buffered 

saline (PBS) (pH 7.4) and suspended in 20% of serum in PBS. After 

30- min incubation (37°C), cells were washed twice with PBS- Tween

0.05% (PBST), and incubated on ice (40 minutes) with fluorescein

isothiocyanate (FITC) - conjugated polyclonal goat IgG anti- human C3 

antibody (ICN, Irvine, CA) (1 : 300 in PBST). Cells were then washed 

twice with PBST, fixed in 3% paraformaldehyde in PBS and analyzed 

on a FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ) 

using forward and side scatter parameters to gate at least 25 000 bac-

teria. Levels of surface- bound C3b were expressed as the geometric 

mean fluorescence intensity (MFI) of C3b- positive cells. Control sam-

ples included bacteria treated only with PBS instead of serum.

2.4 | Binding of serum IgG antibodies to 
S. mutans strains

Levels of serum IgG reactive with S. mutans were determined as previ-

ously described.3 Briefly, bacterial strains at mid- log phase of growth 

Primer name Sequence 5′- 3′
Product 
size (bp) Source

16SRNAF 

16SRNAR

CGGCAAGCTAATCTCTGAAA 

GCCCCTAAAAGGTTACCTCA

190 17

smu360F 

smu360R

CCTAACTCAACTGGTGCTGCT 

CAGCATTCACTTCATCAACAG

161 This study

smu630F 

smu630R

AGAATGGATGCTCTTGGCTTA 

GCTGTCATAGGCTGTGTTTCA

170 This study

smu676F 

smu676R

TCGTATGGAAGGTGAAGTC 

GTAAGAGCCCTGAGATTGAT

218 This study

smu2036F 

smu2036R

TACCCATAGCTTGAGGTGT 

ACACCAGAACTGCCTTTAG

253 This study

smu399F 

smu399R

GATTGAAGAGTCACCGGATA 

CCGCTTGTTTAGTCTCTTGA

242 This study

smu1247F 

smu1247R

GACTTCTTCACCTGGTTTG 

CTCACTCAGATGCTCCAAT

251 This study

smu609F 

smu609R

GGCACAAGGAACCTATCACTTT 

GCTTTCCAATAACAACATAACGAC

191 10

smu2146F 

smu2146R

AATCTGTTCTTGCTCACACTGC 

ACATTATCAGTTGGTTCAGTTGCT

145 10

smu2147cF 

smu2147cR

TTATCAGAGATTGCTTCAACACA 

CTGAGGTTTCTGCTTCATTTATC

175 10

ermE1- AscI 

ermE2- XhoI

TTGGCGCGCCTGGCGGAAACGTAAAAGAAG 

TTCTCGAGGGCTCCTTGGAAGCTGTCAGT

998 10

smu.399P1 

smu.399P2- AscI

TCTTCTTCACCATTTCTTGC 

TTGGCGCGCCCGGTGACTCTTCAATCAAAA

496 This study

smu.399P3- XhoI 

smu.399P4

TTCTCGAGTGTTGAGAGTCATGGAGAGG 

AAAGCTGCCTGATGGTTACT

505 This study

smu.2036P1 

smu.2036P2- AscI

TTTACTATCGGCGCTAAGGT 

TTGGCGCGCCACTGTTTCGGAAAATGTGG

501 This study

smu.2036P3- XhoI 

smu.2036P4

TTCTCGAGGACGATGGAACTTCACAAAA 

GATCAAAGGCAATTTACGGG

490 This study

smu.399C1- PvuI 

smu.399C2- BamHI

GGCGATCGTGGATGTTACGTGGACTGT 

GGGGATCCGGCCATCATAAAGTGCTAAA

1883 This study

smu.2036C1- 

BamHI 

smu.2036C2- SphI

GGGGATCCATGCCGCTAATTGCTCAAG 

GGGCATGCAGTCAATGAAAAAACGCTTGA

2750 This study

aUnderlined sequences indicate restriction enzyme linkers.

TABLE  2 Oligonucleotides used in this 

study
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(A550nm 0.3) were harvested from BHI cultures (500 μL), washed twice 

with PBS (pH 7.0), and incubated with 20% serum in PBS. Cells were 

then washed with PBST and incubated (on ice) for 40 minutes with 

polyclonal goat IgG anti- human IgG conjugated with FITC (Novus 

Biologicals, Littleton, CO) (1:900). After two washes with PBST, cells 

were then harvested by centrifugation and suspended in 3% para-

formaldehyde. Flow cytometry analyses were performed as described 

before, using forward and side scatter parameters to gate at least 

25,000 bacteria. Bacterial samples treated with PBS instead of serum 

were used as negative controls.

2.5 | PMN isolation and opsonophagocytic assays

Isolation of human PMN from samples of fresh heparinized blood col-

lected from a reference volunteer were performed as described else-

where.3 Cell viability (>98%) was monitored by trypan blue exclusion 

and cell purity (>95%) by May–Grunwald Giemsa staining. Bacteria 

applied in phagocytosis assays were labeled with FITC as previously 

described,3 and aliquots were stored overnight in 10% glycerol at 

−70°C.	Bacterial	labeling	was	monitored	in	a	fluorescent	microscope
(Leica DM LD), and by flow cytometry (FACSCalibur; BD Biosciences). 

Aliquots containing 107 CFU of FITC- labeled bacteria were incubated

with 20% serum and exposed to 2 × 105 PMN to a multiplicity of in-

fection of 200 bacteria per PMN.3 After incubation (37°C, 10% CO2,

gentle shaking) for 5 or 30 minutes, reactions were fixed by addition 

of 100 μL of 3% paraformaldehyde. PMN were then analyzed using 

FACSCalibur (BD Biosciences), and the frequency of phagocytosis 

was expressed as the number of PMN cells with intracellular bacteria, 

within a total of 10,000 PMN analyzed. To confirm that most PMN- 

associated bacteria were internalized, flow cytometry results were 

compared using light microscopy analysis of samples stained using 

May–Grunwald–Giemsa, as previously described.14 In addition, to 

confirm that phagocytosis by PMN involved binding to surface C3b 

or IgG, similar assays were performed with PMN previously incu-

bated (37°C, 30 minutes) with mouse monoclonal antibodies (mAbs) 

anti- CD35 (Biolegend, San Diego, CA) to block CR1 receptors, or with 

mAbs anti- CD32 to block IgG2 Fc receptors (eBioscience, San Diego, 

CA).3

2.6 | RNA isolation and transcriptional analysis of 
strains exposed to human serum

Transcriptional analysis of smaA, smu.2146c, lysM, atlA, gapN, gapC, 

smu.1247 (eno), smu.399, and pepO was performed in strains ex-

posed or not to human serum. Briefly, strains at mid- log phase 

(A550nm 0.3) in BHI were harvested (6000 g, 5 minutes, 4°C), resus-

pended in BHI or BHI supplemented with 20% human serum and in-

cubated (37°C; 5% CO2) for 30 minutes. Then, cells were harvested, 

washed with cold saline, and total RNA was purified using RNeasy 

kit (Qiagen, Hilden, Germany). Samples were then treated with 

Turbo DNase (Ambion, Austin, TX), as previously described.10 The 

cDNA was obtained from 1 μg of RNA using random primers17 and

SuperScript III (Life Technologies), according to the manufacturer’s 

instructions. Quantitative PCR was performed in a StepOne™ Real- 

Time PCR System (Life Technologies) with cDNA (10 ng), 10 μmol L−1

of each primer, and 1× Power SYBR® Green PCR Master Mix (Life 

Technologies) in a total volume of 10 μL. The cycling conditions in-

cluded incubation at 95°C (10 minutes), followed by 40 cycles of 95°C 

(15 seconds), optimal temperature for primer annealing (55- 60°C, 

15 seconds) (Table 2), and 72°C (30 seconds). Ten- fold serial dilutions 

of genomic DNA (0.003- 300 ng) were used to generate standard 

curves for absolute quantification of transcript levels. Melting curves 

were obtained for each primer set. Results were normalized against 

S. mutans 16SrRNA gene expression.17 Assays were performed in trip-

licate with three independent RNA samples.

2.7 | Binding of S. mutans strains to fibronectin

Fibronectin- binding assays were performed as previously described,18 

with modifications.19 Briefly, human plasma fibronectin (Sigma- 

Aldrich) (50 μg mL−1) was immobilized in 96- well plates for 18 hours

at 4°C, washed with PBS and blocked with 5% bovine serum albu-

min for 1 hours at 37°C. Strains from 18- h cultures in BHI were 

washed twice in PBS (pH 7.2), and resuspended in the same buffer 

to 1 × 109 CFU mL−1. Volumes of 100 μL of these suspensions were

transferred to fibronectin- coated wells and incubated (37°C) for 

3 hours. Afterwards, unbound cells were removed by a series of three 

washes with PBS. Fibronectin- adherent cells were stained with 0.05% 

crystal violet, and intensities of staining were measured by spectro-

photometry (A575nm) in 7% acetic acid eluates. Wells treated similarly 

but without fibronectin or bacterial suspensions added were used as 

negative controls.

2.8 | Analysis of the production of surface 
enolase and glyceraldehyde- 3- phosphate 

dehydrogenase

Protein extracts from whole cells were obtained as previously de-

scribed10 with minimal modifications. Briefly, strains at mid- log phase 

of growth in BHI, were harvested (10 000g, 4°C, 3 minutes), washed 

twice with cold saline, and 125 μL of ultrapure water with 0.16 g of 

0.1- mm Zirconium Beads (Biospec, Bartlesville, OK) were added for 

cell disruption on a Mini- beadbeater (Biospec) (maximum power; two 

cycles of 45 seconds with 1 minutes rest on ice). The culture superna-

tants were also collected, 0.1 mmol L−1 of phenylmethylsulfonyl fluo-

ride was added for inhibition of serine proteases, and dialyzed at 4°C 

against 0.02 mol L−1 PBS (pH 6.5) followed by 0.125 mol L−1 Tris–HCl. 

Afterwards, these samples were 100- fold concentrated by lyophiliza-

tion.20 Protein concentration was determined using a Bradford assay 

kit (BioRad, Hercules, CA), according to the manufacturer’s protocol.

α- Enolase and glyceraldehyde- 3- phosphate dehydrogenase 

(GAPDH) were measured in whole cell extracts and culture superna-

tants using immuno- dot blot and/or Western blot assays performed 

with polyclonal rabbit IgG antibodies to surface enolase or to extracel-

lular GAPDH of S. pyogenes, which were kindly provided by Dr. Vijay 

Pancholi (The Ohio State University College of Medicine, Columbus, OH). 
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Antibody titers were determined in preliminary Western blot assays, 

using the S. pyogenes strain SF130 (ATCC12344) as control. Equivalent 

amounts of protein (20 μg) were used in dot blot assays, which were 

performed as described elsewhere21 with some modifications. Briefly, 

samples were blotted onto nitrocellulose membranes (BioRad), and 

blocked (2 hours) with PBS with 5% skimmed milk. After a series of 

three washes with PBS, the membranes were probed with rabbit 

anti- serum to enolase (1:2000) or to extracellular GAPDH (1:40 000) 

for 90 minutes. Membranes were then washed and incubated (room 

temperature, 60 minutes) with goat IgG anti- rabbit IgG conjugated 

with horseradish peroxidase (Thermo Fisher Scientific, Waltham, MA). 

Immune reactions were detected using the SuperSignal West Dura 

system (Thermo Fisher Scientific). Serially diluted samples of S. pyo-

genes extracts were used as standard. Autographs were scanned using 

the ALLiAncE 9.7 documentation system (Uvitec Cambridge) and in-

tensities of the reactions measured using the imAgEJ software (http://

imagej.nih.gov/ij/). Densitometric measures within a linear range of 

the S. pyogenes standard curves were expressed as arbitrary units. 

Experiments were performed in triplicate. For the Western blot assays, 

samples were resolved in 10% sodium dodecyl sulfate polyacrylamide 

gel electrophoresis gels, transferred to PVDF membranes (Millipore, 

Billerica, MA), and immune reactions were performed as described 

before. Protein profiles were monitored in duplicate gels stained with 

Coomassie blue. As a control for S. mutans- secreted proteins, samples 

of culture supernatants were also probed with anti- GbpB antibody.9

2.9 | Ex vivo survival of S. mutans strains in 

human blood

Bacterial survival in human blood was analyzed as previously 

 described.3 Briefly, cells from BHI cultures (A550nm 0.3) were harvested 

(11 000 g, 2 minutes), washed twice in PBS, and resuspended in fresh 

whole human blood (1 mL) collected from the reference volunteer. 

Samples were then incubated (37°C, 5% CO2, gentle agitation), and 

aliquots were collected at different time- points (from 0.5 to 24 hours), 

serially diluted and plated on BHI agar for determination of bacterial 

counts (CFU mL−1). Aliquots collected just after bacterial suspension 

in blood (time 0) were used as initial blood counts. Changes in bacte-

rial counts were then calculated in relation to initial counts, to reduce 

the influence of variations in blood- mediated aggregation between 

strains in the numbers of CFU mL−1. Three independent experiments 

were performed in triplicate.

2.10 | Statistical analyses

Flow cytometry data (MFI values for C3b and IgG, percentages of 

PMN with FITC- labeled bacteria) and relative measures of α- enolase 

and GAPDH were analyzed by comparing means of three independ-

ent experiments, using nonparametric Kruskal- Wallis analysis with 

Dunns’s post hoc test. Transcriptional data were analyzed using analy-

sis of variance with post hoc Dunnett’s test. For growth curve experi-

ments and for ex vivo survival in blood, Kruskal- Wallis with Dunns’s 

post hoc test and correction for repeated measures were used.

3  | RESULTS

3.1 | Deletion of vicK impairs deposition of C3b, 
binding to serum IgG and opsonophagocytosis by 
human PMN from peripheral blood

Previously, we observed that deletion of vicK in UA159 (UAvic) and 

in LT11 impaired phagocytosis by PMN in samples of human blood.14 

Because complement- mediated opsonization is crucial for efficient 

phagocytosis of S. mutans by PMN,3 we compared the susceptibility of 

UA159, UAvic and UAvic+ to C3b deposition. As shown in Figure 1A, 

deposition of C3b was significantly impaired in UAvic when strains 

were treated with a reference serum, or with pooled sera, whereas 

C3b deposition was completely restored in the complemented mutant 

UAvic+. Minimal C3b deposition on UA159, UAvic, and UAvic+ was 

observed in C1q- depleted serum, compatible with previous findings 

that C3b deposition on S. mutans is dependent on the classical path-

way of complement activation. Because specific binding of IgG to the 

bacterial surface activates the C1 complex of the classical pathway, 

we also compared levels of IgG binding to the tested strains. As shown 

in Figure 1B, the UAvic mutant showed reduced binding to serum IgG 

whereas the levels of IgG binding to UAvic+ did not significantly differ 

from the parent strain.

Consistently with low levels of C3b and IgG binding, the UAvic 

showed impaired opsonophagocytosis (Figure 1C). To confirm that the 

frequencies of phagocytosis measured in our assays involved PMN in-

teractions with surface- bound C3b and/or IgG opsonins, we assessed 

the influence of blocking PMN receptors for C3b (CR1) and Fc por-

tions of IgG antibodies (FcγRII) on phagocytosis efficiencies. As shown 

in Figure 1C, blocking of either CR1 (CD35) or FcγRII (CD32) recep-

tors strongly reduced phagocytosis of UA159 (and of UAvic+), and so 

reduced differences in the frequencies of phagocytosis between the 

three tested strains.

3.2 | Deposition of C3b on UAvic is not influenced 
by sucrose- derived EPS

The major role of the TCS VicRK
Sm

 in cariogenicity of S. mutans seems 

to be associated with transcriptional activation of genes required for 

the synthesis of and interaction with EPS derived from sucrose.7,10 

Because the UAvic mutant has reduced production of sucrose- derived 

EPS and defects in biofilm formation,9,10 it seems likely that reduced 

susceptibilities of this mutant to C3b deposition and IgG binding were 

not due to surface- associated EPS or to altered expression of surface 

components in response to sucrose. To address this issue, we com-

pared levels of C3b deposition between strains grown in sucrose- free 

CDM and in complex BHI with strains grown in media (CDM and BHI) 

supplemented with increasing amounts of sucrose. Because sucrose- 

derived EPS bound to S. mutans blocks C3b deposition,3 previous 

exposure of UA159 and UAvic+ to sucrose reduced levels of C3b 

deposition on these strains (Figure 1D). However, the UAvic mutant 

showed low levels of C3b deposition even when grown in sucrose- 

free CDM (Figure 1D). Hence, reduced susceptibility of UAvic to 
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C3b deposition does not rely on sucrose- derived EPS or on altered 

responses to sucrose.

3.3 | VicRK
Sm

 regulates cell surface biogenesis and 
complement evasion in the presence of serum

The VicRK
Sm

 seems to be activated in response to cell wall stress,9,22

which might include interactions with host immune components, e.g. 

pentraxins and complement proteins.23,24 Therefore, we investigated 

the effects of vicK
Sm

 inactivation on the transcription of downstream 

cell wall homeostasis genes (smaA, smu.2146c, lysM, and atlA)10,25 on 

cells exposed to BHI supplemented with 20% serum and to unsup-

plemented BHI at mid-  and late- exponential growth. Genes encod-

ing the anchorless surface proteins α- enolase (eno: smu.1247) and 

the extracellular GAPDH (gapC), were also tested because these pro-

teins are involved in binding to serum or extracellular matrix compo-

nents.26-28 Interestingly, an in silico screening of the genomes of 22 

S. mutans strains available in the NCBI database, revealed two genes

(smu.399 and pepO) potentially involved in evasion to complement

immunity. Smu.399 and pepO were found in all S. mutans strains ana-

lyzed, and the promoter regions of both genes include putative VicR

consensus motifs,29,30 which are shown in Table 3. BLAST analyses

of another 20 genes previously implicated in evasion to complement

system in other species of streptococci and in Staphylococcus aureus,31

did not reveal orthologues in S. mutans strains (data not shown).

As shown in Figure 2A, at mid- exponential growth, smaA was sig-

nificantly upregulated in UAvic compared with UA159 in both condi-

tions, absence (12.9- fold increase; analysis of variance with post hoc 

F IGURE  1 Comparisons of C3b deposition, IgG binding and opsonophagocytosis by polymorphonuclear cells (PMN) between the vicK 

mutant (UAvic) and parent (UA159) or complemented strain (UAvic+). Intensities of C3b deposition (A) or binding to serum IgG antibodies (B) 

were determined by flow cytometry (MFI) in strains treated with 20% human serum. (A) Levels of surface C3b were measured after bacterial 

treatment	with	a	reference	serum,	pools	of	sera	obtained	from	six	volunteers,	commercial	serum	depleted	of	C1q	(C1q−)	and	C1q−	serum	
supplemented with purified C1q (C1q+). (B) Binding to IgG was measured in strains treated with a reference serum. (C) Percentages of PMN with 

internalized bacteria were determined after exposure of PMN isolated from peripheral blood to fluorescein isothiocyanate- labeled bacteria in 

the presence of 20% serum. PMN treated with monoclonal antibodies to block CR1 (CD35) or FcγRIIa (CD32) receptors were used as control. 

(D) Levels of C3b deposition were measured in strains grown in brain–heart infusion (BHI) or chemically defined medium (CDM) supplemented

or not with 0.01%- 0.1% sucrose. Columns represent means of three independent experiments. Bars indicate standard deviations. Asterisks

indicate significant differences in relation to UA159 within the same condition (A- C) or between conditions under horizontal lines (D) (Kruskal- 

Wallis with post hoc Dunn’s test; P<.05)
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Dunnett’s test, P<.01) and presence of serum (3.6- fold increase, P<.01). 

At late- log phase, smaA upregulation achieved significance only in 

the absence of serum (3.6- fold increase; P<.05). Consistent with the 

role of VicRK
Sm

 as inducer of smu.2146c,10 this gene was significantly

down- regulated in the UAvic mutant either in the presence or absence 

of serum at mid-  (13.7-  and 10.9- fold decreases respectively in the 

absence and presence of serum; P<.01) and late- log (13.0-  and 12.2- 

fold decrease, respectively, in the absence and presence of serum; 

P<.01) growth phases. No significant alterations in transcript levels 

of the autolysin- encoding genes lysM and altA were detected (data 

not shown). On the other hand, the UAvic mutant showed increased 

expression of the metabolic genes only in cells at mid- log phase ex-

posed to BHI (2.6- , 2.4- , and 2.2- fold increase for eno, gapC, and gapN, 

respectively; P<.05), suggesting that the presence of serum inhibited 

transcription of these genes in UAvic (Figure 2B). Compared with the 

other functional gene classes (Figure 2A,B), at mid- log growth phase, 

genes encoding peptidases of the complement (smu.399 and pepO) 

were more clearly upregulated in the presence of serum (2.9-  and 2.7- 

fold increase for smu.399 and pepO, respectively), proportionally to 

their upregulation in the absence of serum (3.6-  and 3.8- fold increase, 

respectively, for smu.399 and pepO) (Figure 2C). At late- log growth 

phase, pepO upregulation was observed only in the presence of serum 

(3.9- fold upregulation; P<.05) (Figure 2C). Therefore, deletion of vicK in 

UA159 transcriptionally affects genes involved in cell wall biogenesis 

(smaA, smu.2146c), metabolic enzymes (eno, gapN, gapC) and putative 

complement proteases (smu.399 and pepO), but these genes are differ-

ently affected by the presence of human serum.

3.4 | SmaA, Smu.399, and PepO affect C3b 
deposition and opsonophagocytosis by human PMN

In S. pneumoniae, murein hydrolases significantly affect bacterial 

susceptibility to complement immunity and opsonophagocytosis 

through multiple mechanisms including reduction of cell surface 

interaction with complement activators (e.g. C- reactive proteins), 

degradation of C3b linked to the cell wall, and recruitment of fluid 

phase inhibitors of complement.32,33 Hence, reduced susceptibility 

of UAvic to complement- mediated opsonization could be, at least 

in part, due to the altered activities of genes smaA and smu2146c. 

To address this issue, we measured levels of opsonin binding and 

opsonophagocytosis in the smaA and smu.2146c isogenic mu-

tants. Unexpectedly, although smaA is over- expressed in the UAvic 

mutant, deletion of smaA significantly reduced S. mutans binding to 

C3b (52.5% reduction; P<.05) (Figure 3A), which was associated with 

reductions in IgG and opsonophagocytosis (Figure 3B,C). These phe-

notypes were restored in the complemented mutant. No significant 

changes in C3b deposition and phagocytosis were observed in the 

smu.2146c mutant, although these phenotypes were affected in the 

complemented mutant UA2146c+ (Figure 3A,C). Therefore, reduced 

susceptibility of UAvic to opsonophagocytosis does not involve 

 altered expression of cell wall hydrolases SmaA and SMU.2146c, al-

though SmaA influences S. mutans susceptibilities to C3b deposition 

and opsonophagocytosis.

On the other hand, deletion of smu.399 and pepO increased 

deposition of C3b on S. mutans in 27.5 and 62%, respectively (P<.05) 

(Figure 3A). Compared with UA159, the smu.399 and pepO mutants had 

increased susceptibility to opsonophagocytosis (Figure 3C), although 

binding to IgG was significantly increased only in the pepO mutant (P<.05) 

(Figure 3B). Importantly, the phenotypes of pepO and smu.399 mutants 

were restored in the complemented strains (Figure 3). Hence, pepO and 

smu.399 account for UAvic resistance to C3b- mediated opsonization.

3.5 | The vicK mutant has increased binding to 
human fibronectin

The presence of fibronectin in serum might affect the course of the 

classical pathway of complement activation because it binds to the 

collagen- like domain of C1q.34 Additionally, PepO of S. pneumoniae 

functions as a fibronectin- binding protein35 and the gene encod-

ing the PepO orthologue of S. mutans was upregulated in UAvic 

(Figure 2C). Therefore, we compared the ability of UAvic, UA159, and 

UAvic+ to bind to human plasma fibronectin. As expected, the UAvic 

showed 5.4- fold increase (P<.01) in binding to fibronectin (Figure 4A) 

whereas the complemented strain displayed wild- type binding levels 

(Figure 4A). Hence, our findings show that the TCS VicRK
Sm

 modu-

lates the ability of S. mutans to bind fibronectin.

3.6 | The vicK mutant has increased production of 

α- enolase, but not of extracellular GAPDH

Surface- associated GAPDH and α- enolase promote bacterial binding 

to fibronectin, plasminogen and/or other host glycoproteins of the 

extracellular matrix, including collagens and laminin.36,37 Although the 

mechanisms by which these glycolytic enzymes can be associated with 

NCBI number Putative VicR binding motif a Strand Position (bp)b

SMU_2036 (pepO) TGTAAATGATATGaAgC − 136

TGTGAAGGCATTGgTtAg − 109

SMU_399 TGTTAAAAAAATaTTAA + 82

TGTTATGGCACTGgTAgC + 391

aVicR box: TGTWAHNNNNNTGTWAH; where W is A or T and H is A, T or C; mismatches are indicated 

by lower cases.
bPosition from translation start site.

TABLE  3 Putative binding motifs of 

VicR
Sm
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the bacterial surface are still unknown,28,36 studies in S. pneumoniae 

revealed that enolase is released in strains with defects in septum for-

mation promoted by altered activities of the VicRK
Sp

- regulated gene 

pcsB, a gbpB orthologue of S. mutans.30,38 Therefore, we compared 

levels of surface GAPDH and α- enolase in cell lysates and in culture 

supernatants of strains UAvic, UAsmaA, and UA2146c with parent and 

respective complemented strains. As shown in Figure 4B and C, when 

compared with UA159, whole cell extracts of the UAvic mutant at mid- 

log phase have increased levels of α- enolase (4.8- fold increase; P<.05), 

which were restored to parental levels in the UAvic+ complemented 

strain. Levels of cell- associated α- enolase were not altered in the smaA 

and smu2146c mutants (Figure 4C). α- Enolase could not be detected 

in 100- fold concentrated culture supernatants of the strains analyzed, 

although high levels of GbpB (a secreted and surface- associated pro-

tein)21 could be detected in the same samples in parallel immunoassays 

(data not shown). No significant changes in production of GAPDH were 

observed between the tested strains (data not shown). Hence, the vicK 

mutant shows overall increased production of α- enolase, although no 

significant levels of enolase and GAPDH could be detected in its cul-

ture supernatants.

3.7 | Deletion of vicK result in diminished survival of 

S. mutans in human blood, and reduced growth in poor
nutrient medium

To persist in the bloodstream, bacteria must survive the host defenses 

and undergo physiological changes to adapt to nutrient limitations 

present in blood.39 Therefore, we assessed the capacities of the UAvic 

mutant to persist in human blood and to grow in poor nutrient me-

dium (RPMI). As shown in Figure 5A, over time, the numbers of viable 

UAvic recovered from blood in the survival assays were overall lower 

than those observed for UA159 and UAvic+, with 2 and 24 hours 

incubation periods showing statistically significant reductions com-

pared with parent and complemented strains (P<.05). Survival of 

UAvic+ in blood was very similar to the parent strain. Comparisons 

of the growth curves of the studied strains in rich medium (BHI) re-

vealed no alterations in growth rate in UAvic compared with UA159 

(Figure 5B). However, the UAvic showed significantly reduced growth 

rate in RPMI, when compared with UA159 and UAvic+ (Figure 5C). 

The growth rate of UAvic+ was slower in both media when compared 

with UA159, probably because when growing UAvic+, the media were 

F IGURE   2 Comparative analysis of transcriptional profiles of vicK mutant (UAvic) with parent strain UA159 in the presence and absence 

of serum. Strains at mid-  and late- log phases of growth were harvested and exposed to brain–heart infusion (BHI) both or BHI supplemented 

with 20% human serum before RNA isolation. Relative amounts of transcripts of UA159 at each condition were set to 100% to calculate 

relative transcript levels obtained with UAvic at the same condition. VicRK
Sm

- downstream genes encoding murein hydrolases (A), metabolic 

enzymes (B) and peptidases of the complement (C) were analyzed. Columns represent means of three independent experiments; bars 

represent standard deviations. Asterisks indicate significant differences in relation to parent strain (analysis of variance with post hoc 

Dunnett’s test; *P<.05)
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supplemented with spectinomycin to maintain the plasmid expressing 

vicK
Sm

. Hence, the vicK mutant has a diminished capacity to persist 

in human blood compared with parent and complemented strains, 

which is associated with its defects in adaptation to limited nutrient 

conditions.

4  | DISCUSSION

Streptococcus mutans is an important species of viridans streptococci 

involved in cardiovascular diseases.40,41 Mechanisms of systemic viru-

lence of S. mutans remain to be elucidated, but seem to involve ex-

pression of different genes in serotype-  and strain- specific ways.3,40-43 

Previously, we observed that deletion of vicK and covR, known to 

coordinate the expression of virulence genes involved in S. mutans 

cariogenicity,7,10,15 reduced S. mutans phagocytosis by PMN in sam-

ples of human blood in the serotype c strain UA159.14 Inactivation 

of covR was later shown to promote S. mutans resistance to comple-

ment opsonization and survival in blood through upregulation of gbpC 

and epsC (CovR- repressed genes), genes required for S. mutans bind-

ing to sucrose- derived EPS.3 Strains isolated from systemic infections 

express reduced levels of covR and stably bind to EPS, which in turn, 

functions as an anti- opsonic capsule.3 However, binding to EPS does 

not entirely explain diversity in susceptibility to complement immunity 

among strains.3 In addition, the mechanisms involved in the reduced 

susceptibility of the vicK mutant to opsonophagocytosis by PMN re-

mained unknown, because this mutant is defective in the synthesis of 

EPS and in binding to these polymers,7,9,10 which should increase its 

F IGURE  3 Effects of deletion of 

VicR
Sm

 downstream genes (smaA, 

smu2146, smu.399, and pepO) on C3b 

deposition, binding to serum IgG and 

opsonophagocytosis by polymorphonuclear 

cells. Measures obtained for mutant and 

complemented strains were expressed in 

relation to UA159 (set to 100%). Asterisks 

indicate significant differences in relation 

to parent strain (Kruskal- Wallis with post 

hoc Dunn’ test; P<.05)
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susceptibility to complement- mediated opsonization. In the present 

study, we show that the vicK mutant is resistant to C3b deposition 

and has reduced binding to serum IgG antibodies, explaining its low 

susceptibility to phagocytosis in blood. Low levels of C3b deposition 

in UAvic were observed even when this strain was grown in sucrose- 

free medium (Figure 1D), implying that S. mutans expresses additional 

proteins to evade complement deposition, besides proteins involved 

in binding to EPS.

Streptococcal pathogens, e.g. S. pyogenes and S. pneumoniae, typi-

cally apply a diverse array of mechanisms to evade complement immu-

nity, including the production of EPS capsule, secretion of proteases 

for degradation of complement components, and surface binding to 

fluid phase inhibitors of the complement system or to other host pro-

teins, which indirectly inhibit complement activation.31,44,45 Because 

the vicK mutant in UA159 is defective in binding to sucrose- derived 

EPS,9,10 but resistant to C3b deposition, analysis of this strain was im-

portant for the screening of EPS- independent mechanisms of com-

plement evasion. Hence, we identified four genes (smaA, smu2146c, 

smu.399, and pepO) that were transcriptionally affected in the UAvic 

mutant in the presence of serum. The genes encoding peptidases of 

the complement (smu.399 and pepO) were more clearly altered in re-

sponse to serum in relation to unsupplemented BHI, when compared 

with genes encoding murein hydrolases (smaA and smu.2146c) and 

to the metabolic genes (eno, gapC, and gapN). Similarly to our results, 

peptidases of complement are also upregulated in Streptococcus aga-

lactiae exposed to 10% of serum.46 It is worth noting that BHI might 

include stimulatory components also found in serum, because this 

complex medium is rich in tissue and immune host factors. It could 

explain, at least in part, the effects of BHI on transcription of smu.399 

and pepO observed in cells at mid- exponential growth. Transcriptional 

changes in smaA and smu.2146c in either the presence or absence of 

serum might also reflect multiple biological functions of these genes in 

response to different stimuli.

Phenotypic analyses of smaA-  and smu.2146c-defective strains 

did not explain the resistance of UAvic to C3b deposition. Moreover, 

S. mutans expresses other murein hydrolases, which are downreg-

ulated at transcriptional and/or post- transcriptional levels in vicK
Sm

 

mutants, including LysM10 and AtlA.25 However, deletion of lysM does 

not affect complement opsonization,3 and deletion of atlA increases 

S. mutans susceptibility to phagocytosis by PMN.47 These findings

suggest that increased resistance of the UAvic strain to C3b deposi-

tion and opsonophagocytosis is not associated with altered functions

of the murein hydrolases investigated so far. However, here we show

that S. mutans expresses peptidases of the complement (Smu.399 and

PepO) that are negatively regulated by VicRK
Sm

. Deletion of smu.399 

and pepO significantly increases C3b deposition and opsonophagocy-

tosis of S. mutans (Figure 3), suggesting that these peptidases may be 

potential targets to control systemic infections by this species.

In S. pneumoniae, PepO (PepO
Sp

) binds to C4b- binding protein 

(C4BP), a fluid- phase inhibitor of the classical pathway of the com-

plement system,48 the major pathway of complement activation on 

S. mutans.3 The amino acid sequence of PepO
Sm

 shows 79 and 88%

similarity with PepO orthologues expressed by S. pneumoniae35 and

S. pyogenes,49 respectively. Secreted PepO
Sp

 further promotes degra-

dation of C3b through binding to plasminogen and its activation to

plasmin. PepO
Sp

 also binds to fibronectin, which is present in soluble 

form in serum and saliva, and is involved in a large number of phys-

iological processes, including formation of vegetations on injured 

F IGURE  4 Comparisons of binding to human plasma fibronectin and production of α- enolase between UAvic and parent or complemented 

strains. (A) Fibronectin binding was expressed as the absorbance of crystal violet stain (A575nm) eluted from bacteria bound to immobilized 

fibronectin. (B) Levels of α- enolase produced by strains were measured in whole cell extracts using immuno dot blot assays with polyclonal 

antibody anti- Streptococcus pyogenes α- enolase. (C) Densitometric measures of immune reactions were expressed as the relative levels of 

α- enolase in relation to parent strain (set as 100%). Columns represent means of three independent experiments; bars represent standard 

deviations. Asterisks indicate significant differences in relation to parent strain (Kruskal- Wallis with post hoc Dunn’s test; P<.05)
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cardiac endothelium and atheromatoses.50,51 The enhanced capacity 

of UAvic to bind to fibronectin is therefore compatible with the up-

regulation of pepO
Sm

 in UAvic, and with resistance of this mutant to 

opsonophagocytosis. In S. mutans strain GS5, binding to fibronectin 

was associated with resistance to opsonophagocytosis and increased 

survival in the bloodstream, but this property was associated with 

the expression of atlA,47 whose transcription was not significantly 

altered in UAvic (data not shown). In addition, S. mutans expresses 

other surface proteins that could contribute to fibronectin binding,37 

but their role in the UAvic phenotype remains to be elucidated. 

Studies are under way to define the role of PepO
Sm

 in systemic in-

fections by S. mutans.

UAvic shows defects in septum division associated with reduced 

expression of GbpB,9 an essential protein involved in S. mutans binding 

to EPS and in cell wall division.9,52 Downregulation of the GbpB ortho-

logue (PcsB) in S. pneumoniae affects cell wall division30 and promotes 

the release of enolase.38 Enolase on S. pneumoniae surface binds to 

C4BP to inhibit complement activation.53 Therefore, upregulation of 

enolase in UAvic could contribute to UAvic resistance to C3b deposi-

tion. Although we could not detect enolase in the culture supernatants 

of the studied strains, it is possible that extracellular enolase could be 

associated with the S. mutans cell wall.

The essentiality of VicR
Sm

 regulator for S. mutans viability is not 

entirely understood.7,9,10 In addition, vicK
Sm

- defective strains show

increased sensitivity to oxidative, pH, and osmotic stresses.9,11,25,54 

VicRK
Sm

 is also responsive to nutritional changes,11 and here we show 

that the vicK
Sm

 mutant is defective in metabolic adaptation to limited 

nutrient conditions. All of these defects should reduce the capacity of 

vicK
Sm

- defective strains to persist in blood, because metabolic adap-

tation to limited nutrient conditions and resistance to oxidative and 

pH stresses present in blood are crucial for bacterial survival in the 

bloodstream.39,55 It is therefore possible that the increased resistance 

of UAvic to opsonophagocytosis may have counterbalanced the UAvic 

deficiencies in stress response and/or adaptation to blood nutrient 

limitations, resulting in limited changes in curves of UAvic persistence 

in blood.

In summary, in this study we showed that deletion of vicK reduces 

S. mutans susceptibility to phagocytosis by PMN by impairing C3b

deposition and surface binding to serum IgG, in a way that is indepen-

dent of the production of sucrose- derived EPS or of the expression of

F IGURE  5 Comparisons of ex vivo survival in human blood and growth in different nutritional conditions. (A) Numbers of viable bacteria 

(log CFU mL−1) were expressed in relation to initial counts in blood suspension (time 0). Growth curves in brain–heart infusion (B) and in poor 

nutrient RPMI (C). Dots represent means of triplicate of one representative experiment. Bars indicate standard deviations. Differences in relation 

to parent strain at each time- point were tested using Kruskal- Wallis with post hoc Dunn’s test with correction for repeated measures (*P<.05)
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murein hydrolases encoded by smaA and smu2146c. Two novel genes 

expressed by S. mutans under regulation of VicRK
Sm

 were identified and 

were shown to contribute to S. mutans resistance to C3b deposition 

(pepO and smu.399), establishing that this bacterium expresses multiple 

factors associated with complement immunity evasion. Although dele-

tion of vicK
Sm

 results in increased resistance to opsonophagocytosis, it 

does not contribute to S. mutans survival in human blood, which is, at 

least in part, associated with defects in adaption to nutrient limitations.
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Abstract 

 Cnm is a surface-associated virulence factor present in a subset of Streptococcus mutans 

strains that mediates binding to extracellular matrices (ECM) and intracellular invasion. Despite 

the association of Cnm with both oral and non-oral infections, the regulatory mechanisms 

governing its expression are poorly understood. Here, we showed that transcription of cnm is 

directly and independently controlled by the orphan response regulator CovR and the two-

component system (TCS) VicRK. In silico analysis identified CovR- and VicR-binding motifs in the 

regulatory region of cnm as well as pgfS, a gene encoding for a glycosyltransferase responsible 

for Cnm glycosylation. Quantitative real-time PCR and Western blot analyses of ΔcovR and ΔvicK 

strains revelated that CovR is a positive regulator of cnm whereas the VicRK TCS acts as a 

negative regulator. Electrophoretic mobility shift assays confirmed that CovR and VicR directly 

bind to the cnm and pgfS promoter regions. In agreement with the role of VicRK as a negative 

regulator, the ΔvicK strain showed enhanced binding to collagen and laminin, higher intracellular 

invasion rates and increased virulence in the Galleria mellonella invertebrate model.  The ΔcovR 

strain showed decreased intracellular invasion rates but loss of CovR did not affect virulence in G. 

mellonella and, unexpectedly, increased collagen and laminin binding activities.  Collectively, our 

results expand the repertoire of virulence-related genes regulated by CovR and VicRK to include 

a core (pgfS) as well as a non-core (cnm) gene.  In addition, our findings further underscore the 

importance of Cnm in S. mutans-host interactions. 

 

Importance. Streptococcus mutans is the main etiological agent of dental caries, the most 

prevalent infectious disease in the world. Also, S. mutans can cause systemic infections such as 

infective endocarditis resulting in high mortality and morbidity rates.  The Cnm adhesin of S. 

mutans is an important virulence factor that is associated with systemic infections and more 

recently was demonstrated to contribute to caries. Despite the association of Cnm with both oral 

and non-oral infections, the regulatory mechanisms governing its expression are poorly 



53 
 

understood. Here, we identify two independent regulatory systems that control Cnm production. A 

better understanding of the mechanisms controlling the expression of virulence factors like Cnm 

can facilitate the development of new strategies for combating bacterial infections. 

 

Introduction 

Streptococcus mutans is a major pathogen associated with dental caries and also 

implicated in extra-oral infections, in particular infective endocarditis (IE) (1, 2). Once in the 

bloodstream, S. mutans must first escape host surveillance mechanisms and then rely on its ability 

to interact with components of the extracellular matrix (ECM) in order to adhere to and colonize 

non-oral tissues (3).  In S. mutans, Cnm (collagen-binding protein of S. mutans) is a surface 

adhesin that mediates binding to both collagen and laminin (4, 5).  Interestingly, the expression of 

Cnm has been associated with a variety of systemic infections such as IE, hemorrhagic stroke, 

cerebral microbleeds and IgA nephropathy, among others (6-8). The cnm gene is found in 

approximately 15% of clinical isolates and is particularly prevalent in strains isolated from blood 

and specimens of heart valves (2, 9). Although Cnm can be found in the four S. mutans serotypes 

(c, e, f and k), it is more commonly present in strains of the less prevalent serotypes e, f, and k, 

and rarely in strains of the more prevalent serotype c (4, 5). Studies from our group revealed that 

Cnm mediates S. mutans  binding to collagen and laminin, and is responsible for intracellular 

invasion of human coronary artery endothelial cells (HCAEC) and virulence in Galleria mellonella, 

an invertebrate model of systemic infection (5, 10). We have also showed that Cnm is a 

glycoprotein that is post-tranlationally modified by at least one glycosyltransferase, pgfS, located 

immediately downstream the cnm gene (11). 

To succeed as a pathogen, bacteria must sense and rapidly adapt to many adverse 

conditions encountered during the invasion and colonization process. This adaptation commonly 

depend on signal transduction two-component systems (TCS) that are comprised of an 

environmental sensing membrane-bound histidine kinase (HK) that activates a response regulator 
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(RR), which is a DNA binding protein that modulates expression of target genes when 

phosphorylated by the HK.  In the cnm-negative S. mutans strain UA159, 14 complete TCS have 

been identified (12, 13) including a TCS designated VicRK (Vic, for virulence control) as well as 

an orphan RR, CovR (control of virulence; also known as GcrR).  In UA159, VicR and CovR directly 

regulate genes implicated in the synthesis of and interaction with extracellular polysaccharides 

(14-17), which are major components of the dental biofilm matrix and directly associated with S. 

mutans pathogenicity (18, 19).  For example, gbpB (glucan binding protein B) was found to be 

positively regulated by VicR (17, 20), while gtfB, gtfC (glucosyltransferase B and C) and gbpC 

(glucan binding protein C) are repressed by CovR (16). More recently, CovR and VicRK were also 

shown to contribute to S. mutans ability to interactact with components of the immune system (21-

23). Specifically, CovR was shown to regulate susceptibility to complement immunity and survival 

in blood which was strongly associated with increased expression of genes involved with 

production of or interaction with extracellular polysaccharides (gtfB, gtfC, gbpC, gbpB and epsC) 

(22). On the other hand, a vicK mutant strain showed reduced susceptibility to deposition of C3b 

of complement, low binding to serum immunoglobulin G (IgG), and low frequency of 

opsonophagocytosis by polymorphonuclear (PMN) in a sucrose-independent fashion (21). In 

addition, the ΔvicK strain showed strong interaction with human fibronectin, another important 

component of the host ECM (21). 

Because Cnm is an important virulence factor of S. mutans responsible for tight interactions 

with ECM components and shown to interfere with complement activation (5, 24) and both CovR 

and VicRK are critical regulators of virulence genes in S. mutans, we investigated wether cnm was 

regulated by CovR, VicRK, or both. Through in silico analysis, we identified CovR and VicR 

consensus motifs in the regulatory regions located upstream cnm and pgfS, a gene encoding a 

glycosyltransferase involved in Cnm glycosylation. Using mutational and in vitro approaches, we 

demonstrated that CovR and VicRK are directly and specifically involved in the transcriptional 

regulation of cnm and pgfS in the Cnm+ strain OMZ175. CovR was shown to function as a positive 
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regulator of cnm and pgfS while the VicRK system functioned as a repressor of both genes.  In 

agreement with the role of VicRK as a negative regulator of cnm and pgfS, inactivation of vicK in 

OMZ175 resulted in increased binding to collagen and laminin, increased invasion of HCAEC, and 

increased virulence in G. mellonella.  Inactivation of covR in OMZ175 decreased HCAEC invasion 

rates as compared to the parent strain but did not affect virulence in G. mellonella. Unexpectedly, 

the covR mutant strain showed increased binding to collagen and laminin.  Collectively, our results 

expand the repertoire of virulence-related genes regulated by CovR and VicRK to include a core 

(pgfS) as well as a non-core (cnm) gene.  In addition, our findings further underscore the 

importance of Cnm in S. mutans-host interactions. 

 

Results 

CovR and VicRK are involved in regulation of cnm and pgfS 

In silico analysis identified consensus sequences for CovR and VicR binding in the 

promoter regions of cnm and pgfS (Table 1).  Putative CovR- and VicR-binding sites were located 

29 bp (CovR) and 5 bp (VicR) from the predicted -10 region of the cnm promoter. The CovR motif 

had 4 mismatches whereas the VicR motif displayed two mismatches from their respective 

consensus motifs (17). In addition, overlapping CovR-binding motif (3 mismatches, 131 bp from 

the predicted -10  region of pgfS promoter) and VicR-binding motif (2 mismatches, 125 bp from 

from the predicted -10  region of pgfS promoter) were identified in the intergenic region upstream 

pgfS,  a gene previously shown to be involved in the posttranslational modification of Cnm (11). 

To determine whether CovR and VicRK regulate transcription of cnm and pgfS, we 

inactivated the covR and vicK genes from the Cnm+ strain OMZ175 to generate, respectively, the 

OMZ175ΔcovR and OMZ175ΔvicK strains. Of note, vicR is an essential gene in S. mutans (15) 

and studies on the role of the VicRK TCS in this organism have resorted to phenotypic 

characterizations of vicK mutans and in vitro promoter binding assays using recombinant VicR 

protein (15, 17, 25, 26). When compared to the parent strain OMZ175, the relative levels of of cnm 
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and pgfS transcripts were significantly lower (p<0.05) in OMZ175ΔcovR by 1.5- and 2-fold, 

respectively (Fig. 1A-B). On the other hand, expression of cnm and pgfS was increased by 3- and 

2.5-fold (p<0.01), respectively, in OMZ175ΔvicK when compared to the parent strain OMZ175.  

We also assessed the transcriptional levels of pgfS in the ΔcovR and ΔvicK mutants of UA159 and 

observed similar patterns of regulation, i.e. downregulated in ΔcovR and upregulated in ΔvicK (Fig. 

1C), suggesting that regulation of the core gene pgfS is conserved among S. mutans strains. 

Next, we performed Western blot analysis to determine the levels of Cnm in the OMZ175, 

OMZ175ΔcovR and OMZ175ΔvicK strains. In agreement with the qRT-PCR analysis, the levels of 

Cnm were reduced by 50% in OMZ175ΔcovR and elevated (2-fold) in OMZ175ΔvicK as 

compared to OMZ175 (Fig. 1D); Cnm levels were restored to wild-type levels in the complemented 

covR (ΔcovR+) and vicK (ΔvicK+) strains.  

 

CovR and VicR directly bind to the promoter regions of cnm and pgfS in vitro 

Next, we used electrophoretic mobility shift assays (EMSAs) with rCovR and rVicR proteins 

to determine whether the regulatory effects in cnm and pgfS expression observed in the ΔcovR 

and ΔvicK strains were direct or indirect. The results indicate that both CovR and VicR specifically 

bind to the promoter regions of cnm and pgfS, an effect that was reversed by addition of unlabeled 

(cold) DNA probe 200-fold in excess (Fig. 2). To further demonstrate specificity of the assays, we 

used covR (CovR autoregulated) and gbpB (a direct VicR target) DNA probes as positive controls 

and gtfD and covR DNA as negative controls for rCovR and rVicR, respectively.  As expected, 

rCovR interacted with the covR probe but not with the gtfD probe whereas rVicR interacted with 

the gbpB probe but not with covR DNA (data not shown).    

 

Inactivation of covR and vicK affects the expression of Cnm-dependent phenotypes 

The results described above revealed that CovR and VicR directly control cnm expression 

in S. mutans. Here, we tested whether the different levels of Cnm in the ΔcovR and ΔvicK strains 
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would reflect in phenotypic changes that relate to Cnm expression. Specifically, we assessed the 

capacity of the ΔcovR and ΔvicK mutant strains to bind to collagen or lamimin in vitro, invade 

HCAEC and kill G. mellonella. As expected, considering the negative role of the VicRK system in 

cnm expression (Fig. 1), when compared to the parent OMZ175 strain, the OMZ175ΔvicK mutant 

showed increased binding to either collagen or laminin (>250-fold), increased HCAEC invasion 

(2.5-fold) rates and slightly enhanced (albeit not statistically significant) virulence in G. mellonella 

(Fig. 3).  Unexpectedly, the OMZ175ΔcovR also showed enhanced ability to bind to collagen or 

laminin (20- and 10-fold, respectively) whereas HCAEC invasion rates were reduced by 

approximately 50% and virulence in G. mellonella was not altered (Fig. 3).  Given the unexpected 

finding that covR inactivation, a negative regulator of cnm, led to increases in collagen/lamining 

binding activities, we investigated the effect of covR inactivation to collagen and laminin binding 

efficiency in S. mutans B14, a serotype e Cnm+ strain also shown to avidly bind to collagen or 

laminin in a Cnm-dependent manner (5). We found that the B14ΔcovR strain displayed collagen- 

and laminin- binding profiles similar (i.e., enhanced binding when compared to the parent B14 

strain) to those observed for the OMZ175ΔcovR strain (data not shown). 

 

Discussion 

In S. mutans, Cnm is a surface-associated glycoprotein shown to mediate adhesion to 

collagen and laminin and invasion of endothelial cells (4, 5).  In addition, we and others have shown 

that Cnm is a virulence factor that contributes to systemic virulence of S. mutans in the G. 

mellonella invertebrate model (5), to S. mutans infectivity in a rabbit model of infective endocarditis 

(27, 28), and to caries severity in a rat model (29). However, the mechanisms regulating expression 

of cnm remain largely unknown. More recently, we found that cnm is genetically-linked to pgfS, 

which encodes for a glycosyltransferase involved in the O-glycosylation of Cnm (11). Because 

glycosylation confers increased stability to Cnm, the inactivation of pgfS led to a decrease in 

several Cnm-mediated phenotypes (11). In the present study, we show that both cnm and pgfS 
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are directly regulated by CovR and VicRK providing the first evidence of direct regulation of a non-

core gene (cnm) and flanking core gene (pgfS) by these important virulence gene regulators. 

In Staphylococcus aureus, WalR, a VicR homolog, was shown to bind to a conserved DNA 

motif, consisting of two hexanucleotide direct repeats, separated by five nucleotides [5'-

TGT(A/T)A(A/T/C)-N(5)-TGT(A/T)A(A/T/C)-3'] (30). More recently, a VicR consensus binding site 

almost identical to that found in S. aureus was described in S. mutans [5’-

TGT(A/T)(A/T)(T/A)A(A/T)(T/A)(T/A)(T/C)(A/G)(T/A)N(A/T) (17). VicR controls, directly or 

indirectly, the expression of genes involved in the synthesis of expolysaccharides (gtfBC, gtfD), 

glucan-binding proteins (gbpB), proteins associated with cell wall biogenesis (smaA, lysM, wapE), 

competence (comC, comDE, comX) and mutacins (nlmAB, nlmC, nlmD) (15, 17, 25, 26). While 

the VicRK TCS typically acts as a direct activator of genes involved in biofilm formation (15, 17), 

VicRK was also shown to function as a transcriptional repressor (17, 21). In the serotype c strain 

UA159, CovR was shown to regulate the expression of at least 128 genes (6.5% of the entire 

genome) (31). Previous studies have indicated a significant overlap between the CovR and VicRK 

regulons in the UA159 strain (17, 26). Interestingly, CovR and VicR often regulate the same gene 

in an opposite manner whereby one regulator functions as an activator while the other serves as 

a repressor (13, 16, 17). Consistent with the roles of CovR and VicRK in coordinating expression 

of virulence genes in S. mutans, here we identified cnm and pgfS as additional examples of 

virulence-related genes that are co-regulated by CovR and VicRK. The location of the CovR- and 

VicR consensus binding sequences in the cnm regulatory region offered clues of the functional 

roles of CovR and VicR. Usually, transcription activators bind upstream the -35 region such that 

RNA polymerase interactions with DNA are facilitated by the transcriptional regulator-DNA 

interaction. On the other hand, repressors generally compete with the RNA polymerase for binding 

to the promoter region such that consensus binding sequences of repressors are often located 

very close or overlap with the -35 and -10 sequences. The consensus CovR-binding sequence, 

shown to function as positive regulator for cnm, was located 29 bp upstream of the predicted -10 
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region.  On the other hand, VicR consensus sequence, shown to function as a negative regulator, 

was located 5 bp downstream of the predicted -10 sequence of the cnm promoter; potentially 

allowing VicR to interfere with the RNA polymerase recognition of the promoter sequence. In the 

pgfS regulatory region, CovR and VicR binding motifs are located in a distal site from the -10 region 

and overlap by 7 bp. Thus, the overlapping location of both VicR and CovR bindings sites in the 

pgfS promoter suggests that these regulators compete for the same DNA region to exert its 

function. 

In bacteria, protein glycosylation contributes to protein folding and secondary structure 

formation, cell adhesion, thermodynamic stability, modulation of immune recognition and 

protection against proteolytic degradation (32, 33). While protein targets of PgfS-mediated 

glycosylation other than Cnm have not been identified, it is likely that PgfS modifies proteins that 

are part of the S. mutans core genome considering that pgfS itself is part of the S. mutans core 

genome.  In fact, preliminary two-dimensional (2D) lectin blot analysis identified several protein 

spots recognizing wheat germ agglutinin (WGA) that are absent in the pgfS strain (unpublished 

data). Thus, the transcriptional regulation of pgfS by CovR and VicRK suggests that S. mutans 

protein glycosylation profiles may vary according to environmental cues that trigger CovR and 

VicRK regulatory activities. The regulation of pgfS by CovR and VicRK and the importance of 

protein glycosylation to S. mutans pathophysiology represent new aspects of S. mutans research 

that deserves further scrutiny. 

While the negative (repressor) role of VicRK in the transcription of cnm was in agreement with 

the expression of Cnm-related phenotypes in the vicK strain, the increased collagen- and laminin-

binding activities of the covR strain were unexpected given that CovR was shown to function as 

a positive transcriptional regulator of cnm. On the other hand, the differences in Cnm levels in the 

OMZ175ΔcovR was consistent with the impaired ability of this mutant to invade HCAECs, a trait 

that is also linked to Cnm expression (5, 27). There are least two additional surface proteins in S. 
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mutans, namely SpaP and WapA, that have been shown to interact with collagen in vitro (34-36). 

Thus, we wondered if expression of one or both proteins was overexpressed in the OMZ175ΔcovR 

strain thereby providing an explanation for the unexpected increase in collagen (and laminin) 

binding of the ΔcovR strain.  Western blot analysis using anti-WapA and anti-SpaP specific 

antibodies (a gift from Dr. L. J. Brady, University of Florida) revealed that expression of either SpaP 

or WapA was not altered in the OMZ175ΔcovR strain when compared to the parent OMZ175 strain 

(data not shown).  Additional studies to identify, localize and quantify all surface-associated 

proteins in OMZ175 and OMZ175ΔcovR will soon be underway as a way to understand the 

increased ECM-binding activity of the ΔcovR strain. 

While expression of Cnm has been intimately associated with intracellular invasion and 

increased virulence in G. mellonella (5), the ΔcovR mutant of OMZ175 showed diminished HCAEC 

invasion rates when compared to the parent strain but no differences in G. mellonella killing 

kinetics. In the S. mutans UA159 strain, deletion of covR has been associated with increased 

systemic virulence based on enhanced resistance to complement-mediated opsonophagocytosis 

by PMNs, increased persistence in human blood ex vivo and in the bloodstream of rats (22). While 

the loss of CovR has a negative effect on cnm expression, there may be other virulence factors 

that are negatively regulated by CovR that contribute to the systemic virulence of OMZ175 that 

may compensate for the lower expression of Cnm in the OMZ175ΔcovR. 

In summary, the present study identifies CovR and VicRK as direct regulators of cnm and 

pgfS in S. mutans. The altered transcriptional levels of cnm and pgfS observed in the covR and 

vicK mutants affected phenotypes associated with Cnm expression, including collagen- and -

laminin binding, invasion of HCAEC and systemic virulence in G. mellonella. These findings open 

new venues to understand the molecular mechanisms involved in the expression of these 

important virulence genes of S. mutans, which is crucial for defining strategies to control systemic 

infections by this oral pathogen. 

 



61 
 

Material and Methods 

Bacterial strains and culture conditions. Strains used in this study are listed in Table 2.  All E. 

coli strains were routinely grown in Luria-Bertani (LB) media at 37°C. When required, kanamycin 

(100 ug mL-1) or ampicillin (100 ug mL-1) was added to LB broth or agar plates.  Strains of S. 

mutans were routinely cultured in brain heart infusion (BHI) medium at 37°C in a humidified 5% 

CO2 atmosphere. When required, kanamycin (1000 ug mL-1), erythromycin (10 ug mL-1) or 

spectinomycin (1500 ug mL-1) was added to BHI broth or agar plates.  

 

Genetic manipulation of S. mutans OMZ175. Mutations of covR and vicK in OMZ175 were 

generated by amplifying the flanking and coding regions of covR and vicK from the S. mutans 

UA159 background strain that had been previously replaced by an erythromycin resistance 

cassette generating the ΔcovR and ΔvicK mutants in UA159 (20, 23).  Then, 100 ng of the PCR 

product was used to transform OMZ175 in the presence of the ComX-inducing peptide (XIP) as 

described elsewhere (37). Transformants were selected on plates containing erythromycin and 

gene inactivations confirmed by PCR and DNA sequencing analysis. To construct a covR 

complemented strain, the full-length covR gene was cloned into the integration vector pMC340B 

(38). The resulting plasmid (pMCcovR) was then tranformed into the covR mutant strain 

(OMZ175ΔcovR) for integration at the mtlA1 locus. Complemented strains were selected on plates 

containing kanamycin and positive clones confirmed by PCR and sequencing of the mltA1 locus. 

To complement the vicK OMZ175 mutant strain, the plasmid pDL278-vicK previously used to 

complement the vicK mutant in UA159 (20) was used to transform the OMZ175ΔvicK strain. 

Transformants were selected on plates containing spectinomycin and screened by PCR.  All 

primers used for the genetic manipulation of S. mutans are listed in Table 3. 

 

qRT-PCR analysis. RNA was extracted from cultures grown to mid-exponential phase (OD600  

0.3) as previously described (39).  Briefly, cDNA from 0.5 g of RNA was synthesized using a high-
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capacity cDNA reverse transcriptase kit containing random primers (Applied Biosystems).  Gene-

specific primers for the cnm and pgfS coding sequences (Table 3) were designed using Beacon 

Designer 2.0 (Premier Biosoft International) to amplify region of each gene 85 to 200 bp in length. 

Quantitative real-time PCR (qRT-PCR) reactions were performed in an iCycler (Bio-Rad). 

 

Western blot analysis. Whole-cell protein lysates were obtained by homogenization in the 

presence of 0.1-mm glass beads using a bead beater (Biospec). Protein concentration was 

determined using the bicinchoninic acid assay (Pierce). Protein lysates were separated by 10% 

SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membranes (Millipore). Cnm 

detection was performed using rabbit anti-rCnmA (recombinant A domain of Cnm) polyclonal 

antibody (10) diluted 1:2000 in phosphate-buffered saline (PBS) plus 0.01% Tween 20 and anti-

rabbit horseradish peroxidase (HRP)-coupled antibody (Sigma-Aldrich). Western blots were 

quantified using ImageJ software.  

 

Production of recombinant rCovR and rVicR protein and Electrophoretic Mobility Shift 

Assay (EMSA).  To obtain His-tagged rCovR and rVicR recombinant proteins, E. coli BL21 

harboring the expression vectors pET-covR or pET-vicR (17) were grown in LB to an OD600  of  0.5 

and expression of rCovR or rVicR induced for 3 h with 1 mM isopropyl-𝛽-D-1-thiogalactopyrosinide 

(IPTG). After cell lysis, recombinant proteins were purified by affinity chromatography with Ni2+-

NTA agarose (Qiagen). Eluted recombinant proteins were dialyzed overnight in phosphate 

buffered saline (PBS) at 4°C. Aliquots of purified proteins were stored at -20°C in 10% glycerol. 

Protein samples were analyzed by SDS-PAGE followed by Coomassie blue staining. The 

concentrations of rCovR and rVicR were determined using the bicinconinic acid assay (BCA). To 

confirm the identity of the purified recombinant proteins, mass-spectometry analysis was 

performed in the UF ICBR Proteomics and Mass Spectrometry core facility. 
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For EMSAs, amplicons of the promoter regions of cnm, pgfS, gbpB (VicR positive control), covR 

(CovR positive control and VicR negative control) and gtfD (CovR negative control) were obtained 

with specific primers (Table 3) and biotynilated using the Biotin 3’ End DNA Labeling Kit (Thermo 

Scientific). Binding reactions of labeled DNA (~20 fmoles) with rCovR or rVicR (0, 5, 10 pmol) were 

carried out in volumes of 20 µL containing 1X Binding Buffer [100 mM Tris, 500 KCl, 10 mM DTT; 

pH 7.5], poly L-lysine (50 ng μl-1), unspecific competitor poly d(I-C). Samples were incubated at 

room temperature for 45 min, and DNA-protein complexes separated in non-denaturing 6% 

acrylamide gels in 0.5 X TBE buffer (pH 8.0). Protein-DNA complexes were electrotransferred to 

positively charged nylon membranes (Thermo Scientific Fisher) and detected with the LightShift 

Chemiluminescent EMSA Kit using Stabilized Streptavidin Horseradish Peroxidase conjugate 

(Thermo Scientific), according to the manufacturer’s protocol. To assess the specificity of binding, 

a 200-fold excess of unlabeled test fragment (cold DNA) was incubated with rCovR or rVicR in 

each reaction mixture.  

 

ECM binding assay. In vitro assays for collagen and laminin binding were performed as described 

elsewhere (10). Briefly, for ECM binding assays, 100 µl of PBS-washed bacterial suspensions 

containing approximately 1x109 CFU ml-1 was added to each well of a microtiter plate coated for 

18 h at 4°C with 40 μg ml-1 type I collagen from rat tail (Sigma-Aldrich) or 50 μg ml-1 mouse laminin 

(Becton-Dickinson). Adherent cells were stained with 0.05% crystal violet (CV) solution, and 

detected by the absorbance at 575nm.  

 

Human Coronary Artery Endothelial Cell (HCAEC) invasion assay. Antibiotic protection 

assays were performed to assess the capacity of the mutant strains to invade HCAEC (5, 40). 

Briefly, primary HCAEC (Lonza) suspensions containing 0.5 x105 endothelial cells were seeded 

into the wells of 24-well flat-bottomed tissue culture plates and incubated in the presence of 

gentamicin and endothelial growth factor supplements (Lonza) at 37°C in a 5% CO2 atmosphere 
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until they reached 80-90% confluence. Overnight bacterial cultures were washed twice in PBS (pH 

7.2) and resuspended in endothelial cell basal medium (EBM-2) (Lonza) containing 2% fetal bovine 

serum (FBS) without antibiotics. One milliliter of 2% FBS-EBM-2 medium containing 1x107 CFU 

ml-1 of S. mutans was used to infect HCAEC-containing wells at a multiplicity of infection (MOI) of 

100:1 for 2 h in the absence of antibiotics followed by 3 h incubation in 1 ml of  2%FBS-EBM-2 

medium containing 300 μg ml-1 gentamicin and 50 μg ml-1 penicillin G to kill extracellular bacteria. 

After incubation with antibiotics, HCAECs were lysed with 1 ml of sterile water and the mixture of 

lysed HCAEC and S. mutans plated onto TSA agar to determine the number of intracellular 

bacteria.  The percentage of invasion for each strain was calculated based on the initial inoculum 

and the intracellular bacteria recovered from HCAEC lysates.  

 

Galleria mellonella infection. Cultures of S. mutans grown overnight were washed twice in sterile 

saline and  5 µl aliquots of the resuspended culture containing 1x108 CFU/ml injected into the 

hemocoel of each larva via the last left proleg of G. mellonella larvae (weighing 0.2 to 0.3 g) (39). 

Larvae injected with heat-inactivated S. mutans OMZ175 (30 min at 80°C) or sterile saline were 

used as controls. After injection, larvae were kept in the dark at 37°C, and survival was recorded 

at selected intervals.  

 

Statistical Analysis A one-way analysis of variance (ANOVA) was performed to verify the 

significance of binding and invasion assays. Kaplan-Meier killing curves were plotted for G. 

mellenolla infection assays, and estimations of differences in survival were compared using the 

log rank test. P values  0.05 were considered significant. 
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Figure 1. Transcriptional levels of cnm and pgfS and of abundance of Cnm in S. mutans OMZ175 

and derivatives. Relative levels of gene transcripts of cnm and pgfS in mid-exponentially grown 

cells were determined by qRT-PCR. Levels of gene transcripts of cnm (A) and (B) pgfS in ΔcovR 

and ΔvicK mutant strains of OMZ175, and pgfs (C) in mutant strains of the cnm-negative UA159. 
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Columns and bars indicate average and standard deviations of at least three independent 

experiments, respectively. Asterisks indicate significant differences in relation to parent strain 

(analysis of variance with post hoc Dunnett’s test; *p<.05). (D) Detection of Cnm in cell extract of 

S. mutans strains by Western blot analysis. The Δcnm strain was used as a negative control.  Blots 

shown are representatives of three independent experiments.  

 

 

 

 

 

Figure 2. VicR and CovR directly interact with promoter regions of cnm and pgfS. Recombinant 

CovR (rCovR) and VicR (rVicR) specifically bound to the promoter regions of cnm (A) and (B) pgfS 

as determined by EMSA.  Each reaction was performed with 0, 5 or 10 pmol of rCovR or rVicR. 

Specificity of binding was confirmed in competitive assays with excess of unlabeled specific DNA 

(cold). Data shown is a representative of three or more independent experiments.  
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Table 1. Sequence and position of the CovR/VicR binding sites in each gene promoter. 

 

Consensus for CovR AWATTTTTAAWAAAAR and for VicR: TGTWWWAWWNWYRWNW, where 

W is A or T, R is C or A, Y is C or T, and R is A or G (17). Lower case indicates mismatch. * 

Distance from putative -10 sequence. 

  

NCBI gene 

number 

Gene name Putative binding motif Strand Position 

(bp)* 

CovR consensus motif 
   

OMZ175                    cnm tcgTTTTTAATcAAAt + 29 

OMZ175                   pgfS cTATTTTTAAgAAcAC - 133 

VicR consensus motif 
   

OMZ175                       cnm TGTAATATTcTtgTTA + 5 

OMZ175                       pgfS TGTTcTAAAcTATTT - 125 
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Table 2. Strains used in this study. 

 

 

 

 

 

 

 

  

Strain Serotype Relevant characteristics Source 

S. mutans    

OMZ175  f Dental plaque B. Guggenheim 

OMZ175:∆cnm f ∆cnm::Kanr (5) 

OMZ175:∆covR f ∆covR::Ermr This study 

OMZ175:∆vicK f ∆vicK::Ermr This study 

OMZ175:∆covR+ f pMC340B::SMU_1924; Kanr This study 

OMZ175:∆vicK+ f ∆vicK::Ermr; pDL278::SMU.1516; 

Specr 

This study 

B14 e Dental plaque A. Bleiweis 

B14:∆covR e ∆covR::Ermr This study 

UA159 c Dental plaque  University of Alabama 

UAcov c ∆covR::Ermr (23) 

UAvic c ∆vicK::Ermr (20) 

E. coli    

BL21-

pETrCovRSmu 

- pET22B::covR (17) 

BL21-pETrVicRSmu - pET22B::vicR (17) 
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Table 3. Oligonucleotides used in this study.  

Primer Sequence a  Product size 

(bp) 

Source 

Mutant construct   

P1 covR CGTTCTATGAAACCTGTTGA 2,038 (23) 

P4 covR CTGCCAACTCATCCATAAC   

P1 vicK 

P4 vicK 

TTACCAGATGCTTTTGTTGCT 

CTCTTGCCGTCTTTCATCAG 

2,036 (20) 

C1 covR-SphI CCTCTACCCAGCATGCCAATGGAAC 1,039 This study 

C2 covR-XhoI GTCCAATTTCTCGAGTTATCGCGTG   

qPCR analysis 

 covR-RTF CGAAATATGGCACGAACAC 185 (17) 

covR-RTR AGAGATGGACGGGTATGAA   

vicK-RTF 

vicK-RTR 

CGGCGTGATGAATATGATGAA 

GAGGTTAATGGTGTCCGCAGT 

185 (17) 

pgfS-RTF CACCCTCCTGCTCTCATTCC 166 This study 

pgfS-RTR TGCCATCTGTTAACTGCACAT   

cnm-CF 

cnm-CR 

CTGAGGTTACTGTCGTTAAA 

CAC TGTCTACATAAGCAT TC 

137 (41) 

EMSA    

SMU.22-gbpB-F 

SMU.22-gbpB-R 

TTGACAGCTTATCCTTTAAATG 

TTTACAGCTGATAATGTTGTCG 

300 (17) 

SMU.910-gtfD-F 

SMU.910-gtfD-R 

TCTCTCCTGACCACTCCCTTA 

TACCCAGTGCTTTTTAACCTTG 

324 (17) 

SMU.1924-covR-F 

SMU.1924-covR-R 

AGATGTCCTCTACCCATTGA 

CCTCATATCCTTCATGTTGTA 

356 (17) 

Cnm-EMSA-F 

Cnm-EMSA-R 

CTTCAAGCCAGTCATCTG 

CAAAATGATGGCAACGGTT 

340 This study 

SMU.2067-pgfS-F 

SMU.2067-pgfS-R 

CTTGCAGCTGTCTCAATG 

TCAATCATTTTTTCTTCATTG 

350 This study 

                      a Underlined sequences indicate restriction enzyme sites. 
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3 DISCUSSÃO  
  

Embora a imunidade mediada pelo complemento seja reconhecida como um importante 

fator de defesa do sangue contra Streptococcus spp. (Walport, 2001; Brown et al., 2002; Lambris 

et al., 2008), o perfil de susceptibilidade à opsonização pelo complemento em S. mutans ainda era 

desconhecido. Assim, neste trabalho caracterizamos e comparamos os padrões de deposição de 

C3b entre cepas isoladas de sangue de pacientes com bacteremia associadas ou não à endocardite 

infecciosa, e isolados da cavidade bucal. Ainda, investigamos o papel dos SDCs CovR e VicRK na 

susceptibilidade de S. mutans à deposição de C3b do complemento, à fagocitose mediada por C3b 

por PMN de sangue periférico, à morte em PMN e persistência em sangue humano e de ratos, 

utilizando modelos ex vivo e in vivo, respectivamente.  

Demonstramos no Capítulo I, que cepas de S. mutans isoladas de sangue apresentam menor 

susceptibilidade à deposição de C3b comparadas a isolados bucais, sendo essa baixa 

susceptibilidade associada com menor expressão de covR nos isolados de sangue (Alves et al., 

2016). A inativação de covR em cepas do sorotipo c não apenas aumenta a expressão de genes 

envolvidos com a síntese de glucanos derivados da sacarose (gtfB, gtfC e gtfD), mas também de 

genes que codificam proteínas de superfície ligadoras de glucano GbpB, GbpC e EpsC, as quais 

são envolvidas com a ligação estável destes polímeros à superfície de S. mutans durante a formação 

de biofilmes na presença de sacarose (Biswas & Biswas, 2006; Biswas & Biswas, 2007; Duque et 

al., 2011; Stipp et al., 2013). Assim, a baixa deposição de C3b observada nos isolados de sangue 

foi associada com a menor expressão de covR e aumento na transcrição de genes reprimidos por 

CovR, envolvidos na interação de S. mutans a PEC (gbpB, gbpC e epsC). Ainda neste capítulo, 

caracterizamos pela primeira vez o papel do regulador CovR na imunidade mediada pelo 

complemento e na sobrevivência em sangue humano na espécie S. mutans. Em S. pyogenes o 

sistema CovRS regula fatores associados no escape ao sistema complemento e de genes envolvidos 

com virulência sistêmica, incluindo-se o operon para a síntese da cápsula de ácido hialurônico 

(operon hasABC), ska (codificador de estreptoquinase, envolvida na degradação de proteínas do 

complemento através da ativação de plasminogênio em plasmina) e sagA (codificador de 

estreptolisina S, a qual inibe a fagocitose e é citotóxica) (Federle et al., 1999; Agrahari et al., 2013). 

Entretanto, os genomas de cepas S. mutans não albergam nenhum destes genes de virulência (Ajdić 

et al., 2002; Cornejo et al., 2013). Demonstramos que a inativação de covR na cepa S. mutans 
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UA159 (sorotipo c) reduziu drasticamente a deposição de C3b, a ligação de IgG, como também a 

fagocitose mediada pelos receptores para C3b/iC3b e morte intracelular em PMNs humanos. 

Demonstramos ainda que a via clássica (mediada por C1q) é essencial para ativação do 

complemento em S. mutans, uma vez que níveis irrelevantes de C3b se ligam a cepas tratadas com 

soro humano defectivo em C1q. Mostramos ainda, que a inativação de covR afeta a sobrevivência 

de S. mutans em sangue humano utilizando modelo ex vivo e aumenta a habilidade de causar 

bacteremia em modelos de ratos (Alves et al., 2016). No capítulo I, demonstramos também que a 

interação de S. mutans com PEC derivados da sacarose (glucano) afeta significativamente todas as 

funções mediadas pelo sistema imune investigadas em S. mutans. Esses resultados mostram um 

novo papel dos glucanos na virulência sistêmica desta espécie, o qual tem sido mais associado à 

virulência em biofilmes cariogênicos (Idone et al., 2003; revisado em Koo et al., 2013 e em Klein 

et al., 2015). Assim, os resultados deste capítulo confirmam as primeiras evidências de que os 

glucanos poderiam contribuir para endocardite bacteriana em S. mutans (Munro & Macrina, 1993) 

e estabelecem mecanismos moleculares pelos quais esta espécie consegue persistir na corrente 

sanguínea e sobreviver às funções de defesa do hospedeiro. Em resumo, fornecemos dados que 

suportam um modelo no qual cepas com defeitos na expressão de CovR, tem maior capacidade de 

se ligar de forma estável a PEC (sintetizados no ambiente bucal na presença de sacarose) promovida 

pela maior expressão de proteínas ligadoras de glucano (GbpC e EpsC), o que lhes confere uma 

proteção análoga à de cápsulas polissacarídicas anti-oponizantes após o acesso à corrente 

sanguínea. A importância de cápsulas polissacarídicas na virulência sistêmica e no escape à 

imunidade mediada pelo sistema complemento está bem estabelecida em espécies de estreptococos 

como S. pneumoniae (Hyams et al., 2010; Hyams et al., 2013) e S. pyogenes (Wessels et al., 1991; 

Cole et al., 2010; Falaleeva et al., 2014). Nossos dados são ainda compatíveis com achados de que 

cepas com mutações naturais no sistema CovRS de S. pyogenes são hipervirulentas em humanos e 

em modelos de infecção em animais (Sumby et al., 2006). As razões da baixa expressão de covR 

nos isolados de sangue de S. mutans estão em estudo. Resultados preliminares revelam um grande 

número de mutações nas regiões promotoras de covR restritas a isolados de sangue (Oliveira et al., 

2017). 

No capítulo II, investigamos as razões pelas quais a inativação do sistema VicRK 

inesperadamente aumenta a resistência de S. mutans à imunidade mediada pelo complemento. O 

principal papel do SDC VicRK na cariogenicidade de S. mutans está associado com a indução de 
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genes requeridos para síntese (gtfB/C) e interação (gbpB) com PEC derivado da sacarose 

(Senadheera et al., 2005; Stipp et al., 2013). Portanto, uma vez que estes genes têm expressão 

diminuída no mutante vicK, esperávamos que este mutante fosse mais susceptível à deposição de 

C3b. Como descrito no capítulo I, a interação de SM a PECs é uma importante função de escape 

ao complemento. Entretanto, demonstramos no Capítulo II, que o SDC VicRK, ao contrário de 

CovR (Alves et al., 2016), regula fatores independentes de interação com PEC (Alves et al., 2017). 

A susceptibilidade mediada pelo complemento regulada pelo sistema VicRK foi associada com a 

regulação direta ou indireta dos genes smu.399 e pepO, enolase e gapdH. Os genes smu.399 e pepO 

codificam proteínas com presumível função de degradação de proteínas do complemento. 

Demonstramos que a inativação de ambos estes genes em S. mutans UA159 aumentou 

significativamente a deposição de C3b e consequentemente, a opsonofagocitose de S. mutans, 

revelando novas proteínas envolvidas no escape ao sistema complemento desta espécie. Este 

resultado nos direcionou para o estudo mais detalhado das funções de PepO em S. mutans. Em S. 

pneumoniae, a endopeptidase O (PepO) é uma proteína de ligação à fibronectina e ao 

plasminogênio e está envolvida na ligação à proteína reguladora (inibidora) de fase fluída do 

complemento C4BP (C4b-binding protein) e à proteína C1q com inibição da via clássica de 

ativação do complemento (Agarwal et al., 2013; Agarwal et al., 2014). Como estabelecido no 

capítulo I, a via clássica é a principal via de ativação do complemento em S. mutans. Verificamos 

que PepO expressa por S. mutans também é capaz de se ligar à fibronectina, ao plasminogênio e à 

proteína C1q. Além disto, a inativação de pepO em S. mutans compromete significativamente a 

virulência sistêmica no modelo in vivo de invertebrado Galleria mellonella (dados não publicados). 

Ainda, no capítulo II, demonstramos que a inativação de vicK aumentou fortemente a ligação à 

fibronectina (Alves et al., 2017). Uma vez que a adsorção a componentes da matriz extracelular do 

hospedeiro é reconhecida como importante fator de escape ao sistema complemento utilizado por 

diversas espécies bacterianas (revisado em Lambris et al., 2008), a interação com à fibronectina e 

ao plasminogênio humano pode ser também um dos mecanismos regulados por VicRK envolvidos 

no escape ao sistema complemento na espécie S. mutans. Os fatores regulados por VicRK que 

influenciam na susceptibilidade ao sistema complemento e opsonofagocitose, assim como na 

virulência sistêmica de S. mutans, estão sendo estudados em mais detalhes por nosso grupo. 

Nossa recente descoberta que os SDCs CovR e VicRK regulam fatores associados à 

susceptibilidade ao sistema complemento em S. mutans UA159 (Alves et al., 2016; Alves et al., 
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2017), evidenciou que esses sistemas poderiam estar envolvidos na regulação de genes adicionais 

envolvidos na virulência sistêmica desta espécie. A colaboração e oportunidade do doutorado 

sanduíche na Universidade da Florida (E.U.A.) com o grupo da Dra. Abranches, cuja linha de 

pesquisa é baseada no estudo da proteína Cnm, nos direcionou a identificar sequências consenso 

de ligação das proteínas reguladoras rCovR e rVicR na região promotora de cnm. Compatível com 

nossa hipótese, no capítulo III, verificamos que os SDCs CovR e VicRK regulam diretamente a 

proteína Cnm. Demonstramos que CovR atua como indutor de Cnm, ao contrário do seu papel 

predominante como repressor dos genes envolvidos na interação com a matriz extracelular 

polissacarídica de biofilmes (gtfB/C, ftf, gpbB, epsC) (Biswas et al., 2006; Chong et al., 2008; Stipp 

et al., 2013). Análises do regulon de CovR em UA159 também indicam que CovR atua também 

como um regulador positivo de diversos genes de S. mutans (Dmitriev et al., 2011).  Por outro lado, 

VicRK atua como repressor de Cnm. A inativação de covR e vicK na cepa OMZ175 (cnm positiva) 

foi associada com a regulação dos fatores de virulência mediados por Cnm, como a ligação ao 

colágeno e laminina, invasão às células endoteliais e virulência em modelo de Galleria mellonella 

(Alves et al., 2017b). Além disso, em Staphylococcus aureus, Cna (proteína ortóloga à Cnm) 

parece se ligar e sequestrar C1q, prevenindo a ativação da via clássica do sistema complemento 

(Kang et al., 2013), sugerindo que a proteína Cnm de S. mutans também contribua para o escape 

desta espécie ao sistema complemento. Assim, é provável que Cnm participe não somente no 

processo da adesão de S. mutans aos tecidos cardiovasculares, mas também na persistência das 

cepas cnm-positivas na corrente sanguínea.  

Portanto, os resultados deste trabalho de doutorado revelam um novo papel dos SDCs CovR 

e VicRK como reguladores da expressão de diversas funções de virulência sistêmica de S. mutans, 

associadas ao escape ao sistema complemento, sobrevivência na corrente sanguínea e infecção de 

tecidos cardiovasculares. Através da identificação dos genes regulados por estes SDCs associados 

a estas funções, estabelecemos que cepas da espécie S. mutans podem expressar múltiplos fatores 

de escape à imunidade do hospedeiro, o que é tipicamente observado em linhagens patogênicas de 

espécies de estreptococos (Lambris et al., 2008). Estes achados justificam, portanto, o frequente 

envolvimento da espécie S. mutans em infecções sistêmicas reveladas em estudos clínicos (Nakano 

et al., 2006; Fernandes et al., 2014) e deverão contribuir para a definição de alvos terapêuticos para 

controle de infecções sistêmicas por estes microrganismos.  

 



81 
 

4 CONCLUSÃO  
 
Os dados deste trabalho indicam que:  

1) Cepas S. mutans envolvidas em infecções sistêmicas têm maior resistência ao sistema 

complemento, quando comparadas a isolados bucais.  

2) A diversidade na susceptibilidade de cepas S. mutans à deposição de C3b está associada 

a menor expressão do regulador CovR e consequentemente, ao aumento da expressão 

de genes envolvidos na ligação a glucanos produzidos a partir da sacarose (gbpC e 

epsC). 

3) O SDC VicRK influencia na susceptibilidade de S. mutans à imunidade mediada pelo 

sistema complemento de forma independente da síntese e interação com glucano. 

4) O sistema VicRK regula as proteases Smu.399 e PepO, as quais estão envolvidas no 

escape de S. mutans à imunidade mediada pelo sistema complemento. 

5) Os SDCs CovR e VicRK regulam diretamente o gene que codifica a proteína Cnm 

(cnm). CovR atua como ativador e VicRK como repressor de cnm.  

6) Os SDCs CovR e VicRK coordenam a expressão de múltiplos fatores de escape à 

imunidade mediada pelo sistema complemento e virulência sistêmica de S. mutans.  
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