
DANIEL SAITO 
 
 
 
 

 
 
 
 
 
 
 
 

CARACTERIZAÇÃO DAS COMUNIDADES BACTERIANAS 
ASSOCIADAS ÀS INFECÇÕES ENDODÔNTICAS: ABORDAGEM 

INDEPENDENTE DE CULTIVO 
 
 
 
 

Tese apresentada à Faculdade de Odontologia 

de Piracicaba, da Universidade Estadual de 

Campinas, para obtenção do Título de Doutor 

em Biologia Buco-Dental, Área de 

Concentração Microbiologia e Imunologia. 

 

 

Orientador: Prof. Dr. Reginaldo Bruno Gonçalves 
 
 
 
 
 
 
 
 
 

PIRACICABA 
2007 

 i



 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

FICHA CATALOGRÁFICA ELABORADA PELA 
BIBLIOTECA DA FACULDADE DE ODONTOLOGIA DE PIRACICABA 

Bibliotecário: Marilene Girello – CRB-8a. / 6159 

 

 
              
Sa28c 

 
Saito, Daniel. 
     Caracterização das comunidades bacterianas associadas às 
infecções endodônticas: abordagem independente de cultivo. / 
Daniel Saito. -- Piracicaba, SP : [s.n.], 2007. 
 
     Orientador: Reginaldo Bruno Gonçalves. 
     Tese (Doutorado) – Universidade Estadual de Campinas, 
Faculdade de Odontologia de Piracicaba. 
 
     1. Reação em Cadeia da Polimerase. 2. RNA Ribossômico 
16S. 3. Polimorfismo de Fragmento de Restrição. I. Gonçalves, 
Reginaldo Bruno. II. Universidade Estadual de Campinas. 
Faculdade de Odontologia de Piracicaba. III. Título.                          

(mg/fop) 
 

   
 
Título em Inglês: Characterization of bacterial communities associated with endodontic 
infections: culture-independent approach 
Palavras-chave em Inglês (Keywords): 1. Polymerase Chain Reaction. 2. 16S Ribosomal 
RNA. 3. Restriction Fragment Length Polymorphism. 
Área de Concentração: Microbiologia e Imunologia 
Titulação: Doutor em Biologia Buco-Dental 
Banca Examinadora: Marli de Fátima Fiore, Luis Eduardo Aranha Camargo, José 
Francisco Höfling, Sérgio Roberto Peres Line, Reginaldo Bruno Gonçalves 
Data da Defesa: 14-12-2007 
Programa de Pós-Graduação em Biologia Buco-Dental 
 

 ii



 

 iii



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Dedico este trabalho 
 
 

À minha querida esposa Cris, por todo o seu amor, a 

compreensão e a dedicação 

À nossa filhinha recém-nascida Marieva, que trouxe 

nova inspiração às nossas vidas 

Aos meus pais Wilson e Tsai, pelo amor incondicional 

de uma vida inteira 

À minha irmã Lin, por todo o carinho e a amizade 

compartilhados desde a nossa infância 

Aos meus avós, que sempre me acompanham na 

mente e no coração 

 iv



AGRADECIMENTOS 
 

 

Ao Prof. Dr. Reginaldo Bruno Gonçalves, grande amigo e orientador, cuja experiência e 

sabedoria guiaram meus passos no doutorado, contribuindo imensamente para a minha 

formação acadêmica. 

 

Ao Prof. Dr. José Francisco Höfling, chefe do Laboratório de Microbiologia e Imunologia, amigo 

de longa data e que sempre me apoiou nos momentos mais difíceis dessa caminhada.  

 

Aos amigos do Curso de Pós-Gradução em Biologia Buco-Dental Alessandra Castro Alves, Ana 

Paula Amoras, Bruna de Araújo Lima, Cristiane Duque, Fernando Zamuner, Flávia Sammartino 

Mariano, Gustavo Obando Pereda, Iza Alves Peixoto, Janaína de Cássia Orlandi Sardi, Marlise 

Inêz Klein, Paula Cristina Aníbal, Rafael Nóbrega Stipp, Regianne Umeko Kamiya, Rita de 

Cássia Mardegan, Ruchelle Nogueira, Sérgio Eduardo Braga Cruz, Thaís de Cássia Negrini, 

Vivian Furletti e aos técnicos do Laboratório de Microbiologia e Imunologia Anderson Laerte 

Teixeira e Wilma C. Ferraz, pela grande amizade e pelos momentos de alegria e descontração 

durante toda a nossa convivência. 

 

À Prof. Dra. Siu Mui Tsai, chefe do Laboratório de Biologia Molecular e Celular do CENA – 

USP, por ter cedido espaço precioso em seu laboratório durante o período de dois anos para 

as análises de seqüenciamento de DNA. 

 

À minha querida esposa Cristiane Pereira Borges Saito, por ter me auxiliado na coleta de 

amostras clínicas. 

 

À doutoranda Fabiana de Souza Cannavan e ao Dr. José Elias Gomes e ao Dr. Jorge Luiz 

Mazza Rodrigues, pelo suporte dado às técnicas de PCR, clonagem e seqüenciamento de 16S 

rDNA. 

 

Ao Prof. Renato de Toledo Leonardo, por ter concedido espaço na Clínica de Endodontia da 

Faculdade de Odontologia de Araraquara – UNESP para a coleta de amostras clínicas e, 

principalmente, pela amizade e confiança sempre depositadas em minha pessoa. 

 

 v



Ao Prof. Dr. Alexandre Augusto Zaia, por ter gentilmente concedido espaço no Atendimento de 

Urgência da Faculdade de Odontologia de Piracicaba – UNICAMP para a coleta de amostras 

clínicas. 

 

Ao Prof. Sérgio Roberto Peres Line, pelos inúmeros ensinamentos passados a mim durante o 

meu doutorado e, acima de tudo, pela grande amizade construída ao longo desses anos. 

 

Ao Prof. Dr. Luiz Lehmann Coutinho e a todos os colegas do Laboratório de Biotecnologia 

Animal da ESALQ – USP, por estarem sempre dispostos a dividir a infraestrutura e o 

conhecimento sobre a técnica de PCR em Tempo Real.  

   

Ao Prof. Dr. Terence Lee Marsh e a todos os colegas do Center for Microbial Ecology, Michigan 

State University, pelos ensinamentos sobre a técnica de T-RFLP e ecologia microbiana, e por 

terem cordialmente recebido a mim e a minha esposa. 

 

À Prof. Dra. Vânia Maria Maciel Melo do Centro de Ciências da Universidade Federal do Ceará 

e à Prof. Dra. Vivian Pellizari do Instituto de Ciências Biológicas - USP, colegas de trabalho da 

Michigan State University, pelo apoio e companheirismo dados a mim e a Cris durante o nosso 

intercâmbio. 

 

Ao Dr. Éderson da Conceição Jesus, colega de trabalho da Michigan State University, por ter 

me repassado informações importantíssimas sobre a técnica de T-RFLP.  

 

Aos integrantes da minha banca de qualificação, Prof. Dr. José Francisco Höfling, Prof. Dr. 

Ricardo Della Coletta e Dr. Rogério Castilho Jacinto, pelas importantes considerações feitas ao 

meu trabalho de doutorado. 

 

A Faculdade de Odontologia de Piracicaba e a todos os integrantes do corpo administrativo, 

sem o qual esta tese de doutorado não poderia ser realizada. 

 

A CAPES e a FAPESP, pelo apoio financeiro durante todo o meu Curso de Pós-Graduação e 

por possibilitarem o meu intercâmbio no exterior. 

 

Agradeço sinceramente a todos. 

 vi



RESUMO 

 

A presente tese teve como objetivo a caracterização das comunidades bacterianas 

associadas às infecções endodônticas pelo emprego de técnicas moleculares independentes 

de cultivo. Ao todo, foram analisadas amostras intra-radiculares provenientes de 34 elementos 

dentários associados a infecções endodônticas. A análise de bibliotecas clonais de DNA 

ribossomal 16S (16S rDNA) permitiu a identificação de 2 a 14 filotipos bacterianos (espécies) 

por elemento dentário (média= 9,6), perfazendo um total de 46 filotipos distintos. Dentre estes, 

9% foram considerados previamente desconhecidos e classificados taxonomicamente como 

novos membros da ordem Clostridiales. Espécies reconhecidamente endodônticas dos gêneros 

Bacteroides, Campylobacter, Eubacterium, Peptostreptococcus, Selenomonas, Treponema e 

Veillonella foram detectadas, assim como representantes de gêneros menos freqüentemente 

descritos, como Burkholderia, Filifactor e Megasphaera. O emprego da técnica quantitativa de 

PCR em Tempo Real, possibilitou a detecção de P. gingivalis, T. forsythia e a coexistência de 

ambas em 24%, 56% e 18% dos pacientes avaliados, respectivamente. Nenhuma correlação 

significativa foi evidenciada entre os níveis de ambas as espécies, individualmente ou em 

conjunto, e a presença de sintomatologia dolorosa.  O uso de T-RFLP na avaliação da estrutura 

das comunidades bacterianas revelou um total de 123 (endonuclease HhaI) e 122 

(endonuclease MspI) fragmentos de restrição terminais (T-RFs) distintos, com médias de 20,8 e 

20,0 T-RFs por elemento dentário, respectivamente. Aproximadamente 50% dos fragmentos 

detectados apresentaram-se, no máximo, em 2 pacientes, indicando uma alta variabilidade na 

composição microbiana. As análises de clusterização e de estatística multivariada não 

revelaram diferenças significativas nas comunidades bacterianas entre os grupos de estudo 

assintomático, sensível ao toque e sintomático. De modo geral, os resultados obtidos 

reiteraram o conceito de que a microbiota associada às infecções endodônticas é 

essencialmente polimicrobiana, altamente variável entre indivíduos, e constituída 

predominantemente por bactérias anaeróbias Gram-positivas do filo Firmicutes. As espécies P. 

gingivalis e T. forsythia, embora relativamente prevalentes nas infecções endodônticas, não 

apresentaram correlação significativa com o desenvolvimento de sintomatologia dolorosa. Por 

fim, a ausência de agrupamentos de perfis bacterianos quanto aos parâmetros 

sintomatológicos sugere que a estrutura das comunidades bacterianas intra-radiculares não 

possui influência significativa no desenvolvimento da dor de origem endodôntica. 

Palavras-chave: infecção endodôntica, 16S rDNA, biblioteca clonal, PCR em Tempo Real, 

T-RFLP. 
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ABSTRACT 

 

 The objective of the present study was to characterize the bacterial communities 

associated with endodontic infections by use of culture-independent molecular techniques. 

Overall, 34 intraradicular samples from teeth harboring endodontic infections were evaluated. 

16S ribosomal DNA (16S rDNA) clone library analysis allowed the identification of 2 to 14 

bacterial phylotypes (species) per tooth (mean= 9.6), with a total of 46 distinct phylotypes. 

Among the latter, 4 (9%) were considered previously unreported and further taxonomically 

classified as members of the order Clostridiales. Well-known endodontic representatives of 

Campylobacter, Eubacterium, Peptostreptococcus, Selenomonas, Treponema e Veillonella 

were detected, as well as members of less frequently reported genera, such as Burkholderia, 

Filifactor and Megasphaera. The application of the Real Time PCR technique permitted the 

detection of P. gingivalis, T. forsythia and a coexistence of both in 24%, 56% e 18% of the 

subjects, respectively. No significant correlations were evidenced among the levels of P. 

gingivalis and T. forsythia, individually or conjointly, and spontaneous endodontic pain. The use 

of T-RFLP in the analysis of bacterial community structures revealed a total of 123 (HhaI 

endonuclease) and 122 (MspI endonuclease) distinct terminal restriction fragments (T-RFs), 

with 20.8 and 20.0 mean T-RFs per tooth, respectively. Approximately 50% of the detected 

fragments were exclusive to one or two patients, indicating a high inter-subject variability in the 

bacterial assemblages. Cluster and multivariate statistical analyses did not demonstrate 

significant differences in the bacterial community profiles among the asymptomatic, tender to 

percussion and symptomatic study groups. Taken together, the results of this study reiterate the 

concept that the microbiota associated with endodontic infections is essentially polymicrobial, 

highly variable among individuals, and predominantly composed of Gram-positive anaerobic 

bacteria from the phylum Firmicutes. The species P. gingivalis and T. forsythia, although 

relatively prevalent in root canal infections, did not present significant correlations with the 

development of symptomatic features. Lastly, the absence of clusters of bacterial profiles 

according to symptomatic parameters suggests that the intraradicular bacterial community 

structures, as a whole, do not bear significant influence on the development of pain of 

endodontic origin. 

Keywords: bacteria, endodontic infection, 16S rDNA, clone library, Real Time PCR, T-RFLP.
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INTRODUÇÃO 

 O objetivo principal da terapia endodôntica é a eliminação dos microrganismos 

patogênicos e de seus subprodutos do interior dos canais radiculares, bem como a manutenção 

da condição asséptica pós-operatória (Bystrom & Sundqvist, 1981). Mesmo com os recentes 

avanços técnico-científicos da Odontologia moderna, a permanência de células bacterianas no 

interior dos canais é, ainda, um dos principais motivos de fracasso no tratamento endodôntico 

(Lin et al., 1992). Nesse sentido, o conhecimento da microbiota associada às infecções 

endodônticas constitui requisito fundamental para o desenvolvimento de medidas terapêuticas 

mais efetivas.  

 Anteriormente à década de 1970, as dificuldades existentes com relação à cultura e à 

identificação de organismos anaeróbios mascarava a sua real importância na etiopatogenia das 

alterações pulpares e periapicais de origem infecciosa (Brown & Rudolf, 1957; Grossman, 1959; 

Melville & Birch, 1967). Com a subseqüente evolução das técnicas de cultivo microbiano em 

ambiente anaeróbio, o enfoque microbiológico na Endodontia sofreu grande mudança. A 

microbiota endodôntica, que antes era considerada basicamente composta por microrganismos 

aeróbios facultativos, demonstrou abrigar uma grande proporção de anaeróbios estritos (Gomes 

et al., 2004; Sundqvist, 1992; Fabricius et al., 1982; Sundqvist, 1976; Kantz & Henry, 1974). 

Atualmente, consideram-se as infecções endodônticas essencialmente polimicrobianas, e 

constituída predominantmente por bactérias anaeróbias dos gêneros Actinomyces, 

Campylobacter, Eubacterium, Fusobacterium, Peptococcus, Peptostreptococcus, 

Porphyromonas, Prevotella, Streptococcus, Veillonella, dentre outras.  

Embora a microbiota associada às infecções endodônticas encontre-se amplamente 

caracterizada por estudos de cultivo microbiano, estima-se hoje que aproximadamente 50% das 

bactérias orais não seja capaz de crescer sob condições laboratoriais (Paster et al., 2001; Aas et 

al., 2003). Uma vez que a microbiota endodôntica representa uma parcela restrita da microbiota 

presente na cavidade oral (Sunqvist, 1994), é razoável considerar que parte significativa da 

primeira encontra-se potencialmente subestimada pelos métodos de detecção tradicionais. Sob 

este novo paradigma, abordagens moleculares independentes de cultivo oferecem uma 

alternativa rápida e sensível, permitindo também a caracterização das frações fastidiosa e não-

cultivável da microbiota endodôntica (Munson et al., 2002; Rolph et al., 2001). 

A análise de bibliotecas clonais consiste na amplificação do gene ribossomal 16S (16S 

rDNA) pela Reação em Cadeia da Polimerase (PCR), ligação dos fragmentos amplificados em 

vetor plasmidial, clonagem em Escherichia coli, e seqüenciamento do DNA. As seqüências 

nucleotídicas são submetidas ao alinhamento múltiplo e comparadas juntamente com seqüências 
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de bancos de dados de DNA ribossomal, possibilitando a identificação filogenética das espécies 

bacterianas (filotipos) presentes na amostra. A técnica demonstra grande sensibilidade, gerando 

resultados bem mais informativos que a cultura microbiana (Kroes et al., 1999; Rolph et al., 

1991), com excelente aplicabilidade nos mais diversos microambientes orais, como língua, 

palato, placa sub e supra-gengival,  abscessos dento-alveolares, lesões de cancro e canais 

radiculares (Aas et al., 2003; Paster et al., 2002; Paster et al., 2001; Munson et al., 2002; Rolph 

et al., 2001; Wade et al., 1997). 

As bactérias Porphyromonas gingivalis e Tannerella forsythia possuem fatores de 

virulência amplamente caracterizados (Inagaki et al., 2006; Holt et al., 1999), sendo 

reconhecidamente importantes na etiologia da doença periodontal (Socransky et al., 2002; 

Socransky et al., 1998). Estudos em modelos animais demonstraram que P. gingivalis e T. 

forsythia possuem atividades patogênicas sinergísticas, quando inoculadas em conjunto (Yoneda 

et al., 2001; Takemoto et al., 1997). Embora ambas já tenham sido relatadas em infecções 

endodônticas através da detecção estritamente qualitativa (Foschi et al., 2005; Rôças et al., 

2001; Fouad et al., 2002), a aplicação de técnicas quantitativas pode trazer informações 

adicionais sobre a importância patogênica destas espécies nesse ecossistema. 

A PCR em Tempo Real (Real Time PCR) é uma variante da PCR convencional que 

oferece quantificação sensível e confiável de ácidos nucléicos (Heid et al., 1996). A técnica 

baseia-se no monitoramento da intensidade de fluorescência oriunda da reação de PCR, a qual é 

diretamente proporcional aos níveis do DNA amplificado. Uma vez que os produtos da reação 

são detectados e quantificados diretamente no equipamento, a técnica dispensa o 

processamento posterior, minimizando potenciais erros de análise (Bustin, 2000). Estudos orais 

demonstraram que PCR em Tempo Real possui sensibilidade de detecção 41 vezes superior 

àquela obtida pela contagem de colônias anaeróbias (Martin et al., 2002) e que, nos casos 

específicos de P. gingivalis e T. forsythia, fornece aumentos de 36 a 51% nas respectivas taxas 

de detecção (Verner et al., 2006).  

 A análise de Polimorfismos de Comprimento de Fragmentos Terminais de Restrição (T-

RFLP) é uma técnica baseada na amplificação de DNA, a qual tem sido empregada para se 

investigar a estrutura de comunidades microbianas complexas (Marsh, 2005; Blackwood et al., 

2003; Osborn et al., 2000). Consiste na amplificação de 16S rDNA polimicrobiano por PCR, onde 

um dos primers é marcado por fluorescência na sua porção 5’. A subseqüente digestão com 

endonucleases tetraméricas produz fragmentos terminais de restrição, que são precisamente 

mensurados em seqüenciadores automatizados (Liu et al., 1997). Uma vez que diferentes 

populações microbianas possuem sítios de restrição distintos, um perfil (fingerprint) genético é 

obtido para cada comunidade analisada. A técnica já foi empregada na comparação entre a 
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microbiota de pacientes saudáveis e periodontais (Sakamoto et al., 2003), na determinação de 

mudanças na estrutura de comunidades bacterianas sub-gengivais pós-tratamento (Sakamoto et 

al., 2004), no estudo da influência da qualidade de restaurações na composição da microbiota 

endodôntica (Hommez et al., 2004) e na análise comparativa entre as microbiotas intra-radicular 

e de abscessos dento-alveolares, em casos sintomáticos e assintomáticos (Sakamoto et al., 

2006). 

 As técnicas moleculares supramencionadas abrigam, como característica comum, a 

possibilidade de detecção de bactérias sem a necessidade do crescimento laboratorial de 

microrganismos provenientes das amostras. Isso evita que os pesquisadores entrem em contato 

direto com patógenos humanos em potencial, garantindo maiores níveis de biossegurança. 

Ademais, uma vez que muitas das bactérias orais são reconhecidamente de crescimento lento, o 

uso das técnicas moleculares reduz significativamente o tempo experimental (Siqueira et al., 

2002). Dentre as vantagens adicionais oferecidas pelas técnicas de detecção moleculares, 

destacam-se o processamento de amostras em larga escala e as altas reprodutibilidade, 

confiabilidade e sensibilidade (Marsh et al., 2005; Heid et al., 1996; Rolph et al., 2001; Bustin, 

2000; Morrison et al., 1988).  
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PROPOSIÇÃO 

 A presente tese teve como objetivo o estudo da diversidade bacteriana em infecções 

endodônticas, por meio de técnicas moleculares independentes de cultivo laboratorial. Para tal, 

foram avaliados 34 elementos dentários portadores de infecções endodônticas, provenientes de 

diferentes pacientes. O estudo foi dividido em três fases, correspondentes às diferentes 

metodologias empregadas: 

I. Caracterização da microbiota endodôntica, determinação da diversidade bacteriana e 

avaliação filogenética de filotipos (espécies) potencialmente novos, pela análise de 

bibliotecas clonais do gene ribossomal 16S (16S rDNA) em infecções endodônticas 

assintomáticas não-expostas à cavidade oral (n= 7), 

II. Detecção quantitativa de P. gingivalis e T. forsythia, através da técnica de PCR em 

Tempo Real em infecções endodônticas assintomáticas (n= 10) e sintomáticas (n= 24), 

e determinação de possíveis correlações entre os níveis celulares detectados e a 

sintomatologia dolorosa de origem endodôntica, 

III. Análise da estrutura de comunidades bacterianas associadas a infecções endodônticas, 

por meio da técnica de T-RFLP em infecções endodônticas assintomáticas (n= 7), 

sensíveis à percussão (n= 5) e sintomáticas (n= 13), e investigação de possíveis 

correlações entre a composição bacteriana, sensibilidade à percussão e dor espontânea 

de origem endodôntica. 

 Esta tese foi elaborada no formato alternativo, conforme deliberado pela Comissão 

Central de Pós-Graduação (CCPG) da Universidade Estadual de Campinas (UNICAMP) 

(Anexo1). Assim, as metodologias acima mencionadas (fases) encontram-se apresentadas na 

forma de Capítulos. Os comprovantes de publicação, submissão a periódico, apresentação de 

trabalho em congresso sujeito a comissão julgadora e o certificado do Comitê de Ética em 

Pesquisa encontram-se nos Anexos. 
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CAPÍTULO 1 
 
 

Artigo publicado no periódico Journal of Medical Microbiology. 2006. 55(1): 101-107 (Anexo 2). 
 
 
 
 

Identification of bacteria in endodontic infections by sequence analysis of 16S rDNA 

clone libraries 

 

Authors: Daniel Saito1, Renato de Toledo Leonardo2, Jorge Luiz Mazza Rodrigues3, Siu Mui 

Tsai3, José Francisco Höfling1, Reginaldo Bruno Gonçalves1,4 

 
1 Department of Oral Diagnostics, Dental School of Piracicaba, State University of Campinas, 

Piracicaba, São Paulo, Brazil;  2 Department of Restorative Dentistry, Dental School of 

Araraquara, State University of São Paulo, Araraquara, São Paulo, Brazil;  3 Laboratory  of Cell 

and Molecular Biology, Center of Nuclear Energy in Agriculture, University of São Paulo, 

Piracicaba, São Paulo, Brazil 

 

 

Running title: Root canal bacteria by 16S rDNA analysis 

Keywords: 16S rDNA, bacteria, cloning, endodontic, infection, root canal 

4 Correspondence: Professor Reginaldo Bruno Gonçalves. Departamento de Diagnóstico Oral, 

Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP). Av. 

Limeira – 901, Piracicaba, 13414-903, São Paulo, Brazil. 

Phone: +55 19 3412-5321, Fax: +55 19 3412-5218 

E-mail: Reginald@fop.unicamp.br 

 

Abbreviations: CTAB (hexadecyltrimethylammonium bromide) 

Footnote: 

The GenBank accession numbers for the 16S rDNA sequences of Uncultured Clostridiales 

bacterium clone AG_D03, Uncultured Clostridiaceae bacterium clone AG_G04, Uncultured 

Streptococcaceae bacterium clone AF_F05 and Uncultured Mogibacterium sp. clone AF_H06 are 

AY821867, AY821868, AY821869, AY821870, respectively.  
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Summary 

 A significant proportion of oral bacteria are unable to undergo cultivation by existing 

techniques. In this regard, the microbiota from root canals still requires complementary 

characterization. The present study aimed at the identification of bacteria by the sequence 

analysis of 16S rDNA clone libraries from seven endodontically infected teeth. Samples were 

collected from the root canals, subjected to the polymerase chain reaction (PCR) with 16S rDNA 

universal primers, cloned and partially sequenced. Clones were clustered into groups of closely 

related sequences (phylotypes) and identification to the species-level was performed by 

comparative analysis with the GenBank, EMBL and DDBJ databases, according to a 98% 

minimum identity. All samples were positive for bacteria and the number of phylotypes detected 

per subject varied from 2 (patient AB) to 14 (patient AA). The majority of taxa (65.2%) belonged to 

the phylum Firmicutes of Gram-positive bacteria, followed by Proteobacteria (10.9%), 

Spirochaetes (4.3%), Bacteroidetes (6.5%), Actinobacteria (2.2%) and Deferribacteres (2.2%). A 

total of 46 distinct taxonomic units was identified. Four clones with low similarities with those 

previously deposited in the databases were sequenced to nearly full extent and were 

taxonomically classified as novel representatives of the order Clostridiales, including a new 

species of Mogibacterium. The identification of novel phylotypes associated with endodontic 

infections suggests that the endodontum may still harbor a relevant proportion of uncharacterized 

taxa. 

 

Introduction 

Although more than 150 species of bacteria have been identified in infected root canals, 

only a restricted number can be found simultaneously in the same tooth and a considerable 

variation of species is expected when analyzing distinct clinical conditions, individuals, or 

populations (Sundqvist, 1976; Molander et al., 1998; Baumgartner et al., 2004). Cultivation 

studies have shown a predominance of facultative and strict anaerobes in the endodontum, 

including representatives of Eubacterium, Fusobacterium, Peptococcus, Peptostreptococcus, 

Porphyromonas, Prevotella, and Streptococcus (Sundqvist, 1992b; Le Goff et al., 1997). Bacteria 

inside the canal are the major causes of periapical pathologies (Kakehashi et al., 1965) and, if not 

adequately treated, can give rise to dentoalveolar abscess, a condition that has ability to initiate 

morbidity, life threatening illness (Walsh, 1997) and predispose to transient bacteremia during 

therapy (Savarrio et al., 2005). Previous reports suggested that endodontic bacteria might be 

involved in extra-oral complications, such as chronic maxillary sinusitis (Melen et al., 1986), orbital 

cellulitis (Ngeow, 1999), infective endocarditis (Bate et al., 2000), rheumatoid arthritis (Breebaart 
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et al., 2002) and brain abscess (Henig et al., 1978). In this regard, substantial understanding of 

the endodontic microbiota is an important requirement for both oral and medical microbiologists. 

While it is common-knowledge that the development of efficient treatment strategies relies 

on the characterization of the endodontic microbial communities in entirety, cultivation-based 

techniques may cut down the range of detection, since a subset of oral inhabitants still cannot 

undergo cultivation (Paster et al., 2001). In this new context, clone library analysis of ribosomal 

DNA, particularly the 16S rDNA, has become a trustworthy tool for determining bacterial diversity, 

often yielding more informative results when compared to cultivation alone (Kroes et al., 1999; 

Rolph et al., 2001). This broad-based cultivation-free approach has been employed in the 

investigation of polymicrobial human infections, such as periodontal disease, childhood caries, 

dentoalveolar abscesses, maxillary sinusitis and noma lesions (Wade et al., 1997; Paster et al., 

2001; Paster et al., 2002; Becker et al., 2002; Hutter et al., 2003; Paju et al., 2003). Particularly in 

root canal infections, 16S rDNA sequence analysis has enabled detection of bacteria when 

culture had generated negative results and has permitted the identification of novel species in 

relatively small sets of samples (Rolph et al., 2001; Munson et al., 2002).  

Here, we report the results of an investigation on the bacterial diversity of seven infected 

root canals by the analysis of 16S rDNA libraries, in an effort to contribute to the ongoing 

characterization of the root canal microbiota. 

 

Methods 

Subjects. Seven patients, 2 males and 5 females, ranging from 15 to 42 years old (mean 27.7 ± 

8.4) were analyzed. Subjects had been referred for endodontic treatment at the Dental School of 

Piracicaba, and were selected for presence of pulpal necrosis and chronic periapical lesions by 

clinical and radiographic evaluation. In order to facilitate antisepsis of the operation field during 

sampling, only teeth with unexposed pulp chambers were included. These were represented by 

teeth with intact crowns or small, clinically acceptable restorations. Subjects with periodontal 

pockets >3mm, advanced bone-loss, acute abscesses, tooth fractures, sinus tracts or those who 

had undergone antibiotic therapy within two months prior to collection were not included. Written 

informed consent was obtained from all individuals and ethical approval was granted by the 

Ethical Committee for Human Subjects of the Dental School of Piracicaba, State University of 

Campinas. 

Sample collection. Each patient was submitted to local anesthesia and the tooth was isolated 

with rubber-dam. Cleaning of the tooth crown was performed to eliminate food debris and dental 

plaque. Antisepsis of the crown and operation field was conducted with 1.0% NaOCl for 1 min, 
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followed by inactivation with 5% sodium thiosulfate. Coronal access cavity was gained by high-

speed bur irrigated with sterile saline solution. As the pulp chamber was reached, a sterile #15 K-

file was introduced at 3mm short of the root apex. After careful instrumentation, the active portion 

of the K-file was cut and placed in a test tube containing 1 mL of TE buffer (10 mM TrisHCl, 1 mM 

EDTA, 0.1 mM NaCl, pH 8.0). Three sterile #15 paper-points were consecutively introduced inside 

the canal for 20 sec each and placed in the same test tube. Samples were immediately 

transported to the laboratory and stored at – 20 ºC.  

DNA extraction. Samples were thawed in water bath at 37 ºC for 10 min, vortexed for 30 sec and 

the paper points and K-files were removed from the tubes. Bacterial cells were pelleted by 

centrifugation at 20,000 g for 10 min and the supernatant was discarded. A DNA extraction 

protocol based on chloroform: isoamyl alcohol and hexadecyltrimethylammonium bromide (CTAB) 

was employed (Kuipers et al., 1999; Smith et al., 1989). DNA was re-suspended in TE buffer with 

10 µg RNAse ml-1, incubated in water bath at 37oC for 30 min and stored at – 20 ºC until required. 

16S rDNA amplification. PCR control tests for the 16S rDNA universal eubacterial primers fD1 

(5’-AGAGTTTGATCCTGGCTCAG-3’) and rD1 (5’-AAGGAGGTGATCCAGCC-3’) (Weisburg et 

al., 1991) were performed with 21 bacteria strains, yielding positive amplification for all DNA 

tested, as determined by visualization on agarose gel electrophoresis (available as supplementary 

data in JMM Online). Polymicrobial 16S rDNA from the clinical samples was amplified by PCR in 

25 µL mixtures, as previously described (Rodrigues et al., 2003), except for the following 

modifications: 2 mM MgCl2 and 1.5 U Taq DNA polymerase. PCR products were examined on 

1.0% low melting point agarose-gel electrophoresis stained with ethidium bromide. Amplification 

products (about 1,500 bp) were purified with the GFX DNA Purification kit, according to the 

manufacturer’s instructions (Amersham Biosciences). 

Cloning of polymicrobial PCR products. 65.0 ng of each 16S rDNA PCR product was ligated 

to pMOSBlue vector and transformed in Escherichia coli DH10B cells, according to the 

manufacturer’s instructions (Amersham Biosciences). Small-scale plasmid DNA preparations 

were conducted by an alkaline lysis protocol as described by Sambrook et al. (1989). Screening 

of recombinants was performed on 1.0% agarose-gel electrophoresis stained with ethidium 

bromide.  

16S rDNA partial sequencing. Seventy recombinant clones per library were randomly selected 

for partial 16S rDNA sequencing reactions, performed in a DNA thermal cycler. Temperature 

profile for primers T7 (5’-TAATACGACTCACTATAGGG-3’) and U19mer (5’-

GTTTTCCCAGTCACGACG-3’) included an initial step at 96 ºC for 2 min, followed by 30 cycles of 

96 ºC for 30 sec, 50 ºC for 30 sec and 60 ºC for 4 min. Reactions were performed in 10 µL 
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mixtures containing 250 ng of template DNA, 1 µL of Big Dye TM Terminator Ready v.3.0 (Applied 

Biosystems), 0.5 µM of primer and 3 µL of sequencing buffer (200 mM TrisHCl pH 9.0, 5 mM 

MgCl2).  

16S rDNA sequence analysis. Sequences were automatically analyzed in ABI Prism 3100 

Genetic Analyzer (Applied Biosystems – Hitachi) and grouped into clusters (phylotypes), 

according to a 99% minimum similarity (Kroes et al., 1999; Hutter et al., 2003). One 

representative of each phylotype was selected and submitted to the blastn algorithm (BLAST 2.0 - 

http://www.ncbi.nlm.nih.gov/BLAST), allowing comparison with sequences present in the 

GenBank, DDBL and EMBL databases. Only the highest-scored BLAST result was considered for 

phylotype identification, with a 98% minimum similarity (Stackebrandt & Goebel, 1994). 

Phylogenetic analysis of novel phylotypes. Four clones with BLAST identities ≤97% were 

considered as representatives of novel phylotypes and were sequenced with additional primers 

341-357f  (5’-CCTACGGGAGGCAGCAG-3’), 357-341r (5’-CTGCTGCCTCCCGTAGG-3’), 685-

704f (5’-GTAGSGGTGAAATSCGTAGA-3’), 704-685r (5’-TCTACGSATTTCACCSCTAC-3’), 

1099-1114f (5’-GCAACGAGCGCAACCC-3’) and 1114-1099r (5’-GGGTTGCGCTCGTTGC-3’) 

(Lane, 1991). Contiguous sequences were assembled with the Phred/Phrap/Consed software 

package (www.phrap.org), followed by analysis with Chimera Check (RDP II - 

http://rdp.cme.msu.edu) to ensure inexistence of chimeric molecules. Novel phylotypes were 

taxonomically assigned with Naive Bayesian rRNA Classifier v.1.0 (RDP II) and submitted to 

phylogenetic analysis, along with close-related sequences from the order Clostridiales obtained 

by the Hierarchy Browser program (RDP II). All sequences were aligned with the ClustalW 

software (Thompson et al., 1994) and visualized with Bioedit 7.0.4 (www.mbio.ncsu.edu/BioEdit).  

A phylogenetic tree was constructed with MEGA 2.1 (Kumar et al., 2001), according to the 

calculation of a distance matrix (Jukes & Cantor, 1969) and tree reconstruction by the neighbor-

joining method (Saitou & Nei, 1987). Bootstrap confidence values for branching nodes were 

inferred by the generation of 100 resampling trees.  

 

Results and Discussion 

The nucleotide sequence analysis of 16S rDNA clone libraries was used to investigate the 

bacterial diversity of seven endodontically infected teeth. All teeth evaluated were positive for the 

presence of bacteria. Overall, 46 taxonomic units (phylotypes) were detected (Table 1). In spite of 

the relative homogeneity of our study group, composed of asymptomatic teeth associated with 

unexposed necrotic pulps, chronic periapical lesions and no periodontal disease, a high variation 

in bacterial compositions could be observed: 33 (71.7%) phylotypes were subject-exclusive, 
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whereas only 13 (28.3%) could be detected in more than one patient. The number of phylotypes 

also ranged substantially among subjects: from 2 (patient AB) to 14 (patient AA) (mean 9.57 

±3.91). This variation is in accordance to both cultivation and molecular-based studies (Sundqvist, 

1976; Jung et al., 2000). Table 1 illustrates the percentage distribution of phylotypes within each 

subject and is intended to provide a quantitative view on the results. This type of analysis brings 

important contribution to our findings (Dewhirst et al., 2000; Becker et al., 2002; Munson et al., 

2002; Hutter et al., 2003), but should be viewed with discretion, since multi-template PCR can be 

subjected to bias in template-to-product ratios (Suzuki & Giavannoni, 1996; Polz & Canavaugh, 

1998).  

In general, the results of this investigation reiterated data from cultivation and molecular-

based investigations, with a predominance of anaerobic bacteria, especially from the phylum 

Firmicutes of Gram-positives (Sundqvist, 1992a; Munson et al., 2002). Representatives of other 

phyla were found in much lower frequencies: Proteobacteria (10.9%), Spirochaetes (4.3%), 

Bacteroidetes (6.5%), Actinobacteria (2.2%) and Deferribacteres (2.2%); 9% of sequences could 

not be assigned at the phylum level. Common endodontic species, such as Campylobacter 

gracilis, Eubacterium tardum, Peptostreptococcus anaerobius, Peptostreptococcus micros and 

Lachnospiraceae sp. were positively identified with high percent identities (≥99%). Recently 

reported phylotypes were also detected: Bacteroidales oral clone MCE7_164 E2b, 

Lachnospiraceae oral clone MCE7_60 E1, Lachnospiraceae oral clone MCE9_173 E4, 

Megasphaera sp. oral clone MCE3_141 P1 (Munson et al., 2002). Dialister invisus, a newly 

described oral Gram-negative coccobacillus (Downes et al., 2003), was the most commonly found 

taxon (5 out of 7 subjects), followed by Filifactor alocis and Eubacteriaceae oral clone P2PB_46 

P3 (4 out of 7 subjects). Accordingly, bacteria from the genus Dialister have been identified in oral 

infections with increasing frequencies (Contreras et al., 2000; Munson et al., 2002). D. 

pneumosintes, a species frequently associated with purulent infections, brain abscesses and bite-

wounds (Goldstein et al., 1984; Rousée et al., 2002), has also been considered as putative 

pathogen in periodontal and endodontic infections (Ghayoumi et al., 2002; Siqueira & Rôças, 

2002) and could be detected in one subject.  

Phylotypes corresponding to recently proposed pathogens of periodontal disease were 

identified, corroborating molecular data from Paster et al. (2001) and Hutter et al. (2003). Among 

those, Treponema socranskii has already been detected in the endodontum, being one of the 

most common root canal treponemes (Baumgartner et al., 2003), while Uncultured Eubacterium 

clone PUS9.170 has also been found in dentoalveolar abscesses (Wade et al., 1997). 

Pseudoramibacter alactolyticus and Filifactor alocis were positively detected with high percent 
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matches (99%) and have proven to be frequent inhabitants of root-filled, refractory cases 

(Siqueira & Rôças, 2004).  

Forty-two (91.3%) clones were identified to the species-level and four (8.7%) corresponded 

to sequences with no resemblance to any other previously deposited in the databases (Figure 1), 

according to the established 98% nucleotide identity threshold. This parameter is in accordance to 

a previously proposed species definition criterion, based on DNA-DNA re-association assays 

(Stackebrandt & Goebel, 1994) and lays within the range of values employed by similar studies, 

which vary from 98% (Sakamoto et al., 2000; Rolph et al., 2001; Munson et al., 2002) to 99% 

(Kroes et al., 1999; Drancourt et al., 2000; Hutter et al., 2003). Applying a 97% threshold value did 

not bring modifications to our findings, whereas a 99% value resulted in the detection of 15 

potentially novel species, as opposed to only 4. The application of such a stringent condition was 

nonetheless rejected, since it could generate redundancies in the results, due to the intragenomic 

heterogeneities in 16S ribosomal RNA operons (Coenye & Vandamme, 2003; Acinas et al., 

2004). 

Among the novel phylotypes detected (Figure 1), Uncultured Mogibacterium sp. clone 

AF_H06 (AY821870) was the only taxonomically assigned to the genus level. Mogibacterium is a 

newly proposed genus of bacteria originally isolated from periodontal pockets and infected root 

canals, represented by anaerobic Gram-positive bacilli (Nakazawa et al., 2000). Representatives 

of this genus were shown to be frequent in endodontic infections, as observed by Rolph et al. 

(2001), who identified clones closely related to M. neglectum, M. vescum and M. diversum, with 

97% nucleotide identities. The epidemiological importance of this group of bacteria in endodontic 

infections is still to be investigated.  

Interestingly, some important endodontic species, such as and Fusobacterium nucleatum 

and the black-pigmented anaerobes Porphyromonas gingivalis, Porphyromonas endodontalis and 

Prevotella intermedia could not be detected. Lack of primer specificity was readily discounted, 

since we had successfully tested our universal primers with F. nucleatum ATCC 10953 and many 

species within the phylum Bacteroidetes, including P. gingivalis ATCC 33277, P. endodontalis 

ATCC and P. intermedia ATCC 25611 (data in JMM Online). Similar root canals studies were also 

not able to find any P. gingivalis phylotypes (Rolph et al., 2001; Munson et al., 2002). 

Fusobacteria have been frequently encountered in root canals by cultivation (Sundqvist, 1992a) 

and PCR assays (Fouad et al., 2002), but its prevalence seems to be relatively low in 16S rDNA-

based studies. Accordingly, Munson et al. (2002) identified one Fusobacterium clone out of 624 

sequenced, whereas Rolph et al. (2001) detected F. nucleatum solely in the refractory subset of 

cases. The absence of some bacteria species in the present study can be attributed to intrinsic 

technique limitations, or to the small sample-set investigated. 
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In conclusion, the results from this study are in accordance to those from similar research, 

revealing a predominance of anaerobic species from the phylum Firmicutes of Gram-positive 

bacteria in infected root canals, particularly from the class Clostridia. The identification of 

uncultured clones, originally encountered in the endodontum, saliva and subgingival plaque 

demonstrates, over again, that the endodontic and periodontal microbial communities may share 

a relevant proportion of bacteria, despite their established anatomical interrelationships (Kerekes 

& Olsen, 1990; Rupf et al., 2000). The identification of novel phylotypes adds to the concept that 

the endodontum may still harbor a relevant proportion of uncharacterized taxa. 
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Figure 1. 16S rDNA phylogenetic inter-relationships of four novel phylotypes from unexposed endodontic 

infections, indicated in bold type, and reference strains from the order Clostridiales (acession numbers in 

parenthesis). Distance matrix calculated by the Jukes and Cantor method (1969). Phylogenetic tree 

constructed by the neighbor-joining method of Saitou & Nei (1987) and rooted for Escherichia coli K12 16S 

rDNA. Bootstrap confidence values generated over 100 tree replications (values above 50% are shown next 

to the branching nodes). Scale bar represents the number of nucleotide substitutions per site.  
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Table 1.  Highest-scored BLAST search results from 46 taxonomic units detected in unexposed root 
canal infections by the sequence analysis of 16S rDNA clonal libraries and percentage distribution of 
phylotypes per subject.  

Phylotypes distribution per subject (%) 
BLAST search result 

Identity
(%) AA AB AC AD AE AF AG 

Bacteroidales oral clone MCE7_120 E3 98     4.2   

Bacteroidales oral clone MCE7_164 E2b 99    2.9    

Bacteroides-like sp. oral clone X083 98 1.4       

Burkholderia fungorum strain NW-2 100   7.4     

Burkholderia phenazinium 99    5.7    

Burkholderia sp. CI6 98     4.2   

Campylobacter gracilis 99 1.4       

Catabacter hongkongensis 100    2.9    

Clostridiales oral clone MCE3_9 E1 93      9.1 15.0 

Clostridiales oral clone P4PB_122 P3 92       5.0 

Desulfobulbus sp. oral clone R004 98     20.8   

Dialister invisus 100 28.8   2.9 4.2 3.0 10.0 

Dialister pneumosintes 99       5.0 

Eubacteriaceae oral clone P2PB_46 P3 99    20.0 33.3 6.1 15.0 

Eubacterium sp. oral clone BU061 99 2.7       

Eubacterium sp. oral clone CK047 99     4.2   

Eubacterium sp. oral clone DA014 94      6.1  

Eubacterium sp. oral clone FX028 98     4.2   

Eubacterium tardum SC87K 99 23.3   11.4  12.1  

Eubacterium timidum 99      27.3 10.0 

Filifactor alocis 99 1.4  22.2  12.5  20.0 

Filifactor sp. oral clone BP1-58 99 1.4       

Filifactor sp. oral clone BP1-88 99   22.2     

Flexistipes sp. E3_33 oral isolate 99    2.9    

Lachnospiraceae bacterium oral clone BP1-14 99    5.7    

Lachnospiraceae oral clone MCE7_60 E1 99    2.9    

Lachnospiraceae oral clone MCE9_173 E4 99    34.3 16.7   

Lactobacillus panis DAF 1 98  12.5      

Megasphaera sp. oral clone BB166 98   7.4    5.0 

Megasphaera sp. oral clone MCE3_141 P1 99 11.0  3.7     

Mogibacterium neglectum 93      3.0  

Peptostreptococcus micros ATCC 33270 100      3.0  

Peptostreptococcus anaerobius clone LK54 99 1.4  14.8     

Peptostreptococcus sp. oral clone CK035 99       15.0 

Pseudoramibacter alactolyticus strain 23263T 99 15.1   8.6    

Selenomonas sp. oral clone JS031 98   3.7     

Selenomonas-like sp. oral strain FNA3 98   7.4     

Treponema socranskii subsp. 04 99      3.0  

Treponema sp. 6:H:D15A-4 98 4.1       

Uncultured actinobacterium clone APe2_64 98      12.1  

Uncultured bacterium BH017 99      6.1  

Uncultured bacterium inhufec A-37 99      6.1  

Uncultured bacterium W090 99 2.7     3.0  

Uncultured Eubacterium clone PUS9.170 99 2.7  11.1     

Unidentified oral bacterium RP55-6 98 2.7       

Veillonella sp. ADV 360.00 99  87.5      

Total number of phylotypes  14 2 9 11 9 13 9 
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Abstract 

Sensitive detection of bacteria is an essential requisite for understanding the etiology of 

root canal infections and consequent periapical lesions. Porphyromonas gingivalis and Tannerella 

forsythia are oral bacteria capable of triggering intensified immunological responses. Quantitative 

detection of these bacterial species in root canal infections could bring important insight into their 

clinical relevance.  

A Real Time PCR assay was applied to determine the levels of P. gingivalis and T. 

forsythia in 34 cases of primary endodontic infections. Total genomic DNA was extracted from 

intraradicular samples, followed by species-specific DNA amplification with primers targeting the 

bspA surface antigen gene of T. forsythia and the Arg-gingipain (rgp) gene of P. gingivalis. 

Relative bacterial levels were determined according to standard curves adjusted to genome copy 

numbers, followed by numerical correction with the absolute mass of DNA from each sample. 

Overall, P. gingivalis, T. forsythia and a coexistance of both species were encountered in 24%, 

56% and 18% of the subjects. Adjusted genome copy levels ranged from zero to 1.26 x 104, and 

from zero to 1.28 x 105, respectively. No significant associations among the abundances of the 

target bacteria, or the combination of both, and the presence of pain of endodontic origin could be 

observed.  

T. forsythia was highly prevalent and numerous in the study subjects, whereas P. 

gingivalis was moderately frequent and less abundant. Despite previous reports associating T. 

forsythia and P. gingivalis with specific clinical parameters, they did not display any correlations 

with endodontic symptoms. 
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Introduction 

 Root canal bacteria are the primary etiological agents of pulpal and periapical diseases 

and their persistence after instrumentation is still among the major causes of failure in  the 

endodontic therapy. Whilst the oral cavity is currently estimated to harbor more than 500 bacterial 

species (Paster et al. 2001), only a restricted parcel is able to thrive inside the root canal. De 

facto, the microbial structure commonly observed in endodontic infections is only a stationary 

sequel of a highly dynamic process of bacterial succession, guided by ecological interactions 

played upon microbial elements and environmental factors established inside the canal (Figdor 

and Sunqvist 2007). Over the years, it has become generally accepted that primary endodontic 

infections are, in essence, a mixed composition of facultative and strictly anaerobic bacteria and, 

in this aspect, combinations of bacteria are expected to arise (Sundqvist 1992). Truly, it has been 

shown that particular associations of endodontic species can observed in the intraradicular 

habitat, either in asymptomatic (Peters et al. 2002), or in symptomatic teeth (Gomes et al. 2004). 

Specific associations of residual bacteria have also shown to be more frequent in cases of 

persistent periapical lesions in monkeys, when compared to the monoinfected or aseptic 

counterparts (Fabricius et al. 2006). 

Associations of P. gingivalis and T. forsythia are directly involved with risk factors of 

periodontal disease (Grossi et al. 1995) and, together with Treponema denticola, constitute the 

‘red-complex’, a group consisting of Gram negative anaerobic bacteria implicated with adult and 

refractory periodontal disease (Socransky et al. 2002, 1998). P. gingivalis is probably the most 

widely investigated oral pathogen and possesses a plethora of pathogenic properties including 

fimbriae, proteinases, lipoteichoic acids, exopolisaccharides, and hemin-binding proteins (Holt et 

al. 1999). T. forsythia harbors a multi-functional surface and secreted protein responsible for 

many pathogenic activities, including bacterial coaggregation, fibronectin and fibrinogen binding, 

epitelial cell attachment and invasion, and proinflamatory cytokine and chemokine induction 

(Inagaki et al. 2006). Interbacterial binding and growth induction by P. gingivalis and T. forsythia 

cells have been observed in vitro (Yoneda et al. 2005, Yao et al. 1996). This synergistic 

interaction is also evidenced in the in vivo scenario, where coinoculation of both species can 

trigger heightened pathogenicity, with abscess formation and sepsis (Yoneda et al. 2001, 

Takemoto et al. 1997).  

Previous reports have shown positive correlations between endodontic bacterial load and  

size of periradicular lesion and periapical abscesses (Figdor and Sundqvist 2007). In this sense, 

the application of quantitative techniques can provide a more comprehensive view on the clinical 

relevance of particular species of bacteria (Gomes et al. 2004, Jung et al. 2001). A substantial 

number of microbiological examinations on root canal infections has relied on cultivation and, 
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more recently, on strictly qualitative molecular identification techniques such as the conventional 

Polimerase Chain Reaction (PCR). While cultivation provides invaluable information on growth 

and phenotypic properties of viable cells, it still lacks the necessary sensitivity for the very 

fastidious or as-yet uncultivable bacterial species (Rolph et al. 2001). Likewise, end-point PCR, a 

highly sensitive molecular technique broadly used for microbial identification, does not offer 

reliable quantitative capabilities for today's standards (Bustin et al. 2000, Ferre 1992).  

The Real Time PCR technology provides precise fluorescence-based quantification of 

target DNA levels by a cycle-to-cycle monitoring of amplification products (Heid et al. 1996). Since 

fluorescence acquisition is done at the initial log-linear phase of DNA amplification, it circumvents 

common quantification biases inherent to end-point PCR analysis (Ferre et al. 1992). Also, as 

reaction products are directly detected inside the test tube, there is no the need for post 

processing, increasing automation and minimizing potential analysis errors (Bustin 2000). SYBR 

Green I is an intercalating dye that binds to the minor groove of double-stranded DNA. It can be 

applied with virtually any set of PCR primers, offering improved versatility and simplicity of use 

(Bustin 2000). It has been proved to be a sensitive, rapid and accurate reporter molecule for 

nucleic acid quantification, with specificity and robustness comparable to those of other available 

chemistries (Maeda et al. 2003, Morrison et al. 1998). 

In the present study, a SYBR Green I Real Time PCR assay was used to determine the 

relative levels of P. gingivalis and T. forsythia in 34 cases of primary endodontic infections, in an 

effort to bring light into their clinical relevance. 

 

Material and Methods 

Subjects. Working approval was granted by the Ethical Committee for Human Subjects of the 

Dental School of Piracicaba. All subjects had been referred for endodontic treatment at the Dental 

School of Piracicaba, and were selected for the presence of pulpal necrosis by clinical and 

radiographic evaluations. One tooth per subject was included in the study. Overall, thirty four 

patients, 14 males and 20 females, ranging from 15 to 61 years old (mean 34.24 ± SD 13.73) 

were analyzed. Subjects who had undergone antibiotic therapy within two months prior to 

collection were not included. According to the observed clinical parameters, patients were 

classified in two categories for further correlation with the detected bacterial levels: symptomatic 

(n= 24) and asymptomatic (n= 10). Symptomatic cases were considered those harboring teeth 

associated with tenderness to percussion, sensibility to palpation, spontaneous pain, or a 

combination of those features. All other cases were considered asymptomatic.  
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Sample collection. Samples were collected as described elsewhere (Saito et al. 2006). Briefly, 

the teeth to be sampled were isolated with rubber dam, cleaned and opened using a sterile 

procedure. Intraradicular samples were obtained by the introduction of a sterile #15 K-file and 4 

consecutive sterile paper points inside the root canal. The file and the paper points were placed in 

a test tube containing 1 mL of TE buffer (10 mM TrisHCl, 1 mM EDTA, 0.1 mM NaCl, pH 8.0) and 

immediately transported to the laboratory. 

Bacterial strains. The following reference strains were used as controls for conventional PCR 

and Real Time PCR assays: Aggregatibacter actinomycetemcomitans ATCC 29522, Bacteroides 

fragilis ATCC 25285, Bacteroides merdae M-36, Bacteroides vulgatus ATCC 8482, Escherichia 

coli ATCC 12795, Porphyromonas assacharolytica ATCC 25260, Porphyromonas circumdentaria 

ATCC 51356, Porphyromonas endodontalis ATCC 35406, Porphyromonas gingivalis ATCC 

33277, Porphyromonas levii ATCC 29147, Porphyromonas salivosa NCTC 11632, Prevotella 

oulora ATCC 43324, Prevotella intermedia ATCC 25611, Prevotella nigrescens NCTC 9336, 

Pseudomonas aeruginosa ATCC 10145, Streptococcus salivarius ATCC 25975, Streptococcus 

sanguinis ATCC 10556, Streptococcus sobrinus ATCC 27607, Streptococcus  mutans ATCC 

25175 and Tannerella forsythia ATCC 43037. 

DNA extraction. DNA from clinical samples and reference bacteria was extracted as described 

elsewhere (Saito et al. 2006), ressupended in 30 µL of TE buffer and immediately stored at – 20 

ºC until  further required.  

Preparation of standard DNA: Standard DNA solutions corresponding to 107 genome copies of 

P. gingivalis and T. forsythia were prepared based on their respective genome sizes (2.34 Mb for 

P. gingivalis (Nelson et al. 2003) and 3.41 Mb for T. forsythia (Tanner & Izard 2000), and 

considering the mean weight of a nucleotide pair to be 1.023 x 10-12 ng (Dolezel et al. 2003). 

These solutions were subsequently used to obtain serial 10-fold dilutions down to 101 genome 

copies per reaction.  

Design of PCR primers. Primers targeting the arginin-specific cystein-proteinase (Arg-gingipain 

or rgp) gene of P. gingivalis were previously published (Morillo et al. 2004) (table 1). Primers for 

the surface antigen bspA gene of T. forsythia were obtained based on the complete gene 

sequence acquired from the GenBank database (accession number AF054892). The Primer3 

software was used for the design of candidate oligonucleotide sequences (http://frodo.wi.mit.edu). 

A final set of primers was chosen according to the lowest potential to form secondary structures, 

as determined by analysis with the Netprimer software (http://www.premierbiosoft.com/netprimer) 

(table 1). 
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Validation of markers by end-point PCR. Conventional PCR pilots were performed in total 

volumes of 25 µL with the following conditions: 1x PCR Buffer, 2 mM MgCl2, 0.2 mM dNTPs, 0.2 

μM primers, 1.5 U Platinum Taq DNA polymerase (Invitrogen). The temperature profiles were: a) 

for P. gingivalis (rgp gene): initial denaturation at 96°C for 3 min; 36 cycles of denaturation at 

94°C for 1 min, annealing at 60°C for 1 min and extension at 72°C for 1min; final extension at 

72°C for 10 min; b) for T. forsythia (bspA gene): initial denaturation at 96°C for 3 min; 36 cycles of 

denaturation at 94°C for 1 min, annealing at 46°C for 1 min and extension at 72°C for 1min; final 

extension at 72°C for 10 min. Supplementary PCR assays with universal 16S rDNA primers (table 

1) were performed to assess the presence of bacteria in the clinical samples, according to the 

conditions described elsewhere (Saito et al. 2006).  

Optimization of the Real Time PCR assay. Reactions were conducted in a Roche LightCycler 

1.0 System under the LightCycler 4.24 Run Software (Roche Applied Science). Standard DNA 

corresponding to 103 genome copies of P. gingivalis and T. forsythia were used as templates. 

Optimization was carried out with various MgCl2 and primer concentrations, as stated by the 

manufacturer's instructions (Roche). Final reaction mixtures were performed in total volumes of 

10 µL containing 2.0 µL DNA, 1.0 µL LightCycler FastStart DNA Master SYBR Green I (Roche), 

4mM MgCl2 and 0.5 μM of each primer. The temperature profiles were: a) for P. gingivalis (rgp 

gene): hot-start denaturation at 95°C for 10 min and 48 cycles of denaturation at 94°C for 10 s, 

annealing at 60°C for 7 s, extension at 72°C for 7 s and fluorescence acquisition at 78°C for 3 s; 

b) for T. forsythia (bspA gene): hot-start denaturation at 95°C for 10 min and 60 cycles of 

denaturation at 95°C for 10 s, annealing at 46°C for 7 s, extension at 72°C for 7 s and 

fluorescence acquisition at 83°C for 3 s. 

Real Time PCR amplification of standard DNA. Amplification profiles for P. gingivalis and T. 

forsythia were generated from duplicate reactions using 10-fold dilutions of standard DNA (figure 

1). The computer-assisted second derivative maximum algorithm was used for crossing point 

(CP) inference of each DNA dilution. Standard curves were generated by linear regression 

analysis, and used as a basis for further quantification of target DNA from the clinical samples 

(figure 1). 

Real Time PCR amplification of DNA from clinical samples. Prior to quantification of target 

bacteria, the total ammount of DNA from each clinical sample was assessed by 

spectrophotometry at 260nm. Real Time PCR amplification assays were conducted in duplicates, 

and as described for standard DNA. Genome copy levels were inferred based on the previously 

obtained standard curves. In order to minimize potential variations in sample volume, absolute 

genome copy levels were normalized by numerical division by the total ammount of DNA 

measured from each sample. 3.0 µL of each Real Time PCR product was submited to 1.0% 
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agarose gel electrophoresis and stained with ethidium bromide to verify reaction efficiency and 

specificity. 

Melting curve analysis. Reaction specificities were further verified by melting curve analysis 

(figure 2). The following temperature profiles were used: a) for P. gingivalis: a progressive 

temperature increase from 70°C to 95°C at a 0.1°C/s transition rate, with continuous fluorescence 

acquisition; b) for T. forsythia: a progressive temperature increase from 70°C to 95°C at a 0.1°C/s 

transition rate, with continuous fluorescence acquisition. To minimize potential primer-dimer 

interferences, fluorescence acquisition temperatures were adjusted to approximately 4°C below 

the melting point of each amplification product.   

Sequencing of selected PCR products. Representative electrophoretic gel bands were selected 

to ascertain Real Time PCR amplicon identities from the clinical samples. DNA was purified with 

the GFX DNA Purification kit, as stated by the manufacturer (Amersham Biosciences). DNA 

sequencing reactions were performed in 10 μL mixtures containing approximatelly 100 ng 

template DNA, 1 μL Big Dye Terminator Ready version 3.0 (Applied Biosystems), 0.5 mM primer 

and 3 μL sequencing buffer (200 mM Tris/ HCl pH 9.0, 5 mM MgCl2). Nucleotide sequences were 

visualized and edited with the Bioedit 7.0.5.3 software (http://www.mbio.ncsu.edu/BioEdit) and 

submitted to the BLASTN algorithm (BLAST 2.0; http://www.ncbi.nlm.nih.gov/blast) for 

comparison with sequences from the GenBank database. A 98% nucleotide identity threshold was 

used for positive identification to species level (Saito et al. 2006). 

Statistical analysis. The R (www.r-project.org) and BioEstat (http://www.mamiraua.org.br/)  

softwares were used for statistical analysis. Data exploration with the Lilliefors normality test 

indicated that data were non-homogeneous even after log transformation. The null hypothesis that 

the target species were not associated with endodontic symptoms was evaluated with the Mann-

Whitney non-parametrical test, with a significance level α= 0.05. In order to assess the correlation 

between the coexistence of the target bacteria and the clinical parameters, the integrated levels of 

P. gingivalis and T. forsythia were used in the cases where both appeared concurrently; in all 

other cases (i.e. exclusive presence of either species or absence of both), the integrated levels 

were assigned as null. Lastly, potential interbacterial associations were assessed with the Fisher’s 

exact test. 

Target species Orientation Position Oligonucleotide sequence (5’ – 3’) Amplicon size Reference 

forward 1308 CCTACGTGTACGGACAGAGCTATA 
P. gingivalis 

(rgp gene) 
reverse 1379 AGGATCGCTCAGCGTAGCATT 

72 bp Morillo et al. 2004 

T. forsythia  

(bspA gene) 
forward 1911 TCACTATTGTGTCTCGCTG 133 bp this study 
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reverse 2043 TCTCTCCGATTGTGGTTA 

forward  

(fD1) 
8 AGAGTTTGATCCTGGCTCAG 

Total bacteria 
(16S rRNA gene) 

reverse (rD1) 1541 AAGGAGGTGATCCAGCC 

1534 bp Weisburg et al. 1991 

Table 1. PCR primers used in this study. 

 

Results 

Real Time PCR amplification of standard DNA. No evidence of non-specific or cross-reaction 

products was observed for the bspA and rgp markers, as determined by conventional end-point 

PCR (data not shown). Melting curve analysis of Real Time PCR amplicons showed well-depicted 

peaks for both markers (figure 2). The minimum number of cycles required to amplify the full 

range of serially diluted DNA ranged from 23 to 43 for rgp, and from 24 to 54 for bspA (figure 1). 

The application of an amplification efficiency formula (Pfaffl 2001) revealed values of 2.0 and 1.6 

for P. gingivalis and T. forsythia, provided that a 2.0 value corresponds to an optimum efficiency. 

Linear regression equations used for inference of genome copy levels of the target species in the 

clinical samples are shown in figure 1, along with the respective r2 values. 

Real Time PCR amplification of DNA from clinical samples. All samples were positive for the 

presence of bacteria, as observed by conventional end-point PCR with 16S rDNA universal 

primers (data not shown). Overall, Real Time PCR detected P. gingivalis, T. forsythia and a 

coexistence of both species in 8/34 (24%), 19/34 (56%) and 6/34 (18%) of the subjects, 

respectively. Normalized genome copy levels in the clinical samples ranged from zero to 1.26 x 

104, for P. gingivalis, and from zero to 1.28 x 105, for T. forsythia (mean 4.86 x 102 and 7.71 x 103 

genome copies per sample, respectively).  

Statistical analysis. No statistical difference between the symptomatic and asymptomatic groups 

was observed with the Mann-Whitney test, based on the normalized genome copy levels of either 

species [(p= 0.07 (P. gingivalis) and p= 0.46 (T. forsythia)] or the combination of both (p= 0.13). 

According to the Fisher’s exact test, no statistical significant conclusions could be drawn in regard 

to potential interbacterial associations among the target bacteria (p= 0.11). 

 



 27

Discussion 

 Real Time PCR is a highly sensitive technique that brings unprecedented contribution to 

pathogen quantification in mixed oral infections (Boutaga et al. 2006). Previous reports have 

shown that it can harbor 41-fold greater sensitivities than colony counting for oral anaerobic 

bacteria, offering detection increases of up to 36% and 51%, when considering the particular 

cases of T. forsythia and P. gingivalis (Verner et al. 2006, Martin et al. 2002). While such 

observations might be, on one hand, a direct consequence of the elevated cultivation demands of 

these fastidious species, on the other, they reflect the truly high accuracy and detection 

capabilities of the Real Time PCR technique. Indeed, it has been demonstrated that the technique 

can successfully differentiate a blank sample from another containing only 1 copy of target nucleic 

acid (Morrison et al. 1998).  

 In this study, a SYBR Green I – based Real Time PCR assay was applied to investigate 

the relative levels of the oral pathogens P. gingivalis and T. forsythia in primary endodontic 

infections. Because SYBR Green I will bind to any double-stranded DNA, a careful and 

throughout optimization step should be performed to avoid simultaneous quantification of potential 

non-specific products. We have taken preventive technical measures to minimize such biases, 

including preliminary in silico examination of primers, visualization of gel bands and  analysis of 

melting curves. The evidence of well-defined unique peaks on melting curve analysis assured 

satisfactory reaction specificities for both markers, with no evidences of primer-dimer formation. 

As additional precautions, real time-monitoring of products was conducted by fluorescence 

acquisition at temperatures where double-stranded DNA was presumably composed only of 

specific products (Morrison et al. 1998) and representative bands from clinical samples were 

selected for DNA sequencing confirmation of amplicons. 

 The crossing-point (CP) is, by definition, the cycle number at which the fluorescence signal 

is acquired. It can be infered by a user-defined method, also known as the fit point, or by a 

computer-assisted algorithm, such as the second derivative. In this method, the CP corresponds 

to the cycle where the second derivative of the fluorescence intensity curve reaches its first 

maximum value and which, in turn, coincides with the beginning of the log-linear phase of the 

amplification curve (Luu-The et al. 2005). In our study, the second-derivative method was chosen 

due to its higher consistency and adequacy in the detection of low levels of target DNA, when 

compared to the fit point method (Luu-The et al. 2005).  

Black-pigmented bacteria are among the most predominant organisms in oral anaerobic 

infections, commonly found in gingivitis, periodontitis, endodontic infections and dentoalveolar 

abscesses (van Winkelhoff et al. 1985). P. gingivalis, a Gram-negative rod, is probably the most 
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pathogenic and widely studied black-pigmented bacteria (Holt et al. 1999). Detection frequencies 

of P. gingivalis in root canal infections varies considerably. By the use of 16S rDNA PCR 

methodologies, Siqueira et al. (2004) and Fouad et al. (2002) were able to detect it in 4% of the 

samples, while Foschi et al. (2005) revealed the species in 13% and of the study cases. Higher 

prevalences were observed by Gomes et al. (2005) (38%) and Siqueira et al. (2002) (41%), also 

by PCR approaches. In this study, P. gingivalis was detected in 24% of the subjects, 

corroborating the results of a DNA-DNA hybridization assay of Siqueira et al. (2002) (28%) and an 

oligonucleotide probing study of Jung et al. (2001) (27%). 

T. forsythia, formerly Bacteroides forsythus, is a Gram-negative anaerobic rod originally 

recovered from subjects with progressive advancing periodontitis, and afterwards isolated from 

various forms of periodontal disease, root canal infections and perimplantitis (Tanner and Izard 

2006). The prevalence of T. forsythia in the root canal environment can also fluctuate 

considerably. While Rôças et al. (2001), Gomes et al. (2006), Fouad et al. (2002) and Jung et al. 

(2001) found the species in 26%, 24%, 21% and 18% of primary endodontic infections by PCR-

based methodologies, Foschi et al. (2005) and Siqueira et al. (2004) were able to detect it only in 

7% and 4% of the cases by conventional and nested 16S rDNA PCR, respectively. In the present 

study, T. forsythia was observed in 56% of the test subjects, an estimate close to those obtained 

by Siqueira and Rôças (2003) with nested PCR (52%) and by Gonçalves and Mouton (1999) with 

immunocapture-PCR (54%).  

Relative disparities in the prevalence of intraradicular bacteria are usually expected when 

comparing  the results from different authors. This might be due to a combination of factors, such 

as case selection criteria, sampling and DNA extraction methods, geographical origin of subjects, 

or detection techniques (Baumgartner et al. 2004, Siqueira et al. 2002). For instance, Munson et 

al. (2002) were unable to detect any clones of T. forsythia by 16S rDNA sequencing analysis, but 

revealed the presence of the species in one subject by cultivation. Similar high-throughput clone 

library studies were unable to detect either T. forsythia or P. gingivalis in primary or refractory 

endodontic infections (Saito et al. 2006, Rolph et al. 2001), indicating that detection of these 

particular species of bacteria could be dependent on the technique employed. 

According to the corrected genome copy levels, P. gingivalis was not significantly 

associated with pain of endodontic origin, confirming the results of other molecular investigations 

(Foschi et al. 2005, Rôças et al. 2001 and Jung et al. 2000). Nonetheless, Hashioka et al. (1992) 

found representatives of Porphyromonas spp. to be implicated, as a group, with subacute 

endodontic symptoms in a cultivation study. We found no significant correlation between the 

detected levels of T. forsythia and endodontic symptoms, in agreement with the observations 

obtained by non-quantitative molecular investigations (Foschi et al. 2005, Siqueira et al. 2003, 
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Rôças et al. 2001 and Jung et al. 2000). A nested-PCR study conducted by Gomes et al. (2006), 

however, detected significant association between T. forsythia and tenderness to percussion in a 

larger sample set containing primary and treated cases of endodontic infections. Lastly, when 

considering P. gingivalis and T. forsythia as a complex, no indications of their involvement with 

clinical symptoms could be statistically evidenced in the present study. 

In conclusion, the application of a Real Time PCR methodology has shown that T. 

forsythia can be highly prevalent and numerous in endodontic infections, whereas P. gingivalis is 

only moderately frequent and less abundant, displaying 16-fold lower average levels than those 

observed for T. forsythia. Our results reveal that P. gingivalis and T. forsythia do not play a 

primary role in the development of endodontic pain, either individually or in conjunction. 
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Figure 1. Amplification curves for P. gingivalis (A) and T. forsythia (B). Reactions performed with 

10-fold serial dilutions of standard DNA ranging from 107 to 101 genome copies per reaction (left 

to right). Respective log-based standards curves (C and D) were determined by regression 

analysis using the crossing point (CP) values from duplicate reactions. 
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Figure 2. Melting profiles of Real Time PCR amplified standard DNA. 

The expected melting temperatures for P. gingivalis (rgp) and T. forsythia 

(bspA) were 82.8 °C and 87.5 °C, respectively. 
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Introduction 

Under physiologic conditions, the dental pulp is free of any residing microorganisms. 

Nonetheless, physical or chemical trauma or caries infection can eventually involve the pulp 

tissue, leading to necrosis and subsequent endodontic infection. The necrotic pulp provides a 

selective habitat for the establishment of a complex microbiota, predominantly composed of 

strictly anaerobic bacterial species (Sundqvist 1992a). Bacteria residing in the endodontic milieu 

are able to engender destructive inflammatory responses in the perirradicular tissues, which in 

turn can give rise to periapical lesions (Stashenko et al. 1992) and important systemic 

complications (Bate et al. 2000, Breebaart et al. 2002). Elimination of bacteria from inside the 

canal is, therefore, a crucial goal in endodontic therapy.  

Albeit substantial efforts have been taken towards the throughout characterization of the 

endodontic microbiota (Saito et al. 2006, Gomes et al. 2004, Sundqvist 1992b, Munson et al. 

2002, Rolph et al. 2001), the intraradicular ecosystem still harbors plenty microbial complexity to 

warrant further investigations by contemporary methodologies. Previous reports have 

demonstrated that particular bacterial species can be responsible for the development of 

endodontic related signs and symptoms such as spontaneous and pre-operative pain, swelling, 

odor, tenderness to percussion and purulent exudate (Foschi et al. 2005, Gomes et al. 2004, 

Jacinto et al. 2003, Peters et al. 2002, Fouad et al. 2002, Hashioka et al. 1992). In light of these 

observations, it is reasonable to assume that the root canal bacterial communities can also 

encompass, as a whole, an important role in the development of clinical features. Beyond doubt, 

the application of microbial ecology tools that allow for a broader view on community structure 

could bring important information to the study of the root canal microbiota. 

Community structure analysis is a microbial characterization approach that relies on two 

fundamental variables: species richness (the number of species in the community) and species 

evenness (the quantity of each species) (Liu et al. 1997). Assessment of these variables is 

impaired in traditional culture-based techniques, since cultivation can shift the original microbial 

composition by imposing additional selective pressures (Liu et al. 1997). In addition, 

approximately 50% of the oral bacteria cannot undergo cultivation (Paster et al. 2001, Aas et al. 

2003) and, in this sense, community structure studies should be preferably conducted by 

molecular techniques capable of accounting the very fastidious and non-culturable taxa. 

Terminal Restriction Length Polymorphism (T-RFLP) offers high-throughput quantitative 

analysis of community structure and community dynamics in complex environments (Blackwood 

et al. 2003, Osborn et al. 2000). In brief, the technique employs PCR targeting the bacterial 16S 

rRNA gene, in which one of the markers is fluorescently labeled at its 5’ end. The PCR product is 
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digested with an endonuclease with a 4-base pair recognition site, and the terminal restriction 

fragment is measured by an automated DNA sequencer (Marsh 2005, Marsh et al. 1999, Liu et al. 

1997). Since different bacterial populations have distinct restriction recognition sites in the 16S 

rRNA gene, a genetic fingerprint of bacterial composition is obtained for each polymicrobial 

sample. T-RFLP has been successfully applied for comparing the bacterial composition of saliva 

from healthy and periodontal patients (Sakamoto et al. 2003), assessing shifts in microbial profiles 

after periodontal treatment (Sakamoto et al. 2004), investigating the effect of coronal restoration 

quality on endodontic bacterial composition (Hommez et al. 2004), and for comparing the bacterial 

communities of intraradicular samples and pus aspirates from symptomatic and asymptomatic  

teeth (Sakamoto et al. 2006). 

In this study, the T-RFLP technique was applied to assess the intraradicular bacterial 

composition associated with asymptomatic, tender, and symptomatic endodontic infections, and 

to contrast the community structures associated with these three clinical categories.  

 

Material and Methods 

Subjects. Twenty five patients, 12 males and 13 females, ranging from 15 to 61 years old (mean 

32.4± 13.7) were analyzed. Working approval was granted by the Ethical Committee for Human 

Subjects of the Piracicaba Dental School, State University of Campinas and written consent was 

required from all participants. Subjects harbored teeth with endodontic infections, and had been 

previously referred for endodontic treatment at the Piracicaba Dental School. Inclusion criteria 

included single or multi-rooted teeth with pulpal necrosis, with no distinction to the cause of 

endodontic involvement (caries or trauma). Teeth were evaluated for the presence of pulpal 

necrosis by visual inspection, probing, percussion, and radiographic evaluation. Subjects who had 

undergone antibiotic therapy within two months prior to collection or those who had been 

previously subjected to root canal treatment were not included. Specimens were classified in 

three study groups: asymptomatic (Group I, n= 7), tender (Group II, n= 5) and symptomatic 

(Group III, n= 13). Group I was composed of asymptomatic teeth, Group II of teeth tender to 

vertical percussion, and Group III of teeth harboring spontaneous pain with or without associated 

swelling or purulent exudate. 

Sample collection. Each patient was submitted to local anesthesia and the tooth was isolated 

with a rubber dam. The crown was cleaned to eliminate debris and dental plaque. Antisepsis of 

the crown and operation field was conducted with 2.5% sodium hypochlorite for 1 min, followed by 

inactivation with 5% sodium thiosulfate (Ng et al. 2003). Coronal access cavity was gained by 

high-speed bur irrigated with sterile saline solution. Intraradicular samples were obtained by the 
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introduction of a sterile #15 K-file followed by 4 consecutive sterile paper points inside the root 

canal (Saito et al. 2006). The file and the paper points were placed in a test tube containing 1 mL 

of TE buffer (10 mM TrisHCl, 1 mM EDTA, 0.1 mM NaCl, pH 8.0) and immediately transported to 

the laboratory. 

DNA extraction. The DNA from the clinical samples and reference bacteria were extracted as 

described elsewhere (Saito et al. 2006) and ressupended in 30 �L of TE buffer, being 

immediately stored at – 20 ºC until  further analysis.  

Primer set selection. The Primer Sequence Prevalence Analysis program (MICA3 - 

http://mica.ibest.uidaho.edu/primer.php) was used to verify the range of detection of all possible 

combinations of the primers 27F, 63F, 1389R, 1392R and 1492R against the 16S rDNA 

Ribosomal Database Project II Release 9.37, with 1 mismatch allowed within 10 bases from the 5' 

end of either primer. The primer set 63F (5'- CAGGCCTAACACATGCAAGTC -3') and 1389R (5'- 

ACGGGCGGTGTGTACAAG -3') revealed the highest number of positive matches, and therefore 

was chosen for subsequent T-RFLP analyses. The 63F primer was labelled with 6'-

carboxyfluorescein (6-FAM) at its 5' end to allow fluorescent detection of the terminal restriction 

fragment.  

Amplification of DNA. 100 µL reactions were performed with 60 ng DNA, 1x PCR Buffer, 2 mM 

MgCl2, 0.2 mM dNTPs (Promega), 0.4 µM primers (IDT Technologies) and 1.0 U Taq DNA 

polimerase (Invitrogen Co.), according to the following temperature profile: initial denaturation at 

94 °C for 3 min; 25 cycles of denaturation at 94 °C for 1 min, annealing at 56°C for 1 min and 

extension at 72 °C for 2min; final extension at 72 °C for 10 min. 3 µL aliquots of each PCR 

product was submitted to 1.0% agarose gel electrophoresis and stained with ethidium bromide. 

PCR products were purified with the QIAquick PCR Purification Kit (Qiagen), as stated by the 

manufacturer.  

Endonuclease restriction of amplified DNA. 200 ng of each purified product were restricted 

with HhaI (GCG’C) and MspI (C’CGG) endonucleases (New England Biolabs Inc.) in separate 15 

µL reactions as instructed by the manufacturer. Aliquots of the original PCR products were left 

undigested and used as negative controls for T-RFLP analysis. 

Generation of T-RFLP profiles: 2 uL of each restricted PCR product and the respective negative 

control were mixed with 7 uL deionized formamide and 1 uL MM1000 ROX size standard 

(Bioventures Inc.), denatured at 95 °C and immediately placed on ice. Duplicate mixtures were 

injected for 30 s into an ABI 3100 Sequence Analyzer (Applied Biosystems - Hitachi). T-RLFP 

profiles were generated by the Local Southern Method in GeneScan 3.7 Software (Applied 

Biosystems), using a 5 fluorescence units threshold.  
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Filtering and binning of T-RFLP profiles. T-RFLP data from duplicates were exported as 

spreadsheets, filtered by the IBEST analysis tools (Abdo et al. 2006) using a cutoff value of 6 

standard deviations of total peak area, and binned (aligned) by the T-Align software (Smith et al. 

2005) with a 1.0 base width. T-Align was also used to generate consensus profiles based on the 

average fluorescence intensities of corresponding peaks from the duplicates. Peaks that 

appeared exclusively in one of the duplicates were not included in the final consensus profiles. 

Peak height data were transformed into relative peak heights, as a ways to level up total 

fluorescence among samples after the removal of analytical noise. 

Data analysis. Total, unique, single and double T-RFs were determined for each endonuclease 

with the EstimateS 8.0 software (Colwell 2006). The hypothesis that the T-RF richness among 

study groups was not statistically different was assessed with the T test with a significance α= 

0.05. A Bray-Curtis dissimilarity matrix from the combined (concatenated) HhaI and MspI relative 

peak height data sets was obtained with the Vegan package for R (www.r-project.org) and used 

for cluster analysis with the MEGA 4 software (Tamura et al. 2007) according to the Unweighted 

Pair Group Method with Arithmetic mean (UPGMA). Principal Coordinates Analysis (PCoA) was 

accomplished based on the Bray-Curtis dissimilarity matrix from the previous step with the 

Canoco 4.5 software (Biometris). A quantitative display of relative peak heights from the 

consensus profiles of all study subjects was obtained with the Cluster 3.0 and TreeView 1.1 

softwares for microarray data analysis (Eisen et al. 1998). T-RFs present in more than 30% of the 

subjects were predicted by the TAP-T-RFLP program (Marsh et al. 2000) based on a 16S rDNA 

datafile from most oral bacterial species (TRFMA; Nakano et al. 2006), adopting an error interval 

of 1 base pair. When no particular taxa could be predicted with this datafile, the 16S rDNA 

Ribosomal Database Project II Release 9.47 (http://rdp.cme.msu.edu) containing 16S rDNA 

sequences from 63,638 bacteria was used instead.  

 

Results 

All 25 samples were positive for bacteria, as evidenced by PCR with primers FAM-63F and 

1389R. T-RFLP analysis with HhaI and MspI endonucleases revealed a total of 520 HhaI terminal 

restriction fragments (T-RFs(H)) and 501 MspI terminal restriction fragments (T-RFs(M)) in 25 cases 

of endodontic infections, with 123 unique T-RFs(H) and 122 unique T-RFs(M). T-RF richness per 

subject varied from 8 to 34 for HhaI, and from 8 to 32 for MspI analyses (table 1). No statistical 

significant differences of T-RF richness among the study groups was observed with either 

endonuclease, according to the T test (groups I and II: HhaI p= 0.12, MspI p= 0.57; groups I and 

III: HhaI p= 0.81, MspI p= 0.40; groups II and III: HhaI p= 0.19, MspI p= 0.96).  
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UPGMA analysis of combined HhaI and MspI profiles exhibited no evident tendency for 

clustering according to the predefined study groups (figure 1). Similarly, PCoA multivariate 

analysis did not reveal any distinct grouping of samples in broad, or as a function of the study 

groups (figure 2). The quantitative display (heatmap) of relative peak heights obtained with both 

endonucleases, along with TAP-T-RFLP prediction of the fragments found in more than 30% of 

the subjects, is displayed in figure 4. 

HhaI and MspI endonucleases presented, in general, very similar resolving powers (table 

1). Nonetheless, when comparing the results among study groups, slightly different behaviors 

could be observed: MspI revealed 11 (15%) more unique T-RFs than HhaI in Group I, while HhaI 

revealed 8 (13%) more unique T-RFs than MspI in Group II (table 1). The application of the T test 

demonstrated that such differences in enzyme efficiencies were not statistically significant, either 

within study groups (Group I p= 0.48, Group II p=0.26, Group II p= 0.76), or when considering the 

whole sample set (p= 0.67). With the exception of some highly predominant taxa, the observed 

bacterial assemblages were markedly variable. This is more easily conceived by the fact that 

60/123 (48.8%) T-RF(H)s and 63/122 (51.6%) T-RF(M)s were detected in no more than 2 subjects 

(single plus double T-RFs) (table 1). In other words, when considering presence/absence data, 

half of the terminal fragments were very rare in our sample set and, therefore, could have 

accounted for most of the inter-subject variability observed. Highly predominant T-RFs that could 

be detected in more than half of the subjects included HhaI terminal restriction fragments T-

RF(H)59 (Pedobacter sp. oral clone AV100, Flavobacterium-like sp. oral clone AZ123), T-RF(H)62 

(Tannerella forsythia, Campylobacter spp.), T-RF(H)64 (Bacteroides spp.), T-RF(H)343 

(Selenomonas sp. oral clone EZ011), T-RF(H)514 (Heliobacterium spp., Uncultured Chloroflexi 

bacterium) and T-RF(H)556 (Veillonella spp.), and MspI terminal restriction fragments T-RF(M)56 

(Capnocytophaga spp., Dialister sp. oral clone BS095), T-RF(M)183 (Uncultured bacterium), T-

RF(M)245 (Fusobacterium spp., Leptotrichia spp., Mogibacterium spp.), T-RF(M)258 (Selenomas 

sp. oral clone JI021), T-RF(M)266 (Peptococcus-like sp. oral clone I070, Actinomyces spp.), T-

RF(M)267 (Selenomonas spp., Veillonella spp., Actinomyces spp.) and T-RF(M)464 

(Peptostreptococcus sp. oral clone CK035).  

 

Discussion 

 The intraradicular microbial communities have been extensively investigated by culture-

based (Sundqvist 1992b, Gomes et al. 2004, Jacinto et al. 2003) and molecular-based 

techniques, including conventional PCR (Fouad et al. 2002, Conrads et al. 1997), Real Time PCR 

(Vianna et al. 2006), DNA-DNA checkerboard hybridization (Siqueira et al.), DGGE (Siqueira et al. 
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2004), and 16S rDNA clone libraries (Saito et al. 2006, Munson et al. 2002, Rolph et al. 2001). 

Terminal Restriction Length Polymorphism (T-RFLP) analysis brings important contribution to the 

study of the endodontic microbiota, allowing for rapid and efficient determination of community 

structure, also offering the possibility of taxonomical interpretation of terminal fragments (Marsh et 

al. 2000). 

We have chosen primers 63F and 1389R for PCR amplification due to their higher range 

of detection when compared to other commonly used primers, as verified by computer-assisted 

preliminary evaluation (data not shown). Selection of this primer set was also favoured by the fact 

that the great majority of published 16S rDNA sequences are derived from the oligonucleotides 

27F and 1492R; hence, th e use of primers that lay internally to such residues may facilitate 

the in silico prediction of T-RFs (Osborn et al. 2000). The election of HhaI and MspI as our 

restriction enzymes was founded on their improved efficiency in discriminating T-RFs on the basis 

of taxonomical information, when compared to other tetrameric endonucleases (Moyer at al. 

1996).  

An average of 20.8 T-RFs(H) and 20.0 T-RFs(M) per subject was obtained, indicating that, 

for the analysis of endodontic bacterial communities, both enzymes presented comparable 

restriction efficiencies. In regard to the taxonomical interpretation of the most prevalent fragments, 

however, HhaI has proved to be more proficient in resolving T-RFs related to Bacteroides spp. 

and Veillonella spp., while MspI was more capable of discriminating T-RFs representing 

Campylobacter spp. (figure 4). It is important to emphasize, however, that the number of terminal 

fragments identified in the present study does not reflect the actual diversity of the microbiota 

under investigation. In fact, fingerprinting techniques do not encompass sufficient sensitivity to 

detect the rare taxa, but still compose powerful and efficient tools for comparing biodiversity levels 

among complex ecosystems (Danovaro et al. 2007). 

We are aware that T-RF prediction based on fragment length information may, at times, 

lack sufficient precision for single taxa inference (i.e. one T-RF may correspond to more than one 

taxonomic unit) (Nakano et al. 2006, Marsh 2005). Nonetheless, using a restricted database 

composed of 16S rDNA sequences from oral bacteria (TRFMA) reduced substantially the number 

of taxa correspondent to a particular fragment length and, consequently, increased the precision 

of our taxonomic inference. In reality, in silico prediction of the most predominant fragments 

revealed the presence of strict anaerobic bacteria from the genera Actinomyces, Bacteroides, 

Capnocytophaga, Eubacterium, Fusobacterium, Petptococcus, Peptostreptococcus, 

Selenomonas and Veillonella (figure 4), which have been extensively reported as common 

inhabitants of the root canal microenviroment (Saito et al. 2006, Gomes et al. 2004, Jacinto et al. 

2003, Rolph et al. 2001, Sundqvist 1992b).  
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Terminal fragment T-RF(M)56 was one of the most prevalent in our study subjects (17/25), 

and was predicted as Tannerella forsythia, a Gram-negative filament-shaped anaerobic bacteria 

which bears a multi-functional protein responsible for a number of pathogenic properties (Holt et 

al. 2000), and has been considered as a putative periodontal pathogen due to its high prevalence 

in disease patients (Paster et al. 2001). A recent study by Gomes et al. (2006) revealed a 

significant association between T. forsythia and tenderness to percussion in primary and 

secondary endodontic infections. In our investigation, T. forsythia was evenly distributed among 

our study groups and did not display any evident trend towards symptoms. Other highly prevalent 

terminal fragments present in more than 17/25 (68%) of the subjects included T-RF(M)245 

(Fusobacterium spp., Leptotrichia spp., Microbacterium sp. oral strain C24KA), T-RF(M)258 

(Selenomonas sp. oral clone JI021), T-RF(H)343 (Selenomonas sp. oral clone EZ011) and T-

RF(H)556 (Veillonella spp.). 

Fragments predicted as Porphyromonas-like sp. oral clone DA064 (T-RF(H)64) and 

representatives of Bacteroides spp. (T-RF(M)58), were detected in 14/25 and 8/25 of the patients, 

respectively. Porphyromonas spp. and Bacteroides spp. are putative pathogenic bacteria in 

endodontic infections, significantly implicated with odor, spontaneous pain and tenderness to 

percussion (Gomes et al. 2004, Jacinto et al. 2003, Hashioka et al. 1992). Likewise, T-RFs 

corresponding to D. pneumosintes (T-RF(M)271) and Dialister oral clones BS095 (T-RF(H)558 and 

T-RF(M)52), BS016 and MCE7_134 (T-RF(M)271) were detected in more than 30% of the cases 

(figure 4). Dialister is a genus composed of anaerobic Gram-negative bacilli and has been 

progressively reported in both primary (Jacinto et al. 2007, Saito et al. 2006, Munson et al. 2002) 

and refractory (Rolph et al. 2001) endodontic infections by 16S rDNA analysis. Our results accord 

with previous evidence (Siqueira and Rôças 2002), in the sense that representatives of this genus 

can be highly frequent in the endodontic milieu. 

Restriction fragments TRF(H)433 and TRF(H)460 were both detected in 11 subjects, out of 

which 10 either tender or symptomatic. TRF(H)433 was presumed as Campylobacter sp. oral 

clones BB120 and HB035, phylotypes originally reported in a case of refractory periodontitis 

(Paster et al. 2001) and on the hard palate of healthy subjects (Aas et al. 2005). TRF(H)460 was 

predicted as Bergeyella sp. oral clone AK152, a phylotype first reported by B. J. Paster and 

coworkers in an unpublished work on subgingival plaque (GenBank accession number 

AY008691), and shares a 99.7% nucleotide identity with Bergeyella sp. clone AF14, a recently 

detected phylotype from the amniotic fluid and subgingival plaque of a patient with preterm birth 

(Han et al. 2006). Bergeyella zoohelcum, the genus type species, is found in the oral cavity of 

dogs and cats and is frequently associated with bite wounds in humans (Reina and Borrell 1992, 
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Shuckla et al. 2004). Taking these evidences together, a pathological role for Bergeyella sp. in 

endodontic infections is conceivable. 

In the present study, the weight of the intraradicular bacterial assemblages in the 

development of tenderness to percussion and spontaneous pain was investigated. Overall, we did 

not find any significant differences in T-RF richness or community structures among 

asymptomatic, tender and symptomatic endodontic infections. These observations were 

coherently achieved by univariate and multivariate statistical analyses and by hierarchical 

clustering. In this regard, our results discord from those of Sakamoto et al. (2006) and Siqueira et 

al. (2004), who detected differences in the bacterial composition of asymptomatic and 

symptomatic endodontic infections by T-RFLP and DGGE methodologies. However, both authors 

used specimens from different disease sites (root canals for asymptomatic infections and pus 

aspirates for symptomatic infections) and Sakamoto et al. (2006) used three additional restriction 

enzymes for T-RFLP analysis, possibly contributing to the observed variations in the bacterial 

profiles. In our investigation, samples were recovered from a single disease site (root canals). In 

this context, the inexistence of detectable differences in community structures among the study 

groups could also be a direct consequence of the more concise sampling strategy adopted herein. 

 

Conclusions 

T-RFLP analysis indicated that the bacterial composition of root canal infections is highly 

variable among individuals, with approximately 50% of the fragments present in no more than 2 of 

the subjects. Nonetheless, certain taxa displayed ubiquitous presence, namely Tannerella 

forsythia, Selenomonas sp. oral clones JI021 and EZ011, and Veillonella spp. The inexistence of 

statistically significant differences in T-RF richness among study groups, along with the lack of 

clearly visible clusters on hierarchical and multivariate analyses, supports the hypothesis that the 

intraradicular bacterial community assemblages, in entirety, do not play a role in the development 

of endodontic symptoms.  
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Table 1. Terminal restriction fragments identified in 25 cases of 
endodontic infections (identified as S1 – S25).  

 HhaI MspI 

Group I. Asymptomatic (n= 7)   

S2 21 31 

S8 8 21 

S11 22 15 

S15 18 13 

S18 26 20 

S19 18 27 

S22 23 26 

Total Group I 136 153 

Distinct 73 84 

Single* 42 51 

Double** 14 15 

Mean 19.4 21.9 

Group II. Tender (n= 5)   

S5 28 12 

S10 27 31 

S14 25 25 

S17 21 9 

S25 21 19 

Total Group II  122 96 

Distinct 70 62 

Single* 38 30 

Double** 20 20 

Mean  24.4 19.2 

Group III. Symptomatic (n= 13)   

S1 11 8 

S3 14 16 

S4 27 25 

S6 17 13 

S7 18 23 

S9 13 16 

S12 21 20 

S13 15 22 

S16 34 32 

S20 26 23 

S21 21 20 

S23 26 16 

S24 19 18 

Total Group III 262 252 

Distinct 95 93 

Single* 40 43 

Double** 16 19 

Mean  20.1 19.4 

Overall Total 520 501 

Overall Distinct 123 122 

Overall Single* 35 42 

Overall Double** 25 21 

Overall Mean 20.8 20.0 

* Exclusive to one subject; ** Exclusive to two subjects.
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Figure 1. UPGMA dendogram of T-RFLP 

profiles from 25 cases of endodontic 

infections. A combined HhaI and MspI data 

set was used to obtain a peak height 

sensitive Bray-Curtis dissimilarity matrix. 

Legend: 
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Tender (•)  

Symptomatic (•) 

 
 

Figure 3. Principal Coordinates Analysis 

plot (1st and 2nd axes) of T-RFLP profiles 

obtained from 25 cases of endodontic 

infections. A combined HhaI and MspI 

data set was used to obtain a peak height 

sensitive Bray-Curtis dissimilarity matrix. 

Legend: 

Asymptomatic (◦) 
Tender (•)  

Symptomatic (•) 
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CONSIDERAÇÕES GERAIS 

Na presente tese, a microbiota endodôntica foi avaliada por meio de três técnicas 

independentes de cultivo laboratorial: análise de bibliotecas clonais 16S rDNA (Fase I), PCR em 

Tempo Real (Fase II) e T-RFLP (Fase III). As técnicas foram aplicadas em amostras 

microbiológicas intra-radiculares de naturezas diversas: a análise de bibliotecas clonais foi 

realizada em amostras assintomáticas não-expostas ao meio oral; PCR em Tempo Real foi 

aplicada em amostras assintomáticas e sintomáticas; e T-RFLP foi utilizada em amostras 

assintomáticas, sensíveis à percussão e sintomáticas. Devido aos detalhes técnicos inerentes às 

diferentes metodologias e grupos de estudo utilizados, o universo amostral das três fases variou 

consideravelmente: 7 amostras para a Fase I, 34 para a Fase II e 25 para a Fase III.  

Em geral, a análise de bibliotecas clonais demonstrou uma predominância de espécies 

anaeróbias, especialmente as Gram-positivas do filo Firmicutes. Apesar da relativa 

homogeneidade deste grupo de estudo, uma alta variação na composição bacteriana pôde ser 

observada entre os pacientes avaliados, constatada principalmente pela alta predominância de 

filotipos restritos a apenas um dos pacientes (77 %). Esta variabilidade na estrutura das 

comunidades bacterianas intra-radiculares também foi observada pelo emprego da técnica de T-

RFLP em um grupo amostral mais heterogêneo (amostras assintomáticas, sensíveis e 

sintomáticas), ao se constatar que 50% dos fragmentos terminais de restrição (T-RFs) 

apresentaram-se exclusivos a, no máximo, 2 pacientes.  

A técnica de T-RFLP foi aplicada na determinação da riqueza e abundância de 

componentes bacterianos da microbiota intra-radicular, revelando um total de 122 (enzima HhaI) 

e 123 (enzima MspI) fragmentos terminais de restrição (T-RFs) distintos. Se considerarmos que 

cada fragmento corresponde a, no mínimo, uma unidade taxonômica distinta (Marsh, 2005), 

pode-se afirmar que esta técnica permitiu a detecção de um mínimo de 123 filotipos bacterianos 

distintos. Este valor é significativamente maior que aquele obtido pela análise clonal (46 filotipos). 

Tal diferença foi também constatada quando se compararam as médias de unidades 

taxonômicas detectadas pelos dois estudos: 9,6 pela análise clonal, contra 20,4 por T-RFLP. Os 

diferentes tamanhos dos universos amostrais (7 versus 25) podem ter contribuído para a 

constatação destas diferenças. No entanto, como os primers 16S rDNA utilizados nas duas 

técnicas não foram os mesmos, parte das diferenças observadas pode ser explicada também por 

possíveis diferenças nas abrangências de detecção destes marcadores. 

Uma parcela dos gêneros bacterianos identificados (preditos) pela análise em T-RFLP foi 

corroborada pela análise clonal como, por exemplo, Bacteroides, Burkholderia, Campylobacter, 

Dialister, Eubacterium, Peptostreptococcus, Selenomonas e Veillonella. Algumas exceções foram 
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constatadas, como Actinomyces, Bergeyella, Capnocytophaga, Mogibacterium, Peptococcus, 

identificados somente por T-RFLP e Catabacter, Desulfobulbus, Filifactor, Lactobacillus, 

Megasphaera e Treponema, detectados somente pela análise clonal. Visto que as duas técnicas 

possuem sensibilidades e resoluções taxonômicas distintas (Danovaro et al., 2007) e devido ao 

fato de diferentes marcadores universais haverem sido empregados, os resultados obtidos pelas 

duas técnicas devem ser, preferencialmente, considerados em conjunto, e não contrastados. 

O emprego de primers espécie-específicos direcionados aos fatores de patogenicidade 

rgp e bspA em PCR em Tempo Real permitiu a detecção de P. gingivalis e T. forsythia em 24% e 

56% dos pacientes, respectivamente. Entretanto, nenhuma destas espécies foi observada pela 

análise clonal, enquanto que apenas T. forsythia pôde ser predita por T-RFLP. Diferenças 

significativas são, em realidade, esperadas quando se empregam diferentes técnicas de 

detecção em amostras intra-radiculares (Gomes et al., 2005; Siqueira et al., 2002; Rolph et al., 

2001). Realmente, a técnica de PCR em Tempo Real possui sensibilidade de detecção muito 

superior àquelas obtidas pelo cultivo ou pela PCR convencional, sendo capaz de diferenciar uma 

amostra negativa de outra contendo apenas 1 cópia do DNA-alvo (Morrison et al., 1988). É 

possível, contudo, que o uso de primers espécie-específicos tenha contribuído substancialmente 

na detecção de P. gingivalis e T. forsythia, visto que os primers 16S rDNA universais, comumente 

utilizados em estudos de detecção de bactérias orais, não englobam todos os grupos bacterianos 

(Horz et al., 2005). 

Levando-se em consideração os resultados das três metodologias aplicadas nesta tese, 

pode-se afirmar que as técnicas moleculares independentes de cultivo demonstraram alta 

aplicabilidade no estudo das comunidades bacterianas associadas às infecções endodônticas. 

Em termos gerais, a análise de bibliotecas clonais de 16S rDNA possibilitou a detecção de novos 

filotipos da ordem Clostridiales, a PCR em Tempo Real demonstrou alta sensibilidade na 

detecção espécie-específica de dois importantes patógenos orais, enquanto que T-RFLP permitiu 

a caracterização global das estruturas bacterianas de forma abrangente e eficiente. Apesar de 

diferentes conjuntos de primers 16S rDNA haverem sido utilizados, notou-se uma relativa 

concordância entre as técnicas de análise de bibliotecas clonais e de T-RFLP, na medida em que 

demonstraram a existência de uma alta variabilidade na composição das comunidades 

bacterianas intra-radiculares e a detecção de unidades taxonômicas reconhecidamente 

endodônticas. 
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CONCLUSÕES 

Com base nos resultados obtidos, pode-se concluir que: 

1) A microbiota associada às infecções endodônticas é essencialmente polimicrobiana e 

composta, predominantemente, por bactérias anaeróbias Gram-positivas do filo Firmicutes.  

2) Existe uma alta variabilidade na composição das comunidades bacterianas intra-radiculares 

entre diferentes indivíduos, tanto em relação à riqueza de espécies, como em relação aos tipos 

taxonômicos presentes.  

3) Muito embora P. gingivalis e T. forsythia encontrem-se em consideráveis prevalências nas 

amostras intra-radiculares, os seus respectivos níveis celulares não apresentam correlação 

significativa com o desenvolvimento de sintomatologia dolorosa. O mesmo foi observado com 

respeito aos níveis celulares integrados (coexistência) de ambas as espécies.  

4) A ausência de agrupamentos definidos de perfis bacterianos, segundo os parâmetros 

sintomatológicos, sugere que a estrutura das comunidades bacterianas intra-radiculares, em 

termos globais, não possui influência significativa no desenvolvimento da dor ou da sensibilidade 

de origem endodôntica. 

Em suma, os resultados evidenciam que as técnicas moleculares permitem uma visão 

globalizada da composição microbiana que dificilmente seria obtida por técnicas tradicionais e 

que, portanto, possuem alta aplicabilidade na caracterização das comunidades bacterianas 

associadas às infecções endodônticas. A alta diversidade na estrutura das comunidades 

observadas e a detecção de filotipos nunca relatados em estudos anteriores sugerem que a 

microbiota endodôntica ainda requer caracterização adicional por técnicas contemporâneas. 
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